Tekelec EAGLE® 5 Integrated Signaling System

Release 36.0

Database Administration Manual - IP⁷ Secure Gateway®

910-4471-001 Revision A October 2006

Copyright 2006 Tekelec. All Rights Reserved Printed in U.S.A.

Notice

Information in this documentation is subject to change without notice. Unauthorized use or copying of this documentation can result in civil or criminal penalties.

Any export of Tekelec products is subject to the export controls of the United States and the other countries where Tekelec has operations.

No part of this documentation may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying or recording, for any purpose without the express written permission of an authorized representative of Tekelec.

Other product names used herein are for identification purposes only, and may be trademarks of their respective companies.

RoHS 5/6 - As of July 1, 2006, all products that comprise new installations shipped to European Union member countries will comply with the EU Directive 2002/95/EC "RoHS" (Restriction of Hazardous Substances). The exemption for lead-based solder described in the Annex will be exercised. RoHS 5/6 compliant components will have unique part numbers as reflected in the associated hardware and installation manuals.

WEEE - All products shipped to European Union member countries comply with the EU Directive 2002/96/EC, Waste Electronic and Electrical Equipment. All components that are WEEE compliant will be appropriately marked. For more information regarding Tekelec's WEEE program, contact your sales representative.

Trademarks

The Tekelec logo, EAGLE, G-Flex, G-Port, IP⁷, IP⁷Edge, IP⁷ Secure Gateway, and TALI are registered trademarks of Tekelec. TekServer and A-Port are trademarks of Tekelec. All other trademarks are the property of their respective owners.

Patents

This product is covered by one or more of the following U.S. and foreign patents:

U.S. Patent Numbers:

5,008,929, 5,953,404, 6,167,129, 6,324,183, 6,327,350, 6,456,845, 6,606,379, 6,639,981, 6,647,113, 6,662,017, 6,735,441, 6,745,041, 6,765,990, 6,795,546, 6,819,932, 6,836,477, 6,839,423, 6,885,872, 6,901,262, 6,914,973, 6,940,866, 6,944,184, 6,954,526, 6,954,794, 6,959,076, 6,965,592, 6,967,956, 6,968,048, 6,970,542

Ordering Information

For additional copies of this document, contact your sales representative.

Table of Contents

Chapter 1. Introduction	
Overview	1-2
Manual Organization	1-2
Related Publications	1-3
Documentation Packaging, Delivery, and Updates	1-8
Documentation Admonishments	1-8
Customer Care Center	1-9
Emergency Response	1-10
Maintenance and Administration Subsystem	1-10
Database Partitions	1-11
Fixed Disk Drive	1-12
Removable Cartridge	1-13
List of Acronyms and Abbreviations	1-14
Chapter 2. IP7 Secure Gateway Overview	
Introduction	2-2
Hardware, Applications, and Functions	
IP Connections	2-5
Point-to-Point Connectivity (IPLIM or IPLIMI Application)	2-21
Point-to-Multipoint Connectivity (SS7IPGW and IPGWI)	
SNMP Agent Implementation	
Mixed Networks Using the ANSI/ITU MTP	
Gateway Feature	2-34
ISUP Normalization	2-40
IETF Adapter Layer Support	2-48
Overview	2-48
Interaction Between TALI and IETF Connections With a Single EAGLE 5 ISS	
Feature Components	2-50
Chapter 3. IP7 Secure Gateway Configuration Procedures	
Overview	3-3
Adding an IP Card	3-17
Card Slot Solaction	3_18

3-28
3-37
3-63
3-84
3-87
3-104
3-113
3-123
3-130
3-135
3-153
3-156
3-161
3-171
3-177
3-181
3-198
3-202
3-220
3-226
3-233
3-250
3-272
3-283
2 205
3-295
3-303
3-317
3-324
3-326
3-327
3-344
3-348
3-381
3-389

Adding a New Association to a New Application Server
Adding an Existing Association to a New Application Server
Adding a New Association to an Existing Application Server
Adding an Existing Association to an Existing Application Server3-429
Removing an Association from an Application Server3-441
Changing an Application Server3-447
Adding a Network Appearance
Removing a Network Appearance3-459
Changing the SCTP Checksum Algorithm Option3-462
Changing a UA Parameter Set3-486
Chapter 4. ISUP Variant Table Provisioning
Overview4-2
Adding New ISUP PSTN Presentation Values4-6
Changing ISUP Presentation Values4-11
Removing ISUP Presentation Values4-13
Changing ISUP Variant Table Entries4-17
Copying ISUP Variant Table Entries4-26
Chapter 5. End Office Support
Overview5-2
Internal Point Code5-4
End Office Support Configuration5-13
Adding an End Node Internal Point Code5-14
Removing an End Node Internal Point Code5-18
Chapter 6. Activating Controlled Features
Introduction6-2
Enabling Controlled Features6-2
Enabling a Permanent or Temporary Key6-3
Temporary Feature Keys6-7
Turning On and Off Controlled Features6-10
Turning On an Enabled Controlled Feature6-10
Turning Off an Enabled Controlled Feature6-12
Index

List of Figures

Figure 1-1. Database Partitions	1-11
Figure 2-1. TCP socket or SCTP Association Database Relationships	2-6
Figure 2-2. IP Connections using a Dual-Slot DCM running the IPLIMx Applications	2-7
Figure 2-3. IP Connections using a Dual-Slot DCM running the IPGWx Applications	2-8
Figure 2-4. IP Connections using an EDCM or E5-ENET Card running the IPGWx Applications	2-9
Figure 2-5. Typical SCTP Association and TCP Socket Configuration	2-10
Figure 2-6. SCTP Association and TCP Socket on the Same IP Card	2-12
Figure 2-7. IP Connections using SSEDCMs running the IPLIMx Applications	2-13
Figure 2-8. IP Connections using E5-ENET Cards running the IPLIMx Applications	2-13
Figure 2-9. Multi-Homed Associations on EDCMs or E5-ENET Cards running the IPLIMx Applications	2-15
Figure 2-10. Multi-Homed Associations on EDCMs or E5-ENET Cards running the IPGWx Applications	
Figure 2-11. Multi-Homed Association Database Relationships	
Figure 2-12. EAGLE 5 ISS Network (STP Connectivity via MTP-over-IP)	2-21
Figure 2-13. IP Network (SCP Connectivity via TCAP-over-IP)	2-22
Figure 2-14. IP Network (SEP connectivity via ISUP, Q.BICC, and TUP-over-IP)	
Figure 2-15. Complex Network with ANSI, ITU-I, and ITU-N Nodes	2-35
Figure 2-16. 8-bit TOS Field	2-40
Figure 2-17. DS Field	2-40

List of Figures

Figure 2-18. ISUP Normalization Supporting Multiple ISUP
Variants2-41
Figure 2-19. Format of PSTN Presentation2-45
Figure 2-20. AS/Association Relationship2-49
Figure 2-21. TCP Socket/SCTP Association Relationship2-50
Figure 2-22. SG/MGC/MG Network Diagram2-50
Figure 2-23. TALI Protocol Stack (IPGWx and IPLIMx)2-51
Figure 2-24. IPLIMx Protocol Stack with SCTP as the Transport Layer
Figure 2-25. IPGWx Protocol Stack with SCTP as the
Transport Layer2-52
Figure 2-26. M2PA in the IP ⁷ Signaling Gateway2-56
Figure 2-27. SCTP Connectivity
Figure 3-1. Mixed Network with ANSI, ITU-I, and ITU-N Nodes
Figure 3-2. IP7 Secure Gateway Database Relationships3-12
Figure 3-3. Typical Configuration
Figure 5-1. A EAGLE 5 ISS with End Office Support and VXI Node
Figure 5-2. Network Before a EAGLE 5 ISS with End Office, Node P is to Migrate
Figure 5-3. Network After a EAGLE 5 ISS with End Office, Node P has Migrated
Figure 5-4. Original Network with Deployed EAGLE 5 ISS5-7
Figure 5-5. New Network with a EAGLE 5 ISS Using End Office and End Node R
Figure 5-6. Network before Two Signaling End Points Migrate from PSTN to IP
Figure 5-7. Network after Two Signaling End Points Migrate from PSTN to IP
Figure 5-8. The EAGLE 5 ISS Simultaneously Acts as STP and End Office5-10
Figure 5-9. Three Multiple-Element End Office Nodes5-11
Figure 5-10. Mated Pair Supports Two End Office Nodes5-12

List of Tables

Table 2-1. Ethernet Intertace and Signaling Link Combinations	2-7
Table 2-2. Uni-Homed and Multi-Homed Node	
Combinations	2-14
Table 2-3. SS7 Full Routing Keys per IPGWx Functionality	2-26
Table 2-4. Example SS7 Routing Key Table	2-28
Table 2-5. Routing Key Lookup Hierarchy	2-29
Table 2-6. SNMP Object Groups	2-31
Table 2-7. Deviations from SNMP Protocols	2-33
Table 2-8. Nodes and Point Codes in Complex Network	
Example	
Table 2-9. ISUP Variants Supported by this Feature	2-42
Table 2-10. Sample SCTP Endpoints	2-61
Table 2-11. Sample SCTP Associations	2-61
Table 2-12. Sample SCTP Associations	2-62
Table 3-1. Typical IP Routing	3-15
Table 3-2. Typical IP Sockets	3-15
Table 3-3. Typical IP Routing Keys (SS7IPGW and IPGWI	2.16
Applications)	
Table 3-4. Card Type and Card Applications	
Table 3-5. Example Card Configuration	
Table 3-6. Signaling Link Fair Share Example	
Table 3-7. Optional Linkset Parameters	
Table 3-8. Optional Linkset Parameters	
Table 3-9. IP Signaling Link Parameter Combinations	
Table 3-10. IP Signaling Link Configuration Table	
Table 3-11. Valid Subnet Mask Parameter Values	
Table 3-12. Valid Subnet Mask Parameter Values	
Table 3-13. Examples of IPGWx Card Provisioning Limits	3-182
Table 3-14. Examples of IPGWx Card Provisioning Limits	3-203
Table 3-15. DCMPS Values	3-226
Table 3-16. Service Indicator Text String Values	3-233
Table 3-17. Routing Key Parameter Combinations for Adding	
a Routing Key Containing a Socket	3-235

List of Tables

Table 3-18.	Service Indicator Text String Values	3-250
	Routing Key Parameter Combinations for Adding ng Key Containing an Application Server	3-252
Table 3-20.	Service Indicator Text String Values	3-272
	Routing Key Parameter Combinations for Removing Keys	
Table 3-22.	Service Indicator Text String Values	3-283
	Routing Key Parameter Combinations for Changing ge of CIC Values in an Existing Routing Key	
	Routing Key Parameter Combinations for Splitting ge of CIC Values in an Existing Routing Key	3-287
Table 3-25.	Service Indicator Text String Values	3-296
Table 3-26.	Service Indicator Text String Values	3-304
Table 3-27.	System-Wide IPGWx Signaling TPS Part	
Numbe	rs	3-318
Table 3-28.	SCTP Buffer Limits	3-328
Table 3-29.	SCTP Buffer Limits	3-350
Table 3-30.	Examples of IPGWx Card Provisioning Limits	3-351
Table 3-31.	M2PA Timers	3-390
Table 3-32.	Examples of IPGWx Card Provisioning Limits	3-397
Table 3-33.	Examples of IPGWx Card Provisioning Limits	3-406
Table 3-34.	Examples of IPGWx Card Provisioning Limits	3-417
Table 3-35.	Examples of IPGWx Card Provisioning Limits	3-429
Table 3-36.	Valid PVALUE Parameter Values if PARM=1	3-487
Table 3-37.	Valid PVALUE Parameter Values if PARM=2	3-488
Table 4-1. I	SUP Variants Supported by this Feature	4-3
Table 4-2.	CHG-ISUPVAR-ATTRIB Parameter	
Combin	nations	4-20
Table 5-1. S	Sample IPC Values	5-4
Table 6-1. 5	Sample Controlled Feature Part Numbers	6-3
Table 6-2. S	Sample Controlled Feature Part Numbers	6-10
Table 6-3. S	Sample Controlled Feature Part Numbers	6-13

List of Flowcharts

Flowchart 3-1. Adding an IP Card	3-23
Flowchart 3-2. Removing an IP Card	3-35
Flowchart 3-3. Configuring an IPGWx Linkset	3-53
Flowchart 3-4. Configuring a Mate IPGWx Linkset	3-77
Flowchart 3-5. Adding an IP Signaling Link	3-98
Flowchart 3-6. Enabling the Large System # Links Controlled	
Feature	
Flowchart 3-7. Removing an IP Signaling Link	3-120
Flowchart 3-8. Changing the IP Protocol Option	3-128
Flowchart 3-9. Changing an IP Option That Does Not Require Inhibiting the IP Card	
Flowchart 3-10. Changing an IP Link	3-146
Flowchart 3-11. Adding an IP Host	3-155
Flowchart 3-12. Removing an IP Host	3-159
Flowchart 3-13. Changing an IP Card	3-168
Flowchart 3-14. Adding an IP Route	3-175
Flowchart 3-15. Removing an IP Route	3-180
Flowchart 3-16. Adding an Application Socket	3-192
Flowchart 3-17. Removing an Application Socket	3-201
Flowchart 3-18. Changing an Application Socket	3-213
Flowchart 3-19. Configuring IP Retransmission Parameters	3-225
Flowchart 3-20. Changing an DCM Parameter Set	3-232
Flowchart 3-21. Adding a Routing Key Containing a Socket	3-245
Flowchart 3-22. Adding a Routing Key Containing an Application Server	3-267
Flowchart 3-23. Removing a Routing Key	
Flowchart 3-24. Changing the CIC values in an Existing	
9	3-493
Flowchart 3-25. Changing the Routing Context Value in an Existing Routing Key	3-301
Flowchart 3-26. Changing the PSTN Presentation and	
Normalization Attributes in an Routing Key	3-311

List of Flowcharts

Flowchart 3-27. Increasing the IPGWx Signaling TPS3-322
Flowchart 3-28. Configuring the IP TPS Alarm Threshold3-325
Flowchart 3-29. Adding an Association
Flowchart 3-30. Removing an Association
Flowchart 3-31. Changing an Association
Flowchart 3-32. Configuring an Association for SCTP
Retransmission Control
Flowchart 3-33. Changing an M2PA Timer Set3-396
Flowchart 3-34. Adding a New Association to a New Application Server
Flowchart 3-35. Adding an Existing Association to a New
Application Server3-413
Flowchart 3-36. Adding a New Association to an Existing Application Server
Flowchart 3-37. Adding an Existing Association to an Existing Application Server
Flowchart 3-38. Removing an Association from an Application Server3-445
Flowchart 3-39. Changing an Application Server3-450
Flowchart 3-40. Adding a Network Appearance3-456
Flowchart 3-41. Removing a Network Appearance3-461
Flowchart 3-42. Changing the SCTP Checksum Option3-479
Flowchart 3-43. Changing a UA Parameter Set 3-493
Flowchart 4-1. Adding ISUP PSTN Presentation Value4-9
Flowchart 4-2. Changing ISUP PSTN Presentation Value 4-12
Flowchart 4-3. Removing ISUP PSTN Presentation Value4-16
Flowchart 4-4. Changing ISUP Attribute Values 4-24
Flowchart 4-5. Copying ISUP Attribute Values4-30
Flowchart 5-1. Adding an End Node Internal Point Code5-17
Flowchart 5-2. Removing an End Node Internal Point Code
Flowchart 6-1. Enabling a Permanent or Temporary Key6-6
Flowchart 6-2. Clearing a Temporary Feature Access Key Alarm6-9
Flowchart 6-3. Turning On an Enabled Controlled Feature 6-12
Flowchart 6-4. Turning Off an Enabled Controlled Feature 6-14

List of Flowcharts

Overview	1-2
Manual Organization	1-2
Related Publications	1-3
Documentation Packaging, Delivery, and Updates	1-8
Documentation Admonishments	1-8
Customer Care Center	1-9
Emergency Response	1-10
Maintenance and Administration Subsystem	1-10
Database Partitions	1-11
Fixed Disk Drive	1-12
Removable Cartridge	1-13
List of Acronyms and Abbreviations	. 1-14

Overview

The Database Administration Manual – IP^7 Secure Gateway describes the procedures necessary for database administration personnel or translations personnel to create, modify, display, and maintain the EAGLE 5 ISS database, and to configure the EAGLE 5 ISS to implement the IP^7 Secure Gateway functionality.

NOTE: Database administration privileges are password restricted. Only those persons with access to the command class "Database Administration" can execute the administrative functions. Other command classes and the commands allowed by those classes are listed in the *Commands Manual*.

Manual Organization

Throughout this document, the terms database and system software are used. Database refers to all data that can be administered by the user, including shelves, cards, links, routes, global title translation tables, and gateway screening tables. System software refers to data that cannot be administered by the user, including generic program loads (GPLs).

This document is organized into these sections:

Chapter 1, "Introduction," contains general information about the database and the organization of this manual.

Chapter 2, "IP⁷ Secure Gateway Overview," describes the basics of the IP⁷ Secure Gateway functionality.

Chapter 3, "IP⁷ Secure Gateway Configuration Procedures," describes the procedures necessary to configure the EAGLE 5 ISS to provide connectivity between SS7 and IP networks, enabling messages to pass between the SS7 network domain and the IP network domain, including the procedures necessary to configure the EAGLE 5 ISS to use the SUA, M3UA, and M2PA adapter layers.

Chapter 4, "ISUP Variant Table Provisioning," describes the procedures necessary to configure the ISUP Variant Tables.

Chapter 5, "End Office Support," describes the procedures necessary to allow the EAGLE 5 ISS to share its true point code (TPC) with an IP-based node without the need for a separate point code for the IP node.

Chapter 6, "Activating Controlled Features," explains how to enable controlled features with temporary and permanent feature keys, how to clear the alarms for near to expired and expired temporary keys, and how to turned enabled On/Off features on and off.

Related Publications

The *Database Administration Manual* – IP^7 *Secure Gateway* is part of the EAGLE 5 ISS documentation set and may refer to one or more of the following manuals:

- The *Commands Manual* contains procedures for logging into or out of the EAGLE 5 ISS, a general description of the terminals, printers, the disk drive used on the EAGLE 5 ISS, and a description of all the commands used in the EAGLE 5 ISS.
- The *Commands Error Recovery Manual* contains the procedures to resolve error message conditions generated by the commands in the *Commands Manual*. These error messages are presented in numerical order.
- The *Database Administration Manual Features* contains procedural information required to configure the EAGLE 5 ISS to implement these features:
 - X.25 Gateway
 - STPLAN
 - Database Transport Access
 - GSM MAP Screening
 - EAGLE 5 Integrated Monitoring Support.
- The *Database Administration Manual Global Title Translation* contains procedural information required to configure an EAGLE 5 ISS to implement these features:
 - Global Title Translation
 - Enhanced Global Title Translation
 - Variable Length Global Title Translation
 - Interim Global Title Modification
 - Intermediate GTT Load Sharing
 - ANSI-ITU-China SCCP Conversion
 - Flexible GTT Load Sharing
 - Origin-Based SCCP Routing.
- The *Database Administration Manual Gateway Screening* contains a description of the Gateway Screening (GWS) feature and the procedures necessary to configure the EAGLE 5 ISS to implement this feature.
- The *Database Administration Manual SEAS* contains the EAGLE 5 ISS configuration procedures that can be performed from the Signaling Engineering and Administration Center (SEAC) or a Signaling Network Control Center (SNCC). Each procedure includes a brief description of the

procedure, a flowchart showing the steps required, a list of any EAGLE 5 ISS commands that may be required for the procedure but that are not supported by SEAS, and a reference to optional procedure-related information, which can be found in one of these manuals:

- Database Administration Manual Gateway Screening
- Database Administration Manual Global Title Translation
- Database Administration Manual SS7.
- The *Database Administration Manual SS7* contains procedural information required to configure an EAGLE 5 ISS to implement the SS7 protocol.
- The *Database Administration Manual System Management* contains procedural information required to manage the EAGLE 5 ISS database and GPLs, and to configure basic system requirements such as user names and passwords, system-wide security requirements, and terminal configurations.
- The *Dimensioning Guide for EPAP Advanced DB Features* is used to provide EPAP planning and dimensioning information. This manual is used by Tekelec personnel and EAGLE 5 ISS customers to aid in the sale, planning, implementation, deployment, and upgrade of EAGLE 5 ISS systems equipped with one of the EAGLE 5 ISS EPAP Advanced Database (EADB) Features.
- The ELAP Administration Manual defines the user interface to the EAGLE 5 ISS LNP Application Processor on the MPS/ELAP platform. The manual defines the methods for accessing the user interface, menus, screens available to the user and describes their impact. It provides the syntax and semantics of user input, and defines the output the user receives, including information and error messages, alarms, and status.
- The *EPAP Administration Manual* describes how to administer the EAGLE 5 ISS Provisioning Application Processor on the MPS/EPAP platform. The manual defines the methods for accessing the user interface, menus, and screens available to the user and describes their impact. It provides the syntax and semantics of user input and defines the output the user receives, including messages, alarms, and status.
- The *Feature Manual ECAP* provides intructions and information on how to install, use, and maintain the Integrated Acounting Feature Application feature on the Eagle Collector Application Processor (ECAP). This feature collects raw MSU data from the EAGLE 5 ISS, categorizes the data into groups, and feeds those groups to another system for accounting activities.
- The *Feature Manual EIR* provides instructions and information on how to install, use, and maintain the EIR feature on the Multi-Purpose Server (MPS) platform of the EAGLE 5 ISS. The feature provides network operators with the capability to prevent stolen or disallowed GSM mobile handsets from accessing the network.

- The *Feature Manual G-Flex C7 Relay* provides an overview of a feature supporting the efficient management of Home Location Registers in various networks. This manual gives the instructions and information on how to install, use, and maintain the G-Flex feature on the Multi-Purpose Server (MPS) platform of the EAGLE 5 ISS.
- The *Feature Manual A-Port* provides an overview of a feature providing the capability for IS41 mobile subscribers to change service provider while retaining their original Mobile Directory Number (MDN). This manual gives the instructions and information on how to install, use, and maintain the A-Port feature on the Multi-Purpose Server (MPS) platform of the EAGLE 5 ISS.
- The *Feature Manual G-Port* provides an overview of a feature providing the capability for mobile subscribers to change the GSM subscription network within a portability cluster while retaining their original MSISDNs. This manual gives the instructions and information on how to install, use, and maintain the G-Port feature on the Multi-Purpose Server (MPS) platform of the EAGLE 5 ISS.
- The *Feature Manual INP* provides the user with information and instructions on how to implement, utilize, and maintain the INAP-based Number Portability (INP) feature on the Multi-Purpose Server (MPS) platform of the EAGLE 5 ISS.
- The *Feature Manual Migration* provides an overview of a feature providing the capability for IS41 subscribers to migrate to a GSM network and GSM mobile subscribers to migrate to an IS41 network. This manual gives the instructions and information on how to install, use, and maintain the Migration feature on the Multi-Purpose Server (MPS) platform of the EAGLE 5 ISS.
- The FTP-Based Table Retrieve Application (FTRA) User Guide describes how to set up and use a PC to serve as the offline application for the EAGLE 5 ISS FTP Retrieve and Replace feature.
- The *Hardware Manual EAGLE 5 ISS* contains hardware descriptions and specifications of Tekelec's signaling products. These include the EAGLE 5 ISS, OEM-based products such as the ASi 4000 Service Control Point (SCP), the Netra-based Multi-Purpose Server (MPS), and the Integrated Sentinel with Extended Services Platform (ESP) subassembly.
 - The Hardware Manual provides an overview of each system and its subsystems, details of standard and optional hardware components in each system, and basic site engineering. Refer to this manual to obtain a basic understanding of each type of system and its related hardware, to locate detailed information about hardware components used in a particular release, and to help configure a site for use with the system hardware.
- The *Hardware Manual Tekelec 1000 Application Server* provides general specifications and a description of the Tekelec 1000 Applications Server

- (T1000 AS). This manual also includes site preparation, environmental and other requirements, procedures to physically install the T1000 AS, and troubleshooting and repair of Field Replaceable Units (FRUs).
- The *Hardware Manual Tekelec 1100 Application Server* provides general specifications and a description of the Tekelec 1100 Applications Server (T1000 AS). This manual also includes site preparation, environmental and other requirements, procedures to physically install the T1100 AS, and troubleshooting and repair of Field Replaceable Units (FRUs).
- The *Installation Manual EAGLE 5 ISS* contains cabling requirements, schematics, and procedures for installing the EAGLE 5 ISS along with LEDs, connectors, cables, and power cords to peripherals. Refer to this manual to install components or the complete systems.
- The *Installation Manual Integrated Applications* provides the installation information for integrated applications such as EPAP 4.0 or earlier (Netra-based Multi-Purpose Server (MPS) platform) and Sentinel. The manual includes information about frame floors and shelves, LEDs, connectors, cables, and power cords to peripherals. Refer to this manual to install components or the complete systems.
- The LNP Database Synchronization Manual LSMS with EAGLE 5 ISS describes how to keep the LNP databases at the LSMS and at the network element (the EAGLE 5 ISS is a network element) synchronized through the use of resynchronization, audits and reconciles, and bulk loads. This manual is contained in both the LSMS documentation set and in the EAGLE 5 ISS documentation set.
- The LNP Feature Activation Guide contains procedural information required to configure the EAGLE 5 ISS for the LNP feature and to implement these parts of the LNP feature on the EAGLE 5 ISS:
 - LNP services
 - LNP options
 - LNP subsystem application
 - Automatic call gapping
 - Triggerless LNP feature
 - Increasing the LRN and NPANXX Quantities on the EAGLE 5 ISS
 - Activating and Deactivating the LNP Short Message Service (SMS) feature.
- The Maintenance Manual contains procedural information required for maintaining the EAGLE 5 ISS. The Maintenance Manual provides preventive and corrective maintenance procedures used in maintaining the different systems.

- The MPS Platform Software and Maintenance Manual EAGLE 5 ISS with Tekelec 1000 Application Server describes the platform software for the Multi-Purpose Server (MPS) based on the Tekelec 1000 Application Server (T1000 AS) and describes how to perform preventive and corrective maintenance for the T1000 AS-based MPS. This manual should be used with the EPAP-based applications (EIR, G-Port, G-Flex, A-Port, Migration, and INP).
- The MPS Platform Software and Maintenance Manual EAGLE 5 ISS with Tekelec 1100 Application Server describes the platform software for the Multi-Purpose Server (MPS) based on the Tekelec 1100 Application Server (T1100 AS) and describes how to perform preventive and corrective maintenance for the T1100 AS-based MPS. This manual should be used with the ELAP-based application (LNP).
- The *Provisioning Database Interface Manual* defines the programming interface that populates the Provisioning Database (PDB) for the EAGLE 5 ISS features supported on the MPS/EPAP platform. The manual defines the provisioning messages, usage rules, and informational and error messages of the interface. The customer uses the PDBI interface information to write his own client application to communicate with the MPS/EPAP platform.
- The *Previously Released Features Manual* summarizes the features of previous EAGLE, EAGLE 5 ISS, and IP⁷ Secure Gateway releases, and it identifies the release number of their introduction.
- The *Release Documentation* contains the following documents for a specific release of the system:
 - Feature Notice Describes the features contained in the specified release.
 The Feature Notice also provides the hardware baseline for the specified release, describes the customer documentation set, provides information about customer training, and explains how to access the Customer Support Website.
 - Release Notice Describes the changes made to the system during the lifecycle of a release. The Release Notice includes Generic Program Loads (GPLs), a list of PRs resolved in a build, and all known PRs.

NOTE: The *Release Notice* is maintained solely on Tekelec's Customer Support site to provide you with instant access to the most up-to-date release information.

- System Overview Provides high-level information on SS7, the IP7 Secure Gateway, system architecture, LNP, and EOAP.
- Master Glossary Contains an alphabetical listing of terms, acronyms, and abbreviations relevant to the system.
- Master Index Lists all index entries used throughout the documentation set.

 The System Manual – EOAP describes the Embedded Operations Support System Application Processor (EOAP) and provides the user with procedures on how to implement the EOAP, replace EOAP-related hardware, device testing, and basic troubleshooting information.

Documentation Packaging, Delivery, and Updates

Customer documentation is provided with each system in accordance with the contract agreements.

Customer documentation is updated whenever significant changes that affect system operation or configuration are made.

Customer documentation updates may be issued in the form of an addendum, or a reissue of the affected documentation.

The document part number is shown on the title page along with the current revision of the document, the date of publication, and the software release that the document covers. The bottom of each page contains the document part number and the date of publication.

Two types of releases are major software releases and maintenance releases. Maintenance releases are issued as addenda with a title page and change bars. On the changed pages, the date and document part number are changed. On any unchanged pages that accompany the changed pages, the date and document part number are unchanged.

In the event a software release has minimum affect on documentation, an addendum is provided. The addendum provides an instruction page, a new title page, a change history page, and replacement chapters bearing the date of publication, the document part number, and change bars.

If a new release has a major impact on documentation, such as a new feature, the entire documentation set is reissued with a new part number and a new release number.

Documentation Admonishments

Admonishments are icons and text that may appear in this and other EAGLE 5 ISS manuals that alert the reader to assure personal safety, to minimize possible service interruptions, and to warn of the potential for equipment damage.

Following are the admonishments, listed in descending order of priority.

DANGER:

(This icon and text indicate the possibility of *personal injury*.)

CAUTION:

(This icon and text indicate the possibility of *service interruption*.)

WARNING:

(This icon and text indicate the possibility of *equipment damage*.)

Customer Care Center

The Customer Care Center offers a point of contact through which customers can receive support for problems that may be encountered during the use of Tekelec's products. The Customer Care Center is staffed with highly trained engineers to provide solutions to your technical questions and issues seven days a week, twenty-four hours a day. A variety of service programs are available through the Customer Care Center to maximize the performance of Tekelec products that meet and exceed customer needs.

To receive technical assistance, call the Customer Care Center at one of the following locations:

• Tekelec, UK

Phone: +44 1784 467 804
Fax: +44 1784 477 120
Email: ecsc@tekelec.com

Tekelec, USA

Phone (within the continental US) 888-367-8552 (888-FOR-TKLC) (outside the continental US) +1 919-460-2150.

Email: support@tekelec.com.

When your call is received, the Customer Care Center issues a Customer Service Report (CSR). Each CSR includes an individual tracking number. When a CSR is issued, the Customer Care Center determines the classification of the trouble. The CSR contains the serial number of the system, problem symptoms, and messages. The Customer Care Center assigns the CSR to a primary engineer, who will work to solve the problem. The Customer Care Center closes the CSR when the problem is resolved.

If a critical problem exists, the Customer Care Center initiates emergency procedures (see the following topic, "Emergency Response").

Emergency Response

If a critical service situation occurs, the Customer Care Center offers emergency response twenty-four hours a day, seven days a week. The emergency response provides immediate coverage, automatic escalation, and other features to ensure a rapid resolution to the problem.

A critical situation is defined as an EAGLE 5 ISS or LSMS problem that severely affects service, traffic, or maintenance capabilities, and requires immediate corrective action. Critical problems affect service or system operation, resulting in:

- Failure in the system that prevents transaction processing
- Reduction in EAGLE 5 ISS capacity or in EAGLE 5 ISS traffic-handling capability
- Inability to restart the EAGLE 5 ISS
- Corruption of the database
- Inability to perform maintenance or recovery operations
- Inability to provide any required critical or major trouble notification
- Any other problem severely affecting service, capacity, traffic, and billing.
 Maintenance capabilities may be defined as critical by prior discussion and agreement with the Customer Care Center.

Maintenance and Administration Subsystem

The maintenance and administration subsystem consists of two processors, MASP (maintenance and administration subsystem processor) A and MASP B.

Each MASP is made up of two cards, the GPSM-II card (general purpose service module) and the TDM (terminal disk module).

The GPSM-II card contains the communications processor and applications processor and provides connections to the IMT bus. The GPSM-II controls the maintenance and database administration activity.

The TDM contains the fixed disk drive, the terminal processor for the 16 serial I/O ports and interfaces to the MDAL (maintenance disk and alarm) card which contains the removable cartridge drive and alarm logic. There is only one MDAL card in the maintenance and administration subsystem and it is shared between the two MASPs.

The procedures in the *Database Administration Manual* – IP⁷ *Secure Gateway* refer to the terms MASP and MDAL. The database commands, such as rept-stat-db, refer to the MASP because the MASP controls the input to the TDM and MDAL, and output from the TDM and MDAL. The MDAL is only referred to when inserting or removing the removable cartridge because the removable cartridge drive resides on the MDAL.

For more information on these cards, go to the *Hardware Manual - EAGLE 5 ISS*.

Database Partitions

The data that the EAGLE 5 ISS uses to perform its functions are stored in two separate areas: the fixed disk drives, and the removable cartridge. The Fixed Disk Drive section on page 1-12 and the Removable Cartridge section on page 1-13 describe these areas and data that is stored on them. These areas and their partitions are shown in Figure 1-1.

Figure 1-1. Database Partitions

ACTIVE FIXED DISK STANDBY FIXED DISK Backup Data Backup Data Current Data Current Data Measurements Measurements GPLs GPLs **System Data** Removable Cartridge Backup Data GPLs Measurements Removable Cartridge Measurements

Fixed Disk Drive

There are two fixed disk drives on the EAGLE 5 ISS. The fixed disk drives contain the "master" set of data and programs for the EAGLE 5 ISS. The two fixed disk drives are located on the terminal disk modules (TDMs). Both disks have the same files. The data stored on the fixed disks is partially replicated on the various cards in the EAGLE 5 ISS. Changes made during database administration sessions are sent to the appropriate cards.

The data on the fixed disks can be viewed as four partitions.

- Current partition
- Backup partition
- Measurements partition
- Generic program loads (GPLs) partition

The data which can be administered by users is stored in two partitions on the fixed disk, a current database partition which has the tables which are changed by on-line administration, and a backup database partition which is a user-controlled copy of the current partition.

All of the on-line data administration commands effect the data in the current partition. The purpose of the backup partition is to provide the users with a means of rapidly restoring the database to a known good state if there has been a problem while changing the current partition.

A full set of GPLs is stored on the fixed disk in the GPL partition. There is an approved GPL and a trial GPL for each type of GPL in this set and a utility GPL, which has only an approved version. Copies of these GPLs are downloaded to the EAGLE 5 ISS cards. The GPL provides each card with its functionality. For example, the <code>ss7ansi</code> GPL provides MTP functionality for link interface modules (LIMs).

Measurement tables are organized as a single partition on the fixed disk. These tables are used as holding areas for the measurement counts.

Removable Cartridge

A removable cartridge is used for two purposes.

- To hold an off-line backup copy of the administered data and system GPLs
- To hold a copy of the measurement tables

Because of the size of the data stored on the fixed disk drives on the TDMs, a single removable cartridge cannot store all of the data in the database, GPL, and measurements partitions.

To use a removable cartridge to hold the system data, it must be formatted for system data. To use a removable cartridge to hold measurements data, it must be formatted for measurements data. The EAGLE 5 ISS provides the user the ability to format a removable cartridge for either of these purposes. A removable cartridge can be formatted on the EAGLE 5 ISS by using the <code>format-disk</code> command. More information on the <code>format-disk</code> command can be found in the <code>Commands Manual</code>. More information on the removable cartridge drive can be found in the <code>Hardware Manual - EAGLE 5 ISS</code>.

The removable cartridge drive is located on the MDAL card in card location 1117.

Additional and preformatted removable cartridges are available from the Customer Care Center.

List of Acronyms and Abbreviations

ACMENET.....Applications Communications Module with the Ethernet interface ACT.....Activate ALIASAANSI Alias Point Code ALIASI.....ITU International Alias Point Code ALIASN.....ITU National Alias Point Code ANSIAmerican National Standards Institute APC.....Adjacent Point Code APCA.....ANSI Adjacent Point Code APCI.....ITU International Adjacent Point Code APCN.....ITU National Adjacent Point Code APPL.....Application ASApplication Server ASCII......American Standard Code for Information Interchange AST.....Associated State for Maintenance ATMAsynchronous Transfer Mode ATMANSIThe application software for the ATM (high-speed) SS7 signaling links ATMITUThe application software for the ITU ATM (high-speed) SS7 signaling links BEIBroadcast Exception Indicator BPDCM......Application software for flash memory management on the DCM card BPSBits per Second or Bytes per Second CCS7ITU.....The application software for the ITU SS7 (low-speed) signaling links CHG......Change CICCircuit Identification Code CLLICommon Language Location Identifier Cmd Rej......Command Rejected CPCCapability Point Code

CPU	Central Processing Unit
DCM	Database Communication Module
DCMPS	Database Communications Module Parameter Set
DEFROUTER	Default Router
DLT	Delete
DNS	Domain Name Server
DPC	Destination Point Code
DPCA	ANSI Destination Point Code
DPCI	ITU International Destination Point Code
DPCN	ITU National Destination Point Code
DS	Differentiated Service
DTA	Database Transport Access
DTE	Data Terminal Equipment
E1	European equivalent of the North American 1.544 Mbps T1 (Trunk Level 1) except that E1 carries information at 2.048 Mbps.
ECM	Error Correction Method
EDCM	Enhanced-Performance Database Communications Module
ELEI	Exception List Exclusion Indicator
ENT	Enter
EO	End Office
EOAM	Enhanced Operations, Administration, and Maintenance
FAK	Feature Access Key
FTP	File Transfer Protocol
G-FLEX	GSM Flexible Numbering
G-PORT	GSM Portability
GLS	Gateway Loading Services – Application software for the gateway screening loading services
GPL	Generic Program Load
GPSM	General Purpose Service Module
GTT	Global Title Translation

GWS	Gateway Screening
GWSA	Gateway Screening Application
GWSD	Gateway Screening Message Discard
GWSM	Gateway Screening Mode
HIPR	High-Speed IMT Packet Router
HMUX	High-Speed Multiplexer
I/O	Input/Output
ICMP	Internet Control Message Protocol
ID	Identity
IEEE	Institute of Electrical and Electronic Engineers
IETF	Internet Engineering Task Force
IMT	Interprocessor Message Transport
INH	Inhibit
INIT	Initialize
IP	Internet Protocol
IPADDR	IP Address
IPC	Internal Point Code
IPGWI	An ITU version of SS7IPGW application software
IPGWx	Point to multi-point EAGLE 5 ISS application software, referring to SS7IPGW (ANSI) and IPGWI (ITU)
IPLIM	Application software for TCP/IP point-to-point connectivity for ANSI networks
IPLIMI	Application software for TCP/IP point-to-point connectivity for ITU networks
IPLIMx	Point to point EAGLE 5 ISS application software, referring to IPLIM (ANSI) and IPLIMI (ITU)
IS-NR	In Service - Normal
ISUP	ISDN User Part
ITU	International Telecommunications Union
ITU-I	ITU International
ITU-N	ITU National
LAN	Local Area Network
LHOST	Local Host

LIM	Link Interface Module
	LIM used with ATM (high-speed) signaling links
	A LIM used as a channel card with either the E1 or T1 interfaces
LIMDS0	LIM with a DS0A interface
LIME1	LIM with an E1 Interface
LIME1ATM	LIM used with ITU ATM (high-speed) signaling links
LIMOCU	LIM with a OCU interface
LIMT1	LIM with a T1 interface
LIMV35	LIM with a V.35 interface
LNP	Local Number Portability
LOC	Location
LPORT	The TCP or SCTP port number for the local host
LS	Linkset
LSMS	Local Service Management System
LSN	Linkset Name
LST	Linkset Type
M2PA	SS7 MTP2-User Peer-to-Peer Adaptation Layer
M3UA	SS7 MTP3 Adaptation Layer
MAP	Mated Application
MAP	Mobile Application Part
MAS	Maintenance and Administration Subsystem
MASP	Maintenance and Administration Subsystem Processor
MDAL	Maintenance Disk and Alarm Card
MSU	Message Signaling Unit
MTP	Message Transfer Part
MTP2	Message Transfer Part, Level 2
MTP3	Message Transfer Part, Level 3
NA	Network Appearance
NE	Near End
NEI	Network Element Interface
NI	Network Identifier

NMS	Network Management System
OCU	Office Channel Unit
OOS	Out of Service
OOS-MT-DSBLD	Out of Service - Maintenance Disabled
OPC	Originating Point Code
PC	Point Code
PC	Personal Computer
PCR	Preventive Cyclic Retransmission
PDU	Protocol Data Unit
PST	Primary State for Maintenance
PSTN	Public Switched Telephone Network
REPT-STAT	Report Status
RHOST	Remote Host
RMV	Remove
RPORT	The TCP or SCTP port number of the remote host
RST	Restore
RTRV	Retrieve
SAAL	Signaling ATM Adaptation Layer
SCCP	Signaling Connection Control Part – Application software for the global title translation (GTT) feature
SCMG	SCCP Management
SCRN	Screen Set Name
SCTP	Stream Control Transmission Protocol
SEAC	Signaling Engineering and Administration Center
SEAS	Signaling Engineering and Administration System
SGP	Signaling Gateway Process
SI	Service Indicator
SIO	Service Information Octet
SLC	Signaling Link Code
SLK	Signaling Link
SLS	Signaling Link Selector
SLSCI	5- to 8-bit SLS Conversion Indicator

SNCC	Signaling Network Control Center
SNM	Signaling Network Management
SNMP	Simple Network Management Protocol
SS7	Signaling System #7
SS7 DPC	SS7 Destination Point Code
SS7ANSI	The application software for the ANSI SS7 signaling links
SS7IPGW	The application software for IP ⁷ signaling gateway feature point-to-multipoint connectivity
SS7GX25	The application software for the X.25/SS7 gateway feature
SSEDCM	Single-slot EDCM
SSN	Subsystem Number
SST	Secondary State for Maintenance
STP	Signal Transfer Point
STPLAN	Feature that copies MSUs selected through the gateway screening process and sends these MSUs over the Ethernet to an external host computer for further processing and the application software for the STPLAN feature
SUA	SCCP User Adaptation Layer
T1	Trunk Level 1
TALI	Transport Adaptation Layer Interface
TCA	
	Transfer Cluster Allowed network management message
TCAP	
	message
TCP	message Transaction Capability Application Part
TCP/IP	messageTransaction Capability Application PartTransmission Control Protocol
TCP TCP/IP TDM	message Transaction Capability Application Part Transmission Control Protocol Transmission Control Protocol/Internet Protocol
TCP TCP/IP TDM TFA	message Transaction Capability Application Part Transmission Control Protocol Transmission Control Protocol/Internet Protocol Terminal Disk Module
TCP TCP/IP TDM TFA TFC	message Transaction Capability Application Part Transmission Control Protocol Transmission Control Protocol/Internet Protocol Terminal Disk Module Transfer Allowed network management message
TCP TCP/IP TDM TFA TFC TFATCABMLQ	message Transaction Capability Application Part Transmission Control Protocol Transmission Control Protocol/Internet Protocol Terminal Disk Module Transfer Allowed network management message Transfer Controlled network management message

TOSType o	of Service
TPCTrue F	Point Code
TSETTransı	nitter Signaling Element Timing
TSMTransl	ation Services Module
TSNTransı	mission Sequence Number
TUPTelepl	nony User Part
TVGGroup	Ticket Voucher feature
UAUser A	Adapter
UAMUnsol	icited Alarm Message
UAPSUser A	Adapter Parameter Set
UDPUser I	Datagram Protocol
UPUUser I	Part Unavailable message
XCAExtend	ded Changeover Acknowledgement
XCOExtend	ded Changeover
-	tion list of non-provisioned members of sioned cluster.

IP⁷ Secure Gateway Overview

Introduction	2–2
Hardware, Applications, and Functions	2–3
IP Connections	2–5
Point-to-Point Connectivity (IPLIM or IPLIMI Application)	2–21
Point-to-Multipoint Connectivity (SS7IPGW and IPGWI)	2–22
SNMP Agent Implementation	2–30
Mixed Networks Using the ANSI/ITU MTP Gateway Feature	2–34
Nagle's Algorithm	2–39
Type of Service (TOS)	2–39
ISUP Normalization	2–40
IETF Adapter Layer Support	2–48
Overview	2–48
Feature Components	2–50
SUA Layer	2–53
M3UA Layer	2–54
M2PA Layer	2–56
SCTP	2–57
Broader Definition of Connection Four-Tuple	2–57
Multiple Streams	2–58
Selective Acknowledgements	2–58

Un-order Delivery Capability	2–59
Enhanced Security	2–59
SCTP Connectivity Concepts	2–59

The IP⁷ Secure Gateway functionality in the EAGLE 5 ISS provides connectivity between SS7 and IP networks, enabling messages to pass between the SS7 network domain and the IP network domain, as follows:

- When an EAGLE 5 ISS receives an SS7 formatted message over an SS7 link, the IP⁷ Secure Gateway functionality dynamically convert this message into IP format and routes the re-formatted message over an associated IP link to a destination residing within an IP network.
 - The IP⁷ Secure Gateway functionality use sockets or associations to access the IP domain. Sockets or associations identify IP sessions.
- Conversely, when the EAGLE 5 ISS receives an IP formatted message over an IP link, the IP⁷ Secure Gateway functionality dynamically convert this message into SS7 format and routes the re-formatted message over an associated SS7 link to a destination residing within the SS7 signaling network.

Address resolution is not performed in the IP to SS7 direction. It is the responsibility of the sending application to ensure that the appropriate SS7 point code information resides in the IP message to allow a valid SS7 message to be constructed for routing to the SS7 network.

Hardware, Applications, and Functions

The IP⁷ Secure Gateway functionality is provided by applications that run on IP cards, either a Database Communications Module (DCM), a single-slot Enhanced-Performance Database Communications Module (EDCM), or E5-ENER card. IP cards provide interfaces between the IMT bus and two 10/100 Base-T IEEE 802.3/DIX Ethernet interfaces. The IP cards, similar to any other Link Interface Module (LIM), use the Interprocessor Message Transport (IMT) bus to communicate with the other cards in the EAGLE 5 ISS. Like other LIMs, the primary job of an IP card is to send and receive SS7 data on a network (in this case, an IP network), and to route that data to other cards in the EAGLE 5 ISS as appropriate.

The IP card can run on the following applications:

• **iplim** or **iplimi** - Both applications support STP connectivity via MTP-over-IP functionality point-to-point connectivity (for more information, see "Connecting STPs Over the IP Network" on page 2-21).

The iplim and iplimi applications support these types of connections:

- TALI/TCP/IP (B, C, D links)
- M2PA/SCTP/IP (A, B, C, D, and E links)
- SCP
- SEP
- SCP/SEP

This type of connection is essentially the same as that of a traditional SS7 point-to-point link, except that the traditional MTP2 and 56Kb/s technology is replaced by IP and Ethernet technology.

The iplim application supports point-to-point connectivity for ANSI networks. The iplimi application supports point-to-point connectivity for ITU networks. With the optional ANSI/ITU MTP Gateway feature and proper configuration, the EAGLE 5 ISS could convert between any of the ANSI, ITU-N, and ITU-I networks, switch traffic between these networks, and perform network management for each of these networks (for more information, see"Mixed Networks Using the ANSI/ITU MTP Gateway Feature" on page 2-34.

The EAGLE 5 ISS can support up to 100 cards running the iplim and iplimi applications.

- ss7ipgw and ipgwi These applications support the following types of point-to-multipoint connectivity for networks:
 - SCP connectivity via SCCP/TCAP-over-IP functionality (for more information, see "Connecting to SCPs with SCCP/TCAP Messages Sent Over the IP Network" on page 2-22)
 - SEP connectivity via ISUP, Q.BICC, and TUP-over-IP functionality (for more information, see "Connecting SEPs Using ISUP, Q.BICC, and TUP Messages Over the IP Network" on page 2-23)
 - SCP/SEP connectivity via non-ISUP, non-SCCP, non-Q.BICC, and non-TUP-over-IP functionality (for more information, see "Connecting SCPs and SEPs Using Non-ISUP, Non-SCCP, Non-Q.BICC, and Non-TUP Messages Over the IP Network" on page 2-24)

The **ss7ipgw** application supports point-to-multipoint connectivity for ANSI networks. The **ipgwi** application supports point-to-multipoint connectivity for ITU networks.

The EAGLE 5 ISS can support a maximum of 64 cards running the **ss7ipgw** and **ipgwi** applications.

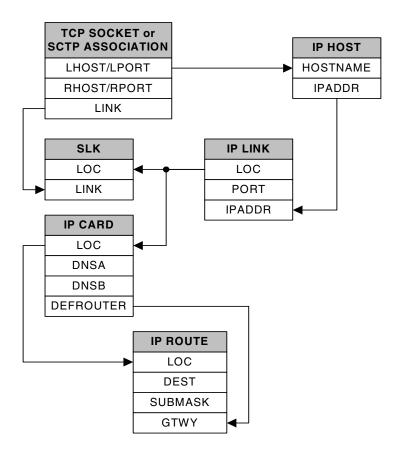
In addition to running an iplim, iplimi, ss7ipgw, or ipgwi application, each IP card supports the following functions:

- A Simple Network Management Protocol (SNMP) agent. For more information, see "SNMP Agent Implementation" on page 2-30.
- Message Transfer Part (MTP) status. This function is available only on IP cards that support the ss7ipgw or ipgwi application. For more information, see "Support for MTP Status Functions" on page 2-30.

IP Connections

IP connections involve the following assignments:

- Transport protocol The SCTP transport protocol is specified by the ent-assoc and chg-assoc commands. The TCP transport protocol is specified by the ent-appl-sock and chg-appl-sock commands.
- Adapter protocol The M3UA, M2PA, or SUA adapter protocol is specified by the adapter parameter of the ent-assoc and chg-assoc commands. If TCP sockets are provisioned with the ent-appl-sock and chg-appl-sock commands, the adapter protocol is implicitly defined as TALI.
- One or two near-end (local) hosts The local host is specified by the lhost parameter of the ent-assoc, chg-assoc, ent-appl-sock, and chg-appl-sock commands. A second local host can be specified for an association using the alhost parameter of the ent-assoc and chg-assoc commands, allowing the near-end host of the association to be multi-homed. Specifying only one local host for an association allows the association to be uni-homed.
- Far-end (remote) host The remote host is specified by the rhost parameter of the ent-assoc, chg-assoc, ent-appl-sock, and chg-appl-sock commands.
- Near-end (local) transport protocol port The local transport protocol port is specified by the lport parameter of the ent-assoc, chg-assoc, ent-appl-sock, and chg-appl-sock commands.
- Far-end (remote) transport protocol port The remote transport protocol port is specified by the rport parameter of the ent-assoc, chg-assoc, ent-appl-sock, and chg-appl-sock commands.
- SS7 signaling link specified by the loc and link parameters of the ent-slk command.


The local host is mapped to a particular Ethernet interface on the IP card by linking the local host name of the IP connection to an IP address with the <code>ent-ip-host</code> command. The IP address is also assigned to an IP card and to an Ethernet interface on that IP card using the <code>chg-ip-lnk</code> command. A signaling link on that card is assigned to the IP connection using the <code>link</code> parameter of the <code>ent-assoc</code>, <code>chg-assoc</code>, <code>ent-appl-sock</code>, and <code>chg-appl-sock</code> commands and referencing the signaling link on the IP card.

A TCP socket can establish a connection between one local host and one remote host. An SCTP association can establish a connection between one local host and one remote host (a uni-homed association) or between multiple local hosts and a remote host (a multi-homed association). It is possible that the remote host may be multi-homed, but the EAGLE 5 ISS allows only one remote host to be specified for a multi-homed association. If an IP node has multiple IP address associated with it, then an SCTP association originating from this node may take advantage of this added connectivity by establishing an SCTP multi-homed association.

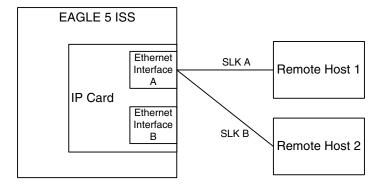
For more information on multi-homed associations, see the Multi-Homed SCTP Associations section on page 2-14 and the Routing section on page 2-18.

Figure 2-1 shows the components of a TCP socket or SCTP association and how these components interact with each other.

Figure 2-1. TCP socket or SCTP Association Database Relationships

There is no direct correlation between signaling link ports and Ethernet interfaces. A card can be using Ethernet interface A and signaling link B to transmit data to the remote host. Another scenario could have the card using Ethernet interface B and signaling link A to transmit data to the remote host.

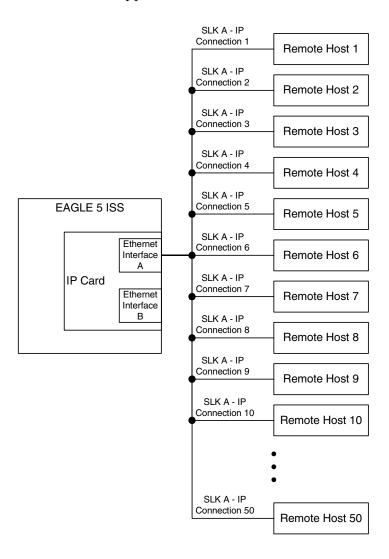
The numbers of signaling link ports and Ethernet interfaces on IP cards varies depending on the card type and application running on the card, as shown in Table 2-1. The sections that follow Table 2-1 describe the IP connections supported by each IP card type. The IP connections described in these sections are either TCP sockets or uni-homed SCTP associations.


Table 2-1. Ethernet Interface and Signaling Link Combinations

Card	Application	Ethernet Interface	Signaling Link
Dual-Slot DCM	IPLIMx	A	A and B
	IPGWx	A	A
Single-slot EDCM (SSEDCM)	IPLIMx	A and B	A, B, A1, B1, A2, B2, A3 and B3
	IPGWx	A and B	A
E5-ENET	IPLIMx	A and B	A - A7, B - B7
	IPGWx	A and B	A

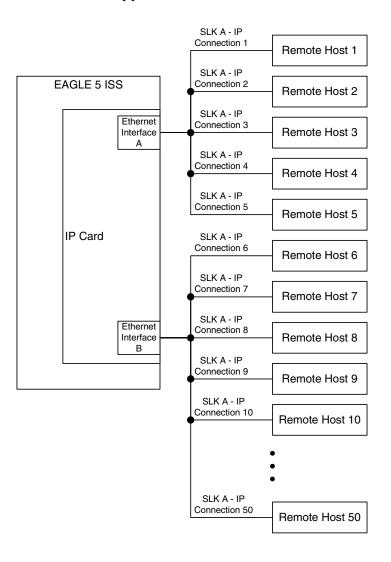
IP Connection on a Dual-Slot DCM Running the IPLIMx Application

Dual-slot DCMs running the IPLIMx applications can have two signaling link ports (A or B) and only one Ethernet interface (A), as shown in Figure 2-2, resulting in a maximum of two IP connections, one for each signaling link, using Ethernet interface A.


Figure 2-2. IP Connections using a Dual-Slot DCM running the IPLIMx Applications

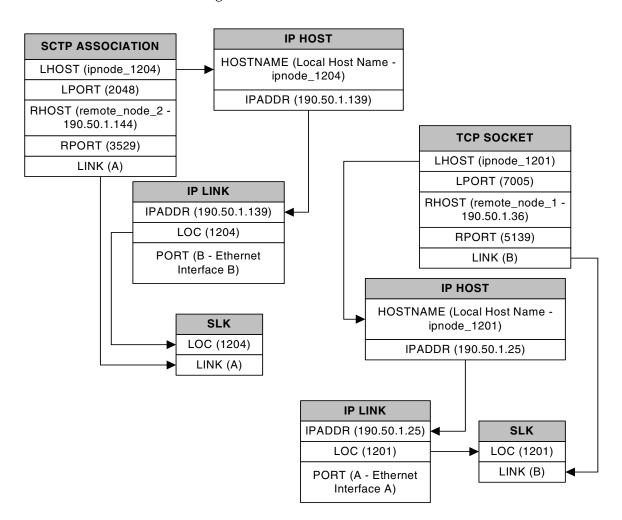
IP Connection on a Dual-Slot DCM Running the IPGWx Application

Dual-slot DCMs running the IPGWx applications can have only one signaling link (A) and one Ethernet interface (A). With this card able to support up to 50 IP connections, these 50 connections are established over Ethernet interface A, using signaling link A, as shown in Figure 2-3.


Figure 2-3. IP Connections using a Dual-Slot DCM running the IPGWx Applications

IP Connection on an EDCM or E5-ENET Card Running the IPGWx Application

Single-slot EDCMs running the IPGWx applications can have only one signaling link (A) and two Ethernet interfaces (A or B). With this card able to support up to 50 IP connections, these 50 connections can be established using both Ethernet interfaces A and B, as shown in Figure 2-4. The number of connections on each Ethernet interface can vary, but the total number connections on both interfaces cannot exceed 50. These 50 connections can also be established using only one Ethernet interface (A or B), if desired. Only signaling link A is used for the signaling link.


Figure 2-4. IP Connections using an EDCM or E5-ENET Card running the IPGWx Applications

The assignment of the transport protocol (TCP or SCTP) port number is made through the local host port (lport) and remote host port (rport) parameters of the ent-appl-sock or chg-appl-sock commands (for a TCP socket), or the ent-assoc or chg-assoc commands (for an SCTP association). An IP card can have both TCP sockets and SCTP associations assigned to it at the same time. The transport protocol port numbers for TCP sockets are TCP ports. The transport protocol port numbers for SCTP associations are SCTP ports. Port numbers for one transport protocol have no relation to port numbers for the other transport protocol.

Figure 2-5 shows typical IP connection data for a uni-homed SCTP association and a TCP socket and how these components interact with each other.

Figure 2-5. Typical SCTP Association and TCP Socket Configuration

IP⁷ Secure Gateway Overview

Using the data in Figure 2-5, the IP connection defined by the TCP socket is from local host ipnode-1201 (190.50.1.25), TCP port 7005, to remote host remote-node-1 (190.50.1.36), TCP port 5139, using Ethernet interface A on IP card 1201, and signaling link B on IP card 1201.

The IP connection defined by the SCTP association is from local host ipnode-1204 (190.50.1.139), SCTP port 2048, to remote host remote-node-2 (190.50.1.144), SCTP port 3529, using Ethernet interface B on IP card 1204, and signaling link A on IP card 1204.

In another scenario, IP card 1203 could contain a TCP socket and an SCTP association. The connection defined by the TCP socket is from local host ipnode-1203b (190.50.1.69), TCP port 4096, to remote host remote-node-3 (190.50.1.159), TCP port 1657, using Ethernet interface B on IP card 1203, and signaling link A on IP card 1203. The connection defined by the SCTP association is from local host ipnode-1203a (190.50.1.68), SCTP port 4096, to remote host remote-node-4 (190.50.1.199), SCTP port 1657, using Ethernet interface A on IP card 1203, and signaling link B on IP card 1203. This IP connection scenario is shown in Figure 2-6.

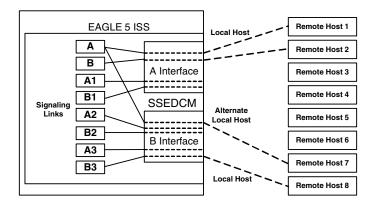
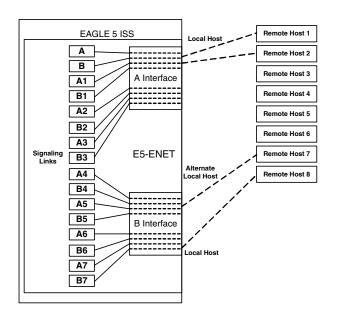


Figure 2-6. SCTP Association and TCP Socket on the Same IP Card

IP Connection on a Single-slot EDCM Running the IPLIMx Application

Single-slot EDCMs (SSEDCMs) running the IPLIMx applications can have 8 signaling links (A, B, A1, B1, A2, B2, A3 or B3) and 2 Ethernet interfaces (A or B) resulting in a maximum of 8 IP connections, one for each signaling link. Each link can use either Ethernet interface A or B. The local host and alternate host assigned to a signaling link must use different Ethernet interfaces; they cannot be assigned to the same Ethernet interface. Figure 2-7 shows some ways the 8 signaling links and the 2 Ethernet interfaces can be used to establish IP connections.


Figure 2-7. IP Connections using SSEDCMs running the IPLIMx Applications

IP Connection on an E5-ENET Card Running the IPLIMx Application

E5-ENET cards running the IPLIMx applications can have 16 signaling links (A, B, A1, B1, A2, B2, A3, B3, A4, B4, A5, B5, A6, B6, A7 or B7) and 2 Ethernet interfaces (A or B) resulting in a maximum of 16 IP connections, one for each signaling link. Each link can use either Ethernet interface A or B. The local host and alternate host assigned to a signaling link must use different Ethernet interfaces; they cannot be assigned to the same Ethernet interface. Figure 2-8 shows some ways the 16 signaling links and the 2 Ethernet interfaces can be used to establish IP connections.

Figure 2-8. IP Connections using E5-ENET Cards running the IPLIMx Applications

Multi-Homed SCTP Associations

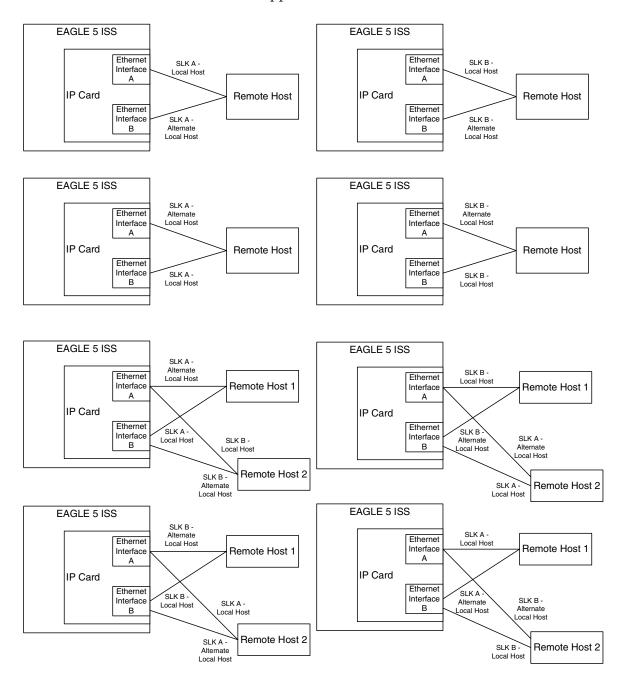
If the IP cards are EDCMs or E5-ENET cards, SCTP associations can have two local hosts, and are referred to as multi-homed associations. A multi-homed association uses both Ethernet interfaces on the IP card. Each Ethernet interface is assigned to a local host. Each local host is assigned to a different local network. One of the local hosts is configured with the lhost parameter of the ent-assoc or chg-assoc commands. The second local host, or alternate local host, is configured with the alhost parameter of the ent-assoc or chg-assoc commands. One of the local hosts references one of the Ethernet interfaces on the IP card and the other local host references the other Ethernet interface on the IP card. The multi-homed SCTP association allows the EDCM or E5-ENET card to communicate with another node over two networks. Traffic is passed to and from the remote node on either local interface on the card.

An SCTP association can be uni-homed also. A uni-homed association uses only one Ethernet interface (A or B), which is assigned to only one local host. This local host is configured with the lhost parameter of the ent-assoc or chg-assoc commands. For a uni-homed association, the alhost parameter is not be specified with the ent-assoc or chg-assoc commands. A uni-homed association allows the IP card to communicate to another node on one network only. Traffic is passed to and from the remote node on the local interface on the card defined by the lhost parameter.

The remote node can be either uni-homed or multi-homed, and is not dependent on whether or not the local node (containing the local hosts) is uni-homed or multi-homed. For example, Node A can be uni-homed and can be connected to a multi-homed Node B, or a multi-homed Node A can be connected to a uni-homed Node B. Table 2-2 illustrates the possible combinations.

Table 2-2. Uni-Homed and	Multi-Homed Node Combinations
---------------------------------	-------------------------------

Node A	Node B
Uni-homed	Uni-homed
Uni-homed	Multi-homed
Multi-homed	Uni-homed
Multi-homed	Multi-homed


Multi-Homed Associations on EDCMs or E5-ENET Cards Running the IPLIMx Application

A multi-homed association on an IPLIMx card uses both Ethernet interfaces to reach the remote host, but only one signaling link. An association, either uni-homed or multi-homed, can be assigned to only one signaling link. That signaling link can be either signaling link A or B. The local and alternate local hosts are assigned to each Ethernet interface on the IP card. The IPLIMx cards are limited to one IP connection per signaling link. Since the IPLIMx cards can have

eight signaling links on the card, eight multi-homed associations can be assigned to an IPLIMx card.

Figure 2-9 shows the ways a multi-homed IP connection can be established on an IPLIMx card. The remote hosts can be multi-homed, but only one remote host can be specified for each multi-homed association in the EAGLE 5 ISS, so only one remote host is shown in Figure 2-9.

Figure 2-9. Multi-Homed Associations on EDCMs or E5-ENET Cards running the IPLIMx Applications

Multi-Homed Associations on EDCMs or E5-ENET Cards Running the IPGWx Applications

A multi-homed association on an IPGWx card uses both Ethernet interfaces to reach the remote host, but only one signaling link, signaling link A on the IPGWx card. The local and alternate local hosts are assigned to each Ethernet interface on the IP card. The IPGWx cards can have up to 50 connections for each IPGWx card. The IPGWx card can contain both uni-homed and multi-homed IP connections, as long as the total number of connections does not exceed 50.

Figure 2-10 shows the way a multi-homed IP connection can be established on an IPGWx card. The remote hosts can be multi-homed, but only one remote host can be specified for each multi-homed association in the EAGLE 5 ISS, so only one remote host is shown in Figure 2-10.

Figure 2-10. Multi-Homed Associations on EDCMs or E5-ENET Cards running the IPGWx Applications

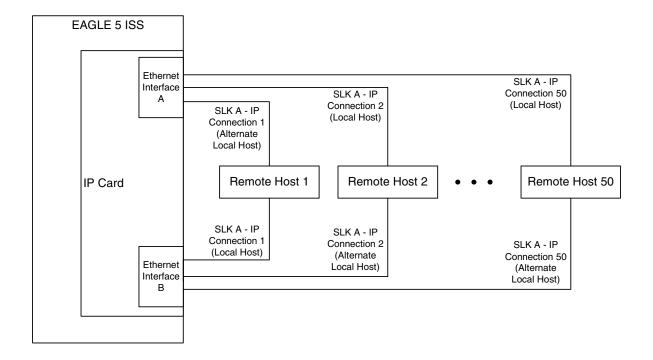
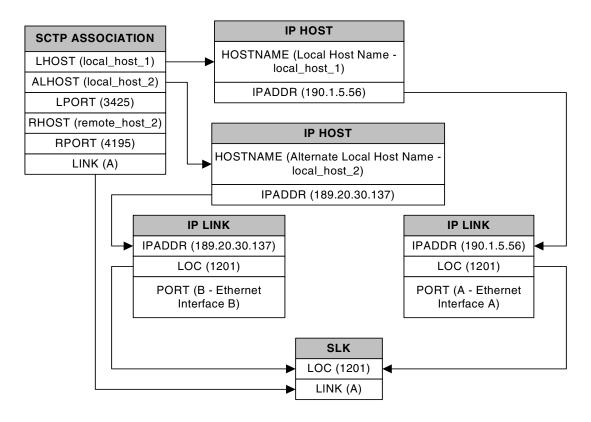



Figure 2-11 shows the components of the multi-homed SCTP association and how these components interact with each other.

Figure 2-11. Multi-Homed Association Database Relationships

Using the data shown in Figure 2-11, the IP connection is defined as a multi-homed association, connecting to a remote host using local hosts 190.1.5.56 and 189.20.30.137 over SCTP port 3425, using signaling link B on card 1201.

Routing

The IP⁷ Secure Gateway functionality in the EAGLE 5 ISS support two transport protocols – TCP and SCTP. Although both transport protocols are connection oriented, they differ greatly with respect to operation in a multi-homed host environment. The TCP protocol provides for a point-to-point transport connection. The SCTP protocol implements connections with either point to point, point to multi-point, or multi-point to multi-point connectivity capabilities.

A TCP socket connection is defined by an explicit four-tuple – a local IP address, local TCP port, remote IP address and remote TCP port. Once the local IP address is determined for a TCP connection, it binds all subsequent transmissions to this specific IP interface. Once an IP interface is selected for a TCP connection, the TCP connection will fail if the remote host becomes unreachable by this interface. This connection failure occurs on a multi-homed host even if the remote host can still be reached by a different IP interfaces of the multi-homed host.

An SCTP IETF connection – association – has a broader definition than TCP with respect to a multi-homed host. An SCTP IETF association is defined as a four-tuple as follows:

- local host list one or more of the local host's IP interface addresses
- local SCTP port
- remote host list one or more of the remote host's IP interface addresses
- remote SCTP port.

Based on this definition for an SCTP IETF connection, and the fact that the IPGWx and IPLIMx applications may utilize both Ethernet interfaces (a multi-homed host), an SCTP IETF association can take advantage of multi-homing and be a multi-homed SCTP endpoint. As a multi-homed endpoint, an SCTP IETF connection remains active and usable as long as at least one of the Ethernet interfaces can be reached by the remote host. Multiple paths through multiple interfaces to the remote host provides a more reliable connection. Thus where a TCP connection would be lost, and if possible, a new one established by the application, the SCTP IETF protocol is designed to make such a network outage transparent to the application.

In previous releases, an SCTP IETF endpoint could only operate as a uni-homed host using only the Ethernet A interface. In this mode, any SCTP transmission received on or transmitted out of the Ethernet B interface are silently discarded. By using the Ethernet B interface, the SCTP protocol running on the IP card can provide SCTP multi-homing endpoint support – that is, when an SCTP IETF association is formed, it may list both the Ethernet A and B IP addresses for the respective interfaces. As a multi-homed association endpoint, SCTP data would be allowed to flow on either of the Ethernet interfaces and thus provide more robust network connectivity.

In order to provide more flexible network connectivity, an association can be configured as follows with respect to the Ethernet interfaces:

- Ethernet A interface only (uni-homed)
- Ethernet B interface only (uni-homed)
- Ethernet A and B interface (multi-homed).

The interface mode is specified by the **lhost** and **alhost** parameters of the **ent-assoc** or **chg-assoc** commands.

In previous releases, the lhost parameter of the ent-assoc or chg-assoc commands is used to define the local IP address of the SCTP IETF association endpoint. The IP address would have to be an IP address associated with an Ethernet A interface. With this release, the IP address may be associated with either the Ethernet A or B interfaces. If it is an Ethernet A interface IP address, and the alhost parameter is not specified, then the association operates as a uni-homed SCTP endpoint on Ethernet interface A. If it is an Ethernet B interface IP address, and the alhost parameter is not specified, then the association operates as a uni-homed SCTP endpoint on Ethernet interface B. An association is configured as an SCTP multi-homed endpoint by specifying both the lhost and alhost parameter values with values corresponding to the Ethernet interface IP address for the IP card. The lhost and alhost parameter values represent the IP addresses specified by the chg-ip-lnk command for the specific IP card. Traffic cannot be passed between the Ethernet interfaces on the IP card containing a multi-homed SCTP association. The IP card cannot act as an IP router between the networks defined by the local host and alternate local hosts of a multi-homed association.

A host that is not on the local network, the network identified by the local host's IP address, can be reached only through a gateway router. A gateway router is a device with more than one physical network connection, and can be connected to multiple networks. Unlike a multi-homed host, a gateway router is permitted to route IP messages between the physical Ethernet interfaces on the IP card. The network portion of the gateway router's IP address must be the same as the network portion of the IP address of one of the IP addresses of the Ethernet interfaces on the IP card. The gateway router is configured using the defrouter of the chg-ip-card command, or using the ent-ip-rte command.

Static entries are added to the IP Routing table using the ent-ip-rte command. Static routes are usually assigned to give control over which routers are used, allowing different routers to be selected based upon the destination IP address. There are two types of static routes:

- host static IP routes
- network or subnetwork static IP routes.

The default route entry is a special static route. If there is not a specific host or network address in the IP Routing table that matches the destination IP address of an outbound datagram, then the datagram is sent to the default router (gateway) specified by the default route.

An IP route is configured using the ent-ip-rte command with the location of the IP card, the IP address of the gateway router (the gtwy parameter), and the IP address and subnet mask of the destination (that is, host or network). The IP address of the gateway router must be a locally attached IP address (that is, the gateway IP address must share the network portion of one of the two Ethernet interfaces).

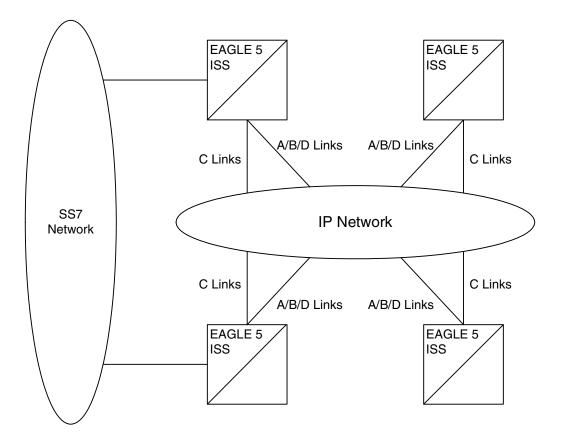
When an IP packet is to be transmitted the IP routing table must be interrogated to determine where to send the IP datagram. If the destination IP address is local to the node (that is, directly reachable by an Ethernet interface), then the IP datagram is transmitted directly to the node with that associated IP address. If the destination IP address is determined to not be local to the node, then it must be routed (that is, sent to a gateway to reach its destination).

IP routing requires accessing the IP routing table to select a route. The destination IP address of the outbound datagram is used to search the IP routing table for the most specific route match. The order for selection is:

- 1. Host route
- 2. Subnetwork route
- 3. Network route
- **4.** Aggregated route
- **5.** Default route.

Based on this selection order if an IP route is found then the outbound IP datagram will be transmitted to the gateway specified by the route. If no IP route is found (where no default route is specified), then the transmission of the datagram fails due to destination unreachable.

The capability to enter static IP routes provides for flexibility and control with respect to controlling network traffic. An IP card can contain up to 64 IP routes. The EAGLE 5 ISS can contain up to 1024 IP routes.


Point-to-Point Connectivity (IPLIM or IPLIMI Application)

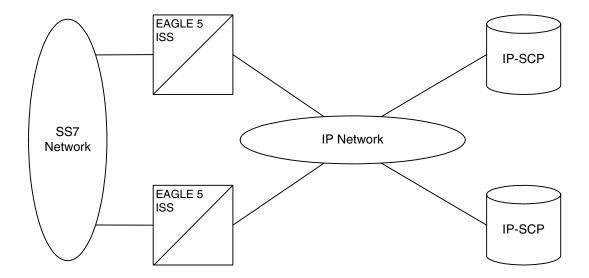
The following sections describe the types of point-to-point connectivity provided, and how routing is accomplished, by the iplim or iplimi application:

Connecting STPs Over the IP Network

This functionality allows the use of an IP network in place of point-to-point SS7 links to carry SS7 MSUs. Figure 2-12 shows a diagram of this type of network. For example, the C links between the mated pair of STPs or A/B/D links between STPs can be replaced by an IP network. The IP⁷ Secure Gateway functionality is deployed on both ends of the link (point-to-point connection). The EAGLE 5 ISS converts the SS7 MSUs to IP packets on one end of the link, and IP packets to SS7 MSUs on the other end of the link. The IPLIMx applications supports the TALI/TCP/IP sockets over B, C, and D links and M2PA/SCTP/IP associations over A, B, C, D, and E links.

Figure 2-12. EAGLE 5 ISS Network (STP Connectivity via MTP-over-IP)

Point-to-Multipoint Connectivity (SS7IPGW and IPGWI)

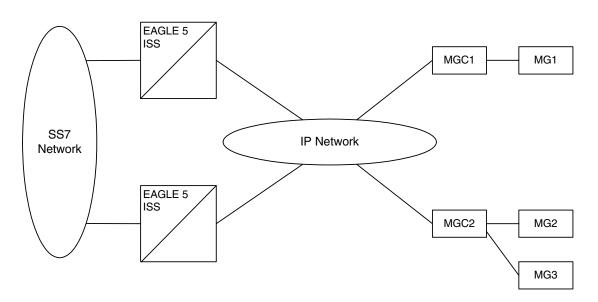

The following sections describe the types of point-to-multipoint connectivity, how routing is accomplished, and the MTP status functions provided by the ss7ipgw and ipgwi applications:

- "Connecting to SCPs with SCCP/TCAP Messages Sent Over the IP Network" on page 2-22
- "Connecting SEPs Using ISUP, Q.BICC, and TUP Messages Over the IP Network" on page 2-23
- "Connecting SCPs and SEPs Using Non-ISUP, Non-SCCP, Non-Q.BICC, and Non-TUP Messages Over the IP Network" on page 2-24
- "Understanding Routing for SS7IPGW and IPGWI Applications" on page 2-25
- "Support for MTP Status Functions" on page 2-30

Connecting to SCPs with SCCP/TCAP Messages Sent Over the IP Network

This functionality allows SS7 nodes to exchange SCCP/TCAP queries and responses with an SCP residing on an IP network. Figure 2-13 shows a diagram of this type of network.

Figure 2-13. IP Network (SCP Connectivity via TCAP-over-IP)


The EAGLE 5 ISS manages the virtual point codes and subsystem numbers for the IP-SCP. From the SS7 network perspective, the TCAP queries are routed using these virtual point codes/SSNs. The EAGLE 5 ISS maps the virtual point code/SSN to one or more TCP sessions (point-to-multipoint connection), converts the SS7 MSUs to IP packets by embedding the SCCP/TCAP data inside IP packets, and routes them over an IP network. The EAGLE 5 ISS also manages application subsystem status from an IP network's perspective and an SS7 network's perspective.

The following sequence of events illustrates this functionality:

- 1. Traditional SS7 devices route MSUs (such as TCAP Queries) to the EAGLE 5 ISS.
- **2.** The EAGLE 5 ISS performs a global title translation and forwards the translated MSU to the correct IP device based on Point Code and SCCP Subsystem information in the MSU.
- **3.** The TCAP query is processed at the IP-SCP, and the IP-SCP sends a TCAP reply back to the EAGLE 5 ISS.
- **4.** The EAGLE 5 ISS forwards the TCAP reply back to the sender of the original query.

Connecting SEPs Using ISUP, Q.BICC, and TUP Messages Over the IP Network

This point-to-multipoint functionality allows SS7 nodes to exchange ISUP, Q.BICC, and TUP protocol messages with one or more signaling end points (class 4 switches, class 5 switches, VoIP gateways, Media Gateway Controllers, or Remote Access Servers) residing on an IP network. Figure 2-14 shows an example of this type of network.

Figure 2-14. IP Network (SEP connectivity via ISUP, Q.BICC, and TUP-over-IP)

The EAGLE 5 ISS maps the originating point code, destination point code, and circuit identification code to an IP connection. The SEP is provided the originating and destination point codes in the MTP level 3 routing label as part of the passed protocol.

Connecting SCPs and SEPs Using Non-ISUP, Non-SCCP, Non-Q.BICC, and Non-TUP Messages Over the IP Network

This point-to-multipoint functionality allows SS7 nodes to exchange non-ISUP, non-SCCP, non-Q.BICC, and non-TUP protocol messages with one or more IP-based devices residing on an IP network. The network example is similar to the SCP connectivity via SCCP/TCAP-over-IP functionality example shown in Figure 2-13. The EAGLE 5 ISS maps the destination point code, and service indicator (non-ISUP, non-SCCP, non-Q.BICC, non-TUP) to an IP connection.

Understanding Routing for SS7IPGW and IPGWI Applications

The ss7ipgw and ipgwi applications can use a single point code, called a virtual point code. This code is assigned to a set of IP devices that it connects to. The EAGLE 5 ISS distinguishes between the devices within the set by using application routing keys and application sockets or application servers.

Application routing associates SS7 routing keys with sockets or application servers. SS7 routing keys define a filter based on SS7 message data. Application sockets or application servers define the connection between the IP local host/local transport protocol port and IP remote host/remote transport protocol port.

An application server is a logical entity serving a specific routing key. The application server contains a set of one or more unique application server processes, of which one or more is normally actively processing traffic. An application server process is a process instance of an application server and contains an SCTP association. For more information on application servers, application server processes, and SCTP associations, see the IETF Adapter Layer Support section on page 2-48.

If the routing key filter matches the SS7 message presented for routing to the IP network, the SS7 message is sent to the associated application socket or application server.

There may be up to 16 application sockets or one application server associated with each SS7 routing key. One application server can have up to 16 associations. SS7 messages delivered to the IP network using a routing key are distributed over the available application sockets or application server based on the SLS (signaling link selector) value in the SS7 message.

Routing keys can be fully or partially specified, or specified by default.

Full Routing Keys

For this routing application, all applicable fields in the Message Signaling Unit (MSU) must match the contents of the full routing key. Table 2-3 defines which SS7 message parameters are used to search for a match for full routing keys for each of the functions supported by the <code>ss7ipgw</code> and <code>ipgwi</code> applications (IPGWx functionality).

Table 2-3. SS7 Full Routing Keys per IPGWx Functionality

IPGWx Functionality (ANSI and ITU)	SS7 Routing Keys			
SCP connectivity via TCAP-over-IP	Destination Point Code Service Indicator (=3) Subsystem Number			
SEP connectivity via ISUP-over-IP	Destination Point Code Service Indicator (=5) Originating Point Code CIC Range Start CIC Range End			
SEP connectivity via Q.BICC-over-IP	Destination Point Code Service Indicator (=13) Originating Point Code CIC Range Start CIC Range End			
SEP connectivity via TUP-over-IP (ITU only)	Destination Point Code Service Indicator (=4) Originating Point Code CIC Range Start CIC Range End			
SCP/SEP connectivity via non-ISUP, non-SCCP, non-Q.BICC, non-TUP-over-IP	Destination Point Code Service Indicator (any value other than 3, 4*, 5, and 13)			
* The service indicator value of 4 can be used in this instance if the DPC is an ANSI point code.				

Partial Routing Keys

Partially specified routing keys are explicitly, but not completely defined. These routing keys ignore some of the contents of the MSU. The parts of the MSU that are ignored are specific. For example, for the 'ignore cic' partial-key type, the destination point code (dpc), service indicator (si), and originating point code (opc) must be configured, but the circuit identification code (cic) field does not have to be configured. The other types of SS7 partial routing keys are as follows:

- dpc, si, and opc specified (ignore cic for CIC-based messages)
- dpc and si specified (ignore ssn for sccp messages)
- dpc and si specified (ignore opc and cic for CIC-based messages)
- dpc specified (ignore all but the dpc field)
- si specified (ignore all but the si field)

Default Routing Keys

Default routing keys do not need any part of the MSU specified. This routing key can be used to carry any SS7 MSU, regardless of the type of MSU or the fields that make up the MSU. The EAGLE 5 ISS can support two default routing keys, one created by administrative commands and one entered by Dynamic Routing Key Registration.

Routing Key Tables

Each IP card has a Routing Key table that maps SS7 routing keys to IP connections, as illustrated by the example in Table 2-4. MSUs that match the parameters in a given row are sent over one of the IP connections shown for that row (up to 16 IP connections can be defined for a single routing key). Multiple IP connections for a given row allow load sharing. In addition, multiple routing keys can be used to send traffic to a single IP connection.

Each IP card's Routing Key table can contain up to 1000 entries (if there are any dual-slot DCM cards) or 2500 entries (if all IP cards are SSEDCM cards). Entries in the Routing Key table can be either of the following:

- Static these entries are defined by the user using the ent-appl-rtkey command entered through the OAM, saved on disk, and reloaded to each IP card upon reset. Static entries can be full, partial, or default routing keys. The static entries in one IP card's Routing Key table are identical to the static entries in the other IP card's table. Static entries can be changed by the chg-appl-rtkey command or deleted by the dlt-appl-rtkey command.
- Dynamic these entries are added to or deleted from the table when a remote computer sends a message to the EAGLE 5 ISS. Dynamic entries allow an IP connection to automatically direct traffic towards, or away from, itself. A dynamic entry can have the same parameters as a static entry and can be full, partial, or default routing keys. When the ss7ipgw or ipgwi application transmits an MSU, it looks for a matching dynamic entry before looking for a

static entry. When an IP connection fails, all dynamic entries associated with the IP connection are deleted. The dynamic entries in one IP card's Routing Key table may differ from the other IP card's table depending on messages received from other IP nodes. Dynamic entries can be deleted by receipt of a message from the IP connection, by failure of the IP connection, or by the dlt-appl-rtkey command.

NOTE: Dynamic routing keys are not created from MSUs containing ITU international or 14-bit ITU national spare point codes.

Table 2-4 shows a sample Routing Key table that has one static entry and one dynamic entry for an SSCP/TCAP-over-IP connection; one static entry each for an ISUP, Q.BICC, and TUP-over-IP connection; and a non-SCCP/non-ISUP/non-Q.BICC/non-TUP connection.

Table 2-4. Example SS7 Routing Key Table

			SS7 Ro	IP Sockets that carry traffic for that Routing Key				
Locat ion	SS7 DPC	SS7 SI	SS7 SSN	SS7 OPC	CIC START	CIC END	Socket Name	
DPC-SI-SSN routing key for SSCP/TCAP-over-IP connectivity								
Static	5-5-5	03	6	-	-	-	kchlr11201 kchlr21201 kchlr11203 kchlr21203	
1105	5-5-5	03	6	-	-	-	kchlr31205 kchlr41205	
ISUP-C	CIC routing	g key fo	r ISUP-	over-IP	connectivi	ty	,	
Static	5-5-6	05	-	4-4-4	1	100	dnmsc11201 dnmsc21201 dnmsc11203 dnmsc21203	
Q.BIC	C-CIC rout	ing key	for Q.I	BICC-ov	er-IP conn	ectivity		
Static	4363	13	-	5834	48486	48486	lpmsg11204 lpmsg21204 lpmsg31204	
TUP-C	IC routing	key for	TUP-o	ver-IP	connectivity	у		
Static	1-44-2	04	-	2-5-1	3948	3948	lpmsg11205 lpmsg21205 lpmsg31205	
DPC-S	I routing k	ey for r	on-SCO	CP/non	-ISUP/non	-Q.BICC/1	non-TUP connectivity	
Static	5-5-7	02					sfhlr11204	

Routing Key Lookup Hierarchy

To facilitate the delivery of Message Signaling Units (MSUs) that do not match full routing key entries in the Routing Key table, each MSU is processed and delivered according to a specific routing key lookup hierarchy. The hierarchy guarantees that the MSU is delivered to the best possible location based on the MSU's closest match in the Routing Key table, and also prevents MSUs without full routing key matches from being discarded. Table 2-5 defines the routing key lookup hierarchy.

Table 2-5. Routing Key Lookup Hierarchy

Type of MSU	Lookup Order per MSU Type	Segment of MSU that Must Match Routing Key	Routing Key Type
	1	dpc + si+ opc+cic	Full
	2	dpc + si + opc (ignore cic)	Partial
CIC	3	dpc + si (ignore opc & cic)	Partial
Cic	4	dpc (ignore si, opc & cic)	Partial
	5	si (ignore dpc, opc & cic)	Partial
	6	None	Default
	1	dpc + si + ssn	Full
SCCP	2	dpc + si (ignore ssn)	Partial
	3	dpc (ignore si & ssn)	Partial
	4	si (ignore dpc & ssn)	Partial
	5	None	Default
	1	dpc + si	Full
OtherSI	2	dpc (ignore si)	Partial
Onteror	2	si (ignore dpc)	Partial
	3	None	Default

When an MSU has an si value of 5, 13, or 4 (ITU only), it is a CIC message. Messages with an si value of 3 are SCCP messages. All other MSUs are considered OtherSI messages. The EAGLE 5 ISS first tries to match each MSU with a full routing key and second with one of the partial keys as numbered in ascending order in the table. Third, if no segment of the routing key matches either full or partial routing keys, the EAGLE 5 ISS assigns the MSU a default routing key.

Support for MTP Status Functions

This feature, available only on IP cards that support the ss7ipgw and ipgwi applications, allows the Message Transfer Part (MTP) status of point codes in the SS7 networks to be made available to IP-connected media gateway controllers (MGCs) and IP-SCPs. This feature is similar to the MTP3 network management procedures used in an SS7 network.

This feature enables an IP device to:

- Divert traffic from a secure gateway that is not able to access a point code that the mated secure gateway can access
- Audit point code status
- Build up routing tables before sending traffic
- Be warned about network congestion
- Abate congestion (ss7ipgw application only)
- Obtain SS7 User Part Unavailability status

SNMP Agent Implementation

This feature implements a Simple Network Management Protocol (SNMP) agent on each IP card that runs the <code>ss7ipgw</code>, <code>ipgwi</code>, <code>iplim</code>, or <code>iplimi</code> applications. SNMP is an industry-wide standard protocol used for network management. SNMP agents interact with network management applications called Network Management Systems (NMSs).

Supported Managed Object Groups

The SNMP agent maintains data variables that represent aspects of the IP card. These variables are called managed objects and are stored in a management information base (MIB). The SNMP protocol arranges managed objects into groups. Table 2-6 on page 2-31 shows the groups that are supported.

Table 2-6. SNMP Object Groups

Group Name	Description	Contents
system	Text description of agent in printable ASCII characters	System description, object identifier, length of time since reinitialization of agent, other administrative details
interfaces	Information about hardware interfaces on the IP card	Table that contains for each interface, speed, physical address, current operational status, and packet statistics
ip	Information about host and router use of the IP	Scalar objects that provide IP-related datagram statistics, and 3 tables: address table, IP-to-physical address translation table, and IP-forwarding table
істр	Intranetwork control messages, representing various ICMP operations within the IP card	26 scalar objects that maintain statistics for various Internet Control Message Protocol (ICMP) messages
tcp	Information about TCP operation and connections	14 scalar objects that record TCP parameters and statistics, such as the number of TCP connections supported and the total number of TCP segments transmitted, and a table that contains information about individual TCP connections
udp	Information about UDP operation	4 scalar objects that maintain UDP-related datagram statistics, and a table that contains address and port information
snmp	Details about SNMP objects	30 scalar objects, including SNMP message statistics, number of MIB objects retrieved, and number of SNMP traps sent

Supported SNMP Messages

The SNMP agent interacts with up to two NMSs by:

- Responding to *Get* and *GetNext* commands sent from an NMS for monitoring the IP card.
- Responding to *Set* commands sent from an NMS for maintaining the IP card and changing managed objects as specified.
- Sending *Trap* messages to asynchronously notify an NMS of conditions such as a link going up or down. *Traps* provide a way to alert the NMS in a more

timely fashion than waiting for a *Get* or *GetNext* from the NMS. Two hostnames, DCMSNMPTRAPHOST1 and DCMSNMPTRAPHOST2, are utilized to specify the SNMP NMS to which traps are sent. In this release, only the following traps are supported:

- coldStart, sent one time only when the IP stack initialization occurs on the IP card as part of boot processing
- linkUp, sent when one of the ports on the IP card initially comes up or recovers from a previous failure
- linkDown, sent when one of the ports on the IP card fails

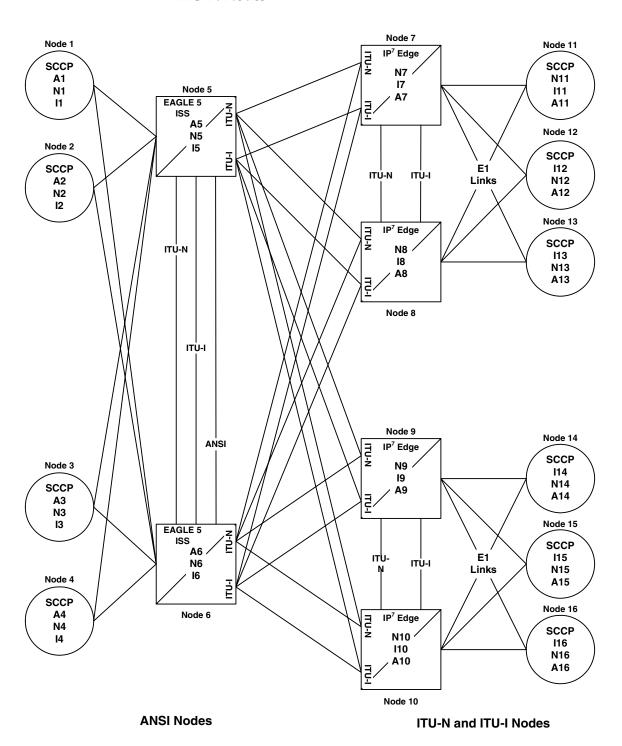
When a trap occurs at the IP card agent, the agent sends the trap to each of the SNMP specific host names that can be resolved to an IP address. Resolution is based on configuration data in the chg-ip-card command (or default data) which specifies DNS search order and DNS information.

Deviations from SNMP Protocol

Table 2-7 on page 2-33 shows how the EAGLE 5 ISS deviates from the standard SNMP protocol definition.

Table 2-7. Deviations from SNMP Protocols

Group	Variable Name	Usage	Deviation
system	sysContact	Text identification of contact information for agent	Cannot be set by <i>Set</i> command; may be set only by chg-sg-opts command.
	sysLocation	Physical location of agent	Cannot be set by <i>Set</i> command; internally set using configuration data already available; set to <clli>-<slot card="" ip="" of=""></slot></clli>
	sysName	Administratively assigned name for agent	Cannot be set by <i>Set</i> command; internally set using configuration data already available; set to <clli>-<slot card="" ip="" of=""></slot></clli>
interface	ifAdminStatus	Desired state of the interface	Cannot be set by <i>Set</i> command (to ensure that an NMS does not disrupt SS7 traffic by placing an IP interface in a nonoperable state)
ip	ipForwarding ipDefaultTTL ipRoute Dest ipRouteIfIndex ipRouteMetric1-5 ipRouteNextHop ipRouteType iprouteAge ipRouteMask	IP route-specific values	Cannot be set by Set command
	ipNetToMediaIfIndex ipNetToMediaPhysAdress ipNetToMediaNetAddress ipNetToMediaType	IP-address specific information	Can be set by <i>Set</i> command, but not saved across IP card reloads
tcp	tcpConnState	State of a TCP connection	Cannot be set by Set command
snmp	snmpEnableAuthenTraps	Indicate whether agent is permitted to generate authentication failure traps	Cannot be set by Set command


Mixed Networks Using the ANSI/ITU MTP Gateway Feature

The optional ANSI/ITU MTP Gateway feature, now also available for IP networks, and the addition of the <code>iplimi</code> and <code>ipgwi</code> applications enables the EAGLE 5 ISS to act as an interface between nodes that support ANSI, ITU-I, and ITU-N protocols. For more information on the ANSI/ITU MTP Gateway feature, contact your Tekelec Sales Representative.

Figure 2-15 on page 2-35 shows an example of a complex network that includes all these types of nodes. Table 2-8 on page 2-36 provides more detail about the nodes, network types, and point codes used in this example.

The following SS7 protocol constraints determine how the network must be configured:

- A linkset is a group of links that terminate into the same adjacent point code.
 All links in the linkset can transport compatible MSU formats. The network
 type of the linkset is the same as the network type of the adjacent point code
 assigned to the linkset.
- When nodes in different networks need to communicate, each node must have either a true point code or an alias point code for each of the network types. For example, if Node 1 (in an ANSI network) needs to communicate to Node 7 (in an ITU-N network), Node 1 must have an ANSI true point code and an ITU-N alias point code, while Node 7 must have an ITU-N true point code and an ANSI alias point code.
- The systems are usually deployed as mated pairs. The links connecting the EAGLE 5 ISS to its mate are C links. Each EAGLE 5 ISS must have a C linkset for each network type that the EAGLE 5 ISS connects to. Therefore, in Figure 2-15 on page 2-35, Nodes 5 and 6 are connected with three linksets, one each for ANSI traffic, ITU-I traffic, and ITU-N traffic.
- To perform routing, the EAGLE 5 ISS must convert the routing labels in MSUs. To perform this conversion, every destination point code (DPC), originating point code (OPC), and concerned point code must be defined in the Routing table. Even if the EAGLE 5 ISS does not route MSUs to these nodes, they must be provisioned in the Routing table to provision the alias point codes required in the conversion process.

Figure 2-15. Complex Network with ANSI, ITU-I, and ITU-N Nodes

Table 2-8. Nodes and Point Codes in Complex Network Example

Node	Node Type	Network Types Supported	True Point Codes ¹	Alias Point Codes ²
1	SSP	ANSI	A1	N1, I1
2	SSP	ANSI	A2	I2
3	SSP	ANSI	A3	N3, I3
4	SSP	ANSI	A4	N4
5	STP (with IP ⁷ Secure Gateway functionality)	ANSI, ITU-N, ITU-I	A5, N5, I5	
6	STP (with IP ⁷ Secure Gateway functionality)	ANSI, ITU-N, ITU-I	A6, N6, I6	
7	STP (with IP ⁷ Secure Gateway functionality)	ITU-N, ITU-I	N7, I7	A7
8	STP (with IP ⁷ Secure Gateway functionality)	ITU-N, ITU-I	N8, I8	A8
9	STP (with IP ⁷ Secure Gateway functionality)	ITU-N, ITU-I	N9, I9	A9
10	STP (with IP ⁷ Secure Gateway functionality)	ITU-N, ITU-I	N10, I10	A10
11	SSP	ITU-N	N11	I11, A11
12	SSP	ITU-I	I12	N12, A12
13	SSP	ITU-I	I13	N13, A13
14	SSP	ITU-N	N14	I14, A14
15	SSP	ITU-I	I15	N15, A15
16	SSP	ITU-I	I16	N16, A16

Notes:

- 1. A true point code (TPC) defines a destination in the EAGLE 5 ISS's destination point code table. A TPC is a unique identifier of a node in a network. An STP (with IP⁷ Secure Gateway functionality) must have a TPC for each network type that the EAGLE 5 ISS connects to. An SSP connects to only one type of network, so it has only one TPC.
- **2.** An alias point code is used to allow nodes in other networks to send traffic to and from a EAGLE 5 ISS when that EAGLE 5 ISS does not have a TPC for the same network type.

The configured links and point codes in the complex network shown in Figure 2-15 on page 2-35 allows most nodes to communicate with other nodes. However, note that Node 2 cannot communicate with Node 13 or Node 16, or with any node in the ITU-N network because Node 2 does not have an ITU-N alias point code.

Routing and Conversion Within a Single Network Type

The following steps demonstrate how an EAGLE 5 ISS routes and converts when an ITU-N node sends an MSU to another ITU-N node. For example, assume that Node 11 in Figure 2-15 on page 2-35 sends an MSU to Node 14. The MSU is routed from Node 11 to Node 7 to Node 5 to Node 9 to Node 14. The following steps describe the actions performed at Node 5 (an STP with IP⁷ Secure Gateway functionality):

- 1. An ITU-N formatted MSU (which has a network identifier=01b and a 14-bit destination point code/originating point code) is received on an iplimi card (for this example at location 1103).
- **2.** MSU discrimination is performed with the following substeps:
 - a. Compare the received network identifier (NI) to the list of valid NIs. (Each configured linkset for a receiving link has a defined list of valid NIs.) If the comparison fails, the MSU is discarded and an STP measurement is logged. In this example, the received NI (01b) is valid for an iplimi card.
 - **b.** Extract the NI and destination point code (DPC) from the received MSU.
 - **c.** Determine whether the destination of the received MSU is this STP. If not (as is the case in this example), the MSU is passed to the STP's routing function.
- 3. The routing function selects which outgoing link to use by searching a routing table for an entry for the DPC (N14 in this example). The routing table identifies another <code>iplimi</code> card (for this example at location 1107) to be used for the outgoing link.
- **4.** Determine whether MSU conversion is required (required when the source network type is not the same as the destination network type). In this example, both Node 11 and Node 14 are ITU-N nodes, so conversion is not required.
- **5.** Forward the MSU across the Interprocessor Message Transport (IMT) bus from location 1103 to location 1107, where the MSU is transmitted out the link towards Node 14.

Routing and Conversion Between Different Network Types

The routing and conversion steps performed by a EAGLE 5 ISS when an ITU-N node sends an MSU to an ITU-I node are the same as the steps shown in "Routing and Conversion Within a Single Network Type" on page 2-37, except for the conversion step.

For example, assume that Node 11 in Figure 2-15 sends an MSU to Node 16. The MSU is routed from Node 11 to Node 7 to Node 5 to Node 9 to Node 16. The following steps describe the actions performed at Node 5 (an EAGLE 5 ISS with IP⁷ Secure Gateway functionality):

- 1. Perform step 1 through step 3 as shown in "Routing and Conversion Within a Single Network Type" on page 2-37. In this example, assume that the routing function determines that the outgoing link is configured on the IP card at location 1203.
- 2. Determine whether MSU conversion is required (required when the source network type is not the same as the destination network type). In this example, Node 11 is an ITU-N node and Node 16 is an ITU-I node, so conversion is required. Conversion consists of two phases: Message Transfer Part (MTP) conversion and user part conversion.
- **3.** Perform MTP conversion (also known as routing label conversion). The following parts of the MSU can be affected by MTP conversion:
 - Length indicator for ITU-N to ITU-I conversion, the length of the MSU does not change
 - Service Information Octet (SIO), Priority for conversion to ITU, the priority is set to 0. For conversion to ANSI, the priority is set to a default of 0, which can later be changed based on user part conversion.
 - Service Information Octet (SIO), Network Indicator the NI bits are set to the NI value for the destination node. In this example, NI is set to 00b.
 - Routing Label, Destination Point Code (DPC) the DPC is replaced with the destination's true point code. In this example, N16 is replaced by I16.
 - Routing Label, Originating Point Code (OPC) the OPC is replaced with the appropriate network type's alias point code for the originating node. In this example, N11 is replaced with I11.
 - Routing Label, Signaling Link Selector (SLS) no SLS conversion is required between ITU-I and ITU-N nodes. However, if one of the nodes were an ANSI node, conversion would be required between a 5-bit or 8-bit SLS for ANSI nodes and a 4-bit SLS for ITU nodes.

- **4.** Perform user part conversion, if necessary. Currently, only SCCP traffic and only network management messages have the Message Transfer Part (MTP) converted. All other user parts have their data passed through unchanged.
- **5.** Forward the MSU across the Interprocessor Message Transport (IMT) bus from location 1103 to location 1203, where the MSU is transmitted out the link towards Node 16.

Nagle's Algorithm

Nagle's Algorithm is a 1-bit, Boolean socket option that controls message packet transmission timing. Nagle's Algorithm applies only to TALI sockets. Sockets can be set to 1 = Enable or 0 = Disable. Nagle's Algorithm is disabled by default for all sockets, which means that every message is transmitted over the Ethernet as soon as possible. When this socket option is disabled, it minimizes the time it takes for messages to be transmitted but increases the overall number of packets transmitted, which results in increased Central Processing Unit (CPU) utilization and less efficient Local Area Network (LAN) utilization.

Enabling Nagle's Algorithm allows the IP stack to hold on to messages for a period of time in an effort to pack multiple messages into a single TCP packet. Though message latency increases, fewer packets are generated and processed, resulting in lower CPU and better LAN utilization. At high rates of traffic through a socket, message latency is minimal because the threshold packet size is reached (messages fill the packet) very quickly, which causes the stack to transmit the packet.

Administrators can choose to enable or disable Nagle's Algorithm depending on the parameters that work best for the EAGLE 5 ISS. Nagle's Algorithm also can be toggled between being 1) enabled when the amount of messages that are transmitted is higher than the threshold limit and 2) disabled when transmission rates are lower than the threshold.

For more information on how to set up these features by altering the Database Communication Module Parameter Set (DCMPS), see the *Commands Manual*.

Type of Service (TOS)

This 8-bit, Type of Service (TOS) socket option is also used to prioritize the flow of network traffic. Packets can be routed differently according to the TOS value set in the IP header. The TOS field resides within the message's IP header and identifies the network router's priorities. Tekelec does not specify how the TOS bits should be set. The administrator can choose how to set them. Figure 2-16 on page 2-40 illustrates a TOS field setup. For more information on how to set up these features by altering the Database Communication Module Parameter Set (DCMPS), see the *Commands Manual*.

Figure 2-16. 8-bit TOS Field

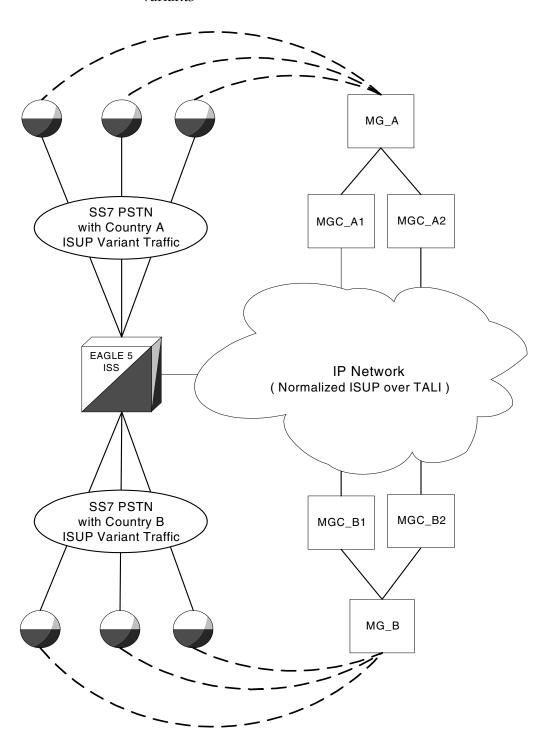
7	6	5	4	3	2	1	0
		Reliability	Throughput	Delay	IP precedence		•

For Differentiated Service (DiffServ) the TOS field is referred to as the Differentiated Service (DS) field. The priorities of the DS field in the IP header can also be set through socket options. Figure 2-17 illustrates a DS field setup.

Figure 2-17. DS Field

7	6	5	4	3	2	1	0
С	U		DSCP				

ISUP Normalization


This feature allows an EAGLE 5 ISS to deliver ISUP messages that arrive at the EAGLE 5 ISS from the public switched telephone network (PSTN) in a country specific ISUP variant format, to an IP device in a normalized ISUP format. Likewise, it enables traffic received from an IP device in normalized ISUP format to be delivered to a PSTN link in the appropriate country variant format. The normalized ISUP messages are carried in TALI packets. Data is contained in the TALI packet itself to specify what national network (or what country) the ISUP message originated from or is destined to and what ISUP variant the original PSTN message was formatted in.

This feature allows an IP device (for example, an MGC providing Class 4 Tandem functionality) connected to an EAGLE 5 ISS to perform call setup for multiple countries without knowledge of the various countries' ISUP message formats. The MGC needs only to support encode and decode functionality for the normalized format and does not have to support encode and decode functionality for each ISUP variant.

The EAGLE 5 ISS and IP device are able to support these call scenarios:

- 1. Intra-Country Call
- 2. Inter-Country Call

This capability is shown in Figure 2-18 on page 2-41.

Figure 2-18. ISUP Normalization Supporting Multiple ISUP Variants

Although Figure 2-18 on page 2-41 shows a separate soft-switch (that is, the Media Gateway/Media Gateway Controller pair) per country, this feature does not prevent a single soft-switch, communicating with a single pair of IPGWI cards, from performing call setup for multiple countries.

Referring to Figure 2-18, the 'normalized ISUP traffic' is used in the communication between the EAGLE 5 ISS and the devices on the IP network. The traffic carried over the DS0 links to Country A SSPs and Country B SSPs (on the PSTN side of the EAGLE 5 ISS) continues to be formatted in the ISUP national variant format.

Normalized ISUP refers to the ISUP messages that are passed between the IP card running the IPGWI application (IPGWI card) and the IP device when this feature is used. The Normalized ISUP message is based on ETSI V3 ISUP, but provides a method to pass along variant-specific data that does not map cleanly to ETSI V3. This allows the IP device to support decode/state machine/encode capabilities for Normalized ISUP only, rather than having to support these capabilities for multiple ISUP variants. Note that Normalized ISUP messages only exist in the IP network and are never present in the PSTN.

The variant specific information is retained as part of the ISUP normalized TALI message to guarantee that intra-country calling features which require variant specific messages and parameters can continue to work for those intra-country calls.

The normalization function is performed entirely on the IPGWI card in the EAGLE 5 ISS. Everything presented to the MGCs that are using this feature is in Normalized ISUP format. Everything that is presented to the MTP3 portion of the IPGWI card (to be routed back to a DS0 link towards the PSTN is in the format for a specific ISUP variant. Each DS0 LIM (or any LIM in the EAGLE 5 ISS other than the IPGWI card) receives MSUs from the PSTN wire and from the IMT in the same ISUP variant format. The DS0 LIMS do not know how to perform ISUP Normalization, and do not even know that it is occurring on the IPGWI cards.

The ISUP Normalization feature supports the normalization of the ISUP variants shown in Table 2-9:

Table 2-9. ISUP Variants Supported by this Feature

ISUP Variant	Part No.	PSTN Category	PSTN ID
ISUP Normalization	893000201	1	*
ITU Q.767 Normalization	893000501	1	1
ESTI V3 Normalization	893000601	1	2
UK PNO-ISC7 Normalization	893000401	1	3
German ISUP Normalization	893000301	1	4
French ISUP Normalization	893-0007-01	1	5

 Table 2-9.
 ISUP Variants Supported by this Feature (Continued)

ISUP Variant	Part No.	PSTN Category	PSTN ID
Sweden ISUP Normalization	893-0008-01	1	6
Belgium ISUP Normalization	893-0009-01	1	7
Netherlands ISUP Normalization	893-0010-01	1	8
Switzerland ISUP Normalization	893-0011-01	1	9
Austria ISUP Normalization	893-0012-01	1	10
Italy ISUP Normalization	893-0013-01	1	11
Ireland ISUP Normalization	893-0014-01	1	12
India ISUP Normalization	893-0015-01	1	13
Malaysia ISUP Normalization	893-0016-01	1	14
Vietnam ISUP Normalization	893-0017-01	1	15
South Africa ISUP Normalization	893-0018-01	1	16
Argentina ISUP Normalization	893-0019-01	1	17
Chile ISUP Normalization	893-0020-01	1	18
Venezuela ISUP Normalization	893-0021-01	1	19
Mexico ISUP Normalization	893-0022-01	1	20
Brazil ISUP Normalization	893-0023-01	1	21
Spain ISUP Normalization	893-0024-01	1	22
Colombia ISUP Normalization	893-0025-01	1	23
Peru ISUP Normalization	893-0026-01	1	24
Hong Kong ISUP Normalization	893-0027-01	1	25
China ISUP Normalization	893-0028-01	1	26
Japan ISUP Normalization	893-0029-01	1	27
Korea ISUP Normalization	893-0030-01	1	28
Taiwan ISUP Normalization	893-0031-01	1	29
Philippines ISUP Normalization	893-0032-01	1	30
Singapore ISUP Normalization	893-0033-01	1	31
Australia ISUP Normalization	893-0034-01	1	32
Reserved for future definition by Tekelec		2 through 4095	
Available for user-defined categories		4095 through 65535	

The Quantity Control feature allows a customer to provision a specified quantity of user-defined variants within the PSTN categories 4096 - 65535. Each Quantity Control Feature is associated with a specific quantity of variants. To provision user-defined variants, it is necessary to purchase the appropriate Feature Access Keys from Tekelec. Variants enabled using the Quantity Control feature do not have associated PSTN Presentation values.

The part number for user-defined variants is 893-0100-nn, where nn is a number ranging from 01 to 20. Use part number 893-0100-01 to order one new variant, 893-0100-05 to order five new variants, and so on.

It is important to understand that for each variant that is supported, only two conversions are needed. For example:

- From ISUP Variant A -> Normalized ISUP
- From Normalized ISUP -> ISUP Variant A

To clarify this, the normalization on the IPGWI card never converts from ISUP Variant A to ISUP Variant B.

However, a call setup scenario could exist where two variants are used. In this case the conversions would go from:

Variant A -> Normalized -> Variant B

But the conversions cannot all occur at once. Two separate conversions occur, possibly on different nodes.

The normalization of ANSI ISUP messages is not supported. The normalization of ISUP MSUs only occur on the cards running the IPGWI application and not the SS7IPGW application.

PSTN Presentation

PSTN presentation is a 32-bit value indicating the format of the MSU Level 3 payload while it exists in the PSTN (see Figure 2-19 on page 2-45). When using this feature, the PSTN presentation is configured in the IP Routing Key table and appears in "XSRV-xnrm" and "XSR-xmtp" packet headers.

The PSTN presentation's primary uses are as follows:

- 1. To indicate to the IPGWI card how to decode an ISUP MSU received from the PSTN when converting it to Normalized format for transmission over a socket configured for ISUP via XSRV-xmm.
- **2.** To indicate to the IPGWI card how to encode an ISUP MSU for delivery to the PSTN when converting a Normalized ISUP packet received from an IP device.
- **3.** To indicate to an IP device how to decode the Variant Specific portion (Part 2) of a received 'XSRV-xnrm' TALI packet.

