Tekelec LSMS with EAGLE® 5 ISS

LNP Feature Activation Guide

910-5673-001 Revision A April 2009

Copyright 2009 Tekelec All Rights Reserved Printed in USA

Notice

Information in this documentation is subject to change without notice. Unauthorized use, copying, or translation of this documentation can result in civil or criminal penalties.

Any export of Tekelec products is subject to the export controls of the United States and the other countries where Tekelec has operations.

No part of this documentation may be reproduced, translated, or transmitted in any form or by any means, electronic or mechanical, including photocopying or recording, for any purpose without the express written permission of an authorized representative of Tekelec.

Other product names used herein are for identification purposes only, and may be trademarks of their respective companies.

RoHS 5/6 - As of July 1, 2006, all products that comprise new installations shipped to European Union member countries will comply with the EU Directive 2002/95/EC "RoHS" (Restriction of Hazardous Substances). The exemption for lead-based solder described in the Annex will be exercised. RoHS 5/6 compliant components will have unique part numbers as reflected in the associated hardware and installation manuals.

WEEE - All products shipped to European Union member countries comply with the EU Directive 2002/96/EC, Waste Electronic and Electrical Equipment. All components that are WEEE compliant will be appropriately marked. For more information regarding Tekelec's WEEE program, contact your sales representative.

Trademarks

The Tekelec logo, EAGLE, G-Flex, G-Port, IP7, IP7 Edge, and IP7 Secure Gateway are registered trademarks of Tekelec. TekServer, A-Port, EAGLE 5 ISS, and V-Flex are trademarks of Tekelec. All other trademarks are the property of their respective owners.

Patents

This product is covered by one or more of the following U.S. and foreign patents: U.S. Patent Numbers:

5,732,213; 5,953,404; 6,115,746; 6,167,129; 6,324,183; 6,327,350; 6,456,845; 6,606,379; 6,639,981; 6,647,113; 6,662,017; 6,735,441; 6,745,041; 6,765,990; 6,795,546; 6,819,932; 6,836,477; 6,839,423; 6,885,872; 6,901,262; 6,914,973; 6,940,866; 6,944,184; 6,954,526;6,954,794; 6,959,076; 6,965,592; 6,967,956; 6,968,048; 6,970,542; 6,987,781; 6,987,849; 6,990,089; 6,990,347; 6,993,038; 7,002,988; 7,020,707; 7,031,340; 7,035,239; 7,035,387; 7,043,000; 7,043,001; 7,043,002; 7,046,667; 7,050,456; 7,050,562; 7,054,422; 7,068,773; 7,072,678; 7,075,331; 7,079,524; 7,088,728; 7,092,505; 7,108,468; 7,110,780; 7,113,581; 7,113,781; 7,117,411; 7,123,710; 7,127,057; 7,133,420; 7,136,477; 7,139,388; 7,145,875; 7,146,181; 7,155,206; 7,155,243; 7,155,505; 7,155,512; 7,181,194; 7,190,702; 7,190,772; 7,190,959; 7,197,036; 7,206,394; 7,215,748; 7,219,264; 7,222,192; 7,227,927; 7,231,024; 7,242,695; 7,254,391; 7,260,086; 7,260,207; 7,283,969; 7,286,516; 7,286,647; 7,286,839; 7,295,579; 7,299,050; 7,301,910; 7,304,957; 7,318,091; 7,319,857; 7,327,670

Foreign Patent Numbers:

EP1062792; EP1308054; EP1247378; EP1303994; EP1252788; EP1161819; EP1177660; EP1169829; EP1135905; EP1364520; EP1192758; EP1240772; EP1173969; CA2352246

Ordering Information

Your Tekelec Sales Representative can provide you with information about how to order additional discs.

Table of Contents

Chapter 1: Introduction	1
Overview	
Scope and Audience	2
Manual Organization	2
Document Conventions	3
Documentation Admonishments	4
Customer Care Center	4
Emergency Response	6
Related Publications	7
Documentation Availability, Packaging, and Updates	7
Locate Product Documentation on the Customer Support Site	8
Maintenance and Administration Subsystem	8
EAGLE 5 ISS Database Partitions	10
Chapter 2: LNP Feature Activation	15
The LNP Solution	16
Hardware Requirements	16
Activating the LNP Feature Overview	20
Adding a Service Module Card	31
Removing DSM and TSM Cards	35
Configuring the Service Module Card Ethernet Link to the MPS	36
Overview of the ELAP User Interfaces	42
ELAP GUI Main Screen	42
Setting Up an ELAP Workstation	49
Screen Resolution	50
Compatible Browsers	50
Java	50
ELAP Configuration and Initialization	54
Required Network Address Information	55
Configuration Menu Conventions	56
Overview of ELAP Configuration	58
Initial "elapconfig" User Login	58
Text-based Configuration Menu	59
Display Configuration	60
Configure Provisioning Network	61

Select Time Zone	62
Exchange Secure Shell Keys	63
Change Password	63
Platform Menu and Options	64
Configure NTP Server and Options	66
Exit	66
ELAP Configuration Procedure	67
Configuration Terms and Assumptions	67
Configuration Symbols	68
Initial Setup and Connecting to MPSs	68
Procedure for Configuring ELAPs	69
MPS Health Check Procedure	84
EMS Configuration Component	85
Creating an EMS Configuration Component	86
Modifying an EMS Configuration Component	90
Viewing an EMS Configuration Component	92
Deleting an EMS Configuration Component	93
EMS Routing	95
Managing Bulk Load from the LSMS	95
Bulk Load Procedure	95
Support ELAP Reload Via Database Image Function	101
Bulk Load Log File	107
Bulk Load Error Messages	109
Copying One RTDB from Another RTDB	
Verifying RTDB Status	110
Verifying RTDB Status at the EAGLE 5 ISS Terminal	110
Verifying RTDB Status at the ELAP User Interface	111
Restore RTDB on ELAP 8.0	112
Copy RTDB from Remote on ELAP 8.0	115
Activating the LNP Feature on the EAGLE 5 ISS	116
Distributing the LNP Database after LSMS-Based Operation or RTDB 0	Copy125
Distributing an RTDB LNP Database to Service Module Cards	126
Disabling Bulk Load	129
Manually Verifying and Restarting the Eagle Agents on the LSMS	129
Chapter 3: LNP Services Configuration	133
LNP Services Configuration	
LNP Query Service (LNPQS) Details	
Adding an LNP Service	
Removing an LNP Service	

Changing an LNP Service	159
Adding a Subsystem Application	163
Removing a Subsystem Application	166
Changing a Subsystem Application	169
Changing LNP Options	171
Configuring the Triggerless LNP Feature	176
Increasing the LRN and NPANXX Quantities on the EAGLE 5 ISS	184
Activating the LNP Short Message Service (SMS) Feature	186
Clearing a Temporary FAK Alarm	189
Deactivating the LNP Short Message Service Feature	190
Changing the LNP Telephone Number Alarm Thresholds	191
Increasing LNP Telephone Number Quantity on EAGLE 5 ISS	192
Activating the ITU TCAP LRN Query (LRNQT) Feature	195
Chapter 4: Automatic Call Gapping (ACG)	100
Configuration	199
Overview	200
Determining the ACG Node Overload Control Level Query Rates	203
Adding an ACG Node Overload Control Level	208
Removing an ACG Node Overload Control Level	
Changing an ACG Node Overload Control Level	211
Adding ACG Manual Initiated Controls	213
Removing ACG Manual Initiated Controls	216
Changing ACG Manual Initiated Controls	218
Glossary	221

List of Figures

Figure 1: EAGLE 5 ISS Database Partitions (Legacy Control Cards)	10
Figure 2: EAGLE 5 ISS Database Partitions (E5-Based Control Cards)	11
Figure 3: View LSMS Connection Allowed Dialog	24
Figure 4: Change LSMS Connection Allowed Dialog	24
Figure 5: Change LSMS Connection Allowed - Disable Success Dialog	25
Figure 6: View LSMS Connection Allowed - Connection Enabled Dialog	26
Figure 7: Change LSMS Connection Allowed - Connection Disabled Dialog	26
Figure 8: Change LSMS Connection Allowed - Enable Success Dialog	27
Figure 9: View LSMS Connection Allowed - Connection Enabled Dialog	28
Figure 10: Change LSMS Connection Allowed - Connection Enabled Dialog	28
Figure 11: Change LSMS Connection Allowed - Disable Success Dialog	29
Figure 12: View LSMS Connection Allowed - Connection Enabled Dialog	29
Figure 13: Change LSMS Connection Allowed - Connection Disabled Dialog	30
Figure 14: Change LSMS Connection Allowed - Enabled Success Dialog	30
Figure 15: ELAP GUI Main Screen	42
Figure 16: ELAP Banner Applet	43
Figure 17: Busy Icon	44
Figure 18: ELAP Host Addresses Area	44
Figure 19: ELAP IP Addresses with Inhibited Mate (Standby) ELAP	44
Figure 20: ELAP Alarm Information Area	44
Figure 21: Example of Message History	45
Figure 22: LSMS Connection Status Area	46
Figure 23: LSMS Connection Status - Cursor Pop-up Display	46
Figure 24: Service Module Cards Status - Loading	47
Figure 25: Service Module Card Status Pop-up Window	47
Figure 26: Service Module Card Status - Java Applet Window	47
Figure 27: Service Module Card Status - Information Icon	48
Figure 28: Service Module Card Status - Pop-up Window	48
Figure 29: Example of an ELAP Menu	48
Figure 30: Example of Workspace Section Format	49
Figure 31: Security Warning Window	50
Figure 32: License Agreement	51
Figure 33: Java Installation Progress Window	51
Figure 34: Java Installation Complete Window	52
Figure 35: Java Control Panel, Java Tab	53
Figure 36: Java Runtime Settings Dialog Box	53
Figure 37: Configuration Menu Header Format	57

Figure 38: Initial Configuration Text Screen	58
Figure 39: Initial Configuration Continues	58
Figure 40: Entering the elapdev Password	59
Figure 41: ELAP Configuration Menu	59
Figure 42: Example of Display Configuration Output	60
Figure 43: Configure Network Interfaces Menu	61
Figure 44: Configure Provisioning Network Output	61
Figure 45: Configure DSM Network	62
Figure 46: Configuring NAT Addresses Prompt	62
Figure 47: Select Time Zone Menu	63
Figure 48: Exchange Secure Shell Keys Output	63
Figure 49: Change Password	63
Figure 50: Platform Menu Output	64
Figure 51: Configure NTP Server Output	66
Figure 52: Main Menu View	84
Figure 53: Platform Folder Open View	84
Figure 54: Run Health Check View	85
Figure 55: LNP System Menu – Create EMS	86
Figure 56: Create LNP System EMS Address Info Tab	86
Figure 57: Create LNP System EMS Component Info	87
Figure 58: Create LNP System EMS Contact Info	89
Figure 59: Update Successful Dialog	90
Figure 60: Field Required Dialog	90
Figure 61: LNP System Menu – Modify EMS	90
Figure 62: Modify LNP System EMS Window	91
Figure 63: EMS Routing Dialog	91
Figure 64: Update Successful Dialog	92
Figure 65: More Fields Needed Dialog	92
Figure 66: View LNP System EMS Dialog	92
Figure 67: Delete LNP System EMS Dialog	93
Figure 68: Update Successful Dialog	94
Figure 69: ELAP Main Menu	96
Figure 70: Enabling Change HS Bulk Download	96
Figure 71: Bulk Load Window	97
Figure 72: Abort Bulk Load Operation Dialog	100
Figure 73: Bulk Load Complete Information Dialog	100
Figure 74: Bulk Load Complete	100
Figure 75: ELAP Reload Via DB Image Function	102
Figure 76: ELAP Reload Via DB Image	102
Figure 77: Generate Image	103
Figure 78: Database Image Completed	103

Figure 79: Abort Bulk Download	104
Figure 80: Abort Confirmation	105
Figure 81: Transfer Database Image to ELAP	106
Figure 82: Image Transfer Complete	106
Figure 83: Open Log Files Window	107
Figure 84: Example Bulk Load Log File	108
Figure 85: ELAP Main Screen	111
Figure 86: ELAP RTDB Status	112
Figure 87: Stopping Software on the ELAP GUI	112
Figure 88: Stop ELAP Software - Success	113
Figure 89: Restore the RTDB	113
Figure 90: Confirm RTDB Restore	114
Figure 91: Successful RTDB Restoration	114
Figure 92: Copy RTDB from Remote	115
Figure 93: Copy RTDB from Remote Selection	115
Figure 94: Change LSMS HS Bulk Download Enabled Dialog	129
Figure 95: Message Flow For Global Title and Message Relay	139
Figure 96: Inter-Network Support for LNP Queries	146
Figure 97: LNP Query Processing	146
Figure 98: LNP Service Determination Process	148

List of Tables

Table 1: Admonishments	4
Table 2: LNP Hardware and Part Number Configuration Table	
Table 3: Hardware Compatibility Matrix	19
Table 4: Service Module Card Locations	32
Table 5: Valid Subnet Mask Parameter Values	37
Table 6: Information for MPS at EAGLE 5 ISS A	55
Table 7: Information for MPS at EAGLE 5 ISS B	56
Table 8: Sample IP Addresses Used in Configuration	60
Table 9: MPS Configuration Symbols	68
Table 10: Fields in Bulk Load Window	98
Table 11: LNP Message Relay	136
Table 12: LNP Message Relay - Ported Subscribers	137
Table 13: LNP Message Relay - Nonported Subscribers	
Table 14: LNP Query OPCODE Values	148
Table 15: Example LNP Service Configuration	154
Table 16: Changing the LNP Service	160
Table 17: Duration and Gap Interval Index Values	200

Chapter

1

Introduction

Topics:

- Overview Page 2
- Scope and Audience Page 2
- Manual Organization Page 2
- Document Conventions Page 3
- Documentation Admonishments Page 4
- Customer Care Center Page 4
- Emergency Response Page 6
- Related Publications Page 7
- Documentation Availability, Packaging, and Updates Page 7
- Locate Product Documentation on the Customer Support Site Page 8
- Maintenance and Administration Subsystem Page 8
- EAGLE 5 ISS Database Partitions Page 10

This chapter contains general information about the organization of this manual and conventions used. Contact information for the Tekelec Customer Care Center and emergency response

is also included here.

Overview

The LNP *Feature Activation Guide* describes the procedures necessary for database administration personnel or translations personnel to configure the EAGLE 5 ISS to implement the local number portability (LNP) feature and to implement these parts of the LNP feature on the EAGLE 5 ISS:

- LNP services
- LNP options
- LNP subsystem application
- Automatic call gapping
- Triggerless LNP feature
- Mapping LNP translation types
- Increasing the LRN and NPANXX Quantities on the EAGLE 5 ISS
- Activating and Deactivating the LNP Short Message Service (SMS) feature

Note:

EAGLE 5 ISS database administration privileges are password restricted. Only those persons with access to the command classes "Database Administration," "LNP Basic," "LNP Database Administration," and "LNP Subscription" can execute the LNP administrative functions.

It is possible for two or more users to make changes to the same database element at any time during their database administration sessions. It is strongly recommended that only one user at a time make any changes to the database.

Scope and Audience

This manual is intended for anyone responsible for configuring the EAGLE 5 ISS to implement the local number portability (LNP) feature and to implementing the LNP services, options, subsystem application and other LNP features on the EAGLE 5 ISS. Users of this manual and the others in the EAGLE 5 ISS family of documents must have a working knowledge of telecommunications and network installations.

Manual Organization

Throughout this manual, the terms database and system software are used. Database refers to all data that can be administered by the user, including shelves, cards, links, routes, global title translation tables, and gateway screening tables. System software refers to data that cannot be administered by the user, including generic program loads (GPLs).

This document is organized into these sections:

Introduction on page 1 contains general information about the database and the organization of this manual.

LNP Feature Activation on page 15 describes how to activate the LNP feature.

LNP Services Configuration on page 133 describes the procedures necessary to configure the following elements of the EAGLE 5 ISS:

- LNP Services
- LNP Subsystem Applications
- LNP Options
- Mapping LNP translation types
- Increasing the LRN and NPANXX Quantities on the EAGLE 5 ISS
- Activating and Deactivating the LNP Short Message Service (SMS) feature
- The Triggerless LNP feature

Automatic Call Gapping (ACG) Configuration on page 199 describes the procedures used to configure automatic call gapping for the LNP feature.

Document Conventions

In order to clearly differentiate between references to objects, actions, literal entries, and user-supplied information, the following conventions are used in this manual:

• Menu selections and buttons are shown in bold, and the steps in a menu path are represented with ">". For example:

From **ELAP Menu**, select **Maintenance > Display Release Levels** to verify that the ELAP version is 3.5.

Click the **Disable LSMS Connection** button.

- Commands, entries that must be entered exactly as shown in this document, and filenames are shown in the Courier bold font. For example:
 - pass:cmd="ping 192.168.120.1":loc=1101
 - Enter the cd /ccsosmr command to go to the ccsosmr directory.
 - /opt/TKLCplat/bin/syscheck -v -m local lsmshc proc
- Output examples and command prompts are shown in the Courier font. For example:
 - rlghncxa03w 06-08-01 21:20:37 GMT EAGLE5 35.1.0 Card has been allowed
 - Enter Choice: 13 (Enter Choice: is the command prompt in this example)
- Keys on the keyboard are represented by the text on the key enclosed in "<>" and shown in bold. For example: the Control, ALT, and Delete keys are shown as **<Ctrl> <Alt> <Delete>**.

Documentation Admonishments

Admonishments are icons and text throughout this manual that alert the reader to assure personal safety, to minimize possible service interruptions, and to warn of the potential for equipment damage.

Table 1: Admonishments

	DANGER : (This icon and text indicate the possibility of <i>personal injury</i> .)
	WARNING: (This icon and text indicate the possibility of <i>equipment damage</i> .)
\triangle	CAUTION: (This icon and text indicate the possibility of <i>service interruption</i> .)

Customer Care Center

The Tekelec Customer Care Center is your initial point of contact for all product support needs. A representative takes your call or email, creates a Customer Service Request (CSR) and directs your requests to the Tekelec Technical Assistance Center (TAC). Each CSR includes an individual tracking number. Together with TAC Engineers, the representative will help you resolve your request.

The Customer Care Center is available 24 hours a day, 7 days a week, 365 days a year, and is linked to TAC Engineers around the globe.

Tekelec TAC Engineers are available to provide solutions to your technical questions and issues 7 days a week, 24 hours a day. After a CSR is issued, the TAC Engineer determines the classification of the trouble. If a critical problem exists, emergency procedures are initiated. If the problem is not critical, normal support procedures apply. A primary Technical Engineer is assigned to work on the CSR and provide a solution to the problem. The CSR is closed when the problem is resolved.

Tekelec Technical Assistance Centers are located around the globe in the following locations:

Tekelec - Global

Email (All Regions): support@tekelec.com

• USA and Canada

Phone:

1-888-FOR-TKLC or 1-888-367-8552 (toll-free, within continental USA and Canada)

1-919-460-2150 (outside continental USA and Canada)

TAC Regional Support Office Hours:

8:00 a.m. through 5:00 p.m. (GMT minus 5 hours), Monday through Friday, excluding holidays

• Central and Latin America (CALA)

Phone:

USA access code +1-800-658-5454, then 1-888-FOR-TKLC or 1-888-367-8552 (toll-free)

TAC Regional Support Office Hours (except Brazil):

10:00 a.m. through 7:00 p.m. (GMT minus 6 hours), Monday through Friday, excluding holidays

• Argentina

Phone:

0-800-555-5246 (toll-free)

Brazil

Phone:

0-800-891-4341 (toll-free)

TAC Regional Support Office Hours:

 $8{:}30~a.m.$ through $6{:}30~p.m.$ (GMT minus 3~hours), Monday through Friday, excluding holidays

Chile

Phone:

1230-020-555-5468

• Columbia

Phone:

01-800-912-0537

• Dominican Republic

Phone:

1-888-367-8552

Mexico

Phone:

001-888-367-8552

Peru

Phone:

0800-53-087

• Puerto Rico

Phone:

1-888-367-8552 (1-888-FOR-TKLC)

Venezuela

Phone:

0800-176-6497

• Europe, Middle East, and Africa

Signaling

Phone:

+44 1784 467 804 (within UK)

TAC Regional Support Office Hours:

8:00 a.m. through 7:00 p.m. (GMT), Monday through Friday, excluding holidays

• Software Solutions

Phone:

+33 3 89 33 54 00

TAC Regional Support Office Hours:

8:00 a.m. through 7:00 p.m. (GMT), Monday through Friday, excluding holidays

Asia

• India

Phone:

+91 124 436 8552 or +91 124 436 8553

TAC Regional Support Office Hours:

 $10:\!00$ a.m. through $7:\!00$ p.m. (GMT plus $5\,1/2$ hours), Monday through Saturday, excluding holidays

Singapore

Phone:

+65 6796 2288

TAC Regional Support Office Hours:

9:00 a.m. through 6:00 p.m. (GMT plus 8 hours), Monday through Friday, excluding holidays

Emergency Response

In the event of a critical service situation, emergency response is offered by the Tekelec Customer Care Center 24 hours a day, 7 days a week. The emergency response provides immediate coverage, automatic escalation, and other features to ensure that the critical situation is resolved as rapidly as possible.

A critical situation is defined as a problem with an EAGLE 5 ISS that severely affects service, traffic, or maintenance capabilities, and requires immediate corrective action. Critical problems affect service and/or system operation resulting in:

- A total system failure that results in loss of all transaction processing capability
- Significant reduction in system capacity or traffic handling capability
- Loss of the system's ability to perform automatic system reconfiguration
- Inability to restart a processor or the system
- Corruption of system databases that requires service affecting corrective actions
- Loss of access for maintenance or recovery operations
- Loss of the system ability to provide any required critical or major trouble notification

Any other problem severely affecting service, capacity/traffic, billing, and maintenance capabilities may be defined as critical by prior discussion and agreement with the Tekelec Customer Care Center.

Related Publications

For information about additional publications that are related to this document, refer to the *Related Publications* document. The *Related Publications* document is published as a part of the *Release Documentation* and is also published as a separate document on the Tekelec Customer Support Site.

Documentation Availability, Packaging, and Updates

Tekelec provides documentation with each system and in accordance with contractual agreements. For General Availability (GA) releases, Tekelec publishes a complete EAGLE 5 ISS documentation set. For Limited Availability (LA) releases, Tekelec may publish a documentation subset tailored to specific feature content or hardware requirements. Documentation Bulletins announce a new or updated release.

The Tekelec EAGLE 5 ISS documentation set is released on an optical disc. This format allows for easy searches through all parts of the documentation set.

The electronic file of each manual is also available from the Tekelec Customer Support site (*support.tekelec.com*). This site allows for 24-hour access to the most up-to-date documentation, including the latest versions of Feature Notices.

Printed documentation is available for GA releases on request only and with a lead time of six weeks. The printed documentation set includes pocket guides for commands and alarms. Pocket guides may also be ordered separately. Exceptions to printed documentation are:

- Hardware or Installation manuals are printed without the linked attachments found in the electronic version of the manuals.
- The Release Notice is available only on the Customer Support site.

Note: Customers may print a reasonable number of each manual for their own use.

Documentation is updated when significant changes are made that affect system operation. Updates resulting from Severity 1 and 2 PRs are made to existing manuals. Other changes are included in the documentation for the next scheduled release. Updates are made by re-issuing an electronic file to the customer support site. Customers with printed documentation should contact their Sales Representative for an addendum. Occasionally, changes are communicated first with a Documentation Bulletin to provide customers with an advanced notice of the issue until officially released in the documentation. Documentation Bulletins are posted on the Customer Support site and can be viewed per product and release.

Locate Product Documentation on the Customer Support Site

Access to Tekelec's Customer Support site is restricted to current Tekelec customers only. This section describes how to log into the Tekelec Customer Support site and locate a document. Viewing the document requires Adobe Acrobat Reader, which can be downloaded at www.adobe.com.

1. Log into the Tekelec **new** Customer Support site at *support.tekelec.com*.

Note: If you have not registered for this new site, click the **Register Here** link. Have your customer number available. The response time for registration requests is 24 to 48 hours.

- 2. Click the **Product Support** tab.
- **3.** Use the Search field to locate a document by its part number, release number, document name, or document type. The Search field accepts both full and partial entries.
- 4. Click a subject folder to browse through a list of related files.
- **5.** To download a file to your location, right-click the file name and select **Save Target As**.

Maintenance and Administration Subsystem

The Maintenance and Administration Subsystem (MAS) is the central management point for the EAGLE 5 ISS. The MAS provides user interface, maintenance communication, peripheral services, alarm processing, system disk interface, and measurements. Management and redundancy are provided by use of two separate subsystem processors.

The MAS resides on two separate sets of Maintenance and Administration Subsystem Processor (MASP) cards and a Maintenance Disk and Alarm card (collectively referred to as control cards). The control cards are located in slots 1113 through 1118 of the EAGLE 5 ISS control shelf. The control cards can be either E5-based cards or legacy cards.

Note: In normal operation, the E5-based control cards and the legacy control cards cannot be mixed in one EAGLE 5 ISS control shelf.

Legacy Control Cards

The legacy set of EAGLE 5 ISS control cards consists of the following cards:

- Two MASP card sets; each set contains the following two cards:
 - A General Purpose Service Module II (GPSM-II) card

- A Terminal Disk Module (TDM) card
- One Maintenance Disk and Alarm (MDAL) card

General Purpose Service Module II (GPSM-II) Card

Each GPSM-II card contains the Communications Processor and the Applications Processor and provides connections to the IMT bus. The card controls the maintenance and database administration activity and performs both application and communication processing. GPSM-II cards are located in slots 1113 and 1115 of the control shelf.

Terminal Disk Module (TDM) Card

Each TDM card provides the Terminal Processor for the 16 I/O ports, and interfaces to the Maintenance Disk and Alarm (MDAL) card. The TDM card also distributes Composite Clocks and High Speed Master clocks throughout the EAGLE 5 ISS, and distributes Shelf ID to the EAGLE 5 ISS. Each TDM card contains one fixed disk drive that is used to store primary and backup system databases, measurements, and Generic Program Loads (GPLs). The TDM cards are located in slots 1114 and 1116 of the control shelf.

Maintenance Disk and Alarm (MDAL) Card

The MDAL card processes alarm requests and provides fan control. There is only one MDAL card in a control card set. Critical, major, and minor system alarms are provided for up to 6 individual frames. In addition to the 3 system alarms, the MDAL card provides the system audible alarm. The MDAL card provides control of fans on a per-frame basis and allows for each fan relay to be set individually. The MDAL card contains a removable cartridge drive; the removable cartridge is used for installing new software; backing up the system software, the application software, and the database; and for downloading data for off-line processing. The MDAL card is located in slots 1117 and 1118 of the control shelf.

E5-based Control Cards

The E5-based set of EAGLE 5 ISS control cards consists of the following cards:

- Two Maintenance and Administration Subsystem Processor cards (E5-MASP) cards. Each dual-slot E5-MASP card is made up of the following two modules:
 - Maintenance Communication Application Processor (E5-MCAP) card
 - Terminal Disk Module (E5-TDM) card
- One Maintenance Disk and Alarm card (E5-MDAL card)

Maintenance Communication Application Processor (E5-MCAP) Card

The E5-MCAP card contains the Communications Processor and Applications Processor and provides connections to the IMT bus. The card controls the maintenance and database administration activity and performs both application and communication processing. E5-MCAP cards are located in slots 1113 and 1115 of the control shelf.

Each E5-MCAP card contains two USB ports. One latched USB port is used with removable flash media ("thumb drives"), and one flush-mounted USB port is used with a plug-in "credit card" flash drive. The removable media drive is used to install and back up customer data. The credit card drive is used for upgrade and could be used for disaster recovery.

Terminal Disk Module (E5-TDM) Card

The E5-TDM card provides the Terminal Processor for the 16 I/O ports, and interfaces to the Maintenance Disk and Alarm (E5-MDAL) card and fixed disk storage. The E5-TDM card also distributes Composite Clocks and High Speed Master clocks throughout the EAGLE 5 ISS, and distributes Shelf ID to the EAGLE 5 ISS. Each E5-TDM card contains one fixed SATA drive that is used to store primary and backup system databases, measurements, and Generic Program Loads (GPLs). E5-TDM cards are located in slots 1114 and 1116 of the control shelf.

Maintenance Disk and Alarm (E5-MDAL) Card

The E5-MDAL card processes alarm requests and provides fan control. There is only one E5-MDAL card in a control card set. Critical, major, and minor system alarms are provided for up to 6 individual frames. In addition to the 3 system alarms, the E5-MDAL card provides the system audible alarm. The E5-MDAL card provides control of fans on a per-frame basis, and allows for each fan relay to be set individually. The E5-MDAL card does not contain a removable cartridge drive; drives for removable media are located on the E5-MCAP card. The E5-MDAL card is located in slots 1117 and 1118 of the control shelf.

EAGLE 5 ISS Database Partitions

The data that the EAGLE 5 ISS uses to perform its functions are stored in two separate areas: the fixed disk drives, and the removable cartridge. The following sections describe these areas and data that is stored on them. These areas and their partitions are shown in *Figure 1: EAGLE 5 ISS Database Partitions* (*Legacy Control Cards*) on page 10 and *Figure 2: EAGLE 5 ISS Database Partitions* (*E5-Based Control Cards*) on page 11.

Figure 1: EAGLE 5 ISS Database Partitions (Legacy Control Cards)

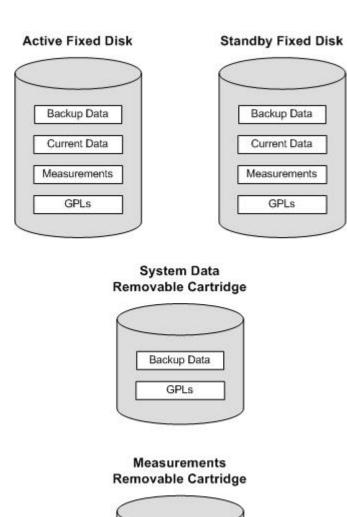
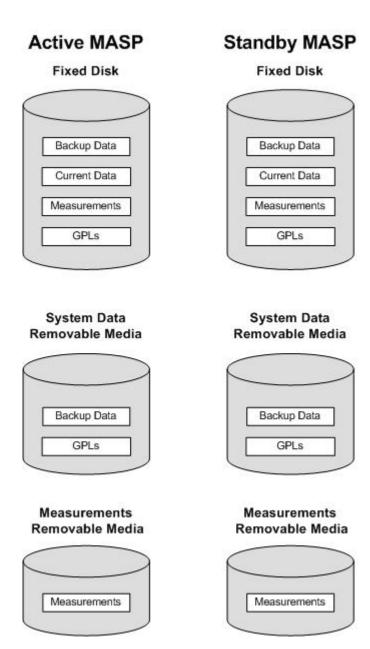



Figure 2: EAGLE 5 ISS Database Partitions (E5-Based Control Cards)

Measurements

Fixed Disk Drive

There are two fixed disk drives on the EAGLE 5 ISS. The fixed disk drives contain the "master" set of data and programs for the EAGLE 5 ISS. The two fixed disk drives are located on the terminal disk modules (TDMs). Both disks have the same files. The data stored on the fixed disks is partially replicated on the various cards in the EAGLE 5 ISS. Changes made during database administration sessions are sent to the appropriate cards.

The data on the fixed disks can be viewed as four partitions.

- Current partition
- Backup partition

- Measurements partition
- Generic program loads (GPLs) partition

The data which can be administered by users is stored in two partitions on the fixed disk, a current database partition which has the tables which are changed by on-line administration, and a backup database partition which is a user-controlled copy of the current partition.

All of the on-line data administration commands effect the data in the current partition. The purpose of the backup partition is to provide the users with a means of rapidly restoring the database to a known good state if there has been a problem while changing the current partition.

A full set of GPLs is stored on the fixed disk, in the GPL partition. There is an approved GPL and a trial GPL for each type of GPL in this set and a utility GPL, which has only an approved version. Copies of these GPLs are downloaded to the EAGLE 5 ISS cards. The GPL provides each card with its functionality. For example, the ss7ansi GPL provides MTP functionality for link interface modules (LIMs).

Measurement tables are organized as a single partition on the fixed disk. These tables are used as holding areas for the measurement counts.

Removable Cartridge or Removable Media

The removable cartridge is used with the legacy MDAL control card in card location 1117. The removable media is used with the E5-MCAP card portion of the E5-MASP in card locations 1113 and 1115.

The removable cartridge or removable media is used for two purposes.

- To hold an off-line backup copy of the administered data and system GPLs
- To hold a copy of the measurement tables

Because of the size of the data stored on the fixed disk drives on the TDMs, a single removable cartridge or removable media cannot store all of the data in the database, GPL and measurements partitions.

To use a removable cartridge or removable media to hold the system data, it must be formatted for system data. To use a removable cartridge or removable media to hold measurements data, it must be formatted for measurements data. The EAGLE 5 ISS provides the user the ability to format a removable cartridge or removable media for either of these purposes. A removable cartridge or removable media can be formatted on the EAGLE 5 ISS by using the format-disk command. More information on the format-disk command can be found in the Commands Manual. More information on the removable cartridge or removable media drives can be found in the Hardware Manual - EAGLE 5 ISS.

Additional and preformatted removable cartridges or removable media are available from the *Customer Care Center* on page 4.

LNP Feature Activation

Topics:

- The LNP Solution Page 16
- Hardware Requirements Page 16
- Activating the LNP Feature Overview Page 20
- Adding a Service Module Card Page 31
- Removing DSM and TSM Cards Page 35
- Configuring the Service Module Card Ethernet Link to the MPS Page 36
- Overview of the ELAP User Interfaces Page 42
- Setting Up an ELAP Workstation Page 49
- ELAP Configuration and Initialization Page 54
- Overview of ELAP Configuration Page 58
- ELAP Configuration Procedure Page 67
- MPS Health Check Procedure Page 84
- EMS Configuration Component Page 85
- EMS Routing Page 95
- Managing Bulk Load from the LSMS Page 95
- Copying One RTDB from Another RTDB Page 109
- Verifying RTDB Status Page 110
- Restore RTDB on ELAP 8.0 Page 112
- Copy RTDB from Remote on ELAP 8.0 Page 115
- Activating the LNP Feature on the EAGLE 5 ISS Page 116
- Distributing the LNP Database after LSMS-Based Operation or RTDB Copy Page 125
- Manually Verifying and Restarting the Eagle Agents on the LSMS Page 129

This chapter contains the procedures needed to activate the Local Number Portability (LNP) feature. The procedures used to set up an ELAP workstation and to configure an ELAP are also included here.

The LNP Solution

The EAGLE LNP subsystem has grown from an initial support of 12 million telephone numbers (TNs) to its current support level of 228 million TNs. With the 384 Million Records feature, the LNP Solution can support up to 384 million TNs on a single E5-SM4G card within 3.2 GB of memory. In addition, the new E5-SM4G card provides increased processor capacity. Nine E5-SM4G cards are necessary to provide the same system throughput as twenty-five DSM cards. The improved performance also enables faster reload times and rates for download to be achieved.

The overall function of the LNP Solution remains the same at a high level. LNP provisioning instructions are received and stored at the LSMS and distributed to the ELAP pair associated with an EAGLE. The ELAP provides persistent storage for the data and provides database update and data loading services for the EAGLE LNP application. The system is designed such that each E5-SM4G card contains and exact image of the ELAP LNP database. This enables the EAGLE to support fast transaction rates for database lookup requests from the LIMs.

Hardware Requirements

The following hardware is required for the LNP feature:

- Service Module cards must be configured and installed in the EAGLE 5 ISS.
 - **Note:** In this manual, Service Module card refers to either a DSM card or an E5-SM4G card unless a specific card is required.
 - TSM cards running the SCCP application cannot be in the database and cannot be physically installed in the EAGLE 5 ISS. The EAGLE 5 ISS must be running release 35.0 or greater.
- The LSMS must be running release 11.0 to use the maximum capacity of 384 million LNP telephone numbers. The LSMS must be running release 8.5 or greater to use the maximum capacity of 228 million LNP telephone numbers. LSMS releases 7.0 and 8.0 can be used with the EAGLE 5 ISS release 35.0 or greater, but with the following limitations:
 - LSMS 7.0 supports a maximum capacity of 120 million LNP telephone numbers.
 - LSMS 8.0 supports a maximum capacity of 192 million LNP telephone numbers.
- The ELAP (EAGLE LNP Application Processor) running on the MPS platform. The ELAP must be running release 5.0 or greater. ELAP 7.0 supports up to 228 million numbers. ELAP release 8.0 is required for 240 million numbers and above, including the 384 million numbers feature.

Note: This document contains instructions on using ELAP version 8.0. If you are using a previous version of ELAP, please refer to the document, *ELAP Administration Manual_Up to ELAP 7.0*.

If any of these systems are not running the required release, contact the *Customer Care Center* on page 4.

The LNP telephone number quantity for the EAGLE 5 ISS is set with feature access keys corresponding to the quantity, up to 384 million numbers. To configure a particular LNP telephone number quantity in the EAGLE 5 ISS, the EAGLE 5 ISS must contain Service Module cards with a minimum amount of RAM. *Table 2: LNP Hardware and Part Number Configuration Table* on page

17 shows the LNP telephone number quantities, the part numbers that correspond to these quantities, and the Service Module card requirements for that LNP telephone number quantity. Perform the *Activating the LNP Feature on the EAGLE 5 ISS* on page 116 procedure for more information on setting these quantities.

Table 2: LNP Hardware and Part Number Configuration Table

LNP Telephone Number Quantity	LNP Telephone Number Part Number	Minimum Hardware Required for the LNP Telephone Number Quantity
2 Million	893-0110-01	1 GB Service Module card
4 Million	893-0110-02	1 GB Service Module card
6 Million	893-0110-03	1 GB Service Module card
8 Million	893-0110-04	1 GB Service Module card
12 Million	893-0110-05	1 GB Service Module card
24 Million	893-0110-06	2 GB Service Module card
36 Million	893-0110-07	3 GB Service Module card
48 Million	893-0110-08	4 GB Service Module card
60 Million	893-0110-09	4 GB Service Module card
72 Million	893-0110-10	4 GB Service Module card
84 Million	893-0110-11	4 GB Service Module card
96 Million	893-0110-12	4 GB Service Module card
108 Million	893-0110-13	4 GB Service Module card
120 Million	893-0110-14	4 GB Service Module card
132 Million	893-0110-15	4 GB Service Module card
144 Million	893-0110-16	4 GB Service Module card
156 Million	893-0110-17	4 GB Service Module card

LNP Telephone Number Quantity	LNP Telephone Number Part Number	Minimum Hardware Required for the LNP Telephone Number Quantity
168 Million	893-0110-18	4 GB Service Module card
180 Million	893-0110-19	4 GB Service Module card
192 Million	893-0110-20	4 GB mixed or E5-SM4G only
204 Million	893-0110-21	4 GB DSM card (See Note)
216 Million	893-0110-22	4 GB DSM card (See Note)
228 Million	893-0110-23	4 GB DSM card (See Note)
240 Million	893-0110-24	4 GB E5-SM4G card (See Note)
252 Million	893-0110-25	4 GB E5-SM4G card
264 Million	893-0110-26	4 GB E5-SM4G card
276 Million	893-0110-27	4 GB E5-SM4G card
288 Million	893-0110-28	4 GB E5-SM4G card
300 Million	893-0110-29	4 GB E5-SM4G card
312 Million	893-0110-30	4 GB E5-SM4G card
324 Million	893-0110-31	4 GB E5-SM4G card
336 Million	893-0110-32	4 GB E5-SM4G card
348 Million	893-0110-33	4 GB E5-SM4G card
360 Million	893-0110-34	4 GB E5-SM4G card
372 Million	893-0110-35	4 GB E5-SM4G card
384 Million	893-0110-36	4 GB E5-SM4G card

Note: For LNP subscribers less than 192 million numbers, a mix of DSM and E5-SM4G cards can be used. For 204 -228 million numbers, if running on ELAP 7.0 or less, only DSM cards can

LNP Telephone Number Quantity	LNP Telephone Number Part Number	Minimum Hardware Required for the LNP Telephone Number Quantity
be installed. For 204 -228 million numbers running on ELAP 8.0, only E5-SM4G cards can be installed. For LNP subscribers with 240 million numbers, the LNP is only available on ELAP 8.0 using only E5-SM4G cards.		

The LNP data is collected at the LSMS from the NPAC (for subscription data) and from local provisioning on the LSMS (for default NPANXX, split NPANXX and other types of LNP records). This data is sent to the active ELAP, on the MPS platform, at an EAGLE 5 ISS across a TCP/IP connection in the customer's network. The ELAP stores the data and replicates it to the mate ELAP. The LNP data is sent to the Service Module cards of the EAGLE 5 ISS from the ELAP using two dedicated Ethernet networks between the MPS platform and the Service Module cards of the EAGLE 5 ISS.

When the LNP feature is enabled for the first time, the LRN (location routing number) and NPANXX quantities are set at 100,000 (for LRNS) and 150,000 (for NPANXXs). These quantities can be increased to 200,000 LRNs and 350,000 NPANXXs, but only when the LNP telephone number quantity is 60 million or greater. See the *Increasing the LRN and NPANXX Quantities on the EAGLE 5 ISS* on page 184 procedure.

The hardware requirements for the 384 Million LNP Records feature is dependent upon the quantity of TNs that are enabled and the version of ELAP in use.

Table 3: Hardware Compatibility Matrix

Quantity FAK Enabled	ELAP 7.0 or Less	ELAP 8.0
<= 192M	Service Module cards	N/A
204M - 228M	DSM	N/A
>= 240M	N/A	E5-SM4G

Note: Quantities of >228M require ELAP 8.0 and LSMS 11.0.

Telco Switches

The 384 Million Records feature replaces the DSM network with two redundant 1GigE full duplex networks for the A and B ports, connected with Telco ethernet switches. This requires the installation of the Telco switches and the replacement of the existing network cabling.

Note: A complete upgrade from from DSM or mixed DSM/E5-SM4G card sets to all E5-SM4G hardware is required to enable the 384 Million LNP Records feature.

The E5-SM4G 5000 TPS enhancement allows the E5-SM4G card to achieve 5000 TPS when an LNP quantity feature that is less than or equal to 192 million numbers is enabled. The E5-SM4G Throughput Capacity feature (893-0191-01) must be enabled to achieve 5000 TPS on an E5-SM4G card. Total system TPS capacity cannot exceed 40,000 TPS when E5-SM4G cards are used.

Activating the LNP Feature Overview

To activate this feature, actions need to be taken at the LSMS, the ELAP, as well as at the EAGLE 5 ISS.

This procedure contains the basic steps necessary to activate the LNP feature. Some of these basic steps reference more detailed procedures contained in this guide.

At the EAGLE 5 ISS:

- 1. Verify these items in the EAGLE 5 ISS's database by entering these commands:
 - a) rtrv-ctrl-feat to verify the features that are enabled:
 - LNP telephone number quantity and the LNP ELAP Configuration feature
 - INP
 - G-Port
 - ANSI-41 INP Query
 - EIR
 - A-Port
 - IS41 GSM Migration
 - PPSMS (Prepaid SMS)
 - G-Flex

If the rtrv-ctrl-feat output shows that an LNP telephone number quantity or the EAGLE 5 ISS's LNP ELAP Configuration feature is enabled, continue with substep b.

For an LNP telephone number quantity to be shown in the rtrv-ctrl-feat output, or for the EAGLE 5 ISS's LNP ELAP Configuration feature to be enabled, these features cannot be enabled:

- G-Port
- INP
- ANSI-41 INP Query
- EIR
- A-Port, IS41 GSM Migration
- PPSMS (Prepaid SMS)
- G-Flex
- V-Flex

Note: With ELAP 8.0 and the 384 Million LNPRecords feature, the E5-SM4G Throughput Capacity feature and the LNP feature are no longer exclusive and can be enabled at the same time.

CAUTION: If any of the features shown in the previous list are enabled, the LNP feature cannot be enabled and this procedure cannot be performed. If you wish to enable the LNP feature, contact the *Customer Care Center* on page 4.

- b) rtrv-ip-lnk to verify the Service Module card Ethernet configuration to the ELAPs.
- c) rept-stat-card to verify the state and location of the cards running the VSCCP, and SCCP applications.

 d) rept-stat-sccp - to show the status and number of service modules running the SCCP or VSCCP application currently provisioned in the EAGLE 5 ISS.
 Record the values displayed in these steps.

CAUTION:

The LNP feature does not support TSM cards. All TSM cards must be removed to enable the feature. Verify the number of TSM cards in the EAGLE 5 ISS by entering the rept-stat-sccp command. The number of TSM cards is shown in the SCCP Cards Configured field of the rept-stat-sccp output. Perform the *Removing DSM and TSM Cards* on page 35 procedure to remove any TSM cards.

If the number of DSM cards is 26 to 32, the LNP feature cannot be enabled. If the LNP feature is enabled, the maximum number of DSM cards the EAGLE 5 ISS can have is 25. The 384 Million Records feature does not support DSM cards. Only E5-SM4G cards can be used for this feature. All DSM cards must be removed to enable 384 million numbers. Total GTT capacity for the EAGLE 5 ISS will be reduced to a maximum of 40,800 transactions per second by removing TSM cards in order to enable the LNP feature.

See the LNP Hardware and Part Number Configuration Table, *Table 2: LNP Hardware and Part Number Configuration Table* on page 17, for specific card requirements and compatibility matrix.

Note:

If the rtrv-ctrl-feat output in *Step 1.a* on page 20 shows that the EAGLE 5 ISS's LNP ELAP Configuration feature is enabled, skip *Step 2* on page 21 through *Step 3* on page 21, and go to *Step 4* on page 21.

- 2. If *Step 1.c* on page 20 shows no cards running the VSCCP application (Service Module Cards), perform the *Adding a Service Module Card* on page 31 procedure to make sure that Service Module cards are configured and installed in the EAGLE 5 ISS according to the hardware requirements shown in *Table 2: LNP Hardware and Part Number Configuration Table* on page 17.
- **3.** If *Step 1.c* on page 20 shows TSM cards running the SCCP application, perform the *Removing DSM and TSM Cards* on page 35 procedure to make sure that any TSM cards are removed.

Note:

If *Step 2* on page 21 through *Step 3* on page 21 were performed, skip *Step 4* on page 21, and go to *Step 5* on page 22.

4. Verify the memory installed on the Service Module card is enough based on the LNP telephone number quantity being assigned (see *Table 2: LNP Hardware and Part Number Configuration Table* on page 17).

Enter the rept-stat-card command specifying the location of a Service Module card with the mode=full parameter. The amount of memory is shown in the DBD MEMORY SIZE field and is measured in megabytes.

```
rlghncxa03w 07-05-01 10:09:55 GMT EAGLE5 35.1.0
CARD VERSION TYPE APPL PST SST AST
1301 123-002-001 DSM VSCCP IS-NR Active ----
ALARM STATUS = No Alarms.
IMT VERSION = 123-002-000
```

```
PROM VERSION = 002-125-002
 IMT BUS A
                                                                                                                                              = Conn
  IMT BUS B
                                                                                                                                          = Conn
                                                                                                                                          = Idle
  CLOCK A
  CLOCK B
                                                                                                                                                = Idle
  CLOCK I
                                                                                                                                                = Active
CLOCK I - NOT - NO
 HW VERIFICATION CODE = --
  SCCP % OCCUP
                                                                                                                                               = 0%
                                        TVG RESULT = 24 hr: ----, 5 min: -----
  Command Completed.
```

If the amount of memory is not enough to support the new LNP telephone number quantity, perform the *Adding a Service Module Card* on page 31 procedure and add a Service Module card with the correct amount of memory (see *Table 2: LNP Hardware and Part Number Configuration Table* on page 17). After the new Service Module card has been added, perform the *Removing DSM and TSM Cards* on page 35 procedure and remove the Service Module card specified in this step from the database. Repeat this step for every Service Module card shown in *Step 1.c* on page 20.

- **5.** If *Step 1.b* on page 20 does not show IP links from the Service Module cards to the MPS, or if Service Module cards were configured in *Step 2* on page 21 or *Step 4* on page 21, configure the IP Link from the Service Module cards to MPS A and B using the *Configuring the Service Module Card Ethernet Link to the MPS* on page 36 procedure.
- **6.** If *Step 5* on page 22 was not performed, enter the rept-stat-sccp command to verify that the state of all Service Module cards is IS-NR (In-Service Normal).

The state of the Service Module cards is shown in the PST column of the output.

tklc1	L170501 08-08-1 VERSION	8 10:16:24 EST PST	EAGLE5 4	0.0.0 AST	MSU	CPU	
						USAGE	
1217	126-030-000	IS-NR	Active		100%	45%	
1317	126-030-000	IS-NR	Active		100%	51%	
2217	126-030-000	IS-NR	Active		100%	42%	
3201	126-030-000	IS-NR	Active		54%	25%	
3203	126-030-000	IS-NR	Active		55%	25%	
3205	126-030-000	IS-NR	Active		57%	27%	
SCCP	Service Averag	e MSU Capacity	= 71% .	Average C	PU Capac	ity =	328
Comma	and Completed.						

Note:

The rept-stat-sccp command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the rept-stat-sccp command, see the rept-stat-sccp command description in the EAGLE 5 ISS Commands Manual.

7. If the state any of the Service Module cards shown in *Step 1.b* on page 20, *Step 4* on page 21, or *Step 6* on page 22 are not IS-NR, place these cards back into service with the rst-card command and specifying the card location of the card shown in *Step 1.b* on page 20, *Step 4* on page 21, or *Step 6* on page 22 that is not IS-NR.

For this example, enter this command: rst-card:loc=1301. When this command has successfully completed, these messages should appear.

```
rlghncxa03w 07-05-01 21:20:37 GMT EAGLE5 37.0.0 Card has been allowed.
```

8. Test port A of one of the Service Module cards using the ping pass command with the card location of the Service Module card recorded in step 1 and the IP address for port A of that Service Module card shown in either *Step 1.b* on page 20 or *Step 5* on page 22.

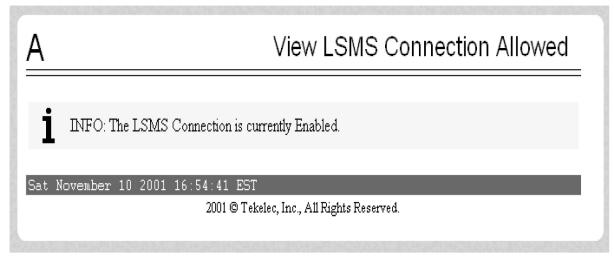
```
pass:cmd="ping 192.168.120.1":loc=1301
```

```
Command Accepted - Processing
   rlghncxa03w 07-08-27 08:30:44 GMT EAGLE5 37.0.0
   pass: loc=1301: cmd="ping 192.168.120.1"
   Command entered at terminal #1.
   rlghncxa03w 07-08-27 08:30:44 GMT EAGLE5 37.0.0
   PASS: Command sent to card
   rlghncxa03w 07-08-27 08:30:44 GMT EAGLE5 37.0.0
   PING command in progress
rlghncxa03w 07-08-27 08:30:46 GMT EAGLE5 37.0.0
PING 192.168.120.1: 56 data bytes
64 bytes from tekral.nc.tekelec.com (192.168.120.1):icmp_seq=0.time=5. ms
64 bytes from tekral.nc.tekelec.com (192.168.120.1):icmp_seq=1.time=0. ms
64 bytes from tekral.nc.tekelec.com (192.168.120.1):icmp_seq=2.time=0. ms
    ----192.168.120.1 PING Statistics----
    3 packets transmitted, 3 packets received, 0% packet loss
   round-trip (ms) min/avg/max = 0/1/5
   PING command complete
```

9. Test port B of the Service Module card specified in *Step 8* on page 23 using the ping pass command with the card location of the Service Module card specified in *Step 8* on page 23 and the IP address for port B shown in either *Step 1.b* on page 20 or *Step 5* on page 22.

```
pass:cmd="ping 192.168.121.1":loc=1301
```

```
Command Accepted - Processing
   rlghncxa03w 07-08-27 08:30:44 GMT EAGLE5 37.0.0
   pass: loc=1301: cmd="ping 192.168.121.1"
   Command entered at terminal #1.
    rlghncxa03w 07-08-27 08:30:44 GMT EAGLE5 37.0.0
   PASS: Command sent to card
   rlghncxa03w 07-08-27 08:30:44 GMT EAGLE5 37.0.0
   PING command in progress
rlghncxa03w 07-08-27 08:30:46 GMT EAGLE5 37.0.0
PING 192.168.121.1: 56 data bytes
64 bytes from tekral.nc.tekelec.com (192.168.121.1):icmp_seq=0.time=5. ms
64 bytes from tekral.nc.tekelec.com (192.168.121.1):icmp_seq=1.time=0. ms
64 bytes from tekral.nc.tekelec.com (192.168.121.1):icmp_seq=2.time=0. ms
     ---192.168.121.1 PING Statistics--
    3 packets transmitted, 3 packets received, 0% packet loss
   round-trip (ms) min/avg/max = 0/1/5
   PING command complete
```


10. Repeat *Step 8* on page 23 and *Step 9* on page 23 for all other Service Module cards in the EAGLE 5 ISS.

At the MPS (ELAP A or B):

- **11.** Log into ELAP A or B.
- 12. From ELAP Menu, select Maintenance ➤ Display Release Levels to verify that the ELAP version is correct (see *Table 2: LNP Hardware and Part Number Configuration Table* on page 17). If the ELAP version is not correct, contact the *Customer Care Center* on page 4 for the contact information before performing the procedure.
- **13.** Perform a health check of the MPS. Perform the *MPS Health Check Procedure* on page 84.
- 14. Disable the LSMS Connection.

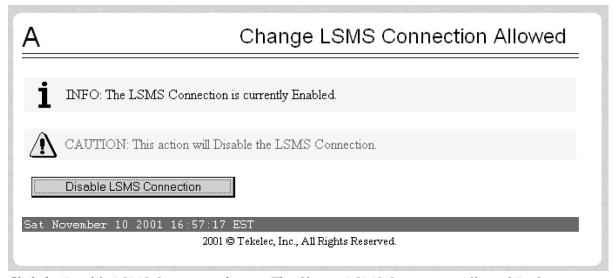

Select **Maintenance** ➤ **LSMS Connection** ➤ **View Allowed** as seen in *Figure 3: View LSMS Connection Allowed Dialog* on page 24.

Figure 3: View LSMS Connection Allowed Dialog

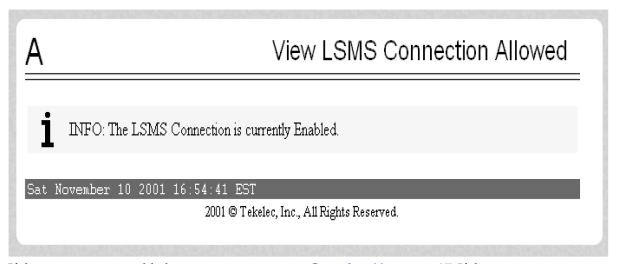
If the connection is disabled, no action is necessary. Go to *Step 15* on page 25. If the connection is enabled, select **Maintenance** ➤ **LSMS Connection** ➤ **Change Allowed**. The **Change LSMS Connection Allowed** dialog displays, showing **Disable LSMS Connection icon** as seen in *Figure 4: Change LSMS Connection Allowed Dialog* on page 24.

Figure 4: Change LSMS Connection Allowed Dialog

Click the **Disable LSMS Connection** button. The **Change LSMS Connection Allowed Dialog** as seen in *Figure 5: Change LSMS Connection Allowed - Disable Success Dialog* on page 25.