4. To indicate to an IP device how to decode the raw MSU payload of a received "XSRV-xmtp" TALI packet (not limited to ISUP messages).

The PSTN Presentation consists of two parts, a PSTN Category and a PSTN ID:

- PSTN Category provides a way of logically partitioning groups of PSTN IDs
- PSTN ID provides unique identification of presentations within a given category

Figure 2-19. Format of PSTN Presentation

MSB		LSB
PSTN Category (16 Bits)	PSTN ID (16 Bits)	

Some PSTN Categories are reserved for specific vendor's use and definition. For example, EAGLE 5 ISS's reserve category #1 for defining ISUP variants supported by this feature. Table 2-9 lists valid PSTN categories and IDs.

The list of Tekelec-defined and user-defined PSTNs can be displayed by using the rtrv-pstn-pres command, as illustrated in the following example:

PSTNCAT	PSTNID	PSTNDESC
00001	00001	ITU Q.767
00001	00002	ETSI V3
00001	00003	UK PNO-ISC7
00001	00004	GERMAN ISUP
00001	00020	MEXICO
04096	01000	User Defined 4096/1000

Note that a PSTN Presentation of 0 (that is, Category = 0 and ID = 0) is defined as unknown and is the default value in routing keys and TALI XSRV headers.

Other PSTN Categories are available for implementation specific definition by the customer. For example, customer X may use category 4096 to define a set of PSTN IDs (that is, BTNUP, French TUP, etc.) that exists in its network and are routed over IPGWI links.

The PSTN Presentation (Category, ID, and description) is provisioned using the ent-pstn-pres command. This command may be used to define values within the Tekelec-defined range (PSTN Category 0-4095) as long as there exists an associated ON/OFF Control Feature, and its status is ENABLED. This command may be used to define values within the user-defined range (PSTN Category 4096-65535) as long as there exists an associated ISUP Normalization Quantity Control Feature and its status is ENABLED and its capacity is not going to be exceeded.

This command also creates a new entry in the ISUP Variant table initialized to default values. There must be an available entry in the table or this command will be rejected.

The chg-pstn-pres command changes the descriptive text of a previously provisioned PSTN Presentation value.

The dlt-pstn-pres command deletes a previously provisioned PSTN Presentation value. The entry in the ISUP Variant table associated with the deleted PSTN will be marked as available. All of the associated ISUP messages and parameters that have been provisioned for the PSTN/Variant with the chg-isupvar-attrib command will also be deleted.

The user cannot delete the PSTN for Normalized ISUP (ETSI V3).

Deleting the PSTN Category or ID may cause a loss of traffic if SS7IP routing keys exist using that PSTN value. The user should use caution when performing this action and must enter the force parameter with the dlt-pstn-pres command.

The chg-isupvar-attrib command is used to provision the ISUP message and parameter database for a variant based on the PSTN Presentation value. This command will allow the administrator to:

- Specify/change the defined message-type-codes and parameter-codes for the variant.
- Specify/change the optional parameters that are supported for each message-type.
- Specify/change the mandatory-fixed and mandatory-variable-length parameters that are supported for each message-type.
- Specify/change the minimum valid length for each parameter.
- Specify/change for each message or message/parameter combination, a custom "action". An "action" parameter for this command will allow the administrator to specify one of the following three actions:
 - NONE this is the default and it means the standard "normalization" conversion rules apply, i.e. do nothing special.
 - CONVERT a special conversion routine will be invoked by software when it receives the message or message/parameter. For the Tekelec-defined variants, there may be certain messages or parameters that require special handling. Tekelec will write special conversion software for these cases. This value may be entered for user-defined variants, however software will ignore it.

PASSTHRU - If specified with a message, then PASSTHRU means the specified message should be passed through unconverted using the raw MTP3 transfer method. If specified in a message/parameter combination, then PASSTHRU means that parameter, when received in that message, should be passed through to the Normalized section of the message (ignoring the DEFINED/SUPPORTED attributes of the Normalized specification).

The copy-isupvar-attrib command copies a "source" variant database to a "destination" variant database. This command provides the user with a quick way to provision a variant by copying a source variant database that has a similar ISUP protocol definition. The user can then use the chg-isupvar-attrib command to make the changes for the new protocol.

The PSTN Presentation is used to identify both the source and destination table entries. Both entries must be previously defined PSTN Presentation values, i.e. either a Tekelec-defined PSTN or a user-defined PSTN by the ent-pstn-pres command. Use the rtrv-pstn-pres command to display the only allowed values for the source and destination PSTNs.

If the source or destination variant is a Tekelec-defined PSTN value, then its associated ON/OFF Control Feature must be ENABLED.

The destination PSTN is not allowed to be Normalized ISUP (ETSI V3).

The rtrv-isupvar-attrib command displays the variant database provisioned by the chg-isupvar-attrib command. An assortment of displays is possible depending on the filters applied.

The following is an example of a possible output displaying all supported parameters for a specified message in a variant:

PSTNCAT	PSTNID		CODE	ATTRIB	ACTION
00001	00005	04h		DEFINED	CONVERT
MSGCOD:	E PARMC	ODE	TYPE	ORDER	ACTION
04h				-	CONVERT
	10h		MF	1	NONE
	08h		MF	2	NONE
	09h		MV	1	CONVERT
	FEh		MV	2	NONE
	00h		OPT	-	NONE
	01h		OPT	-	NONE

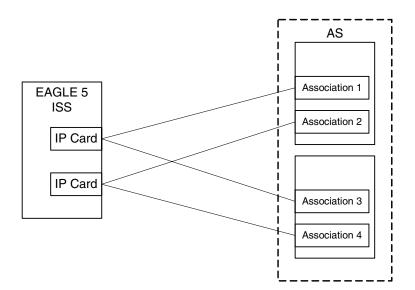
The chg-appl-rtkey command accesses the ISUP variant table to determine if the PSTN Presentation value entered is valid. It evaluates both Tekelec-defined and user-defined variant PSTNs.

The "Changing the PSTN Presentation and Normalization Attributes in a Routing Key" procedure on page 3-303 shows how to configure the EAGLE 5 ISS for ISUP Normalization feature.

IETF Adapter Layer Support

Overview

The current implementation of the IETF adapter layers in the EAGLE 5 ISS uses three adapter layers: SUA, M3UA, and M2PA. These adapter layers are assigned to SCTP associations which define the connection to the far end. An SCTP association is defined in the EAGLE 5 ISS by the local host name, the local SCTP port, the remote host name, and the remote SCTP port.


The three adapter layers used in the EAGLE 5 ISS are supported depending on the type of IP card being used for the IP connection. The SUA and M3UA adapter layers can be used only on IPGWx cards (cards running either the SS7IPGW or IPGWI applications). The M2PA adapter layer can be used only on IPLIMx cards (cards running either the IPLIM or IPLIMI applications).

SCTP associations on IPGWx cards, like TCP sockets, use routing keys to distinguish between the IP devices being connected to. TCP sockets are assigned directly to routing keys. SCTP associations cannot be assigned directly to routing keys. To get an SCTP association ultimately assigned to a routing key, the IETF adapter layers use the concept of the application server (AS). The SCTP association is assigned to an application server. One or more associations are normally actively processing traffic. A group of associations (up to 16) can be assigned to an application server. An application server, a logical entity serving a specific routing key, is assigned to a routing key. This results in assigning the SCTP association, up to a maximum of 16, to a routing key.

The IETF SUA and M3UA adapter layers are supported on IPGWx cards. These adapter layers support the full implementation of the AS and routing key for the EAGLE 5 ISS. SCTP associations assigned to IPGWx cards can be assigned to application servers and routing keys.

The IETF M2PA adapter layer is supported on IPLIMx cards. The M2PA adapter layer does not support application servers, therefore SCTP associations assigned to M2PA links on IPLIMx cards cannot be assigned to application servers.

Figure 2-20 on page 2-49 shows a typical configuration with four connections (SCTP associations) out of the EAGLE 5 ISS using IPGWx cards. Each association is connected to a process on the far end.

Figure 2-20. AS/Association Relationship

Interaction Between TALI and IETF Connections Within a Single EAGLE 5 ISS

The IP cards in the EAGLE 5 ISS can use both TCP sockets (TALI connections) and SCTP associations (IETF connections) to make IP connections to far end devices. An IP connection is defined as either a TCP socket or an SCTP association. The EAGLE 5 ISS may contain all TALI connections, all IETF connections, or a combination of both. Figure 2-21 shows that a single EAGLE 5 ISS can communicate to far end devices using different adapter layers. Each IP card in the EAGLE 5 ISS can support both TCP sockets and application servers. However, on IPGWx cards, only one TCP socket can be assigned to a single routing key. If the routing key has a routing context value assigned to it, only one application server can be assigned to the routing key. If the routing key does not have a routing context value assigned to it, the application server can be assigned to a maximum of 2500 routing keys.

An IPGWx card can contain a maximum of 50 connections. The EAGLE 5 ISS allows a maximum of 64 IPGWx cards, resulting in a maximum of 3200 connections for all IPGWx cards.

An IPLIMx card can have only one connection for each signaling link assigned to the card. The dual-slot DCM can contain only two signaling links, resulting in a maximum of two IP connections on these cards. The single-slot EDCM can contain a maximum of eight signaling links, resulting in a maximum of eight IP connections for this card. The E5-ENET card can contain a maximum of 16 signaling links, resulting in a maximum of 161 IP connections for this card

The EAGLE 5 ISS can contain a maximum of 4000 IP connections, between IPGWx cards and IPLIMx cards.

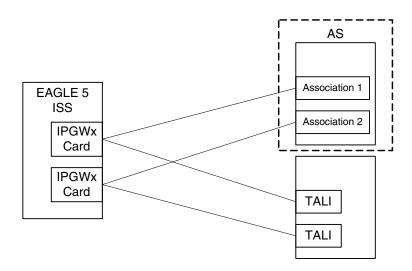
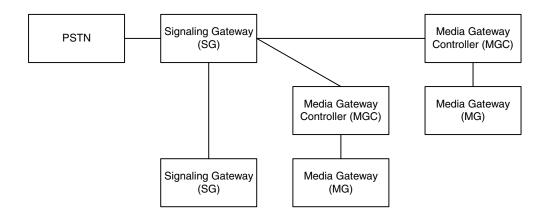
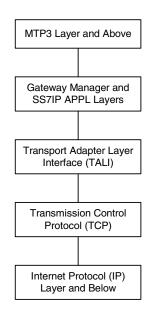
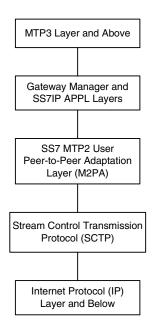



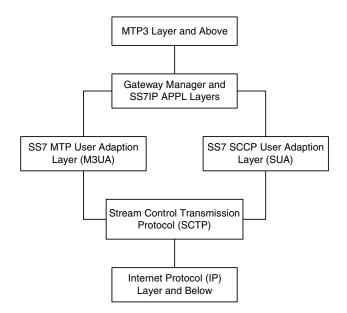
Figure 2-21. TCP Socket/SCTP Association Relationship


Feature Components

The EAGLE 5 ISS with IP⁷ Secure Gateway functionality is used as a signaling gateway between the PSTN and IP networks as shown in Figure 2-22. This figure shows that signaling gateways interface with media gateway controllers (MGCs) and MGCs interface with media gateways (MGs).

Figure 2-22. SG/MGC/MG Network Diagram


If a TCP socket is used to make the IP connection to other devices, the EAGLE 5 ISS uses the TALI protocol on top of TCP to communicate to other devices, as shown in Figure 2-23 on page 2-51.


Figure 2-23. TALI Protocol Stack (IPGWx and IPLIMx)

To provide a signaling gateway solution that will be able to communicate with a larger number of IP devices, the EAGLE 5 ISS needs to be able to communicate with multiple MGCs which are using SCTP as the transport layer and M3UA, M2PA, or SUA as an adapter layer. On an IPLIMx card, the M2PA adapter layer can be used with SCTP as shown in Figure 2-24. On an IPGWx card, the M3UA and SUA adapter layers can be used with SCTP as shown in Figure 2-25 on page 2-52.

Figure 2-24. IPLIMx Protocol Stack with SCTP as the Transport Layer

Figure 2-25. IPGWx Protocol Stack with SCTP as the Transport Layer

The EAGLE 5 ISS supports many (mapping & transport) protocol combinations. One connection can be running TALI/TCP while another connection is running M3UA/SCTP, and a third connection is running M2PA/SCTP. These three connections can be on the same card (provided the card is an IPGWx card) and even a part of the same routing key (if the card is an IPGWx card). If the card is an IPLIMx card, only M2PA connections can be assigned to the card.

This mixture allows greater configurability for the user. The EAGLE 5 ISS does not support TALI over SCTP, or IETF adapter layers over TCP.

SUA Layer

The SUA layer, only supported on IP cards running either the SS7IPGW or IPGWI applications (IPGWx cards), was designed to fit the need for the delivery of SCCP-user messages (MAP & CAP over TCAP, RANAP, etc.) and new third generation network protocol messages over IP between two signaling endpoints. Consideration is given for the transport from an SS7 signaling gateway to an IP signaling node (such as an IP-resident database). This protocol can also support transport of SCCP-user messages between two endpoints wholly contained within an IP network. The layer is expected to meet the following criteria:

- Support for transfer of SS7 SCCP-User Part messages (for example, TCAP, RANAP, etc.)
- Support for SCCP connectionless service.
- Support for the seamless operation of SCCP-User protocol peers
- Support for the management of SCTP transport associations between a signaling gateway and one or more IP-based signaling nodes).
- Support for distributed IP-based signaling nodes.
- Support for the asynchronous reporting of status changes to management

Depending upon the SCCP-users supported, the SUA layer supports the four possible SCCP protocol classes transparently. The SCCP protocol classes are defined as follows:

- Protocol class 0 provides unordered transfer of SCCP-user messages in a connectionless manner.
- Protocol class 1 allows the SCCP-user to select the in-sequence delivery of SCCP-user messages in a connectionless manner.
- Protocol class 2 allows the bi-directional transfer of SCCP-user messages by setting up a temporary or permanent signaling connection.
- Protocol class 3 allows the features of protocol class 2 with the inclusion of flow control. Detection of message loss or mis-sequencing is included.

Protocol classes 0 and 1 make up the SCCP connectionless service. Protocol classes 2 and 3 make up the SCCP connection-oriented service.

The SUA layer supports the following SCCP network management functions:

- Coord Request
- Coord Indication
- Coord Response
- Coord Confirm
- State Request
- State Indication
- Pcstate Indication

The SUA layer provides interworking with SCCP management functions at the signaling gateway for seamless inter-operation between the SCN network and the IP network. This means:

- An indication to the SCCP-user at an application server process that a remote SS7 endpoint/peer is unreachable.
- An indication to the SCCP-user at an application server process that a remote SS7 endpoint/peer is reachable.
- Congestion indication to SCCP-user at an application server process.
- The initiation of an audit of remote SS7 endpoints at the signaling gateway.

M3UA Layer

The M3UA layer, supported on only IPGWx cards, was designed to fit the need for signaling protocol delivery from an SS7 signaling gateway to a media gateway controller (MGC) or IP-resident database. The layer is expected to meet the following criteria:

- Support for the transfer of all SS7 MTP3-User Part messages (for example, ISUP, SCCP, TUP, etc.)
- Support for the seamless operation of MTP3-User protocol peers
- Support for the management of SCTP transport associations and traffic between a signaling gateway and one or more MGCs or IP-resident databases
- Support for MGC or IP-resident database process fail-over and load-sharing
- Support for the asynchronous reporting of status changes to management

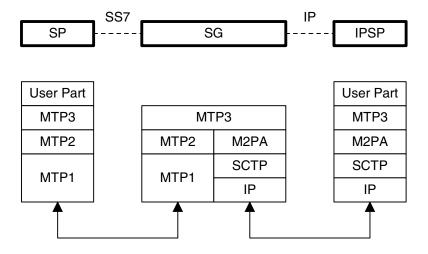
The M3UA layer at an application server provides a set of primitives at its upper layer to the MTP3-Users that is the equivalent of those provided by the MTP Level 3 to its local users at an SS7 SEP. In this way, the ISUP or SCCP layer at an application server process is unaware that the expected MTP3 services are offered remotely from an MTP3 Layer at a signaling gateway, and not by a local MTP3 layer. The MTP3 layer at a signaling gateway may also be unaware that its local users are actually remote user parts over the M3UA layer. The M3UA layer extends access to the MTP3 layer services to a remote IP-based application. The M3UA layer does not provide the MTP3 services.

The M3UA layer provides the transport of MTP-TRANSFER primitives across an established SCTP association between a signaling gateway and an application server process and between IPSPs. The MTP-TRANSFER primitives are encoded as MTP3-User messages with attached MTP3 Routing Labels as described in the message format sections of the SCCP and ISUP recommendations. In this way, the SCCP and ISUP messages received from the SS7 network are not re-encoded into a different format for transport to or from the server processes. All the required MTP3 Routing Label information (OPC, DPC, and SIO) is available at the application server process and the IPSP as is expected by the MTP3-User protocol layer.

At the signaling gateway, the M3UA layer also provides inter-working with MTP3 management functions to support seamless operation of the signaling applications in the SS7 and IP domains. This includes:

- Providing an indication to MTP3-Users at an application server process that a remote destination in the SS7 network is not reachable.
- Providing an indication to MTP3-Users at an application server process that a remote destination in the SS7 network is now reachable.

- Providing an indication to MTP3-Users at an application server process that messages to a remote MTP3-User peer in the SS7 network are experiencing SS7 congestion
- Providing an indication to MTP3-Users at an application server process that a remote MTP3-User peer is unavailable.


The M3UA layer at the signaling gateway maintains the availability of all configured remote application server processes, in order to manage the SCTP Associations and the traffic between the signaling gateway and application server processes. As well, the Active/Inactive state of remote application server processes is also maintained - Active application server processes are those currently receiving traffic from the signaling gateway.

M2PA Layer

The M2PA layer, supported only on IPLIMx cards, is a peer-to-peer protocol and provides mappings for all SS7 messages. In a peer-to-peer mode, either side of the IP connection may initiate the connection.

The M2PA layer closely matches the SAAL/TALI/TCP/IP Level 2 protocol stack. This allows it to provide all of the Level 2 features expected by MTP3. The M2PA layer lies below MTP3 in the protocol stack. Figure 2-26 shows the protocol layers in three interconnected nodes involving the M2PA layer.

Figure 2-26. M2PA in the IP⁷ Signaling Gateway

SP - SS7 Signaling Point SG - IP Signaling Gateway IPSP - IP Signaling Point The M2PA layer receives the primitives sent from MTP3 to its lower layer. The M2PA layer processes these primitives or maps them to appropriate primitives at the M2PA/SCTP interface. Likewise, the M2PA layer sends primitives to MTP3 like those used in the MTP3/MTP2 interface.

The M2PA layer provides MTP2 functionality that is not provided by SCTP. This includes:

- Reporting of link status changes to MTP3
- Processor outage procedure
- Link alignment procedure

The M2PA layer allows MTP3 to perform all of its Message Handling and Network Management functions with IPSPs as with other SS7 nodes.

The M2PA layer also supports full retrieval because it assigns sequence numbers to all protocol messages and provides for acknowledgements from the M2PA peer. This means that an M2PA signaling link is able to execute the Change-Over and Change-Back procedures. The M2PA layer makes use of the SS7 Extended Changeover (XCO) and SS7 Extended Changeover Acknowledgement (XCA) messages in order to communicate 24-bit sequence numbers with the peer. This is very similar to what IPLIMx SAALTALI signaling links currently do.

SCTP

SCTP is a protocol designed to operate on top of a non-reliable protocol such as IP, while providing a reliable data delivery to the SCTP user. The SCTP protocol is designed to be a discrete protocol.

Although SCTP is similar in some respects to the Transport Control Protocol (TCP), it differs in several key areas. The two protocols are similar in that they both provide reliable data delivery over a non-reliable network protocol (IP). The SCTP protocol is a more robust and higher performance protocol than TCP.

Broader Definition of Connection Four-Tuple

The TCP protocol defines a connection via a four-tuple – a specific local IP address, local transport protocol port, a specific remote host IP address and remote transport protocol port. The TCP connection is point-to-point and once the session is established the four-tuple can not change. SCTP uses a similar four-tuple concept, but provides for the local and remote IP address values to be a list of IP addresses. SCTP allows a multi-homed host, with multiple network interfaces and more than one way to reach the far-end host, the capability to make use of this additional network connectivity to support the transport of data via the SCTP protocol. Redundancy through the support of multi-homing session end-points is a major SCTP advantage.

Multiple Streams

TCP is a point-to-point byte stream oriented transport protocol. In such a protocol if a single byte is corrupted or lost, then all data that follows must be queued and delayed from delivery to the application until the missing data is retransmitted and received to make the stream valid. With the TCP protocol, all data being transmitted is affected because there is only one path from end-to-end. The SCTP protocol addresses this limitation by providing the capability to specify more than one transport path between the two end-points. In SCTP, the four-tuple – with the multi-homing feature – defines what the SCTP protocol calls an *association*.

The association is composed of one or more uni-directional transport paths called *streams*. The number of inbound and outbound streams is independent of one another and is determined at session initiation time (for example, an association may be composed of three outbound and one inbound stream). In this scheme, a data retransmission only affects a single stream. If an association is defined with multiple streams and a packet is lost on a specific stream, data transmission on the other streams, which form this association, is not blocked. However, this feature is only beneficial if the upper layer application uses it.

In the EAGLE 5 ISS, a maximum of 2 inbound and 2 outbound streams can be defined for an association. Stream 0 in each direction is designated for Link Status messages. Stream 1 is designated for User Data messages. Separating the Link Status and User Data messages onto separate streams allows the adapter layer to prioritize the messages in a manner similar to MTP2. If the peer chooses to configure the association to have only one stream, then the signaling gateway will be able to use only stream 0 for both Link Status messages and User Data messages.

Datagram Stream

While TCP is implemented as a byte-oriented stream protocol, SCTP is based on a datagram-oriented protocol stream. By choosing the datagram as the smallest unit of transport, the SCTP protocol removes the need for the upper layer application to encode the length of a message as part of the message. An SCTP send results in the data being sent as a unit – a datagram – and received at the receiving node as a datagram.

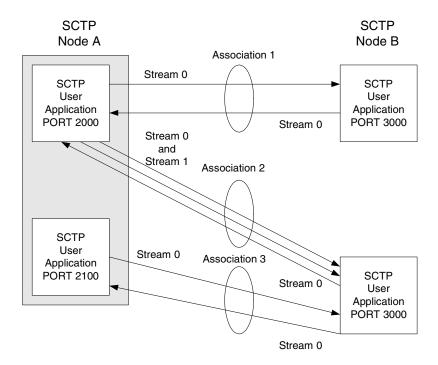
Selective Acknowledgements

TCP acknowledgements are specified as the last consecutive byte in the byte stream that has been received. If a byte is dropped, the TCP protocol on the receiving side cannot pass inbound data to the user until the sender retransmits the lost byte; the stream is blocked. SCTP uses a feature known as *selective acknowledgement* in which each data chunk is identified by a chunk number – the Transmission Sequence Number (TSN) in SCTP terminology – and is explicitly acknowledged at a data chunk granularity. This means that if a data chunk is dropped, only that one data chunk needs to be retransmitted. In SCTP, a dropped

data chunk only effects one stream, since ordered transmission of data is only enforced at the stream and not the association level.

Un-order Delivery Capability

The SCTP protocol provides a mechanism for un-ordered datagram delivery. This feature means that a datagram can be transmitted and received independent of datagram sequencing and thus not delayed while awaiting a retransmission. TCP does not provide an equivalent feature of this type.


Enhanced Security

The TCP protocol has a known and easily exploitable vulnerability to denial of service attacks (for example, SYN attacks). This weakness is due to the three-way handshake used by the TCP session-establishment protocol. The TCP session establishment method causes EAGLE 5 ISS resources to be committed prior to actually establishing the session. SCTP uses a four-way handshake where resources are not committed by the host being contacted until the contacting host confirms that it is actually making a contact request to prevent such attacks.

SCTP Connectivity Concepts

The basic connectivity provided by the SCTP protocol is illustrated by Figure 2-27:

Figure 2-27. SCTP Connectivity

Key elements of the SCTP connection include:

- SCTP Instance
- SCTP Endpoint
- SCTP Association
- SCTP Stream

An SCTP instance is defined by the local SCTP port number. Each local SCTP port number requires its own SCTP instance. An SCTP instance as an entity defines the various SCTP characteristics that will apply to "all" SCTP associations that are created as part of the SCTP instance. These include timeout values, maximum receive windows, and so forth.

In Figure 2-27 on page 2-59 there are three hosts: SCTP node A, node B and node C. Node A has two SCTP instances: local SCTP port 2000 and 2100. Both node B and node C have a single SCTP instance, local SCTP port 3000 and 3000 respectively. The fact that both node B and C are using port 3000 does not tie them together in any way.

An SCTP endpoint is defined as the logical sender/receiver of SCTP packets. On a multi-homed host, an SCTP endpoint is represented to its peers as a combination of a set of eligible destination transport addresses to which SCTP packets can be sent and a set of eligible source transport addresses from which SCTP packets can be received. All transport addresses used by an SCTP endpoint must use the same port number, but can use multiple IP addresses. A transport address used by an SCTP endpoint must not be used by another SCTP endpoint. In other words, a transport address is unique to an SCTP endpoint.

The concept of SCTP instance clarifies this definition. In Figure 2-27 on page 2-59, IP addresses are not shown, but to illustrate this definition, assume the following:

- Node A is multi-homed having two network interface cards with IP addresses 192.168.110.10 and 192.168.55.10
- Node B has a single network interface card with IP address of 192.168.110.20
- Node C is multi-homed having two network interface cards with IP addresses 192.168.110.30 and 192.168.55.30

Based on these IP addresses from above and the defined port numbers for Figure 2-27 on page 2-59, there are four SCTP endpoints (Table 2-10).

Table 2-10. Sample SCTP Endpoints

Node	Local IP Address	Local SCTP Port
Node-1	192.168.110.10 192.168.55.10	2000
Node-1	192.168.110.10 192.168.55.10	2100
Node-2	192.168.110.20	3000
Node-3	192.168.110.30 192.168.55.30	3000

An SCTP association is defined as a protocol relationship between SCTP endpoints, composed of the two SCTP endpoints and protocol state information including verification tags and the currently active set of Transmission Sequence Numbers (TSNs), etc. An association can be uniquely identified by the transport addresses used by the endpoints in the association. Two SCTP endpoints must not have more than one SCTP association between them at any given time.

Based on this definition, given the endpoints listed above and Figure 2-27 on page 2-59, there are three defined SCTP associations.

Table 2-11. Sample SCTP Associations

Association	Local IP Address	Local SCTP Port	Remote IP Address	Remote SCTP Port
Association-1	192.168.110.10 192.168.55.10	2000	192.168.110.20	3000
Association-2	192.168.110.10 192.168.55.10	2000	192.168.110.30 192.168.55.30	3000
Association-3	192.168.110.10 192.168.55.10	2100	192.168.110.30 192.168.55.30	3000

An SCTP stream is defined as a uni-directional logical channel established from one to another associated SCTP endpoint, within which all user messages are delivered in sequence except for those submitted to the unordered delivery service.

NOTE: The relationship between stream numbers in opposite directions is strictly a matter of how the applications use them. It is the responsibility of the SCTP user to create and manage these correlations if they are so desired.

Based on this definition and Figure 2-27 on page 2-59, there are a total of seven streams for the three associations.

 Table 2-12.
 Sample SCTP Associations

Association	Stream Number	Local IP Address	Local SCTP Port	Remote IP Address	Remote SCTP Port
Association-1	Stream 0 Out	192.168.110.10 192.168.55.10	2000	192.168.110.20	3000
Association-1	Stream 0 In	192.168.110.10 192.168.55.10	2000	192.168.110.20	3000
Association-2	Stream 0 Out	192.168.110.10 192.168.55.10	2000	192.168.110.30 192.168.55.30	3000
Association-2	Stream 1 Out	192.168.110.10 192.168.55.10	2000	192.168.110.30 192.168.55.30	3000
Association-2	Stream 0 In	192.168.110.10 192.168.55.10	2000	192.168.110.30 192.168.55.30	3000
Association-3	Stream 0 Out	192.168.110.10 192.168.55.10	2100	192.168.110.30 192.168.55.30	3000
Association-3	Stream 0 In	192.168.110.10 192.168.55.10	2100	192.168.110.30 192.168.55.30	3000

IP⁷ Secure Gateway Configuration Procedures

Overview	3–3
Adding an IP Card	3–17
Removing an IP Card	3–28
Configuring an IPGWx Linkset	3–37
Configuring a Mate IPGWx Linkset	3–63
Adding an IP Signaling Link	3–84
Enabling the Large System # Links Controlled Feature	3–104
Removing an IP Signaling Link	3–113
Changing the IP Protocol Option	3–123
Changing IP Options other than SYNC and SCTPCSUM	3–130
Changing an IP Link	3–135
Adding an IP Host	3–153
Removing an IP Host	3–156
Changing an IP Card	3–161
Adding an IP Route	3–171
Removing an IP Route	3–177
Adding an Application Socket	3–181
Removing an Application Socket	3–198
Changing an Application Socket	3–202

IP⁷ Secure Gateway Configuration Procedures

Configuring IP Socket Retransmission Parameters	3–220
Changing a DCM Parameter Set	3–226
Adding a Routing Key Containing a Socket	3–233
Adding a Routing Key Containing an Application Server	3–250
Removing a Routing Key	3–272
Changing the CIC Values in an Existing Routing Key	3–283
Changing the Routing Context Value in an Existing Routing Key	3–295
Changing the PSTN Presentation and Normalization Attributes in a Routing Key	3-303
Increasing the System-Wide IPGWx Signaling TPS	3–317
IETF Adapter Layer Configuration	3–326
Adding an Association	3–327
Removing an Association	3–344
Changing an Association	3–348
Configuring SCTP Retransmission Control for an Association	3–381
Changing an M2PA Timer Set	3–389
Adding a New Association to a New Application Server	3–397
Adding an Existing Association to a New Application Server	3–406
Adding a New Association to an Existing Application Server	3–417
Adding an Existing Association to an Existing Application Server	3-429
Removing an Association from an Application Server	3–441
Changing an Application Server	3–447
Adding a Network Appearance	3–452
Removing a Network Appearance	3–459
Changing the SCTP Checksum Algorithm Option	3–462
Changing a UA Parameter Set	3–486

Overview

The IP card supports the following applications:

- The iplim application, which supports point-to-point connectivity for ANSI networks
- The iplimi application, which supports point-to-point connectivity for ITU networks
- The **ss7ipgw** application, which supports point-to-multipoint connectivity for ANSI networks
- The **ipgwi** application, which supports point-to-multipoint connectivity for ITU networks.

The EAGLE 5 ISS must be configured to support connectivity to the ANSI and/or ITU IP network. Configuration consists of:

• IP configuration, consisting of these items configured in this chapter and Chapters 4 and 5:

Chapter 3

- IP card a dual-slot DCM, single-slot EDCM, or E5-ENET card, includes the IP addresses of the Ethernet interfaces and the default router on the card.
- IP transactions per second (applies only to ss7ipgw and ipgwi applications)
- IPGWx linksets
- IP signaling links
- IP options (required only for ss7ipgw and ipgwi applications)
- IP host
- IP link
- IP application sockets
- DCM parameter set
- IP routing key (optional and applies only to the ss7ipgw and ipgwi applications).
- IP routes
- IP associations

- IP application servers
- Network appearances
- M2PA timer sets
- UA parameter sets

Chapter 4 – PSTN presentation data and ISUP variant provisioning

Chapter 5 – End node internal point codes

- SS7 configuration, consisting of the following items:
 - Destinations see Chapter 2, "Configuring Destination Tables," in the Database Administration Manual - SS7.
 - IPLIMx Linksets see Chapter 3, "SS7 Configuration," in the Database Administration Manual - SS7
 - Routes see Chapter 3, "SS7 Configuration," in the Database Administration Manual - SS7

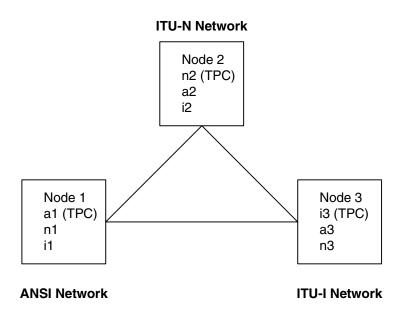
The procedures shown in this chapter use a variety of commands. If more information on these commands is needed, go to the *Commands Manual* to find the required information.

The following steps provide a summary of all the entities that must be configured for the <code>iplim</code>, <code>iplimi</code>, <code>ss7ipgw</code>, and <code>ipgwi</code> applications. These entities must be provisioned in the order that they are shown. Steps 4, 16, 17, and 18 apply only to the <code>ss7ipgw</code> and <code>ipgwi</code> applications. Skip these steps for the <code>iplim</code> and <code>iplimi</code> applications.

- Make sure that the required shelf is in the database with the rtrv-shlf command. If it is not in the database, add it with the ent-shlf command. For a detailed procedure, refer to the Database Administration Manual System Management.
- 2. Make sure the cards that the signaling links will be assigned to are in the database with the rtrv-card command. These cards must be IP cards (card type dcm) and must have the ss7ipgw, ipgwi, iplim, or iplimi application assigned to them. If these cards are not in the database, add them with the ent-card command, specifying the dcm card type (:type=dcm) and one of these applications (appl=ss7ipgw, appl=ipgwi, appl=iplim, or appl=iplimi).
- 3. Verify the IP options with the rtrv-sg-opts command. If the options are not correct, change them with the chg-sg-opts command. All options except the sctpcsum option (SCTP checksum algorithm) are valid only for ss7ipgw and ipgwi applications. The sctpcsum option applies to the iplim, iplimi, ss7ipgw, and ipgwi applications.

4. If the ss7ipgw or ipgwi application is to be administered and you have purchased the ISUP-over-IP (ipisup) feature or the Dynamic Routing Key (dynrtk) feature, verify that the appropriate feature is turned on (ipisup=on or dynrtk=on) using the rtrv-feat command. If the appropriate feature is off, turn it on with the chg-feat command.

NOTE: Before turning on the ISUP-over-IP feature (ipisup) or the Dynamic Routing Key feature, make sure you have purchased these features. If you are not sure whether you have purchased the ISUP-over-IP feature or the Dynamic Routing Key feature, contact your Tekelec Sales Representative or Account Representative.


Once a feature has been turned on with the chg-feat command, the feature cannot be turned off.

Steps 4, 6, 17, 18, and 19 are valid only for ss7ipgw and ipgwi applications.

5. The network configuration for the EAGLE 5 ISS requires linksets, SS7 routes, and destinations. These entities use point codes and these point codes must be defined in the database. When nodes in different networks wish to communicate, each node must have either a true point code (TPC) or an alias point code for each of the two network types involved. For example, if node 1 in an ANSI network wishes to communicate with node 2 in an ITU-N network, node 1 must have an ANSI TPC and an ITU-N alias point code; and node 2 must have an ITU-N TPC and an ANSI alias point code.

Figure 3-1 shows an example of a mixed network with ANSI, ITU-I, and ITU-N nodes. Each node has one true point code and two alias point codes.

Figure 3-1. Mixed Network with ANSI, ITU-I, and ITU-N Nodes

Adjacent point codes (using the ipgwapc parameter) and virtual point codes must be defined for the ss7ipgw and ipgwi related links. For adjacent point codes, the specified point codes must not be reused anywhere in the SS7 network, with the exception that they can be used in a mated node with the EAGLE 5 ISS.

Verify that the necessary point codes are in the database with the rtrv-dstn command. If they are not in the database, add them with the ent-dstn command.

NOTE: An ITU-N point code can be either a 14-bit ITU-N point code (defined by the ent-dstn command's dpcn parameter), or a 24-bit ITU-N point code (defined by the ent-dstn command's dpcn24 parameter). The EAGLE 5 ISS can contain either type of ITU-N point code, but not both at the same time.

- 6. The amount of IP transactions per second the EAGLE 5 ISS supports can be set using the enable-ctrl-feat command. The amount set by the enable-ctrl-feat command applies to the entire EAGLE 5 ISS, and only to IPGWx linksets. The amount of IP transactions per second can be set in amounts of 200, 400, 600, 1,000, and from 2,000 to 112,000 in increments of 2000 transactions per second.
 - Steps 4, 6, 17, 18, and 19 are valid only for ss7ipgw and ipgwi applications.
- 7. The linksets that will contain the signaling links must be in the database. A linkset is a group of links that terminate into the same adjacent point code. All links in the linkset can transport compatible MSU formats. The network type

of the adjacent point code assigned to the linkset determines the network type of the linkset. These linksets must be assigned an adjacent point code (APC) that is in the SS7 domain. Verify this with the rtrv-ls command. If the APC is in the SS7 domain, the entry SS7 is shown in the DOMAIN field of the output.

Mated EAGLE 5 ISSs are connected through C links. Since each destination can be reached only over linksets that match that destination's network type, mated EAGLE 5 ISSs require a C-link linkset for each network the STP is connected to. For systems with three true point codes (TPCs), there needs to be a C linkset to transport ANSI formatted MSUs, a C linkset to transport ITU-N formatted MSUs, and a C linkset to transport ITU-I formatted MSUs. A TPC uniquely identifies the EAGLE 5 ISS in the network.

Linksets associated with the ss7ipgw or ipgwi application (IPGWx linksets) must specify an adjacent point code (apc) with the ipgwapc parameter set to yes and the mtprse parameter set to no. IPGWx linksets must also specify the amount of IP transactions per second (with the iptps parameter) the linkset is allowed to use. The sum of the IP transactions per second for all IPGWx linksets cannot exceed the amount of IP transactions per second configured in step 6 with the enable-ctrl-feat command. Alarm thresholds for the IP transactions per second for the IPGWx linkset and the signaling links in the IPGWx linkset can also be set. IPGWx linksets can also have a mate IPGWx linkset assigned to it.

Verify that the necessary linksets are in the database with the rtrv-1s command. If the necessary linksets are not in the database, add them with the ent-1s command or change existing linksets with the chg-1s command.

8. The signaling links must be in the database. Verify this with the rtrv-slk command. The signaling links are assigned to linksets from step 7, and to IP cards with the ss7ipgw, ipgwi, iplim, or iplimi application, from step 2. If the IP card's application is iplim or ss7ipgw, then the linkset's APC must be an ANSI APC. If the IP card's application is ipgwi or iplimi, then the linkset's APC can be either an ITU international APC or an ITU national APC. Signaling link ports A1, A2, A3, B1, B2, and B3 can be assigned only to SSEDCM cards running either the iplim or iplimi applications.

If the card's application is either the <code>iplim</code> or <code>iplimi</code>, and the signaling link is assigned to a TALI socket, the <code>ipliml2=saaltali</code> parameter must be specified for the signaling link. If the signaling link is assigned to a SCTP association, the <code>ipliml2=m2pa</code> parameter must be specified for the signaling link.

If the necessary links are not in the database, add them with the ent-slk command. IPGWx linksets can have only one signaling link if these linksets have a mate assigned ot it, or is the mate of another IPGWx linkset. Eight signaling links can be assigned to an IPGWx linkset if the IPGWx linkset is not the mate of another IPGWx linkset, or does not have a mate IPGWx linkset assigned to it.

- 9. The point codes assigned to each of the IP destinations must also be assigned to an SS7 route. An SS7 route must also be assigned to the linksets containing the adjacent point code. Verify this with the rtrv-rte command. If the necessary SS7 routes are not in the database, add them to the database with the ent-rte command, specifying a point code assigned to an IP destination, from step 5, and a linkset, from step 7. When setting up SS7 routes to the ss7ipgw or ipgwi application point codes, the only SS7 route that should be configured for those 'virtual point codes' is the direct route using the ss7ipgw or ipgwi related linkset.
- 10. When the IP cards are added to the database in step 2, IP link parameters for the IP cards are assigned default parameter values. These parameter values can be displayed by the rtrv-ip-lnk command. These values can be changed with the chg-ip-lnk command.
- 11. Local IP hosts must be in the database. Verify the hosts with the rtrv-ip-host command. The IP host associates host names with IP addresses. This connection establishes a relationship between the IP card related information and the socket/association related information. If the necessary IP hosts are not in the database, add them with the ent-ip-host command.
- 12. When the IP cards are added to the database in step 2, there are IP parameters that control the IP stack that are assigned default values. These parameter values can be displayed by the rtrv-ip-card command. These values can be changed with the chg-ip-card command.
- 13. Make sure that the application sockets are defined in the database. Verify this with the rtrv-appl-sock command. Sockets specify a connection between a local host/TCP port and a remote host/TCP port. If the necessary sockets are not in the database, add them with the ent-appl-sock command. A number of socket-related fields in the database are set to default values when the ent-appl-sock command is entered. These defaults can be displayed using the rtrv-appl-sock command after the ent-appl-sock command is executed. These default values can be changed with the chg-appl-sock command. IP cards with the iplim or iplimi application are allowed to have two IP connections (SCTP associations or TALI sockets). IP cards with the ss7ipgw or ipgwi application are allowed to have up to 50 IP connections (SCTP associations or TALI sockets).
- **14.** Verify the DCM parameter set associated with each socket with the **rtrv-dcmps** command. The DCM parameters can be changed with the **chg-dcmps** command.

NOTE: Set number 10 is a default parameter set and cannot be changed. In order to change the DCM parameters set for a socket using set number 10, use the chg-appl-sock command to change the DCM parameter set to a different set number, and then use the chg-dcmps command to modify the new set.

15. The SCTP association is defined by the combination of a local host, local SCTP port, remote host and remote SCTP port. The SCTP associations are displayed in the database with the rtrv-assoc command. If the necessary associations are not in the database, add them with the ent-assoc command. A number of association-related fields in the database are set to default values when the ent-assoc command is entered. These defaults can be displayed using the rtrv-assoc command after the ent-assoc command is executed. These default values can be changed with the chg-assoc command.

An SCTP association can be either a multi-homed association or a uni-homed association. A multi-homed association uses both the A and B Ethernet interfaces on the IP card (a single-slot EDCM). One of the Ethernet interfaces on the IP card (for example, Ethernet A) is associated with the local host configured with the lhost parameter of the ent-assoc or chg-assoc command.

The other Ethernet interface on the same IP card (for example, Ethernet B) is associated with an alternate local host configured with the alhost parameter of the ent-assoc or chg-assoc command. The lhost and alhost parameter values represent the IP addresses associated with both Ethernet interfaces on the IP card.

A uni-homed association uses only one of the Ethernet interfaces on the IP card which is associated with the lhost parameter of the ent-assoc or chg-assoc command. The alhost parameter (alternate local host) is not used. The lhost parameter value represents the IP address associated with the Ethernet interface being used on the IP card.

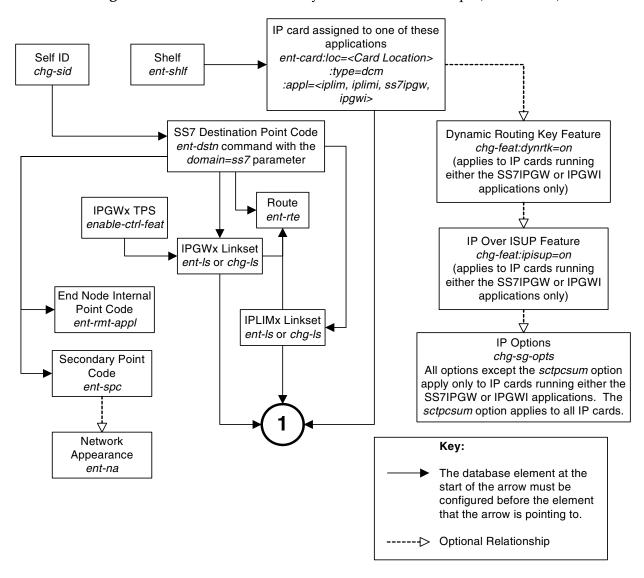
Dual-slot EDCM cards with the <code>iplim</code> or <code>iplimi</code> application are allowed to have two IP connections (SCTP associations or TALI sockets). Single-slot EDCM cards with the <code>iplim</code> or <code>iplimi</code> application are allowed to have eight IP connections (SCTP associations or TALI sockets). IP cards with the <code>ss7ipgw</code> or <code>ipgwi</code> application are allowed to have up to 50 IP connections (SCTP associations or TALI sockets).

When an M3UA or SUA association is added to the database, UA parameter set 10 is assigned to the association. There are 10 UA parameter sets that can be assigned to an association, but the UA parameter set assignment can be changed, using the chg-assoc command. The values assigned to each UA parameter set can be changed, except for UA parameter set 10, using the chg-uaps command.

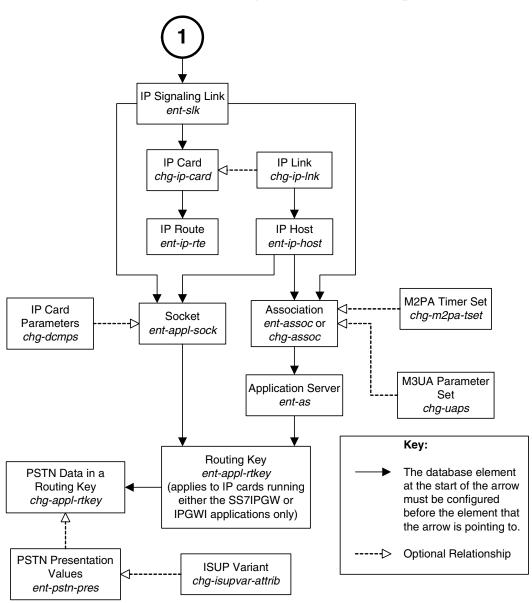
There are two versions of M2PA associations, RFC and Draft 6, that can be configured in the database. When an M2PA association is added to the database with the ent-assoc command, the association is configured as an RFC M2PA association. The RFC version of M2PA timer set 1 is also assigned to the association when the M2PA association is added to the database.

There are two different versions, RFC and Draft 6, of M2PA timer sets that can be assigned to M2PA associations. Each version of the M2PA timer sets contains 20 timer sets. The values of these timer sets can be changed using the chg-m2pa-tset command.

The version of the M2PA association can be changed with the chg-assoc command. The M2PA timer set assigned to the M2PA association can be changed with the chg-assoc command. The M2PA version of the association determines the version of the M2PA timer set that is assigned to the association. For example, if M2PA timer set 3 is assigned to the M2PA association, and the association is an RFC M2PA association, the RFC version of M2PA timer set 3 is used with the association. If M2PA timer set 7 is assigned to the M2PA association, and the association is a Draft 6 M2PA association, the Draft 6 version of M2PA timer set 7 is used with the association.


- 16. The application server contains a set of one to 16 associations, of which one or more is normally actively processing traffic. The application servers are displayed using the rtrv-as command. If the necessary application server is not in the database, add the application server with the ent-as command. If the associations assigned to application server are M3UA associations, and the open parameter value for these associations is yes, then the same UA parameter set must be assigned to all of the application server processes in the application server.
- 17. If the ss7ipgw or ipgwi application is to be administered and if static routing keys are desired, make sure that they are defined in the database for each socket or application server related to the ss7ipgw or ipgwi application. Verify the routing keys with the rtrv-appl-rtkey command. Routing keys specify MSU filters for a corresponding socket or application server. If the desired static routing keys are not in the database, add them with the ent-appl-rtkey command.
- 18. If the PSTN presentation data is to be changed for the routing key, the controlled feature associated with the PSTN presentation data must be enabled. The rtrv-ctrl-feat command shows whether or not the controlled features are enabled. If any of the required controlled features are not enabled, enter the enable-crtl-feat command with the feature part number and the feature access key for the required controlled feature. The status of these controlled features is set to on with the chg-ctrl-feat command.

The ent-pstn-pres command can be used to define PSTN presentation data, in addition to the values shown in the rtrv-pstn-pres output, within either the Tekelec-defined range of PSTN categories, or the user-defined PSTN categories. The ISUP message and parameter database for an ISUP variant, defined by the PSTN presentation data, can be displayed using the rtrv-isupvar-attrib command, and changed with the chg-isupvar-attrib command. The PSTN presentation data, and ISUP normalization setting, can be changed using the chg-appl-rtkey command and is displayed using the rtrv-appl-rtkey command.


Steps 4, 6, 17, 18, and 19 are valid only for ss7ipgw and ipgwi applications.

- 19. If the IP card is a single-slot EDCM, static IP routes can be provisioned in the database with the ent-ip-rte command. The static IP routes are displayed using the rtrv-ip-rte command. The static IP routes provide more flexibility in selecting the path to the remote destination and reduces the dependence on default routers.
- 20. An internal point code can be provisioned to provide routing to an IP end office node. The internal point codes are displayed with the rtrv-rmt-appl command. The internal point code value must be in the DPC table, shown in the rtrv-dstn output. If the necessary internal point codes are not in the database, add them with the ent-rmt-appl command.
- 21. The network appearance field identifies the SS7 network context for the message, for the purpose of logically separating the signaling traffic between the SGP (signaling gateway process) and the application server over a common SCTP (stream control transmission protocol) association. This field is contained in the DATA, DUNA, DAVA, DRST, DAUD, SCON, and DUPU messages. The network appearances are displayed with the rtrv-na command. The internal point code value must be in the DPC table, shown in the rtrv-dstn output. If the necessary network appearances are not in the database, add them with the ent-na command. If the network appearance contains an ITU-N point code with group codes, the group code must be assigned to a secondary point code shown in the rtrv-spc output.

Figure 3-2 shows the relationships of the database elements that are configured in these procedures.

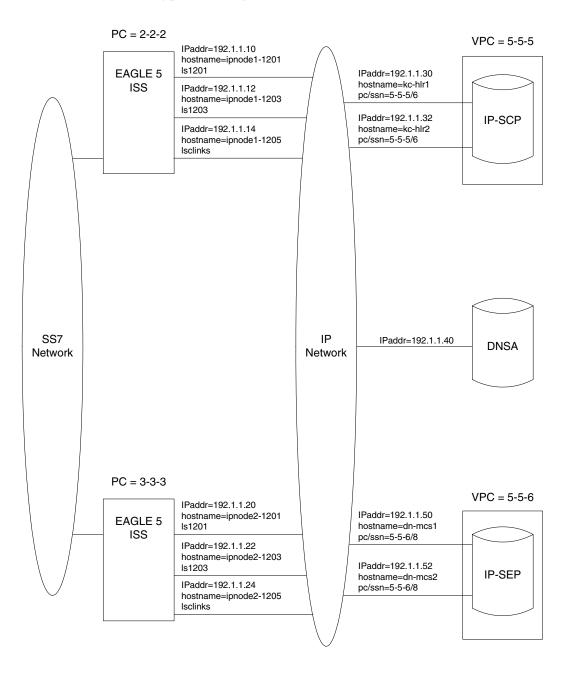

Figure 3-2. IP⁷ Secure Gateway Database Relationships (Sheet 1 of 2)

Figure 3-2. IP⁷ Secure Gateway Database Relationships (Sheet 2 of 2)

Figure 3-3 shows a typical network configuration and Tables 3-1, 3-2, 3-3 (following Figure 3-3) show the table information that would exist in the EAGLE 5 ISS with point code 2-2-2 after provisioning is completed.

Figure 3-3. Typical Configuration

Table 3-1. Typical IP Routing

Destination	SS7 Route	Relative Cost
3-3-3	lsclinks	10
5-5-5	ls1201	10
	ls1203	10
	lsclinks	20
5-5-6	ls1201	10
	ls1203	10
	lsclinks	20

Table 3-2.Typical IP Sockets

Local	IP Config		Remove 1	IP Config	Local Socket	Information
Local Hostname	Client/ Server	TCP Port	Hostname	TCP Port	Socket Name	DCM Parameter Set
ipnode-1201	S	7000	kc-hlr1	7000	kchlr11201	1
	S	7002	kc-hlr2	7002	kchlr21201	1
	S	7003	dn-msc1	7003	dnmsc11201	1
	S	7004	dn-msc2	7004	dnmsc21201	1
ipnode-1203	S	7005	kc-hlr1	7005	kchlr11203	1
	S	7006	kc-hlr2	7006	kchlr21203	1
	S	7007	dn-msc1	7007	dnmsc11203	1
	S	7008	dn-msc2	7008	dnmsc21203	1
ipnode1-1204	S	7009	lp-msg1	7009	lpmsg11204	1
	S	7010	lp-msg2	7010	lpmsg21204	1
	S	7011	lp-msg3	7011	lpmsg31204	1
ipnode1-1205	S	7012	lp-msg1	7012	lpmsg11205	1
	S	7013	lp-msg2	7013	lpmsg21205	1
	S	7014	lp-msg3	7014	lpmsg31205	1
ipnode1-1206	С	7001	ipnode2	node2 7001 ipnode2120		1

Table 3-3. Typical IP Routing Keys (SS7IPGW and IPGWI Applications)

	9	SS7 Rou	iting Ke	ys		IP Sockets that carry traffic for that Routing Key		
SS7 DPC	SS7 SI	SS7 SSN	SS7 OPC	CIC Start	CIC End	Socket Name		
5-5-5	3	6	-	-	-	kchlr11201 kchlr21201 kchlr11203 kchlr21203		
5-5-6	5	-	4-4-4	1	100	dnmsc11201 dnmsc21201 dnmsc11203 dnmsc21203		
1-44-2	4	-	2-5-1	3948	3948	lpmsg11205 lpmsg21205 lpmsg31205		
4346	13	-	5834	48486	48486	lpmsg11204 lpmsg21204 lpmsg31204		

Adding an IP Card

This procedure is used to add an IP card to the database using the ent-card command. The IP card is a Database Communications Module (DCM) or a single-slot Enhanced-Performance Database Communications Module (EDCM) and may not be in the database. The shelf to which the card is to be added, must be in the database.

The ent-card command uses these parameters.

- :loc The location of the card being added to the database.
- : type The type of card being added to the database.
- :appl The application software or GPL that is assigned to the card.

Table 3-4 shows the valid card type and card applications (appl) for the ent-card command in this procedure. The table also shows the card's part number and the maximum number of cards that the database can contain.

Table 3-4. Card Type and Card Applications

Card Name	Card Type (:type)	Application Type (:appl)	Network Type	Maximum Number of Cards in the Database
Dual-Slot DCM	dcm	iplim/iplmi	ANSI/ITU	100
(870-1945-xx or 870-1984-01) †		ss7ipgw/ipgwi	ANSI/ITU	64 *
Single-Slot EDCM (870-2372-01 or 870-2372-13)				
E5-ENET (870-2212-xx)				

^{*} The EAGLE 5 ISS may contain a maximum of 64 single-slot EDCMs or E5-ENET cards running either the ss7ipgw or ipgwi application, or combinations of the ss7ipgw and ipgwi applications. If dual-slot DCMs are present in the EAGLE 5 ISS, there can be a maximum of 2 cards running the ss7ipgw application and 2 cards running the ipgwi application.

:force – If the global title translation feature is on, the force=yes parameter allows the LIM to be added to the database even if the current SCCP transactions-per-second threshold is unable to support the additional SCCP transaction-per-second capacity created by adding the IP card. This parameter is obsolete and is no longer used.

If the card application is ss7ipgw or ipgwi and you have purchased the ISUP-over-IP (ipisup) feature or the Dynamic Routing Key (dynrtk) feature, verify that the appropriate feature is turned on (ipisup=on or dynrtk=on) using the rtrv-feat command. If the appropriate feature is off, turn it on with the

[†] The dual-slot DCM is not supported if the Origin-Based MTP Routing feature is enabled.

chg-feat command. For more information on these features, refer to section "Understanding Routing for SS7IPGW and IPGWI Applications" on page 2-25.

NOTE: Before turning on the ISUP-over-IP feature (ipisup) or the Dynamic Routing Key feature, make sure you have purchased these features. If you are not sure whether you have purchased the ISUP-over-IP feature or the Dynamic Routing Key feature, contact your Tekelec Sales Representative or Account Representative. Once a feature has been turned on with the chg-feat command, the feature cannot be turned off.

Card Slot Selection

The dual-slot DCM occupies two card slots and can be inserted any card slot in the extension shelf except slots 08 and 18. The dual-slot DCM card requires that the next adjacent slot be empty and not provisioned in the database. For example, if dual-slot DCM cards are inserted into slots 03 and 06, slots 04 and 07 must be empty and not provisioned in the database. Because slots 09 and 10 contain the HMUX cards or HIPR cards, the dual-slot DCM card cannot be inserted into slots 08, 09, or 10. Slot 18 cannot be used because it is the last slot in the shelf. The dual-slot DCM card can be inserted in the control shelf, but only in slots 01 through 07, and 11, following the same rules as the extension shelf. Slots 1113 through 1118 are reserved for MASPs A and B and the MDAL card.

The single-slot EDCM and E5-ENET card can be inserted into any card slot, except for card slots that must remain empty to accommodate dual-slot cards, slots 09 and 10 in each shelf, and slots 1113 through 1118.

To provision a E5-ENET card, the shelf containing the E5-ENET card must have HIPR cards installed in slots 9 and 10 in that shelf. If HIPR cards are not installed in the shelf that the E5-ENET card will occupy, the E5-ENET card will be auto-inhibited when the E5-ENET card is inserted into the shelf. Enter the rept-stat-gpl:gpl=hipr command to verify whether or not HIPR cards are installed in the same shelf as the E5-ENET card being provisioned in this procedure.

The examples in this procedure are used to add the cards shown in Table 3-5 to the database.

Table 3-5. Example Card Configuration

Card Type	Application	Card Location				
dcm	iplim	1202*				
dcm	iplimi	1308*				
dcm	iplim	1311				
dcm	iplimi	1313				
dcm	ss7ipgw	1315				
dcm	ipgwi	1317				
* These cards are single-slot EDCMs.						

Procedure

1. Display the cards in the database using the rtrv-card command. This is an example of the possible output. Cards should be distributed throughout the EAGLE 5 ISS for proper power distribution. Refer to the *Installation Manual - EAGLE 5 ISS* for the shelf power distribution.

rlghncz	xa03w 06-10	0-28 09:12	:36 GMT EAGLE5	36.0.	. 0			
CARD	TYPE	APPL	LSET NAME	LINK	SLC	LSET NAME	LINK	SLC
1101	TSM	SCCP						
1102	TSM	GLS						
1113	GSPM	EOAM						
1114	TDM-A							
1115	GSPM	EOAM						
1116	TDM-B							
1117	MDAL							
1201	LIMDS0	SS7ANSI	sp2	A	0	sp1	В	0
1203	LIMDS0	SS7ANSI	sp3	A	0			
1204	LIMDS0	SS7ANSI	sp3	A	1			
1206	LIMDS0	SS7ANSI	nsp3	A	1	nsp4	В	1
1207	LIMV35	SS7GX25	nsp1	A	0			
1208	LIMV35	SS7GX25	nsp1	A	1			
1216	ACMENET	STPLAN						
1301	LIMDS0	SS7ANSI	sp6	A	1	sp7	В	0
1302	LIMDS0	SS7ANSI	sp7	A	1	sp5	В	1
1303	DCM	IPLIM	ipnode1	A	0	ipnode3	В	1
1305	DCM	IPLIM	ipnode4	A	0			
1307	ACMENET	STPLAN						

2. Verify that the card to be entered has been physically installed into the proper location (see the Card Slot Selection section on page 3-18).

CAUTION: If the version of the BPDCM GPL on the IP card does not match the BPDCM GPL version in the database when the IP card is inserted into the card slot, UAM 0002 is generated indicating that these GPL versions do not match. If UAM 0002 has been generated, perform the alarm clearing procedure for UAM 0002 in the *Maintenance Manual* before proceeding with this procedure.

NOTE: If the card being added in this procedure is not an E5-ENET card, skip step 3 and go to step 4.

3. Verify that HIPR cards are installed in card locations 9 and 10 in the shelf containing the E5-ENET card being added in this procedure. Enter this command.

rept-stat-gpl:gpl=hipr

This is an example of the possible output.

rlghncxa03w 06-10-01 11:40:26 GMT EAGLE5 36.0.0							
GPL	CARD	RUNNING	APPROVED	TRIAL			
HIPR	1109	125-002-000	125-002-000	125-003-000			
HIPR	1110	125-002-000	125-002-000	125-003-000			
HIPR	1209	125-002-000	125-002-000	125-003-000			
HIPR	1210	125-002-000	125-002-000	125-003-000			
HIPR	1309	125-002-000	125-002-000	125-003-000			
HIPR	1310	125-002-000	125-002-000	125-003-000			
HIPR	2109	125-002-000	125-002-000	125-003-000			
HIPR	2110	125-002-000	125-002-000	125-003-000			
Command Co	mpleted						

If HIPR cards are installed in the shelf containing the E5-ENET card, go to step 4.

If HIPR cards are not installed on the shelf containing the E5-ENET card, go to the *Installation Manual - EAGLE 5 ISS* and install the HIPR cards. Once the HIPR cards have been installed, go to step 4.

NOTE: If the application being assigned to the card is either IPLIM or IPLIMI, skip steps 4 and 5, and go to step 6.

4. If the ISUP-over-IP (ipisup) feature or the Dynamic Routing Key (dynrtk) feature are to be used, verify that these features are on by entering the rtrv-feat command. If the ISUP-over-IP feature is on, the ipisup field is set to on. If the Dynamic Routing Key feature is on, the dynrtk field is set to on.

NOTE: The rtrv-feat command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the rtrv-feat command, see the rtrv-feat command description in the Commands Manual.

NOTE: If the features you wish to use are already on, skip this step and go to step 6.

5. Turn the ISUP-over-IP or Dynamic Routing Key features by entering one of these commands, depending of which features are already on, and which ones you wish to turn on.

To enable the ISUP-over-IP feature, enter this command.

chg-feat:ipisup=on

To enable the Dynamic Routing Key feature, enter this command.

chg-feat:dynrtk=on

To enable both features, enter this command.

```
chg-feat:ipisup=on:dynrtk=on
```

NOTE: Once the ISUP-over-IP feature or Dynamic Routing Key features are turned on with the chg-feat command, they cannot be turned off.

NOTE: The ISUP-over-IP feature and Dynamic Routing Key features must be purchased before turning them on. If you are not sure whether you have purchased the ISUP-over-IP feature or Dynamic Routing Key features, contact your Tekelec Sales Representative or Account Representative.

When this command has successfully completed, this message should appear.

```
rlghncxa03w 06-10-12 09:12:36 GMT EAGLE5 36.0.0 CHG-FEAT: MASP A - COMPLTD
```

6. Add the card using the **ent-card** command. For this example, enter these commands.

```
ent-card:loc=1202:type=dcm:appl=iplim
ent-card:loc=1308:type=dcm:appl=iplim
ent-card:loc=1311:type=dcm:appl=iplim
ent-card:loc=1313:type=dcm:appl=iplimi
ent-card:loc=1315:type=dcm:appl=ss7ipgw
ent-card:loc=1317:type=dcm:appl=ipgwi
```

When each of these commands have successfully completed, this message should appear.

```
rlghncxa03w 06-10-12 09:12:36 GMT EAGLE5 36.0.0 ENT-CARD: MASP A - COMPLTD
```

7. Verify the changes using the rtrv-card command with the card location specified in step 6. For this example, enter these commands.

```
rtrv-card:loc=1202
```

This is an example of the possible output.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0
CARD TYPE APPL LSET NAME LINK SLC LSET NAME LINK SLC
1202 DCM IPLIM
```

rtrv-card:loc=1308

This is an example of the possible output.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0

CARD TYPE APPL LSET NAME LINK SLC LSET NAME LINK SLC
1308 DCM IPLIM
```

rtrv-card:loc=1311

This is an example of the possible output.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0

CARD TYPE APPL LSET NAME LINK SLC LSET NAME LINK SLC
1311 DCM IPLIM
```

rtrv-card:loc=1313

This is an example of the possible output.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0

CARD TYPE APPL LSET NAME LINK SLC LSET NAME LINK SLC
1313 DCM IPLIMI
```

rtrv-card:loc=1315

This is an example of the possible output.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0

CARD TYPE APPL LSET NAME LINK SLC LSET NAME LINK SLC 1315 DCM SS71PGW
```

rtrv-card:loc=1317

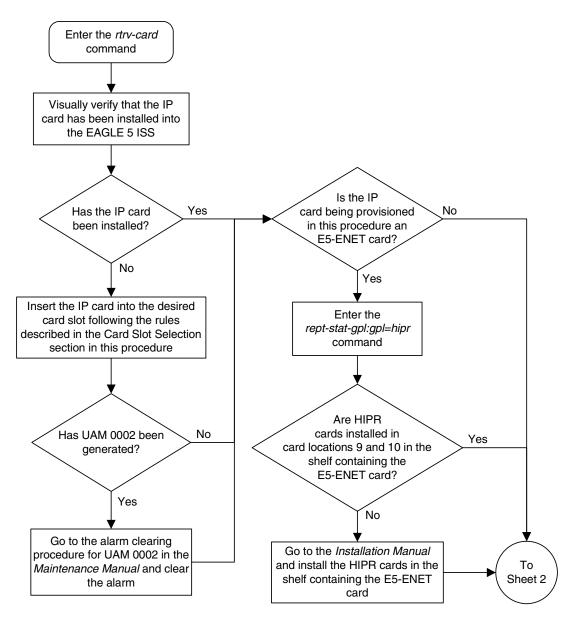
This is an example of the possible output.

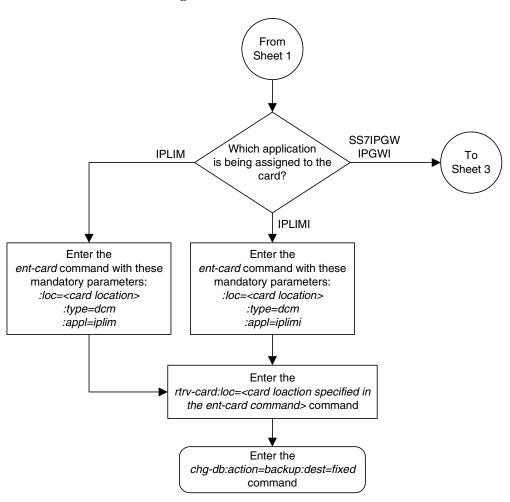
```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0
CARD TYPE APPL LSET NAME LINK SLC LSET NAME LINK SLC 1317 DCM IPGWI
```

8. Back up the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

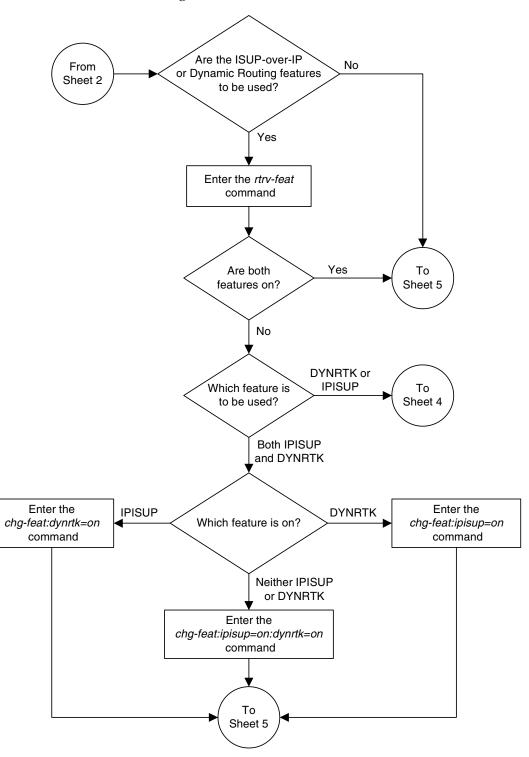
```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.

BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.

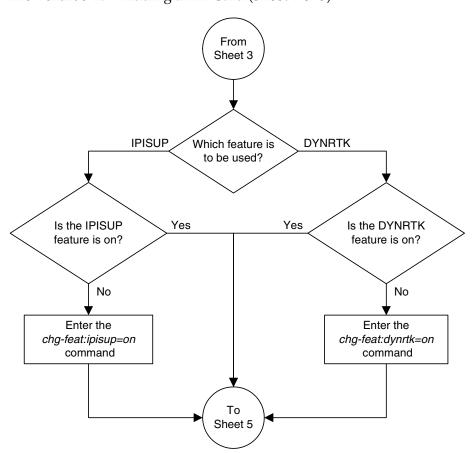

BACKUP (FIXED) : MASP A - Backup starts on standby MASP.

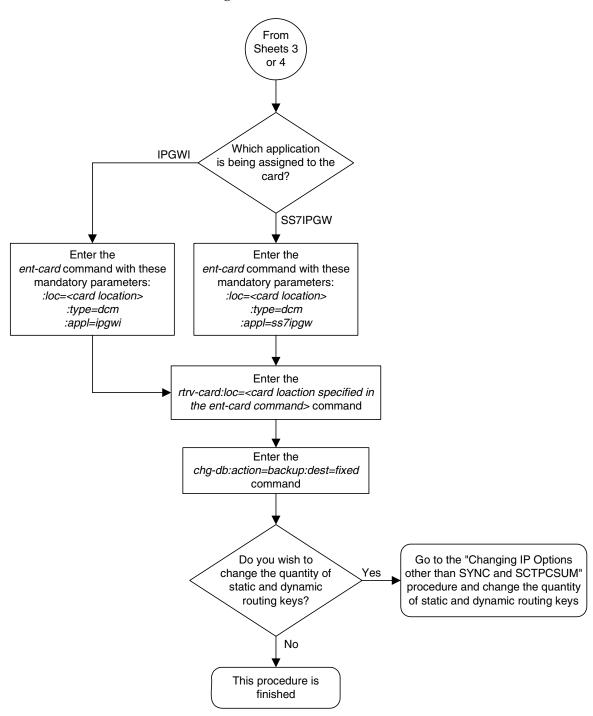

BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

9. If you wish to change the quantity of static and dynamic routing keys in the database, perform the "Changing IP Options other than SYNC and SCTPCSUM" procedure on page 3-130. Otherwise, this procedure is finished.


Flowchart 3-1. Adding an IP Card (Sheet 1 of 5)

NOTE: Before executing this procedure, make sure you have purchased the ISUP-over-IP feature and Dynamic Routing Key features. If you are not sure whether you have purchased the ISUP-over-IP feature or Dynamic Routing Key features, contact your Tekelec Sales Representative or Account Representative.




Flowchart 3-1. Adding an IP Card (Sheet 2 of 5)

Flowchart 3-1. Adding an IP Card (Sheet 3 of 5)

Flowchart 3-1. Adding an IP Card (Sheet 4 of 5)

Flowchart 3-1. Adding an IP Card (Sheet 5 of 5)

Removing an IP Card

Use this procedure to remove an IP card, a card running one of these applications: iplim. iplimi, ss7ipgw, ipgwi, from the database using the dlt-card command.

The card cannot be removed if it does not exist in the database. Prior to removing the card from the database, the signaling links assigned to the card must be removed.

CAUTION: If the IP card is the last IP card in service, removing this card from the database will cause traffic to be lost.

Procedure

1. Display the cards in the database using the rtrv-card command. This is an example of the possible output.

rlghnc	xa03w 06-1	.0-15 16:34	::56 GMT EAGLE5	36.0	. 0				
CARD	TYPE	APPL	LSET NAME	LINK	SLC	LSET	NAME	LINK	SLC
1101	TSM	SCCP							
1102	TSM	GLS							
1104	ACMENET	STPLAN							
1113	GSPM	EOAM							
1114	TDM-A								
1115	GSPM	EOAM							
1116	TDM-B								
1117	MDAL								
1201	LIMDS0	SS7ANSI	lsn1	A	0	lsn2		В	1
1202	LIMV35	SS7GX25	lsngwy	A	0				
1203	LIMV35	SS7ANSI	lsn2	A	0	lsn1		В	1
1204	LIMATM	ATMANSI	atmgwy	A	0				
1205	DCM	IPLIM	ipnode1	A	0	ipno	de3	В	1
1207	DCM	IPLIM	ipnode2	A	0				
1303	DCM	IPLIM	ipnode1	A	0	ipno	de3	В	1
1305	DCM	IPLIM	ipnode4	A	0				

Determine the cards to be removed from the database. The examples in this procedure are used to remove the IP cards in card locations 1205 and 1207.

The card location is shown in the CARD field of the rtrv-card command output. No entries in the LSET NAME, LINK, and SLC columns mean that no signaling link has been assigned to the card.

2. Display the status of the SS7 signaling links assigned to the IP cards you wish to remove. Enter the rept-stat-slk command and specify the card location (CARD column) and signaling link (LINK column) shown in step 1. The status of the signaling link is indicated in the PST field.

For this example, enter the following commands:

```
rept-stat-slk:loc=1205:link=a
```

This is an example of the possible output.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0

SLK LSN CLLI PST SST AST

1205,A ipnode1 ------- IS-NR Avail ----
ALARM STATUS = No Alarms.
UNAVAIL REASON = --

Command Completed.
```

rept-stat-slk:loc=1205:link=b

This is an example of the possible output.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0

SLK LSN CLLI PST SST AST

1205,B ipnode3 ------ IS-NR Avail ----
ALARM STATUS = No Alarms.
UNAVAIL REASON = --

Command Completed.
```

rept-stat-slk:loc=1207:link=a

This is an example of the possible output.

If the signaling link status is in-service normal (IS-NR), go to step 3.

If the signaling link status is out-of-service maintenance-disabled (OOS-MT-DSBLD), go to step 4.

3. Deactivate any links shown in step 2 whose state is not OOS-MT-DSBLD using the dact-slk command. For this example, enter these commands.

```
dact-slk:loc=1205:link=a
dact-slk:loc=1205:link=b
dact-slk:loc=1207:link=a
```

When these commands have successfully completed, this message appears.

```
rlghncxa03w 06-10-12 09:12:36 GMT EAGLE5 36.0.0 Deactivate Link message sent to card
```

4. Verify the new link status. Enter the rept-stat-slk command and specify card location and the signaling link. The status of the signaling link is indicated in the PST field.

For this example, enter the following commands:

```
rept-stat-slk:loc=1205:link=a
```

This is an example of the possible output.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0

SLK LSN CLLI PST SST AST

1205,A ipnode1 --------- OOS-MT-DSBLD Avail ----
ALARM STATUS = * 0236 REPT-LKS:not aligned.
UNAVAIL REASON = NA

Command Completed.
```

rept-stat-slk:loc=1205:link=b

This is an example of the possible output.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0

SLK LSN CLLI PST SST AST

1205,B ipnode3 ------ OOS-MT-DSBLD Avail ----
ALARM STATUS = * 0236 REPT-LKS:not aligned.
UNAVAIL REASON = NA

Command Completed.
```

rept-stat-slk:loc=1207:link=a

This is an example of the possible output.

5. Display the cards that are in service with the rept-stat-card:stat=nr command. For this example, enter the following command.

rept-stat-card:stat=nr

This is an example of the possible output.

rlghno	cxa03w 06-10-2	27 16:43	:42 GMT EAG	GLE5 36.0.0		
CARD	VERSION	TYPE	APPL	PST	SST	AST
1101	114-003-000	TSM	SCCP	IS-NR	Active	
1102	114-003-000	TSM	GLS	IS-NR	Active	
1103	114-002-000	ACMENET	STPLAN	IS-NR	Active	
1109	114-003-000	HMUX	BPHMUX	IS-NR	Active	
1110	114-003-000	HMUX	BPHMUX	IS-NR	Active	
1113	114-002-000	GPSM	EOAM	IS-NR	Active	
1114		TDM		IS-NR	Active	
1115	114-002-000	GPSM	EOAM	IS-NR	Active	
1116		TDM		IS-NR	Active	
1117		MDAL		IS-NR	Active	
1201	114-003-000	LIMDS0	SS7ANSI	IS-NR	Active	
1202	114-002-000	LIMV35	SS7GX25	IS-NR	Active	
1203	114-003-000	LIMV35	SS7ANSI	IS-NR	Active	
1204	114-003-000	LIMATM	ATMANSI	IS-NR	Active	
1205	114-001-000	DCM	IPLIM	IS-NR	Active	
1207	114-001-000	DCM	IPLIM	IS-NR	Active	
1209	114-003-000	HMUX	BPHMUX	IS-NR	Active	
1210	114-003-000	HMUX	BPHMUX	IS-NR	Active	

1303	114-001-000	DCM	IPLIM	IS-NR	Active	
1305	114-001-000	DCM	IPLIM	IS-NR	Active	
1309	114-003-000	HMUX	BPHMUX	IS-NR	Active	
1310	114-003-000	HMUX	BPHMUX	IS-NR	Active	

6. If the signaling link assigned to the card to be removed from the database is the last signaling link in a linkset, the force=yes parameter must be used when deleting the link with the dlt-slk command. Verify the number of links in the linkset using the rtrv-ls command and specifying the linkset name (shown in step 1 in the LSET NAME field) for the respective link. For this example, enter the following commands.

rtrv-ls:lsn=ipnode1

This is an example of the possible output

rlghncxa03	3w 06-10-28 16:31:35 (WS GWS
LSN	APCA (SS7) SCR			
	240-020-000 scr1			
iphodei	240-020-000 SCI	ı ı ı yes	A Z OII C	il oli yes oli
	IPGWAPC MATELSN		SLKUSEALM GTTM	
	LOC LINK SLC TYPE	L2T	L1 MODE TSET EC	
	LOC LINK SEC TIFE	DEI DED	MODE ISET EC	.11 111 112
		LP	ATM	
	LOC LINK SLC TYPE			CI VPI LL
		LP	ATM	E1ATM
	LOC LINK SLC TYPE	SET BPS	TSEL VCI	VPI CRC4 SI SN
	LOC LINK SLC TYPE	IPLIML2		
	1205 A 0 IPLIM			
	1303 A 0 IPLIM	SAALTALI		
	LOC LINK SLC TYPE			
		L2T	PCR PC	R E1 E1
	LOC LINK SLC TYPE			LOC PORT TS
		L2T	PCR PC	R T1 T1
	LOC LINK SLC TYPE			LOC PORT TS
		210		
Link set t	table is (10 of 1024)	1% full		

rtrv-ls:lsn=ipnode2

This is an example of the possible output

IP⁷ Secure Gateway Configuration Procedures

				L2T		L1			PCR	PCR
LOC	LINK	SLC	TYPE	SET	BPS	MODE	TSET	ECM	N1	N2
				LP		ATM	I			
LOC	LINK	SLC	TYPE	SET	BPS	TSE	L	VCI	VP	I LL
				LP		ATM				E1ATM
LOC	LINK	SLC	TYPE	SET I	BPS	TSEL	VC	I VP	I CR	C4 SI SN
LOC	LINK	SLC	TYPE	IPLI	ML2					
1207	A	0	IPLIM	SAAL'	TALI					
LOC	LINK	SLC	TYPE							
				L2T			PCR	PCR	E1	E1
LOC	LINK	SLC	TYPE	SET	BPS	ECM	N1	N2	LOC	PORT TS
				L2T			PCR	PCR	T1	T1
LOC	LINK	SLC	TYPE	SET	BPS	ECM	N1	N2	LOC	PORT TS

Link set table is (10 of 1024) 1% full

rtrv-ls:lsn=ipnode3

This is an example of the possible output

Link set table is (10 of 1024) 1% full

rlghncxa03w 06-10-28 16:31:35 GMT EAGLE5 36.0.0 L3T SLT GWS GWS GWS LSN APCA (SS7) SCRN SET SET BEI LST LNKS ACT MES DIS SLSCI NIS ipnode3 240-020-000 scrl 1 1 yes A 2 off off yes off IPGWAPC MATELSN IPTPS LSUSEALM SLKUSEALM GTTMODE no ----- ------ CdPA L2T L1 LOC LINK SLC TYPE SET BPS MODE TSET ECM N1 N2 LP ATM
LOC LINK SLC TYPE SET BPS TSEL VCI VPI LL LP ATM E1ATM
LOC LINK SLC TYPE SET BPS TSEL VCI VPI CRC4 SI SN LOC LINK SLC TYPE IPLIML2 1205 A 0 IPLIM SAALTALI 1303 A 0 IPLIM SAALTALI LOC LINK SLC TYPE L2T PCR PCR E1 E1 LOC LINK SLC TYPE SET BPS ECM N1 N2 LOC PORT TS L2T PCR PCR T1 T1 LOC LINK SLC TYPE SET BPS ECM N1 N2 LOC PORT TS 7. Inhibit the card using the inh-card command and specifying the card location. If the IP card to be inhibited contains the only signaling link in the linkset that is in service, the force=yes parameter must also be specified. For this example, enter these commands.

inh-card:loc=1205

inh-card:loc=1207:force=yes

When these commands have successfully completed, this message appears.

rlghncxa03w 06-10-12 09:12:36 GMT EAGLE5 36.0.0 Card has been inhibited.

8. Verify the changes with the rept-stat-card command. This is an example of the possible output.

```
rlghncxa03w 06-10-27 16:43:42 GMT EAGLE5 36.0.0
CARD VERSION TYPE APPL PST
                                          SST
                                                    AST
1101 114-003-000 TSM SCCP
                                          Active
1102 114-003-000 TSM GLS
                              IS-NR
                                          Active
1103 114-002-000 ACMENET STPLAN IS-NR
                                          Active
1109 114-003-000 HMUX BPHMUX IS-NR
                                          Active
1110 114-003-000 HMUX BPHMUX IS-NR
                                          Active
1113 114-002-000 GPSM EOAM
                               IS-NR
                                           Active
1114 ----- TDM
1115 114-002-000 GPSM EOAM IS-NR
                                           Active
                                           Active
                                          Active
                           IS-NR
1117 ----- MDAL
                                          Active
1201 114-003-000 LIMDSO SS7ANSI IS-NR
                                         Active
1202 114-002-000 LIMV35 SS7GX25 IS-NR
                                         Active
                                                    ---
1203 114-003-000 LIMV35 SS7ANSI IS-NR Active
1204 114-003-000 LIMATM ATMANSI IS-NR Active
1205 114-001-000 DCM IPLIM OOS-MT-DSBLD Isolated ---
1207 114-001-000 DCM IPLIM OOS-MT-DSBLD Isolated ---
1209 114-003-000 HMUX BPHMUX IS-NR
                                           Active
1210 114-003-000 HMUX BPHMUX IS-NR
                                           Active
1303 114-001-000 DCM IPLIM IS-NR
                                          Active
1305 114-001-000 DCM IPLIM IS-NR
                                          Active
1309 114-003-000 HMUX BPHMUX IS-NR
                                          Active
                                                    ---
1310 114-003-000 HMUX BPHMUX IS-NR
                                                    _ _ _
                                           Active
```

9. Remove the signaling links on the specified card by using the dlt-slk command. If the output of step 6 shows that the signaling link being removed is the last signaling link in a linkset, the force=yes parameter must be used. For this example, enter these commands.

```
dlt-slk:loc=1205:link=a
dlt-slk:loc=1205:link=b
dlt-slk:loc=1207:link=a:force=yes
When these commands have successfully completed, this message appears.
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0
DLT-SLK: MASP A - COMPLTD
```

10. Remove the card from the database using the dlt-card command. The dlt-card command has only one parameter, loc, which is the location of the card. For this example, enter these commands.

```
dlt-card:loc=1205
dlt-card:loc=1207
```

When these commands have successfully completed, this message appears.

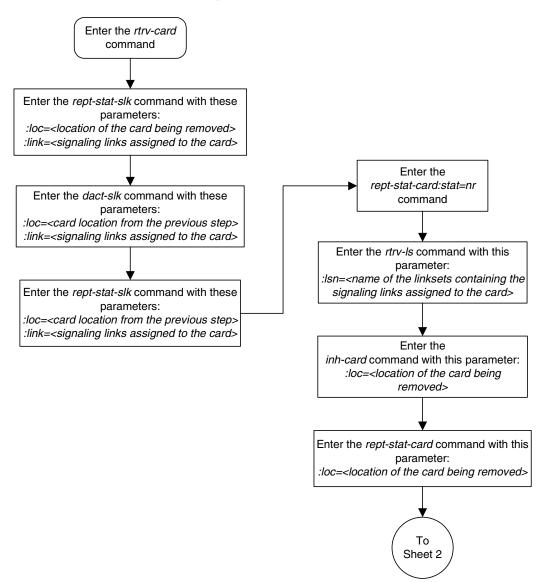
```
rlghncxa03w 06-10-12 09:12:36 GMT EAGLE5 36.0.0 DLT-CARD: MASP A - COMPLTD
```

11. Verify the changes using the rtrv-card command and specifying the card that was removed in step 10. For this example, enter these commands.

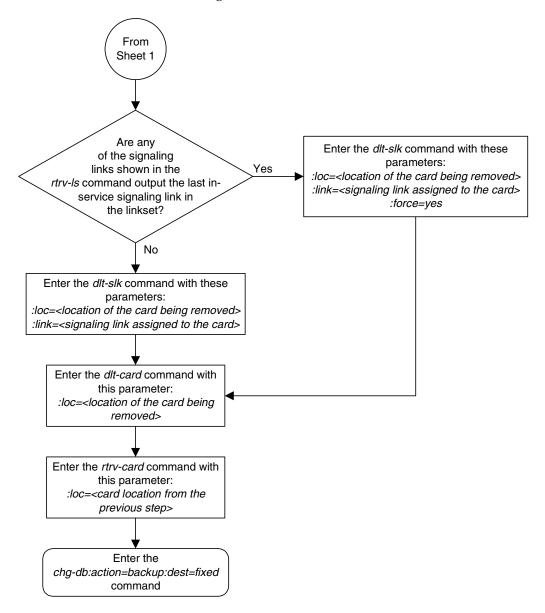
```
rtrv-card:loc=1205
rtrv-card:loc=1207
```

When these commands have successfully completed, this message appears.

```
E2144 Cmd Rej: Location invalid for hardware configuration
```


12. Back up the new changes using the chg-db:action=backup:dest=fixed command. These messages appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.


BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED) : MASP A - Backup starts on standby MASP.

BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```


Flowchart 3-2. Removing an IP Card (Sheet 1 of 2)

Flowchart 3-2. Removing an IP Card (Sheet 2 of 2)

Configuring an IPGWx Linkset

This procedure is used to configure IPGWx linksets in the EAGLE 5 ISS using the ent-ls or chg-ls commands with these parameters. An IPGWx linkset is a linkset that contains signaling links running either the SS7IPGW or IPGWI applications.

NOTE: This procedure is not used to configure a mate IPGWx linkset, with the matelsn and action parameters. To configure a mate IPGWx linkset, perform the "Configuring a Mate IPGWx Linkset" procedure on page 3-63.

:1sn – The name of the linkset. The linkset name can contain up to 10 characters, with the first character being a letter. However, the SEAS interface supports only eight characters. If this linkset is displayed on the SEAS interface and the linkset name contains more than eight characters, only the first eight characters in the linkset name are shown. If this linkset name contains more than eight characters, and is specified with the linkset commands on the SEAS interface, only the first eight characters can be specified.

:apc/apca/apcn/apcn24 - Adjacent point code - the point code identifying the node that is next to the EAGLE 5 ISS. The adjacent point code can be one of the following types of point codes:

:apc/apca - ANSI point code, ANSI private point code

:apci – ITU-I point code, ITU-I spare point code, ITU-I private point code, ITU-I private spare point code.

:apcn – 14-bit ITU-N point code, 14-bit ITU-N spare point code, 14-bit ITU-N private point code, 14-bit ITU-N private spare point code.

:apcn24 – 24-bit ITU-N point code, 24-bit ITU-N private point code.

NOTE: See the "Point Code Formats" section in the *Database Administration Manual - SS7* for a definition of the point code types that are used on the EAGLE 5 ISS and for a definition of the different formats that can be used for ITU national point codes.

NOTE: The apc/apca/apci/apcn/apcn24 parameter must be specified with the ent-ls command. Specifying this parameter with the chg-ls command is required only if the adjacent point code of the linkset is being changed.

:1st - The linkset type of the specified linkset - The 1st parameter must be specified with the ent-1s command. Specifying this parameter with the chg-1s command is required only if the linkset type of the linkset is being changed.

:ipgwapc – IP Gateway Adjacent Point Code indicator. Specify the ipgwapc=yes parameter to provide SS7 linkset definition compatibility for gateway connections to IP-SCPs. This parameter can be specified only for, and

must be specified for, linksets containing signaling links assigned to either the SS7IPGW or IPGWI applications. The default is ipgwapc=no.

NOTE: The ipgwapc parameter can be specified only with the ent-1s command.

To provision ISUP-CIC routing keys, the <code>ipgwapc=yes</code> parameter and the IP Gateway ISUP routing feature must be turned on. Verify this with the <code>rtrv-feat</code> command. If the IP Gateway ISUP routing feature is turned on, the <code>ipisup</code> field should be set to <code>on</code>. If the IP Gateway ISUP routing feature is not turned on, enter the <code>chg-feat:ipisup=on</code> command.

NOTE: Once the IP Gateway ISUP routing feature is turned on with the chg-feat command, it cannot be turned off.

NOTE: The IP Gateway ISUP routing feature must be purchased before you turn the feature on with the chg-feat command. If you are not sure if you have purchased the IP Gateway ISUP routing feature, contact your Tekelec Sales Representative or Account Representative.

- :iptps The quantity of IP TPS (transactions per second) that is assigned to the IPGWx linkset, from 100 to 112,000. The total amount of IP TPS for all IPGWx linksets cannot exceed the system-wide IP TPS value shown in the rept-stat-iptps output. For more information on the system-wide IP TPS value, see the "Increasing the System-Wide IPGWx Signaling TPS" procedure on page 3-317.
- :lsusealm The linkset's IP TPS alarm threshold, from 10 to 100 percent of the linkset's IP TPS. When this threshold is reached, a major alarm (UAM 0115) is generated. When the linkset's IP TPS falls below this threshold, UAM 0115 is automatically cleared and UAM 0118 is generated.
- :slkusealm The signaling link IP TPS alarm threshold, from 10 to 100 percent of the signaling link's fair share of the linkset's IP TPS or from 10 to 100 percent of the IPGWx card's capacity (2000 TPS). This threshold is reached when the signaling link's actual usage exceeds the percentage of the signaling link's fair share of the linkset's IP TPS or the percentage of the IPGWx card's capacity.

A signaling link's fair share of linkset's IP TPS is the linkset's IP TPS divided by the number of in-service links in the linkset. For example, if the linkset IP TPS is 4000 and there are 4 signaling links in the linkset, all in-service, then the signaling link's fair-share would be 1000 IP TPS (4000/4=1000). Table 3-6 shows this calculation for a linkset with 1, 2, 3 and 4 in-service signaling links.

Table 3-6. Signaling Link Fair Share Example

Number of In-Service Signaling Links	Linkset IP TPS	Signaling Link Fair Share of the Linkset IP TPS
4	4000	1000
3	4000	1333

Table 3-6. Signaling Link Fair Share Example (Continued)

Number of In-Service Signaling Links	Linkset IP TPS	Signaling Link Fair Share of the Linkset IP TPS
2	4000	2000
1	4000	4000

When this threshold is exceeded, a minor alarm (UAM 0116) is generated. When the amount of traffic on the signaling link falls below this threshold, UAM 0116 is automatically cleared and UAM 0119 is generated.

The signaling link IP TPS alarm shows that the linkset IP TPS is set too low for the linkset or that the IPGWx card's capacity has been exceeded. Setting the signaling link IP TPS alarm threshold lower than the linkset IP TPS alarm threshold can give the user an earlier indication that the linkset IP TPS is inadequate or that traffic is not balanced across the links in the linkset.

:multgc – specifies whether multiple group codes (for 14-bit ITU-N point codes) are supported for the linkset. When this parameter value is yes, secondary adjacent point codes whose group codes are different from the adjacent point code of the linkset can be assigned to the linkset. If the parameter value is no, the group code of the secondary adjacent point code must be the same as the group code of the linkset's adjacent point code. For more information on secondary adjacent point codes, go to the "Configuring an ITU Linkset with a Secondary Adjacent Point Code (SAPC)" procedure in the Database Administration Manual - SS7.

This parameter only applies to linksets whose adjacent point codes are either ITU international point codes or ITU national point codes. All the signaling links in this linkset must be assigned to cards running the IPGWI application. For more information on assigning signaling links to cards running the IPGWI application, go to the "Adding an IP Signaling Link" procedure on page 3-84.

The ITU duplicate point code feature must be on before this parameter can be specified. Verify this with the rtrv-feat command. If the ITU duplicate point code feature is turned on, the ituduppc field should be set to on. If the ITU duplicate point code feature is not turned on, enter the chg-feat:ituduppc=on command.

NOTE: Once the ITU duplicate point code feature is turned on with the chg-feat command, it cannot be turned off.

The ITU duplicate point code feature must be purchased before you turn the feature on with the chg-feat command. If you are not sure if you have purchased the ITU duplicate point code feature, contact your Tekelec Sales Representative or Account Representative.

The adjacent point code (APC) for the linkset must be defined in the database, must be in the SS7 domain and cannot match the point code or capability point code of the EAGLE 5 ISS. The domain of the point code is shown in the **DOMAIN**

field in the output of the rtrv-dstn command. The point code of the EAGLE 5 ISS is shown in the PCA, PCN, PCN24, or PCI fields and the capability point code of the EAGLE 5 ISS are shown in the CPCA, CPCN, CPCN24, or CPCI fields in the output of the rtrv-sid command. An ANSI adjacent point code must be a full point code and cannot be a cluster point code or a network routing point code.

If the APC is not in the destination point code table, go to the "Adding a Destination Point Code" procedure in the *Database Administration Manual - SS7* and add the APC to the destination point code table.

For IPGWx linksets, more than one device may be attached to the LAN and have IP connections to the IP card running either the SS7IPGW or IPGWI application. Thus each IPGWx linkset is adjacent to all devices on the LAN (or adjacent to no device on the LAN, depending on your point of view). To provide a scheme allowing this point-to-multipoint connection and maintain consistent SS7 linkset definition rules, a virtual APC is required. This virtual APC is a real SS7 point code that is not used anywhere else in the SS7 network. Virtual APCs assigned to SS7IPGW linksets are ANSI point codes. Virtual APCs assigned to IPGWI linksets are either ITU-I or ITU-N point codes (either 14-bit or 24-bit ITU-N point codes). Virtual point codes can be reused on more than one switch. For example, a mated set of switches, each with two related links, could share two virtual point codes instead of requiring four. DPCs and linksets related to the virtual APC must be defined with the <code>ipgwapc</code> parameter set to <code>yes</code>.

For provisioning of ISUP-CIC routing keys, the <code>ipgwapc=yes</code> parameter and the IP Gateway ISUP routing feature must be turned on. Verify this with the <code>rtrv-feat</code> command. If the IP Gateway ISUP routing feature is turned on, the <code>ipisup</code> field should be set to <code>on</code>. If the IP Gateway ISUP routing feature is not turned on, enter the <code>chg-feat:ipisup=on</code> command.

NOTE: Once the IP Gateway ISUP routing feature is turned on with the chg-feat command, it cannot be turned off.

The IP Gateway ISUP routing feature must be purchased before you turn the feature on with the chg-feat command. If you are not sure if you have purchased the IP Gateway ISUP routing feature, contact your Tekelec Sales Representative or Account Representative.

Other Optional Parameters

Other optional parameters, shown in Table 3-7, can be used with the ent-ls or chg-ls commands but do not need to be used in this procedure. These parameters are discussed in more detail in either the "Adding an SS7 Linkset" or Changing an SS7 Linkset" procedures in the *Database Administration Manual - SS7*. The matelsn parameter is discussed in more detail in the "Configuring a Mate IPGWx Linkset" procedure on page 3-63.

Table 3-7.	Optional Linkset Parameter	rs
------------	----------------------------	----

clli	sltset	13tset	scrn	gwsa		
gwsm	gwsd	bei	nis	itutfr		
asl8	slsrsb	slsocbit	mtprse*	slsci		
tfatcabmlq	gsmscrn	sapci	sapcn	sapcn24		
action	matelsn	apcntype	gttmode	randsls		
* The mtprse parameter cannot be specified for an IPGWx linkset.						

Canceling the RTRV-LS and RTRV-DSTN Commands

Because the rtrv-ls and rtrv-dstn commands used in this procedure can output information for a long period of time, the rtrv-ls and rtrv-dstn commands can be canceled and the output to the terminal stopped. There are three ways that the rtrv-ls and rtrv-dstn commands can be canceled.

- Press the F9 function key on the keyboard at the terminal where the rtrv-ls or rtrv-dstn commands were entered.
- Enter the canc-cmd without the trm parameter at the terminal where the rtrv-ls or rtrv-dstn commands were entered.
- Enter the canc-cmd:trm=<xx>, where <xx> is the terminal where the rtrv-ls or rtrv-dstn commands were entered, from another terminal other that the terminal where the rtrv-ls or rtrv-dstn commands were entered. To enter the canc-cmd:trm=<xx> command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal's permissions can be verified with the rtrv-secu-trm command. The user's permissions can be verified with the rtrv-user or rtrv-secu-user commands.

For more information about the canc-cmd command, go to the Commands Manual.

Procedure

1. Display the system-wide IP TPS usage report, and the IPGWx linksets, by entering the rept-stat-iptps command. This is an example of the possible output.

```
rlghncxa03w 06-10-10 11:43:04 GMT EAGLE5 36.0.0

IP TPS USAGE REPORT
```

7	HRESH	CONFIG		TPS	PEAK	PEAKTIMESTAMP
SYSTEM RLGHNCXA03W	100%	30000	TX: RCV:	7200 7200		05-02-10 11:40:04 05-02-10 11:40:04

LSN						
LSGW1101	80%	10000 TX:	7200	7600	05-02-10	11:40:04
		RCV:	7200	7600	05-02-10	11:40:04
LSGW1103	80%	10000 TX:	6700	7600	05-02-10	11:40:04
		RCV:	6500	7600	05-02-10	11:40:04
LSGW1105	80%	10000 TX:	7300	7450	05-02-10	11:40:04
		RCV:	7300	7450	05-02-10	11:40:04

Command Completed.

If the sum of the IP TPSs of all the IPGWx linksets is equal to the configured IP TPS amount shown in this report:

- No new IPGWx linksets can be added
- The linkset IP TPS of any IPGWx existing linkset cannot be increased.

If a new IPGWx linkset is being added in this procedure, and the IP TPS value for this linkset allows the sum of the IP TPS of all the IPGWx linksets to exceed the configured IP TPS amount shown in this report, the new IPGWx linkset cannot be added.

If an existing IPGWx IP TPS value is being changed in this procedure, and the IP TPS value for this linkset allows the sum of the IP TPS of all the IPGWx linksets to exceed the configured IP TPS amount shown in this report, the IPGWx linkset IP TPS value cannot be changed.

To add a new IPGWx linkset or change the IP TPS value of an existing IPGWx linkset when the resulting sum of IP TPS values for all IPGWx linksets will exceed the IP TPS amount shown in this report, the system-wide IP TPS amount must be increased, or the linkset IP TPS of some or all the IPGWx linksets must be reduced to allow for the new IP TPS value for the linkset configured in this procedure.

To increase the system-wide IP TPS amount, perform the "Increasing the System-Wide IPGWx Signaling TPS" procedure on page 3-317. If the system-wide IP TPS amount is 112000, shown in the **config** column in the **system** section of this report, the system-wide IP TPS amount cannot be increased. Skip step 2 and go to step 3.

If the linkset IP TPS values of the IPGWx linksets need to be reduced, perform step 2.

2. Reduce the IP TPS values of some or all the IPGWx linksets by entering the chg-ls command with the name of each linkset being changed from step 1, and the new IP TPS value. For this example, enter these commands.

```
chg-ls:lsn=lsgw1101:iptps=6000
chg-ls:lsn=lsgw1103:iptps=6000
```

When the chg-ls command has successfully completed, this message should appear.

```
rlghncxa03w 06-10-17 16:23:21 GMT EAGLE5 36.0.0
Link set table is ( 13 of 1024) 1% full
CHG-LS: MASP A - COMPLTD
```

NOTE: If the multgc parameter is not being specified for the linkset, skip steps 3, 4, 5, and 6, and go to step 7. If the multgc parameter value is being changed to no, skip steps 3, and 4, and go to step 5. The multgc parameter can be specified only for linksets with either ITU-I or 14-bit ITU-N APCs, and linksets that contain signaling links running the IPGWI application.

3. To specify the multgc=yes parameter with the ent-ls or chg-ls commands, the ITU Duplicate Point Code feature must be on. For the ITU Duplicate Point Code feature to be on, the Multiple Point Code feature must be on. Enter the rtrv-feat command to verify that either of these features are on. The entry MPC = on in the rtrv-feat command output shows that the Multiple Point Code feature is on. The entry ITUDUPPC = on in the rtrv-feat command output shows that the ITU Duplicate Point Code feature is on. In this example, both features are off.

NOTE: The rtrv-feat command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the rtrv-feat command, see the rtrv-feat command description in the Commands Manual.

NOTE: If the ITU Duplicate Point Code feature is on (ITUDUPPC = on), skip this step and go to step 5.

4. Turn the ITU Duplicate Point Code feature on, and the Multiple Point Code feature if necessary, by entering one of these commands.

To turn the ITU Duplicate Point Code feature on only.

```
chg-feat:ituduppc=on
```

To turn both the ITU Duplicate Point Code and Multiple Point Code features on.

```
chg-feat:mpc=on:ituduppc=on
```

NOTE: Once the ITU Duplicate Point Code and Multiple Point Code features are turned on with the chg-feat command, they cannot be turned off.

The ITU Duplicate Point Code and Multiple Point Code features must be purchased before you turn either of these features on with the chg-feat command. If you are not sure if you have purchased these features, contact your Tekelec Sales Representative or Account Representative.

When this command has successfully completed, this message should appear.

```
rlghncxa03w 06-10-10 11:43:04 GMT EAGLE5 36.0.0 CHG-FEAT: MASP A - COMPLTD
```

- NOTE: If the multgc parameter value is not being changed, is being changed to yes, or if a new linkset is being added, skip steps 5 and 6, and go to step 7.
- 5. If the multgc parameter value is changed to no, the linkset can contain only one secondary adjacent point code. An ITU international linkset can contain only one 14-bit ITU national secondary adjacent point code. If the ITU international linkset contains more than one 14-bit ITU national secondary adjacent point code, all but one of these 14-bit ITU national secondary adjacent point codes must be removed from the linkset. An ITU national linkset can contain only one ITU international secondary adjacent point code. All 14-bit ITU-N secondary adjacent point codes must be removed from the linkset. All routes to these secondary adjacent point codes must be removed from the database before the secondary adjacent point codes can be removed.

Display the routes using the secondary adjacent point code being removed from the linkset with the rtrv-rte command, specifying the secondary adjacent point code being removed as the value of the dpc parameter.

For this example, enter these commands.

rtrv-rte:dpcn=11213-de

This is an example of the possible output.

rtrv-rte:dpcn=12114-fr

This is an example of the possible output.

rtrv-rte:dpcn=12115-uk

This is an example of the possible output.

If the secondary adjacent point code is assigned to a route, that route must be removed from the database. Perform the "Removing a Route" procedure in the *Database Administration Manual - SS7* to remove the route from the database.

6. Remove the secondary adjacent point codes specified in step 5 from the linkset with the chg-ls command with the sapon and the action=delete parameters. For this example, enter these commands.

```
chg-ls:lsn=lsn3:sapcn=11213-de:action=delete
chg-ls:lsn=lsn3:sapcn=12114-fr:action=delete
chg-ls:lsn=lsn3:sapcn=12115-uk:action=delete
```

When the chg-ls command has successfully completed, this message should appear.

```
rlghncxa03w 06-10-17 16:23:21 GMT EAGLE5 36.0.0 Link set table is ( 13 of 255) 5% full CHG-LS: MASP A - COMPLTD
```

NOTE: If an existing linkset is being changed, and the adjacent point code of that linkset is not being changed, skip steps 7 through 14, and go to step 15.

NOTE: If a new linkset is being added, or an existing linkset is being changed, and the adjacent point code of that linkset is being changed continue this procedure with step 7.

7. Display the point code and capability point code of the EAGLE 5 ISS by using the rtrv-sid command. This is an example of the possible output.

rlghncxa03w PCA 001-001-001	06-10-10 11:43:04 PCI 1-200-6	GMT EAGLE5 36.0. PCN 13482	0 CLLI rlghncxa03w	PCTYPE OTHER
CPCA 002-002-002 002-002-006 004-002-001	002-002-003 002-002-007 004-003-003	002-002-00 002-002-00 144-212-00	8 002-002-	
CPCA (LNP) 005-005-002	005-005-004	005-005-00	5	
CPCI 1-001-1	1-001-2	1-001-3	1-001-4	
CPCN 02091 02191	02092 02192	02094 11177	02097	

8. Display the adjacent point code of the new linkset in the destination point code table by using the rtrv-dstn command and specifying the point code

For this example, enter this command.

```
rtrv-dstn:dpca=009-002-003
```

This is an example of the possible output.

```
rlghncxa03w 06-10-10 11:43:04 GMT EAGLE5 36.0.0

DPCA CLLI BEI ELEI ALIASI ALIASN DOMAIN

010-020-005 ------ no --- SS7

SPC NCAI
```

Destination table is (29 of 2000) 1% full

If the adjacent point code is not shown in the rtrv-dstn command output, the following output is displayed.

```
DPCA CLLI BEI ELEI ALIASI ALIASN/N24 DOMAIN
No destinations meeting the requested criteria were found
Destination table is (29 of 2000) 1% full
```

If the adjacent point code is not in the destination point code table, perform the "Adding a Destination Point Code" procedure in the *Database Administration Manual - SS7* and add the adjacent point code to the destination point code table.

NOTE: If the adjacent point code was added in step 8, and a new linkset is being added, skip steps 9 and 10, and go to step 11.

NOTE: If the adjacent point code was added in step 8, and an existing linkset is being changed, skip steps 9 through 14, and go to step 15.

9. The APC of the linkset cannot be the DPC of any exception route. Verify that the adjacent point code of the linkset is not the DPC of any exception route by entering the rtrv-rtx command with the dpc/dpca/dpci/dpcn/dpcn24 parameter. The dpc/dpca/dpci/dpcn/dpcn24 parameter value is the adjacent point code value that will be specified for the linkset. For this example, enter this command.

rtrv-rtx:dpca=010-020-005

This is an example of the possible output.

```
rlghncxa03w 06-10-10 11:43:04 GMT EAGLES 36.0.0

DPCA RTX-CRITERIA LSN RC APC

010-020-005 OPCA
007-008-009 1s1305 20 001-005-000
008-008-008 1s1307 40 001-007-000

DESTINATION ENTRIES ALLOCATED: 2000
FULL DPC(s): 13
EXCEPTION DPC(s): 5
NETWORK DPC(s): 0
CLUSTER DPC(s): 1
TOTAL DPC(s): 19
CAPACITY (% FULL): 1%

ALIASES ALLOCATED: 12000
ALIASES USED: 0
CAPACITY (% FULL): 0%
X-LIST ENTRIES ALLOCATED: 500
```

If the adjacent point code of the linkset is not the DPC of a route exception table entry, no entries are displayed in the rtrv-rtx output, but a summary of the point code quanties is displayed, as shown in the following output example.

```
rlghncxa03w 06-10-10 11:43:04 GMT EAGLE5 36.0.0

DESTINATION ENTRIES ALLOCATED: 2000

FULL DPC(s): 15

EXCEPTION DPC(s): 5

NETWORK DPC(s): 0

CLUSTER DPC(s): 1

TOTAL DPC(s): 21

CAPACITY (% FULL): 1%

ALIASES ALLOCATED: 12000

ALIASES USED: 0

CAPACITY (% FULL): 0%

X-LIST ENTRIES ALLOCATED: 500
```

If the point code specified in this step is shown in the DPCA/DPCI/DPCN/DPCN24 columns in this step, the point code value cannot be used as an adjacent point code unless one of two actions are taken:

- Choose another adjacent point code value and repeat steps 7, 8, and 9.
- Remove all the entries displayed in this step by performing the "Removing a Route Exception Entry" procedure in the Database Administration Manual - SS7.
- 10. Display any entires in the route table whose DPC value is also the adjacent point code of the new linkset being added in this procedure, or the new adjacent point code of the existing linkset being changed in this procedure. Enter the rtrv-rte command with the dpc/dpca/dpci/dpcn/dpcn24 parameter. The dpc/dpca/dpci/dpcn/dpcn24 parameter value is the adjacent point code value that will be specified for the linkset. For this example, enter this command.

```
rtrv-rte:dpca=010-020-005
```

This is an example of the possible output.

rlghncxa03w 06-10-10 11:43:04 GMT EAGLE5 36.0.0

```
DPCA ALIASI ALIASN/N24 LSN RC APCA
010-020-005 ------ ----- lsn1 1 003-003-003
1sn2 2 003-003-004
```

If the adjacent point code of the linkset is not the DPC of a route, the point code entry is displayed in the rtrv-rte output, but the LSN, RC, and APC columns contain dashes, as shown in the following output example.

RTX:No CLLI=-----

If the point code specified in this step is shown in the DPCA/DPCI/DPCN/DPCN24 columns in this step, the point code value cannot be used as an adjacent point code unless one of two actions are taken:

- Choose another adjacent point code value and repeat steps 7, 8, 9, and 10.
- Remove all the entries displayed in this step by performing the "Removing a Route" procedure in the Database Administration Manual -SS7.

NOTE: If an existing linkset is being changed, skip steps 11 through 14, and go to step 15.

11. Display the current linksets in the database using the **rtrv-ls** command. This is an example of the possible output.

rlghncxa03w	06-10-10	11:43	:04 GM	T EAG		36.	0.0		CMC	GWS	CMC		
LSN	APCA	(SS7)	SCRN			ргт	тет	TMVC				SLSCI	MTC
e1e2	001-207	, ,	none	1	1	no	В	6			off		off
e1m1s1	001-001		none	1	1	no	A	7			off		off
e1m1s2	001-001		none	1	1	no	A	7			off		off
ls1305	001-005		none	1	1	no	A	1			off		off
ls1307	001-007		none	1	1	no	A	1			off		off
lsqw1101	008-012		none	1	1	no	A	1			off		off
lsqw1103	003-002		none	1	1	no	A	1			off		off
lsqw1105	009-002		none	1	1	no	A	1			off		off
1091100	005 002		110110	_	_			_	0	011	0	110	011
				L3T	SLT				GWS	GWS	GWS		
LSN	APCA	(X25)	SCRN			BEI	LST	LNKS				SLSCI	NIS
		, -,											
				L3T	SLT				GWS	GWS	GWS		
LSN	APCI	(SS7)	SCRN			BEI	LST	LNKS	ACT	MES	DIS	SLSCI	NIS
e1e2i	1-207-0)	none	1	1	no	В	4	off	off	off		on
ls1315	0-015-0)	none	1	1	no	A	1	off	off	off		off
ls1317	0-017-0)	none	1	1	no	A	1	off	off	off		on
e1m2s1	1-011-1	L	none	1	1	no	A	7	off	off	off		off
e1m2s2	1-011-2	2	none	1	1	no	A	7	off	off	off		off
				L3T	SLT				GWS	GWS	GWS		
LSN	APCN	(SS7)	SCRN	SET	SET	BEI	LST	LNKS	ACT	MES	DIS	SLSCI	NIS
				L3T	SLT				GWS	GWS	GWS		
LSN	APCN24	(SS7)	SCRN	SET	SET	BEI	LST	LNKS	ACT	MES	DIS	SLSCI	NIS
				L3T	SLT				GWS	GWS	GWS		
LSN (CHINA)	APCN	(SS7)	SCRN	SET	SET	BEI	LST	LNKS	ACT	MES	DIS	SLSCI	NIS
				L3T	SLT				GWS	GWS	GWS		
LSN (CHINA)	APCN24	(SS7)	SCRN	SET	SET	BEI	LST	LNKS	ACT	MES	DIS	SLSCI	NIS
Link set table is (13 of 1024) 1% full.													

NOTE: If you do not wish to use the IP Gateway ISUP routing feature, skip steps 12 and 13, and go to step 14.

12. Verify that the IP Gateway ISUP routing feature is on by entering the rtrv-feat command. The entry IPISUP = on in the rtrv-feat command output shows that the IP Gateway ISUP routing feature is on.

NOTE: The rtrv-feat command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the rtrv-feat command, see the rtrv-feat command description in the Commands Manual.

NOTE: If the IP Gateway ISUP routing feature is on (IPISUP = on), skip this step and go to step 14.

13. Turn the IP Gateway ISUP routing feature on by entering this command.

```
chg-feat:ipisup=on
```

NOTE: Once the IP Gateway ISUP routing feature is turned on with the chg-feat command, it cannot be turned off.

NOTE: The IP Gateway ISUP routing feature must be purchased before you turn the feature on with the chg-feat command. If you are not sure if you have purchased the IP Gateway ISUP routing feature, contact your Tekelec Sales Representative or Account Representative.

When this command has successfully completed, this message should appear.

```
rlghncxa03w 06-10-10 11:43:04 GMT EAGLE5 36.0.0 CHG-FEAT: MASP A - COMPLTD
```

- **14.** Add the new linkset to the database using the ent-ls command. The new linkset must meet these conditions.
 - The name of this linkset cannot be used by another linkset the linkset configuration is shown in the output of step 11.

The APC of the new linkset must be in the destination point code table, but cannot be either the EAGLE 5 ISS's point code or the EAGLE 5 ISS's capability point code – shown in the outputs of steps 7 and 8. The adjacent point code can be one of the following types of point codes:

```
:apc/apca – ANSI point code, ANSI private point code
```

:apci – ITU-I point code, ITU-I spare point code, ITU-I private point code, ITU-I private spare point code.

:apcn – 14-bit ITU-N point code, 14-bit ITU-N spare point code, 14-bit ITU-N private point code, 14-bit ITU-N private spare point code.

:apcn24 – 24-bit ITU-N point code, 24-bit ITU-N private point code.

- These parameters and values must also be specified for the IPGWx linkset:
 - ipgwapc=yes
 - lst=<a,b,c,d,e>
 - iptps=<100-112000>

NOTE: The iptps parameter value must be divisible by 10. The sum of all the linkset IP TPS values, including the value for this linkset, cannot exceed the system-wide IP TPS value shown in the rept-stat-iptps output in step 1.

- The mtprse=yes parameter cannot be specified for an IPGWx linkset.
- The optional parameters <code>lsusealm</code> (the linkset's IP TPS alarm threshold) and <code>slkusealm</code> (the signaling link IP TPS alarm threshold) can be

specified with the ent-ls command. The default value for the lsusealm parameter is 100%, and the default value for the slkusealm parameters is 80%.

• The multgc=yes parameter can be specified only for IPGWx linksets that will contain signaling links running the IPGWI application.

NOTE: There are other optional parameters that can be specified with the ent-1s command, but are not required for an IPGWx linkset. These parameters and their usage are discussed in the "Configuring a Mate IPGWx Linkset" procedure on page 3-63 and in the "Adding an SS7 Linkset" procedure in the *Database Administration Manual - SS7*.

For this example, enter this command.

```
ent-ls:lsn=lsgw1107:apca=010-020-005:lst=a:ipgwapc=yes
:iptps=4000:lsusealm=70:slkusealm=70
```

When this command has successfully completed, this message should appear.

```
rlghncxa03w 06-10-17 16:23:21 GMT EAGLE5 36.0.0
Link set table is ( 14 of 1024) 1% full
ENT-LS: MASP A - COMPLTD
```

NOTE: If you do not wish to change an existing IPWGx linkset, skip steps 15 and 16, and go to step 17.

NOTE: If the slkusealm parameter for the linkset is not being changed, skip step 15 and go to step 16.

15. Display the signaling link alarm threshold for the linkset being changed by entering the rept-stat-iptps command with the name of the linkset being changed. For this example, enter this command.

```
rept-stat-iptps:lsn=lsgw1105
```

This is an example of the possible output.

```
rlghncxa03w 06-10-17 16:23:21 GMT EAGLE5 36.0.0
```

IP TPS USAGE REPORT

	THRESH	CONFIG		TPS	PEAK	PEAKTIMESTAMP
LSN LSGW1105	80%	10000 I	TX: RCV:	7300 7300	7450 7450	05-02-10 11:40:04 05-02-10 11:40:04
LOC PORT 1105 A	80%	I	TX: RCV:	7300 7300		05-02-10 11:40:04 05-02-10 11:40:04

Command Completed.

- **16.** Change the existing linkset using the chg-ls command with the name of the linkset being changed, shown in the rept-stat-iptps output in step 1, and with at least one of these parameters:
 - The new adjacent point code of the linkset, if the current adjacent point code of the linkset is being changed.
 - iptps=<100-112000>

NOTE: The iptps parameter value must be divisible by 10. The sum of all the linkset IP TPS values, including the value for this linkset, if this value is changed, cannot exceed the system-wide IP TPS value shown in the rept-stat-iptps output in step 1.

- The mtprse=yes parameter cannot be specified for an IPGWx linkset.
- The optional parameters <code>lsusealm</code> (the linkset's IP TPS alarm threshold) and <code>slkusealm</code> (the signaling link IP TPS alarm threshold) can be specified with the <code>chg-ls</code> command.
- The multgc=yes parameter can be specified only for IPGWx linksets that contain signaling links running the IPGWI application.

NOTE: There are other optional parameters that can be specified with the chg-ls command, but are not required for an IPGWx linkset. These parameters and their usage are discussed in the "Configuring a Mate IPGWx Linkset" procedure on page 3-63 and in the "Changing an SS7 Linkset" procedure in the *Database Administration Manual - SS7*.

For this example, enter this command.

```
chg-ls:lsn=lsgw1105:iptps=14000:lsusealm=70:slkusealm=70
```

When this command has successfully completed, this message should appear.

```
rlghncxa03w 06-10-17 16:23:21 GMT EAGLE5 36.0.0 Link set table is ( 14 of 1024) 1% full CHG-LS: MASP A - COMPLTD
```

17. Verify the changes using the rtrv-ls command specifying the linkset name specified in either steps 14 or 16 with the lsn parameter. For this example, enter these commands.

```
rtrv-ls:lsn=lsgw1105
```

This is an example of the possible output.

IPGWAPC MATELSN IPTPS LSUSEALM SLKUSEALM GTTMODE

yes		140	00 70)	양	70	% C	dPA			
LOC	LINK SLC	TYPE	L2T SET	BPS		L1 MODE	TSET	ECM	PCR N1	PCR N2	
LOC	LINK SLC	TYPE	LP SET	BPS		ATN TSI	-	VCI	VP	I L	L
LOC	LINK SLC	TYPE	LP SET	BPS		ATM TSEL	VC	I VP	I CR	E1AT	
LOC	LINK SLC	TYPE	IPLI	ML2							
LOC 1105	LINK SLC A 0	TYPE SS7IPGW									
LOC	LINK SLC	TYPE	L2T SET	BPS		ECM	PCR N1	PCR N2	E1 LOC	E1 PORT	TS
LOC	LINK SLC	TYPE	L2T SET	BPS		ECM	PCR N1	PCR N2	T1 LOC	T1 PORT	TS

Link set table is (14 of 1024) 1% full

rtrv-ls:lsn=lsgw1107

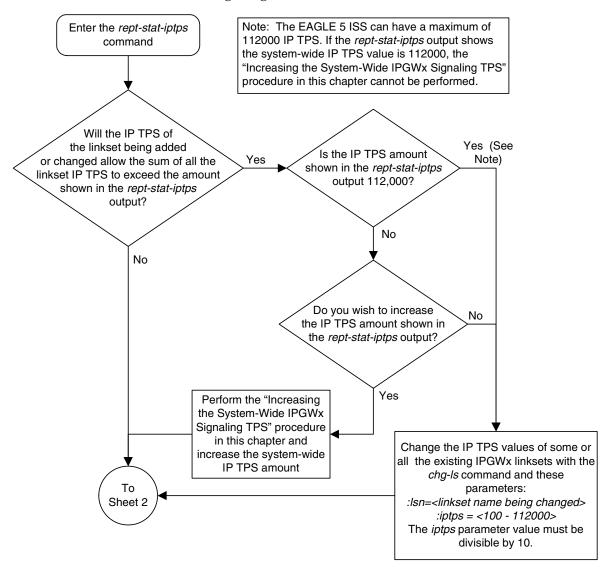
This is an example of the possible output.

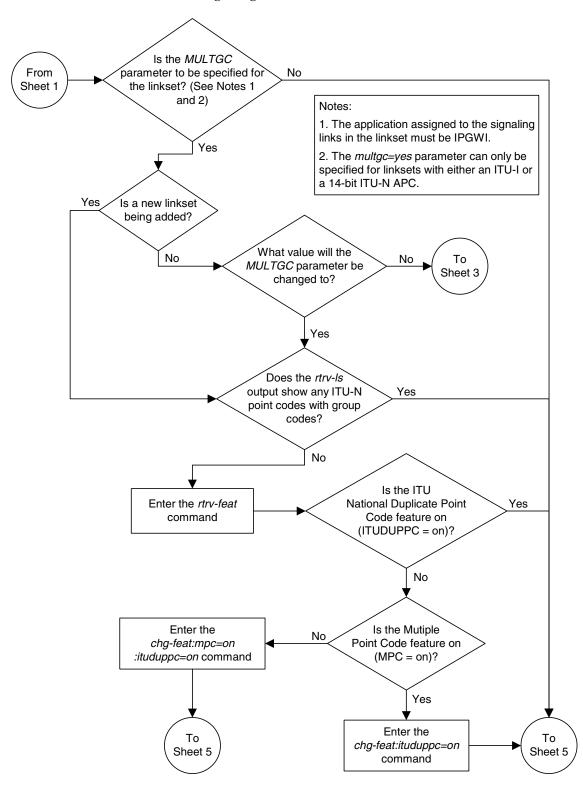
Link set table is (14 of 1024) 1% full

rlghncxa03w 06-10-17 11:43:04 GMT EAGLE5 36.0.0

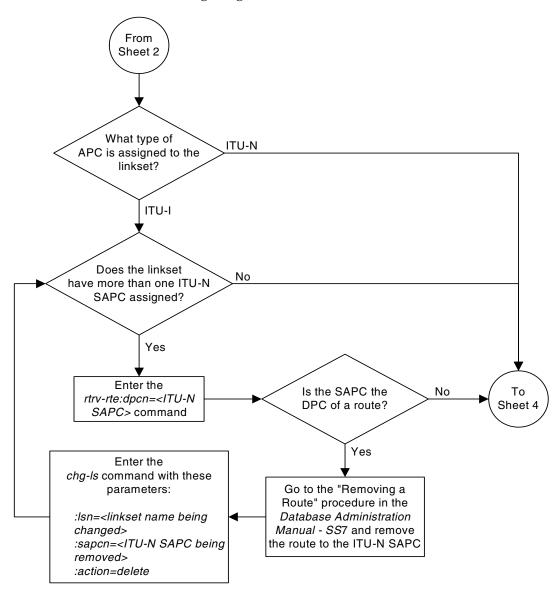
LSN lsgw1107			SCRN	SET S	ET BEI	LST :	LNKS A	GWS GWS ACT MES	DIS S	
		TF	FATCABML	Q MTP	RSE AS					
	IPGWA yes	PC MATELSN	IPT						E	
	LOC	LINK SLC T	TYPE		BPS			Г ECM		PCR N2
	LOC	LINK SLC T	TYPE	LP SET	BPS		TM SEL	VCI	VP	I LL
	LOC	LINK SLC T	TYPE		BPS			VCI V	PI CR	E1ATM C4 SI SN
	LOC	LINK SLC T	TYPE	IPLI	ML2					
	LOC	LINK SLC T	TYPE							
	LOC	LINK SLC T	TYPE	L2T SET	BPS	ECM	PCI N1		E1 LOC	E1 PORT TS
	LOC	LINK SLC T	TYPE	L2T SET	BPS	ECM	PCI N1		T1 LOC	T1 PORT TS

18. Back up the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

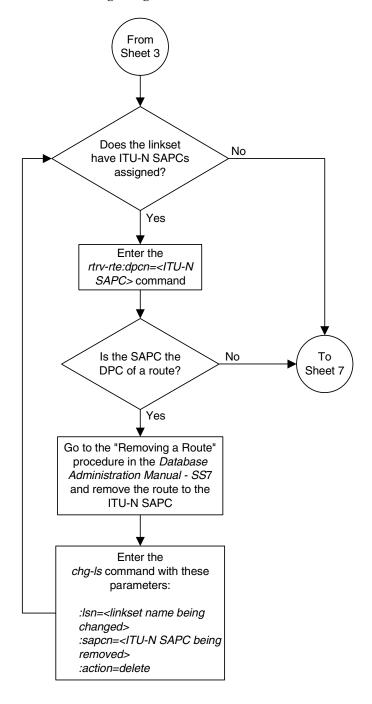

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.

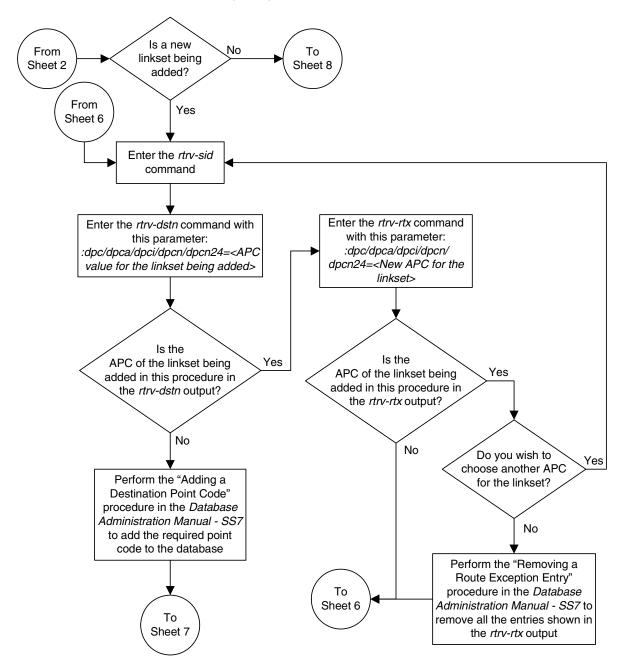

BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.

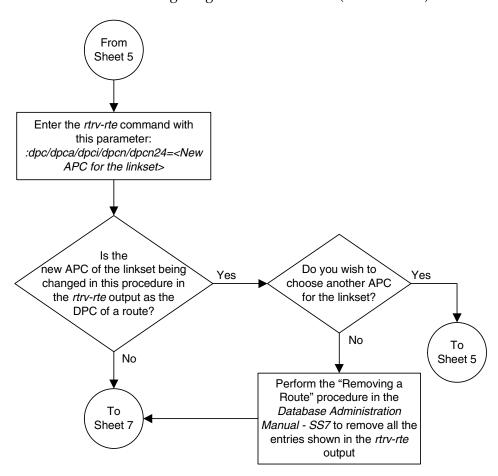
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.

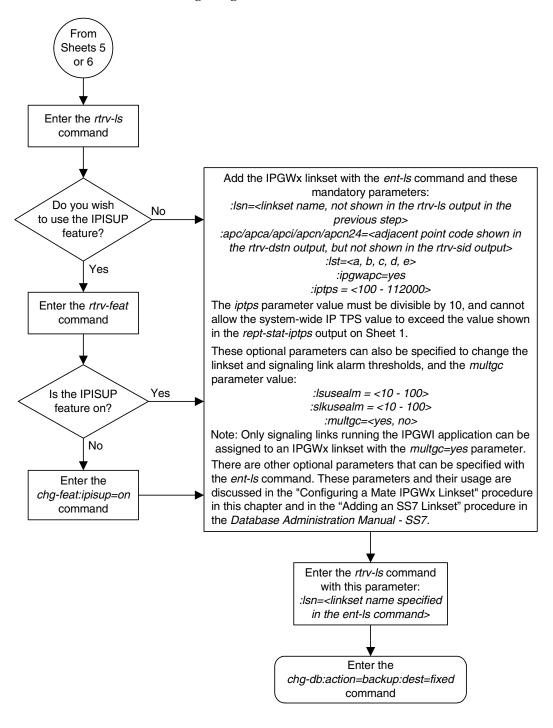

BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

Flowchart 3-3. Configuring an IPGWx Linkset (Sheet 1 of 10)

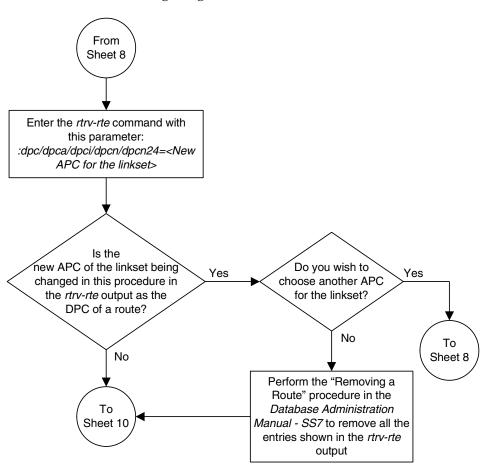


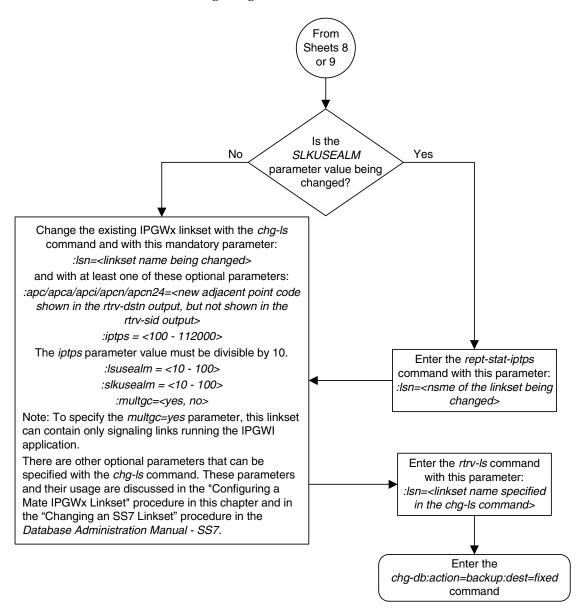

Flowchart 3-3. Configuring an IPGWx Linkset (Sheet 2 of 10)


Flowchart 3-3. Configuring an IPGWx Linkset (Sheet 3 of 10)


Flowchart 3-3. Configuring an IPGWx Linkset (Sheet 4 of 10)

Flowchart 3-3. Configuring an IPGWx Linkset (Sheet 5 of 10)


Flowchart 3-3. Configuring an IPGWx Linkset (Sheet 6 of 10)


Flowchart 3-3. Configuring an IPGWx Linkset (Sheet 7 of 10)

Flowchart 3-3. Configuring an IPGWx Linkset (Sheet 8 of 10)

Flowchart 3-3. Configuring an IPGWx Linkset (Sheet 9 of 10)

Flowchart 3-3. Configuring an IPGWx Linkset (Sheet 10 of 10)

Configuring a Mate IPGWx Linkset

This procedure is used to configure a mate IPGWx linkset to an existing IPGWx linkset chg-ls command with these parameters.

:1sn – The name of the linkset. The linkset name can contain up to 10 characters, with the first character being a letter. However, the SEAS interface supports only eight characters. If this linkset is displayed on the SEAS interface and the linkset name contains more than eight characters, only the first eight characters in the linkset name are shown. If this linkset name contains more than eight characters, and is specified with the linkset commands on the SEAS interface, only the first eight characters can be specified.

:matelsn - The name of the mate IPGWx linkset.

:action – to add (action=add) or remove (action=delete) the mate IPGWx linkset to the IPGWx linkset specified by the lsn parameter.

NOTE: This procedure is not used to configure an IPGWx linkset, with the ipgwapc, iptps, lsusealm and slkusealm parameters. To configure an IPGWx linkset with these parameters, perform the "Configuring an IPGWx Linkset" procedure on page 3-37.

An IPGWx linkset is a linkset that contains signaling links assigned to IPGWx cards. IPGWx cards are cards running either the SS7IPGW or IPGWI applications.

The EAGLE 5 ISS allows an IPGWx linkset to contain up to 8 IPGWx signaling links, and as a result, 8 IPGWx cards. This increases the amount of traffic that can be delivered to a single IP node compared to the two-card combined IPGWx linkset deployments used in previous releases. An IPGWx linkset containing up to 8 IPGWx signaling links is the preferred method of configuring IPGWx linksets (see the "Configuring an IPGWx Linkset" procedure on page 3-37). This method is required if more than two IPGWx signaling links are to be used in the linkset.

To provide backward compatibility with pre-existing two-card combined IPGWx linkset deployments, the EAGLE 5 ISS also provides for a mate IPGWx linkset. A mate IPGWx linkset consists of one IPGWx linkset assigned to another IPGWx linkset using the matelsn parameter of the chg-ls command. To assign a mate IPGWx linkset to another IPGWx linkset, both linksets can contain no more than one signaling link. While mate IPGWx linksets can be configured using this procedure, the preferred method of configuring two-card IPGWx deployments is to configure a two-link non-mated linkset using the "Configuring an IPGWx Linkset" procedure on page 3-37.

Each linkset in the mated pair must either contain no mate linksets, or can reference the other linkset in the mated pair. For example, to assign linkset LSN2 to IPGWx linkset LSN1 as a mate linkset, linkset LSN1 cannot contain any mate linksets. Linkset LSN2 can have linkset LSN1 as a mate, otherwise linkset LSN2 cannot have any mate linksets assigned to it.

The mate linkset name is displayed in the rtrv-ls:lsn=<linkset name> command output. If either linkset contains more than one signaling link, all but

one of the signaling links must be removed from these linksets or other linksets must be chosen. Perform the "Removing an IP Signaling Link" procedure on page 3-113 to remove any signaling links from the linkset. If new linksets must be configured for this procedure, perform the "Configuring an IPGWx Linkset" procedure on page 3-37.

Before a mate IPGWx linkset can be added to an IPGWx linkset, the card containing the IPGWx signaling link assigned to the linkset being changed, and the signaling link assigned to that card must be placed out of service.

Before a mate IPGWx linkset can be removed from an IPGWx linkset, the card containing the IPGWx signaling link assigned to the mate linkset, and the signaling link assigned to that card must be placed out of service.

The network type of the adjacent point code of the mate IPGWx linkset must be the same type as the linkset the mate is assigned to. For example, if a mate IPGWx linkset is assigned to an IPGWx linkset with an ITU-I adjacent point code, the mate IPGWx linkset must have an ITU-I adjacent point code.

Other Optional Parameters

Other optional parameters, shown in Table 3-8, can be used with the chg-ls command but do not need to be used in this procedure. These parameters are discussed in more detail in the "Changing an SS7 Linkset" procedures in the Database Administration Manual - SS7. The iptps, lsusealm, and slkusealm parameters are discussed in more detail in the "Configuring an IPGWx Linkset" procedure on page 3-37.

Table 3-8. Optional Linkset Parameters

clli	sltset	13tset	scrn	gwsa	gwsm			
gwsd	bei	nis	itutfr	mtprse*	slsci			
asl8	slsrsb	slsocbit	multgc	tfatcabmlq	gsmscrn			
sapci	sapcn	sapcn24	iptps	lsusealm	slkusealm			
apcntype	gttmode	randsls						
* The advanced to the control of the								

^{*} The mtprse parameter cannot be specified for an IPGWx linkset.

Procedure

1. Display the system-wide IP TPS usage report, and the IPGWx linksets, by entering the rept-stat-iptps command. This is an example of the possible output.

rlghncxa03w 06-10-10 11:43:04 GMT EAGLE5 36.0.0

IP TPS USAGE REPORT

Т	HRESH	CONFIG		TPS	PEAK	PEAKTIMESTAMP
SYSTEM						
RLGHNCXA03W	100%	30000	TX:	7200	7600	05-02-10 11:40:04
			RCV:	7200	7600	05-02-10 11:40:04
LSN						
LSGW1101	80%	6000	TX:	5100	5500	05-02-10 11:40:04
			RCV:	5100	5500	05-02-10 11:40:04
LSGW1103	80%	6000	TX:	5200	5500	05-02-10 11:40:04
			RCV:	5200	5500	05-02-10 11:40:04
LSGW1105	80%	14000	TX:	7300	7450	05-02-10 11:40:04
			RCV:	7300	7450	05-02-10 11:40:04
LSGW1107	70%	4000	TX:	3200	3500	05-02-10 11:40:04
			RCV:	3200	3500	05-02-10 11:40:04
Command Comp	leted.					

2. Display the linkset that is being changed by entering the rtrv-ls command with a linkset name shown in the rept-stat-iptps output in step 1. For this example, enter this command.

rtrv-ls:lsn=lsgw1103

This is an example of the possible output.

rlghncxa03w 06-10-17 11:43:04 GMT EAGLE5 36.0.0

103				SCRN none			BEI	LST		ACT		DIS	SLSCI	
	CLLI		Т	'FATCABI	MLQ MI	rprsi	E ASI	28						
			1		no)	no							
	IPGW/ yes			SN I								₹.		
					L27	Γ		L1				PC	R PCR	
	LOC	LINK	SLC	TYPE	SET	г ві	PS	MOI	DE TSI	ET I	ECM	N1	N2	
					LP			I	MTA					
	LOC	LINK	SLC	TYPE	SET	г ві	PS	7	rsel		VCI	,	VPI	LL
					LP			ATM					E1A	
	LOC	LINK	SLC	TYPE	SET	r BPS	3	TSEI	_	VCI	VI	PI (CRC4 S	I SN
	LOC	LINK	SLC	TYPE	ΙPΙ	LIML	2							

LSN lsgw11

IP⁷ Secure Gateway Configuration Procedures

Link set table is (14 of 1024) 1% full

If this linkset has a mate linkset assigned to it, the name of the mate linkset is shown in the MATELSN field of the rtrv-1s output, as shown in the following output.

rtrv-ls:lsn=lsgw1103

This is an example of the possible output.

Link set table is (14 of 1024) 1% full

rlghncxa03w 06-10-17 11:43:04 GMT EAGLE5 36.0.0

L3T SLT GWS GWS GWS APCA (SS7) SCRN SET SET BEI LST LNKS ACT MES DIS SLSCI NIS 003-002-004 none 1 1 no A 1 off off no off lsqw1103 TFATCABMLQ MTPRSE ASL8 IPGWAPC MATELSN IPTPS LSUSEALM SLKUSEALM GTTMODE yes lsgw1107 10000 70 % 70 % CdPA L2T PCR PCR SET BPS MODE TSET ECM N1 N2 LOC LINK SLC TYPE LP ATM TSEL VCI VPI LL LOC LINK SLC TYPE SET BPS LP ATM E1ATM LOC LINK SLC TYPE SET BPS TSEL VCI VPI CRC4 SI SN LOC LINK SLC TYPE IPLIML2 LOC LINK SLC TYPE 1103 A 0 SS7IPGW L2T PCR PCR E1 E1 LOC LINK SLC TYPE SET BPS ECM N1 N2 LOC PORT TS L2T PCR PCR T1 T1 LOC LINK SLC TYPE SET BPS ECM N1 N2 LOC PORT TS NOTE: If the linkset being changed has no signaling links, or only one signaling link assigned to it, or if the mate linkset is being removed from the linkset being changed, skip step 3 and go to step 4.

3. To assign a mate linkset to this linkset, and the linkset contains more than one signaling link, all but one of these signaling links must be removed from the linkset. Perform the "Removing an IP Signaling Link" procedure on page 3-113 to remove these signaling links.

If you do not wish to change this linkset, either choose another linkset from the rept-stat-iptps output in step 1, and repeat step 2, and 3 if necessary, or perform the "Configuring an IPGWx Linkset" procedure on page 3-37 and add a new linkset. Go to step 4.

4. If a mate linkset is being added in this procedure, display the mate linkset from the IPGWx linksets shown in the rept-stat-iptps output in step 1.

If a mate linkset is being removed in this procedure, display the mate linkset shown in the MATELSN column of the rtrv-1s output in step 2.

For this example, enter this command.

rtrv-ls:lsn=lsgw1107

This is an example of the possible output.

rlghncxa03w 06-10-17 11:43:04 GMT EAGLE5 36.0.0 L3T SLT GWS GWS GWS APCA (SS7) SCRN SET SET BEI LST LNKS ACT MES DIS SLSCI NIS LSN 003-002-004 none 1 1 no A 1 off off no off lsqw1107 TFATCABMLQ MTPRSE ASL8 ----- 1 no IPGWAPC MATELSN IPTPS LSUSEALM SLKUSEALM GTTMODE yes ----- 10000 70 % 70 % CdPA L1 L2T PCR PCR LOC LINK SLC TYPE SET BPS MODE TSET ECM N1 N2 LP ATM LOC LINK SLC TYPE SET BPS TSEL VCI VPI LL ATM LΡ E1ATM LOC LINK SLC TYPE SET BPS TSEL VCI VPI CRC4 SI SN LOC LINK SLC TYPE IPLIML2 LOC LINK SLC TYPE 1107 A 0 SS7IPGW T₁2T PCR PCR E1 E1 LOC LINK SLC TYPE SET BPS ECM N1 N2 LOC PORT TS PCR PCR T1 T1 LOC LINK SLC TYPE SET BPS ECM N1 N2 LOC PORT TS Link set table is (14 of 1024) 1% full

NOTE: If the mate linkset is being removed from the linkset being changed, skip step 5 and go to step 6.

5. To use the linkset shown in step 4 as a mate, the network type of the adjacent point code of the linkset shown in step 4 must be the same as the network type of the linkset shown in step 2. The linkset shown in step 4 must not have more than one signaling link assigned to it.

If the linkset contains more than one signaling link, all but one of these signaling links must be removed from the linkset. Perform the "Removing an IP Signaling Link" procedure on page 3-113 to remove these signaling links.

If you do not wish to change this linkset, or if the network type of the adjacent point codes of both linksets are not the same, either choose another linkset from the rept-stat-iptps output in step 1, and repeat step 4, and 5 if necessary, or perform the "Configuring an IPGWx Linkset" procedure on page 3-37 and add a new linkset. Go to step 6.

If the network types of the adjacent point codes of both linksets are the same, and the mate linkset contains no more than one signaling link, do not perform the actions in this step. Go to step 6.

NOTE: If the linkset that the mate linkset is being added to has no signaling links (see the rtrv-ls output in step 2), skip steps 6 through 16, and go to step 17.

NOTE: If the mate linkset is being removed in this procedure, and has no signaling links (see the rtrv-1s output in step 4), skip steps 6 through 16, and go to step 17.

6. Display the status of the card containing the signaling link assigned to the linkset being changed by entering the rept-stat-card command with the card location shown in the LOC field in the rtrv-ls output in step 2 (for adding a mate linkset) or in the rtrv-ls output in step 4 (for removing a mate linkset). For this example, enter one of these commands.

rept-stat-card:loc=1103 (for the adding a mate linkset example)

This is an example of the possible output.

```
rlghncxa03w 06-10-27 17:00:36 GMT EAGLE5 36.0.0

CARD VERSION TYPE APPL PST SST AST

1103 114-000-000 DCM SS71PGW IS-NR Active -----

ALARM STATUS = No Alarms.

BPDCM GPL = 002-102-000

IMT BUS A = Conn

IMT BUS B = Conn

SIGNALING LINK STATUS

SLK PST LS CLLI

A IS-NR lsgw1103 -------
```

Command Completed.

rept-stat-card:loc=1107 (for the removing a mate linkset example)

This is an example of the possible output.

```
rlghncxa03w 06-10-27 17:00:36 GMT EAGLE5 36.0.0
CARD VERSION TYPE APPL PST
                                       SST
                                                AST
1107 114-000-000 DCM SS7IPGW IS-NR
                                        Active ----
 ALARM STATUS = No Alarms.
 BPDCM GPL
               = 002-102-000
 IMT BUS A = Conn
IMT BUS B = Conn
 SIGNALING LINK STATUS
  SLK PST LS CLLI
A IS-NR lsgw1107 -----
```

Command Completed.

NOTE: If the status of the card shown in PST field in the rept-stat-card output in step 6 is OOS-MT-DSBLD, skip steps 7 through 16, and go to step **17.**

7. Display the status of the signaling link assigned to the card shown in step 6 by entering the rept-stat-slk command with the card location used in step 6 and the link=a parameter. For this example, enter one of these commands.

rept-stat-slk:loc=1103:link=a (for the adding a mate linkset example) This is an example of the possible output.

```
rlghncxa03w 06-10-27 17:00:36 GMT EAGLE5 36.0.0
      LSN CLLI PST SST
SLK
                                          AST
1103,A
                                  Avail
               ----- IS-NR
      lsgw1103
 ALARM STATUS
               = No Alarms.
 UNAVAIL REASON
               = NA
Command Completed.
```

rept-stat-slk:loc=1107:link=a (for the removing a mate linkset example) This is an example of the possible output.

```
rlghncxa03w 06-10-27 17:00:36 GMT EAGLE5 36.0.0
SLK LSN CLLI PST SST 1107,A lsgw1107 ------ IS-NR Avail
                                                    AST
                                                    ----
 ALARM STATUS = No Alarms.
 UNAVAIL REASON
                   = NA
Command Completed.
```

NOTE: If the status of the signaling link shown in the PST field of the rept-stat-slk output in step 7 is OOS-MT-DSBLD, skip steps 8 through 15, and go to step 16.

- **8.** Any in-service IP connections on the signaling link shown in step 7 must be placed out of service. The recommended method is to have the far end node place these IP connections out of service. Have the far-end node for the signaling link shown in step 7 perform these actions:
 - Place the TALI sockets in the NEA-FEP state.
 - Place the M3UA or SUA associations in either the ASP-INACTIVE or ASP-DOWN state.

NOTE: If you choose to perform this step, skip steps 9 through 16, and go to step 17.

9. Display the IP link associated with the card that the signaling link shown in step 7 is assigned to by entering the rtrv-ip-lnk command with the card location shown in step 7. For this example, enter one of these commands.

rtrv-ip-lnk:loc=1103 (for the adding a mate linkset example)

The following is an example of the possible output.

rtrv-ip-lnk:loc=1107 (for the removing a mate linkset example)

The following is an example of the possible output.

10. Display the IP host information associated with the IP link by entering the rtrv-ip-host command with the IP address shown in step 9. For this example, enter one of these commands.

rtrv-ip-host:ipaddr=192.001.001.010 (for the adding a mate linkset example)

The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:17:37 GMT EAGLE5 36.0.0

LOCAL IPADDR LOCAL HOST
192.1.1.10 IPNODE1_1103

IP Host table is (11 of 512) 2% full
```

rtrv-ip-host:ipaddr=192.003.001.010 (for the removing a mate linkset example)

The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:17:37 GMT EAGLE5 36.0.0

LOCAL IPADDR LOCAL HOST
192.3.1.10 IPNODE1_1107

IP Host table is (11 of 512) 2% full
```

11. Display the socket associated with the local host name shown in step 10 by entering the rtrv-appl-sock command. For this example, enter one of these commands.

rtrv-appl-sock:lhost=ipnode1_1103 (for the adding a mate linkset example)

The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:14:37 GMT EAGLE5 36.0.0
SNAME KC_HLR1_1103
LINK A
```

```
LHOST IPNODE1_1103
RHOST KC_HLR2
LPORT 7000 RPORT 7001
SERVER YES DCMPS 1
REXMIT FIXED RTT 60
OPEN YES ALW YES
```

IP Appl Sock/Assoc table is (4 of 4000) 1% full

rtrv-appl-sock:lhost=ipnode1_1107 (for the removing a mate linkset example)

The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:14:37 GMT EAGLE5 36.0.0

IP Appl Sock/Assoc table is (4 of 4000) 1% full
```

NOTE: If the specified socket name is not in the database, the rtrv-appl-sock output shows no socket information as shown above.

NOTE: If there is no socket shown in step 11, or the open and alw parameter values of the socket shown in step 11 are no, skip this step and step 13, and go to step 14.

12. Change the alw parameter values in the socket shown in step 11 using the chg-appl-sock command with the alw=no parameters, as necessary.

For example, enter this command.

```
chg-appl-sock:sname=kc_hlr1_1103:alw=no
```


CAUTION: This command impacts network performance and should only be used during periods of low traffic.

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0 CHG-APPL-SOCK: MASP A - COMPLTD
```

Repeat this step for all sockets shown in step 11.

13. Change the open parameter values in the socket shown in step 11 using the chg-appl-sock command with the open=no parameters, as necessary.

For example, enter this command.

```
chg-appl-sock:sname=kc_hlr1_1103:open=no
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0 CHG-APPL-SOCK: MASP A - COMPLTD
```

Repeat this step for all sockets shown in step 11.

14. Display the association associated with the local host name shown in step 10 by entering the rtrv-assoc command. For this example, enter one of these command.

rtrv-assoc:lhost=ipnode1_1107 (for the removing a mate linkset example)

This is an example of possible output.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0

CARD IPLNK

ANAME LOC PORT LINK ADAPTER LPORT RPORT OPEN ALW
assoc1 1107 A A M3UA 1030 1030 YES YES

IP Appl Sock/Assoc table is (4 of 4000) 1% full
Assoc Buffer Space Used (16 KB of 3200 KB) on LOC = 1107
```

rtrv-assoc:lhost=ipnode1 1103 (for the adding a mate linkset example)

The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:14:37 GMT EAGLE5 36.0.0

IP Appl Sock/Assoc table is (4 of 4000) 1% full
```

NOTE: If the specified association name is not in the database, the rtry-assoc output shows no association information as shown above.

NOTE: If there is no association shown in step 14, or the open and alw parameter values of the association shown in step 14 are no, skip this step and step 16, and go to step 17.

15. Change the alw parameter values in the association shown in step 14 using the chg-assoc command with the alw=no parameters, as necessary.

```
chg-assoc:aname=assoc1:alw=no
```


CAUTION: This command impacts network performance and should only be used during periods of low traffic.

When this command has successfully completed, this message should appear.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0 CHG-ASSOC: MASP A - COMPLTD
```

Repeat this step for all associations shown in step 14.

16. Change the open parameter values in the association shown in step 14 using the chg-assoc command with the open=no parameters, as necessary.

```
chg-assoc:aname=assoc1:open=no
```

When this command has successfully completed, this message should appear.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0 CHG-ASSOC: MASP A - COMPLTD
```

Repeat this step for all associations shown in step 14.

17. Deactivate the signaling link assigned to the IP card using the dact-slk command. For example, enter one of these commands:

dact-slk:loc=1103:link=a (for the adding a mate linkset example)

dact-slk:loc=1107:link=a (for the removing a mate linkset example)

CAUTION: This command impacts network performance and should only be used during periods of low traffic.

After this command has successfully completed, this message appears.

```
rlghncxa03w 06-10-12 09:12:36 GMT EAGLE5 36.0.0 Deactivate Link message sent to card.
```

18. Inhibit the IP card using the **inh-card** command. For example, enter one of these commands.

inh-card:loc=1103 (for the adding a mate linkset example)

inh-card:loc=1107 (for the removing a mate linkset example)

This message should appear.

```
rlghncxa03w 06-10-28 21:18:37 GMT EAGLE5 36.0.0 Card has been inhibited.
```

19. Change the linkset shown in step 2 with the chg-ls command. If a mate IPGWx linkset is being added, use the matelsn and action=add parameters with the chg-ls command. If a mate IPGWx linkset is being removed, use the matelsn and action=delete parameters with the chg-ls command.

To add a mate linkset in this example, enter this command.

```
chg-ls:lsn=lsgw1103:matelsn=lsgw1107:action=add
```

To remove a mate linkset in this example, enter this command.

```
chg-ls:lsn=lsgw1103:matelsn=lsgw1107:action=delete
```

NOTE: There are other optional parameters that can be specified with the chg-ls command, but are not required for an IPGWx linkset. These parameters and their usage are discussed in the "Configuring an IPGWx Linkset" procedure on page 3-37 and in the "Changing an SS7 Linkset" procedure in the *Database Administration Manual - SS7*.

When the **chg-ls** command has successfully completed, this message should appear.

```
rlghncxa03w 06-10-17 16:23:21 GMT EAGLE5 36.0.0 Link set table is ( 14 of 1024) 1% full CHG-LS: MASP A - COMPLTD
```

20. Verify the changes using the rtrv-ls command specifying the linkset name specified in step 19 with the lsn parameter. For this example, enter this command.

rtrv-ls:lsn=lsgw1103

This is an example of the possible output.

rlghncxa03w 06-10-17 11:43:04 GMT EAGLE5 36.0.0

LSN APCA (SS7) SCRN SET SET BEI LST LNKS ACT MES DIS SLSCI NIS lsgw1103 003-002-004 none 1 1 no A 1 off off off no off

no

LOC LINK SLC TYPE SET BPS MODE TSET ECM N1 N2

LP ATM E1ATM
LOC LINK SLC TYPE SET BPS TSEL VCI VPI CRC4 SI SN

LOC LINK SLC TYPE IPLIML2

LOC LINK SLC TYPE 1103 A 0 SS7IPGW

LOC LINK SLC TYPE SET BPS ECM N1 N2 LOC PORT TS

Link set table is (14 of 1024) 1% full

If the mate linkset was removed in step 19, the MATELSN column of the rtrv-ls output should contain dashes, as shown in the following example.

rtrv-ls:lsn=lsgw1103

This is an example of the possible output.

rlghncxa03w 06-10-17 11:43:04 GMT EAGLE5 36.0.0

LSN APCA (SS7) SCRN SET SET LNK ACT MES GWS SLSCI NIS lsgw1103 003-002-004 none 1 1 1 no A 1 off off off no off

CLLI TFATCABMLQ MTPRSE ASL8

IP⁷ Secure Gateway Configuration Procedures

LO	C LINK	SLC	TYPE	L2T SET	BPS	L1 MODE	TSET	ECM	PCR N1	PCR N2	
LO	C LINK	SLC	TYPE	LP SET	BPS	ATM TSE		VCI	VP	I LI	
LO	C LINK	SLC	TYPE	LP SET	BPS	ATM TSEL	VC:	I VP:	I CR	E1ATN C4 SI	
LO	C LINK	SLC	TYPE	IPLI	ML2						
LO 11	C LINK		TYPE SS7IPGW								
LO	C LINK	SLC	TYPE	L2T SET	BPS	ECM	PCR N1	PCR N2	E1 LOC	E1 PORT	TS
LO	C LINK	SLC	TYPE	L2T SET	BPS	ECM	PCR N1	PCR N2	T1 LOC	T1 PORT	TS
Link set tabl	e is (14 oi	E 1024)	1% fu	11						

NOTE: If the linkset shown in step 20 does not have a signaling link assigned to it, skip steps 21 through 25, and go to step 26.

21. Allow the IP card that was inhibited in step 18 using the alw-card command. For example, enter one of these commands.

alw-card:loc=1103 (for the adding a mate linkset example)

alw-card:loc=1107 (for the removing a mate linkset example)

This message should appear.

rlghncxa03w 06-10-28 21:21:37 GMT EAGLE5 36.0.0 Card has been allowed.

22. Activate the signaling link from step 17 using the act-slk command. For example, enter one of these commands.

act-slk:loc=1103:link=a (for the adding a mate linkset example)

act-slk:loc=1107:link=a (for the removing a mate linkset example)

The output confirms the activation.

rlghncxa03w 06-10-07 11:11:28 GMT EAGLE5 36.0.0 Activate Link message sent to card

NOTE: If steps 12 and 13 were not performed, skip this step and go to step 24.

23. Change the open and alw parameter values for all the sockets that were changed in steps 12 or 13 using the chg-appl-sock command with the open-yes and alw-yes parameters.

For example, enter this command.

```
chg-appl-sock:sname=kc hlr1 1103:open=yes:alw=yes
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0 CHG-APPL-SOCK: MASP A - COMPLTD
```

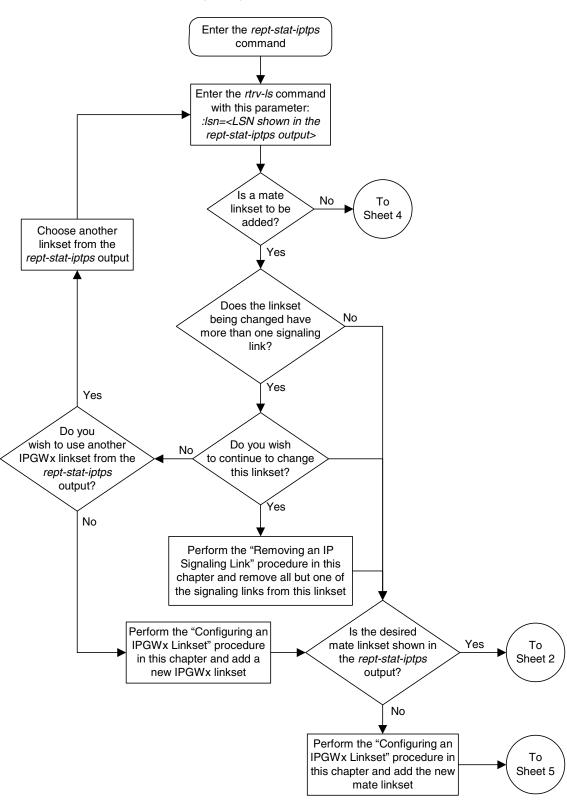
NOTE: If steps 15 and 16 were not performed, skip this step and go to step 25.

24. Change the open and alw parameter values for all the associations changed in steps 15 or 16 using the chg-assoc command with the open=yes and alw=yes parameters.

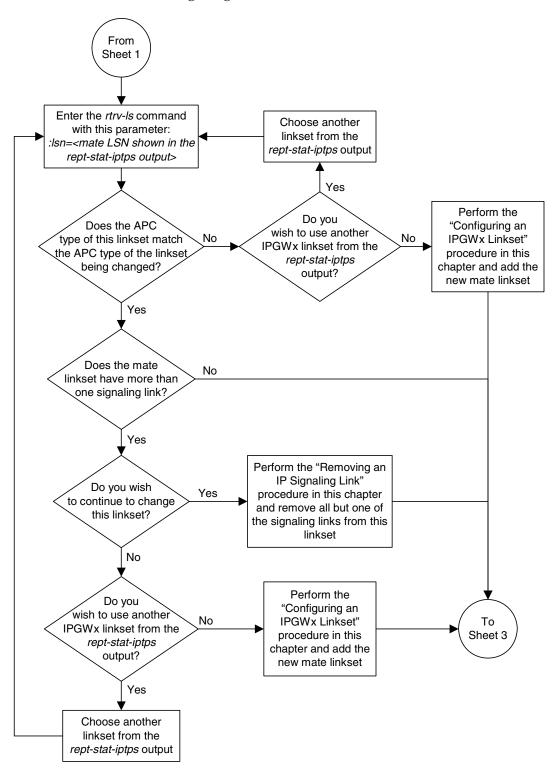
```
chg-assoc:aname=assoc1:open=yes:alw=yes
```

When this command has successfully completed, this message should appear.

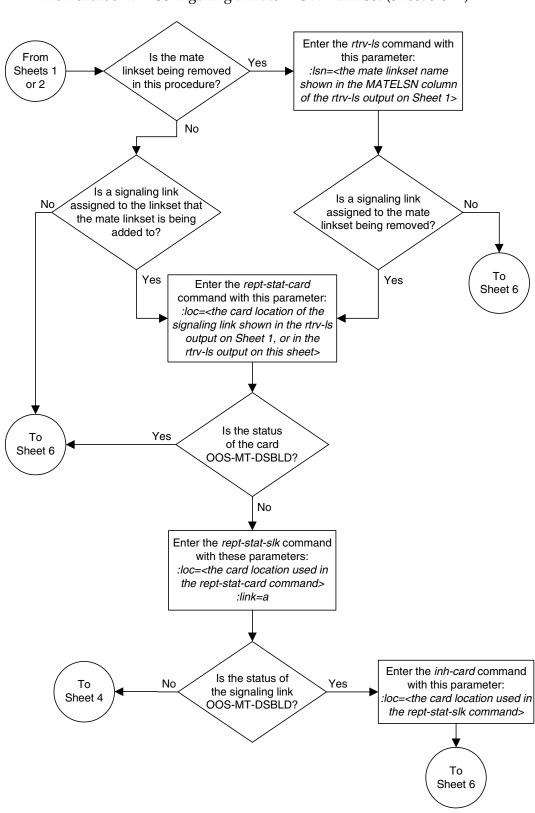
```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0 CHG-ASSOC: MASP A - COMPLTD
```

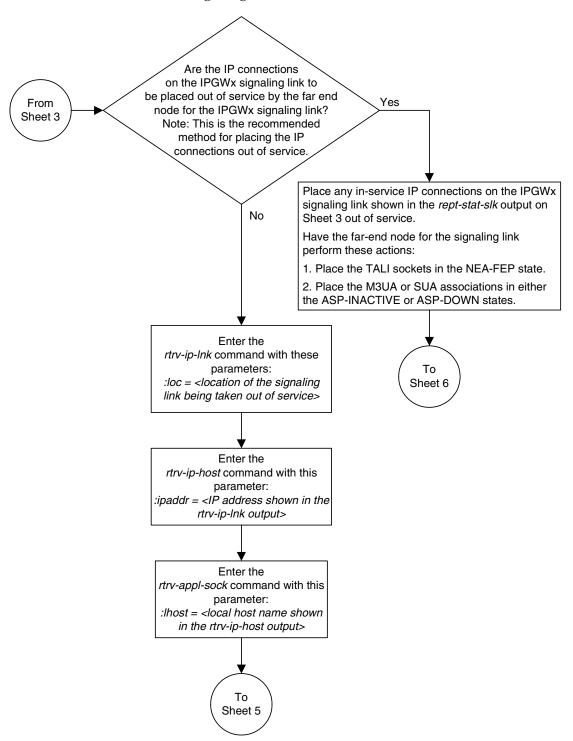

- **25.** Have the far-end node for the signaling link shown in step 20 perform these actions to place the IP connections on the signaling link into service:
 - Place the TALI sockets in the NEA-FEA state.
 - Place the M3UA or SUA associations in the ASP-ACTIVE state.
- **26.** Back up the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

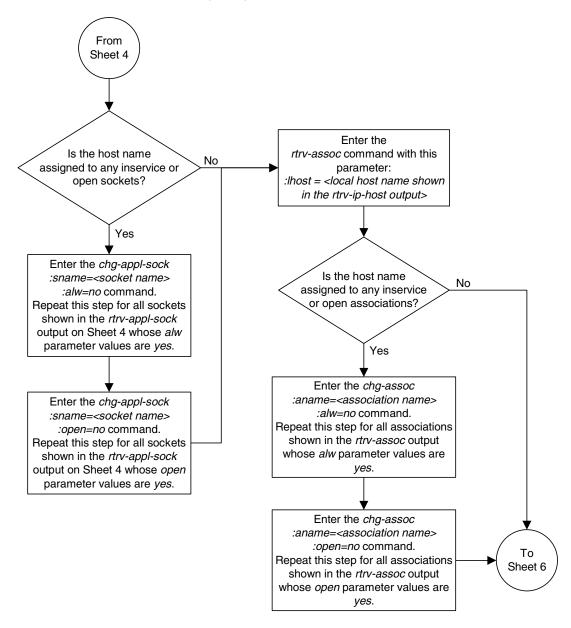
```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.

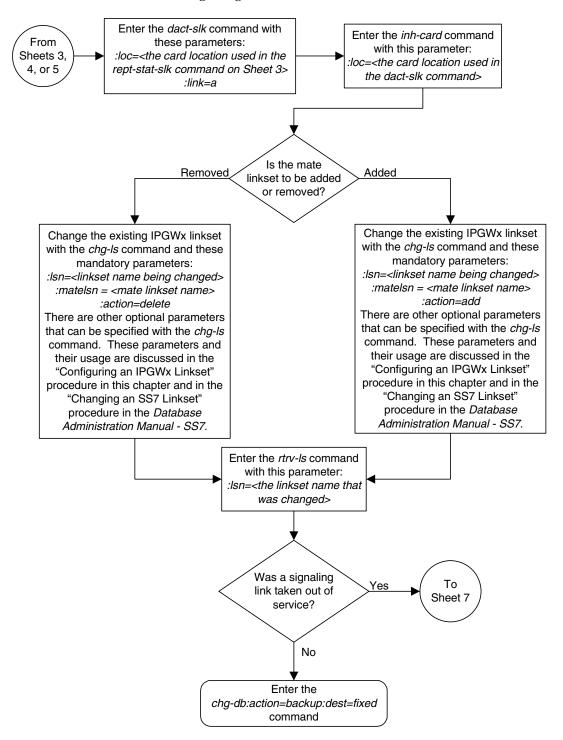

BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED) : MASP A - Backup starts on standby MASP.


BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```



Flowchart 3-4. Configuring a Mate IPGWx Linkset (Sheet 1 of 7)


Flowchart 3-4. Configuring a Mate IPGWx Linkset (Sheet 2 of 7)


Flowchart 3-4. Configuring a Mate IPGWx Linkset (Sheet 3 of 7)

Flowchart 3-4. Configuring a Mate IPGWx Linkset (Sheet 4 of 7)

Flowchart 3-4. Configuring a Mate IPGWx Linkset (Sheet 5 of 7)

Flowchart 3-4. Configuring a Mate IPGWx Linkset (Sheet 6 of 7)

Flowchart 3-4. Configuring a Mate IPGWx Linkset (Sheet 7 of 7)

Adding an IP Signaling Link

This procedure is used to add an IP signaling link to the database using the ent-slk command. To add other types of signaling links to the database, go to one of these procedures:

The ent-slk command uses these parameters.

- :loc The card location of the IP card that the IP signaling link will be assigned to. The cards specified by this parameter are DCMs running the IPLIM, IPLIMI, SS7IPGW, or IPGWI applications.
- :link The signaling link on the card specified in the loc parameter.
- :1sn The name of the linkset that will contain the signaling link.
- :slc The signaling link code. The SLC must be unique within the linkset. It must be the same at both the EAGLE 5 ISS location and the distant node.
- :ipliml2 The L2 protocol stack to be assigned to the IP signaling link, either SAALTALI or M2PA (the default value).

The ent-slk command also contains these parameters, 12tset, 11mode, bps, tset, ecm, pcrn1, pcrn2, lpset, atmtsel, vci, vpi, 11, elatmcrc4, elatmsi, elatmsn, ts, elport, elloc, tlport, and tlloc. These parameters are used only for configuring low-speed, ATM high-speed, E1, and T1 signaling links and are not used in this procedure. For more information on configuring these types of signaling links, see the *Database Administration Manual - SS7*.

These items must be configured in the database before an IP signaling link can be added:

- Shelf see "Adding a Shelf" in the *Database Administration Manual System Management*.
- Card see "Adding an SS7 LIM" in the *Database Administration Manual System Management*.
- Destination Point Code see "Adding a Destination Point Code" in the *Database Administration Manual SS7*.
- Linkset see either "Configuring an IPGWx Linkset" on page 3-37 (for an IPGWx linkset), or "Adding an SS7 Linkset" in the *Database Administration Manual SS7* (for an IPLIMx linkset).

Verify that the link has been physically installed (all cable connections have been made).

To configure the EAGLE 5 ISS to perform circular routing detection test on the signaling links, "Configuring Circular Route Detection" procedure in the *Database Administration Manual - SS7*.

NOTE: Circular route detection is not supported in ITU networks.

To provision a EAGLE 5 ISS with more than 700 signaling links, the EAGLE 5 ISS must have certain levels of hardware installed. See the Requirements for EAGLE 5 ISSs Containing more than 700 Signaling Links section on page 3-85 for more information on these hardware requirements.

The EAGLE 5 ISS can contain a mixture of low-speed, E1, T1, ATM high-speed, and IP signaling links. The Determining the Number of High-Speed and Low-Speed Signaling Links on this page describes how to determine the quantities of the different types of signaling links the EAGLE 5 ISS can have.

Requirements for EAGLE 5 ISSs Containing more than 700 Signaling Links

To provision an EAGLE 5 ISS with more than 700 signaling links (currently the EAGLE 5 ISS can have maximum capacities of 1200, 1500, or 2000 signaling links), the following additional requirements must be met:

- The Measurements Platform feature must be enabled. Perform these procedures in the *Database Administration Manual System Management* to enable the Measurements Platform Feature:
 - "Adding an MCPM"
 - "Configuring the IP Communications Link for the Measurements Platform Feature"
 - "Adding an FTP Server"
- To provision more than 1200 signaling links, the Large System # Links controlled feature must be enabled for 1500 or 2000 signaling links. For more information on enabling this feature, go to "Enabling the Large System # Links Controlled Feature" procedure on page 3-104.

Determining the Number of High-Speed and Low-Speed Signaling Links

An EAGLE 5 ISS containing either 1200, 1500, or 2000 signaling links can contain the following quantities of signaling links:

- 115 high-speed ATM signaling links (signaling links assigned to either ATMANSI or ATMITU applications)
- 100 signaling links assigned to either the IPLIM or IPLIMI applications.
- 64 signaling links assigned to single-slot EDCMs running either the ss7ipgw or ipgwi application, or combinations of the ss7ipgw and ipgwi applications. If DCMs are present in the EAGLE 5 ISS, there can be a maximum of 2 signaling links assigned to the ss7ipgw application and 2 signaling links assigned to the ipgwi application.
- 64 unchannelized E1 signaling links.

The following hardware and applications are the only signaling link hardware and applications supported for an EAGLE 5 ISS containing more than 1500 signaling links.

- E1/T1 MIM running the ccs7itu application.
- HC-MIM running the ccs7itu application.
- E5-E1T1 running the ccs7itu application.
- Single-slot EDCM running either the iplimi or ipgwi applications.
- E5-ENET running either the iplimi or ipgwi applications.
- E1-ATM running the atmitu application.

IP Signaling Link Parameter Combinations

Table 3-9 shows the two types of IP signaling links that can be provisioned in the database with the ent-slk command in this procedure, and the parameters and values that can be used to provision each type of IP signaling link.

Table 3-9. IP Signaling Link Parameter Combinations

IPGWx Signaling Link	IPLIM Signaling Link							
Mandatory Parameters								
:loc = location of the IP card with one of these applications: SS7IPGW or IPGWI; and the DCM card type. 1, 2, 9	:loc = location of the IP card with one of these applications: IPLIM or IPLIMI; and the DCM card type. 1, 2							
:link = A	:link = A - A3, B - B3 ³ :link = A4 - A7, B4 - B7 ¹⁰							
:lsn = linkset name ^{4, 5, 6}	:lsn = linkset name ^{4, 8}							
:slc = 0 - 15 ^{5, 6}	:slc = 0 - 15 ⁷							
Option	nal Parameters							
	:ipliml2 = saaltali or m2pa ^{7, 8} default value = m2pa							

Notes:

- 1. If the multgc=yes parameter is assigned to the linkset, the card's application must be IPLIMI or IPGWI.
- 2. If the ipgwapc=yes parameter is assigned to the linkset, the card's application must be SS7IPGW or IPGWI.
- 3. The links A A3 and B B3 can be specified only if the card is a single-slot EDCM or an E5-ENET card.
- 4. If the card's application is IPLIMI or IPGWI, the linkset adjacent point code must be ITU. If the card's application is IPLIM or SS7IPGW, the linkset adjacent point code must be ANSI. The domain of the linkset adjacent point code must be SS7.
- 5. A linkset can contain only one signaling link assigned to the SS7IPGW or IPGWI applications if the linkset contains a mate IPGWx linkset, or is the mate of an IPGWx linkset.
- 6. If the linkset does not have a mate IPGWx linkset assigned to it, or is not the mate of an IPGWx linkset, the linkset can contain up to 8 signaling links assigned to the SS7IPGW or IPGWI applications.
- 7. If the ipliml2=saaltali or ipliml2=m2pa parameter is specified for the signaling link, this signaling link can be in a linkset that contains non-IPLIMx signaling links. The card's application must be either IPLIM or IPLIMI.

Table 3-9. IP Signaling Link Parameter Combinations (Continued)

IPGWx Signaling Link	IPLIM Signaling Link
Notes: (Continued)	

- 8. Signaling links containing the ipliml2=saaltali parameter value cannot be assigned to linksets containing 24-bit ITU-N APCs (APCN24) or SAPCs (SAPCN24).
- 9. If the signaling link is being assigned to a single-slot EDCM, to maximize the performance of the IPGWx cards assigned to the linkset, it is recommended that the all signaling links in the linkset are assigned to single-slot EDCMs (part number 870-2372-xx).
- 10. The links A4 A7 and B4 B7 can be specified only if the card is an E5-ENET card.

Example Signaling Link Configuration

This examples used in this procedure are based on the examples shown in Table 3-10.

Table 3-10. IP Signaling Link Configuration Table

S	LK	LSN	SLC	ТҮРЕ	IPLIML2
LOC	LINK	LOIV	SEC	TIL	II LIIVILZ
2202	A	LSNIP1	0	IPLIM	SAALTALI
2204	В	LSNIP2	0	IPLIM	M2PA
2205	A	LSNIP1	1	IPLIM	M2PA
2207	A	LSNIP3	0	SS7IPGW	N/A
2211	A	LSNIP4	0	IPGWI	N/A
2213	A	LSNIP5	0	IPLIMI	M2PA
2215	A	LSNIP2	1	IPLIM	SAALTALI

Canceling the REPT-STAT-SLK, RTRV-LS, and RTRV-SLK Commands

Because the rept-stat-slk, rtrv-ls, and rtrv-slk commands used in this procedure can output information for a long period of time, the rept-stat-slk, rtrv-ls, and rtrv-slk commands can be canceled and the output to the terminal stopped. There are three ways that the rept-stat-slk, rtrv-ls, and rtrv-slk commands can be canceled.

- Press the F9 function key on the keyboard at the terminal where the rept-stat-slk, rtrv-ls, or rtrv-slk commands were entered.
- Enter the canc-cmd without the trm parameter at the terminal where the rept-stat-slk, rtrv-ls, or rtrv-slk commands were entered.
- Enter the canc-cmd:trm=<xx>, where <xx> is the terminal where the rept-stat-slk, rtrv-ls, or rtrv-slk commands were entered, from another terminal other that the terminal where the rept-stat-slk, rtrv-ls, or rtrv-slk commands was entered. To enter the canc-cmd:trm=<xx> command, the terminal must allow Security Administration commands to be

entered from it and the user must be allowed to enter Security Administration commands. The terminal's permissions can be verified with the rtrv-secu-trm command. The user's permissions can be verified with the rtrv-user or rtrv-secu-user commands.

For more information about the canc-cmd command, go to the Commands Manual.

Procedure

1. Display the current signaling link configuration using the rtrv-slk command. This is an example of the possible output.

rlgh	ncxa03	3w 06-10-19	21:16	5:37 GMT	EAGLE	25 36.0	. 0					
					L2T		L1			PCR		
LOC					SET	BPS		TSET			N2	
1201		lsa1	0		1	56000			BASIC			
1203		lsa2		LIMDS0	1	56000			BASIC			-
1205		lsa3		LIMV35	3	64000		ON	BASIC			-
		lsn1207a		LIMDS0	1	56000			BASIC			-
		lsn1207b		LIMDS0	1	56000			BASIC		2000	
		lsn1214a			2	64000			PCR		3800	
1214	В	1sa3	1	LIMV35	3	64000	DCE	ON	BASIC			-
					LP		ATM	/I				
LOC	LINK	LSN	SLC	TYPE	SET	BPS	TSI	EL	VCI	VP:	I L	L
					LP		ATM				E1ATI	M
LOC	LINK	LSN	SLC	TYPE	SET	BPS	TSEL	VC:	I VP	I CR	C4 SI	SN
No L	inks S	Set up.										
LOC	LINK	LSN	SLC	TYPE	IPLI	ML2						
No L	inks S	Set up.										
LOC	LINK	LSN	SLC	TYPE								
No L	inks S	Set up.										
					L2T			PCR	PCR	E1	E1	
LOC	LINK	LSN	SLC	TYPE	SET	BPS	ECM	N1	N2	LOC	PORT	TS
No L	inks S	Set up.										
					L2T			PCR	PCR	T1	T1	
LOC	LINK	LSN	SLC	TYPE	SET	BPS	ECM	N1	N2	LOC	PORT	TS
No L	inks S	Set up.										
SLK	table	is (7 of 12	00) 1	L% full.								

If the rtrv-slk output shows that the maximum number of signaling links is 2000, go to step 2.

If the rtrv-slk output shows that the maximum number of signaling links is 1200, and the signaling link being added increases the number beyond 1200, perform the "Enabling the Large System # Links Controlled Feature"

procedure on page 3-104 and enable the Large System # Links controlled feature for either 1500 signaling links or 2000 signaling links. Then go to step 2.

If the rtrv-slk output shows that the maximum number of signaling links is 1500, and the signaling link being added increases the number beyond 1500, perform the "Enabling the Large System # Links Controlled Feature" procedure on page 3-104 and enable the Large System # Links controlled feature for 2000 signaling links. Then go to step 2.

If the addition of the new signaling link will not exceed the maximum number of signaling links, go to step 2.

2. Display the current linkset configuration using the **rtrv-ls** command. This is an example of the possible output.

rlghncxa03w	06-10-10	0 11:43	:04 GM			36.	0.0						
					SLT					GWS			
LSN	APCA	(SS7)	SCRN	SET	SET	BEI						SLSCI	
e1e2	001-20	7-000	none	1	1	no	В	6			off		off
ls1305	000-009		none	1	1	no	A	1			off		off
ls1307	000-00		none	1	1	no	A	1			off		off
elm1s1	001-00		none	1	1	no	A	7			off		off
elm1s2	001-00	1-002	none	1	1	no	A	7	off	off	off	no	off
					SLT					GWS			
LSN	APCA	(X25)	SCRN	SET	SET	BEI	LST	LNKS	ACT	MES	DIS	SLSCI	NIS
					SLT					GWS			
LSN	APCI	(SS7)	SCRN									SLSCI	
e1e2i	1-207-0		none	1	1	no	В	4			off		on
ls1315	0-015-0		none	1	1	no	A	1			off		off
ls1317	0-017-0		none	1	1	no	A	1			off		on
e1m2s1	1-011-1		none	1	1	no	A	7					off
e1m2s2	1-011-2	2	none	1	1	no	A	7	off	off	off		off
					SLT					GWS			
LSN	APCN	(SS7)	SCRN	SET	SET	BEI	LST	LNKS	ACT	MES	DIS	SLSCI	NIS
					a				~	a	~~		
T 017	3 D 6370 4	(000)	0.0017		SLT					GWS		a. a.a.	
LSN	APCN24	(SS7)	SCRN	SET	SET	BEI	LST	LNKS	AC'I'	MES	DIS	SLSCI	NIS
				T 2 M	от ш				OT-TO	CIT-I C	ar.a		
T ON / OUTNIA)	A DOM	(007)	CCDM		SLT	DET	т от	T NIZO		GWS		ат аат	MTC
LSN (CHINA)	APCN	(SS7)	SCRN	SET	SEI	BEI	гэл	LINKS	ACT	MES	DIS	SLSCI	NIS
				топ	SLT				CMC	GWS	CMC		
LSN (CHINA)	APCN24	(007)	SCRN			ргт	тет	TNIE				SLSCI	MTC
пои (сития)	AFCN24	(166)	BCKIN	SEI	SEI	061	пот	пиир	ACI	Car	פדת	опост	итю
Link set tab	ole is (10 of 1	.024) 1	% fu	11.								

If the required linkset is not in the database, perform one of these procedures to add the linkset to the database:

- To add an IPGWx linkset the "Configuring an IPGWx Linkset" procedure on page 3-37.
- To add an IPLIMx linkset (a linkset that will contain signaling links assigned to cards running either the IPLIM or IPLIMI applications) the

"Adding an SS7 Linkset" procedure in the *Database Administration Manual - SS7*.

If you plan to use a linkset shown in this step, go to step 3. If a new linkset is being added in this step, skip step 3 and go to step 4.

3. Display the linkset that the signaling link is being assigned to using the rtrv-ls command, specifying the name of the linkset that the signaling link is being assigned to. For this example, enter this command.

rtrv-ls:lsn=lsnipgw

This is an example of the possible output.

rlghncxa03	w 06-	10-17	11:4						9119	arra	aa		
LSN lsipgw) SCRN none		ET BE		LNKS	ACT	MES	DIS		
				ΓFATCABMI 1			ASL8						R
				SN IPT			M SLK				€		
	LOC	LINK	SLC	TYPE			L1 MOI			ECM		PCR N2	
	LOC	LINK	SLC	TYPE	LP SET			ATM ISEL		VCI	V	PI :	LL
	LOC	LINK	SLC	TYPE			ATM TSE		VCI	V	PI C	E1A' RC4 S	
				TYPE IPLIMI									
	LOC	LINK	SLC	TYPE									
	LOC	LINK	SLC	TYPE		BPS	ECI			PCR N2		E1 POR'	T TS
	LOC	LINK	SLC	TYPE		BPS				PCR N2		T1 POR'	
	SAPC 1-10												
	SAPC 1234 1235 1200	-aa -bb											

Linksets can contain a mixture of signaling link types unless the card application is SS7IPGW or IPGWI.

Link set table is (13 of 1024) 1% full.

If an IPGWx signaling link is being added, skip the remainder of this step and go to step 4.

A signaling link containing the <code>ipliml2=saaltali</code> parameter cannot be assigned to a linkset containing a 24-bit ITU-N adjacent point code. Either choose another linkset without a 24-bit-ITU-N adjacent point code from the <code>rtrv-ls</code> output in step 2, or add a new IPLIMx linkset by performing the "Adding the SS7 Linkset" procedure in the <code>Database Administration Manual-SS7</code>.

If you do not wish to assign the signaling link to this linkset, go to the "Adding the SS7 Linkset" procedure in the *Database Administration Manual - SS7* and add the IPLIMx linkset to the database.

4. Display the cards in the database using the rtrv-card command. This is an example of the possible output.

rlghnc	xa03w 06-1	0-28 09:12	:36 GMT EAGLE5	36.0	. 0			
CARD	TYPE	APPL	LSET NAME	LINK	SLC	LSET NAME	LINK	SLC
1102	TSM	GLS						
1103	DCM	VXWSLAN						
1113	GSPM	EOAM						
1114	TDM-A							
1115	GSPM	EOAM						
1116	TDM-B							
1117	MDAL							
1201	LIMDS0	SS7ANSI	lsa1	В	0			
1202	LIMV35	SS7ANSI						
1203	LIMDS0	SS7ANSI	lsa2	В	0			
1204	LIMDS0	SS7ANSI						
1205	LIMV35	SS7ANSI	lsa3	A	0			
1206	LIMV35	SS7ANSI						
1207	LIMDS0	SS7ANSI	lsn1207a	A	0	lsn1207b	В	0
1208	LIMDS0	SS7ANSI						
1212	LIMV35	SS7ANSI						
1213	LIMDS0	SS7ANSI						
1214	LIMV35	SS7ANSI	lsn1214a	A	0	lsa3	В	1
1215	LIMDS0	SS7ANSI						
1301	LIMV35	ATMANSI						
1302	LIMATM	ATMANSI						
1304	LIMV35	SS7ANSI						
1305	LIMATM	ATMANSI						
1308	LIMV35	SS7ANSI						
1311	LIMDS0	SS7ANSI						
1313	LIMDS0	SS7ANSI						
1315	LIMV35	CCS7ITU						
1317	LIMV35	CCS7ITU						
1318	LIMATM	ATMANSI						

If the required card is not in the database, perform the "Adding an IP Card" procedure on page 3-17 and add the IP card to the database.

NOTE: If the linkset that the signaling link will be added to contains the multgc=yes parameter, the application assigned to the card must be either IPLIMI or IPGWI.

NOTE: If an IPLIMx signaling link is being added, skip steps 5 through 8, and go to step 9.

NOTE: If the IPGWx linkset contains any IPGWx signaling links, skip step 5 and go to step 6.

- 5. If you wish to assign an IPGWx signaling link to a linkset contains no signaling links, but the IPGWAPC value is no, perform the "Removing a Linkset Containing SS7 Signaling Links" procedure in the *Database Administration Manual SS7* and remove the linkset, then go to the "Configuring an IPGWx Linkset" procedure on page 3-37 and re-enter the new linkset with the ipgwapc=yes parameter. Skip steps 6 through 8 and go to step 9.
- **6.** If the desired linkset, shown in the rtrv-1s output in step 3, has a mate IPGWx linkset assigned, or is the mate to another IPGWx linkset, the desired linkset can contain only one signaling link.

If the desired linkset does not have a mate IPGWx linkset assigned, or is not the mate of another IPGWx linkset, the desired linkset can contain up to 8 IPGWx signaling links. No other signaling link types can be in an IPGWx linkset.

If you wish to assign more than one IPGWx signaling link to an IPGWx linkset that has a mate linkset assigned, the mate to this linkset must be removed. Perform the "Configuring a Mate IPGWx Linkset" procedure on page 3-63 and remove the mate linkset from the linkset you wish to assign the IPGWx signaling link to. If you do not wish to use this linkset, perform the "Configuring an IPGWx Linkset" procedure on page 3-37 and add a new IPGWx linkset.

If the desired IPGWx linkset does not have a mate assigned, go to step 8.

If the desired linkset has a mate linkset assigned, and contains an IPGWx signaling link, perform the "Configuring a Mate IPGWx Linkset" procedure on page 3-63 and add a new IPGWx linkset. Skip steps 7 and 8, and go to step 9.

7. If you wish to assign more than one IPGWx signaling link to an IPGWx linkset that is a mate to another IPGWx linkset, this linkset must be removed from the other linkset as a mate.

To verify if the linkset you wish to use is the mate of another IPGWx linkset, enter the rept-stat-iptps command to display the names of all the IPGWx linksets. This is an example of the possible output.

rlghncxa03w 06-10-10 11:43:04 GMT EAGLE5 36.0.0

IP TPS USAGE REPORT

Т	HRESH	CONFIG		TPS	PEAK	PEAKTIMESTAMP
SYSTEM						
RLGHNCXA03W	100%	30000	TX:	7200	7600	05-02-10 11:40:04
			RCV:	7200	7600	05-02-10 11:40:04
LSN						
	0.0%	6000	mv	F100	FF00	05 00 10 11 40 04
LSGW1101	80%	6000	TX:	5100	5500	05-02-10 11:40:04
			RCV:	5100	5500	05-02-10 11:40:04
LSGW1103	80%	6000	TX:	5200	5500	05-02-10 11:40:04
			RCV:	5200	5500	05-02-10 11:40:04
LSGW1105	80%	14000	TX:	7300	7450	05-02-10 11:40:04
			RCV:	7300	7450	05-02-10 11:40:04
LSGW1107	70%	4000	TX:	3200	3500	05-02-10 11:40:04
			RCV:	3200	3500	05-02-10 11:40:04
Command Comp	leted.					

8. Enter the rtrv-ls:lsn=<IPGWx linkset name from the rept-stat-iptps output> to verify if the desired linkset is the mate of another IPGWx linkset. For this example, enter this command.

rtrv-ls:lsn=lsgw1103

This is an example of the possible output.

rlghncxa03w 06-10-17 11:43:04 GMT EAGLE5 36.0.0

LSN lsgw1103		CA 3-002	(SS7) -004	SCRN none		SLT SET 1	BEI no	LST A	LNKS	ACT	GWS MES off	DIS	SLSCI no	I NIS off
	CLLI	: 	_	ATCABMI	LQ M'		E ASI	L8						
	IPGW yes		ATELSN sgw110		rps 1			SLKT	JSEALI !	M GT'		Ξ		
	LOC	LINK	SLC T	YPE	L25		PS	L1 MOI	DE TSI	ET I	ECM	PCI N1	R PCI N2	ર
	LOC	LINK	SLC T	YPE	LP SE	г ві	PS		ATM ISEL		VCI	,	VPI	LL
	LOC	LINK	SLC T	YPE	LP SE	r BPS	S	ATM TSE	L	VCI	VI	PI (E1 <i>I</i> CRC4 S	ATM SI SN
	LOC	LINK	SLC T	YPE	ΙPΙ	LIML	2							

Link set table is (14 of 1024) 1% full

If the name of the linkset you wish to use is not shown in the MATELSN field of the rtrv-1s output, repeat this step until all the IPGWx linksets have been displayed, or until a linkset has been found that has the linkset you wish to use assigned as a mate. If the linkset you wish to use is not the mate of another IPGWx linkset, go to step 9.

If the name of the linkset you wish to use is shown in the MATELSN field of the rtrv-ls output, perform the "Configuring a Mate IPGWx Linkset" procedure on page 3-63 to remove this linkset from the other linkset as a mate. Then go to step 9.

If the desired linkset is the mate of another IPGWx linkset, and you do not wish to use this linkset, perform the "Configuring an IPGWx Linkset" procedure on page 3-37 and add a new IPGWx linkset. Then go to step 9.

9. Add the signaling link to the database using the ent-slk command. Use Table 3-9 on page 3-86 as a guide for the parameters that can be specified with the ent-slk command. For this example, enter these commands.

```
ent-slk:loc=2202:link=a:lsn=lsnlp1:slc=0:ipliml2=saaltali
ent-slk:loc=2204:link=b:lsn=lsnlp2:slc=0:ipliml2=m2pa
ent-slk:loc=2205:link=a:lsn=lsnlp1:slc=1:ipliml2=m2pa
ent-slk:loc=2207:link=a:lsn=lsnlp3:slc=0
ent-slk:loc=2211:link=a:lsn=lsnlp4:slc=0
ent-slk:loc=2213:link=a:lsn=lsnlp5:slc=0:ipliml2=m2pa
ent-slk:loc=2215:link=a:lsn=lsnlp2:slc=1:ipliml2=saaltali
```

When each of these commands have successfully completed, this message should appear.

```
rlghncxa03w 06-10-07 08:29:03 GMT EAGLE5 36.0.0 ENT-SLK: MASP A - COMPLTD
```

10. Verify the changes using the rtrv-slk command. This is an example of the possible output.

					L2T		L1			PCR	PCR
LOC 1	LINK	LSN	SLC	TYPE	SET	BPS	MODE	TSET	ECM	N1	N2
1201 2	A	ls01	0	LIMDS0	1	56000			BASIC		
1201 I	В	lsa1	0	LIMDS0	1	56000			BASIC		
L202 I	В	ls02	0	LIMV35	2	64000	DTE		BASIC		
L203 Z	A	ls03	0	LIMDS0	3	56000			BASIC		
L203 I	В	lsa2	0	LIMDS0	1	56000			BASIC		
L204 I	В	ls01	1	LIMDS0	1	56000			BASIC		
L205 Z	A	lsa3	0	LIMV35	4	64000	DCE	ON	BASIC		
206	A	ls02	1	LIMV35	2	64000	DTE		BASIC		
207	A	lsn1207a	0	LIMDS0	1	56000			BASIC		
207 1	В	lsn1207b	0	LIMDS0	1	56000			BASIC		
208 1		ls03	1	LIMDS0	3	56000			BASIC		
212		ls04	0	LIMV35	4	64000	DTE		BASIC		
.213 I		ls05	0	LIMDS0	5	56000			BASIC		
214		lsn1214a	0	LIMV35	2	64000	DTE		PCR	76	3800
214		lsa3	1	LIMV35	4	64000	DCE	ON	BASIC		
215		1s05	1	LIMDS0	5	56000			BASIC		
.301 I		1s06	0	LIMV35	6	56000	DTE		BASIC		
.301 1		1s06	1	LIMV35	6	56000	DTE		BASIC		
.304 1		1s06	2	LIMV35	6	56000	DTE		BASIC		
			2		1						
.311 2		ls01		LIMDS0		56000			BASIC		
.311 2		1s05	2	LIMDS0	5	56000			BASIC		
.311 1		ls03	2	LIMDS0	3	56000			BASIC		
.311 1		ls07	1	LIMDS0	7	56000			BASIC		
.313 2		ls07	0	LIMDS0	7	56000			BASIC		
.315 2		lsn5	0	LIMV35	11	64000	DTE	OFF	BASIC		
.317 2	A	lsi7	0	LIMV35	11	64000	DTE	OFF	BASIC		
					LP		ATM				
LOC 1	LINK	LSN	SLC	TYPE	SET	BPS	TSE	SL	VCI	VP	I LL
lo Li	nks S	Set un									
		de ap.									
		ce up.			LP		ATM				E1ATM
OC]	LINK	<u>-</u>	SLC	TYPE	LP SET	BPS	ATM TSEL	VC	I VP:	I CR	
		<u>-</u>	SLC	TYPE		BPS		VC	I VP:	I CR	
No Li	nks S	LSN Set up.			SET			VC	I VP:	I CR	
No Lii	nks S LINK	LSN Set up. LSN	SLC	TYPE	SET IPLI	ML2		VC	I VP:	I CR	
Io Lii IOC I	nks S LINK A	LSN Set up. LSN lsnlp1	SLC 0	TYPE IPLIM	SET IPLI SAAL	ML2 TALI		VC	I VP:	I CR	
IO Lii IOC I 202 I	nks S LINK A A	LSN Set up. LSN lsnlp1 lsnip1	SLC 0 1	TYPE IPLIM IPLIM	SET IPLI SAAL M2PA	ML2 TALI		VC	I VP:	I CR	
TO Lin LOC 1 2202 1 2205 1 2204 1	nks S LINK A A B	LSN Set up. LSN lsnlp1 lsnip1 lsnlp2	SLC 0 1	TYPE IPLIM IPLIM IPLIM	SET IPLI SAAL M2PA M2PA	ML2 TALI		VC	I VP	I CR	
IO Lii IOC I 2202 I 2205 I 2204 I	nks S LINK A A B A	LSN Set up. LSN lsnlp1 lsnip1 lsnlp2 lsnip5	SLC 0 1 0	TYPE IPLIM IPLIM IPLIM IPLIMI	IPLI SAAL M2PA M2PA M2PA	ML2 TALI		VC	I VP:	I CR	
IO Lii IOC I 2202 I 2205 I 2204 I	nks S LINK A A B A	LSN Set up. LSN lsnlp1 lsnip1 lsnlp2	SLC 0 1	TYPE IPLIM IPLIM IPLIM	SET IPLI SAAL M2PA M2PA	ML2 TALI		VC	I VP	I CR	
No Lii 200 1 2002 2 2005 2 2004 1 2013 2 2015 2	nks S LINK A A B A	LSN Set up. LSN lsnlp1 lsnip1 lsnip2 lsnip5 lsnlp2	SLC 0 1 0 0	TYPE IPLIM IPLIM IPLIM IPLIMI	IPLI SAAL M2PA M2PA M2PA	ML2 TALI		VC	I VP	I CR	
No Lin 2202 2 2205 2 2204 1 2213 2 2213 2	nks S LINK A A B A A LINK	LSN Set up. LSN lsnlp1 lsnip1 lsnip2 lsnip5 lsnlp2	SLC 0 1 0 0 1 SLC	TYPE IPLIM IPLIM IPLIM IPLIMI	IPLI SAAL M2PA M2PA M2PA	ML2 TALI		VC	I VP	I CR	
No Lin 2202 2 2205 2 2204 1 2213 2 2215 2 2007 2	nks S LINK A A B A A LINK A	LSN Set up. LSN lsnlp1 lsnip1 lsnip2 lsnip5 lsnlp2 LSN	SLC 0 1 0 0 1 SLC 0	TYPE IPLIM IPLIM IPLIM IPLIMI IPLIM TYPE	IPLI SAAL M2PA M2PA M2PA	ML2 TALI		VC	I VP	I CR	ElATM C4 SI
No Lin 2202 2 2205 2 2204 1 2213 2 2215 2 2007 2	nks S LINK A A B A A LINK A	LSN Set up. LSN lsnlp1 lsnip1 lsnip2 lsnip5 lsnlp2 LSN lsnlp3	SLC 0 1 0 0 1 SLC 0	TYPE IPLIM IPLIM IPLIM IPLIMI IPLIM TYPE SS71PGW	IPLI SAAL M2PA M2PA M2PA SAAL	ML2 TALI TALI					C4 SI
No Li	nks S LINK A A B A A LINK A	LSN Set up. LSN lsnlp1 lsnip1 lsnlp2 lsnip5 lsnlp2 LSN lsnlp2	SLC 0 1 0 0 1 SLC 0 0	TYPE IPLIM IPLIM IPLIM IPLIMI IPLIM TYPE SS7IPGW IPGWI	IPLI SAAL M2PA M2PA SAAL	ML2 TALI TALI	TSEL		I VP. PCR N2	E1	C4 SI
Jo Lin JOC 1 2202 1 2205 1 2204 1 2213 1 2215 1 20C 1 2207 1 2211 1	nks S LINK A A B A A LINK A A	LSN Set up. LSN lsnlp1 lsnip1 lsnlp2 lsnip5 lsnlp2 LSN lsnlp3 lsnlp4	SLC 0 1 0 0 1 SLC 0 0	TYPE IPLIM IPLIM IPLIM IPLIMI IPLIM TYPE SS7IPGW IPGWI	IPLI SAAL M2PA M2PA SAAL	ML2 TALI TALI	TSEL	PCR	PCR	E1	C4 SI
Jo Lin JOC 1 2202 1 2205 1 2204 1 2213 1 2215 1 20C 1 2207 1 2211 1	nks S LINK A A B A A LINK A A	LSN Set up. LSN lsnlp1 lsnip1 lsnlp2 lsnip5 lsnlp2 LSN lsnlp2	SLC 0 1 0 0 1 SLC 0 0	TYPE IPLIM IPLIM IPLIM IPLIMI IPLIM TYPE SS7IPGW IPGWI	IPLI SAAL M2PA M2PA SAAL	ML2 TALI TALI	TSEL	PCR	PCR	E1	C4 SI
TO Line 2002 2 2005 2 2004 1 2 2 1 3 2 2 2 1 5 2 2 2 1 1 2 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 2 1 1 2 2 2 2 2 2 1 1 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 1 1 2	nks S LINK A A B A A LINK A A LINK A LINK	LSN Set up. LSN lsnlp1 lsnip1 lsnip2 lsnip5 lsnlp2 LSN lsnlp2 LSN lsnlp3 lsnlp4 LSN Set up.	SLC 0 1 0 0 1 SLC 0 0 SLC	TYPE IPLIM IPLIM IPLIM IPLIMI IPLIM TYPE SS7IPGW IPGWI TYPE	IPLI SAAL M2PA M2PA SAAL L2T SET	ML2 TALI TALI BPS	TSEL	PCR N1 PCR	PCR N2 PCR	E1 LOC	C4 SI E1 PORT
TO Line 2002 2 2005 2 2004 1 2 2 1 3 2 2 2 1 5 2 2 2 1 1 2 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 2 1 1 2 2 2 2 2 2 1 1 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 1 1 2	nks S LINK A A B A A LINK A A LINK A LINK	LSN Set up. LSN lsnlp1 lsnip1 lsnlp2 lsnip5 lsnlp2 LSN lsnlp3 lsnlp4	SLC 0 1 0 0 1 SLC 0 0 SLC	TYPE IPLIM IPLIM IPLIM IPLIMI IPLIM TYPE SS7IPGW IPGWI TYPE	IPLI SAAL M2PA M2PA SAAL L2T SET	ML2 TALI TALI	TSEL	PCR N1	PCR N2	E1 LOC	C4 SI E1 PORT
GO Lin GOC 1 1202 1 1205 1 1204 1 1215 1 1215 1 100C 1 100C 1 100C 1	nks & LINK A A A B B A A A A A LLINK A A A LLINK LLINK A A LLINK	LSN Set up. LSN lsnlp1 lsnip1 lsnip2 lsnip5 lsnlp2 LSN lsnlp2 LSN lsnlp3 lsnlp4 LSN Set up.	SLC 0 1 0 0 1 SLC 0 0 SLC	TYPE IPLIM IPLIM IPLIM IPLIMI IPLIM TYPE SS7IPGW IPGWI TYPE	IPLI SAAL M2PA M2PA SAAL L2T SET	ML2 TALI TALI BPS	TSEL	PCR N1 PCR	PCR N2 PCR	E1 LOC	C4 SI E1 PORT

11. If any cards contain the first signaling link on a card, those cards must be brought into service with the rst-card command, specifying the location of the card. For this example, enter these commands.

```
rst-card:loc=2202
rst-card:loc=2204
rst-card:loc=2205
rst-card:loc=2207
rst-card:loc=2211
rst-card:loc=2213
rst-card:loc=2215
```

When each of these commands have successfully completed, this message should appear.

```
rlghncxa03w 06-10-23 13:05:05 GMT EAGLE5 36.0.0 Card has been allowed.
```

12. Activate all signaling links on the cards using the act-slk command, specifying the card location and link parameter value of each signaling link. For this example, enter these commands.

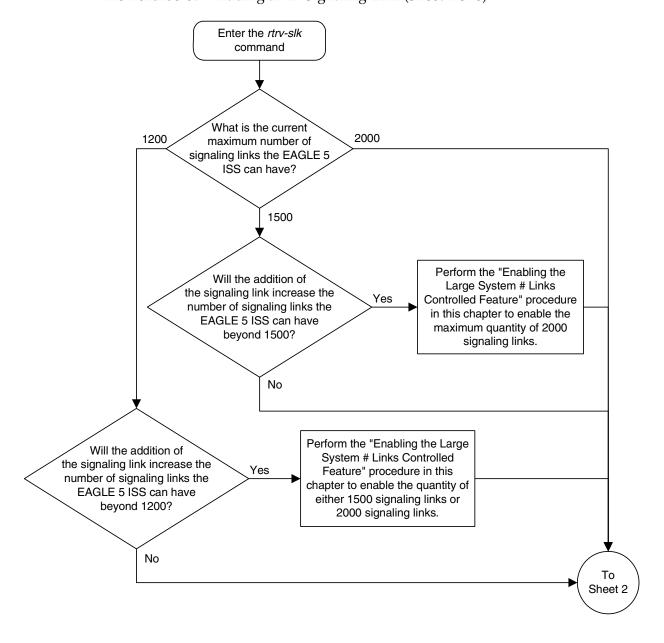
```
act-slk:loc=2202:link=a
act-slk:loc=2204:link=b
act-slk:loc=2205:link=a
act-slk:loc=2207:link=a
act-slk:loc=2211:link=a
act-slk:loc=2213:link=a
act-slk:loc=2215:link=a
```

When each of these commands have successfully completed, this message should appear.

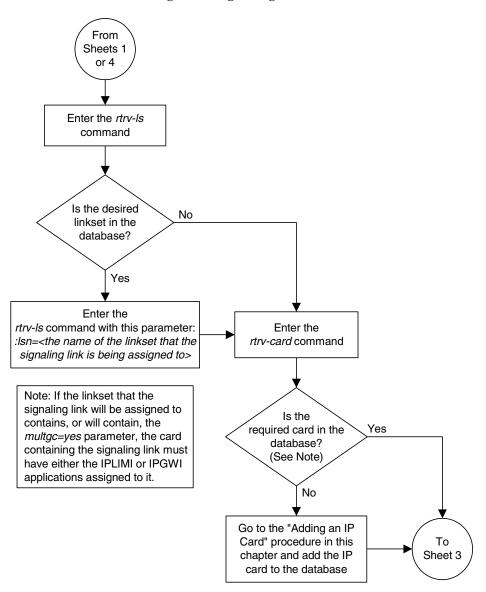
```
rlghncxa03w 06-10-07 08:31:24 GMT EAGLE5 36.0.0 Activate Link message sent to card
```

13. Check the status of the signaling links added in step 9 using the rept-stat-slk command. The state of each signaling link should be in service normal (IS-NR) after the link has completed alignment (shown in the PST field). This is an example of the possible output.

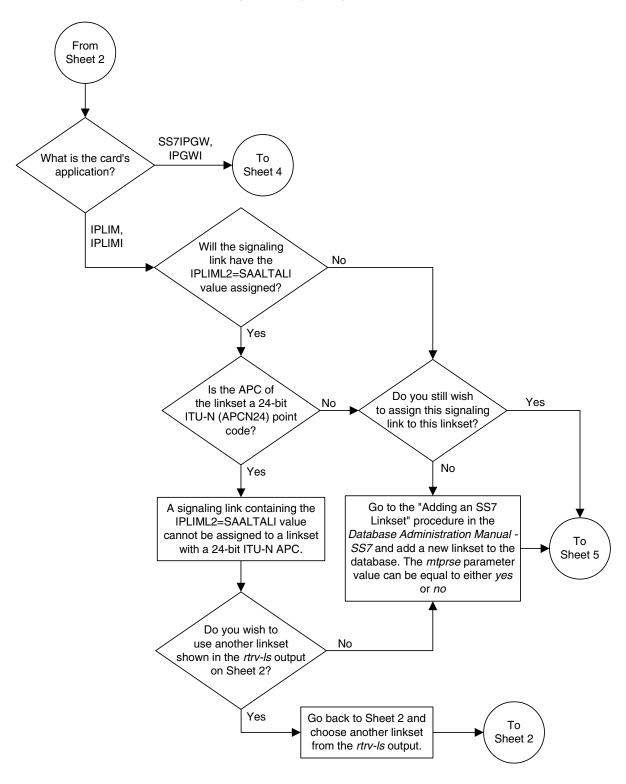
```
rlghncxa03w 06-10-19 21:16:37 GMT EAGLE5 36.0.0
          LSN
                     ls01clli IS-NR
 1201,A ls01
                                                  Avail
                                                 Avail
1201,B lsa1
                     ----- IS-NR
1201,B 1sa1 ------ IS-NR
1202,B 1s02 1s02clli IS-NR
1203,A 1s03 1s03clli IS-NR
1203,B 1sa2 ------ IS-NR
1204,B 1s01 1s01clli IS-NR
1205,A 1sa3 ------ IS-NR
1206,A 1s02 1s02clli IS-NR
                                                  Avail
                                                    Avail
                                                    Avail
                                                    Avail
                                                  Avail
                                                  Avail
Avail
1207,A lsn1207a ----- IS-NR
1207,B lsn1207b ----- IS-NR
                                                Avail
                                                  Avail
1208,B ls03 ls03clli IS-NR
1212,A ls04 ls04clli IS-NR
1213,B ls05 lsn5clli IS-NR
1214,A lsn1214a ----- IS-NR
1214,B lsa3 ----- IS-NR
1215,A ls05 lsn5clli IS-NR
_ _ _ _
                                                  Avail
                                                    Avail
                                                  Avail
                                                  Avail
2202,A lsnlp1 ----- IS-NR
                                                  Avail
2204,B lsnlp2 ----- IS-NR
                                                  Avail
                      ------ IS-NR Avail
------ IS-NR Avail
------ IS-NR Avail
------ IS-NR Avail
----- IS-NR Avail
2205,A lsnlp1 ----- IS-NR
2207,A lsnlp3
                    ----- IS-NR
                                                                ____
 2211,A lsnlp4
2213,A lsnlp5
2215,A lsnlp2
```

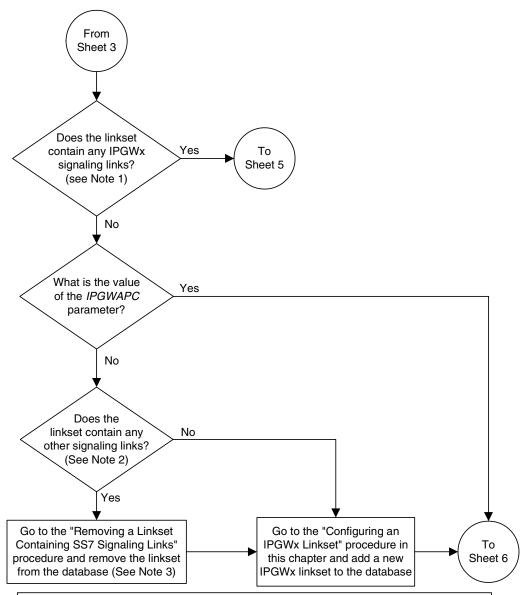

14. Back up the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.

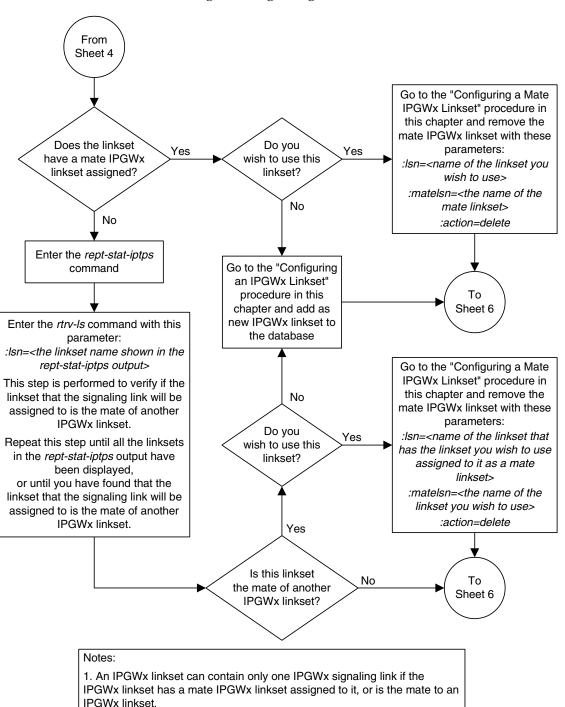

BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED) : MASP A - Backup starts on standby MASP.


BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

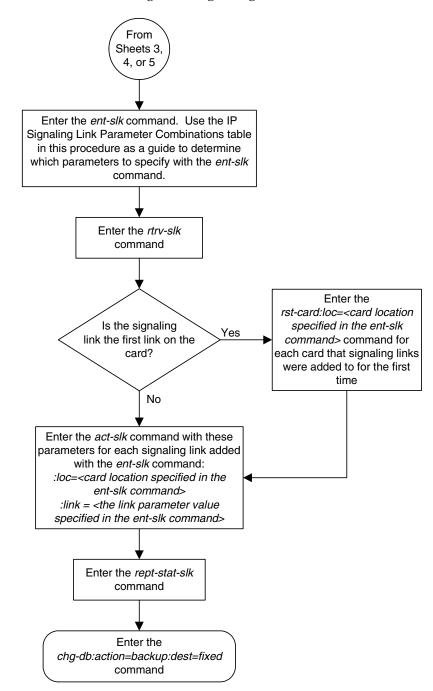


Flowchart 3-5. Adding an IP Signaling Link (Sheet 1 of 6)

Flowchart 3-5. Adding an IP Signaling Link (Sheet 2 of 6)


Flowchart 3-5. Adding an IP Signaling Link (Sheet 3 of 6)

Flowchart 3-5. Adding an IP Signaling Link (Sheet 4 of 6)

Notes:


- 1. An IPGWx signaling link is a signaling link assigned to a card running either the SS7IPGW or IPGWI applications.
- 2. An IPGWx linkset can contain only IPGWx signaling links.
- 3. The *IPGWAPC=yes* parameter, required for an IPGWx linkset, can be specified only with the *ent-ls* command. To use this parameter for an existing linkset that has the *IPGWAPC=no* parameter, the linkset must be removed, then re-entered with the *IPGWAPC=YES* parameter.

2. If the IPGWx linkset is not the mate to another IPGWx linkset, or does not have a mate IPGWx linkset assigned, the IPGWx linkset can contain up to 8

IPGWx signaling links.

Flowchart 3-5. Adding an IP Signaling Link (Sheet 5 of 6)

Flowchart 3-5. Adding an IP Signaling Link (Sheet 6 of 6)

Enabling the Large System # Links Controlled Feature

This procedure is used to enable the Large System # Links controlled feature using the feature's part number and a feature access key.

The feature access key for the Large System # Links controlled feature is based on the feature's part number and the serial number of the EAGLE 5 ISS, making the feature access key site-specific.

This feature allows the EAGLE 5 ISS to contain a maximum of either 1500 or 2000 signaling links.

The enable-ctrl-feat command enables the controlled feature by inputting the controlled feature's access key and the controlled feature's part number with these parameters:

:fak – The feature access key generated by the feature access key generator. The feature access key contains 13 alphanumeric characters and is not case sensitive

:partnum – The Tekelec-issued part number associated with the signaling link quantity being enabled:

- 893005901 for the 1500 signaling link quantity
- 893005910 for the 2000 signaling link quantity.

The enable-ctrl-feat command requires that the database contain a valid serial number for the EAGLE 5 ISS, and that this serial number is locked. This can be verified with the rtrv-serial-num command. The EAGLE 5 ISS is shipped with a serial number in the database, but the serial number is not locked. The serial number can be changed, if necessary, and locked once the EAGLE 5 ISS is on-site, with the ent-serial-num command. The ent-serial-num command uses these parameters.

:serial – The serial number assigned to the EAGLE 5 ISS. The serial number is not case sensitive.

:lock – Specifies whether or not the serial number is locked. This parameter has only one value, yes, which locks the serial number. Once the serial number is locked, it cannot be changed.

NOTE: To enter and lock the EAGLE 5 ISS's serial number, the ent-serial-num command must be entered twice, once to add the correct serial number to the database with the serial parameter, then again with the serial and the lock=yes parameters to lock the serial number. You should verify that the serial number in the database is correct before locking the serial number. The serial number can be found on a label affixed to the control shelf (shelf 1100).

This feature cannot be temporarily enabled (with the temporary feature access key).

Once this feature is enabled with the enable-ctrl-feat command, the feature is also activated. The chg-ctrl-feat command is not necessary to activate the feature.

This feature cannot be disabled with the **chg-ctrl-feat** command and the **status=off** parameter.

Hardware Supported for Signaling Link Quantities Greater than 1500

The following hardware and applications are the only signaling link hardware and applications supported for an EAGLE 5 ISS containing more than 1500 signaling links.

- E1/T1 MIM running the ccs7itu application.
- HC-MIM running the ccs7itu application.
- E5-E1T1 card running the ccs7itu application.
- Single-slot EDCM running either the iplimi or ipgwi applications.
- E5-ENET card running either the iplimi or ipgwi applications.
- E1-ATM card running the atmitu application.

To increase the signaling link quantity to more than 1500 signaling links, HIPR cards must be installed into card locations 9 and 10 in each shelf in the EAGLE 5 ISS. Enter the rept-stat-gpl:gpl=hipr command to verify whether or not HIPR cards are installed in the EAGLE 5 ISS shelves.

Procedure

 Display the status of the Large System # Links controlled feature by entering the rtrv-ctrl-feat command. The following is an example of the possible output.

rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0 The following features have been permanently enabled:

Feature Name	Partnum	Status	Quantity
IPGWx Signaling TPS	893012814	on	20000
ISUP Normalization	893000201	on	
Command Class Management	893005801	on	
LNP Short Message Service	893006601	on	
Intermed GTT Load Sharing	893006901	on	
XGTT Table Expansion	893006101	on	400000
XMAP Table Expansion	893007710	off	
Routesets	893006401	on	6000
HC-MIM SLK Capacity	893012707	on	64

The following features have been temporarily enabled:

Feature Name Partnum Status Quantity Trial Period Left Zero entries found.

The following features have expired temporary keys:

Feature Name Partnum Zero entries found.

If the rtrv-ctrl-feat output shows that the controlled feature is permanently enabled for the desired quantity or for a quantity that is greater than the desired quantity, no further action is necessary. This procedure does not need to be performed.

NOTE: If the rtrv-ctrl-feat output in step 1 shows any controlled features, or if the Large System # Links controlled feature is enabled for a quantity that is less than the desired quantity, skip steps 2 through 5, and go to step 6.

2. Display the serial number in the database with the rtrv-serial-num command. This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
System serial number = nt00001231
System serial number is not locked.
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
Command Completed
```

NOTE: If the serial number is correct and locked, skip steps 3, 4, and 5, and go to step 6. If the serial number is correct but not locked, skip steps 3 and 4, and go to step 5. If the serial number is not correct, but is locked, this feature cannot be enabled and the remainder of this procedure cannot be performed. Contact the Customer Care Center to get an incorrect and locked serial number changed. Refer to "Customer Care Center" on page 1-9 for the contact information. The serial number can be found on a label affixed to the control shelf (shelf 1100).

3. Enter the correct serial number into the database using the ent-serial-num command with the serial parameter.

For this example, enter this command.

ent-serial-num:serial=<EAGLE 5 ISS's correct serial number> When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0 ENT-SERIAL-NUM: MASP A - COMPLTD
```

4. Verify that the serial number entered into step 3 was entered correctly using the rtrv-serial-num command. This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
System serial number = nt00001231

System serial number is not locked.

rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
Command Completed
```

If the serial number was not entered correctly, repeat steps 5 and 6 and re-enter the correct serial number.

5. Lock the serial number in the database by entering the ent-serial-num command with the serial number shown in step 2, if the serial number shown in step 2 is correct, or with the serial number shown in step 4, if the serial number was changed in step 3, and with the lock=yes parameter.

For this example, enter this command.

ent-serial-num:serial=<EAGLE 5 ISS's serial number>:lock=yes
When this command has successfully completed, the following message
should appear.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0 ENT-SERIAL-NUM: MASP A - COMPLTD
```

NOTE: If the 2000 signaling link quantity is not being enabled in this procedure, skip step 6 and go to step 7.

6. Verify that HIPR cards are installed in card locations 9 and 10 in each shelf of the EAGLE 5 ISS. Enter this command.

rept-stat-gpl:gpl=hipr

This is an example of the possible output.

rlghncxa03	w 06-10-01	11:40:26 GMT	EAGLE5 36.0.0	
GPL	CARD	RUNNING	APPROVED	TRIAL
HIPR	1109	126-002-000	126-002-000	126-003-000
HIPR	1110	126-002-000	126-002-000	126-003-000
HIPR	1209	126-002-000	126-002-000	126-003-000
HIPR	1210	126-002-000	126-002-000	126-003-000
HIPR	1309	126-002-000	126-002-000	126-003-000
HIPR	1310	126-002-000	126-002-000	126-003-000
HIPR	2109	126-002-000	126-002-000	126-003-000
HIPR	2110	126-002-000	126-002-000	126-003-000
Command Co	mpleted			

If HIPR cards are installed in each the shelf in the EAGLE 5 ISS, go to step 7.

If HIPR cards are not installed on each shelf in the EAGLE 5 ISS, go to the *Installation Manual - EAGLE 5 ISS* and install the HIPR cards. Once the HIPR cards have been installed, go to step 7.

NOTE: Before the 2000 signaling link quantity is enabled, make sure the EAGLE 5 ISS is configured with the signaling link hardware shown in the "Hardware Supported for Signaling Link Quantities Greater than 1500" section on page 3-105.

If signaling hardware other than the hardware shown in the "Hardware Supported for Signaling Link Quantities Greater than 1500" section on page 3-105 is installed and provisioned, contact the Customer Care Center before enabling the 2000 signaling link quantity. Refer to the Refer to "Customer Care Center" on page 1-9 for the contact information.

7. Enable the Large System # Links controlled feature for the desired quantity with the enable-ctrl-feat command specifying the part number corresponding to the new quantity of signaling links and the feature access key. To increase the number of signaling links the EAGLE 5 ISS can contain to 1500, enter this command.

enable-ctrl-feat:partnum=893005901:fak=<Large System # Links
feature access key>

To increase the number of signaling links the EAGLE 5 ISS can contain to 2000, enter this command.

enable-ctrl-feat:partnum=893005910:fak=<feature access key>

NOTE: A temporary feature access key cannot be specified to enable this feature.

NOTE: The values for the feature access key (the fak parameter) are provided by Tekelec. If you do not have the controlled feature part number or the feature access key for the feature you wish to enable, contact your Tekelec Sales Representative or Account Representative.

When the enable-crtl-feat command has successfully completed, this message should appear.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0 ENABLE-CTRL-FEAT: MASP B - COMPLTD
```

8. Verify the changes by entering the **rtrv-ctrl-feat** command with the part number specified in step 7.

If the 1500 signaling link quantity was enabled in step 7, enter this command.

```
rtrv-ctrl-feat:partnum=893005901
```

The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0

The following features have been permanently enabled:

Feature Name Partnum Status Quantity
Large System # Links 893005901 on 1500

The following features have been temporarily enabled:

Feature Name Partnum Status Quantity Trial Period Left Zero entries found.

The following features have expired temporary keys:
```

Feature Name Partnum

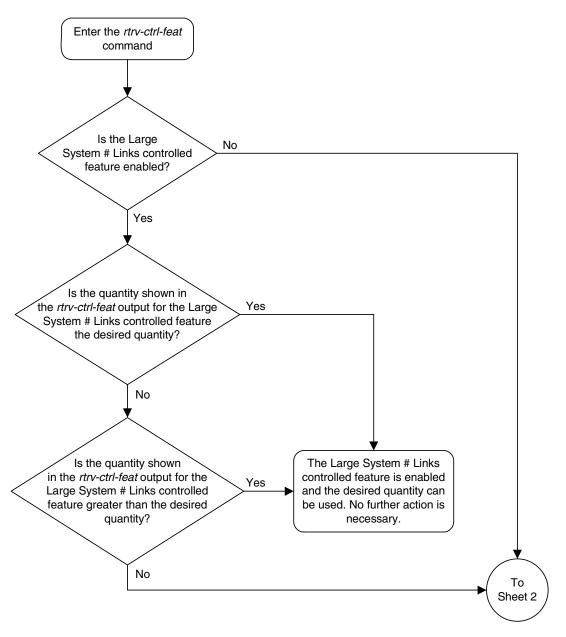
Zero entries found.

If the 2000 signaling link quantity was enabled in step 7, enter this command.

rtrv-ctrl-feat:partnum=893005910

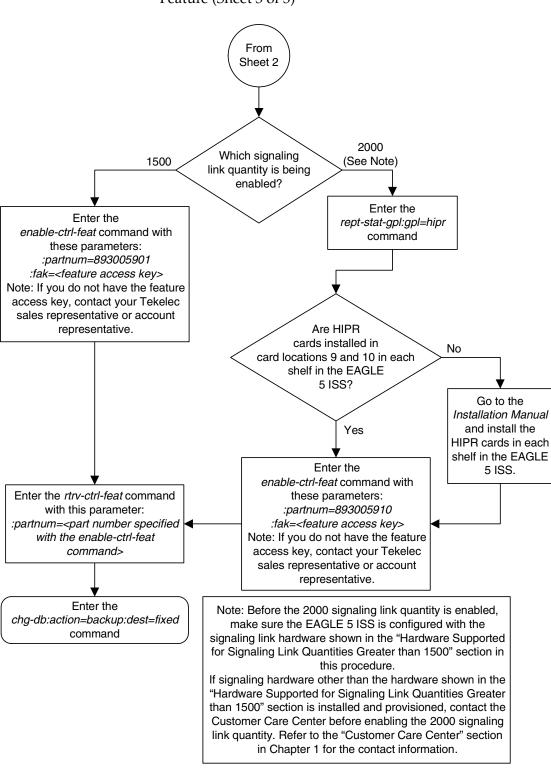
The following is an example of the possible output.