Figure 5: Change LSMS Connection Allowed - Disable Success Dialog

- **15.** Repeat *Step 11* on page 24 through *Step 13* on page 24 for the other ELAP.
- **16.** Verify the telephone number quantity on the ELAP.


Perform the *Verifying RTDB Status at the EAGLE 5 ISS Terminal* on page 110 procedure. The number of telephone numbers on the ELAP must be less that the configured quantity on the EAGLE 5 ISS. The EAGLE 5 ISS quantity is shown in the rtrv-ctrl-feat command output performed in *Step 1.a* on page 20. If the telephone number quantity on the ELAP is less that the quantity shown in the rtrv-ctrl-feat output, or is less than the quantity that will be configured in *Step 17* on page 26, go to *Step 17* on page 26. If the telephone number quantity on the ELAP is greater that the quantity shown in the rtrv-ctrl-feat output, the ELAP RTDB is not loaded onto the entire set of Service Module cards on the EAGLE 5 ISS. Some of the Service Module cards load the ELAP RTDB to provide a restricted level of GTT/LNP service. The remainder of the Service Module cards are put into a restricted state. UIM 1323 is generated at the EAGLE 5 ISS. To avoid this situation, make sure when performing *Step 17* on page 26 that the telephone number quantity configured on the EAGLE 5 ISS is greater than the ELAP telephone number quantity.

At the EAGLE 5 ISS:

- **17.** Activate the LNP feature for the desired LNP telephone number quantity. Perform the *Activating the LNP Feature on the EAGLE 5 ISS* on page 116 procedure. At the LSMS:
- 18. Contact the *Customer Care Center* on page 4 to enable the LNP telephone quantity on the LSMS.
- **19.** Create a new EMS for the new MPSs by performing the *Creating an EMS Configuration Component* on page 86 procedure.
- **20.** Configure new MPSs in the EMS Routing window. Perform the *EMS Routing* on page 95 procedure. At the MPS (ELAP A or B):
- 21. Enable the LSMS Connection.

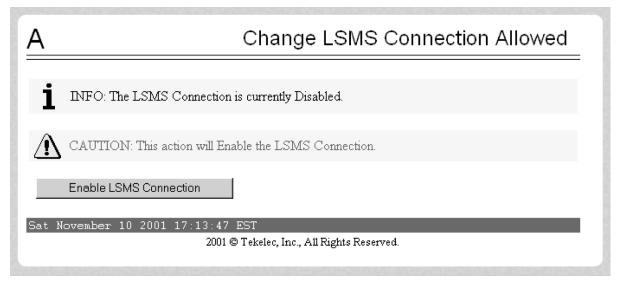

Select Maintenance ➤ LSMS Connection ➤ View Allowed. The View LSMS Connection Allowed Dialog is displayed in *Figure 6: View LSMS Connection Allowed - Connection Enabled Dialog* on page 26.

Figure 6: View LSMS Connection Allowed - Connection Enabled Dialog

If the connection is enabled, no action is necessary. Go to *Step 22* on page 27. If the connection is disabled, select **Maintenance** ➤ **LSMS Connection** ➤ **Change Allowed**. The **Change LSMS Connection Allowed** Dialog is displayed in *Figure 7: Change LSMS Connection Allowed* - *Connection Disabled Dialog* on page 26.

Figure 7: Change LSMS Connection Allowed - Connection Disabled Dialog

Click the **Enable LSMS Connection** button. The **Change LSMS Connection Allowed Dialog** is displayed in *Figure 8: Change LSMS Connection Allowed - Enable Success Dialog* on page 27.

Figure 8: Change LSMS Connection Allowed - Enable Success Dialog

Repeat *Step 21* on page 26 for the other ELAP.

At the LSMS:

22. Perform a bulk download or SERVDI bulk download (support ELAP reload via database image) to one of the ELAPs.

Perform the procedures in the *Bulk Load Procedure* on page 95 or *SERVDI Bulk Download* on page 102 section.

At the MPS (the ELAP specified in *Step 22* on page 27):

23. Copy the bulk downloaded database to the other ELAP , or restore the RTDB if using the SERVDI procedure.

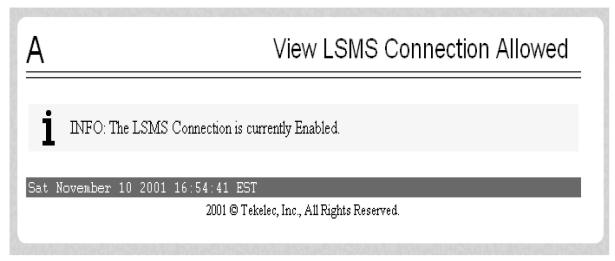
Perform the procedures in the *Copying One RTDB from Another RTDB* on page 109 section, or *Restore RTDB on ELAP 8.0* on page 112 for SERVDI.

24. Perform a health check of the MPS.

Perform the MPS Health Check Procedure on page 84 section.

At the EAGLE 5 ISS:

25. Distribute the RTDB database to each Service Module card in the EAGLE 5 ISS.


Perform the procedures in the *Distributing the LNP Database after LSMS-Based Operation or RTDB Copy* on page 125 section.

At the MPS (ELAP A or B):

26. Disable the LSMS Connection.

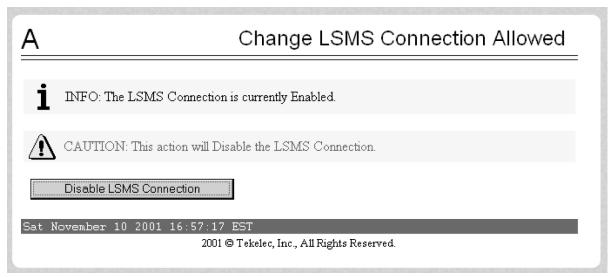

Select Maintenance > LSMS Connection > View Allowed. The View LSMS Connection Allowed Dialog is displayed in *Figure 9: View LSMS Connection Allowed - Connection Enabled Dialog* on page 28.

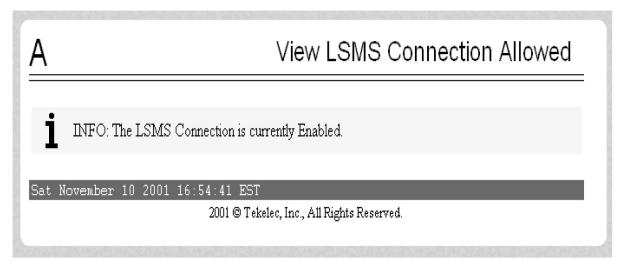
Figure 9: View LSMS Connection Allowed - Connection Enabled Dialog

If the connection is disabled, no action is necessary. Go to *Step 27* on page 29. If the connection is enabled, select **Maintenance** ➤ **LSMS Connection** ➤ **Change Allowed**. The **Change LSMS Connection Allowed** Dialog is displayed in *Figure 10: Change LSMS Connection Allowed* - *Connection Enabled Dialog* on page 28.

Figure 10: Change LSMS Connection Allowed - Connection Enabled Dialog

Click the **Disable LSMS Connection** button. The **Change LSMS Connection Allowed Dialog** is displayed in *Figure 11: Change LSMS Connection Allowed - Disable Success Dialog* on page 29.

Figure 11: Change LSMS Connection Allowed - Disable Success Dialog


Repeat *Step 26* on page 28 for the other ELAP.

At the MPS (ELAP A or B):

27. Enable LSMS Connection.

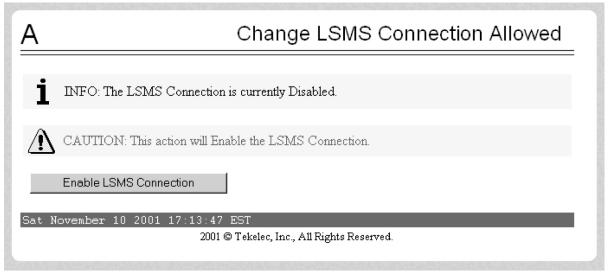

Select Maintenance ➤ LSMS Connection ➤ View Allowed. The View LSMS Connection Allowed Dialog is displayed in *Figure 12: View LSMS Connection Allowed - Connection Enabled Dialog* on page 29.

Figure 12: View LSMS Connection Allowed - Connection Enabled Dialog

If the connection is enabled, no action is necessary. Go to *Step 28* on page 31. If the connection is disabled, select **Maintenance** ➤ **LSMS Connection** ➤ **Change Allowed**. The **Change LSMS Connection Allowed** Dialog is displayed in *Figure 13: Change LSMS Connection Allowed* - *Connection Disabled Dialog* on page 30.

Figure 13: Change LSMS Connection Allowed - Connection Disabled Dialog

Click the **Enable LSMS Connection** button. The **Change LSMS Connection Allowed Dialog** is displayed in *Figure 14: Change LSMS Connection Allowed - Enabled Success Dialog* on page 30.

Figure 14: Change LSMS Connection Allowed - Enabled Success Dialog

Repeat *Step 27* on page 29 for the other ELAP. **At the LSMS**:

28. Verify that both EMSs are associated with the LSMS.

The EMS Status area in the LSMS Console window should show that the EMSs connected to the LSMS are green.

The procedure is completed.

Adding a Service Module Card

This procedure is used to add a Service Module card to support the LNP feature using the ent-card command. One of four Service Module cards can be used, depending on the amount of memory installed on the Service Module card and the feature requirements. If you have purchased the 384 Million LNP Records feature and are running ELAP version 8.0, E5-SM4G cards are required. See the LNP Hardware and Part Number Configuration Table (*Table 2: LNP Hardware and Part Number Configuration Table on page 17*) for card configuration per LNP telephone number quantity.

- DSM 1G A Service Module card with 1 GB of memory installed
- DSM 2G A Service Module card with 2 GB of memory installed
- DSM 3G A Service Module card with 3 GB of memory installed
- DSM 4G A Service Module card with 4 GB of memory installed
- E5-SM4G An E5-SM4G Service Module card with 4GB of memory installed

Note: Nine E5-SM4G cards provide the capacity of 25 DSM cards.

Note: The E5-SM4G card supports 5000 transactions per second (TPS) when used with LNP-based features.

The Service Module card can be inserted only in the odd numbered card slots of the extension shelf. The Service Module card cannot be inserted in slot 09. Slot 09 of each shelf contains the HMUX card or HIPR card (EAGLE 5 ISS release 33.0 or later). The Service Module card can be inserted in the control shelf, but only in slots 01, 03, 05, 07, and 11. The Service Module card occupies two card slots, so the even numbered card slot adjacent to the odd numbered slot where the Service Module card has been inserted must be empty. The Service Module card is connected to the network through the odd-numbered card slot connector.

Table 4: Service Module Card Locations

Location of Service Module card	Empty Card Location	Location of Service Module card	Empty Card Location
Slot 01	Slot 02	Slot 11	Slot 12
Slot 03	Slot 04	Slot 13	Slot 14
Slot 05	Slot 06	Slot 15	Slot 16
Slot 07	Slot 08	Slot 17	Slot 18

The ent-card command uses these parameters.

:loc

The location of the card being added to the database.

:type

The type of card being added to the database. For this procedure, the value of this parameter is dsm.

:appl

The application software or GPL that is assigned to the card. For this procedure, the value of this parameter is vsccp.

:force

Allow the LIM card to be added to the database even if there are not enough Service Module cards to support the number of LIMs in the EAGLE 5 ISS.

The shelf to which the card is to be added must already be in the database. This can be verified with the rtrv-shlf command. If the shelf is not in the database, see the "Adding a Shelf" procedure in the EAGLE 5 ISS Database Administration Manual – System Management.

The card cannot be added to the database if the specified card location already has a card assigned to it.

Before the Service Module card can be configured in the database for the LNP feature, the global title translation feature must be turned on with the chg-feat command. The rtrv-feat command can verify that the global title translation feature is on.

Note: Once the global title translation feature is turned on with the chg-feat command, it cannot be turned off.

The global title translation feature must be purchased before you turn the feature on with the chg-feat command. If you are not sure if you have purchased the global title translation feature, contact the *Customer Care Center* on page 4.

The EAGLE 5 ISS can contain a maximum of 25 DSM cards or 9 E5-SM4G cards.

Note: If you want to add an E5-SM4G card as the Service Module card, verify the temperature threshold settings for the E5-SM4G card by performing the "Changing the High-Capacity Card Temperature Alarm Thresholds" procedure in the *Database Administration Manual – SS7*.

See the LNP Hardware and Part Number Configuration Table (*Table 2: LNP Hardware and Part Number Configuration Table* on page 17) for card configuration per LNP telephone number quantity.

1. Verify that the GTT feature is on by entering the rtrv-feat command. If the GTT feature is on, the GTT field should be set to on.

Note: The rtrv-feat command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the rtrv-feat command, see the rtrv-feat command description in the *EAGLE 5 ISS Commands Manual*.

Note: If the GTT feature is on, shown by the entry GTT = on in the rtrv-feat command output in *Step 1* on page 33, skip this step and go to *Step 3* on page 33.

2. Turn the global title translation feature on by entering the chg-feat:gtt=on command. chg-feat

```
rlghncxa03w 07-08-01 09:57:41 GMT EAGLE5 37.0.0
CHG-FEAT: MASP A - COMPLTD
```

Note: Once the Global Title Translation (GTT) feature is turned on with the chg-feat command, it cannot be turned off. The GTT feature must be purchased before turning it on. If you are not sure whether you have purchased the GTT feature, contact the *Customer Care Center* on page 4.

3. Display the cards in the EAGLE 5 ISS using the rtrv-card command.

rlahno	xa03w 07-0	8-01 09:58	:31 GMT EAGLE5	37.0	. 0				
CARD	TYPE	APPL	LSET NAME			LSET I	NAME	LINK	SLC
1101	TSM	SCCP							
1102	TSM	GLS							
1113	GPSM	EOAM							
1114	TDM-A								
1115	GPSM	EOAM							
1116	TDM-B								
1117	MDAL								
1201	LIMDS0	SS7ANSI	sp2	A	0	sp1		В	0
1203	LIMDS0	SS7ANSI	sp3	A	0				
1204	TSM	DSM							
1206	LIMDS0	SS7ANSI	nsp3	A	1	nsp4		В	1
1207	LIMV35	SS7GX25	nsp1	A	0				
1208	LIMV35	SS7GX25	nsp1	A	1				
1016	A CAMENIES	CEDI AM							
1216	ACMENET	STPLAN							
1217 I 1308	CM EBDADCM		an 6	71	1	an7		D	0
1314	LIMDS0 LIMDS0	SS7ANSI SS7ANSI	sp6	A A	1	sp7		B B	0
1314	ACMENET	STPLAN	sp7	А	т _	sp5		В	Т
2101	TSM	SCCP							
2105	TSM	SCCP							
2112	TSM	SCCP							
	1011	5001							

Note: Cards should be distributed throughout the EAGLE 5 ISS for proper power distribution. Refer to the *Installation Manual - EAGLE 5 ISS* for the shelf power distribution.

- To verify HIPR card installation, go to the next step.
- If you want to install a Service Module card, go to *Step 5* on page 34.
- **4.** Verify that HIPR cards are installed in card locations 9 and 10 in the shelf containing the E5-SM4G card being added in this procedure. Enter this command:

rept-stat-gpl:gpl=hipr

```
rlghncxa03w 07-02-01 11:40:26 GMT EAGLE5 37.0.0
       CARD
              RUNNING
                         APPROVED
                                          TRIAL
              126-002-000 126-002-000 126-003-000
HIPR
       1109
            126-002-000 126-002-000 126-003-000
HIPR
       1110
HIPR
       1209
              126-002-000
                            126-002-000
                                           126-003-000
              126-002-000
                                           126-003-000
HIPR
       1210
                            126-002-000
            126-002-000
                          126-002-000
                                          126-003-000
HIPR
       1309
       1310
              126-002-000 126-002-000
                                          126-003-000
HIPR
HTPR
       2109
              126-002-000
                            126-002-000
                                           126-003-000
HIPR
       2110
              126-002-000
                            126-002-000
                                          126-003-000
Command Completed
```

- If HIPR cards are installed in the shelf containing the E5-SM4G card, go to the next step.
- If HIPR cards are not installed at (either or both) card locations 9 and 10 on the shelf containing the E5-SM4G card, refer the *Installation Manual EAGLE 5 ISS* and install the HIPR cards. Once the HIPR cards have been installed, go to the next step.
- 5. Verify that the Service Module card has been physically installed into the proper location.

CAUTION: If the versions of the flash GPLs on the Service Module card do not match the flash GPLs version in the database when the Service Module card is inserted into the card slot, UAM 0002 is generated indicating that these GPL versions do not match. If UAM 0002 has been generated, perform the alarm clearing procedure for UAM 0002 in the *Unsolicited Alarm and Information Messages* manual before proceeding with this procedure.

6. Add the Service Module card to the database using the ent-card command.

```
ent-card:loc=1301:type=dsm:appl=vsccp
```

```
rlghncxa03w 07-08-01 09:57:51 GMT EAGLE5 37.0.0
ENT-CARD: MASP A - COMPLTD
```

7. Verify the changes using the rtrv-card command (specify card location).

rtrv-card:loc=1301

```
rlghncxa03w 07-08-01 09:58:31 GMT EAGLE5 37.0.0
CARD TYPE APPL LSET NAME LINK SLC LSET NAME LINK SLC
1301 DSM VDSM
```

- 8. Repeat this procedure to add other Service Module cards to the EAGLE 5 ISS.
- 9. Backup the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear. The active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED): MASP A - Backup starts on active MASP.

BACKUP (FIXED): MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED): MASP A - Backup starts on standby MASP.

BACKUP (FIXED): MASP A - Backup on standby MASP to fixed disk complete.
```

You have now completed this procedure.

Removing DSM and TSM Cards

This procedure is used to remove DSM cards and TSM cards running the SCCP application that do not meet the hardware requirements for the desired LNP telephone number quantity from the database, using the <code>dlt-card</code> command. The 384 Million Numbers feature is not supported by DSM or TSM cards. Any DSM or TSM cards must be removed from the system to use this feature. The hardware requirements for Service Module cards and LNP telephone number quantities are shown in *Table 2: LNP Hardware and Part Number Configuration Table* on page 17.

Note: When any SCCP card is removed, the hourly measurements data that has not been collected will be lost. It is important to remove these cards right after hourly collection to minimize measurements data loss.

These card locations were recorded in *Step 1.c* on page 20 of the *Activating the LNP Feature Overview* on page 20, or shown in the rept-stat-card output in *Step 4* on page 21 (TSM cards running the SCCP application that do not contain enough memory for the desired LNP telephone number quantity) of the *Activating the LNP Feature Overview* on page 20 procedure. These cards cannot be in the EAGLE 5 ISS when the LNP feature is activated for the desired LNP telephone number quantity. The card cannot be removed if it does not exist in the database.

CAUTION: If the TSM card running the SCCP application is the last TSM card in service, removing this card from the database will cause global title translation and local number portability traffic to be lost.

The examples in this procedure are used to remove the TSM card in card location 1204.

1. Display the status of the DSM or TSM cards by entering the rept-stat-sccp command.

		1 16:31:14 EST				
CARD	VERSION	PST	SST	AST	MSU U	CPU JSAGE USAGE
1205 P	126-027-000	IS-NR	Active		0%	5%
1317	126-027-000	IS-NR	Active		0%	5%
2213	126-027-000	IS-NR	Active		0%	5%
2215	126-027-000	IS-NR	Active		0%	6%
2217	126-027-000	IS-NR	Active		0%	5%
2317	126-027-000	IS-NR	Active		0%	5%
1105	126-027-000	IS-NR	Active		0%	6%
	ervice Averaged Completed	e MSU Capacity	= 0%	Average CPU	Capac	ity = 5%

Note: The rept-stat-sccp command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the rept-stat-sccp command, see the rept-stat-sccp command description in the *EAGLE 5 ISS Commands Manual*.

2. Remove the card from service using the rmv-card command and specifying the card location, recorded in *Step 1.c* on page 20 or shown in *Step 4* on page 21 of the *Activating the LNP Feature Overview* on page 20 procedure.

If the TSM card to be inhibited is the only TSM card running the SCCP application in service, the force=yes parameter must also be specified. The cards that are in service are shown by the entry IS-NR in the **PST** field in the output in *Step 1* on page 35.

```
rmv-card:loc=1204

rlghncxa03w 07-08-01 09:12:36 GMT EAGLE5 37.0.0

Card has been inhibited.
```

3. Remove the card from the database using the dlt-card command.

The dlt-card command has only one parameter, loc, which is the location of the card.

```
dlt-card:loc=1204
```

```
rlghncxa03w 07-08-01 09:12:36 GMT EAGLE5 37.0.0
DLT-CARD: MASP A - COMPLTD
```

4. Verify the changes using the rtrv-card command specifying the card that was removed in *Step 3* on page 36.

```
rtrv-card:loc=1204
```

```
E2144 Cmd Rej: Location invalid for hardware configuration
```

- **5.** Remove the card specified in *Step 3* on page 36 from the shelf.
- **6.** Repeat this procedure for all other TSM or DSM cards in the EAGLE 5 ISS that do not meet the hardware requirements for the desired LNP telephone number quantity.
- 7. Backup the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear. The active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.

BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED) : MASP A - Backup starts on standby MASP.

BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

You have now completed this procedure.

Configuring the Service Module Card Ethernet Link to the MPS

This procedure is used to configure the Ethernet link parameters for the Service Module cards using the chg-ip-lnk command. The chg-ip-card command is used to connect to the Virtual IP networks, which are new with ELAP 8.0.

Note: The parameters described here are for ELAP version 8.0. If you are running on ELAP 7.0, please reference the *LNP Feature Activation Guide version 38.0* on the *Tekelec Customer Support Site* at: https://support.tekelec.com/index.asp.

The chg-ip-link command uses the following parameters.

:loc - Card location. The location of the Service Module card.

:port - The Ethernet interface on the Service Module card, A or B.

: ipaddr – IP address assigned to the Ethernet interface on the Service Module card. This is an IP address expressed in standard "dot notation." IP addresses consist of the system's network number and the machine's unique host number.

: submask – The subnet mask of the IP interface. A subnet mask is an IP address with a restricted range of values. The bits in the mask must be a string of one's followed by a string of zeros. There must be at least two one's in the mask, and the mask cannot be all one's. See *Table 5: Valid Subnet Mask Parameter Values* on page 37 to assign the correct parameter values.

: auto - Tells hardware whether to automatically detect the duplex and speed.

:mactype - This is the Media Access Control Type of the interface.

When a Service Module card is entered into the database, these values are automatically configured in the IP Link table for both Ethernet interfaces on the Service Module. If the values are not configured as listed below, you may need to change them.

- MACTYPE = DIX
- AUTO = YES
- MCAST = NO

The IPADDR and SUBMASK columns in the rtrv-ip-lnk output are shown as dashes. Each Ethernet link assigned to the Service Module card requires the IP address and submask of the MPS. The MCAST value for both Ethernet links must be no (mcast=no). No other values need to be changed.

A zero ipaddr parameter value (0.0.0.0) indicates the Service Module card Ethernet interface to the MPS is disabled.

The Service Module card must be placed out of service.

If either the ipaddr or submask parameters are specified, then both parameters must be specified. If the ipaddr parameter value is zero (0.0.0.0), the submask parameter is not required.

The A or B interface can be used with the Service Module card.

The value of the IP address specified for the ipaddr parameter is defined as follows:

- The first two octets of the IP address are 192.168. These are the first two octets for private class C networks as defined in RFC 1597.
- The third octet is configured, usually to the default value .120 for the main network (port A of the Service Module card) and the default value .121 for the backup network (port B of the Service Module card). These are not visible to any external networks, and should not need to be changed.
- The fourth octet of the address is selected as follows:
 - If the ELAP is configured as ELAP A, the fourth octet has a value of 100.
 - If the ELAP is configured as ELAP B, the fourth octet has a value of 200.

The submask parameter value is based upon the ipaddr setting. See *Table 5: Valid Subnet Mask Parameter Values* on page 37 for the valid input values for the submask and ipaddr parameter combinations.

Table 5: Valid Subnet Mask Parameter Values

Network Class	IP Network Address Range	Valid Subnet Mask Values
---------------	--------------------------	--------------------------

A	1.0.0.0 to 127.0.0.0	255.0.0.0 (the default value for a class A IP address) 255.192.0.0 255.224.0.0 255.240.0.0 255.248.0.0 255.252.0.0 255.252.1
A+B	128.1.0.0 to 191.255.0.0	255.255.0.0 (the default value for a class B IP address) 255.255.192.0 255.255.240.0 255.255.248.0 255.255.252.0 255.255.254.0 255.255.255.254.0
A+B+C	192.0.0.0 to 223.255.255.0	255.255.255.0 (the default value for a class C IP address) 255.255.255.192 255.255.255.224 255.255.255.240 255.255.255.255.248 255.255.255.255.252

The chg-ip-card command is used to provision IP networking parameters for the E5-SM4G cards. The chg-ip-card command supports two new parameters, :bpipaddr and :bpsubmask, allowed only if the E5SM4G card is in the inhibited state. The :bpipaddr and :bpsubmask parameters are used to implement bonded ports on the E5-SM4G cards, which allow the A and B networks to be used as a single redundant network.

[:]bpipaddr - Bonded Port IP address. This parameter specifies an IP address for the Service Module card.

[:]bpsubmask – Bonded Port IP submask. The subnet values are the same as for the chg-ip-link values, shown in *Table 5: Valid Subnet Mask Parameter Values* on page 37.

The :bpsubmask parameter must be specified if :bpipaddr is specified for chg-ip-card, and :bpipaddr must be specified or already have a valid value if a valid :bpsubmask is specified.

The :bpipaddr IP value must be unique among all IP cards and IP links.

When specifying :bpipaddr with a NULL network address, the chg-ip-card command will reset both :bpipaddr and :bpsubmask.

1. Display the current Ethernet link parameters associated with the Service Module card in the database by entering the rtrv-ip-lnk command.

The following is an example of the possible output.

```
rlghncxa03w 06-08-01 21:14:37 GMT EAGLE5 35.1.0
    PORT IPADDR
                                            MACTYPE AUTO MCAST
                   SUBMASK
1203 A 192.001.001.001 255.255.255.0
                                            802.3 YES
                                                        NO
1203 B
                                            DIX
                                                    YES
                                                         NO
1205 A 192.001.001.014 255.255.255.0
                                            DIX
1205 B
                                            DTX
                                                   YES
                                                         NO
1301 A
1301 B
                                            DTX
                                                    YES
                                                         NΩ
         _____
                                            DIX
                                                    YES
                                                         NO
1303 A
                                            DIX
                                                   YES
                                                         NO
1303 B
                                            DIX
                                                   YES
                                                         NO
1305 A
                                            DIX
                                                   YES
                                                         NO
1305 B
1307 A
                                             DIX
                                                    YES
                                                         NO
                                            DIX
                                                    YES
                                                         NO
1307 B
                                            DTX
                                                    YES
                                                         NO
1311 A
                                             DIX
                                                    YES
                                                         NO
1311 B
                                             DIX
                                                   YES
                                                         NO
IP-LNK table is (12 of 512) 2% full.
```

2. Verify the status of the Service Module card being configured in this procedure using the rept-stat-card command.

For example, enter this command: rept-stat-card:loc=1301. This is an example of the possible output.

```
rlghncxa03w 06-08-01 17:00:36 GMT EAGLE5 35.1.0

CARD VERSION TYPE APPL PST SST AST
1301 123-002-000 DSM VSCCP IS-NR Active ----

ALARM STATUS = No Alarms.

BPDCM GPL = 002-102-000

IMT BUS A = Conn

IMT BUS B = Conn

SCCP % OCCUP = 0%

Command Completed.
```

If the state of the Service Module card being configured in this procedure is in service-normal (IS-NR), go to *Step 3* on page 39 to inhibit the card. If the state of the Service Module card is out-of-service-maintenance disabled (OOS-MT-DSBLD), go to *Step 5* on page 40 to change the Ethernet link parameters.

3. Place the Service Module card out of service using the inh-card command. For example, enter this command: inh-card:loc=1301. This message should appear.

```
rlghncxa03w 06-08-01 21:18:37 GMT EAGLE5 35.1.0 Card has been inhibited.
```

4. Display the status of the Service Module card to verify that it is out-of-service maintenance-disabled (OOS-MT-DSBLD).

Enter this command: rept-stat-card: loc=1301. This is an example of the possible output.

```
rlghncxa03w 06-08-01 17:00:36 GMT EAGLE5 35.1.0

CARD VERSION TYPE APPL PST SST AST
1301 123-002-000 DSM VSCCP OOS-MT-DSBLD Manual ----

ALARM STATUS = No Alarms.

BPDCM GPL = 002-102-000

IMT BUS A = Conn

IMT BUS B = Conn

SCCP % OCCUP = 0%

Command Completed.
```

5. Configure the Ethernet link parameters associated with the Service Module card in the database using the chg-ip-lnk command.

For this example, enter these commands:

```
chg-ip-lnk:loc=1301:port=a:ipaddr=192.168.120.1:submask=255.255.0:auto=yes:mcast=nochg-ip-lnk:loc=1301:port=b:ipaddr=192.168.121.1:submask=255.255.0:auto=yes:mcast=no.
```

When each of these commands has successfully completed, the following message should appear.

```
rlghncxa03w 06-08-01 21:18:37 GMT EAGLE5 35.1.0
CHG-IP-LNK: MASP A - COMPLTD
```

6. Verify the new Ethernet link parameters associated with the Service Module card that was changed in *Step 5* on page 40 by entering the rtrv-ip-lnk command with the card location specified in *Step 5* on page 40.

For this example, enter this command: rtrv-ip-lnk:loc=1301. The following is an example of the possible output.

```
rlghncxa03w 06-08-01 21:19:37 GMT EAGLE5 35.1.0

LOC PORT IPADDR SUBMASK MACTYPE AUTO MCAST

1301 A 192.168.120.001 255.255.255.0 DIX YES NO

1301 B 192.168.121.001 255.255.255.0 DIX YES NO
```

Note: If *Step 3* on page 39 was not performed, skip *Step 9* on page 41 and *Step 10* on page 41, and go to *Step 11* on page 41.

7. Configure the Ethernet card parameters associated with the E5-SM4G card in the database using the chg-ip-card command.

For example, enter this command:

```
chg-ip-card:bpipaddr=128.1.120.1:bpsubmask=255.255.192.0
```

When this command has successfully completed, the following message should appear. rlghncxa03w 08-02-22 15:35:05 EST EAGLE 38.0.0 CHG-IP-CARD: MASP A - COMPLTD

8. Verify the new parameters associated with the E5-SM4G card that was changed in *Step 7* on page 40 by entering the rtrv-ip-card command with the card location specified in *Step 7* on page 40.

The following example displays the output that occurs when an E5-SM4G card is used.

```
rlghncxa03w 08-05-04 22:12:42 EST EAGLE5 39.0.0
LOC 1105
SRCHORDR LOCAL
DNSA ------
DNSB ------
```

```
DEFROUTER -----
        _____
 DOMATN
 SCTPCSUM crc32c
 BPIPADDR 192.168.124.2
 BPSUBMASK 255.255.25.0
LOC 1107
 SRCHORDR LOCAL
 DNSB
          ______
 DEFROUTER -----
 DOMAIN -----
 SCTPCSUM crc32c
 BPIPADDR 192.168.124.4
 BPSUBMASK 255.255.25.0
LOC 1111
 SRCHORDR LOCAL
 DNSA
 DNSB
 DEFROUTER -----
 DOMATN -----
 SCTPCSUM crc32c
BPIPADDR 192.168.124.3
 BPSUBMASK 255.255.25.0
```

9. Put the Service Module card that was inhibited in *Step 3* on page 39 back into service by using the alw-card command.

For example, enter this command: alw-card:loc=1301. This message should appear.

```
rlghncxa03w 06-08-01 21:20:37 GMT EAGLE5 35.1.0 Card has been allowed.
```

10. Verify the in-service normal (IS-NR) status of the Service Module card using the rept-stat-card command.

For example, enter this command: rept-stat-card:loc=1301. This is an example of the possible output.

```
rlghncxa03w 06-08-01 17:00:36 GMT EAGLE5 35.1.0

CARD VERSION TYPE APPL PST SST AST
1301 123-002-000 DSM VSCCP IS-NR Active ----
ALARM STATUS = No Alarms.

BPDCM GPL = 002-102-000

IMT BUS A = Conn

IMT BUS B = Conn

SCCP % OCCUP = 0%

Command Completed.
```

- 11. Repeat this procedure for all other Service Module cards in the EAGLE 5 ISS.
- 12. Backup the new changes using the chg-db:action=backup:dest=fixed command.

These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.

BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED) : MASP A - Backup starts on standby MASP.

BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

You have now completed this procedure.

Overview of the ELAP User Interfaces

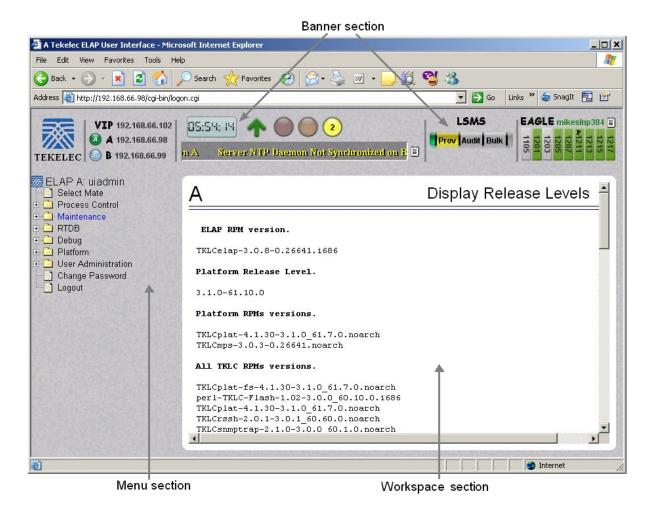
The EAGLE LNP Application Processor (ELAP) User Interface provides two user interfaces:

- The Graphical User Interface provides GUI menus that maintain, debug, and operate the platform; it and its associated error messages are described in *Chapter 3*, "ELAP Graphical User Interface" of the ELAP Administration Manual 8.0.
- The text-based User Interface has a Configuration menu that performs the ELAP configuration and initialization, it is described in *Overview of ELAP Configuration* on page 58.

The GUI provides the user with menus and screens to perform routine operations. The text-based user interface provides the ELAP Configuration menu to perform the initial configuration.

To communicate with the ELAP graphical user interface, you use a PC with a network connection and a network browser. For information about using the ELAP GUI, see *Chapter 3*, "ELAP Graphical User Interface" of the ELAP Administration Manual.

To configure ELAP, you use the ELAP text-based user interface. For information about configuring the ELAP and how to set up its PC workstation, continue with this chapter.


ELAP GUI Main Screen

The ELAP graphical user interface main screen contains three sections:

- ELAP GUI Banner Section on page 43
- ELAP GUI Menu Section on page 48
- ELAP GUI Workspace Section on page 49

The banner is the topmost section. It extends the entire width of the browser window. The remainder of the screen is divided vertically into two sections. The smaller left section is the menu section. The larger right section is the workspace section.

Figure 15: ELAP GUI Main Screen

ELAP GUI Banner Section

The banner section of the ELAP graphical user interface main screen has a Java applet that remains in constant communication with the ELAP program. This allows the banner section to display real-time ELAP information.

Figure 16: ELAP Banner Applet

The banner applet contains five information areas:

- Busy Icon on page 44
- ELAP Host Addresses on page 44
- ELAP Alarm Information Area on page 44
- LSMS Connection Status on page 46
- Service Module Card Status on page 46

Busy Icon

The Tekelec company logo is located at the top left of the banner applet and performs as the busy icon. Its serves as an indicator of activity in progress. When a menu action is being executed, the Tekelec icon rotates; when the action ends, the icon is at rest.

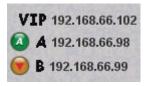
Figure 17: Busy Icon



ELAP Host Addresses

The ELAP host addresses area of the ELAP banner applet provides address connection information for:

- HA ELAP Pair VIP address
- ELAP A server provisioning IP address connection
- ELAP B server provisioning IP address connection


Figure 18: ELAP Host Addresses Area

The LEDs provide the following information:

- Green ELAP is connected
- Yellow with red triangle ELAP is inhibited
- A Active ELAP
- S Standby ELAP

Figure 19: ELAP IP Addresses with Inhibited Mate (Standby) ELAP

 $Clicking \ on \ an \ ELAP \ IP \ address \ toggles \ between \ the \ ELAP \ IP \ address \ and \ the \ ELAP \ host \ name(s).$

ELAP Alarm Information Area

The ELAP alarm information area of the ELAP banner applet provides alarm-related information.

Figure 20: ELAP Alarm Information Area

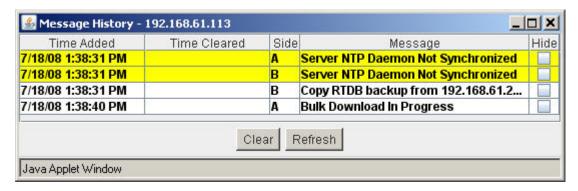
The ELAP alarm information area provides these features:

- Clock Displays the time on the selected ELAP. Clicking on the clock changes the display mode.
- ELAP software status Displays the status of the ELAP software.

When the ELAP software is running, a green up arrow is displayed (see *Figure 20: ELAP Alarm Information Area* on page 44). When ELAP software is down, a red (down) arrow is displayed. When there is a GUI time-out, TERMINATED is displayed in red.

• Alarm LEDs - The alarm LEDs displays the existence and severity of alarms on the selected ELAP. The LEDs are:

Critical alarms (left LED) - turns red when a Critical alarm occurs Major alarms (middle LED) - turns orange when a Major alarm occurs Minor alarms (right LED) - turns yellow when a Minor alarm occurs


When a number is displayed on the LEDs, this indicates the number of alarms (of that type) that are currently active.

• Alarm message history - Clicking the message history icon opens a Java Applet Window, displaying a history of the alarms and information messages for the selected server.

Entries are color-coded to match alarm severity:

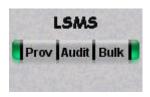
Red - critical messages Orange - major messages Yellow - minor messages White - informational messages

Figure 21: Example of Message History

To remove cleared messages from the message history, click the **Clear** button.

Click the **Refresh** button to refresh the messages displayed.

Click the **Hide** checkbox associated with a message to prevent the message from displaying in the banner message box.


Banner message box - The banner message box is a horizontal scroll box that displays text
messages for the user. Banner messages indicate the status of the ELAP machine.

LSMS Connection Status

The LSMS connection status area is divided into five sections that provide the following information (from left to right):

- LSMS provisioning indicator (enabled/disabled)
- LSMS provisioning connection status indicator (connected/unconnected/listening/unknown)
- LSMS audit connection status indicator (connected/unconnected/listening/unknown)
- LSMS bulk download connection status indicator (connected/unconnected/listening/unknown)
- LSMS bulk download indicator (enabled/disabled)

Figure 22: LSMS Connection Status Area

Moving the cursor over any of the five sections displays a pop-up that provides LSMS information.

Figure 23: LSMS Connection Status - Cursor Pop-up Display

The color of the LSMS connection status indicators signifies the state:

- Gray disabled
- Orange unknown (only displays during state transitions)
- Yellow listening
- Green connected or enabled

Note: LSMS audit and LSMS bulk download cannot be enabled at the same time. Enabling one toggles the other to a disabled state.

Service Module Card Status

The service module card status area of the ELAP Banner Applet provides information on the (up to) nine Service Module card slots on the EAGLE 5 ISS. The color of the card slots indicates the following:

• Grey - unknown card state

Booting

Inhibited card

Previously provisioned slot with undetectable card

• Light green (with ascending loading bar) - card loading (loading status is shown)


Figure 24: Service Module Cards Status - Loading

- Green stripped inconsistent card state
- Dark green loaded consistent state
- P indicates Primary Service Module card

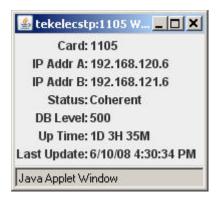

Moving the cursor over an occupied slot icon displays a pop-up window that provides card information.

Figure 25: Service Module Card Status Pop-up Window

Clicking on a card slot icon opens a Java applet window that provides information on that Service Module card.

Figure 26: Service Module Card Status - Java Applet Window

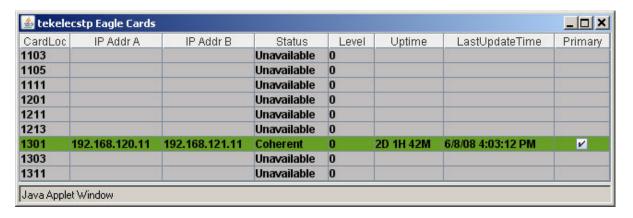
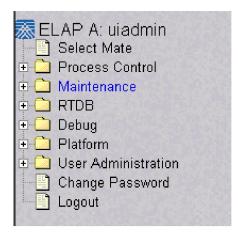

The service module card information icon links to a Java applet.

Figure 27: Service Module Card Status - Information Icon

Clicking on it opens a window displaying all nine Service Module Card slots, on the EAGLE 5 ISS, and information about installed cards.

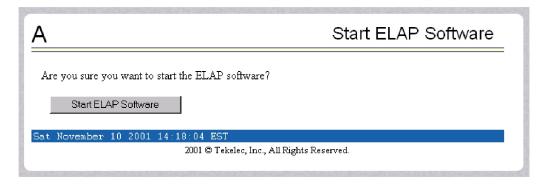
Figure 28: Service Module Card Status - Pop-up Window



ELAP GUI Menu Section

The ELAP graphical user interface menu section is located in the left side of ELAP browser. The top of the frame is the software system title (ELAP) and a letter that designates the selected ELAP, either A or B. One or more submenus appear below the title. The content of the menu corresponds to the access privileges of the user.

By clicking on the name or folder icon of a directory, the user may expand and contract the listing of submenu content (typical "tree-menu" view). Directory contents may be either menu actions or more submenus. When you click the Menu actions, the output is displayed in the workspace section (the right frame of ELAP browser interface).


Figure 29: Example of an ELAP Menu

ELAP GUI Workspace Section

The ELAP graphical user interface workspace section displays the results of menu actions taken by the user. The content of the workspace section can be various things such as prompts or status reports. Every menu action that writes to the workspace uses a standard format. See the example of the workspace format in Example of Workspace Format.

Figure 30: Example of Workspace Section Format

The format for the workspace is a page header and footer, and page margins on either side. In the header two data fields are displayed. The left-justified letter A or B designates the ELAP server that is currently select for menu action. The other data field has the right-justified menu action title. The footer consists of a bar and text with the time when the page was generated. At the bottom of the footer, a Tekelec copyright notice appears.

Workspace Section Syntax Checking

The web browser user interface uses layers of syntax checking to validate user input for text-entry fields.

- Mouse-over syntax check: For many of the entry fields, you can move the mouse over the field, causing a list of syntax hints for that field to appear.
- <u>Pop-up syntax checking</u>: When you click the **Submit** button, syntax is verified on the client side by code running on the user's browser. Incorrect syntax appears in a pop-up window, which contains a description of the syntax error. When the window is dismissed, you can correct the error and submit the input again.
- <u>Back-end syntax checking</u>: When you have clicked **Submit** button and the client side syntax checking has found no errors, back-end syntax checking is performed. If back-end syntax checking detects an error, it is displayed in the work space with an associated error code.

Setting Up an ELAP Workstation

The customer workstation serving as a client PC must meet certain criteria, which are described next.

Screen Resolution

For optimum usability, the workstation must have a minimum resolution of 800x600 pixels and a minimum color depth of 16 thousand colors per pixel.

Compatible Browsers

The ELAP user interface was designed and written to perform with Microsoft Internet Explorer 5.0 or later. The ELAP user interface is also compatible with Mozilla Firefox 1.0.2 or later. Do not use other browsers with the ELAP user interface. When using Firefox, you will encounter the following message when logging into the ELAP GUI:

Java

The EPAP GUI uses a Java banner applet to display real-time updates and status for both A and B sides of the MPS.

The Java installation must be performed in the sequence shown:

- 1. Install Java Plug-In on page 50
- 2. Install Java Policy File on page 52
- **3.** Add Security Parameters to an Existing Java Policy File on page 53 or Create a New Java Policy File on page 54

Install Java Plug-In

Because the Java applet is required for the EPAP GUI to operate, perform the following procedure to install the Java plug-in after you complete the EPAP configuration.

Note: The selected browser must be the only browser open on your PC when you modify or create the Java policy file, or else the change will not take effect.

- 1. Using the selected browser (Internet Explorer 5.0 or later or Mozilla Firefox 1.0.2 or later), enter the IP address for your EPAP A machine. You will see the login screen.
- **2.** Attempt to log in to the EPAP User Interface screen. If using Firefox, you will encounter the following message when logging into the EPAP GUI:

The User Interface may not function correctly with the browser you are using. Microsoft Internet Explorer, version 5 and later, has been certified for this application

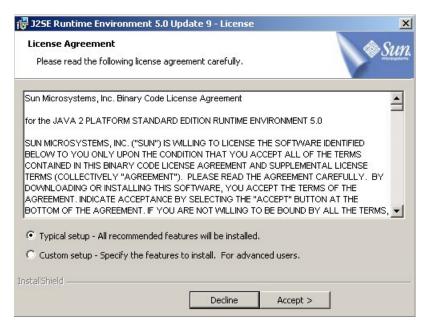

When you have successfully entered the Username and Password, the login process checks for the required Java plug-in. When it finds the Java 1.5 plug-in not present (but you had a previous version of Java installed), the system displays a **Security Warning** window as shown in *Figure 31: Security Warning Window* on page 50.

Figure 31: Security Warning Window

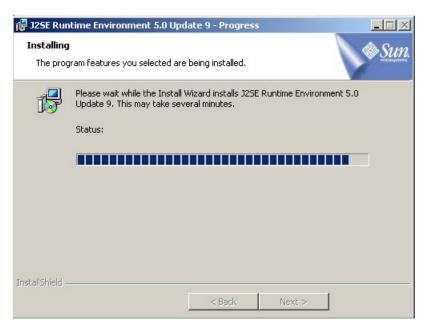

- 3. Click the **Install** button to begin the process of loading the Java plug-in.
- **4.** Next, the Java installation presents a **License Agreement** screen as shown in *Figure 32: License Agreement* on page 51.

Figure 32: License Agreement

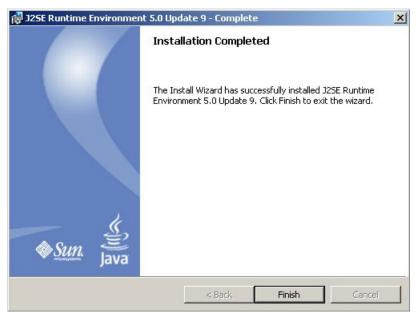

- **5.** Ensure that the **Typical Setup** radio button is selected, and click the **Accept** button to accept the Sun Microsystems agreement.
- **6.** The installation process starts, and a progress window appears as shown in *Figure 33: Java Installation Progress Window* on page 51.

Figure 33: Java Installation Progress Window

7. When the installation is complete, the Installation Complete window appears as shown in *Figure 34: Java Installation Complete Window* on page 52.

Figure 34: Java Installation Complete Window

8. The installation is complete. Click the **Finish** button. You return to the browser screen containing the EPAP login screen.

Install Java Policy File

The banner applet makes a network connection to each MPS side. A Java policy file must exist for the banner applet to connect properly. If the Java policy file is not present, you will receive a Violation status (VIOL) for the machine.

Note: The selected browser must be the only browser open on your PC when you modify or create the Java policy file, or else the change does not take effect.

Add Security Parameters to an Existing Java Policy File

To check to see if a Java policy file is already in place, perform the following actions:

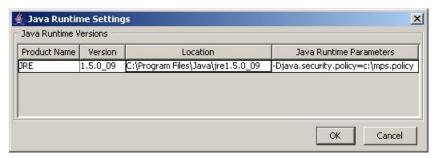

- 1. From the Windows Start menu, select Control Panel.
- **2.** Select the **Java Control Panel**. When the **Java Control Panel** appears, click the **Java** tab as shown in *Figure 35: Java Control Panel*, *Java Tab* on page 53.

Figure 35: Java Control Panel, Java Tab

3. Click **View** in the **Java Applet Runtime Settings** pane. The Java Runtime Settings dialog box appears as shown in *Figure 36: Java Runtime Settings Dialog Box* on page 53.

Figure 36: Java Runtime Settings Dialog Box

4. Adjust the width of the columns until you can read the contents of the Java Runtime Parameters column (at the far right).

5. Open the policy file indicated in the Java Runtime Parameters column, and insert the following text.

```
grant {
{permission java.net.SocketPermission "*:8473", "connect";
};
```

Create a New Java Policy File

To create a Java policy file:

1. Insert the following text into a file accessible by the workstation:

```
grant {
  permission java.net.SocketPermission "*:8473", "connect";
};
```

- **2.** Follow steps 2 through 4 in the procedure described in *Add Security Parameters to an Existing Java Policy File* on page 53.
- 3. In the Java Runtime Parameters column for Java version 1.5, type the path to the file you created in step 1 of this procedure. An example path is shown below.

```
-Djava.security.policy={full_path_to_file}
```

ELAP Configuration and Initialization

Before you can use the ELAP GUI, you must initialize and configure the ELAP software. The ELAP configuration and initialization is performed through the ELAP text-based user interface.

You will connect a local (optional) terminal connected to port 0 of the 8-port connector box on the MPS frame at each EAGLE 5 ISS. (Refer to the *Installation Manual - EAGLE 5 ISS.*) To begin the initialization, you will log into ELAP A the first time as the "elapconfig" user. An automatic configuration is performed on both mated ELAPs.

Note: All network connections and the mate ELAP must be present and verified to allow the initial configuration to complete successfully.

No other user is able to log in to an ELAP until the configuration step is completed for that system.

Errors and Other Messages

The following rules are applicable to configuring the ELAP:

- Mate MPS servers (MPS A and MPS B) must be powered on.
- "Initial Platform Manufacture" for the mate MPS servers must be complete.
- The Sync Network between the mate MPS servers must be operational.
- You must have the correct password for the elapdev user on the mate MPS server.

Required Network Address Information

The following information is needed to configure the MPSs at EAGLE 5 ISS A (*Table 6: Information for MPS at EAGLE 5 ISS A* on page 55 and EAGLE 5 ISS B *Table 7: Information for MPS at EAGLE 5 ISS B* on page 56). Fill in the following tables for reference during the installation procedure.

Table 6: Information for MPS at EAGLE 5 ISS A

Common Information		
MPS A Provisioning Network Address		
MPS B Provisioning Network Address		
Netmask		
Default Router		
Provisioning VIP Address		
Port Forwarding and Static NAT Information	(optional)	
MPS A Forwarded HTTP Port		
MPS B Forwarded HTTP Port		
MPS A Forwarded SuExec Port		
MPS B Forwarded SuExec Port		
MPS A Forwarded LSMS Port	7483*	
MPS A Forwarded LSMS Port	7483*	
MPS A Forwarded Banner Port		
MPS B Forwarded Banner Port		
MPS A Provisioning Static NAT Addr.		
MPS B Provisioning Static NAT Addr.		
* Do not change the default values for these ports		

••

Table 7: Information for MPS at EAGLE 5 ISS B

Common Information				
MPS A Provisioning Network Address				
MPS B Provisioning Network Address				
Netmask				
Default Router				
Port Forwarding and Static NAT Information ((optional)			
MPS A Forwarded HTTP Port				
MPS B Forwarded HTTP Port				
MPS A Forwarded SuExec Port				
MPS B Forwarded SuExec Port				
MPS A Forwarded LSMS Port	7483*			
MPS A Forwarded LSMS Port	7483*			
MPS A Forwarded Banner Port				
MPS B Forwarded Banner Port				
MPS A Provisioning Static NAT Addr.				
MPS B Provisioning Static NAT Addr.				
* Do not change the default values for these ports				

Configuration Menu Conventions

After you have logged into the ELAP user interface with the elapconfig user name, the menu appears that corresponds to that user login name. Before going into the details about the Configuration Menu, you need to know a few things about the Menu Format, Prompts and Default Values, and Error Message Format, which are covered next.

Menu Format

The configuration menu has a header format displaying specific information. On the first line, it indicates the MPS Side A or B, with which you are active. On the same line, you are shown the hostname and hostid. The second and third lines show the Platform Version, followed by the Software Version. The last line displays the date and time. See a sample configuration headier format in *Figure 37: Configuration Menu Header Format* on page 57.

Figure 37: Configuration Menu Header Format

```
MPS Side A: hostname: mps-t1100-a hostid: fd0a4767
Platform Version: 2.0.2-4.0.0_50.26.0
Software Version: ELAP 1.0.1-4.0.0_50.37.0
Mon Sep 26 10:57:57 EDT 2005
```

When you are shown a menu, you choose a menu item by entering the number of the item (or "e" for Exit) in response to the Enter Choice prompt that follows the menu, and press Return.

When you choose a menu item, the user interface performs the requested operation. The operation and any associated output for each menu item are described in detail later in this section.

If you enter an invalid choice (such as a letter or a number that is not available for that menu), an error appears. Perform the corrective action described for that error.

Prompts and Default Values

Depending on the menu item that you choose, you might be prompted for data (such as IP addresses) that is required to complete the selected operation. Optional fields are indicated by the text "(optional)" at the end of the prompt. To bypass an optional field without entering a value, press Return.

Default values are indicated by a value enclosed in square brackets at the end of the prompt text: [default value]. Example default values are shown in this chapter; they might not be the same as the default values that appear for your system. To accept the default value for a prompt instead of entering a response, press Return.

You can press the Escape key to exit any operation without entering a value for the prompt. The operation is aborted, and you are returned to the menu.

Error Message Format

Invalid menu selections, invalid user input, and failed user interface operations generate error messages on the screen. The error message remains on the screen until you press Return.

All error messages have a unique four-digit error number and associated text. The numbers and text for all error messages generated by the ELAP user interface are listed in the *ELAP Administration Manual*. The possible error messages that can occur for each ELAP user interface menu item are listed in the description of the menu item in this chapter.

Error messages have the following format, where **XXXX** is the unique four-digit error number for the error and *Error text* is the corresponding error text:

```
E XXXX::
Error text
```

```
Press return to continue
```

Whenever the software must be stopped to perform an operation, you are prompted to stop the software:

```
ELAP software is running. Stop it? [N]: Y
```

However, you must remember that while the ELAP software is stopped, no provisioning updates can be processed by the ELAP.

Overview of ELAP Configuration

When you log into an ELAP with user name "elapconfig" after the first initialization of the ELAP, the configuration process begins. (See the details in *Procedure for Configuring ELAPs* on page 69.) The configuration process lets you change IP addresses, time zone, and the password for "elapconfig". You can display the host ID and exchange secure shell keys. This section describes each of these items in configuration menu. log into an

Initial "elapconfig" User Login

The first time the elapconfig user logs in to the system, the text screen is displayed as shown in *Figure 38: Initial Configuration Text Screen* on page 58.

Figure 38: Initial Configuration Text Screen

```
Caution: This is the first login of the text user interface. Please review the following checklist before continuing. Failure to enter complete and accurate information at this time will have unpredictable results.
```

- 1. The mate MPS servers (MPS A and MPS B) must be powered on.
- "Initial Platform Manufacture" for the mate MPS servers must be complete.
- The sync network between the mate MPS servers must be operational.
- 4. You must have the correct password for the ELAPdev user on the mate MPS server.

Press return to continue...

If all four criteria above are not met, the configuration cannot proceed. Ensuring that the MPS servers are powered on requires a visual check. If the "Initial Platform Manufacture" is not complete, the configuration cannot proceed; furthermore, if the sync network is not operational, the user is notified.

When the four criteria are met, press Return and the process resumes. *Figure 39: Initial Configuration Continues* on page 58 shows the continuation of the screen information. The installer enters y if the installation is to continue.

Figure 39: Initial Configuration Continues

```
Are you sure you wish to continue? [N]: y
```

Note:

Review the information required for the following section in "*Required Network Address Information* on page 55". Make certain all required information is obtained and recorded in the tables provided.

Next, the installer is prompted for the elapdev user password on the mate MPS server. *Figure* 40: *Entering the elapdev Password* on page 59 shows sample output that is generated after the correct password is entered.

Figure 40: Entering the elapdev Password

```
Password for ELAPdev@mate:

Keys exchanged.