9. Backup the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.


```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.

BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED) : MASP A - Backup starts on standby MASP.


BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

Flowchart 3-6. Enabling the Large System # Links Controlled Feature (Sheet 1 of 3)

Notes: 1. If the rtrv-ctrl-feat output shows only Are any controlled the IPGWx Signaling TPS feature with a From features shown in the Yes quantity of 200 and the HC-MIM SLK Sheet 1 rtrv-ctrl-feat output? Capacity feature with a quantity of 64, (See Note 1) the answer to this question is no and the Eagle 5 ISS's serial number must be verified. These are default entries for the rtrv-ctrl-feat output. These entries are No shown whether or not the Eagle 5 ISS's serial number is in the database. Enter the rtrv-serial-num 2. If the serial number is locked, it cannot command be changed. 3. If the serial number is not locked, the controlled feature cannot be enabled. 4. The serial number can be found on a label affixed to the control shelf (shelf 1100). Is the EAGLE 5 ISS's serial number in the database correct and is the No Yes То serial number locked? Sheet 3 (See Notes 1, 2, and 3) This feature cannot be enabled without the correct serial number in the database. Contact the Is the EAGLE 5 Is the EAGLE 5 Customer Care Center to get the ISS's serial number in No Yes ISS's serial number correct serial number entered the database locked? into the database. Refer to the correct? "Customer Care Center" section in Chapter 1 for the contact information. Yes No Enter the ent-serial-num command with this parameter: :serial=<EAGLE 5 ISS's correct serial number> Enter the ent-serial-num command with these parameters: Enter the rtrv-serial-num :serial=<EAGLE 5 ISS's serial command number> :lock=yes Is the EAGLE To Yes 5 ISS's serial number No Sheet 3 in the database correct?

Flowchart 3-6. Enabling the Large System # Links Controlled Feature (Sheet 2 of 3)

Flowchart 3-6. Enabling the Large System # Links Controlled Feature (Sheet 3 of 3)

Removing an IP Signaling Link

This procedure is used to remove an IP signaling link from the database using the dlt-slk command. The dlt-slk command uses these parameters.

- :loc The card location of the IP card that the IP signaling link is assigned to.
- :link The signaling link on the card specified in the loc parameter.
- :force This parameter must be used to remove the last link in a linkset without having to remove all of the routes that referenced the linkset.

The tfatcabmlq parameter (TFA/TCA Broadcast Minimum Link Quantity), assigned to linksets, shows the minimum number of links in the given linkset (or in the combined link set in which it resides) that must be available for traffic. When the number of signaling links in the specified linkset is equal to or greater than the value of the tfatcabmlq parameter, the status of the routes that use the specified linkset is set to allowed and can carry traffic. Otherwise, these routes are restricted. The value of the tfatcabmlq parameter cannot exceed the total number of signaling links contained in the linkset.

The dlt-slk command makes sure that the number of signaling links assigned to a linkset is greater than or equal to the value of the tfatcabmlq parameter. If the number of signaling links associated with a linkset drops below the value of the tfatcabmlq parameter for that linkset, the tfatcabmlq value for that linkset is automatically decremented. The value of the tfatcabmlq parameter for a specified linkset can be verified using the rtrv-ls:lsn=<linkset name> command specifying the name of the linkset. The tfatcabmlq parameter value is shown in the tfatcabmlq field of the rtrv-ls command output.

Canceling the RTRV-SLK Command

Because the rtrv-slk command used in this procedure can output information for a long period of time, the rtrv-slk command can be canceled and the output to the terminal stopped. There are three ways that the rtrv-slk command can be canceled.

- Press the F9 function key on the keyboard at the terminal where the rtrv-slk command was entered.
- Enter the canc-cmd without the trm parameter at the terminal where the rtrv-slk command was entered.
- Enter the canc-cmd:trm=<xx>, where <xx> is the terminal where the rtrv-slk command was entered, from another terminal other that the terminal where the rtrv-slk command was entered. To enter the canc-cmd:trm=<xx> command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal's permissions can be verified with the rtrv-secu-trm command. The user's permissions can be verified with the rtrv-user or rtrv-secu-user commands.

For more information about the canc-cmd command, go to the Commands Manual.

Procedure

1. Display the current link configuration using the rtrv-slk command. This is an example of the possible output.

					L2T	1	L1			PCR	PCR	
LOC	LINE	LSN	SLO	C TYPE	SET	BPS	MODE	TSET	ECM	N1	N2	
1201	A	ls01	0	LIMDS0	1	56000			BASIC			
1201	В	lsa1	0	LIMDS0	1	56000			BASIC			
1202	В	ls02	0	LIMV35	2	64000	DTE		BASIC			
1203	A	ls03	0	LIMDS0	3	56000			BASIC			
1203	В	lsa2	0	LIMDS0	1	56000			BASIC			
1204	В	ls01	1	LIMDS0	1	56000			BASIC			
1205	A	lsa3	0	LIMV35	4	64000	DCE	ON	BASIC			
1206	A	ls02	1	LIMV35	2	64000	DTE		BASIC			
1207	A	lsn1207a	0	LIMDS0	1	56000			BASIC			
1207	В	lsn1207b	0	LIMDS0	1	56000			BASIC			
1208	В	ls03	1	LIMDS0	3	56000			BASIC			
1212	A	ls04	0	LIMV35	4	64000	DTE		BASIC			
1213	В	ls05	0	LIMDS0	5	56000			BASIC			
1214	A	lsn1214a	0	LIMV35	2	64000	DTE		PCR	76	3800	
1214	В	lsa3	1	LIMV35	4	64000	DCE	ON	BASIC			
1215	A	ls05	1	LIMDS0	5	56000			BASIC			
1301	В	ls06	0	LIMV35	6	56000	DTE		BASIC			
1304	В	ls06	1	LIMV35	6	56000	DTE		BASIC			
1308	A	ls06	2	LIMV35	6	56000	DTE		BASIC			
1311	A	ls01	2	LIMDS0	1	56000			BASIC			
1311	A1	ls05	2	LIMDS0	5	56000			BASIC			
1311	В	ls03	2	LIMDS0	3	56000			BASIC			
1311	B1	ls07	1	LIMDS0	7	56000			BASIC			
1313	A	ls07	0	LIMDS0	7	56000			BASIC			
1315 1317	A A	lsn5 lsi7	0	LIMV35 LIMV35	11 11	64000 64000	DTE DTE	OFF OFF	BASIC BASIC			
					LP		AT					
LOC	LINE	LSN	SLO	C TYPE	SET	BPS	TS:	EL	VCI	VPI	$_{ m LL}$	
1302	A	atmansi0	0	LIMATM	3	154400	00 EX	TERNAL	35	15	0	
1305	A	atmansi1	0	LIMATM	4	154400	00 IN'	TERNAL	100	20	2	
1318	A	atmansi0	1	LIMATM	9	154400	00 LI	NE	150	25	4	
T 0.0	T TATE	T CN	at a r	DVD EI	LP	DDG	ATM	110	T 77D	T (1)	E1A	
LOC 2101	LINK	atmitu1	SLC 7	LIPE LIME1ATM	SET	2.048M	TSEL	VC 15		OI (C)	RC4 SI N 1	1 i
2101		atmitu1		LIMEIATM		2.048M		35		01		
2105	A	atilitui	1 1	TIMETAIM	5	2.046M	TINE	33	15	O	N Z	
LOC	LINK	LSN	SLC 7	TYPE	IPLI	ML2						
2202	A	lsnlp1	0]	IPLIM	SAAL	TALI						
2205	A	lsnip1	1 1	IPLIM	M2PA	1						
2204		lsnlp2		IPLIM	M2PA							
		lsnip5										
2215	A	lsnlp2	1 1	IPLIM	SAAL	TALI						
	LINK	LSN	SLC 7	ГҮРЕ								
2207	A	lsnlp3 lsnlp4	0 5	SS7IPGW								
2211	A	lsnlp4	0]	IPGWI								
		LSN			L2T				PCR N2	E1	E1	
								N1			PORT	

```
L2T PCR PCR T1 T1
LOC LINK LSN SLC TYPE SET BPS ECM N1 N2 LOC PORT TS
No Links Set Up.

SLK table is (31 of 1200) 6% full
```

- **2.** Any in-service IP connections on the signaling link being removed in this procedure must be placed out of service. Have the far-end node for the signaling link being removed perform these actions:
 - Place the TALI sockets in the NEA-FEP state.
 - Place the M3UA or SUA associations in either the ASP-INACTIVE or ASP-DOWN state.
- 3. Display the IP link associated with the card that the signaling link being removed the database is assigned to. Enter the rtrv-ip-lnk command with the card location of the signaling link being removed shown in step 1. For this example, enter these commands.

```
rtrv-ip-lnk:loc=2202
```

The following is an example of the possible output.

rtrv-ip-lnk:loc=2204

The following is an example of the possible output.

4. Display the IP host information associated with the IP link by entering the rtrv-ip-host command with the IP address shown in step 3. For this example, enter these commands.

```
rtrv-ip-host:ipaddr=192.001.001.010
```

The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:17:37 GMT EAGLE5 36.0.0

LOCAL IPADDR LOCAL HOST
192.1.1.10 IPNODE1_2204

IP Host table is (11 of 512) 2% full
```

rtrv-ip-host:ipaddr=192.003.001.010

The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:17:37 GMT EAGLE5 36.0.0

LOCAL IPADDR LOCAL HOST
192.3.1.10 IPNODE1_2202

IP Host table is (11 of 512) 2% full
```

5. Display the socket associated with the local host name shown in step 4 by entering the rtrv-appl-sock command. For this example, enter these commands.

```
rtrv-appl-sock:lhost=ipnode1 2202
```

The following is an example of the possible output.

```
      rlghncxa03w
      06-10-28
      21:14:37
      GMT
      EAGLE5
      36.0.0

      SNAME
      KC_HLR1_2202

      LINK
      A

      LHOST
      IPNODE1_2202

      RHOST
      KC_HLR2

      LPORT
      7000
      RPORT
      7001

      SERVER
      YES
      DCMPS
      1

      REXMIT
      FIXED
      RTT
      60

      OPEN
      YES
      ALW
      YES
```

IP Appl Sock/Assoc table is (4 of 4000) 1% full

rtrv-appl-sock:lhost=ipnode1 2204

The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:14:37 GMT EAGLE5 36.0.0

IP Appl Sock/Assoc table is (4 of 4000) 1% full
```

NOTE: If the specified socket name is not in the database, the rtry-appl-sock output shows no socket information as shown above.

NOTE: If there is no socket shown in step 5, or the open and alw parameter values of the socket shown in step 5 are no, skip this step and go to step 7.

6. Change the open and alw parameter values in the socket shown in step 5 using the chg-appl-sock command with the open=no and alw=no parameters, as necessary.

For example, enter this command.

```
chg-appl-sock:sname=kc_hlr1_2202:open=no:alw=no
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0 CHG-APPL-SOCK: MASP A - COMPLTD
```

7. Display the association associated with the local host name shown in step 5 that was not assigned to a socket by entering the rtrv-assoc command. For this example, enter this command.

rtrv-assoc:lhost=ipnode1 2204

This is an example of possible output.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0

CARD IPLNK

ANAME LOC PORT LINK ADAPTER LPORT RPORT OPEN ALW
assoc1 2204 A A M3UA 1030 1030 YES YES

IP Appl Sock/Assoc table is (4 of 4000) 1% full
Assoc Buffer Space Used (16 KB of 3200 KB) on LOC = 2204
```

NOTE: If there is no association shown in step 7, or the open and alw parameter values of the association shown in step 7 are no, skip this step and go to step 9.

8. Change the value of the open and alw parameters to no by specifying the chg-assoc command with the open=no and alw=no parameters, as necessary. For this example, enter this command.

```
chg-assoc:aname=assoc1:open=no:alw=no
```

When this command has successfully completed, this message should appear.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0 CHG-ASSOC: MASP A - COMPLTD;
```

9. Deactivate the link to be removed using the dact-slk command, using the output from step 1 to obtain the card location and link parameter value of the signaling link to be removed. For this example, enter these commands.

```
dact-slk:loc=2202:link=a
dact-slk:loc=2204:link=a
```

When each of these command has successfully completed, this message should appear.

```
rlghncxa03w 06-10-07 08:41:12 GMT EAGLE5 36.0.0 Deactivate Link message sent to card
```

10. Verify that the link is out of service - maintenance disabled (OOS-MT-DSBLD) using the rept-stat-slk command with the card location and link parameter values specified in step 9. For this example, enter these commands.

```
rept-stat-slk:loc=2202:link=a
```

This is an example of the possible output.

rept-stat-slk:loc=2204:link=a

This is an example of the possible output.

```
      rlghncxa03w 06-10-23 13:06:25 GMT EAGLE5 36.0.0

      SLK
      LSN
      CLLI
      PST
      SST
      AST

      2204,A
      1s04
      1s04clli
      OOS-MT
      Unavail
      ---

      ALARM STATUS
      = * 0235 REPT-LNK-MGTINH: local inhibited

      UNAVAIL REASON
      = LI
```

11. If the signaling link to be removed is the last signaling link on a card, the card must be inhibited before the signaling link is removed. Before entering the dlt-slk command, enter the rmv-card command and specify the location of the card to be inhibited. The card location is shown in the output of rept-stat-slk command executed in step 10. If the signaling link to be removed is not the last signaling link on the card, go to step 12.

In the example used for this procedure, the signaling link is the last signaling link on the card and must be inhibited. Enter these commands.

```
rmv-card:loc=2202
rmv-card:loc=2204
```

When each of these command has successfully completed, this message should appear.

```
rlghncxa03w 06-10-07 08:41:12 GMT EAGLE5 36.0.0 Card has been inhibited.
```

12. Remove the signaling link from the EAGLE 5 ISS using the dlt-slk command. If there is only one signaling link in the linkset, the force=yes parameter must be specified to remove the signaling link.

In the example used in this procedure, the signaling link is the last signaling link in the linkset. Enter these commands.

```
dlt-slk:loc=2202:link=a:force=yes
dlt-slk:loc=2204:link=a:force=yes
```

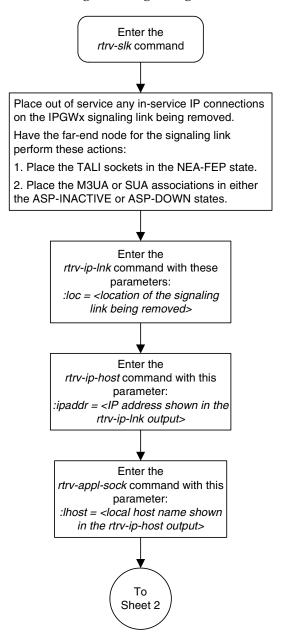
When this command has successfully completed, this message should appear.

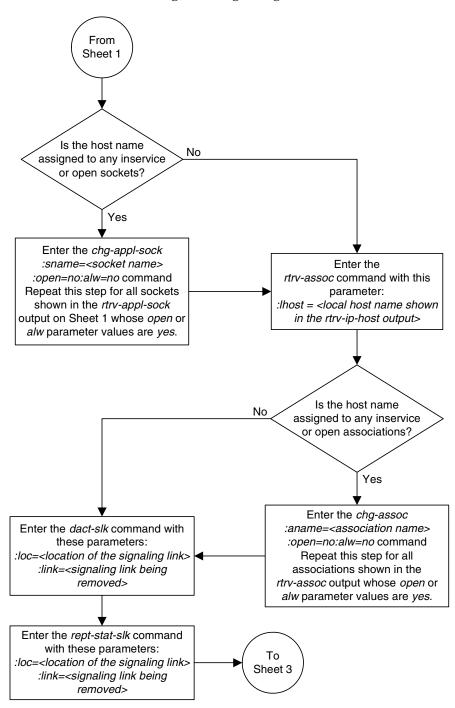
```
rlghncxa03w 06-10-07 08:41:17 GMT EAGLE5 36.0.0 DLT-SLK: MASP A - COMPLTD
```

13. Verify the changes using the rtrv-slk command. This is an example of the possible output.

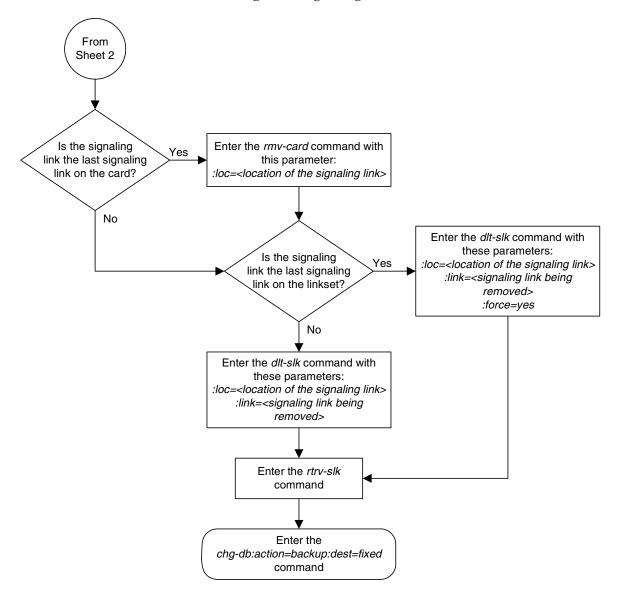
	1011000	w 06-10-19	21.10		7 OHI	L27			1				PCR	PCR	
LOC	LINK	LSN	SI	LC	TYPE	SET	BPS	M	ODE	TSET	1	ECM	N1	N2	
1201	A	ls01	C)	LIMDS0	1	56000	-]	BASIC			
1201	В	lsa1	C)	LIMDS0	1	56000	-]	BASIC			
1202	В	ls02	C)	LIMV35	2	64000	D	ΤE]	BASIC			
1203	A	ls03	C)	LIMDS0	3	56000	-]	BASIC			
1203	В	lsa2	C)	LIMDS0	1	56000	-]	BASIC			
1204	В	ls01	1		LIMDS0	1	56000	-]	BASIC			
1205	A	lsa3	C)	LIMV35	4	64000	D	CE	ON]	BASIC			
1206	A	ls02	1		LIMV35	2	64000	D	TE]	BASIC			
1207	A	lsn1207a	C)	LIMDS0	1	56000	-]	BASIC			
1207	В	lsn1207b	C)	LIMDS0	1	56000	-]	BASIC			
1208	В	ls03	1	L	LIMDS0	3	56000	-]	BASIC			
1213	В	ls05	C)	LIMDS0	5	56000	-]	BASIC			
1214	A	lsn1214a	C)	LIMV35	2	64000	D	ΤE			PCR	76	380	0 (
1214	В	lsa3	1	_	LIMV35	4	64000	D	CE	ON]	BASIC			
1215	A	ls05	1	_	LIMDS0	5	56000	-]	BASIC			
1301	В	ls06	C)	LIMV35	6	56000	D	TE]	BASIC			
1304	В	ls06	1		LIMV35	6	56000	D	TE]	BASIC			
1308	A	ls06	2	2	LIMV35	6	56000	D	TE]	BASIC			
1311	A	ls01	2	2	LIMDS0	1	56000	-]	BASIC			
1311	A1	ls05	2	2	LIMDS0	5	56000	-]	BASIC			
1311	В	ls03	2	2	LIMDS0	3	56000	-]	BASIC			
1311	В1	ls07	1		LIMDS0	7	56000	-]	BASIC			
1313	A	ls07	C)	LIMDS0	7	56000	-]	BASIC			
1315	A	lsn5	C)	LIMV35	11	64000	D	ΤE	OFF]	BASIC			
1317	A	lsi7	C)	LIMV35	11	64000	D	ΤE	OFF]	BASIC			
						LP			ATI						
LOC		LSN			TYPE		BPS		TS			VCI	VPI		_
1302	A	atmansi0	C		LIMATM		15440			rernai		35	15	0	
1305	A	atmansi1	0		LIMATM		15440			ΓERNAΙ	_	100	20	2	
1318	A	atmansi0	1	-	LIMATM	9	15440) ()	LII	NE		150	25	4	
						LP		ΑT	M					E17	MTA
LOC	LINK	LSN	SLC	ΤY	PE	SET	BPS	TS	EL	VC	ĊΙ	VP	I C	RC4 S	SIS
2101	A	atmitu1	0	LI	ME1ATM	5	2.048M	LI	NE	15	0	2	C	N 1	. 2
2105	A	atmitu1	1	LI	ME1ATM	5	2.048M	LI	NE	35	5	15	C)N 2	2 :
LOC	LINK	LSN	SLC	ТУ	PE	IPLI	ML2								
2205		lsnip1	1		LIM	M2PA									
2213		-		0 IPLIMI			M2PA								
2215		-		1 IPLIM			SAALTALI								
		_				~. 14 11									
LOC	LINK		SLC												
2207		lsnlp3	0	SS	7IPGW										
2211	A	lsnlp4	0	ΙP	GWI										
LOC	LINK	LSN	SLC T	ΥP		L2T SET	BPS	EC	M	PCR N1			E1 LOC	E1 PORT	г та
No Li	nks S	Set up.													
						L2T				PCR	D,	CR	T1	T1	
LOC	LINK	LSN	SLC T	'YP			BPS	EC	M	N1				PORT	TS
				_		-	-								
ио пј	IIIKS S	Set up.													

14. Back up the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.


```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.


BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED) : MASP A - Backup starts on standby MASP.


BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

Flowchart 3-7. Removing an IP Signaling Link (Sheet 1 of 3)

Flowchart 3-7. Removing an IP Signaling Link (Sheet 2 of 3)

Flowchart 3-7. Removing an IP Signaling Link (Sheet 3 of 3)

Changing the IP Protocol Option

Use this procedure to change the IP protocol option with the chg-sg-opts:sync command.

To change the :sync option, which has the values tali or sassi, the IP cards associated with the ss7ipgw or ipgwi application must be inhibited, and the signaling links assigned to this card must be deactivated.

Procedure

1. Display the current IP options in the database by entering the rtrv-sg-opts command. The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0
SYNC:
               TALI
SRKQ:
                250
750

SNMPCONT: john doe 555-123-4567

GETCOMM: public

SETCOMM: private
TRAPCOMM:
              public
INHFEPALM:
              NO
SCTPCSUM:
               crc32c
              NO
IPGWABATE:
IPLIMABATE:
               NO
```

To change the protocol option (synchronization code) for the card, the signaling link to the IP card and the card have to be inhibited.

2. Display the current IP parameters associated with card in the database by entering the rtrv-ip-card command. The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:17:37 GMT EAGLE5 36.0.0
  LOC 1201
   SRCHORDR LOCAL
   DNSA 150.1.1.1
   DNSB
         -----
   DEFROUTER -----
   DOMAIN
  LOC 1203
    SRCHORDR LOCAL
   DNSA 192.1.1.40
   DEFROUTER -----
   DOMAIN NC.TEKELEC.COM
  LOC 1205
    SRCHORDR SRVRONLY
   DNSA 192.1.1.40
   DEFROUTER -----
   DOMAIN NC.TEKELEC.COM
```

3. Display the signaling link associated with the card shown in step 2 using the rtrv-slk command specifying the card location. For this example, enter this command.

```
rtrv-slk:loc=1201
```

This is an example of the possible output.

```
rlghncxa03w 06-10-19 21:17:04 GMT EAGLE5 36.0.0

LOC LINK LSN SLC TYPE IPLIML2

1201 A nc001 0 IPLIM SAALTALI
```

4. Verify the status of the signaling link shown in step 3 using the rept-stat-slk command. For example, enter this command.

```
rept-stat-slk:loc=1201:link=a
```

The output lists the signaling link assigned to this card:

If the signaling link is in service-normal (IS-NR), go to step 5 to deactivate the signaling link. If the signaling link is out-of-service-maintenance disabled (OOS-MT-DSBLD), go to step 7 to verify the card status.

5. Deactivate the signaling link assigned to the IP card using the dact-slk command. For example, enter this command:

```
dact-slk:loc=1201:link=a
```


CAUTION: This command impacts network performance and should only be used during periods of low traffic.

After this command has successfully completed, this message appears.

```
rlghncxa03w 06-10-12 09:12:36 GMT EAGLE5 36.0.0 Deactivate Link message sent to card.
```

6. Verify the new link status using the rept-stat-slk command. For example, enter this command.

```
rept-stat-slk:loc=1201:link=a
```

The output displays the link status as OOS-MT-DSBLD and gives off a minor alarm:

```
rlghncxa03w 06-10-27 17:00:36 GMT EAGLE5 36.0.0

SLK LSN CLLI PST SST AST
1201,A nc001 ------- OOS-MT-DSBLD AVAIL ---
ALARM STATUS = * 0236 REPT-LKS:not aligned
UNAVAIL REASON = NA
Command Completed.
```

7. Verify the status of the IP card to be inhibited using the rept-stat-card command. For example, enter this command.

```
rept-stat-card:loc=1201
```

This is an example of the possible output.

```
rlghncxa03w 06-10-27 17:00:36 GMT EAGLE5 36.0.0

CARD VERSION TYPE APPL PST SST AST

1201 114-000-000 DCM IPLIM IS-NR Active -----

ALARM STATUS = No Alarms.

BPDCM GPL = 002-102-000

IMT BUS A = Conn

IMT BUS B = Conn

SIGNALING LINK STATUS

SLK PST LS CLLI

A OOS-MT-DSBLD nc001
```

Command Completed.

If the IP card to be inhibited is in service-normal (IS-NR), go to step 8 to inhibit the IP card. If the IP card is out-of-service-maintenance disabled (OOS-MT-DSBLD), go to step 10 to change the IP options.

8. Inhibit the IP card using the inh-card command. For example, enter this command.

```
inh-card:loc=1201
```

This message should appear.

```
rlghncxa03w 06-10-28 21:18:37 GMT EAGLE5 36.0.0 Card has been inhibited.
```

9. Display the status of the IP card to verify that it is out-of-service maintenance-disabled (OOS-MT-DSBLD). Enter this command.

```
rept-stat-card:loc=1201
```

This is an example of the possible output.

```
      rlghncxa03w 06-10-27 17:00:36 GMT EAGLE5 36.0.0

      CARD VERSION TYPE APPL PST SST AST

      1201 114-000-000 DCM IPLIM OOS-MT-DSBLD Manual -----

      ALARM STATUS = No Alarms.

      BPDCM GPL = 002-102-000

      IMT BUS A = Conn

      IMT BUS B = Conn

      SIGNALING LINK STATUS

      SLK PST LS CLLI

      A OOS-MT-DSBLD nc001
```

Command Completed.

10. Change the IP options in the database using the **chg-sg-opts** command. For this example, enter this command.

```
chg-sg-opts:sync=sassi
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-28 21:19:37 GMT EAGLE5 36.0.0 CHG-SG-OPTS: MASP A - COMPLTD
```

11. Verify the new IP options in the database using the rtrv-sg-opts command. The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0
              SASSI
SYNC:
SRKO:
              250
DRKQ:
SNMPCONT: john doe 555-123-4567
GETCOMM: public
             private
SETCOMM:
             public
TRAPCOMM:
              NO
INHFEPALM:
SCTPCSUM:
               crc32c
IPGWABATE:
              NO
IPLIMABATE:
              NO
IPTPSALMTHRESH: 80
```

NOTE: If step 8 was not performed, skip steps 12 and 13, and go to step 14.

12. Allow the IP card that was inhibited in step 8 using the alw-card command. For example, enter this command.

```
alw-card:loc=1201
```

This message should appear.

```
rlghncxa03w 06-10-28 21:21:37 GMT EAGLE5 36.0.0 Card has been allowed.
```

13. Verify the in-service normal (IS-NR) status of the IP card using the rept-stat-card command. For example, enter this command.

```
rept-stat-card:loc=1201
```

This is an example of the possible output.

```
rlghncxa03w 06-10-27 17:00:36 GMT EAGLE5 36.0.0

CARD VERSION TYPE APPL PST SST AST

1201 114-000-000 DCM IPLIM IS-NR Active -----

ALARM STATUS = No Alarms.

BPDCM GPL = 002-102-000

IMT BUS A = Conn

IMT BUS B = Conn

SIGNALING LINK STATUS

SLK PST LS CLLI

A IS-NR nc001 -------
```

Command Completed.

NOTE: If step 5 was not performed, skip steps 14 and 15, and go to step 16.

14. Activate the signaling link from step 5 using the act-slk command. For example, enter this command.

```
act-slk:loc=1201:link=a
```

The link changes its state from OOS-MT-DSBLD (out-of-service maintenance-disabled) to IS-NR (in-service normal).

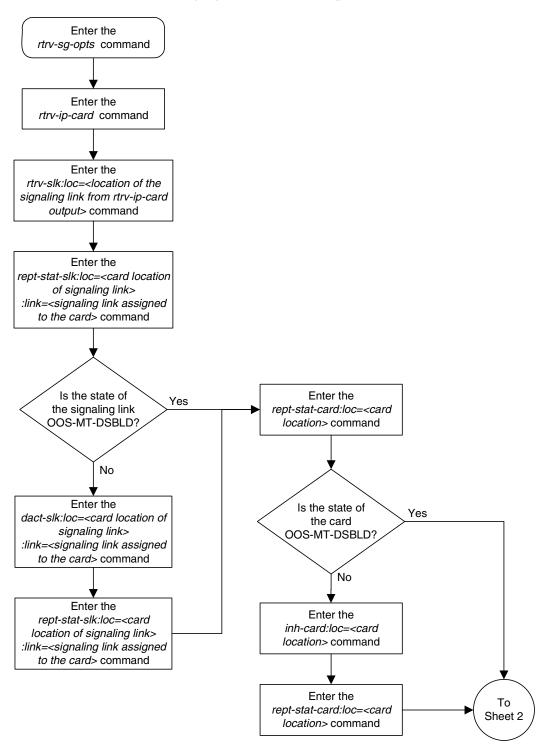
The output confirms the activation.

```
rlghncxa03w 06-10-07 11:11:28 GMT EAGLE5 36.0.0 Activate Link message sent to card
```

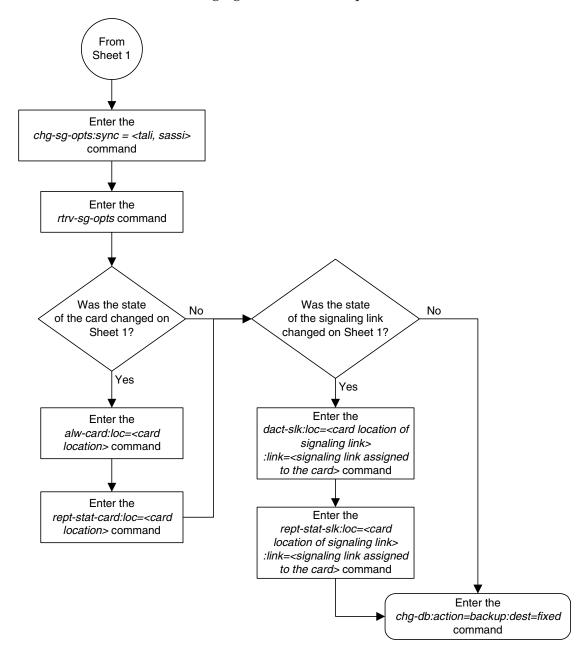
15. Verify the in-service normal (IS-NR) status of the signaling link by using the rept-stat-slk command. For example, enter this command.

```
rept-stat-slk:loc=1201:link=a
```

This message should appear.


16. Back up the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.


BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED) : MASP A - Backup starts on standby MASP.

BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```


Flowchart 3-8. Changing the IP Protocol Option (Sheet 1 of 2)

Flowchart 3-8. Changing the IP Protocol Option (Sheet 2 of 2)

Changing IP Options other than SYNC and SCTPCSUM

Use this procedure to change the IP options defined by these parameters: drkq, getcomm, setcomm, snmpcont, srkq, trapcomm, inhfepalm, ipgwabate, iplimabate. These parameters do not require the IP card associated with an ss7ipgw or ipgwi application to be inhibited prior to configuration.

NOTE: The chg-sg-opts command also contains the iptpsalmthresh parameter, used to configure the IP TPS alarm threshold. This parameter is not used in this procedure. Perform the "Configuring the IP TPS Alarm Threshold" procedure on page 3-324 to configure the IP TPS alarm threshold with the iptpsalmthresh parameter.

- :drkq The dynamic routing key quantity used to specify the maximum number of dynamic routing key entries in the Routing Key table of each ss7ipgw and ipgwi card.
- **:getcomm** The community name used to validate SNMP *Get* and *GetNext* requests. This value applies to each IP card SNMP agent.
- :setcomm The community name used to validate SNMP *Set* requests. This value applies to each IP card SNMP agent.
- :snmpcont The system contact information for each IP card SNMP agent, used to define the *sysContact* object in the SNMP MIB II System Group.
- :srkq The static routing key quantity used to specify the maximum number of static routing key entries in the Routing Key table of each ss7ipgw and ipgwi card.
- : trapcomm The community name used when sending SNMP traps. This value applies to each IP card SNMP agent.
- :inhfepalm This parameter specifies whether or not major alarms for TALI sockets whose secondary state is NEA-FEP will be inhibited (suppressed). This value applies to all IPLIM and SS7IPGW cards in the EAGLE 5 ISS.

When this parameter is set to **no** (default), the NEA-FEP sockets are reported as OOS-MT and a major alarm (UAM 0084 - IP Connection Unavailable) is raised for that connection.

When this parameter is set to yes, all TALI sockets with a secondary status of NEA-FEP are reported as IS-NR and no socket alarm is raised. For IPLIM and IPLIMI cards, where each link consists of a single TALI socket, a link alarm will still be raised when the TALI socket's secondary status is NEA-FEP, regardless of the inhfepalm parameter value.

- :ipgwabate enables (ipgwabate=yes) or disables (ipgwabate=no) SS7 congestion abatement procedures for SS7IPGW signaling links (signaling links assigned to cards running the ss7ipgw application). The default value for this parameter is no.
- :iplimabate enables (iplimabate=yes) or disables (iplimabate=no) SS7 congestion abatement procedures for IPLIM signaling links (signaling links assigned to cards running the iplim application). The default value for this parameter is no.

The sum of the values specified for the **srkq** and **drkq** parameters must not be greater than:

- 1000 if there are any DCM cards (870-1945-xx) running the ss7ipgw or ipgwi application.
- 2500 if all cards that are running the **ss7ipgw** or **ipgwi** application are SSEDCM cards (870-2372-xx).

Replacing an SSEDCM card with a dual-slot DCM card when the sum of the values for the **srkq** and **drkq** parameters is greater than 1000 will result in the DCM card being auto-inhibited.

The value specified for the **srkq** parameter cannot be less than the current number of static entries in the Routing Key table.

The value that can be specified for the <code>srkq</code> parameter also depends on how many dynamic routing keys are actively registered. The value specified for the <code>srkq</code> parameter cannot exceed the lowest value determined by subtracting the number of dynamic entries on either an <code>ss7ipgw</code> or <code>ipgwi</code> card from:

- 1000 if there are any dual-slot DCM cards (870-1945-xx) running the ss7ipgw or ipgwi application
- 2500 if all cards that are running the **ss7ipgw** or **ipgwi** application are SSEDCM cards (870-2372-xx).

For example, if one dual-slot DCM card has 200 dynamic entries and the other card has 300 dynamic entries, the value specified for srkq cannot exceed 700 (1000 - 300 = 700; 1000 - 200 = 800; 700) is the lower value).

If d is the current maximum number of actual dynamic routing keys on any card that is running the ss7ipgw or ipgwi application, then the sum of d and the srkq value cannot exceed:

- 1000 per card if there are any dual-slot DCM cards (870-1945-xx) running the ss7ipgw or ipgwi application
- 2500 per card if all cards that are running the ss7ipgw or ipgwi application are SSEDCM cards (870-2372-xx).

Effectively this means that even if the **drkq** parameter value has been decreased to less than **d**, the **srkq** value cannot be increased until **d** has also decreased.

The Dynamic Routing Key feature must be on in order to enter the <code>drkq</code> parameter. If the current value of the <code>drkq</code> parameter is greater then 0, then the Dynamic Rouing Key feature is on. If the current value of the <code>drkq</code> parameter is 0, enter the <code>rtrv-feat</code> command. The <code>DYNRTK</code> field in the <code>rtrv-feat</code> command output shows whether or not this feature is on.

The values of the snmpcont, getcomm, setcomm, and trapcomm parameters are a string of up to 32 characters that is not case sensitive. If the character string contains characters other than alphanumeric characters, the character string must be enclosed in single quotes.

Procedure

1. Display the current IP options in the database by entering the rtrv-sg-opts command. The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:17:37 GMT EAGLE5 36.0.0
SYNC:
              TALI
SRKQ:
DRKQ:
              750
SNMPCONT:
             john doe 555-123-4567
              public
GETCOMM:
SETCOMM:
             private
TRAPCOMM:
             public
INHFEPALM:
             NO
SCTPCSUM:
             crc32c
IPGWABATE:
             NO
IPLIMABATE:
              NΟ
IPTPSALMTHRESH: 80
```

NOTE: If the current value of the drkq parameter is 0 and is not being changed, or if the current value of the drkq parameter is greater than 0, skip steps 2 and 3, and go to step 4.

2. Verify that the Dynamic Routing Key feature is on, by entering the rtrv-feat command. If the Dynamic Routing Key feature is on, the DYNRTK field should be set to on. For this example, the Dynamic Routing Key feature is off.

NOTE: The rtrv-feat command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the rtrv-feat command, see the rtrv-feat command description in the Commands Manual.

NOTE: If the Dynamic Routing Key feature is on, skip step 3 and go to step 4.

3. Turn the Dynamic Routing Key feature on by entering this command.

```
chg-feat:dynrtk=on
```

NOTE: Once the Dynamic Routing Key feature is turned on with the chg-feat command, it cannot be turned off.

The Dynamic Routing Key feature must be purchased before you turn this feature on with the chg-feat command. If you are not sure if you have purchased the Dynamic Routing Key feature, contact your Tekelec Sales Representative or Account Representative.

When the chg-feat has successfully completed, this message should appear.

```
rlghncxa03w 06-10-28 11:43:04 GMT EAGLE5 36.0.0 CHG-FEAT: MASP A - COMPLTD
```

4. Change the IP options in the database using the **chg-sg-opts** command. For this example, enter this command.

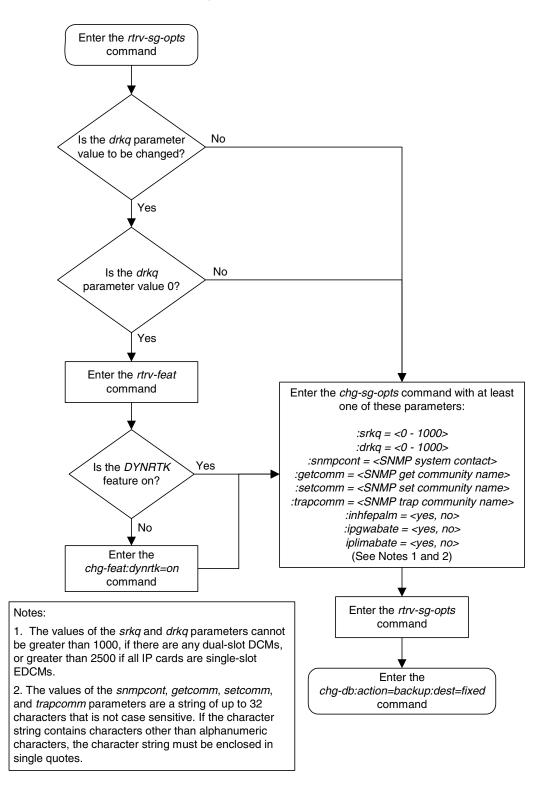
```
chg-sg-opts:srkq=200:drkq=800
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-28 21:18:37 GMT EAGLE5 36.0.0 CHG-SG-OPTS: MASP A - COMPLTD
```

5. Verify the new IP options in the database by entering the **rtrv-sg-opts** command. The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:19:37 GMT EAGLE5 36.0.0
SYNC: TALI
SRKQ: 200
DRKQ: 800
SNMPCONT: john doe 555-123-4567
GETCOMM: public
SETCOMM: private
TRAPCOMM: public
INHFEPALM: NO
SCTPCSUM: crc32c
IPGWABATE: NO
IPLIMABATE: NO
IPTPSALMTHRESH: 80
```


6. Back up the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.

BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED) : MASP A - Backup starts on standby MASP.

BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```


Flowchart 3-9. Changing an IP Option That Does Not Require Inhibiting the IP Card

Changing an IP Link

This procedure is used to change the link parameters for IP cards using the chg-ip-lnk command. These link parameters are used to configure the Ethernet hardware.

The chg-ip-lnk command uses the following parameters.

- :loc The card location of the IP card.
- :port The Ethernet interface on the IP card, A or B.
- :ipaddr IP address assigned to the Ethernet interface on the IP card. This is an IP address expressed in standard "dot notation." IP addresses consist of the system's network number and the machine's unique host number.
- : submask The subnet mask of the IP interface. A subnet mask is an IP address with a restricted range of values. The bits in the mask must be a string of one's followed by a string of zero's. There must be at least two one's in the mask, and the mask cannot be all one's. See Table 3-11 on page 3-136 to assign the correct parameter values.
- :auto Tells hardware whether to automatically detect the duplex and speed.
- :duplex This is the mode of operation of the interface.
- : speed This is the bandwidth in megabits per second of the interface.
- :mactype This is the Media Access Control Type of the interface.
- :mcast The multicast control flag. This parameter enables or disables multicast support for the interface.

A zero ipaddr parameter value (0.0.0.0) indicates the IP card Ethernet interface to IP link association is disabled. The host to the original IP address must be removed before the ipaddr=0.0.0.0 can be specified.

If the defrouter parameter of the chg-ip-card command contains an IP address for the card specified in this procedure, the network portion of one of the IP addresses assigned to the card in this procedure must match the network portion of the IP address specified by the defrouter parameter of the chg-ip-card command.

The network portion of the IP address is based on the class of the IP address (shown in Table 3-11 on page 3-136). If the IP address is a Class A IP address, the first field is the network portion of the IP address. If the IP address is a Class B IP address, the first two fields are the network portion of the IP address. If the IP address is a Class C IP address, the first three fields are the network portion of the IP address. For example, if the IP address is 193.5.207.150, a Class C IP address, the network portion of the IP address is 193.5.207.

If the auto=yes parameter is specified, then the duplex and speed parameters are not allowed.

The loc parameter value must be shown in the rtrv-ip-card output.

The IP card must be placed out of service.

If either the **ipaddr** or **submask** parameters are specified, then both parameters must be specified. If the **ipaddr** parameter value is zero (0.0.0.0), the **submask** parameter is not required.

If the IP card is a single-slot EDCM, the A or B interface can be used. The B interface cannot be used with the DCM.

The IP address and subnet mask values cannot be changed to an address representing a different network if:

- If the network interface specified by the loc and port parameters has a default router, dnsa, or dsnb parameter values assigned to it, as shown in the rtrv-ip-card output.
- Any IP routes, shown in the rtrv-ip-rte output, reference the IP address for the network interface specified by the loc and port parameters.

The IP link cannot be changed if open sockets or associations reference the IP link being changed.

The network portion of the IP addresses assigned to the IP links on an IP card must be unique. For example, if IP links are assigned to IP card 1103, the network portion of the IP address for Ethernet interface A (port=a) must be different from the IP address for Ethernet interface B (port=b).

The **submask** parameter value is based upon the **ipaddr** setting. See Table 3-11 for the valid input values for the **submask** and **ipaddr** parameter combinations.

Table 3-11. Valid Subnet Mask Parameter Values

Network Class	IP Network Address Range	Valid Subnet Mask Values
A	1.0.0.0 to 127.0.0.0	255.0.0.0 (the default value for a class A IP address) 255.192.0.0 255.224.0.0 255.240.0.0 255.248.0.0 255.252.0.0 255.254.0.0 255.252.1

A+B	128.0.0.0 to 191.255.0.0	255.255.0.0 (the default value for a class B IP address) 255.255.192.0 255.255.224.0 255.255.240.0 255.255.248.0 255.255.252.0 255.255.252.0
A+B+C	192.0.0.0 to 223.255.255.0	255.255.255.0 (the default value for a class C IP address) 255.255.255.192 255.255.255.224

 Table 3-11.
 Valid Subnet Mask Parameter Values (Continued)

If a Class B IP address is specified for the <code>ipaddr</code> parameter of the <code>chg-ip-lnk</code> command, the subnet address that results from the <code>ipaddr</code> and <code>submask</code> parameter values cannot be the same as the subnet address that results from the <code>pvn</code> and <code>pvnmask</code> parameter values of the <code>chg-netopts</code> command. The <code>pvn</code> and <code>pvnmask</code> parameter values can be verified by entering the <code>rtrv-netopts</code> command. Choose <code>ipaddr</code> and <code>submask</code> parameter values for the IP link whose resulting subnet address is not be the same as the subnet address resulting from the <code>pvn</code> and <code>pvnmask</code> parameter values of the <code>chg-netopts</code> command.

255.255.255.240 255.255.255.248 255.255.255.252

Canceling the RTRV-APPL-SOCK and RTRV-ASSOC Commands

Because the rtrv-appl-sock and rtrv-assoc commands used in this procedure can output information for a long period of time, the rtrv-appl-sock and rtrv-assoc commands can be canceled and the output to the terminal stopped. There are three ways that the rtrv-appl-sock and rtrv-assoc commands can be canceled.

- Press the F9 function key on the keyboard at the terminal where the rtrv-appl-sock or rtrv-assoc commands were entered.
- Enter the canc-cmd without the trm parameter at the terminal where the rtrv-appl-sock or rtrv-assoc commands were entered.
- Enter the canc-cmd:trm=<xx>, where <xx> is the terminal where the rtrv-appl-sock or rtrv-assoc commands were entered, from another terminal other that the terminal where the rtrv-appl-sock or rtrv-assoc commands were entered. To enter the canc-cmd:trm=<xx> command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands.

The terminal's permissions can be verified with the rtrv-secu-trm command. The user's permissions can be verified with the rtrv-user or rtrv-secu-user commands.

For more information about the canc-cmd command, go to the Commands Manual.

Procedure

1. Display the current link parameters associated with the IP card in the database by entering the rtrv-ip-lnk command. The following is an example of the possible output.

```
      r1ghn-xa03w 06-10-28 21:14:37 GMT EAGLE5
      36.0.0

      LOC
      PORT 1PADDR
      SUBMASK
      DUPLEX
      SPEED MACTYPE
      AUTO MCAST

      1201
      A
      192.1.1.1
      255.255.255.128
      HALF
      10
      802.3
      NO
      NO

      1203
      A
      192.1.1.12
      255.255.255.0
      ----
      ---
      DIX
      YES
      NO

      1205
      A
      192.1.1.14
      255.255.255.0
      FULL
      100
      DIX
      NO
      NO
```

NOTE: If the ipaddr=0.0.0.0 is not being specified in this procedure, skip step 2 and go to step 3.

2. If IP address information is being added or changed (not deleted) in the link parameters, verify that the IP address is present in the IP host table by using the rtrv-ip-host command. The following is an example of the possible output.

rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0

```
LOCAL IPADDR LOCAL HOST

192.1.1.10 IPNODE1-1201

192.1.1.12 IPNODE1-1203

192.1.1.14 IPNODE1-1205

192.1.1.20 IPNODE2-1201

192.1.1.22 IPNODE2-1203

192.1.1.24 IPNODE2-1205

192.1.1.30 KC-HLR1

192.1.1.32 KC-HLR2

192.1.1.50 DN-MSC1

192.1.1.50 DN-MSC2

REMOTE IPADDR REMOTE HOST

150.1.1.5 NCDEPTECONOMIC_DEVELOPMENT.SOUTHEASTERN_COORIDOR_ASHVL.GOV
```

IP Host table is (11 of 512) 2% full

If the current IP address of the IP link is shown in the rtrv-ip-host output, remove the host assigned to the IP address by performing the "Adding an IP Host" procedure on page 3-153.

3. To change IP link parameters, the signaling link to the IP card and the IP card have to be inhibited. Display the signaling link associated with the card shown in step 1 using the rtrv-slk command specifying the card location. For this example, enter this command.

```
rtrv-slk:loc=1201
```

This is an example of the possible output.

```
rlghncxa03w 06-10-19 21:17:04 GMT EAGLE5 36.0.0 LOC LINK LSN SLC TYPE IPLIML2 1201 A nc001 0 IPLIM SAALTALI
```

4. Retrieve the status of the signaling link assigned to the IP card to be changed using the rept-stat-slk command. For example, enter this command.

```
rept-stat-slk:loc=1201:link=a
```

The output lists the signaling link assigned to this card:

If the signaling link is in service-normal (IS-NR), go to step 5 to deactivate the signaling link. If the signaling link is out-of-service-maintenance disabled (OOS-MT-DSBLD), go to step 7 to verify the IP card status.

5. Deactivate the signaling link assigned to the IP card using the rept-stat-slk command. For example, enter this command.

```
dact-slk:loc=1201:link=a
```


CAUTION: This command impacts network performance and should only be used during periods of low traffic.

After this command has successfully completed, this message appears.

```
rlghncxa03w 06-10-12 09:12:36 GMT EAGLE5 36.0.0 Deactivate Link message sent to card.
```

6. Verify the new link status using the rept-stat-slk command. For example, enter this command.

```
rept-stat-slk:loc=1201:link=a
```

The output displays the link status as OOS-MT-DSBLD and gives off a minor alarm:

```
rlghncxa03w 06-10-27 17:00:36 GMT EAGLE5 36.0.0

SLK LSN CLLI PST SST AST
1201,A nc001 ------- OOS-MT-DSBLD AVAIL ---
ALARM STATUS = * 0236 REPT-LKS:not aligned
UNAVAIL REASON = NA
Command Completed.
```

7. Verify the status of the IP card to be inhibited using the rept-stat-card command. For example, enter this command.

```
rept-stat-card:loc=1201
```

This is an example of the possible output.

```
rlghncxa03w 06-10-27 17:00:36 GMT EAGLE5 36.0.0

CARD VERSION TYPE APPL PST SST AST

1201 114-000-000 DCM IPLIM IS-NR Active -----

ALARM STATUS = No Alarms.

BPDCM GPL = 002-102-000

IMT BUS A = Conn

IMT BUS B = Conn

SIGNALING LINK STATUS

SLK PST LS CLLI

A IS-NR nc001
```

Command Completed.

If the IP card to be inhibited is in service-normal (IS-NR), go to step 8 to inhibit the card. If the IP card is out-of-service-maintenance disabled (OOS-MT-DSBLD), go to step 10 to change the IP link parameters.

8. Inhibit the IP card using the inh-card command. For example, enter this command.

```
inh-card:loc=1201
```

This message should appear.

```
rlghncxa03w 06-10-28 21:18:37 GMT EAGLE5 36.0.0 Card has been inhibited.
```

9. Display the status of the IP card to verify that it is out-of-service maintenance-disabled (OOS-MT-DSBLD). Enter this command.

```
rept-stat-card:loc=1201
```

This is an example of the possible output.

```
rlghncxa03w 06-10-27 17:00:36 GMT EAGLE5 36.0.0

CARD VERSION TYPE APPL PST SST AST

1201 114-000-000 DCM IPLIM IS-NR Active -----

ALARM STATUS = No Alarms.

BPDCM GPL = 002-102-000

IMT BUS A = Conn

IMT BUS B = Conn

SIGNALING LINK STATUS

SLK PST LS CLLI

A IS-NR nc001
```

Command Completed.

NOTE: If the ipaddr or submask parameter values are not being changed, skip steps 10, 11, and 12, and go to step 13.

10. Display the attributes of the IP card assigned to the IP link being changed by entering the rtrv-ip-card command and specifying the card location of the IP link. For this example, enter this command.

```
rtrv-ip-card:loc=1201
```

This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:17:37 GMT EAGLE5 36.0.0
LOC 1201
SRCHORDR LOCAL
DNSA 150.1.1.1
DNSB ------
DEFROUTER ------
DOMAIN ------
```

If the rtrv-ip-card output shows an IP address for the default router (DEFROUTER) whose network portion matches the network portion of the IP address being changed, go to the "Changing an IP Card" procedure on page 3-161 and change the IP address of the default router to 0.0.0.0.

11. Display any IP routes referencing the IP link being changed by entering the rtrv-ip-rte command and specifying the card location of the IP link. For this example, enter this command.

```
rtrv-ip-rte:loc=1201
```

This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:17:37 GMT EAGLE5 36.0.0

LOC DEST SUBMASK GTWY

1201 128.252.10.5 255.255.255.255 140.188.13.33

1201 128.252.0.0 255.255.0.0 140.188.13.34

1201 150.10.1.1 255.255.255.255 140.190.15.3

IP Route table is (5 of 1024) 1% full
```

If the rtrv-ip-rte output shows that the card has IP routes assigned to it, go to the "Removing an IP Route" procedure on page 3-177 and remove the IP routes from the database.

NOTE: If a Class A or C IP address (see Table 3-11 on page 3-136) will be specified for the ipaddr parameter in step 15, skip step 12 and go to step 13.

12. The subnet address that results from the <code>ipaddr</code> and <code>submask</code> parameter values of the <code>chg-ip-lnk</code> command cannot be the same as the subnet address that results from the <code>pvn</code> and <code>pvnmask</code> parameter values of the <code>chg-netopts</code> command. Display the <code>pvn</code> and <code>pvnmask</code> parameter values of the <code>chg-netopts</code> command by entering the <code>rtrv-netopts</code> command.

If error message E3967 Cmd Rej: E5IS must be on is displayed after the rtrv-netopts command is executed, the pvn and pvnmask parameters are not configured. Go to step 13.

This is an example of the possible output if the E5IS feature is on.

```
rlghncxa03w 06-10-28 21:17:37 GMT EAGLE5 36.0.0
NETWORK OPTIONS
-----
PVN = 128.20.30.40
PVNMASK = 255.255.192.0
```

Choose ipaddr and submask parameter values for the IP link whose resulting subnet address is not be the same as the subnet address resulting from the pvn and pvnmask parameter values of the chg-netopts command. Go to step 13.

NOTE: If the local host was removed in step 2, skip steps 13 and 14, and go to step 15.

13. Display the application sockets referencing the local host name that is associated with the IP link being changed by entering the rtrv-appl-sock command and specifying the local host name shown in the rtrv-ip-host output in step 2. For this example, enter this command.

rtrv-appl-sock:lhost="ipnode1-1201"

This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:14:37 GMT EAGLE5 36.0.0

SNAME kchlr11201
    LINK A
    LHOST ipnode1-1201
    RHOST kc-hlr1
    LPORT 7000 RPORT 7000
    SERVER YES DCMPS 1
    REXMIT FIXED RTT 60
    OPEN YES ALW NO
```

IP Appl Sock/Assoc table is (3 of 4000) 1% full

If no sockets are displayed in this step, go to step 14.

If the rtrv-appl-sock output shows that the open parameter for any sockets is yes, go to the "Changing an Application Socket" procedure on page 3-202 and change the value of the open parameter of the sockets to no.

14. Display the associations referencing the local host name that is associated with the IP link being changed by entering the rtrv-assoc command and specifying the local host name shown in the rtrv-ip-host output in step 2. For this example, enter this command.

```
rtrv-assoc:lhost="ipnode-1201"
```

This is an example of the possible output.

If no associations are displayed in this step, go to step 15.

If the rtrv-assoc output shows that the open parameter for any associations is yes, go to the "Changing an Association" procedure on page 3-348 and change the value of the open parameter the associations to no.

15. Change the link parameters associated with the IP card in the database using the chg-ip-lnk command. For this example, enter this command.

```
chg-ip-lnk:loc=1201:port=a:ipaddr=192.1.1.10
:submask=255.255.255.0:auto=yes:mactype=dix
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-28 21:18:37 GMT EAGLE5 36.0.0 CHG-IP-LNK: MASP A - COMPLTD
```

16. Verify the new link parameters associated with the IP card that was changed in step 15 by entering the rtrv-ip-lnk command. The following is an example of the possible output.

```
      r1ghn-xa03w 06-10-28 21:19:37 GMT EAGLE5
      36.0.0

      LOC
      PORT 1PADDR
      SUBMASK
      DUPLEX
      SPEED MACTYPE AUTO MCAST

      1201
      A
      192.1.1.10
      255.255.255.0
      ----
      ---
      DIX
      YES
      NO

      1203
      A
      192.1.1.12
      255.255.255.0
      ----
      ---
      DIX
      YES
      NO

      1205
      A
      192.1.1.14
      255.255.255.0
      FULL
      100
      DIX
      NO
      NO
```

NOTE: If step 8 was not performed, skip steps 17 and 18, and go to step 19.

17. Allow the IP card that was inhibited in step 8 by using by using the alw-card command. For example, enter this command.

```
alw-card:loc=1201
```

This message should appear.

```
rlghncxa03w 06-10-28 21:20:37 GMT EAGLE5 36.0.0 Card has been allowed.
```

18. Verify the in-service normal (IS-NR) status of the IP card using the rept-stat-card command. For example, enter this command.

```
rept-stat-card:loc=1201
```

This is an example of the possible output.

```
rlghncxa03w 06-10-27 17:00:36 GMT EAGLE5 36.0.0

CARD VERSION TYPE APPL PST SST AST

1201 114-000-000 DCM IPLIM IS-NR Active -----

ALARM STATUS = No Alarms.

BPDCM GPL = 002-102-000

IMT BUS A = Conn

IMT BUS B = Conn

SIGNALING LINK STATUS

SLK PST LS CLLI

A IS-NR nc001
```

Command Completed.

NOTE: If step 5 was not performed, skip steps 19 and 20, and go to step 21.

19 Activate the signaling link from step 5 using the act-slk command. For example, enter this command.

```
act-slk:loc=1201:link=a
```

The link changes its state from OOS-MT-DSBLD (out-of-service maintenance-disabled) to IS-NR (in-service normal).

The output confirms the activation.

```
rlghncxa03w 06-10-07 11:11:28 GMT EAGLE5 36.0.0 Activate Link message sent to card
```

20. Verify the in-service normal (IS-NR) status of the signaling link using the rept-stat-slk command. For example, enter this command.

```
rept-stat-slk:loc=1201:link=a
```

This message should appear.

```
rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0

SLK LSN CLLI PST SST AST
1201,A nc001 ------ IS-NR Avail ----
Command Completed.
```

NOTE: If the ipaddr or submask values were not changed, skip steps 21 and 22, and go to step 23.

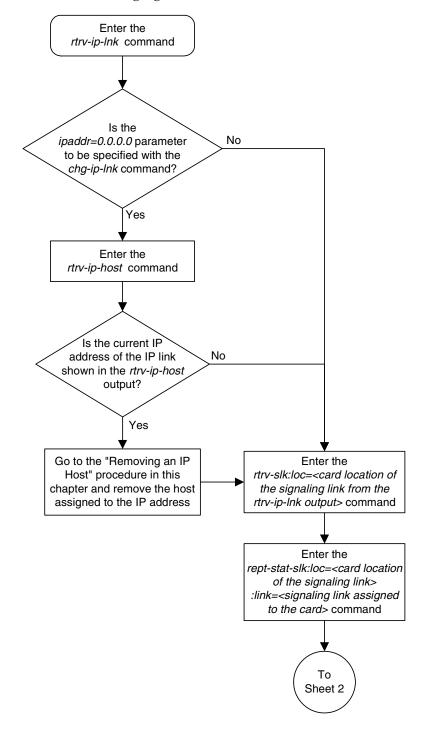
NOTE: If the IP address of the default router was not changed to 0.0.0.0 in step 10, skip step 21, and go to step 22.

21. Go to the "Changing an IP Card" procedure on page 3-161 and change the IP address of the default router to a non-zero value, where the network portion of the default router IP address matches the network portion of the IP link's new IP address.

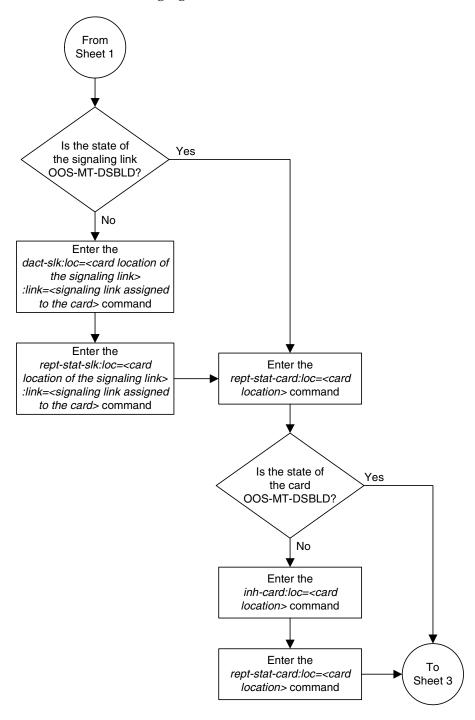
NOTE: If IP routes were not removed in step 11, skip step 22, and go to step 23.

22. Go to the "Adding an IP Route" procedure on page 3-171 and add the IP routes back into the database.

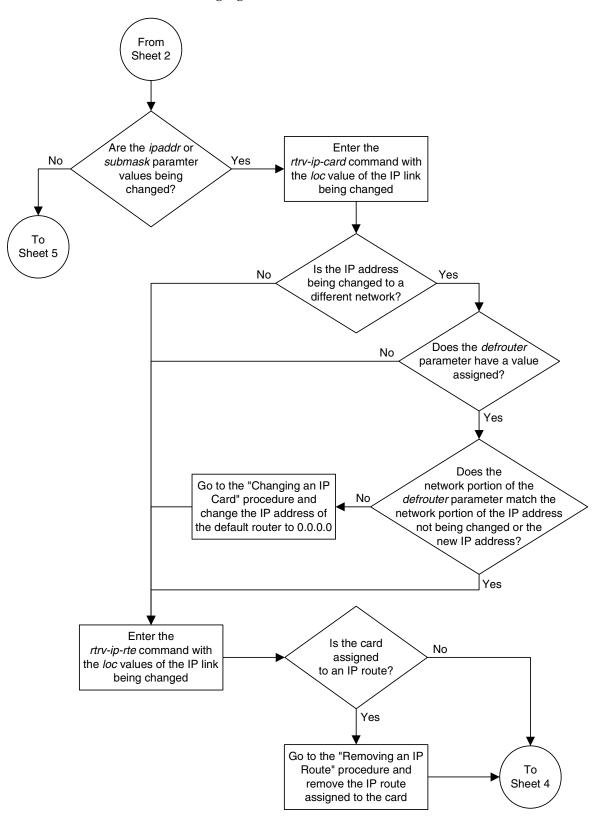
NOTE: If the open parameter value for either an application socket or an association was not changed in either steps 13 or 14, skip step 23, and go to step 24.

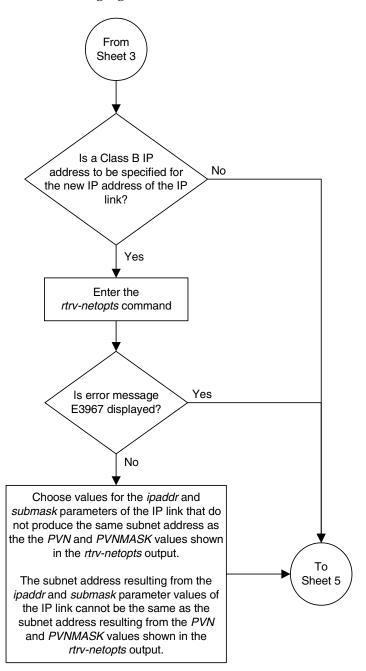

- **23.** Go to one of these procedures and change the value of the **open** parameter either the application socket or the association to **yes**.
 - For an application socket "Changing an Application Socket" on page 3-202
 - For an association "Changing an Association" on page 3-348
- 24. Back up the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

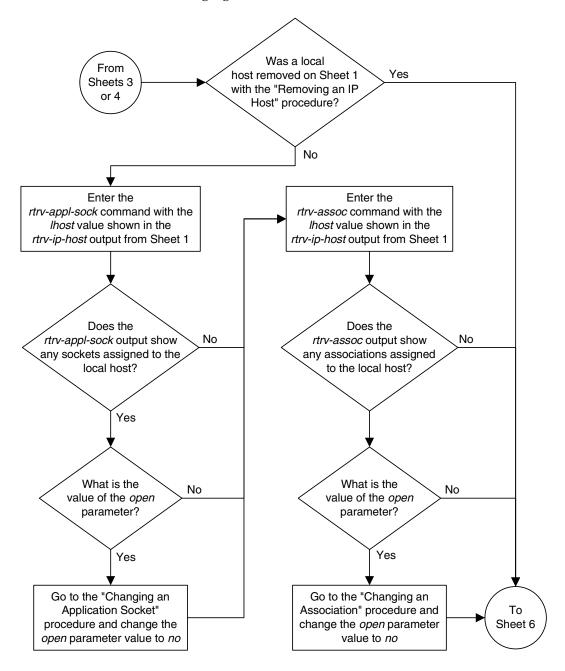
```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.


BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED) : MASP A - Backup starts on standby MASP.

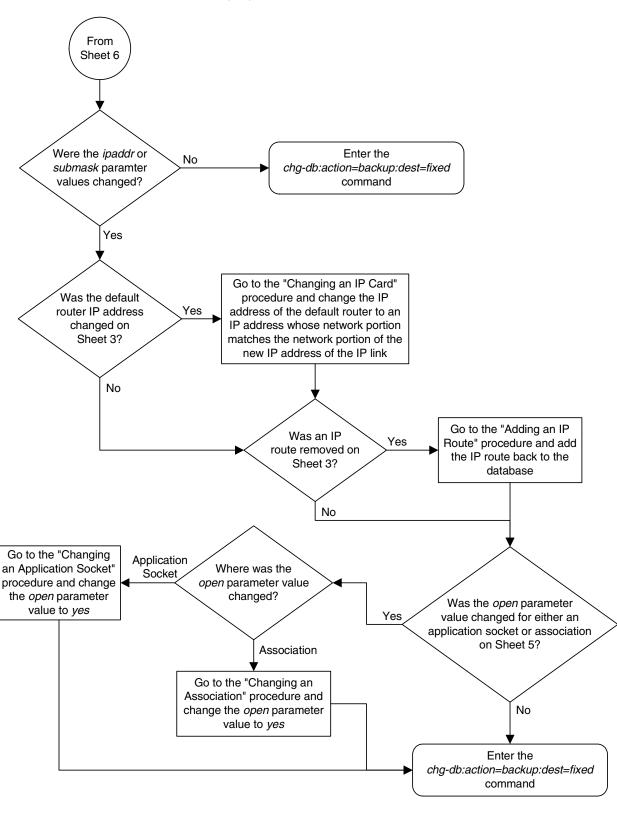

BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```



Flowchart 3-10. Changing an IP Link (Sheet 1 of 7)


Flowchart 3-10. Changing an IP Link (Sheet 2 of 7)

Flowchart 3-10. Changing an IP Link (Sheet 3 of 7)

Flowchart 3-10. Changing an IP Link (Sheet 4 of 7)



Flowchart 3-10. Changing an IP Link (Sheet 5 of 7)

From Sheet 5 Enter the Notes: chg-ip-lnk:loc=<card location of the link> 1. If either the *ipaddr* or *submask* parameters are :port=<signaling link assigned to the card> specified, then both parameters must be specified, command with at least one of these unless the ipaddr=0.0.0.0 parameter is specified, parameters: then the *submask* parameter is not required. :ipaddr = <IP address> 2. The ipaddr=0.0.0.0 parameter disables the IP :submask = <subnet mask of the IP interface> :auto = <yes, no> :duplex = <half, full> 3. If the auto=yes parameter is specified, then the :speed = <10, 100> duplex and speed parameters cannot be :mactype = <dix, 802.3> specified. (See Notes 1, 2, and 3) Enter the rtrv-ip-lnk command Was the state Was the state No of the signaling link No of the card changed on changed on Sheet 2? Sheet 2? Yes Yes Enter the Enter the act-slk:loc=<card location of alw-card:loc=<card the signaling link> location> command :link=<signaling link assigned to the card> command Enter the Enter the rept-stat-card:loc=<card rept-stat-slk:loc=<card location> command To location of signaling link> Sheet 7 :link=<signaling link assigned

to the card> command

Flowchart 3-10. Changing an IP Link (Sheet 6 of 7)

Flowchart 3-10. Changing an IP Link (Sheet 7 of 7)

Adding an IP Host

This procedure associates hostnames with IP addresses using the ent-ip-host command.

The ent-ip-host command uses the following parameters.

:host—The host name to be associated with the IP address. This parameter identifies the logical name assigned to the device with the IP address indicated. The host name can contain up to 60 characters (using only these characters: a-z, A-Z, 0-9, -, .) and is not case sensitive. The host name must begin with a letter. Host names containing a dash (-) must be enclosed in double quotes.

:ipaddr – The IP address to be associated with the hostname. The node's IP address. This is an IP address expressed in standard "dot notation." IP addresses consist of the system's network number and the machine's unique host number.

:type - Specifies if the host resides on the IP card on the EAGLE 5 ISS (type=local, the default value), or if the host resides on equipment that is not in the EAGLE 5 ISS (type=remote). This parameter is optional.

The IP address for a local host must be shown in the rtrv-ip-lnk output.

The IP address for a remote host must not be shown in the rtrv-ip-lnk output.

Procedure

1. Display the current IP host information in the database by entering the rtrv-ip-host command. The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:17:37 GMT EAGLE5 36.0.0
LOCAL IPADDR LOCAL HOST
192.1.1.10 IPNODEL 1.
192.1.205
192.1.1.14
             IPNODE1-1205
192.1.1.20 IPNODE2-1201
192.1.1.22 IPNODE2-1203
192.1.1.24 IPNODE2-1205
192.1.1.32
192.1.1.50
              KC-HLR2
             DN-MSC1
192.1.1.52
              DN-MSC2
REMOTE IPADDR REMOTE HOST
150.1.1.5
             NCDEPTECONOMIC DEVELOPMENT.SOUTHEASTERN COORIDOR ASHVL.GOV
IP Host table is (10 of 512) 2% full
```

2. Verify that the IP address assigned to the IP links by entering the rtrv-ip-lnk command. The following is an example of the possible output.

```
      r1ghn-xa03w 06-10-28 21:17:37 GMT EAGLE5
      36.0.0

      LOC
      PORT IPADDR
      SUBMASK
      DUPLEX
      SPEED MACTYPE
      AUTO MCAST

      1201
      A
      192.1.1.10
      255.255.255.0
      ----
      ---
      DIX
      YES
      NO

      1203
      A
      192.1.1.12
      255.255.255.0
      ----
      ---
      DIX
      YES
      NO

      1205
      A
      192.1.1.14
      255.255.255.0
      FULL
      100
      DIX
      NO
      NO
```

If a local host is being configured in this procedure, the IP address assigned to the local host must be shown in the rtrv-ip-lnk output. If the IP address is not shown in the rtrv-ip-lnk output, add the IP address by performing the "Changing an IP Link" on page 3-135.

If a remote host is being configured in this procedure, the IP address assigned to the remote host cannot be shown in the rtrv-ip-lnk output.

3. Add IP host information to the database by entering the ent-ip-host command. If a local host is being configured, enter the ent-ip-host command with the IP address from step 2, and the type=local parameter or without the type parameter. If the type parameter is not specified with the ent-ip-host command, the type parameter value defaults to local.

If a remote host is being configured, enter the ent-ip-host command with the IP address that is not shown in step 2, and the type=remote parameter.

For example, enter this command.

```
ent-ip-host:host="kc-hlr1":ipaddr=192.1.1.30
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-28 21:18:37 GMT EAGLE5 36.0.0 ENT-IP-HOST: MASP A - COMPLTD
```

4. Verify the new IP host information in the database by entering the rtrv-ip-host command with the host parameter value specified in step 3. For this example, enter this command.

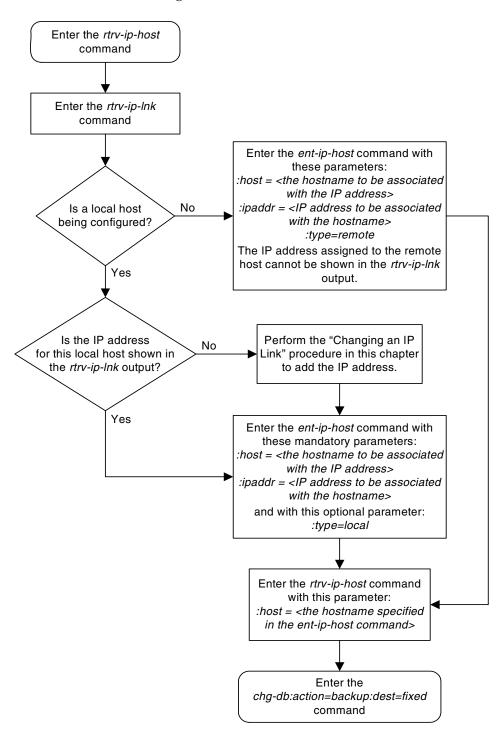
```
rtrv-ip-host:host="kc-hlr1"
```

The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:19:37 GMT EAGLE5 36.0.0

LOCAL IPADDR LOCAL HOST
192.1.1.30 KC-HLR1

IP Host table is (10 of 512) 2% full
```


5. Back up the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.

BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED) : MASP A - Backup starts on standby MASP.

BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```


Flowchart 3-11. Adding an IP Host

Removing an IP Host

This procedure removes the association between a hostname and an IP address using the dlt-ip-host command.

The dlt-ip-host command uses the following parameters.

rlghncxa03w 06-10-28 21:17:37 GMT EAGLE5 36.0.0

:host- Hostname. The hostname to be removed. This parameter identifies the logical name assigned to a device with an IP address.

No sockets and associations can reference the host name being removed in this procedure. The sockets and associations referencing the host name must be removed by performing the "Removing an Application Socket" procedure on page 3-198 or "Removing an Association" procedure on page 3-344, or the host name in these sockets and associations must be changed by performing the "Changing an Application Socket" procedure on page 3-202 or "Changing an Association" procedure on page 3-348. The host name assigned to sockets and associations is displayed in the rtrv-appl-sock or rtrv-assoc outputs.

Procedure

1. Display the current IP host information in the database by entering the rtrv-ip-host command. The following is an example of the possible output.

```
LOCAL IPADDR LOCAL HOST
192.1.1.10 IPNODE1-1201
192.1.1.12 IPNODE1-1203
192.1.1.14
             IPNODE1-1205
192.1.1.20
             IPNODE2-1201
192.1.1.22
             IPNODE2-1203
192.1.1.24
192.1.1.30
               IPNODE2-1205
             KC-HLR1
192.1.1.32
             KC-HLR2
192.1.1.50
             DN-MSC1
             DN-MSC2
192.1.1.52
192.3.3.33
             GW100.NC.TEKELEC.COM
REMOTE IPADDR REMOTE HOST
150.1.1.5 NCDEPTECONOMIC_DEVELOPMENT.SOUTHEASTERN_COORIDOR_ASHVL.GOV
IP Host table is (12 of 512) 2% full
```

2. Display the sockets referencing the host name being removed in this procedure by entering the rtrv-appl-sock command. For this example, enter this command.

rtrv-appl-sock:lhost=gw100.nc.tekelec.com

The following is an example of the possible output.

```
      rlghncxa03w 06-10-28 21:14:37 GMT EAGLE5 36.0.0

      SNAME KC_HLR1_1103

      LINK A

      LHOST GW100.NC.TEKELEC.COM

      RHOST KC_HLR2

      LPORT 7000 RPORT 7001

      SERVER YES DCMPS 1

      REXMIT FIXED RTT 60

      OPEN YES ALW YES
```

IP Appl Sock/Assoc table is (4 of 4000) 1% full

If no sockets referencing the host name being removed in this procedure are shown in this step, go to step 3.

Any sockets referencing the host name must either be removed or the host name assigned to the socket must be changed. To remove the sockets, perform the "Removing an Application Socket" procedure on page 3-198. Go to step 3 after the sockets have been removed.

To change the host name assigned to the sockets, perform the "Changing an Application Socket" procedure on page 3-202. Go to step 3 after the host name assigned to the sockets have been changed.

3. Display the associations referencing the host name being removed in this procedure by entering the rtrv-assoc command with the local host name. For this example, enter this command.

rtrv-assoc:lhost=gw100.nc.tekelec.com

The following is an example of the possible output.

If no associations referencing the host name being removed in this procedure are shown in this step, go to step 4.

Any associations referencing the host name must either be removed or the host name assigned to the association must be changed. To remove the associations, perform the "Removing an Association" procedure on page 3-344. Go to step 4 after the associations have been removed.

To change the host name assigned to the associations, perform the "Changing an Association" procedure on page 3-348. Go to step 4 after the host name assigned to the associations have been changed.

4. Delete IP host information from the database by entering the dlt-ip-host command. For example, enter this command.

```
dlt-ip-host:host=gw100.nc.tekelec.com
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-28 21:19:37 GMT EAGLE5 36.0.0 DLT-IP-HOST: MASP A - COMPLTD
```

5. Verify the changes by entering the rtrv-ip-host command with the host name specified in step 4. For this example, enter this command.

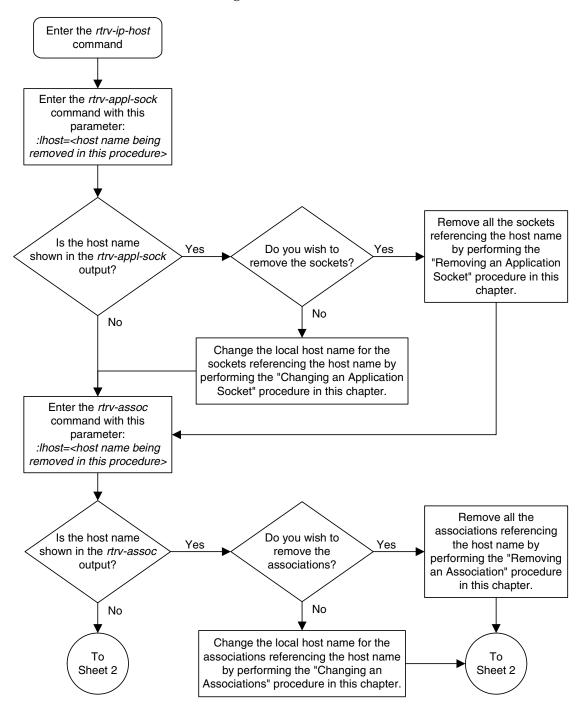
```
rtrv-ip-host:host=gw100.nc.tekelec.com
```

The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:20:37 GMT EAGLE5 36.0.0

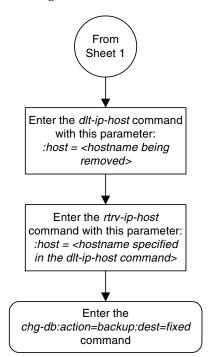
LOCAL IPADDR LOCAL HOST

IP Host table is (10 of 512) 2% full
```


6. Back up the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.

BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.


BACKUP (FIXED) : MASP A - Backup starts on standby MASP.

BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```


Flowchart 3-12. Removing an IP Host (Sheet 1 of 2)

Flowchart 3-12. Removing an IP Host (Sheet 2 of 2)

Changing an IP Card

This procedure is used to change the IP stack parameters associated with an IP card in the database using the chg-ip-card command.

The chg-ip-card command uses the following parameters.

- :loc The card location of the IP card
- :srchordr Host Table Search Order
- :dnsa Domain name server A's IP address. This is an IP address expressed in standard "dot notation." IP addresses consist of the system's network number and the machine's unique host number.
- :dnsb Domain name server B's IP address. This is an IP address expressed in standard "dot notation." IP addresses consist of the system's network number and the machine's unique host number.
- :domain The domain name is used to construct a fully-qualified DNS name
 consisting of 120 characters or less. For example, a domain name can be
 tekelec.com, the hostname is john.doe. The fully-qualified DNS name
 would be john.doe@tekelec.com.
- :defrouter Default router IP address. This is an IP address expressed in standard "dot notation." IP addresses consist of the system's network number and the machine's unique host number.
- :rstdomain Reset Domain name. The parameter is used to reset the domain to a NULL value.

The IP card must be placed out of service.

The **rstdomain** parameter cannot be specified if the **domain** parameter is specified.

There is only one default router (defrouter parameter) for each IP card. The default router is used as the primary route unless a static IP routes is defined for the destination IP address. Static IP routes are assigned using the ent-ip-rte command in the "Adding an IP Route" procedure on page 3-171.

The network portion of the IP address of the default router must match the network portion of one of the IP addresses assigned to the card.

The network portion of the IP address is based on the class of the IP address (shown in Table 3-11 on page 3-136). If the IP address is a Class A IP address, the first field is the network portion of the IP address. If the IP address is a Class B IP address, the first two fields are the network portion of the IP address. If the IP address is a Class C IP address, the first three fields are the network portion of the IP address. For example, if the IP address is 193.5.207.150, a Class C IP address, the network portion of the IP address is 193.5.207.

The default router can be associated with only one IP address assigned to the card if the defrouter parameter is specified. For example, the **dnsa** value for card 1101 is 150.1.1.10. The **dnsb** value for card 1101 is 160.25.37.1. A default router is provisioned with the IP address 150.1.1.4. The default router is associated with

the Ethernet A IP address (the dnsa parameter value), but not the Ethernet B IP address (the dnsb parameter value).

If the default router is associated with one of the IP card's IP addresses, a second gateway router can be assigned to the other IP address on the IP card by provisioning a static IP route for the IP card using the <code>ent-ip-rte</code> command in the "Adding an IP Route" procedure on page 3-171. Static IP routes can provide gateway routers associated with the other IP address on the IP card. To provision the gateway router (the <code>gtwy</code> parameter of the <code>ent-ip-rte</code> command) for the other IP address assigned to the IP card, the network portion of the gateway router's IP address must match the network portion of the other IP address assigned to the IP card.

Specifying the IP address 0.0.0.0 for the dnsa or dnsb parameters, removes the IP address for Ethernet A (dnsa) or Ethernet B (dnsb).

When an IP card is entered into the database with the ent-card command, the IP stack parameters associated with this card are initially set with these default values:

- :srchordr SRVR
- :dnsa No DNSA IP address is specified
- :dnsb No DNSB IP address is specified
- :domain No domain name is specified
- :defrouter No default router IP address is specified
- :rstdomain No

The value of any optional parameter not specified with the chg-ip-card command is not changed.

The examples in this procedure are based on the sample network shown in Figure 3-3 on page 3-14 and Table 3-3 on page 3-16.

Procedure

1. Display the current IP parameters associated with card in the database by entering the rtrv-ip-card command. The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:17:37 GMT EAGLE5 36.0.0

LOC 1201

SRCHORDR LOCAL

DNSA 150.1.1.1

DNSB ------

DEFROUTER ------

DOMAIN ------

LOC 1203

SRCHORDR LOCAL

DNSA 192.1.1.40

DNSB ------

DEFROUTER ------

DEFROUTER ------

DOMAIN NC.TEKELEC.COM
```

```
LOC 1205

SRCHORDR SRVRONLY

DNSA 192.1.1.40

DNSB ------

DEFROUTER -----

DOMAIN NC.TEKELEC.COM
```

To change the parameters of an IP card, the signaling link to the card and the card have to be inhibited.

2. Display the signaling link associated with the card shown in step 1 using the rtrv-slk command specifying the card location. For this example, enter this command.

```
rtrv-slk:loc=1201
```

This is an example of the possible output.

```
      rlghncxa03w
      06-10-28
      21:17:37
      GMT
      EAGLE5
      36.0.0

      LOC
      LINK
      LSN
      SLC
      TYPE
      IPLIML2

      1201
      A
      nc001
      0
      IPLIM
      SAALTALI
```

3. Retrieve the status of the signaling link shown in step 2 using the rept-stat-slk command specifying the card location and signaling link. For example, enter this command.

```
rept-stat-slk:loc=1201:link=a
```

The output lists the signaling link assigned to this card:

If the signaling link is in service-normal (IS-NR), go to step 4 to deactivate the signaling link. If the signaling link is out-of-service-maintenance disabled (OOS-MT-DSBLD), skip steps 4 and 5, and go to step 6 to verify the card status.

4. Deactivate the signaling link assigned to the IP card using the rept-stat-slk command. For example, enter this command.

```
dact-slk:loc=1201:link=a
```


CAUTION: This command impacts network performance and should only be used during periods of low traffic.

After this command has successfully completed, this message appears.

```
rlghncxa03w 06-10-12 09:12:36 GMT EAGLE5 36.0.0 Deactivate Link message sent to card.
```

5. Verify the new link status using the rept-stat-slk command. For example, enter this command.

```
rept-stat-slk:loc=1201:link=a
```

The output displays the link status as OOS-MT-DSBLD and gives off a minor alarm:

```
rlghncxa03w 06-10-27 17:00:36 GMT EAGLE5 36.0.0

SLK LSN CLLI PST SST AST
1201,A nc001 ------- OOS-MT-DSBLD AVAIL ---
ALARM STATUS = * 0236 REPT-LKS:not aligned
UNAVAIL REASON = NA
Command Completed.
```

6. Verify the status of the IP card to be inhibited using the rept-stat-card command. For example, enter this command.

```
rept-stat-card:loc=1201
```

This is an example of the possible output.

Command Completed.

If the IP card to be inhibited is in service-normal (IS-NR), go to step 7 to inhibit the card. If the IP card is out-of-service-maintenance disabled (OOS-MT-DSBLD), skip steps 7 and 8, and go to step 9.

7. Inhibit the IP card using the inh-card command. For example, enter this command.

```
inh-card:loc=1201
```

This message should appear.

```
rlghncxa03w 06-10-28 21:18:37 GMT EAGLE5 36.0.0 Card has been inhibited.
```

8. Display the status of the IP card to verify that it is out-of-service maintenance-disabled (OOS-MT-DSBLD). Enter this command.

```
rept-stat-card:loc=1201
```

This is an example of the possible output.

Command Completed.

NOTE: If the defrouter parameter is not specified in step 10, skip this step and go to step 10.

9. Verify that the IP address of either Ethernet A or B (the address whose network portion matches the network portion of the defrouter parameter value to be used in step 10) is in the IP link table by entering the rtrv-ip-lnk command with the card location specified in this procedure. For this example, enter this command.

```
rtrv-ip-lnk:loc=1201
```

The following is an example of the possible output.

```
    rlghncxa03w 06-10-28 21:17:37 GMT EAGLE5 36.0.0

    LOC
    PORT IPADDR
    SUBMASK
    DUPLEX
    SPEED MACTYPE AUTO MCAST

    1201
    A 192.1.1.10
    255.255.255.0
    ----
    ---
    DIX
    YES
    NO

    1201
    B
    ----
    ----
    DIX
    YES
    NO
```

If the network portion of the IP address specified by the defrouter value does not match the network portions of either IP address displayed in this step, perform one of these actions:

- Choose another value for the defrouter parameter, making sure that the
 network portion of the new IP address matches the network portion of one
 of the IP addresses displayed in this step.
- Perform the "Changing an IP Link" procedure on page 3-135 and change one of the IP addresses shown in this step so that the network portion of the new IP address changed in the "Changing an IP Link" procedure matches the network portion of the IP address value for the defrouter parameter.

10. Change the IP stack parameters associated with an IP card in the database using the chg-ip-card command. For this example, enter this command.

```
chg-ip-card:loc=1201:srchordr=local:dnsa=192.1.1.40
:domain=nc.tekelec.com
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-28 21:20:37 GMT EAGLE5 36.0.0 CHG-IP-CARD: MASP A - COMPLTD
```

11. Verify the new IP parameters associated with the IP card that was changed in step 10 by entering the rtrv-ip-card command.

The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:21:37 GMT EAGLE5 36.0.0
  LOC 1201
   SRCHORDR LOCAL
   DNSA 192.1.1.40
DNSB -----
   DEFROUTER -----
   DOMAIN NC.TEKELEC.COM
  LOC 1203
   SRCHORDR LOCAL
   DNSA 192.1.1.40
DNSB -----
   DEFROUTER -----
   DOMAIN NC.TEKELEC.COM
  LOC 1205
    SRCHORDR SRVRONLY
   DNSA 192.1.1.40
    DNSB
    DEFROUTER -----
    DOMAIN NC.TEKELEC.COM
```

NOTE: If step 7 was not performed, skip steps 12 and 13, and go to step 14.

12. Allow the IP card that was inhibited in step 7 by using the alw-card command. For example, enter this command.

```
alw-card:loc=1201
```

This message should appear.

```
rlghncxa03w 06-10-28 21:22:37 GMT EAGLE5 36.0.0 Card has been allowed.
```

13. Verify the in-service normal (IS-NR) status of the IP card using the rept-stat-card command. For example, enter this command.

```
rept-stat-card:loc=1201
```

This is an example of the possible output.

Command Completed.

NOTE: If step 4 was not performed, skip steps 14 and 15, and go to step 16.

14 Activate the signaling link from step 4 using the act-slk command. For example, enter this command.

```
act-slk:loc=1201:link=a
```

The link changes its state from OOS-MT-DSBLD (out-of-service maintenance-disabled) to IS-NR (in-service normal).

The output confirms the activation.

```
rlghncxa03w 06-10-07 11:11:28 GMT EAGLE5 36.0.0 Activate Link message sent to card
```

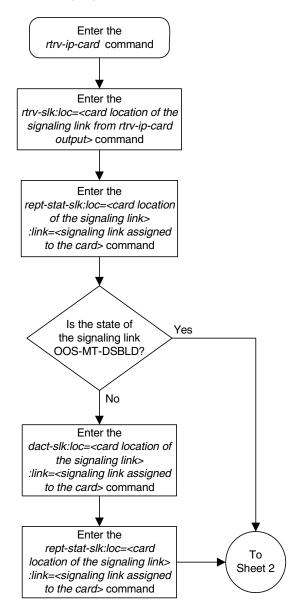
15. Verify the in-service normal (IS-NR) status of the signaling link using the rept-stat-slk command. For example, enter this command.

```
rept-stat-slk:loc=1201:link=a
```

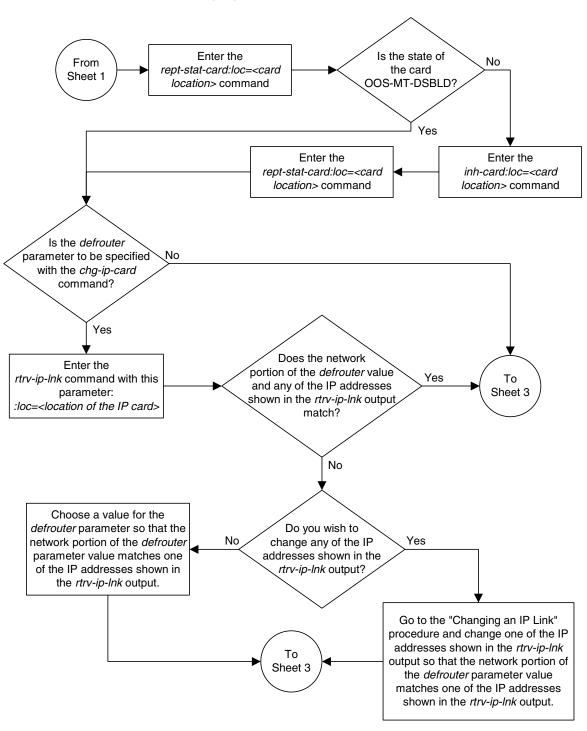
This message should appear.

```
rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0

SLK LSN CLLI PST SST AST
1201,A nc001 ------ IS-NR Avail ----
Command Completed.
```

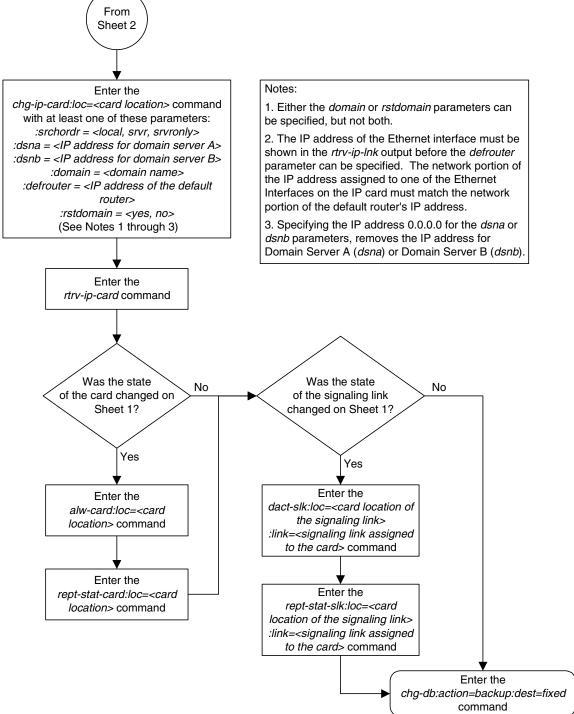

16. Back up the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.


BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED) : MASP A - Backup starts on standby MASP.

BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```



Flowchart 3-13. Changing an IP Card (Sheet 1 of 3)

Flowchart 3-13. Changing an IP Card (Sheet 2 of 3)

Flowchart 3-13. Changing an IP Card (Sheet 3 of 3)

Adding an IP Route

This procedure is used to add an IP route to the database using the ent-ip-rte command.

The ent-ip-rte command uses these parameters.

:loc – The location of the IP card that the IP route will be assigned to.

:dest - The IP address of the remote host or network.

: submask - The subnet mask of the destination IP address.

:gtwy – The IP address of the gateway or router that will send the IP data to its final destination.

There can be a maximum of 64 IP routes assigned to an IP card.

The EAGLE 5 ISS can contain a maximum of 1024 IP routes.

If the IP card specified by the loc parameter is a single-slot EDCM, the card may contain IP addresses for Ethernet A and B. If the IP card specified by the loc parameter is a DCM, the card can contain an IP address for Ethernet A only.

The network portion of the IP address value of the gtwy parameter must be the same as the network portion of the IP addresses shown for either the A or B interfaces in the rtrv-ip-card output.

The value of the dest and gtwy parameters cannot be 127.x.x.x (the loopback address), 0.0.0.0, or the IP addresses of the A or B interfaces on the IP card, and cannot be assigned to another IP card.

If the dest parameter value represents a host IP address, the value for the submask parameter must be 255.255.255.255. Otherwise, the submask parameter value is identifies the network/host ID portions that must be entered when the dest parameter value represents a network address.

The submask is applied to the IP address which is being routed to see if it yields a route match. For example, if IP address 192.1.1.2 is being routed and the IP routing table contains these entries.

IP address	Submask	Gateway
191.1.0.0	255.255.0.0	192.168.110.250
192.0.0.0	255.0.0.0	192.168.110.251

IP routing occurs as follows:

- 1. The subnet mask of route 1 (255.255.0.0) is applied to the IP address being routed (192.1.1.2) with the resulting IP address of 192.1.0.0. IP address 192.1.0.0 does not match IP address 191.1.0.0 in the IP routing table, so the next route is chosen.
- 2. The subnet mask of route 2 (255.0.0.0) is applied to the IP address being routed (192.1.1.2) with the resulting IP address of 192.0.0.0 which matches the second route in the IP routing table, so this route is selected for routing this datagram.

See Table 3-12 for the valid input values for the **submask** and **dest** parameter combinations.

Table 3-12. Valid Subnet Mask Parameter Values

Network Class	IP Network Address Range	Valid Subnet Mask Values
A	1.0.0.0 to 127.0.0.0	255.0.0.0 (the default value for a class A IP address) 255.192.0.0 255.224.0.0 255.240.0.0 255.248.0.0 255.252.0.0 255.252.1
A+B	128.1.0.0 to 191.255.0.0	255.255.0.0 (the default value for a class B IP address) 255.255.192.0 255.255.224.0 255.255.240.0 255.255.248.0 255.255.252.0 255.255.255.258.0
A+B+C	192.0.0.0 to 223.255.255.0	255.255.255.0 (the default value for a class C IP address) 255.255.255.192 255.255.255.224 255.255.255.240 255.255.255.248 255.255.255.252

If a Class B IP address is specified for the dest parameter of the ent-ip-rte command, the subnet address that results from the dest and submask parameter values cannot be the same as the subnet address that results from the pvn and pvnmask parameter values of the chg-netopts command. The pvn and pvnmask parameter values can be verified by entering the rtrv-netopts command. Choose dest and submask parameter values for the IP route whose resulting subnet address is not be the same as the subnet address resulting from the pvn and pvnmask parameter values of the chg-netopts command.

Procedure

1. Display the IP routes in the database with the rtrv-ip-rte command. This is an example of the possible output.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0

LOC DEST SUBMASK GTWY

1301 128.252.10.5 255.255.255 140.188.13.33

1301 128.252.0.0 255.255.0.0 140.188.13.34

1301 150.10.1.1 255.255.255.255 140.190.15.3

1303 192.168.10.1 255.255.255.255 150.190.15.23

1303 192.168.0.0 255.255.255.0 150.190.15.24

IP Route table is (5 of 1024) 1% full
```

2. Display the IP cards in the database with the rtrv-ip-card command. This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:17:37 GMT EAGLE5 36.0.0
  LOC 1212
    SRCHORDR LOCAL
    DNSA 150.1.1.1
    DNSB
    DEFROUTER 150.1.1.100
    DOMAIN NC.TEKELEC.COM
  LOC 1301
    SRCHORDR SRVRONLY
    DNSA 140.188.13.10
    DNSB
           140.190.15.28
    DEFROUTER -----
    DOMAIN NC.TEKELEC.COM
  LOC 1303
    SRCHORDR LOCAL
    DNSA 150.190.15.1
    DNSB
           ______
    DEFROUTER 150.190.15.25
           NC.TEKELEC.COM
```

If the required IP card is not shown in the rtrv-ip-card output, perform the "Adding an IP Card" procedure on page 3-17 to add the card to the database.

Perform the "Changing an IP Card" procedure on page 3-161 and make sure that the network portion of the IP addresses assigned for the A or B interfaces of the IP card is the same as the network portion of the IP address that will be assigned to the gtwy parameter of the IP route

NOTE: If a Class A or C IP address (see Table 3-12 on page 3-172) will be specified for the dest parameter in step 4, skip step 3 and go to step 4.

3. The subnet address that results from the dest and submask parameter values of the ent-ip-rte command cannot be the same as the subnet address that results from the pvn and pvnmask parameter values of the chg-netopts command. Display the pvn and pvnmask parameter values of the chg-netopts command by entering the rtrv-netopts command.

If error message E3967 Cmd Rej: E5IS must be on is displayed after the rtrv-netopts command is executed, the pvn and pvnmask parameters are not configured. Go to step 4.

This is an example of the possible output if the E5IS feature is on.

```
rlghncxa03w 06-10-28 21:17:37 GMT EAGLE5 36.0.0
NETWORK OPTIONS
------
PVN = 128.20.30.40
PVNMASK = 255.255.192.0
```

Choose dest and submask parameter values for the IP route whose resulting subnet address is not be the same as the subnet address resulting from the pvn and pvnmask parameter values of the chg-netopts command. Go to step 4.

4. Add the IP route to the database using the **ent-ip-rte** command. For this example, enter this command.

```
ent-ip-rte:loc=1212:dest=132.10.175.20:submask=255.255.255.255
:gtwy=150.1.1.50
```

When this command has successfully completed, this message should appear.

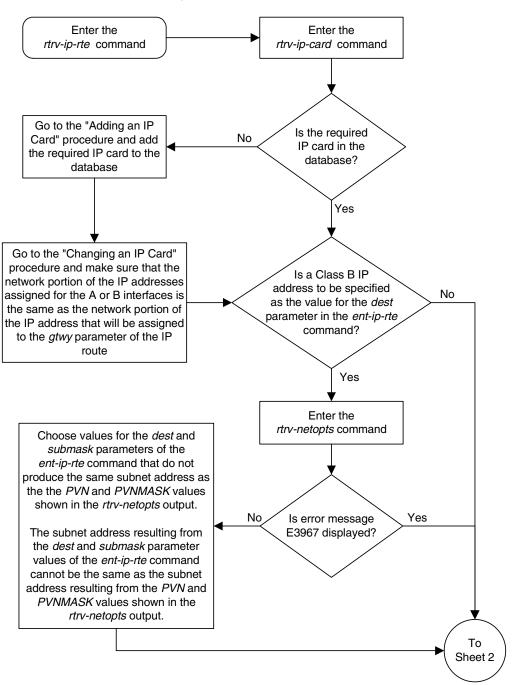
```
rlghncxa03w 06-10-12 09:12:36 GMT EAGLE5 36.0.0 ENT-IP-RTE: MASP A - COMPLTD
```

5. Verify the changes using the rtrv-ip-rte command with the card location specified with the ent-ip-rte command in step 4. For this example, enter these commands.

```
rtrv-ip-rte:loc=1212
```

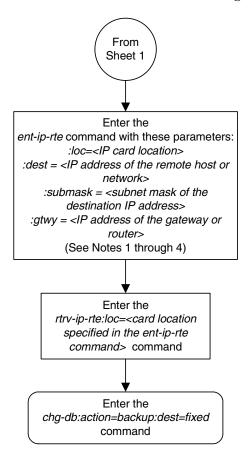
This is an example of the possible output.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0 LOC DEST SUBMASK GTWY 1212 132.10.175.20 255.255.255.255 150.1.1.50 IP Route table is (6 of 1024) 1% full
```


6. Back up the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.

BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.


BACKUP (FIXED) : MASP A - Backup starts on standby MASP.

BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```


Flowchart 3-14. Adding an IP Route (Sheet 1 of 2)

Flowchart 3-14. Adding an IP Route (Sheet 2 of 2)

Notes:

- 1. The network portion of the IP address value of the *gtwy* parameter must be the same as the network portion of the IP addresses shown for either the A or B interfaces in the *rtrv-ip-card* output.
- 2. The value of the *dest* and *gtwy* parameters cannot the 127.x.x.x (the loopback address), 0.0.0.0, or the IP addresses of the A or B interfaces on the IP card, and cannot be assigned to another IP card.
- 3. There can be a maximum of 64 IP routes assigned to an IP card.
- 4. The EAGLE 5 ISS can contain a maximum of 1024 IP routes.

Removing an IP Route

This procedure is used to remove an IP route from the database using the dlt-ip-rte command.

The dlt-ip-rte command uses these parameters.

:loc – The location of the IP card containing the IP route being removed.

:dest - The IP address of the remote host or network assigned to the IP route being removed.

:force – To remove the IP route, the IP card that the route is assigned to must be out of service, or the force=yes parameter must be specified with the dlt-ip-rte command. The force=yes parameter allows the IP route to be removed if the IP card is in service.

CAUTION: Removing an IP route while the IP card is still in service can result in losing the ability to route outbound IP traffic on the IP card. This can cause both TCP and SCTP sessions on the IP card to be lost.

Procedure

1. Display the IP routes in the database with the rtrv-ip-rte command. This is an example of the possible output.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0

LOC DEST SUBMASK GTWY

1212 132.10.175.20 255.255.0.0 150.1.1.50

1301 128.252.10.5 255.255.255 140.188.13.33

1301 128.252.0.0 255.255.0.0 140.188.13.34

1301 150.10.1.1 255.255.255 140.190.15.3

1303 192.168.10.1 255.255.255.255 150.190.15.23

1303 192.168.0.0 255.255.255.0 150.190.15.24

IP Route table is (6 of 1024) 1% full
```

NOTE: If the IP card that the IP route is being assigned to is not shown in the rtrv-ip-card output in step 2, skip this step and go to step 4.

2. Verify the state of the IP card containing the IP route being removed by entering the rept-stat-card command and specifying the card location of the IP card. The IP card should be in the out-of-service maintenance-disabled (OOS-MT-DSBLD) in order to remove the IP route. If the IP card's state is out-of-service maintenance-disabled, the entry OOS-MT-DSBLD is shown in the PST column of the rept-stat-card output. For this example, enter this command.

rept-stat-card:loc=1301

This is an example of the possible output.

```
rlghncxa03w 06-10-27 17:00:36 GMT EAGLE5 36.0.0

CARD VERSION TYPE APPL PST SST AST

1301 114-000-000 DCM IPLIM IS-NR Active -----

ALARM STATUS = No Alarms.

BPDCM GPL = 002-102-000

IMT BUS A = Conn

IMT BUS B = Conn

SIGNALING LINK STATUS

SLK PST LS CLLI

A IS-NR nc001
```

Command Completed.

NOTE: If the output of step 2 shows that the IP card's state is not OOS-MT-DSBLD, and you do not wish to change the state of the IP card, skip step 3 and go to step 4.

3. Change the IP card's state to OOS-MT-DSBLD using the inh-card command and specifying the card location of the IP card. For this example, enter these commands.

```
inh-card:loc=1301
```

When this command has successfully completed, this message appears.

```
rlghncxa03w 06-10-12 09:12:36 GMT EAGLE5 36.0.0 Card has been inhibited.
```

4. Remove the IP route from the database using the dlt-ip-rte command. If the state of the IP card is not OOS-MT-DSBLD, the force=yes parameter must be specified with the dlt-ip-rte command. For this example, enter this command.

```
dlt-ip-rte:loc=1301:dest=128.252.0.0
```


CAUTION: Removing an IP route while the IP card is still in service can result in losing the ability to route outbound IP traffic on the IP card. This can cause both TCP and SCTP sessions on the IP card to be lost.

When this command has successfully completed, this message should appear.

```
rlghncxa03w 06-10-12 09:12:36 GMT EAGLE5 36.0.0 DLT-IP-RTE: MASP A - COMPLTD
```

5. Verify the changes using the rtrv-ip-rte command. This is an example of the possible output.

```
rlghmcxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0

LOC DEST SUBMASK GTWY

1212 132.10.175.20 255.255.0.0 150.1.1.50

1301 128.252.10.5 255.255.255 140.188.13.33

1301 150.10.1.1 255.255.255.255 140.190.15.3

1303 192.168.10.1 255.255.255.255 150.190.15.23

1303 192.168.0.0 255.255.0.0 150.190.15.24

IP Route table is (5 of 1024) 1% full
```

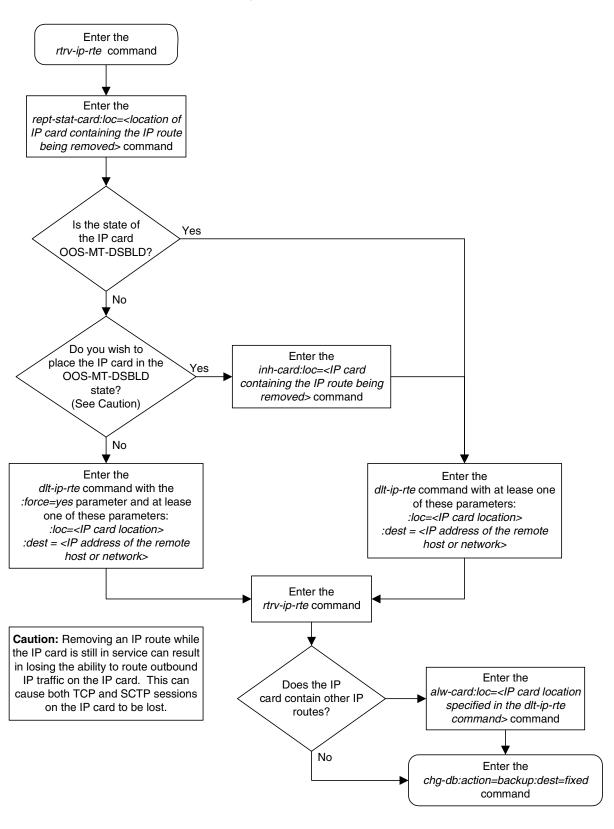
NOTE: If the IP card containing the IP route that was removed from the database does not contain other IP routes, skip step 6 and go to step 7.

6. Place the IP card back into service by using the alw-card command. For example, enter this command.

```
alw-card:loc=1301
```

This message should appear.

```
rlghncxa03w 06-10-28 21:22:37 GMT EAGLE5 36.0.0 Card has been allowed.
```


7. Back up the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.

BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED) : MASP A - Backup starts on standby MASP.

BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```


Flowchart 3-15. Removing an IP Route

Adding an Application Socket

This procedure is used to add an application socket to the database using the ent-appl-sock command. The combination of local host, local TCP port, remote host and remote TCP port defines an application socket.

The ent-appl-sock command uses these parameters.

:sname—The name assigned to the socket. Valid socket names can contain up to 15 alphanumeric characters where the first character is a letter and the remaining characters are alphanumeric characters. The sname parameter value is not case-sensitive.

: lhost – Local Hostname. The logical name assigned to the local host device. The local host name must be shown in the LOCAL HOST column of the rtrv-ip-host output. Local host names that contain dashes (-) must be enclosed in double quotes (").

:lport – The TCP port number for the local host.

:rhost – Remote Hostname. The logical name assigned to the remote host device. The remote host name does not have to be shown in the rtrv-ip-host output. If remote host name is shown in the rtrv-ip-host output, it must be shown in the REMOTE HOST column of the rtrv-ip-host output. Remote host names that contain dashes (-) must be enclosed in double quotes (").

:rport - The TCP port number of the remote host.

:link — The signaling link on the IP card. If a signaling link is not specified for a socket when it is entered, the socket defaults to the signaling link A. If the card's application is iplim or iplimi, and the card is a dual-slot DCM, the values for the link parameter can be only a or b. If the card's application is iplim or iplimi, and the card is a single-slot EDCM, the values for the link parameter can be a, a1, a2, a3, b, b1, b2, or b3. If the IP card's application is ss7ipgw or ipgwi, only link=a can be specified.

NOTE: The port parameter can be used in place of the link parameter to specify the signaling link on the card.

NOTE: If the ITU National and International Spare Point Code Support feature is enabled, the socket cannot reference a card running the IPGWI application. Enter the rtrv-ctrl-feat:partnum=893013601 command to verify whether or not the ITU National and International Spare Point Code Support feature is enabled. If the ITU National and International Spare Point Code Support feature is enabled, and the IP connection is being assigned to a card running the IPGWI application, the IP connection must be an IETF association. Perform the "Adding an Association" procedure on page 3-327 to add the IP connection to the database.

The maximum number of TALI sockets and SCTP association to application server assignments that can be hosted by an IPGWx card (referenced by the lhost parameter of the socket and association) is 50. For example, if the IPGWx card contains 22 SCTP association to application server assignments, the maximum

number of TALI sockets the IPGWx card can support is 28. The SCTP association to application server assignments can be verified with the rtrv-assoc:lhost=<local host name> and rtrv-as:aname=<association name> commands.

Table 3-13. Examples of IPGWx Card Provisioning Limits

Number of Associations hosted by the IPGWx card	Number of Application Servers each Association is Assigned to *	Number of TALI Sockets Hosted by the IPGWx card	Total Association - Application Server Assignments and TALI Sockets maintained by the IPGWx card	
1	50	0	50	
50	1	0	50	
25	1	25	50	
25	2	0	50	
0	0	50	50	
22	1	28	50	
11	2	28	50	
* The EAGLE 5 ISS can contain a maximum of 250 application servers.				

For the iplim and iplimi applications, each IP card can have one socket for each signaling link assigned to the card. Dual-slot DCMs can have a maximum of two sockets. Single-slot EDCMs can have a maximum of 8 sockets.

The EAGLE 5 ISS can contain a maximum of 4000 connections (association to application server assignments plus sockets).

The socket name must be unique (not already used).

The socket table, which contains both the socket and association data, contains fields whose values are not assigned using the <code>ent-appl-sock</code> command. When a socket is added to the database, these fields receive their default values. If a different value is desired, the <code>chg-appl-sock</code> command must be used. These fields and their default values are:

open=no	dcmps=10
alw=no	rexmit=fixed
server=yes	rtt=60

The value of the lhost and rhost parameters is a text string of up to 60 characters, with the first character being a letter. The command line on the terminal can contain up to 150 characters. If the host name is too long to fit on the ent-appl-sock command line, go to the "Changing an Application Socket" procedure on page 3-202 to complete the entry of the host name.

The IP address of the local host (lhost parameter) must be shown in the rtrv-ip-lnk output.

The signaling link being assigned to the socket must be out of service. This state is shown in the rept-stat-slk output with the entries OOS-MT in the PST field and Unavail in the SST field.

If the card's application is either IPLIM or IPLIMI:

- The iplim12 parameter value of the signaling link assigned to the socket must be saaltali.
- The signaling link being assigned to the socket must be out of service. This state is shown in the rept-stat-slk output with the entries OOS-MT in the PST field and Unavail in the SST field.
- If the socket is being opened in this procedure with the chg-appl-sock command and the open=yes parameter, the signaling link assigned to the socket must be in the database and the iplim12 parameter value of the signaling link assigned to the socket must be saaltali.

If the card's application is either SS7IPGW or IPGWI, the signaling link being assigned to the socket must be in service. This state is shown in the rept-stat-slk output with the entries IS-NR in the PST field and Avail in the ssT field.

The B Ethernet interface of the IP card can be used only if the IP card is a single-slot EDCM.

If the socket is being activated in this procedure with the chg-appl-sock command, the socket must contain values for the lhost, lport, rhost, and rport parameters.

Canceling the RTRV-APPL-SOCK Command

Because the rtrv-appl-sock command used in this procedure can output information for a long period of time, the rtrv-appl-sock command can be canceled and the output to the terminal stopped. There are three ways that the rtrv-appl-sock command can be canceled.

- Press the F9 function key on the keyboard at the terminal where the rtrv-appl-sock command was entered.
- Enter the canc-cmd without the trm parameter at the terminal where the rtrv-appl-sock command was entered.
- Enter the canc-cmd:trm=<xx>, where <xx> is the terminal where the rtrv-appl-sock command was entered, from another terminal other that the terminal where the rtrv-appl-sock command was entered. To enter the canc-cmd:trm=<xx> command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal's permissions can be verified with the rtrv-secu-trm command. The user's permissions can be verified with the rtrv-user or rtrv-secu-user commands.

For more information about the canc-cmd command, go to the Commands Manual.

Procedure

1. Display the current application socket information in the database by entering the rtrv-appl-sock command. The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:14:37 GMT EAGLE5 36.0.0
SNAME kchlr11201
      LINK A
      LHOST ipnode1-1201
      RHOST kc-hlr1
      LPORT 7000 RPORT 7000
SERVER YES DCMPS 1
REXMIT FIXED RTT 60
OPEN YES ALW YES
SNAME sock1
      LINK
      LHOST IPNODE2-1205
      RHOST remotehost1
      LPORT 1024 RPORT 2048
      SERVER YES DCMPS 10
REXMIT FIXED RTT 60
OPEN YES ALW YES
                                          YES
SNAME sock2
      LINK
      LHOST IPNODE2-1205
      RHOST remotehost2
      LPORT 2000 RPORT 2000
SERVER YES DCMPS 10
REXMIT FIXED RTT 60
OPEN YES ALW YES
IP Appl Sock/Assoc table is (5 of 4000) 1% full
```

2. Display the IP links in the database by entering the rtrv-ip-lnk command. The following is an example of the possible output.

```
      rlghn-xa03w
      06-10-28
      21:19:37
      GMT
      EAGLES
      36.0.0
      Headles
      Color of the color of
```

If an IP link containing the required IP address is shown in the rtrv-ip-lnk output, go to step 3.

If an IP link containing the required IP address is not shown in the rtrv-ip-lnk output, add the IP link using the "Changing an IP Link" procedure on page 3-135. After the IP link is added, perform the "Adding an IP Host" procedure on page 3-153 to assign this IP address to a local host name. After the local host name as been added, skip step 3 and go to step 4.

3. Verify that the local host name to be assigned to the socket is in the database by using the rtrv-ip-host command. The following is an example of the possible output.

If the required hostname is not shown in the rtrv-ip-host output, add the IP host name with the IP address shown in step 2 by performing the "Adding an IP Host" procedure on page 3-153.

4. Display the application running on the IP card shown in step 2 using the rept-stat-card command specifying the location of the IP card. For this example, enter this command.

```
rept-stat-card:loc=1203
```

This is an example of the possible output.

```
rlghn-xa03w 06-10-27 17:00:36 GMT EAGLE5 36.0.0

CARD VERSION TYPE APPL PST SST AST

1203 114-000-000 DCM IPLIM IS-NR Active -----

ALARM STATUS = No Alarms.

BPDCM GPL = 002-102-000

IMT BUS A = Conn

IMT BUS B = Conn

SIGNALING LINK STATUS

SLK PST LS CLLI

A IS-NR nc001
```

Command Completed.

NOTE: If the card's application is SS7IPGW or IPGWI, shown in the APPL column in the rept-stat-card output in step 4, and if the local host value being used in this procedure was added in step 3, skip steps 5, 6, and 7, and go to step 8.

5. Display the sockets assigned to the local host that will be assigned to the socket being configured in this procedure by entering the rtrv-appl-sock command with the lhost parameter. For this example, enter this command.

```
rtrv-appl-sock:lhost=IPNODE2-1205
```

This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:14:37 GMT EAGLE5 36.0.0
SNAME sock1
      LINK
      LHOST IPNODE2-1205
      RHOST remotehost1
      LPORT 1024 RPORT 2048
SERVER YES DCMPS 10
REXMIT FIXED RTT 60
OPEN YES ALW YES
SNAME sock2
      LINK
               Α
      LHOST IPNODE2-1205
       RHOST remotehost2
      LPORT 2000 RPORT
SERVER YES DCMPS
REXMIT FIXED RTT
OPEN YES ALW
                                            2000
                                            1.0
                                            60
                                            YES
IP Appl Sock/Assoc table is (5 of 4000) 1% full
```

6. Display the associations assigned to the local host that will be assigned to the socket being configured in this procedure by entering the rtrv-assoc command with the lhost parameter. For this example, enter this command.

rtrv-assoc:lhost=IPNODE2-1205

This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:14:37 GMT EAGLE5 36.0.0

CARD IPLNK

ANAME LOC PORT LINK ADAPTER LPORT RPORT OPEN ALW
assoc1 1205 A A M3UA 2048 2048 YES YES
assoc2 1205 A A SUA 3000 3000 YES YES

IP Appl Sock/Assoc table is (5 of 4000) 1% full
Assoc Buffer Space Used (32 KB of 3200 KB) on LOC = 1205
```

7. Display the application servers that the associations shown in step 6 are assigned to by entering rtrv-as command with the names of the associations shown in step 6. For this example, enter these commands.

rtrv-as:aname=assoc1

This is an example of the possible output.

```
      rlghncxa03w
      06-10-28
      21:14:37
      GMT
      EAGLE5
      36.0.0

      AS Name
      Mode
      Tr
      ms
      Association
      Names

      as1
      LOADSHARE
      2000
      assoc1

      as4
      LOADSHARE
      2000
      assoc1

      as6
      LOADSHARE
      2000
      assoc1

      AS Table is (6 of 250)
      1% full
```

rtry-as:aname=assoc2

This is an example of the possible output.

```
      rlghncxa03w
      06-10-28
      21:14:37
      GMT
      EAGLE5
      36.0.0

      AS Name
      Mode
      Tr
      ms
      Association
      Names

      as2
      LOADSHARE
      2000
      assoc2

      as3
      LOADSHARE
      2000
      assoc2

      as5
      LOADSHARE
      2000
      assoc2

      AS Table is (6 of 250)
      2% full
```

The maximum number of TALI sockets and SCTP association to application server assignments that can be hosted by an IPGWx card (referenced by the lhost parameter of the socket and association) is 50.

If the number of TALI sockets and SCTP association to application server assignments is less than 50, go to step 8.

If the number of TALI sockets and SCTP association to application server assignments is 50, the local host value cannot be used in this procedure.

Repeat steps 2 and 3 and select another IP link and IP host to use in this procedure or add a new IP link using the "Changing an IP Link" procedure on page 3-135. After the new IP link is added, perform the "Adding an IP Host" procedure on page 3-153 to assign this IP address to a new local host name. After the new local host name as been added, go to step 8.

NOTE: If the card's application is SS7IPGW, IPLIM, or IPLIMI, shown in the APPL column in the rept-stat-card output in step 4, skip step 8 and go to step 9.

8. Display the status of the ITU National and International Spare Point Code Support feature by entering the rtrv-ctrl-feat command with the ITU National and International Spare Point Code Support feature part number. Enter this command.

rtrv-ctrl-feat:partnum=893013601

The following is an example of the possible output.

If the ITU National and International Spare Point Code Support feature is not enabled, go to step 13.

If the ITU National and International Spare Point Code Support feature is enabled, the remainder of this procedure cannot be performed. A socket cannot be added to the database if the application running on the card containing the signaling link is IPGWI and the ITU National and International Spare Point Code Support feature is enabled. Perform the "Adding an Association" procedure on page 3-327 to add the IP connection to the database.

NOTE: If the card's application is SS7IPGW or IPGWI, shown in the APPL column in the rept-stat-card output in step 4, skip steps 9, 10, 11, and 12, and go to step 13.

9. Display the signaling link referenced by the IP link that will be assigned to the socket by entering the rtrv-slk command and specifying the card location shown in step 4. For this example, enter this command.

```
rtrv-slk:loc=1203
```

This is an example of the possible output.

```
rlghncxa03w 06-10-19 21:17:04 GMT EAGLE5 36.0.0

LOC LINK LSN SLC TYPE IPLIML2

1203 A e5e6a 1 IPLIM SAALTALI
```

When the IP card's application is either IPLIM or IPLIMI, the <code>iplim12</code> parameter value for the signaling link assigned to the socket must be <code>saaltali</code>. If the <code>iplim12</code> parameter is not <code>saaltali</code>, remove the signaling link using the "Removing an IP Signaling Link" procedure on page 3-113. Add the signaling link back into the database with the <code>iplim12=saaltali</code> parameter, and without activating the signaling link, using the "Adding an IP Signaling Link" procedure on page 3-84.

NOTE: If the "Adding an IP Signaling Link" procedure on page 3-84 was not performed in step 9, skip steps 10, 11, and 12, and go to step 13.

10. Display the status of the signaling link shown in step 9 using the rept-stat-slk command specifying the card location and the signaling link that will be assigned to the socket. For example, enter this command.

```
rept-stat-slk:loc=1203:link=a
```

This is an example of the possible output.

NOTE: If the primary state (PST) of the signaling link is OOS-MT and the secondary state (SST) is Unavail, skip steps 11 and 12, and go to step 13.

11 Deactivate the signaling link from step 10 using the dact-slk command. For example, enter this command.

```
dact-slk:loc=1203:link=a
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-07 11:11:28 GMT EAGLE5 36.0.0 Deactivate Link message sent to card
```

12. Verify the status of the signaling link using the rept-stat-slk command. For example, enter this command.

```
rept-stat-slk:loc=1203:link=a
```

This is an example of the possible output.

13. Add the application socket to the database by entering the **ent-appl-sock** command with these mandatory parameters:

```
:sname = the socket name
```

:lhost = the local host name from step 3

and with at least one of these optional parameters:

```
:lport = the local port ID, from 1024 to 65535
```

:rhost = the remote host name

:rport = the remote port ID, from 1024 to 65535

:link = the signaling link value from step 10.

NOTE: The port parameter can be used in place of the link parameter to specify the signaling link on the card.

NOTE: See Flowchart 3-16 on page 3-197 (Sheet 6) for the rules that apply to the ent-appl-sock command.

For example, enter this command.

```
ent-appl-sock:sname=kchlr11203:lhost="ipnode-1203"
:lport=7005:rhost="kc-hlr1":rport=7005:link=a
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0 ENT-APPL-SOCK: MASP A - COMPLTD
```

NOTE: If the socket added in step 13 is not being activated in this procedure, skip step 14 and go to step 15.

14. Activate the socket added in step 13 by entering the **chg-appl-sock** command with the socket name specified in step 13 and the **open-yes** and **alw-yes** parameters. For example, enter this command.

chg-appl-sock:sname=kchlr11203:open=yes:alw=yes

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0 CHG-APPL-SOCK: MASP A - COMPLTD
```

NOTE: If the card's application is SS7IPGW or IPGWI, skip steps 15 and 16, and go to step 17.

15 Activate the signaling link assigned to the socket using the act-slk command. For example, enter this command.

```
act-slk:loc=1203:link=a
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-07 11:11:28 GMT EAGLE5 36.0.0 Activate Link message sent to card
```

16. Verify the status of the signaling link using the rept-stat-slk command. For example, enter this command.

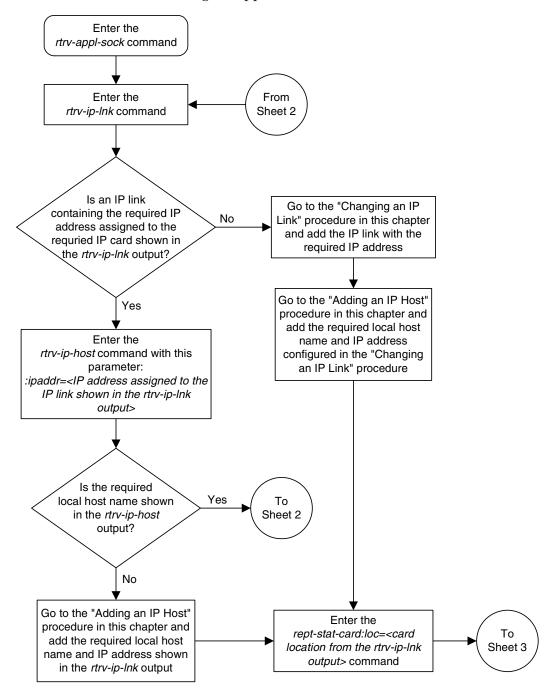
```
rept-stat-slk:loc=1203:link=a
```

This is an example of the possible output.

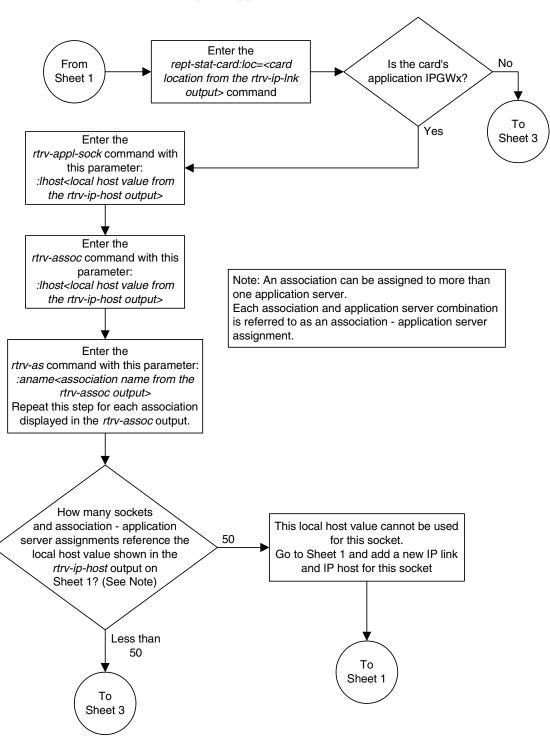
17. Verify the new application socket information in the database by entering the rtrv-appl-sock command with the socket name specified in step 13. For this example, enter this command.

rtrv-appl-sock:sname=kchlr11203

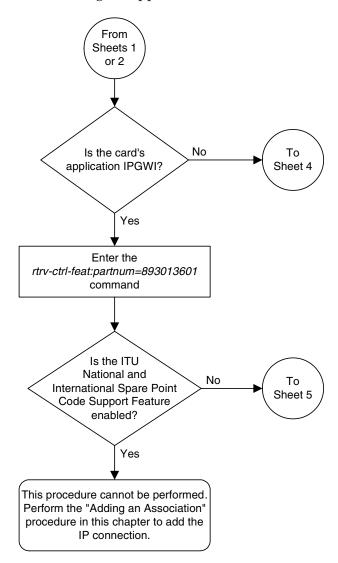
The following is an example of the possible output.

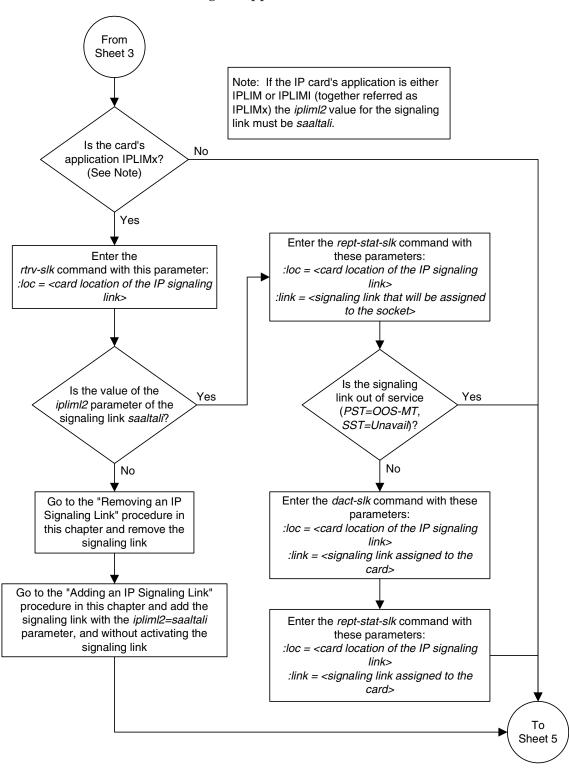

18. Back up the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

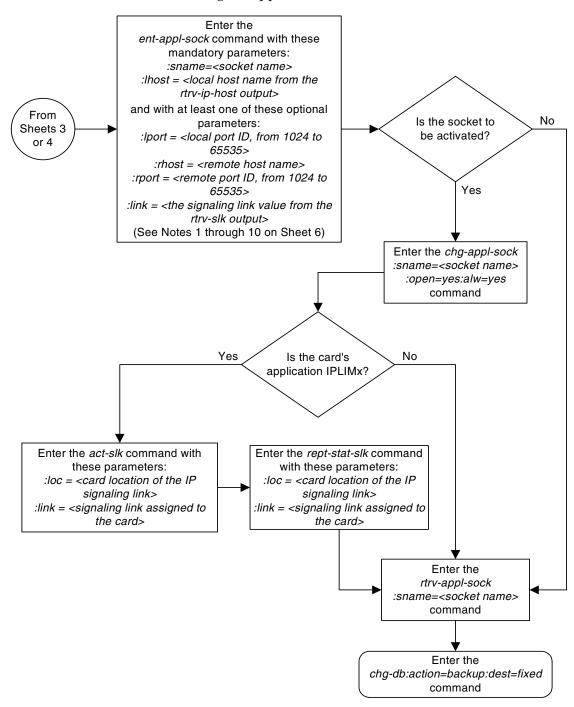
```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.


BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED) : MASP A - Backup starts on standby MASP.


BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```



Flowchart 3-16. Adding an Application Socket (Sheet 1 of 6)


Flowchart 3-16. Adding an Application Socket (Sheet 2 of 6)

Flowchart 3-16. Adding an Application Socket (Sheet 3 of 6)

Flowchart 3-16. Adding an Application Socket (Sheet 4 of 6)

Flowchart 3-16. Adding an Application Socket (Sheet 5 of 6)

Flowchart 3-16. Adding an Application Socket (Sheet 6 of 6)

Notes:

- 1. If the card containing the signaling link is a DCM, the B Ethernet interface cannot be used. Single-slot EDCMs can use the B Ethernet interface.
- 2. The sum of the number of sockets and association application server assignments on a card running either the *ss7ipgw* or *ipgwi* applications cannot exceed 50.
- 3. The EAGLE 5 ISS can contain a maximum of 4000 connections (association application server assignments plus sockets).
- 4. Cards running either the *iplim* or *iplimi* applications can have only one connection for each signaling link and a maximum of two connections for each card, if the card is a dual-slot DCM. If the card is a single-slot EDCM, the card may contain a maximum of eight connections.
- 5. The value of the *lhost* and *rhost* parameters is a text string of up to 60 characters, with the first character being a letter. The command line on the terminal can contain up to 150 characters. If the host name is too long to fit on the *ent-appl-sock* command line, go to the "Changing an Application Socket" procedure to complete the entry of the host name.
- 6. If the new socket is to be activated in this procedure with the *chg-appl-sock* command, the socket must contain values for the *lhost*, *rhost*, *lport*, and *rport* parameters.
- 7. The local host name must be shown in the rtrv-ip-host output in the LOCAL HOST column.
- 8. The remote host name does not have to be shown in the *rtrv-ip-host* output. If the remote host name is shown in the *rtrv-ip-host* output, it must be shown in the *REMOTE HOST* column.
- 9. Host names (local and remote) that contain dashes (-) must be enclosed in double quotes (").
- 10. The *port* parameter can be used in place of the *link* parameter to specify the signaling link assigned to the socket.

Removing an Application Socket

This procedure is used to remove an application socket from the database using the dlt-appl-sock command.

The dlt-appl-sock command has only one parameter, : sname – the socket name being removed.

The open parameter must be set to no before the application socket can be removed. Use the chg-appl-sock command to change the value of the open parameter.

The socket cannot be removed if it is referenced by any routing keys. This can be verified with the rtrv-appl-rtkey command.

Canceling the RTRV-APPL-SOCK and RTRV-APPL-RTKEY Commands

Because the rtrv-appl-sock and rtrv-appl-rtkey commands used in this procedure can output information for a long period of time, the rtrv-appl-sock and rtrv-appl-rtkey commands can be canceled and the output to the terminal stopped. There are three ways that the rtrv-appl-sock and rtrv-appl-rtkey commands can be canceled.

- Press the **F9** function key on the keyboard at the terminal where the **rtrv-appl-sock** and **rtrv-appl-rtkey** commands were entered.
- Enter the canc-cmd without the trm parameter at the terminal where the rtrv-appl-sock and rtrv-appl-rtkey commands were entered.
- Enter the canc-cmd:trm=<xx>, where <xx> is the terminal where the rtrv-appl-sock and rtrv-appl-rtkey commands were entered, from another terminal other that the terminal where the rtrv-appl-sock and rtrv-appl-rtkey commands were entered. To enter the canc-cmd:trm=<xx> command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal's permissions can be verified with the rtrv-secu-trm command. The user's permissions can be verified with the rtrv-user or rtrv-secu-user commands.

For more information about the canc-cmd command, go to the Commands Manual.

Procedure

1. Display the current application socket information in the database by entering the rtrv-appl-sock command. The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0

SNAME kchlr11201

LINK A

LHOST ipnode1-1201

RHOST kc-hlr1

LPORT 7000 RPORT 7000

SERVER YES DCMPS 1

REXMIT FIXED RTT 60

OPEN YES ALW NO

SNAME kchlr11203

LINK A

LHOST ipnode1-1203

RHOST kc-hlr1

LPORT 7005 RPORT 7005

SERVER YES DCMPS 10

REXMIT FIXED RTT 60

OPEN NO ALW NO
```

NOTE: If the application socket information shows the value of the open parameter in the socket being removed from the database is no, skip this step and go to step 3.

2. Change the open parameter value in the socket being removed from the database using the chg-appl-sock command with the open=no parameter.

CAUTION: Setting the open parameter value to no could cause traffic to be lost.

For example, enter this command.

```
chg-appl-sock:sname=kchlr11201:open=no
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0 CHG-APPL-SOCK: MASP A - COMPLTD
```

3. Verify that the socket is not assigned to any routing keys by entering the rtrv-appl-rtkey command with the socket name (sname) being removed in this procedure and the display=all parameter. For this example, enter this command.

```
rtrv-appl-rtkey:sname=kchlr11201:display=all
```

The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0

RCONTEXT DPC SI SSN OPC CICS CICE LOC
------ 001-002-003 5 --- 100-100-100 1 50 STATIC

ADPTR TYPE PSTNCAT PSTNID NORM DUP
TALI FULL 0 0 N N

SNAMES
kchlr11201

STATIC Route Key table is ( 8 of 2000) 1% full
1105 Route Key table is ( 2 of 500) 1% full
1107 Route Key table is ( 2 of 500) 1% full
STATIC Route Key Socket Association table is (8 of 32000) 1% full
1105 Route Key Socket Association table is (2 of 8000) 1% full
1107 Route Key Socket Association table is (2 of 8000) 1% full
1107 Route Key Socket Association table is (2 of 8000) 1% full
```

If the socket is assigned to any routing keys, perform the "Removing a Routing Key" procedure on page 3-272 and remove the socket from these routing keys.

4. Remove the application socket from the database by entering the dlt-appl-sock command with the socket name being removed. For example, enter this command.

```
dlt-appl-sock:sname=kchlr11201
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-28 21:17:37 GMT EAGLE5 36.0.0 DLT-APPL-SOCK: MASP A - COMPLTD
```

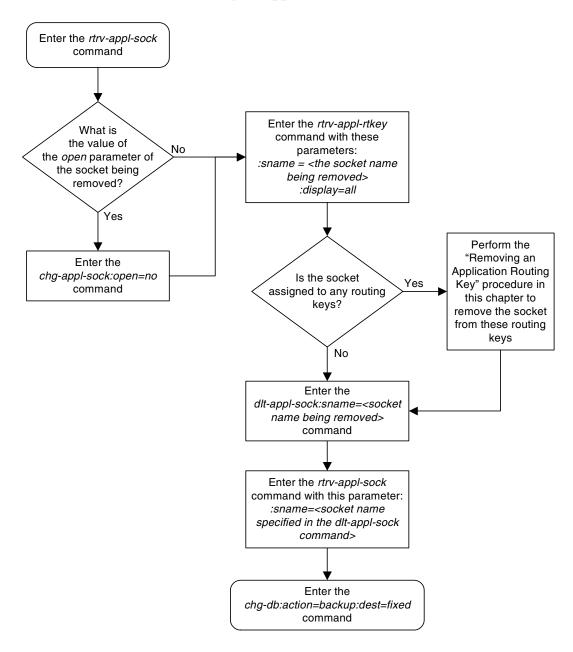
5. Verify the new application socket information in the database by entering the **rtrv-appl-sock** command with the socket name specified in step 4. For this example, enter this command.

```
rtrv-appl-sock:sname=kchlr11201
```

The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:18:37 GMT EAGLE5 36.0.0

IP Appl Sock/Assoc table is (3 of 4000) 1% full
```


6. Back up the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.

BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED) : MASP A - Backup starts on standby MASP.

BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```


Flowchart 3-17. Removing an Application Socket

Changing an Application Socket

This procedure is used to change an application socket in the database using the chg-appl-sock command.

The chg-appl-sock command uses these parameters.

- :sname-Socket Name.
- : lhost Local Hostname. The logical name assigned to the local host device. The local host name must be shown in the LOCAL HOST column of the rtrv-ip-host output. Local host names that contain dashes (-) must be enclosed in double quotes (").
- :lport The TCP port number for the Local host.
- :rhost Remote Hostname. The logical name assigned to the remote host
 device. The remote host name does not have to be shown in the
 rtrv-ip-host output. If remote host name is shown in the rtrv-ip-host
 output, it must be shown in the REMOTE HOST column of the rtrv-ip-host
 output. Remote host names that contain dashes (-) must be enclosed in
 double quotes (").
- :rport The TCP port number of the remote host.
- :link The signaling link on the IP card. If the card's application is iplim or iplimi, and the card is a dual-slot DCM, the values for the link parameter can be only a or b. If the card's application is iplim or iplimi, and the card is a single-slot EDCM, the values for the link parameter can be a, a1, a2, a3, b, b1, b2, or b3. If the IP card's application is ss7ipgw or ipgwi, only link=a can be specified.
- NOTE: The port parameter can be used in place of the link parameter to specify the signaling link on the card.
- **:server** Server Role. The role of the local socket in the Client/Server relationship.
- : open Socket State. Indicates to the connection manager software to open the socket if the socket is operational.
- :alw Connection State. Indicates to the connection manager software if the socket is allowed to carry SS7 traffic.
- :dcmps DCM Parameter Set. The DCM parameter set that will be used by the socket.
- :rexmit Indicates the retransmission mode that the user wants the TCP stack to use for this socket.
- :rtt Indicates the measured or expected round trip time (RTT) of the socket in milliseconds.
- For more information on the rexmit and rtt parameters, go to the "Configuring IP Socket Retransmission Parameters" procedure on page 3-220.

NOTE: If the ITU National and International Spare Point Code Support feature is enabled, the socket cannot reference a card running the IPGWI application. Enter the rtrv-ctrl-feat:partnum=893013601 command to verify whether or not the ITU National and International Spare Point Code Support feature is enabled. If the ITU National and International Spare Point Code Support feature is enabled, and the IP connection is being assigned to a card running the IPGWI application, the IP connection must be an IETF association. Perform the "Adding an Association" procedure on page 3-327 to add the IP connection to the database.

The open parameter must be set to no before changes can be made to server, lhost, lport, rhost, rport, rtt, rexmit, and link parameters.

The open parameter must be changed with a separate chg-appl-sock command. The open parameter can not be on a command line that has server, lhost, lport, rhost, and rport parameters.

At least one optional parameter is required.

The maximum number of TALI sockets and SCTP association to application server assignments that can be hosted by an IPGWx card (referenced by the lhost parameter of the socket and association) is 50. For example, if the IPGWx card contains 22 SCTP association to application server assignments, the maximum number of TALI sockets the IPGWx card can support is 28. The SCTP association to application server assignments can be verified with the

rtrv-assoc:lhost=<local host name> and rtrv-as:aname=<association name> commands.

Table 3-14.	Examples of IPGWx	Card Provisioning	Limits
--------------------	-------------------	-------------------	--------

Number of Associations hosted by the IPGWx card	Number of Application Servers each Association is Assigned to *	Number of TALI Sockets Hosted by the IPGWx card	Total Association - Application Server Assignments and TALI Sockets maintained by the IPGWx card	
1	50	0	50	
50	1	0	50	
25	1	25	50	
25	2	0	50	
0	0	50	50	
22	1	28	50	
11	2	28	50	
* The EAGLE 5 ISS can contain a maximum of 250 application servers.				

For the iplim and iplimi applications, each IP card can have one socket for each signaling link assigned to the card. Dual-slot DCMs can have a maximum of two sockets. Single-slot EDCM cards can have a maximum or eight sockets.

The EAGLE 5 ISS can contain a maximum of 4000 connections (association to application server assignments plus sockets).

The value of the **lhost** and **rhost** parameters is a text string of up to 60 characters, with the first character being a letter.

The command input is limited to 150 characters, including the hostname.

To set the open parameter value to yes, the socket specified by the sname parameter must contain values for the lhost, lport, rhost, and rport parameters.

The rtt parameter cannot be specified with the rexmit=bsd parameter.

When the rexmit=fixed or rexmit=mod parameters are specified, the rtt parameter must be specified.

The IP address of the local host (lhost parameter) must be shown in the rtrv-ip-lnk output.

If the card's application is either IPLIM or IPLIMI:

- The ipliml2 parameter value of the signaling link assigned to the socket must be saaltali.
- The signaling link being assigned to the socket must be out of service. This state is shown in the rept-stat-slk output with the entries OOS-MT in the PST field and Unavail in the SST field.
- If the socket is being opened in this procedure with the chg-appl-sock command and the open=yes parameter, the signaling link assigned to the socket must be in the database and the iplim12 parameter value of the signaling link assigned to the socket must be saaltali.

If the card's application is either SSTIPGW or IPGWI, the signaling link being assigned to the socket must be in service. This state is shown in the rept-stat-slk output with the entries IS-NR in the PST field and Avail in the sst field.

The B Ethernet interface of the IP card can be used only if the IP card is a single-slot EDCM.

If the socket being changed is a client socket, shown in the rtrv-appl-sock output with the entry NO in the SERVER field, the socket's lhost and lport values cannot match the values of any open socket.

If the socket being changed is a server socket, shown in the rtrv-appl-sock output with the entry YES in the SERVER field, the socket's lhost and lport values cannot match the values of any open client socket.

Canceling the RTRV-APPL-SOCK Command

Because the rtrv-appl-sock command used in this procedure can output information for a long period of time, the rtrv-appl-sock command can be canceled and the output to the terminal stopped. There are three ways that the rtrv-appl-sock command can be canceled.

- Press the F9 function key on the keyboard at the terminal where the rtrv-appl-sock command was entered.
- Enter the canc-cmd without the trm parameter at the terminal where the rtrv-appl-sock command was entered.
- Enter the canc-cmd:trm=<xx>, where <xx> is the terminal where the rtrv-appl-sock command was entered, from another terminal other that the terminal where the rtrv-appl-sock command was entered. To enter the canc-cmd:trm=<xx> command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal's permissions can be verified with the rtrv-secu-trm command. The user's permissions can be verified with the rtrv-user or rtrv-secu-user commands.

For more information about the canc-cmd command, go to the Commands Manual.

Procedure

1. Display the current application socket information in the database by entering the rtrv-appl-sock command. The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
SNAME kchlr11201
     LINK A
     LHOST ipnode1-1201
     RHOST kc-hlr1
     LPORT 7000
                       RPORT 7000
                     DCMPS 1
RTT 60
     SERVER YES
     REXMIT FIXED
     OPEN YES
                      ALW
                               NO
SNAME kchlr11203
     LINK A
     LHOST ipnode1-1203
    RPORT 7005
SERVER YES DCMPS 10
REXMIT FIXED RTT 60
OPEN YES AT.W
     RHOST kc-hlr1
SNAME sock1
     LINK
     LHOST IPNODE2-1205
     RHOST remotehost1
     LPORT 1024 RPORT
                                   2048
     SERVER YES
                        DCMPS
     REXMIT FIXED RTT
OPEN YES ALW
                                  60
                                  YES
```

NOTE: To change the values of these parameters: server, lhost, lport, rhost link, rtt, rexmit, or rport, the value of the open parameter must be no. If the values of any of these parameters are being changed and the open parameter value for the socket being changed is no, skip this step and go to step 3.

NOTE: If only the values of the alw, open, or dcmps parameters are being changed, skip steps 2 through 14, and go to step 15.

2. Change the value of the open parameter to no using the chg-appl-sock command with the open=no parameter. For example, enter this command.

```
chg-appl-sock:sname=kchlr11201:open=no
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0 CHG-APPL-SOCK: MASP A - COMPLTD
```

NOTE: If the local host name or the link value of the socket are not being changed, skip steps 3 through 14, and go to step 15.

3. Verify that the local host name to be assigned to the socket is in the database by using the rtrv-ip-host command. The following is an example of the possible output.

rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0

```
LOCAL IPADDR LOCAL HOST
192.1.1.10 IPNODE1-1201
192.1.1.12 IPNODE1-1203
192.1.1.14 IPNODE1-1205
192.1.1.20 IPNODE2-1201
192.1.1.20
192.1.1.22
              IPNODE2-1203
192.1.1.24
              IPNODE2-1205
192.1.1.30
              KC-HLR1
192.1.1.32
              KC-HLR2
192.1.1.50
              DN-MSC1
192.1.1.52
              DN-MSC2
REMOTE IPADDR REMOTE HOST
150.1.1.5
              NCDEPTECONOMIC_DEVELOPMENT.SOUTHEASTERN_COORIDOR_ASHVL.GOV
IP Host table is (11 of 512) 2% full
```

4. Display the IP links in the database by entering the rtrv-ip-lnk command. The following is an example of the possible output.

```
      rlghn-xa03w 06-10-28 21:19:37 GMT EAGLE5 36.0.0

      LOC
      PORT IPADDR
      SUBMASK
      DUPLEX
      SPEED MACTYPE AUTO MCAST

      1201
      A
      192.1.1.10
      255.255.255.0
      ----
      ---
      DIX
      YES
      NO

      1203
      A
      192.1.1.12
      255.255.255.0
      ----
      ---
      DIX
      YES
      NO

      1205
      A
      192.1.1.14
      255.255.255.0
      FULL
      100
      DIX
      NO
      NO
```

5. Display the signaling link referenced by the IP link that will be assigned to the socket by entering the rtrv-slk command and specifying the location of the IP link. For this example, enter this command.

rtrv-slk:loc=1201

This is an example of the possible output.

```
rlghncxa03w 06-10-19 21:17:04 GMT EAGLE5 36.0.0

LOC LINK LSN SLC TYPE IPLIML2

1203 A e5e6a 1 IPLIM SAALTALI
```

If the required signaling link is in the database, and the card's application (shown in the **TYPE** column) is either SS7IPGW, IPLIM, or IPLIMI, skip step 6 and go to step 7.

If the card's application is IPGWI or if the required signaling link is not in the database, go to step 6.

6. Display the status of the ITU National and International Spare Point Code Support feature by entering the rtrv-ctrl-feat command with the ITU National and International Spare Point Code Support feature part number. Enter this command.

rtrv-ctrl-feat:partnum=893013601

The following is an example of the possible output.

If the ITU National and International Spare Point Code Support feature is not enabled, and the required signaling link is not in the database, perform the "Adding an IP Signaling Link" procedure on page 3-84. After the signaling link has been added, go to step 7.

If the ITU National and International Spare Point Code Support feature is enabled, and the card's application is IPGWI, the IP connection must be assigned to an IETF association, or if the IP connection is to remain assigned to a socket, the socket must be assigned to a card running the SS7IPGW, IPLIM, or IPLIMI applications. If the IP connection is to remain a socket, perform the "Adding an IP Signaling Link" procedure on page 3-84 to add the required signaling link. The signaling link cannot be assigned to a card running the IPGWI applications. After the signaling link has been added, go to step 7.

If the IP connection is to be an association, perform the "Adding an Association" procedure on page 3-327 to add the IP connection to the database. The remainder of this procedure cannot be performed.

NOTE: If the required IP link information is shown in the rtrv-ip-lnk output in step 4, skip this step and go to step 8.

7. Add the IP address of the IP link by performing the "Changing an IP Link" procedure on page 3-135.

NOTE: If the local host name of the socket is not being changed, skip steps 8, 9, 10, and 11, and go to step 12.

NOTE: If the new local host name is shown in the rtrv-ip-host output in step 3, skip this step and go to step 9.

8. Add the new local host name and IP address from step 7 by performing the "Adding an IP Host" procedure on page 3-153.

NOTE: If the card's application is IPLIM or IPLIMI, shown in the TYPE column in the rtrv-slk output in step 5, or if the local host value being used in this procedure was configured with the "Adding an IP Host" procedure on page 3-153 in step 8, skip steps 9, 10, and 11, and go to step 12.

9. Display the sockets assigned to the local host that will be assigned to the socket being configured in this procedure by entering the rtrv-appl-sock command with the lhost parameter. For this example, enter this command.

rtrv-appl-sock:lhost=IPNODE2-1205

This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:14:37 GMT EAGLE5 36.0.0
SNAME sock1
    LINK
    LHOST IPNODE2-1205
    RHOST remotehost1
                 RPORT
    LPORT
            1024
                                2048
    SERVER
            YES
                       DCMPS
                                10
                       RTT
     REXMIT
           FIXED
                                60
                       ALW
     OPEN
            YES
                                YES
```

10. Display the associations assigned to the local host that will be assigned to the socket being configured in this procedure by entering the rtrv-assoc command with the lhost parameter. For this example, enter this command.

```
rtrv-assoc:lhost=IPNODE2-1205
```

This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:14:37 GMT EAGLE5 36.0.0

CARD IPLNK

ANAME LOC PORT LINK ADAPTER LPORT RPORT OPEN ALW
assoc1 1205 A A M3UA 2048 2048 YES YES
assoc2 1205 A A SUA 3000 3000 YES YES

IP Appl Sock/Assoc table is (5 of 4000) 1% full
Assoc Buffer Space Used (32 KB of 3200 KB) on LOC = 1205
```

11. Display the application servers that the associations shown in step 10 are assigned to by entering rtrv-as command with the names of the associations shown in step 10. For this example, enter these commands.

rtrv-as:aname=assoc1

This is an example of the possible output.

```
      rlghncxa03w
      06-10-28
      21:14:37
      GMT
      EAGLE5
      36.0.0

      AS Name
      Mode
      Tr
      ms
      Association
      Names

      as1
      LOADSHARE
      2000
      assoc1

      as4
      LOADSHARE
      2000
      assoc1

      as6
      LOADSHARE
      2000
      assoc1

      AS Table is (6 of 250)
      1% full
```

rtrv-as:aname=assoc2

This is an example of the possible output.

```
      rlghncxa03w
      06-10-28
      21:14:37
      GMT
      EAGLE5
      36.0.0

      AS Name
      Mode
      Tr
      ms
      Association
      Names

      as2
      LOADSHARE
      2000
      assoc2

      as3
      LOADSHARE
      2000
      assoc2

      AS Table is (6 of 250)
      2% full
```

The maximum number of TALI sockets and SCTP association to application server assignments that can be hosted by an IPGWx card (referenced by the lhost parameter of the socket and association) is 50.

If the number of TALI sockets and SCTP association to application server assignments is less than 50, go to step 12.

If the number of TALI sockets and SCTP association to application server assignments is 50, the local host value cannot be used in this procedure.

Repeat steps 3 and 4 and select another IP link and IP host to use in this procedure or add a new IP link using the "Changing an IP Link" procedure on page 3-135. After the new IP link is added, perform the "Adding an IP Host" procedure on page 3-153 to assign this IP address to a new local host name. After the new local host name as been added, go to step 12.

NOTE: If the card's application is SS7IPGW or IPGWI, shown in the APPL column in the rtrv-slk output in step 5, skip steps 12, 13, 14, and 15, and go to step 16.

12. Display the signaling link referenced by the IP link that will be assigned to the socket by entering the rtrv-slk command and specifying the card location and signaling link shown in step 5. For this example, enter this command.

```
rtrv-slk:loc=1201:link=a
```

This is an example of the possible output.

```
rlghncxa03w 06-10-19 21:17:04 GMT EAGLE5 36.0.0

LOC LINK LSN SLC TYPE IPLIML2

1203 A e5e6a 1 IPLIM SAALTALI
```

When the IP card's application is either IPLIM or IPLIMI, the <code>ipliml2</code> parameter value for the signaling link assigned to the socket must be <code>saaltali</code>. If the <code>ipliml2</code> parameter is not <code>saaltali</code>, remove the signaling link using the "Removing an IP Signaling Link" procedure on page 3-113. Add the signaling link back into the database with the <code>ipliml2=saaltali</code> parameter, and without activating the signaling link, using the ""Adding an IP Signaling Link" procedure on page 3-84.

NOTE: If the "Adding an IP Signaling Link" procedure on page 3-84 was not performed in step 6 or 12, skip steps 13, 14, and 15, and go to step 16.

13. Display the status of the signaling link shown in step 6 using the rept-stat-slk command specifying the card location and signaling link. For example, enter this command.

```
rept-stat-slk:loc=1203:link=a
```

This is an example of the possible output.

NOTE: If the primary state (PST) of the signaling link is OOS-MT and the secondary state (SST) is Unavail, skip steps 14 and 15, and go to step 16.

14 Deactivate the signaling link from step 13 using the act-slk command. For example, enter this command.

```
dact-slk:loc=1203:link=a
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-07 11:11:28 GMT EAGLE5 36.0.0 Deactivate Link message sent to card
```

15. Verify the status of the signaling link using the rept-stat-slk command. For example, enter this command.

```
rept-stat-slk:loc=1203:link=a
```

This is an example of the possible output.

16. Change the application socket by using the **chg-appl-sock** command with this mandatory parameter:

```
:sname = the socket name
```

and with at least one of these optional parameters:

```
:1host = the local host name from steps 3 or 8
```

:1port = the local port ID, from 1024 to 65535

:rhost = the remote host name

:rport = the remote port ID, from 1024 to 65535

:link = the signaling link value from step 13.

NOTE: The port parameter can be used in place of the link parameter to specify the signaling link on the card.

NOTE: See Flowchart 3-18 on page 3-219 (Sheet 7) for the rules that apply to the chg-appl-sock command.

For example, enter this command.

```
chg-appl-sock:sname=kchlr11201:rhost="kc-kc-kc":alw=yes
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-28 21:17:37 GMT EAGLE5 36.0.0 CHG-APPL-SOCK: MASP A - COMPLTD
```

NOTE: If step 2 was not performed in this procedure, skip step 17 and go to step 18.

17. Change the open parameter value back to yes by using the chg-appl-sock command. For example, enter this command.

```
chg-appl-sock:sname=kchlr11201:open=yes
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-28 21:18:37 GMT EAGLE5 36.0.0 CHG-APPL-SOCK: MASP A - COMPLTD
```

NOTE: If the card's application is SS7IPGW or IPGWI, skip steps 18 and 19, and go to step 20.

18 Activate the signaling link assigned to the socket using the act-slk command. For example, enter this command.

```
act-slk:loc=1203:link=a
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-07 11:11:28 GMT EAGLE5 36.0.0 Activate Link message sent to card
```

19. Verify the status of the signaling link using the rept-stat-slk command. For example, enter this command.

```
rept-stat-slk:loc=1203:link=a
```

This is an example of the possible output.

20. Verify the new application socket information in the database by entering the **rtrv-appl-sock** command with the socket name specified in step 16. For this example, enter this command.

```
rtrv-appl-sock:sname=kchlr11201
```

The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0

SNAME kchlr11201

    LINK A

    LHOST ipnode1-1201

    RHOST kc-kc-kc

    LPORT 7000 RPORT 7000

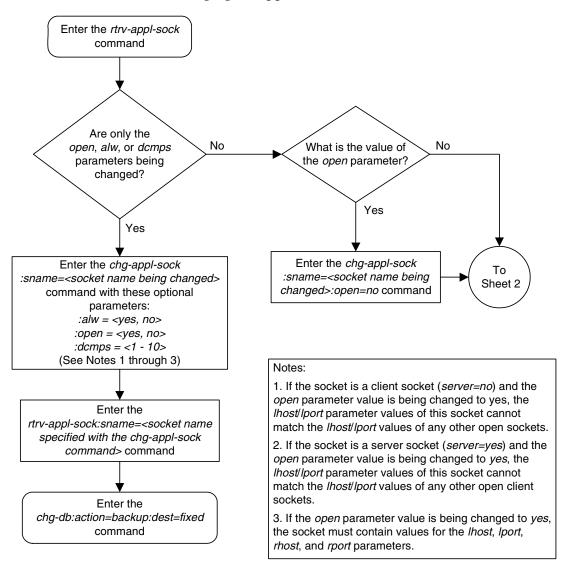
    SERVER YES DCMPS 1

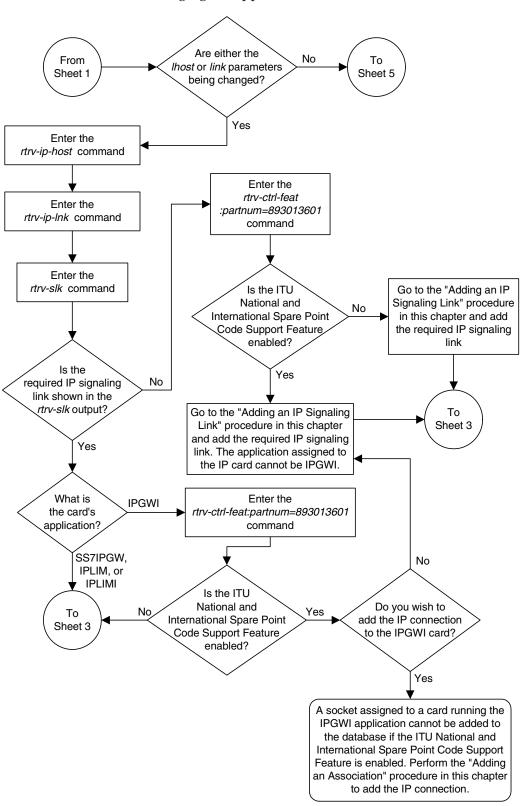
    REXMIT FIXED RTT 60

    OPEN YES ALW YES

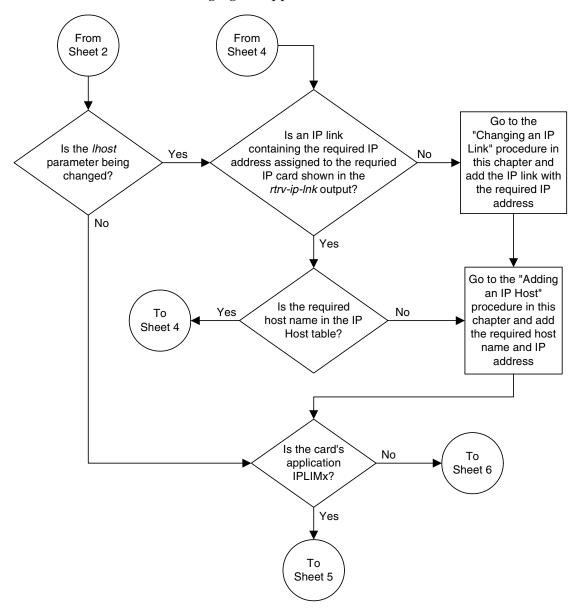
IP Appl Sock/Assoc table is (3 of 4000) 1% full
```

21. Back up the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

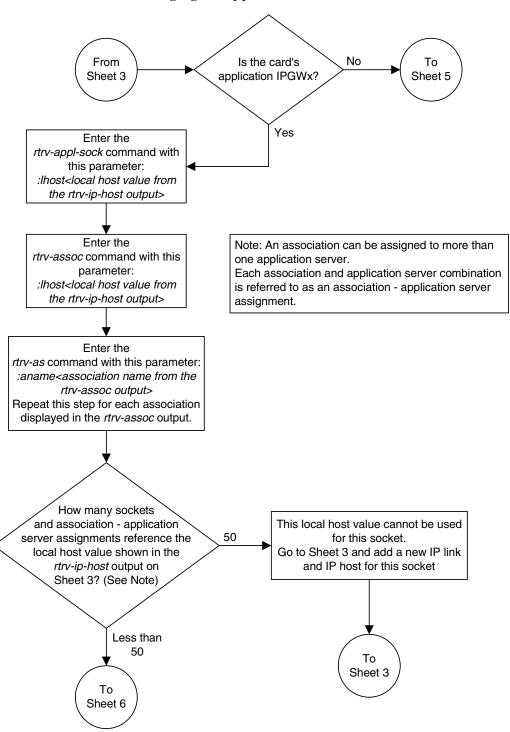

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.

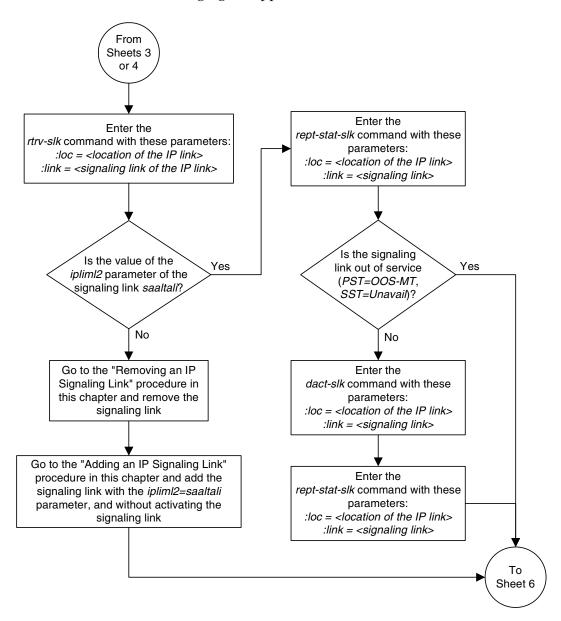

BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.

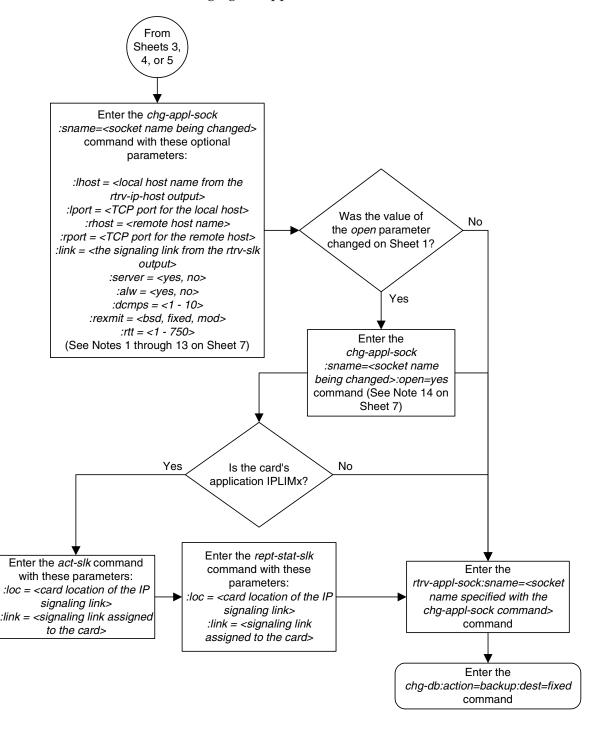
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.


BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

Flowchart 3-18. Changing an Application Socket (Sheet 1 of 7)




Flowchart 3-18. Changing an Application Socket (Sheet 2 of 7)


Flowchart 3-18. Changing an Application Socket (Sheet 3 of 7)

Flowchart 3-18. Changing an Application Socket (Sheet 4 of 7)

Flowchart 3-18. Changing an Application Socket (Sheet 5 of 7)

Flowchart 3-18. Changing an Application Socket (Sheet 6 of 7)

Flowchart 3-18. Changing an Application Socket (Sheet 7 of 7)

Notes:

- 1. If the card containing the signaling link is a DCM, the B Ethernet interface cannot be used. Single-slot EDCMs can use the B Ethernet interface.
- 2. The sum of the number of sockets and association application server assignments on a card running either the *ss7ipgw* or *ipgwi* applications cannot exceed 50.
- 3. The EAGLE 5 ISS can contain a maximum of 4000 connections (association application server assignments plus sockets).
- 4. Cards running either the *iplim* or *iplimi* applications can have only one connection for each signaling link and a maximum of two connections for each card, if the card is a dual-slot DCM. If the card is a single-slot EDCM, the card may contain a maximum of eight connections.
- 5. The value of the *lhost* and *rhost* parameters is a text string of up to 60 characters, with the first character being a letter.
- 6. If the socket is a client socket (*server=no*) and the *open* parameter value is being changed to *yes*, the *lhost/lport* parameter values of this socket cannot match the *lhost/lport* values of any other open sockets.
- 7. If the socket is a server socket (*server=yes*) and the *open* parameter value is being changed to *yes*, the *lhost/lport* parameter values of this socket cannot match the *lhost/lport* values of any other open client sockets.
- 8. The rtt parameter cannot be specified with the rexmit=bsd parameter.
- 9. When the *rexmit=fixed* or *rexmit=mod* parameters are specified, the *rtt* parameter must be specified.
- 10. The local host name must be shown in the rtrv-ip-host output in the LOCAL HOST column.
- 11. The remote host name does not have to be shown in the *rtrv-ip-host* output. If the remote host name is shown in the *rtrv-ip-host* output, it must be shown in the *REMOTE HOST* column.
- 12. Host names (local and remote) that contain dashes (-) must be enclosed in double quotes (").
- 13. The *port* parameter can be used in place of the *link* parameter to specify the signaling link assigned to the socket.
- 14. If the *open* parameter value is being changed to *yes*, the socket must contain values for the *lhost*, *lport*, *rhost*, and *rport* parameters.

Configuring IP Socket Retransmission Parameters

This procedure is used to configure the retransmission parameters for sockets using the rexmit and rtt parameters of the chg-appl-sock command.

:rexmit - Indicates the retransmission mode that the user wants the TCP
stack to use for a socket. Possible values are bsd (standard), fixed (Tekelec
version), or mod (combination of bsd and fixed). The default value is fixed.

:rtt – Indicates the measured or expected round trip time of the socket in milliseconds. Be aware that you are entering the round trip time, not the retransmission timeout that will be used for the socket. The initial retransmission timeout that is actually applied to the socket will be the next 125 millisecond increment above the entered round trip time. The default value is 60.

It is important to set the configured round trip time as accurately as possible. When the round trip time is configured too low, network congestion can occur, thus delaying (or preventing) the delivery of SS7 data, resulting in a negative impact on MSU throughput. If the round trip time is set too high, the TCP protocol layer may act unpredictably, resulting in the SS7 service being degraded. The MSU throughput would be lowered, possibly affecting the client application software. When the round trip time is configured correctly, the TCP network can deliver SS7 data in a timely manner with little or no network congestion.

The "Changing an Application Socket" procedure on page 3-202 is used to change the values of these parameters. In addition to using the "Changing an Application Socket" procedure, these pass commands are also used in this procedure.

- ping tests for the presence of hosts on the network.
- sockrtt displays the round trip time data
- netstat -p tcp determines if retransmissions have occurred.

For more information of the pass commands, go to the Commands Manual.

The rexmit and rtt parameter values are set using the data collected from the pass commands.

The rtt parameter cannot be specified with the rexmit=bsd parameter.

When the rexmit=fixed or rexmit=mod parameters are specified, the rtt parameter must be specified.

Canceling the RTRV-APPL-SOCK Command

Because the rtrv-appl-sock command used in this procedure can output information for a long period of time, the rtrv-appl-sock command can be

canceled and the output to the terminal stopped. There are three ways that the rtrv-appl-sock command can be canceled.

- Press the **F9** function key on the keyboard at the terminal where the **rtrv-appl-sock** command was entered.
- Enter the canc-cmd without the trm parameter at the terminal where the rtrv-appl-sock command was entered.
- Enter the canc-cmd: trm=<xx>, where <xx> is the terminal where the rtrv-appl-sock command was entered, from another terminal other that the terminal where the rtrv-appl-sock command was entered. To enter the canc-cmd: trm=<xx> command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal's permissions can be verified with the rtrv-secu-trm command. The user's permissions can be verified with the rtrv-user or rtrv-secu-user commands.

For more information about the canc-cmd command, go to the Commands Manual.

Procedure

1. Display the current application socket information in the database by entering the rtrv-appl-sock command. The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
SNAME kchlr11201
       LINK A
       LHOST ipnode1-1201
        RHOST kc-hlr1

        LPORT
        7000
        RPORT
        7000

        SERVER
        YES
        DCMPS
        1

        REXMIT
        FIXED
        RTT
        60

        OPEN
        YES
        ALW
        NO

                                    ALW NO
        OPEN YES
SNAME kchlr11203
       LINK A
        LHOST ipnode1-1203
        RHOST kc-hlr1
        LPORT 7005
                                    RPORT 7005
                                   DCMPS 10
RTT 60
        SERVER YES
        REXMIT FIXED
OPEN YES
                                    ALW
                                                  YES
IP Appl Sock/Assoc table is (3 of 4000) 1% full
```

2. Display the IP address assigned to the remote host that will be pinged in step 4 using the rtrv-ip-host command with the remote host name shown in step 1. For this example, enter this command.

```
rtrv-ip-host:host="kc-hlr1"
```

The following is an example of the possible output

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0

LOCAL IPADDR LOCAL HOST
192.1.1.30 KC-HLR1

IP Host table is (11 of 512) 2% full
```

3. Display the IP links assigned to the IP address shown in step 2 by entering the rtrv-ip-lnk command. The following is an example of the possible output.

```
      rlghn-xa03w 06-10-28 21:19:37 GMT EAGLE5
      36.0.0

      LOC
      PORT IPADDR
      SUBMASK
      DUPLEX
      SPEED MACTYPE
      AUTO MCAST

      1201
      A
      192.1.1.30
      255.255.255.0
      ----
      ---
      DIX
      YES
      NO

      1203
      A
      192.1.1.12
      255.255.255.0
      ----
      ---
      DIX
      YES
      NO

      1205
      A
      192.1.1.14
      255.255.255.0
      FULL
      100
      DIX
      NO
      NO
```

4. Using the outputs of steps 1 through 3 as a guide, enter the pass:cmd="ping" command specifying the card and the host name of the remote host. This command is entered several times to obtain the average round trip time. For this example, enter this command.

```
pass:loc=1201:cmd="ping kc-hlr1"
```

The following is an example of the possible output

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0

PASS: Command sent to card

rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0

PING command in progress

rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0

PING kc-hlr1 (192.1.1.30): 56 data bytes

64 bytes from tekral.nc.tekelec.com (192.1.1.30): icmp_seq=0. time=5. ms

64 bytes from tekral.nc.tekelec.com (192.1.1.30): icmp_seq=1. time=9. ms

64 bytes from tekral.nc.tekelec.com (192.1.1.30): icmp_seq=2. time=14. ms
---tekral PING Statistics----

3 packets transmitted, 3 packets received, 0% packet loss
round-trip (ms) min/avg/max = 5/9/14

PING command complete
```

- 5. Go to the "Changing an Application Socket" procedure on page 3-202 and change the retransmission parameters (rtt and rexmit) of the socket based on the results of pinging the remote host in step 4.
- **6.** A TALI monitor (MONI) message is sent to the remote host.

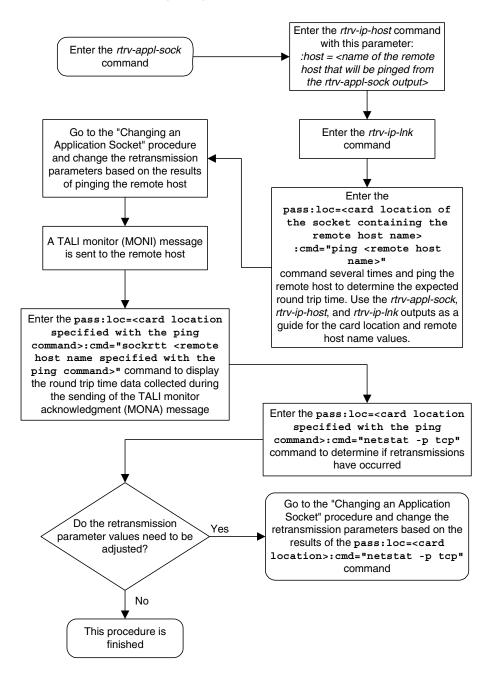
7. Enter the pass:cmd="sockrtt" command to display the round trip time data collected during the sending of the TALI monitor acknowledgement (MONA) message. For this example, enter this command.

```
pass:loc=1201:cmd="sockrtt kc-hlr1"
```

The following is an example of the possible output

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
PASS: Command sent to card
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
SOCKRTT: Socket round-trip time report (in milliseconds)
Configured Traffic Round-Trip Time
Retransmission Mode : MOD
Fixed Round Trip Time
                              : 250
Measured Normal Traffic Round-Trip Times
   Minimum round-trip time : 5
Maximum round-trip time : 195
   Weighted Average round-trip time : 10
   Last recorded round-trip time : 10
Measured Congested Traffic Round-Trip Times
   Weighted Average round-trip time : 0
   Last recorded round-trip time : 0
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
SOCKRTT command complete
```

8. Enter the pass:cmd="netstat -p tcp" command to determine if any retransmissions have occurred. For this example, enter this command.


pass:loc=1201:cmd="netstat -p tcp"

The following is an example of the possible output

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
PASS: Command sent to card
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
TCP:
   0 packet sent
           0 data packet (0 byte)
            0 data packet (0 byte) retransmitted
            0 ack-only packet (0 delayed)
            0 URG only packet
            0 window probe packet
            0 window update packet
            0 control packet
    0 packet received
            0 ack (for 0 byte)
            0 duplicate ack
            0 ack for unsent data
            0 packet (0 byte) received in-sequence
            0 completely duplicate packet (0 byte)
            0 packet with some dup. data (0 byte duped)
            0 out-of-order packet (0 byte)
            0 packet (0 byte) of data after window
            0 window probe
            0 window update packet
            0 packet received after close
            0 discarded for bad checksum
            0 discarded for bad header offset field
            0 discarded because packet too short
   0 connection request
   0 connection accept
   0 connection established (including accepts)
   0 connection closed (including 0 drop)
   0 embryonic connection dropped
   0 segment updated rtt (of 0 attempt)
   0 retransmit timeout
            O connection dropped by rexmit timeout
   0 persist timeout
   0 keepalive timeout
            0 keepalive probe sent
            0 connection dropped by keepalive
    0 pcb cache lookup failed
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
NETSTAT command complete
```

- NOTE: If the results of the pass:cmd="netstat -p tcp" command show that the retransmission parameters do not need to be adjusted, do not perform this step. This procedure is finished.
- 9. Go to the "Changing an Application Socket" procedure on page 3-202 and adjust the retransmission parameter (rtt and rexmit) values of the socket based on the results of the pass:cmd="netstat -p tcp" command entered in step 8.

Flowchart 3-19. Configuring IP Retransmission Parameters

Changing a DCM Parameter Set

This procedure is used to change a Database Communication Module Parameter Set in the database using the chg-dcmps command. Parameter sets are sets of generic timers and parameters that can be used by any IP application.

NOTE: For IP, timers one through four correspond to timers T1, T2, T3, T4 in the TALI state machine.

The chg-dcmps command uses these parameters.

:set-The set number, 1 to 9.

:timer – The timer number within the set, 1 to 10. Only timers 1 to 4 are used. Timers 5 through 10 are not used.

:tvalue - The value the timer will be set to.

:parm – The parameter number within the timer, 1 to 10. Only parameter numbers 1 through 3 are used. Parameter numbers 4 through 10 are not used.

:pvalue – The numerical value that pvalue will be set to if specified.

:srcset - The source set of the copy, 1 - 10.

The values of the timer, tvalue, parm, and pvalue parameters is shown in the rtrv-dcmps output. The output shows the values for the tvalue and pvalue in bits. The values for these parameters are entered as a decimal number. Table 3-15 shows the decimal equivalent for the bit values shown in the rtrv-dcmps output.

Table 3-15. DCMPS Values

Bit Value	Decimal Number Range	
32	0 - 4294967295	
8	0 - 255	

While the value of the pvalue parameter when used with the parm=3 parameter is 32 bits, or from 0 to 4294967295, only the first 6 bits (bits 0 - 5) are used. Bits 6-31 are reserved. This makes the decimal value of the pvalue parameter when used with the parm=3 parameter from 0 to 63.

The value of the pvalue parameter when used with the parm=2 parameter (enabling or disabling Nagle's Algorithm, TCP socket option) is either 0 (disabling Nagle's Algorithm) or 1 (enabling Nagle's Algorithm).

At least one of these parameters, **timer**, **parm**, or **srcset**, must be entered.

If the **srcset** parameter is specified, no other optional parameters can be entered.

If the **timer** parameter is specified, the **tvalue** parameter must be specified.

If the **parm** parameter is specified, the **pvalue** parameter must be specified.

NOTE: Set number 10 is a default parameter set and cannot be changed. In order to change the DCM parameters set for a socket using set number 10, use the chg-appl-sock command to change the DCM parameter set to a different set number, and then use the chg-dcmps command to modify the new set.

Canceling the RTRV-DCMPS Command

Because the rtrv-dcmps command used in this procedure can output information for a long period of time, the rtrv-dcmps command can be canceled and the output to the terminal stopped. There are three ways that the rtrv-dcmps command can be canceled.

- Press the **F9** function key on the keyboard at the terminal where the **rtrv-dcmps** command was entered.
- Enter the canc-cmd without the trm parameter at the terminal where the rtrv-dcmps command was entered.
- Enter the canc-cmd:trm=<xx>, where <xx> is the terminal where the rtrv-dcmps command was entered, from another terminal other that the terminal where the rtrv-dcmps command was entered. To enter the canc-cmd:trm=<xx> command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal's permissions can be verified with the rtrv-secu-trm command. The user's permissions can be verified with the rtrv-user or rtrv-secu-user commands.

For more information about the canc-cmd command, go to the Commands Manual.

Procedure

1. Display the DCM parameter set being changed in this procedure by entering the rtrv-dcmps command with the set parameter. For example, enter this command.

rtrv-dcmps:set=1

The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
SET TIMER TVALUE PARM PVALUE
                  4000 1
        1

    1
    1
    4000
    1

    1
    2
    3000
    2

    1
    3
    3000
    3

    1
    4
    10000
    4

    1
    5
    0
    5

    1
    6
    0
    6

    1
    7
    0
    7

    1
    8
    0
    8

    1
    9
    0
    9

                                           1
                                            1
                                             0
                                             0
                                              0
                                            0
                      0 9
                                            0
        9
 1
                0 10
       10
TIMER 1: TALI T1 Timer, time (mS) between sending of TEST msgs by NE
TVALUE : Valid range = 32-bits
TIMER 2: TALI T2 Timer, time (mS) to wait for response to TEST msg
TVALUE : Valid range = 32-bits
TIMER 3: TALI T3 Timer, time (mS) to continue processing rcv'd service
        msgs after NE is prohibited
TVALUE : Valid range = 32-bits
TIMER 4: TALI T4 Timer, time (mS) between sending of MONI msgs by NE
TVALUE: Valid range = 32-bits
PARM 1: Type of Service (TOS), IP header socket option
PVALUE: Valid range = lowest 8-bits
PARM 2: Nagle's Algorithm, TCP socket option
PVALUE: Valid range = lowest bit: 0 = Disable Nagle, 1 = Enable Nagle
PARM 3: Default SORP Flags socket option. Each bit is used as an
          enabled/disabled flag for a particular socket option.
PVALUE: Valid range = 32-bits
                                                         BIT VALUE
          0=Broadcast Phase MTPP Primitives;     0=Disabled , 1=Enabled
1=Response Method MTPP Primitives;     0=Disabled , 1=Enabled
                                                        0=Disabled , 1=Enabled
          2=SCCP with MTP;
          3=ISUP via MTP;
                                                        0=Disabled , 1=Enabled
          3=ISUP via MTP;
4=Group Code in MTPP;
                                                        0=Disabled , 1=Enabled
          5=Use XSRV;
                                                        0=Disabled , 1=Enabled
          6-31=Reserved
```

NOTE: If a parameter set is not being copied to the parameter set being changed, skip this step and go to step 3.

2. Display the DCM parameter set that will be copied to the parameter set being changed in this procedure by entering the rtrv-dcmps command with the set parameter. For example, enter this command.

rtrv-dcmps:set=5

The following is an example of the possible output.

rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0 SET TIMER TVALUE PARM PVALUE

```
TVALUE PARM

1 4000 1
2 1500 2
3 5000 3
4 20000 4
5 0 5
6 0 6
7 7
1
                                   255
1
                                      1
                                      1
1
1
                                      0
1
                                       0
1
                                       0
                                       0
1
                        . 8
                   0
       8
                                       0
1
                   0 9
                                      0
1
       9
                   0 10
      10
1
TIMER 1: TALI T1 Timer, time (mS) between sending of TEST msgs by NE
TVALUE : Valid range = 32-bits
TIMER 2: TALI T2 Timer, time (mS) to wait for response to TEST msq
TVALUE : Valid range = 32-bits
TIMER 3: TALI T3 Timer, time (mS) to continue processing rcv'd service
       msgs after NE is prohibited
TVALUE : Valid range = 32-bits
TIMER 4: TALI T4 Timer, time (mS) between sending of MONI msgs by NE
TVALUE: Valid range = 32-bits
PARM 1: Type of Service (TOS), IP header socket option
PVALUE: Valid range = lowest 8-bits
PARM 2: Nagle's Algorithm, TCP socket option
PVALUE: Valid range = lowest bit: 0 = Disable Nagle, 1 = Enable Nagle
PARM 3: Default SORP Flags socket option. Each bit is used as an
        enabled/disabled flag for a particular socket option.
PVALUE: Valid range = 32-bits
                                                 BIT VALUE
        0=Broadcast Phase MTPP Primitives; 0=Disabled , 1=Enabled 1=Response Method MTPP Primitives; 0=Disabled , 1=Enabled 2=SCCP with MTP; 0=Disabled , 1=Enabled
        3=ISUP via MTP;
                                                 0=Disabled , 1=Enabled
         4=Group Code in MTPP;
                                                0=Disabled , 1=Enabled
         5=Use XSRV;
                                                0=Disabled , 1=Enabled
         6-31=Reserved
```

3. Change the DCM parameter set information in the database by using the **chg-dcmps** command. For example, enter this command.

```
chg-dcmps:set=1:timer=1:tvalue=500
```

If a parameter set is being copied to the parameter set changed in this procedure, only the set and srcset parameters can be specified with the chg-dcmps command. The set parameter value must be the value specified in step 1. The scrset parameter value must be the value specified in step 2.

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0 CHG-DCMPS: MASP A - COMPLTD
```

4. Verify the new application socket information in the database by entering the **rtrv-dcmps** command. For example, enter this command.

rtrv-dcmps:set=1

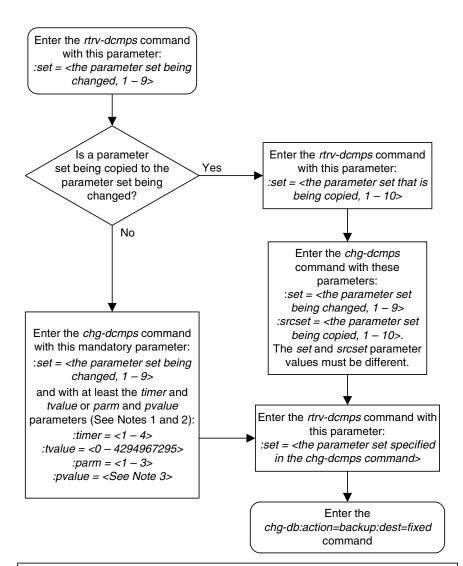
The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
    TVALUE PARM

1 500 1
2 3000 2
3 3000 3
4 10000 4
5 0 5
6 0 6
7 0 7
8 0 8
9 0
SET TIMER TVALUE PARM PVALUE
                               255
1 1
                                   1
1
1
1
1
1
                                    0
1
1
                                    0
1
                                     0
                                     0
1
TIMER 1: TALI T1 Timer, time (mS) between sending of TEST msgs by NE
TVALUE : Valid range = 32-bits
TIMER 2: TALI T2 Timer, time (mS) to wait for response to TEST msq
TVALUE : Valid range = 32-bits
TIMER 3: TALI T3 Timer, time (mS) to continue processing rcv'd service
       msgs after NE is prohibited
TVALUE : Valid range = 32-bits
TIMER 4: TALI T4 Timer, time (mS) between sending of MONI msgs by NE
TVALUE : Valid range = 32-bits
PARM 1: Type of Service (TOS), IP header socket option
PVALUE : Valid range = lowest 8-bits
PARM 2: Nagle's Algorithm, TCP socket option
PVALUE : Valid range = lowest bit: 0 = Disable Nagle, 1 = Enable Nagle
PARM 3: Default SORP Flags socket option. Each bit is used as an
        enabled/disabled flag for a particular socket option.
PVALUE : Valid range = 32-bits
        BIT
                                              BIT VALUE
        0=Broadcast Phase MTPP Primitives; 0=Disabled , 1=Enabled
        1=Response Method MTPP Primitives;
                                              0=Disabled , 1=Enabled
                                               0=Disabled , 1=Enabled
        2=SCCP with MTP;
```

IP⁷ Secure Gateway Configuration Procedures

```
3=ISUP via MTP; 0=Disabled , 1=Enabled 4=Group Code in MTPP; 0=Disabled , 1=Enabled 5=Use XSRV; 0=Disabled , 1=Enabled 6-31=Reserved
```


5. Back up the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.

BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED) : MASP A - Backup starts on standby MASP.

BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```


Flowchart 3-20. Changing an DCM Parameter Set

Notes:

- 1. If either the *timer* or *tvalue* parameters are specified, then both the *timer* and *tvalue* parameters must be specified.
- 2. If either the *parm* or *pvalue* parameters are specified, then both the *parm* and *pvalue* parameters must be specified.
- 3. If the parm parameter value is 1, the pvalue parameter is 0 255.

If the $\it parm$ parameter value is 2, the $\it pvalue$ parameter value is either 0 or 1.

If the *parm* parameter value is 3, the *pvalue* parameter value is 0-63. Each bit of the *pvalue* parameter value enables or disables certain functions. See the *rtrv-dcmps* command output for a list of the functions affected by the *parm=3* parameter.

Adding a Routing Key Containing a Socket

This procedure is used to add a routing key containing a socket to the database, or add a socket to an existing routing key containing sockets using the ent-appl-rtkey command.

A routing key defines a filter that checks the specified values in an incoming SS7 MSU to determine which, if any, socket or association receives the MSU. For more information about static routing keys, see "Understanding Routing for SS7IPGW and IPGWI Applications" on page 2-25.

The ent-appl-rtkey command uses these parameters.

:dpc/dpca/dpci/dpcn/dpcn24 – The destination point code value that is used to filter incoming MSUs. This parameter must not specify a cluster route. The destination point code of the routing key cannot be the APC of an IPGWx linkset or the SAPC assigned to an IPGWx linkset.

:opc/opca/opci/opcn/opcn24 - The originating point code value that is
used to filter incoming MSUs. This parameter must not specify a cluster route.
This parameter is valid only when the si parameter value is set to 4, 5, or 13.
This parameter is required if si=4, 5, or 13 and type=full.

NOTE: See the "Point Code Formats" section in the *Database*Administration Manual - SS7 for a definition of the point code types that are used on the EAGLE 5 ISS and for a definition of the different formats that can be used for ITU national point codes.

:si – The service indicator value that is used to filter incoming MSUs. The range of values for the service indicator parameter (si) can be a numerical value from 0 to 15, or for selected service indicator values, a text string can be used instead of numbers. Table 3-16 shows the text strings that can be used in place of numbers for the service indicator values.

Table 3-16. Service Indicator Text String Values

Service Indicator Value	Text String
0	snm
1	regtest
2	spltst
3	sccp
4	tup
5	isup
13	qbicc

:ssn – The subsystem value that is used to filter incoming MSUs. The ssn parameter is only valid when the si parameter value is set to 3 or sccp.

:sname – The name of the socket that will receive the incoming MSU if the filter key values (dpc, si, ssn) match the values in the incoming MSU.

:cics – The starting circuit identification code that is used to filter incoming MSUs. When specified with cice, cics identifies the start of the range of circuit identification codes. The cics parameter is valid only when the si parameter value is set to 4, 5, or 13. The cics is required if si=4, 5, or 13 and type=full.

:cice – The ending circuit identification code that is used to filter incoming MSUs. When specified with cics, cice identifies the end of the range of circuit identification codes. The cice parameter is valid only when the si parameter value is set to 4, 5, or 13. The cice is required if si=4, 5, or 13 and type=full.

:type - The routing key type - Identifies the type of routing key that is being entered and used to route message signaling units (MSUs). One of three values, full/partial/default, can be specified for the type parameter (see Table 3-17 on page 3-235). If type is not explicitly specified, type = full is assumed.

The ent-appl-rtkey command also contains these parameters which cannot be used in this procedure.

:asname - The application server name

:rcontext - The routing context parameter.

These parameters and their use are discussed in more detail in the "Adding a Routing Key Containing an Application Server" procedure on page 3-250 procedure.

Application socket names are shown in the rtrv-appl-sock output.

A routing key can be associated with up to 16 socket names. There is a maximum of 1000 routing keys allowed for each EAGLE 5 ISS (if there are any dual-slot DCM cards), or 2500 routing keys allowed for each EAGLE 5 ISS (if all cards running the <code>ss7ipgw</code> or <code>ipgwi</code> application are SSEDCM cards). Each of routing key's socket or application server names must be uniquely named.

The number of static routing keys is limited by the **srkq** parameter that was specified on the **chg-sg-opts** command.

Routing keys are associated only with the ss7ipgw or ipgwi application.

Group codes are required for 14-bit ITU-N point codes (DPCN/OPCN) when the Duplicate Point Code feature is enabled.

The starting circuit identification code must be less than or equal to the ending circuit identification code.

The ISUP routing over IP feature must be on in order to enter a routing key with these parameters: dpc, si, opc, cics, and cice. The IPISUP field in the rtrv-feat command output shows whether or not this feature is on.

When a routing key is added to the database, the pstncat and pstnid parameter values are set to zero and the norm parameter is set to no. These values cannot be

changed with the ent-appl-rtkey command. To change these values, go to the "Changing the PSTN Presentation and Normalization Attributes in a Routing Key" procedure on page 3-303.

The parameter combinations used by the ent-appl-rtkey command are based on the type of routing key and the service indicator value in the routing key. The parameter combinations are shown in Table 3-17.

Table 3-17. Routing Key Parameter Combinations for Adding a Routing Key Containing a Socket

SI=3 (SCCP)		5 (ISUP), 13 BICC)	Other S	Default Routing Key	
Full Routing Key	Partial Routing Key	Full Routing Key	Partial Routing Key	Full Routing Key	Partial Routing Key	
dpc ^{1, 2}	sname	dpc ^{1, 2}	sname	dpc ^{1, 2}	sname	sname
si=3 ⁴	type=partial	si=4, 5, 13 ⁴	type=partial	si=value other than 3, 4, 5, 13 ⁴	type=partial	type=default
ssn	dpc ^{1, 2, 3}	opc ^{1, 2}	dpc ^{1, 2, 3}	sname	dpc ^{1, 2, 3}	
type=full	si=3 ^{3, 4}	cics ^{5, 6, 7, 8, 9}	si=4, 5, 13 ^{3, 4}	type=full	si=value other than 3, 4, 5, 13 ^{3, 4}	
sname		cice ^{5, 6, 7, 8, 9}	opc ^{1, 2, 3}			
		type=full				
		sname				

Notes:

- 1. The dpc and opc parameters can be either an ANSI point code (dpca, opca), ITU-I point code (dpci, opci), 14-bit ITU-N point code (dpcn, opcn), or 24-bit ITU-N point code (dpcn24, opcn24). If the dpc and opc parameters are specified, the dpc and opc must be the same type of point code. For example, if the dpca parameter is specified, the OPC is specified with the opca parameter. ITU-I and 14-bit ITU-N spare point codes cannot be assigned to a routing key containing a socket.
- 2. If the ITU National Duplicate Point Code feature is on, the values for the dpcn and opcn parameters must have group codes assigned to them. The field ITUDUPPC in the rtrv-feat command output shows whether or not the ITU National Duplicate Point Code feature is on. If group codes are specified for ITU-N DPC and OPC, the groups codes must be the same.
- 3. These parameters are optional for partial routing keys, but at least one these parameters must be specified with the ent-appl-rtkey command.
- 4. Text strings can be used in place of some numerical service indicator values. See Table 3-16 on page 3-233 for a list of these text strings.

Table 3-17. Routing Key Parameter Combinations for Adding a Routing Key Containing a Socket (Continued)

SI=3 (SCCP)		5 (ISUP), 13 ICC)	Other S	Default Routing Key	
Full Routing	Partial	Full Routing	Partial	Full Routing	Partial	
Key	Routing Key	Key	Routing Key	Key	Routing Key	

- 5. When the service indicator parameter value equals 4 and an ANSI dpc is specified, the opc, cics, and cice parameters cannot be used. If the service indicator parameter value equals 4 and an ITU dpc is specified, the opc, cics, and cice parameters are required.
- 6. If the service indicator parameter (si) value is 4, the values of the cics and cice parameters is from 0 to 4095.
- 7. If the service indicator parameter (si) value is 5 and the point code in the routing key is either an ITU-I, 14-bit ITU-N, or 24-bit ITU-N point code, the values of the cics and cice parameters is from 0 to 4095. If the point code in the routing key is an ANSI point code, the values of the cics and cice parameters is from 0 to 16383.
- 8. If the service indicator parameter value is 13, the values of the cics and cice parameters is from 0 to 4294967295.
- 9. The CIC range, defined by the cics and cice parameters, cannot overlap the CIC range in an existing routing key.

Canceling the RTRV-APPL-SOCK and RTRV-APPL-RTKEY Commands

Because the rtrv-appl-sock and rtrv-appl-rtkey commands used in this procedure can output information for a long period of time, the rtrv-appl-sock and rtrv-appl-rtkey commands can be canceled and the output to the terminal stopped. There are three ways that the rtrv-appl-sock and rtrv-appl-rtkey commands can be canceled.

- Press the **F9** function key on the keyboard at the terminal where the **rtrv-appl-sock** or **rtrv-appl-rtkey** commands were entered.
- Enter the canc-cmd without the trm parameter at the terminal where the rtrv-appl-sock or rtrv-appl-rtkey commands were entered.
- Enter the canc-cmd:trm=<xx>, where <xx> is the terminal where the rtrv-appl-sock and rtrv-appl-rtkey commands were entered, from another terminal other that the terminal where the rtrv-appl-sock or rtrv-appl-rtkey commands were entered. To enter the canc-cmd:trm=<xx> command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal's permissions can be verified with the rtrv-secu-trm command. The user's permissions can be verified with the rtrv-user or rtrv-secu-user commands.

For more information about the canc-cmd command, go to the Commands Manual.

Procedure

1. Display the current routing key information in the database by entering the rtrv-appl-rtkey command. The following is an example of the possible output.

rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0 RCONTEXT DPC SI ADPTR ASNAME TYPE ----- 123-234-123 5 TALI ------ FULL STATIC ----- 123-234-123 5 TALI ------ FULL STATIC 1105 ----- 005-005-001 5 TALI ----- FULL 1105 1107 1107 SI ADPTR ASNAME RCONTEXT DPCT TYPE LOC ------ s-6-006-6 3 TALI ------- FULL STATIC ----- 6-006-7 6 TALI ------ FULL STATIC ----- s-6-006-6 5 TALI ------ FULL STATIC ----- s-6-006-6 5 TALI ----- FULL STATIC DPCN SI ADPTR ASNAME RCONTEXT TYPE RCONTEXT DPCN24 SI ADPTR ASNAME TYPE LOC RCONTEXT DPC SI ADPTR ASNAME TYPE LOC ----- ******** ** TALI ------ DEFAULT STATIC STATIC Route Key table is (7 of 2000) 1% full 1105 Route Key table is (2 of 500) 1% full 1107 Route Key table is (2 of 500) 1% full STATIC Route Key Socket Association table is (7 of 32000) 1% full 1105 Route Key Socket Association table is (2 of 8000) 1% full 1107 Route Key Socket Association table is (2 of 8000) 1% full

NOTE: If the routing key will be assigned to a new DPC, skip this step and go to step 3.

NOTE: The database can contain only one default routing key. If the rtrv-appl-rtkey output contains a default routing key, a default routing key cannot be added in this procedure. Continue this procedure with step 2 to add either a full or partial routing key with the desired socket. If the rtrv-appl-rtkey output in step 1 does not show a default routing key, skip this step and go to step 3.

2. Display the specific routing key information for the routing key that the new routing key will be added to by entering the rtrv-appl-rtkey command with the display=all parameter and the DPC value shown in the rtrv-appl-rtkey output in step 1. For this example, enter this command.

rtrv-appl-rtkey:dpc=123-234-123:display=all

This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0
RCONTEXT DPC SI SSN OPC CICS CICE LOC ------ 123-234-123 5 --- 122-124-125 1 1000 STA
                                                                   STATIC
   ADPTR TYPE PSTNCAT PSTNID NORM DUP
   TALI FULL 0 0 N
   SNAMES
   socket31
RCONTEXT DPC SI SSN OPC CICS CICE ----- 123-234-123 5 --- 100-100-100 1 50
RCONTEXT DPC
                                                                   STATIC
   ADPTR TYPE PSTNCAT PSTNID NORM DUP
   TALI FULL
                  0 0 N N
   SNAMES
   socket31
STATIC Route Key table is (7 of 2000) 1% full
1105 Route Key table is (2 of 500) 1% full
1107 Route Key table is (2 of 500) 1% full
STATIC Route Key Socket Association table is (7 of 32000) 1% full
1105 Route Key Socket Association table is (2 of 8000) 1% full
1107 Route Key Socket Association table is (2 of 8000) 1% full
```

If this routing key has an application server assigned to it, another socket cannot be assigned to the routing key. Continue this procedure with step 3 and add a new routing key with a new DPC and the desired socket.

NOTE: If the routing key being added will contain ITU-I or 14-bit ITU-N spare point codes, a socket cannot be assigned to the routing key. Only an application server can be assigned to a routing key that contains ITU-I or 14-bit ITU-N spare point codes. To add a new routing key with a socket, continue with this procedure at step 3 and add a new routing key with a new DPC, but not an ITU-I or 14-bit ITU-N spare point code, and the desired socket. To add a new routing key with an ITU-I or 14-bit ITU-N spare point code, perform the "Adding a Routing Key Containing an Application Server" on page 3-250.

3. Display the current application socket information in the database by entering the rtrv-appl-sock command. The following is an example of the possible output.

IP Appl Sock/Assoc table is (2 of 4000) 1% full

If the requried socket is shown in the rtrv-appl-sock output, and a default routing key is being added, skip steps 4 through 7, and go to step 8.

If the requried socket is not shown in the rtrv-appl-sock output, and a default routing key is being added, perform the "Adding an Application Socket" procedure on page 3-181 to add the socket. After the socket has been added, skip steps 4 through 7, and go to step 8.

If a partial or full routing key is being added, go to step 4.

4. The DPC of the routing key cannot be the APC of an IPGWx linkset or an SAPC assigned to an IPGWx linkset. Display the names of the IPGWx linksets by entering the rept-stat-iptps command. This is an example of the possible output.

rlghncxa03w 06-10-10 11:43:04 GMT EAGLE5 36.0.0

IP TPS USAGE REPORT

Т	HRESH	CONFIG		TPS	PEAK	PEAI	KTIMESTAMP
SYSTEM							
RLGHNCXA03W	100%	30000	TX:	7200	7600	05-02-10	11:40:04
			RCV:	7200	7600	05-02-10	11:40:04
LSN							
LSGW1101	80%	10000	TX:	7200	7600	05-02-10	11:40:04
			RCV:	7200	7600	05-02-10	11:40:04
LSGW1103	80%	10000	TX:	6700	7600	05-02-10	11:40:04
			RCV:	6500	7600	05-02-10	11:40:04
LSGW1105	80%	10000	TX:	7300	7450	05-02-10	11:40:04
			RCV:	7300	7450	05-02-10	11:40:04
Command Comp	leted.						

5. Display the IPGwx linksets shown in the rept-stat-iptps output in step 4 using the rtrv-1s command and specifying the name of the linkset shown in step 4. For this example, enter these commands.

rtrv-ls:lsn=lsgw1101

This is an example of the possible output

rlghncxa03w 06-10-28 16:31:35 GMT EAGLE5 36.0.0 L3T SLT GWS GWS GWS APCA (SS7) SCRN SET SET BEI LST LNKS ACT MES DIS SLSCI NIS lsqw1101 240-020-000 scrl 1 1 yes A 1 off off yes off IPGWAPC MATELSN IPTPS LSUSEALM SLKUSEALM GTTMODE yes ----- 10000 70 % 70 % CdPA L2T L1 LOC LINK SLC TYPE SET BPS MODE TSET ECM N1 N2 LP ATM
LOC LINK SLC TYPE SET BPS TSEL VCI VPI LL LP ATM E1ATM
LOC LINK SLC TYPE SET BPS TSEL VCI VPI CRC4 SI SN LOC LINK SLC TYPE IPLIML2 LOC LINK SLC TYPE 1101 A 0 SS7IPGW L2T PCR PCR T1 T1 LOC LINK SLC TYPE SET BPS ECM N1 N2 LOC PORT TS

Link set table is (13 of 1024) 1% full

rtrv-ls:lsn=lsgw1103

This is an example of the possible output.

rlghncxa03v	w 06-1	10-17	11:43	:04 GMT	EAG	LE5	36.	0.0						
					L3T	SLT				GWS	GWS	GWS		
LSN	APO	CN	(SS7)	SCRN	SET	SET	BEI	LST	LNKS	ACT	MES	DIS	SLSCI	NIS
lsgw1103	296	58		none	1	1	no	A	1	off	off	off		off
	CLLI		TF.	ATCABML	ıQ M -	ITPRS	SE I	ASL8 	SLSI	RSB	MUL:	rgc	ITUTF:	R
	IPGWZ	APC MA	ATELSN	IPT	PS I	SUSI	EALM	SLK	JSEALI	M GT	rmodi	3		
	yes			100	00 7	0	%	70	9	€ Cd1	PΑ			
					L2T			L1				PCF	R PCR	
	LOC	LINK	SLC T	YPE	SET	BI	PS	MOI	DE TSI	ET I	ECM	N1	N2	
					LP				MTA					
	LOC	LINK	SLC T	YPE	SET	BI	PS	-	rsel		VCI	7	/PI	LL
					LP			ATM					E1A	ΓM
	LOC	LINK	SLC T	YPE	SET	BPS	3	TSEI		VCI	VI	PI (CRC4 S	I SN
	LOC	LINK	SLC T	YPE	IPI	IML2	2							

LOC 1103	LINK A	SLC 0	TYPE IPGWI								
LOC	LINK	SLC	TYPE	L2T SET	BPS	ECM	PCR N1	PCR N2	E1 LOC	E1 PORT	TS
LOC	LINK	SLC	TYPE	L2T SET	BPS	ECM	PCR N1	PCR N2	T1 LOC	T1 PORT	TS
SAPC:	_										

Link set table is (13 of 1024) 1% full.

rtrv-ls:lsn=lsgw1105

This is an example of the possible output.

rlghncxa03v	w 06-1	10-17	11:4	13:04	GMT	EAGI	E5	36.	0.0						
					I	L3T S	SLT				GWS	GWS	GWS		
LSN	AP	CI	(SS7)	SCI	RN S	SET S	ET	BEI	LST	LNKS	ACT	MES	DIS	SLSCI	NIS
lsgw1105	2 - 3	154-0		noi	ne i	1 1	L	no	A	1	off	off	off		off
	CLLI			FATC	ABML(CM C	PRS	E A	ASL8		RSB	MUL	rgc		'R
			1	L						1		no		off	
	T D 011								a				_		
		APC MA		5N 					70		M GT™ % Cd:		S		
	yes				1000	JU /()	6	70		e Ca.	PA			
						L2T			L1				DCE	R PCF	,
	T.O.C	LINK	ST.C	TYPE		SET		S		DE TS	ET 1	E.CM	N1	N2	-
	шос	DIIII	DLC			511			1101) L I I I		L C1 1		112	
						LP			I	MTA					
	LOC	LINK	SLC	TYPE		SET	BF	S	7	SEL		VCI	7	/PI	LL
						LP			ATM					E1A	MT
	LOC	LINK	SLC	TYPE		LP SET	BPS	}		<u>.</u>	VCI	VI	PI (E1A	
						SET				i.	VCI	VI	?I (
		LINK									VCI	VI	?I (
	LOC	LINK	SLC	TYPE		SET					VCI	VI	?I (
	LOC	LINK	SLC	TYPE		SET					VCI	VI	?I (
	LOC	LINK	SLC	TYPE		SET					VCI	VI	?I (
	LOC	LINK	SLC	TYPE		SET	IML2							CRC4 S	
	LOC LOC 1105	LINK LINK A	SLC SLC	TYPE TYPE IPGW	I	SET IPL	IML2		TSEI	P	CR :	PCR	E1	CRC4 S	SI SN
	LOC LOC 1105	LINK	SLC SLC	TYPE TYPE IPGW	I	SET	IML2		TSEI	P	CR :			CRC4 S	
	LOC LOC 1105	LINK LINK A	SLC SLC	TYPE TYPE IPGW	I	SET IPL	ML2		TSEI	P [.] 1 N	CR :	PCR	E1	E1 POR	SI SN
	LOC LOC 1105	LINK LINK A	SLC SLC 0	TYPE TYPE IPGW	I	SET IPLI L2T SET	BF	PS.	TSEI	P I N P	CR :	PCR N2	E1 LOC	E1 C POF	SI SN
	LOC LOC 1105	LINK LINK A	SLC SLC 0	TYPE TYPE IPGW	I	SET IPLI L2T SET L2T	BF	PS.	TSEI	P I N P	CR :	PCR N2 PCR	E1 LOC	E1 C POF	SI SN
	LOC LOC 1105	LINK LINK A LINK	SLC SLC 0	TYPE TYPE IPGW	I	SET IPLI L2T SET L2T	BF	PS.	TSEI	P I N P	CR :	PCR N2 PCR	E1 LOC	E1 C POF	SI SN
	LOC LOC LOC LOC	LINK LINK A LINK	SLC SLC 0	TYPE TYPE IPGW	I	SET IPLI L2T SET L2T	BF	PS.	TSEI	P I N P	CR :	PCR N2 PCR	E1 LOC	E1 C POF	SI SN

Link set table is (13 of 1024) 1% full.

If the DPC of the routing key is shown in the rtrv-ls outputs in this step, choose another DPC value for the routing key that is not shown in the rtrv-ls outputs in this step.

If the requried socket is shown in the **rtrv-appl-sock** output in step 3, continue this procedure with step 6.

If the requried socket is not shown in the rtrv-appl-sock output in step 3, perform the "Adding an Application Socket" procedure on page 3-181 to add

the socket. After the socket has been added, continue this procedure with step 6.

NOTE: If a default routing key is being added to the database, or if the SI value of the routing key being added is a value other than 4, 5, or 13, skip steps 6 and 7, and go to step 8.

6. Verify that the ISUP Routing over IP feature is on, by entering the rtrv-feat command. If the ISUP Routing over IP feature is on, the IPISUP field should be set to on. For this example, the ISUP Routing over IP feature is off.

NOTE: The rtrv-feat command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the rtrv-feat command, see the rtrv-feat command description in the Commands Manual.

NOTE: If the ISUP Routing over IP feature is on, skip step 7 and go to step 8.

7. Turn the ISUP Routing over IP feature on by entering this command.

chg-feat:ipisup=on

NOTE: Once the ISUP Routing over IP feature is turned on with the chg-feat command, it cannot be turned off.

The ISUP Routing over IP feature must be purchased before you turn this feature on with the chg-feat command. If you are not sure if you have purchased the ISUP Routing over IP feature, contact your Tekelec Sales Representative or Account Representative.

When the chg-feat has successfully completed, this message should appear.

rlghncxa03w 06-10-28 11:43:04 GMT EAGLE5 36.0.0 CHG-FEAT: MASP A - COMPLTD

8. Add a routing key entry to the database by entering the ent-appl-rtkey command. The parameters required for the ent-appl-rtkey command are determined by the type of routing key being added and the service indicator value in the routing key. See Table 3-17 on page 3-235 for the parameter combinations that can be used for the type of routing key being added to the database.

NOTE: If the DPC and OPC values are ITU-N point codes, these point codes must have group codes assigned to them if the ITU National Duplicate Point Code feature is on. The ITUDUPPC field in the rtrv-feat command executed in step 6 shows whether or not the ITU National Duplicate Point Code feature is on.

A socket can be added to an existing routing key if the DPC value specified in this procedure must be same as the DPC value shown in the existing routing key.

For this example, a full ISUP routing key is being added to the database. Enter this command.

```
ent-appl-rtkey:dpca=001-002-003:si=5:opca=100-100-100:cics=1
:cice=50:sname=socket5:type=full
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0 ENT-APPL-RTKEY: MASP A - COMPLTD
```

9. Verify the new routing key information in the database by entering the rtrv-appl-rtkey command with the socket name (sname) specified in step 8 and the display=all parameter. For this example, enter this command.

```
rtrv-appl-rtkey:sname=socket5:display=all
```

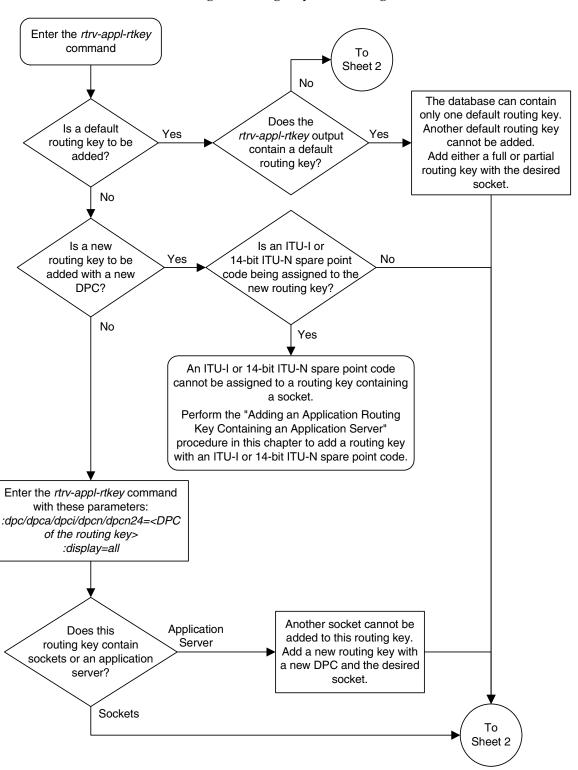
The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0
                    SI SSN OPC
                                                CICE
RCONTEXT DPC
                                       CICS
                                                          LOC
----- 001-002-003 5 --- 100-100-100 1
                                                          STATIC
   ADPTR TYPE PSTNCAT PSTNID NORM DUP
   SNAMES
   socket5
STATIC Route Key table is ( 8 of 2000) 1% full
1105 Route Key table is ( 2 of 500) 1% full
1107 Route Key table is ( 2 of 500) 1% full
STATIC Route Key Socket Association table is (8 of 32000) 1% full
1105 Route Key Socket Association table is (2 of 8000) 1% full
1107 Route Key Socket Association table is (2 of 8000) 1% full
```

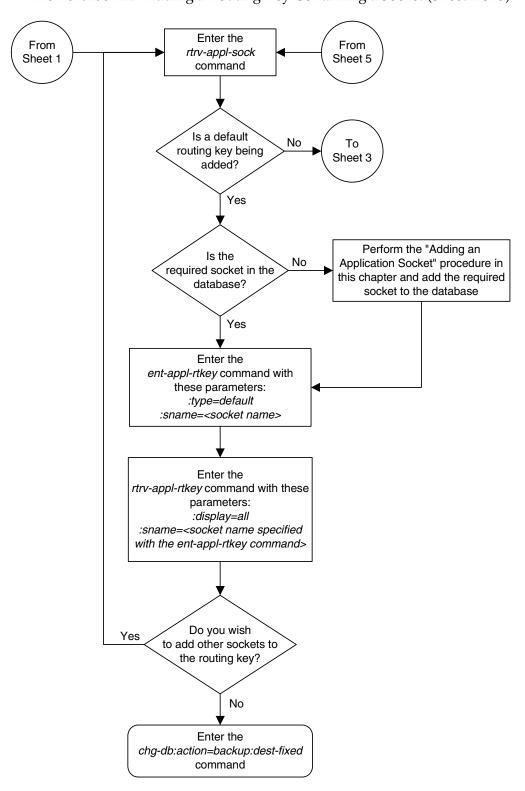
If a socket was assigned to the routing key added in this procedure and you wish to add other sockets to the routing key, repeat this procedure from step 3. If no other sockets are to be added to the routing key, go to step 10.

10. If you wish to change the PSTN presentation information in the routing key that was added in step 8, go to the "Changing the PSTN Presentation and Normalization Attributes in a Routing Key" procedure on page 3-303. Do not perform step 11.

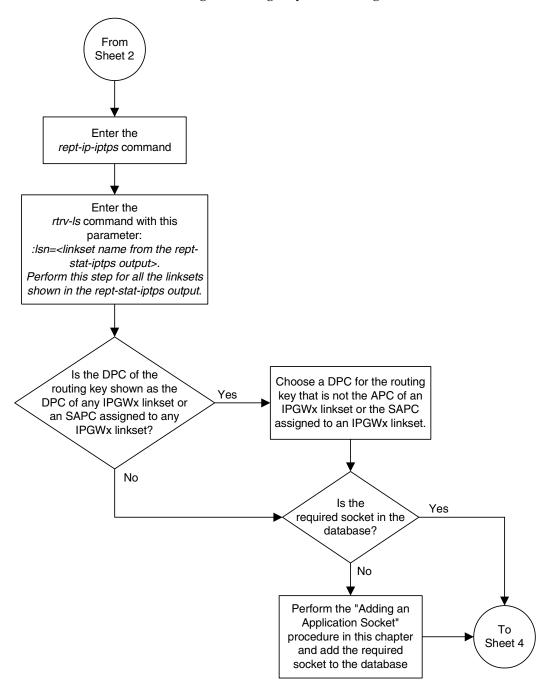
If you do not wish to change the PSTN presentation information in the routing key, skip this step and go to step 9.

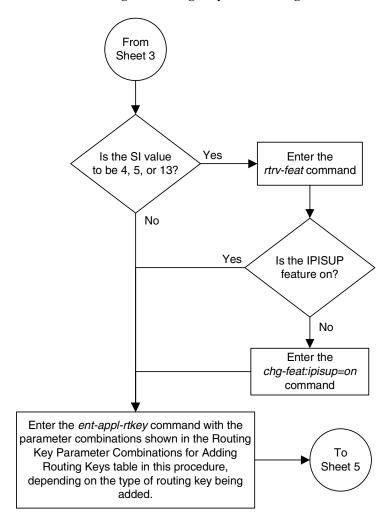

11. Back up the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.


BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED) : MASP A - Backup starts on standby MASP.


BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```



Flowchart 3-21. Adding a Routing Key Containing a Socket (Sheet 1 of 5)

Flowchart 3-21. Adding a Routing Key Containing a Socket (Sheet 2 of 5)

Flowchart 3-21. Adding a Routing Key Containing a Socket (Sheet 3 of 5)

Flowchart 3-21. Adding a Routing Key Containing a Socket (Sheet 4 of 5)

From Sheet 4 Enter the rtrv-appl-rtkey command with these parameters: :display=all :dpc/dpca/dpci/dpcn/dpcn24 = <DPC parameter and value specified in the ent-appl-rtkey command> :sname=<socket name specified with the ent-appl-rtkey command> Do you wish Yes То to add other sockets to Sheet 2 the routing key? No Do you wish Enter the No to change the PSTN data chg-db:action=backup:dest-fixed in the routing key? command Yes Perform the "Changing the PSTN Presentation and Normalization Attributes in an Application Routing Key" procedure in this chapter and change the PSTN presentation information.

Flowchart 3-21. Adding a Routing Key Containing a Socket (Sheet 5 of 5)

Adding a Routing Key Containing an Application Server

This procedure is used to add a routing key containing an application server to the database using the ent-appl-rtkey command.

A routing key defines a filter that checks the specified values in an incoming SS7 MSU to determine which, if any, socket or association receives the MSU. For more information about static routing keys, see "Understanding Routing for SS7IPGW and IPGWI Applications" on page 2-25.

The ent-appl-rtkey command uses these parameters.

:dpc/dpca/dpci/dpcn/dpcn24 – The destination point code value that is used to filter incoming MSUs. This parameter must not specify a cluster route. The destination point code of the routing key cannot be the APC of an IPGWx linkset or the SAPC assigned to an IPGWx linkset.

:opc/opca/opci/opcn/opcn24 – The originating point code value that is used to filter incoming MSUs. This parameter must not specify a cluster route. This parameter is valid only when the si parameter value is set to 4, 5, or 13. This parameter is required if si=4, 5, or 13 and type=full.

NOTE: See the "Point Code Formats" section in the *Database Administration Manual - SS7* for a definition of the point code types that are used on the EAGLE 5 ISS and for a definition of the different formats that can be used for ITU national point codes.

:si – The service indicator value that is used to filter incoming MSUs. The range of values for the service indicator parameter (si) can be a numerical value from 0 to 15, or for selected service indicator values, a text string can be used instead of numbers. Table 3-18 shows the text strings that can be used in place of numbers for the service indicator values.

Table 3-18. Service Indicator Text String Values

Service Indicator Value	Text String
0	snm
1	regtest
2	spltst
3	sccp
4	tup
5	isup
13	qbicc

:ssn – The subsystem value that is used to filter incoming MSUs. The ssn parameter is only valid when the si parameter value is set to 3 or sccp.

:cics – The starting circuit identification code that is used to filter incoming MSUs. When specified with cice, cics identifies the start of the range of circuit identification codes. The cics parameter is valid only when the si parameter value is set to 4, 5, or 13. The cics is required if si=4, 5, or 13 and type=full.

:cice – The ending circuit identification code that is used to filter incoming MSUs. When specified with cics, cice identifies the end of the range of circuit identification codes. The cice parameter is valid only when the si parameter value is set to 4, 5, or 13. The cice is required if si=4, 5, or 13 and type=full.

:type - The routing key type - Identifies the type of routing key that is being entered and used to route message signaling units (MSUs). One of three values, full/partial/default, can be specified for the type parameter (see Table 3-19 on page 3-252). If type is not explicitly specified, type = full is assumed.

:asname - Application server (AS) name.

:rcontext - The routing context parameter, which has two functions:

- Provides an index of the application server traffic that the sending application server is configured or registered to receive.
- Identifies the SS7 network context for the message. The routing context parameter implicitly defines the SS7 point code format used, the SS7 network indicator value, and the SCCP protocol type/variant/version used.

The ent-appl-rtkey command also contains the sname (socket name) parameters which cannot be used in this procedure. The sname parameter and its use is discussed in more detail in the "Adding a Routing Key Containing a Socket" procedure on page 3-233 procedure.

Application server names are shown in the rtrv-as output.

Only one application server can be assigned to a routing key. There is a maximum of 1000 routing keys allowed per EAGLE 5 ISS (if there are any dual-slot DCM cards), or 2500 routing keys allowed per EAGLE 5 ISS (if all cards running the ss7ipgw or ipgwi application are SSEDCM cards). Each of routing key's socket or application server names must be uniquely named.

The number of static routing keys is limited by the **srkq** parameter that was specified on the **chg-sg-opts** command.

Routing keys are associated only with the ss7ipgw or ipgwi application.

Group codes are required for 14-bit ITU-N point codes (DPCN/OPCN) when the Duplicate Point Code feature is enabled.

The starting circuit identification code must be less than or equal to the ending circuit identification code.

The ISUP routing over IP feature must be on in order to enter a routing key with these parameters: dpc, si, opc, cics, and cice. The IPISUP field in the rtrv-feat command output shows whether or not this feature is on.

The parameter combinations used by the ent-appl-rtkey command are based on the type of routing key and the service indicator value in the routing key. The parameter combinations are shown in Table 3-19.

Table 3-19. Routing Key Parameter Combinations for Adding a Routing Key Containing an Application Server

SI=3 (\$	SCCP)		5 (ISUP), 13 ICC)	Other S	Default Routing Key	
Full Routing Key	Partial Routing Key	Full Routing Key	Partial Routing Key	Full Routing Key	Partial Routing Key	
dpc ^{1, 2}	type=partial	dpc ^{1, 2}	type=partial	dpc ^{1, 2}	type=partial	type=default
si=3 ⁴	dpc ^{1, 2, 3}	si=4, 5, 13 ⁴	dpc ^{1, 2, 3}	si=value other than 3, 4, 5, 13 ⁴	dpc ^{1, 2, 3}	asname ¹⁰
ssn	si=3 ^{3, 4}	opc ^{1, 2}	si=4, 5, 13 ^{3, 4, 10}	type=full	si=value other than 3, 4, 5, 13 ^{3, 4, 10}	rcontext ¹⁰
type=full	asname ¹⁰	cics ^{5, 6, 7, 8, 9}	opc ^{1, 2, 3}	asname ¹⁰	asname ¹⁰	
asname ¹⁰	rcontext ¹⁰	cice ^{5, 6, 7, 8, 9}	asname ¹⁰	rcontext ¹⁰	rcontext ¹⁰	
rcontext ¹⁰		type=full	rcontext ¹⁰			
		asname ¹⁰				
		rcontext ¹⁰				

Notes:

- 1. The dpc and opc parameters can be either an ANSI point code (dpca, opca), ITU-I point code or ITU-I spare point code (dpci, opci), 14-bit ITU-N point code or 14-bit ITU-N spare point code (dpcn, opcn), or 24-bit ITU-N point code (dpcn24, opcn24). If the dpc and opc parameters are specified, the dpc and opc must be the same type of point code. For example, if the dpca parameter is specified, the OPC is specified with the opca parameter. If either point code value is a spare point code, the other point code value must be a spare point code on the same type. For example, if the dpc value is an ITU-I spare point code, the opc value must be an ITU-I spare point code.
- 2. If the ITU National Duplicate Point Code feature is on, the values for the dpcn and opcn parameters must have group codes assigned to them. The field ITUDUPPC in the rtrv-feat command output shows whether or not the ITU National Duplicate Point Code feature is on. If group codes are specified for ITU-N DPC and OPC, the groups codes must be the same.
- 3. These parameters are optional for partial routing keys, but at least one these parameters must be specified with the ent-appl-rtkey command.
- 4. Text strings can be used in place of some numerical service indicator values. See Table 3-18 on page 3-250 for a list of these text strings.

Table 3-19. Routing Key Parameter Combinations for Adding a Routing Key Containing an Application Server (Continued)

SI=3 (\$	SCCP)		5 (ISUP), 13 ICC)	Other S	SI Values	Default Routing Key
Full Routing	Partial	Full Routing	Partial	Full Routing	Partial	
Key	Routing Key	Key	Routing Key	Key	Routing Key	

- 5. When the service indicator parameter value equals 4 and an ANSI dpc is specified, the opc, cics, and cice parameters cannot be used. If the service indicator parameter value equals 4 and an ITU dpc is specified, the opc, cics, and cice parameters are required.
- 6. If the service indicator parameter (si) value is 4, the values of the cics and cice parameters is from 0 to 4095.
- 7. If the service indicator parameter (si) value is 5 and the point code in the routing key is either an ITU-I, 14-bit ITU-N, or 24-bit ITU-N point code, the values of the cics and cice parameters is from 0 to 4095. If the point code in the routing key is an ANSI point code, the values of the cics and cice parameters is from 0 to 16383.
- 8. If the service indicator parameter value is 13, the values of the cics and cice parameters is from 0 to 4294967295.
- 9. The CIC range, defined by the cics and cice parameters, cannot overlap the CIC range in an existing routing key.
- 10. The following rules apply to using the rcontext parameter.
- The value of the rcontext parameter is from 0 to 4294967295.
- The rcontext parameter is required for a routing key containing an SUA application server.
- The rcontext parameter is optional for a routing key containing an M3UA application server.
- The rcontext parameter value must be unique in the database. Multiple routing keys cannot have the same rcontext value assigned.
- An application server can be assigned to only one routing key containing a routing context value.
- If the application server being assigned to the new routing key is assigned to other routing keys that do not
 contain rcontext parameter values, the rcontext parameter cannot be specified for the new routing key.
- An application server can be assigned to multiple routing keys if those routing keys do not contain a routing context value.
- An application server can be assigned to either a routing key containing a routing context value, or to routing
 keys that do not contain a routing context value, but the application server cannot be assigned to both types of
 routing keys.
- In order for an M3UA or SUA association to be assigned to multiple routing keys with a routing context value, the M3UA or SUA association must be assigned to multiple application servers and then each application server must be assigned to a routing key containing a routing context value.

Canceling the RTRV-AS and RTRV-APPL-RTKEY Commands

Because the rtrv-as and rtrv-appl-rtkey commands used in this procedure can output information for a long period of time, the rtrv-as and rtrv-appl-rtkey commands can be canceled and the output to the terminal stopped. There are three ways that the rtrv-as and rtrv-appl-rtkey commands can be canceled.

 Press the F9 function key on the keyboard at the terminal where the rtrv-as or rtrv-appl-rtkey commands were entered.

- Enter the canc-cmd without the trm parameter at the terminal where the rtrv-as or rtrv-appl-rtkey commands were entered.
- Enter the canc-cmd: trm=<xx>, where <xx> is the terminal where the rtrv-as and rtrv-appl-rtkey commands were entered, from another terminal other that the terminal where the rtrv-as or rtrv-appl-rtkey commands were entered. To enter the canc-cmd: trm=<xx> command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal's permissions can be verified with the rtrv-secu-trm command. The user's permissions can be verified with the rtrv-user or rtrv-secu-user commands.

For more information about the canc-cmd command, go to the Commands Manual.

Procedure

 Display the current routing key information in the database by entering the rtrv-appl-rtkey command. The following is an example of the possible output.

STATIC STATIC STATIC STATIC STATIC FULL STATIC STATIC STATIC STATIC RCONTEXT DPCN SI ADPTR ASNAME TYPE LOC RCONTEXT DPCN24 SI ADPTR ASNAME TYPE LOC RCONTEXT DPC. SI ADPTR ASNAME TYPE LOC

STATIC Route Key table is (13 of 2000) 1% full 1105 Route Key table is (2 of 500) 1% full 1107 Route Key table is (2 of 500) 1% full

----- ******* ** TALI

STATIC Route Key Socket Association table is (13 of 32000) 1% full 1105 Route Key Socket Association table is (2 of 8000) 1% full 1107 Route Key Socket Association table is (2 of 8000) 1% full

----- DEFAULT STATIC

The database can contain only one default routing key. If the rtrv-appl-rtkey output contains a default routing key, a default routing key cannot be added in this procedure. Go to step 2 to add either a full or partial routing key with the desired application server.

2. Display the current application server information in the database by entering the rtrv-as command. The following is an example of the possible output.

rlghncxa03w	06-10-28 09:12:36	GMT EAG	LE5 36.0.0
AS Name as1	Mode LOADSHARE	Tr ms	Association Names assoc1 assoc2 assoc3 assoc5 assoc6
as2	OVERRIDE	10	assoc7
as3	LOADSHARE	10	assoc8 assoc9
as4	LOADSHARE	10	assoc10 assoc11
as5	LOADSHARE	10	assoc12 assoc13

AS Table is (5 of 250) 1% full

If the required application server is not in the database, perform one of these procedures to add the application server:

- "Adding a New Association to a New Application Server" procedure on page 3-397
- "Adding an Existing Association to a New Application Server" procedure on page 3-406
- "Adding a New Association to an Existing Application Server" procedure on page 3-417
- "Adding an Existing Association to an Existing Application Server" procedure on page 3-429.

If the rcontext parameter will not be specified for the routing key, make sure that the adapter parameter value for the associations assigned to the new application server is M3UA.

If the rcontext parameter will be specified for the routing key, make sure that the open parameter value of the associations is set to no. The adapter parameter value of these associations can be either SUA or M3UA.

SUA associations, and their corresponding application server, can be assigned to only these types of routing keys:

• Full routing key – DPC/SI=3/SSN

- Partial routing key DPC/SI=3
- Partial routing key DPC only
- Partial routing key SI=3 only
- Default routing key.

After the new application server is added to the database, go to step 4.

3. Display the routing keys containing the application server being used in this procedure by entering the rtrv-appl-rtkey command with the application server name and the display=all parameter. For this example, enter these commands.

rtrv-appl-rtkey:asname=as4:display=all

The following is an example of the possible output.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0
____ DPCI SI SSN OPCI ----- 6-024-7 5 --- 1 ^--
                      SI SSN OPCI CICS CICE
5 --- 1-057-4 150 175
                                                             LOC
                                                              STATIC
   ADPTR TYPE ASNAME
   M3UA FULL
                 as4
      ANAMES
      assoc11 assoc12
RCONTEXT DPCI SI SSN OPCI CICS CICE LOC ----- 2-100-7 6 --- ----- -----
                                          _____
   ADPTR TYPE
                 ASNAME
   M3UA FULL
                 as4
      ANAMES
      assoc11
                     assoc12
STATIC Route Key table is (7 of 2000) 1% full
1105 Route Key table is (2 of 500) 1% full
1107 Route Key table is (2 of 500) 1% full
STATIC Route Key Socket Association table is (7 of 32000) 1% full
1105 Route Key Socket Association table is (2 of 8000) 1% full
```

1107 Route Key Socket Association table is (2 of 8000) 1% full

rtrv-appl-rtkey:asname=as5:display=all

The following is an example of the possible output.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0

RCONTEXT DPCI SI SSN OPCI CICS CICE LOC 225 4-035-7 5 --- 3-200-4 200 300 STATIC

ADPTR TYPE ASNAME M3UA FULL as5

ANAMES assoc15 assoc16

STATIC Route Key table is (7 of 2000) 1% full 1105 Route Key table is (2 of 500) 1% full 1107 Route Key table is (2 of 500) 1% full 1107 Route Key Socket Association table is (2 of 8000) 1% full 1105 Route Key Socket Association table is (2 of 8000) 1% full 1107 Route Key Socket Association table is (2 of 8000) 1% full 1107 Route Key Socket Association table is (2 of 8000) 1% full 1107 Route Key Socket Association table is (2 of 8000) 1% full 1107 Route Key Socket Association table is (2 of 8000) 1% full 1107 Route Key Socket Association table is (2 of 8000) 1% full 1107 Route Key Socket Association table is (2 of 8000) 1% full 1107 Route Key Socket Association table is (2 of 8000) 1% full 1107 Route Key Socket Association table is (2 of 8000) 1% full 1107 Route Key Socket Association table is (2 of 8000) 1% full 1107 Route Key Socket Association table is (2 of 8000) 1% full 1107 Route Key Socket Association table is (2 of 8000) 1% full 1107 Route Key Socket Association table is (2 of 8000) 1% full 1107 Route Key Socket Association table is (2 of 8000) 1% full 1107 Route Key Socket Association table is (2 of 8000) 1% full 1107 Route Key Socket Association table is (2 of 8000) 1% full 1107 Route Key Socket Association table is (2 of 8000) 1% full 1107 Route Key Socket Association table is (2 of 8000) 1% full 1107 Route Key Socket Association table is (2 of 8000) 1% full 1107 Route Key Socket Association table is (2 of 8000) 1% full 1107 Route Key Socket Association table is (2 of 8000) 1% full 1107 Route Key Socket Association table is (2 of 8000) 1% full 1107 Route Key Socket Association table is (2 of 8000) 1% full 1107 Route Key Socket Association table is (2 of 8000) 1% full 1107 Route Key Socket Association 1107 Route Key
```

If the application server is not assigned to any routing keys, the **rcontext** parameter can be specified for the new routing key using this application server. Go to step 4.

An application server can be assigned to only one routing key containing a routing context value. If the application server is assigned to other routing keys, the <code>rcontext</code> parameter cannot be specified for the new routing key being added in this procedure. If you wish to use the <code>rcontext</code> parameter for the new routing key, perform one of these procedures to add the application server:

- "Adding a New Association to a New Application Server" procedure on page 3-397
- "Adding an Existing Association to a New Application Server" procedure on page 3-406
- "Adding a New Association to an Existing Application Server" procedure on page 3-417
- "Adding an Existing Association to an Existing Application Server" procedure on page 3-429.

After the new application server is added, go to step 6.

If the application server is assigned to other routing keys, and these routing keys do not contain rcontext parameter values, the application server can be assigned to the new routing key in this procedure, but the rcontext parameter cannot be specified for the new routing key.

If you do not wish to use the **rcontext** parameter for the new routing key, go to step 6.

4. Display the associations assigned to the application server displayed in step 3, to verify the open parameter value of the association, using the rtrv-assoc command with the association names shown in step 2. For this example, enter these commands.

rtrv-assoc:aname=assoc11

This is an example of possible output.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0

ANAME assoc11

LOC 1203 IPLNK PORT A LINK A

ADAPTER M3UA VER M3UA RFC

LHOST gw110.nc.tekelec.com

ALHOST ---

RHOST gw100.nc.tekelec.com

LPORT 1030 RPORT 1030

ISTRMS 2 OSTRMS 2 BUFSIZE 16

RMODE LIN RMIN 120 RMAX 800

RTIMES 10 CWMIN 3000 UAPS 10

OPEN YES ALW YES

ASNAMES

as4

IP Appl Sock table is (10 of 4000) 1% full

Assoc Buffer Space Used (16 KB of 800 KB) on LOC = 1203
```

rtrv-assoc:aname=assoc12

This is an example of possible output.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLES 36.0.0

ANAME assoc12

LOC 1204 IPLNK PORT A LINK A

ADAPTER M3UA VER M3UA RFC

LHOST gw200.nc.tekelec.com

ALHOST ---

RHOST gw100.nc.tekelec.com

LPORT 2564 RPORT 1030

ISTRMS 2 OSTRMS 2 BUFSIZE 16

RMODE LIN RMIN 120 RMAX 800

RTIMES 10 CWMIN 3000 UAPS 10

OPEN YES ALW YES

ASNAMES

as4

IP Appl Sock table is (10 of 4000) 1% full

Assoc Buffer Space Used (16 KB of 800 KB) on LOC = 1204
```

rtrv-assoc:aname=assoc15

This is an example of possible output.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0

ANAME assoc15

LOC 1207 IPLNK PORT A LINK A ADAPTER SUA VER SUA RFC
LHOST gw150.nc.tekelec.com
ALHOST ---
RHOST gw100.nc.tekelec.com
LPORT 1500 RPORT 1030
ISTRMS 2 OSTRMS 2 BUFSIZE 16
```

```
RMODE LIN RMIN 120 RMAX 800
RTIMES 10 CWMIN 3000 UAPS 10
OPEN YES ALW YES

ASNAMES
as5

IP Appl Sock table is (4 of 4000) 1% full
Assoc Buffer Space Used (16 KB of 800 KB) on LOC = 1207
```

rtrv-assoc:aname=assoc16

This is an example of possible output.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0
ANAME assoc16
                 1211 IPLNK PORT A
      LOC
                                                                 LINK A
       ADAPTER SUA
                                    VER SUA RFC
       LHOST gw160.nc.tekelec.com
       ALHOST
                gw100.nc.tekelec.com
       RHOST
       LPORT
                  3571 RPORT
                                                   1030

        ISTRMS
        2
        OSTRMS
        2

        RMODE
        LIN
        RMIN
        120

        RTIMES
        10
        CWMIN
        3000

        OPEN
        YES
        ALW
        YES

                                                                BUFSIZE 16
                                                                 RMAX 800
                                                                UAPS 10
       ASNAMES
       as5
IP Appl Sock table is (4 of 4000) 1% full
Assoc Buffer Space Used (16 KB of 800 KB) on LOC = 1211
```

Repeat this step for each association name displayed in step 3 to verify the **open** parameter of each association assigned to the application server.

NOTE: If a new application server was added in step 2, skip step 5 and go to step 6.

NOTE: If the rcontext parameter is not being specified in this procedure, skip step 5 and go to step 6.

NOTE: If the open parameter value for all the associations assigned to the application server is no (shown in step 4), skip step 5 and go to step 6.

5. Change the value of the open parameter to no by specifying the chg-assoc command with the open=no parameter. For this example, enter this command.