Verifying that ssh works correctly.

ssh is working correctly.

Building the initial database on slave.

Building the initial database on master.

There was no elap.cfg file. Using default configuration.

Allowing access from slave.

Stopping mysql on master.

Stopping mysql on slave.

Setting up master config file.

Setting up slave config file.

Copying database to slave.

Starting MySQL on master.

Starting MySQL on slave.
```

At this point, the first appearance of the Configuration Menu occurs, and is discussed next.

Text-based Configuration Menu

Following the report appearing in *Figure 40: Entering the elapdev Password* on page 59, the ELAP Configuration Menu is displayed as shown in *Figure 41: ELAP Configuration Menu* on page 59. The elapconfig user can now begin configuring the MPS local and remote servers.

Figure 41: ELAP Configuration Menu

```
MPS Side A: hostname: mps-t1100-a hostid: 0
            Platform Version: 3.0.2-8.0.0_80.4.0
            Software Version: ELAP 3.0.2-8.0.0_80.4.0
            Wed Apr 16 13:32:15 EDT 2008
 /----ELAP Configuration Menu-----\
  1 | Display Configuration
  2
     Configure Network Interfaces Menu
  3
     | Set Time Zone
  4 | Exchange Secure Shell Keys
  5
     Change Password
  6 | Platform Menu
  7
     Configure NTP Server
```

To choose a menu item, enter the number or letter of the menu item in response to the **Enter Choice** prompt that follows the menu item list, and press Return.

Display Configuration

The Display Configuration menu option 1 displays network address information and the time zone. See an example in *Figure 42: Example of Display Configuration Output* on page 60.

Figure 42: Example of Display Configuration Output

```
MPS Side A: hostname: mps-t1100-a hostid: 0
                               Platform Version: 3.0.2-8.0.0_80.4.0
                               Software Version: ELAP 3.0.2-8.0.0_80.4.0
                               Wed Apr 16 13:40:38 EDT 2008
ELAP A Provisioning Network IP Address = 192.168.61.136
ELAP B Provisioning Network IP Address = 192.168.61.137
ELAP B Provisioning Network IP Address = 192.168.61.137

Provisioning Network Netmask = 255.255.255.0

Provisioning Network Default Router = 192.168.61.250

Provisioning VIP = 192.168.61.166

ELAP A Sync Network Address = 169.254.1.100

ELAP B Sync Network Address = 169.254.1.200

ELAP A Main DSM Network Address = 192.168.120.100

ELAP B Main DSM Network Address = 192.168.120.200

ELAP A Backup DSM Network Address = 192.168.121.100

ELAP B Backup DSM Network Address = 192.168.121.200

ELAP A HTTP Port = 80
                                                                                           = 80
ELAP A HTTP Port
ELAP B HTTP Port
                                                                                            = 80
ELAP A HTTP SuExec Port
ELAP B HTTP SuExec Port
                                                                                           = 8001
                                                                                          = 8001
ELAP B HTTP Suexec Port = 8001

ELAP A Banner Connection Port = 8473

ELAP B Banner Connection Port = 8473

ELAP A Static NAT Address = Not configured

ELAP B Static NAT Address = Not configured

ELAP A LSMS Connection Port = Not configured

ELAP B LSMS Connection Port = Not configured
                                                                                            = America/New_York
Time Zone
Press return to continue...
```

Addresses that you choose should not conflict with your internal network addresses. The class C networks you choose should not conflict with the class C network used in your network scheme. *Table 8: Sample IP Addresses Used in Configuration* on page 60 shows an example of IP addresses used in the configuration process.

Table 8: Sample IP Addresses Used in Configuration

Provisioning Network Information	MPS A (Local) IP Addresses	MPS B (Local) IP Addresses
ELAP A Provisioning Network IP Address (MPS A)	192.168.61.90	192.168.61.119

Provisioning Network Information	MPS A (Local) IP Addresses	MPS B (Local) IP Addresses
ELAP B Provisioning Network IP Address (MPS B)	192.168.61.91	192.168.61.120
Network Net Mask	255.255.255.0	255.255.255.0
Default Router	192.168.61.250	192.168.61.250
Provisioning VIP Address	192.168.61.166	192.168.61.166

Configure Provisioning Network

The Configure Network Interfaces Menu option **2** of the Configuration Menu displays the submenu shown in *Figure 43: Configure Network Interfaces Menu* on page 61. It supports the configuration of all the network interfaces for the ELAP.

Figure 43: Configure Network Interfaces Menu

,/	-Configure	Network Interfaces Menu-\
1 1 !	Configure	Provisioning Network
[2]	Configure	DSM Network
3 1	Configure	Forwarded Ports
4	Configure	Static NAT Addresses
e	Exit	/ /

Enter Choice:

Configure Provisioning Network

The Configure Provisioning Network option 1 of the Configure Network Interfaces Menu configures the ELAP provisioning network. These include the provisioning network's IP address, netmask, and IP address. This information allows the ELAP to communicate with an existing customer network.

In response to each prompt, you can enter a dotted decimal IP address or press Return to leave the current value unchanged (the current value is shown in brackets after the prompt text). See *Figure 44: Configure Provisioning Network Output* on page 61 for the option **1** output.

Figure 44: Configure Provisioning Network Output

```
Verifying connectivity with mate...

ELAP A provisioning network IP Address [192.168.61.104]: 192.168.61.208

ELAP B provisioning network IP Address [192.168.61.105]: 192.168.61.209

ELAP provisioning network netmask [255.255.255.0]:
```

```
ELAP provisioning network default router [192.168.61.250]:
ELAP local provisioning Virtual IP Address [192.168.61.100]: 192.168.61.215

Please Wait, this may take a while...
```

Configure DSM Network

The Configure DSM Network option **2** of the Configure Network Interfaces Menu prompts you for the ELAP DSM network IP addresses. This information allows the ELAP to communicate with the main and backup DSM networks.

In response to each prompt, you can enter a dotted decimal IP address or press Return to leave the current value unchanged (the current value is shown in brackets after the prompt text).

See Figure 45: Configure DSM Network on page 62 for the option 2 output.

Figure 45: Configure DSM Network

```
First 3 octets for the ELAP main DSM network [192.168.120]:
First 3 octets for the ELAP backup DSM network [192.168.121]:
First 3 octets for the ELAP loopback DSM network [192.168.123]:
```

Configure Forwarded Ports

The Configure Forwarded Ports option 3 of the Configure Network Interfaces Menu provides the functionality to configure ELAP ports for the Web UI.

Each numbered item of the Configure Forwarded Ports menu allows the user to specify a port number used for remote access to the MPS.

This information should be received from the customer for the MPS and recorded in *Table 7: Information for MPS at EAGLE 5 ISS B* on page 56 and *Table 6: Information for MPS at EAGLE 5 ISS A* on page 55.

Configure Static NAT Addresses

The Configure Static NAT Addresses option 4 from the Configure Network Interfaces Menu provides the functionality to configure the static NAT addresses of the ELAP.

Each numbered item of the Configure Static NAT Addresses menu allows the user to specify an IP Address used outside of the firewall for remote access to the MPS. The following *Figure 46: Configuring NAT Addresses Prompt* on page 62 shows an example of a resulting prompt.

Figure 46: Configuring NAT Addresses Prompt

```
ELAP A Static NAT Address:
```

Select Time Zone

Note: Do not perform the Select the Time Zone function on a running system. Contact Tekelec Technical Services for assistance.

The Select Time Zone option 3 prompts you for the time zone to be used by the ELAP. The time zone can be the zone where the ELAP is located, Greenwich Mean Time, or another zone that is selected by the customer to meet the needs of the system.

Note: The value for the time zone should be obtained from the customer's Information Services department. The default value for the time zone is "US/Eastern".

To select a file in one of the subdirectories, enter a relative path name (such as "US/Eastern") in response to the prompt. See Select Time Zone Menu for the option 3 output.

Figure 47: Select Time Zone Menu

```
Press return to continue... Verifying connectivity with mate... Are you sure you wish to change the timezone for MPS A and B? [N]: y Enter a time zone:
```

You must enter a valid UNIX time zone file name. Alternatively, to display a complete list of the valid time zones, simply press Return in response to the prompt, and all valid time zone names are displayed. See the *ELAP Administration Manual - 8.0* for the list that appears when you press the Return key or enter invalid time zone file name.

The time zone change does not take effect until the next time the MPS is rebooted. The Reboot MPS screen is described in the *ELAP Administration Manual - 8.0*.

Exchange Secure Shell Keys

The Exchange Secure Shell Keys option 4 from the ELAP Configuration Menu, enables connections between local and remote ELAPs. The ELAPs exchange encryption keys, which are required to run the secure shell.

The exchange normally occurs automatically during ELAP initialization. Use this menu item only if the exchange must be performed manually.

The elapconfig user must know the password for the ELAPdev@mate.

The exchange normally occurs automatically during ELAP initialization. Use this menu item only if the exchange must be performed manually.

See Figure 48: Exchange Secure Shell Keys Output on page 63 for the option 4 output.

Figure 48: Exchange Secure Shell Keys Output

```
Are you sure you wish to exchange keys? [N]: y
```

Change Password

The Change Password option 5 from the ELAP Configuration Menu, changes the text-based user interface password for the elapconfig login name for both MPS A and B.

See Figure 49: Change Password on page 63 for the option 5 output.

Figure 49: Change Password

```
Verifying connectivity with mate...

Are you sure you wish to change the text UI password on MPS A and B? [N]: y
Enter new password for text UI user:
Re-enter new password:

Press return to continue...
```

Platform Menu and Options

The ELAP Platform Menu option **6**, from the ELAP Configuration Menu, accesses the Platform menu so that the elapconfig user can access and manage platform functions shown next. See *Figure 50: Platform Menu Output* on page 64 for the option 8 output.

Figure 50: Platform Menu Output

```
MPS Side A: hostname: mps-t1100-a hostid: fd0a4767
         Platform Version: 2.0.2-4.0.0_50.26.0
         Software Version: ELAP 1.0.1-4.0.0_50.37.0
        Mon Sep 26 10:57:57 EDT 2005
/----ELAP Platform Menu-\
/----\
| 1 | Initiate Upgrade
|----|------|
2 | Eject CD
|----|
3 | Reboot MPS
----
 4 | Halt MPS
----
 5 | MySQL Backup
____|
 6 | RTDB Backup
----|------|
 e | Exit
```

Enter choice:

Initiate Upgrade

The Initiate Upgrade menu option 1 initiates an upgrade on the selected ELAP. For upgrade procedures, contact *Customer Care Center* on page 4.

Eject CD

The Eject CD menu option 2 initiates an ejection of the CD media on the selected ELAP. The default, as shown next, is 'BOTH'.

```
Eject CD tray of MPS A, MPS B or BOTH? [BOTH]:
```

Reboot MPS

The Reboot MPS menu option 3 initiates a reboot of either MPS or both. The default, as shown below, is BOTH.

Note: The elapconfig user can abort rebooting the MPS by pressing the **Escape** key at the displayed prompt.

Reboot MPS A, MPS B or [BOTH]:

CAUTION: Rebooting the MPS stops all ELAP processes. Databases cannot be updated until MPS is fully booted.

Halt MPS

The Halt MPS menu option 4 initiates a halt of one MPS or both. The default, as shown below, is BOTH.

CAUTION: Halting an MPS stops all ELAP processes. Selecting the default (halt both MPS A and MPS B) requires a person to be physically present in order to reboot MPS and allow for further access!

Note: The elapconfig user can abort the MPS Halt by pressing the **Escape** key at the displayed prompt.

MySQL Backup

The MySQL Backup menu option 5 backs up the MySQL database. The output is shown below.

Note: ELAP software must be stopped or MySQL backup will abort and return to the **ELAP Platform Menu**.

```
Are you sure you want to back up the MySQL database on MPS A? [N]: y Connecting to local MySQL server...

Getting read lock...

Tarring the NPDB...

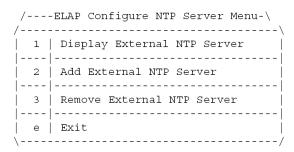
Disconnecting from local MySQL server...
```

RTDB Backup

The RTDB Backup menu option 6 backs up the RTDB database. The output is shown below.

Note: ELAP software must be stopped or RTDB backup will abort and return to the **ELAP Platform Menu**.

```
Are you sure you want to back up the RTDB database on MPS A to "/var/TKLC/appl/free/rtdbBackup_mps-t1100-a_20050926110224.tar"? [N]: y
```


ELAP Platform Menu Exit

The Exit menu option e exits from the ELAP Platform Menu and returns to the ELAP Configuration Menu.

Configure NTP Server and Options

The Configure NTP Server option 7 allows for the display, addition, and removal of an external NTP server. See *Figure 51: Configure NTP Server Output* on page 66 for the option 7 output.

Figure 51: Configure NTP Server Output

Enter Choice:

Display External NTP Server

The Display External NTP Server menu option 1 displays External NTP Server information. If a server is present, the server name and IP address are displayed. If an NTP Server is not present, the following is displayed.

There are no External NTP Servers. Press return to continue...

Add External NTP Server

The Add External NTP Server menu option 2 adds an External NTP Server. The output below is an example of the addition of an External NTP Server.

Note: The IP address must be a valid address for an External NTP Server.

Are you sure you wish to add new NTP Server? [N]: yEnter the ELAP NTP Server IP Address: 192.168.61.69Verifying NTP Server. It might take up to 1 minute. External NTP Server [server 192.168.61.69 prefer] has been added. Press return to continue...Verifying NTP Server. It might take up to 1 minute. External NTP Server [server 192.102.61.91 prefer] has been added.

Remove External NTP Server

The Remove External NTP Server menu option 3 removes an External NTP Server. If a server is present, selecting the Remove External NTP Server removes the server. If an NTP Server is not present, the following appears.

There are no External NTP Servers. Press return to continue...

ELAP Configure NTP Server Menu Exit

The ELAP Configure NTP Server Menu Exit menu option e exits the ELAP Configure NTP Server Menu, and returns to the ELAP Configuration Menu.

Exit

The Exit menu option e exits the ELAP Configuration menu.

ELAP Configuration Procedure

Initialization and configuration are provided through a text-based user interface (UI) described in this chapter. The user accesses the text-based configuration procedure by means of the product UI.

The first time user elapconfig logs into MPS A, the system performs an auto-configuration on both MPS ELAP pairs. The sync network and main and backup DSM networks are initialized to their default values, described in the *ELAP Administration Manual - 8.0* and defined in the *Installation Manual - EAGLE 5 ISS*. Various internal configuration parameters are also set to their default values. The installer must perform initial configuration on MPS A on EAGLE 5 ISS A and MPS A on EAGLE 5 ISS B.

Configuration Terms and Assumptions

- The initial configuration steps assume that each MPS has previously undergone successful Initial Platform Manufacture (IPM).
- The network paths must be present and verified before the MPS servers are ready for ELAP configuration.
- Initial configuration can be implemented on only the MPS A side of EAGLE 5 ISS A and MPS
 A side of EAGLE 5 ISS B. Attempting to perform initial configuration on MPS B of EAGLE 5
 ISS A is not allowed, and the elapconfig user will be notified. The attempted configuration
 will be aborted with no impact on either MPS A or B.
 - After the initial configuration of MPS A on EAGLE 5 ISS A and MPS A on EAGLE 5 ISS B, both ELAPs should be operational unless the system failed to successfully initialize during reboot or the configured values for the Sync and/or DSM networks conflict with other equipment in the network. Tekelec recommends that you do not change the default network values.
- The provisioning values displayed for the following initialization and configuration steps are example values only.
- Default values can be accepted just by pressing the Return key at the prompt; default values are shown enclosed in brackets [].
- It is the customer's decision about the timing and frequency of performing a back-up of his databases. Of course, databases should be backed up when they are initially populated with data; however, the priority that the customer assigns to data and time lost in restoring it will dictate the frequency of database back-up.
- Adding an NTP server is optional. Additionally, only one NTP server is needed to provide time synchronization for all the MPS servers on both EAGLE 5 ISS pairs.
- The ELAP terms 'local' and 'remote' are relative with respect to the ELAP configuration software. In other words, if the installer is running the configuration software on the physical MPS (that is, the MPS that the installer is physically on-site and has his terminal connected to), the configuration software refers to that MPS as 'local'. However if the installer connects through the network into the MPS A on EAGLE 5 ISS B, the configuration software executing at EAGLE 5 ISS B sees itself as 'local', referring to MPS that the installer is physically connected to as the 'remote'.

Remember that the 'local' MPS is whichever MPS A that the configuration software is being executed on, regardless of where the user is physically located.

The MPS of EAGLE 5 ISS A is the first MPS to which the installer physically connects and on which initial configuration of the ELAPs is always begun.

To avoid confusion of these relative terms, the MPS A on EAGLE 5 ISS A is considered to be the on-site MPS to which the installer has the physical connection. This document refers to the MPS to which the installer does not have the physical connection as MPS A on EAGLE 5 ISS B.

Configuration Symbols

During the Configuration Procedure, the installer will initialize and configure the MPSs to perform various functions. Special instructions are required occasionally for an MPS on EAGLE 5 ISS A, an MPS on EAGLE 5 ISS B. To assist the installer, this manual uses these symbols to indicate individual instructions to be performed for those specific MPSs.

Table 9: MPS Configuration Symbols

MPS Symbol	Symbol Description	
A	This symbol indicates installation instructions to be performed specifically for the MPSs (MPS A and MPS B) on EAGLE 5 ISS A.	
B	This symbol indicates installation instructions to be performed specifically for the MPSs (MPS A and MPS B) on EAGLE 5 ISS B.	

Initial Setup and Connecting to MPSs

Installation personnel may choose to employ various methods for connecting to an MPS. The ELAP software requires that an MPS be configured from side A. This procedure describes a likely method for connecting to EAGLE 5 ISS A and then EAGLE 5 ISS B. Installers require that all console output be captured.

Connecting to EAGLE 5 ISS A

To prepare for the configuration of the MPS on EAGLE 5 ISS A, the installer connects directly to the MPS at EAGLE 5 ISS A. Use the following method to connect to MPS B of EAGLE 5 ISS A.

- **1.** Use the PPP utility to connect the modem located in the OOBM card in server A. (For information about setting up the PPP utility, refer to the *ELAP Administration Manual 8.0*.
- **2.** When the prompt appears, enter the following command to start a secure shell session with an ELAP server:

```
ssh elapconfig@<server_IP_address>
```

where <server_IP_address> is the IP address of the MPS B at EAGLE 5 ISS A.

3. This will access the ELAP text interface.

The **elapconfig** username and a password provided by your system administrator are required to continue.

Connecting to EAGLE 5 ISS B

To prepare for the configuration of the MPS on EAGLE 5 ISS B, the installer must first complete the connection to and configuration of the MPS on EAGLE 5 ISS A. The installer is then able to use a secure shell session to MPS at EAGLE 5 ISS B to configure it.

The installer can now use a secure shell session from the system prompt to the MPS A on EAGLE 5 ISS B, using the IP address shown in *Table 7: Information for MPS at EAGLE 5 ISS B* on page 56.

```
ssh 192.168.61.119 Trying 192.168.61.119... Connected to 192.168.61.119. Escape character is '^]'. SunOS 5.7
```

Procedure for Configuring ELAPs

Perform the configuration procedure by following these steps in the text-based user interface. After you have connected to an MPS (as described in *Initial Setup and Connecting to MPSs* on page 68), you can perform this procedure to configure the ELAPs in your network.

Note: Initial configuration cannot be performed through the GUI. The IP addresses required for browser connectivity are not defined until the initial configuration, using the text-based UI, is completed.

Using the set up and connection described previously, the installer connects to an MPS to perform configuration. In a typical installation, the installer connects directly to the MPS at EAGLE 5 ISS A to configure it, then uses ssh to connect to the MPS at EAGLE 5 ISS B and configure it.

- 1. Upon connecting to the MPS on EAGLE 5 ISS A, login to the ELAP.
 - a) Login as elapconfig.

A caution displays.

```
SunOS 5.7

mpsa-f0c7c3 console login: elapconfig
Password:
Caution: This is the first login of the text user interface. Please
review the following checklist before continuing. Failure
to enter complete and accurate information at this time will
have unpredictable results.

1. The mate MPS servers (MPS A and MPS B) must be powered on.

2. "Initial Platform Manufacture" for the mate MPS servers
must be complete.
3. The sync network between the mate MPS servers must be
operational.
4. You must have the correct password for the ELAPdev user on
the mate MPS server.
Press return to continue...
```

b) Evaluate the conditions of the Caution notice. When the conditions are satisfied, press **Return** to continue.

Upon pressing **Return** to continue, you can abort or continue with the initial configuration.

```
Are you sure you wish to continue? [N]: y
```

Note: Pressing the **Return** accepts the default value **n**. To continue with the configuration, enter **y**.

- c) Press y.
 - Upon selection **y**, the configuration software executes on the MPSs on EAGLE 5 ISS B. While the MPSs on EAGLE 5 ISS B were formerly referred to as 'remote', remember that the configuration software now considers the same MPS pair now to be 'local' (for more information, refer to *Configuration Terms and Assumptions* on page 67).
- d) Enter the elapdev user password on the mate MPS server to confirm the secure shell keys are successfully exchanged.

The example shows the output generated when the correct password is entered, the secure shell keys are successfully exchanged, and the UI database is set up on MPS A and MPS B at this site.

```
Password for ELAPdev@mate:
Keys exchanged.
Verifying that ssh works correctly.
ssh is working correctly.
Building the initial database on slave.
Building the initial database on master.
There was no elap.cfg file. Using default configuration.
Allowing access from slave.
Stopping mysql on master.
Stopping mysql on slave.
Setting up master config file.
Setting up slave config file.
Copying database to slave.
Starting MySQL on master.
Starting MySQL on slave.
```

A successful configuration file setup results in the initial display of the **ELAP Configuration Menu** and its associated header information.

The server designation of MPS A at this site is displayed as well as hostname, hostid, Platform Version, Software Version, and the date.

2. Choose option **1**, Display Configuration, to view ELAP A and ELAP B Provisioning Network IP addresses, the Time Zone, and other values for the MPS on EAGLE 5 ISS A.

- a) Press Return to return to the **ELAP Configuration Menu**.
- 3. Choose option 2, Configure Network Interfaces Menu, from the ELAP Configuration Menu.

4. Choose option **1**, Configure Provisioning Network form the Configure Network Interfaces Menu.

The **Configure Provisioning Network Menu** allows you to accept the default IP address values presented by the configuration software for ELAP A and ELAP B provisioning network and network netmask, or to enter specific IP values previously received from the customer for the MPS.

Refer to the information recorded in *Table 6: Information for MPS at EAGLE 5 ISS A* on page 55 and *Table 7: Information for MPS at EAGLE 5 ISS B* on page 56 for the correct addresses.

Note: No default value is provided for the ELAP provisioning network default router. This value must be received from the customer.

Information for the submenu for configuring communications networks displays.

```
Verifying connectivity with mate...
Enter the ELAP A provisioning network IP Address [192.168.61.90]:
Enter the ELAP B provisioning network IP Address [192.168.61.91]:
Enter the ELAP provisioning network netmask [255.255.255.0]:
Enter the ELAP provisioning network default router IP Address: 192.168.54.250
ELAP local provisioning Virtual IP Address [192.168.61.100]:
Please Wait, this may take a while...
```

- a) Press **Return**, to return to the **Configure Network Interfaces Menu**.
- If there is a known network address conflict, continue with the next step.
- If there is not a known network address conflict, continue with Step 6 on page 73
- **5.** Choose option **2**, Configure DSM Network, from the **Configure Network Interfaces Menu**.

```
/----Configure Network Interfaces Menu-\
/-----\
```

The Configure DSM Network choice automatically adds the DSM network IP address to the list of known hosts.

a) Accept default IP address octets for the ELAP main DSM network and the ELAP backup DSM network presented by the configuration software unless a known network conflict exists.

```
First 3 octets for the ELAP main DSM network [192.168.120]:
First 3 octets for the ELAP backup DSM network [192.168.121]:
First 3 octets for the ELAP loopback DSM network [192.168.123]:
```

Upon accepting the default value or entering a specific ELAP backup DSM network octet IP address value, you are returned to the **Configure Network Interfaces Menu**.

- If the MPS is separated from GUI workstations and provisioning systems by a port forwarding firewall, continue with the next step.
- If the MPS is separated from GUI workstations and provisioning systems by a port forwarding firewall, skip all steps related to option 3. Continue with *Step 7* on page 74.
- 6. Choose option 3, Configure Forwarded Ports, from the Configure Network Interfaces Menu.

```
/----Configure Forwarded Ports Menu-----\
    | Change ELAP A HTTP Port
  1
  2
     Change ELAP B HTTP Port
  3
     Change ELAP A HTTP SuExec Port
  4
     Change ELAP B HTTP SuExec Port
  5
     Change ELAP A Banner Connection Port
  6
     Change ELAP B Banner Connection Port
  7
     Change ELAP A LSMS Connection Port
  8
     Change ELAP B LSMS Connection Port
           _____
Enter choice: 1
```

a) Enter the correct option number for the port information to be entered.

Refer to the information recorded in *Table 6: Information for MPS at EAGLE 5 ISS A* on page 55 and *Table 7: Information for MPS at EAGLE 5 ISS B* on page 56 for the correct information.

Note: The LSMS is not capable of changing the LSMSports it can connect to on the MPS. Therefore, the default values for options 7 through 8 on the Configure Forwarded Ports Menu should not be changed.

```
ELAP A HTTP Port [80]:
```

- b) Enter the appropriate information and press return once to return to the **Configure Forwarded Ports Menu**.
- c) Enter the option number or enter **e** to return to the **Configure Network Interfaces Menu**. The installer returns to the Configure Network Interfaces Menu.
- 7. Choose option 4, Configure Static NAT Addresses from the **Configure Network Interfaces**Menu.

8. Enter option 1 or 2 Configure Static NAT Addresses Menu.

Each numbered item of the **Configure Static NAT Addresses Menu** allows you to specify an IP Address used outside of the firewall for remote access to the MPS.

a) Enter a valid NAT IP address from *Table 6: Information for MPS at EAGLE 5 ISS A* on page 55 and *Table 7: Information for MPS at EAGLE 5 ISS B* on page 56.

```
ELAP A Static NAT Address:
```

- b) Choose option **e** on the **Configure Static NAT Addresses Menu** to return to the **Configure Network Interfaces Menu**.
- c) Choose option **e** (Exit), from the **Configure Network Interfaces Menu**, to return to the **ELAP Configuration Menu**.
- If the time zone is not correct for this installation, as shown in the output of the Display Configuration *Step 2* on page 71, continue with the next step.
- If the time zone is correct for this installation, as shown in the output of the Display Configuration *Step 2* on page 71, skip all steps related to option **3**. Continue with *Step 11* on page 76.

9. Choose option 3, Set Time Zone, on the ELAP Configuration Menu.

Note: Obtain the value for the time zone from the customer's Information Services department. The default value for the time zone is **US/Eastern**.

```
/----ELAP Configuration Menu-----\
  1 | Display Configuration
     Configure Network Interfaces Menu
  3
     Set Time Zone
  4
     Exchange Secure Shell Keys
  5
     Change Password
  6
     Platform Menu
  7
     Configure NTP Server
  8
    | Mate Disaster Recovery
  e | Exit
```

Enter Choice: 3

An important Caution statement is displayed.

```
Caution: This action requires a reboot of the affected MPS servers to activate the change. Operation of the ELAP software before the MPS servers are rebooted may have unpredictable consequences.

Press return to continue...
```

a) Press **Return** to continue.

You are prompted for confirmation on setting the time zone for MPS A and MPS B at his site.

b) Enter **y** to confirm the change.

Pressing **Return** accepts the default of **n** (no) and the action is aborted.

```
Are you sure you wish to change the timezone for MPS A and B? [N]: y
```

When the affirmative response **y** is given to change the time zone, the following prompt is displayed. The time zone can be the zone where the ELAP is located, Greenwich Mean Time, or another zone that is selected by the customer to meet the needs of the system. If the time zone is known, it can be entered at the prompt. If the exact time zone value is not known, press **Return**, and a list of the valid names is displayed.

```
Enter a time zone file (relative to /usr/share/lib/zoneinfo):
```

If an incorrect time zone is entered or if only **Return** is pressed, a list of all available time zone values is displayed. The installer can select a value from this table. The time zone change does not take effect until the next time the MPS is rebooted. For more information on valid time zones, refer to the ELAP Administration Manual - 8.0.

Upon setting the time zone successfully, you are returned to the ELAP Configuration Menu.

• If you want to exchange secure shell keys, continue with the next step.

Note: Although the exchange of ELAP Secure Shell (SSH) Keys is performed automatically by the configuration software at the start of the ELAP configuration (*Step 1.d* on page 70), exchange of SSH keys with the LSMS (*Step 14* on page 78)must be performed manually in order for the ELAP to receive bulk downloads from the LSMS.

• If you do not want to exchange SSH keys, skip this step and continue with *Step 15* on page 80.

10. Enter option 4, Exchange Secure Shell Keys, from the ELAP Configuration Menu.

The Exchange Secure Shell Keys Menu displays.

11. Enter 1, Exchange Keys with Mate.

Upon entering 1, you are asked to confirm the SSH key exchange.

```
Are you sure you wish to exchange keys? [N]: Y
```

a) Enter Y to continue.

You are prompted for the elapdev password.

b) Enter the elapdev password to continue.

A prompt provides notification that SSH is working. You are returned to the **Exchange Secure Shell Keys Menu**.

```
ssh is working correctly.
MPS Side B: hostname: bonaire-b hostid: a8c0d13d
            Platform Version: 3.0.3-8.0.0 80.8.0
            Software Version: ELAP 3.0.13-8.0.0_80.14.0
            Mon Jul 28 10:21:15 EDT 2008
 /----Exchange Secure Shell Keys Menu-----\
 1 |
      Exchange Keys with Mate
  2
      Exchange Keys with Remote
  3
      Exchange Keys with Mate as Root User
  4
      Exchange Keys with LSMS
      Exit
Enter Choice: 2
```

12. Enter **2**, Exchange Keys with a Remote ELAP.

You are prompted to confirm the exchange.

```
Are you sure you wish to exchange keys with remote? [N]:
```

a) Enter Y to continue.

You are prompted for the IP address.

```
Remote IP Address:
```

b) Enter the IP address of the remote ELAP.

You are prompted for the elapdev password.

```
The server does not know of 192.168.66.98.
Will just exchange host keys for the name given!
Password of elapdev:
```

c) Enter the elapdev password.

A prompt provides notification that host keys were exchanged and SSH is working. You are returned to the **Exchange Secure Shell Keys Menu**.

```
The server does not know of 192.168.66.98. Will just exchange host keys for the name given! ssh is working correctly.
```

13. Enter 3, Exchange Keys with a mate ELAP as a root user.

You are prompted to confirm the exchange.

```
Are you sure you wish to exchange keys as root? [N]:
```

a) Enter Y to continue.

You are prompted to enter the root password.

```
Password of root:
```

b) Enter the root password.

A prompt provides notification that host keys were exchanged and SSH is working. You are returned to the **Exchange Secure Shell Keys Menu**.

14. Enter 4, Exchange Keys with LSMS.

Note: This procedure exchanges SSH keys between the two ELAP servers and ONE OF THE LSMS SERVERS. Consequently, **THIS PROCEDURE MUST BE PERFORMED FOR THE**

LSMS SERVER A (Ismspri) and REPEATED FOR THE LSMS SERVER B (Ismssec). Failure to perform this procedure for both LSMS servers can result in failure of the ELAP servers to receive SERVDI bulkloads from the LSMS servers.

Note: You will need the IP addresses for both LSMS server host names (lsmspri and lsmssec) as well as the lsmsadm password to complete this procedure.

You are prompted to confirm the exchange.

```
Are you sure you wish to exchange keys with LSMS? [N]:
```

a) Enter **Y** to continue.

You are prompted to enter the LSMS IP address.

```
LSMS IP Address:
```

b) Enter the IP address for the desired LSMS server. You are prompted to enter the lsmsadm password.

```
The server does not know of 192.168.60.4.
Will just exchange host keys for the name given!
Password of lsmsadm:
```

c) Enter the lsmsadm password.

A prompt provides notification that keys were exchanged (between ELAP A and the selected LSMS server) and SSH is working. You are prompted to enter the Ismsadm password again for exchange of keys between ELAP B and the selected LSMS server.

```
The server does not know of 192.168.60.4.
Will just exchange host keys for the name given!
ssh is working correctly.
The server does not know of 192.168.60.4.
Will just exchange host keys for the name given!
Password of lsmsadm:
```

d) Enter the lsmsadm password.

A prompt provides notification that keys were exchanged (between ELAP B and the selected LSMS server) and SSH is working. You are returned to the **Exchange Secure Shell Keys Menu**.

```
The server does not know of 192.168.60.4.
Will just exchange host keys for the name given!
ssh is working correctly.
MPS Side B: hostname: bonaire-b hostid: a8c0d13d
           Platform Version: 3.0.3-8.0.0_80.8.0
           Software Version: ELAP 3.0.13-8.0.0_80.14.0
           Mon Jul 28 10:21:15 EDT 2008
 /----Exchange Secure Shell Keys Menu---
  1
      Exchange Keys with Mate
      2
     Exchange Keys with Remote
  3
     Exchange Keys with Mate as Root User
  4
     Exchange Keys with LSMS
     ______
  e | Exit
```

```
\----/
Enter Choice: 4
```

Note: The SSH keys must be exchanged between the ELAP servers and both LSMS servers (LSMS server A and LSMS server B).

- If you have only exchanged SSH keys with one LSMS server, go to Step 14.e on page 80.
- If you have exchanged SSH keys with both LSMS server A and B (Ismspri and Ismssec), go to *Step 14.f* on page 80.
- e) Repeat *Step 14* on page 78 to exchange keys with the second LSMS server.
- f) Choose option e on the Exchange Secure Shell Keys Menu to return to the ELAP Configuration Menu.
- If you need to change the text-based UI password for the MPSs at this site, continue with the next step.
- If you do not need to change the text-based UI password for the MPSs at this site, skip all steps related to option 5 and continue with *Step 16* on page 81.
- **15.** Enter option **5**, Change Password, from the **ELAP Configuration Menu** to change the text-based user interface password for the elapconfig login name for both MPS A and B at this site.

```
/----ELAP Configuration Menu-----\
  1 | Display Configuration
  2
    Configure Network Interfaces Menu
  3
     Set Time Zone
     _____
    Exchange Secure Shell Keys
  4
  5
     Change Password
  6
     Platform Menu
  7
     Configure NTP Server
  8
     Mate Disaster Recovery
         _____/
Enter Choice: 5
```

a) Confirm the action of changing the password for both the MPS A and MPS B servers at this site.

Pressing **Return** accepts the default of n (no) and aborts the action to the change the password. Entering y invokes a prompt for the new password, followed by the re-entry of the password to confirm the entry.

```
Verifying connectivity with mate...

Are you sure you wish to change the text UI password on MPS A and B? [N]:
   y
Enter new password for text UI user:
Re-enter new password:
Press return to continue ...
```

- b) Enter the new password, confirm entry, and press **Return**. Successful entry of the new password returns the installer to the ELAP Configuration Menu.
- If you need to add an NTP server, continue with the next step.
- If you do not need to add an NTP server skip all steps related to option 7 and continue with Step 19 on page 83
- **16.** Enter option **7**, Configure NTP Server Menu, from the ELAP Configuration Menu to add an NTP Server.

```
/----ELAP Configuration Menu-----\
/----\
  1 | Display Configuration
    ______
    Configure Network Interfaces Menu
  3
    | Set Time Zone
  4
    Exchange Secure Shell Keys
  5
    Change Password
 6
    | Platform Menu
 7
    Configure NTP Server
  8
    | Mate Disaster Recovery
  e Exit
Enter Choice: 7
```

a) Enter option 2, Add External NTP Server, from the ELAP Configure NTP Server Menu.

b) Confirm the action of adding a new NTP Server.

Pressing **Return** accepts the default of **n** (no) and aborts the action to add an external NTP server.

c) Enter y to add the IP address of the NTP server.

Note: The installer should now enter the same IP address for the NTP server that was previously added to the MPS A and B servers on EAGLE 5 ISS A. This action allows the one NTP server to keep all MPS servers in synchronization.

```
Are you sure you wish to add new NTP Server? [N]: y
Enter the ELAP NTP Server IP Address: 192.168.61.69
Verifying NTP Server. It might take up to 1 minute.
```

```
External NTP Server [server 192.168.61.69 prefer]
has been added.
Press return to continue...
Verifying NTP Server. It might take up to 1 minute.
External NTP Server [server 192.102.61.91 prefer] has been added.
Press return to continue...
```

Note: All NTP Server IP addresses shown are only examples.

The display shows the server verification occurring. The installer receives a confirmation of a successful addition of the NTP server.

- To confirm successful addition of the NTP server, continue with the next step.
- Press Return to return to the ELAP Configure NTP Server Menu.
- **17.** Enter option **1**, Display External NTP Server from the ELAP Configure NTP Server Menu, to confirm successful addition of the NTP server.

The output allows you to verify that the External NTP Server IP address is correct.

```
External NTP Server [server 192.168.61.69 prefer ]
Press return to continue...
```

a) Press **Return** to return to the ELAP Configure NTP Server Menu.

b) Enter option **e** to exit the ELAP Configure NTP Server Menu and return to the ELAP Configuration Menu.

You are returned to the ELAP Configuration Menu.

Note: During configuration of MPSs on EAGLE 5 ISS B, if the time zone was changed (*Step* 9 on page 75) and if the Backup Provisioning Network (*Step* 6 on page 73) was configured on either MPS, both MPS pairs on EAGLE 5 ISS A and on EAGLE 5 ISS B must be rebooted.

• If you do not need to reboot the MPS pairs on EAGLE 5 ISS A and on EAGLE 5 ISS B, continue with the next step.

- If you must reboot the MPS pairs on EAGLE 5 ISS A and on EAGLE 5 ISS B, continue with *Step 19* on page 83.
- **18.** Enter option **e** to exit the **ELAP Configuration Menu**. Configuration is complete.
- 19. Enter option 6, Platform Menu, from the ELAP Configuration Menu.