```
chg-assoc:aname=assoc11:open=no
chg-assoc:aname=assoc12:open=no
chg-assoc:aname=assoc15:open=no
chg-assoc:aname=assoc16:open=no
chg-assoc:aname=assoc20:open=no
```

When each of these commands have successfully completed, this message should appear.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0 CHG-ASSOC: MASP A - COMPLTD
```


CAUTION: The IP connections using the associations specified in this step will not be able to carry any traffic when the open parameter is changed to no.

Repeat this step for all the associations assigned to the application server that have the open=yes parameter value.

NOTE: If a default routing key with an application server name is being added in this procedure, skip steps 6, 7, 8, 9, and 10, and go to step 11.

NOTE: If ITU-I or 14-bit ITU-N spare point codes are not being assigned to the routing key, or if ITU-I or 14-bit ITU-N spare point codes are shown in any routing keys shown in the rtrv-app-rtkey output in step 1, skip this step and go to step 7.

6. Display the status of the ITU National and International Spare Point Code Support feature by entering the rtrv-ctrl-feat command with the ITU National and International Spare Point Code Support feature part number. Enter this command.

rtrv-ctrl-feat:partnum=893013601

The following is an example of the possible output.

If the ITU National and International Spare Point Code Support feature is not enabled, perform the "Activating the ITU National and International Spare Point Code Support feature" procedure in the *Database Administration Manual - SS7* and enable and turn on the ITU National and International Spare Point Code Support feature.

7. The DPC of the routing key cannot be the APC of an IPGWx linkset or an SAPC assigned to an IPGWx linkset. Display the names of the IPGWx linksets by entering the rept-stat-iptps command. This is an example of the possible output.

```
rlghncxa03w 06-10-10 11:43:04 GMT EAGLE5 36.0.0

IP TPS USAGE REPORT

THRESH CONFIG TPS PEAK PEAKTIMESTAMP
```

SYSTEM						
RLGHNCXA03W	100%	50000	TX:	7200	7600	05-02-10 11:40:04
REGINCAROSW	1000	30000				
			RCV:	7200	7600	05-02-10 11:40:04
LSN						
LSGW1201	80%	10000	TX:	7200	7600	05-02-10 11:40:04
			RCV:	7200	7600	05-02-10 11:40:04
LSGW1204	80%	10000	TX:	6700	7600	05-02-10 11:40:04
			RCV:	6500	7600	05-02-10 11:40:04
LSGW1207	80%	10000	TX:	7300	7450	05-02-10 11:40:04
			RCV:	7300	7450	05-02-10 11:40:04
LSGW1211	80%	10000	TX:	7400	7450	05-02-10 11:40:04
			RCV:	7400	7450	05-02-10 11:40:04
Command Comp	leted.					

8. Display the IPGWx linksets shown in the rept-stat-iptps output in step 7 using the rtrv-1s command and specifying the name of the linkset shown in step 7. For this example, enter these commands.

rtrv-ls:lsn=lsgw1201

This is an example of the possible output

rlghncxa03w 06-10-28 16:31:35 GMT EAGLE5 36.0.0											
					L3T S	LT		(GWS GWS	GWS	
LSN	AP	CA	(SS7)	SCRN	SET S	ET BEI	LST I	LNKS A	ACT MES	DIS S	LSCI NIS
lsgw1201	24	0-020	-000	scr1	1 1	yes	Α :	1 (off off	off y	es off
	IPGW	APC M	ATELS	SN IPT	PS LS	USEALM	SLKU	SEALM	GTTMOD	E	
	yes			100	00 70	%	70	왕	CdPA		
					L2T		L1			PCR	PCR
	LOC	LINK	SLC	TYPE	SET	BPS	MOD	E TSET	r ECM	N1	N2
					LP		A'	ΓM			
	LOC	LINK	SLC	TYPE	SET	BPS	T	SEL	VCI	VP	I LL
					LP		ATM				E1ATM
	LOC	LINK	SLC	TYPE	SET	BPS	TSEL	7	/CI V	PI CR	.C4 SI SN
	LOC	LINK	SLC	TYPE	IPLI	ML2					
					IPLI	ML2					
	LOC	LINK	SLC	TYPE	IPLI	ML2					
		LINK			IPLI	ML2					
	LOC	LINK	SLC	TYPE		ML2		DCI	o nco	D 1	D 1
	LOC 1201	LINK A	SLC 0	TYPE SS7IPGW	L2T		ECM		R PCR		
	LOC 1201	LINK	SLC 0	TYPE SS7IPGW	L2T	ML2 BPS	ECM				
	LOC 1201	LINK A	SLC 0	TYPE SS7IPGW	L2T SET		ECM	N1	N2	LOC	PORT TS
	LOC 1201 LOC	LINK A	SLC 0	TYPE SS7IPGW TYPE	L2T SET L2T			N1 PCI	N2 R PCR		PORT TS

rtrv-ls:lsn=lsgw1204

This is an example of the possible output.

Link set table is (14 of 1024) 1% full

rlghncxa03w	06-10-17	11:43	:04 GM	T EAG	GLE5	36.	0.0						
				L3T	SLT				GWS	GWS	GWS		
LSN	APCN	(SS7)	SCRN	SET	SET	BEI	LST	LNKS	ACT	MES	DIS	SLSCI	NIS
lsgw1204	2968		none	1	1	no	A	1	off	off	off		off

TFATCABMLQ MTPRSE ASL8 SLSRSB MULTGC ITUTFR ----- 1 --- 1 no IPGWAPC MATELSN IPTPS LSUSEALM SLKUSEALM GTTMODE yes ----- 10000 70 % 70 % CdPA L2T L1PCR PCR LOC LINK SLC TYPE SET BPS MODE TSET ECM N1 N2 ATM LP LOC LINK SLC TYPE SET BPS TSEL VCI VPI LL LP ATM E1ATM TSEL VCI VPI CRC4 SI SN LOC LINK SLC TYPE SET BPS LOC LINK SLC TYPE IPLIML2 LOC LINK SLC TYPE 1204 A 0 IPGWI L2T PCR PCR E1 E1 LOC LINK SLC TYPE SET BPS ECM N1 N2 LOC PORT TS L2T PCR PCR T1 T1 SET BPS LOC LINK SLC TYPE ECM N1 N2 LOC PORT TS SAPCI 1-010-1

Link set table is (14 of 1024) 1% full.

rtrv-ls:lsn=lsgw1207

This is an example of the possible output.

rlghncxa03w 06-10-17 11:43:04 GMT EAGLE5 36.0.0 L3T SLT GWS GWS GWS APCI (SS7) SCRN SET SET BEI LST LNKS ACT MES DIS SLSCI NIS 2-154-0 none 1 1 no A 1 off off off --- off lsgw1207 TFATCABMLQ MTPRSE ASL8 SLSRSB MULTGC ITUTFR ----- 1 --- 1 ---IPGWAPC MATELSN IPTPS LSUSEALM SLKUSEALM GTTMODE yes ----- 10000 70 % 70 % CdPA L2T L1 PCR PCR MODE TSET ECM N1 N2 LOC LINK SLC TYPE SET BPS LP ATM LOC LINK SLC TYPE SET BPS TSEL VCI VPI LL LP ATM E1ATM LOC LINK SLC TYPE SET BPS TSEL VCI VPI CRC4 SI SN LOC LINK SLC TYPE IPLIML2 LOC LINK SLC TYPE 1207 A 0 IPGWI L2T PCR PCR E1 E1

LOC LINK SLC TYPE SET BPS ECM N1 N2 LOC PORT TS

LOC LINK SLC TYPE	L2T SET BPS	PCR ECM N1	PCR N2	
SAPCN 5823				

Link set table is (14 of 1024) 1% full.

rtrv-ls:lsn=lsgw1211

This is an example of the possible output

Link set table is (14 of 1024) 1% full

rlghncxa03	w 06-	10-28	16:3	31:35 GMT	' EAGI	E5 36.	0.0				
					L3T S	LT		G	WS GWS	GWS	
LSN	AP	CA	(SS7)	SCRN	SET S	ET BEI	LST :	LNKS A	CT MES	DIS S	LSCI NIS
lsgw1211	01	0-130	-057	scr1	1 1	yes	A	1 0	ff off	off y	es off
	IPGW.	APC M	ATELS	SN IPT	PS LS	USEALM	SLKU	SEALM	GTTMOD:	E	
	yes			100	00 70	용	70	ક	CdPA		
					L2T		L1			PCR	PCR
	LOC	LINK	SLC	TYPE	SET	BPS	MOD:	E TSET	ECM	N1	N2
					LP			ΓM			
	LOC	LINK	SLC	TYPE	SET	BPS	T	SEL	VCI	VP	'I LL
					T.D.		2 001				D13 DN
	T 0.0	T T 1177	a	TYPE	LP	BPS	ATM	7.7	CI V	חד מח	E1ATM C4 SI SN
	LOC	LINK	SLC	TYPE	SET	BPS	TSEL	V	CI V	PI CR	C4 S1 SN
	T.O.C	T.TNW	GT.C	TYPE	IPLI	MT.O					
	пос	ПТИК	ыс	IIFD	1111	.PILIZ					
	LOC	LINK	SLC	TYPE							
	1211		0	SS7IPGW							
			Ü	55711011							
					L2T			PCR	PCR	E1	E1
	LOC	LINK	SLC	TYPE	SET	BPS	ECM	N1	N2	LOC	PORT TS
					L2T			PCR	PCR	T1	T1
	LOC	LINK	SLC	TYPE	SET	BPS	ECM	N1	N2	LOC	PORT TS

If the DPC of the routing key is shown in the rtrv-ls outputs in this step, choose another DPC value for the routing key that is not shown in the rtrv-ls outputs in this step.

NOTE: If the SI value of the routing key being added is a value other than 4, 5, or 13, skip steps 9 and 10, and go to step 11.

9. Verify that the ISUP Routing over IP feature is on, by entering the rtrv-feat command. If the ISUP Routing over IP feature is on, the IPISUP field should be set to on. For this example, the ISUP Routing over IP feature is off.

NOTE: The rtrv-feat command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the rtrv-feat command, see the rtrv-feat command description in the Commands Manual.

NOTE: If the ISUP Routing over IP feature is on, skip step 10 and go to step 11.

10. Turn the ISUP Routing over IP feature on by entering this command.

```
chg-feat:ipisup=on
```

NOTE: Once the ISUP Routing over IP feature is turned on with the chg-feat command, it cannot be turned off.

The ISUP Routing over IP feature must be purchased before you turn this feature on with the chg-feat command. If you are not sure if you have purchased the ISUP Routing over IP feature, contact your Tekelec Sales Representative or Account Representative.

When the chg-feat has successfully completed, this message should appear.

```
rlghncxa03w 06-10-28 11:43:04 GMT EAGLE5 36.0.0 CHG-FEAT: MASP A - COMPLTD
```

11. Add a routing key entry to the database by entering the ent-appl-rtkey command. The parameters required for the ent-appl-rtkey command are determined by the type of routing key being added and the service indicator value in the routing key. See Table 3-19 on page 3-252 for the parameter combinations that can be used for the type of routing key being added to the database.

For this example, enter these commands.

```
ent-appl-rtkey:dpci=3-009-3:si=5:opci=4-100-3:cics=100
:cice=500:asname=as3:type=full
ent-appl-rtkey:dpci=1-050-2:si=5:opci=6-077-7:cics=200
:cice=300:asname=as20:type=full:rcontext=2000
```

NOTE: A routing key cannot be added with the application server as4, displayed in step 3, because application server as4 is assigned to a routing key containing a routing context value. Only one application server can be assigned to a routing key containing a routing context value.

When each of these commands have successfully completed, the following message should appear.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0 ENT-APPL-RTKEY: MASP A - COMPLTD
```

12. Verify the new routing key information in the database by entering the rtrv-appl-rtkey command with the routing key parameters specified in step 11 (dpc, si, opc, cics, cice, ssn, asname, type, and rcontext, as applicable) with the display=all parameter. For this example, enter these commands.

```
rtrv-appl-rtkey:dpci=3-009-3:si=5:opci=4-100-3:cics=100
:cice=500:asname=as3:type=full:display=all
```

The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0
```

```
rtrv-appl-rtkey:dpci=1-050-2:si=5:opci=6-077-7:cics=200
:cice=300:asname=as20:type=full:rcontext=2000:display=all
```

1107 Route Key Socket Association table is (2 of 8000) 1% full

The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0
```

```
RCONTEXT DPCI
RCONTEXT DPCI SI SSN OPCI CICS CICE 2000 1-050-2 5 --- 6-077-7 200 300
                     SI SSN OPCI
                                                               LOC
                                                               STATIC
                 ASNAME
   ADPTR TYPE
   SUA FULL
                  as20
       ANAMES
       assoc20
STATIC Route Key table is (12 of 2000) 1% full
1105 Route Key table is (2 of 500) 1% full
1107 Route Key table is (2 of 500) 1% full
STATIC Route Key Socket Association table is (12 of 32000) 1% full
1105 Route Key Socket Association table is (2 of 8000) 1% full
```

1107 Route Key Socket Association table is (2 of 8000) 1% full

- NOTE: If the open parameter value of the associations assigned to the routing key added in this procedure was not changed (step 5 was not performed), skip this step and go to step 12.
- 13. Change the value of the open parameter of the associations that were changed in step 5 to yes by specifying the chg-assoc command with the open=yes parameter. For this example, enter these commands.

```
chg-assoc:aname=assoc11:open=yes
chg-assoc:aname=assoc12:open=yes
chg-assoc:aname=assoc15:open=yes
chg-assoc:aname=assoc16:open=yes
chg-assoc:aname=assoc20:open=yes
```

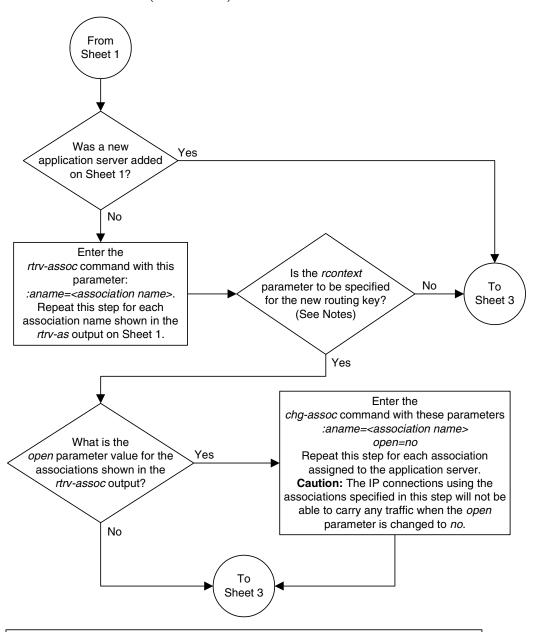
When each of these commands have successfully completed, this message should appear.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0 CHG-ASSOC: MASP A - COMPLTD;
```

Repeat this step for all the associations that were changed in step 5.

14. Back up the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

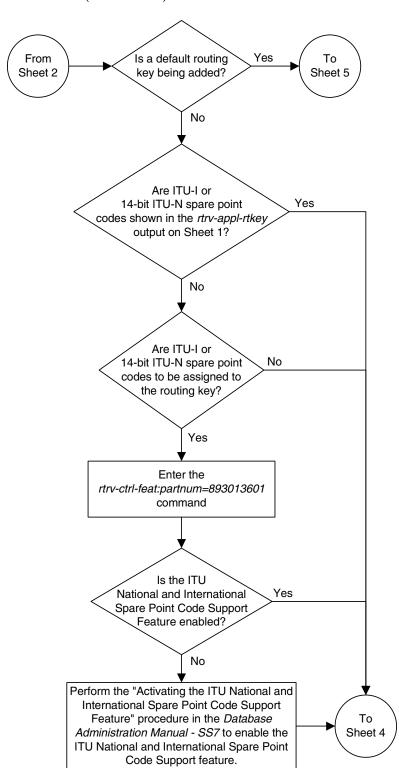
```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.

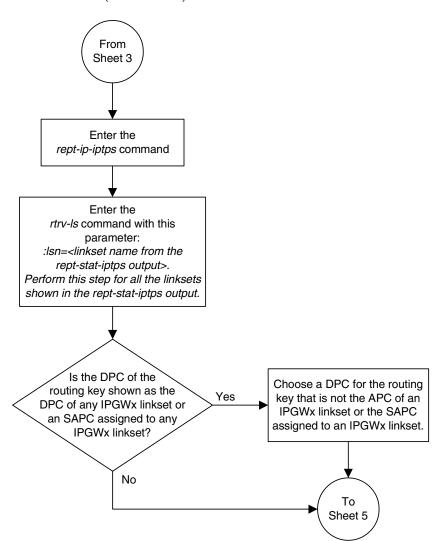

BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED) : MASP A - Backup starts on standby MASP.

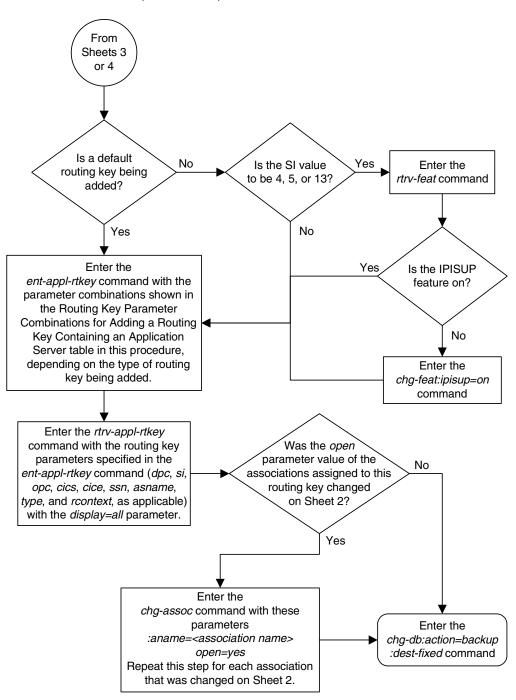
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

Enter the rtrv-appl-rtkey command Does the Is a default Yes rtrv-appl-rtkey output Yes routing key to be contain a default added? routing key? The database can contain No No only one default routing key Another default routing key Enter the cannot be added. rtrv-as command Add either a full or partial routing key with the desired application server. Enter the rtrv-appl-rtkey command with these Is the required application Yes parameters: server in the :asname=<application server name database? to be assigned to the routing key> :display=all Nο Perform one of these adding application server procedures (see Note) in this chapter and add Is the rcontext parameter to be specified No the new application server. for the new routing If the *rcontext* parameter will not be specified key? for the routing key, make sure that the adapter parameter value for the associations assigned to the new application server is M3UA. Yes If the rcontext parameter will be specified for the routing key, make sure that the open parameter value of the associations is set to no. The adapter parameter value of these associations can be either SUA or M3UA. Is the application Yes No SUA associations, and their corresponding server assigned to other routing keys? application server, can be assigned to only these types of routing keys, with these values: Full routing key - DPC/SI=3/SSN То Partial Routing Key - DPC/SI=3 Sheet 2 Partial routing key - DPC only Partial routing key - SI=3 only Note: The adding application server procedures are: Default routing key Adding a New Association to a New Application Server Adding an Existing Association to a New Application Server Adding a New Association to an Existing Application Server Adding an Existing Association to an Existing Application Server.


Flowchart 3-22. Adding a Routing Key Containing an Application Server (Sheet 1 of 5)


Flowchart 3-22. Adding a Routing Key Containing an Application Server (Sheet 2 of 5)

Notes:


- 1. If the *adapter* parameter value for the application server is SUA, and a new application server is specified for the routing key, the *rcontext* parameter is required.
- 2. If the *adapter* parameter value for the application server is M3UA, and a new application server is specified for the routing key, the *rcontext* parameter is optional.
- 3. If the application server is assigned to other routing keys, the *rcontext* parameter cannot be specified for this routing key. An application server can be assigned to only one routing key that contains an *rcontext* parameter value.

Flowchart 3-22. Adding a Routing Key Containing an Application Server (Sheet 3 of 5)

Flowchart 3-22. Adding a Routing Key Containing an Application Server (Sheet 4 of 5)

Flowchart 3-22. Adding a Routing Key Containing an Application Server (Sheet 5 of 5)

Removing a Routing Key

This procedure is used remove a static or dynamic routing key from the database using the dlt-appl-rtkey command. For more information about static and dynamic routing keys, see "Understanding Routing for SS7IPGW and IPGWI Applications" on page 2-25.

The dlt-appl-rtkey command uses these parameters.

:dpc/dpca/dpci/dpcn/dpca24 - The destination point code value that is used to filter incoming MSUs.

:opc/opca/opci/opcn/opcn24 - The originating point code value that is used to filter incoming MSUs. This parameter must not specify a cluster route. This parameter must not specify a cluster route. This parameter is only valid when the si parameter value is set to 4, 5, or 13. This parameter is required if si=4, 5, or 13 and type=full.

NOTE: See the "Point Code Formats" section in the *Database*Administration Manual - SS7 for a definition of the point code types that are used on the EAGLE 5 ISS and for a definition of the different formats that can be used for ITU national point codes.

:si – The service indicator value that is used to filter incoming MSUs. The range of values for the service indicator parameter (si) can be a numerical value from 0 to 15, or for selected service indicator values, a text string can be used instead of numbers. Table 3-20 shows the text strings that can be used in place of numbers for the service indicator values.

Table 3-20. Service Indicator Text String Values

Service Indicator Value	Text String	Service Indicator Value	Text String
0	snm	4	tup
1	regtest	5	isup
2	spltst	13	qbicc
3	sccp		

:ssn – The subsystem value that is used to filter incoming MSUs. The ssn parameter is only valid when the si parameter value is set to 3 or sccp.

: sname – The name of the socket that will receive the incoming MSU.

:cics - The starting circuit identification code that is used to filter incoming MSUs. Specify with cice to delete routing keys with the circuit identification code or range of circuit identification codes. The cics parameter is only valid when the si parameter value is set to 4, 5, or 13. The cics is required if si=4, 5, or 13 and type=full.

:cice - The ending circuit identification code that is used to filter incoming MSUs. Specify with cics to delete routing keys with the circuit identification code or range of circuit identification codes. The cice parameter is only valid when the si parameter value is set to 4, 5, or 13. The cics is required if si=4, 5, or 13 and type=full.

:loc – Card location that indicates from which ss7ipgw or ipgwi card to delete a dynamic routing key entry. If this parameter is not specified, a static entry is deleted.

:type - Identifies the type of routing key that is being deleted. One of three values, type = full/partial/default. If type is not explicitly specified, type = full is assumed.

:asname - Application server (AS) name.

:rcontext – The routing context parameter value assigned to the routing key.

The parameter combinations used by the dlt-appl-rtkey command are based on the type of routing key and the service indicator value in the routing key. The parameter combinations are shown in Table 3-21 on page 3-273.

Table 3-21. Routing Key Parameter Combinations for Removing Routing Keys

SI=3 (SCCP)			SI=4 (TUP), 5 (ISUP), 13 (QBICC)		Other SI Values	
Full Routing Key ^{1, 5, 6}	Partial Routing Key ^{1, 5, 6}	Full Routing Key ^{1, 5, 6}	Partial Routing Key 1, 5, 6	Full Routing Key ^{1, 5, 6}	Partial Routing Key ^{1, 5, 6}	Key ^{1, 5, 6}
dpc	sname	dpc	sname	dpc	sname	sname
si=3 ¹	type=partial	si=4, 5, 13 ¹	type=partial	si=value other than 3, 4, 5, 13 ¹	type=partial	type=default
ssn	dpc ²	орс	dpc ²	sname	dpc ²	asname
type=full	si=3 ^{1, 2}	cics	si=4, 5, 13 ^{1, 2}	type=full	si=value other than 3, 4, 5, 13 ^{1, 2}	loc ³
sname	asname	cice	opc ²	asname	asname	rcontext 4, 5, 6
asname	loc ³	type=full	asname	loc ³	loc ³	
loc ³	rcontext 4, 5, 6	sname	loc ³	rcontext 4, 5, 6	rcontext 4, 5, 6	
rcontext 4, 5, 6		asname	rcontext 4, 5, 6			
		loc ³				
		rcontext 4, 5, 6				

Table 3-21. Routing Key Parameter Combinations for Removing Routing Keys (Continued)

SI=3 (S	SCCP)	SI=4 (TUP), 5 (ISUP), 13 (QBICC)		Other SI Values		Default Routing
II Routing Cey ^{1, 5, 6}	Partial Routing Key ^{1, 5, 6}	Full Routing Key ^{1, 5, 6}	Partial Routing Key 1, 5, 6	Full Routing Key ^{1, 5, 6}	Partial Routing Key ^{1, 5, 6}	Key ^{1, 5, 6}

Notes:

- 1. The values for these parameters must be entered exactly as shown in the rtrv-appl-rtkey command output for the routing key being removed. However, text strings can be used in place of some numerical service indicator values. See Table 3-20 on page 3-272 for a list of these text strings.
- 2. These parameters are optional for partial routing keys, but at least one these parameters must be specified with the dlt-appl-rtkey command.
- 3. If the loc parameter is not specified, a static entry that matches the other specified parameters is deleted. The loc parameter can be specified only for dynamic routing key entries, entries that have a card location in the Loc column in the rtrv-appl-rtkey output. If the value in the Loc column is STATIC, the loc parameter cannot be used.
- 4. The rcontext parameter can be specified only for static routing key entries containing a numerical value in the RCONTEXT column in the rtrv-appl-rtkey output. A static routing key contains the entry STATIC in the LOC column of the rtrv-appl-rtkey output. If the value in the RCONTEXT column is dashes, the rcontext parameter cannot be used.
- 5. If the routing key contains a numerical value in the RCONTEXT column in the rtrv-appl-rtkey output, the dlt-appl-rtkey command can be specified with only the rcontext parameter and value instead of the dpc, si, ssn, opc, cics, cice, or type parameters and values to remove the routing key.
- 6. If the routing key contains dashes in the RCONTEXT column in the rtrv-appl-rtkey output, the dpc, si, ssm, opc, cics, cice, or type parameters and values must be used with the dlt-appl-rtkey command to remove the routing key.

Canceling the RTRV-APPL-RTKEY Command

Because the rtrv-appl-rtkey command used in this procedure can output information for a long period of time, the rtrv-appl-rtkey command can be canceled and the output to the terminal stopped. There are three ways that the rtrv-appl-rtkey command can be canceled.

- Press the F9 function key on the keyboard at the terminal where the rtrv-appl-rtkey command was entered.
- Enter the canc-cmd without the trm parameter at the terminal where the rtrv-appl-rtkey command was entered.
- Enter the canc-cmd:trm=<xx>, where <xx> is the terminal where the rtrv-appl-rtkey commands were entered, from another terminal other that the terminal where the rtrv-appl-rtkey command was entered. To enter the canc-cmd:trm=<xx> command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal's permissions can be verified with the rtrv-secu-trm command. The user's permissions can be verified with the rtrv-user or rtrv-secu-user commands.

For more information about the canc-cmd command, go to the Commands Manual.

Procedure

1. Display the current routing key information in the database by entering the rtrv-appl-rtkey command. The following is an example of the possible output.

rlqhncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0 RCONTEXT DPC SI ADPTR ASNAME TYPE LOC ----- 123-234-123 5 TALI ------ FULL STATIC ----- 123-234-123 5 TALI ------ FULL STATIC ----- 005-005-001 5 TALI ------ FULL 1105 1105 ----- 005-005-001 5 TALI ----- FULL ----- 006-006-001 5 TALI ----- FULL ----- FULL 1107 1107 FULL STATIC RCONTEXT DPCN SI ADPTR ASNAME TYPE LOC RCONTEXT DPCN24 SI ADPTR ASNAME TYPE LOC TYPE RCONTEXT DPC SI ADPTR ASNAME LOC ----- DEFAULT STATIC ----- ******* ** TALI STATIC Route Key table is (15 of 2000) 1% full 1105 Route Key table is (2 of 500) 1% full 1107 Route Key table is (2 of 500) 1% full STATIC Route Key Socket Association table is (15 of 32000) 1% full 1105 Route Key Socket Association table is (2 of 8000) 1% full 1107 Route Key Socket Association table is (2 of 8000) 1% full

NOTE: If a routing context value is not assigned to the the routing key being removed in this procedure, skip step 2 and go to step 3.

2. Display the specific routing key information for the routing key being removed from the database by entering the rtrv-appl-rtkey command with the display=all parameter and the RCONTEXT values shown in the rtrv-appl-rtkey output in step 1 for the routing key being removed. For this example, enter this command.

```
rtrv-appl-rtkey:rcontext=225
```

This is an example of the possible output.

rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0

```
RCONTEXT DPCI SI SSN OPCI CICS CICE LOC
225 4-035-7 5 --- 2-007-3 2000 3000 STATIC

ADPTR TYPE ASNAME
M3UA FULL as7

ANAMES
assoc15

STATIC Route Key table is (15 of 2000) 1% full
1105 Route Key table is (2 of 500) 1% full
1107 Route Key table is (2 of 500) 1% full
1108

STATIC Route Key Socket Association table is (15 of 32000) 1% full
1109 Route Key Socket Association table is (2 of 8000) 1% full
1101 Route Key Socket Association table is (2 of 8000) 1% full
1101 Route Key Socket Association table is (2 of 8000) 1% full
1101 Route Key Socket Association table is (2 of 8000) 1% full
```

After this step is performed, skip step 3 and go to step 4.

3. Display the specific routing key information for the routing key being removed from the database by entering the rtrv-appl-rtkey command with the display=all parameter and the DPC, SI, TYPE, and the asname (application server name, if an application server is assigned to the routing key) values shown in the rtrv-appl-rtkey output in step 1 for the routing key being removed. For this example, enter these commands.

rtrv-appl-rtkey:dpca=006-006-001:si=5:display=all:type=full This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0
                  SI SSN OPC
                                CICS CICE LOC
-001 501 1000 110°
RCONTEXT DPC
----- 006-006-001 5 --- 011-011-001 501
                                                       1107
   ADPTR TYPE PSTNCAT PSTNID NORM DUP
   TALI FULL
               0 0 N
   SNAMES
   socket31
RCONTEXT DPC SI SSN OPC CICS CICE LOC
----- 006-006-001 5 --- 012-012-012 1001
                                              1500
                                                       1107
   SNAMES
   socket32
STATIC Route Key table is (15 of 2000) 1% full
1105 Route Key table is (2 of 500) 1% full
1107 Route Key table is (2 of 500) 1% full
STATIC Route Key Socket Association table is (15 of 32000) 1% full
1105 Route Key Socket Association table is (2 of 8000) 1% full
1107 Route Key Socket Association table is (2 of 8000) 1% full
```

rtrv-appl-rtkey:dpci=6-006-6:si=3:display=all:type=full :asname=as2

This is an example of the possible output.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0
RCONTEXT DPCI
                   SI SSN OPCI
                                 CICS CICE LOC
----- 6-006-6
                    3 170 ----- STATIC
   ADPTR TYPE ASNAME
   M3UA FULL
                as2
      ANAMES
      assoc1
STATIC Route Key table is (15 of 2000) 1% full
1105 Route Key table is (2 of 500) 1% full
1107 Route Key table is (2 of 500) 1% full
STATIC Route Key Socket Association table is (15 of 32000) 1% full
1105 Route Key Socket Association table is (2 of 8000) 1% full
    Route Key Socket Association table is (2 of 8000) 1% full
```

NOTE: If an socket is assigned to the routing key, skip steps 4 and 5, and go to step 6.

4. Display the associations assigned to the routing key by entering the **rtrv-assoc** parameter with the association name shown in either steps 2 or 3. For this example, enter these commands.

rtrv-assoc:aname=assoc1

This is an example of possible output.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0
ANAME assoc1
                             IPLNK PORT A
                                                       LINK A
      LOC
      LOC 1203 IPLNK PORT A ADAPTER M3UA VER M3UA RFC
               1203
      LHOST gw105.nc.tekelec.com
      ALHOST ---
      RHOST gw100.nc.tekelec.com
      LPORT 1030 RPORT 1030

ISTRMS 2 OSTRMS 2 BUFSIZE 16

RMODE LIN RMIN 120 RMAX 800

RTIMES 10 CWMIN 3000 UAPS 10

OPEN YES ALW YES
                                                                  800
      ASNAMES
IP Appl Sock table is (8 of 4000) 1% full
Assoc Buffer Space Used (16 KB of 800 KB) on LOC = 1203
rtrv-assoc:aname=assoc15
This is an example of possible output.
```

LOC 1205 IPLNK PORT A LINK A
ADAPTER M3UA VER M3UA RFC

rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0

ANAME assoc15

```
LHOST gw115.nc.tekelec.com
     ALHOST ---
     RHOST gw100.nc.tekelec.com
                                  2000
     LPORT
            2000 RPORT
                       OSTRMS 2
                                           BUFSIZE 16
     ISTRMS 2
            LIN RMIN 120
10 CWMIN 3000
YES ALW YES
                                           RMAX
     RMODE LIN
RTIMES 10
                                                     800
                                             UAPS
                                                     10
     OPEN
     ASNAMES
     as7
IP Appl Sock table is (8 of 4000) 1% full
Assoc Buffer Space Used (16 KB of 800 KB) on LOC = 1203
```

Repeat this step for all the associations shown in steps 2 or 3.

NOTE: If the open parameter value of all the associations shown in step 4 is no, skip step 5 and go to step 6.

5. Change the open parameter value of the association to no by using the chg-assoc command. For example, enter these commands.

```
chg-assoc:aname=assoc1:open=no
chg-assoc:aname=assoc15:open=no
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-28 21:18:37 GMT EAGLE5 36.0.0 CHG-ASSOC: MASP A - COMPLTD
```


CAUTION: The IP connections using the associations specified in this step will not be able to carry any traffic when the open parameter is changed to no.

Repeat this step for all the associations shown in step 4 that contain the open=yes parameter value.

6. Remove the routing key information from the database by entering the dlt-appl-rtkey command. The parameters required for the dlt-appl-rtkey command are determined by the type of routing key being added and the service indicator value in the routing key. See Table 3-21 on page 3-273 for the parameter combinations that can be used for the type of routing key being added to the database. For example, enter these commands.

```
dlt-appl-rtkey:dpca=006-006-001:loc=1107:si=5:cics=501
:cice=1000:sname=socket31
dlt-appl-rtkey:dpci=6-006-6:si=3:ssn=170:asname=as2
dlt-appl-rtkey:rcontext=225
```

When each of this commands have successfully completed, the following message should appear.

```
rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0 DLT-APPL-RTKEY: MASP A - COMPLTD
```

7. Verify the changes by entering the rtrv-appl-rtkey command with the routing key parameters specified in step 6 (dpc, si, opc, cics, cice, ssn, asname, sname, type, and loc, as applicable). For this example, enter these commands.

```
rtrv-appl-rtkey:dpca=006-006-001:loc=1107:si=5:cics=501:cice=1000
```

The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0

STATIC Route Key table is (12 of 2000) 1% full

1105 Route Key table is (2 of 500) 1% full

1107 Route Key table is (1 of 500) 1% full

STATIC Route Key Socket Association table is (12 of 32000) 1% full

1105 Route Key Socket Association table is (2 of 8000) 1% full

1107 Route Key Socket Association table is (1 of 8000) 1% full
```

rtrv-appl-rtkey:dpci=6-006-6:si=3:ssn=170:asname=as2

The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0

STATIC Route Key table is (12 of 2000) 1% full

1105 Route Key table is (2 of 500) 1% full

1107 Route Key table is (1 of 500) 1% full

STATIC Route Key Socket Association table is (6 of 32000) 1% full

1105 Route Key Socket Association table is (2 of 8000) 1% full

1107 Route Key Socket Association table is (1 of 8000) 1% full
```

rtrv-appl-rtkey:rcontext=225

The following is an example of the possible output.

```
STATIC Route Key table is (12 of 2000) 1% full

1105 Route Key table is (2 of 500) 1% full

1107 Route Key table is (1 of 500) 1% full

STATIC Route Key Socket Association table is (12 of 32000) 1% full

1105 Route Key Socket Association table is (2 of 8000) 1% full

1107 Route Key Socket Association table is (1 of 8000) 1% full
```

NOTE: If step 5 was not performed, skip step 7 and go to step 8.

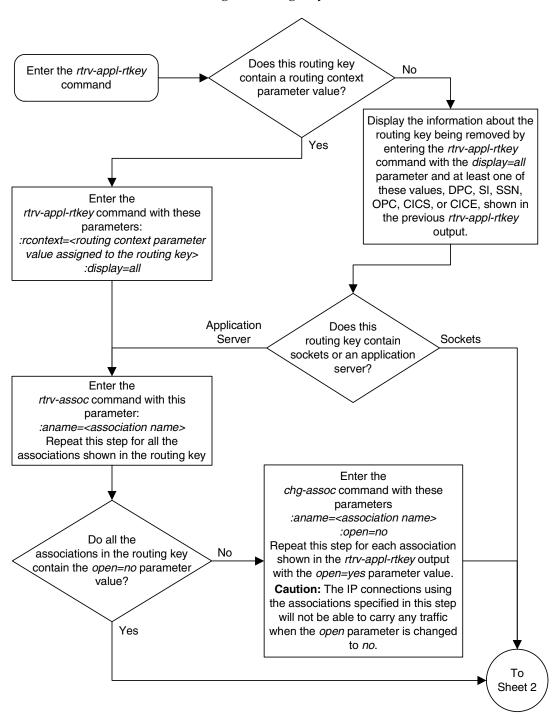
7. Change the open parameter value of the associations that were changed in step 4 to yes by using the chg-assoc command. For example, enter these commands.

```
chg-assoc:aname=assoc1:open=yes
chg-assoc:aname=assoc15:open=yes
```

When this command has successfully completed, the following message should appear.

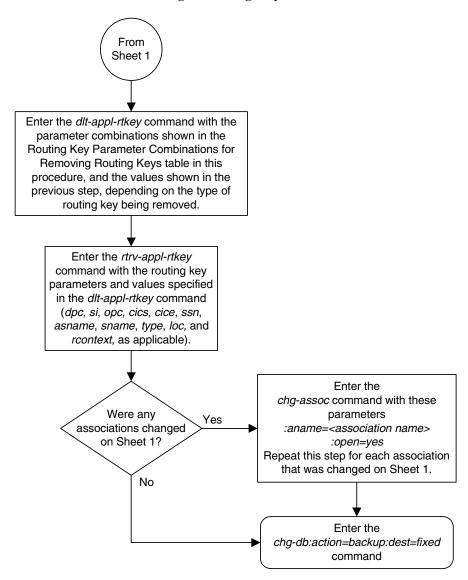
```
rlghncxa03w 06-10-28 21:18:37 GMT EAGLE5 36.0.0 CHG-ASSOC: MASP A - COMPLTD
```

Repeat this step for all the associations that were changed in step 5.


8. Back up the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.

BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.


BACKUP (FIXED) : MASP A - Backup starts on standby MASP.

BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```


Flowchart 3-23. Removing a Routing Key (Sheet 1 of 2)

Flowchart 3-23. Removing a Routing Key (Sheet 2 of 2)

Changing the CIC Values in an Existing Routing Key

This procedure is used to change the CIC values in an existing routing key using the chg-appl-rtkey command. These parameters are used in this procedure.

:dpc/dpca/dpci/dpcn/dpcn24 - Destination point code value that is used to filter incoming MSUs.

:opc/opca/opci/opcn/opcn24 - The originating point code value that is used to filter incoming MSUs. This value must not specify a cluster route.

NOTE: See the "Point Code Formats" section in the *Database*Administration Manual - SS7 for a definition of the point code types that are used on the EAGLE 5 ISS and for a definition of the different formats that can be used for ITU national point codes.

:si – The service indicator value that is used to filter incoming MSUs. The range of values for the service indicator parameter (si) can be a numerical value either 4, 5, or 13, or for selected service indicator values, a text string can be used instead of numbers. Table 3-22 shows the text strings that can be used in place of numbers for the service indicator values.

Table 3-22. Service Indicator Text String Values

Service Indicator Value	Text String
4	tup
5	isup
13	qbicc

:cics - Starting circuit identification code that is used to filter incoming MSUs. Specify with cice to identify the routing key to be changed.

:cice - Ending circuit identification code that is used to filter incoming MSUs. Specify with cics to identify the routing key to be changed.

:ncics - New starting circuit identification code that is used to filter incoming MSUs. Specify the ncics parameter and/or the ncice parameter to change the range of circuit identification codes assigned to the routing key.

:ncice - New ending circuit identification code that is used to filter incoming MSUs. Specify the ncice parameter and/or the ncics parameter to change the range of circuit identification codes assigned to the routing key.

:split - The circuit identification code value where the specified range of CIC values for the routing key specified by the cics and cice values is to be split into two routing keys. The CIC values in one routing key ranges from the cics value of the original routing key to a value equal to one less than the split value. The CIC values in the other routing key ranges from the split value to the cice value of the original routing key. All other parameters in both routing keys remain the same as in the original routing key. The range of

CIC values cannot be split if the routing key contains a routing context parameter value.

:type - Key type. Identifies the type of routing key that will be changed. One of three values, type = full/partial/default. If type is not explicitly specified, type = full is assumed. Only the type=full parameter can be used in this procedure.

:rcontext – The routing context parameter value assigned to the routing key.

The chg-appl-rtkey command contains other parameters that are not used in this procedure.

:ssn – The subsystem number value that is used to filter incoming MSUs. See the "Adding a Routing Key Containing a Socket" procedure on page 3-233 for more information on using the ssn parameter with a routing key.

:pstncat – The PSTN category assigned to the routing key.

:pstnid - The PSTN ID assigned to the routing key.

:norm – Specifies whether the ISUP Normalization process is enabled or disabled for MSUs using the routing key.

:nrcontext - The new routing context parameter value.

See the "Changing the Routing Context Value in an Existing Routing Key" procedure on page 3-295 for changing the routing context parameter value in an existing routing key.

See the "Changing the PSTN Presentation and Normalization Attributes in a Routing Key" procedure on page 3-303 for changing a routing key using the pstncat, pstnid, and norm parameters.

Rules for Changing the Range of CIC Values in an Existing Routing Key

The parameter combinations used by the chg-appl-rtkey command to change the range of CIC values in the routing key are shown in Table 3-23.

Table 3-23. Routing Key Parameter Combinations for Changing the Range of CIC Values in an Existing Routing Key

SI=4 (TUP)	SI=5 (I	SUP)	SI=13 (QBICC)
dpci/dpcn/dpcn24= <the DPC assigned to the routing key>¹</the 	dpc/dpca= <the dpc<br="">assigned to the routing key>¹</the>	dpci/dpcn/dpcn24= <the assigned="" dpc="" key="" routing="" the="" to="">1</the>	dpc/dpca/dpci/dpcn/dpcn24= <the assigned="" dpc="" key="" routing="" the="" to="">1</the>
si=4 ¹	si=5 ¹	si=5 ¹	si=13 ¹
opci/opcn/opcn24= <the OPC assigned to the routing key>¹</the 	opc/opca= <the opc<br="">assigned to the routing key>¹</the>	opci/opcn/opcn24= <the OPC assigned to the routing key>¹</the 	opc/opca/opci/opcn/opcn24= <the assigned="" opc="" the<br="" to="">routing key>¹</the>
cics= <the assigned="" cics="" key="" routing="" the="" to="" value="">^{1, 2}</the>	cics= <the assigned="" cics="" key="" routing="" the="" to="" value="">^{1, 2}</the>	cics= <the assigned="" cics="" key="" routing="" the="" to="" value="">^{1, 2}</the>	cics= <the assigned="" cics="" key="" routing="" the="" to="" value="">^{1, 2}</the>
cice= <the assigned="" cice="" key="" routing="" the="" to="" value="">^{1, 2}</the>	cice= <the assigned="" cice="" key="" routing="" the="" to="" value="">^{1, 2}</the>	cice= <the assigned="" cice="" key="" routing="" the="" to="" value="">^{1, 2}</the>	cice= <the assigned="" cice="" key="" routing="" the="" to="" value="">1,2</the>
type=full	type=full	type=full	type=full
ncics=<0 to 4095>2, 3	ncics=<0 to 16383>2, 3	ncics=<0 to 4095> ^{2, 3}	ncics=<0 to 4294967295> ^{2, 3}
ncice=<0 to 4095> ^{2, 3}	ncice=<0 to 16383>2,3	ncice=<0 to 4095> ^{2, 3}	ncice=<0 to 4294967295> ^{2, 3}
rcontext= <the current<br="">routing context value assigned to the routing key> ^{4, 5, 6}</the>	rcontext= <the current<br="">routing context value assigned to the routing key> ^{4, 5, 6}</the>	rcontext= <the current<br="">routing context value assigned to the routing key> ^{4, 5, 6}</the>	rcontext= <the assigned="" context="" current="" key="" routing="" the="" to="" value=""> 4, 5, 6</the>

Table 3-23. Routing Key Parameter Combinations for Changing the Range of CIC Values in an Existing Routing Key (Continued)

SI=4 (TUP)	SI=5 (ISUP)	SI=13 (QBICC)

- 1. The values for these parameters must be entered exactly as shown in the rtrv-appl-rtkey command output for the routing key being changed. However, text strings can be used in place of some numerical service indicator values. See Table 3-22 on page 3-283 for a list of these text strings. The text string must correspond to the numerical value shown in the routing key being changed.
- 2. The cics and cice parameters must be specified and either the ncics or ncice parameters, or both, must be specified. If both the ncics and ncice parameters are specified, the value of the ncics parameter must be less than the value of the ncice parameter. If the ncics parameter is not specified, the value of the ncice parameter must be greater than or equal to the cics parameter value. If the ncice parameter is not specified, the value of the ncics parameter must be less than or equal to the cice parameter value.
- 3. The new CIC range cannot overlap the CIC range in an existing routing key.
- 4. The rcontext parameter can be specified only for static routing key entries containing a numerical value in the rcontext column in the rtrv-appl-rtkey output. A static routing key contains the entry STATIC in the LOC column of the rtrv-appl-rtkey output. If the value in the rcontext column is dashes, the rcontext parameter cannot be used.
- 5. If the routing key contains a numerical value in the RCONTEXT column in the rtrv-appl-rtkey output, the rcontext parameter and value can be used in place of the dpc, si, opc, cics, cice, or type=full parameters and values to identify the routing that is being changed with the chg-appl-rtkey command. However, if only the rcontext parameter is used to identify the routing key being changed, only one of these parameters, ncics or ncice can be specified with the chg-appl-rtkey parameter. If you wish to specify the ncics and ncice parameters with the chg-appl-rtkey parameter, the dpc, si, opc, cics, cice, or type=full parameters and values must be specified with the chg-appl-rtkey command.
- 6. If the routing key contains dashes in the RCONTEXT column in the rtrv-appl-rtkey output, the dpc, si, opc, cics, cice, or type parameters and values must be used with the chg-appl-rtkey command to identify the routing key being changed.

Rules for Splitting the Range of CIC Values in an Existing Routing Key

The parameter combinations used by the **chg-appl-rtkey** command to split the range of CIC values in the routing key are shown in Table 3-24.

Splitting the range of CIC values creates two routing keys. The CIC values in one routing key ranges from the cics value of the original routing key to a value equal to one less than the split value. The CIC values in the other routing key ranges from the split value to the cice value of the original routing key. All other parameters in both routing keys remain the same as in the original routing key. The range of CIC values cannot be split if the routing key contains a routing context parameter value.

Table 3-24. Routing Key Parameter Combinations for Splitting the Range of CIC Values in an Existing Routing Key

SI=4 (TUP)	SI=5 (I	ISUP)	SI=13 (QBICC)
dpci/dpcn/dpcn24= <the DPC assigned to the routing key>¹</the 	dpc/dpca= <the dpc<br="">assigned to the routing key>¹</the>	dpci/dpcn/dpcn24= <the DPC assigned to the routing key>¹</the 	dpc/dpca/dpci/dpcn/dpcn24= <the assigned="" dpc="" the<br="" to="">routing key>¹</the>
si=4 ¹	si=5 ¹	si=5 ¹	si=13 ¹
opci/opcn/opcn24= <the OPC assigned to the routing key>¹</the 	opc/opca= <the opc<br="">assigned to the routing key>¹</the>	opci/opcn/opcn24= <the OPC assigned to the routing key>1</the 	opc/opca/opci/opcn/opcn24= <the assigned="" opc="" the<br="" to="">routing key>¹</the>
cics= <the cics="" value<br="">assigned to the routing key>1</the>	cics= <the assigned="" cics="" key="" routing="" the="" to="" value="">1</the>	cics= <the assigned="" cics="" key="" routing="" the="" to="" value="">1</the>	cics= <the assigned="" cics="" key="" routing="" the="" to="" value="">1</the>
cice= <the assigned="" cice="" key="" routing="" the="" to="" value="">1</the>	cice= <the assigned="" cice="" key="" routing="" the="" to="" value="">1</the>	cice= <the assigned="" cice="" key="" routing="" the="" to="" value="">1</the>	cice= <the assigned="" cice="" key="" routing="" the="" to="" value="">1</the>
type=full	type=full	type=full	type=full
split=<0 to 4095> ²	split=<0 to 16383>2	split=<0 to 4095>2	split=<0 to 4294967295> ²

^{1.} The values for these parameters must be entered exactly as shown in the rtrv-appl-rtkey command output for the routing key being changed. However, text strings can be used in place of some numerical service indicator values. See Table 3-22 on page 3-283 for a list of these text strings. The text string must correspond to the numerical value shown in the routing key being changed.

^{2.} The split parameter value must be greater than the cics parameter value and less than the cice parameter value.

Canceling the RTRV-APPL-RTKEY Command

Because the rtrv-appl-rtkey command used in this procedure can output information for a long period of time, the rtrv-appl-rtkey command can be canceled and the output to the terminal stopped. There are three ways that the rtrv-appl-rtkey command can be canceled.

- Press the F9 function key on the keyboard at the terminal where the rtrv-appl-rtkey command was entered.
- Enter the canc-cmd without the trm parameter at the terminal where the rtrv-appl-rtkey command was entered.
- Enter the canc-cmd:trm=<xx>, where <xx> is the terminal where the rtrv-appl-rtkey command was entered, from another terminal other that the terminal where the rtrv-appl-rtkey command was entered. To enter the canc-cmd:trm=<xx> command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal's permissions can be verified with the rtrv-secu-trm command. The user's permissions can be verified with the rtrv-user or rtrv-secu-user commands.

For more information about the canc-cmd command, go to the Commands Manual.

Procedure

1. Display the current routing key information in the database by entering the rtrv-appl-rtkey command. The following is an example of the possible output.

RCONTEXT	DPC	SI	ADPTR	ASNAME
	123-234-123	5	TALI	

rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0

	123-234-123	5	TALI		FULL	STATIC
	123-234-123	5	TALI		FULL	STATIC
	005-005-001	5	TALI		FULL	1105
	005-005-001	5	TALI		FULL	1105
	006-006-001	5	TALI		FULL	1107
	006-006-001	5	TALI		FULL	1107
RCONTEXT	DPCI	SI	ADPTR	ASNAME	TYPE	LOC
	2-100-7	6	M3UA	as4	FULL	STATIC
100	3-137-6	6	SUA	as1	FULL	STATIC
225	4-035-7	5	M3UA	as7	FULL	STATIC
	6-006-6	5	M3UA	as2	FULL	STATIC
	6-006-7	5	M3UA	as8	FULL	STATIC
	6-006-6	5	M3UA	as2	FULL	STATIC
	6-006-6	5	M3UA	as2	FULL	STATIC
	6-006-8	3	M3UA	as3	FULL	STATIC
	6-006-8	5	M3UA	as5	FULL	STATIC
	6-024-7	5	M3UA	as4	FULL	STATIC
	6-024-7	5	M3UA	as4	FULL	STATIC
300	7-008-7	6	SUA	as6	FULL	STATIC
RCONTEXT	DPCN	SI	ADPTR	ASNAME	TYPE	LOC
RCONTEXT	DPCN24	SI	ADPTR	ASNAME	TYPE	LOC

TYPE

LOC

2. Display the specific routing key information for the routing key being changed by entering the rtrv-appl-rtkey command with the display=all parameter.

If the routing key being changed contains a routing context value, specify the **rcontext** parameter and value shown in the **rtrv-appl-rtkrey** output in step 1 for the routing key being changed.

If the routing key being changed does not contain a routing context value, specify the DPC, SI, and TYPE values shown in the rtrv-appl-rtkey output in step 1 for the routing key being changed. The service indicator value for the routing key to be used in this procedure is either 4, 5, or 13.

For this example, enter these commands.

```
rtrv-appl-rtkey:dpc=123-234-123:si=5:type=full:display=all
```

This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0
                                                CICE
RCONTEXT DPC
                    SI SSN OPC
                                       CICS
                                                          LOC
----- 123-234-123 5 --- 122-124-125 1
                                                 1000
                                                          STATIC
   ADPTR TYPE PSTNCAT PSTNID NORM DUP
   TALI FULL 0 0 N N
   SNAMES
   kchlr11201
STATIC Route Key table is (15 of 2000) 1% full
1105 Route Key table is (2 of 500) 1% full
1107 Route Key table is (2 of 500) 1% full
STATIC Route Key Socket Association table is (15 of 32000) 1% full
1105 Route Key Socket Association table is (2 of 8000) 1% full
     Route Key Socket Association table is (2 of 8000) 1% full
rtrv-appl-rtkey:rcontext=225:display=all
```

This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0

RCONTEXT DPCI SI SSN OPCI CICS CICE LOC 225 4-035-7 5 --- 2-007-3 2000 3000 STATIC

ADPTR TYPE ASNAME M3UA FULL as7
```

```
ANAMES
assoc15

STATIC Route Key table is (15 of 2000) 1% full
1105 Route Key table is (2 of 500) 1% full
1107 Route Key table is (2 of 500) 1% full

STATIC Route Key Socket Association table is (15 of 32000) 1% full
1105 Route Key Socket Association table is (2 of 8000) 1% full
1107 Route Key Socket Association table is (2 of 8000) 1% full
```

- 3. Change the CIC values of the routing key by entering the chg-appl-rtkey command. The parameters required for the chg-appl-rtkey command are determined by the type of change being made to the routing key. Go to one of these sections to determine the required parameter combination.
 - "Rules for Changing the Range of CIC Values in an Existing Routing Key" on page 3-285
 - "Rules for Splitting the Range of CIC Values in an Existing Routing Key" on page 3-287

NOTE: If the routing key contains a routing context value, the range of CIC values cannot be split.

To change the range of CIC values for this example, enter these commands. chg-appl-rtkey:dpca=123-234-123:si=5:opca=122-124-125:cics=1:cice=1000:ncice=2000

```
chg-appl-rtkey:dpci=4-035-7:si=5:opci=2-007-3:cics=2000
:cice=3000:ncice=4000
```

If a routing context value is assigned to the routing key, the rcontext parameter and value assigned to the routing key can be used to identify the routing key being changed instead of the dpc, si, opc, cics, and cice parameters. If the rcontext parameter is specified only one of these parameters, ncics or ncice, can be specified with the chg-appl-rtkey parameter.

For this example, enter this command.

```
chg-appl-rtkey:rcontext=225:ncice=4000
```

To split the range of CIC values for this example, enter this command.

```
chg-appl-rtkey:dpca=123-234-123:si=5:opca=122-124-125:cics=1
:cice=1000:split=500
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0 CHG-APPL-RTKEY: MASP A - COMPLTD
```

4. Display the new routing key information in the database by entering the rtrv-appl-rtkey command with the display=all parameter.

If the routing key being changed contains a routing context value, specify the rcontext parameter and value specified in the chg-appl-rtkrey command in step 3. The DPC, SI, CICS, and CICE parameters and values used in step 3 can be specified in the rtrv-appl-rtkey command for routing keys containing routing context values.

If the routing key being changed does not contain a routing context value, specify the DPC, SI, CICS, and CICE parameters and values specified in the chg-appl-rtkey command in step 3. If the ncics or ncice parameters were specified in step 3, the NCICS or NCICE values specified in step 3 must be specified for the cics or cice parameters in this step.

For this example, enter these commands.

rtrv-appl-rtkey:dpca=123-234-123:si=5:cics=1:cice=2000 :display=all

```
rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0
RCONTEXT DPC SI SSN OPC CICS CICE LOC ------ 123-234-123 5 --- 122-124-125 1 2000 STA
RCONTEXT DPC
                                                                   STATIC
   ADPTR TYPE PSTNCAT PSTNID NORM DUP
   TALI FULL 0 0 N N
   SNAMES
   socket2
STATIC Route Key table is (15 of 2000) 1% full
1105 Route Key table is (2 of 500) 1% full
1107 Route Key table is (2 of 500) 1% full
STATIC Route Key Socket Association table is (15 of 32000) 1% full
1105 Route Key Socket Association table is (2 of 8000) 1% full
1107 Route Key Socket Association table is (2 of 8000) 1% full
rtrv-appl-rtkey:dpci=4-035-7:si=5:cics=2000:cice=4000
:display=all
    or
rtrv-appl-rtkey:rcontext=225:display=all
```

This is an example of the possible output.

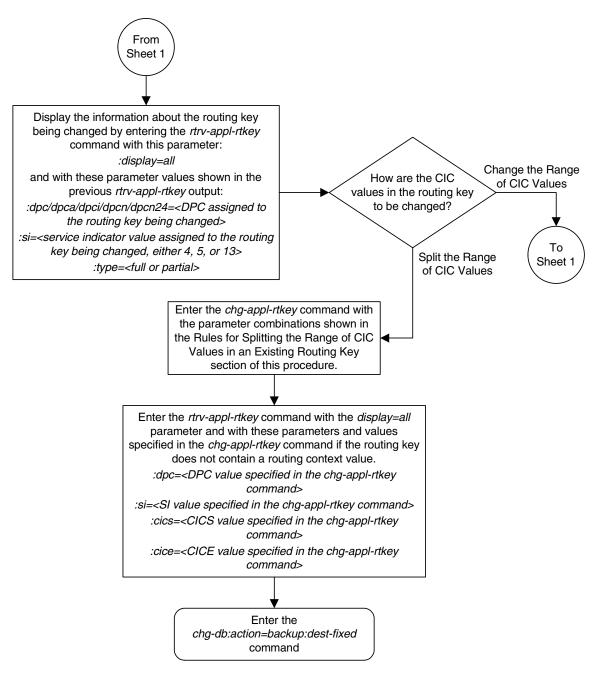
```
rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0
RCONTEXT DPCI
                   SI SSN OPCI
                    SI SSN OPCI CICS
5 --- 2-007-3 2000
                                                CICE
                                                          LOC
225 4-035-7
                                                 4000
                                                          STATIC
   ADPTR TYPE ASNAME
   M3UA FULL
                as7
      ANAMES
      assoc15
STATIC Route Key table is (15 of 2000) 1% full
1105 Route Key table is (2 of 500) 1% full
```

```
1107 Route Key table is (2 of 500) 1% full
STATIC Route Key Socket Association table is (15 of 32000) 1% full
1105 Route Key Socket Association table is (2 of 8000) 1% full
1107 Route Key Socket Association table is (2 of 8000) 1% full
rtrv-appl-rtkey:dpca=123-234-123:si=5:cics=1:cice=1000
:display=all
rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0
                     SI SSN OPC
                                         CICS CICE
RCONTEXT DPC
                                                             LOC
----- 123-234-123 5 --- 100-100-100 1
                                                   499
                                                              STATIC
   ADPTR TYPE PSTNCAT PSTNID NORM DUP TALI FULL 0 0 N N
   SNAMES
   socket2
                SI SSN OPC CICS CICE LOC
1-123 5 --- 122-124-125 500 1000 STAT
RCONTEXT DPC
----- 123-234-123 5 --- 122-124-125 500
                                                              STATIC
               PSTNCAT PSTNID NORM DUP
   ADPTR TYPE
   TALI FULL
                   0 0 N
   SNAMES
   socket2
STATIC Route Key table is (16 of 2000) 1% full
1105 Route Key table is (2 of 500) 1% full
1107 Route Key table is (2 of 500) 1% full
STATIC Route Key Socket Association table is (16 of 32000) 1% full
1105 Route Key Socket Association table is (2 of 8000) 1% full
1107 Route Key Socket Association table is (2 of 8000) 1% full
```

5. Back up the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.

BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.


BACKUP (FIXED) : MASP A - Backup starts on standby MASP.

BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

Does the routing key No То Enter the rtrv-appl-rtkey have a routing context command Sheet 2 value assigned to it? Yes Display the information about the routing key being changed by entering the rtrv-appl-rtkey command with this parameter: :display=all and with this parameter and value shown in the previous rtrv-appl-rtkey output: From :rcontext=<RCONTEXT value assigned Sheet 2 to the routing key being changed> The range of CIC values Enter the chg-appl-rtkey command cannot be split. Only the range with the parameter combinations of CIC values can be changed shown in the Rules for Changing the for a routing key containing a Range of CIC Values in an Existing routing context value. Routing Key section of this procedure. Enter the rtrv-appl-rtkey command with the display=all parameter and with these parameters and values specified in the chg-appl-rtkey command if the routing key does not contain a routing context value. :dpc=<DPC value specified in the chg-appl-rtkey command> :si=<SI value specified in the chg-appl-rtkey command> :cics=<CICS or NCICS value specified in the Enter the chg-appl-rtkey command> chg-db:action=backup :cice=<CICE or NCICE value specified in the :dest-fixed command chg-appl-rtkey command> If the ncics or ncice parameters were specified in the chg-appl-rtkey command, the NCICS or NCICE values must be specified for the cics or cice parameters. If the routing key contains a routing key value, specify this parameter with the rtrv-appl-rtkey command: :rcontext=<RCONTEXT value specified in the chg-appl-rtkey command>

Flowchart 3-24. Changing the CIC values in an Existing Routing Key (Sheet 1 of 2)

Flowchart 3-24. Changing the CIC values in an Existing Routing Key (Sheet 2 of 2)

Changing the Routing Context Value in an Existing Routing Key

This procedure is used to change the routing context value in an existing routing key using the chg-appl-rtkey command.

The routing key being changed in this procedure must contain a number for the routing context value. If the routing context value shown for the routing key contains dashes (-), this routing key cannot be used in this procedure. The dashes shows that the routing key does not have a routing context assigned to it.

To assign a routing context value to an existing M3UA routing key, the routing key must be removed by performing the "Removing a Routing Key" procedure on page 3-272, then re-enter the routing key with the routing context value by performing the "Adding a Routing Key Containing an Application Server" procedure on page 3-250. A routing context value cannot be assigned to a TALI routing key. A routing context value must always be assigned to an SUA routing key.

These parameters are used in this procedure.

:rcontext – The current routing context parameter value, which has two functions:

- Provides an index of the application server traffic that the sending ASP is configured or registered to receive.
- Identifies the SS7 network context for the message. The routing context parameter implicitly defines the SS7 point code format used, the SS7 network indicator value, and the SCCP protocol type/variant/version used.

:nrcontext – The new routing context parameter value, from 0 to 4294967295. The new routing context value cannot be assigned to other routing keys.

The chg-appl-rtkey command contains other parameters that are not used in this procedure.

:dpc/dpca/dpci/dpcn/dpcn24 – Destination point code value that is used to filter incoming MSUs.

:opc/opca/opci/opcn/opcn24 - The originating point code value that is used to filter incoming MSUs. This value must not specify a cluster route.

:si – The service indicator value that is used to filter incoming MSUs. The range of values for the service indicator parameter (si) can be a numerical value from 0 to 15, or for selected service indicator values, a text string can be used instead of numbers. Table 3-25 shows the text strings that can be used in place of numbers for the service indicator values.

Table 3-25. See	ervice In	dicator	Text S	String	Values
------------------------	-----------	---------	--------	--------	--------

Service Indicator Value	Text String	Service Indicator Value	Text String
0	snm	4	tup
1	regtest	5	isup
2	spltst	13	qbicc
3	sccp		

- :ssn The subsystem number value that is used to filter incoming MSUs.
- :cics Starting circuit identification code that is used to filter incoming MSUs.
- :cice Ending circuit identification code that is used to filter incoming MSUs.
- : type Key type. Identifies the type of routing key that will be changed. One of three values, type = full/partial/default. If type is not explicitly specified, type = full is assumed.
- :ncics New starting circuit identification code that is used to filter incoming MSUs.
- :ncice New ending circuit identification code that is used to filter incoming MSUs.
- :split The circuit identification code value where the specified range of the routing key specified by the cics and cice values is to be split into two entries.
- :pstncat The PSTN category assigned to the routing key.
- :pstnid The PSTN ID assigned to the routing key.
- :norm Specifies whether the ISUP Normalization process is enabled or disabled for MSUs using the routing key.

See the "Changing the CIC Values in an Existing Routing Key" procedure on page 3-283 for changing a routing key using the ncics, ncice, and split parameters.

See the "Changing the PSTN Presentation and Normalization Attributes in a Routing Key" procedure on page 3-303 for changing a routing key using the pstncat, pstnid, and norm parameters.

Canceling the RTRV-APPL-RTKEY Command

Because the rtrv-appl-rtkey command used in this procedure can output information for a long period of time, the rtrv-appl-rtkey command can be

canceled and the output to the terminal stopped. There are three ways that the rtrv-appl-rtkey command can be canceled.

- Press the **F9** function key on the keyboard at the terminal where the **rtrv-appl-rtkey** command was entered.
- Enter the canc-cmd without the trm parameter at the terminal where the rtrv-appl-rtkey command was entered.
- Enter the canc-cmd:trm=<xx>, where <xx> is the terminal where the rtrv-appl-rtkey command was entered, from another terminal other that the terminal where the rtrv-appl-rtkey command was entered. To enter the canc-cmd:trm=<xx> command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal's permissions can be verified with the rtrv-secu-trm command. The user's permissions can be verified with the rtrv-user or rtrv-secu-user commands.

For more information about the canc-cmd command, go to the Commands Manual.

Procedure

1. Display the current routing key information in the database by entering the rtrv-appl-rtkey command. The following is an example of the possible output.

rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0

TYPE RCONTEXT DPC SI ADPTR ASNAME LOC 123-234-123 5 TALI ----- FULL STATIC ----- FULL ----- 123-234-123 5 TALI STATIC ----- 005-005-001 5 TALI ----- FULL 1105 ----- 005-005-001 5 TALI ------ FULL 1105 ----- 006-006-001 5 TALI ------ FULL 1107 ----- 006-006-001 5 TALI ----- FULL 1107 TYPE RCONTEXT DPCI SI ADPTR ASNAME LOC ----- 2-100-7 6 M3UA as4 FULL STATIC 3-137-6 6 SUA 100 as1 FULL STATIC 5 M3UA as7 4-035-7 225 FULL STATIC 6-006-6 5 SUA FULL STATIC 310 as2 ----- 6-006-7 5 M3UA as8 FULL STATIC 6-006-6 5 SUA FULL 1000 as2 STATIC 6-006-6 5 SUA as2 FULL STATIC 500 ----- 6-006-8 3 M3UA as3 FULL STATIC _____ 6-006-8 5 M3UA as5 FULL STATIC 6-024-7 5 M3UA as4 6-024-7 5 M3UA as4 7-008-7 6 SUA as6 FULL STATIC -----FULL STATIC FULL STATIC RCONTEXT DPCN SI ADPTR ASNAME TYPE LOC RCONTEXT DPCN24 SI ADPTR ASNAME TYPE LOC RCONTEXT DPC SI ADPTR ASNAME TYPE LOC ----- ******** ** TALI ------ DEFAULT STATIC

```
STATIC Route Key table is (15 of 2000) 1% full

1105 Route Key table is (2 of 500) 1% full

1107 Route Key table is (2 of 500) 1% full

STATIC Route Key Socket Association table is (15 of 32000) 1% full

1105 Route Key Socket Association table is (2 of 8000) 1% full

1107 Route Key Socket Association table is (2 of 8000) 1% full
```

2. Display the specific routing key information for the routing key being changed by entering the rtrv-appl-rtkey command with the display=all parameter and the RCONTEXT value shown in the rtrv-appl-rtkey output in step 1 for the routing key being changed. For this example, enter this command.

rtrv-appl-rtkey:rcontext=310:display=all

This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0
         DPCI SI SSN OPCI CICS CICE LOC 6-006-6 5 --- 1-002-3 75 100 STA
RCONTEXT DPCI
                                                                STATIC
310
   ADPTR TYPE ASNAME
   SUA FULL
                  as2
       ANAMES
       assoc1
STATIC Route Key table is (15 of 2000) 1% full
1105 Route Key table is (2 of 500) 1% full
1107 Route Key table is (2 of 500) 1% full
STATIC Route Key Socket Association table is (15 of 32000) 1% full
1105 Route Key Socket Association table is (2 of 8000) 1% full
1107 Route Key Socket Association table is (2 of 8000) 1% full
```

If the routing context value shown for the routing key is dashes (-), this routing key cannot be used in this procedure. The dashes show that the routing key does not have a routing context assigned to it.

To assign a routing context value to a M3UA routing key that does not have a routing context value, the routing key must be removed by performing the "Removing a Routing Key" procedure on page 3-272. Re-enter the routing key with the routing context value by performing the "Adding a Routing Key Containing an Application Server" procedure on page 3-250. If you do not wish to assign a routing context value to this routing key, but you wish to change the routing context value in another routing key, repeat this step with another routing key shown in step 1. If you do not wish to assign a routing context value to this routing key, and do not wish to change the routing context value in another routing key, this procedure cannot be performed.

If the routing key contains a routing context value, go to step 3.

3. Display the association displayed in the rtrv-appl-rtkey output in step 2, using the rtrv-assoc command with the association name shown in step 2.

rtrv-assoc:aname=assoc1

This is an example of possible output.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0

ANAME assoc1

LOC 1203 IPLNK PORT A LINK A ADAPTER SUA VER SUA RFC

LHOST gw105.nc.tekelec.com

ALHOST ---

RHOST gw100.nc.tekelec.com

LPORT 1030 RPORT 1030

ISTRMS 2 OSTRMS 2 BUFSIZE 16

RMODE LIN RMIN 120 RMAX 800

RTIMES 10 CWMIN 3000

OPEN YES ALW YES

ASNAMES as2

IP Appl Sock table is (4 of 4000) 1% full

Assoc Buffer Space Used (16 KB of 800 KB) on LOC = 1203
```

Repeat this step for each association name displayed in step 2.

NOTE: If the open parameter value for all the associations assigned to the application server is no (shown in step 3), skip step 4 and go to step 5.

4. Change the value of the open parameter to no by specifying the chg-assoc command with the open=no parameter. For this example, enter this command.

```
chg-assoc:aname=assoc1:open=no
```

When this command has successfully completed, this message should appear.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0 CHG-ASSOC: MASP A - COMPLTD;
```


CAUTION: The IP connections using the associations specified in this step will not be able to carry any traffic when the open parameter is changed to no.

Repeat this step for all the associations assigned to the application server that have the open=yes parameter value.

5. Change the routing key information to the database by entering the chg-appl-rtkey command with the current and new routing context values.

For this example, enter this command.

```
chg-appl-rtkey:nrcontext=5280:rcontext=310
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0 CHG-APPL-RTKEY: MASP A - COMPLTD
```

6. Display the new routing key information in the database by entering the rtrv-appl-rtkey command with the new routing context value specified in step 5 and the display=all parameter. For this example, enter this command.

rtrv-appl-rtkey:rcontext=5280:display=all

This is an example of the possible output.

NOTE: If step 4 was not performed in this procedure, skip this step and go to step 8.

7. Change the value of the open parameter of the associations that were changed in step 4 to yes by specifying the chg-assoc command with the open=yes parameter. For this example, enter this command.

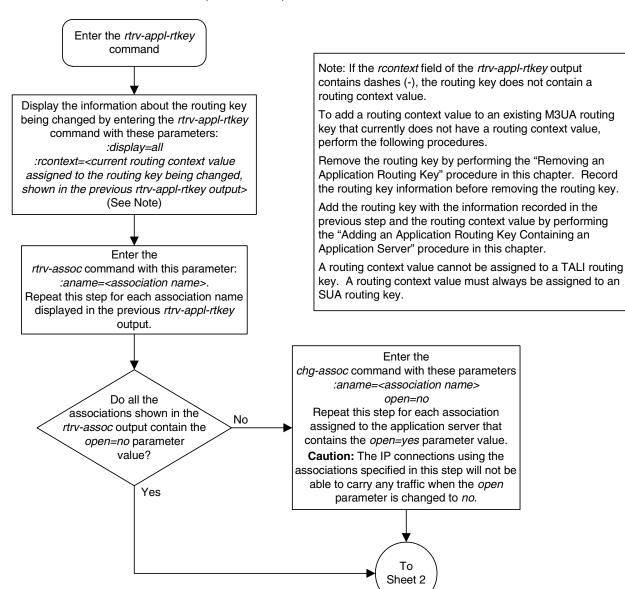
```
chg-assoc:aname=assoc1:open=yes
```

When this command has successfully completed, this message should appear.

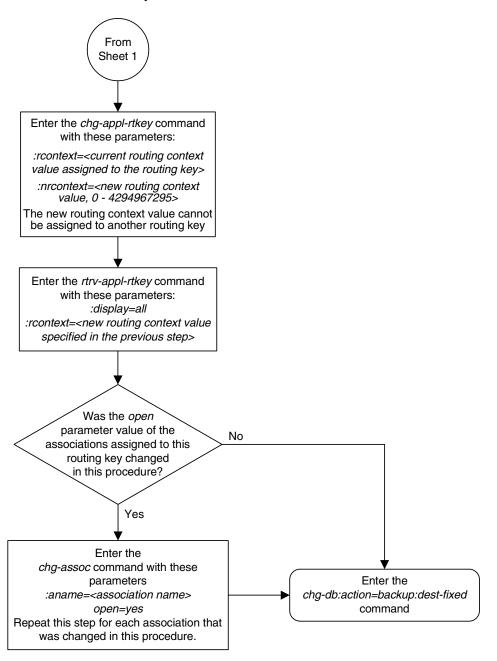
```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0 CHG-ASSOC: MASP A - COMPLTD;
```

Repeat this step for all the associations that were changed in step 4.

8. Back up the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.


```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.

BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.


BACKUP (FIXED) : MASP A - Backup starts on standby MASP.

BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

Flowchart 3-25. Changing the Routing Context Value in an Existing Routing Key (Sheet 1 of 2)

Flowchart 3-25. Changing the Routing Context Value in an Existing Routing Key (Sheet 2 of 2)

Changing the PSTN Presentation and Normalization Attributes in a Routing Key

This procedure is used for the ss7ipgw and ipgwi applications to change the PSTN (public switched telephone network) presentation and normalization settings in a routing key using the chg-appl-rtkey command with these parameters.

:pstncat – The PSTN category assigned to the routing key.

:pstnid - The PSTN ID assigned to the routing key.

:norm – Specifies whether the ISUP Normalization process is enabled or disabled for MSUs using the routing key.

The PSTN presentation information is a 32-bit value indicating the format of the MTP-3 data portion of a MSU while it exists in a public switched telephone network. It consists of a PSTN category and PSTN ID value which identifies the protocol that is used to encode or decode the data in the MTP-3 portion of MSUs. The PSTN category is used to identify a logical partitioning of groups of PSTN IDs. The PSTN ID uniquely identifies a presentation within a given PSTN category.

The pstncat, pstnid, and norm values are used to identify the PSTN presentation and normalization attributes for the routing key. These values allow the EAGLE 5 ISS to convey the PSTN format information to IP devices and control the normalization process for MSUs using the routing key.

Table 4-1 on page 4-3 shows the PSTN presentation information used by these parameters and supported by the EAGLE 5 ISS. The values shown in the PSTN Category and PSTN ID columns in Table 4-1 are used as the values for the pstncat and pstnid parameters of the chg-appl-rtkey command.

The information in Table 4-1 is also shown in the output of the rtrv-pstn-pres command. The values in the PSTNCAT Value(s) and Valid PSTNID Value(s) in PSTNCAT columns in the following output example are the values that can be used by the pstncat and pstnid parameters of the chg-appl-rtkey command.

rlghncxa03w 06-10-28 21:17:37 GMT EAGLE5 36.0.0

PSTNCAT	PSTNID	PSTNDESC
00001	00001	ITU Q.767
00001	00002	ETSI V3
00001	00003	UK PNO-ISC7
00001	00004	GERMAN ISUP
00001	00020	MEXICO
04096	01000	User Defined 4096/1000

These parameters are also used by the **chg-appl-rtkey** command to change the PSTN presentation and normalization settings in the routing key.

:dpc/dpca/dpci/dpcn/dpcn24 – Destination point code value that is used to filter incoming MSUs.

NOTE: See the "Point Code Formats" section in the *Database* Administration Manual - SS7 for a definition of the point code types that are used on the EAGLE 5 ISS and for a definition of the different formats that can be used for ITU national point codes.

:si – The service indicator value that is used to filter incoming MSUs. The range of values for the service indicator parameter (si) can be a numerical value from 0 to 15, or for selected service indicator values, a text string can be used instead of numbers. Table 3-26 shows the text strings that can be used in place of numbers for the service indicator values.

Table 3-26. Service Indicator Text String Values

Service Indicator Value	Text String
0	snm
1	regtest
2	spltst
3	sccp
4	tup
5	isup
13	qbicc

:opc/opca/opci/opcn/opcn24 - The originating point code value that is used to filter incoming MSUs. This value must not specify a cluster route.

NOTE: See the "Point Code Formats" section in the *Database Administration Manual - SS7* for a definition of the point code types that are used on the EAGLE 5 ISS and for a definition of the different formats that can be used for ITU national point codes.

:cics - Starting circuit identification code that is used to filter incoming MSUs. Specify with cice to identify the routing key to be changed.

:cice - Ending circuit identification code that is used to filter incoming MSUs. Specify with cics to identify the routing key to be changed.

: type - Key type. Identifies the type of routing key that will be changed. If the type parameter is not explicitly specified, type = full is assumed.

:ssn – The subsystem number value that is used to filter incoming MSUs.

The chg-appl-rtkey command also contains these parameters, but these parameters cannot be used when changing the PSTN presentation information in

the routing key. For more information on these parameters, see either the "Changing the CIC Values in an Existing Routing Key" procedure on page 3-283 or "Changing the Routing Context Value in an Existing Routing Key" procedure on page 3-295.

- :nsname The name of the new socket that will receive the incoming MSU.
- :ncics New starting circuit identification code that is used to filter incoming MSUs.
- :ncice New ending circuit identification code that is used to filter incoming MSUs.
- :split The circuit identification code value where the specified range of the routing key specified by the cics and cice values is to be split into two entries.
- **:nasname** The name of the new application server that will receive the incoming MSU.
- :rcontext The routing context value assigned to the routing key.
- :nrcontext The new routing context parameter value.

The pstnid=0 parameter can be specified only with the pstncat=0 parameter.

The values 2 through 4095 for the pstncat parameter are reserved and cannot be used.

If the value of the pstncat parameter is from 4096 to 65536, the value of the pstnid parameter can be from 0 to 65535.

The norm=no parameter can be specified for all values of the pstncat parameter. The pstncat=1 and the pstnid=<1,2,3, or 4> parameters are specified with the norm=no parameter, ISUP normalization will not be performed on MSUs using the routing key.

The pstncat=1 parameter may only be used with 14-bit ITU-N, 24-bit ITU-N, or ITU-I point codes and when the value of the service indicator parameter is 5. The value of the pstnid parameter specified with the pstncat=1 parameter can range from 1 to 32.

The **norm=yes** parameter can be specified only under these conditions:

- The value of the pstncat parameter must be 1
- The value of the pstnid parameter values can range from 1 to 32.
- The ISUP Normalization controlled feature must be enabled and its status must be on.
- The value of the service indicator parameter in the routing key must be 5.
- The point code in the routing key must be either an ITU-I, 14-bit ITU-N, or 24-bit ITU-N point code.
- The controlled feature associated with the pstnid parameter values 1 to 32 must be enabled and its status must be on.

The rtrv-ctrl-feat command shows whether or not the controlled features are enabled. If any of the required controlled features are not enabled, enter the enable-ctrl-feat command with the feature part number and the feature access key for the required controlled feature. The status of these controlled features is set to on with the chg-ctrl-feat command.

NOTE: If you do not have the part number or the feature access key for the required controlled feature, contact your Tekelec sales representative or account representative.

Table 4-1 on page 4-3 also shows the part numbers of the controlled features used in this procedure. The Quantity Control feature allows a customer to provision a specified quantity of user-defined variants within the PSTN categories 4096 - 65535. Each Quantity Control Feature is associated with a specific quantity of variants. To provision user-defined variants, it is necessary to purchase the appropriate Feature Access Keys from Tekelec. Variants enabled using the Quantity Control feature do not have associated PSTN Presentation values.

The part number for user-defined variants is 893-0100-nn, where nn is a number ranging from 01 to 20. Use part number 893-0100-01 to order one new variant, 893-0100-05 to order five new variants, and so on.

The values of the dpc, opc, si, cics, and cice parameters specified in this procedure must match the values in the routing key that is being changed in this procedure.

If the ITU National Duplicate Point Code feature is on, the values for the dpcn and opcn parameters must have group codes assigned to them. The field ITUDUPPC in the rtrv-feat command output shows whether or not the ITU National Duplicate Point Code feature is on. If group codes are specified for ITU-N DPC and OPC, the groups codes must be the same.

Canceling the RTRV-APPL-RTKEY Command

Because the rtrv-appl-rtkey command used in this procedure can output information for a long period of time, the rtrv-appl-rtkey command can be canceled and the output to the terminal stopped. There are three ways that the rtrv-appl-rtkey command can be canceled.

- Press the F9 function key on the keyboard at the terminal where the rtrv-appl-rtkey command was entered.
- Enter the canc-cmd without the trm parameter at the terminal where the rtrv-appl-rtkey command was entered.
- Enter the canc-cmd: trm=<xx>, where <xx> is the terminal where the rtrv-appl-rtkey command was entered, from another terminal other that the terminal where the rtrv-appl-rtkey command was entered. To enter the canc-cmd: trm=<xx> command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal's permissions can be verified with the rtrv-secu-trm command. The user's permissions can be verified with the rtrv-user or rtrv-secu-user commands.

For more information about the canc-cmd command, go to the Commands Manual.

Procedure

1. Display the current routing key information in the database by entering the rtrv-appl-rtkey command. The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
              SI ADPTR ASNAME
RCONTEXT DPC
----- 123-234-123 5 TALI ------ FULL STATIC
----- 123-234-123 5 TALI ------ FULL STATIC
----- 005-005-001 5 TALI ----- FULL
                                               1105
1105
                                               1107
STATIC Route Key table is (2 of 2000) 1% full
1105 Route Key table is (2 of 500) 1% full
1107 Route Key table is (2 of 500) 1% full
STATIC Route Key Socket Association table is (2 of 32000) 1% full
1105 Route Key Socket Association table is (2 of 8000) 1% full
1107 Route Key Socket Association table is (2 of 8000) 1% full
```

2. Display the current values of the pstncat, pstnid, and norm parameters of the routing key by entering the rtrv-appl-rtkey command with the DPC of the routing key shown in step 1 and the display=all parameter. For this example, enter this command.

```
rtrv-appl-rtkey:dpcn=12323-de:display=all
```

```
rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0
                    SI SSN OPCN
RCONTEXT DPCN
                                       CTCS
                                                 CTCE
                                                            LOC
----- 12323-DE 5 --- 12212-DE
                                       1
                                                 1000
                                                            STATIC
   ADPTR TYPE PSTNCAT PSTNID NORM DUP
   TALI FULL 0 0 N N
   SNAMES
   socket.6
STATIC Route Key table is (2 of 2000) 1% full
1105 Route Key table is (2 of 500) 1% full
1107 Route Key table is (2 of 500) 1% full
STATIC Route Key Socket Association table is (2 of 32000) 1% full
1105 Route Key Socket Association table is (2 of 8000) 1% full
1107 Route Key Socket Association table is (2 of 8000) 1% full
```

NOTE: If the value of the norm parameter is being set to no, skip steps 3 and 4, and go to step 5.

3. Verify that the ISUP Normalization controlled feature is enabled and activated by entering the rtrv-crt1-feat command. If the ISUP Normalization controlled feature is enabled, the ISUP Normalization controlled feature name should be shown in the Feature Name field of the output, and the status of the ISUP Normalization controlled feature, in the Status field, should be set to on. The following is an example of the possible output

```
The following features have been permanently enabled:

Feature Name Partnum Status Quantity
IPGWx Signaling TPS 893012814 on 20000
ISUP Normalization 893000201 on ----
ETSI v3 Normalization 893000601 on ----

The following features have been temporarily enabled:

Feature Name Partnum Status Quantity Trial Period Left Zero entries found.

The following features have expired temporary keys:

Feature Name Partnum
Zero entries found.
```

If the ISUP Normalization controlled feature is not enabled and turned on, go to the "Enabling Controlled Features" procedure on page 6-2 and to "Turning On and Off Controlled Features" procedure on page 6-10 to enable and turn on the ISUP Normalization controlled feature.

4. Display the PSTN presentation information supported by the EAGLE 5 ISS by entering the rtrv-pstn-pres command. The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:17:37 GMT EAGLE5 36.0.0
PSTNCAT PSTNID PSTNDESC
00001 00001 ITU Q.767
00001 00002 ETSI V3
00001 00003 UK PNO-ISC7
00001 00004 GERMAN ISUP
04096 01000 User Defined 4096/1000

ISUP Variant table is (6 of 21) 29% full
```

rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0

NOTE: An * will be displayed next to the PSTN Category for entries that are no longer usable. These are entries that are disabled because their temporary feature key expired.

The output of the rtrv-pstn-pres command shows the values in the PSTNCAT Value(s) and Valid PSTNID Value(s) in PSTNCAT columns that can be used by the pstncat and pstnid parameters of the chg-appl-rtkey command

If the value of the norm parameter is being set to yes, and the rtrv-ctrl-feat output in step 3 shows that the controlled feature that corresponds to the PSTNID parameter value being specified in this procedure

is not enabled and turned on, go to the "Enabling Controlled Features" procedure on page 6-2 and to "Turning On and Off Controlled Features" procedure on page 6-10 to enable and turn on the required controlled feature.

Table 4-1 on page 4-3 shows the part numbers of the controlled features and the ptsnid parameter values that can be used in this procedure.

NOTE: If 14-bit ITU-N point codes (dpcn, opcn) are not being specified for the routing key, skip step 5 and go to step 6.

5. Verify whether or not the ITU National Duplicate Point Code feature is on, by entering the rtrv-feat command. If the ITU National Duplicate Point Code feature is on, the ITUDUPPC field will be set to on.

NOTE: The rtrv-feat command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the rtrv-feat command, see the rtrv-feat command description in the Commands Manual.

6. Change PSTN presentation information in the routing key by entering the chg-appl-rtkey command with the pstncat, pstnid, and norm parameters.

```
chg-appl-rtkey:dpcn=12323-de:si=5:opc=12212-de:cics=1
:cice=1000:pstncat=1:pstnid=2:norm=yes
```

NOTE: If the DPC and OPC values are ITU-N point codes, these point codes must have group codes assigned to them if the ITU National Duplicate Point Code feature is on. The ITUDUPPC field in the rtrv-feat command executed in step 5 shows whether or not the ITU National Duplicate Point Code feature is on.

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0 CHG-APPL-RTKEY: MASP A - COMPLTD
```

7. Verify the new values of the pstncat, pstnid, and norm parameters that were changed in step 6 by entering the rtrv-appl-rtkey command with the DPC of the routing key specified in step 6 and the display=all parameter. For this example, enter this command.

```
rtrv-appl-rtkey:dpcn=12323-de:display=all
```

```
STATIC Route Key table is (2 of 2000) 1% full

1105 Route Key table is (2 of 500) 1% full

1107 Route Key table is (2 of 500) 1% full

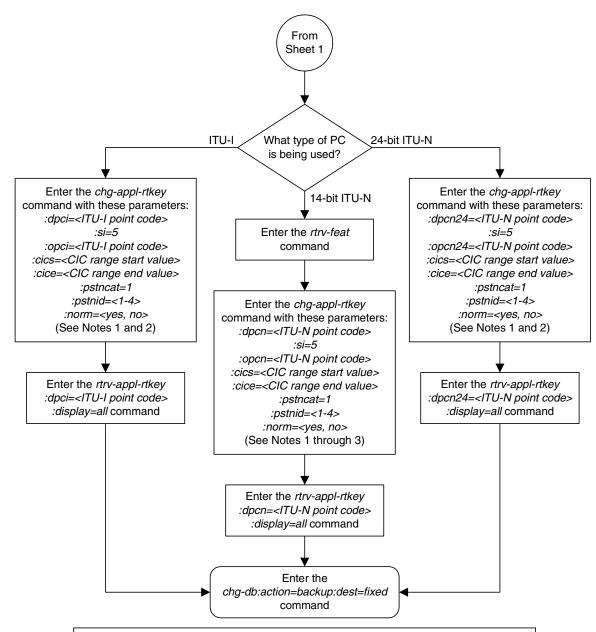
STATIC Route Key Socket Association table is (2 of 32000) 1% full

1105 Route Key Socket Association table is (2 of 8000) 1% full

1107 Route Key Socket Association table is (2 of 8000) 1% full
```

8. Back up the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.


BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED) : MASP A - Backup starts on standby MASP.

BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

Enter the rtrv-appl-rtkey command Is the No То pstncat=1 value to be Sheet 3 specified? Yes Is the ISUP No Normalization Feature to be used (norm=yes)? Yes Enter the rtrv-ctrl-feat command Is the ISUP Go to the "Enabling a Permanent or Temporary Key" procedure in Normalization No controlled feature Appendix A to enable and activate the enabled? ISUP Normalization controlled feature Yes Enter the rtrv-pstn-pres command Go to the "Enabling a Permanent or Is the controlled Temporary Key" procedure in feature enabled that corresponds No Appendix A to enable and activate the the PSTNID parameter value being controlled feature that corrsponds to specified on Sheet 2 and shown in the PSTNID value being specified on the rtrv-pstn-pres output? Sheet 2 Yes То Sheet 2

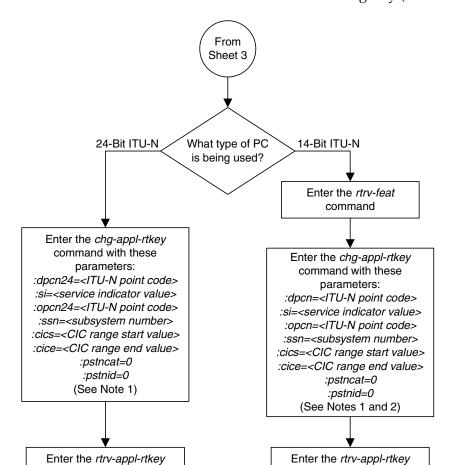
Flowchart 3-26. Changing the PSTN Presentation and Normalization Attributes in an Routing Key (Sheet 1 of 6)

Flowchart 3-26. Changing the PSTN Presentation and Normalization Attributes in an Routing Key (Sheet 2 of 6)

Notes:

- 1. The *norm=yes* parameter is only required if the ISUP Normalization feature is to be used for the MSUs using the routing key.
- 2. The values for the DPC, OPC, SI, CICS, and CICE parameters must match the values shown in the routing key being changed.
- 3. If the Duplicate Point Code feature is on, the DPCN and OPCN values must have a group code assigned to the point code. If both the DPCN and OPCN parameters are specified, the group codes must be the same. The ITUDUPPC field in the *rtrv-feat* command shows whether or not this feature is on.

Is the From No То pstncat=0 value to be Sheet 1 Sheet 5 specified? Yes ITU-I What type of PC ITU-N То is being used? Sheet 4 **ANSI** Enter the chg-appl-rtkey Enter the chg-appl-rtkey command with these command with these parameters: parameters: :dpci=<ITU-I point code> :dpca=<ANSI point code> :si=<service indicator value> :si=<service indicator value> :opci=<ITU-I point code> :opca=<ANSI point code> :ssn=<subsystem number> :ssn=<subsystem number> :cics=<CIC range start value> :cics=<CIC range start value> :cice=<CIC range end value> :cice=<CIC range end value> :pstncat=0 :pstncat=0 :pstnid=0 :pstnid=0 (See Note) (See Note) Enter the rtrv-appl-rtkey Enter the rtrv-appl-rtkey :dpci=<ITU-I point code> :dpca=<ANSI point code> :display=all command :display=all command Enter the chg-db:action=backup:dest=fixed command Note: The values for the DPC, OPC, SI, SSN, CICS, and CICE


parameters must match the values shown in the routing key being

Flowchart 3-26. Changing the PSTN Presentation and Normalization Attributes in an Routing Key (Sheet 3 of 6)

changed.

:dpcn=<ITU-N point code>

:display=all command

Flowchart 3-26. Changing the PSTN Presentation and Normalization Attributes in an Routing Key (Sheet 4 of 6)

Notes:

:dpcn24=<ITU-N point code>

:display=all command

Enter the chg-db:action=backup:dest=fixed command

^{1.} The values for the DPC, OPC, SI, SSN, CICS, and CICE parameters must match the values shown in the routing key being changed.

^{2.} If the Duplicate Point Code feature is on, the DPCN and OPCN values must have a group code assigned to the point code. If both the DPCN and OPCN parameters are specified, the group codes must be the same. The ITUDUPPC field in the *rtrv-feat* command shows whether or not this feature is on.

:dpci=<ITU-I point code>

:display=all command

From Sheet 3 What type of PC ITU-N ITU-I То is being used? Sheet 6 **ANSI** Enter the chg-appl-rtkey Enter the chg-appl-rtkey command with these command with these parameters: parameters: :dpca=<ANSI point code> :dpci=<ITU-I point code> :si=<service indicator value> :si=<service indicator value> :opci=<ITU-I point code> :opca=<ANSI point code> :ssn=<subsystem number> :ssn=<subsystem number> :cics=<CIC range start value> :cics=<CIC range start value> :cice=<CIC range end value> :cice=<CIC range end value> :pstncat=<4096-65355> :pstncat=<4096-65355> :pstnid=<0-65355> :pstnid=<0-65355> (See Note 1) (See Note 1) Enter the rtrv-appl-rtkey Enter the rtrv-appl-rtkey

Flowchart 3-26. Changing the PSTN Presentation and Normalization Attributes in an Routing Key (Sheet 5 of 6)

Note: The values for the DPC, OPC, SI, SSN, CICS, and CICE parameters must match the values shown in the routing key being changed.

:dpca=<ANSI point code>

:display=all command

Enter the chg-db:action=backup:dest=fixed command

From Sheet 5 24-Bit ITU-N What type of PC ITU-N is being used? Enter the rtrv-feat command Enter the chg-appl-rtkey Enter the chg-appl-rtkey command with these command with these parameters: :dpcn24=<ITU-N point code> parameters: :si=<service indicator value> :dpcn=<ITU-N point code> :opcn24=<ITU-N point code> :si=<service indicator value> :opcn=<ITU-N point code> :ssn=<subsystem number> :cics=<CIC range start value> :ssn=<subsystem number> :cics=<CIC range start value> :cice=<CIC range end value> :pstncat=<4096-65355> :cice=<CIC range end value> :pstncat=<4096-65355> :pstnid=<0-65355> (See Note 1) :pstnid=<0-65355> (See Notes 1 and 2) Enter the rtrv-appl-rtkey Enter the rtrv-appl-rtkey :dpcn24=<ITU-N point code> :dpcn=<ITU-N point code> :display=all command :display=all command

Flowchart 3-26. Changing the PSTN Presentation and Normalization Attributes in an Routing Key (Sheet 6 of 6)

Notes:

Enter the chg-db:action=backup:dest=fixed command

^{1.} The values for the DPC, OPC, SI, SSN, CICS, and CICE parameters must match the values shown in the routing key being changed.

^{2.} If the Duplicate Point Code feature is on, the DPCN and OPCN values must have a group code assigned to the point code. If both the DPCN and OPCN parameters are specified, the group codes must be the same. The ITUDUPPC field in the *rtrv-feat* command shows whether or not this feature is on.

Increasing the System-Wide IPGWx Signaling TPS

This procedure is used with IPGWx applications (IP cards running either the ss7ipgw or ipgwi applications) and increases the system-wide IP transactions per second (TPS), using the enable-ctrl-feat command.

The EAGLE 5 ISS is shipped with a default TPS rate of 200 transactions per second.

The enable-ctrl-feat command uses these parameters.

:partnum – The Tekelec-issued part number associated with the controlled feature. The part number is a 9-digit number, not including dashes; the first three digits must be 893 (that is, 893xxxxxx, where x is a numeric value). Table 3-27 on page 3-318 shows the part numbers that can be used with this procedure.

:fak – The feature access key obtained from the Tekelec Customer Service department. The feature access key contains 13 alphanumeric characters and is not case sensitive.

NOTE: The number of system-wide IP transactions per second cannot be enabled with a temporary feature access key.

NOTE: If you do not have the feature access key, you can obtain it from your Tekelec Sales Representative or Account Representative.

The enable-ctrl-feat command requires that the database contain a valid serial number for the EAGLE 5 ISS, and that this serial number is locked. This can be verified with the rtrv-serial-num command. The EAGLE 5 ISS is shipped with a serial number in the database, but the serial number is not locked. The serial number can be changed, if necessary, and locked once the EAGLE 5 ISS is on-site, by using the ent-serial-num command. The ent-serial-num command uses these parameters.

:serial – The serial number assigned to the EAGLE 5 ISS. The serial number is not case sensitive.

:lock – Specifies whether or not the serial number is locked. This parameter has only one value, yes, which locks the serial number. Once the serial number is locked, it cannot be changed.

NOTE: To enter and lock the EAGLE 5 ISS's serial number, the ent-serial-num command must be entered twice, once to add the correct serial number to the database with the serial parameter, then again with the serial and the lock=yes parameters to lock the serial number. You should verify that the serial number in the database is correct before locking the serial number. The serial number can be found on a label affixed to the control shelf (shelf 1100).

The TPS rate specified in this procedure must be greater that the current TPS rate.

Table 3-27. System-Wide IPGWx Signaling TPS Part Numbers

Part Number	IPGWx System IP TPS			
893-0128-01	200			
893-0128-02	400			
893-0128-03	600			
893-0128-04	1,000			
893-0128-05	2,000			
893-0128-06	4,000			
893-0128-07	6,000			
893-0128-08	8,000			
893-0128-09	10,000			
893-0128-10	12,000			
893-0128-11	14,000			
893-0128-12	16,000			
893-0128-13	18,000			
893-0128-14	20,000			
893-0128-15	22,000			
893-0128-16	24,000			
893-0128-17	26,000			
893-0128-18	28,000			
893-0128-19	30,000			
893-0128-20	32,000			

Part Number	IPGWx System IP TPS
893-0128-21	34,000
893-0128-22	36,000
893-0128-23	38,000
893-0128-24	40,000
893-0128-25	42,000
893-0128-26	44,000
893-0128-27	46,000
893-0128-28	48,000
893-0128-29	50,000
893-0128-30	52,000
893-0128-31	54,000
893-0128-32	56,000
893-0128-33	58,000
893-0128-34	60,000
893-0128-35	62,000
893-0128-36	64,000
893-0128-37	66,000
893-0128-38	68,000
893-0128-39	70,000
893-0128-40	72,000

Part Number	IPGWx System IP TPS
893-0128-41	74,000
893-0128-42	76,000
893-0128-43	78,000
893-0128-44	80,000
893-0128-45	82,000
893-0128-46	84,000
893-0128-47	86,000
893-0128-48	88,000
893-0128-49	90,000
893-0128-50	92,000
893-0128-51	94,000
893-0128-52	96,000
893-0128-53	98,000
893-0128-54	100,000
893-0128-55	102,000
893-0128-56	104,000
893-0128-57	106,000
893-0128-58	108,000
893-0128-59	110,000
893-0128-60	112,000

Procedure

1. Display enabled controlled feature information in the database by entering the rtrv-ctrl-feat command. The following is an example of the possible output.

IP⁷ Secure Gateway Configuration Procedures

NOTE: If the rtrv-ctrl-feat output in step 1 shows any controlled features are enabled, or if the IPGWx Signaling TPS quantity is greater than 200, skip steps 2 through 5, and go to step 6.

2. Display the serial number in the database with the rtrv-serial-num command. This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
System serial number = nt00001231
System serial number is not locked.
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
Command Completed
```

NOTE: If the serial number is correct and locked, skip steps 3, 4, and 5, and go to step 6. If the serial number is correct but not locked, skip steps 3 and 4, and go to step 5. If the serial number is not correct, but is locked, this feature cannot be enabled and the remainder of this procedure cannot be performed. Contact the Customer Care Center to get an incorrect and locked serial number changed. Refer to "Customer Care Center" on page 1-9 for the contact information. The serial number can be found on a label affixed to the control shelf (shelf 1100).

3. Enter the correct serial number into the database using the ent-serial-num command with the serial parameter.

For this example, enter this command.

ent-serial-num:serial=<EAGLE 5 ISS's correct serial number>
When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0 ENT-SERIAL-NUM: MASP A - COMPLTD
```

4. Verify that the serial number entered into step 3 was entered correctly using the rtrv-serial-num command. This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
System serial number = nt00001231
System serial number is not locked.
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
Command Completed
```

If the serial number was not entered correctly, repeat steps 3 and 4 and re-enter the correct serial number.

5. Lock the serial number in the database by entering the ent-serial-num command with the serial number shown in step 2, if the serial number shown in step 2 is correct, or with the serial number shown in step 4, if the serial number was changed in step 3, and with the lock=yes parameter.

For this example, enter this command.

ent-serial-num:serial=<EAGLE 5 ISS's serial number>:lock=yes
When this command has successfully completed, the following message
should appear.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0 ENT-SERIAL-NUM: MASP A - COMPLTD
```

6. Increase the system-wide IP transactions per second (TPS) by entering the enable-ctrl-feat command with the part number corresponding to the desired quantity (without the dashes), shown in Table 3-27 on page 3-318, and the feature access key for the desired quantity. For example, enter this command.

```
enable-ctrl-feat:partnum=893012814:fak=<feature access key>
```

NOTE: The number of system-wide IP transactions per second cannot be enabled with a temporary feature access key.

NOTE: If you do not have the feature access key, you can obtain it from your Tekelec Sales Representative or Account Representative.

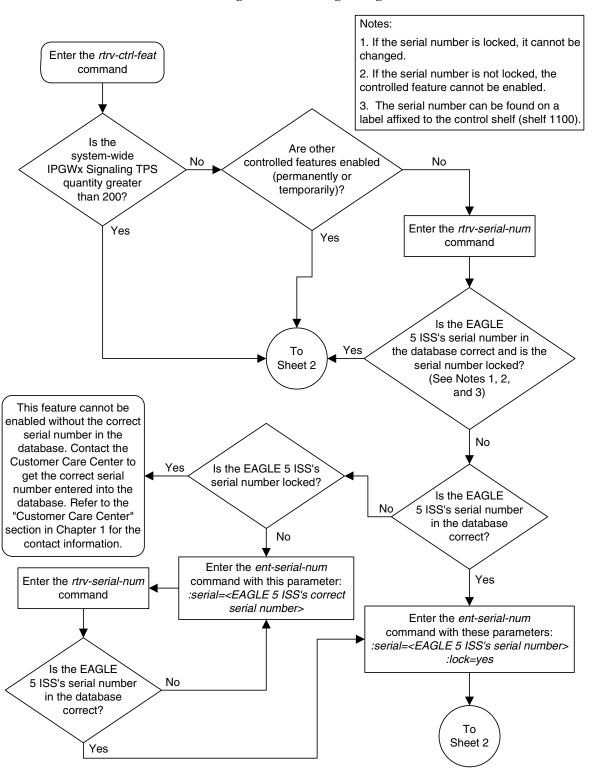
When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0 ENABLE-CTRL-FEAT: MASP A - COMPLTD
```

7. Verify the new feature information in the database by entering the rtrv-ctrl-feat command with the part number specified in step 6. For this example, enter this command.

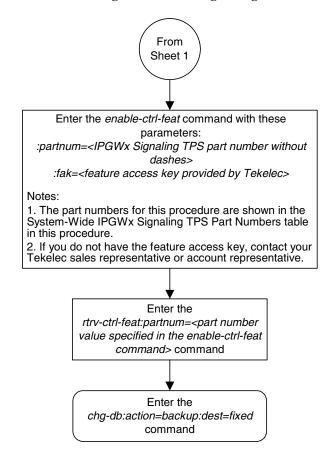
rtrv-ctrl-feat:partnum=893012814

The following is an example of the possible output.


8. Back up the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.

BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.


BACKUP (FIXED) : MASP A - Backup starts on standby MASP.

BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```


Flowchart 3-27. Increasing the IPGWx Signaling TPS (Sheet 1 of 2)

Flowchart 3-27. Increasing the IPGWx Signaling TPS (Sheet 2 of 2)

Configuring the IP TPS Alarm Threshold

The IP TPS alarm threshold is the percentage of the IPGWx signaling TPS at which an alarm is raised. This threshold is set with the <code>iptpsalmthresh</code> parameter of the <code>chg-sg-opts</code> command. The values for the <code>iptpsalmthresh</code> parameter are from 10 to 100 percent, with the system default value of 80 percent. The value of the IP TPS alarm threshold is shown in the <code>IPTPSALMTHRESH</code> field of the <code>rtrv-sg-opts</code> command output.

When this threshold is exceeded, UAM 0114, System IP TPS Threshold exceeded, is generated. UAM 0114 is automatically cleared when the percentage of the IPGWx signaling TPS calculated by the EAGLE 5 ISS falls below the value of the iptpsalmthresh parameter value. UAM 0117, System IP TPS normal, is generated when UAM 0114 is cleared.

CAUTION: UAM 0114 is also generated if the IP TPS alarm threshold is set to a percentage that is less than the current percentage of the IPGWx signaling TPS calculated by the EAGLE 5 ISS. If UAM 0114 is not automatically cleared after performing this procedure, perform the alarm clearing procedure for UAM 0114 in the *Maintenance Manual*.

Procedure

1. Display the current IP options in the database by entering the **rtrv-sg-opts** command. The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0
SYNC:
              TATIT
              250
SRKO:
              750
DRKO:
SNMPCONT:
             john doe 555-123-4567
GETCOMM:
             public
SETCOMM:
             private
             public
TRAPCOMM:
INHFEPALM:
              NO
              crc32c
SCTPCSUM:
IPGWABATE:
              NO
              NΟ
IPLIMABATE:
IPTPSALMTHRESH: 80
```

2. Change the IP TPS alarm threshold using the chg-sg-opts command and the iptpsalmthresh parameter. For this example, enter this command.

```
chg-sg-opts:iptpsalmthresh=90
```

When this command has successfully completed, the following message should appear.

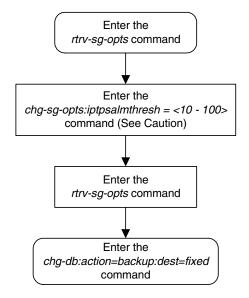
```
rlghncxa03w 06-10-28 21:19:37 GMT EAGLE5 36.0.0 CHG-SG-OPTS: MASP A - COMPLTD
```


CAUTION: UAM 0114 is generated if the IP TPS alarm threshold is set to a percentage that is less than the current percentage of the IPGWx signaling TPS calculated by the EAGLE 5 ISS. If UAM 0114 is not automatically cleared after performing this procedure, perform the alarm clearing procedure for UAM 0114 in the *Maintenance Manual*.

3. Verify the new IP options in the database using the rtrv-sg-opts command. The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0
SYNC:
               SASSI
SRKQ:
               250
DRKQ:
               750
SNMPCONT:
               john doe 555-123-4567
GETCOMM:
               public
SETCOMM:
               private
TRAPCOMM:
               public
INHFEPALM:
              NO
SCTPCSUM:
               crc32c
IPGWABATE:
               NO
TPLTMABATE:
               NΟ
IPTPSALMTHRESH: 90
```

4. Back up the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.


```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.

BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED) : MASP A - Backup starts on standby MASP.

BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

Flowchart 3-28. Configuring the IP TPS Alarm Threshold

Caution: UAM 0114 is generated if the IP TPS alarm threshold is set to a percentage that is less than the current percentage of the IPGWx signaling TPS calculated by the EAGLE 5 SAS. If UAM 0114 is not automatically cleared after performing this procedure, perform the alarm clearing procedure for UAM 0114 in the *Maintenance Manual*.

IETF Adapter Layer Configuration

To provision the IETF adapter layer, associations, application server processes, and application servers must be configured in the database, in this order:

- 1. Associations
- **2.** Application servers (AS).

NOTE: The M2PA adapter layers on cards running either the IPLIM or IPLIMI applications (IPLIMx cards) does not support application servers. Application servers cannot be provisioned for associations assigned to IPLIMx cards. The SUA and M3UA adapter layer on cards running either the SS7IPGW or IPGWI applications (IPGWx cards) does support application servers. Application servers can be provisioned for associations assigned to IPGWx cards.

The application server is then assigned to a routing key. The following procedures show the steps necessary to provision the associations and application servers.

These procedures use a variety of commands. If more information on these commands is needed, go to the *Commands Manual* to find the required information.

Adding an Association

This procedure is used to configure SCTP associations in the socket table using the **ent-assoc** command. The combination of a local host, local SCTP port, remote host and remote SCTP port defines an association.

The ent-assoc command uses these parameters:

- : aname The name assigned to the association. Valid association names can contain up to 15 alphanumeric characters where the first character is a letter and the remaining characters are alphanumeric characters. The aname parameter value is not case-sensitive.
- :1host Local Hostname. The logical name assigned to the local host device.
- :1port The SCTP port number for the local host.
- :rhost Remote Hostname. The logical name assigned to the remote host device.
- :rport The SCTP port number for the remote host.
- :link The signaling link on the IP card. If a signaling link is not specified for a socket when it is entered, the socket defaults to signaling link A. If the card's application is iplim or iplimi, and the card is a dual-slot DCM, the values for the link parameter can be only a or b. If the card's application is iplim or iplimi, and the card is a single-slot EDCM, the values for the link parameter can be a, a1, a2, a3, b, b1, b2, or b3. If the card's application is iplim or iplimi, and the card is an E5-ENET card, the values for the link parameter can be a, a1, a2, a3, a4, a5, a6, a7, b, b1, b2, b3, b4, b5, b6, or b7. If the IP card's application is ss7ipgw or ipgwi, only link=a can be specified.

NOTE: The port parameter can be used in place of the link parameter to specify the signaling link on the card.

- :adapter The adapter layer for this association, either m3ua, sua, m2pa. The adapter parameter is optional. If the association is an IPGWx association, the default value for the adapter parameter is m3ua. If the association is an IPLIMx association, the default value for the adapter parameter is m2pa.
- :alhost The alternate local host name.
- :m2patset The M2PA timer set assigned to the association. The m2patset parameter can be specified only with the adatper=m2pa parameter. If the adapter=m2pa parameter is specified, and the m2patset parameter is not specified with the ent-assoc command, the default value for the m2patset parameter (1 M2PA timer set 1) is assigned to the association.

The socket table, which contains both the socket and association data, contains fields whose values are not assigned using the ent-assoc command. When an association is added to the database, these fields receive their default values. If a different value is desired, the chg-assoc command must be used. To change these values perform the "Changing an Association" procedure on page 3-348.

These fields and their default values are:

open=no	rmax=800	cwmin=3000	alw=no	uaps=10
istrms=2	rmode=lin	rtimes=10	ostrms=2	rmin=120

ver=rfc (applies only when the adapter=m2pa parameter is specified)

bufsize – If the association is an IPLIMx association, the default bufsize value is 200. If the association is an IPGWx association, the default bufsize value is 16.

The size of the buffers on the IP cards are shown in Table 3-28.

Table 3-28. SCTP Buffer Limits

IP Card Application	Card Type				
	Dual-Slot DCM	Single-Slot EDCM	E5-ENET Card		
IPLIMx	400 kB	1600 kB	3200 kB		
IPGWx	N/A	800 kB	3200 kB		

The size of the buffers assigned to each association that is assigned to the IP card cannot exceed the maximum buffer size for the IP card. When a new association is added, the default buffer size for the association is assigned to the association. If adding the new association causes the total buffer size for all the associations on the IP card to exceed the maximum buffer size for that IP card, the <code>ent-assoc</code> command will be rejected. If the you wish to add the association and the maximum buffer size for the IP card will be exceeded, the buffer size of the other associations assigned to the IP card must be decreased by performing the "Changing an Association" procedure on page 3-348. The available size of the buffers on the IP card can be verified by entering this command.

rtrv-assoc:lhost=<local host name assigned to the association
being changed>

The alhost parameter can also be used with the rtrv-assoc command to display the available size of the buffers on the IP card.

The aname parameter can be used with the rtrv-assoc command to display the available size of the buffers on the IP card and the size of the buffer assigned to the association.

The value of the lhost, rhost, or alhost parameters is a text string of up to 60 characters, with the first character being a letter. The command line on the terminal can contain up to 150 characters. If the host names are too long to fit on the ent-assoc command line, go to the "Changing an Association" procedure on page 3-348 to complete the entry of the host names.

The EAGLE 5 ISS can contain a maximum of 4000 connections (association to application server assignments plus sockets).

For the iplim and iplimi applications, the IP card can one association for each signaling link on the card. The dual-slot DCM can contain only two signaling links, resulting in a maximum of two associations on these cards. The single-slot EDCM can contain a maximum of eight signaling links, resulting in a maximum of eight associations for this card. The E5-ENET card can contain a maximum of 16 signaling links, resulting in a maximum of 16 associations for this card.

The B Ethernet interface of the IP card can be used only if the IP card is a single-slot EDCM or E5-ENET card.

If the association is to be activated in this procedure, with the chg-assoc command, the association must contain values for the lhost, lport, rhost, rport parameters.

If the card's application is either IPLIM or IPLIMI:

- The ipliml2 parameter value of the signaling link assigned to the association must be m2pa. The adapter parameter value of the association must be m2pa.
- The signaling link being assigned to the association must be out of service. This state is shown in the rept-stat-slk output with the entries OOS-MT in the PST field and Unavail in the SST field.
- If the association is being opened in this procedure with the chg-assoc command and the open=yes parameter, the signaling link assigned to the association must be in the database and the ipliml2 parameter value of the signaling link assigned to the association must be m2pa.

If the card's application is either SS7IPGW or IPGWI, the signaling link being assigned to the association must be in service. This state is shown in the rept-stat-slk output with the entries IS-NR in the PST field and Avail in the ssT field.

Uni-homed endpoints are associations configured with the lhost parameter only. The lhost parameter value represents an IP address that corresponds to either the A or B network interface of the IP card. Multi-homed endpoints are associations configured with both the lhost and alhost parameters. The lhost parameter value represents an IP address corresponding to one of the network interfaces (A or B) of the IP card while the alhost parameter value represents an IP address corresponding to the other network interface of the same IP card.

Canceling the RTRV-ASSOC Command

Because the rtrv-assoc command used in this procedure can output information for a long period of time, the rtrv-assoc command can be canceled and the output to the terminal stopped. There are three ways that the rtrv-assoc command can be canceled.

- Press the F9 function key on the keyboard at the terminal where the rtry-assoc command was entered.
- Enter the canc-cmd without the trm parameter at the terminal where the rtrv-assoc command was entered.

• Enter the canc-cmd:trm=<xx>, where <xx> is the terminal where the rtrv-assoc command was entered, from another terminal other that the terminal where the rtrv-assoc command was entered. To enter the canc-cmd:trm=<xx> command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal's permissions can be verified with the rtrv-secu-trm command. The user's permissions can be verified with the rtrv-user or rtrv-secu-user commands.

For more information about the canc-cmd command, go to the Commands Manual.

Procedure

1. Display the associations in the database using the **rtrv-assoc** command. This is an example of possible output.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0
```

	CARD	IPLNK						
ANAME	LOC	PORT	LINK	ADAPTER	LPORT	RPORT	OPEN	\mathtt{ALW}
swbel32	1201	A	A	M3UA	1030	2345	YES	YES
a2	1305	A	A	SUA	1030	2345	YES	YES
a3	1307	A	A	SUA	1030	2346	YES	YES
assoc3	1203	A	A1	M2PA	2048	1030	NO	NO

NOTE: If the required IP link is shown in the rtrv-assoc output in step 1, skip step 2 and go to step 3.

2. Display the IP links in the database by entering the rtrv-ip-lnk command. The following is an example of the possible output.

```
      r1ghn-xa03w 06-10-28 21:19:37 GMT EAGLE5
      36.0.0

      LOC
      PORT 1PADDR
      SUBMASK
      DUPLEX
      SPEED MACTYPE AUTO MCAST

      1201
      A
      192.1.1.10
      255.255.255.0
      ---- --- DIX
      YES
      NO

      1203
      A
      192.1.1.12
      255.255.255.0
      ---- --- DIX
      YES
      NO

      1205
      A
      192.1.1.14
      255.255.255.0
      FULL
      100
      DIX
      NO
      NO
```

If the required IP link is not in the database, add the IP link using the "Changing an IP Link" on page 3-135 procedure.

3. Verify that the local host name to be assigned to the association is in the database by using the rtrv-ip-host command. The following is an example of the possible output.

rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0

```
LOCAL IPADDR LOCAL HOST
192.1.1.10 IPNODE1-1201
192.1.1.12 IPNODE1-1203
192.1.1.14 IPNODE1-1205
192.1.1.20 IPNODE2-1201
192.1.1.22 IPNODE2-1203
192.1.1.24 IPNODE2-1205
192.1.1.30 KC-HLR1
192.1.1.32 KC-HLR2
```

IP⁷ Secure Gateway Configuration Procedures

```
192.1.1.50 DN-MSC1
192.1.1.52 DN-MSC2

REMOTE IPADDR REMOTE HOST
150.1.1.5 NCDEPTECONOMIC_DEVELOPMENT.SOUTHEASTERN_COORIDOR_ASHVL.GOV

IP Host table is (11 of 512) 2% full
```

The IP address of the IP link should be assigned to the local host name that will be assigned to the association.

If the local host name references a card running either the IPLIM or IPLIMI applications, the ipliml2 parameter value of the signaling link must be m2pa.

The values of the lhost and alhost parameters must be in the LOCAL HOST column in the rtrv-ip-host output.

If the required hostname is not in the database, add the IP host name using the "Adding an IP Host" on page 3-153 procedure.

4. Display the application running on the IP card shown in either step 1 or step 2 using the rept-stat-card command specifying the location of the IP card. For this example, enter this command.

rept-stat-card:loc=1203

This is an example of the possible output.

Command Completed.

NOTE: If a new IP host was added in step 3, skip step 5 and go to step 6.

5. Verify the available buffer size for the IP card that will contain the association being added in this procedure by entering the rtrv-assoc command with the local host name assigned to the association being added. For this example, enter this command.

rtrv-assoc:lhost=IPNODE2-1203

If adding the new association causes the total buffer size for all the associations on the IP card to exceed the maximum buffer size for that IP card, the ent-assoc command will be rejected.

The default buffer value for an IPLIMx association is 200. The default buffer value for an IPGWx association is 16.

If the you wish to add the association and the maximum buffer size for the IP card will be exceeded, the buffer size of the other associations assigned to the IP card must be decreased by performing the "Changing an Association" procedure on page 3-348.

NOTE: If the card's application is SS7IPGW or IPGWI, shown in the APPL column in the rept-stat-card output in step 4, skip steps 6, 7, 8, 9, and 10, and go to step 11.

6. Display the signaling link referenced by the IP link that will be assigned to the association by entering the rtrv-slk command and specifying the card location and signaling link. For this example, enter this command.

```
rtrv-slk:loc=1203:link=a
```

This is an example of the possible output.

```
rlghncxa03w 06-10-19 21:17:04 GMT EAGLE5 36.0.0

LOC LINK LSN SLC TYPE IPLIML2

1203 A e5e6a 1 IPLIM M2PA
```

When the IP card's application is either IPLIM or IPLIMI, the iplim12 parameter value for the signaling link assigned to the association must be m2pa, and must match the value of the adapter parameter specified in step 11. If the iplim12 parameter is not m2pa, remove the signaling link using the "Removing an IP Signaling Link" procedure on page 3-113. Add the signaling link back into the database with the iplim12=m2pa parameter, and without activating the signaling link, using the "Adding an IP Signaling Link" procedure on page 3-84.

NOTE: If the "Adding an IP Signaling Link" procedure on page 3-84 was performed in step 6, skip steps 7, 8, and 9, and go to step 10.

7. Display the status of the signaling link shown in step 6 using the rept-stat-slk command specifying the card location and signaling link. For example, enter this command.

```
rept-stat-slk:loc=1203:link=a
```

NOTE: If the primary state (PST) of the signaling link is OOS-MT and the secondary state (SST) is Unavail, skip steps 8 and 9, and go to step 10.

8. Deactivate the signaling link from step 7 using the dact-slk command. For example, enter this command.

```
dact-slk:loc=1203:link=a
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-07 11:11:28 GMT EAGLE5 36.0.0 Deactivate Link message sent to card
```

9. Verify the status of the signaling link using the rept-stat-slk command. For example, enter this command.

```
rept-stat-slk:loc=1203:link=a
```

This is an example of the possible output.

10. Verify the values of the M2PA timer set you wish to assign to the association by entering the rtrv-m2pa-tset command with the ver=rfc parameter. When an M2PA association is provisioned in this procedure, the RFC M2PA version is assigned to the M2PA association by default.

The M2PA version of the association determines the version of the M2PA timer set that is assigned to the association. For example, if M2PA timer set 3 is assigned to the M2PA association, and the association is an RFC M2PA association, the RFC version of M2PA timer set 3 is used with the association. If M2PA timer set 7 is assigned to the M2PA association, and the association is a Draft 6 M2PA association, the Draft 6 version of M2PA timer set 7 is used with the association.

If you wish to assign the Draft 6 M2PA version to this association and use the Draft 6 M2PA timer sets, perform the "Changing an Association" procedure on page 3-348 after this procedure is completed to change the M2PA version of this association.

NOTE: If the m2patset parameter will not be specified with the ent-assoc command, the M2PA timer set 1 will be assigned to the association.

To display the M2PA Draft 6 timer values, enter this command.

```
rtrv-m2pa-tset:ver=d6
```

```
rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0
M2PA Draft 6 Timers (in msec, T16 in microsec)
```

```
TSET T1
               Т3
                     T4N
                           T4E T5
                                     T6 T7
                                              T16
                                                    T17
                                                         Т18
   6000 ----- 5000 20000 500 5000 4000 1000 100000 150
    7500 ----- 1500 2000 500 9000 1250 300 150000 175
    100000 ----- 2000 3000 500 4000 1500 500
                                              170000 200
                                                         800
    200000 ----- 20000 4000 500 6000 2000 700
                                              480000 225
                                                         900
    250000 ----- 30000 30000 500
                               100
                                    2250 400
                                              400000 400
                                                         8000
    50000 ----- 50000 60000 500
                               500
                                    4500 800
                                              300000 300
    10000 ----- 10000 10000 500 1000 3000 1200 200000 250
                                                         1000
   80000 ----- 1500 15000 500 8000 2750 1100 350000 350
                                                         5000
   27500 ----- 3850 4859 450 5700 3750 1150 250 375
10 90000 ----- 2500 50000 500 7500 5000 1750 440000 450
11 20000 ----- 4500 5500 500 6500 5500 1600 250000 475
12 30000 ----- 7500 7000 500 750
                                    4250 1800 275000 275
                                                         3500
13 40000 ----- 35000 9000 500 1250 3500 1900 500 325
                                                         9000
    70000 ----- 45000 11000 500 1500 1750 900
                                              1000
                                                    125
                                                         6000
14
          ----- 25000 40000 500 2500
    9000
                                    3250 600
                                              5000
                                                    425
    75000 ----- 15000 25000 500 4500 1600 1400 6000 240
17 350000 ----- 60000 70000 600 10000 6000 2000 500000 500
                                                         10000
18 150000 ----- 55000 35000 500 3500 5750 1500 125000 440
19 175000 ----- 12500 45000 500 1100 2600 1300 7000 340 850
         ----- 1000 1000 400 80
                                    1000 200 100 100 100
```

To display the M2PA RFC values, enter this command.

rtrv-m2pa-tset:ver=rfc

This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0
```

M2PA RFC Timers (in msec, T16 in microsec)

```
TSET T1
          T2
                Т3
                     T4N T4E T5
                                    T6 T7
                                            T16
1 6000 75000 5000 20000 500 5000 4000 1000 100000 150 500
   7500 8000 1500 2000 500 9000 1250 300 150000 175
   100000 10000 2000 3000 500 4000 1500 500 170000 200
                                             480000 225
    200000 6000 20000 4000 500 6000 2000 700
                                                        900
    250000 140000 30000 30000 500 100
                                    2250 400
                                              400000 400
    50000 100000 50000 60000 500 500
                                    4500 800
                                              300000 300
    300000 20000 2000 10000 500 1000 3000 1200 200000 250
                                                        1000
  80000 130000 1500 15000 500 8000 2750 1100 350000 350
   27500 120000 3850 4859 450 5700 3750 1150 250
                                                  375
10 90000 9000 2500 50000 500 7500 5000 1750 440000 450
11 20000 60000 4500 5500 500 6500 5500 1600 250000 475
                                                        4500
12 30000 50000 7500 7000 500 750 4250 1800 275000 275
                                                        3500
13 40000 90000 35000 9000 500 1250 3500 1900 500 325
                                                        9000
14
    70000 45000 45000 11000 500 1500 1750 900
                                              1000
                                                    125
                                                        6000
    9000
          30000 25000 40000 500 2500
                                    3250 600
                                              5000
                                                    425
    75000 15000 15000 25000 500 4500 1600 1400 6000 240
                                                        9500
17 350000 150000 60000 70000 600 10000 6000 2000 500000 500
                                                        10000
18 150000 20000 55000 35000 500 3500 5750 1500 125000 440
19 175000 12500 12500 45000 500 1100 2600 1300 7000 340 850
20 1000
         5000 1000 1000 400 80 1000 200 100 100 100
```

If the ver parameter is not specified when entering the rtrv-m2pa-tset command, both the Draft 6 and RFC values are displayed. This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0
M2PA Draft 6 Timers (in msec, T16 in microsec)
```

```
TSET T1
          T2
               T3 T4N T4E T5 T6 T7
                                              T16
1 6000 ----- 5000 20000 500 5000 4000 1000 100000 150 500
   7500 ----- 1500 2000 500 9000 1250 300 150000 175
                                                        600
   100000 ----- 2000 3000 500 4000 1500 500
                                             170000 200
                                                        800
    200000 ----- 20000 4000 500 6000 2000 700
                                             480000 225
    250000 ----- 30000 30000 500 100 2250 400
                                              400000 400
    50000 ----- 50000 60000 500 500 4500 800
                                             300000 300
                                                        7000
    10000 ----- 10000 10000 500 1000 3000 1200 200000 250
                                                        1000
   80000 ----- 1500 15000 500 8000 2750 1100 350000 350
   27500 ----- 3850 4859 450 5700 3750 1150 250 375 8750
10 90000 ----- 2500 50000 500 7500 5000 1750 440000 450 3000
11 20000 ----- 4500 5500 500 6500 5500 1600 250000 475 4500
12 30000 ----- 7500 7000 500 750 4250 1800 275000 275
                                                        3500
    40000 ----- 35000 9000 500 1250 3500 1900 500 325
                                                        9000
13
    70000 ----- 45000 11000 500
                               1500
                                    1750 900
                                              1000
         ----- 25000 40000 500 2500 3250 600
                                              5000 425
15
   9000
                                                        5500
   75000 ----- 15000 25000 500 4500 1600 1400 6000 240
16
                                                        9500
17 350000 ----- 60000 70000 600 10000 6000 2000 500000 500
                                                        10000
18 150000 ----- 55000 35000 500 3500 5750 1500 125000 440 750
19 175000 ----- 12500 45000 500 1100 2600 1300 7000 340 850
20 1000 ----- 1000 1000 400 80 1000 200 100
                                                   100 100
M2PA RFC Timers (in msec, T16 in microsec)
TSET T1
          T2
                                    T6 T7
                                             T16
                                                  T17
                Т3
                     T4N T4E T5
                                                        T18
         75000 5000 20000 500 5000 4000 1000 100000 150
    6000
                                                        500
    7500 8000 1500 2000 500 9000 1250 300 150000 175
    100000 10000 2000 3000 500 4000 1500 500 170000 200
   200000 6000 20000 4000 500 6000 2000 700 480000 225
    250000 140000 30000 30000 500 100 2250 400 400000 400
                                                        8000
    50000 100000 50000 60000 500 500 4500 800 300000 300
                                                        7000
    300000 20000 2000 10000 500 1000 3000 1200 200000 250
                                                        1000
8
    80000 130000 1500 15000 500 8000 2750 1100
                                             350000 350
    27500 120000 3850 4859 450 5700 3750 1150
                                             250
   90000 9000 2500 50000 500 7500 5000 1750
10
                                             440000 450
                                                        3000
11 20000 60000 4500 5500 500 6500 5500 1600 250000 475
                                                        4500
12 30000 50000 7500 7000 500 750 4250 1800 275000 275
                                                        3500
13 40000 90000 35000 9000 500 1250 3500 1900 500 325
   70000 45000 45000 11000 500 1500 1750 900 1000 125
                                                        6000
15 9000 30000 25000 40000 500 2500 3250 600 5000 425 5500
   75000 15000 15000 25000 500 4500 1600 1400 6000 240 9500
17
    350000 150000 60000 70000 600 10000 6000 2000 500000 500
                                                        10000
18
    150000 20000 55000 35000 500 3500 5750 1500
                                             125000 440
                                                        750
    175000 12500 12500 45000 500 1100 2600 1300
                                             7000 340
                                                        850
   1000 5000 1000 1000 400 80
                                    1000 200
                                              100
```

If the M2PA timer set you wish to assign to the association does not contain the desired values, go to the "Changing an M2PA Timer Set" procedure on page 3-389 and changed the desired timer values.

CAUTION: Changing an M2PA timer set may affect the performance of any associations using the timer set being changed.

100 100

11. Add the associations using the **ent-assoc** command. For this example, enter these commands.

```
ent-assoc:aname=assoc1:lhost=gw105.nc.tekelec.com:lport=1030:
rhost=gw100.nc.tekelec.com:rport=1030:adapter=m3ua:link=a
ent-assoc:aname=assoc2:lhost=gw107.nc.tekelec.com:lport=2000:
rhost=gw100.nc.tekelec.com:rport=1030:adapter=m2pa:link=a
```

NOTE: The port parameter can be used in place of the link parameter to specify the signaling link on the card.

NOTE: See Flowchart 3-29 on page 3-343 (Sheet 6) for the rules that apply to the ent-assoc command.

When each of these commands have successfully completed, this message should appear.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0 ENT-ASSOC: MASP A - COMPLTD
```

NOTE: If the association added in step 11 is not being activated in this procedure, skip step 12 and go to step 13.

12. Activate the association added in step 11 by entering the chg-assoc command with the association name specified in step 11 and the open=yes and alw=yes parameters. For example, enter this command.

```
chg-assoc:aname=assoc1:open=yes:alw=yes
chg-assoc:aname=assoc2:open=yes:alw=yes
When each of these commands have successfully completed, this message
should appear.
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
CHG-ASSOC: MASP A - COMPLTD
```

13. Verify the changes using the **rtrv-assoc** command specifying the association name specified in steps 11 and 12. For this example, enter these commands.

rtrv-assoc:aname=assoc1

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0

ANAME assoc1

LOC 1207 IPLNK PORT A LINK A ADAPTER M3UA VER M3UA RFC
LHOST gw105.nc.tekelec.com
ALHOST ---
RHOST gw100.nc.tekelec.com
LPORT 1030 RPORT 1030
ISTRMS 2 OSTRMS 2 BUFSIZE 16
RMODE LIN RMIN 120 RMAX 800
RTIMES 10 CWMIN 3000
OPEN YES ALW YES

ASNAMES as2

IP Appl Sock table is (5 of 4000) 1% full
Assoc Buffer Space Used (16 KB of 800 KB) on LOC = 1207
```

rtrv-assoc:aname=assoc2

This is an example of possible output.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLES 36.0.0

ANAME assoc2

LOC 1203 IPLNK PORT A LINK A ADAPTER M2PA VER M2PA RFC

LHOST gw105.nc.tekelec.com

ALHOST ---
RHOST gw100.nc.tekelec.com

LPORT 1030 RPORT 1030

ISTRMS 2 OSTRMS 2 BUFSIZE 200

RMODE LIN RMIN 120 RMAX 800

RTIMES 10 CWMIN 3000 M2PATSET 1

OPEN NO ALW NO

IP Appl Sock table is (5 of 4000) 1% full

Assoc Buffer Space Used (400 KB of 1600 KB) on LOC = 1203
```

NOTE: If the card's application is SS7IPGW or IPGWI, skip steps 14 and 15, and go to step 16.

14 Activate the signaling link assigned to the association using the act-slk command. For example, enter this command.

```
act-slk:loc=1203:link=a
```

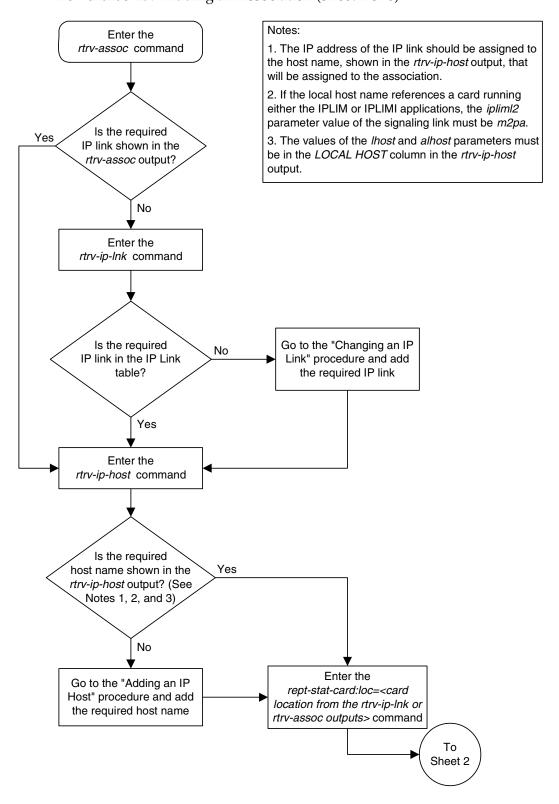
When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-07 11:11:28 GMT EAGLE5 36.0.0 Activate Link message sent to card
```

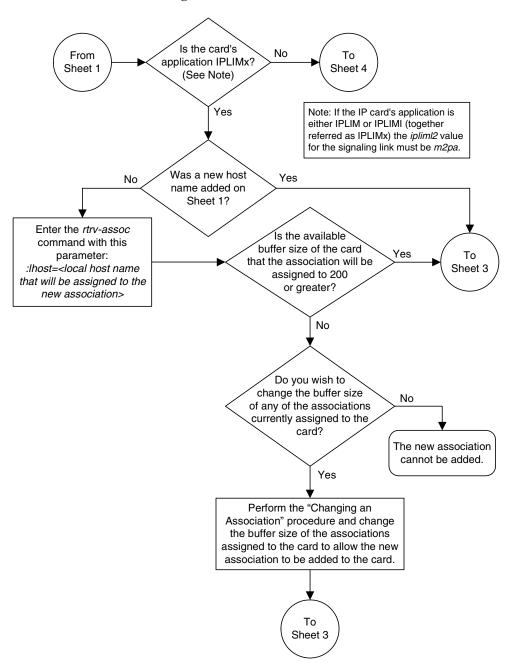
15. Verify the status of the signaling link using the rept-stat-slk command. For example, enter this command.

```
rept-stat-slk:loc=1203:link=a
```

This is an example of the possible output.

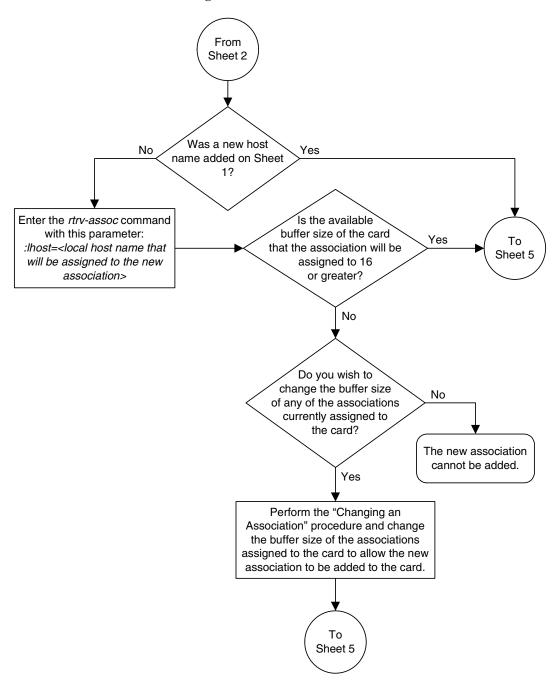

16. Back up the new changes, using the chg-db:action=backup:dest=fixed command. These messages should appear; the active Maintenance and Administration Subsystem Processor (MASP) appears first.

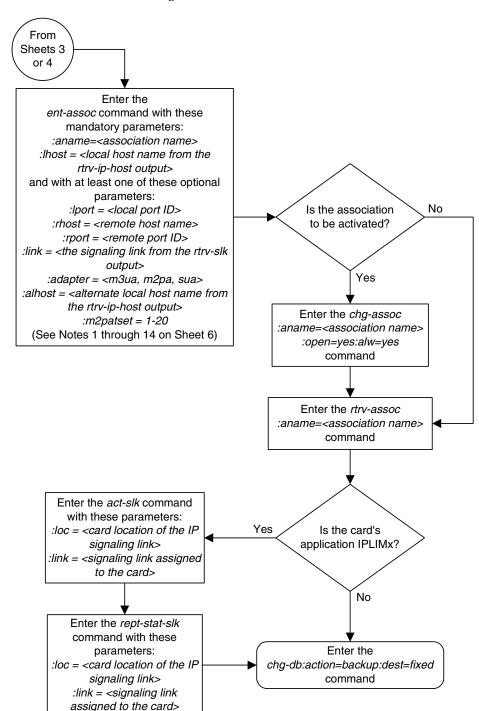
```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.


BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED) : MASP A - Backup starts on standby MASP.

BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```



Flowchart 3-29. Adding an Association (Sheet 1 of 6)


Flowchart 3-29. Adding an Association (Sheet 2 of 6)

From Sheet 2 Note: If the *m2patset* parameter will not be Enter the rtrv-slk command with these specified with the ent-assoc command, the RFC parameters: version of M2PA timer set 1 will be assigned to the :loc = <card location from the association. rept-stat-card output on Sheet 1> Caution: Changing an M2PA timer set may affect :link = <signaling link assigned to the the performance of any associations using the card, from the rept-stat-card output on timer set being changed. Sheet 1> Enter the rept-stat-slk command with these Is the value of the Yes parameters: ipliml2 parameter of the :loc = <card location of the IP signaling link> signaling link m2pa? :link = <signaling link assigned to the card> No Go to the "Removing an IP Is the signaling link out of Signaling Link" procedure in Yes service (PST=OOS-MT, this chapter and remove the signaling link SST=Unavail? No Go to the "Adding an IP Signaling Link" procedure in this chapter and add the Enter the dact-slk command with these signaling link with the *ipliml2=m2pa* parameters: parameter, and without activating the :loc = <card location of the IP signaling signaling link link> :link = <signaling link assigned to the card> Enter the rept-stat-slk command with these parameters: :loc = <card location of the IP signaling link> :link = <signaling link assigned to the card> Enter the rtrv-m2pa-tset command Is the desired Go to the "Changing an M2PA M2PA timer set Timer Set" procedure and No defined with the desired change the desired timer set values? with the desired values (See (See Note) Caution) Yes To Sheet 5

Flowchart 3-29. Adding an Association (Sheet 3 of 6)

Flowchart 3-29. Adding an Association (Sheet 4 of 6)

Flowchart 3-29. Adding an Association (Sheet 5 of 6)

Flowchart 3-29. Adding an Association (Sheet 6 of 6)

Notes:

- 1. If the card containing the signaling link is a DCM, the B Ethernet interface cannot be used. Single-slot EDCMs or E5-ENET cards can use the B Ethernet interface.
- 2. If the card's application is either *iplim* or *iplimi*, the *adapter* parameter value must be *m2pa*. The value of the *ipliml2* parameter of the signaling link being assigned to this association must be *m2pa*.
- 3. Each local host on a card running either the *ss7ipgw* or *ipgwi* applications can contain a maximum of 50 connections (association application server assignments plus sockets).
- 4. The EAGLE 5 ISS can contain a maximum of 4000 connections (association application server assignments plus sockets).
- 5. Cards running either the *iplim* or *iplimi* applications can have only one connection for each signaling link and a maximum of two connections for each card, if the card is a dual-slot DCM. If the card is a single-slot EDCM, the card may contain a maximum of eight connections. If the card is an E5-ENET card, the card may contain a maximum of 16 connections.
- 6. The value of the *lhost, rhost*, or *alhost* parameters is a text string of up to 60 characters, with the first character being a letter. The command line on the terminal can contain up to 150 characters. If the host names are too long to fit on the *ent-assoc* command line, go to the "Changing an Association" procedure in this chapter to complete the entry of the host names.
- 7. If the new association is to be activated in this procedure with the *chg-assoc* command, the association must contain values for the *lhost*, *rhost*, *lport*, and *rport* parameters.
- 8. If the *lhost* and *alhost* are specified, the *lhost* parameter value represents the IP address corresponding to one of the network interfaces (A or B) on the IP card while the *alhost* parameter value represents the IP address corresponding to the other network interface of the same IP card.
- 9. Card's running either *ss7ipgw* or *ipgwi* applications can have only the values *m3ua* or *sua* for the *adapter* parameter.
- 10. The default value for the *adapter* parameter is m3ua, if the card's application is either ss7ipgw or ipgwi. If the card's application is either iplim or iplimi, the default value for the adapter parameter is m2pa.
- 11. The *m2patset* parameter can be specified only with the *adapter=m2pa* parameter.
- 12. The *m2patset* parameter value defaults to M2PA timer set 1 (*m2patset=1*) if the *m2patset* parameter is not specified.
- 13. The *port* parameter can be used in place of the *link* parameter to specify the signaling link assigned to the association.
- 14. When the *adapter=m2pa* parameter is specified, the RFC M2PA version is assigned to the M2PA association by default. If you wish to assign the Draft 6 M2PA version to this association, perform the "Changing an Association" procedure in this chapter after this procedure is completed to change the M2PA version of this association.

Removing an Association

This procedure is used to remove an association from the database using the dlt-assoc command.

The dlt-assoc command uses one parameter, aname, the name of the association being removed from the database. The association being removed must be in the database.

The open parameter must be set to no before the association can be removed. Use the chg-assoc command to change the value of the open parameter.

The association being removed from the database cannot be assigned to an application server. This can be verified with the rtrv-as command. If the association is assigned to any application servers, go to the "Removing an Association from an Application Server" procedure on page 3-441 and remove the association from the application servers.

Canceling the RTRV-ASSOC and RTRV-AS Commands

Because the rtrv-assoc and rtrv-as commands used in this procedure can output information for a long period of time, the rtrv-assoc and rtrv-as commands can be canceled and the output to the terminal stopped. There are three ways that the rtrv-assoc and rtrv-as commands can be canceled.

- Press the F9 function key on the keyboard at the terminal where the rtry-assoc or rtry-as commands were entered.
- Enter the canc-cmd without the trm parameter at the terminal where the rtrv-assoc or rtrv-as commands were entered.
- Enter the canc-cmd:trm=<xx>, where <xx> is the terminal where the rtrv-assoc or rtrv-as commands were entered, from another terminal other that the terminal where the rtrv-assoc or rtrv-as commands were entered. To enter the canc-cmd:trm=<xx> command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal's permissions can be verified with the rtrv-secu-trm command. The user's permissions can be verified with the rtrv-user or rtrv-secu-user commands.

For more information about the canc-cmd command, go to the Commands Manual.

Procedure

1. Display the associations in the database using the **rtrv-assoc** command. This is an example of possible output.

rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0

	CARD	IPLNK						
ANAME	LOC	PORT	LINK	ADAPTER	LPORT	RPORT	OPEN	ALW
swbel32	1201	A	A	M3UA	1030	2345	YES	YES
a2	1305	A	A	SUA	1030	2345	YES	YES
a3	1307	A	A	SUA	1030	2346	YES	YES
assoc1	1203	A	A1	M2PA	2048	1030	NO	NO

2. Display the application servers referencing the association being removed from the database using the rtrv-as command with the name of the association being removed in this procedure. For this example, enter this command.

rtrv-as:aname=assoc1

This is an example of possible output.

rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0

AS Name	Mode	Tr ms	Association Names
as1	LOADSHARE	2000	assoc1
as2	OVERRIDE	10	assoc1
AS Table is (2 of	250) 1% full	l	

If the association is assigned to any application servers, go to the "Removing an Association from an Application Server" procedure on page 3-441 and remove the association from the application servers.

NOTE: If the value of the open parameter for the association being removed from the database (shown in step 1) is no, skip this step and go to step 4.

3. Change the value of the open parameter to no by specifying the chg-assoc command with the open=no parameter. For this example, enter this command.

chg-assoc:aname=assoc1:open=no

When this command has successfully completed, this message should appear.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0 CHG-ASSOC: MASP A - COMPLTD;
```

4. Remove the association from the database using the dlt-assoc command. For this example, enter this command.

dlt-assoc:aname=assoc1

When this command has successfully completed, this message should appear.

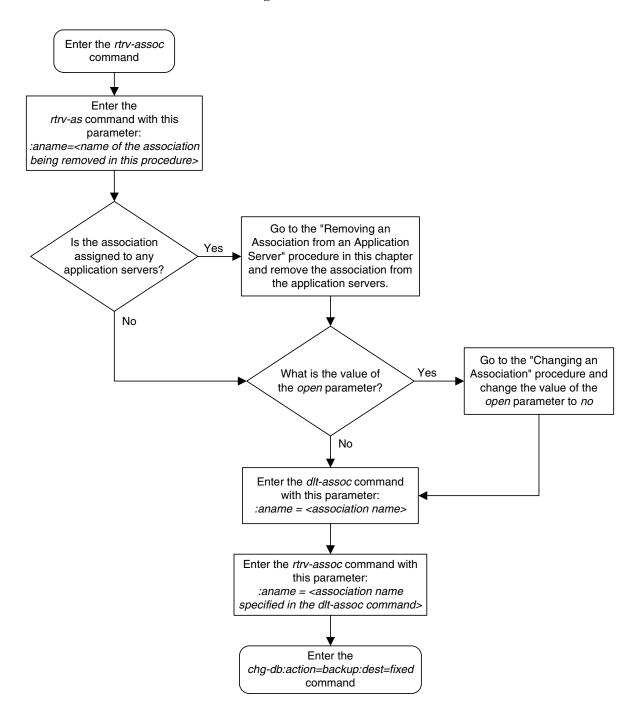
```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0 DLT-ASSOC: MASP A - COMPLTD
```

5. Verify the changes using the **rtrv-assoc** command with the name of the association specified in step 4. For this example, enter this command.

```
rtrv-assoc:aname=assoc1
```

This is an example of possible output.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0 IP Appl Sock table is (3 of 4000) 1% full
```


6. Back up the new changes, using the chg-db:action=backup:dest=fixed command. These messages should appear; the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.

BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED) : MASP A - Backup starts on standby MASP.

BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```


Flowchart 3-30. Removing an Association

Changing an Association

This procedure is used to change the values of the attributes of the SCTP associations in the database using the chg-assoc command.

The chg-assoc command uses these parameters:

- :aname The name assigned to the association. Valid association names can contain up to 15 alphanumeric characters where the first character is a letter and the remaining characters are alphanumeric characters. The aname parameter value is not case-sensitive.
- :1host The host name for the local host, 1host can be any string of characters starting with a letter and comprising these characters ['a'..'z', 'A'..'Z', '0'..'9', '-', '.']. Hostnames are not case-sensitive and can contain up to 60 characters. The default value of this optional parameter is empty (null string).
- :1port The SCTP port number for the local host.
- :rhost The host name for the remote host, rhost can be any string of characters starting with a letter and comprising these characters ['a'..'z', 'A'..'Z', '0'..'9', '-', '.']. Hostnames are not case-sensitive and can contain up to 60 characters. The default value of this optional parameter is empty (null string).
- :rport The SCTP port number for the remote host.
- :link The signaling link on the IP card. If the card's application is iplim or iplimi, and the card is a dual-slot DCM, the values for the link parameter can be only a or b. If the card's application is iplim or iplimi, and the card is a single-slot EDCM, the values for the link parameter can be a, a1, a2, a3, b, b1, b2, or b3. If the IP card's application is ss7ipgw or ipgwi, only link=a can be specified.
- NOTE: The port parameter can be used in place of the link parameter to specify the signaling link on the card.
- :adapter The adapter layer for this association, either m3ua, m2pa, or sua.
- :open The connection state for this association. Valid values are yes or no. When the open=yes parameter is specified, the connection manager opens the association if the association is operational. When the open=no parameter is specified, the connection manager will not open the association.
- :alw The connection state for this association. Valid values are yes or no. When the alw=yes parameter is specified, the connection manager allows the association to carry SS7 traffic. When the alw=no parameter is specified, the connection manager prohibits the association from carrying SS7 traffic.
- :rmode The retransmission policy used when packet loss is detected. The values are rfc or lin.

- rfc Standard RFC 2960 algorithm in the retransmission delay doubles after each retransmission. The RFC 2960 standard for congestion control is also used.
- lin Tekelec's linear retransmission policy where each retransmission timeout value is the same as the initial transmission timeout and only the slow start algorithm is used for congestion control.

:rmin – The minimum value of the calculated retransmission timeout in milliseconds, from 10 - 1000.

:rmax – The maximum value of the calculated retransmission timeout in milliseconds, from 10 - 1000.

:rtimes – The number of times a data retransmission will occur before closing the association from 3 - 12.

:cwmin – The minimum size in bytes of the association's congestion window and the initial size in bytes of the congestion window, from 1500 - 196608.

The rmode, rmin, rmax, rtimes, and cwmin parameters are used to configure the SCTP retransmission controls for an association, in addition to other commands. Go to the "Configuring SCTP Retransmission Control for an Association" procedure on page 3-381 to configure the SCTP retransmission controls for an association.

:istrms – The number of inbound streams (1 or 2) advertised by the SCTP layer for the association.

:ostrms – The number of outbound streams (1 or 2) advertised by the SCTP layer for the association.

:m2patset - The M2PA timer set assigned to the association. The m2patset
parameter can be specified only with the adatper=m2pa parameter, or if the
association already has the adapter=m2pa parameter assigned and the
adapter parameter value is not being changed. If the adapter parameter
value is being changed to m2pa, and the m2patset parameter is not specified,
the default value for the m2patset parameter (1 - M2PA timer set 1) is
assigned to the association. If the adapter parameter value for the association
is m2pa, is not being changed, and the m2patset parameter is not specified
with the chg-assoc command, the m2patset parameter value is not changed.

:uaps – The UA parameter set value being assigned to either an M3UA or SUA association.

:ver - The M2PA version assigned to the M2PA association, either the RFC version (ver=rfc), or the Draft 6 version (ver=d6). The ver parameter can be specified only if, when this procedure is completed, the adapter parameter value is m2pa. If the adapter parameter value is being changed to m2pa, and the ver parameter is not specified, the default M2PA version of RFC is

assigned to the association. To change the **ver** parameter value, the **open** parameter value for the association must be **no**.

:bufsize – The size, in kilobytes, of the buffer used by the association. The values for this parameter are 8 kilobytes to 400 kilobytes. The maximum size of the buffers on the IP cards are shown in Table 3-29.

Table 3-29. SCTP Buffer Limits

IP Card	Card Type					
Application	Dual-Slot DCM	Single-Slot EDCM	E5-ENET Card			
IPLIMx	400 kB	1600 kB	3200 kB			
IPGWx	N/A	800 kB	3200 kB			

The size of the buffers assigned to each association that is assigned to the IP card cannot exceed the maximum buffer size for that card. If the bufsize parameter value causes the total buffer size for all the associations on the IP card to exceed the maximum buffer size for that IP card, the chg-assoc command will be rejected. The available size of the buffers on the IP card can be verified by entering this command.

rtrv-assoc:lhost=<local host name assigned to the association
being changed>

The alhost parameter can also be used with the rtrv-assoc command to display the available size of the buffers on the IP card.

The aname parameter can be used with the rtrv-assoc command to display the available size of the buffers on the IP card and the size of the buffer assigned to the association.

If you wish to increase the buffer size for this association to a value that is greater than available buffer size for the card, the buffer size of the other associations assigned to the card must be decreased.

If the value of the open parameter is yes, only the value of the alw parameter can be changed. To change the values of other parameters, the value of the open parameter must be no.

To set the open parameter value to yes, the association specified by the aname parameter must contain values for the lhost, lport, rhost, and rport parameters. The lhost parameter value must have a signaling link assigned to it.

At least one optional parameter is required.

The command input is limited to 150 characters, including the hostnames.

The maximum number of TALI sockets and SCTP association to application server assignments that can be hosted by an IPGWx card (referenced by the lhost parameter of the socket and association) is 50. For example, if the IPGWx card contains 12 TALI sockets, the maximum number of SCTP association to application server assignments that the IPGWx card can support is 38. The SCTP association to application server assignments could be one SCTP association assigned to 38 application servers, two SCTP associations assigned to 19 application servers, or any combination of SCTP associations assigned to application servers that add up to 38. The number of TALI sockets can be verified with the rtrv-appl-sock:lhost=<local host name> command. The SCTP association to application server assignments can be verified with the rtrv-assoc:lhost=<local host name> and rtrv-as:aname=<association name> commands.

Table 3-30. Examples of IPGWx Card Provisioning Limits

Number of Associations hosted by the IPGWx card	Number of Application Servers each Association is Assigned to *	Number of TALI Sockets Hosted by the IPGWx card	Total Association - Application Server Assignments and TALI Sockets maintained by the IPGWx card				
1	50	0	50				
50	1	0	50				
25	1	25	50				
25	2	0	50				
0	0	50	50				
38	1	12	50				
19	2	12	50				
* The EAGLE 5 ISS can contain a maximum of 250 application servers.							

The EAGLE 5 ISS can contain a maximum of 4000 connections (association to application server assignments plus sockets).

For the <code>iplim</code> and <code>iplimi</code> applications, the IP card can have one association for each signaling link on the card. The dual-slot DCM can contain only two signaling links, resulting in a maximum of two associations on these cards. The single-slot EDCM can contain a maximum of eight signaling links, resulting in a maximum of eight associations for this card.

The B Ethernet interface of the IP card can be used only if the IP card is a single-slot EDCM.

The adapter parameter value cannot be changed if the association is assigned to an application server. This can be verified with the rtrv-as command. If the association is assigned to any application servers, go to the "Removing an Association from an Application Server" procedure on page 3-441 and remove the association from the application servers.

The value of the rmin parameter must be less than or equal to the rmax parameter value.

For associations assigned to the **ss7ipgw** or **ipgwi** applications, the value of the **cwmin** parameter must be less than or equal to 16384.

If the card's application is either IPLIM or IPLIMI:

- The ipliml2 parameter value of the signaling link assigned to the association must be m2pa. The adapter parameter value of the association must match the ipliml2 parameter value.
- The signaling link being assigned to the association must be out of service. This state is shown in the rept-stat-slk output with the entries OOS-MT in the PST field and Unavail in the SST field.
- If the association is being opened in this procedure with the chg-assoc command and the open=yes parameter, the signaling link assigned to the association must be in the database and the ipliml2 parameter value of the signaling link assigned to the association must be m2pa.

If the card's application is either SSTIPGW or IPGWI, the signaling link being assigned to the association must be in service. This state is shown in the rept-stat-slk output with the entries IS-NR in the PST field and Avail in the sst field.

Uni-homed endpoints are associations configured with the lhost parameter only. The lhost parameter value represents an IP address that corresponds to either the A or B network interface of the IP card. Multi-homed endpoints are associations configured with both the lhost and alhost parameters. The lhost parameter value represents an IP address corresponding to one of the network interfaces (A or B) of the IP card while the alhost parameter value represents an IP address corresponding to the other network interface of the same IP card.

The alhost=none parameter removes the alternate local host from the specified association, which also removes the multi-homed endpoint capability.

Canceling the RTRV-ASSOC and RTRV-AS Commands

Because the rtrv-assoc and rtrv-as commands used in this procedure can output information for a long period of time, the rtrv-assoc and rtrv-as commands can be canceled and the output to the terminal stopped. There are three ways that the rtrv-assoc and rtrv-as commands can be canceled.

- Press the F9 function key on the keyboard at the terminal where the rtrv-assoc or rtrv-as commands were entered.
- Enter the canc-cmd without the trm parameter at the terminal where the rtrv-assoc or rtrv-as commands were entered.
- Enter the canc-cmd: trm=<xx>, where <xx> is the terminal where the rtrv-assoc or rtrv-as commands were entered, from another terminal other that the terminal where the rtrv-assoc or rtrv-as commands were entered. To enter the canc-cmd: trm=<xx> command, the terminal must allow

Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal's permissions can be verified with the rtrv-secu-trm command. The user's permissions can be verified with the rtrv-user or rtrv-secu-user commands.

For more information about the canc-cmd command, go to the Commands Manual.

Procedure

1. Display the associations in the database using the **rtrv-assoc** command. This is an example of possible output.

rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0

	CARD	IPLNK						
ANAME	LOC	PORT	LINK	ADAPTER	LPORT	RPORT	OPEN	ALW
swbel32	1201	A	A	M3UA	1030	2345	YES	YES
a2	1305	A	A	SUA	1030	2345	YES	YES
a3	1307	A	A	SUA	1030	2346	YES	YES
assocl	1201	A	A	M3UA	2000	1030	YES	YES
assoc2	1205	A	A	M3UA	2048	2048	YES	YES
assoc3	1205	A	A	M3UA	3000	3000	YES	YES
assoc5	1205	A	A	M3UA	1500	3000	YES	YES

NOTE: To change the values of these parameters: lhost, lport, rhost, rport, link, adapter, rmode, rmin, rmax, rtimes, cwmin, istrms, ostrms, ver, uaps, or bufsize, the value of the open parameter must be no. If the values of any of these parameters are being changed and the open parameter value for the association being changed is no, skip this step and go to step 3.

NOTE: If only the values of the alw or open parameters are being changed, skip steps 2 through 19, and go to step 20.

2. Change the value of the open parameter to no by specifying the chg-assoc command with the open=no parameter. For this example, enter this command.

```
chg-assoc:aname=assoc2:open=no
```

When this command has successfully completed, this message should appear.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0 CHG-ASSOC: MASP A - COMPLTD;
```

3. Display the association being changed by entering the rtrv-assoc command with the aname parameter specified in step 2. For this example, enter this command.

rtrv-assoc:aname=assoc2

This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:14:37 GMT EAGLE5 36.0.0
ANAME assoc2
      LOC 1205 IPLNK PORT A
ADAPTER M3UA VER M3UA
                                                 LINK A
                          VER M3UA RFC
      LHOST IPNODE2-1205
      ALHOST
      RHOST
              remotehost1
              2048 RPUKI
OSTRMS
      LPORT 2040
ISTRMS 2 OSTRPLO
RMODE LIN RMIN
RTIMES 10 CWMIN
NO ALW
                                     2048
      LPORT
                                                BUFSIZE 200
                                      2
                                      120
                                                RMAX 800
                                     3000
                                               UAPS
                                                         10
                                     YES
     ASNAMES
                    as4
IP Appl Sock/Assoc table is (8 of 4000) 1% full
Assoc Buffer Space Used (800 KB of 800 KB) on LOC = 1205
```

NOTE: If the buffer size of the association is not being changed, skip steps 4 through 6, and go to step 7.

4. If the bufsize parameter value causes the total buffer size for all the associations on the IP card to exceed the maximum buffer size for that IP card, the chg-assoc command will be rejected. If you wish to increase the buffer size for this association to a value that is greater than available buffer size for the card, the buffer size of the other associations assigned to the card must be decreased. Perform this step and steps 5 and 6.

If the buffers on the other associations assigned to the card do not need to be changed, skip this step and steps 5 and 6, and go to step 7.

Display the associations assigned to the IP card (and its corresponding local host) by entering the rtrv-assoc command with the local host name assigned to the association being changed. For this example, enter this command.

rtrv-assoc:lhost=IPNODE2-1205

```
rlghncxa03w 06-10-28 21:14:37 GMT EAGLE5 36.0.0

CARD IPLNK

ANAME LOC PORT LINK ADAPTER LPORT RPORT OPEN ALW
assoc2 1205 A A M3UA 2048 2048 YES YES
assoc3 1205 A A M3UA 3000 3000 YES YES
assoc5 1205 A A M3UA 1500 3000 YES YES

IP Appl Sock/Assoc table is (8 of 4000) 1% full
Assoc Buffer Space Used (800 KB of 3200 KB) on LOC = 1205
```

5. Display each association shown in step 4 by entering the **rtrv-assoc** command with the name of each association shown in step 4. For this example, enter these commands.

rtrv-assoc:aname=assoc2

This is an example of the possible output.

ANAME	assoc2					
	LOC	1205	IPLNK PORT	A	LINK A	
	ADAPTER	M3UA	VER	M3UA RFC		
	LHOST	IPNODE2-1205				
	ALHOST					
	RHOST	remotehost1				
	LPORT	2048	RPORT	2048		
	ISTRMS	2	OSTRMS	2	BUFSIZE	200
	RMODE	LIN	RMIN	120	RMAX	800
	RTIMES	10	CWMIN	3000	UAPS	10
	OPEN	YES	ALW	YES		
Ž	ASNAMES					
ä	as1	as4	a	s6		
IP App	l Sock/As	soc table is (8 of 4000) 1	% full		
Assoc I	Buffer Sp	ace Used (800 1	KB of 800 KB) on LOC =	1205	

rtrv-assoc:aname=assoc3

This is an example of the possible output.

ANAME	assoc3						
	LOC	1205	IPLNK POF	ТS	A	LINK A	
	ADAPTER	M3UA	VER		M3UA RFC		
	LHOST	IPNODE2-1205					
	ALHOST						
	RHOST	remotehost3					
	LPORT	3000	RPORT	300	00		
	ISTRMS	2	OSTRMS	2		BUFSIZE	400
	RMODE	LIN	RMIN	120	0	RMAX	800
	RTIMES	10	CWMIN	300	00	UAPS	10
	OPEN	YES	ALW	YES	S		
Ī	ASNAMES						
ā	as2	as3		as	s 5		

IP Appl Sock/Assoc table is (8 of 4000) 1% full Assoc Buffer Space Used (800 KB of 800 KB) on LOC = 1205

rtrv-assoc:aname=assoc5

ANAME	assoc5					
	LOC	1205	IPLNK PO	RT A	LINK A	
	ADAPTER	M3UA	VER	M3UA RFC		
	LHOST	IPNODE2-1205				
	ALHOST					
	RHOST	remotehost3				
	LPORT	1500	RPORT	3000		
	ISTRMS	2	OSTRMS	2	BUFSIZE	200
	RMODE	LIN	RMIN	120	RMAX	800
	RTIMES	10	CWMIN	3000	UAPS	10
	OPEN	YES	ALW	YES		
	ASNAMES					
	as2	as3		as5		

```
IP Appl Sock/Assoc table is (8 of 4000) 1% full
Assoc Buffer Space Used (800 KB of 800 KB) on LOC = 1205
```

6. Change the size of the buffers for one or more of the associations displayed in step 5 to allow the buffer of the association displayed in step 3 to be changed. Enter the chg-assoc command with the bufsize parameter. For this example, enter this command.

chg-assoc:aname=assoc3:bufsize=200

When this command has successfully completed, this message should appear.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0 CHG-ASSOC: MASP A - COMPLTD;
```

NOTE: If the local host name assigned to the association is not being changed, skip steps 7 through 12 and go to step 13.

7. Verify that the local host name to be assigned to the association is in the database by using the rtrv-ip-host command. The following is an example of the possible output.

rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0

IP Host table is (11 of 512) 2% full

```
LOCAL IPADDR LOCAL HOST
192.1.1.10 IPNODE1-1201
192.1.1.12 GW105.NC.TEKELEC.COM
192.1.1.14 IPNODE1-1205
192.1.1.20 IPNODE2-1201
192.1.1.22 IPNODE2-1203
192.1.1.24 IPNODE2-1205
192.1.1.30 KC-HLR1
192.1.1.32 KC-HLR2
192.1.1.32 KC-HLR2
192.1.1.50 DN-MSC1
192.1.1.52 DN-MSC2

REMOTE IPADDR REMOTE HOST
150.1.1.5 NCDEPTECONOMIC_DEVELOPMENT.SOUTHEASTERN_COORIDOR_ASHVL.GOV
```

8. Display the IP links in the database by entering the rtrv-ip-lnk command. The following is an example of the possible output.

```
      r1ghn-xa03w
      06-10-28
      21:19:37
      GMT
      EAGLES
      36.0.0
      BEED
      MACTYPE
      AUTO
      MCAST

      LOC
      PORT
      1PADDR
      SUBMASK
      DUPLEX
      SPEED
      MACTYPE
      AUTO
      MCAST

      1201
      A
      192.1.1.10
      255.255.255.0
      ----
      ---
      DIX
      YES
      NO

      1203
      A
      192.1.1.14
      255.255.255.0
      FULL
      100
      DIX
      NO
      NO
```

If the required IP link, one that contains the desired IP address, is not shown in the rtrv-ip-lnk output, add the IP link using the "Changing an IP Link" on page 3-135 procedure. After the IP link has been added, assign the IP address of the IP link to the IP host name using the "Adding an IP Host" on page 3-153 procedure. Then go to step 12.

If the required IP link is shown in the rtrv-ip-lnk output, assign the IP address of the IP link to the IP host name using the "Adding an IP Host" on page 3-153 procedure. Then go to step 13.

If the required IP host was shown in step 7, the required IP link is shown in the rtrv-ip-lnk output in this step. Perform step 9 to verify the application running on the card whose IP address is assigned to the IP host.

9. Display the application running on the IP card shown in step 8 whose IP address is assigned to the IP host using the rept-stat-card command specifying the location of the IP card. For this example, enter this command.

rept-stat-card:loc=1205

```
rlghncxa03w 06-10-27 17:00:36 GMT EAGLE5 36.0.0

CARD VERSION TYPE APPL PST SST AST

1205 114-000-000 DCM SS71PGW IS-NR Active -----

ALARM STATUS = No Alarms.

BPDCM GPL = 002-102-000

IMT BUS A = Conn

IMT BUS B = Conn

SIGNALING LINK STATUS

SLK PST LS CLLI

A IS-NR nc001

Command Completed.
```

- NOTE: If the card's application is IPLIM or IPLIMI, shown in the APPL column in the rept-stat-card output in step 9, or if the local host value being used in this procedure was configured with the "Adding an IP Host" procedure on page 3-153 in step 8, skip steps 10, 11, and 12, and go to step 13.
- **10.** Display the sockets assigned to the local host that will be assigned to the socket being configured in this procedure by entering the rtrv-appl-sock command with the lhost parameter. For this example, enter this command.

```
rtrv-appl-sock:lhost=IPNODE2-1205
```

This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:14:37 GMT EAGLE5 36.0.0
SNAME sock1
       LINK
      LHOST IPNODE2-1205
      RHOST remotehost1
      LPORT 1024 RPORT 2048
SERVER YES DCMPS 10
REXMIT FIXED RTT 60
OPEN YES ALW YES
SNAME sock2
      LINK
                Α
       LHOST IPNODE2-1205
      RHOST remotehost2
      LPORT 2000 RPORT
SERVER YES DCMPS
REXMIT FIXED RTT
OPEN YES ALW
                                            2000
                                            10
                                             60
                                           YES
IP Appl Sock/Assoc table is (8 of 4000) 1% full
```

11. If the rtrv-assoc command was not performed in step 5, display the associations assigned to the local host that will be assigned to the association being configured in this procedure by entering the rtrv-assoc command with the lhost parameter. For this example, enter this command.

rtrv-assoc:lhost=IPNODE2-1205

```
rlghncxa03w 06-10-28 21:14:37 GMT EAGLE5 36.0.0

CARD IPLNK

ANAME LOC PORT LINK ADAPTER LPORT RPORT OPEN ALW
assoc2 1205 A A M3UA 2048 2048 YES YES
assoc3 1205 A A M3UA 3000 3000 YES YES
assoc5 1205 A A M3UA 1500 3000 YES YES
IP Appl Sock/Assoc table is (8 of 4000) 1% full
Assoc Buffer Space Used (600 KB of 3200 KB) on LOC = 1205
```

12. Display the application servers that the associations shown in step 11 are assigned to by entering rtrv-as command with the names of the associations shown in step 11.

NOTE: If the associations assigned to the IP card were displayed in step 5 with the rtrv-assoc command and the aname parameter, the rtrv-as command does need to be performed. The application severs assigned to the associations that are assigned to the IP card are displayed in the rtrv-assoc output in step 5.

For this example, enter these commands.

rtrv-as:aname=assoc2

This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:14:37 GMT EAGLE5 36.0.0

AS Name Mode Tr ms Association Names as1 LOADSHARE 2000 assoc2

as4 LOADSHARE 2000 assoc2

as6 LOADSHARE 2000 assoc2
```

rtrv-as:aname=assoc3

AS Table is (6 of 250) 1% full

This is an example of the possible output.

```
      rlghncxa03w
      06-10-28
      21:14:37
      GMT
      EAGLE5
      36.0.0

      AS Name
      Mode
      Tr
      ms
      Association
      Names

      as2
      LOADSHARE
      2000
      assoc3

      as3
      LOADSHARE
      2000
      assoc3

      as5
      LOADSHARE
      2000
      assoc3

      AS Table is (6 of 250)
      2% full
```

rtrv-as:aname=assoc5

This is an example of the possible output.

```
      rlghncxa03w
      06-10-28
      21:14:37
      GMT
      EAGLE5
      36.0.0

      AS Name
      Mode
      Tr
      ms
      Association
      Names

      as2
      LOADSHARE
      2000
      assoc5

      as3
      LOADSHARE
      2000
      assoc5

      as5
      LOADSHARE
      2000
      assoc5

      AS Table is (6 of 250)
      2% full
```

The maximum number of TALI sockets and SCTP association to application server assignments that can be hosted by an IPGWx card (referenced by the lhost parameter of the socket and association) is 50.

If the number of TALI sockets (shown in step 8) and SCTP association to application server assignments (shown in steps 5 or 12) is less than 50, go to step 11.

If the number of TALI sockets (shown in step 8) and SCTP association to application server assignments (shown in steps 5 or 12) is 50, the local host value cannot be used in this procedure.

Repeat steps 7 and 8 and select another IP link and IP host to use in this procedure or add a new IP link using the "Changing an IP Link" procedure on page 3-135. After the new IP link is added, perform the "Adding an IP Host" procedure on page 3-153 to assign this IP address to a new local host name. After the new local host name as been added, go to step 13.

NOTE: If the link parameter value is not being changed, skip this step and go to step 14.

13. Display the signaling link associated with the association being changed using the rtrv-slk command and specifying the card location shown in step 7, and the new link parameter value of the association for the link parameter value. The card location should reference the local host assigned to the association. The rtrv-ip-lnk output shows the card location associated with the IP address that is associated with the local host in step 7. If the rtrv-ip-lnk command was not executed in step 8, execute it now to get the card location and the IP address. To display the signaling link for this example, enter this command.

rtrv-slk:loc=1203:link=a

The following is an example of the possible output.

```
rlghncxa03w 06-10-19 21:17:04 GMT EAGLE5 36.0.0
LOC LINK LSN SLC TYPE IPLIML2
1203 A e5e6a 1 IPLIM M2PA
```

If the required signaling link is not in the database, add the signaling link using the "Adding an IP Signaling Link" procedure on page 3-84 without activating the signaling link. If the application of the card containing the signaling link is IPLIM or IPLIMI, the <code>ipliml2=m2pa</code> parameter must be specified for the signaling link and the <code>adapter=m2pa</code> parameter value must be specified for the association.

NOTE: If the adapter parameter value is not being changed, skip this step and go to step 15.

14. Display the application servers referencing the association being changed using the rtrv-as command with the name of the association being changed in this procedure.

NOTE: If the associations assigned to the IP card were displayed in either step 5 with the rtrv-assoc command and the aname parameter, or step 12 with the rtrv-as command, the rtrv-as command does need to be performed. The application severs assigned to the associations that are assigned to the IP card are displayed in the rtrv-assoc output in step 5 or in the rtrv-as output in step 12.

For this example, enter this command.

rtrv-as:aname=assoc2

This is an example of possible output.

```
      rlghncxa03w
      06-10-28
      21:14:37
      GMT
      EAGLE5
      36.0.0

      AS Name
      Mode
      Tr
      ms
      Association
      Names

      as1
      LOADSHARE
      2000
      assoc2

      as4
      LOADSHARE
      2000
      assoc2

      as6
      LOADSHARE
      2000
      assoc2

      AS Table is (6 of 250)
      1% full
```

If the association is assigned to any application servers, go to the "Removing an Association from an Application Server" procedure on page 3-441 and remove the association from the application servers.

NOTE: If the rept-stat-card command was performed in step 9, skip step 15 and go to step 16.

15. Display the application running on the IP card shown in step 8 using the rept-stat-card command specifying the location of the IP card. For this example, enter this command.

rept-stat-card:loc=1205

```
rlghncxa03w 06-10-27 17:00:36 GMT EAGLE5 36.0.0

CARD VERSION TYPE APPL PST SST AST

1205 114-000-000 DCM SS7IPGW IS-NR Active -----

ALARM STATUS = No Alarms.

BPDCM GPL = 002-102-000

IMT BUS A = Conn

IMT BUS B = Conn

SIGNALING LINK STATUS

SLK PST LS CLLI

A IS-NR nc001 -------
```

NOTE: If the card's application is SS7IPGW or IPGWI, shown in the APPL column in the rept-stat-card output in steps 9 or 15, skip steps 16, 17, 18, 19, and 20, and go to step 21.

NOTE: If a new signaling link was added in step 13, skip steps 16, 17, 18, and 19, and go to step 20.

16. Display the signaling link that will be assigned to the association by entering the rtrv-slk command and specifying the card location and signaling link. For this example, enter this command.

```
rtrv-slk:loc=1203:link=a
```

This is an example of the possible output.

```
rlghncxa03w 06-10-19 21:17:04 GMT EAGLE5 36.0.0

LOC LINK LSN SLC TYPE IPLIML2

1203 A e5e6a 1 IPLIM M2PA
```

When the IP card's application is either IPLIM or IPLIMI, the <code>ipliml2</code> parameter value for the signaling link assigned to the association must be <code>m2pa</code>. If the <code>ipliml2</code> parameter is not <code>m2pa</code>, remove the signaling link using the "Removing an IP Signaling Link" procedure on page 3-113. Add the signaling link back into the database with the <code>ipliml2=m2pa</code> parameter, and without activating the signaling link, using the "Adding an IP Signaling Link" procedure on page 3-84.

NOTE: If the "Adding an IP Signaling Link" procedure on page 3-84 was not performed in step 16, skip steps 17, 18, and 19, and go to step 20.

17. Display the status of the signaling link shown in step 16 using the rept-stat-slk command specifying the card location and signaling link. For example, enter this command.

```
rept-stat-slk:loc=1203:link=a
```

This is an example of the possible output.

NOTE: If the primary state (PST) of the signaling link is OOS-MT and the secondary state (SST) is Unavail, skip steps 18 and 19, and go to step 20.

18 Deactivate the signaling link from step 17 using the dact-slk command. For example, enter this command.

```
dact-slk:loc=1203:link=a
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-07 11:11:28 GMT EAGLE5 36.0.0 Deactivate Link message sent to card
```

19. Verify the status of the signaling link using the **rept-stat-slk** command. For example, enter this command.

```
rept-stat-slk:loc=1203:link=a
```

This is an example of the possible output.

NOTE: If the current value of the association's adapter parameter is m2pa and the M2PA timer set assigned to the association will not be changed, skip steps 20 and 21, and go to step 22.

NOTE: If the current value of the association's adapter parameter is either m3ua or sua and will not be changed to m2pa, skip step 20 and go to step 21.

20. Verify the values of the M2PA timer set you wish to assign to the association by entering the rtrv-m2pa-tset command with the M2PA version (either ver=rfc to display the RFC M2PA timer values or ver=d6 to display the Draft 6 M2PA timer values) of the timer set you wish to assign to the association. If the ver parameter is not specified with the rtrv-m2pa-tset command, both the RFC and Draft 6 timer values are displayed.

NOTE: If the m2patset parameter will not be specified with the chg-assoc command, and the adapter parameter value is being changed to m2pa, the RFC version of M2PA timer set 1 will be assigned to the association.

To display the M2PA Draft 6 timer values, enter this command.

```
rtrv-m2pa-tset:ver=d6
```

This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0
```

M2PA Draft 6 Timers (in msec, T16 in microsec)

```
TSET T1
               Т3
                     T4N T4E T5
                                    T6 T7
                                             T16
                                                  T17 T18
         ----- 5000 20000 500 5000 4000 1000 100000 150 500
   6000
    7500 ----- 1500 2000 500 9000 1250 300 150000 175 600
    100000 ----- 2000 3000 500 4000 1500 500 170000 200 800
    200000 ----- 20000 4000 500 6000 2000 700 480000 225 900
    250000 ----- 30000 30000 500 100 2250 400 400000 400 8000
    50000 ----- 50000 60000 500 500 4500 800 300000 300 7000
    10000 ----- 10000 10000 500 1000 3000 1200 200000 250
                                                        1000
    80000 ----- 1500 15000 500 8000 2750 1100 350000 350
8
                                                        5000
    27500 ----- 3850 4859 450 5700 3750 1150
10
   90000 ----- 2500 50000 500 7500 5000 1750 440000 450
  20000 ----- 4500 5500 500 6500 5500 1600 250000 475
11
                                                        4500
12 30000 ----- 7500 7000 500 750 4250 1800 275000 275
                                                        3500
13 40000 ----- 35000 9000 500 1250 3500 1900 500 325 9000
14 70000 ----- 45000 11000 500 1500 1750 900 1000 125 6000
15 9000 ----- 25000 40000 500 2500 3250 600 5000 425 5500
   75000 ----- 15000 25000 500 4500 1600 1400 6000 240 9500
16
    350000 ----- 60000 70000 600 10000 6000 2000 500000 500 10000
17
    150000 ----- 55000 35000 500 3500 5750 1500 125000 440
```

To display the M2PA RFC values, enter this command.

rtrv-m2pa-tset:ver=rfc

This is an example of the possible output.

rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0

M2PA RFC Timers (in msec, T16 in microsec)

```
ΤЗ
                     T4N
                          T4E T5
                                    T6 T7
                                              T16
   6000 75000 5000 20000 500 5000 4000 1000 100000 150 500
   7500
          8000 1500 2000 500 9000 1250 300 150000 175
    100000 10000 2000 3000 500 4000 1500 500
                                             170000 200
                                             480000 225
    200000 6000 20000 4000 500 6000 2000 700
                                   2250 400
    250000 140000 30000 30000 500 100
                                              400000 400
    50000 100000 50000 60000 500
                               500
                                    4500 800
                                              300000 300
    300000 20000 2000 10000 500 1000 3000 1200 200000 250
                                                        1000
   80000 130000 1500 15000 500 8000 2750 1100 350000 350
                                                        5000
   27500 120000 3850 4859 450 5700 3750 1150 250 375
10 90000 9000 2500 50000 500 7500 5000 1750 440000 450
11 20000 60000 4500 5500 500 6500 5500 1600 250000 475
12 30000 50000 7500 7000 500 750 4250 1800 275000 275
                                                        3500
13 40000 90000 35000 9000 500 1250 3500 1900 500 325
                                                        9000
    70000 45000 45000 11000 500 1500 1750 900
                                              1000
                                                    125
                                                         6000
14
                               2500
                                    3250 600
          30000 25000 40000 500
                                              5000
                                                    425
    75000 15000 15000 25000 500 4500 1600 1400 6000 240
17 350000 150000 60000 70000 600 10000 6000 2000 500000 500
                                                        10000
18 150000 20000 55000 35000 500 3500 5750 1500 125000 440
19 175000 12500 12500 45000 500 1100 2600 1300 7000 340 850
20 1000 5000 1000 1000 400 80
                                  1000 200 100 100 100
```

If the **ver** parameter is not specified when entering the **rtrv-m2pa-tset** command, both the Draft 6 and RFC values are displayed. This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0
```

M2PA Draft 6 Timers (in msec, T16 in microsec)

```
TSET T1
               Т3
                      T4N T4E T5
                                     T6 T7
                                               T16
1 6000
         ----- 5000 20000 500 5000 4000 1000 100000 150 500
    7500 ----- 1500 2000 500 9000 1250 300 150000 175
                                                         600
    100000 ----- 2000 3000 500 4000 1500 500
                                               170000 200
                                                         800
    200000 ----- 20000 4000 500 6000 2000 700
                                              480000 225
                                                         900
    250000 ----- 30000 30000 500 100
                                     2250 400
                                               400000 400
    50000 ----- 50000 60000 500 500
                                    4500 800
                                               300000 300
    10000 ----- 10000 10000 500 1000 3000 1200 200000 250
    80000 ----- 1500 15000 500 8000 2750 1100 350000 350
    27500 ----- 3850 4859 450 5700 3750 1150 250
10 90000 ----- 2500 50000 500 7500 5000 1750 440000 450
11 20000 ----- 4500 5500 500 6500 5500 1600 250000 475
                                                         4500
    30000 ----- 7500 7000 500 750
                                    4250 1800 275000 275
                                                         3500
13
    40000 ----- 35000 9000 500 1250 3500 1900 500 325
                                                         9000
    70000 ----- 45000 11000 500
                               1500 1750 900
                                               1000
                                                     125
                                                         6000
                                               5000
          ----- 25000 40000 500 2500
    9000
                                     3250 600
                                                    425
    75000 ----- 15000 25000 500 4500 1600 1400 6000 240
16
    350000 ----- 60000 70000 600 10000 6000 2000 500000 500 10000
```

```
18 150000 ----- 55000 35000 500 3500 5750 1500 125000 440 750
19 175000 ----- 12500 45000 500 1100 2600 1300 7000 340 850
20 1000 ----- 1000 1000 400 80 1000 200 100 100 100
M2PA RFC Timers (in msec, T16 in microsec)
TSET T1
          T2 T3
                    T4N T4E T5 T6 T7 T16 T17 T18
   6000 75000 5000 20000 500 5000 4000 1000 100000 150 500
1
   7500 8000 1500 2000 500 9000 1250 300 150000 175 600
  100000 10000 2000 3000 500 4000 1500 500 170000 200 800
  200000 6000 20000 4000 500 6000 2000 700 480000 225 900
  250000 140000 30000 30000 500 100 2250 400 400000 400 8000
   50000 100000 50000 60000 500 500 4500 800 300000 300 7000
7
   300000 20000 2000 10000 500 1000 3000 1200 200000 250 1000
    80000 130000 1500 15000 500 8000 2750 1100 350000 350 5000
8
    27500 120000 3850 4859 450 5700 3750 1150 250 375
   90000 9000 2500 50000 500 7500 5000 1750 440000 450
10
11 20000 60000 4500 5500 500 6500 5500 1600 250000 475 4500
12 30000 50000 7500 7000 500 750 4250 1800 275000 275 3500
13 40000 90000 35000 9000 500 1250 3500 1900 500 325 9000
14 70000 45000 45000 11000 500 1500 1750 900 1000 125 6000
15 9000 30000 25000 40000 500 2500 3250 600 5000 425 5500
16 75000 15000 15000 25000 500 4500 1600 1400 6000 240 9500
    350000 150000 60000 70000 600 10000 6000 2000 500000 500 10000
17
    150000 20000 55000 35000 500 3500 5750 1500 125000 440
    175000 12500 12500 45000 500 1100 2600 1300 7000 340
   1000 5000 1000 1000 400 80 1000 200 100
                                                   100 100
```

If the M2PA timer set you wish to assign to the association does not contain the desired values, go to the "Changing an M2PA Timer Set" procedure on page 3-389 and changed the desired timer values.

CAUTION: Changing an M2PA timer set may affect the performance of any associations using the timer set being changed.

NOTE: If the current adapter parameter value of the association is either m3ua or sua and the UA timer set assigned to the association will not be changed, skip step 21 and go to step 22.

NOTE: If the current adapter parameter value of the association is m2pa and will not be changed to either m3ua or sua, skip step 21 and go to step 22.

21. Verify the values of the UA parameter set you wish to assign to the association by entering the **rtrv-uaps** command with the desired parameter set.

NOTE: If the uaps parameter will not be specified with the chg-assoc command, and the adapter parameter value is being changed to either m3ua or sua, the UA parameter set 10 will be assigned to the association.

For this example, enter this command.

rtrv-uaps:set=3

rlgh	ncxa03w	06-10-28	09:12:36	GMT	EAGLE5	36.0.0
SET	TIMER	TVALU	UE PARM		PVALUE	
3	1	1	10 1		3	
3	2	300	00 2		0	

```
3 3 10000 3
3 4 5000 4
3 5 0 5
3 6 0 6
3 7 0 7
3 8 0 8
3 9 0 9
               5000 4
                 0 5
                                     0
                   0 6
                                      0
                                      0
                   0
                                      Ω
3
        9
                          9
                                      0
                  0
3
      10
                         10
TIMER 2: False IP Connection Congestion Timer, max time an
        association can be congested before failing due to false
        congestion. SS7IPGW and IPGWI applications enforce
        0-30000 (ms).
TVALUE : Valid range = 32-bits
TIMER 3: UA Heartbeat Period Timer T(beat), time (ms) between sending
        of BEAT msgs by NE, SS7IPGW and IPGWI applications enforce
        100(ms)-60000(ms).
TVALUE : Valid range = 32-bits
TIMER 4: UA Heartbeat Received Timer T(beat ack), timeout period for
        response BEAT ACK msgs by NE, SS7IPGW and IPGWI applications
        enforce 100 \, (ms) - 10000 \, (ms).
TVALUE : Valid range = 32-bits
PARM 1: ASP SNM options. Each bit is used as an enabled/disabled
        flag for a particular ASP SNM option.
PVALUE : Valid range = 32-bits
        BIT
                                              BIT VALUE
        0=Broadcast
                                             0=Disabled , 1=Enabled
        1=Response Method
                                             0=Disabled , 1=Enabled
        2-5=Reserved
        6=Broadcast Congestion Status Change 0=Disabled , 1=Enabled
        7-31=Reserved
PARM 2: ASP/AS Notification options. Each bit is used an
        enabled/disabled flag for a particular ASP/AS
        Notification option.
PVALUE : Valid range = 32-bits
                                            BIT VALUE
        0=ASP Active Notifications
1=ASP Inactive Notifications
                                           0=Disabled , 1=Enabled
                                            0=Disabled , 1=Enabled
        2=ASP AS State Query
                                             0=Disabled , 1=Enabled
        3-31=Reserved
PARM 3: UA Serviceabilty Options. Each bit is used as an
        enabled/disabled flag for a particular
        UA serviceability option.
        PVALUE : Valid range = 32-bits
        BIT
                                                 BIT VALUE
        0=UA Heartbeats
                                                 0=Disabled , 1=Enabled
        1-31=Reserved
```

If the UA parameter set you wish to assign to the association does not contain the desired values, go to the "Changing a UA Parameter Set" procedure on page 3-486 and changed the desired parameter set values.

CAUTION: Changing a UA parameter set may affect the performance of any associations using the parameter set being changed.

22. Change the association using the **chg-assoc** command. For this example, enter this command.

```
chg-assoc:aname=assoc2:rhost="gw200.nc-tekelec.com":rport=3000
:bufsize=250
```

NOTE: See Flowchart 3-31 on pages 3-379 and 3-380 (Sheets 11 and 12) for the rules that apply to the chg-assoc command.

When this command has successfully completed, this message should appear.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0 CHG-ASSOC: MASP A - COMPLTD;
```

NOTE: If the value of the open parameter was not changed in step 2, skip this step and go to step 24.

23. Change the value of the open parameter to yes by specifying the chg-assoc command with the open=yes parameter. For this example, enter this command.

```
chg-assoc:aname=assoc2:open=yes
```

When this command has successfully completed, this message should appear.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0 CHG-ASSOC: MASP A - COMPLTD;
```

24. Verify the changes using the **rtrv-assoc** command specifying the association name specified in steps 22 and 23. For this example, enter this command.

rtrv-assoc:aname=assoc2

This is an example of possible output.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0
ANAME assoc2
     LOC 1205 IPLNK PORT A
ADAPTER M3UA VER M3UA RFC
                                        LINK A
     LHOST IPNODE2-1205
     ALHOST
          gw200.nc-tekelec.com
     RHOST
                      OSTRMS
     LPORT
            2048 RPORT
                                3000
     ISTRMS 2
                                        BUFSIZE 250
                                2
                               120
     RMODE LIN
                      RMIN
                                        RMAX 800
                      CWMIN
     RTIMES 10
                               3000
                                        UAPS
                                                10
     OPEN YES
                     ALW
                               YES
    ASNAMES
    as1
                 as4
```

IP Appl Sock table is (8 of 4000) 1% full Assoc Buffer Space Used (650 KB of 800 KB) on LOC = 1205 $\,$

NOTE: If the card's apmplication is IPLIM or IPLIMI, skip step 25, and go to step 26.

NOTE: If the "Removing an Association from an Application Server" procedure on page 3-441 in step 14 was not performed, skip steps 25, 26, and 27, and go to step 28.

- **25.** Assign the association changed in step 22 to all applicable application servers by performing one of these procedures:
 - "Adding an Existing Association to a New Application Server" procedure on page 3-406
 - "Adding an Existing Association to an Existing Application Server" procedure on page 3-429.

After assigning the association to the application servers, skip steps 26 and 27, and go to step 28.

26. Activate the signaling link assigned to the association using the act-slk command. For example, enter this command.

```
act-slk:loc=1203:link=a
```

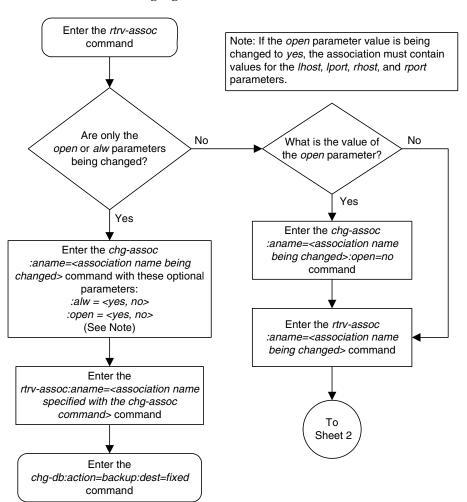
When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-07 11:11:28 GMT EAGLE5 36.0.0 Activate Link message sent to card
```

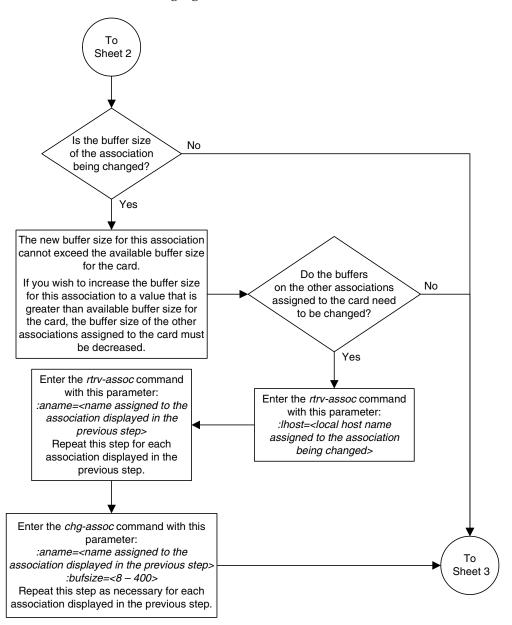
27. Verify the status of the signaling link using the rept-stat-slk command. For example, enter this command.

```
rept-stat-slk:loc=1203:link=a
```

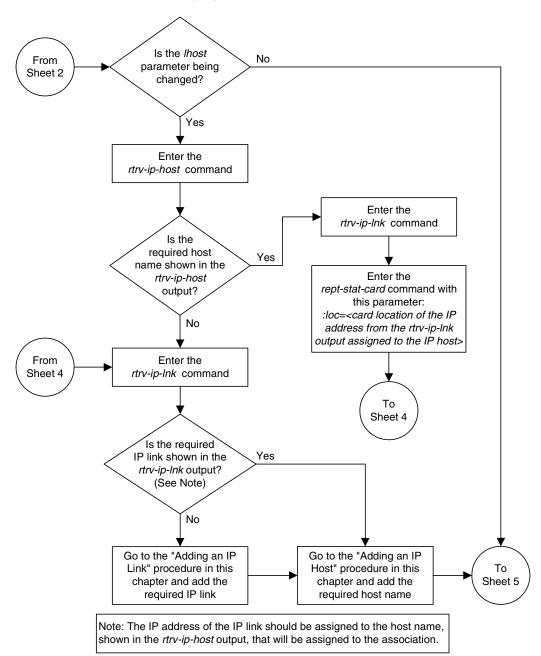
This is an example of the possible output.

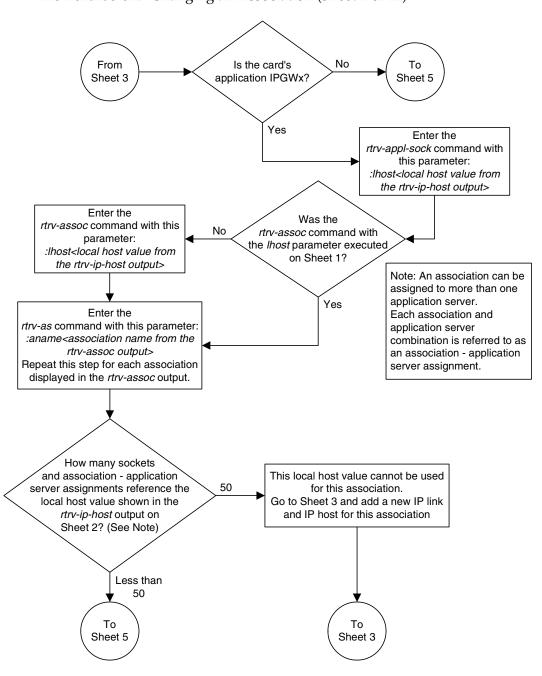

28. Back up the new changes, using the chg-db:action=backup:dest=fixed command. These messages should appear; the active Maintenance and Administration Subsystem Processor (MASP) appears first.

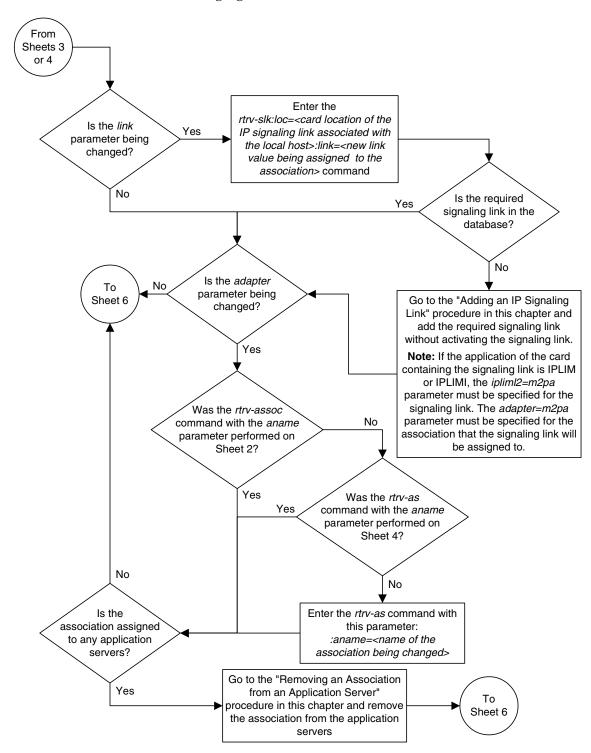
```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.

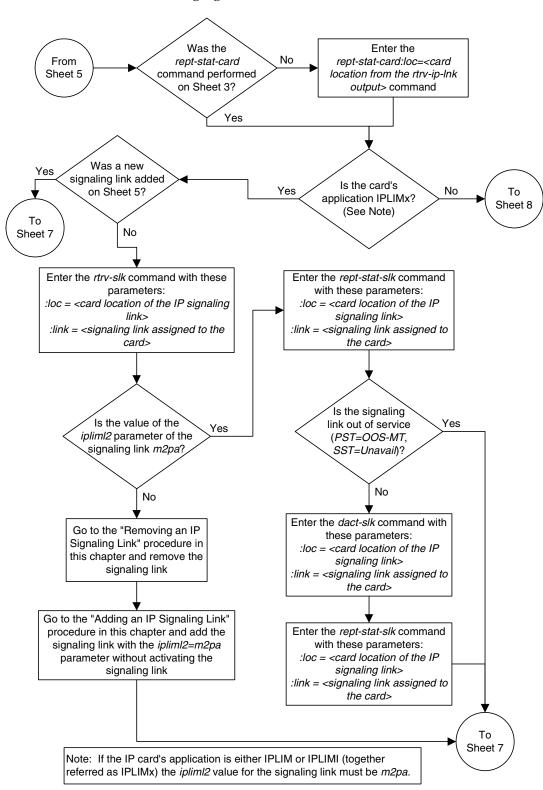

BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.

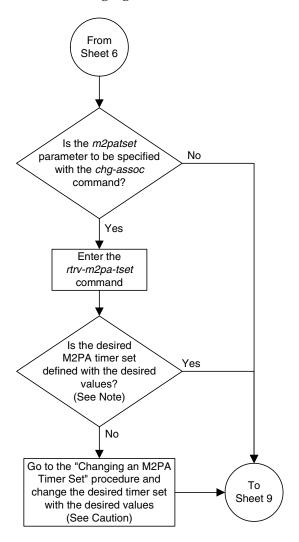
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.


BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

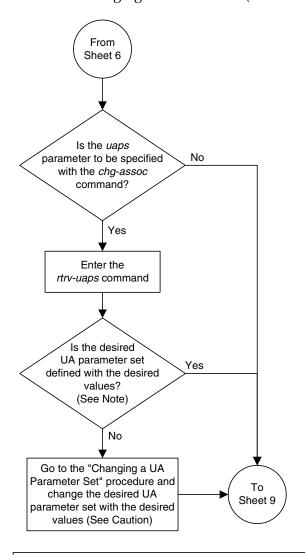


Flowchart 3-31. Changing an Association (Sheet 1 of 12)


Flowchart 3-31. Changing an Association (Sheet 2 of 12)


Flowchart 3-31. Changing an Association (Sheet 3 of 12)


Flowchart 3-31. Changing an Association (Sheet 4 of 12)

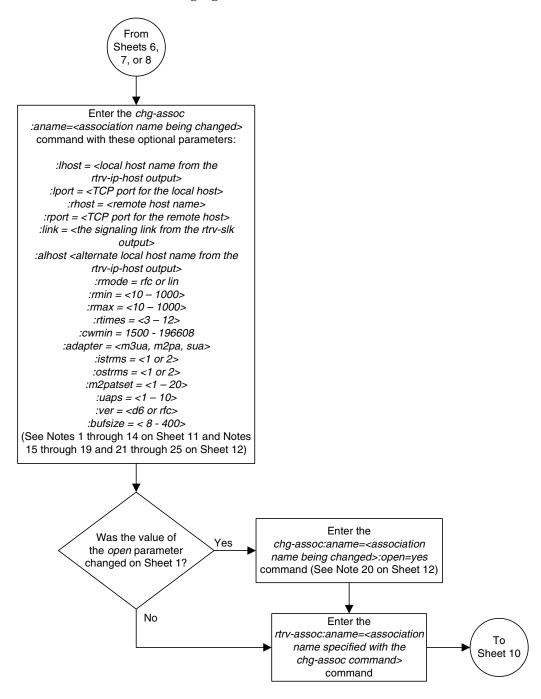
Flowchart 3-31. Changing an Association (Sheet 5 of 12)

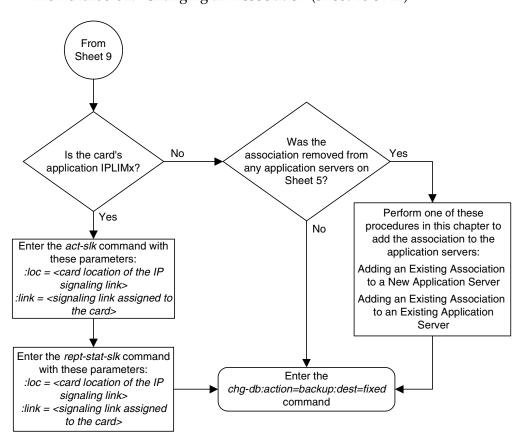

Flowchart 3-31. Changing an Association (Sheet 6 of 12)

Flowchart 3-31. Changing an Association (Sheet 7 of 12)

Note: If the *m2patset* parameter will not be specified with the *chg-assoc* command, and the *adapter* parameter value is being changed to *m2pa*, the M2PA timer set 1 will be assigned to the association.

Caution: Changing an M2PA timer set may affect the performance of any associations using the timer set being changed.




Flowchart 3-31. Changing an Association (Sheet 8 of 12)

Note: If the *uaps* parameter will not be specified with the *chg-assoc* command, and the *adapter* parameter value is being changed to either *m3ua* or *sua*, the UA parameter set 10 will be assigned to the association.

Caution: Changing an UA parameter set may affect the performance of any associations using the UA parameter set being changed.

Flowchart 3-31. Changing an Association (Sheet 9 of 12)

Flowchart 3-31. Changing an Association (Sheet 10 of 12)

Flowchart 3-31. Changing an Association (Sheet 11 of 12)

Notes:

- 1. If any optional parameters are not specified with the *chg-assoc* command, those values are not changed.
- 2. If the card containing the signaling link is a DCM, the B Ethernet interface cannot be used. Single-slot EDCMs or E5-ENET cards can use the B Ethernet interface.
- 3. The sum of the number of sockets and association application server assignments on a card running either the *ss7ipgw* or *ipgwi* applications cannot exceed 50.
- 4. The EAGLE 5 ISS can contain a maximum of 4000 connections (associations plus sockets).
- 5. Cards running either the *iplim* or *iplimi* applications can have only one connection for each signaling link and a maximum of two connections for each card, if the card is a dual-slot DCM. If the card is a single-slot EDCM, the card may contain a maximum of eight connections. If the card is an E5-ENET card, the card may contain a maximum of 16 connections.
- 6. The value of the *lhost* and *rhost* parameters is a text string of up to 60 characters, with the first character being a letter. The command input is limited to 150 characters, including the hostnames
- 7. If the card's application is either *iplim* or *iplimi*, the *adapter* parameter value for the association must be m2pa and the *ipliml2=m2pa* parameter must be assigned to the signaling link on the *iplimi* or *iplimi* card.
- 8. Specifying the *lhost* parameter only creates a uni-homed endpoint. The network portion of the endpoint's IP address must be the same as the network portion of the IP address assigned to either the A or B network interface of the IP card.
- 9. Specifying the *lhost* and *alhost* parameters creates a multi-homed endpoint. The network portion of the IP address associated with the *lhost* parameter must be the same as the network portion of the IP address assigned to one of the network interfaces (A or B) of the IP card, and the network portion of the IP address associated with the *alhost* parameter must be the same as the network portion of the IP address assigned to the other network interface on the IP card .
- 10. The *alhost=none* parameter removes the alternate local host from the specified association, which also removes the multi-homed endpoint capability.
- 11. If the value of the *open* parameter is *yes*, only the value of the *alw* parameter can be changed. To change the values of other parameters, the value of the *open* parameter must be *no*.
- 12. The value of the rmin parameter must be less than or equal to the rmax parameter value.
- 13. For associations assigned to the *ss7ipgw* or *ipgwi* applications, the value of the *cwmin* parameter must be less than or equal to 16384.
- 14. Cards running either ss7ipgw or ipgwi applications can have only the values m3ua or sua for the adapter parameter.

Flowchart 3-31. Changing an Association (Sheet 12 of 12)

Notes (Continued):

- 15. The *m2patset* parameter can be specified only with the *adapter=m2pa* parameter, or if the current *adapter* parameter value for the association is *m2pa*
- 16. If the mp2atset parameter is not specified with the chg-assoc command, and the adapter parameter value is being changed to m2pa, the m2patset parameter value defaults to M2PA timer set 1 (m2patset=1).
- 17. The *uaps* parameter can be specified only with the *adapter=m3ua* or *adapter=sua* parameters, or if the current *adapter* parameter value for the association is either *m3ua* or *sua*.
- 18. If the *uaps* parameter is not specified with the *chg-assoc* command, and the *adapter* parameter value is being changed to either *m3ua* or *sua*, the *uaps* parameter value defaults to UA parameter set 10 (*uaps=10*).
- 19. The *port* parameter can be used in place of the *link* parameter to specify the signaling link assigned to the association.
- 20. If the *open* parameter value is being changed to *yes*, the association must contain values for the *lhost*, *lport*, *rhost*, and *rport* parameters. The *lhost* parameter value must have a signaling link assigned to it.
- 21. The *ver* parameter can be specified only if after the *chg-assoc* command is performed, the *adapter* parameter value is *m2pa*.
- 22. The M2PA version of the association determines the version of the M2PA timer set that is assigned to the association. For example, if M2PA timer set 3 is assigned to the M2PA association, and the association is an RFC M2PA association, the RFC version of M2PA timer set 3 is used with the association. If M2PA timer set 7 is assigned to the M2PA association, and the association is a Draft 6 M2PA association, the Draft 6 version of M2PA timer set 7 is used with the association.
- 23. If the *ver* parameter is not specified with the *chg-assoc* command, and the association's *adapter* parameter value is not changing, then the M2PA version of the association is not changed.
- 24. If the *adapter* parameter value of the association is changed to *m2pa* in this procedure and the *ver* parameter is not specified, the version of the association will be RFC. To make this association a M2PA Draft 6 association, the *ver=d6* parameter must be specified for this association.
- 25. The new buffer size for this association cannot exceed the available buffer size for the card. If you wish to increase the buffer size for this association to a value that is greater than available buffer size for the card, the buffer size of the other associations assigned to the card must be decreased.

Configuring SCTP Retransmission Control for an Association

This procedure is used to gather the information required to configure the retransmission parameters for associations. If any assistance is needed to configure the retransmission parameters for associations, contact the Customer Care Center. Refer to "Customer Care Center" on page 1-9 for the contact information.

The retransmission parameters are configured using the rmode, rmin, rmax, rtimes, and cwmin parameters of the chg-assoc command.

:rmode – The retransmission mode used when packet loss is detected. The values are rfc or lin.

- rfc Standard RFC 2960 algorithm in the retransmission delay doubles after each retransmission. The RFC 2960 standard for congestion control is also used.
- 1in Tekelec's linear retransmission mode where each retransmission timeout value is the same as the initial transmission timeout and only the slow start algorithm is used for congestion control.

:rmin – The minimum value of the calculated retransmission timeout in milliseconds.

:rmax – The maximum value of the calculated retransmission timeout in milliseconds.

NOTE: The rmin and rmax parameter values form a range of retransmission values. The value of the rmin parameter must be less than or equal to the rmax parameter value.

:rtimes – The number of times a data retransmission occurs before closing the association.

: cwmin – The minimum size in bytes of the association's congestion window and the initial size in bytes of the congestion window.

For associations assigned to the **ss7ipgw** or **ipgwi** applications, the value of the **cwmin** parameter must be less than or equal to 16384.

The "Changing an Association" procedure on page 3-348 is used to change the values of these parameters. In addition to using the "Changing an Association" procedure, these pass commands are also used in this procedure.

- ping tests for the presence of hosts on the network.
- assocrtt displays the SCTP round trip times for a specified association. Minimum, maximum, and average times are kept for each open association. The Retransmission Mode (RFC or LIN) and the configured Minimum and Maximum Retransmission Timeout limits are also displayed.
- sctp provides a summary list of all SCTP instances.

• sctp -a <association name> - displays the measurements and information for a specific association.

For more information on the pass commands, see the Commands Manual.

The chg-assoc command contains other optional parameters that can be used to configure an association. These parameters are not shown here because they are not necessary for configuring the SCTP retransmission parameters. These parameters are explained in more detail in the "Changing an Association" procedure on page 3-348, or in the and chg-assoc command description in the Commands Manual.

Canceling the RTRV-ASSOC Command

Because the rtrv-assoc command used in this procedure can output information for a long period of time, the rtrv-assoc command can be canceled and the output to the terminal stopped. There are three ways that the rtrv-assoc command can be canceled.

- Press the F9 function key on the keyboard at the terminal where the rtry-assoc command was entered.
- Enter the canc-cmd without the trm parameter at the terminal where the rtrv-assoc command was entered.
- Enter the canc-cmd:trm=<xx>, where <xx> is the terminal where the rtrv-assoc command was entered, from another terminal other that the terminal where the rtrv-assoc command was entered. To enter the canc-cmd:trm=<xx> command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal's permissions can be verified with the rtrv-secu-trm command. The user's permissions can be verified with the rtrv-user or rtrv-secu-user commands.

For more information about the canc-cmd command, go to the Commands Manual.

Procedure

1. Display the associations in the database using the **rtrv-assoc** command. This is an example of possible output.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0
```

	CARD	IPLNK						
ANAME	LOC	PORT	LINK	ADAPTER	LPORT	RPORT	OPEN	ALW
swbel32	1201	A	A	M3UA	1030	2345	YES	YES
a2	1305	A	A	SUA	1030	2345	YES	YES
a3	1307	A	A	SUA	1030	2346	YES	YES
assoc1	1201	A	A	M3UA	2000	1030	YES	YES

2. Display the IP address assigned to the IPLINK assigned to the association being changed in this procedure by entering the rtrv-ip-lnk command with the card location and IPLINK port shown in step 1.

For this example, enter this command.

```
rtrv-ip-lnk:loc=1201:port=a
```

The following is an example of the possible output.

```
rlghn-xa03w 06-10-28 21:19:37 GMT EAGLE5 36.0.0

LOC PORT IPADDR SUBMASK DUPLEX SPEED MACTYPE AUTO MCAST

1201 A 192.1.1.30 255.255.255.0 ---- DIX YES NO
```

3. Display the local host assigned to the IP address displayed in step 2 using the rtrv-ip-host command with the IP address shown in step 2. For this example, enter this command.

```
rtrv-ip-host:ipaddr=192.1.1.30
```

The following is an example of the possible output

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0

LOCAL IPADDR LOCAL HOST
192.1.1.30 GW100.NC.TEKELEC.COM

IP Host table is (11 of 512) 2% full
```

4. Enter the ping pass command specifying the card location of the local host, shown in step 3, and the name of the remote host assigned to the association being changed, shown in step 1. This command is entered several times to obtain the average round trip time. For this example, enter this command.