```
/----ELAP Configuration Menu-----\
 1 | Display Configuration
 2
    | Configure Network Interfaces Menu
  3
    Set Time Zone
  4
    Exchange Secure Shell Keys
  5 | Change Password
  6
    | Platform Menu
 7
    | Configure NTP Server
 --- | -------
  8
    Mate Disaster Recovery
  e | Exit
Enter Choice: 6
```

20. Enter option 3, Reboot MPS, from the ELAP Platform Menu.

a) At the prompt, press **Return** (default value of **BOTH**) to reboot MPS A and MPS B.

When the rebooting of the present MPS server pair on EAGLE 5 ISS B ends, the Platform Menu may re-appear; however, the connection to the MPS server will be closed, and you are returned to the system prompt.

Reboot MPS A, MPS B or [BOTH]:

The console logon appears at the system prompt signifying the ELAP initial configuration is complete.

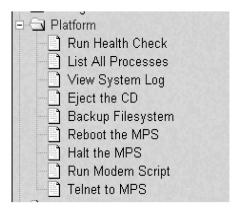
Note: The console logon is preceded by many lines of reboot output.

The initial configuration of MPSs on EAGLE 5 ISS B is now complete. Both MPSs on EAGLE 5 ISS A and MPSs on B are now configured and rebooted.

MPS Health Check Procedure

Run the syscheck utility to obtain the operational status of the MPS platform with the following procedure. Refer to the *ELAP Administration Manual* for more details and information about logins and permissions. For more information about the syscheck utility, go to the *MPS Platform Software And Maintenance - T1100 Manual*.

1. Login to the **User Interface** screen of the ELAP GUI as elapplatform. The main menu displays, *Figure 52: Main Menu View* on page 84.


Figure 52: Main Menu View

	Select Mate
±	Process Control
±	Maintenance
±	RTDB
	Debug
+	Platform
+	User Administration
	Change Password
	Logout

Check the banner information above the menu to verify that you are logged into the correct ELAP.

2. If it is necessary to switch to another ELAP, select **Select Mate** from the main menu. The Platform folder opens, *Figure 53: Platform Folder Open View* on page 84.

Figure 53: Platform Folder Open View

3. When the GUI shows you are logged into the desired ELAP, select Platform ➤ Run Health Check.

The Run Health Check dialog opens, Figure 54: Run Health Check View on page 85.

Figure 54: Run Health Check View

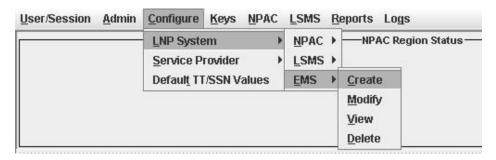
- 4. On the **Run Health Check** screen, use the pull-down menu to select **Normal** or **Verbose** output detail level.
- **5.** Click the **Perform Check** button to run the system health check on the selected MPS. The system health check output data displays.

You have now completed this procedure.

EMS Configuration Component

Use the following procedures to manage TekPath or ELAP EMS configuration components:

- Creating an EMS Configuration Component on page 86
- Modifying an EMS Configuration Component on page 90
- Viewing an EMS Configuration Component on page 92
- Deleting an EMS Configuration Component on page 93


Creating an EMS Configuration Component

For each network element to be supported by the LSMS, create an EMS configuration component using the following procedure.

Note: For each EMS configuration created, you must perform a bulk download to the associated EMS/network element. Refer to the LSMS-Eagle 5 ISS LNP Database Synchronization Manual for bulk loading procedures.

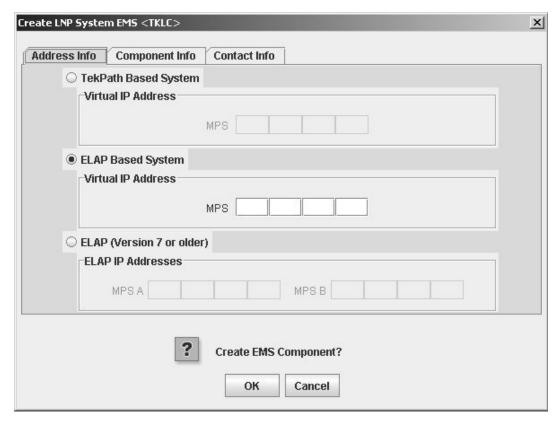
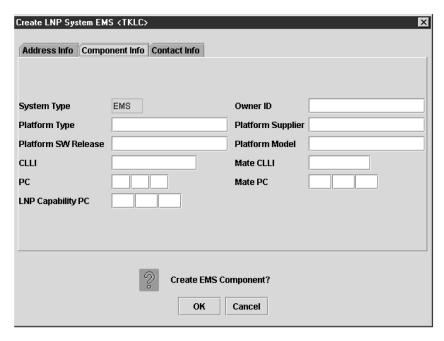

- 1. Log into the LSMS as a user in the lsmsadm or lsmsall group.
- 2. From the LNP System menu, shown in *Figure 55: LNP System Menu Create EMS* on page 86, select **Configure** ➤ **LNP System** ➤ **EMS** ➤ **Create**.

Figure 55: LNP System Menu - Create EMS

The EMS Configuration Component window, *Figure 56: Create LNP System EMS Address Info Tab* on page 86 displays. The window usually opens with the **Address Info** tab displayed; if the **Address Info** tab is not displayed, click its tab to display it.

Figure 56: Create LNP System EMS Address Info Tab

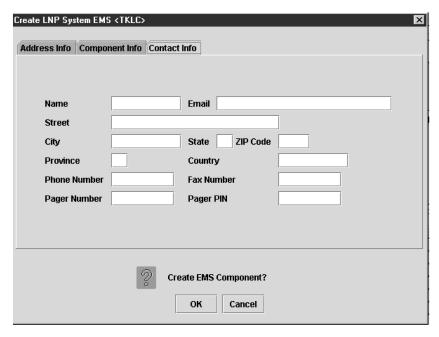
- 3. Ensure that the radio button for an ELAP MPS or a TekPath MPS is selected. For an ELAP MPS, enter the IP addresses for MPS A and MPS B (enter a value from 0 to 255 in each of the first three octets and a value from 0 to 254 in the forth octet). For a TekPath MPS, enter the IP address for MPS A only.
- **4.** Select one of the following radio buttons for the **Verify MPS with PING** field to specify whether the LSMS uses PING to monitor the connectivity between the LSMS and the MPS.


Note: With either selection, the LSMS always monitors connectivity with the keep alive function.

- Enabled to monitor the MPS by sending PINGs over the UDP port. This selection requires
 an additional port to be open (which can be a security concern), but supports previously
 available function.
- **Disabled** to monitor the MPS using only the keepalive function. This selection reduces the number of ports required to be open inbound to the ELAP network. Security is increased when the number of open ports is decreased.

Note: The LSMS/EMS PING Enhancement feature provides the following functionality:

- Prevents intermediate devices (for example, routers and switches) from closing idle HSOP connections
- Detects low level network faults that were previously not detectable using the TCP/IP stack alone.
- **5.** Click the **Component Info** tab, shown in *Figure 58: Create LNP System EMS Contact Info* on page 89.


Figure 57: Create LNP System EMS Component Info

- **6.** Enter the **Component Info** data as follows (all fields in this tab must contain data):
 - Owner ID ID of the network element owner (maximum 20 alphanumeric characters)
 - *Platform Type* hardware platform of the network element (maximum 20 alphanumeric characters)
 - *Platform Supplier* name of the supplier of the network element hardware platform (maximum 20 alphanumeric characters)
 - *Platform* SW *Release* release level of the software running on the network element platform (maximum 20 alphanumeric characters)
 - *Platform Model* model number of the network element platform (maximum 20 alphanumeric characters)
 - CLLI CLLI code of the network element (maximum 11 numeric and uppercase alphabetic characters)
 - *Mate* CLLI CLLI of the mate EMS component (maximum 11 numeric and uppercase alphabetic characters)
 - PC point code of the EMS component (must contain three 3-digit octets; first octet must have a value from 1 to 255; last two octets must have a value from 0 to 255; second octet must not be 001 if the first octet has a value from 1 to 5)
 - Mate PC point code of the mate EMS component (must contain three 3-digit octets; first octet must have a value from 1 to 255; last two octets must have a value from 0 to 255; second octet must not be 001 if the first octet has a value from 1 to 5)
 - LNP Capability PC LNP capability point code of the network element (must contain three 3-digit octets; first octet must have a value from 1 to 255; last two octets must have a value from 0 to 255; second octet must not be 001 if the first octet has a value from 1 to 5)

7. Click the **Contact Info** tab, shown in *Figure 57: Create LNP System EMS Component Info* on page 87.

Figure 58: Create LNP System EMS Contact Info

- 8. All fields in this tab are optional. If you wish to enter the Contact Info data, do so as follows:
 - *Name* name of the person to contact for network element information (maximum 40 alphanumeric characters)
 - *Email* email address of the network element contact person (maximum 60 alphanumeric characters)
 - *Street* street address of the network element contact person (maximum 40 alphanumeric characters)
 - *City* city address of the network element contact person (maximum 20 alphanumeric characters)
 - *State* state address of the network element contact person (two-letter uppercase abbreviation). If you use the *Province* field, enter -- (the default).
 - ZIP Code the postal zip code of the network element contact person (five numeric characters)
 - *Province* the province of the network element contact person (two-letter uppercase abbreviation). If you use the *State* field, enter -- (the default).
 - *Country* country of the network element contact person (maximum 20 alphanumeric characters).
 - *Phone Number* phone number of the network element contact person (ten numeric characters required).
 - FAX *Number* FAX number of the network element contact person (ten numeric characters required).
 - *Pager Number* pager number of the network element contact person (ten numeric characters required)

- *Pager* PIN pager PIN number of the network element contact person (ten numeric characters maximum)
- **9.** When finished, click **OK** to apply the changes.
 - If the **Update Successful** dialog, *Figure 59: Update Successful Dialog* on page 90 appears, click **OK**. The GUI returns to the main console window.

Figure 59: Update Successful Dialog

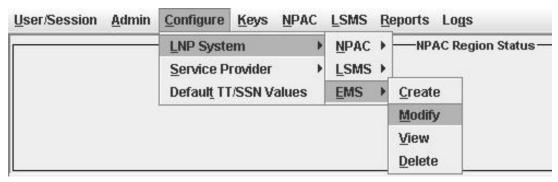
• When a mandatory field is empty or a field is not properly configured, the **Field Required** *Figure 60: Field Required Dialog* on page 90 dialog displays.

Figure 60: Field Required Dialog

Click **OK** and correct the appropriate field.

Repeat this step until you receive an **Update Successful** notification.

You have now completed this procedure.


Modifying an EMS Configuration Component

To modify an existing EMS configuration component, use the following procedure.

Note: For each EMS configuration created, you must perform a bulk download to the associated EMS/network element. Refer to the LSMS-Eagle 5 ISS LNP Database Synchronization Manual for bulk loading procedures.

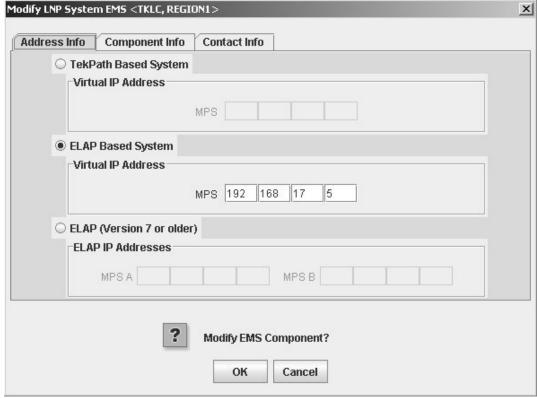

- 1. Log into the LSMS as a user in the lsmsadm or lsmsall group.
- 2. Click the EMS status icon for the EMS you wish to modify so that the icon is highlighted.
- 3. From the **Main Menu**, select **Configure** ➤ **LNP System** ➤ **EMS** ➤ **Modify**, as shown in *Figure* 61: *LNP System Menu Modify EMS* on page 90.

Figure 61: LNP System Menu - Modify EMS

The **Modify LNP System EMS** window, *Figure 62: Modify LNP System EMS Window* on page 91, appears.

Figure 62: Modify LNP System EMS Window

The window usually opens with the **Address Info** tab displayed; if the **Address Info** tab is not displayed, click its tab to display it.

- **4.** Modify the EMS data as required. See *Creating an EMS Configuration Component* on page 86 for detailed field information.
- 5. Click OK.

The EMS Routing dialog appears, Figure 63: EMS Routing Dialog on page 91.

Figure 63: EMS Routing Dialog

Click OK.

The **Update Successful** dialog displays, *Figure 64: Update Successful Dialog* on page 92.

Figure 64: Update Successful Dialog

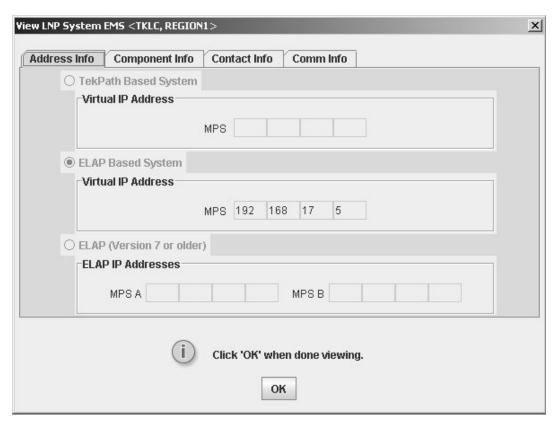
You have completed this procedure.

If a mandatory field is empty or a field is not properly configured, the **More Fields Needed** message is displayed, *Figure 65: More Fields Needed Dialog* on page 92.

Figure 65: More Fields Needed Dialog

Click **OK** and correct the appropriate field.

Repeat this step until you receive an **Update Successful** notification.


Note: Changes do not take effect until the eagleagent is restarted (refer to *Manually Verifying and Restarting the Eagle Agents* in the *LSMS Maintenance Manual*).

Viewing an EMS Configuration Component

To view EMS configuration component information, use the following procedure.

- 1. Log into the LSMS as a user in the lsmsview, lsmsuser, lsmsuext, or lsmsadm group.
- 2. Click the EMS status icon for the EMS you wish to view (highlight the icon).
- From the Main Menu, select Configure ➤ LNP System ➤ EMS ➤ View.
 The View LNP System EMS dialog displays, Figure 66: View LNP System EMS Dialog on page 92.

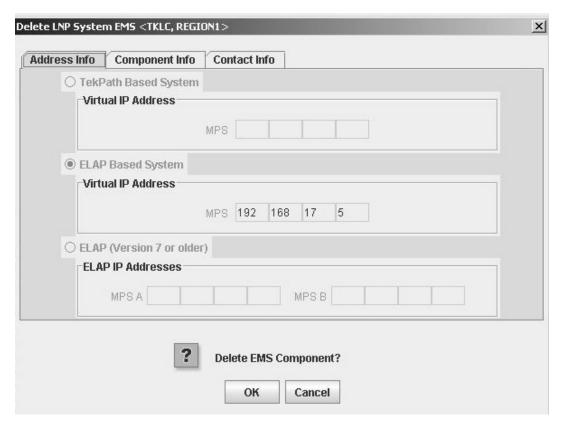
Figure 66: View LNP System EMS Dialog

4. Click on any of the tabs to view additional information.

For more information about the meaning of the fields on any of the tabs, see *Creating an EMS Configuration Component* on page 86.

Note: You cannot modify information in any of the tabs.

5. When finished viewing, click **OK**.


You have now completed this procedure.

Deleting an EMS Configuration Component

To delete an EMS configuration component, use the following procedure.

Note: The deletion of the EMS configuration component does not take effect until the LSMS is idled and restarted (refer to "Idling an Active Server" and "Starting or Restarting an Idle Server" in the LSMS Maintenance Manual).

- 1. Log into the LSMS as a user in the lsmsadm or lsmsall group.
- **2.** Click the **EMS Status** icon for the EMS you wish to delete (highlight the icon).
- From the Main Menu, select Configure ➤ LNP System ➤ EMS ➤ Delete.
 The Delete LNP EMS dialog displays, Figure 67: Delete LNP System EMS Dialog on page 93.
 Figure 67: Delete LNP System EMS Dialog

- **4.** View the information in this window to verify that this is the EMS you wish to delete. Click on any of the tabs to view additional information. For more information about the meaning of the fields on any of the tabs, see *Creating an EMS Configuration Component* on page 86. You cannot modify information in any of the tabs.
- 5. Click **OK** or **Cancel**.
 - If you click **Cancel**, you are returned to the LSMS console window.
 - If you click **OK**, the **Update Successful** dialog displays, *Figure 68: Update Successful Dialog* on page 94.

Figure 68: Update Successful Dialog

6. Click OK.

You have completed this procedure.

EMS Routing

EMS routing information enables the LSMS to send subscription information to the proper network elements. The EMS routing function allows you to modify or view the routing info that you defined using the TN Filters and GTT Groups (see Chapter 4 of the *LSMS Database Administration Manual*).

Managing Bulk Load from the LSMS

This section describes how to perform a bulk load, view bulk load log files, and understand bulk load error messages.

Bulk Load Procedure

Use the following procedure to manage a bulk load from the LSMS user interface.

Note: Before starting this procedure, contact the *Customer Care Center* on page 4 to be readily available for assistance if you encounter any problems while performing this procedure.

- **1.** Perform the following substeps to ensure that no NPA Splits will activate during the bulk download procedure:
 - a) As 1smsadm, enter the following 1smsdb commands to output the counts for both Subscription Version and NumberPoolBlock objects:

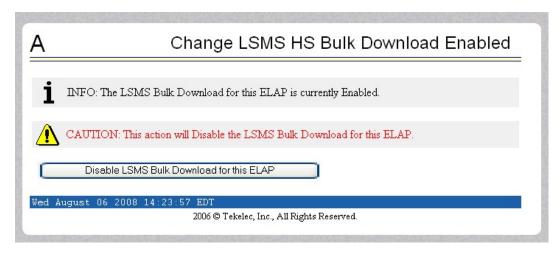
```
% cd $LSMS_DIR/tools
% lsmsdb -c counts | grep SubscriptionVersion
1,012,345 ... CanadaDB.SubscriptionVersion
5,434,123 ... MidAtlanticDB.SubscriptionVersion
7,111,222 ... MidwestDB.SubscriptionVersion
6,333,999 ... NortheastDB.SubscriptionVersion
8,044,000 ... SoutheaststDB.SubscriptionVersion
4,999,800 ... SouthwestDB.SubscriptionVersion
6,500,000 ... WestCoastDB.SubscriptionVersion
5,250,500 ... WesternDB.SubscriptionVersion
  lsmsdb -c counts | grep NumberPoolBlock
1,205 ..... CanadaDB.NumberPoolBlock
10,400 ..... MidAtlanticDB.NumberPoolBlock
8,005 ..... MidwestDB.NumberPoolBlock
4,000 ...... NortheastDB.NumberPoolBlock
7,500 ..... SoutheaststDB.NumberPoolBlock
1,225 ..... SouthwestDB.NumberPoolBlock
7,700 ..... WestCoastDB.NumberPoolBlock
5,500 ..... WesternDB.NumberPoolBlock
```

- b) Total the counts listed in the first column of the output from both commands in substep a. Divide this total by 2 million, to determine the estimated number of hours for the bulk load.
- c) Generate an NPA Split Report.

Select **Pending** for Status and **All NPAC Regions** for NPAC Region. For information about creating and viewing NPA Split Data Reports, refer to the *LSMS Database Administration Manual*.

- d) Determine if NPA Splits are scheduled to be activated during the time the Bulk Load is to be performed:
 - If no Pending NPA Splits were listed in the report in substep c, or if none of the Pending NPA Splits has a PDP Start Date that occurs within the time period required to complete the Bulk Load, go to *Step 2* on page 96.
 - If any Pending NPA Split has a PDP Start Date that occurs within the time period required to complete the Bulk Load, continue with next substep.
- e) Determine the date on which you want the NPA Splits to be activated.
 - This should be the next day after the expected completion of the Bulk Load Procedure (based on the start date/time anticipated and the estimated length of the Bulk Load procedure, from substep b). For example, if the Bulk Load is estimated to require 24 hours to complete and the Bulk Load planned to be performed starting at 12 noon on April 1st, the NPA Split should be postponed until April 3rd.
- f) Postpone the NPA Split (refer to the LSMS Database Administration Manual.
- **2.** Ensure that the network element is prepared to receive a bulk load by doing the following:
 - a) Connect your web browser to the ELAP user interface (for more information, refer to the EAGLE 5 ISS ELAP *Administration Manual*).
 - b) Log in with the user name and password for a user who is authorized to access the menu items shown in this procedure.

The ELAP GUI is displayed, as shown in Figure 69: ELAP Main Menu on page 96.


Figure 69: ELAP Main Menu

	Select Mate Process Control
+	Maintenance
	RTDB
	Debug
	Platform
±	User Administration
	Change Password
	Logout
J. F. S. S. S. S. S.	

c) Select Maintenance > LSMS HS Bulk Download > Change Enabled.

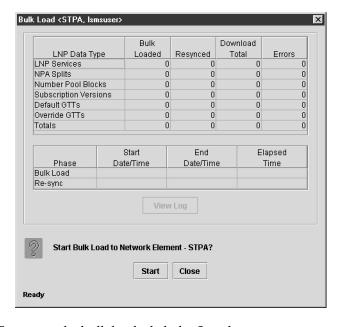

The window shown in *Figure 70: Enabling Change HS Bulk Download* on page 96 displays.

Figure 70: Enabling Change HS Bulk Download

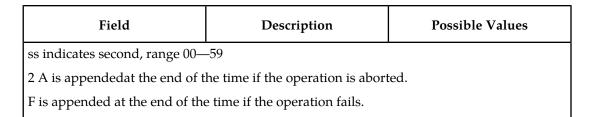
- d) If the information field indicates that the Bulkload for the ELAP is currently enabled, click the Disable Bulkload for this ELAP button and this will allow the audit.
- 3. At the LSMS, log in as a member of the lsmsuser, lsmsuext, or lsmsall user group.
- 4. Start the Bulk Load window using either of the following:
 - a) From the Main Menu on the LSMS Console window, select LSMS > LNP Database Synchronization > Bulk Load > <CLLI> , where <CLLI> is the Common Language Location Identifier for the network element that requires the bulk load.
 - b) Right-click the LSMS Console window's EMS status icon that corresponds to the network element requiring the bulk load, and select LNP Database Synchronization ➤ Bulk Load. The Bulk Load window displays. An example of this window is shown in Figure 71: Bulk Load Window on page 97.

Figure 71: Bulk Load Window

5. To initiate the bulk load, click the **Start** button.

The **Start** button is replaced by the **Abort** button, and the **View Log** button becomes selectable. Progress is indicated by start time, elapsed time, numbers of successful and failed update commands, and status reported in the status field at the bottom of the window. When the bulk load phase completes (as indicated in the status field and by a value appearing in the End Date/Time field for the Bulk Load phase), the Re-sync phase begins and progress continues to be indicated in the same ways. All other buttons become nonselectable. *Table 10: Fields in Bulk Load Window* on page 98 shows the meaning of each of the fields that appears in this window.

Table 10: Fields in Bulk Load Window


Field	Description	Possible Values
Bulk Loaded	Total number of LNP commands that were successfully transmitted and applied to the NE's LNP database during the initial download phase of the bulk load operation.	0 — 99,999,999
Resynced	Total number of LNP commands that were successfully transmitted and applied to the NE's LNP database during the resynchronization phase of the bulk load operation.	0 — 99,999,999
Download Total	Total number of LNP commands that were successfully transmitted and applied to the NE's LNP database during initial download and the resynchronization phases of the bulk load operation.	0 — 99,999,999
Errors	Total number of commands that were successfully transmitted but rejected by the NE during the initial download and the resynchronization phases of the bulk load operation.	0 — 99,999,999
Bulk Load Start Date/Time	Time at which the initial download phase of the bulk	MM/DD hh:mm:ss

Field	Description	Possible Values
	load operation was started by the user.	
Bulk Load End Date/Time	Time at which the initial download phase of the bulk load operation completed successfully or terminated abnormally.	MM/DD hh:mm:ss ¹
Bulk Load Elapsed Date/Time	Amount of time the initial download phase of the bulk load operation took to complete or the amount of time it ran before the user aborted it.	MM/DD hh:mm:ss ¹ [A F] ²
Re-sync Start Date/Time	Time at which the resynchronization phase of the bulk load operation was started by the user.	MM/DD hh:mm:ss ¹
Re-sync End Date/Time	Time at which the resynchronization phase of the bulk load operation completed successfully (with or without command rejections at the NE) or terminated abnormally.	MM/DD hh:mm:ss ¹
Re-sync Elapsed Date/Time	Amount of time the resynchronization phase of the bulk load operation took to complete or the amount of time it ran before the user aborted it.	hh:mm:ss ¹ [A F] ²
Status	Appears as text at the bottom left of the window to indicate the current status of the resynchronization operation.	Varies
1 MM indicates month, range	01—12	

DD indicates day, range 01—31

hh indicates hour, range 00—23

mm indicates minute, range 00—59

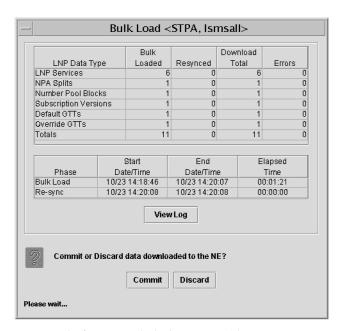
The time required to download a database from the LSMS to the network element varies depending on the number of records provisioned in the database and the quality of the transmission and connections. To view the bulk load log file, see *Bulk Load Log File* on page 107. To abort during either the bulk load phase or the resynchronization phase of an electronic bulk load is in progress, click the **Abort** button. A confirmation dialog displays, as shown in *Figure 72: Abort Bulk Load Operation Dialog* on page 100.

Figure 72: Abort Bulk Load Operation Dialog

Click the **Yes** button to immediately terminate the operation in progress. Go to *Step 7* on page 100 as if the bulk load had completed.

Click the **No** button to close the **Abort** confirmation dialog and return back to the main **Bulk Load** window with no other effect.

- a) Click the **Yes** button to immediately terminate the operation in progress. Go to *Step 7* on page 100 as if the bulk load had completed.
- b) Click the **No** button to close the **Abort** confirmation dialog and return back to the main **Bulk Load** window with no other effect.
- **6.** When the bulk load operation completes, the information dialog shown in *Figure 73: Bulk Load Complete Information Dialog* on page 100 displays.


Figure 73: Bulk Load Complete Information Dialog

Click OK.

7. When the bulk load operation completes or is aborted, the **Abort** and **Close** buttons are replaced by **Commit** and **Discard** buttons, as shown in *Figure 74*: *Bulk Load Complete* on page 100.

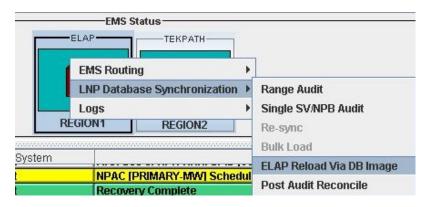
Figure 74: Bulk Load Complete

Commit before you click the **Discard** button, you can view the bulk load log file by clicking the **View Log** button (for more information about the file, including how to view it at other times, see *Bulk Load Log File* on page 107). To conclude the bulk load operation, you must click one of the following buttons:

Click the **Discard** button to end the bulk load application (closing the **Bulk Load** window) and to send the NE a discard command that results in changes to the ELAP's RTDB that cannot be undone. (For whatever reason you are performing this procedure, the ELAP's RTDB is now in a state of requiring database maintenance, but the bulk load application is no longer running.)

Note: On the active MPS, verify that the DB Status is Coherent and the RTDB Level is greater than zero before copying the newly downloaded database to the mated ELAP.

- **8.** The NE operator must continue with the following steps to cause the LNP database to be distributed and return the NE to normal operation as follows:
 - **1.** Copy the newly restored RTDB to its mate ELAP's RTDB, as described in *Copy RTDB from Remote on ELAP 8.0* on page 115.
 - **2.** Distribute the data to the Service Module cards, as described in *Distributing an RTDB LNP Database to Service Module Cards* on page 126.


Support ELAP Reload Via Database Image Function

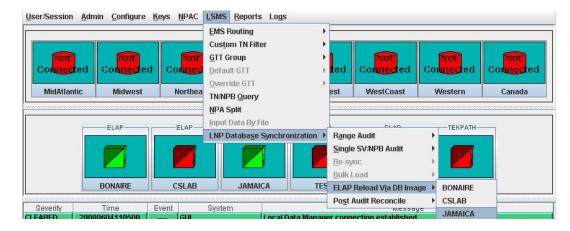
The Support ELAP Reload via Database Image (SERVDI) function performs bulk data downloads (BDD) that significantly reduces the time needed to reload an ELAP database. SERVDI is included with the optional 384 Million Records feature.

The SERVDI function is executed on the LSMS system and creates an RTDB LNP 384 million records database image file directly from the LSMS LNP databases. See *Figure 75: ELAP Reload Via DB Image Function* on page 102. The SERVDI download file must be transferred to the ELAP

system backup directory. Once transferred, the file is activated by using the restore from backup process in the ELAP GUI.

Figure 75: ELAP Reload Via DB Image Function

SERVDI Bulk Download


Use the following procedure to perform an ELAP bulk download from the LSMS.

Note: SERVDI is part of the additional-cost, optional 384 Million Records feature. Contact Tekelec Customer Care Center for more information.

Note: The LSMS bulk download SERVDI creates the bulkload file, but cannot send it to the active ELAP unless the Secure Shell Keys (SSKs) have been exchanged. This procedure is part of the ELAP configuration procedure, and is illustrated in the *ELAP Administration Manual - 384 Million TNs*, and the *LNP Feature Activation Guide*. Once this step is complete, the SERVDI bulk download can be sent from the LSMS to the active ELAP.

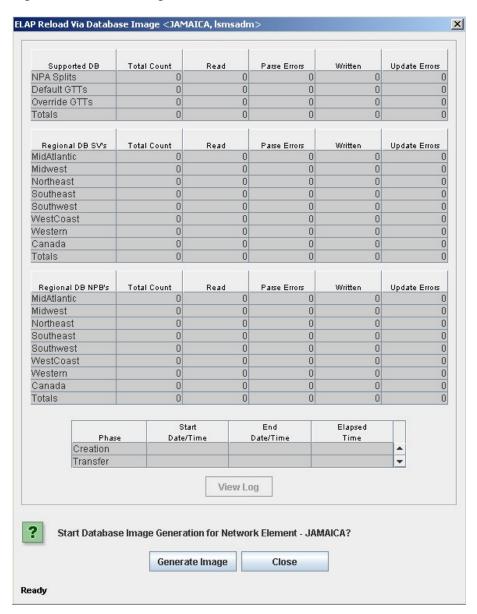
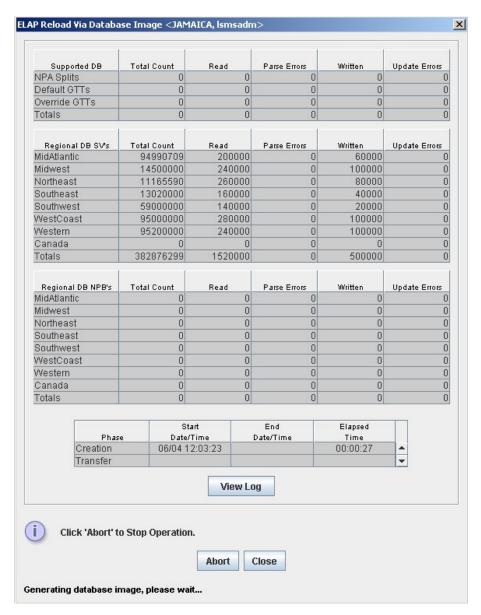

- 1. Log in to the LSMS GUI as a member of the permission group that is authorized to perform this operation.
- 2. From the LSMS Console window, select LSMS ➤ LNP Database Synchronization ➤ ELAP Reload Via DB Image ➤ <CLLI> where <CLLI> is the ELAP network element that requires the bulk download.

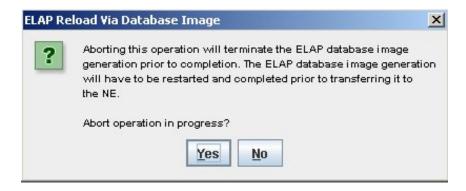
Figure 76: ELAP Reload Via DB Image

3. Click Generate Image.

Figure 77: Generate Image

4. The LSMS creates a database file of the ELAP database image. When the process completes, a confirmation dialog appears.


Figure 78: Database Image Completed


Click **OK** to continue.

Note: If necessary, you can stop the bulk download process before the database image is complete. To stop the bulk download process, click **Abort**. A confirmation dialog appears. Click **Yes** to terminate the bulk download in progress. Click **No** to continue with the bulk download.

Figure 79: Abort Bulk Download

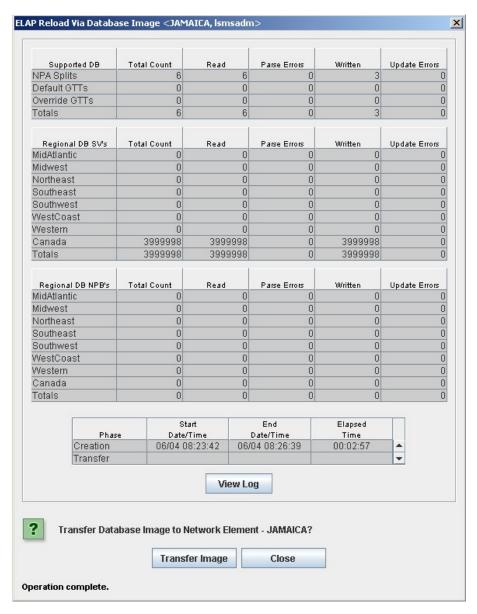


Figure 80: Abort Confirmation

5. Click **Transfer Image** to transfer the bulk download to the ELAP.

Figure 81: Transfer Database Image to ELAP

When the transfer completes, a confirmation dialog appears. Click **OK** to continue.

Figure 82: Image Transfer Complete

6. Click Close to return to the main LSMS Console window.

In order to complete this process, you must reload the ELAP database using the file generated in *Step 4* on page 103. For more information about how to reload an ELAP database, refer to the procedure, *Restore RTDB on ELAP 8.0* on page 112.

Bulk Load Log File

This section describes the following topics:

- Viewing the Bulk Load Log File on page 107
- Bulk Load Log File Contents on page 108

Viewing the Bulk Load Log File

After a resynchronization has begun, you can view the electronic bulk load log file by clicking the **View Log** button. The browser window displays the log file LsmsBulkload.log. <MMDD>. The file is located in the directory /usr/local/LSMS/logs/ <CLLI>. **<**CLLI> is the Common Language Location Identifier of the network element receiving the bulk load. **<** MMDD> is the timestamp that contains month and day that the file was created.

You can also use one of the following methods to open the window shown in *Figure 83: Open Log Files Window* on page 107 to browse for this log:

- Select Logs > Other... from the main menu of the LSMS Console window.
- Click on the LSMS Console window's EMS Status icon that corresponds to the network
 element receiving the bulk load so that the icon is highlighted. Right-click and select Logs >
 LNP Database Synchronization > Bulk Load.

The Open Log Files window displays.

Figure 83: Open Log Files Window

Scroll down to find the folder that has the **<CLLI>** name for the NE that was bulk loaded. Double-click the folder name, and then double-click the file name LsmsBulkload.log. <MMDD> that corresponds to the month and day you desire.

Note: Log files are maintained for seven days and then automatically removed from the LSMS.

Bulk Load Log File Contents

When a bulk load is started, the bulk load log file for that day is appended (if this is the first bulk load of the day, the file is created). For each bulk load performed on that day, the bulk load log file contains information similar to the information displayed on the Bulk Load main window, such as start and end times for the bulk load, and numbers of successes and failures in various LNP categories.

The bulk load log file contains the following sections:

- Header Section
- Bulk Load Section
- Resynchronization Section
- Summary Section
- Download Commit/Discard Section

See Appendix C of the *LNP Database Synchronization Manual - LSMS with EAGLE 5 ISS* for more information on these sections.

Figure 84: Example Bulk Load Log File on page 108 shows an example of a bulk load log file.

Figure 84: Example Bulk Load Log File

```
Wed Oct 31 14:02:03 GMT 2001

Username: lsmsall
NE CLLI: STPB

Wed Oct 31 14:02:02 GMT 2001

Connection established with network element (192.168.61.202:1030)

Bulk download started on Wed Oct 31 14:02:13 GMT 2001

Bulk download completed on Wed Oct 31 14:02:27 GMT 2001

LNP Services 6 Downloaded 0 errors
NPA Splits 1 Downloaded 0 errors
Number Pool Blocks 2 Downloaded 0 errors
Subscription Versions 1004 Downloaded 0 errors
Default GTTs 1 Downloaded 0 errors
Override GTTs 1 Downloaded 0 errors
Total 1015 Downloaded 0 errors

Re-sync started on Wed Oct 31 14:02:29 GMT 2001

New NE LNP Database Time Stamp: Wed Oct 31 14:02:30 GMT 2001
```

Re-sync completed on Wed Oct 31 14:02:30 GMT 2001 NPA Splits 0 Downloaded 0 errors
Number Pool Blocks 0 Downloaded 0 errors
Subscription Versions 0 Downloaded 0 errors
Default GTTs 0 Downloaded 0 errors
Override GTTs 0 Downloaded 0 errors
Total 0 Downloaded 0 errors Commit completed on Wed Oct 31 14:02:48 GMT 2001. Username: lsmsall NE CLLI: STPB Bulk download started on Wed Oct 31 15:04:54 GMT 2001 Bulk download completed on Wed Oct 31 15:05:09 GMT 2001 LNP Services 6 Downloaded 0 errors
NPA Splits 1 Downloaded 0 errors
Number Pool Blocks 2 Downloaded 0 errors
Subscription Versions 1004 Downloaded 0 errors
Default GTTs 1 Downloaded 0 errors
Override GTTs 1 Downloaded 0 errors
Total 1015 Downloaded 0 errors Re-sync started on Wed Oct 31 15:05:19 GMT 2001 New NE LNP Database Time Stamp: Wed Oct 31 15:05:20 GMT 2001 Re-sync completed on Wed Oct 31 15:05:20 GMT 2001 NPA Splits 0 Downloaded 0 errors
Number Pool Blocks 0 Downloaded 0 errors
Subscription Versions 0 Downloaded 0 errors
Default GTTs 0 Downloaded 0 errors
Override GTTs 0 Downloaded 0 errors
Total 0 Downloaded 0 errors

Bulk Load Error Messages

For a listing of error messages that can appear on the GUI, along with explanation of possible cause and suggested recovery, see Appendix A in the *LNP Database Synchronization Manual - LSMS with EAGLE 5 ISS*.

Copying One RTDB from Another RTDB

Discard completed on Wed Oct 31 15:10:55 GMT 2001.

This section describes the procedures for copying an EAGLE LNP Application Processor (ELAP) Real Time Database (RTDB) from another ELAP RTDB to reload a corrupted or backlevel RTDB. For more information about when to perform the procedures in this section, see *The LNP Database Synchronization Manual, Choosing a Database Maintenance Procedure*.

The following procedures are covered by this section:

- Restore RTDB on ELAP 8.0 on page 112
- Copy RTDB from Remote on ELAP 8.0 on page 115

Restore RTDB on ELAP 8.0

In previous versions of ELAP, databases were copied from the mate. The Copy from Mated ELAP function is no longer supported with the 384 Million LNP Records feature. If you have purchased the 384 Million Records feature and are running on ELAP 8.0, follow the procedures for Restore RTDB on ELAP 8.0 in place of the previous process to copy the RTDB from the mated ELAP.

ELAP 8.0 uses a Distributed Replicated Block Device (DRBD) to replicate the database, which provides significantly faster download times. The DRBD replicates the database by using a snapshot image of the database. This new function, Support ELAP Reload Via Database Image, or SERVDI, is executed on the LSMS for the bulk download, and the process is completed with the procedure to restore the RTDB. See *Restore RTDB on ELAP 8.0* on page 112 for the detailed procedure.

For more information on the SERVDI function, see SERVDI Bulk Download on page 102.

Copy RTDB from Remote on ELAP 8.0

With the 384 Million LNP Records feature, it is no longer necessary to stop the software before performing this procedure. ELAP 8.0 uses a snapshot image of the database to replicate the database, making this a significantly faster process.

After completing the Copy RTDB from Remote procedure, the database must be restored to make the transferred file the the active RTDB. See *Restore RTDB on ELAP 8.0* on page 112 for the procedure to restore the RTDB.

Verifying RTDB Status

Before or after executing the Copy One RTDB to Another RTDB procedure, verify the status of the RTDBs using either or both of the following methods:

- *Verifying RTDB Status at the EAGLE 5 ISS Terminal* on page 110
- Verifying RTDB Status at the ELAP User Interface on page 111

Verifying RTDB Status at the EAGLE 5 ISS Terminal

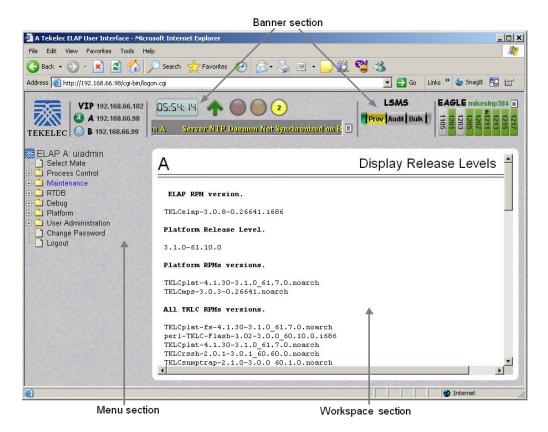
To verify the status of the ELAP RTDBs at the EAGLE 5 ISS terminal, enter the rept-stat-db:db=mps command.

The command output displays database timestamp (DBTS) of both ELAP RTDBs in the RTDB-EAGLE field, as shown in bold in the following example. The DBTS indicates the last time an update was received by this RTDB from the LSMS. If the two DBTS values are not the same, the RTDB with the lower DBTS may need database maintenance.

```
tekelecstp 02-10-29 08:55:54 NZST EAGLE 39.0.0.0

ELAP A ( ACTV )
C BIRTHDATE LEVEL EXCEPTION
```

RTDB RTDB-EAGLE	Y 02-10-29 08:20:04 12345 02-10-29 08:20:04 12345	 - -
	ELAP B (STDBY) C BIRTHDATE LEVEL	EXCEPTION
RTDB RTDB-EAGLE ;	Y 02-10-29 08:20:04 12345 02-10-29 08:20:04 12345	- - -


Verifying RTDB Status at the ELAP User Interface

To verify the status of ELAP RTDBs at the ELAP user interface (view the status of the databases), perform the following procedure.

1. Open a browser window and connect your web browser to the ELAP GUI (for more information about connecting to the ELAP GUI, refer to the ELAP Administration Manual).

Log in with the user name and password for a user who is authorized to access the menu items shown in this procedure. The ELAP GUI is displayed, *Figure 85: ELAP Main Screen* on page 111.

Figure 85: ELAP Main Screen

2. From the Main Menu, select RTDB > View RTDB Status.

The ELAP GUI workspace displays the RTDB status, as shown in *Figure 86: ELAP RTDB Status* on page 112.

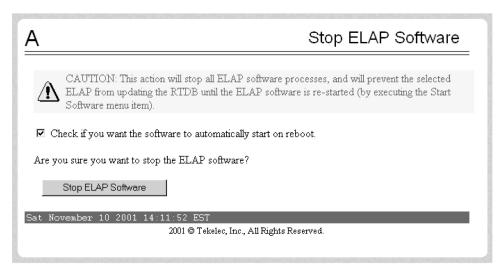
Figure 86: ELAP RTDB Status

		Local R	IDB Status
DB Status:	Coherent	Audit Enabled:	Yes
RTDB Level:	8708	RTDB Birthday:	09/26/2005 20:44:35 GMT
Counts:	TNs=8708, 1	NPANXXs=778, LR	Ns=2, SPs=2, MRs=8, MRGroups=2
Reload:	None		
		Mate R	IDB Status
DB Status:	Coherent	Audit Enabled:	Yes
RTDB Level:	8708	RTDB Birthday:	09/26/2005 20:44:44 GMT
Counts:	TNs=8708, 1	NPANXXs=778, LR	Ns=2, SPs=2, MRs=8, MRGroups=2
Reload:	None		

Note the values displayed for DB Level and DB Birthday for both the local RTDB and the mate RTDB.

- **3.** To verify that both RTDBs are ready for normal service, ensure that:
 - a) The status for both RTDBs displays
 - b) Both RTDBs are coherent
 - c) Both RTDBs have the same birthday
 - d) Both RTDBs have the same level (if provisioning is occurring, the levels might be different by a very small number)

If you are not sure how to interpret the status of the RTDBs, contact the *Customer Care Center* on page 4.


You have now completed this procedure.

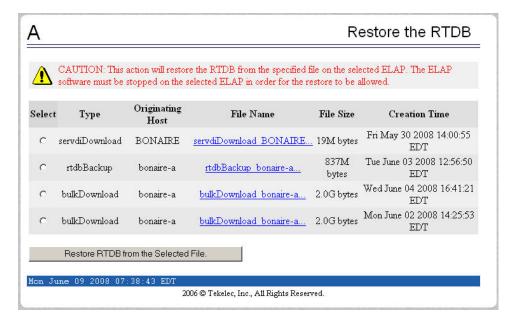
Restore RTDB on ELAP 8.0

Follow these steps to restore the RTDB from a backup file after performing a bulk download.

- 1. Open a browser window and connect your web browser to the ELAP GUI (for more information about connecting to the ELAP GUI, refer to the ELAP Administration Manual).
- 2. Log in with the user name and password for an authorized user.
- 3. From the ELAP GUI menu, select **Process Control** ➤ **Stop Software** to ensure that no other updates are occurring. The screen shown in *Figure 87: Stopping Software on the ELAP GUI* on page 112 displays. Click the **Stop ELAP Software** button.

Figure 87: Stopping Software on the ELAP GUI

After the software on the selected ELAP has stopped, the screen shown in *Figure 88: Stop ELAP Software - Success* on page 113 is displayed.


Figure 88: Stop ELAP Software - Success

4. Select RTDB ➤ Maintenance ➤ Restore RTDB.

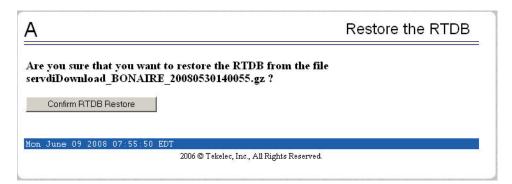

The Restore the RTDB screen displays, *Figure 89: Restore the RTDB* on page 113.

Figure 89: Restore the RTDB

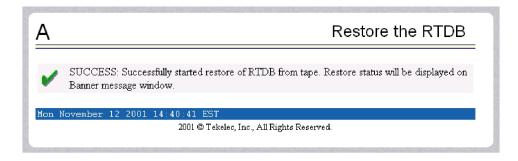
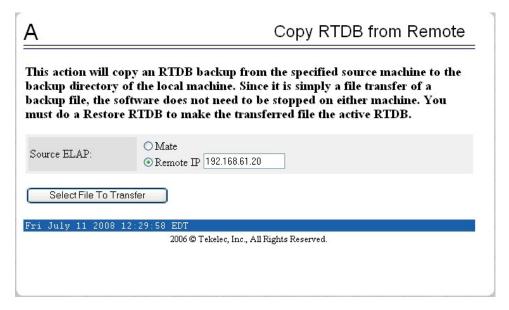

- 5. Select the appropriate file to restore and click the **Restore RTDB from the Selected File** button.
- **6.** To confirm restoring the file, click the **Confirm RTDB Restore** button on the confirmation dialog, *Figure 90: Confirm RTDB Restore* on page 114.

Figure 90: Confirm RTDB Restore

7. After the file is successfully restored, the screen shown in *Figure 91: Successful RTDB Restoration* on page 114 displays.

Figure 91: Successful RTDB Restoration

Copy RTDB from Remote on ELAP 8.0


With the 384 Million Records feature on ELAP 8.0, it is no longer necessary to stop the software before performing this procedure. You must restore the RTDB to make the transferred file the active RTDB.

Follow these steps to copy the RTDB from a remote ELAP to the local ELAP.

- **1.** Open a browser window and connect your web browser to the ELAP GUI (for more information about connecting to the ELAP GUI, refer to the *ELAP Administration Manual*).
- 2. Log in with the user name and password for a user who is authorized to access the menu items shown in this procedure.
- **3.** From the ELAP GUI menu, select **RTDB** ➤ **Maintenance** ➤ **Copy from Remote** .

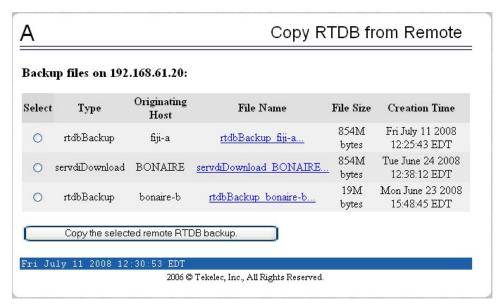

The Copy RTDB from Remote screen displays, Figure 92: Copy RTDB from Remote on page 115.

Figure 92: Copy RTDB from Remote

- **4.** To copy the local RTDB, choose the source to reload. If you are selecting a Remote IP address, enter the address in the text field. Click the **Select File To Transfer** button.
- **5.** Select the appropriate file from the screen that opens, as shown in *Figure 93: Copy RTDB from Remote Selection* on page 115. Click the **Copy the selected remote RTDB backup** button.

Figure 93: Copy RTDB from Remote Selection

After the reload is complete, a confirmation message displays.

To reload the RTDB, follow the procedure as shown in *Restore RTDB on ELAP 8.0* on page 112.

Activating the LNP Feature on the EAGLE 5 ISS

The 384 Million LNP Records feature is a quantity feature that increases the LNP capacity from 228 million LNP numbers and number blocks to 384 million LNP numbers and number pool blocks per EAGLE 5 ISS node. This feature also provides up to 200,000 LRNs and 350,000 NPA-NXX numbers on a single node. The 384 Million LNP Records feature requires ELAP version 8.0 and LSMS version 11.0.

The LNP feature is activated with the enable-ctrl-feat command specifying the feature access key and part number of the desired LNP telephone number quantity up to 384 million records. The assigned quantity can be verified with the rtrv-ctrl-feat command.

CAUTION:

The LNP feature does not support TSM cards. All TSM cards must be removed to enable this feature. Before performing this procedure, verify the number of TSM cards running the SCCP application in the EAGLE 5 ISS by entering the rept-stat-sccp command. The number of TSM cards is shown in the SCCP Cards Configured field of the rept-stat-sccp output. Perform the Removing DSM and TSM Cards on page 35 procedure to remove any TSM cards.

The 384 Million Records feature does not support DSM cards. Only E5-SM4G cards can be used for this feature. All DSM cards must be removed to enable this quantity. See the LNP Hardware and Part Number Configuration Table, *Table 2: LNP Hardware and Part Number Configuration Table* on page 17 for specific card requirements and compatibility matrix.

Before the LNP feature can be activated, or before the quantity of LNP telephone numbers can be increased, Service Module cards with the correct amount of memory must be configured in the

EAGLE 5 ISS. See *Table 2: LNP Hardware and Part Number Configuration Table* on page 17 for the Service Module card requirements. *Table 2: LNP Hardware and Part Number Configuration Table* on page 17 also contains the part numbers of the LNP telephone quantities that are specified with the enable-ctrl-feat command. For more information on the Service Module cards, go to the *Hardware Manual - EAGLE 5 ISS*.

The feature access key is based on the feature part number and the serial number of the EAGLE 5 ISS, making the feature access key site-specific.

The enable-ctrl-feat command enables the LNP telephone number quantity by inputting the feature access key and the part number corresponding to the desired LNP telephone number quantity with these parameters:

:fak

The feature access key provided by Tekelec. The feature access key contains 13 alphanumeric characters and is not case sensitive.

:partnum

The Tekelec-issued part number associated with the LNP telephone number quantity, without the dashes. See *Table 2: LNP Hardware and Part Number Configuration Table* on page 17.

The enable-ctrl-feat command requires a valid serial number for the EAGLE 5 ISS is configured in the database, and that this serial number is locked. This can be verified with the rtrv-serial-num command. The EAGLE 5 ISS is shipped with a serial number in the database, but the serial number is not locked. The serial number can be changed, if necessary, and locked once the EAGLE 5 ISS is on-site, by using the ent-serial-num command. The ent-serial-num command uses these parameters.

:serial

The serial number assigned to the EAGLE 5 ISS. The serial number is not case sensitive.

:lock

Specifies whether or not the serial number is locked. This parameter has only one value, yes, which locks the serial number. Once the serial number is locked, it cannot be changed.

Note: To enter and lock the EAGLE 5 ISS's serial number, the ent-serial-num command must be entered twice, once to add the correct serial number to the database with the serial parameter, then again with the serial and the lock=yes parameters to lock the serial number. You should verify that the serial number in the database is correct before locking the serial number. The serial number can be found on a label affixed to the control shelf (shelf 1100).

The LNP ELAP Configuration feature must be enabled and turned on before the LNP telephone number quantity can be enabled.

The LNP ELAP Configuration feature is enabled with the enable-ctrl-feat command, and turned on with the chg-ctrl-feat command. The chg-ctrl-feat command uses these parameters:

:partnum

The Tekelec-issued part number specified in the enable-ctrl-feat command. The part number for the LNP ELAP Configuration feature is 893010901.

:status=on

Enables the LNP ELAP Configuration feature.

Note: Once the LNP feature is enabled for a specific quantity with the enable-ctrl-feat command, that quantity cannot be reduced. The LNP and LNP ELAP Configuration features cannot be disabled, and cannot be enabled with the temporary feature access key. The chg-ctrl-feat command cannot be specified for an LNP telephone number quantity. The LNP telephone number quantity and the LNP ELAP Configuration feature must be purchased before you can enable that quantity or the LNP ELAP Configuration feature with the enable-ctrl-feat command. If you are not sure if you have purchased the desired LNP telephone number quantity or the LNP ELAP Configuration feature, or do not have the feature access key for the LNP telephone number quantity being enabled or the LNP ELAP Configuration feature, contact your Tekelec Sales Representative or Account Representative.

CAUTION: It is recommended that the ELAP is connected to the EAGLE 5 ISS before LNP telephone number data is loaded onto the ELAP and before the LNP telephone number quantity is enabled on the EAGLE 5 ISS. When the LNP telephone number CAUTION quantity is enabled on the EAGLE 5 ISS, the feature key and quantity information is sent to the ELAP, resulting in the ELAP database quantity being the same as the LNP telephone number quantity on the EAGLE 5 ISS. If the ELAP database quantity is larger than the LNP telephone number quantity on the EAGLE 5 ISS, the ELAP RTDB is not loaded onto the entire set of Service Module cards on the EAGLE 5 ISS. Some of the Service Module cards load the ELAP RTDB to provide a restricted level of GTT/LNP service. The remainder of the Service Module cards are put into a restricted state. UIM 1323 is generated at the EAGLE 5 ISS. To avoid this situation, make sure that the LNP telephone number quantity configured on the EAGLE 5 ISS in this procedure is greater than the ELAP database quantity.

Note: This procedure is performed on the EAGLE 5 ISS.

1. Display the status of the EAGLE 5 ISS's database by entering the rept-stat-db command.

```
tekelecstp 08-08-29 08:38:25 NZST EAGLE 39.2.0
DATABASE STATUS: >> OK <<
                                      TDM 1116 ( STDBY)
       TDM 1114 ( ACTV )
       C LEVEL TIME LAST BACKUP C LEVEL TIME LAST BACKUP
FD BKUP Y 1 08-05-29 08:20:13 NZST Y 11 08-05-29 08:20:13 NZST
FD CRNT Y 11
                                   Y 11
      MDAL 1117
RD BKUP Y 1 08-05-29 15:44:20 NZST
```

The database is backed up to the fixed disk and a removable cartridge before the LNP feature is activated. The removable cartridge that contains the database must be inserted in the removable cartridge drive. If the RDBKUP field of the rept-stat-db output contains dashes, the removable cartridge drive does not contain a removable cartridge. If dashes are shown in the RDBKUP field, insert the removable cartridge that contains the database into the removable cartridge drive. If the removable cartridge is not the cartridge that contains the database, replace the removable cartridge with the one that contains the database.

2. Back up the database using the chg-db:action=backup:dest=fixed command.

A text-based output displays. The active Maintenance and Administration Subsystem Processor (MASP) message appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
```

```
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.

BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

3. Back up the database to the removable cartridge using the chg-db:action=backup:dest=remove command.

These messages appear:

```
BACKUP (REMOVABLE): MASP B - Backup starts on active MASP.
BACKUP (REMOVABLE): MASP B - Backup to removable cartridge complete.
```

4. Display the status of the databases by entering the rept-stat-db command.

```
tekelecstp 02-10-29 08:55:54 NZST EAGLE 39.2.0
DATABASE STATUS: >> OK <<
                                    TDM 1116 ( STDBY)
       TDM 1114 ( ACTV )
       C LEVEL TIME LAST BACKUP C LEVEL TIME LAST BACKUP
       - ----- -----
FD BKUP Y 11 08-05-29 08:20:13 NZST Y 11 08-05-29 08:20:13 NZST
FD CRNT Y 12
                                     12
       MDAL 1117
RD BKUP Y 1 08-05-29 15:44:20 NZST
          ELAP A ( ACTV )
          C BIRTHDATE
                                 LEVEL
                                          EXCEPTION
                                _____
RTDB
         Y 08-05-29 08:20:13 12345
08-05-29 08:20:13 12345
RTDB-EAGLE
          ELAP B ( STDBY )
                                LEVEL EXCEPTION
          C BIRTHDATE
          Y 08-05-29 08:20:13 12345 - 08-05-29 08:20:13 12345 -
RTDB
RTDB-EAGLE
```

- If the databases are not coherent after *Step 2* on page 118 and *Step 3* on page 119 are performed, stop performing this procedure and contact the *Customer Care Center* on page 4.
- If the databases are coherent after *Step 2* on page 118 and *Step 3* on page 119 are performed, remove the removable cartridge from the removable cartridge drive and store the removable cartridge in a secure place.
- **5.** Display a summary report of all of the device trouble notifications in the EAGLE 5 ISS by entering the rept-stat-trbl command.

```
0010.0318 ** LSN lsn4 REPT-LKSTO: link set prohibited 0029.0308 *C SYSTEM Node isolated due to SLK failures
```

If any alarms are shown in the rept-stat-trbl output, stop performing this procedure and contact the *Customer Care Center* on page 4.

6. Display the status of the cards in the EAGLE 5 ISS by entering the rept-stat-card command.

```
rlghncxa03w 07-08-01 12:57:21 GMT EAGLE5 37.0.0
CARD VERSION TYPE APPL PST 1102 123-001-000 TSM GLS IS-NR
                                              SST
                                                        AST
                                     IS-NR
                                              Active
1113 123-002-000 GPSM
                          EOAM IS-NR
                                           Active
         ---- TDM
                           ----- IS-NR
1114
1115 ----- GPSM EOAM IS-NR
                                             Active
                                                        ____
                   TDM ------ IS-NR Active
MDAL ------ IS-NR Active
LIMDS0 SS7ANSI IS-NR Active
1116 -----
                 TDM
1117
                                            Active
1201 123-002-000
                                             Active
1203 123-002-000 LIMDSO SS7ANSI IS-NR
1207 123-001-000 LIMV35 SS7GX25 IS-NR
                                             Active
1208 123-001-000 LIMV35 SS7GX25 IS-NR
                                             Active
                  DSM
1301 123-001-000
1303 123-001-000
                          VSCCP IS-NR Active
VSCCP IS-NR Active
VSCCP IS-NR Active
                                             Active
1305 123-002-000 DSM VSCCP
                                  IS-NR
IS-NR
IS-NR
1307 123-001-000 DSM VSCCP IS-NR
                                             Active
1311 123-001-000 DSM
                          VSCCP
                                             Active
1313 123-001-000
1314 123-001-000
                   LIMDSO SS7ANSI
LIMDSO SS7ANSI
                                              Active
                                              Active
1317 123-001-000 ACMENET STPLAN IS-NR Active ----
```

If the status of any of the cards shown in the rept-stat-card output is not IS-NR, stop performing this procedure and contact the *Customer Care Center* on page 4.

7. Display the status of the Service Module Cardsrunning the SCCP application by entering the rept-stat-sccp command.

klc119 ARD	90601 08-10-03 VERSION	l 16:31:14 EST PST	EAGLE 4	0.0.0 AST	MSU USAGE	CPU USAGE
205 P	126-027-000	IS-NR	Active		 0%	 5%
317	126-027-000	IS-NR	Active		0%	5%
213	126-027-000	IS-NR	Active		0%	5%
15	126-027-000	IS-NR	Active		0%	6%
7	126-027-000	IS-NR	Active		0%	5%
7	126-027-000	IS-NR	Active		0%	5%
)5	126-027-000	IS-NR	Active		0%	6%
	ervice Average Completed.	e MSU Capacity	= 0% A	verage CPU	Capacit	 cy = 5%

Note: The rept-stat-sccp command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the rept-stat-sccp command, see the rept-stat-sccp command description in the *EAGLE 5 ISS Commands Manual*.

Note: If the rtrv-ctrl-feat output (*Step 1.a* on page 20 in the *Activating the LNP Feature Overview* on page 20) shows any control features, skip *Step 8* on page 121 through *Step 11* on page 121, and go to *Step 12* on page 121. If the rtrv-ctrl-feat output shows only the IPGWx Signaling TPS feature with a quantity of 200 and the HC-MIM SLK Capacity feature with a quantity of 64, *Step 8* on page 121 through *Step 11* on page 121 must be performed.

8. Display the serial number in the database with the rtrv-serial-num command.

```
rlghncxa03w 07-08-01 21:15:37 GMT EAGLE5 37.0.0
System serial number = ntxxxxxxxxxxx

System serial number is not locked.

rlghncxa03w 07-08-01 21:15:37 GMT EAGLE5 37.0.0
Command Completed
```

Note: If the serial number is correct and locked, skip *Step 9* on page 121, *Step 10* on page 121, and *Step 11* on page 121, and go to *Step 12* on page 121. If the serial number is correct but not locked, skip *Step 9* on page 121 and *Step 10* on page 121, and go to *Step 11* on page 121. If the serial number is not correct, but is locked, the LNP ELAP Configuration feature cannot be enabled and the remainder of this procedure cannot be performed. Contact the *Customer Care Center* on page 4 to get an incorrect and locked serial number changed. The serial number can be found on a label affixed to the control shelf (shelf 1100).

9. Enter the correct serial number into the database using the ent-serial-num command with the serial parameter.

```
ent-serial-num:serial=<EAGLE 5 ISS's correct serial number>
rlghncxa03w 07-08-28 21:15:37 GMT EAGLE5 37.0.0
ENT-SERIAL-NUM: MASP A - COMPLTD
```

10. Verify that the serial number entered into *Step 9* on page 121 was entered correctly using the rtry-serial-num command.

```
rlghncxa03w 07-08-28 21:15:37 GMT EAGLE5 37.0.0
System serial number = nt00001231
System serial number is not locked.
rlghncxa03w 07-08-28 21:15:37 GMT EAGLE5 37.0.0
Command Completed
```

If the serial number was not entered correctly, repeat *Step 9* on page 121 and *Step 10* on page 121 and re-enter the correct serial number.

- 11. Lock the serial number in the database by entering the ent-serial-num command with the lock=yes parameter.
 - Use the serial number shown in *Step 8* on page 121, if the serial number shown in *Step 8* on page 121 is correct.
 - Use the serial number shown in *Step 10* on page 121, if the serial number was changed in *Step 9* on page 121.

```
ent-serial-num:serial=<EAGLE 5 ISS's serial number>:lock=yes
rlghncxa03w 07-08-28 21:15:37 GMT EAGLE5 37.0.0
ENT-SERIAL-NUM: MASP A - COMPLTD
```

Note: If the rtrv-ctrl-feat output (*Step 1.a* on page 20 in the *Activating the LNP Feature Overview* on page 20) shows the LNP ELAP Configuration feature is enabled and on, skip *Step 12* on page 121, *Step 13* on page 122 and *Step 14* on page 122, and go to *Step 15* on page 122.

Note: If the LNP ELAP Configuration feature is enabled and but not on, skip this step and go to *Step 13* on page 122.

12. Enable the LNP ELAP Configuration feature by entering this command.

enable-ctrl-feat:partnum=893010901:fak=<LNPELAP Configuration feature
access key>

```
rlghncxa03w 07-08-01 21:15:37 GMT EAGLE5 37.0.0
ENABLE-CTRL-FEAT: MASP B - COMPLTD
```

Note: The feature access key is provided by Tekelec. If you do not have the LNP ELAP Configuration feature access key, contact your Tekelec Sales Representative or Account Representative.

When the enable-ctrl-feat command has successfully completed, a text-based output displays.

13. Turn the LNP ELAP Configuration feature on by entering this command.

```
chg-ctrl-feat:partnum=893010901:status=on
```

When the chg-ctrl-feat command has successfully completed, a text-based output displays.

```
rlghncxa03w 07-08-01 21:15:37 GMT EAGLE5 37.0.0
CHG-CTRL-FEAT: MASP B - COMPLTD
```

14. Verify the changes by entering the rtrv-ctrl-feat command.

rtrv-ctrl-feat:partnum=893010901

```
rlghncxa03w 07-08-01 21:16:37 GMT EAGLE5 37.0.0
The following features have been permanently enabled:
Feature Name Partnum Status Quantity
LNP ELAP Configuration 893011012 on ----
```

15. Enable the LNP telephone number quantity using the enable-ctrl-feat command with the part number of the desired quantity (shown in *Table 2: LNP Hardware and Part Number Configuration Table* on page 17 in *The LNP Solution* on page 16) and the feature access key for that quantity.

enable-ctrl-feat:partnum=893011012:fak=<LNP telephone number quantity
feature access key>

```
rlghncxa03w 07-08-01 21:15:37 GMT EAGLE5 37.0.0
ENABLE-CTRL-FEAT: MASP B - COMPLTD
```

Note: Make sure that the LNP telephone number quantity configured in this step is greater than the ELAP telephone number quantity. The ELAP telephone number quantity can be verified by performing the *Verifying RTDB Status at the ELAP User Interface* on page 111 procedure. If the telephone number quantity on the ELAP is greater than the LNP telephone number quantity configured in this step, the ELAP RTDB is not loaded onto the entire set of Service Module cards on the EAGLE 5 ISS. Some of the Service Module cards load the ELAP RTDB to provide a restricted level of GTT/LNP service. The remainder of the Service Module cards are put into a restricted state. UIM 1323 is generated at the EAGLE 5 ISS.

Note: The feature access key is provided by Tekelec. If you do not have the feature access key for the desired LNP telephone number quantity, contact your *Customer Care Center* on page 4.

16. Verify the changes by entering the rtrv-ctrl-feat command with the part number specified in *Step 15* on page 122.

rtrv-ctrl-feat:partnum=893011012

```
rlghncxa03w 07-08-01 21:16:37 GMT EAGLE5 37.0.0

The following features have been permanently enabled:
Feature Name Partnum Status Quantity
LNP TNs 893011012 on 96000000
```

17. Verify the changes to the Service Module Card running the SCCP application by entering the rept-stat-sccp command.

CARD	VERSION	PST	EAGLE5 SST	AST	MSU USAGE	CPU USAGE
 1217	126-030-000	IS-NR	Active		100%	45%
1317	126-030-000	IS-NR	Active		100%	51%
2217	126-030-000	IS-NR	Active		100%	42%
3201	126-030-000	IS-NR	Active		54%	25%
3203	126-030-000	IS-NR	Active		55%	25%
3205	126-030-000	IS-NR	Active		57%	27%
3207	126-030-000	IS-NR	Active		69%	29%
3211	126-030-000	IS-NR	Active		85%	35%
3213	126-030-000	IS-NR	Active		94%	37%
3215	126-030-000	IS-NR	Active		86%	35%
3217	126-030-000	IS-NR	Active		74%	31%
4217	126-030-000	IS-NR	Active		64%	28%
4317	126-030-000	IS-NR	Active		100%	41%
5117	126-030-000	IS-NR	Active		100%	40%
5317	126-030-000	IS-NR	Active		56%	25%
6101 P	126-030-000	IS-NR	Active		57%	32%
6103	126-030-000	IS-NR	Active		63%	27%
6105	126-030-000	IS-NR	Active		69%	37%
6107	126-030-000	IS-NR	Active		66%	29%
6111	126-030-000	IS-NR	Active		59%	27%
6113	126-030-000	IS-NR	Active		55%	34%
6115	126-030-000	IS-NR	Active		55%	26%
6117	126-030-000	IS-NR	Active		54%	26%
1105	126-030-000	IS-NR	Active		55%	26%
1107	126-030-000	IS-NR	Active		55%	26%

In the rept-stat-sccp output, the primary state (PST) of the card should be IS-NR, and dashes should be shown in the AST column.

Note: The rept-stat-sccp command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the rept-stat-sccp command, see the rept-stat-sccp command description in the *EAGLE 5 ISS Commands Manual*.

18. Display a summary report of all of the device trouble notifications in the EAGLE 5 ISS by entering the rept-stat-trbl command.

```
3545.0202 ** SLK 1203,B2 lsname489 REPT-LKF: HWP - too many link interrupts 0021.0318I** LSN lsn1 REPT-LKSTO: link set prohibited 0022.0318 ** LSN lsn2 REPT-LKSTO: link set prohibited 0023.0318 ** LSN lsn3 REPT-LKSTO: link set prohibited 0010.0318 ** LSN lsn4 REPT-LKSTO: link set prohibited 0029.0308 *C SYSTEM Node isolated due to SLK failures
```

If any alarms are shown in the rept-stat-trbl output, stop performing this procedure and contact the *Customer Care Center* on page 4.

19. Display the overall status of the ELAP subsystem running on the MPS (Multi-Purpose Server) by entering the rept-stat-mps command.

```
rlghncxa03w 04-01-07 10:23:93 EST EAGLE 37.0
                    VERSION PST
027-015-000 OOS-MT
                                                    SST
                                                               AST
                                                    Fault.
                                                              Standby
CRITICAL PLATFORM ALARM DATA = No Alarms
MAJOR PLATFORM ALARM DATA = h'0123456789ABCDEF
MINOR PLATFORM ALARM DATA = h'0123456789ABCDEF
 CRITICAL APPLICATION ALARM DATA = No Alarms
 MAJOR APPLICATION ALARM DATA = h'0123456789ABCDEF
          APPLICATION ALARM DATA = No Alarms
 MTNOR
       ALARM STATUS = ** 0371 Major Platform Failure(s)
                                  PST
                                                   SST
                                                             AST
                   VERSION
                  027-015-000 OOS-MT
                                                  Fault
                                                           Active
 CRITICAL PLATFORM ALARM DATA = No Alarms
 MAJOR PLATFORM ALARM DATA = No Alarms MINOR PLATFORM ALARM DATA = No Alarms
 CRITICAL APPLICATION ALARM DATA = h'0123456789ABCDEF
 MAJOR APPLICATION ALARM DATA = h'0123456789ABCDEF
          APPLICATION ALARM DATA = No Alarms
       ALARM STATUS = *C 0373 Critical Application Failure(s)
CARD PST SST LNP S
1106 P IS-NR Active ACT
1201 IS-ANR Active SWDL
                                LNP STAT
      OOS-MT-DSBLD Manual
 1205
 1302 OOS-MT Isolated ------
1310 IS-ANR Standby SWDL
CARD 1106 ALARM STATUS = No Alarms
  DSM PORT A: ALARM STATUS = No Alarms
DSM PORT B: ALARM STATUS = No Alarms
 CARD 1201 ALARM STATUS = No Alarms
                                       = ** 0084 IP Connection Unavailable
  DSM PORT A: ALARM STATUS
  DSM PORT B:
                  ALARM STATUS
                                       = ** 0084 IP Connection Unavailable
 CARD 1205 ALARM STATUS = No Alarms
  DSM PORT A: ALARM STATUS
                                       = ** 0084 IP Connection Unavailable
  DSM PORT B: ALARM STATUS
                                       = ** 0084 IP Connection Unavailable
 CARD 1302 ALARM STATUS = ** 0013 Card is isolated from the system
  DSM PORT A: ALARM STATUS
                                     = ** 0084 IP Connection Unavailable
  DSM PORT B:
                  ALARM STATUS
                                       = ** 0084 IP Connection Unavailable
 CARD 1310 ALARM STATUS = No Alarms
  DSM PORT A: ALARM STATUS
                                       = ** 0084 IP Connection Unavailable
  DSM PORT B: ALARM STATUS
                                       = ** 0084 IP Connection Unavailable
```

```
Command Completed.
```

If any alarms are shown in the rept-stat-mps output, stop performing this procedure and contact the *Customer Care Center* on page 4.

20. Backup the new changes using the chg-db:action=backup:dest=fixed command. A text-based output is displayed. The active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED): MASP A - Backup starts on active MASP.

BACKUP (FIXED): MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED): MASP A - Backup starts on standby MASP.

BACKUP (FIXED): MASP A - Backup on standby MASP to fixed disk complete.
```

21. Display the status of the databases with the rept-stat-db command.

```
tekelecstp 02-10-29 08:39:24 NZST EAGLE 30.0.0
DATABASE STATUS: >> OK <<
       TDM 1114 ( ACTV ) TDM 1116 ( STDBY)
C LEVEL TIME LAST BACKUP C LEVEL TIME LAST BACKUP
       TDM 1114 ( ACTV )
FD BKUP Y 11 02-10-29 08:20:13 NZST Y 11 02-10-29 08:20:13 NZST
FD CRNT Y 11
                                     Y 11
       MDAL 1117
RD BKUP Y 1 02-10-24 15:44:20 NZST
ELAP A ( ACTV )
                   C BIRTHDATE
                                            LEVEL
                                                      EXCEPTION
   RTDB Y 02-10-29 08:20:04 12345
RTDB-EAGLE 02-10-29 08:20:04 12345
ELAP B ( STDBY )
                                  LEVEL EXCEPTION
               C BIRTHDATE
   RTDB Y 02-10-29 08:20:04 12345 - RTDB-EAGLE 02-10-29 08:20:04 12345 -
```

If the databases are not coherent, or if ELAP A and B do not have the same birthdate, contact the *Customer Care Center* on page 4. If the databases are coherent, and if ELAP A and B have the same birthdate, this procedure is finished.

You have completed this procedure.

Distributing the LNP Database after LSMS-Based Operation or RTDB Copy

The network element has multiple copies of the LNP database. Synchronization operations are performed on one database. After an RTDB copy or a synchronization operation initiated from the LSMS GUI, the remaining NE LNP databases must be synchronized with the newly synchronized NE database in one of the following ways:

Automatic Data Distribution

After the following LNP database synchronization operations, data is distributed automatically from the network element's newly synchronized LNP database to all other LNP databases at the network element:

- Automatic resynchronization (see "Automatic Resynchronization Process" in the LNP Database Synchronization Manual - LSMS with EAGLE 5 ISS)
- Reconcile (see "Audit and Reconcile Overview" in the LNP Database Synchronization Manual

 LSMS with EAGLE 5 ISS)
- Network Element Database is not Required after Copying an RTDB from its Mate ELAP

If network element's database synchronization is accomplished only by copying an RTDB from its mate ELAP's RTDB (but not when copying from the mate RTDB is performed after copying an RTDB from the remote mated network element or after a bulk load from the LSMS), it is not necessary to distribute the data to the Service Module cards because they are already synchronized with the RTDB that was used to restore from. Therefore, after the copy, the Service Module cards are now synchronized with both RTDBs.

Other Network Element Database Distribution

After other LNP database synchronization operations, the network element main LNP database must be distributed by operator intervention to other LNP databases within the network element (both the mate RTDB and the Service Module cards). See *Distributing an RTDB LNP Database to Service Module Cards* on page 126.

Distributing an RTDB LNP Database to Service Module Cards

This section describes how to distribute the LNP database to the Service Module cards after the RTDB has been updated by one of the following actions:

- Copied from an RTDB on the mated network element (see *Copying One RTDB from Another RTDB* on page 109)
- Updated by one of the following operations sent from the LSMS:
 - Bulk loaded from the LSMS (see Managing Bulk Load from the LSMS on page 95)
 - Support ELAP reload via database image (SERVDI) bulk download from the LSMS (see SERVDI Bulk Download on page 102)

Distributing an RTDB LNP Database to a Service Module Card

Perform the following procedure to distribute the data from the ELAP's LNP database to the Service Module cards.

1. Distribute the imported LNP database onto each Service Module card, which will also silence the LNP database alarms.

Use one of the following methods:

a) Method A loads the imported LNP database onto one Service Module card at a time by reloading each Service Module.

This method allows the global title translation and LNP functions to continue running while the new LNP database is being loaded. When the Service Module card is reinitializing, its database goes temporarily out of service for the period of time that it takes to reload the

database on the Service Module card. The time required to reload the database depends upon the size of the database and can take as long as 23 minutes for an LNP database containing 384 million LNP subscriptions

b) Method B loads the imported LNP database onto all Service Module cards in the EAGLE 5 ISS by reinitializing all the Service Module cards at once.

CAUTION: This method not only loads the imported LNP database onto the Service Module cards at the same time, but takes all the Service Module cards out of service and the LNP subsystem will be offline. This method should only CAUTION be used in emergency situations.

Method A: Perform steps **a** and **b** in this method for each Service Module card, one Service Module card at a time.

1. Take the Service Module card out of service with the rmv-card command specifying the location of the Service Module card. If there is only one Service Module card in the EAGLE 5 ISS, the force=yes parameter must be specified with the rmv-card command. For this example, enter this command:

```
rmv-card:loc=1301
```

After successful completion of this command, the EAGLE 5 ISS returns the following output:

```
rlghncxa03w 06-08-01 11:11:28 GMT Eagle5 39.0
Card has been inhibited.
```

2. Return the Service Module card to service with the alw-card command with the location of the Service Module card and the option data=persist to allow a warm restart if possible. This command validates that the LNP database on the specified Service Module card is correct. If the LNP database is correct, no further loading is required. If the LNP database is not correct, it is automatically reloaded from the RTDB; loading may require up to an hour. For this example, enter this command:

```
alw-card:loc=1301:data=persist
```

After successful completion of this command, the EAGLE 5 ISS returns the following output:

```
rlghncxa03w 06-06-01 11:11:28 GMT Eagle5 39.0.0
Card has been allowed.
```

3. When the Service Module card is returned to service, the major alarm is silenced and UAM 0431, LNP database has been corrected, is generated. For this example, this message is generated:

```
rlghncxa03w 06-08-01 11:11:28 GMT Eagle5 39.0
0012.0431 CARD 1301 DSM
                                LNP database has been corrected
```

4. Repeat steps 1 and 2 of Method A for the other Service Module cards in the EAGLE 5

If any of the Service Module cards continue to boot, contact the *Customer Care Center* on page 4.

Method B: Load the imported LNP database onto all Service Module cards in the EAGLE 5 ISS by reinitializing all the Service Module cards at once by entering the following command: .

init-card:appl=vsccp

CAUTION: This command initializes all the Service Module cards at once and not only loads the imported LNP database onto the Service Module cards at the same time, but takes all the Service Module cards out of service and the LNP subsystem will be offline. This method should only be used in emergency situations.

Note: A more graceful way of initializing the Service Module cards is to reroute all global title translation traffic, including LNP traffic, to the mate network element using the inh-map-ss command. The inh-map-ss command takes the mated application subsystem out of service. When the mated application subsystem is out of service, all global title translation traffic, including LNP traffic, is rerouted to the mate network element.

The mated application subsystem must be inhibited with the inh-map-ss command before the Service Module cards are reinitialized with the init-card:appl=vsccp command. After the init-card:appl=vsccp command has finished executing and all the Service Module cards have reinitialized, return the mated application subsystem to service with the alw-map-ss command.

When the imported database has been loaded onto each Service Module card, UAM 0431 is displayed for each Service Module card showing that the UAM 0429 has been cleared and the database on the Service Module card matches the database on the MASPs. This is an example of UAM 0431.

```
rlghncxa03w 06-08-01 11:11:28 GMT Eagle5 39.0 0012.0431 CARD 1301 DSM LNP database has been corrected
```

If any of the Service Module cards continue to boot, contact the *Customer Care Center* on page 4.

2. Verify that the Service Module cards are in-service by entering the rept-stat-sccp command. The state of the Service Module cards, shown in the PST field of the sccp command output, should be IS-NR (in-service normal). This is an example of the possible output:

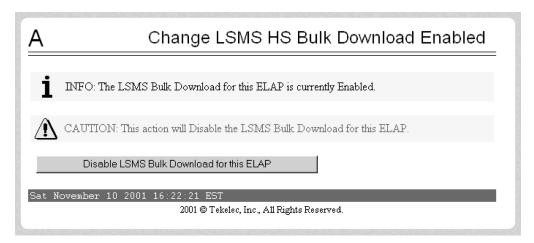
```
tklc1091301 08-08-18 23:44:59 EST EAGLE5 40.0.0

CARD VERSION PST SST AST MSU CPU USAGE USAGE

1212 101-001-000 IS-NR Active ALMINH 45% 30% 1301 P 101-001-000 IS-NR Active ----- 35% 40% 1305 ------ OOS-MT Isolated ----- 0% 0% 2112 ------ OOS-MT-DSBLD Manual ----- 0% 0% CCP Service Average MSU Capacity = 28% Average CPU Capacity = 40% Command Completed.;
```

If the state of any Service Module card is not IS-NR, contact the *Customer Care Center* on page 4.

Note: The rept-stat-sccp command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the rept-stat-sccp command, see the rept-stat-sccp command description in the EAGLE 5 ISS Commands Manual.


Disabling Bulk Load

If you have distributed a restored the RTDB LNP data to the Service Module cards (as described in *Distributing an RTDB LNP Database to Service Module Cards* on page 126) after an LSMS-initiated procedure, perform the following procedure.

- 1. If you do not already have a browser window connected to the ELAP, open a browser window and connect your web browser to the ELAP graphical user interface (for more information about connecting to the ELAP GUI, refer to the ELAP Administration Manual).
 - Log in with the user name and password of a user who is authorized to access the menu items shown in this procedure.
- 2. Select Maintenance ➤ LSMSHS Bulk Download ➤ Change Enabled.

The Change LSMS HS Bulk Download Enabled dialog opens, *Figure 94: Change LSMS HS Bulk Download Enabled Dialog* on page 129.

Figure 94: Change LSMS HS Bulk Download Enabled Dialog

The information field should show that the LSMS Bulk Download for this ELAP is currently enabled.

3. Click the Disable LSMSHS Bulk Download for this ELAP button.

You have completed this procedure.

Manually Verifying and Restarting the Eagle Agents on the LSMS

This procedure explains how to verify that an Eagle agent has started on the LSMS. It also explains how to stop and start the agent, using the eagle command.

The Eagle Agent application (eagleagent) is responsible for:

- Subscribing to the broadcast channels to receive all NPAC and local data updates
- Connecting with a single EAGLE 5 ISS node using the HSOP (High Speed Operations Protocol) protocol and forwarding LNP updates to the EAGLE 5 ISS
- Filtering LNP data based on the provisioned filter information before forwarding it to the EAGLE 5 ISS (for more information, refer to *EMS Routing* on page 95
- Performing automatic resynchronization with an EAGLE 5 ISS node upon connection establishment (for more information, refer to the LNP Database Synchronization Manual - LSMS with EAGLE 5 ISS)

One instance of the *eagleagent* process exists for each supported EAGLE 5 ISS node.

- **1.** Log into the LSMS as **root** on the active server.
- **2.** Enter the following command to display the status of all LSMS processes:/opt/TKLCplat/bin/syscheck -v local lsmshc proc_app

```
Running modules in class lsmshc...
        proc_app: --- Checking Processes on Active ---
     proc_app: OK Found: 1 Expected: 1 -> Eagle Agent (DOG)
proc_app: OK pround: 1 Expected: 1 -> Eagle Agent (E1080403)
proc_app: OK pround: 1 Expected: 1 -> Eagle Agent (E1091202)
proc_app: OK pround: 1 Expected: 1 -> Eagle Agent (E1091203)
proc_app: OK proc_app: OK pround: 1 Expected: 1 -> NPAC Agent (Canada)
proc_app: OK pround: 1 Expected: 1 -> NPAC Agent (MidAtlantic)
proc_app: OK pround: 1 Expected: 1 -> NPAC Agent (Midwest)
proc_app: OK pround: 1 Expected: 1 -> NPAC Agent (Northeast)
proc_app: OK pround: 1 Expected: 1 -> NPAC Agent (Southeast)
proc_app: OK pround: 1 Expected: 1 -> NPAC Agent (Southeast)
proc_app: OK pround: 1 Expected: 1 -> NPAC Agent (Southeast)
proc_app: OK pround: 1 Expected: 1 -> NPAC Agent (WestCoast)
proc_app: OK pround: 1 Expected: 1 -> NPAC Agent (WestCoast)
proc_app: OK pround: 1 Expected: 1 -> NPAC Agent (WestCoast)
proc_app: OK pround: 1 Expected: 1 -> NPAC Agent (Southeast)
Proc_app: OK pround: 1 Expected: 1 -> NPAC Agent (WestCoast)
Proc_app: OK pround: 1 Expected: 1 -> NPAC Agent (Southeast)
Proc_app: OK pround: 1 Expected: 1 -> NPAC Agent (Southeast)
Proc_app: OK pround: 1 Expected: 1 -> NPAC Agent (Southeast)
Proc_app: OK pround: 1 Expected: 1 -> NPAC Agent (Southeast)
Proc_app: OK pround: 1 Expected: 1 -> NPAC Agent (Southeast)
Proc_app: OK pround: 1 Expected: 1 -> NPAC Agent (Southeast)
Proc_app: OK pround: 1 Expected: 1 -> NPAC Agent (Southeast)
Proc_app: OK pround: 1 Expected: 1 -> NPAC Agent (Southeast)
Proc_app: OK pround: 1 Expected: 1 -> NPAC Agent (Southeast)
Proc_app: OK pround: 1 Expected: 1 -> NPAC Agent (Southeast)
Proc_app: OK pround: 1 Expected: 1 -> NPAC Agent (Southeast)
Proc_app: OK pround: 1 Expected: 1 -> NPAC Agent (Southeast)
Proc_app: OK pround: 1 Expected: 1 -> NPAC Agent (Southeast)
Proc_app: OK pround: 1 Expected: 1 -> NPAC Agent (Southeast)
Proc_app: OK pround: 1 Expected: 1 -> NPAC Agent (Southeast)
Proc_app: OK pround: 1 Expected: 1 -> NPAC Agent (Southeast)
Proc_app: OK pround: 1 Expected: 1 -> NPAC Agent (Southeast)
Proc_app: OK pround: 1 Expect
        proc_app: OK Found: 1 Expected: 1 -> Eagle Agent (DOG)
 (safe_mysqld)
       proc_app: OK
                                                                                                          Found: 1 Expected: 1 -> LSMS Local Data Manager
 (supman)
        proc_app: OK
                                                                                                           Found: 1 Expected: 1 -> LSMS Local Services Manager
 (lsman)
      proc_app: OK Found: 1 Expected: 1 -> Logger Daemon (lsmslogd)
proc_app: OK Found: 1 Expected: 1 -> Report Manager (reportman)
proc_app: OK Found: 1 Expected: 1 -> RMTP Agent (rmtpagent)
proc_app: OK Found: 1 Expected: 1 -> RMTP Manager (rmtpmgr)
proc_app: OK Found: 1 Expected: 1 -> Service Assurance Agent (sacw proc_app: OK Found: 1 Expected: 1 -> Surveillance Agent (survMon)
proc_app: OK Found: 1 Expected: 1 -> Sentry process (sentryd)
                                                                                                          Found: 1 Expected: 1 -> Service Assurance Agent (sacw)
proc_app: Return string: "OK"
The log is available at:
         -->/opt/TKLCplat/log/syscheck/syscheck-log
```

If a line similar to the one shown in bold above appears for each supported EAGLE 5 ISS node, you have completed the procedure. If, instead, a line similar to the following line appears, one of these processes has failed; perform the remaining steps of this procedure to restart the processes:

```
* proc: FAILURE:: Found: 0 Expected: 1 -> Eagle Agent (STPA)
```

3. Enter the following command to change the login name to lsmsadm:su - lsmsadm

- **4.** Start the Eagle agent by entering the following command at the active server, where **<CLLI>** is the Common Language Location Identifier (such as STPA in the example above) for the EAGLE 5 ISS node:\$LSMS_DIR/install/eagle start **<CLLI>**
- **5.** Verify that the Eagle agent has started by repeating *Step 2* on page 130. If the Eagle agent fails to start, contact the *Customer Care Center* on page 4.

You have now completed this procedure.

LNP Services Configuration

Topics:

- LNP Services Configuration Page 134
- LNP Query Service (LNPQS) Details Page 145
- Adding an LNP Service Page 152
- Removing an LNP Service Page 158
- Changing an LNP Service Page 159
- Adding a Subsystem Application Page 163
- Removing a Subsystem Application Page 166
- Changing a Subsystem Application Page 169
- Changing LNP Options Page 171
- Configuring the Triggerless LNP Feature Page 176
- Increasing the LRN and NPANXX Quantities on the EAGLE 5 ISS Page 184
- Activating the LNP Short Message Service (SMS) Feature Page 186
- Clearing a Temporary FAK Alarm Page 189
- Deactivating the LNP Short Message Service Feature Page 190
- Changing the LNP Telephone Number Alarm Thresholds Page 191
- Increasing LNP Telephone Number Quantity on EAGLE 5 ISS Page 192
- Activating the ITU TCAP LRN Query (LRNQT) Feature Page 195

This chapter contains the procedures used to configure the LNP services, subsystem applications, options, map translation types, increase LRN and NPANXX quantities, and activate the LNP short message service feature.

LNP Services Configuration

This chapter contains the procedures for configuring these elements of the LNP feature.

- LNP services
- LNP subsystem applications
- LNP options
- Mapping LNP translation types
- The Triggerless LNP feature
- Increasing the LRN and NPANXX Quantities on the EAGLE 5 ISS
- Activating and Deactivating the LNP Short Message Service (SMS) feature.
- Actvating the ITU TCAP LRN Query (LRNQT) feature

Message Relay Details

Message relay is an enhancement to the existing global title translation feature and performs the following functions.

- Extraction of the 10-digit dialed number from the TCAP portion of the message If the MSU contains a 6-digit called party address, message relay gets the 10-digit dialed number from the TCAP portion of the MSU.
- Increased number of translations For each 10-digit dialed number, up to 6 translations are available. The previous limit was 270,000 total translations. The number of dialed numbers that can be entered depends on the hardware, but the minimum hardware configuration supports 500,000 dialed numbers, so 3 million translations can be entered on the minimum hardware configuration. The maximum hardware configuration supports 2 million dialed numbers, so 12 million message relay translations can be entered on the maximum hardware configuration.
- Replacement of the global title address Message relay provides the option of replacing the global title address in the called party address with the location routing number associated with the ported dialed number.

Message relay is performed in the following stages:

- 1. The message arrives at the EAGLE 5 ISS route-on-gt. The EAGLE 5 ISS performs 6-digit (NPANXX) translation. The result of this translation indicates if message relay is required. If it is required, the result of this translation also gives the default data that may be used in stage 3.
- **2.** If stage 1 indicates that message relay is required, the EAGLE 5 ISS performs 10-digit message relay. If the 10-digit number is found, the translation data for the 10-digit number is used to route the message.
- **3.** If the 10-digit number is found and the number has an location routing number assigned to it, the EAGLE 5 ISS checks for message relay override data. If there is override data for the location routing number, the EAGLE 5 ISS uses this override data to route the message.
- **4.** If no location routing number is assigned, or the location routing number does not have override data, the EAGLE 5 ISS uses the data assigned to the 10-digit number.

- 5. If the location routing number has override data but not for the requested translation type or service, and the service portability option is on (shown in the SERVPORT field in the LNP options table), then the EAGLE 5 ISS uses the data assigned to the 10-digit number. If the service portability option is not on, then the message is discarded and UIM and UDTS messages are generated.
- **6.** If no data is assigned to the 10-digit number, and the service portability option is on, then the EAGLE 5 ISS uses the default data from stage 1 to route the message. If the service portability option is not on, then the message is discarded and UIM and UDTS messages are generated.
- 7. If the 10-digit number is not found, the dialed number is not ported, and the default data from stage 1 is used to route the message.

It's possible that message relay is required, but no default data exists for the NPANXX. This is because EAGLE 5 ISS creates an NPANXX entry when the NPAC sends down a ported subscriber record for a nonported NPANXX. Normally, data is provisioned in the following order:

- 1. The NPANXX default data is entered.
- **2.** The NPANXX is marked as portable (the value of the mr parameter is yes).
- 3. The NPAC sends down information for ported subscribers in the portable NPANXX.

However, it is possible that step 3 can occur before step 1. In this case, if a message arrives for the ported subscriber, the EAGLE 5 ISS routes the message according to the subscriber data entered by the NPAC.

- The 10-digit number is found in the subscription record. The location routing number has a matching entry in the override table. If override data exists for the requested service, the location routing number override global title translation is used. If location routing number override data exists, but not for the requested translation type, and the service portability option is not on, then the result is no translation, the message is discarded, and UIM and UDTS messages are generated. If the service portability option is on, then the NPAC global title translation data is used.
- The 10-digit number is found in the subscription record. The location routing number does not have a matching entry in the override table. If NPAC global title translation data exists, the NPAC global title translation is used. If NPAC global title translation data does not exist for the 10-digit number, and the service portability option is not on, then the result is no translation, the message is discarded, and UIM and UDTS messages are generated. If the service portability option is on, then the NPANXX global title translation data is used.

If a message arrives for a nonported subscriber in that NPANXX, and normal global title translation information is defined for the message, the message is routed using the normal global title translation data. But if a message arrives for a nonported subscriber in that NPANXX, and no normal global title translation information is defined for the message, the message is discarded, and UIM and UDTS messages are generated.

Table 11: LNP Message Relay on page 136 shows the result of the 10-digit message relay processing, and the processing required to route a message.

Table 11: LNP Message Relay

Ported MR NPANXX	Ported TN	LNP Message Relay Processing	NPAC GTT Data for any Service
No	No	Nonported subscriber. See Table 13: LNP Message Relay - Nonported Subscribers on page 139.	N/A
No (Coo Noto)	Voc	Ported subscriber.	Yes - See Table 12: LNP Message Relay - Ported Subscribers on page 137.
No (See Note).	Yes	Forted subscriber.	No - See Table 13: LNP Message Relay - Nonported Subscribers on page 139.
Yes	No	Nonported subscriber. See Table 13: LNP Message Relay - Nonported Subscribers on page 139.	N/A
N.			Yes - See Table 12: LNP Message Relay - Ported Subscribers on page 137.
Yes	Yes	Ported subscriber.	No - See Table 13: LNP Message Relay - Nonported Subscribers on page 139.

Ported MR NPANXX - An MR NPANXX that is marked portable

Ported TN - A subscription record that is found for a 10-digit number, the location routing number is assigned or NPAC global title translation data is defined for service (translation type).

Note: The EAGLE 5 ISS creates an NPANXX entry, if none exists, when it receives a ported subscriber record.

Table 12: LNP Message Relay - Ported Subscribers on page 137 lists possible combinations for NPAC and override global title translation data provisioning, and the resulting action of

message relay for ported subscribers. Message relay data exists for the 10-digit number and service.

Table 12: LNP Message Relay - Ported Subscribers

TN GTT DATA defined for 10-Digit Number and Service (TT)	LRN Override GTT DATA defined for 10-Digit Number and Service (TT)	LRN Override GTT DATA defined for 10-Digit Number	Service Portability	LNP Message Relay Action
No	No	No See Note 1.	No	The message is discarded. The "No Translation Available" UIM and UDTS messages are generated if return on error is set.
No	No	No See Note 1.	Yes	The message is routed using NPANXX or normal global title translation data. See <i>Table 13:</i> LNP Message Relay - Nonported Subscribers on page 139.
No	Yes	N/A	N/A	The message is routed using the location routing number override global title translation data.
No	N/A	Yes See Note 2.	No	The message is discarded. The "No Translation Available" UIM and UDTS messages are generated if return on error set.

TN GTT DATA defined for 10-Digit Number and Service (TT)	LRN Override GTT DATA defined for 10-Digit Number and Service (TT)	LRN Override GTT DATA defined for 10-Digit Number	Service Portability	LNP Message Relay Action
No	N/A	Yes See Note 2.	Yes	The message is routed using NPANXX or normal global title translation data. See <i>Table 13: LNP Message Relay - Nonported Subscribers</i> on page 139.
Yes	No	No See Note 1.	N/A	The message is routed using the NPAC global title translation data.
Yes	Yes	N/A	N/A	The message is routed using the location routing number override global title translation data.
Yes	N/A	Yes See Note 2.	Yes	The message is routed using the NPAC global title translation data.
Yes	N/A	Yes See Note 2.	No	The message is discarded, The "No Translation Available" UIM and UDTS messages are generated if return on error set.

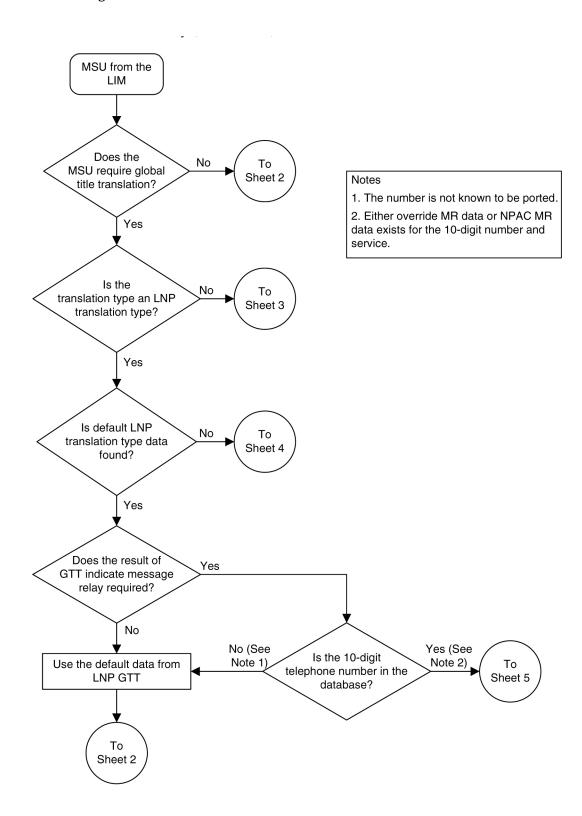
Notes:

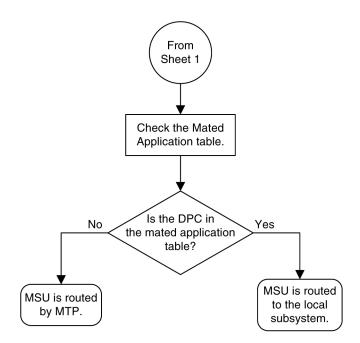
1. The 10-digit number has a location routing number assigned, but the location routing number has no matching entry in the override table.

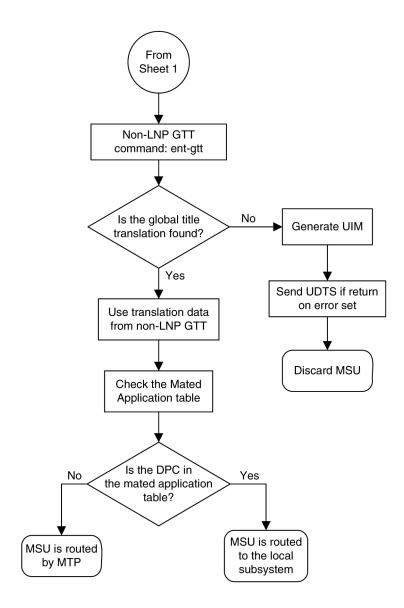
TN GTT DATA defined for 10-Digit Number and Service (TT)	LRN Override GTT DATA defined for 10-Digit Number and Service (TT)		Service Portability	LNP Message Relay Action
---	--	--	------------------------	-----------------------------

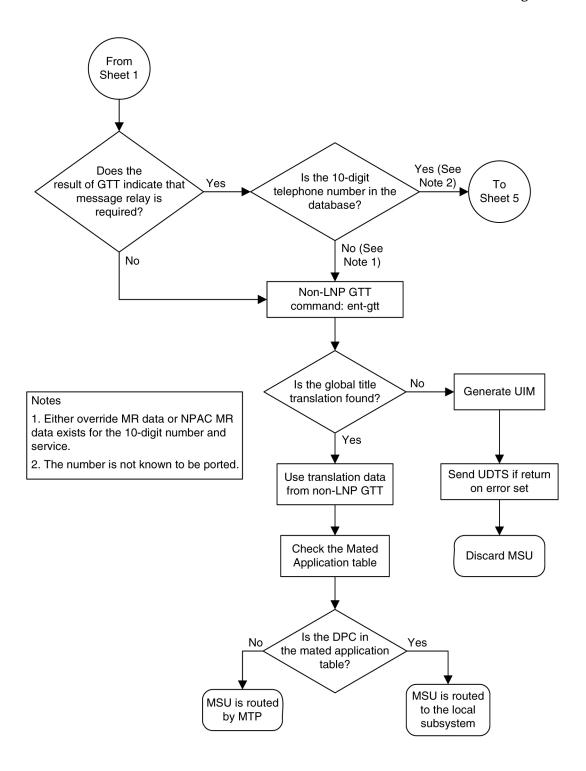
^{2.} The 10-digit number has a location routing number override global title translation data assigned, but not for the requested service (translation type).

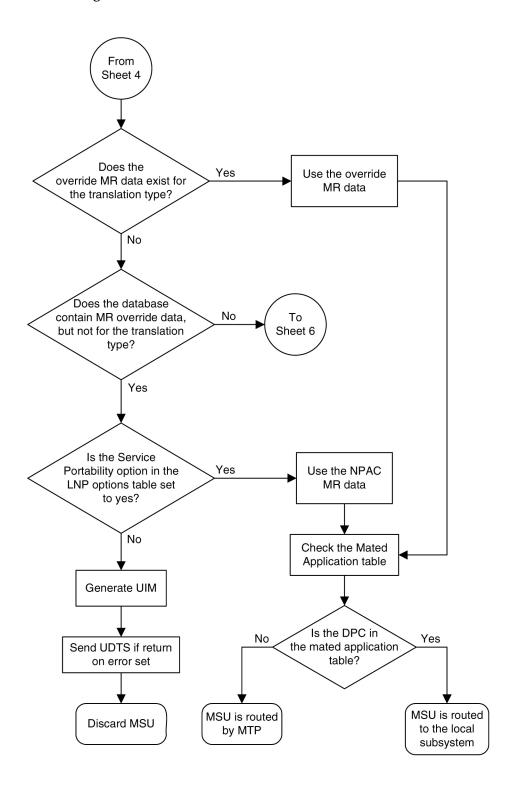
Table 13: LNP Message Relay - Nonported Subscribers on page 139 lists possible combinations for traditional and LNP default global title translation data provisioning and the resulting action of message relay for nonported subscribers. The message relay data does not exist for the 10-digit number and service.

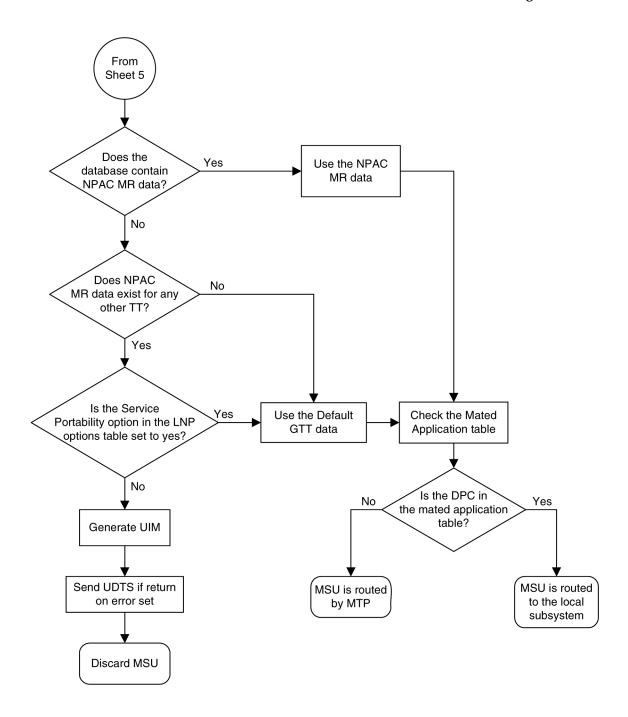

Table 13: LNP Message Relay - Nonported Subscribers

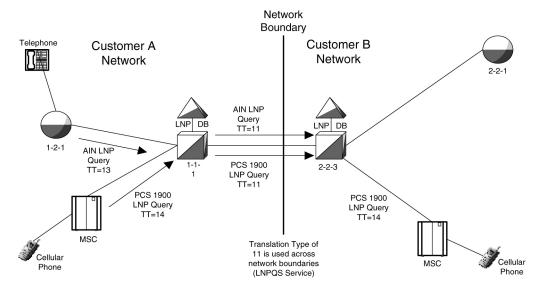

Traditional (Non-LNP) GTT DATA defined for Service (TT)	LNP 6-digit Default GTT DATA defined for Service (TT)	LNP Message Relay Action
No	No See Note.	The message is discarded. The "No Translation Available" UIM and UDTS messages are generated if return on error is set.
No	Yes	The message is routed using the LNP 6-digit default global title translation data.
Yes	No See Note.	The message routed using the traditional (non-LNP) global title translation data.
Yes	Yes	The message is routed using the LNP 6-digit default global title translation data.


Note: Either the 6-digit default global title translation data is not present (the NPANXX entry is created when the NPAC sends down a ported subscriber record for a nonported NPANXX), the NPANXX is not ported, or the LNP 6-digit default global title translation data present but not for requested LNP service (translation type).


Figure 95: Message Flow For Global Title and Message Relay on page 139 shows how normal global title and message relay are performed on EAGLE 5 ISS.


Figure 95: Message Flow For Global Title and Message Relay





LNP Query Service (LNPQS) Details

Currently, the translation type in the query message is used to determine the type of LNP query (AIN, IN, WNP, or PCS) for correct decoding and response formulation. LNP queries between networks are defined to use translation type 11, regardless of the protocol used. Also, there are other cases where the TT alone may not be enough to determine the type of protocol being used,

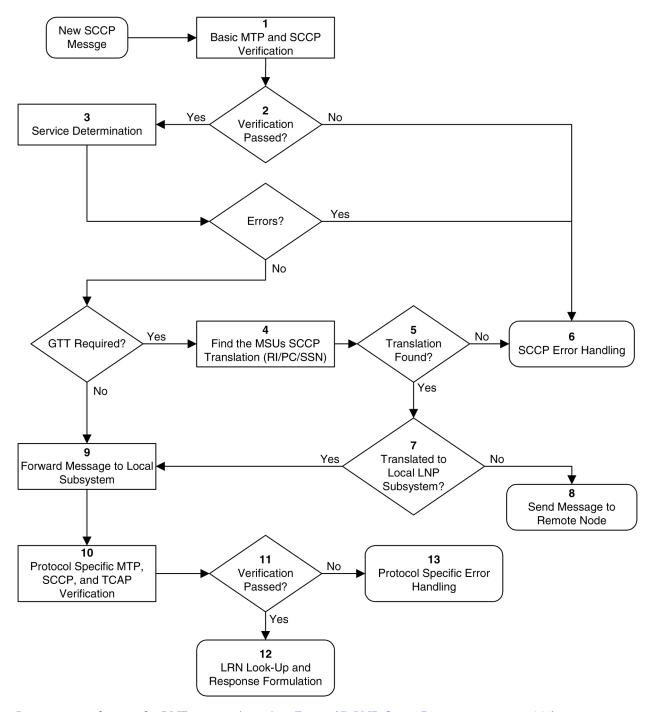
thus making it impossible to correctly decode all queries. See *Figure 96: Inter-Network Support for LNP Queries* on page 146.

Figure 96: Inter-Network Support for LNP Queries

In this example, Network B would not be able to differentiate between the two types of LNP queries received from Network A.

The TT Independence for LNP Queries feature addresses this issue by providing a new method of protocol determination of an incoming query.

With the TT Independence for LNP Queries feature, the LNP subsystem will be able to determine the protocol of the query based on other fields in the SS7 message, rather than relying on the TT value. This allows the same translation type to be used for multiple protocols, and allows a query between two networks to be handled properly.


Note: TT independence is not supported for ITU TCAP LRN (LRNQT) queries.

The LNP service LNPQS defines the translation type used for LNP queries between networks. This service is defined with the serv=lnpqs parameter. While the EAGLE 5 ISS allows any translation type to be assigned to the LNPQS service, it is recommended that translation type 11 is assigned to the LNPQS service.

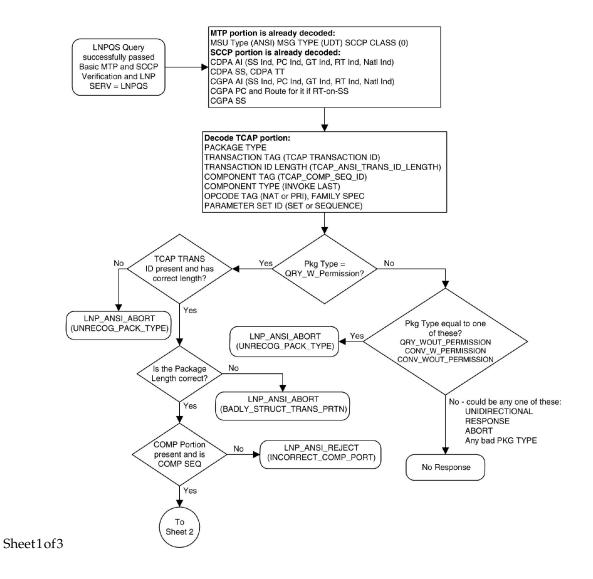
LNP Query Processing

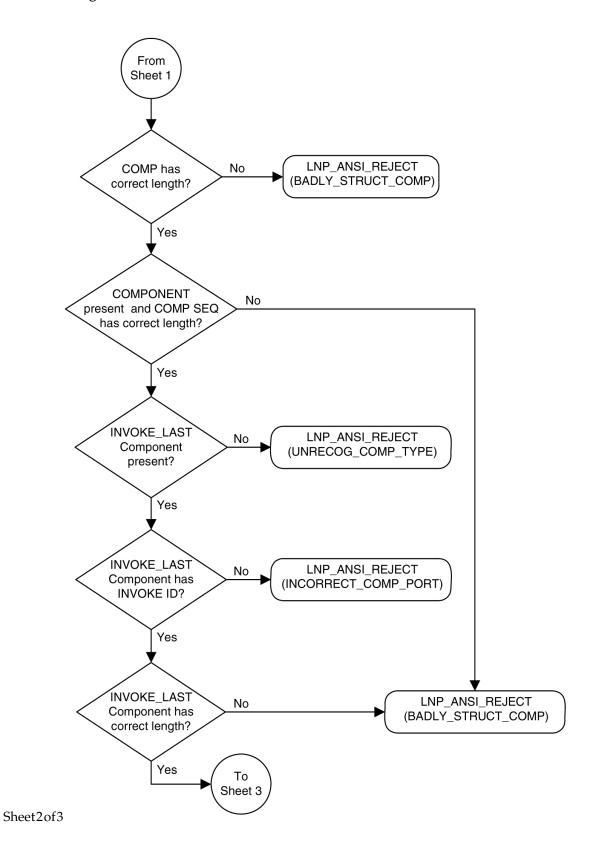
LNP queries are processed as described in Figure 97: LNP Query Processing on page 146

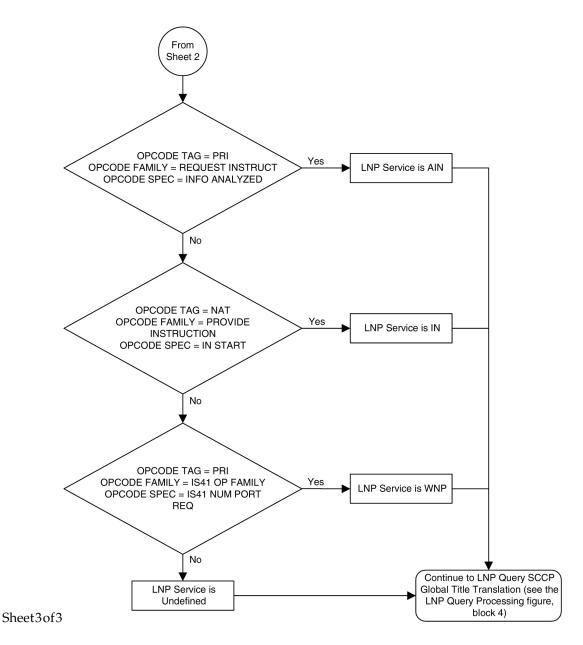
Figure 97: LNP Query Processing

In previous releases, the LNP service (step 3 in *Figure 97: LNP Query Processing* on page 146) was determined by the translation type contained in the query.

When an LNP query arrives at the EAGLE 5 ISS with the LNPQS service translation type, the EAGLE 5 ISS partially decodes the TCAP portion of the query. Once the TCAP portion of the query is decoded down to the OPCODE, and the Package type, TCAP Transaction ID, and Component parameters are verified, the OPCODE TAG, OPCODE FAMILY, and OPCODE SPEC parameters are examined to determine the LNP service required to process the query. There are


four basic types of queries: AIN, IN, PCS, and WNP. *Table 14: LNP Query OPCODE Values* on page 148 shows the OPCODE values for the query types.


Table 14: LNP Query OPCODE Values


Query Type	OPCODE TAG Value	OPCODE FAMILY Value	OPCODE SPEC Value
AIN	PRI	REQUEST INSTRUCT	INFO ANALYZED
IN	NAT	PROVIDE INSTRUCTION	IN START
PCS	NAT	PROVIDE INSTRUCTION	IN START
WNP	PRI	IS41 OP FAMILY	IN IS41 NUM PORT REQ

After the OPCODE values are determined, the query is treated by the EAGLE 5 ISS as either an AIN, IN, or WNP query. Since IN and PCS queries use the same OPCODE values, PCS queries are treated as IN queries. If a query is received at the EAGLE 5 ISS containing the specific PCS translation type, the query is treated as a PCS query. *Figure 98: LNP Service Determination Process* on page 148 shows the LNP service determination process for queries containing the LNPQS translation type.

Figure 98: LNP Service Determination Process

Limitations

PCS queries containing the LNPQS translation type are processed as IN queries. Thus, erroneous PCS queries containing the LNPQS translation type are shown in the rept-stat-lnp output in the LNPQS field, not the PLNPQS field.

If the OPCODE fields in a LNPQS query do not match any of the combination for IN, AIN or WNP queries is not an invalid service, but an undefined service. An undefined service may be used to transmit some non-LNP messages between networks. A query for an undefined service is sent to global title translation for further processing.

However, the OPCODE TAG values in LNPQS queries are verified to determine if the values are either NAT or PRI. These OPCODE values are the only values supported by the EAGLE 5 ISS. If

the OPCODE TAG value is not NAT or PRI, the generic TCAP ANSI Reject (UNRECOG_OP_CODE) response is sent back.

The specific LNP services know what LNP service the query is coming to based on the CDPA TT value, so each service verifies all three OPCODE fields for itself. The IN, AIN, WNP and PCS services react on the OPCODE errors as follows:

- An IN query not containing any of the following OPCODE values produces the IN REJECT (IN_UNRECOG_OPER_CODE) error response:
 - The OPCODE TAG value NAT
 - The OPCODE FAMILY value PROVIDE_INSTRUCTION
 - The OPCODE SPEC value IN_START
- An AIN query not containing any of the following OPCODE values produces the AIN RETURN ERROR (ERRONEOUS DATAVAL) error response:
 - The OPCODE TAG value PRI
 - The OPCODE FAMILY value REQUEST_INSTRUCT
 - The OPCODE SPEC value INFO_ANALYZED
- The error responses for a WNP query depends on the OPCODE values that are not provided:
 - The WNPS_REJECT (INCORRECT_COMP_PORT) error response is produced when the OPCODE TAG value is not PRI and not NAT.
 - The WNPS_REJECT (UNRECOG_OP_CODE) error response results is produced when the OPCODE TAG value is not PRI or the OPCODE FAMILY value is not IS41 OP FAMILY.
 - The WNPS_RET_ERROR (IS41_OP_NOT_SUP) error response is produced when the OPCODE SPEC value is not IS41 NUM PORT REQ.
- A PCS query not containing any of the following OPCODE values, produces the PLNPS_REJECT (IN_UNRECOG_OPER_CODE) error response:
 - The OPCODE TAG value NAT
 - The OPCODE FAMILY value PROVIDE INSTRUCTION
 - The OPCODE SPEC value IN_START

TCAP errors detected before the OPCODE values are verified and the service is determined, causes different responses between LNPQS and specific LNP services (IN, AIN, WNP, PLNP). The EAGLE 5 ISS cannot generate service specific responses before the service is determined.

Adding an LNP Service

This procedure is used to assign an LNP translation type to a unique LNP service using the ent-lnp-serv command. The ent-lnp-serv command uses these parameters.

:serv - the LNP service assigned to the LNP translation type

:tt - the LNP translation type

- :ttn the translation type name
- :dv the type of digits used by LNP
- :alias the alias LNP translation type

The LNP feature must be enabled. Verify this by entering the rtrv-ctrl-feat command. If the LNP feature is enabled, the entry LNP Ported TNs is shown in the rtrv-ctrl-feat output with a quantity greater than zero.

A maximum of 10 LNP services can be assigned to LNP translation types. Services that can be assigned to LNP translation types are:

- AIN
- IN
- CLASS
- CNAM
- LIDB
- ISVM
- Wireless number portability (serv=wnp)
- PCS 1900 number portability (serv=pcs)
- Wireless short message service center (serv=wsmsc)
- LNP query service (serv=lnpqs)
- Four user-defined services (UDF1, UDF2, UDF3, UDF4).

The alias LNP translation type provides an alternate value for the LNP translation type, so that different networks can use different translation type values for the specified LNP service. If the alias translation type in the SCCP called party address is defined in the database as an alias LNP translation type, the alias translation type value is mapped to the associated true LNP translation type value, defined by the tt parameter, in the database to determine the LNP service that is used on the message. All translation type values (0 - 255) can be used as values for the alias parameter, as long as that value is not already in the database as a value for the tt parameter.

The tt and serv parameter combination can only be specified once.

The tt and alias parameters cannot be specified at the same time. To add a new LNP service and an alias translation type for that service, the ent-lnp-serv command must be entered at least twice, depending on how many aliases you wish to enter. The first time the ent-lnp-serv command is entered, the LNP service (serv) and true translation type (tt) is defined in the database. When the ent-lnp-serv command is entered again with the specified LNP service and the alias parameter, the alias translation types (alias) are assigned to the LNP service.

The value of the alias parameter cannot be in the database as an LNP translation type (tt).

The value of the tt parameter cannot be in the database as an alias LNP translation type (alias).

If the serv and tt parameters are specified, the service type specified by the serv parameter cannot be in the database.

Translation type names can be assigned to the LNP service and translation type with the ttn parameter. If the parameter is not specified, the translation type name is set to the LNP service name. The translation type name must be unique in the database. The word none is used as a

value for the ttn parameter of the chg-lnp-serv command and cannot be used as a translation type name with the ent-lnp-serv command. ttn

A translation type name can be the service type name only if the service type name matches the value of the serv parameter.

If the value of the serv parameter is a user defined service type, the value of the dv parameter must be sccp.

If the value of the serv parameter is a either ain, in, wnp, pcs, or lnpqs, the value of the dv parameter must be tcap.

The translation type and LNP service specified with the ent-lnp-serv command cannot be in the database.

To specify the serv=wnp parameter with the ent-lnp-serv command, the wireless number portability feature must be turned on. This can be verified with the WNP = on entry in the rtrv-feat command output.

To specify the serv=pcs parameter with the ent-lnp-serv command, the PCS 1900 number portability feature must be turned on. This can be verified with the PLNP = on entry in the rtrv-feat command output.

To specify the serv=wsmsc parameter with the ent-lnp-serv command, the LNP SMS feature must be enabled and on. This can be verified in the rtrv-ctrl-feat command output. If the LNP SMS feature is not enabled and on, perform *Activating the LNP Short Message Service (SMS)*Feature on page 186 to enable and turn the LNP SMS feature on.

The LNP service LNPQS defines the translation type used for LNP queries between networks. This service is defined with the <code>serv=lnpqs</code> parameter. While the EAGLE 5 ISS allows any translation type to be assigned to the LNPQS service, it is recommended that translation type 11 is assigned to the LNPQS service. If any LNP service is assigned translation type 11, and you wish to provision the LNPQS service, the existing service using translation type 11 must be changed to use another translation type. Perform <code>Changing an LNP Service</code> on page 159 to change the translation type of the existing service. See <code>LNP Query Service</code> (<code>LNPQS</code>) <code>Details</code> on page 145 for more information on <code>LNPQS</code> queries.

The examples in this procedure are used to add the LNP services and alias translation types shown in *Table 15: Example LNP Service Configuration* on page 154.

SERV	TT	TTN	DV	ALIAS
IN	30	INGTE	TCAP	
IN				150
IN				175
UDF3	100	UDF3	SCCP	
UDF3				40

Table 15: Example LNP Service Configuration

SERV	TT	TTN	DV	ALIAS
UDF3				45
AIN				240
LIDB				80
WNP	50	WNP50	TCAP	
PCS	19	PCS19	TCAP	
WSMSC	139	WSMSC1	TCAP	
LNPQS	11	LNPQS	TCAP	

1. Verify that the LNP feature is enabled by entering the rtrv-ctrl-feat command. If the LNP feature is enabled, the entry LNP Ported TNs should appear in the rtrv-ctrl-feat output with a telephone quantity greater than 0.

```
rlghncxa03w 08-05-09 16:40:40 EST EAGLE 39.0.0

The following features have been permanently enabled:
Feature Name Partnum Status Quantity
LNP ported TNS 893011036 on 384000000
;
```

If the LNP feature is not enabled, perform the procedures in *LNP Feature Activation* on page 15 to enable the LNP feature. Go to *Step* 2 on page 155. If the LNP feature is enabled, go to *Step* 2 on page 155.

2. Display the LNP services and translation type assignments in the database with the rtrv-lnp-serv command.

This is an example of the possible output.

```
rlghncxa03w 08-10-01 14:42:38 EST EAGLE 40.0.0

SERV TT TTN DV ALIAS

LNPQS 11 LNPQS TCAP ---

PCS 12 PCS TCAP ---

AIN 15 AINGTE TCAP 235

LIDB 20 LIDB SCCP ---

WNP 22 WNP TCAP ---

CLASS 25 CLASSGTE SCCP ---

UDF1 201 UDF1 SCCP ---

LRNQT 239 LRNQT TCAP ---

LNP-SERV TABLE IS 3% FULL (8 of 256)
```

Note: If the rtrv-ctrl-feat output in step 1 showed that the LNP feature was not enabled, skip this step and go to *Step 4* on page 156.

Note: If the serv=wnp or serv=pcs parameters will not be specified with the ent-lnp-serv command, skip *Step 3* on page 156, *Step 4* on page 156, and *Step 5* on page 156, and go to *Step 6* on page 156.

3. Verify that the wireless number portability feature (if the serv=wnp parameter will be specified in the ent-lnp-serv command) or the PCS 1900 number portability feature (if the serv=pcs parameter will be specified in the ent-lnp-serv command), by entering the rtrv-feat command.

Note: The rtrv-feat command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the rtrv-feat command, see the rtrv-feat command description in the *Commands Manual*.

If the wireless number portability feature is on, the entry WNP = on appears in the rtrv-feat output. If the PCS 1900 number portability feature is on, the entry PLNP = on appears in the rtrv-feat output. Perform step 4 only if the wireless number portability feature is off and the serv=wnp parameter will be specified with the ent-lnp-serv command. Perform Step 5 on page 156 only if the PCS 1900 number portability feature is off and the serv=pcs parameter will be specified with the ent-lnp-serv command.

4. Turn the wireless number portability feature on with the chg-feat command.

For this example, enter this command: chg-feat:wnp=on

Note: Once the wireless number portability feature is turned on with the chg-feat command, it cannot be turned off. The wireless number portability feature must be purchased before you turn the feature on with the chg-feat command. If you are not sure if you have purchased the wireless number portability feature, contact your Tekelec Sales Representative or Account Representative.

When this command has successfully completed, this message should appear.

```
rlghncxa03w 07-08-10 11:43:04 GMT EAGLE5 37.0.0
CHG-FEAT: MASP A - COMPLTD
```

5. Turn the PCS 1900 number portability feature on with the chg-feat command.

For this example, enter this command: chg-feat:plnp=on

Note: Once the PCS 1900 number portability feature is turned on with the chg-feat command, it cannot be turned off. The PCS 1900 number portability feature must be purchased before you turn the feature on with the chg-feat command. If you are not sure if you have purchased the PCS 1900 number portability feature, contact your Tekelec Sales Representative or Account Representative.

When this command has successfully completed, this message should appear.

```
rlghncxa03w 07-08-10 11:43:04 GMT EAGLE5 37.0.0
CHG-FEAT: MASP A - COMPLTD
```

Note: If you are not assigning a translation type to the WSMSC service, skip *Step 6* on page 156 and go to *Step 7* on page 157.

6. If the rtrv-ctrl-feat output in *Step 1* on page 155shows that the LNP SMS feature is enabled, and on, go to *Step 7* on page 157.

If the rtrv-ctrl-feat output in *Step 1* on page 155 shows that the LNP SMS feature is not enabled or on, perform the *Activating the LNP Short Message Service (SMS) Feature* on page 186

to enable and turn the LNP SMS feature on. Skip *Step 7* on page 157 and go to *Step 8* on page 157.

Note:

If you are not assigning a translation type to the LNPQS service, skip *Step 7* on page 157 and go to *Step 8* on page 157.

7. Any translation type can be assigned to the LNPQS service, but since translation type 11 is used for LNP queries between networks, it is recommended that translation type 11 is assigned to the LNPOS service.

Examine the rtrv-lnp-serv output in *Step 2* on page 155 to verify whether or not translation type 11 is assigned to any existing LNP services. If translation type 11 is assigned to any existing LNP services, perform the *Changing an LNP Service* on page 159 and change the translation type of the service using translation type 11.

8. Add the LNP services or alias translation types to the database using the ent-lnp-serv command.

For this example, enter these commands:

```
• ent-lnp-serv:serv=in:tt=30:ttn=ingte:dv=tcap
```

- ent-lnp-serv:serv=udf3:tt=100:dv=sccp
- ent-lnp-serv:serv=ain:alias=240
- ent-lnp-serv:serv=in:alias=150
- ent-lnp-serv:serv=in:alias=175
- ent-lnp-serv:serv=lidb:alias=80
- ent-lnp-serv:serv=udf3:alias=40
- ent-lnp-serv:serv=udf3:alias=45
- ent-lnp-serv:serv=wnp:tt=50:ttn=wnp50:dv=tcap
- ent-lnp-serv:serv=pcs:tt=19:ttn=pcs19:dv=tcap
- ent-lnp-serv:serv=wsmsc:tt=139:ttn=wsmsc1:dv=tcap
- ent-lnp-serv:serv=lnpqs:tt=11:ttn=lnpqs:dv=tcap

```
rlghncxa03w 07-08-28 14:42:38 GMT EAGLE5 37.0.0
ENT-LNP-SERV: MASP A - COMPLTD
```

9. Verify the changes with the rtrv-lnp-serv command.

This is an example of the possible output.

```
rlghncxa03w 08-10-01 14:42:38 EST EAGLE 40.0.0
SERV TT TTN DV ALIAS
LNPQS 11 LNPQS
                  TCAP ---
PCS
      12
          PCS
                  TCAP
     15 AINGTE TCAP 235
AIN
                        236
      20 LIDB SCCP ---
T.TDB
WNP
      22 WNP
                  TCAP ---
          CLASSGTE SCCP
CLASS
     25
      201 UDF1
                  SCCP ---
UDF1
                  TCAP ---
LRNQT 239 LRNQT
LNP-SERV TABLE IS 3% FULL (8 of 256)
```

10. Backup the new changes using the chg-db:action=backup:dest=fixed command.

The following messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED): MASP A - Backup starts on active MASP.

BACKUP (FIXED): MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED): MASP A - Backup starts on standby MASP.

BACKUP (FIXED): MASP A - Backup on standby MASP to fixed disk complete.
```

Removing an LNP Service

This procedure is used to remove an LNP service from the database using the dlt-lnp-serv command. The dlt-lnp-serv command uses two parameters.

```
:serv - the LNP service
```

:alias – the alias LNP translation type assigned to the LNP service

If the alias parameter is specified, the alias translation type value must be assigned to the specified LNP service. The alias translation types are shown in the ALIAS field of the rtrv-lnp-serv command output.

The value of the alias parameter cannot be in the database as a true translation type value. The true translation types are shown in the TT field of the rtrv-lnp-serv command output.

Before an LNP service can be removed from the database, all alias translation types assigned to that service must be removed from the database.

The example in this procedure removes LNP service UDF3 from the database.

1. Display the LNP services and translation type assignments in the database with the rtrv-lnp-serv command.

This is an example of the possible output.

```
rlghncxa03w 08-10-01 14:42:38 EST EAGLE 40.0.0

SERV TT TTN DV ALIAS
LNPQS 11 LNPQS TCAP ---
PCS 12 PCS TCAP ---
AIN 15 AINGTE TCAP 235

LIDB 20 LIDB SCCP ---
WNP 22 WNP TCAP ---
CLASS 25 CLASSGTE SCCP ---
UDF1 201 UDF1 SCCP ---
LRNQT 239 LRNQT TCAP ---
LNP-SERV TABLE IS 3% FULL (8 of 256)
```

2. Remove the LNP service from the database using the dlt-lnp-serv command.

For this example, enter these commands: dlt-lnp-serv:serv=udf3:alias=40 dlt-lnp-serv:serv=udf3:alias=45 dlt-lnp-serv:serv=udf3

```
rlghncxa03w 07-08-28 14:42:38 GMT EAGLE5 37.0.0
DLT-LNP-SERV: MASP A - COMPLTD
```

3. Verify the changes with the rtrv-lnp-serv command. This is an example of the possible output.

```
rlghncxa03w 08-10-01 14:42:38 EST EAGLE 40.0.0

SERV TT TTN DV ALIAS

LNPQS 11 LNPQS TCAP ---

PCS 12 PCS TCAP ---

AIN 15 AINGTE TCAP 235

LIDB 20 LIDB SCCP ---

WNP 22 WNP TCAP ---

CLASS 25 CLASSGTE SCCP ---

UDF1 201 UDF1 SCCP ---

LRNQT 239 LRNQT TCAP ---

LNP-SERV TABLE IS 3% FULL (8 of 256)
```

4. Backup the new changes using the chg-db:action=backup:dest=fixed command.

The following messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED): MASP A - Backup starts on active MASP.

BACKUP (FIXED): MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED): MASP A - Backup starts on standby MASP.

BACKUP (FIXED): MASP A - Backup on standby MASP to fixed disk complete.
```

Changing an LNP Service

This procedure is used to change the attributes of an existing LNP service using the chg-lnp-serv command. The chg-lnp-serv command uses these parameters.

```
:serv - the LNP service
```

:nserv - the new LNP service

:tt – the current LNP translation type assigned to the LNP service

:ntt - the new LNP translation type assigned to the LNP service

:nttn - the new translation type name assigned to the LNP service

: ndv – the new digits valid indication for the LNP service

The values of the serv and tt parameters must be in the database.

To change the attributes of an LNP service, either the serv or tt parameters must be specified, but not both parameters. If you are changing the translation type assigned to the LNP service, the serv and ntt parameters must be specified. If you are changing the LNP service assigned to a translation type, the tt and nserv parameters must be specified. The nserv and ntt parameters cannot be specified together with the chg-lnp-serv command.

The new translation type name must be unique in the database.

The new translation type (ntt) cannot be in the database as a true translation type or an alias translation type. The true translation types and alias translation types are shown in the rtrv-lnp-serv command output. The true translation types are shown in the TT field and the alias translation types are shown in the ALIAS field.

The word none sets the translation type name value to the service type name. A translation type name can be the service type name only if the service type name matches the value of the serv parameter.

If the value of the serv parameter is a user defined service type or wsmsc, the value of the ndv parameter must be sccp.

If the value of the serv parameter is a either ain, in, wnp, pcs, or lnpqs, the value of the ndv parameter must be tcap.

If the ndv parameter is specified, the value must be different from the current value of the DV field. The DV value can be changed only for these services: cnam, lidb, isvm, or class.

An LNP service cannot be changed if an alias translation type is assigned to the service. The aliases must be removed from the database using the dlt-lnp-serv command. If you wish to continue using the alias translation types with the LNP service after the LNP service has been changed, they must be re-assigned to the LNP service using the ent-lnp-serv command.

Any translation type can be assigned to the LNPQS service, but it is recommended that translation type 11 is assigned to the LNPQS service. If you are changing the translation type of another service, and the LNPQS service is provisioned in the database, select a translation type other than 11.

The examples in this procedure are used to change the AIN and CLASS services to the values shown in *Table 16: Changing the LNP Service* on page 160.

Table	16:	Chai	nging	the	LNP	Service
-------	-----	------	-------	-----	-----	---------

SERV	TT	NTT	DV	NDV	TTN	NTTN
AIN	15	55	TCAP		AINGTE	AINLIDB
CLASS	25	140	SCCP	TCAP	CLASSGTE	CLASS
WNP	50	75	TCAP		WNP50	WNP75

1. Display the LNP services and translation type assignments in the database with the rtrv-lnp-serv command.

This is an example of the possible output.

```
rlghncxa03w 08-10-01 14:42:38 EST EAGLE 40.0.0
               DV ALIAS
SERV TT TTN
LNPQS 11 LNPQS
PCS 12 PCS
                  TCAP
         PCS
                   TCAP
      15 AINGTE
                  TCAP 235
AIN
                        236
LIDB
      20 LIDB
                   SCCP ---
      22
          WNP
                   TCAP ---
WNP
CLASS 25
          CLASSGTE SCCP
UDF1 201 UDF1
                  SCCP ---
```

```
LRNQT 239 LRNQT TCAP ---
LNP-SERV TABLE IS 3% FULL (8 of 256)
```

2. If the LNP service being changed has any alias translation types assigned to it, shown in the ALIAS field in the output of *Step 1* on page 160, remove the alias translation types from the LNP service using the dlt-lnp-serv command.

If the LNP service does not have any alias translation types assigned to it, skip this step and go to *Step 3* on page 161. For this example, the AIN service has alias translation types assigned to it. Remove the alias translation types with these commands:

```
dlt-lnp-serv:serv=ain:alias=235
dlt-lnp-serv:serv=ain:alias=236
dlt-lnp-serv:serv=ain:alias=240
```

When each of these commands have successfully completed, this message should appear.

```
rlghncxa03w 07-08-28 14:42:38 GMT EAGLE5 37.0.0
DLT-LNP-SERV: MASP A - COMPLTD
```

Note:

If the LNP service name (serv parameter value) is not being changed, skip *Step 3* on page 161, *Step 4* on page 161, *Step 5* on page 162, and *Step 6* on page 162, and go to *Step 7* on page 162. If the LNP service name (serv parameter value) is being changed to a service name other than WNP or PCS, skip *Step 3* on page 161, *Step 4* on page 161, and *Step 5* on page 162, and go to *Step 6* on page 162.

3. Verify that the wireless number portability feature (if the nserv=wnp parameter will be specified in the chg-lnp-serv command) or the PCS 1900 number portability feature (if the nserv=pcs parameter will be specified in the chg-lnp-serv command), by entering the rtrv-feat command.

Note:

The rtrv-feat command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the rtrv-feat command, see the rtrv-feat command description in the *Commands Manual*.

If the wireless number portability feature is on, the entry WNP = on appears in the rtrv-feat output. If the PCS 1900 number portability feature is on, the entry PLNP = on appears in the rtrv-feat output. Perform Step 4 on page 161 only if the wireless number portability feature is off and the nserv=wnp parameter will be specified with the chg-lnp-serv command. Perform Step 5 on page 162 only if the PCS 1900 number portability feature is off and the nserv=pcs parameter will be specified with the chg-lnp-serv command.

4. Turn the wireless number portability feature on with the chg-feat command. For this example, enter this command chg-feat:wnp=on

Note:

Once the wireless number portability feature is turned on with the chg-feat command, it cannot be turned off. The wireless number portability feature must be purchased before you turn the feature on with the chg-feat command. If you are not sure if you have purchased the wireless number portability feature, contact your Tekelec Sales Representative or Account Representative.

When this command has successfully completed, this message should appear.

```
rlghncxa03w 07-08-10 11:43:04 GMT EAGLE5 37.0.0
CHG-FEAT: MASP A - COMPLTD
```

5. Turn the PCS 1900 number portability feature on with the chg-feat command.

For this example, enter this command.chg-feat:plnp=on

Note:

Once the PCS 1900 number portability feature is turned on with the chg-feat command, it cannot be turned off. The PCS 1900 number portability feature must be purchased before you turn the feature on with the chg-feat command. If you are not sure if you have purchased the PCS 1900 number portability feature, contact your Tekelec Sales Representative or Account Representative.

When this command has successfully completed, this message should appear.

```
rlghncxa03w 07-08-10 11:43:04 GMT EAGLE5 37.0.0 CHG-FEAT: MASP A - COMPLTD
```

Note:

If the LNP service name (serv parameter value) is being changed to a service name other than WSMSC, skip *Step 6* on page 162 and go to *Step 7* on page 162.

6. Verify that the LNP Short Message Service is enabled and on by entering the rtrv-ctrl-feat command.

If the rtrv-ctrl-feat output shows that the LNP SMS feature is enabled, and on, go to *Step* 7 on page 162. If the rtrv-ctrl-feat output shows that the LNP SMS feature is not enabled or on, perform *Activating the LNP Short Message Service (SMS) Feature* on page 186 to enable and turn the LNP SMS feature on.

Note:

If only the alias translation type values for the LNP service are being changed, skip this step and *Step 8* on page 162, and go to *Step 9* on page 163 to add the new alias translation type values.

7. Change the LNP service using the chg-lnp-serv command.

```
rlghncxa03w 07-08-28 14:42:38 GMT EAGLE5 37.0.0 CHG-LNP-SERV: MASP A - COMPLTD
```

8. Verify the changes with the rtrv-lnp-serv command.

This is an example of the possible output.

```
rlghncxa03w 08-10-01 14:42:38 EST EAGLE 40.0.0
                 DV
SERV TT TTN
                       ALIAS
LNPQS 11 LNPQS
                  TCAP ---
PCS
     12 PCS
                  TCAP ---
AIN
     15 AINGTE TCAP 235
                       236
     20 LIDB
                  SCCP
T<sub>1</sub>TDB
WNP
      22 WNP
                  TCAP ---
CLASS 25 CLASSGTE SCCP ---
UDF1 201 UDF1 SCCP ---
LRNQT 239 LRNQT TCAP ---
```

```
LNP-SERV TABLE IS 3% FULL (8 of 256)
```

9. If you wish to continue using the alias translation types removed in *Step 2* on page 161 with the changed LNP service, or add new alias translation types to the LNP service, add them with the ent-lnp-serv command.

For this example, the alias translation types removed in *Step 2* on page 161 are added back to the AIN service. Enter these commands:

```
ent-lnp-serv:serv=ain:alias=235
ent-lnp-serv:serv=ain:alias=236
ent-lnp-serv:serv=ain:alias=240

rlghncxa03w 07-08-28 14:42:38 GMT EAGLE5 37.0.0
ENT-LNP-SERV: MASP A - COMPLTD
```

10. Verify the changes with the rtrv-lnp-serv command.

This is an example of the possible output.

```
rlghncxa03w 08-10-01 14:42:38 EST EAGLE 40.0.0
SERV TT TTN
                  DV ALIAS
         LNPQS
                   TCAP ---
LNPQS 11
      12 PCS TCAP ---
15 AINGTE TCAP 235
PCS
AIN
                         236
LIDB
      20 LIDB SCCP ---
WNP
      22 WNP
                    TCAP ---
CLASS 25
          CLASSGTE SCCP
UDF1
      201 UDF1
                    SCCP
                    TCAP ---
LRNQT 239 LRNQT
LNP-SERV TABLE IS 3% FULL (8 of 256)
```

11. Backup the new changes using the chg-db:action=backup:dest=fixed command.

The following messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED): MASP A - Backup starts on active MASP.

BACKUP (FIXED): MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED): MASP A - Backup starts on standby MASP.

BACKUP (FIXED): MASP A - Backup on standby MASP to fixed disk complete.
```

Adding a Subsystem Application

This procedure is used to reserve a subsystem number for the LNP application and place the LNP application either online or offline using the ent-ss-appl command. The ent-ss-appl command uses these parameters.

```
:appl - the application type, LNP
```

Note:

The appl parameter contains the values INP, for reserving a subsystem number for the INP subsystem, and EIR, for reserving a subsystem number for the EIR subsystem. These values cannot

be used in this procedure. To reserve a subsystem number for the INP or EIR subsystem, perform the procedures in the *Feature Manual* - INP or *Feature Manual* - EIR and do not perform this procedure.

:ssn - the LNP subsystem number

:stat - the state of the LNP application

The LNP feature must be enabled. Verify this by entering the rtrv-ctrl-feat command. If the LNP feature is enabled, the entry LNP ported TNs should appear in the rtrv-ctrl-feat output with a telephone quantity greater than 0. If the LNP feature is not enabled, perform the procedures in LNP Feature Activation on page 15 to enable the LNP feature.

Only one subsystem number for each application can be defined.

If the stat parameter is not specified, the application will be offline.

The LNP application applies to both global title translation services and LNP queries.

The application specified by the appl parameter cannot already be in the database.

Before the subsystem application can be added to the database, the EAGLE 5 ISS's true point code and the subsystem number must be in the mated application table. The EAGLE 5 ISS's true point code is verified with the rtrv-sid command and shown in the PCA field. The mated application table is displayed with the rtrv-map command. The EAGLE 5 ISS's true point code is shown in the PCA field of the rtrv-map command output and the subsystem number is shown in the SSN field of the rtrv-map command output. If the EAGLE 5 ISS's true point code and the subsystem number are not shown in the rtrv-map command output, perform one of the "Mated Application" procedure in the Database *Administration Manual* – Global Title Translation and add the EAGLE 5 ISS's true point code and the subsystem to the database.

The example in this procedure reserves the subsystem number 254 for the LNP application and sets the LNP application online.

Verify that the LNP feature is enabled by entering the rtrv-ctrl-feat command.
 If the LNP feature is enabled, the entry LNP ported TNs should appear in the rtrv-ctrl-feat output with a telephone quantity greater than 0. This is an example of the possible output.

```
rlghncxa03w 08-05-09 16:40:40 EST EAGLE 39.0.0

The following features have been permanently enabled:
Feature Name Partnum Status Quantity
HC-MIM SLK Capacity 893012707 on 64
Command Class Management 893005801 on ----
LNP Short Message Service 893006601 on ----
LNP ELAP Configuration 893010901 on ----
LNP ported TNS 893011036 on 384000000
LNP ported LRNS 893010501 on 200000
LNP ported NPANXXS 893009402 on 350000
```

If the LNP feature is not enabled, perform the procedures in *Activating the LNP Feature Overview* on page 20 to enable the LNP feature. Go to *Step 2* on page 164. If the LNP feature is enabled, go to *Step 2* on page 164.

2. Display the subsystem number for the LNP application in the database with the rtrv-ss-appl command.

This is an example of the possible output.

```
rlghncxa03w 07-08-28 14:42:38 GMT EAGLE5 37.0.0
APPL SSN STAT
LNP 15 online
SS-APPL TABLE IS 20% FULL (1 of 1)
```

3. Display the EAGLE 5 ISS's true point code using the rtrv-sid command.

The EAGLE 5 ISS's true point code is shown in the PCA field of the rtrv-sid output. The following is an example of the possible output.

```
rlghncxa03w 07-08-10 11:43:04 GMT EAGLE5 37.0.0
100-100-100 PCI
                                       PCN
                                                        CLLI
                                                                           PCTYPE
                    3-75-7
                                       7-9-8-1
                                                       rlqhncxa03w
                                                                           OTHER
CPCA
002-002-002

002-002-003

002-002-004

002-002-007

004-002-001

CPCA (LNP)

002-002-003

002-002-008

004-003-003

050-060-070
                                                                002-002-005
                                                                002-002-009
005-005-002
                     005-005-004
                                           005-005-005
                                                               006-006-006
CPCI
1-002-1
                     1-002-2
                                           1-002-3
                                                                1-002-4
2-001-1
                     7-222-7
CPCN
2-0-10-3
                     2-0-11-0
                                           2-0-11-2
                                                                2-0-12-1
2-2-3-3
                     2-2-4-0
                                           10-14-10-1
```

4. Display the mated applications using the rtrv-map command specifying the EAGLE 5 ISS's true point code (shown in *Step 3* on page 165) and the LNP subsystem number.

For this example, enter this command:

```
rtrv-map:pca=100-100-100:ssn=254
```

This is an example, of the possible output.

```
rlghncxa03w 07-08-07 00:34:31 GMT EAGLE5 37.0.0

MAP TABLE IS 3 % FULL (33 of 1024)

PCA SSN RC MULT |------MATE-----| SRM MRC GRP NAME SSO

PCA SSN RC MULT

100-100-100 254 10 SOL --- --- GRP01 OFF
```

If the EAGLE 5 ISS's true point code and LNP subsystem number are not shown in the rtrv-map output, perform one of the "Mated Application" procedure in the Database *Administration Manual* – Global Title Translation and add the EAGLE 5 ISS's true point code and the subsystem to the database.

5. Add the subsystem number for the LNP application using the ent-ss-appl command. For this example, enter this command:

```
ent-ss-appl:appl=lnp:ssn=254:stat=online
```

When this command has successfully completed, this message should appear.

```
rlghncxa03w 07-08-28 14:42:38 GMT EAGLE5 37.0.0
ENT-SS-APPL: MASP A - COMPLTD
```

6. Verify the changes with the rtrv-ss-appl command.

This is an example of the possible output.

```
rlghncxa03w 07-08-28 14:42:38 GMT EAGLE5 37.0.0
APPL SSN STAT
LNP 254 ONLINE
SS-APPL table is 100% FULL (1 of 1)
```

7. Backup the new changes using the chg-db:action=backup:dest=fixed command.

The following messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED): MASP A - Backup starts on active MASP.

BACKUP (FIXED): MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED): MASP A - Backup starts on standby MASP.

BACKUP (FIXED): MASP A - Backup on standby MASP to fixed disk complete.
```

Removing a Subsystem Application

This procedure is used to remove a subsystem application from the database using the dlt-ss-appl command. The dlt-ss-appl command uses only one parameter, :appl-the subsystem application. The EAGLE 5 ISS contains only one subsystem application, the LNP subsystem application.

Note: The appl parameter contains the values INP, for removing the INP subsystem, and EIR, for removing the EIR subsystem. These values cannot be used in this procedure. To remove the INP or EIR subsystems, perform the procedures in the *Feature Manual* - INP or *Feature Manual* - EIR and do not perform this procedure.

The subsystem application must be in the database and the subsystem must be out of service.

1. Display the status of the LNP subsystem with the rept-stat-lnp command. This is an example of the possible output.

```
Integrat40 08-11-14 10:37:22 EST EAGLE5 40.0.0
LNP SUBSYSTEM REPORT IS-ANR Active
  ASSUMING MATE'S LOAD
  ALARM STATUS = No Alarms.
LNP Cards Configured= 5
CARD PST SST GTT STATUS LNP STATUS CPU USAGE
1106 IS-NR Active ACT ACT 23%
1201 IS-ANR Standby SWDL SWDL 0%
1205 OOS-MT-DSBLD Manual ------ 0%
1302 OOS-MT FLT ----- 0%
1302 OOS-MT FLT
1310 IS-ANR Standby
                                      ACT
                                                     SWDT
                                                                         იგ
LNPQS:
  SSN STATUS = Allowed MATE SSN STATUS = Prohibited
  ACG: OVERLOAD LEVEL = 0 MIC USAGE = 100%
AVERAGE USAGE:
  GTT = 13\% LNPMR = 0\% LNPQS = 0\%
  WNPQS = 0% TLNP = 10% PLNPQS = 0%
AVERAGE CPU USAGE = 23%
```

```
TOTAL ERRORS:
  GTT: 1 out of LNPMR: 0 out of LNPQS: 0 out of WNPQS: 0 out of PLNPQS: 0 out of TLNP: 1 out of
                                   2000
                                        Ω
                                        0
                                        0
                                     500
PROVISIONED TABLE QTY:
  TN: 76800000 of
                                96000000 (80%)
  NPA: 135000 of
LRN: 0000
                                   150000
                                              (90%)
                                   100000 ( 90%)
                90000 of
Command Completed.
```

Note:

The WNPQS field is only shown if the wireless number portability feature is on. This can be verified with the WNP field of the rtrv-feat command output. The PLNPQS field is only shown if the PCS 1900 number portability feature is on. This can be verified with the PLNP field of the rtrv-feat command output. The TLNP field is only shown if the triggerless number portability feature is on. This can be verified with the TLNP field of the rtrv-feat command output.

2. Display the subsystem application number for the LNP application in the database with the rtrv-ss-appl command.

This is an example of the possible output.

```
rlghncxa03w 07-08-28 14:42:38 GMT EAGLE5 37.0.0
APPL SSN STAT
LNP 254 ONLINE
SS-APPL table is 100% FULL (1 of 1)
```

Note:

If the LNP subsystem is out of service, shown by the entry LNP SUBSYSTEM REPORT OOS-MT_DSBLD in the rept-stat-lnp output in *Step 1* on page 166, skip *Step 3* on page 167 and *Step 4* on page 167, and go to *Step 5* on page 168.

3. Place the LNP subsystem application out of service with the inh-map-ss command specifying the LNP subsystem number displayed in *Step 2* on page 167.

For this example, enter this command. inh-map-ss:ssn=254When this command has successfully completed, this message should appear.

```
rlghncxa03w 07-08-28 14:42:38 GMT EAGLE5 37.0.0
LNP Subsystem has been inhibited.
Command Completed.
```

4. Verify that the LNP subsystem is out of service with the rept-stat-lnp command. This an example of the possible output.

```
rlghncxa03w 08-11-14 10:37:22 EST EAGLE 40.0.0

LNP SUBSYSTEM REPORT OOS-MT-DSBLD Active ----
ALARM STATUS = *C 0435 LNP Subsystem is disabled

LNP Cards Configured= 3

CARD PST SST GTT STATUS LNP STATUS CPU USAGE
1106 IS-NR Active ACT OFFLINE 10%
```

```
1201 IS-NR Active ACT OFFLINE
                                                              12%
1310 OOS-MT-DSBLD Manual
                                                              0 %
                                  -----
LNPOS:
 SSN STATUS = Prohibited MATE SSN STATUS = Allowed
 ACG: OVERLOAD LEVEL = 0 MIC UASGE = 0%
AVERAGE USAGE:
 GTT = 13% LNPMR = 0% LNPQS = 0%
AVERAGE CPU USAGE = 11%
TOTAL ERRORS:
 GTT: 0 out of 2000
LNPMR: 0 out of 0
LNPQS: 0 out of 0
PROVISIONED TABLE QTY:
 TN: 10 of 24000000 (0%)
              1 of 150000 ( 0%)
3 of 100000 ( 0%)
 NPA:
 LRN:
Command Completed
```

Note: The WNPQS field is only shown if the wireless number portability feature is on. This can be verified with the WNP field of the rtrv-feat command output. The PLNPQS field is only shown if the PCS 1900 number portability feature is on. This can be verified with the PLNP field of the rtrv-feat command output. The TLNP field is only shown if the triggerless number portability feature is on. This can be verified with the TLNP field of the rtrv-feat command output.

5. Remove the LNP subsystem application from the database using the dlt-ss-appl command. For this example, enter this command. dlt-ss-appl:appl=lnp When each of this command has successfully completed, this message should appear.

```
rlghncxa03w 07-08-28 14:42:38 GMT EAGLE5 37.0.0
DLT-SS-APPL: MASP A - COMPLTD
```

6. Verify the changes with the rtrv-ss-appl command.

This is an example of the possible output.

```
rlghncxa03w 07-08-28 14:42:38 GMT EAGLE5 37.0.0
APPL SSN STAT
LNP 254 ONLINE
SS-APPL table is 0% FULL (1 of 1)
```

7. Backup the new changes using the chg-db:action=backup:dest=fixed command.

The following messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED): MASP A - Backup starts on active MASP.

BACKUP (FIXED): MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED): MASP A - Backup starts on standby MASP.

BACKUP (FIXED): MASP A - Backup on standby MASP to fixed disk complete.
```

Changing a Subsystem Application

This procedure is used to set an existing subsystem application either online or offline using the chg-ss-appl command. The chg-ss-appl command uses these parameters.

: appl – the application type. The EAGLE 5 ISS contains only one subsystem application, the LNP subsystem application.

Note: The appl parameter contains the values INP, for changing the INP subsystem, and EIR, for changing the EIR subsystem. These values cannot be used in this procedure. To change the INP or EIR subsystem, perform the procedures in the *Feature Manual* - INP or *Feature Manual* - EIR and do not perform this procedure.

:nstat - the new state of the subsystem application.

If the nstat=offline parameter is specified, the subsystem application must be online. If the nstat=online parameter is specified, the subsystem application must be offline. The state of the subsystem application is shown in the STAT field of the rtrv-ss-appl command output.

If the subsystem application is to be taken offline (nstat=offline), the subsystem must be taken out of service (OOS-MT-DSBLD) with the inh-map-ss command.

The rept-stat-lnp command is used to determine the state of the LNP subsystem.

This example contains two procedures, one for taking the LNP subsystem application offline, and another for placing the LNP subsystem application online.

1. Verify whether or not the LNP subsystem is online or offline with the rtrv-ss-appl command. This is an example of the possible output.

```
rlghncxa03w 07-08-28 14:42:38 GMT EAGLE5 37.0.0
APPL SSN STAT
LNP 254 ONLINE
SS-APPL table is 0% FULL (1 of 1)
```

If the LNP subsystem is offline, this procedure does not need to be performed.

2. Display the status of the LNP subsystem with the rept-stat-lnp command. This is an example of the possible output.

```
Integrat40 08-11-14 10:37:22 EST EAGLE5 40.0.0
LNP SUBSYSTEM REPORT IS-ANR Active
 ASSUMING MATE'S LOAD
 ALARM STATUS
                = No Alarms.
LNP Cards Configured= 5
                              GTT STATUS LNP STATUS CPU USAGE
CARD PST SST
1106 IS-NR Acti
1106 IS-NR Active
1201 IS-ANR Standby
1205 OOS-MT-DSBLD Manual
                               ACT ACT SWDL SWDL
                                            ACT
                                                           23%
                                                            0%
                                ACT
1302 OOS-MT FLT
                                            -----
                                                            0 응
                 Standby
1310 IS-ANR
                                            SWDL
LNPOS:
 SSN STATUS = Allowed MATE SSN STATUS = Prohibited
 ACG: OVERLOAD LEVEL = 0 MIC USAGE = 100%
```

Note:

The WNPQS field is only shown if the wireless number portability feature is on. This can be verified with the WNP field of the rtrv-feat command output.

The PLNPQS field is only shown if the PCS 1900 number portability feature is on. This can be verified with the PLNP field of the rtrv-feat command output.

The TLNP field is only shown if the triggerless number portability feature is on. This can be verified with the TLNP field of the rtrv-feat command output.

3. Place the LNP subsystem out of service with the inh-map-ss command specifying the LNP subsystem number displayed in *Step 2* on page 169.

For this example, enter this command. inh-map-ss:ssn=254 When this command has successfully completed, this message should appear.

```
rlghncxa03w 07-08-28 14:42:38 GMT EAGLE5 37.0.0
LNP Subsystem has been inhibited.
Command Completed.
```

4. Verify that the LNP subsystem is out of service with the rept-stat-lnp command. This an example of the possible output.

```
rlghncxa03w 08-11-14 10:37:22 EST EAGLE 40.0.0

LNP SUBSYSTEM REPORT OOS-MT-DSBLD Active ----
ALARM STATUS = *C 0435 LNP Subsystem is disabled

LNP Cards Configured= 3

CARD PST SST GTT STATUS LNP STATUS CPU USAGE 1106 IS-NR Active ACT OFFLINE 10% 1201 IS-NR Active ACT OFFLINE 12% 1310 OOS-MT-DSBLD Manual ------ 0%

LNPQS:

SSN STATUS = Prohibited MATE SSN STATUS = Allowed ACG: OVERLOAD LEVEL = 0 MIC UASGE = 0%

AVERAGE USAGE:

GTT = 13% LNPMR = 0% LNPQS = 0%

AVERAGE CPU USAGE = 11%

TOTAL ERRORS:
```

```
GTT: 0 out of 2000
LNPMR: 0 out of 0
LNPQS: 0 out of 0

PROVISIONED TABLE QTY:

TN: 10 of 24000000 ( 0%)
NPA: 1 of 150000 ( 0%)
LRN: 3 of 100000 ( 0%)

Command Completed
```

Note:

The WNPQS field is only shown if the wireless number portability feature is on. This can be verified with the WNP field of the rtrv-feat command output.

The PLNPQS field is only shown if the PCS 1900 number portability feature is on. This can be verified with the PLNP field of the rtrv-feat command output.

The TLNP field is only shown if the triggerless number portability feature is on. This can be verified with the TLNP field of the rtrv-feat command output.

5. Place the LNP subsystem offline using the chg-ss-appl command with the nstat=offline parameter.

For this example, enter this command. chg-ss-appl:appl=lnp:nstat=offline When this command has successfully completed, this message should appear.

```
rlghncxa03w 07-08-28 14:42:38 GMT EAGLE5 37.0.0
CHG-SS-APPL: MASP A - COMPLTD
```

6. Verify the changes with the rtrv-ss-appl command.

This is an example of the possible output.

```
rlghncxa03w 07-08-28 14:42:38 GMT EAGLE5 37.0.0
APPL SSN STAT
LNP 254 OFFLINE
SS-APPL table is 0% FULL (1 of 1)
```

7. Backup the new changes using the chg-db:action=backup:dest=fixed command.

The following messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED): MASP A - Backup starts on active MASP.

BACKUP (FIXED): MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED): MASP A - Backup starts on standby MASP.

BACKUP (FIXED): MASP A - Backup on standby MASP to fixed disk complete.
```

Changing LNP Options

This procedure is used to change the LNP specific options using the chg-lnpopts command. The chg-lnpopts command uses these parameters.

:amaslpid - the AMA service logic ID

- :incslp is the AMA service logic ID included in the response
- :amactype the AMA call type
- :amafeatid the AMA feature ID
- :cic the carrier identification code
- :sp the service provider ID
- : jipprv The values for this parameter are either yes or no. If the value is yes, the Jurisdiction Information Parameter value is added to the IAM. If the value is no, the Jurisdiction Information Parameter value is not added to the IAM.
- : jipdigits The value of the Jurisdiction Information Parameter as a 6-digit number.
- :frcsmplx The values for this parameter are either yes or no. If the value is yes, LNP updates are accepted when the EAGLE 5 ISS is in the simplex mode (when the standby MASP is incoherent, at a different level compared to the active MASP, or unstable). If the value is no, LNP updates are not accepted when the EAGLE 5 ISS is in the simplex mode (when the standby MASP is incoherent, at a different level compared to the active MASP, or unstable).
- :admhipri The values for this parameter are either yes or no. If the value is yes, LNP administration has the highest priority of all administration in the EAGLE 5 ISS If the admhipri=yes parameter is specified, LNP administration could starve out normal STP updates during LNP administration of 2 TNs per second. If the value of this parameter is no, then STP and LNP updates receive the same priority and performance of LNP updates can be reduced depending on other activity on the EAGLE 5 ISS.
- :gtwystp The values for this parameter are either yes or no. If the value is yes, the EAGLE 5 ISS is configured as a gateway STP and running the LNP feature. The NPAC sends LNP subscriptions that contain capability point codes that do not have routes assigned to them in the EAGLE 5 ISS database. If the value for the gtwystp is no, the EAGLE 5 ISS is not configured as a gateway STP.
- :ccp The values for this parameter are either yes or no. When this parameter is enabled (ccp=yes), the EAGLE 5 ISS copies the Charge Number and Charge Party Station type from an LNP AIN query (if present) to the LNP AIN Response message.
- : servport The values for this parameter are either yes or no. If the value for this parameter is yes, then splitting services between TN and LRN override records is allowed. This settings lets the EAGLE 5 ISS craftsperson update LRN overrides for message relay services that are to be supported in the network. The EAGLE 5 ISS will then fallback to the TN gateway point code (NPAC subscription data) for message relay services the CLEC wants to provide.

If the value of this parameter is no, and no LRN override services are provisioned, then the TN's gateway point codes (NPAC subscription data) are used to route queries out of the network. If one or more LRN override services are provisioned, the TN is considered to be ported into the network. In this case, if an LRN override service is requested and the LRN has other services administered, but the requested service is not provisioned, then a UDTS response for the service is provided.

:wqredrct – The values for this parameter are either on or off. If the value of this parameter is on, the EAGLE 5 ISS allows the global title translation functionality to treat any wireless LNP (WNP) and PCS) queries that require global title translation as a normal global title translation. If the value of this parameter is off, all wireless LNP (WNP and PCS) queries that require global title translation are routed directly to the local subsystem.

:wsmsc10dig - The values for this parameter are either yes or no. If the value of this parameter is yes, then the EAGLE 5 ISS verifies that either 10 or 11 digits are present in the CDPA global title address. If 11 digits are present, then the first digit is stripped from the CDPA global title address to derive 10 digits for LNP WSMSC translation. Otherwise, all 10 digits are used for LNP WSMSC translation. If the value of this parameter is no, then the EAGLE 5 ISS verifies that 11 digits (including a padded 0 digit) are present in the CDPA global title address. If 11 digits are present in the CDPA global title address, the EAGLE 5 ISS strips the first digit and uses only 10 digits for LNP WSMSC translation.

The LNP feature must be enabled. Verify this by entering the rtrv-ctrl-feat command. If the LNP feature is enabled, the entry LNP ported TNs should appear in the rtrv-ctrl-feat output with a telephone quantity greater than 0. If the LNP feature is not enabled, perform the procedures in the LNP Feature Activation on page 15 to enable the LNP feature.

The jipprv and jipdigits parameters can only be specified if the Triggerless LNP feature is on. This can be verified by the TLNP = on field of the rtrv-feat command output.

The wqredrct parameter can only be specified if either the wireless number portability feature or the PCS 1900 number portability feature is on. The entry WNP = on in the rtrv-feat command output shows whether or not the wireless number portability feature is on. The entry PLNP = on in the rtrv-feat command output shows whether or not the PCS 1900 number portability feature is on.

Note: The wireless number portability (WNP), PCS 1900 number portability (PLNP), or Triggerless LNP (TLNP) features must be purchased before you turn any of these features on with the chg-feat command. If you are not sure if you have purchased these features, contact your Tekelec Sales Representative or Account Representative.

The wsmsc10dig parameter can only be specified if the LNP SMS feature is activated and on. This shown in the rtrv-ctrl-feat command output. If the LNP SMS feature is not activated or on, perform the *Activating the LNP Short Message Service (SMS) Feature* on page 186.

The value for any parameter not specified with the chg-lnpopts command is not changed.

The value of the sp parameter can contain from 1 to 4 alphanumeric characters.

The examples in this procedure changes these LNP options to these values.

AMASLPID = 909873583

AMACTYPE = 181

AMAFEATID = 250

CIC = 1254

SP = 1234

Verify that the LNP feature is enabled by entering the rtrv-ctrl-feat command.
 If the LNP feature is enabled, the entry LNP ported TNs should appear in the rtrv-ctrl-feat output with a telephone quantity greater than 0. This is an example of the possible output.

```
rlghncxa03w 07-08-29 16:40:40 EST EAGLE5 37.6.0
The following features have been permanently enabled:
Feature Name Partnum Status Quantity
LNP ported TNs 893011023 on 228000000
```

```
;
```

If the LNP feature is not enabled, perform the procedures in the *LNP Feature Activation* on page 15 to enable the LNP feature. Go to *Step 2* on page 174. If the LNP feature is enabled, go to *Step 2* on page 174.

2. Display the LNP options in the database with the rtrv-lnpopts command. This is an example of the possible output.

```
rlghncxa03w 07-08-28 14:42:38 GMT EAGLE5 37.0.0
AMASLPID = 123456789
INCSLP
           = yes
AMACTYPE
           = 0.03
AMAFEATID = 010
          = 1369
CTC
AUD
           = on
SP
           = 5678
FRCSMPLX
          = yes
ADMHIPRI = yes
          = yes
GTWYSTP
JIPPROV
          = yes
JIPDIGITS = 910460
           = no
CCP
SERVPORT
           = no
WQREDRCT
           = off
WSMSC10DIG = yes
```

Note: The JIPPROV and JIPDIGITS fields are only displayed if the Triggerless LNP feature is on. This can be verified by the TLNP = on field of the rtrv-feat command output (*Step* 3 on page 174).

Note: If the rtrv-ctrl-feat output in *Step 1* on page 173 showed that the LNP feature was not enabled, skip this step and go to step *Step 4* on page 174.

Note: If the wqredrct, jipprv, or jipdigits parameters are not being specified in this procedure, skip steps *Step 3* on page 174, *Step 4* on page 174, and *Step 5* on page 175, and go to step *Step 6* on page 175.

3. Verify that the Wireless Number Portability feature or the PCS 1900 Number Portability feature (if the wqredrct parameter will be specified in this procedure), or the Triggerless LNP feature (if the jipprv, or jipdigits parameters will be specified in this procedure), by entering the rtrv-feat command.

Note: The rtrv-feat command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the rtrv-feat command, see the rtrv-feat command description in the *Commands Manual*.

If the Wireless Number Portability feature is on, the entry WNP = on appears in the rtrv-feat output. If the PCS 1900 Number Portability feature is on, the entry PLNP = on appears in the rtrv-feat output. If the Triggerless LNP feature is on, the entry TLNP = on appears in the rtrv-feat output.

Note: If the desired features in *Step 3* on page 174 are on, skip this step and go to *Step 5* on page 175.

4. If either the WNP, PLNP, or TLNP fields in *Step 3* on page 174 are set to off, the Wireless Number Portability, PCS 1900 Number Portability, or Triggerless LNP features must be turned on with

the chg-feat command, depending on whether you are changing the value of the wqredrct, jipprv, or jipdigits parameters.

To turn the Wireless Number Portability feature on, enter this command.chg-feat:wnp=onTo turn the PCS 1900 Number Portability feature on, enter this command: chg-feat:plnp=on. To turn the Triggerless LNP feature on, enter this command: chg-feat:tlnp=on. If you wish to turn all three features on, or a combination of two of these features, enter the chg-feat command with each parameter that corresponds to the feature you wish to turn on. For example, to turn all three features on, enter this command: chg-feat:tlnp=on:plnp=on:wnp=on.

Note: Once the Triggerless LNP, Wireless Number Portability or PCS 1900 Number Portability features are turned on with the chg-feat command, they cannot be turned off.

The Triggerless LNP, Wireless Number Portability or PCS 1900 Number Portability features must be purchased before you turn these features on with the chg-feat command. If you are not sure if you have purchased these features, contact your Tekelec Sales Representative or Account Representative.

When this command has successfully completed, this message should appear.

```
rlghncxa03w 07-08-10 11:43:04 GMT EAGLE5 37.0.0
CHG-FEAT: MASP A - COMPLTD
```

Note: If the wsmscl0dig parameter is not being specified in this procedure, skip this step and go to step 5.

- **5.** If rtrv-ctrl-feat output in step 1 shows that the LNP SMS feature is not enabled or is off, perform the *Activating the LNP Short Message Service (SMS) Feature* on page 186 and enable and turn on the LNP SMS feature.
- **6.** Change the LNP options using the chg-lnpopts command.

For this example, enter this command.

```
chg-lnpopts:amaslpid=909873583:amactype=181:amafeatid=250
:cic=1254:sp=1234
```

When this command has successfully completed, this message should appear.

```
rlghncxa03w 07-08-28 14:42:38 GMT EAGLE5 37.0.0
CHG-LNPOPTS: MASP A - COMPLTD
```

7. Verify the changes with the rtrv-lnpopts command.

This is an example of the possible output.

```
rlghncxa03w 07-08-28 14:42:38 GMT EAGLE5 37.0.0
AMASLPID = 909873583
INCSLP
           = yes
AMACTYPE
           = 181
AMAFEATID = 250
CTC
           = 1254
AUD
           = on
SP
           = 1234
FRCSMPLX
           = yes
ADMHIPRI
           = yes
           = yes
GTWYSTP
JIPPROV
          = yes
JIPDIGITS = 910460
CCP
           = no
SERVPORT
```

```
WQREDRCT = off
WSMSC10DIG = yes
```

8. Backup the new changes using the chg-db:action=backup:dest=fixed command.

The following messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED): MASP A - Backup starts on active MASP.

BACKUP (FIXED): MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED): MASP A - Backup starts on standby MASP.

BACKUP (FIXED): MASP A - Backup on standby MASP to fixed disk complete.
```

Configuring the Triggerless LNP Feature

This procedure is used to configure the Triggerless LNP feature. The Triggerless LNP feature provides service providers a method to route calls to ported numbers without having to upgrade their signaling switch (end office or mobile switching center) software. In a trigger based LNP solution, the service providers have to modify the end office (EO) or mobile switching center (MSC) to contain the LNP triggers. These triggers cause the EO/MSC to launch the query to the LNP database and route the call based on the returned location routing number (LRN).

The Triggerless LNP feature does not require any updates to the EO/MSC. Instead, the Initial Address Message (IAM) sent from the end office is intercepted by the Triggerless LNP equipped EAGLE 5 ISS and converted to include the LRN if the call is to a ported number.

The Gateway Screening feature is used to capture the IAMs that are converted for the Triggerless LNP feature. The database must contain a gateway screening screenset that contains these items:

- An allowed SIO screen that allows ISUP messages into the EAGLE 5 ISS. ISUP messages are MSUs that contain the value 5 in the service indicator field (SI=5) of the service information octet (SIO) of the MSU. This is verified in *Step 14* on page 181 of this procedure.
- The gateway screening stop action tlnp. The gateway screening stop actions can be verified with the rtrv-gws-actset command, as shown in *Step 10* on page 180 in this procedure.

CAUTION: When Gateway Screening is in the screen test mode, as defined by the linkset parameters gwsa=off and gwsm=on, the gateway screening action in the gateway screening stop action set specified by the actname parameter of the gateway screening screen set at the end of the gateway screening process will be performed.

If the database does not contain an allowed SIO screen that allows ISUP messages into the EAGLE 5 ISS, go to the Database *Administration Manual* - Gateway Screening to configure the required screen set in the database.

Note: It is recommended that the screening for ISUP messages allowed into the EAGLE 5 ISS stop at either the Allowed SIO, Allowed DPC, Blocked DPC, or Allowed ISUP screens. Screening on these messages can continue to the Allowed DESTFLD, Allowed CGPA, Allowed TT, Allowed CDPA, or Allowed AFTPC screens, but these screens do not contain any screenable criteria contained in an ISUP message. Once these messages are passed on to the Allowed DESTFLD or Allowed CGPA screens, they will continue to be passed during the gateway screening process until the gateway screening process stops.

The Gateway Screening and Triggerless LNP features must be on. This can be verified with these entries in the rtrv-feat command output.

- GWS = on, for the Gateway Screening feature
- TLNP = on, for the Triggerless LNP feature

Note: Once the Gateway Screening and Triggerless LNP features are turned on with the chg-feat command, they cannot be turned off.

The Gateway Screening and Triggerless LNP features must be purchased before you turn the features on with the chg-feat command. If you are not sure if you have purchased the Gateway Screening and Triggerless LNP features, contact your Tekelec Sales Representative or Account Representative.

The LNP feature must be enabled. Enter the rtrv-ctrl-feat command to verify whether or not the LNP feature is enabled. If the output of the rtrv-ctrl-feat command shows a quantity in the LNP ported TNs field, the LNP feature is enabled. If the LNP feature is not enabled, perform the procedures in *Activating the LNP Feature Overview* on page 20 to enable the LNP feature.

When the IAMs are converted, a jurisdiction indicator parameter (JIP) is added to the IAM message after LNP lookup if the jurisdiction information parameter does not exist in original IAM message and either:

- The JIPPROV value in the LNP options table is set to yes.
- A valid calling party number exists in original IAM message.

The options for the JIP parameter are set using the chg-lnpopts command with these parameters

- jipprv Is a jurisdiction information parameter value to be added to the IAM, yes or no?
- jipdigits The value of the jurisdiction information parameter as a 6-digit number.

The JIP parameter options can be verified with the JIPPROV and JIPDIGITS fields of the rtrv-lnpopts command.

Canceling the RTRV-LS Command

Because the rtrv-ls command used in this procedure can output information for a long period of time, the rtrv-ls command can be canceled and the output to the terminal stopped. There are three ways that the rtrv-ls command can be canceled.

- Press the F9 function key on the keyboard at the terminal where the rtrv-ls command was entered.
- Enter the canc-cmd without the trm parameter at the terminal where the rtrv-ls command was entered.
- Enter the canc-cmd:trm=<xx>, where <xx> is the terminal where the rtrv-ls command was entered, from another terminal other that the terminal where the rtrv-ls command was entered. To enter the canc-cmd:trm=<xx> command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal's permissions can be verified with the rtrv-secu-trm command. The user's permissions can be verified with the rtrv-user or rtrv-secu-user commands.

For more information about the canc-cmd command, go to the Commands Manual.

1. Verify that the Gateway Screening and the Triggerless LNP features are on by entering the rtrv-feat command.

If the Gateway Screening feature is on, the GWS field should be set to on. If the Triggerless LNP feature is on, the TLNP field should be set to on.

Note: The rtrv-feat command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the rtrv-feat command, see the rtrv-feat command description in the *Commands Manual*.

If the Triggerless LNP feature is on, go to *Step 7* on page 179. Before the Triggerless LNP feature can be turned on, the Gateway Screening and LNP features must be on. If the Gateway Screening feature is off, go to *Step 2* on page 178 to turn the gateway screening feature on.

2. Turn the Gateway Screening feature on by entering this command.

```
chg-feat:gws=on
```

Note: Once the Gateway Screening feature is turned on with the chg-feat command, it cannot be turned off.

The Gateway Screening feature must be purchased before you turn the feature on with the chg-feat command. If you are not sure if you have purchased the Gateway Screening feature, contact your Tekelec Sales Representative or Account Representative.

When the chg-feat has successfully completed, this message should appear.

```
rlghncxa03w 07-08-07 00:57:31 GMT EAGLE5 37.0.0
CHG-FEAT: MASP A - COMPLTD
```

3. Verify whether or not the LNP feature is enabled by using the rtrv-ctrl-feat command. If the LNP feature is enabled, the entry LNP ported TNs appears in the rtrv-ctrl-feat output with a telephone number quantity greater than 0. This is an example of the possible output.

```
rlghncxa03w 08-05-09 16:40:40 EST EAGLE 39.0.0

The following features have been permanently enabled:
Feature Name Partnum Status Quantity
LNP ported TNs 893011036 on 384000000
```

Note: If the rtrv-ctrl-feat output in *Step 3* on page 178 shows that the LNP feature is enabled, skip this step and go to *Step 5* on page 178.

- **4.** Enable the LNP feature by performing the procedures in *Activating the LNP Feature Overview* on page 20.
- **5.** Turn the Triggerless LNP feature on by entering this command.

```
chg-feat:tlnp=on
```

Note: Once the Triggerless LNP feature is turned on with the chg-feat command, it cannot be turned off.

The Triggerless LNP feature must be purchased before you turn the feature on with the chg-feat command. If you are not sure if you have purchased the Triggerless LNP feature, contact your Tekelec Sales Representative or Account Representative.

When the chg-feat has successfully completed, this message should appear.

```
rlghncxa03w 07-08-07 00:57:31 GMT EAGLE5 37.0.0
CHG-FEAT: MASP A - COMPLTD
```

6. Verify the changes using the rtrv-feat command.

```
The GWS = on and TLNP = on should be shown in the rtrv-feat output.
```

Note: The rtrv-feat command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the rtrv-feat command, see the rtrv-feat command description in the *Commands Manual*.

7. Display the LNP options for the jurisdiction information parameter by entering the rtrv-lnpopts command.

The jurisdiction information parameter options are shown in the JIPPROV and JIPDIGITS fields as shown in bold in the example output.

```
rlghncxa03w 07-08-07 00:57:31 GMT EAGLE5 37.0.0

AMASLPID = 123456789

INCSLP = yes

AMACTYPE = 003

AMAFEATID = 010

CIC = 1369

AUD = on

SP = a123

FRCSMPLX = yes11

ADMHIPRI = yes

GTWYSTP = yes

JIPPROV = no

JIPDIGITS = 919460
```

If you wish to change the jurisdiction information parameter options in the LNP options table go to *Step 8* on page 179, otherwise go to *Step 10* on page 180.

8. Change the jurisdiction information parameter options in the LNP options table using the chg-lnpopts command with the jipprv and jipdigits parameters.

For this example, enter this command.

```
chg-lnpopts:jipprv=yes:jipdigits=423929
```

When the chg-lnpopts has successfully completed, this message should appear.

```
rlghncxa03w 07-08-07 00:57:31 GMT EAGLE5 37.0.0
CHG-LNPOPTS: MASP A - COMPLTD
```

9. Verify the changes using the rtrv-lnpopts command.

The following is an example of the possible output.

```
rlghncxa03w 07-08-07 00:57:31 GMT EAGLE5 37.0.0

AMASLPID = 123456789

INCSLP = yes

AMACTYPE = 003

AMAFEATID = 010

CIC = 1369

AUD = on

SP = a123

FRCSMPLX = yes

ADMHIPRI = yes

GTWYSTP = yes
```

```
JIPPROV = yes
JIPDIGITS = 423929
```

10. Display the gateway screening stop action sets in the database using the rtrv-gws-actset command.

The Triggerless LNP feature requires a gateway stop action set with the tlnp gateway screening stop action. The tlnp gateway stop action is shown by the entry tlnp in the rtrv-gws-actset command output. The following is an example of the possible output.

```
rlghncxa03w 07-08-07 00:57:31 GMT EAGLE5 37.0.0
ACT ACT ACT ACT ACT ACT ACT ACT ACT ACT
ID NAME 1 2 3 4 5 6 7 8 9 10
   ______
1
   сору сору
   rdct
       rdct
3
   cr
       copy rdct
   crencf copy encf rdct
5
  cncf cncf
   cfrd cncf rdct
6
GWS action set table is (6 of 16) 38% full
```

If the tlnp gateway screening stop action is not shown in the rtrv-gws-actset command output, go to *Step 11* on page 180. Otherwise, go to *Step 12* on page 180.

11. Add the tlnp gateway screening stop action set to the database with the chg-gws-actset command.

If an existing gateway screening stop action set is changed, the force=yes parameter must be specified with the chg-gws-actset command. The tlnp gateway screening stop action cannot be specified with either the cncf (calling name conversion facility) or rdct (redirect) gateway screening actions in the same gateway screening action set. The tlnp gateway screening stop action can be specified with the copy gateway screening atop action in the same gateway screening actions set. If the copy gateway screening stop action is added to a gateway screening stop action set, it must be configured as the first gateway screening stop action in the gateway screening stop action set with the actl parameter. For this example, a two new gateway screening stop action sets are being created for the tlnp gateway screening stop action. Enter these commands:

```
chg-gws-actset:actid=7:name=tlnp:act1=tlnp
chg-gws-actset:actid=8:name=cptlnp:act1=copy:act2=tlnp
```

When the chg-gws-actset has successfully completed, this message should appear.

```
rlghncxa03w 07-08-07 00:57:31 GMT EAGLE5 37.0.0 CAUTION: GWS action set may be referenced by one or more GWS rules CHG-GWS-ACTSET: MASP A - COMPLTD
```

12. Verify the changes with the rtrv-gws-actset command.

This is an example of the possible output.

```
5 cncf cncf
6 cfrd cncf rdct
7 tlnp tlnp
8 cptlnp copy tlnp
GWS action set table is (8 of 16) 50% full
```

Note: If *Step 2* on page 178 of this procedure was performed, skip this step and *Step 14* on page 181 and *Step 15* on page 182, and go to *Step 16* on page 182.

 ${f 13.}$ Display the linksets in the database with the rtrv-ls command.

This is an example of the possible output.

```
rlghncxa03w 07-08-07 00:57:31 GMT EAGLE5 37.0.0
   L3T SLT
        APCA (SS7)
                   SCRN SET SET BEI LST LNKS GWSA GWSM GWSD SLSCI NIS
atmansi0 179-100-087 scr2 1 1 no a 0 on off off no
atmansi1 200-050-176 scr1 1
                            1 no a 0
                                            on
                                                 off off no
                                                              off
                                            off off off no
        240-020-000 scrl 1
                            1 yes a 1
                                                              off
lsa1
                                no c 3
yes c 5
        240-030-000 scr2
lsa2
                             2
                                            on
                                                on
                                                     on
                                                         yes
        240-040-000 gws2 1
                             3
                                            off off
lsa3
                                                    off
                                                         yes
                                                              off
       002-002-002 scr1 1 1 no c 0
ls01
                                                off off no
                                                              off
                                            on
ls02
       004-004-004 scrl 1 1 no b 0
                                                off off no
                        L3T SLT
                   SCRN SET SET BEI LST LNKS GWSA GWSM GWSD SLSCI NIS
LSN
        APCA (X25)
        244-010-004 scr4
ls6
                        1
                             4 no
                                    a 6
                                            off off off ---
                                                              off
        244-012-005 scr5 1
                             5 no
                                    С
ls7
                                        3
                                                              off
                                            on
                                                 on
                                                     on
        244-012-006 scr6 1
                             6 no c 8
                                            off off off ---
ls8
                        L3T SLT
LSN
        APCI (SS7) SCRN SET SET BEI LST LNKS GWSA GWSM GWSD SLSCI NIS
        1-111-1 scr1 1
1-111-2 scr2 1
                            1 yes a
2 no c
lsi1
                                    a 1
                                            off off off
lsi2
        1-111-2
                                        3
                                            on
                                                 on
                                                     on
        1-111-3 scr3 1
3-150-4 scr1 1
lsi3
                            3 yes c 5
                                            off off off ---
                            1 no a 0
lsi7
                                            on off off ---
        L3T SLT
APCN (SS7) SCRN SET SET BEI LST LNKS GWSA GWSM GWSD SLSCI NIS
LSN
                   scrl 1
        11111
                            1 yes a 1 off off off --- on
lsn1
                  scr2 1
lsn2
        11112
                                no c 3
                                            on
                                                on
                                                     on
                            L3T SLT
                                             GWS GWS GWS
LSN
          APCN24 (SS7) SCRN SET SET BEI LST LNKS ACT MES DIS SLSCI NIS
                            L3T SLT
                                              GWS GWS GWS
LSN (CHINA) APCN (SS7) SCRN SET SET BEI LST LNKS ACT MES DIS SLSCI NIS
                            TAT STAT
                                             GWS GWS GWS
LSN (CHINA) APCN24 (SS7) SCRN SET SET BEI LST LNKS ACT MES DIS SLSCI NIS
Link set table is ( 16 of 1024) 2% full
```

If the linkset that you wish to screen for the ISUPIAMs does not have a gateway screening screen set assigned to it, shown in the SCRN field of the rtrv-ls command output, go to *Step* 16 on page 182.

14. Display the screens in the gateway screen set using the rtrv-scrset command specifying a specific screen set name with the scrn parameter.

If the required linkset references a screen set, shown in the SCRN field of the rtrv-ls command output, use that name with the scrn parameter of the rtrv-scrset command. If the required linkset does not reference a screen set, go to <code>Step 16</code> on page 182 and configure the required screen set with a gateway screening stop action set containing the TLNP gateway screening stop action. For this example, enter this command.

```
rtrv-scrset:scrn=gws2
rlghncxa03w 07-08-07 00:57:31 GMT EAGLE5 37.0.0
SCRN NSFI NSR/ACT RULES DESTFLD
```

```
gws2 BLKOPC gws5
                            2
      STO
              iec
                            3
      DPC
              abc2
                            5
      BLKDPC
                            2
              gw11
      BLKDPC gw12
                            2
      BLKDPC
                            2
              wdb2
      DESTFLD dst1
                            1
      DESTFLD fld5
                            1
                            3
      CGPA
              gw13
                            2
      TT
              aw16
                            2
      CDPA
              gw18
      AFTPC
                            1
              gw20
```

If the screen set contains an Allowed SIO screen, go to *Step 15* on page 182. Otherwise, go to *Step 16* on page 182.

15. Display the allowed SIO screen shown in the output of the rtrv-scrset command executed in *Step 14* on page 181.

For this example, enter this command: rtrv-scr-sio:sr=iec. This is an example of the possible output:

```
rlghncxa03w 07-08-07 00:57:31 GMT EAGLE5 37.0.0
SCREEN = ALLOWED SIO
SR NIC PRI SI HO
                        H1
                              NSFI
                                      NSR/ACT
                              BLKDPC WDB2
IEC 1
       1
             5 --
                        ___
IEC
    1
         2
              5
                              STOP
                                      CRCNCF
IEC 1
         3
              5
                              DPC
                                      ABC2
```

If the SI field does not contain the value 5, this screen does not allow ISUP messages into the EAGLE 5 ISS. If you wish to add a new screen set, with an allowed SIO screen containing the SI value 5, go to *Step 16* on page 182 and configure a gateway screening screen set with a gateway screening stop action set that contains the TLNP gateway screening stop action. If you wish to change the existing screen set, skip *Step 16* on page 182, *Step 17* on page 182, and *Step 18* on page 183, and go to *Step 19* on page 183 to reconfigure the gateway screening screen set with an allowed SIO screen containing the SI value 5 and with a gateway screening stop action set that contains the TLNP gateway screening stop action.

- **16.** Go to the Database *Administration Manual* Gateway Screening and add a gateway screening screen set to the database that contains these items.
 - a) An Allowed SIO screen that allows only ISUP messages (SI = 5) into the EAGLE 5 ISS.
 - b) The gateway screening process stops at one of these screens with the gateway screening stop action TLNP.
 - Allowed SIO see the "Adding an Allowed SIO Screen" procedure
 - Allowed DPC see the "Adding an Allowed DPC Screen" procedure
 - Blocked DPC see the "Adding a Blocked DPC Screen" procedure
 - Allowed ISUP see the "Adding an Allowed ISUP Message Type Screen" procedure
- 17. The gateway screening screen set created in *Step 16* on page 182 must be assigned to a linkset. If the screen set name used in *Step 16* on page 182 is shown in the SCRN field of the rtrv-1s command output displayed in *Step 13* on page 181, go to *Step 18* on page 183. If the screen set name used in *Step 16* on page 182 is not shown in the SCRN field of the rtrv-1s command output displayed in *Step 13* on page 181, perform the "Adding an SS7 Linkset" procedure in the *Database Administration Manual SS7* and add the required linkset to the database, making sure that the linkset references the necessary screen set. If you wish to change an existing linkset

in the database, perform the "Changing an SS7 Linkset" procedure in the *Database Administration Manual - SS7* and change the required linkset to reference the necessary screen set.

18. Backup the new changes using the chg-db:action=backup:dest=fixed command.

These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first. This procedure is finished.

```
BACKUP (FIXED): MASP A - Backup starts on active MASP.

BACKUP (FIXED): MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED): MASP A - Backup starts on standby MASP.

BACKUP (FIXED): MASP A - Backup on standby MASP to fixed disk complete.
```

Note: If *Step 16* on page 182, *Step 17* on page 182, and *Step 18* on page 183 were performed, this procedure is finished.

- **19.** Go to the *Database Administration Manual* Gateway Screening and change the gateway screening screen set so that the screen set contains these items:
 - a) An Allowed SIO screen that allows only ISUP messages (SI = 5) into the EAGLE 5 ISS.
 - The gateway screening process stops at one of these screens with the gateway screening stop action TLNP.
 - Allowed SIO see the "Changing an Allowed SIO Screen" procedure
 - Allowed DPC see the "Changing an Allowed DPC Screen" procedure
 - Blocked DPC see the "Changing a Blocked DPC Screen" procedure
 - Allowed ISUP see the "Changing an Allowed ISUP Message Type Screen" procedure

Note: If the rtrv-scrset output in *Step 14* on page 181 did not show any of the following screens: DPC, BLKDPC, ISUP, DESTFLD, CGPA, TT, CDPA, or AFTPC, this procedure is finished.

Note: If the rtrv-scrset output in *Step 14* on page 181 did not show any of the following screens: DPC, BLKDPC, ISUP, but did show any of these screens: DESTFLD, CGPA, TT, CDPA, or AFTPC, skip this step and go to *Step 21* on page 184.

Note: If new DPC, BLKDPC, or ISUP screens were not added to the screen set in *Step 19* on page 183, skip this step and go to *Step 21* on page 184.

- **20.** Go to the *Database Administration Manual* Gateway Screening and remove the DPC, BLKDPC, or ISUP screens shown in the rtrv-scrset output in step 14, by performing these procedures as necessary.
 - a) Allowed DPC see the "Removing an Allowed DPC Screen" procedure
 - b) Blocked DPC see the "Removing a Blocked DPC Screen" procedure
 - c) Allowed ISUP see the "Removing an Allowed ISUP Message Type Screen" procedure

CAUTION: Do not remove any screens from the database until you have made absolutely sure that these screens are not being used by other screen sets. Failure to do so, can result in breaking the gateway screening process for those screen sets.

Note: If the rtrv-scrset output in *Step 14* on page 181 did not show any of the following screens: DESTFLD, CGPA, TT, CDPA, or AFTPC, do not perform *Step 21* on page 184. This procedure is finished.

- **21.** Go to the *Database Administration Manual* Gateway Screening and remove the DESTFLD, CGPA, TT, CDPA, or AFTPC screens shown in the rtrv-scrset output in *Step 14* on page 181, by performing these procedures as necessary.
 - a) Allowed DESTFLD see the "Removing an Allowed Affected Destination Field Screen" procedure
 - b) Allowed CGPA see the "Removing an Allowed Calling Party Address Screen" procedure
 - c) Allowed TT see the "Removing an Allowed Translation Type Screen" procedure
 - d) Allowed CDPA see the "Removing an Allowed Called Party Address Screen" procedure
 - e) Allowed AFTPC see the "Removing an Allowed Affected Point Code Screen" procedure

CAUTION: Do not remove any screens from the database until you have made absolutely sure that these screens are not being used by other screen sets. Failure to do so can result in breaking the gateway screening process for those screen sets.

Increasing the LRN and NPANXX Quantities on the EAGLE 5 ISS

When the LNP feature is enabled for the first time the LRN (location routing number) and NPANXX quantities are set at 100,000 (for LRNS) and 150,000 (for NPANXXs). These quantities can be increased to 200,000 LRNs and 350,000 NPANXXs with the 384 Million Records feature, but only when the LNP telephone number quantity is 60 million or greater. To increase the LNP telephone number quantity to 60 million numbers or greater, refer to the *Increasing LNP Telephone Number Quantity on EAGLE 5 ISS* on page 192 procedure.

These quantities are increased using the enable-ctrl-feat command specifying the feature access key and part number of the desired LRN and NPANXX quantity. The current assigned quantities can be verified with the rtrv-ctrl-feat command.

The feature access key is based on the feature's part number and the serial number of the EAGLE 5 ISS, making the feature access key site-specific.

The enable-ctrl-feat command enables the LRN or NPANXX quantity with these parameters:

:fak - The feature access key provided by Tekelec. The feature access key contains 13 alphanumeric characters and is not case sensitive.

:partnum – The Tekelec-issued part number associated with the desired LRN or NPANXX quantity. The part numbers for increasing the LRN and NPANXX quantities are:

- LRN quantity increase to 150,000 893010501
- NPANXX quantity increase to 300,000 893009402

Note: Once the LRN or NPANXX quantity is increased with the enable-ctrl-feat command, that quantity cannot be reduced. The LRN and NPANXX quantity features cannot be disabled, and cannot be enabled with the temporary feature access key. The chg-ctrl-feat command cannot be specified for an LRN and NPANXX quantity.

The LRN and NPANXX quantity must be purchased before you can enable that quantity with the enable-ctrl-feat command. If you are not sure if you have purchased the desired LRN and NPANXX quantity, or do not have the feature access key for the LRN and NPANXX quantity being enabled, contact your Tekelec Sales Representative or Account Representative.

To fully use the increased LRN and NPANXX quantities, the Measurements Platform must be enabled on the EAGLE 5 ISS. If the Measurements Platform is not enabled, the measurements for LRNs are capped at 100,000, and the measurements for NPANXXs are capped at 150,000. Measurements for LRN and NPANXX quantities beyond 100,000 LRNs and 150,000 NPANXXs will be lost. To enable the Measurements Platform, perform the "Configuring the Measurements Platform Feature" procedure in the EAGLE 5 ISS *Database Administration Manual - System Management*.

Note: The 384 million LNP records feature does not support any measurement collection performed by the OAM. LNP measurement collection is disabled on the OAM when any Service Module Card is loaded from an ELAP with the 384 million LNP Records feature.

1. Display the status of the features by entering the rtrv-ctrl-feat command. The following is an example of the possible output.

```
rlghncxa03w 08-05-09 16:40:40 EST EAGLE 39.0.0

The following features have been permanently enabled:
Feature Name Partnum Status Quantity
LNP ported LRNs 893010501 on 200000
LNP ported NPANXXS 893009402 on 350000

;
```

If the rtrv-ctrl-feat output shows that the LRN quantity is 150,000, and the NPANXX quantity is 300,000, no further action is necessary. If the LNP telephone number quantity shown in the rtrv-ctrl-feat output is 48,000,000 or less, refer to *Increasing LNP Telephone Number Quantity on EAGLE 5 ISS* on page 192, and increase the LNP telephone number quantity to 60,000,000 or greater.

2. Verify the NPANXX and LRN quantity on the ELAP.

Perform the Verifying RTDB Status at the ELAP User Interface on page 111 procedure. The number of NPANXXs and LRNs on the ELAP must be less that the configured quantity on the EAGLE 5 ISS. If either the NPANXX and LRN quantity on the ELAP is greater that the quantity shown in the rtrv-ctrl-feat output, the ELAP RTDB is not loaded onto the entire set of Service Module cards on the EAGLE 5 ISS. Some of the Service Module cards load the ELAP RTDB to provide a restricted level of GTT/LNP service. The remainder of the Service Module cards are put into a restricted state. UIM 1324 is generated at the EAGLE 5 ISS if the NPANXX quantity on the ELAP is greater than the NPANXX quantity configured on the EAGLE 5 ISS. UIM 1325 is generated at the EAGLE 5 ISS if the LRN quantity on the ELAP is greater than the LRN quantity configured on the EAGLE 5 ISS are greater than the NPANXX and LRN quantities configured on the EAGLE 5 ISS are greater than the NPANXX and LRN quantities on the ELAP. If the NPANXX and LRN quantity on the ELAP is less that the quantity shown in the rtrv-ctrl-feat output in Step 1 on page 185, or is less than the quantity that will be configured in this procedure, go to Step 3 on page 185.

3. Verify whether or not the Measurements Platform on the EAGLE 5 ISS is enabled by entering the rtrv-measopts command.

This is an example of the possible output.

```
rlghncxa03w 07-08-01 16:02:05 GMT EAGLE5 37.0.0
PLATFORMENABLE = on
COLLECT15MIN = off
CLLIBASEDNAME = off
```

```
SYSTOTSTP = off
SYSTOTTT = off
```

Note: The rtrv-measopts command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the rtrv-measopts command, see the rtrv-measopts command description in the *Commands Manual*.

If the Measurements Platform is not enabled, perform the "Configuring the Measurements Platform Feature" procedure in the EAGLE 5 ISSDatabase *Administration Manual - System Management* and enable the Measurements Platform.

4. Increase the LRN and NPANXX quantities by entering these commands.

enable-ctrl-feat:partnum=893010501:fak=<LRN quantity feature access
key>enable-ctrl-feat:partnum=893009402:fak=<NPANXX quantity feature
access key>

Note: The feature access key is provided by Tekelec. If you do not have the feature access key for these quantities, contact your Tekelec Sales Representative or Account Representative.

When the **enable** -ctrl-feat command has successfully completed, this message should appear.

```
rlghncxa03w 07-08-01 21:15:37 GMT EAGLE5 37.0.0
ENABLE-CTRL-FEAT: MASP B - COMPLTD
```

5. Verify the changes by entering these commands.

rtrv-ctrl-feat:partnum=893010501. The following is an example of the possible output.

```
rlghncxa03w 07-08-01 21:16:37 GMT EAGLE5 37.0.0
The following features have been permanently enabled:
Feature Name Partnum Status Quantity
LNP LRNs 893010501 on 150000
```

rtrv-ctrl-feat:partnum=893009402. The following is an example of the possible output.

```
rlghncxa03w 07-08-01 21:16:37 GMT EAGLE5 37.0.0
The following features have been permanently enabled:
Feature Name Partnum Status Quantity
LNP NPANXXS 893009402 on 300000
```

6. Backup the new changes using the chg-db:action=backup:dest=fixed command.

These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.

BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED) : MASP A - Backup starts on standby MASP.

BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

Activating the LNP Short Message Service (SMS) Feature

The LNP Short Message Service feature is activated with a feature access key. The feature access key is provided by Tekelec once the feature is purchased, and is entered into the EAGLE 5 ISS

using the enable-ctrl-feat and chg-ctrl-feat commands. The LNP feature must be enabled before the LNP Short Message Service feature can be activated. Refer to the *Activating the LNP Feature Overview* on page 20 for more information about enabling the LNP feature.

The enable-ctrl-feat command enables the feature by inputting the feature's access key and the controlled feature's part number with these parameters:

: fak – The feature access key provided by Tekelec. The feature access key contains 13 alphanumeric characters and is not case sensitive.

:partnum - The Tekelec-issued part number associated with the LNP Short Message Service feature, 893006601.

Once the LNP Short Message Service feature has been enabled, the LNP Short Message Service feature must be activated with the chg-ctrl-feat command. The chg-ctrl-feat command uses these parameters:

:partnum - The Tekelec-issued part number associated with the LNP Short Message Service feature, 893006601.

: status=on – used to activate the controlled features that customer has purchased and enabled.

The status of the controlled features in the EAGLE 5 ISS is shown with the rtrv-ctrl-feat command.

When this procedure is completed and the LNP Short Message Service feature is activated, the WSMSC LNP service must be added to the LNP service table. Refer to the *Adding an LNP Service* on page 152.

The WSMSC10DIG LNP option can be set with the chg-lnpopts command. The WSMSC10DIG LNP option can be set in the *Changing LNP Options* on page 171.

1. Display the status of the LNP Short Message Service feature by entering the rtrv-ctrl-feat command.

The following is an example of the possible output.

```
rlghncxa03w 07-08-01 21:15:37 GMT EAGLE5 37.0.0
The following features have been permanently enabled:
Feature Name Partnum Status Quantity
LNP Short Message Service 893006601 on ----
```

If the rtrv-ctrl-feat output shows that the LNP Short Message Service feature is permanently enabled, and its status is on, no further action is necessary. If the LNP Short Message Service feature is permanently enabled, and its status is off, skip Step 2 on page 188 and Step 3 on page 188, and go to Step 4 on page 188. If the LNP Short Message Service feature is temporarily enabled, and you wish to permanently enable this feature, or the temporary feature access key for that feature has expired, skip Step 2 on page 188 and go to Step 3 on page 188. If the LNP Short Message Service feature is to remain temporarily enabled, and its status is off, skip Step 2 on page 188 and go to Step 3 on page 188. If the feature's status is on, no further action is necessary. If the LNP Short Message Service feature is to remain temporarily enabled, and its status is on, no further action is necessary. If the rtrv-ctrl-feat output shows that the LNP feature is not enabled, refer to the Activating the LNP Feature Overview on page 20 to enable the LNP feature.

Note: If the output from *Step 1* on page 187 shows that the LNP Short Message Service feature is enabled, either temporarily or permanently, skip *Step 2* on page 188 and go to *Step 3* on page 188.

2. Verify that the Wireless Number Portability (WNP) feature is on, by entering the rtrv-feat command.

If the Wireless Number Portability feature is on, the WNP field should be set to on.

Note: The rtrv-feat command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the rtrv-feat command, see the rtrv-feat command description in the *Commands Manual*.

If the Wireless Number Portability feature is off, perform the *Adding an LNP Service* on page 152 and turn the Wireless Number Portability feature on, and add the WNP service to the database.

3. Enable the LNP Short Message Service feature with either a permanent key or temporary key by entering the enable-ctrl-feat command.

For this example, enter this command: enable-ctrl-feat:partnum=893006601:fak=<LNP Short Message Service feature access key>

Note: The values for the feature access key (the fak parameter) are provided by Tekelec. If you do not have the controlled feature part number or the feature access key for the feature you wish to enable, contact your Tekelec Sales Representative or Account Representative.

When the enable-crtl-feat command has successfully completed, this message should appear.

```
rlghncxa03w 07-08-01 21:15:37 GMT EAGLE5 37.0.0
ENABLE-CTRL-FEAT: MASP B - COMPLTD
```

4. The LNP Short Message Service feature enabled in step 3 must be activated using the chg-ctrl-feat command, specifying the controlled feature part number used in step 3 and the status=on parameter.

For this example, enter these commands.

```
chg-ctrl-feat:partnum=893006601:status=on
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 07-08-01 21:15:37 GMT EAGLE5 37.0.0
CHG-CTRL-FEAT: MASP B - COMPLTD
```

5. Verify the changes by entering the rtrv-ctrl-featcommand with the LNP Short Message Service feature part number.

For this example, enter this command.

```
rtrv-ctrl-feat:partnum=893006601
```

The following is an example of the possible output.

```
rlghncxa03w 07-08-01 21:15:37 GMT EAGLE5 37.0.0
The following features have been permanently enabled:
Feature Name Partnum Status Quantity
LNP Short Message Service 893006601 on ----
```

6. Backup the new changes using the chg-db:action=backup:dest=fixed command.

These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
```

```
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED) : MASP A - Backup starts on standby MASP.

BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

Clearing a Temporary FAK Alarm

This procedure is used to clear the critical alarm, UAM 0368, generated when the temporary feature access key for any controlled feature (for example, LNP Short Message Service) has expired, using the chq-ctrl-feat command.

The chg-ctrl-feat command uses the following parameters:

:partnum - The part number of the controlled feature that was temporarily enabled and is causing the alarm.

:alarm=clear - Clears UAM 0368, Temp Key(s) have expired.

The controlled feature must have been temporarily enabled and is now in danger of expiration or in an *expired* state.

1. Display the controlled feature that has the expired feature access key by entering the rtrv-ctrl-feat:expired=yes command.

The following is an example of the possible output.

```
rlghncxa03w 07-08-01 21:17:37 GMT EAGLE5 37.0.0
The following features have expired temporary keys:
Feature Name Part Num
LNP Short Message Service 893006601
```

2. Clear the EAGLE 5 ISS alarm in the database by entering the chg-ctrl-feat command. For example, enter this command.

```
chg-ctrl-feat:partnum=893006601:alarm=clear
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 07-08-01 21:16:37 GMT EAGLE5 37.0.0
CHG-CTRL-FEAT: MASP A - COMPLTD
```

3. Verify that the alarm has cleared in the database by using the rtrv-ctrl-feat:expired=yes command.

The following is an example of the possible output.

```
rlghncxa03w 07-08-01 21:16:37 GMT EAGLE5 37.0.0 0367.0181 * SYSTEM Temp Key(s) expiration alarm cleared.
```

4. Backup the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED): MASP A - Backup starts on active MASP.

BACKUP (FIXED): MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED): MASP A - Backup starts on standby MASP.

BACKUP (FIXED): MASP A - Backup on standby MASP to fixed disk complete.
```

Deactivating the LNP Short Message Service Feature

This procedure is used to deactivate the LNP Short Message Service feature, using the chg-ctrl-feat command.

The chg-ctrl-feat command uses the following parameters:

:partnum - The part number of the LNP Short Message Service feature, 893006601.

:status=off - used to deactivate the controlled feature.

The status of the LNP Short Message Service feature must be on and is shown with the rtrv-ctrl-feat command.

CAUTION:

If the LNP Short Message Service feature is deactivated, the WSMSC LNP service CAUTION cannot be used for local number portability.

1. Display the controlled features whose status is on by entering the rtrv-ctrl-feat:status=on command.

The following is an example of the possible output.

```
rlghncxa03w 07-08-01 21:15:37 GMT EAGLE5 37.0.0
The following features have been permanently enabled:
Feature Name
                 Partnum Status Quantity
LNP Short Message Service 893006601 on
```

2. Deactivate the LNP Short Message Service feature by entering the chg-ctrl-feat command with the status=off parameter.

For example, enter this command.

```
chg-ctrl-feat:partnum=893006601:status=off
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 07-08-01 21:16:37 GMT EAGLE5 37.0.0
CHG-CTRL-FEAT: MASP A - COMPLTD
```

3. Verify that the LNP Short Message Service feature has been deactivated by using the rtrv-ctrl-feat:partnum=893006601 command.

The following is an example of the possible output.

```
rlghncxa03w 07-08-01 21:16:37 GMT EAGLE5 37.0.0
The following features have been permanently enabled:
Feature Name Partnum Status Quantity
LNP Short Message Service 893006601 off
```

4. Backup the new changes using the chg-db:action=backup:dest=fixed command.

These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
```

```
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.

BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

Changing the LNP Telephone Number Alarm Thresholds

This procedure is used to change the alarm thresholds for generating alarms when the LNP Telephone number quantity has exceeded the defined percentage of the maximum number of LNP telephone numbers the EAGLE 5 ISS can contain. The alarm thresholds are changed using the chg-th-alm command and these parameters:

:lnptndblv1-The percentage, from 0 to 100, of the maximum number of LNP telephone numbers the EAGLE 5 ISS can contain that generates major alarm UAM 0288. The system default value for the lnptndbvl1 parameter is 90. The current value of this parameter is shown in the LNP TN DB Alarm Level 1: field of the rtrv-th-alm command output.

:lnptndblv2-The percentage, from 0 to 100, of the maximum number of LNP telephone numbers the EAGLE 5 ISS can contain that generates critical alarm UAM 0287. The system default value for the lnptndbvl2 parameter is 95. The current value of this parameter is shown in the LNP TN DB Alarm Level 2: field of the rtrv-th-alm command output.

The chg-th-alm command contains other optional parameters. These parameters are not shown here because they are not necessary to provision the LNP telephone number alarm thresholds. These parameters are explained in more detail in the *Commands Manual*.

The maximum number of LNP telephone numbers the EAGLE 5 ISS can contain is shown in the rtrv-ctrl-feat command output or in the TN: row in the PROVISIONED TABLE QTY: section of the rept-stat-lnp command output.

1. Display the current LNP telephone number alarm thresholds by entering the rtrv-th-alm command.

This is an example of the possible output.

```
rlghncxa03w 06-08-28 09:12:36 GMT EAGLE5 35.1.0
LNP TN DB Alarm Level 1: 80%
LNP TN DB Alarm Level 2: 90%
Command Executed
```

Note:

The rtrv-th-alm command output contains other fields that are not used in this procedure. If you wish to see all the fields displayed by the rtrv-th-alm command, see the rtrv-th-alm command description in the *Commands Manual*.

2. Change the LNP telephone number alarm thresholds by entering the chg-th-alm command with at least one of the LNP telephone number alarm thresholds.

One or both LNP telephone number alarm threshold parameters can be specified with the chg-th-alm command. If a parameter is not specified with the chg-th-alm command, that parameter value will not be changed. However, after the chg-th-alm command is performed, the lnptndblv2 parameter value must be greater than the lnptndblv1 parameter value. For this example, enter this command:

```
chg-th-alm:lnptndblv1=70:lnptndblv2=80
```

When this command has successfully completed, this message should appear.

```
rlghncxa03w 06-08-28 09:12:36 GMT EAGLE5 35.1.0 CHG-TH-ALM: MASP A - COMPLTD
```

3. Verify the changes using the rtrv-th-alm command.

This is an example of the possible output.

```
rlghncxa03w 06-08-28 09:12:36 GMT EAGLE5 35.1.0
LNP TN DB Alarm Level 1: 70%
LNP TN DB Alarm Level 2: 80%
Command Executed
```

Note:

The rtrv-th-alm command output contains other fields that are not used in this procedure. If you wish to see all the fields displayed by the rtrv-th-alm command, see the rtrv-th-alm command description in the *Commands Manual*.

4. Backup the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED): MASP A - Backup starts on active MASP.

BACKUP (FIXED): MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED): MASP A - Backup starts on standby MASP.

BACKUP (FIXED): MASP A - Backup on standby MASP to fixed disk complete.
```

Increasing LNP Telephone Number Quantity on EAGLE 5 ISS

This procedure is used to increase the current quantity of LNP telephone numbers in the EAGLE 5 ISS using the enable-ctrl-feat command specifying the feature access key and part number of the desired LNP telephone number quantity. The current LNP telephone number quantity is shown in the LNP ported TNs row of the rtrv-ctrl-feat command output.

Note: This procedure is used only if the LNP ELAP Configuration feature is enabled and turned on. If the LNP ELAP Configuration feature is not enabled or turned on, do not perform this procedure but refer to the *Activating the LNP Feature Overview* on page 20 to activate the LNP feature and to enable and turn on the LNP ELAP Configuration feature.

The feature access key is based on the LNP telephone number quantity's part number and the serial number of the EAGLE 5 ISS, making the feature access key site-specific. The <code>enable-ctrl-feat</code> command enables the LNP telephone number quantity by inputting the feature access key and the part number corresponding to the desired LNP telephone number quantity with these parameters:

:fak

The feature access key provided by Tekelec. The feature access key contains 13 alphanumeric characters and is not case sensitive.

:partnum

The Tekelec-issued part number of the LNP telephone number quantity, without the dashes, shown in Table 2: LNP Hardware and Part Number Configuration Table on page 17.

Note: Once a specific LNP telephone number quantity is enabled with the enable-ctrl-feat command, that quantity cannot be reduced. The LNP feature cannot be disabled, and cannot be enabled with the temporary feature access key. The chg-ctrl-feat command cannot be specified for an LNP telephone number quantity.

The LNP telephone number quantity must be purchased before you can enable that quantity with the enable-ctrl-feat command. If you are not sure if you have purchased the desired LNP telephone number quantity, or do not have the feature access key for the LNP telephone number quantity being enabled, contact your Tekelec Sales Representative or Account Representative.

CAUTION: Make sure that the LNP telephone number quantity configured in this step is greater than the ELAP telephone number quantity. The ELAP telephone number quantity can be verified by performing the Verifying RTDB Status at the ELAP User CAUTION *Interface* on page 111 procedure. If the telephone number quantity on the ELAP is greater than the LNP telephone number quantity configured in this step, the ELAP RTDB is not loaded onto the entire set of Service Module cards on the EAGLE 5 ISS. Some of the Service Module cards load the ELAP RTDB to provide a restricted level of GTT/LNP service. The remainder of the Service Module cards are put into a restricted state. UIM 1323 is generated at the EAGLE 5 ISS.

If the current LNP telephone number quantity is 384million numbers, this procedure cannot be performed. This is the maximum LNP telephone number quantity that can be enabled.

Before the quantity of LNP telephone numbers can be increased, Service Module cards running the VSCCP application with the correct amount of memory must be configured in the EAGLE 5 ISS. Refer to Table 2: LNP Hardware and Part Number Configuration Table on page 17 for the Service Module card requirements. For more information on the Service Module card, go to the *Hardware* Manual - EAGLE 5 ISS.

1. Display the status of the features by entering the rtrv-ctrl-feat command.

```
rlghncxa03w 08-05-09 16:40:40 EST EAGLE 39.0.0
The following features have been permanently enabled:
Feature Name Partnum Status Quantity
LNP ported TNs
                      893011036 on 384000000
```

If the rtrv-ctrl-feat output shows that the LNP ELAP Configuration feature is not enabled or turned on, do not perform this procedure but refer to the *Activating the LNP Feature Overview* on page 20 section to activate the LNP feature and to enable and turn on the LNP ELAP Configuration feature.

If the current LNP telephone number quantity is 384 million numbers, this procedure cannot be performed. This is the maximum quantity that can be enabled.

If the current LNP telephone number quantity is either 204 million numbers or 216 million numbers, skip Step 2 on page 194 and Step 3 on page 194, and go to Step 4 on page 195. All of the Service Module cards in the EAGLE 5 ISS are 4 GB DSM cards if running on ELAP version 7.0 or less. If running on ELAP 8.0, all Service Module cards are E5-SM4G cards.

tklc119 CARD	90601 08-10-0 VERSION	1 16:31:14 EST PST	EAGLE SST	40.0.0 AST	MSU USAGE	CPU USAGE
1205 P	126-027-000	 IS-NR	Active		 0왕	 5%
1317	126-027-000	IS-NR	Active		0%	5%
2213	126-027-000	IS-NR	Active		0%	5%
2215	126-027-000	IS-NR	Active		0%	6%
2217	126-027-000	IS-NR	Active		0%	5%
2317	126-027-000	IS-NR	Active		0%	5%
1105	126-027-000	IS-NR	Active		0%	6%
	ervice Averaged Completed.	e MSU Capacity	= 0%	Average CPU	Capacit	 ty = 5%

2. Display the status of the Service Module cards by entering the rept-stat-sccp command.

Note: The rept-stat-sccp command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the rept-stat-sccp command, see the rept-stat-sccp command description in the EAGLE 5 ISS Commands Manual.

3. Verify the memory installed on the Service Module card is enough based on the LNP telephone number quantity being assigned (refer to *Table 2: LNP Hardware and Part Number Configuration Table* on page 17) and the GPL running on the Service Module card. Enter the rept-stat-card command specifying the location of a Service Module card from *Step 2* on page 194 with the mode=full parameter. The amount of memory is shown in the **DBD MEMORY SIZE** field and is measured in megabytes. The GPL is shown in the **GPL** column.

```
rlqhncxa03w 07-05-01 10:09:55 GMT EAGLE5 37.0.0
CARD VERSION TYPE GPL PST SST 1301 123-002-001 DSM VSCCP IS-NR Acti
                                                                  AST
                                             IS-NR Active
ALARM STATUS = No Alarms.
IMT VERSION = 123-002-000
PROM VERSION
                           = 002-125-002
IMT BUS A
                            = Conn
IMT BUS B
                            = Conn
= IdleCLOCK B = Idle
CLOCK A
= Activ
BIP STATUS = valid
DB STATUS = valid
DBD MEMORY SIZE = 1000
                           = Active
DBD MEMORY SIZE = 1024M
HW VERIFICATION CODE = ----
SCCP % OCCUP = 0%
SCCP % OCCUP = 0%
SNM TVG RESULT = 24 hr: ----, 5 min: -----
Command Completed.
```

Repeat this step for every Service Module card shown in *Step 2* on page 194.

If the amount of memory on any of the Service Module cards is not enough to support the new LNP telephone number quantity, perform the *Adding a Service Module Card* on page 31 procedure and add the required Service Module cards with the correct amount of memory (refer to *Table 2: LNP Hardware and Part Number Configuration Table* on page 17). After the new Service Module cards have been added, perform the *Removing DSM and TSM Cards* on page 35 procedure and remove the Service Module cards shown in this step that do not have enough memory to support the new LNP telephone number quantity.

If the GPL running on any of the Service Module cards is SCCPHC, these cards are E5-SM4G cards. If the LNP telephone number quantity shown in *Step 1* on page 193 is 192 million, this procedure cannot be performed. This is the maximum LNP telephone number quantity that is allowed on the EAGLE 5 ISS if E5-SM4G cards are provisioned in the database.

4. Enable the new LNP telephone number quantity using the enable-ctrl-feat command with the part number of the desired quantity shown in *Table 2: LNP Hardware and Part Number Configuration Table* on page 17 and the feature access key for that quantity. enable-ctrl-feat:partnum=893011012:fak=<LNP telephone number quantity feature access key>

Note: Make sure that the LNP telephone number quantity configured in this step is greater than the ELAP telephone number quantity. The ELAP telephone number quantity can be verified by performing the *Verifying RTDB Status at the ELAP User Interface* on page 111 procedure. If the telephone number quantity on the ELAP is greater than the LNP telephone number quantity configured in this step, the ELAP RTDB is not loaded onto the entire set of Service Module cards on the EAGLE 5 ISS. Some of the Service Module cards load the ELAP RTDB to provide a restricted level of GTT/LNP service. The remainder of the Service Module cards are put into a restricted state. UIM 1323 is generated at the EAGLE 5 ISS.

Note: The feature access key is provided by Tekelec. If you do not have the feature access key for the desired LNP telephone number quantity, contact your Tekelec Sales Representative or Account Representative.

```
rlghncxa03w 07-05-01 21:15:37 GMT EAGLE5 37.0.0
ENABLE-CTRL-FEAT: MASP B - COMPLTD
```

5. Verify the changes by entering the rtrv-ctrl-feat command with the part number specified in *Step 4* on page 195.

```
rtrv-ctrl-feat:partnum=893011012
```

```
rlghncxa03w 07-05-01 21:16:37 GMT EAGLE5 37.0.0
The following features have been permanently enabled:
Feature Name Partnum Status Quantity
LNP ported TNs 893011012 on 96000000
```

6. Backup the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED): MASP A - Backup starts on active MASP.

BACKUP (FIXED): MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED): MASP A - Backup starts on standby MASP.

BACKUP (FIXED): MASP A - Backup on standby MASP to fixed disk complete.
```

Activating the ITU TCAP LRN Query (LRNQT) Feature

This procedure is used to enable and turn on the ITU TCAP LRN Query feature. This feature enables the LNP platform to handle queries with the TCAP portion encoded as per ITU standards. This feature shall be performed by existing LNP subsystems.

The LRNQT MSU Handler handles ITU TCAP LRN query messages coming over ANSI links. It supports ANSI Class 0 SCCP UDT messages only.

Note: TT Independence is not supported for LRNQT queries.

The enable-ctrl-feat command enables the feature by inputting the feature's access key and the controlled feature's part number with these parameters:

:fak

The feature access key provided by Tekelec. The feature access key contains 13 alphanumeric characters and is not case sensitive.

:partnum

The Tekelec-issued part number associated with the ITU TCAP LRN Query feature, 893026301.

This feature cannot be enabled with a temporary feature access key. Once the ITU TCAP LRN Query Feature is turned on using the FAK, it cannot be turned off.

The LRNQT feature can only be enabled if:

- The LNP feature is enabled. Refer to *Activating the LNP Feature Overview* on page 20 for more information on enabling the LNP feature.
- The LNP TN quantity features, with quantity >=24 million, is turned on.
- The GTT feature is turned on.
- The LNP ELAP Configuration feature is enabled and turned on.

The status of the LNP and ELAP LNP features are shown with the rtrv-ctrl-feat command output.

The status of the GTT is shown with the rtrv-feat command output.

Once enabled, the ITU TCAP LRN Query feature must be turned on with the chg-ctrl-feat command. The chg-ctrl-feat command uses these parameters:

:partnum

The Tekelec-issued part number associated with the the ITU TCAP LRN Query feature, 893026301

:status=on

used to activate the controlled features the customer has purchased and enabled.

Activating the ITU TCAP LRN Query (LRNQT) Feature

This procedure contains the basic steps necessary to activate the LRNQT feature. Some of these basic steps reference more detailed procedures contained in this guide.

- Verify that the GTT feature is on by entering the rtrv-feat.
 If the GTT feature is not turned on, turn on the GTT feature by entering chg-feat:gtt=on command.
- **2.** Place the LNP subsystem offline using the ent-ss-appl command.

```
ent-ss-appl:appl=lnp:ssn=<lnp subsystem number>:stat=offline
When this command has successfully completed, a text-based output displays.
```

```
rlghncxa03w 07-08-28 14:42:38 GMT EAGLE5 37.0.0 ENT-SS-APPL: MASP A - COMPLTD
```

3. Enable the LRNQT feature using the enable-ctrl command.

```
enable-ctrl-feat:partnum=893026301:fak=<LRNQT feature access key>
```

When this command has successfully completed, a text-based output displays.

```
rlghncxa03w 07-08-01 21:15:37 GMT EAGLE5 37.0.0
ENABLE-CTRL-FEAT: MASP B - COMPLTD
```

Note: The feature access key is provided by Tekelec. If you do not have the feature access key for the LRNQT feature, contact your Tekelec Sales Representative or Account Representative.

4. Turn on the LRNQT feature using the chg-ctrl-feat command.

```
chg-ctrl-feat:partnum=893026301:status=on
```

When this command has successfully completed, a text based output displays.

```
rlghncxa03w 04-01-05 16:40:40 EST EAGLE 31.3.0
CHG-CTRL-FEAT: MASP A - COMPLTD
```

5. Provision the LRNQT Translation Type using the ent-lnp-serv command.

```
ent-lnp-serv:serv=lrnqt:tt=<lrnqt tt>
```

When this command has successfully completed, a text based output displays.

```
rlghncxa03w 02-11-18 08:50:12 EST EAGLE 30.0.0
ENT-LNP-SERV: MASP A - COMPLTD
```

6. Route the final global title translation (GTT) to Eagle 5 ISS point code and LNP local subsystem using the ent-gtt command.

```
ent-gtt:type=<translation type>:gta=<global title address>:egta=<global
title end address>:xlat=dpcssn:ri=ssn:pc=<Eagle 5 ISS's true or
secondary point code>: ssn=<lnp subsystem number>
```

When this command has successfully completed, a text-based output displays.

```
tekelecstp 08-02-24 12:06:11 EST EAGLE 38.0.0
ENT-GTT: MASP A - COMPLTD
```

Note: Directing the DPC/SSN routing to the Eagle[®] 5 ISS's PC and LNP local subsystem number is handled on the network card. There is no provisioning required.

- 7. Activate the LNP subsystem by placing the LNP subsystem online and return the mated application subsystem to service.
 - a) Place the LNP subsystem online using the chg-ss-appl command.

```
chg-ss-appl:appl=lnp:nstat=online
```

When this command has successfully completed, a text-based output displays.

```
rlghncxa03w 08-05-05 13:35:40 EST EAGLE 39.0.0 CHG-SS-APPL: MASP A - COMPLTD
```

b) Return the mated application subsystem to service using the alw-map-ss command.

```
alw-map-ss:ssn=<lnp subsystem number>
```

When this command has successfully completed, this message should appear.

```
integrat40 00-05-24 10:37:22 EST EAGLE5 31.0.0 Allow map subsystem command sent to all SCCP cards. Command Completed.
```

8. Backup the new changes using the chg-db:action=backup:dest=fixed command.

These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.

BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED) : MASP A - Backup starts on standby MASP.

BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

Chapter

4

Automatic Call Gapping (ACG) Configuration

Topics:

- Overview Page 200
- Determining the ACG Node Overload Control Level Query Rates Page 203
- Adding an ACG Node Overload Control Level Page 208
- Removing an ACG Node Overload Control Level Page 210
- Changing an ACG Node Overload Control Level Page 211
- Adding ACG Manual Initiated Controls Page
- Removing ACG Manual Initiated Controls Page 216
- Changing ACG Manual Initiated Controls Page 218

This chapter describes how to determine traffic capacity and node overload control levels, and how to add and remove ACG node overload control levels and ACG manual initiated controls.

Overview

Location routing number (LRN) queries for a particular telephone number or a portion of a telephone number are received by the EAGLE 5 ISS when a particular threshold is reached. ACG controls are used under two conditions:

- 1. When a node overload condition is detected and an ACG control is configured for that overload level, the EAGLE 5 ISS sends an ACG component within each LRN query response it processes. The ACG control is invoked for the first 6 or 10 digits of the called party address in all queries sent to the EAGLE 5 ISS to control the rate that queries are processed.
- 2. If no overload control is in place, LRNQT sends an ACG for a manually initiated control to block queries. Manually initiated control procedures are similar to overlaod control procedures, but shall be able to vary the number of digits that are to be placed under control (3 or 6-10 digits). Since LRNQT may have to process queries for ported (LRN routing) and non-ported numbers (default routing), the user shall be able to initiate control on any number. A list of all numbers for which the user has initiated controls shall be maintained. This list shall be the same across AIN and LRNQT services.

In addition to the digits applied to the ACG control, the ACG control contains a duration index and a gap interval index. The duration index is a timer defining the amount of time the ACG control is in effect. The gap interval index is a timer that defines the rate that queries are processed in the EAGLE 5 ISS. For example, the ACG control may be in effect for 128 seconds, the duration index, and a query is processed every 2 seconds, the gap interval index. When the ACG control is detected, the duration timer and gap interval timer are started. Until the gap timer expires, all calls containing the specified number of digits or the specified digits are routed to reorder tone or to an announcement indicating that the call cannot be completed. Once the gap timer has expired, the next call containing the matching dialed digits is processed normally and the gap timer is restarted. This cycle continues until the ACG control is cancelled by the EAGLE 5 ISS or the duration timer expires. *Table 17: Duration and Gap Interval Index Values* on page 200 shows the values for the duration index and the gap index used in the automatic call gapping commands.

Table 17: Duration and Gap Interval Index Values

Index	Duration Index Value (DRTN) in seconds	Node Overload Control Interval or IN Manual Initiated Control Interval Index Value (INTVL) in seconds	AIN Manual Initiated Control Interval Index Value (A INTVL) in seconds
0	N/A	0	N/A
1	1	3	0
2	2	4	0.1

Index	Duration Index Value (DRTN) in seconds	Node Overload Control Interval or IN Manual Initiated Control Interval Index Value (INTVL) in seconds	AIN Manual Initiated Control Interval Index Value (A INTVL) in seconds
3	4	6	0.25
4	8	8	0.5
5	16	11	1
6	32	16	2
7	64	22	5
8	128	30	10
9	256	42	15
10	512	58	30
11	1024	81	60
12	2048	112	120
13	infinite	156	300
14	N/A	217	600
15	N/A	300	infinite

Node Overload Control

The EAGLE 5 ISS does not maintain overload levels for individual subsystems, but maintains an overload level for the entire EAGLE 5 ISS, the node. There are 10 overload levels that are defined for the EAGLE 5 ISS. Each overload level contains this information.

- The number of queries in a 30 second period that defines each overload level. When the defined number of queries is reached, the ACG control for the overload level goes into effect.
- The number of digits from AIN queries to control
- The number of digits from IN queries to control
- The duration index of the ACG control

The gap interval index of the ACG control

Only overload levels 1 through 9 can be added or removed from the database, but can be changed. Overload level 10 is pre-defined with these values.

The number of queries = 2,147,483,647

The number of digits from AIN queries to control = 6

The number of digits from IN queries to control = 6

The gap interval index = 7 - 22 seconds

The duration index = 1 - 1 second

Any overload levels that are not configured are not used. If no overload levels are configured or if any LIMs are denied service, then overload level 10 is used for the ACG node overload control.

Manually Initiated Control

Manually initiated controls are applied to a specific 10 digit telephone number or a part of a specific telephone number in either AIN queries or IN queries. The manually initiated control can contain the first 3, 6, 7, 8, 9 digits, or all 10 digits of the telephone number.

The duration index of a manually initiated control uses the same values as the duration index of a node overload control. A manually initiated control contains a gap interval index for IN queries, using the same values as the gap interval index for the node overload control levels, and a gap interval index for AIN queries using different values.

For IN queries, the digits sent for manually initiated controls is the original 10 digit called party number. For example, if a query for called party number 919-460-2132 triggers a manually initiated control for the digits 919, the digits parameter of the ACG is 919-460-2132 instead of 919.

A manually initiated control can be applied to all queries sent to the EAGLE 5 ISS. This type of manually initiated control specifies the number of digits from the queries' dialed digits. For manually initiated controls that apply to particular query services and called party digits, the number of digits to use in the ACG component is the number of digits in the specified digit string.

The database can contain a manually initiated control that applies to all queries and manually initiated controls that apply to specific combinations of query service and called party digits. When more than one control applies to a specific query, the one selected is the one containing the higher number of digits. If a manually initiated control cannot be selected with this method, then the one with the higher gap interval index value is selected. If the controls contain the same gap interval index value, then the control with the higher duration index value is selected. This an example of how these controls are selected.

- 1. A control for AIN LNP queries for called party digits of 919-460-2 is entered into the database. (ent-acg-mic:serv=ain:aintvl=1:dgts=9194602:drtn=3).
- 2. A control with a interval index of 10 for AIN LNP queries for called party digits of 919-460 is entered into the database. (
 ent-acg-mic:aintvl=10:serv=ain:dqts=919460:drtn=12:).
- 3. A control with a interval index of 7 for all queries, and the number of digits used for the control is 6 is entered into the database.

```
(ent-acg-mic:intvl=7:type=all:nd=6:drtn=12:aintvl=7)
```

4. The EAGLE 5 ISS receives an AIN query for the called party address 919-461-1017.

- 5. The EAGLE 5 ISS sends an ACG for 919-461. The control entered in item 3 is the only one that applies.
- **6.** The EAGLE 5 ISS receives an AIN query for called party 919-460-2132.
- 7. The EAGLE 5 ISS sends ACG for 919-460-2. The control entered in item 1 is more specific than the controls entered in items 2 and 3.
- **8.** The EAGLE 5 ISS receives an AIN query for called party 919-460-5500.
- 9. The EAGLE 5 ISS sends ACG with a interval index of 10 for 919-460. The control entered in item 2 is more specific than the control entered in item 3. The control entered in item 1 does not apply.

Determining the ACG Node Overload Control Level Query Rates

The query rates for the ACG node overload control levels are the number of LNP queries received by the EAGLE 5 ISS in a 30 second period. When the defined number of queries is reached, the ACG control for that node overload control level goes into effect.

These items are used to calculate the query rates for the node overload control levels.

N = the number of Service Module Cards cards running the SCCP application installed in the EAGLE 5 ISS.

S = the total SCCP EAGLE 5 ISS traffic capacity in messages per second

P = The LNP query portion of the SCCP traffic from 0% to 100% determined from the traffic studies.

Q = The LNP query portion of the total SCCP EAGLE 5 ISS capacity in messages per second F = The query rate of the first ACG node overload control level at 80% of the total LNP query portion of the SCCP traffic, in messages per 30 seconds

L = The query rate of the last ACG node overload control level at 100% of the total SCCP traffic, in messages per 30 seconds

NL = The number of ACG node overload control levels being used.

I = The spacing of the query rates between the node overload control levels.

The query rates are configured with the qr parameter of ent-acg-noc and chg-acg-noc commands.

Any node overload control levels that are not configured are not used. If no node overload control levels are configured or if any LIMs are denied SCCP service, then node overload control level 10 is used for the ACG node overload control. Node overload control level 10 cannot be added with the ent-acg-noc command or removed with the dlt-acg-noc command, but can be changed with the chg-acg-noc command. It is recommended that the query rate for node overload control level 10 is not changed. The default query rate for node overload control level 10 is 2,147,483,647 messages per 30 seconds.

warning: If the query rate for node overload control level 10 is changed, then node overload control level 10 is used as any other node overload control level in addition to the default conditions that node overload control level 10 is used for (no node WARNING overload control levels are configured or for any LIMs denied SCCP service). If the query rate for node overload control level 10 is changed, make sure that the duration

and interval timer values assigned to node overload control level 10 are appropriate for all three conditions or traffic may be lost.

By not changing the query rate of node overload control level 10, this ensures that node overload control level 10 is used for its default conditions and is not treated as another node overload control level.

Determining the Total SCCP EAGLE 5 ISS Traffic Capacity

The total EAGLE 5 ISS traffic capacity is determined from the number of Service Module Cards running the SCCP application installed in the EAGLE 5 ISS (N). Each Service Module Cards running the SCCP application can handle 850 messages per second. The number of Service Module Cards used in this calculation is one less than the total number of Service Module Cards in the EAGLE 5 ISS. To determine the total SCCP EAGLE 5 ISS traffic capacity (S), subtract 1 from the total number of Service Module Cards running the SCCP application and multiply the result by 850 messages per second.

(N-1) x 850 messages per second = Total SCCP traffic capacity (S)

Determining the LNP Query Portion of the Total SCCP EAGLE 5 ISS Traffic Capacity

The LNP query portion of the SCCP traffic (Q) is a percentage of the total SCCP EAGLE 5 ISS traffic (P) as determined from the traffic studies. Once the LNP query percentage is determined, multiply the total SCCP EAGLE 5 ISS traffic capacity (S) by the LNP query percentage.

$$S \times P = Q$$

Determining the Query Rate of the First ACG Node Overload Control Level

The ACG node overload controls should start when the LNP query portion of the SCCP traffic reaches 80% of the total LNP query portion of the SCCP traffic (Q). The ACG node overload control level is determined by the number messages received over a 30 second period of time. To determine the query rate of the first ACG node overload control level (F), in messages per 30 seconds, multiply the total LNP query portion of the SCCP traffic (Q) by .8, then multiply that result by 30.

 $Q \times 0.8 \times 30 = F$

Determining the Query Rate of the Last ACG Node Overload Control Level

The ACG node overload controls should continue until the LNP query portion of the SCCP traffic reaches 100% of the total SCCP traffic (S). To determine the query rate of the last ACG node overload control level (L), in messages per 30 seconds, multiply the total LNP query portion of the SCCP traffic by 30.

 $S \times 30 = L$

Determining the Spacing of Query Rates between ACG Node Overload Control Levels

If the number of ACG node overload control levels being used is 3 or more, the query rates of each node overload control level between the first and the last node overload control level can be evenly divided. Subtract the query rate of the first level from the query rate of the last level and divide the result by the number of node overload control levels (NL) being used minus 1.

$$(L - F)/(NL-1) = I$$

Setting the ACG Node Overload Control Levels

If three node overload control levels are being used:

- The query rate for the first node control level = F
- The query rate for the second node control level = F + I
- The query rate for the third node control level = L

If four node overload control levels are being used:

- The query rate for the first node control level = F
- The query rate for the second node control level = F + I
- The query rate for the third node control level = F + 2I
- The query rate for the fourth node control level = L

If five node overload control levels are being used:

- The query rate for the first node control level = F
- The guery rate for the second node control level = F + I
- The query rate for the third node control level = F + 2I
- The query rate for the fourth node control level = F + 3I
- The query rate for the fifth node control level = L

If six node overload control levels are being used:

- The query rate for the first node control level = F
- The query rate for the second node control level = F + I
- The query rate for the third node control level = F + 2I
- The query rate for the fourth node control level = F + 3I
- The query rate for the fifth node control level = F + 4I
- The guery rate for the sixth node control level = L

If seven node overload control levels are being used:

- The query rate for the first node control level = F
- The query rate for the second node control level = F + I
- The query rate for the third node control level = F + 2I
- The guery rate for the fourth node control level = F + 3I
- The query rate for the fifth node control level = F + 4I
- The query rate for the sixth node control level = F + 5I
- The query rate for the seventh node control level = L

If eight node overload control levels are being used:

- The query rate for the first node control level = F
- The query rate for the second node control level = F + I
- The query rate for the third node control level = F + 2I
- The query rate for the fourth node control level = F + 3I
- The query rate for the fifth node control level = F + 4I
- The query rate for the sixth node control level = F + 5I
- The guery rate for the seventh node control level = F + 6I
- The query rate for the eighth node control level = L

If nine node overload control levels are being used:

- The query rate for the first node control level = F
- The query rate for the second node control level = F + I
- The query rate for the third node control level = F + 2I
- The query rate for the fourth node control level = F + 3I
- The query rate for the fifth node control level = F + 4I
- The query rate for the sixth node control level = F + 5I
- The query rate for the seventh node control level = F + 6I
- The query rate for the eighth node control level = F + 7I
- The query rate for the ninth node control level = L

For example 1, this is the configuration of the EAGLE 5 ISS.

P = 0.50 - 50% LNP queries as determined by the traffic studies

N = 11 Service Module Cards running the SCCP application

NL = 7 ACG node overload control levels - ACG node overload control levels 3 though 9

- 1. Determine the total SCCP EAGLE 5 ISS traffic capacity
 - $(N-1) \times 850$ messages per second = Total SCCP traffic capacity (S)
 - (11-1) x 850 messages per second = 8500 messages per second
- **2.** Determine the LNP query portion of the total SCCP EAGLE 5 ISS traffic capacity in messages per second

$$S \times P = Q$$

8500 messages per second \times 0.50 = 4250 messages per second

3. Determine the query rate of the first ACG node overload control level $Q \times 0.8 \times 30 = F$

4250 messages per second $\times 0.8 \times 30 = 102,000$ messages per 30 seconds

4. Determining the query rate of the last ACG node overload control level $S \times 30 = L$

8500 messages per second x 30 = 255,000 messages per 30 seconds

5. Determine the spacing of the query rates between ACG node overload control levels

$$(L - F)/(NL-1) = I$$

(255,000 messages per 30 seconds - 102,000 messages per 30 seconds)/(7 - 1) = 25,500 messages per 30 seconds.

6. Setting the ACG node overload control levels by entering these commands.

```
ent-acg-noc:lvl=3:qr=102000:drtn=3:intvl=3
ent-acg-noc:lvl=4:qr=127500:drtn=4:intvl=4
ent-acg-noc:lvl=5:qr=153000:drtn=5:intvl=5
ent-acg-noc:lvl=6:qr=178500:drtn=6:intvl=6
```

```
ent-acg-noc:lvl=7:qr=204000:drtn=7:intvl=7
ent-acg-noc:lvl=8:qr=229500:drtn=8:intvl=8
ent-acg-noc:lvl=9:qr=255000:drtn=9:intvl=9
```

For example 2, this is the configuration of the EAGLE 5 ISS.

P = 0.70 - 70% LNP queries as determined by the traffic studies

N = 21 Service Module Cards running the SCCP application

NL = 7 ACG node overload control levels - ACG node overload control levels 3 though 9

- 1. Determine the total SCCP EAGLE 5 ISS traffic capacity
 - $(N-1) \times 850$ messages per second = Total SCCP traffic capacity (S)
 - $(21-1) \times 850$ messages per second = 17,000 messages per second
- **2.** Determine the LNP query portion of the total SCCP EAGLE 5 ISS traffic capacity in messages per second

$$S \times P = Q$$

17,000 messages per second x 0.70 = 11,900 messages per second

- 3. Determine the query rate of the first ACG node overload control level $Q \times 0.8 \times 30 = F$
 - 11,900 messages per second \times 0.8 \times 30 = 285,600 messages per 30 seconds
- **4.** Determining the query rate of the last ACG node overload control level $S \times 30 = L$
 - 17,000 messages per second x 30 = 510,000 messages per 30 seconds
- **5.** Determine the spacing of the query rates between ACG node overload control levels

$$(L - F)/(NL-1) = I$$

(510,000 messages per 30 seconds - 285,600 messages per 30 seconds) / (7 - 1) = 37,400 messages per 30 seconds.

6. Setting the ACG node overload control levels by entering these commands.

```
ent-acg-noc:lvl=3:qr=285600:drtn=3:intvl=3
ent-acg-noc:lvl=4:qr=323000:drtn=4:intvl=4
ent-acg-noc:lvl=5:qr=360400:drtn=5:intvl=5
ent-acg-noc:lvl=6:qr=397800:drtn=6:intvl=6
ent-acg-noc:lvl=7:qr=435200:drtn=7:intvl=7
ent-acg-noc:lvl=8:qr=472600:drtn=8:intvl=8
ent-acg-noc:lvl=9:qr=510000:drtn=9:intvl=9
```

For example 3, this is the configuration of the EAGLE 5 ISS.

P = 0.60 - 60% LNP queries as determined by the traffic studies

N = 17 Service Module Cards running the SCCP application

NL = 4 ACG node overload control levels - ACG node overload control levels 2, 4, 6, and 8

1. Determine the total SCCP EAGLE 5 ISS traffic capacity

 $(N-1) \times 850$ messages per second = Total SCCP traffic capacity (S)

(17-1) x 850 messages per second = 13,600 messages per second

2. Determine the LNP query portion of the total SCCP EAGLE 5 ISS traffic capacity in messages per second

$$S \times P = Q$$

13,600 messages per second x 0.60 = 8160 messages per second

3. Determine the query rate of the first ACG node overload control level $O \times 0.8 \times 30 = F$

8160 messages per second x $0.8 \times 30 = 195,840$ messages per 30 seconds

4. Determining the query rate of the last ACG node overload control level $S \times 30 = L$

13,600 messages per second x 30 = 408,000 messages per 30 seconds

5. Determine the spacing of the query rates between ACG node overload control levels

$$(L - F)/(NL-1) = I$$

(408,000 messages per 30 seconds - 195,840 messages per 30 seconds) / (4 - 1) = 70,720 messages per 30 seconds.

6. Setting the ACG node overload control levels by entering these commands.

```
ent-acg-noc:lvl=2:qr=195840:drtn=3:intvl=3
ent-acg-noc:lvl=4:qr=266560:drtn=4:intvl=4
ent-acg-noc:lvl=6:qr=337280:drtn=6:intvl=6
ent-acg-noc:lvl=8:qr=408000:drtn=8:intvl=8
```

Adding an ACG Node Overload Control Level

This procedure is used to add an ACG node overload control level to the database using the ent-acg-noc command.

The ent-acg-noc command uses these parameters.

:1v1 - The overload levels, 1 though 9.

:qr - The number of LNP queries in a 30 second period that define a particular overload level

and – The number of digits in the global title address of an AIN query

: ind - The number of digits in the global title address of an IN query

: intvl – The interval index – the amount of time between ACGs. This is a number that is mapped to a time value at the LNP node. See *Table 17: Duration and Gap Interval Index Values* on page 200.

:drtn – The duration index – the amount of time that the ACG is in effect. This is a number that is mapped to a time value at the LNP node. See *Table 17: Duration and Gap Interval Index Values* on page 200.

To add an ACG node overload control, the LNP feature must be enabled. This is verified by entering the rtrv-ctrl-feat command. If the LNP feature is enabled, the entry LNP ported TNs is shown in the rtrv-ctrl-feat output with a quantity greater than 0. If the LNP feature is not enabled, perform the procedures in the LNP Feature Activation on page 15 to enable the LNP feature.

The overload level to be added cannot be in the database.

Overload level 10 is pre-defined in the database with these values and cannot be added to the database. These values can be changed using the *Changing an ACG Node Overload Control Level* on page 211.

QR = 2147483647

AND = 6

IND = 6

INTVL = 7 - 22 seconds

DRTN = 1 - 1 second

The examples in this procedure are used to add ACG node overload control level 7 to the database with these values.

QR = 35000000

AND = 10

IND = 10

INTVL = 7 - 22 seconds

DRTN = 8 - 128 seconds

1. Display the status of the controlled features by entering the rtrv-ctrl-feat command. The following is an example of the possible output.

```
rlghncxa03w 07-08-29 16:40:40 EST EAGLE5 37.6.0

The following features have been permanently enabled:
Feature Name Partnum Status Quantity
LNP ported TNs 893011023 on 228000000
```

If the LNP feature is enabled, the entry LNP ported TNs is shown in the rtrv-ctrl-feat output with a quantity greater than 0. If the LNP feature is enabled, go to step 2. If the LNP feature is not enabled, perform the procedures in the *LNP Feature Activation* on page 15 to enable the LNP feature. After the LNP feature is enabled, go to *Step* 2 on page 210.

2. Display the ACG node overload levels in the database by entering the rtrv-acg-noc command.

The following is an example of the possible output.

```
rlghncxa03w 07-08-28 08:50:12 GMT EAGLE5 37.0.0
           AND IND INTVL DRTN
LVL OR
           10 6
6 6
    600000
3
                         3
                               6
4
    750000
                         5
                               7
    2147483647 10
10
                    10
                         15
                               13
RTRV-ACG-NOC: MASP A - COMPLTD
```

3. Add the ACG node overload control level to the database using the ent-acg-noc command. For this example, enter this command.

```
ent-acg-noc:lvl=7:qr=35000000:and=10:ind=10:intvl=7:drtn=8 When this command has successfully completed, this message should appear.
```

```
rlghncxa03w 07-08-28 08:50:12 GMT EAGLE5 37.0.0
ENT-ACG-NOC: MASP A - COMPLTD
```

4. Verify the changes using the rtrv-acg-noc command.

The following is an example of the possible output.

```
rlghncxa03w 07-08-28 08:50:12 GMT EAGLE5 37.0.0
              AND IND INTVL DRTN
LVL QR
    600000
3
              10 6 3
                                6
    750000
               6
                    6
                         5
                                7
    750000 6 6
35000000 10 10
                         7
                                8
    2147483647 10 10 15
10
                                13
RTRV-ACG-NOC: MASP A - COMPLTD
```

5. Backup the new changes using the chg-db:action=backup:dest=fixed command.

The following messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED): MASP A - Backup starts on active MASP.

BACKUP (FIXED): MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED): MASP A - Backup starts on standby MASP.

BACKUP (FIXED): MASP A - Backup on standby MASP to fixed disk complete.
```

Removing an ACG Node Overload Control Level

This procedure is used to remove an ACG Node Overload Control Level from the database using the dlt-acg-noc command.

The dlt-acg-noc command uses only one parameter, lvl – the overload levels 1 though 9. The database contains 10 ACG node overload levels, but only nine are configurable.

Overload level 10 cannot be removed from the database, but its values can be changed using the *Changing an ACG Node Overload Control Level* on page 211 procedure.

The overload level to be removed must be in the database.

The example in this procedure removes ACG node overload control level 3 from the database.

 Display the ACG node overload levels in the database by entering the rtrv-acg-noc command.

The following is an example of the possible output.

```
rlghncxa03w 07-08-28 08:50:12 GMT EAGLE5 37.0.0
LVL QR
              AND IND INTVL DRTN
    600000
3
               10 6 3
                               6
    35000000 10
2145
4
                    6
                         5
                               7
                    10
                         7
                               8
    2147483647 10 10 15
                               13
10
RTRV-ACG-NOC: MASP A - COMPLTD
```

Remove the ACG node overload control level from the database using the dlt-acg-noc command.

For this example, enter this command.

```
dlt-acg-noc:lvl=3
```

When this command has successfully completed, this message should appear.

```
rlghncxa03w 07-08-28 08:50:12 GMT EAGLE5 37.0.0
DLT-ACG-NOC: MASP A - COMPLTD
```

3. Verify the changes using the rtrv-acg-noc command.

The following is an example of the possible output.

```
rlghncxa03w 07-08-28 08:50:12 GMT EAGLE5 37.0.0

LVL QR AND IND INTVL DRTN

4 750000 6 6 5 7

7 35000000 10 10 7 8

10 2147483647 10 10 15 13

RTRV-ACG-NOC: MASP A - COMPLTD
```

4. Backup the new changes using the chg-db:action=backup:dest=fixed command.

The following messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED): MASP A - Backup starts on active MASP.

BACKUP (FIXED): MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED): MASP A - Backup starts on standby MASP.

BACKUP (FIXED): MASP A - Backup on standby MASP to fixed disk complete.
```

Changing an ACG Node Overload Control Level

This procedure is used to change the values of an existing ACG Node Overload Control Level in the database using the chg-acg-noc command.

The chg-acg-noc command uses these parameters.

```
:1v1 – The overload levels, 1 though 10.
```

:qr - The number of LNP queries in a 30 second period that define a particular overload level

: and - The number of digits in the global title address of a AIN query

: ind – The number of digits in the global title address of a IN query

: intvl – The interval index – the amount of time between ACGs. This is a number that is mapped to a time value at the LNP node. See *Table 17: Duration and Gap Interval Index Values* on page 200.

:drtn – The duration index – the amount of time that the ACG is in effect. This is a number that is mapped to a time value at the LNP node. See *Table 17: Duration and Gap Interval Index Values* on page 200.

The overload level to be changed must be in the database.

The examples in this procedure are used to change ACG node overload control level 10 in the database to these values.

```
QR = 70000000, AND = 6, IND = 6, INTVL = 11 - 81 seconds
```

DRTN = 8 - 128 seconds

1. Display the ACG node overload levels in the database by entering the rtrv-acg-noc command.

The following is an example of the possible output.

```
rlghncxa03w 07-08-28 08:50:12 GMT EAGLE5 37.0.0
                 AND IND INTVL DRTN
LVL OR
     QR AND 600000 10 750000 6 35000000 10
3
                 10 6
                             3
                                     6
4
                       6
                             5
                                     7
                       10
                                     8
     35000000 10 10
2147483647 10 10
10
                             15
                                     13
RTRV-ACG-NOC: MASP A - COMPLTD
```

2. Change the ACG node overload control level values in the database using the chg-acg-noc command.

For this example, enter this command.

```
chg-acg-noc:lvl=10:gr=70000000:and=6:ind=6:intvl=11:drtn=8
```

When this command has successfully completed, this message should appear.

```
rlghncxa03w 07-08-28 08:50:12 GMT EAGLE5 37.0.0 CHG-ACG-NOC: MASP A - COMPLTD
```

3. Verify the changes using the rtrv-acg-noc command.

The following is an example of the possible output.

```
rlghncxa03w 07-08-28 08:50:12 GMT EAGLE5 37.0.0
                AND IND INTVL DRTN
LVL QR
     QR AND IND 600000 10 6
3
                            3
                                    6
4
     750000
                 6
                       6
                             5
                                    7
     750000 6 6
35000000 10 10
70000000 6 6
                             7
                                    8
10
                            11
                                    8
RTRV-ACG-NOC: MASP A - COMPLTD
```

4. Backup the new changes using the chg-db:action=backup:dest=fixed command.

The following messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED): MASP A - Backup starts on active MASP.
```

```
BACKUP (FIXED): MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED): MASP A - Backup starts on standby MASP.

BACKUP (FIXED): MASP A - Backup on standby MASP to fixed disk complete.
```

Adding ACG Manual Initiated Controls

This procedure is used to assign ACG controls to all LNP queries or to specific LNP query services and called party digits using the ent-acg-mic command. If the EAGLE 5 ISS query service receives a query to which a control applies, then the EAGLE 5 ISS sends an ACG, encoded as configured, with the response.

The ent-acg-mic command uses these parameters.

: type – Whether the manually initiated control applies to all query services (type=all) or to a specific query service and called party digits (type=sd).

: serv - The type of service the manual initiated control is applied to

:dgts - the digits of the global title address

:nd – the number of digits in the global title address

:drtn – The duration index – the amount of time that the ACG is in effect. This is a number that is mapped to a time value at the LNP node. See *Table 17: Duration and Gap Interval Index Values* on page 200.

: intvl – The INinterval index – the amount of time between ACGs for IN queries. This is a number that is mapped to a time value at the LNP node. See *Table 17: Duration and Gap Interval Index Values* on page 200.

:aintvl – The AIN interval index – the amount of time between ACGs for AIN queries. This is a number that is mapped to a time value at the LNP node. See *Table 17: Duration and Gap Interval Index Values* on page 200.

To add an ACG manual initiated control, the LNP feature must be enabled. This is verified by entering the rtrv-ctrl-feat command. If the LNP feature is enabled, the entry LNP ported TNs is shown in the rtrv-ctrl-feat output with a quantity greater than 0. If the LNP feature is not enabled, perform the procedures in the LNP Feature Activation on page 15 to enable the LNP feature.

If the type=all parameter is specified, the nd, intvl, and aintvl parameters must be specified and the serv and dgts parameters cannot be specified. To specify the type=all parameter, no existing ACG manually initiated control specifying all LNP query services can be in the database.

If the type=sd parameter is specified, the serv and dgts parameters must be specified. To specify the type=sd parameter, no existing ACG manually initiated control containing the same query service and digits can be in the database.

If the serv=ain parameter is specified, the aintvl parameter must be specified and the intvl parameter cannot be specified.

If the serv=in parameter is specified, the intvl parameter must be specified and the aintvl parameter cannot be specified.

The database contains a maximum of 256 ACG manually initiated controls with the type=sd parameter. When the type=sd parameter is specified with the ent-acg-mic command, the

output displays the number of entries in the ACG MIC table and the amount of the ACG MIC table being used, expressed as a percentage obtained by dividing the number of entries in the ACG MIC table by the maximum number of entries the ACG MIC table can contain, 256.

```
rlghncxa03w 06-08-28 08:50:12 GMT EAGLE5 35.1.0
ACG MIC table is (11 of 256) 4% full of type SD
ENT-ACG-MIC: MASP A - COMPLTD
```

The examples in this procedure are used to add these three ACG manually initiated controls to the database.

ACG Manually Initiated Control #1

Type of Control = All

Number of Digits = 6

IN Interval Index = 4 - 8 seconds

AIN Interval Index = 7 - 5 seconds

Duration Index = 8 - 128 seconds

ACG Manually Initiated Control #2

Type of Control = SD

Query Service = AIN

AIN Interval Index = 8 - 10 seconds

Digits = 910584

Duration Index = 7 - 64 seconds

ACG Manually Initiated Control #3

Type of Control = SD

Query Service = IN

IN Interval Index = 6 - 16 seconds

Digits = 4237431234

Duration Index = 5 - 16 seconds

1. Display the status of the controlled features by entering the rtrv-ctrl-feat command. The following is an example of the possible output.

```
rlghncxa03w 07-08-29 16:40:40 EST EAGLE5 37.6.0
The following features have been permanently enabled:
Feature Name Partnum Status Quantity
LNP ported TNS 893011023 on 228000000
;
```

If the LNP feature is enabled, the entry LNP ported TNs is shown in the rtrv-ctrl-feat output with a quantity greater than 0. If the LNP feature is enabled, go to *Step 2* on page 215. If the LNP feature is not enabled, perform the procedures in the *LNP Feature Activation* on page 15 to enable the LNP feature. After the LNP feature is enabled, go to *Step 2* on page 215.

Display the ACG manually initiated controls in the database using the rtrv-acg-mic command.

The following is an example of the possible output.

```
rlghncxa03w 06-08-28 08:50:12 GMT EAGLE5 35.1.0
TYPE=ALL
ND INTVL AINTVL DRTN
TYPE=SD
           SERV INTVL AINTVL DRTN
DGTS
704461
           AIN
                        8
919460
                               7
          IN
                 6
9194602132 AIN -
                        7
                               8
9194602132 IN
                 4
                               8
919461
           IN
                 6
ACG MIC table is (5 of 256) 2% full of type SD
RTRV-ACG-MIC: MASP A - COMPLTD
```

3. Add the ACG manually initiated controls to the database using the ent-acg-mic command. For this example, enter this command.

```
ent-acg-mic:type=all:nd=6:intvl=8:aintvl=7:drtn=8
```

When this command has successfully completed, this message should appear.

```
rlghncxa03w 06-08-28 08:50:12 GMT EAGLE5 35.1.0
ENT-ACG-MIC: MASP A - COMPLTD
```

ent-acg-mic:type=sd:serv=ain:dgts=910584:aintvl=8:drtn=7

When this command has successfully completed, this message should appear.

```
rlghncxa03w 06-08-28 08:50:12 GMT EAGLE5 35.1.0
ACG MIC table is (6 of 256) 2% full of type SD
ENT-ACG-MIC: MASP A - COMPLTD
```

ent-acg-mic:type=sd:serv=in:dgts=4237431234:intvl=6:drtn=5

When this command has successfully completed, this message should appear.

```
rlghncxa03w 06-08-28 08:50:12 GMT EAGLE5 35.1.0
ACG MIC table is (7 of 256) 3% full of type SD
ENT-ACG-MIC: MASP A - COMPLTD
```

4. Verify the changes using the rtrv-acg-mic command with either the type=all parameter, or the parameters and values specified with the type=sd parameter in *Step 3* on page 215. For this example, enter this command.

```
rtrv-acg-mic:type=all
```

The following is an example of the possible output.

```
rlghncxa03w 06-08-28 08:50:12 GMT EAGLE5 35.1.0
TYPE=ALL
ND INTVL AINTVL DRTN
6 8 7 8
```

rtrv-acg-mic:type=sd:serv=ain:dgts=910584:aintvl=8:drtn=7

The following is an example of the possible output.

```
rlghncxa03w 06-08-28 08:50:12 GMT EAGLE5 35.1.0
TYPE=SD
DGTS SERV INTVL AINTVL DRTN
910584 AIN - 8 7
ACG MIC table is (7 of 256) 3% full of type SD
RTRV-ACG-MIC: MASP A - COMPLTD
```

rtrv-acg-mic:type=sd:serv=in:dgts=4237431234:intvl=6:drtn=5

The following is an example of the possible output.

```
rlghncxa03w 06-08-28 08:50:12 GMT EAGLE5 35.1.0
TYPE=SD
DGTS SERV INTVL AINTVL DRTN
4237431234 IN 6 - 5
ACG MIC table is (7 of 256) 3% full of type SD
RTRV-ACG-MIC: MASP A - COMPLTD
```

5. Backup the new changes using the chg-db:action=backup:dest=fixed command.

The following messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED): MASP A - Backup starts on active MASP.
BACKUP (FIXED): MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED): MASP A - Backup starts on standby MASP.
BACKUP (FIXED): MASP A - Backup on standby MASP to fixed disk complete.
```

Removing ACG Manual Initiated Controls

This procedure is used to remove an ACG manually initiated control using the dlt-acg-mic command.

The dlt-acg-mic command uses these parameters:

: type – Whether the manually initiated control applies to all query services (type=all) or to a specific query service and called party digits (type=sd).

: serv – The type of service to which the manual initiated control is applied.

:dgts - The digits of the global title address.

The specified ACG manually initiated control must be in the database.

If the type=all parameter is specified, the serv and dgts parameters cannot be specified.

If the type=sd parameter is specified, the serv and dgts parameters must be specified.

The example in this procedure is used to remove the ACG manually initiated control for all query types and the IN query type for digits 919460.

1. Display the ACG manually initiated controls in the database using the rtrv-acg-mic command.

The following is an example of the possible output.

```
rlghncxa03w 07-08-28 08:50:12 GMT EAGLE5 37.0.0
TYPE=ALL
ND INTVL AINTVL DRTN
TYPE=SD
          SERV INTVL AINTVL DRTN
DGTS
4237431234 IN 6
          AIN -
IN
                       8
704461 AIN
                               7
                      8
910584
                               7
                               7
919460
9194602132 AIN -
9194602132 IN 4
                      7
919461
           IN 6
                               7
ACG MIC table is (7 of 256) 3% full of type SD
RTRV-ACG-MIC: MASP A - COMPLTD
```

2. Remove the ACG manually initiated controls from the database using the dlt-acg-mic command.

For this example, enter these commands.dlt-acq-mic:type=all

When this command has successfully completed, this message should appear.

```
rlghncxa03w 07-08-28 08:50:12 GMT EAGLE5 37.0.0
DLT-ACG-MIC: MASP A - COMPLTD
```

dlt-acg-mic:type=sd:serv=in:dqts=919460

When this command has successfully completed, this message should appear.

```
rlghncxa03w 07-08-28 08:50:12 GMT EAGLE5 37.0.0
ACG MIC table is (6 of 256) 2% full of type SD
DLT-ACG-MIC: MASP A - COMPLTD
```

3. Verify the changes using the rtrv-acg-mic command with either the type=all parameter, or the parameters and values specified with the type=sd parameter in *Step 2* on page 217. If the ACG manual initiated controls were successfully removed in *Step 2* on page 217, the rtrv-acg-mic output should not show the entry that was removed. For this example, enter these commands.

```
rlghncxa03w 07-08-28 08:50:12 GMT EAGLE5 37.0.0
TYPE=ALL
ND INTVL AINTVL DRTN
```

rtrv-acg-mic:type=sd:serv=in:dgts=919460

The following is an example of the possible output.

```
rlghncxa03w 07-08-28 08:50:12 GMT EAGLE5 37.0.0
TYPE=SD
DGTS SERV INTVL AINTVL DRTN
ACG MIC table is (6 of 256) 2% full of type SD
RTRV-ACG-MIC: MASP A - COMPLTD
```

4. Backup the new changes using the chg-db:action=backup:dest=fixed command.

The following messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED): MASP A - Backup starts on active MASP.

BACKUP (FIXED): MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED): MASP A - Backup starts on standby MASP.

BACKUP (FIXED): MASP A - Backup on standby MASP to fixed disk complete.
```

Changing ACG Manual Initiated Controls

This procedure is used to change an existing ACG manually initiated controls using the chg-acg-mic command. The chg-acg-mic command uses these parameters.

: type – Whether the manually initiated control applies to all query services (type=all) or to a specific query service and called party digits (type=sd).

: serv – The type of service to which the manual initiated control is applied.

:dgts - The digits of the global title address.

:nd - The number of digits in the global title address.

:drtn – The duration index – the amount of time that the ACG is in effect. This is a number that is mapped to a time value at the LNP node. See *Table 17: Duration and Gap Interval Index Values* on page 200.

:intvl – The IN interval index – the amount of time between ACGs for IN queries. This is a number that is mapped to a time value at the LNP node. See *Table 17: Duration and Gap Interval Index Values* on page 200.

:aintvl – The AIN interval index – the amount of time between ACGs for AIN queries. This is a number that is mapped to a time value at the LNP node. See *Table 17: Duration and Gap Interval Index Values* on page 200.

The specified ACG manually initiated control must be in the database.

If the type=all parameter is specified, one of these parameters, nd, intvl, aintvl, or drtn must be specified and the serv and dgts parameters cannot be specified.

If the type=sd parameter is specified, the serv and dgts parameters must be specified and the nd parameter cannot be specified.

If the serv=ain parameter is specified, either the drtn or aintvl parameter must be specified and the intvl parameter cannot be specified.

If the serv=in parameter is specified, either the drtn or intvl parameters must be specified and the aintvl parameter cannot be specified.

The examples in this procedure are used to change these three ACG manually initiated controls in the database.

The manually initiated control for all queries is changed to these values:

Number of Digits = 10

IN Interval Index = 7 - 22 seconds

AIN Interval Index = 11 - 60 seconds

Duration Index = 5 - 16 seconds

The manually initiated control for AIN queries using the digits 910584 is changed to use a duration index of 12 (2048 seconds) and an interval index of 9 (15 seconds).

The manually initiated control for IN queries for 4237341234 is changed to use a duration index of 7 (64 seconds) and an interval index of 7 (22 seconds).

1. Display the ACG manually initiated controls in the database using the rtrv-acg-mic command.

The following is an example of the possible output.

```
rlghncxa03w 07-08-28 08:50:12 GMT EAGLE5 37.0.0
TYPE=ALL
ND INTVL AINTVL DRTN
   8
                 8
TYPE=SD
DGTS
          SERV INTVL AINTVL DRTN
4237431234 IN
                6
704461
         AIN
                       8
                              7
           AIN
                      8
                              7
910584
          IN
                6
                              7
919460
9194602132 AIN -
9194602132 IN 4
919461
                6
           IN
ACG MIC table is (7 of 256) 3% full of type SD
RTRV-ACG-MIC: MASP A - COMPLTD
```

2. Add the ACG manually initiated controls to the database using the chg-acg-mic command. For this example, enter these commands:

```
chg-acg-mic:type=all:nd=10:intvl=7:aintvl=11:drtn=5
```

When this command has successfully completed, this message should appear:

```
rlghncxa03w 07-08-28 08:50:12 GMT EAGLE5 37.0.0
CHG-ACG-MIC: MASP A - COMPLTD
```

chg-acg-mic:type=sd:serv=ain:dgts=910584:aintvl=12:drtn=9

When this command has successfully completed, this message should appear.

```
rlghncxa03w 07-08-28 08:50:12 GMT EAGLE5 37.0.0
ACG MIC table is (7 of 256) 3% full of type SD
CHG-ACG-MIC: MASP A - COMPLTD
```

chg-acg-mic:type=sd:serv=in:dgts=4237431234:intvl=7:drtn=7

When this command has successfully completed, this message should appear.

```
rlghncxa03w 07-08-28 08:50:12 GMT EAGLE5 37.0.0
ACG MIC table is (7 of 256) 3% full of type SD
CHG-ACG-MIC: MASP A - COMPLTD
```

3. Verify the changes using the rtrv-acg-mic command with either the type=all parameter, or the serv and dgts parameters and values specified with the type=sd parameter in *Step* 2 on page 219.

If the ACG manual initiated controls were successfully removed in *Step 2* on page 219, the rtrv-acg-mic output should not show the entry that was removed. For this example, enter these commands.

```
rlghncxa03w 07-08-28 08:50:12 GMT EAGLE5 37.0.0
TYPE=ALL
ND INTVL AINTVL DRTN
10 7 11 5
```

rtrv-acg-mic:type=sd:serv=ain:dgts=910584

```
rlghncxa03w 07-08-28 08:50:12 GMT EAGLE5 37.0.0

TYPE=SD

DGTS SERV INTVL AINTVL DRTN

910584 AIN - 12 9

ACG MIC table is (7 of 256) 3% full of type SD

RTRV-ACG-MIC: MASP A - COMPLTD
```

rtrv-acg-mic:type=sd:serv=in:dgts=4237431234

```
rlghncxa03w 07-08-28 08:50:12 GMT EAGLE5 37.0.0
TYPE=SD
DGTS SERV INTVL AINTVL DRTN
4237431234 IN 7 - 7
ACG MIC table is (7 of 256) 3% full of type SD
RTRV-ACG-MIC: MASP A - COMPLTD
```

4. Backup the new changes using the chg-db:action=backup:dest=fixed command.

The following messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED): MASP A - Backup starts on active MASP.

BACKUP (FIXED): MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED): MASP A - Backup starts on standby MASP.

BACKUP (FIXED): MASP A - Backup on standby MASP to fixed disk complete.
```

Glossary

Α

ACG Automatic Call Gapping

An element of the EAGLE 5 ISS LNP that controls the rate that location routing number (LRN) queries for a particular telephone number, or a portion of a telephone number, are received by the EAGLE 5 ISS LNP when a particular threshold is reached.

AFTPC Affected Point Code

The point code in subsystem-prohibited (SSP), subsystem-status-test (SST), and subsystem-allowed (SSA) SCCP management messages used by gateway screening to determine if the messages containing these point codes are allowed in to the network. This point code is in the SCMG Data (SCCP Management) portion of the signaling information field in the MSU.

AIN Advanced Intelligent Network

A dynamic database used in Signaling System 7. It supports advanced features by dynamically processing the call based upon trigger points throughout the call handling process and feature components defined for the originating or terminating number.

identifies the point code in the affected destination field (the concerned signaling point code) of incoming MTP network management messages from

A

another network that are allowed into the EAGLE 5 ISS. Messages containing the specified point code are allowed into the network.

Allowed AFTPC

The gateway screening entity that identifies the messages containing a specific affected point code. Messages containing the specified affected point code are allowed into the network.

Allowed DPC

The gateway screening entity that identifies the destination point codes that are allowed to receive SS7 messages from the EAGLE 5 ISS. Messages containing the specified destination point codes go on to the next step in the gateway screening process, or are allowed into the network if the gateway screening process stops with this entity.

Allowed ISUP

The gateway screening entity that identifies the ISUP or TUP message types that are allowed into the network.

Allowed SIO

The gateway screening entity that identifies the type of MSUs (ISUP, TUP, TCAP, and so forth) that are allowed into the network. The message type is determined by the network indicator code (NIC), priority (PRI), and service indicator (SI) fields of the signaling information octet (SIO) field in the MSU, and the H0 and H1 heading codes of the signaling information field of the MSU. Messages containing the specified message type go on to the next step in the gateway screening process, or are allowed into the network if the

A

gateway screening process stops with this entity.

Allowed TT

The gateway screening entity that identifies the SCCP messages that have a specified translation type value in the called party address. SCCP messages containing specified translation type in the called party address go on to the next step in the gateway screening process, or are allowed into the network if the gateway screening process stops with this entity.

ALT Application Logging Task

AMA Automated Message Accounting

Provides detail billing for

telephone calls.

AND AIN Number of Digits (in GTT

address for AIN query)

ANSI American National Standards

Institute

An organization that administers

and coordinates the U.S.

voluntary standardization and conformity assessment system. ANSI develops and publishes

standards. ANSI is a

non-commercial,

non-government organization which is funded by more than 1000 corporations, professional

bodies, and enterprises.

В

BLKDPC Blocked Destination Point Code

В

The point code that the gateway screening uses to keep MSUs bound for a specific point code out of the network where the EAGLE 5 ISS is located. This point code is in the routing label portion of the signaling information field in the MSU. Messages that do not contain the specified destination point code go on to the next step in the gateway screening process, or are allowed into the network if the gateway screening process stops with this entity.

C

CD Carrier Detect

Compact Disk

CIC Carrier Identification Code

A 4-digit code that controls the routing applied to a message.

CLASS Custom Local Area Signaling

Service

Custom Local Area Subscriber

Services

CLEC Competitive Local Exchange

Carrier

CLLI Common Language Location

Identifier

The CLLI uniquely identifies the STP in terms of its physical location. It is usually comprised of a combination of identifiers for the STP's city (or locality), state (or province), building, and traffic unit identity. The format of the CLLI is:

C

The first four characters identify the city, town, or locality.

The first character of the CLLI must be an alphabetical character.

The fifth and sixth characters identify state or province.

The seventh and eighth characters identify the building.

The last three characters identify the traffic unit.

CNAM Calling Name Delivery Service

control cards Cards that occupy slots 1113

Cards that occupy slots 1113 through 1118 of the control shelf on an EAGLE 5 ISS and perform OAM, TDM, and database functions for the EAGLE 5 ISS. The legacy set consists of the single-slot GPSM-II card running the OAM application and EOAM GPL, the single-slot TDM card, and the dual-slot MDAL card. The E5-based set consists of the dual-slot E5-MASP card (the E5-MCAP module and the E5-TDM module) and the dual-slot E5-MDAL card.

credit card drive Flash memory credit card-shaped

drive used in the flush-mounted USB port on an E5-MCAP card for upgrade; it could be used for

disaster recovery.

D

Database All data that can be administered

by the user, including cards, destination point codes, gateway screening tables, global title translation tables, links, LNP services, LNP service providers, location routing numbers, routes, D

shelves, subsystem applications, and 10 digit telephone numbers.

DB Database

Daughter Board

Documentation Bulletin

DD Detailed Design

DESTFLD The point code in the affected

destination field (the concerned signaling point code) of incoming MTP network management messages from another network that are allowed into the EAGLE 5

ISS.

DIX Digital/Intel/Xerox

Digital/Intel/Xerox de facto standard for Ethernet Media

Access Control Type.

DPC Destination Point Code

DPC refers to the scheme in SS7 signaling to identify the receiving signaling point. In the SS7 network, the point codes are numeric addresses which uniquely identify each signaling point. This point code can be adjacent to the EAGLE 5 ISS, but does not have to be.

DSM Database Service Module.

The DSM provides large capacity SCCP/database functionality. The DSM is an application card that supports network specific functions such as EAGLE

Provisioning Application Processor (EPAP), Global System for Mobile

D

Communications (GSM), EAGLE Local Number Portability (ELAP), and interface to Local Service Management System (LSMS).

DV

Digits Valid

E

E5-MASP card

E5-based dual-slot card that consists of the E5-MCAP module (occupies slot 1113 and slot 1115) and the E5-TDM module (occupies slot 1114 and slot 1116) in an EAGLE 5 ISS control shelf. Used when the E5-MDAL card is used.

E5-MCAP card

The module contains the Communications Processor and Applications Processor and provides connections to the IMT bus. Controls the maintenance and database administration activity and performs both application and communication processing. Runs the OAM application and OAMHC GPL. Occupies slot 1113 and slot 1115 in an EAGLE 5 ISS control shelf. Used when the E5-MDAL card is used. Contains two USB ports.

E5-MDAL card

The E5 MDAL card processes alarm requests, provides general purpose relays, and provides fan control. Occupies slots 1117 and 1118 in an EAGLE 5 ISS Control Shelf. Used with E5-MASP cards. Does NOT contain a drive for removable cartridges.

E5-TDM card

The E5-TDM card provides the EAGLE 5 ISS with 16 ports for

E

user terminals, contains fixed disk storage and distributes Composite Clocks and High Speed Master clocks throughout the EAGLE 5 ISS. Occupies slot 1114 and slot 1116 in an EAGLE 5 ISS Control Shelf. Used when the E5-MDAL card is used.

EIR

Equipment Identity Register

A network entity used in GSM networks, as defined in the 3GPP Specifications for mobile networks. The entity stores lists of International Mobile Equipment Identity (IMEI) numbers, which correspond to physical handsets (not subscribers). Use of the EIR can prevent the use of stolen handsets because the network operator can enter the IMEI of these handsets into a 'blacklist' and prevent them from being registered on the network, thus making them useless.

ELAP

EAGLE Local Number Portability Application Processor

EMS

Element Management System

The EMS feature consolidates real-time element management at a single point in the signaling network to reduce ongoing operational expenses and network downtime and provide a higher quality of customer service.

EO

End Office

F

F

fixed disk drive

Hard drive on the TDM card and

the E5-TDM card.

flush-mounted USB port

USB port on the E5-MCAP card; used with credit card flash memory drives for upgrades and could be used for disaster recovery.

G

GB

Gigabyte — 1,073,741,824 bytes

GPL

Generic Program Load

Software that allows the various features in the system to work. GPLs and applications are not the same software.

GPSM-II card

General Purpose Service Module

Contains the communications processor and applications processor and provides connections to the Interprocessor Message Transport (IMT) bus. The GPSM-II card can run on the OAM, IPS, or MCP applications.

This card runs various GPLs and applications in the EAGLE 5 ISS. As a control card, it runs the OAM application and EOAM GPL. Used when the legacy TDM cad and MDAL card are used.

GTT Global Title Translation

> A feature of the signaling connection control part (SCCP) of the SS7 protocol that the EAGLE 5 ISS uses to determine which service database to send the query message when an MSU enters the EAGLE 5 ISS and more

910-5673-001 Revision A, April 2009

 \mathbf{G}

information is needed to route the MSU. These service databases also verify calling card numbers and credit card numbers. The service databases are identified in the SS7 network by a point code and a subsystem number.

GUI

Graphical User Interface

The term given to that set of items and facilities which provide the user with a graphic means for manipulating screen data rather than being limited to character based commands.

Η

HS

High Speed

HSOP

High Speed Operation Protocol

Ι

IAM

Initial Address Message

ID

Identity, identifier

IN

Intelligent Network

A network design that provides an open platform for developing, providing and managing services.

INP

INAP-based Number Portability

Tekelec's INP can be deployed as a stand-alone or an integrated signal transfer point/number portability solution. With Tekelec's stand-alone NP server, no network reconfiguration is required to implement number portability. The NP server

I

delivers a much greater signaling capability than the conventional

SCP-based approach.

Intelligent Network (IN)

Portability

IP Internet Protocol

IP specifies the format of packets, also called datagrams, and the addressing scheme. The network layer for the TCP/IP protocol suite widely used on Ethernet networks, defined in STD 5, RFC 791. IP is a connectionless, best-effort packet switching protocol. It provides packet routing, fragmentation and re-assembly through the data link

layer.

IP Address The location of a device on a

TCP/IP network. The IP Address is a number in dotted decimal notation which looks something

like [192.168.1.1].

IPM Implementation Project

Management

IMT Power and Multiplexer Card Initial Product Manufacture

IS-NR In Service - Normal

ISS Integrated Signaling System

ISUP ISDN User Part

ITU International Telecommunications

Union

K

Key For the ICNP feature, a unique DS

value used to access a table entry, consisting of a number length and

number type.

L

latched USB port On the E5-MCAP card, a USB

port with a lockable latch. Used with removable media (flash memory "thumb" drives) to install and back up customer

data.

LIDB Line Information Database

LIM Link Interface Module

Provides access to remote SS7, X.25, IP and other network elements, such as a Signaling Control Point (SCP) through a variety of signaling interfaces (V.35, OCU, DS0, MPL, E1/T1 MIM, LIM-ATM, E1-ATM, IPLIMx, IPGWx). The LIMs consist of a main assembly and possibly, an interface appliqué board. These appliqués provide level one and some level two functionality on SS7

signaling links.

Link Signaling Link

LNP Local Number Portability

LNPQS LNP Query Service

LNP SMS LNP Short Message Service

LRN Location Routing Number

L

A 10-digit number in a database called a Service Control Point (SCP) that identifies a switching port for a local telephone exchange. LRN is a technique for providing Local Number Portability.

LSMS Local Service Management System

M

MAS Maintenance and Administration Subsystem

A set of cards located in the Control Shelf, used to provide a central management point for the EAGLE 5 ISS. The MAS provides user interface, maintenance communication, peripheral services, alarm processing, system disk interface, and measurements using the following three subassemblies: GPSM-II, TDM, and MDAL.

Maintenance and Administration Subsystem Processor

The Maintenance and Administration Subsystem Processor (MASP) function is a logical pairing of the GPSM-II card and the TDM card. The GPSM-II card is connected to the TDM card by means of an Extended Bus Interface (EBI) local bus.

The MDAL card contains the removable cartridge drive and alarm logic. There is only one MDAL card in the Maintenance and Administration Subsystem (MAS) and it is shared between the two MASPs.

Multi-Purpose Server

MASP

MPS

M

The Multi-Purpose Server provides database/reload functionality and a variety of high capacity/high speed offboard database functions for applications. The MPS resides in the General Purpose Frame.

R Message Relay

MSC Mobile Switching Center

SU Message Signaling Unit

The SS7 message that is sent between signaling points in the SS7 network with the necessary information to get the message to its destination and allow the signaling points in the network to set up either a voice or data connection between themselves. The message contains the following information:

- The forward and backward sequence numbers assigned to the message which indicate the position of the message in the traffic stream in relation to the other messages.
- The length indicator which indicates the number of bytes the message contains.
- The type of message and the priority of the message in the signaling information octet of the message.
- The routing information for the message, shown in the routing label of the message, with the identification of the node that sent message (originating point code), the identification of the node receiving the message (destination point code), and the signaling link selector

MR

MSU

M

which the EAGLE 5 ISS uses to pick which link set and signaling link to use to route the message.

MT Mobile Terminated

All transmissions that reach the mobile station and are accepted by it, such as calls or short

messages.

MTP The levels 1, 2, and 3 of the SS7

protocol that control all the functions necessary to route an SS7 MSU through the network.

N

NAT Network Address Translation

NE Network Element

An independent and identifiable piece of equipment closely associated with at least one processor, and within a single

location.

NPA Number Plan Area

The North American "Area Codes." (3 digits: 2- to-9, 0-or1, 0-to-9. Middle digit to expand

soon).

NPAC Number Portability Administration

Center

NTP Network Time Protocol

 \mathbf{o}

OOS-MT Out of Service - Maintenance

O

The entity is out of service and is not available to perform its normal service function. The maintenance system is actively working to restore the entity to service.

P

PC

Point Code

The identifier of a signaling point or service control point in a network. The format of the point code can be one of the following types:

- ANSI point codes in the format network indicator-network cluster-network cluster member (ni-nc-ncm).
- Non-ANSI domestic point codes in the format network indicator-network cluster-network cluster member (ni-nc-ncm).
- Cluster point codes in the format network indicator-network cluster-* or network indicator-*-*.
- ITU international point codes in the format **zone-area-id**.
- ITU national point codes in the format of a 5-digit number (nnnnn), or 2, 3, or 4 numbers (members) separated by dashes (m1-m2-m3-m4) as defined by the Flexible Point Code system option. A group code is required (m1-m2-m3-m4-gc) when the ITUDUPPC feature is turned on.
- 24-bit ITU national point codes in the format main signaling area-subsignaling area-service point (msa-ssa-sp).

P

The EAGLE 5 ISS LNP uses only the ANSI point codes and Non-ANSI domestic point codes.

PCS Personal Communications Service

(North American GSM)

PDP Permissive Dialing Period

Power Distribution Panel

Monitors primary and secondary power sources on a continuous

basis.

PIN Personal Identification Number

PLNP The Personal Communications

Service (PCS) 1900 LNP Query (PLNP) feature provides for LNP query/response in a PCS wireless environment using the LRN method to support Service Provider Number Portability.

PRI Primary Rate Interface

Primary Rate ISDN

Priority

Q

QR Query Rate

R

removable cartridge MO cartridge used in the drive

on the legacy MDAL card.

removable cartridge drive Media drive for removable MO

cartridges on the legacy MDAL

card.

R

removable media Flash memory or "thumb" drives

used in the latched USB port on an E5-MCAP card for installation and backup of customer data.

RFC Request for Comment

RFCs are standards-track documents, which are official specifications of the Internet protocol suite defined by the Internet Engineering Task Force (IETF) and its steering group the

IESG.

RTDB Real Time Database

S

SCCP Signaling Connection Control Part

SI Service Indicator

SIO Service Information Octet.

The network indicator code (NIC), priority (PRI), and service indicator (SI) in the SIO field in the message signaling unit (MSU). This information identifies the type of MSU (ISUP, TCAP, and so forth) that is allowed in the network where the EAGLE 5 ISS is located.

SMS Short Message Service

SP Service Provider

Signaling Point

SS7 Signaling System #7

S

STP Signal Transfer Point

STPs are ultra-reliable, high speed packet switches at the heart of SS7 networks, which terminate all link types except F-links. STPs are nearly always deployed in mated pairs for reliability reasons. Their primary functions are to provide access to SS7 networks and to provide routing of signaling messages within and among signaling networks.

SW Software

T

TCAP Transaction Capabilities

Application Part

TCP/IP Transmission Control

Protocol/Internet Protocol

TDM Terminal Disk Module

Time Division Multiplexing

TLNP Triggerless LNP

TN Telephone Number

A 10 digit ported telephone

number.

Triggerless LNP A feature that gives service

providers a method to route calls to ported numbers without having to upgrade their signaling switch (end office or mobile switching center) software. This feature uses the gateway screening stop action

TLNP to intercept

through-switched ISUP messages

on the LIM.

T

TSM Translation Services Module

Provides SCCP functionality or GLS functionality for Local Number Portability (LNP)/SCCP (GTT). The SCCP software allows the TSM to be used as a memory board for Global Title Translation

(GTT).

TT Translation Type.

Resides in the Called Party Address (CdPA) field of the MSU and determines which service database is to receive query messages. The translation type indicates which Global Title Translation table determines the routing to a particular service

database.

TTN Translation Type Name

U

UAM Unsolicited Alarm Message.

UDP User Datagram Protocol

UDTS Unitdata Service message

UI User Interface

UIM Unsolicited Information Message

USB port Receptacle for flash memory

drives on personal computers. On

the E5-MDAL card, a

flush-mounted USB port used with credit card flash memory drives for upgrade. On the

U

E5-MCAP card, a latched USB port for use with flash memory "thumb" drives for installation and backup of customer data.

 \mathbf{V}

VIOL

A value displayed on an application GUI that indicates that the client brower's Java policy file is incorrect.

VSCCP

VxWorks Signaling Connection Control Part

The application used by the Service Module card to support the G-Flex, G-Port, INP, AINPQ, EIR, A-Port, IGM, V-Flex, and LNP features. If the G-Flex, G-Port, INP, AINPQ, EIR, A-Port, IGM, V-Flex, or LNP feature is not turned on, and a Service Module card is present, the VSCCP GPL processes normal GTT traffic.

W

WNP

Wireless Number Portability

The Wireless Number Portability feature enhances the Local Number Portability feature to allow wireless service providers to query the LNP database for ported telephone numbers. The query is used to find the location routing number associated with the ported telephone number so the telephone call can be routed to its proper destination. The Wireless Number Portability feature can only be used for ANSI messages not for ITU messages.

WSMSC

Wireless Short Message Service Center

Index

1900 number portability - PCS 153	CLASS 153
• •	CNAM 153
A	CNCF 180
A	Configuration feature 122
address	configuration menu
default router 61	Change Password 63
netmask 61	Configure DSM Networks 62
ADMHIPRI - LNP Administration Priority 172	Configure Provisioning Network 61
admonishments, documentation 4	elapconfig login name 58
AIN 153	Select Time Zone 62
AINTVL 201, 202, 213, 215, 218, 219	configuration procedure 69
Alarm LEDs 45	configure
ALIAS 153, 154, 155, 158, 160, 163	customer (provisioning) network IP addresses 61
APPL 163, 164, 165, 166, 167, 168, 169, 171	customer (provisioning) network netmask 61
auto-configuration 67	customer network default router address 61
Automatic Call Gapping 200	DSM network IP addresses 62
availability, documentation 7	Configure DSM Network menu 62
	Configure DSM Networks 62
n.	Configure Provisioning Network 61
В	Configure Provisioning Network menu 61
lead, and alead, 40	connectivity 69
back-end check 49	control cards
banner message box 46 banner section 43	E5-based 9
BDD 101	EAGLE 5 ISS 8
	legacy 8
browser connectivity 69 browser window 42	credit card flash drive 9
browsers 50	CSR, See Customer Service Request (CSR)
busy icon 44	customer (provisioning) network
busy icon 44	configure IP addresses 61
	Customer Care Center
C	contact information 4
Th	emergency response 6
calling name conversion facility 180	Customer Service Request (CSR) 4
card	Customer Support site
E5-MCAP 9	how to access 8
E5-MDAL 10	
E5-TDM 10	D
General Purpose Service Module II (GPSM-II) 9	
MDAL 9 TDM 9	DANGER admonishment 4
Terminal Disk Module (TDM) 9	Database Administration 2
cards	database back-up 67
control 8	default
E5-MASP 9	router IP address 61
MASP 8	values for ELAP user interface prompts 57
cartridge, removable 9	default network values 67
CAUTION admonishment 4	default values 67
CCP - Charge Number and Charge Party Station 172	DGTS 202, 213, 215, 216, 217, 218
Change Password 63	Digits Valid 159
Change Password menu 63	Display Configuration menu 60
Charge Number and Charge Party Station - CCP 172	Distributed Replicated Block Device 110

documentation 4, 7, 8	F
availability, packaging, and updates 7	
Documentation Bulletins 8	files
electronic files 7	UNIX time zone 63
locate on Customer Support site 8	fixed drive
printed 7	E5-TDM 10
Related Publications 7	TDM 9
Release Notice 7	FRCSMPLX - Simplex Mode 172
DRBD 110	
drive	G
credit card flash 9	G
E5-TDM fixed SATA 10	Gateway STP - GTWYSTP 172
removable media flash 9	General Purpose Service Module II 9
TDM fixed 9	Global Title Translation 164
DRTN 201, 202, 209, 212, 213, 218	GPSM-II card 9
DSM networks	GTWYSTP - Gateway STP 172
configure IP addresses 62	,
Duration Index 200, 201, 202, 209, 212, 213, 214, 218, 219	**
DV 153, 154, 155, 160	Н
	Halt MPS menu 65
E	header format 57
_	neader format 97
E5-based control cards 9	_
E5-MASP cards 9	I
E5-MCAP card 9	D1150
USB ports 9	IN 153
E5-MDAL card 10	INCSLP 172
E5-TDM card 10	IND 209, 212
Eject CD menu 64	initial configuration steps 67
ELAP 21, 54, 57, 58, 62, 63, 117, 118, 121, 122	Initial Platform Manufacture 67
change login name passwords 63	initialization
Configuration feature 21, 117, 118, 121, 122	ELAP 54
ELAP	Initiate Upgrade 64
Configuration feature 118	Interval Index 200, 201, 202, 209, 212, 213, 214, 218, 219
initialization 54	INTVL 201, 202, 209, 212, 213, 218
LNP	IP addresses
ELAP Configuration feature 118	configure customer (provisioning) network 61
time zone 62	configure DSM network 62
ELAP Configuration feature 117, 122	default router 61
ELAP error messages 57	provisioning (customer) network netmask 61
elapconfig 54, 58, 70	IPM 67
for ELAP initialization 54	ISVM 153
elapconfig login name	ITU TCAP LRN Query 134
access configuration menu 58	
for ELAP initialization 54	J
electronic files, documentation 7	•
emergency response, Customer Care Center 6	Java 50
epapconfig 67	Java virtual machine 50
error message format 57	JIPDIGITS - Jurisdiction Information Parameter Digits
error messages, ELAP 57	172
Escape key to exit ELAP user interface operations 57	JIPPRV - Jurisdiction Information Parameter 172
Escape key to exit operations 57	Jurisdiction Information Parameter - JIPPRV 172
Exit menu 66	Jurisdiction Information Parameter Digits - JIPDIGITS
exit user interface operations with Escape key 57	172

LNP Feature Activation Guide

L	N
legacy control cards 8	ND 202, 213, 218
LIDB 153	netmask IP address 61
LNP	network values 67
ELAP Configuration feature 21, 117, 118, 121, 122 option - WSMSC10DIG 187	network, customer (provisioning) configure IP addresses 61
LNP Administration Priority - ADMHIPRI 172	networks
LNP Basic 2	RFC 1587 standard 37
LNP Database Administration 2	networks, DSM
LNP Option	configure IP addresses 62
ADMHIPRI 172	NSTAT 169, 171
CCP 172	NTP server 67
FRCSMPLX 172	
GTWYSTP 172	0
JIPPDIGTS 172	O
JIPPRV 172	on-site MPS 68
SERVPORT 172	OOS-MT-DSBLD 169
WQREDRCT 172	operations, Escape key to exit user interface 57
WSMSC10DIG 173	
LNP Service 154, 155, 158, 160, 162, 163	n
LNP Subsystem Application 166, 167, 169	P
LNP Translation Type 152, 158, 159	nackaging documentation 7
local ELAP 67	packaging, documentation 7 passwords
locate documentation on Customer Support site 8	change for ELAP login names 63
Location Routing Number 200	PCA 164
login names	PCS 1900 number portability 153
change passwords for 63	Platform Menu 64
LRN 200	Point Code 164, 165
LRN Routing 200	pop-up check 49
LRNQT 134, 195, 200	printed documentation 7
LVL 208	prompts
	default value format 57
M	ELAP user interface menus 57
	Escape key to exit operations 57
Maintenance and Administration Subsystem (MAS) 8	provisioning values 67
Maintenance and Administration Subsystem Processor	
(MASP) 8	0
Maintenance Communication Application Processor	Q
(MCAP) 9	QR 209, 211, 212
Maintenance Disk and Alarm (MDAL) 9, 10	QIC 207, 211, 212
Manually initiated control 200	_
MAS 8	R
MASP 8	P. L. CMPC CA
MASP cards 8	Reboot MPS menu 64
MDAL card 9	Related Publications 7
menus, ELAP user interface 57, 58	Release Notice 7
configuration 58	remote ELAP 67
default values for prompts 57	removable cartridge 9
Escape key to exit operations 57	removable media 9 Return kov 67
responding to prompts 57	Return key 67 RFC 1587 network standard 37
Message Relay Clobal Title Translation 164	
Message Relay Global Title Translation 164	router IP address, default 61
messages, ELAP user interface error 57 mouse-over check 49	RTDB Backup menu 65
MySQL Backup menu 65	
111,0021 Duckup Inchu 00	

SATA fixed drive, E5-TDM 10 Select Time Zone 62 Select Time Zone menu 62 SERV 152, 154, 155, 158, 159, 160, 202, 213, 216, 218 SERVDI 101, 110 Service Module Card Icon 48 Service Provider 172 Service Provider ID 172 SERVPORT 172 Simplex Mode FRCSMPLX 172 SP 172, 173 SSN 164, 165, 166, 167, 168, 169, 171 STAT 164, 165, 166, 167, 168, 169, 171 Subsystem Application 167 Subsystem Number 163, 164, 167 Support ELAP Reload Via Database Image 110 syntax checking 49

\mathbf{T}

S

TAC Regional Support Office 5 TDM card 9 Telephone Number 200, 202 Terminal Disk Module (TDM) 10 text-based configuration 67 text-based UI 67 time zone select for ELAP 62 UNIX files 63 TOPPLE admonishment 4 **TPS 31** transactions per second 31 Translation Type 152, 154, 155, 158, 159, 160 Translation Type Name 153, 154, 159 TT 152, 155, 158, 160 TTN 153, 154, 155, 160 TYPE 202, 213, 214, 216, 218

U

UAM 0368 189
UNIX
time zone files 63
updates, documentation 7
USB port
flush-mounted 9
latched 9
user interface menus
configuration 58
default values for prompts 57
Escape key to exit operations 57
responding to prompts 57
user login names 54, 58
access configuration menu 58
user-defined LNP services 153

V

VIOL 52 Violation status 52

W

WARNING admonishment 4
Wireless number portability - WNP 153
Wireless Query Redirect - WQREDRCT 172
Wireless short message service center - WSMSC 153
Wireless Short Message Service Center 10 Digits WSMSC10DIG 173
WNP - Wireless number portability 153
WQREDRCT - Wireless Query Redirect 172
WSMSC - Wireless short message service center 153
WSMSC LNP service 187
WSMSC10DIG - Wireless Short Message Service Center 10 Digits 173
WSMSC10DIG LNP option 187