```
pass:loc=1201:cmd="ping gw100.nc.tekelec.com"
```

The following is an example of the possible output

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0 PASS: Command sent to card rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0 PING command in progress
```

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0

PING GW100.NC.TEKELEC.COM (192.1.1.30): 56 data bytes

64 bytes from tekral.nc.tekelec.com (192.1.1.30): icmp_seq=0. time=5. ms

64 bytes from tekral.nc.tekelec.com (192.1.1.30): icmp_seq=1. time=9. ms

64 bytes from tekral.nc.tekelec.com (192.1.1.30): icmp_seq=2. time=14. ms

----tekral PING Statistics----

3 packets transmitted, 3 packets received, 0% packet loss

round-trip (ms) min/avg/max = 5/9/14

PING command complete
```

NOTE: If the SCTP retransmission parameters are not to be changed, do not perform steps 5 through 9. This procedure is finished.

- **5.** Go to the "Changing an Association" procedure on page 3-348 and change the retransmission parameters of the association based on the results of pinging the remote host.
- **6.** Enter the assocrtt pass command to display the round trip time data collected after an association is established when an SCTP INIT message is sent and an acknowledgement is received.

The assocrtt command is entered with the card location from step 4 (the card location assigned to the association being changed), and the name of the association being changed. This association must contain the local host name used in step 2. For this example, enter this command.

pass:loc=1201:cmd="assocrtt assoc1"

The following is an example of the possible output

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
PASS: Command sent to card
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
ASSOCRTT: Association round-trip time report (in milliseconds)
Retransmission Configuration
   Retransmission Mode
                                  : LIN
   Minimum RTO : 120
   Maximum RTO : 800
Traffic Round-Trip Times
   Minimum round-trip time
                           : 5
: 120
   Maximum round-trip time
   Weighted Average round-trip time : 10
   Last recorded round-trip time : 10
Measured Congested Traffic Round-Trip Times
   Minimum round-trip time
   Maximum round-trip time
   Weighted Average round-trip time : 0
   Last recorded round-trip time : 0
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
ASSOCRTT command complete
```

7. Enter the sctp -a <association name> pass command to determine if retransmissions have occurred. The association name is the association name specified in step 6. Specify the card location used in step 6. For this example, enter this command.

pass:loc=1201:cmd="sctp -a assoc1"

Inbound Streams = 2
Outbound Streams = 2

The following is an example of the possible output

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
```

Aname	Local	Local	Remote	Remote
	IP Address	Port	Address	Port
Assoc1	192.168.110.12	2222	192.168.112.4	5555
	192.168.112.12			
Confi	guration		State	
Retransmis	sion Mode = LIN	St	ate = OPEN	
Min. Retransmissio	n Timeout = 10	UL	P association id	d = 18
Max. Retransmissio	n Timeout = 800	Nu	mber of nets = 2	2
Max. Number o	f Retries = 10	In	bound Streams =	1
Min. Congestio	n Window = 3000	Ou	tbound Streams =	= 2

Nets Data

```
IP Address 192.168.112.4
                        State
                                Reachable
    Port 7777
MTU 1500
                       Primary YES
                       cwnd
                                16384
 ssthresh 16384
                          RTO
                                 120
         192.168.113.5 State
7777 Primary
IP Address
                         State
                                  Reachable
    Port
                                  NΟ
    MTU 1500
                                  16384
                        cwnd
 ssthresh
          16384
                           RTO
                                  120
```

```
Last Net Sent To = 192.168.112.4

Last Net Rcvd From = 192.168.112.4

Over All Eror Count = 0

Peers Rwnd = 13880

My Rwnd = 16384

Max Window = 16384

Initial Seq Number = 24130

Next Sending Seq Number = 124686

Last Acked Seq Number = 124669

Maximum Outbound Char Count = 16384

Current Outbound Char Count = 2112

Number Unsent Char Count = 0

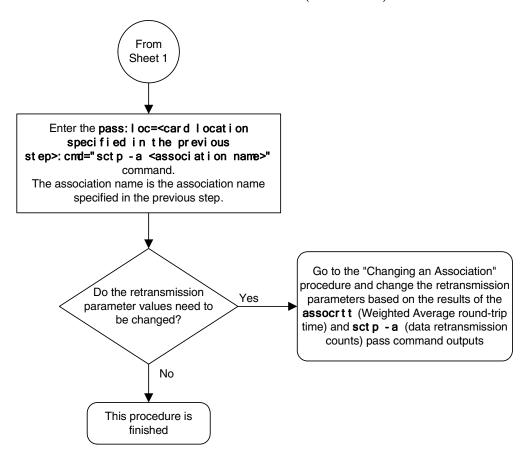
Outbound Data Chunk Count = 16

Number Unsent = 0

Number To Retransmit = 0
```

```
heartbeat requests sent = 52
                 ip datagrams sent = 129254
ip datagrams with data chunks sent = 73084
                 data chunks sent = 396330
       retransmit data chunks sent = 135
                        sacks sent = 64872
                       send failed = 0
            retransmit timer count = 0
   consecutive retransmit timeouts = 0
RTT between RMIN and RMAX inclusive = 6
             RTT greater than RMAX = 0
             fast retransmit count = 135
                  recv timer count = 0
             heartbeat timer count = 244
                  none left tosend = 0
                none left rwnd gate = 5
                none left cwnd gate = 8
```

SCTP command complete


NOTE: The Weighted Average round-trip time shown in the assocrtt pass command output in step 6, and the data retransmission counts shown in the sctp -a pass command output in step 7 are used as a guide to determine the appropriate values for the rmode, rmin, rmax, and rtimes parameters. If the retransmission parameters do not have to be adjusted, do not perform this step. This procedure is finished.

8. Go to the "Changing an Association" procedure on page 3-348 and change the retransmission parameters of the association based on the results of the outputs of steps 6 and 7.

Enter the rtrv-assoc command Enter the rtrv-ip-lnk command with these Enter the rtrv-ip-host command parameters: with this parameter: :loc=<card location of the IPLINK assigned :ipaddr = <IP address assigned to the association being changed> to the IPLINK displayed in the :port=<port value of the IPLINK assigned previous step> to the association being changed> Enter the pass: I oc=<card I ocation of the association containing the local host name> : cmd="ping < remote host Do the retransmission name>" No parameter values need to command several times and ping the be changed? remote host to determine the expected round trip time. Use the This procedure is rtrv-assoc, rtrv-ip-host, and rtrv-ip-lnk finished outputs as a guide for the card Yes location and the host name values. Go to the "Changing an Association" procedure and change the retransmission parameters based on the results of pinging the remote host Enter the pass: loc=<card location specified with the ping command> :cmd="assocrtt <name of the association being changed containing the local host name specified with the ping command>" То command to display the round trip time data Sheet 2 collected after an association is established when an SCTP INIT message is sent and an acknowlegement is received. Perform this command for each association name that references the remote host name specified in the pi ng command.

Flowchart 3-32. Configuring an Association for SCTP Retransmission Control (Sheet 1 of 2)

Flowchart 3-32. Configuring an Association for SCTP Retransmission Control (Sheet 2 of 2)

Changing an M2PA Timer Set

This procedure is used to change the values of the M2PA timers in an M2PA timer set using the chg-m2pa-tset command. The M2PA timers are used to control the behavior of the signaling link assigned to an M2PA association (an association containing the M2PA adapter layer - adapter=m2pa) during signaling link alignment and proving, and during times of transmit congestion.

The EAGLE 5 ISS contains 20 M2PA timer sets. One of these timer sets is assigned to an M2PA association using the m2patset parameter of either the ent-assoc or chg-assoc command. If the m2patset parameter is not specified with the ent-assoc command, or with the chg-assoc command if the adapter layer for that association is being changed to M2PA, timer set 1 is automatically assigned to the association.

CAUTION: Changing an M2PA timer set may affect the performance of any associations using the timer set being changed.

The chg-m2pa-tset command uses these parameters.

:tset – The M2PA timer set being changed, 1 - 20.

:srctset - The timer values in an existing M2PA timer set can be copied to
another M2PA timer set, specified by the tset parameter. The srctset
parameter specifies the timer set that is to be copied. If the srctset
parameter is specified, no other timer values can be specified, The srctset
parameter value cannot be the timer set specified by the tset parameter.

:ver - The M2PA version, either Draft 6 (ver=d6) or RFC (ver=rfc).

NOTE: The defintions of timers T1 and T3 for the Draft 6 version are different from the RFC version. The T2 timer applies only to the RFC version. The defintions of timers T4N, T4E, T5, T6, T7, T16, T17 and T18 for are the same for the Draft 6 version and the RFC version.

The timer parameter descriptions and values are shown in Table 3-31 on page 3-390.

Table 3-31. M2PA Timers

Timer	Draft 6 Timer Name	RFC Timer Name	Definition	Value (in milliseconds)	DRAFT 6 System Default Value (in milliseconds)	RFC System Default Value (in milliseconds)
:t1	N/A	Ready Timer	The amount of time after proving the M2PA adapter layer waits to receive a Link Status Ready message from the peer.	1000 - 350000	N/A	300000
:t1	Alignment Timer	N/A	The amount of time the M2PA adapter layer waits to receive a Link Status Alignment message from the peer.	1000 - 350000	10000	N/A
:t2 *	N/A	Not Aligned Timer	The the amount of time the M2PA adapter layer waits to receive a Link Status Alignment/Link Status Proving message after sending a Link Status Alignment message. Timer T2 is not used in M2PA Draft 6 timer sets.	5000 - 150000	N/A	20000
:t3	N/A	Alignment Timer	The amount of time the M2PA layer waits to receive a Link Status Alignment message from the peer.	1000 - 60000	N/A	2000
	Ready Timer	N/A	The amount of time after proving the M2PA adapter layer waits to receive a Link Status Ready message from the peer.	1000 - 60000	10000	N/A
:t4n	Proving Time	er (Normal)	The amount of time the M2PA adapter layer generates Link Status Proving messages during normal proving.	1000 - 70000	10000	30000

Table 3-31. M2PA Timers (Continued)

Timer	Draft 6 Timer Name	RFC Timer Name	Definition	Value (in milliseconds)	DRAFT 6 System Default Value (in milliseconds)	RFC System Default Value (in milliseconds)
:t4e	Proving (Emerg	Timer ency)	The amount of time the M2PA adapter layer generates Link Status Proving messages during emergency proving.	400 - 5000	500	500
:t5	Busy Rate Timer		The amount of time between sending Link Status Busy messages while the link is in-service.	ding Link messages 80 - 10000		100
:t6	Remote Congo	estion Timer	The amount of time that a congested link will remain in service.	1000 - 6000	3000	3000
:t7	Excess Delay in Acknowledgement Timer		The maximum amount of time that may pass between when a user data message is transmitted and an acknowledgement for that message is received from the peer. If this timer expires, the link is taken out of service.	200 - 2000	1200	1200
:t16	Proving Rate Timer		The amount of time between sending Link Status Proving messages while the T4N or T4E timer is running.	100 - 500000 **	200000 **	200000 **
:t17	Ready Rate Timer		The amount of time between sending Link Status Ready messages while the T3 timer is running.	100 - 500	250	250
:t18	Processor Outage Rate Timer		The amount of time between sending Link Status Processor Outage messages while the link is in-service.	100 - 10000	1000	1000

^{*} The T2 Timer can be specified only for the M2PA RFC version.
** The value of the T16 Timer is in microseconds.

The value of any timer parameter not specified with the chg-m2pa-tset command is not changed.

Procedure

1. Display the M2PA timer sets in the database by entering the rtrv-m2pa-tset command with the version of the M2PA timer sets you wish to change with the ver parameter.

To display the M2PA Draft 6 timer values, enter this command.

```
rtrv-m2pa-tset:ver=d6
```

```
rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0
M2PA Draft 6 Timers (in msec, T16 in microsec)
TSET T1
                 Т3
                           T4E T5
                                               T16
          T2
                      T4N
                                      T6 T7
                                                      T17
                                                          T18
          ----- 5000 20000 500 5000 3000 1000 200000 250
    6000
    10000 ----- 10000 10000 500 1000 3000 1200 200000 250
                                                          1000
    10000 ----- 10000 10000 500 1000 3000 1200 200000 250
                                                          1000
   10000 ----- 10000 10000 500 1000 3000 1200 200000 250
  10000 ----- 10000 10000 500 1000 3000 1200 200000 250 1000
  10000 ----- 10000 10000 500 1000 3000 1200 200000 250
   10000 ----- 10000 10000 500 1000 3000 1200 200000 250
                                                          1000
   10000 ----- 10000 10000 500 1000 3000 1200 200000 250
                                                          1000
    27500 ----- 3850 4859 450 5700 3750 1150 250 375
                                                           8750
          ----- 10000 10000 500 1000
                                     3000 1200
    10000
                                               200000 250
          ----- 10000 10000 500 1000 3000 1200
    10000
                                               200000 250
   10000 ----- 10000 10000 500 1000 3000 1200 200000 250
12
                                                          1000
13 10000 ----- 10000 10000 500 1000 3000 1200 200000 250
14 10000 ----- 10000 10000 500 1000 3000 1200 200000 250
15 10000 ----- 10000 10000 500 1000 3000 1200 200000 250
16 10000 ----- 10000 10000 500 1000 3000 1200 200000 250
                                                          1000
17 10000 ----- 10000 10000 500 1000 3000 1200 200000 250
                                                          1000
   10000 ----- 10000 10000 500 1000 3000 1200 200000 250
18
                                                           1000
    10000
          ----- 10000 10000 500 1000
                                     3000 1200 200000 250
                                                           1000
    10000 ----- 10000 10000 500 1000 3000 1200 200000 250
```

To display the M2PA RFC timer values, enter this command.

rtrv-m2pa-tset:ver=rfc

```
rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0
M2PA RFC Timers (in msec, T16 in microsec)
TSET T1
          T2
                T3
                      T4N T4E T5
                                   T6 T7
                                               T16
                                                    T17 T18
1 6000
         20000 5000 20000 500 5000 3000 1000 200000 250
                                                          1000
    300000 20000 2000 30000 500 100
                                     3000 1200 200000 250
    300000 20000 2000 30000 500 100
                                     3000 1200
                                               200000 250
    300000 20000 2000 30000 500 100
                                     3000 1200 200000 250
                                                          1000
    300000 20000 2000 30000 500 100 3000 1200 200000 250
                                                          1000
    300000 20000 2000 30000 500 100 3000 1200 200000 250
                                                          1000
    300000 20000 2000 30000 500 100 3000 1200 200000 250
    300000 20000 2000 30000 500 100 3000 1200 200000 250
   300000 20000 2000 30000 500 100 3000 1200 200000 250
                                                          1000
    27500 10000 3850 4859 450 5700 3750 1150 250 375
9
                                                          8750
   300000 20000 2000 30000 500 100 3000 1200
                                               200000 250
10
                                                          1000
    300000 20000 2000 30000 500 100
                                     3000 1200
                                               200000 250
                                                          1000
    300000 20000 2000 30000 500 100
                                     3000 1200 200000 250
13 300000 20000 2000 30000 500 100 3000 1200 200000 250
                                                          1000
14 300000 20000 2000 30000 500 100 3000 1200 200000 250
                                                          1000
15 300000 20000 2000 30000 500 100 3000 1200 200000 250 1000
```

```
    16
    300000
    20000
    2000
    30000
    500
    100
    3000
    1200
    200000
    250
    1000

    17
    300000
    20000
    2000
    30000
    500
    100
    3000
    1200
    200000
    250
    1000

    18
    300000
    20000
    2000
    30000
    500
    100
    3000
    1200
    200000
    250
    1000

    19
    300000
    20000
    2000
    30000
    500
    100
    3000
    1200
    200000
    250
    1000

    20
    300000
    20000
    2000
    30000
    500
    100
    3000
    1200
    200000
    250
    1000
```

If the ver parameter is not specified when entering the rtrv-m2pa-tset command, both the Draft 6 and RFC values are displayed. This is an example of the possible output.

19 300000 20000 2000 30000 500 100 3000 1200 200000 250

20 300000 20000 2000 30000 500 100 3000 1200 200000 250 1000

1000

2. Change the desired timer set with the chg-m2pa-tset command. To change a specific timer set, enter the chg-m2pa-tset command with the tset and ver parameters and the timer parameters you wish to change. For this example, to change the values of the RFC version of timer set 1, enter this command.

```
chg-m2pa-tset:tset=1:t1=27500:t2=10000:t3=3850:t4e=450
:t4n=45000:t5=5700:t6=3750:t7=1150:t16=250000:t17=375:t18=8750
:ver=rfc
```

To change the values of the Draft 6 version of timer set 1, enter this command.

```
chg-m2pa-tset:tset=1:t1=27500:t3=3850:t4e=450:t4n=45000
:t5=5700:t6=3750:t7=1150:t16=250000:t17=375:t18=8750:ver=d6
```

NOTE: The values for the M2PA timers are shown in Table 3-31 on page 3-390.

To copy an M2PA timer set to another timer set, enter the chg-m2pa-tset command with the tset, ver, and srctset parameters. For this example, to copy the RFC version of timer set 9 to timer set 1, enter this command.

```
chg-m2pa-tset:tset=1:srctset=9:ver=rfc
```

To copy the Draft 6 version of timer set 9 to timer set 1, enter this command.

```
chg-m2pa-tset:tset=1:srctset=9:ver=d6
```

NOTE: The ver parameter is optional and does not have to be specified to change the M2PA RFC timer values. The default value for the ver parameter is rfc. If you wish to change the M2PA Draft 6 timer values, the ver=d6 parameter must be specified with the chg-m2pa-tset command.

When the chg-m2pa-tset command has successfully completed, the following message should appear.

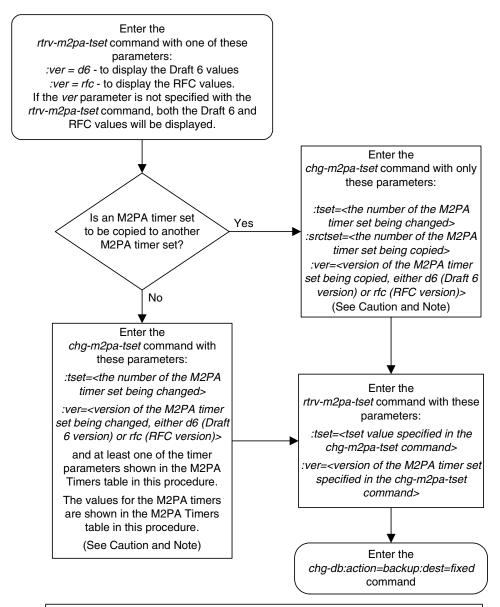
```
rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0 CHG-M2PA-TSET: MASP A - COMPLTD
```

3. Verify the changes by entering the rtrv-m2pa-tset command specifying the timer set and version parameter values specified in step 2. For this example, enter one of these commands.

```
rtrv-m2pa-tset:tset=1:ver=rfc
```

1 27500 ----- 3850 45000 450 5700 3750 1150 250000 375 8750

4. Back up the new changes, using the chg-db:action=backup:dest=fixed command. These messages should appear; the active Maintenance and Administration Subsystem Processor (MASP) appears first.


```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.

BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED) : MASP A - Backup starts on standby MASP.

BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

Flowchart 3-33. Changing an M2PA Timer Set

Notes:

- 1. Either the timer parameters or the *srctset* parameter must be specified with the *chg-m2pa-tset* command. Both the timer parameters and the *srctset* parameter cannot be specified with the *chg-m2pa-tset* command.
- 2. If the *ver* parameter is not specified with the *chg-m2pa-tset* command, the RFC values will be changed. To change the Draft 6 values, the *ver=d6* parameter must be specified with the *chg-m2pa-tset* command.

Caution: Changing an M2PA timer set may affect the performance of any associations using the timer set being changed.

Adding a New Association to a New Application Server

This procedure is used create a new application server and assign a new association to the application server using the ent-as command.

The ent-as command uses these parameters:

:asname – The name of the new application server. The name of the application server can contain up to 15 alphanumeric characters, with the first character being an alphabetic character. Application server names are not case sensitive.

: aname – The name of the association being assigned to the application server.

The maximum number of TALI sockets and SCTP association to application server assignments that can be hosted by an IPGWx card (referenced by the lhost parameter of the socket and association) is 50. For example, if the IPGWx card contains 12 TALI sockets, the maximum number of SCTP association to application server assignments that the IPGWx card can support is 38. The SCTP association to application server assignments could be one SCTP association assigned to 38 application servers, two SCTP associations assigned to 19 application servers, or any combination of SCTP associations assigned to application servers that add up to 38. The number of TALI sockets can be verified with the rtrv-appl-sock:lhost=<local host name> command. The SCTP association to application server assignments can be verified with the rtrv-assoc:lhost=<local host name> and rtrv-as:aname=<association name> commands.

Table 3-32. Examples of IPGWx Card Provisioning Limits

Number of Associations hosted by the IPGWx card	Number of Application Servers each Association is Assigned to *	Number of TALI Sockets Hosted by the IPGWx card	Total Association - Application Server Assignments and TALI Sockets maintained by the IPGWx card				
1	50	0	50				
50	1	0	50				
25	1	25	50				
25	2	0	50				
0	0	50	50				
38	1	12	50				
19	2	12	50				
* The EAGLE 5 ISS can contain a maximum of 250 application servers.							

The open parameter of the association must be set to no before the association can be assigned to the application server. This can be verified with the rtrv-assoc command.

M2PA associations (adapter=m2pa) cannot be assigned to application servers. Only M3UA (adapter=m3ua) and SUA (adapter=sua) associations can be assigned to application servers. This can be verified in the ADAPTER field in the rtrv-assoc output.

The application server recovery timer (the tr parameter of the chg-as command) for the application server is set by default to 10 milliseconds when an application server is added. The traffic mode (the mode parameter of the chg-as command) for the application server is set by default to LOADSHARE when an application server is added. Perform the "Changing an Application Server" procedure on page 3-447 to change these parameter values.

Canceling the RTRV-AS, RTRV-APPL-SOCK, and RTRV-ASSOC Commands

Because the rtrv-as, rtrv-appl-sock, and rtrv-assoc commands used in this procedure can output information for a long period of time, the rtrv-as, rtrv-appl-sock, and rtrv-assoc commands can be canceled and the output to the terminal stopped. There are three ways that the rtrv-as, rtrv-appl-sock, and rtrv-assoc commands can be canceled.

- Press the **F9** function key on the keyboard at the terminal where the **rtrv-as**, **rtrv-appl-sock**, or **rtrv-assoc** commands were entered.
- Enter the canc-cmd without the trm parameter at the terminal where the rtrv-as, rtrv-appl-sock, or rtrv-assoc commands were entered.
- Enter the canc-cmd:trm=<xx>, where <xx> is the terminal where the rtrv-as, rtrv-appl-sock, or rtrv-assoc commands were entered, from another terminal other that the terminal where the rtrv-as, rtrv-appl-sock, or rtrv-assoc commands were entered. To enter the canc-cmd:trm=<xx> command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal's permissions can be verified with the rtrv-secu-trm command. The user's permissions can be verified with the rtrv-user or rtrv-secu-user commands.

For more information about the canc-cmd command, go to the Commands Manual.

Procedure

1. Display the application servers in the database using the **rtrv-as** command. This is an example of possible output.

2. Display the associations in the database using the **rtrv-assoc** command. This is an example of possible output.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0
```

	CARD	IPLNK						
ANAME	LOC	PORT	LINK	ADAPTER	LPORT	RPORT	OPEN	\mathtt{ALW}
swbel32	1201	A	A	M3UA	1030	2345	YES	YES
a2	1305	A	A	SUA	2000	2345	YES	YES
a3	1307	A	A	SUA	3000	3000	YES	YES
assocl	1305	A	A	SUA	4000	1030	YES	YES
assoc7	1311	A	A	SUA	2500	2000	YES	YES

3. Display the IP host names in the database by using the rtrv-ip-host command. The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
```

```
LOCAL IPADDR LOCAL HOST
192.1.1.10 IPNODE1-1201
192.1.1.12 GW105.NC.TEKELEC.COM
192.1.1.14 IPNODE1-1205
192.1.1.20 IPNODE2-1201
192.1.1.22 IPNODE2-1203
192.1.1.24 IPNODE2-1205
192.1.1.30 KC-HLR1
192.1.1.32 KC-HLR2
192.1.1.52 DN-MSC1
192.1.1.52 DN-MSC2

REMOTE IPADDR REMOTE HOST
150.1.1.5 NCDEPTECONOMIC_DEVELOPMENT.SOUTHEASTERN_COORIDOR_ASHVL.GOV

IP Host table is (11 of 512) 2% full
```

If the IP host name for the new association is not shown in the **LOCAL HOST** column of the **rtrv-ip-host** output, add the IP host name by performing the "Adding an IP Host" procedure on page 3-153. Then go to step 6.

If the IP host name for the new association is shown in the **LOCAL HOST** column of the **rtrv-ip-host** output, go to step 4.

4. Display the sockets assigned to the local host value that will be assigned to the association being configured in this procedure by entering the rtrv-appl-sock command with the lhost parameter. For this example, enter this command.

rtrv-appl-sock:lhost=IPNODE2-1205

This is an example of the possible output.

5. Display the associations assigned to the local host value that will be assigned to the association being configured in this procedure by entering the rtrv-assoc command with the lhost parameter. For this example, enter this command.

rtrv-assoc:lhost=IPNODE2-1205

This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:14:37 GMT EAGLE5 36.0.0

CARD IPLNK

ANAME LOC PORT LINK ADAPTER LPORT RPORT OPEN ALW
a2 1205 A A SUA 2000 2048 YES YES
a3 1205 A A SUA 3000 3000 YES YES

IP Appl Sock/Assoc table is (8 of 4000) 1% full
Assoc Buffer Space Used (32 KB of 3200 KB) on LOC = 1205
```

6. Display the application servers that the associations shown in step 5 are assigned to by entering rtrv-as command with the names of the associations shown in step 5. For this example, enter these commands.

rtrv-as:aname=a2

This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:14:37 GMT EAGLE5 36.0.0

AS Name Mode Tr ms Association Names as1 LOADSHARE 2000 a2

AS Table is (3 of 250) 1% full
```

rtrv-as:aname=a3

This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:14:37 GMT EAGLE5 36.0.0
AS Name Mode Tr ms Association Names as2 LOADSHARE 2000 a3
AS Table is (3 of 250) 2% full
```

The maximum number of TALI sockets and SCTP association to application server assignments that can be hosted by an IPGWx card (referenced by the **lhost** parameter of the socket and association) is 50.

If the number of TALI sockets and SCTP association to application server assignments is less than 50, go to step 7.

If the number of TALI sockets and SCTP association to application server assignments is 50, the local host value cannot be used in this procedure.

Repeat this procedure from step 3 and select another local IP host from the rtrv-ip-host output or perform the "Adding an IP Host" procedure on page 3-153 to add a new local IP host. After the new local IP host name as been added, go to step 7.

7. Add the new association by performing the "Adding an Association" procedure on page 3-327. The open parameter value for this association must be set to no.

NOTE: See Flowchart 3-34 on page 3-405 (Sheet 3) for the rules that apply to the new association and the new application server.

8. Assign the new association to the new application server and add the new application server to the database using the ent-as command. For this example, enter this command

```
ent-as:asname=as4:aname=assoc10
```

When this command has successfully completed, this message should appear.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0 ENT-AS: MASP A - COMPLTD;
```

9. Verify the changes using the **rtrv-as** command with the application server name and association name specified in step 8. For this example, enter this command.

rtrv-as:asname=as4:aname=assoc10

This is an example of possible output.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0

AS Name Mode Tr ms Association Names as4 LOADSHARE 10 assoc10

AS table is (4 of 250) 1% full.
```

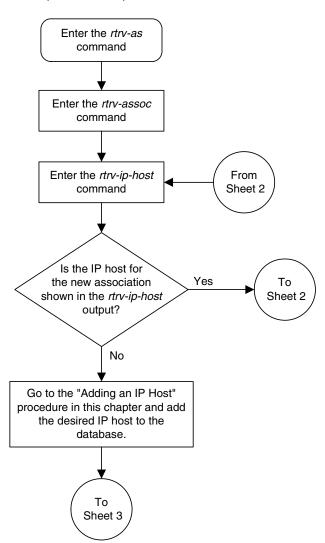
NOTE: If you do not wish to change the open parameter value of the association specified in step 8, skip step 10 and go to step 11.

10. Change the value of the open parameter to yes by specifying the chg-assoc command with the open=yes parameter. For this example, enter this command.

chg-assoc:aname=assoc10:open=yes

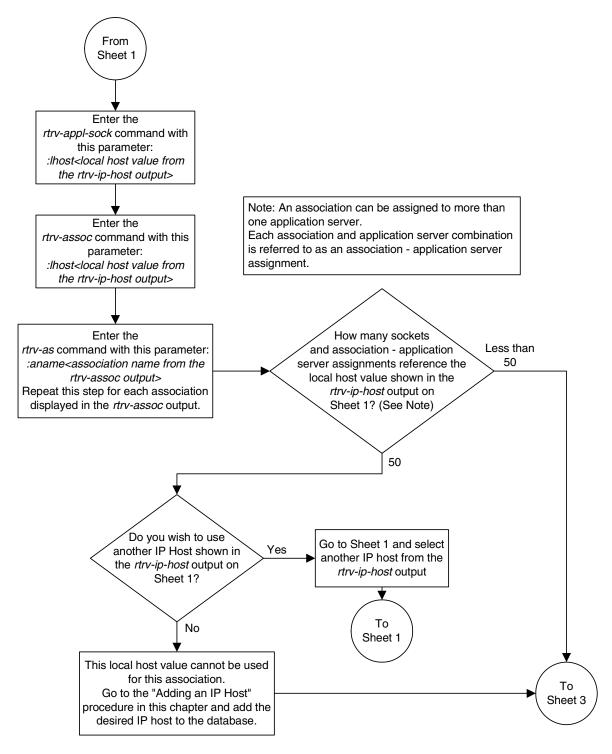
When this command has successfully completed, this message should appear.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0 CHG-ASSOC: MASP A - COMPLTD;
```

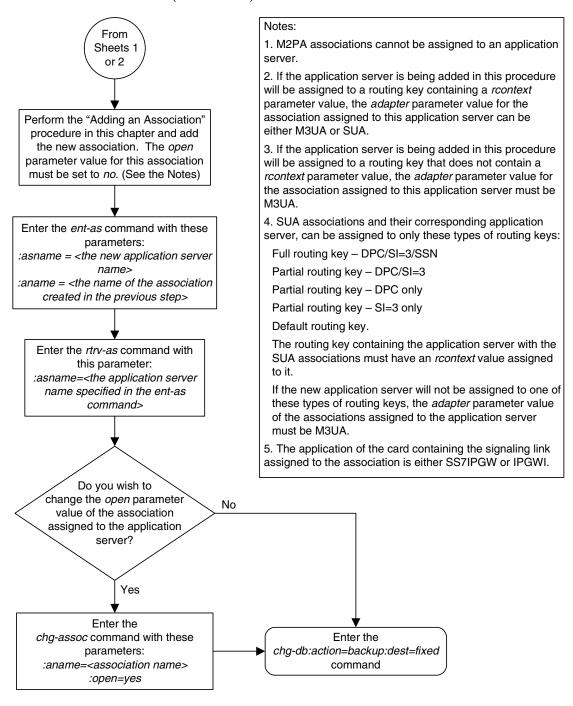

11. Back up the new changes, using the chg-db:action=backup:dest=fixed command. These messages should appear; the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.

BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.


BACKUP (FIXED) : MASP A - Backup starts on standby MASP.

BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```



Flowchart 3-34. Adding a New Association to a New Application Server (Sheet 1 of 3)

Flowchart 3-34. Adding a New Association to a New Application Server (Sheet 2 of 3)

Flowchart 3-34. Adding a New Association to a New Application Server (Sheet 3 of 3)

Adding an Existing Association to a New Application Server

This procedure is used create a new application server and assign an existing association to the application server using the ent-as command.

The ent-as command uses these parameters:

:asname – The name of the new application server. The name of the application server can contain up to 15 alphanumeric characters, with the first character being an alphabetic character. Application server names are not case sensitive.

: aname – The name of the association being assigned to the application server.

The maximum number of TALI sockets and SCTP association to application server assignments that can be hosted by an IPGWx card (referenced by the lhost parameter of the socket and association) is 50. For example, if the IPGWx card contains 12 TALI sockets, the maximum number of SCTP association to application server assignments that the IPGWx card can support is 38. The SCTP association to application server assignments could be one SCTP association assigned to 38 application servers, two SCTP associations assigned to 19 application servers, or any combination of SCTP associations assigned to application servers that add up to 38. The number of TALI sockets can be verified with the rtrv-appl-sock:lhost=<local host name> command. The SCTP association to application server assignments can be verified with the rtrv-assoc:lhost=<local host name> and rtrv-as:aname=<association name> commands.

Table 3-33. Examples of IPGWx Card Provisioning Limits

Number of Associations hosted by the IPGWx card	Number of Application Servers each Association is Assigned to *	Number of TALI Sockets Hosted by the IPGWx card	Total Association - Application Server Assignments and TALI Sockets maintained by the IPGWx card				
1	50	0	50				
50	1	0	50				
25	1	25	50				
25	2	0	50				
0	0	50	50				
38	1	12	50				
19	2	12	50				
* The EAGLE 5 ISS can contain a maximum of 250 application servers.							

The open parameter of the association must be set to no before the association can be assigned to the application server. This can be verified with the rtrv-assoc command.

M2PA associations (adapter=m2pa) cannot be assigned to application servers. Only M3UA (adapter=m3ua) and SUA (adapter=sua) associations can be assigned to application servers. This can be verified in the ADAPTER field in the rtrv-assoc output.

The application server recovery timer (the tr parameter of the chg-as command) for the application server is set by default to 10 milliseconds when an application server is added. The traffic mode (the mode parameter of the chg-as command) for the application server is set by default to LOADSHARE when an application server is added. Perform the "Changing an Application Server" procedure on page 3-447 to change these parameter values.

Canceling the RTRV-AS, RTRV-APPL-SOCK, and RTRV-ASSOC Commands

Because the rtrv-as, rtrv-appl-sock, and rtrv-assoc commands used in this procedure can output information for a long period of time, the rtrv-as, rtrv-appl-sock, and rtrv-assoc commands can be canceled and the output to the terminal stopped. There are three ways that the rtrv-as, rtrv-appl-sock, and rtrv-assoc commands can be canceled.

- Press the **F9** function key on the keyboard at the terminal where the **rtrv-as**, **rtrv-appl-sock**, or **rtrv-assoc** commands were entered.
- Enter the canc-cmd without the trm parameter at the terminal where the rtrv-as, rtrv-appl-sock, or rtrv-assoc commands were entered.
- Enter the canc-cmd:trm=<xx>, where <xx> is the terminal where the rtrv-as, rtrv-appl-sock, or rtrv-assoc commands were entered, from another terminal other that the terminal where the rtrv-as, rtrv-appl-sock, or rtrv-assoc commands were entered. To enter the canc-cmd:trm=<xx> command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal's permissions can be verified with the rtrv-secu-trm command. The user's permissions can be verified with the rtrv-user or rtrv-secu-user commands.

For more information about the canc-cmd command, go to the Commands Manual.

Procedure

1. Display the application servers in the database using the **rtrv-as** command. This is an example of possible output.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0
AS Name
                            Tr ms
                                    Association Names
                 LOADSHARE 10
as1
                                    a2
                                    a3
                                    assoc1
                 OVERRIDE 10
                                    assoc7
as2
                 OVERRIDE 10
                                    swbel32
as3
AS table is (3 of 250) 1% full.
```

NOTE: If the association being added to the application server is not shown in the rtrv-as output in step 1, skip step 2 and go to step 3.

2. Display the associations in the database using the rtrv-assoc command and specifying the association name shown in the rtrv-as output in step 1. For this example, enter this command.

rtrv-assoc:aname=assoc1

This is an example of possible output.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLES 36.0.0

ANAME assoc1

LOC 1305 IPLNK PORT A LINK A

ADAPTER SUA VER SUA RFC

LHOST gw102.nc.tekelec.com

ALHOST ---

RHOST gw100.nc.tekelec.com

LPORT 4000 RPORT 1030

ISTRMS 2 OSTRMS 2 BUFSIZE 16

RMODE LIN RMIN 120 RMAX 800

RTIMES 10 CWMIN 3000 UAPS 10

OPEN YES ALW YES

ASNAMES

as1

IP Appl Sock table is (6 of 4000) 1% full

Assoc Buffer Space Used (16 KB of 800 KB) on LOC = 1305
```

If the association does not meet the requirements shown in Flowchart 3-35 on page 3-416 (Sheet 4), repeat this step with another association shown in step 1, or go to step 3.

If the association does meet the requirements shown in Flowchart 3-35 on page 3-416 (Sheet 4), skip step 3 and go to step 4.

3. Display the associations in the database using the **rtrv-assoc** command with the **display=all** parameter. This is an example of possible output.

```
rlghncxa03w 06-03-28 09:12:36 GMT EAGLE5 34.3.0
ANAME swbel32
       LOC
                  1201
                                   IPLNK PORT A
                                                                LINK A
       ADAPTER M3UA VER M3UA RFC
       LHOST gw101.nc.tekelec.com
       ALHOST
       RHOST gw100.ncd-economic-development.southeastern-corridor-ash.gov
                  1030 RPORT 2345
2 OSTRMS 2
       LPORT
       ISTRMS 2
                                                                BUFSIZE 16

        1STRMS
        2
        OSTRMS
        2
        BUFSIZE
        16

        RMODE
        LIN
        RMIN
        120
        RMAX
        800

        RTIMES
        10
        CWMIN
        3000
        UAPS
        10

        OPEN
        YES
        ALW
        YES

       ASNAMES
       as3
IP Appl Sock table is (6 of 4000) 1% full
Assoc Buffer Space Used (16 KB of 800 KB) on LOC = 1201
ANAME a2
                1305 IPLNK PORT A
       LOC
                                                                LINK A
       ADAPTER SUA
                                   VER SUA RFC
       LHOST gw102.nc.tekelec.com
       ALHOST
                 ---
       RHOST gw100.nc.tekelec.com
      LPORT 2000 RPORT 2345

ISTRMS 2 OSTRMS 2

RMODE LIN RMIN 120

RTIMES 10 CWMIN 3000

OPEN YES ALW YES
                                                                BUFSIZE 16
                                                                RMAX
                                                                             800
                                                                 UAPS
                                                                             1.0
       ASNAMES
       as1
IP Appl Sock table is (6 of 4000) 1% full
Assoc Buffer Space Used (16 KB of 800 KB) on LOC = 1305
ANAME a3
       LOC 1307
ADAPTER SUA
                                  IPLNK PORT A
                                                                LINK A
                                   VER SUA RFC
       LHOST gw103.nc.tekelec.com
       ALHOST ---

      gw106.nc.tekelec.com

      3000
      RPORT
      2346

      2
      OSTRMS
      2

      LIN
      RMIN
      120

      10
      CWMIN
      3000

      YES
      ALW
      YES

       RHOST gw106.nc.tekelec.com
       LPORT
       ISTRMS 2
                                                                 BUFSIZE 16
       RMODE
                                                                 RMAX
                                                                             800
       RTIMES 10
                                                                 UAPS
                                                                             10
       OPEN YES
       ASNAMES
       as1
IP Appl Sock table is (6 of 4000) 1% full
Assoc Buffer Space Used (16 KB of 800 KB) on LOC = 1307
ANAME assoc1
       LOC 1305
ADAPTER SUA
       LOC
                                  IPLNK PORT A
                                                                LINK A
                                  VER SUA RFC
       LHOST gw102.nc.tekelec.com
       ALHOST ---
```

```
RHOST qw100.nc.tekelec.com
      LPORT 4000 RPORT
                                        1030
     ISTRMS 2 OSTRMS 2 BUFSIZE 16
RMODE LIN RMIN 120 RMAX 800
RTIMES 10 CWMIN 3000 UAPS 10
OPEN YES ALW YES
      ASNAMES
      as1
IP Appl Sock table is (6 of 4000) 1% full
Assoc Buffer Space Used (16 KB of 800 KB) on LOC = 1305
               1311 A A SUA 2500 2000 YES YES
assoc7
ANAME assoc7
              1311 IPLNK PORT A
SUA VER SUA RFC
     LOC
                                                     LINK A
      ADAPTER SUA
      LHOST
              gw105.nc.tekelec.com
      ALHOST ---
      RHOST gw100.nc.tekelec.com
      LPORT 2500 RPORT
     ISTRMS 2 OSTRMS 2 BUFSIZE 16
RMODE LIN RMIN 120 RMAX 800
RTIMES 10 CWMIN 3000 UAPS 10
OPEN YES ALW YES
      ASNAMES
      as2
IP Appl Sock table is (6 of 4000) 1% full
Assoc Buffer Space Used (16 KB of 800 KB) on LOC = 1311
```

If the desired association is shown in the rtrv-assoc output, see Flowchart 3-35 on page 3-416 (Sheet 4) for the rules that apply to the association and the new application server, go to step 4.

If the desired association is not shown in the rtrv-assoc output, perform the "Adding a New Association to a New Application Server" procedure on page 3-397 to add a new association to a new application server.

4. Display the sockets assigned to the local IP host value shown in either steps 2 or 3 by entering the rtrv-appl-sock command with the lhost parameter. For this example, enter this command.

rtrv-appl-sock:lhost=gw102.nc.tekelec.com

This is an example of the possible output.

5. Display the associations assigned to the local IP host value specified in step 4 by entering the rtrv-assoc command with the lhost parameter. For this example, enter this command.

```
rtrv-assoc:lhost=gw102.nc.tekelec.com
```

This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:14:37 GMT EAGLE5 36.0.0

CARD IPLNK

ANAME LOC PORT LINK ADAPTER LPORT RPORT OPEN ALW
assoc1 1305 A A SUA 4000 1030 YES YES

IP Appl Sock/Assoc table is (5 of 4000) 1% full
Assoc Buffer Space Used (16 KB of 3200 KB) on LOC = 1305
```

6. Display the application servers that the associations shown in step 5 are assigned to by entering rtrv-as command with the names of the associations shown in step 5. For this example, enter this command.

rtrv-as:aname=assoc1

This is an example of the possible output.

The maximum number of TALI sockets and SCTP association to application server assignments that can be hosted by an IPGWx card (referenced by the **lhost** parameter of the socket and association) is 50.

If the number of TALI sockets and SCTP association to application server assignments is less than 50, go to step 7.

If the number of TALI sockets and SCTP association to application server assignments is 50, the association shown in either steps 2 or 3 cannot be used in this procedure. Go back to step 1 and choose another association to assign to the new application server.

NOTE: If the value of the open parameter of the association being assigned to the application server in step 5 is no, skip this step and go to step 8.

7. Change the value of the open parameter to no by specifying the chg-assoc command with the open=no parameter. For this example, enter this command.

chg-assoc:aname=assoc1:open=no

When this command has successfully completed, this message should appear.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0 CHG-ASSOC: MASP A - COMPLTD;
```

8. Add the application server to the database with the name of the association shown in either steps 2 or 3 using the ent-as command. For this example, enter this command.

ent-as:asname=as4:aname=assoc1

This is an example of the possible outputs.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0 ENT-AS: MASP A - COMPLTD;
```

9. Verify the changes using the **rtrv-as** command with the application server name specified in step 8. For this example, enter this command.

rtrv-as:asname=as4

This is an example of the possible output.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0

AS Name Mode Tr ms Association Names as4 LOADSHARE 10 assoc1

AS table is (4 of 250) 1% full.
```

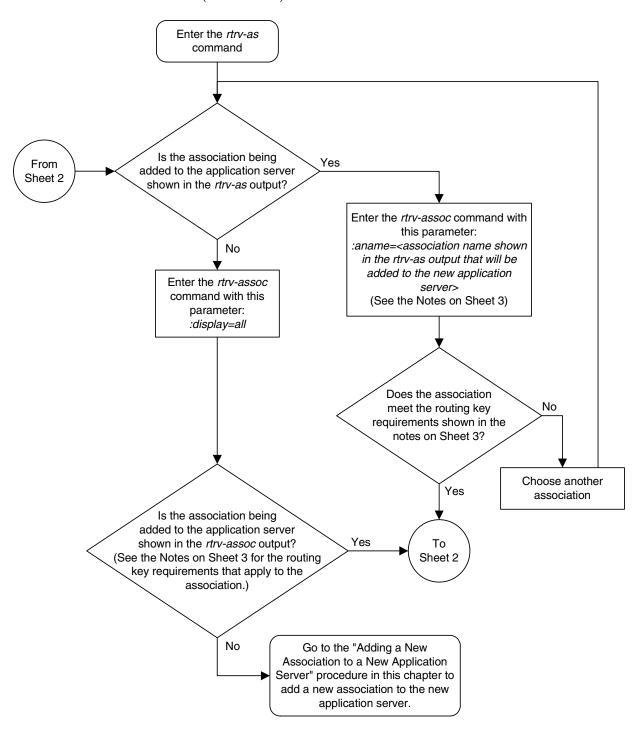
NOTE: If you do not wish to change the open parameter value of the association specified in step 8, skip step 10 and go to step 11.

10. Change the value of the open parameter to yes by specifying the chg-assoc command with the open=yes parameter. For this example, enter this command.

chg-assoc:aname=assoc1:open=yes

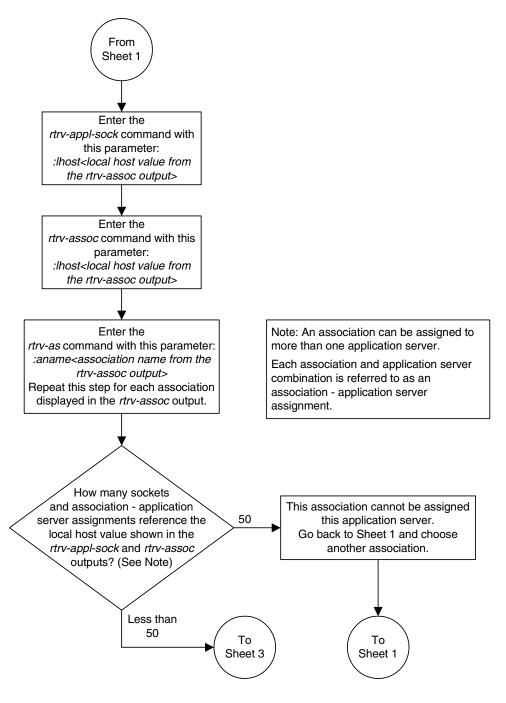
When this command has successfully completed, this message should appear.

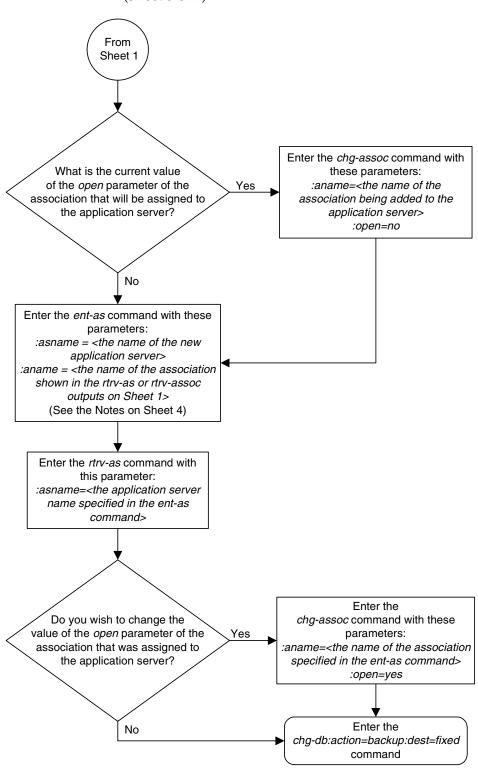
```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0 CHG-ASSOC: MASP A - COMPLTD;
```


11. Back up the new changes, using the chg-db:action=backup:dest=fixed command. These messages should appear; the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.

BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.


BACKUP (FIXED) : MASP A - Backup starts on standby MASP.


BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```


Flowchart 3-35. Adding an Existing Association to a New Application Server (Sheet 1 of 4)

Flowchart 3-35. Adding an Existing Association to a New Application Server (Sheet 2 of 4)

Flowchart 3-35. Adding an Existing Association to a New Application Server (Sheet 3 of 4)

Flowchart 3-35. Adding an Existing Association to a New Application Server (Sheet 4 of 4)

Notes:

- 1. If the application server is being added in this procedure will be assigned to a routing key containing a *rcontext* parameter value, the *adapter* parameter value for the association assigned to this application server can be either M3UA or SUA.
- 2. If the application server is being added in this procedure will be assigned to a routing key that does not contain a *rcontext* parameter value, the *adapter* parameter value for the association assigned to this application server must be M3UA.
- 3. SUA associations and their corresponding application server, can be assigned to only these types of routing keys:

Full routing key - DPC/SI=3/SSN

Partial routing key - DPC/SI=3

Partial routing key - DPC only

Partial routing key - SI=3 only

Default routing key.

The routing key containing the application server with the SUA associations must have an *rcontext* value assigned to it.

If the new application server will not be assigned to one of these types of routing keys, the *adapter* parameter value of the associations assigned to the application server must be M3UA.

4. M2PA associations cannot be assigned to application servers.

Adding a New Association to an Existing Application Server

This procedure is used assign a new association to an existing application server using the ent-as command.

The ent-as command uses these parameters:

:asname – The name of the new application server.

: aname – The name of the association being assigned to the application server.

The maximum number of TALI sockets and SCTP association to application server assignments that can be hosted by an IPGWx card (referenced by the lhost parameter of the socket and association) is 50. For example, if the IPGWx card contains 12 TALI sockets, the maximum number of SCTP association to application server assignments that the IPGWx card can support is 38. The SCTP association to application server assignments could be one SCTP association assigned to 38 application servers, two SCTP associations assigned to 19 application servers, or any combination of SCTP associations assigned to application servers that add up to 38. The number of TALI sockets can be verified with the rtrv-appl-sock:lhost=<local host name> command. The SCTP association to application server assignments can be verified with the rtrv-assoc:lhost=<local host name> and rtrv-as:aname=<association name> commands.

Table 3-34. Examples of IPGWx Card Provisioning Limits

Number of Associations hosted by the IPGWx card	Number of Application Servers each Association is Assigned to *	Number of TALI Sockets Hosted by the IPGWx card	Total Association - Application Server Assignments and TALI Sockets maintained by the IPGWx card		
1	50	0	50		
50	1	0	50		
25	1	25	50		
25	2	0	50		
0	0	50	50		
38	1	12	50		
19	2	12	50		
* The EAGLE 5 ISS can contain a maximum of 250 application servers.					

A maximum of 16 associations can be assigned to an application server.

The open parameter of the association must be set to no before the association can be assigned to the application server. This can be verified with the rtrv-assoc command.

M2PA associations (adapter=m2pa) cannot be assigned to application servers. Only M3UA (adapter=m3ua) and SUA (adapter=sua) associations can be

assigned to application servers. This can be verified in the **ADAPTER** field in the **rtrv-assoc** output.

The application running on the card hosting the association that will be assigned to the application server must be the same as the application running on the cards hosting the other associations assigned to the application server.

Canceling the RTRV-AS, RTRV-APPL-SOCK, and RTRV-ASSOC Commands

Because the rtrv-as, rtrv-appl-sock, and rtrv-assoc commands used in this procedure can output information for a long period of time, the rtrv-as, rtrv-appl-sock, and rtrv-assoc commands can be canceled and the output to the terminal stopped. There are three ways that the rtrv-as, rtrv-appl-sock, and rtrv-assoc commands can be canceled.

- Press the **F9** function key on the keyboard at the terminal where the **rtrv-as**, **rtrv-appl-sock**, or **rtrv-assoc** commands were entered.
- Enter the canc-cmd without the trm parameter at the terminal where the rtrv-as, rtrv-appl-sock, or rtrv-assoc commands were entered.
- Enter the canc-cmd: trm=<xx>, where <xx> is the terminal where the rtrv-as, rtrv-appl-sock, or rtrv-assoc commands were entered, from another terminal other that the terminal where the rtrv-as, rtrv-appl-sock, or rtrv-assoc commands were entered. To enter the canc-cmd: trm=<xx> command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal's permissions can be verified with the rtrv-secu-trm command. The user's permissions can be verified with the rtrv-user or rtrv-secu-user commands.

For more information about the canc-cmd command, go to the Commands Manual.

Procedure

1. Display the application servers in the database using the **rtrv-as** command. This is an example of possible output.

2. Display the application server that the new association will be added to by entering the rtrv-as command with the name of the application server. For this example, enter this command.

rtrv-as:asname=as2

This is an example of possible output.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0

AS Name Mode Tr ms Association Names as2 OVERRIDE 10 assoc7

AS table is (2 of 250) 1% full.
```

A maximum of 16 associations can be assigned to an application server. If the application server displayed in this step contains less than 16 associations, go to step 3.

If the application server displayed in this step contains 16 associations, either select another application server to use in this procedure and repeat this step, or perform the "Adding a New Association to a New Application Server" procedure on page 3-397 to add the new association to a new application server.

3. Display the one of the associations assigned to the application server shown in step 2 using the rtrv-assoc command and specifying the association name shown in the rtrv-as output from step 2. For this example, enter this command.

rtrv-assoc:aname=assoc7

This is an example of possible output.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0

ANAME assoc7

LOC 1203 IPLNK PORT A LINK A ADAPTER SUA VER SUA RFC

LHOST gw105.nc.tekelec.com

ALHOST ---

RHOST gw100.nc.tekelec.com

LPORT 1030 RPORT 1030

ISTRMS 2 OSTRMS 2 BUFSIZE 16

RMODE LIN RMIN 120 RMAX 800

RTIMES 10 CWMIN 3000 UAPS 10

OPEN YES ALW YES

ASNAMES

as2

IP Appl Sock table is (7 of 4000) 1% full

Assoc Buffer Space Used (16 KB of 800 KB) on LOC = 1203
```

The adapter parameter value of all the associations assigned to an application server must be the same. This step identifies the adapter value of the associations assigned to the application server.

The application running on the card hosting the new association must be the same as the application on the cards hosting the associations assigned to the application server.

4. Display the signaling link assigned to the card, shown in step 3 by entering the rtrv-slk command with the card location of the signaling link shown in step 3. For this example, enter this command.

```
rtrv-slk:loc=1203
```

The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:19:37 GMT EAGLE5 36.0.0

LOC LINK LSN SLC TYPE
1203 A lsn5 1 SS7IPGW
```

The application running on the card is shown in the TYPE column of the rtrv-slk output.

For this example, the new association must be assigned to a card running the **SS7IPGW** application.

NOTE: If the local host value shown in step 3 will be assigned to the new association, skip steps 5, 6, and 7, and go to step 8.

NOTE: If another local host value will be assigned to the new association, perform to step 5.

5. Display the IP host names in the database by using the rtrv-ip-host command. The following is an example of the possible output.

rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0

```
LOCAL IPADDR LOCAL HOST
192.1.1.10 IPNODE1-1201
192.1.1.12 GW105.NC.TEKH
192.1.1.14 IPNODE1-1205
192.1.1.20 IPNODE2-1201
192.1.1.22 IPNODE2-1203
192.1.1.24 IPNODE2-1205
                GW105.NC.TEKELEC.COM
192.1.1.30
                KC-HLR1
192.1.1.32
                KC-HLR2
192.1.1.50
                DN-MSC1
192.1.1.52
                 DN-MSC2
REMOTE IPADDR REMOTE HOST
150.1.1.5
                NCDEPTECONOMIC DEVELOPMENT.SOUTHEASTERN COORIDOR ASHVL.GOV
IP Host table is (11 of 512) 2% full
```

If the local IP host name for the new association is not shown in the **LOCAL HOST** column of the **rtrv-ip-host** output, add the new IP host name by performing the "Adding an IP Host" procedure on page 3-153. The new local IP host must be assigned to a card running the application shown in step 4.

After the new local IP host has been added, skip steps 6 through 9, and go to step 10.

If the local IP host name for the new association is shown in the **LOCAL HOST** column of the **rtrv-ip-host** output, go to step 8.

6. Display the IP links in the database by entering the rtrv-ip-lnk command. The following is an example of the possible output.

```
      rlghn-xa03w 06-10-28 21:19:37 GMT EAGLE5
      36.0.0

      LOC
      PORT IPADDR
      SUBMASK
      DUPLEX
      SPEED MACTYPE AUTO MCAST

      1201
      A
      192.1.1.10
      255.255.255.0
      ----
      ---
      DIX
      YES
      NO

      1203
      A
      192.1.1.12
      255.255.255.0
      FULL
      100
      DIX
      NO
      NO
```

7. Display the signaling link assigned to the card, shown in step 6, whose IP address is assigned to the local host shown in step 5 by entering the rtrv-slk command with the card location of the signaling link. For this example, enter this command.

rtrv-slk:loc=1205

The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:19:37 GMT EAGLE5 36.0.0

LOC LINK LSN SLC TYPE
1205 A lsn5 1 SS71PGW
```

The application running on the card is shown in the TYPE column of the rtrv-slk output.

For this example, the new association must be assigned to a card running the **SS7IPGW** application.

If the card's application shown in this step and in step 4 are the same, go to step 8.

If the card's application shown in this step and in step 4 are not the same, either repeat this procedure from step 5 with another local IP host, or add the new local IP host name by performing the "Adding an IP Host" procedure on page 3-153. The new local IP host must be assigned to a card running the application shown in step 4. After the new local IP host has been added, skip steps 8 and 9, and go to step 10.

8. Display the sockets assigned to the local IP host value that will be assigned to the new association by entering the rtrv-appl-sock command with the lhost parameter. For this example, enter this command.

```
rtrv-appl-sock:lhost=IPNODE-1205
```

This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:14:37 GMT EAGLE5 36.0.0

SNAME sock1

LINK A

LHOST IPNODE-1205
```

```
RHOST remotehost1

LPORT 1024 RPORT 2048

SERVER YES DCMPS 10

REXMIT FIXED RTT 60

OPEN YES ALW YES

IP Appl Sock/Assoc table is (7 of 4000) 1% full
```

9. Display the associations assigned to the local IP host value specified in step 8 by entering the **rtrv-assoc** command with the **lhost** parameter. For this example, enter this command.

rtrv-assoc:lhost=IPNODE-1205

This is an example of the possible output.

10. Display the application servers that the associations shown in step 9 are assigned to by entering rtrv-as command with the names of the associations shown in step 9. For this example, enter this command.

rtrv-as:aname=assoc1

This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:14:37 GMT EAGLE5 36.0.0

AS Name Mode Tr ms Association Names as1 LOADSHARE 10 assoc1

AS Table is (2 of 250) 1% full
```

The maximum number of TALI sockets and SCTP association to application server assignments that can be hosted by an IPGWx card (referenced by the lhost parameter of the socket and association) is 50.

If the number of TALI sockets and SCTP association to application server assignments is less than 50, go to step 11.

If the number of TALI sockets and SCTP association to application server assignments is 50, either repeat this procedure from step 5 with another local IP host, or add the new local IP host name by performing the "Adding an IP Host" procedure on page 3-153. The new local IP host must be assigned to a card running the application shown in steps 4 and 7. After the new local IP host has been added, go to step 11.

11. Add the new association by performing the "Adding an Association" procedure on page 3-327. The open parameter value for this association must be set to no. The adapter value for this association must be the same as the adapter value shown in step 3.

NOTE: See Flowchart 3-36 on page 3-428 (Sheet 5) for the rules that apply to the new association and the application server.

12. Add the association to the application server using the ent-as command with the name of the application server specified in step 2 and the name of the new association. For this example, enter this command

```
ent-as:asname=as2:aname=assoc10
```

This is an example of possible output.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0 ENT-AS: MASP A - COMPLTD;
```

13. Verify the changes using the rtrv-as command with the name of the application server specified in step 12. For this example, enter this command

```
rtrv-as:asname=as2
```

This is an example of possible output.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0

AS Name Mode Tr ms Association Names as2 OVERRIDE 10 assoc7 assoc10

AS table is (2 of 250) 1% full.
```

NOTE: If you do not wish to change the open parameter value of the association specified in step 12, skip step 14 and go to step 15.

14. Change the value of the open parameter to yes by specifying the chg-assoc command with the open=yes parameter. For this example, enter this command.

```
chg-assoc:aname=assoc10:open=yes
```

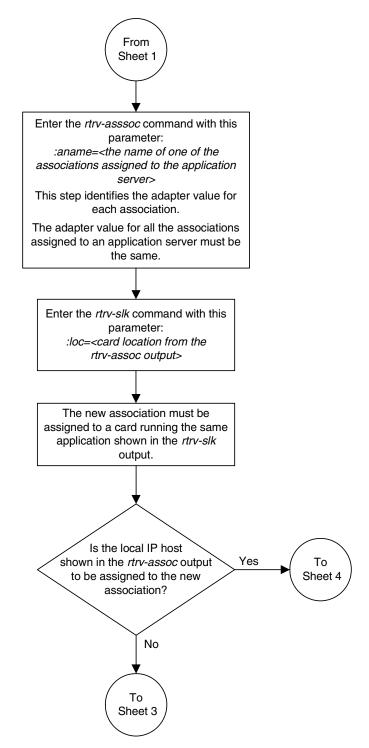
When this command has successfully completed, this message should appear.

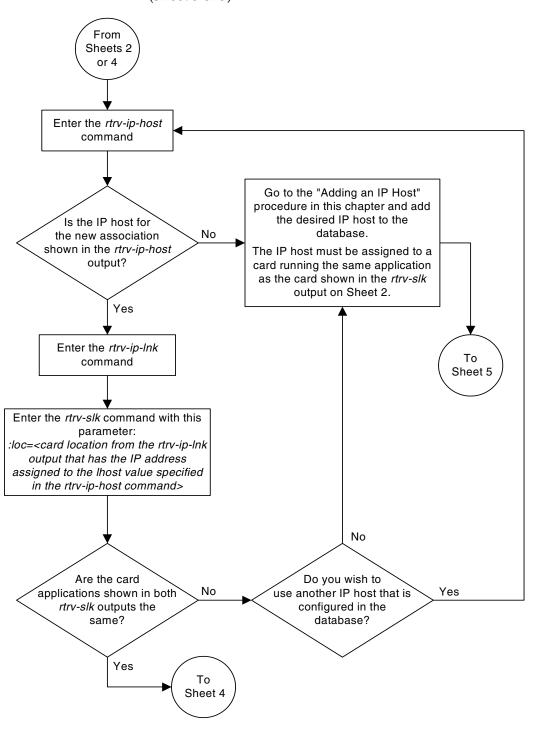
```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0 CHG-ASSOC: MASP A - COMPLTD;
```

15. Back up the new changes, using the chg-db:action=backup:dest=fixed command. These messages should appear; the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.

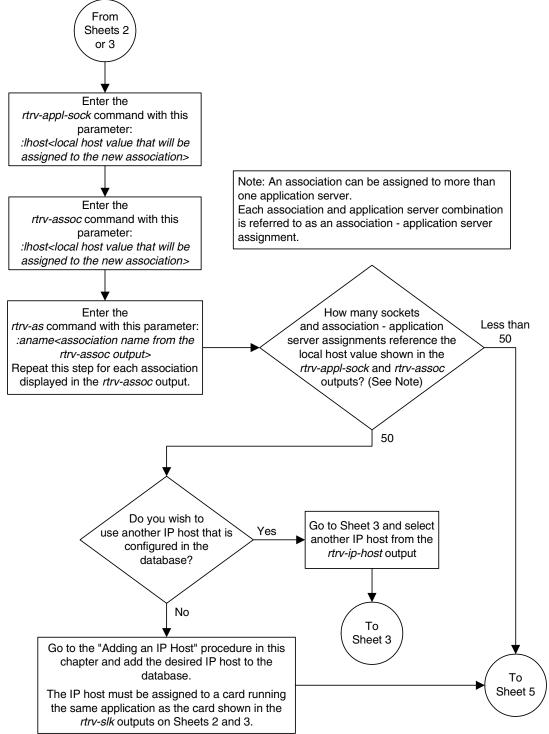
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.

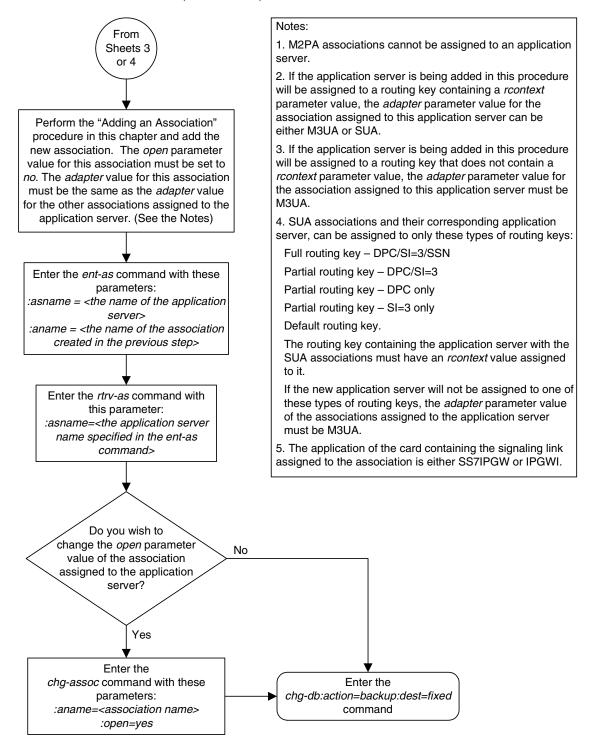

BACKUP (FIXED) : MASP A - Backup starts on standby MASP.


BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

Enter the rtrv-as command Enter the rtrv-as command with this parameter: :asname=<the name of the application server that the association will be added to> Note: A maximum of 16 associations can be assigned to an application server. How many Less than16 associations are assigned То to the application Sheet 2 server? 16 Do you wish to use another application Yes server shown in the rtrv-as output? No Go to the "Adding a New Association to a New Application Server" procedure in this chapter and add the new association to a new application server.

Flowchart 3-36. Adding a New Association to an Existing Application Server (Sheet 1 of 5)


Flowchart 3-36. Adding a New Association to an Existing Application Server (Sheet 2 of 5)



Flowchart 3-36. Adding a New Association to an Existing Application Server (Sheet 3 of 5)

Flowchart 3-36. Adding a New Association to an Existing Application Server (Sheet 4 of 5)

Flowchart 3-36. Adding a New Association to an Existing Application Server (Sheet 5 of 5)

Adding an Existing Association to an Existing Application Server

This procedure is used assign an existing association to an existing application server using the ent-as command.

The ent-as command uses these parameters:

:asname – The name of the application server.

: aname – The name of the association being assigned to the application server.

The maximum number of TALI sockets and SCTP association to application server assignments that can be hosted by an IPGWx card (referenced by the lhost parameter of the socket and association) is 50. For example, if the IPGWx card contains 12 TALI sockets, the maximum number of SCTP association to application server assignments that the IPGWx card can support is 38. The SCTP association to application server assignments could be one SCTP association assigned to 38 application servers, two SCTP associations assigned to 19 application servers, or any combination of SCTP associations assigned to application servers that add up to 38. The number of TALI sockets can be verified with the rtrv-appl-sock:lhost=<local host name> command. The SCTP association to application server assignments can be verified with the rtrv-assoc:lhost=<local host name> command.

Table 3-35. Examples of IPGWx Card Provisioning Limits

Number of Associations hosted by the IPGWx card	Number of Application Servers each Association is Assigned to *	Number of TALI Sockets Hosted by the IPGWx card	Total Association - Application Server Assignments and TALI Sockets maintained by the IPGWx card		
1	50	0	50		
50	1	0	50		
25	1	25	50		
25	2	0	50		
0	0	50	50		
38	1	12	50		
19	2	12	50		
* The EAGLE 5 ISS can contain a maximum of 250 application servers.					

A maximum of 16 associations can be assigned to an application server.

The open parameter of the association must be set to no before the association can be assigned to the application server. This can be verified with the rtrv-assoc command.

M2PA associations (adapter=m2pa) cannot be assigned to application servers. Only M3UA (adapter=m3ua) and SUA (adapter=sua) associations can be

assigned to application servers. This can be verified in the **ADAPTER** field in the **rtrv-assoc** output.

The application running on the card hosting the association that will be assigned to the application server must be the same as the application running on the cards hosting the other associations assigned to the application server.

Canceling the RTRV-AS, RTRV-APPL-SOCK, and RTRV-ASSOC Commands

Because the rtrv-as, rtrv-appl-sock, and rtrv-assoc commands used in this procedure can output information for a long period of time, the rtrv-as, rtrv-appl-sock, and rtrv-assoc commands can be canceled and the output to the terminal stopped. There are three ways that the rtrv-as, rtrv-appl-sock, and rtrv-assoc commands can be canceled.

- Press the **F9** function key on the keyboard at the terminal where the **rtrv-as**, **rtrv-appl-sock**, or **rtrv-assoc** commands were entered.
- Enter the canc-cmd without the trm parameter at the terminal where the rtrv-as, rtrv-appl-sock, or rtrv-assoc commands were entered.
- Enter the canc-cmd:trm=<xx>, where <xx> is the terminal where the rtrv-as, rtrv-appl-sock, or rtrv-assoc commands were entered, from another terminal other that the terminal where the rtrv-as, rtrv-appl-sock, or rtrv-assoc commands were entered. To enter the canc-cmd:trm=<xx> command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal's permissions can be verified with the rtrv-secu-trm command. The user's permissions can be verified with the rtrv-user or rtrv-secu-user commands.

For more information about the canc-cmd command, go to the Commands Manual.

Procedure

1. Display the application servers in the database using the **rtrv-as** command. This is an example of possible output.

rlghncxa03w	06-10-28 09:12:36	GMT EAG	LE5 36.0.0
AS Name as1	Mode LOADSHARE	Tr ms	Association Names a2 a3 assoc1
as2 as3	OVERRIDE OVERRIDE	10	assoc7 swbel32
AS table is	(3 of 250) 1% ful	⊥.	

2. Display the application server that the new association will be added to by entering the rtrv-as command with the name of the application server. For this example, enter this command.

rtrv-as:asname=as2

This is an example of possible output.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0

AS Name Mode Tr ms Association Names as2 OVERRIDE 10 assoc7

AS table is (3 of 250) 1% full.
```

A maximum of 16 associations can be assigned to an application server. If the application server displayed in this step contains less than 16 associations, go to step 3.

If the application server displayed in this step contains 16 associations, either select another application server to use in this procedure and repeat this step, or perform the "Adding an Existing Association to a New Application Server" procedure on page 3-406 to add the association to a new application server.

NOTE: If the association being added to the application server is shown in the rtrv-as output in step 1, skip step 3 and go to step 4.

3. Display the associations in the database using the rtrv-assoc command. This is an example of possible output.

rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0

	CARD	IPLNK						
ANAME	LOC	PORT	LINK	ADAPTER	LPORT	RPORT	OPEN	ALW
swbel32	1201	A	A	M3UA	1030	2345	YES	YES
a2	1305	A	A	SUA	2000	2345	YES	YES
a3	1307	A	A	SUA	3000	2346	YES	YES
assoc1	1305	A	A	SUA	4000	1030	YES	YES
assoc7	1305	A	A	SUA	4500	1030	YES	YES

If the association being added to the application server is shown in this step, go to step 4.

If the association being added to the application server is not shown in this step, perform the "Adding a New Association to an Existing Application Server" procedure on page 3-417 to add a new association to the application server.

4. Display one of the associations assigned to the application server shown in step 2 using the rtrv-assoc command and specifying the association name shown in the rtrv-as output from step 2 or in the rtrv-assoc output in step 3. For this example, enter this command.

rtrv-assoc:aname=assoc7

This is an example of possible output.

rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0

The adapter parameter value of all the associations assigned to an application server must be the same. This step identifies the adapter value of the associations assigned to the application server.

The application running on the card hosting the new association must be the same as the application on the cards hosting the associations assigned to the application server.

5. Display the signaling link assigned to the card, shown in step 4 by entering the rtrv-slk command with the card location of the signaling link. For this example, enter this command.

```
rtrv-slk:loc=1205
```

The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:19:37 GMT EAGLE5 36.0.0

LOC LINK LSN SLC TYPE
1205 A lsn5 1 SS71PGW
```

The application running on the card is shown in the TYPE column of the rtrv-slk output.

For this example, the new association must be assigned to a card running the **SS7IPGW** application.

6. Display the association being added to the application server using the rtrv-assoc command and specifying the name of the association being added. For this example, enter this command.

```
rtrv-assoc:aname=assoc1
```

This is an example of possible output.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0

ANAME assoc1

LOC 1203 IPLNK PORT A LINK A

ADAPTER SUA VER SUA RFC

LHOST gw101.nc.tekelec.com

ALHOST ---
```

IP⁷ Secure Gateway Configuration Procedures

```
RHOST qw100.nc.tekelec.com
    LPORT 4000 RPORT
                             1030
                             2
120
                                     BUFSIZE 16
    ISTRMS 2
                    OSTRMS
                RMIN
    RMODE - 10
    RMODE LIN
                                     RMAX 800
                   CWMIN
                             3000
                                     UAPS
                                             10
                 ALW
    OPEN YES
                              YES
    ASNAMES
    as1
IP Appl Sock table is (6 of 4000) 1% full
Assoc Buffer Space Used (16 KB of 800 KB) on LOC = 1203
```

If the local host and adapter values shown in this step are the same as the local host and adapter values shown in step 4, skip step 7 and go to step 8.

If the adapter value shown in this step is not the same as the adapter value shown in step 4, repeat this procedure from step 3.

If the local host value shown in this step is not the same as the local host value shown in step 4, but the adapter value shown in this step is the same as the adapter values shown in step 4, go to step 7.

7. Display the signaling link assigned to the card, shown in step 6 by entering the rtrv-slk command with the card location of the signaling link. For this example, enter this command.

```
rtrv-slk:loc=1201
```

The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:19:37 GMT EAGLE5 36.0.0

LOC LINK LSN SLC TYPE
1201 A lsn1 0 SS71PGW
```

The application running on the card is shown in the TYPE column of the rtrv-slk output.

For this example, the association being added to the application server must be assigned to a card running the **SS7IPGW** application.

If the card applications shown in this step and in step 5 are the same, go to step 8.

If the card applications shown in this step and in step 5 are not the same, repeat this procedure from step 3.

8. Display the sockets assigned to the local IP host value of the association that will be assigned to the application server by entering the rtrv-appl-sock command with the lhost parameter. For this example, enter this command.

```
rtrv-appl-sock:lhost=gw101.nc.tekelec.com
```

This is an example of the possible output.

9. Display the associations assigned to the local IP host value specified in step 8 by entering the rtrv-assoc command with the lhost parameter. For this example, enter this command.

```
rtrv-assoc:lhost=gw101.nc.tekelec.com
```

This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:14:37 GMT EAGLE5 36.0.0

CARD IPLNK

ANAME LOC PORT LINK ADAPTER LPORT RPORT OPEN ALW
assoc1 1203 A A SUA 4000 1030 YES YES

IP Appl Sock/Assoc table is (6 of 4000) 1% full
Assoc Buffer Space Used (16 KB of 3200 KB) on LOC = 1203
```

10. Display the application servers that the associations shown in step 9 are assigned to by entering rtrv-as command with the names of the associations shown in step 9. For this example, enter this command.

```
rtrv-as:aname=assoc1
```

This is an example of the possible output.

The maximum number of TALI sockets and SCTP association to application server assignments that can be hosted by an IPGWx card (referenced by the **lhost** parameter of the socket and association) is 50.

If the number of TALI sockets and SCTP association to application server assignments is less than 50, go to step 11.

If the number of TALI sockets and SCTP association to application server assignments is 50, either repeat this procedure from step 3, or perform the "Adding a New Association to an Existing Application Server" procedure on page 3-417 to add a new association to this application server.

NOTE: If the value of the open parameter shown in step 6 is no, skip this step and go to step 12.

11. Change the value of the open parameter to no by specifying the chg-assoc command with the open=no parameter. For this example, enter this command.

```
chg-assoc:aname=assoc1:open=no
```

When this command has successfully completed, this message should appear.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0 CHG-ASSOC: MASP A - COMPLTD;
```

12. Add the association to the application server using the ent-as command. For this example, enter this command

```
ent-as:asname=as2:aname=assoc1
```

This is an example of possible output.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0 ENT-AS: MASP A - COMPLTD;
```

13. Verify the changes using the rtrv-as command with the application server name specified in step 12. For this example, enter this command.

```
rtrv-as:asname=as2
```

This is an example of possible output.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0

AS Name Mode Tr ms Association Names as2 OVERRIDE 10 assoc1 assoc7

AS table is (3 of 250) 1% full.
```

NOTE: If you do not wish to change the open parameter value of the association specified in step 12, skip step 14 and go to step 15.

14. Change the value of the open parameter to yes by specifying the chg-assoc command with the open=yes parameter. For this example, enter this command.

```
chg-assoc:aname=assoc1:open=yes
```

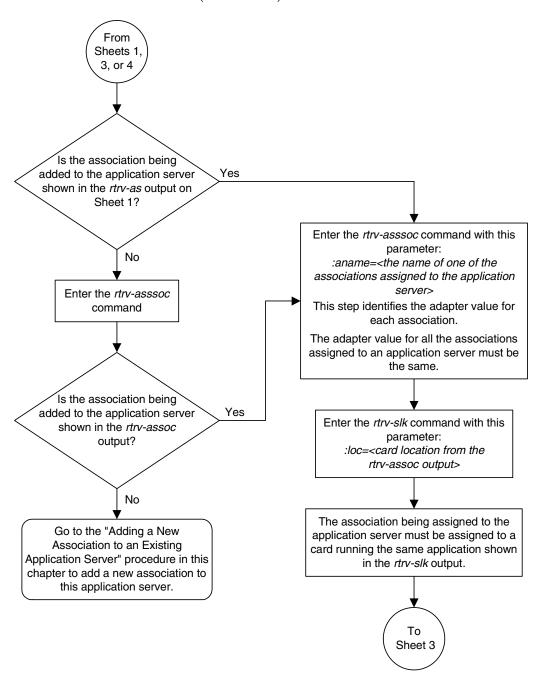
When this command has successfully completed, this message should appear.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0 CHG-ASSOC: MASP A - COMPLTD;
```

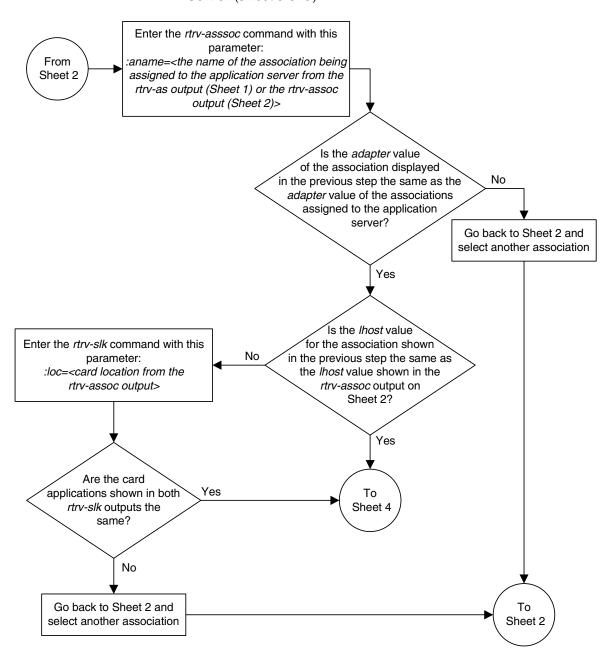
15. Back up the new changes, using the chg-db:action=backup:dest=fixed command. These messages should appear; the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.

BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.


BACKUP (FIXED) : MASP A - Backup starts on standby MASP.

BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```


Enter the rtrv-as command Enter the rtrv-as command with this parameter: :asname=<the name of the application server that the association will be added to> Note: A maximum of 16 associations can be assigned to an application server. Less How many associations are assigned than16 То to the application Sheet 2 server? 16 Do you wish to use another application Yes server shown in the rtrv-as output? No

Go to the "Adding an Existing Association to a New Application Server" procedure in this chapter and add the association to a new application server.

Flowchart 3-37. Adding an Existing Association to an Existing Application Server (Sheet 1 of 5)

Flowchart 3-37. Adding an Existing Association to an Existing Application Server (Sheet 2 of 5)

Flowchart 3-37. Adding an Existing Association to an Existing Application Server (Sheet 3 of 5)

From Sheet 3 Enter the rtrv-appl-sock command with this parameter: :lhost<local host value from the association being added to this application server> Note: An association can be assigned to more than Enter the one application server. rtrv-assoc command with this Each association and application server combination parameter: is referred to as an association - application server :lhost<local host value from assignment. the association being added to this application server> How many sockets Enter the and association - application Less than rtrv-as command with this parameter: server assignments reference the 50 :aname<association name from the local host value specified in the rtrv-assoc output> rtrv-appl-sock and rtrv-assoc Repeat this step for each association commands on this sheet? displayed in the rtrv-assoc output. (See Note) To Sheet 5 50 Do you wish to use another This association cannot Yes association from another be assigned to the application server? application server. Go to the "Adding a New Go to Sheet 2 and select No another association from Association to an Existing Application Server" procedure in the rtrv-as output on Sheet 1 this chapter to add a new association to this application server. То Sheet 2

Flowchart 3-37. Adding an Existing Association to an Existing Application Server (Sheet 4 of 5)

From Sheet 4 What is the open Enter the parameter value of the chg-assoc command with Yes association (shown in the these parameters: rtrv-assoc output on Sheet 3) :aname=<association being added to the name> application server? :open=no No Enter the ent-as command with these parameters: :asname = <the name of the application server> :aname = <the name of the association from the rtrv-assoc output on Sheet 3> Enter the rtrv-as command with this parameter: :asname=<the application server name specified in the ent-as command> Do you wish to change the *open* parameter No value of the association assigned to the application server? Yes Enter the chg-assoc command with these Enter the parameters: chg-db:action=backup:dest=fixed :aname=<association name> command :open=yes

Flowchart 3-37. Adding an Existing Association to an Existing Application Server (Sheet 5 of 5)

Removing an Association from an Application Server

This procedure is used remove an association from an application server using the dlt-as command.

The dlt-as command uses these parameters:

- **:asname** The application server name containing the association being removed in this procedure.
- **: aname** The name of the association being removed from the application server.

The association name and application server name combination must be in the database.

The open parameter value in the association assigned to the application server specified in the dlt-as command must be no. This can be verified with the rtrv-assoc command. Use the chg-assoc command to change the value of the open parameter.

If the association is the only association assigned to the application server, the application server is removed from the database. The application server cannot be removed from the database if it is assigned to a routing key. This can be verified with the rtrv-appl-rtkey command.

Canceling the RTRV-AS, RTRV-ASSOC, and RTRV-APPL-RTKEY Commands

Because the rtrv-as, rtrv-assoc, and rtrv-appl-rtkey commands used in this procedure can output information for a long period of time, the rtrv-as, rtrv-assoc, and rtrv-appl-rtkey commands can be canceled and the output to the terminal stopped. There are three ways that the rtrv-as, rtrv-assoc, and rtrv-appl-rtkey commands can be canceled.

- Press the F9 function key on the keyboard at the terminal where the rtrv-as, rtrv-assoc, or rtrv-appl-rtkey commands were entered.
- Enter the canc-cmd without the trm parameter at the terminal where the rtrv-as, rtrv-assoc, or rtrv-appl-rtkey commands were entered.
- Enter the canc-cmd:trm=<xx>, where <xx> is the terminal where the rtrv-as, rtrv-assoc, or rtrv-appl-rtkey commands were entered, from another terminal other that the terminal where the rtrv-as, rtrv-assoc, or rtrv-appl-rtkey commands were entered. To enter the canc-cmd:trm=<xx> command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal's permissions can be verified with the rtrv-secu-trm command. The user's permissions can be verified with the rtrv-user or rtrv-secu-user commands.

For more information about the canc-cmd command, go to the Commands Manual.

Procedure

1. Display the application servers in the database using the **rtrv-as** command. This is an example of possible output.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0
AS Name
               Mode
                         Tr ms Association Names
               LOADSHARE 10
as1
                                 assoc1
                                assoc2
                                assoc3
                                assoc5
                                 assoc6
             OVERRIDE 10 assoc7
as2
              LOADSHARE 10
as3
                               assoc4
AS table is (3 of 250) 1% full.
```

2. Display the associations to be removed from the application server using the rtrv-assoc command and specifying the association name shown in the rtrv-as output in step 1. For this example, enter this command.

rtrv-assoc:aname=assoc1

This is an example of possible output.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0

ANAME assoc1

LOC 1203 IPLNK PORT A LINK A ADAPTER M3UA VER M3UA RFC

LHOST gw105.nc.tekelec.com

ALHOST ---

RHOST gw100.nc.tekelec.com

LPORT 1030 RPORT 1030

ISTRMS 2 OSTRMS 2 BUFSIZE 16

RMODE LIN RMIN 120 RMAX 800

RTIMES 10 CWMIN 3000 UAPS 10

OPEN YES ALW YES

ASNAMES as1

IP Appl Sock table is (4 of 4000) 1% full

Assoc Buffer Space Used (16 KB of 800 KB) on LOC = 1203
```

NOTE: If the value of the open parameter shown in step 3 is no, skip this step and go to step 5.

3. Change the value of the open parameter to no by specifying the chg-assoc command with the open=no parameter. For this example, enter this command.

chg-assoc:aname=assoc1:open=no

When this command has successfully completed, this message should appear.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0 CHG-ASSOC: MASP A - COMPLTD;
```

NOTE: If the application server specified in this procedure contains more than one association, skip this step and go to step 5.

4. If the association is the only association assigned to the application server, the application server is removed from the database. The application server cannot be removed from the database if it is assigned to a routing key. Verify the routing keys that the application server is assigned to by entering the rtrv-appl-rtkey command with the application server name that will be specified in step 5 and the display=all parameter. For this example, enter this command.

rtrv-appl-rtkey:asname=as1:display=all

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0
RCONTEXT DPCI SI SSN OPCI CICS CICE LOC ----- 6-024-7 5 --- 1-057-4 150 175 STATIC
   ADPTR TYPE ASNAME
   M3UA FULL
                as1
      ANAMES
             assoc2 assoc3
      assoc1
                                                assoc5
      assoc6
RCONTEXT DPCI SI SSN OPCI CICS ----- 2-100-7 6 --- ------
                                               CICE
                    6 --- ----- STATIC
   ADPTR TYPE ASNAME
   M3UA FULL
                as1
      ANAMES
      assoc1
                   assoc2 assoc3 assoc5
      assoc6
STATIC Route Key table is (7 of 2000) 1% full
1105 Route Key table is (2 of 500) 1% full
1107 Route Key table is (2 of 500) 1% full
STATIC Route Key Socket Association table is (7 of 32000) 1% full
1105 Route Key Socket Association table is (2 of 8000) 1% full
1107 Route Key Socket Association table is (2 of 8000) 1% full
```

If the application server is assigned to any routing keys, remove the routing keys referencing the application server by performing the "Removing a Routing Key" procedure on page 3-272.

5. Remove the association from the application server from the database using the dlt-as command. For this example, enter this command.

```
dlt-as:asname=as1:aname=assoc1
```

NOTE: If the association being removed from the application server is the only association assigned to the application server, the application server is removed from the database.

This is an example of possible inputs and outputs:

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0 ENT-AS: MASP A - COMPLTD;
```

6. Verify the changes using the **rtrv-as** command with the application server name specified in step 5. For this example, enter this command.

```
rtrv-as:asname=as1
```

This is an example of possible output.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0

AS Name Mode Tr ms Association Names as1 LOADSHARE 10 assoc2 assoc3 assoc5 assoc6

AS table is (3 of 250) 1% full.
```

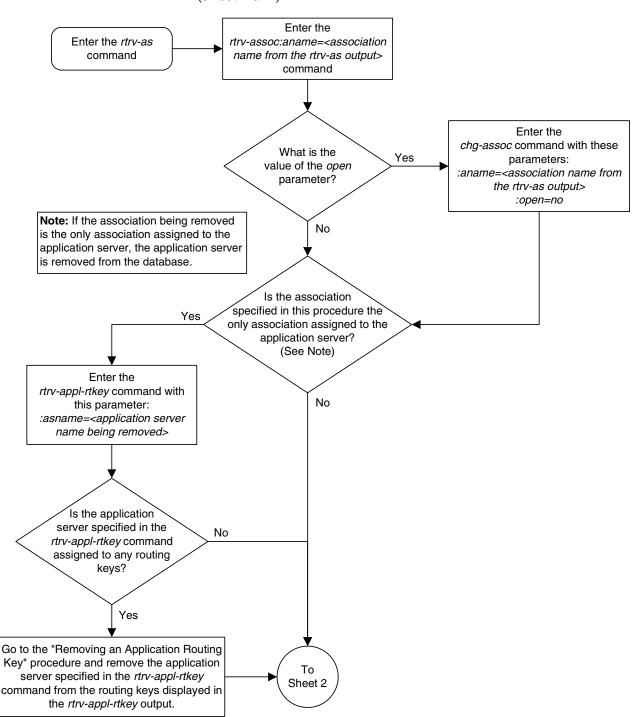
NOTE: If the value of the open parameter was not changed in step 3, skip this step and go to step 8.

7. Change the value of the open parameter to yes by specifying the chg-assoc command with the open=yes parameter. For this example, enter this command.

```
chg-assoc:aname=assoc1:open=yes
```

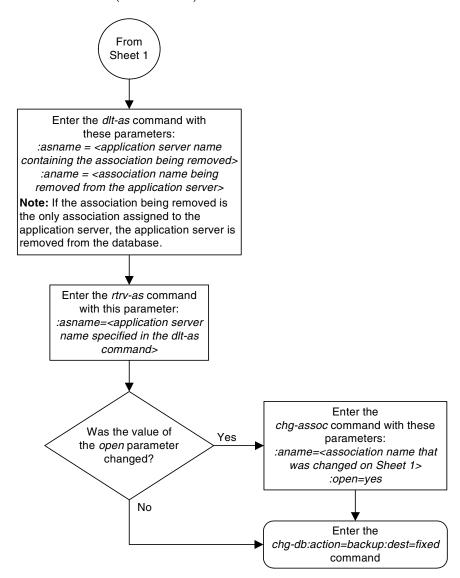
When this command has successfully completed, this message should appear.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0 CHG-ASSOC: MASP A - COMPLTD;
```


8. Back up the new changes, using the chg-db:action=backup:dest=fixed command. These messages should appear; the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.

BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.


BACKUP (FIXED) : MASP A - Backup starts on standby MASP.

BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```


Flowchart 3-38. Removing an Association from an Application Server (Sheet 1 of 2)

Flowchart 3-38. Removing an Association from an Application Server (Sheet 2 of 2)

Changing an Application Server

This procedure is used change the characteristics of an existing application server using the chg-as command.

The chg-as command uses these parameters:

:asname – The name of the application server being changed.

:mode - The traffic mode assigned to the application server, either loadshare
or override.

:tr – The application server recovery timer, 10 - 2000 milliseconds.

The mode parameter value cannot be changed unless the open parameter value of the all the associations assigned to the application server is set to no. This can be verified with the rtrv-assoc command.

The association assignments for an application server cannot be changed with this procedure. To change an association assignment for an application server, go to the "Removing an Association from an Application Server" procedure on page 3-441 and remove the association from the application server, then perform one of these procedures to add another association to the application server:

- "Adding a New Association to an Existing Application Server" procedure on page 3-417
- "Adding an Existing Association to an Existing Application Server" procedure on page 3-429.

Canceling the RTRV-AS and RTRV-ASSOC Commands

Because the rtrv-as and rtrv-assoc commands used in this procedure can output information for a long period of time, the rtrv-as and rtrv-assoc commands can be canceled and the output to the terminal stopped. There are three ways that the rtrv-as and rtrv-assoc commands can be canceled.

- Press the **F9** function key on the keyboard at the terminal where the **rtrv-as** or **rtrv-assoc** commands were entered.
- Enter the canc-cmd without the trm parameter at the terminal where the rtrv-as or rtrv-assoc commands were entered.
- Enter the canc-cmd:trm=<xx>, where <xx> is the terminal where the rtrv-as or rtrv-assoc commands were entered, from another terminal other that the terminal where the rtrv-as or rtrv-assoc commands were entered. To enter the canc-cmd:trm=<xx> command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal's permissions can be verified with the rtrv-secu-trm command. The user's permissions can be verified with the rtrv-user or rtrv-secu-user commands.

For more information about the canc-cmd command, go to the Commands Manual.

Procedure

1. Display the application servers in the database using the **rtrv-as** command. This is an example of possible output.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0
             Mode Tr ms Association Names
AS Name
             LOADSHARE 10 assoc1
as1
                               assoc2
                               assoc3
                               assoc5
                               assoc6
             OVERRIDE 10
                              assoc7
as2
as3
             LOADSHARE 10
                              assoc4
AS table is (2 of 250) 1% full.
```

NOTE: If the mode parameter will not be specified with the chg-as command in step 5, skip steps 2 through 4 and go to step 5.

2. Display one of the associations assigned to the application server shown in step 1 using the rtrv-assoc command and specifying the association name shown in the rtrv-as output in step 1. For this example, enter this command.

rtrv-assoc:aname=assoc1

This is an example of possible output.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0

ANAME assoc1

LOC 1203 IPLNK PORT A LINK A

ADAPTER M3UA VER M3UA RFC

LHOST gw105.nc.tekelec.com

ALHOST ---

RHOST gw100.ncd-economic-development.southeastern-cooridor-ash.gov

LPORT 1030 RPORT 2345

ISTRMS 2 OSTRMS 2 BUFSIZE 16

RMODE LIN RMIN 120 RMAX 800

RTIMES 10 CWMIN 3000 UAPS 10

OPEN YES ALW YES

ASNAMES

as1

IP Appl Sock table is (4 of 4000) 1% full

Assoc Buffer Space Used (16 KB of 800 KB) on LOC = 1203
```

NOTE: If the value of the open parameter shown in step 2 is no, skip this step and go to step 4.

3. Change the value of the open parameter to no by specifying the chg-assoc command with the open=no parameter. For this example, enter this command.

chg-assoc:aname=assoc1:open=no

When this command has successfully completed, this message should appear.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0 CHG-ASSOC: MASP A - COMPLTD
```

NOTE: If all the associations assigned to the application server been displayed, skip this step and go to step 5.

- **4.** Repeat steps 2 through 4 for all associations assigned to the application server being changed.
- **5.** Change the application server in the database using the **chg-as** command. For this example, enter this command

```
chg-as:asname=as1:mode=override:tr=1000
```

This is an example of possible inputs and outputs:

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0 CHG-AS: MASP A - COMPLTD;
```

6. Verify the changes using the **rtrv-as** command. This is an example of possible output.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0
```

AS Name as1	Mode OVERRIDE	Tr ms 1000	Association Names assoc1 assoc2 assoc3 assoc5 assoc6
as2 as3	OVERRIDE LOADSHARE	10 10	assoc7
AS table is (2 of	250) 1% ful	1	

NOTE: If the value of the open parameter was not changed in step 3, skip this step and go to step 8.

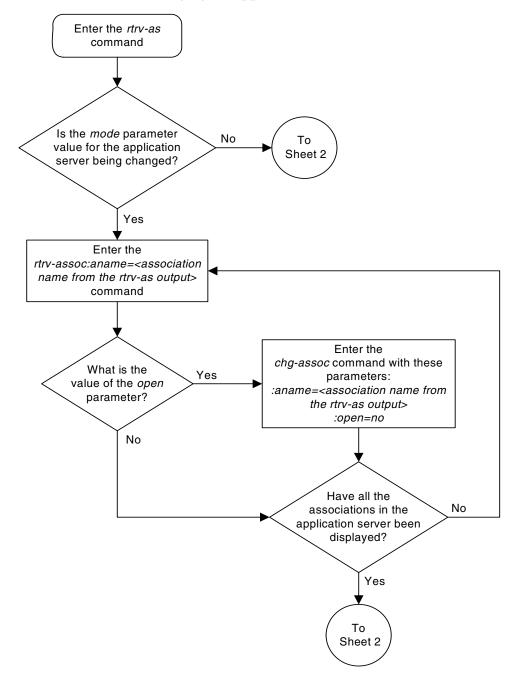
7. Change the value of the open parameter to yes by specifying the chg-assoc command with the open=yes parameter. For this example, enter this command.

chg-assoc:aname=assoc1:open=yes

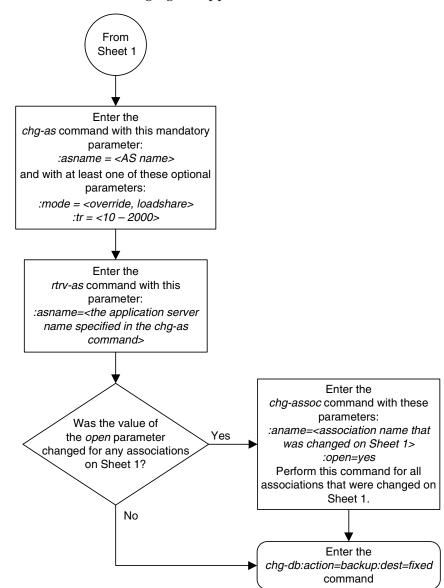
When this command has successfully completed, this message should appear.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0 CHG-ASSOC: MASP A - COMPLTD
```

Repeat this step for all associations that were changed in step 3.


8. Back up the new changes, using the chg-db:action=backup:dest=fixed command. These messages should appear; the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.


BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED) : MASP A - Backup starts on standby MASP.

BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```


Flowchart 3-39. Changing an Application Server (Sheet 1 of 2)

Flowchart 3-39. Changing an Application Server (Sheet 2 of 2)

Adding a Network Appearance

The network appearance field identifies the SS7 network context for the message, for the purpose of logically separating the signaling traffic between the SGP (signaling gateway process) and the ASP (application server process) over a common SCTP (stream control transmission protocol) association. This field is contained in the DATA, DUNA, DAVA, DRST, DAUD, SCON, and DUPU messages.

The network appearance is provisioned in the database using the ent-na command with these parameters.

```
:na – the 32-bit value of the network appearance, from 0 to 4294967295.
```

:type – the network type of the network appearance, ansi (ANSI), itui (ITU-I), itun (14-bit ITU-N), itun24 (24-bit ITU-N), ituis (ITU-I Spare), ituns (14-bit ITU-N Spare).

:gc – the specific ITU-N group code associated with the network appearance.

The gc parameter can be specified only with the type=itun or type=ituns parameters.

The gc parameter must be specified with the type=itun or type=ituns parameters if the ITU Duplicate Point Code feature is on. If the ITU Duplicate Point Code feature is off, the gc parameter cannot be specified.

The gc parameter value must be shown in the rtrv-spc or rtrv-sid outputs.

The ituis or ituns parameters can be specified only if the ITU National and International Spare Point Code Support feature is enabled.

Procedure

1. Display the network appearances in the database with the rtrv-na command. This is an example of the possible output.

```
      rlghncxa03w
      06-10-28 09:12:36 GMT EAGLE5 36.0.0

      TYPE
      GC
      NA

      ANSI
      --
      100

      ITUN
      FR
      4000000000

      ITUN
      GE
      1000000000
```

NOTE: If the gc parameter is not being specified in this procedure, skip this step and step 3, and go to step 4.

2. Display the self-identification of the EAGLE 5 ISS using the rtrv-sid command. This is an example of the possible output.

rlghncxa03w	06-10-28 09:12:36	GMT EAGLE5 36	.0.0	
PCA	PCI	PCN	CLLI	PCTYPE
001-001-001	1-200-6	13482	rlghncxa0	3w OTHER
CPCA				
002-002-002	002-002-003	002-002	-004 002	-002-005
002-002-006	002-002-007	002-002	-008 002	-002-009
004-002-001	004-003-003	144-212	1-003	
CPCA (LNP)				
005-005-002	005-005-004	005-005-0	105	
CPCI				
1-001-1	1-001-2	1-001-3	1-0	01-4
CPCN				
02091	02092	02094	02	097
02191	02192	11177		

If the desired group code is shown in the rtrv-sid output, skip step 3 and go to step 4.

3. Display the secondary point codes in the database with the **rtrv-spc** command. This is an example of the possible output.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0
SPC (Secondary Point Codes)
SPCA
001-010-010
002-010-010
003-010-010
SPC-I
1-253-5
2-254-6
3-255-7
SPC-N
10-01-11-1-fr
13-02-12-0-ge
13-02-12-0-uk
SPC-N24
none
Secondary Point Code table is (9 of 40) 23% full
```

If the desired group code is not shown in the rtrv-spc or rtrv-sid outputs, go to the "Adding a Secondary Point Code" procedure in the *Database Administration Manual - SS7* to turn the ITU Duplicate Point Code feature on, and add a secondary point code to the database with the desired group code value.

NOTE: If the ituis or ituns parameters will not be specified in this procedure, skip this step and go to step 5.

NOTE: If the ituis or ituns parameters will be specified in this procedure, and ITU-I spare or 14-bit ITU-N spare network appearances are shown in the rtrv-na output in step 1, or ITU-I spare or 14-bit ITU-N spare point codes are shown in the rtrv-sid output in step 2, skip this step and go to step 5.

4. Display the status of the ITU National and International Spare Point Code Support feature by entering the rtrv-ctrl-feat command with the ITU National and International Spare Point Code Support feature part number. Enter this command.

```
rtrv-ctrl-feat:partnum=893013601
```

The following is an example of the possible output.

If the ITU National and International Spare Point Code Support feature is not enabled, perform the "Activating the ITU National and International Spare Point Code Support feature" procedure in the *Database Administration Manual - SS7* and enable and turn on the ITU National and International Spare Point Code Support feature.

5. Add the network appearance to the database with the ent-na command. If the gc parameter is specified with the ent-na command, the gc parameter value must be shown in the rtrv-sid output in step 2, or assigned to an ITU-N point code (SPC-N) shown in the rtrv-spc output in step 3. For this example, enter these commands.

```
ent-na:na=1000:type=itui
ent-na:na=3:type=itun24
ent-na:na=150000:type=itun:gc=uk
ent-na:na=2000:type=ituis
ent-na:na=5000:type=ituns:gc=sp
```

When each of these commands have successfully completed, this message should appear.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0 ENT-NA: MASP A - COMPLTD
```

6. Verify the changes using the **rtrv-na** command. This is an example of possible output.

```
      rlghncxa03w
      06-10-28
      09:12:36
      GMT
      EAGLE5
      36.0.0

      TYPE
      GC
      NA

      ANSI
      --
      100

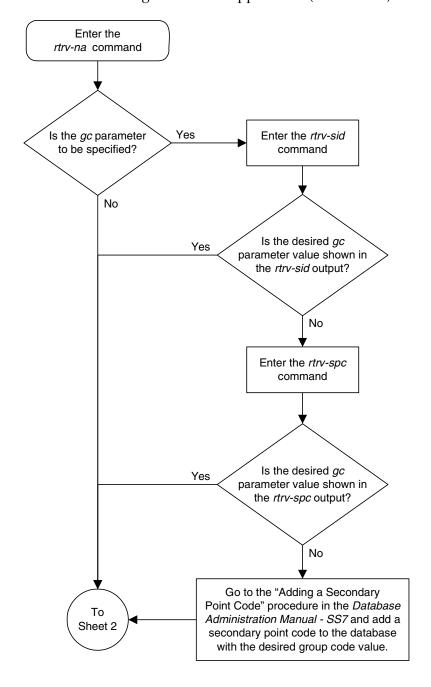
      ITUI
      --
      1000

      ITUN
      deg
      1000000000

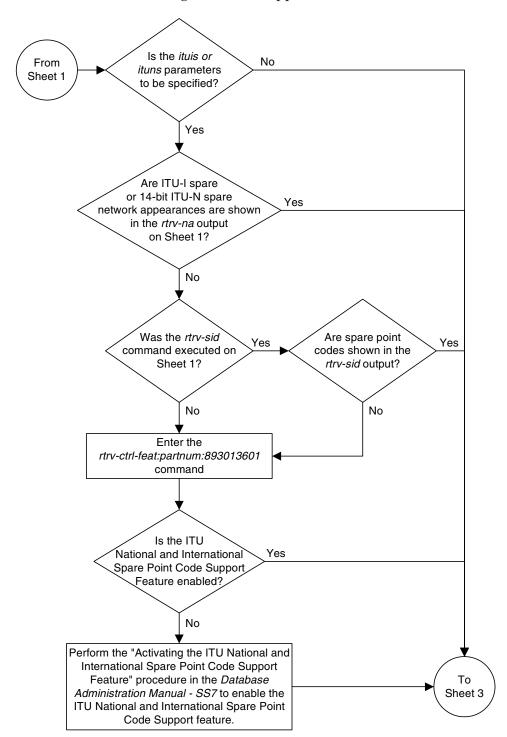
      ITUN24
      --
      3

      ITUIS
      --
      2000

      ITUIS
      sp
      5000
```

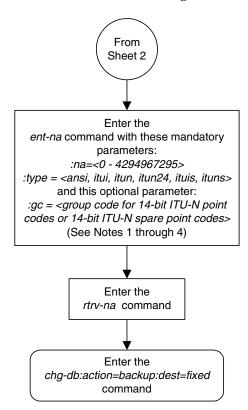

7. Back up the new changes, using the chg-db:action=backup:dest=fixed command. These messages should appear; the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.


BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED) : MASP A - Backup starts on standby MASP.

BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```



Flowchart 3-40. Adding a Network Appearance (Sheet 1 of 3)

Flowchart 3-40. Adding a Network Appearance (Sheet 2 of 3)

Flowchart 3-40. Adding a Network Appearance (Sheet 3 of 3)

Notes:

- 1. The group code value (*gc*) must be shown in the *rtrv-sid* or *rtrv-spc* output.
- 2. The *gc* parameter can be specified with the *type=itun* or *type=ituns* parameters, but cannot be specified with the *type=ansi*, *type=itui*, *type=ituis* or *type=itun24* parameters.
- 3. If group codes are shown in the *rtrv-sid* or *rtrv-spc* outputs, the *gc* parameter must be specified with the *type=itun* or *type=ituns* parameters.
- 4. The *type=ituis* or *type=ituns* parameters can be specified only if the ITU National and International Spare Point Code Support feature is enabled.

Removing a Network Appearance

This procedure removes the network appearance from the database using the dlt-na command with these parameters.

:na – the 32-bit value of the network appearance, from 0 to 4294967295.

:type - the network type of the network appearance, ansi (ANSI), itui (ITU-I), itun (14-bit ITU-N), itun24 (24-bit ITU-N), ituis (ITU-I Spare), ituns (14-bit ITU-N Spare).

:gc – the specific ITU-N group code associated with the network appearance.

Specifying the gc parameter removes the specific network appearance containing the na and gc parameter values.

Specifying the type=itun or type=ituns parameter without the gc parameter removes all 14-bit ITU-N or 14-bit ITU-N spare network appearances containing the specified na parameter value.

Procedure

1. Display the network appearances in the database with the rtrv-na command. This is an example of the possible output.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0
TYPE
     GC
ANSI
      --
               100
ITUI --
              1000
           150000
ITUN uk
ITUN fr 400000000
ITUN ge 100000000
ITUN24 --
               3
ITUIS --
             2000
ITUNS sp
              5000
```

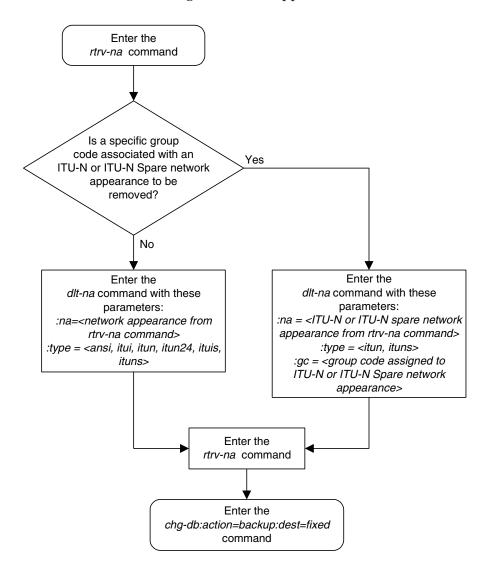
2. Remove the network appearance from the database with the dlt-na command. For this example, enter these commands.

```
dlt-na:na=100:type=ansi
dlt-na:na=4000000000:type=itun:gc=fr
```

When each of these commands have successfully completed, this message should appear.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0 DLT-NA: MASP A - COMPLTD
```

3. Verify the changes using the rtrv-na command. This is an example of possible output.


4. Back up the new changes, using the chg-db:action=backup:dest=fixed command. These messages should appear; the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.

BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED) : MASP A - Backup starts on standby MASP.

BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```


Flowchart 3-41. Removing a Network Appearance

Changing the SCTP Checksum Algorithm Option

Use this procedure to change the SCTP checksum algorithm, either Adler-32 or CRC-32c, applied to traffic on SCTP associations. The sctpcsum parameter of the chg-sg-opts command is used to change this option. This option is a system-wide option that applies to associations assigned to IP cards running the IPLIM, IPLIMI, SS7IPGW, and IPGWI applications.

Once the SCTP checksum option has been changed, the associations on each IP card need to be reset by changing the open parameter value for each association to no, then back to yes. This ensures that the associations on the IP card are using the new SCTP checksum algorithm.

Canceling the RTRV-ASSOC Command

Because the rtrv-assoc command used in this procedure can output information for a long period of time, the rtrv-assoc command can be canceled and the output to the terminal stopped. There are three ways that the rtrv-assoc command can be canceled.

- Press the **F9** function key on the keyboard at the terminal where the **rtry-assoc** command was entered.
- Enter the canc-cmd without the trm parameter at the terminal where the rtrv-assoc command was entered.
- Enter the canc-cmd:trm=<xx>, where <xx> is the terminal where the rtrv-assoc command was entered, from another terminal other that the terminal where the rtrv-assoc command was entered. To enter the canc-cmd:trm=<xx> command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal's permissions can be verified with the rtrv-secu-trm command. The user's permissions can be verified with the rtrv-user or rtrv-secu-user commands.

For more information about the canc-cmd command, go to the Commands Manual.

Procedure

1. Display the current IP options in the database by entering the rtrv-sg-opts command. The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0
SYNC: TALI
SRKQ: 250
DRKQ: 750
SNMPCONT: john doe 555-123-4567
GETCOMM: public
SETCOMM: private
TRAPCOMM: public
INHFEPALM: NO
SCTPCSUM: adler32
IPGWABATE: NO
IPLIMABATE: NO
IPTPSALMTHRESH: 80
```

2. Display the cards in the EAGLE 5 ISS by entering the rtrv-card command. This is an example of the possible output.

rlghnc	xa03w 06-1	0-15 16:34	:56 GM	T EAGLE5	36.0	. 0			
CARD	TYPE	APPL	LSET	NAME	LINK	SLC	LSET NAME	LINK	SLC
1101	TSM	SCCP							
1102	TSM	GLS							
1104	ACMENET	STPLAN							
1113	GSPM	EOAM							
1114	TDM-A								
1115	GSPM	EOAM							
1116	TDM-B								
1117	MDAL								
1201	LIMDS0	SS7ANSI	lsn1		A	0	lsn2	В	1
1202	DCM	IPLIM	ipnod	le2	A	1			
1203	LIMV35	SS7ANSI	lsn2		A	0	lsn1	В	1
1204	LIMATM	ATMANSI	atmgw	<i>r</i> y	A	0			
1205	DCM	IPLIM	ipnod	le1	A	0	ipnode3	В	1
1207	DCM	IPLIM	ipnod	le2	A	0			
1303	DCM	IPLIM	ipnod	le3	A	0	ipnode1	В	1
1305	DCM	IPLIM	ipnod	le4	A	0			
1308	DCM	IPLIM	ipnod	le3	В	2			
			ipnod	le1	A1	2	ipnode4	B2	1
1315	DCM	SS7IPGW	ipgtw	vy1	A				
1317	DCM	IPGWI	ipgtw	ry2	A				

Record the card location, shown in the **Loc** column, and signaling link, shown in the **Link** column, information for all cards running the IPLIM, IPLIMI, SS7IPGW, and IPGWI applications.

NOTE: If no cards running the IPLIM or IPLIMI applications are shown in the rtrv-card output in step 2, skip steps 3 through 15 and go to step 16.

3. Change the SCTP checksum option in the database using the chg-sg-opts command. For this example, enter this command.

```
chg-sg-opts:sctpcsum=crc32c
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-28 21:19:37 GMT EAGLE5 36.0.0 CHG-SG-OPTS: MASP A - COMPLID
```

4. Verify that the SCTP checksum algorithm was changed using the rtrv-sg-opts command. The SCTP checksum algorithm option value is shown in the SCTPCSUM parameter. The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0
SYNC:
            TALI
SRKO:
             250
             750
DRKQ:
SNMPCONT:
            john doe 555-123-4567
            public
GETCOMM:
            private
SETCOMM:
TRAPCOMM:
              public
             NO
INHFEPALM:
SCTPCSUM:
             crc32c
IPGWABATE:
IPLIMABATE:
             NO
IPTPSALMTHRESH: 80
```

5. Select one of the IP cards shown in the rtrv-card output in step 2 running the IPLIM or IPLIMI applications. Place the signaling links on this card out of service using the dact-slk command. For this example, enter these commands.

```
dact-slk:loc=1308:link=a1
dact-slk:loc=1308:link=b
dact-slk:loc=1308:link=b2
```

When these commands have successfully completed, this message appears.

```
rlghncxa03w 06-10-12 09:12:36 GMT EAGLE5 36.0.0 Deactivate Link message sent to card
```

6. Display the IP addresses of the IP links in the database by entering the rtrv-ip-lnk command. The following is an example of the possible output.

rlghncxa03w 06-10-28 21:17:37 GMT EAGLE5 36.0.0								
LOC	PORT	IPADDR	SUBMASK	DUPLEX	SPEED	${\tt MACTYPE}$	AUTO	MCAST
1202	A	192.1.1.10	255.255.255.0	HALF	10	DIX	NO	NO
1202	В			HALF	10	DIX	NO	NO
1205	A	192.1.1.12	255.255.255.0	HALF	10	DIX	NO	NO
1205	В			HALF	10	DIX	NO	NO
1207	A	192.1.1.14	255.255.255.0	HALF	10	DIX	NO	NO
1207	В			HALF	10	DIX	NO	NO
1303	A	192.1.1.20	255.255.255.0	HALF	10	DIX	NO	NO

```
1303 B ------ HALF 10 DIX NO NO
1305 A 192.1.1.22 255.255.255.0 HALF 10 DIX NO NO
1305 B ------ HALF 10 DIX
                                     NO NO
1308 A 192.1.1.24 255.255.255.0 HALF 10 DIX
                                     NO NO
1308 B
                                     NO NO
      ----- HALF 10 DIX
                             10
      192.1.1.50 255.255.255.0 HALF
1315 A
                                 DIX
                                     NO
                                         NO
1315 B
      ----- HALF
                             10
                                 DIX
                                     NO
                                        NO
     192.1.1.52 255.255.255.0 HALF 10 DIX
                                     NO NO
1317 A
1317 B ------ HALF 10 DIX NO NO
IP-LNK table is (16 of 512) 3% full.
```

7. Display the current IP host information in the database by entering the rtrv-ip-host command. The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:17:37 GMT EAGLE5 36.0.0
LOCAL IPADDR LOCAL HOST
192.1.1.10
               IPNODE1-1201
192.1.1.12
               IPNODE1-1203
192.1.1.14 IPNODE1-1205
192.1.1.20 IPNODE2-1201
192.1.1.22
             IPNODE2-1203
192.1.1.24
             IPNODE2-1205
192.1.1.32 KC-HLR2
192.1.1.50
             DN-MSC1
             DN-MSC2
192.1.1.52
REMOTE IPADDR REMOTE HOST
150.1.1.5
              NCDEPTECONOMIC_DEVELOPMENT.SOUTHEASTERN_COORIDOR_ASHVL.GOV
IP Host table is (10 of 512) 2% full
```

8. Display the associations assigned to the IP card specified in step 5, using the rtrv-assoc command with the local host name of the associations assigned to the IP card. To find the local host name of the association, the card location of the IP card is assigned to an IP address in the IP link table (rtrv-ip-lnk output). The IP address is assigned to a hostname in the IP host table (rtrv-ip-host output).

For this example, the local host name of associations assigned to the IP card 1308 (the card specified in step 5) is IPNODE2-1205. Enter this command.

rtrv-assoc:lhost=ipnode2-1205

The following is an example of the possible output.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0

CARD IPLNK

ANAME LOC PORT LINK ADAPTER LPORT RPORT OPEN ALW
assoc2 1308 A A1 M2PA 2187 1025 YES YES
assoc4 1308 A B M2PA 3290 1025 YES YES
assoc5 1308 A B2 M2PA 1057 1025 YES YES

IP Appl Sock/Assoc table is (9 of 4000) 1% full
Assoc Buffer Space Used (600 KB of 3200 KB) on LOC = 1308
```

9. Change the value of the open parameter of the associations shown in step 8 to no by specifying the chg-assoc command with the open=no parameter. For this example, enter this command.

```
chg-assoc:aname=assoc2:open=no
chg-assoc:aname=assoc4:open=no
chg-assoc:aname=assoc5:open=no
When this command has successfully completed, this message should appear.
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0
CHG-ASSOC: MASP A - COMPLTD;
```

10. Change the value of the open parameter of the associations changed in step 9 to yes by specifying the chg-assoc command with the open=yes parameter. For this example, enter this command.

```
chg-assoc:aname=assoc2:open=yes
chg-assoc:aname=assoc4:open=yes
chg-assoc:aname=assoc5:open=yes
When this command has successfully completed, this message should appear.
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0
CHG-ASSOC: MASP A - COMPLTD;
```

11. Put the signaling links that were placed out of service in step 5 back into service using the act-slk command. For example, enter this command.

```
act-slk:loc=1308:link=a1
act-slk:loc=1308:link=b
act-slk:loc=1308:link=b2
When these commands have successfully completed, this message appears.
rlghncxa03w 06-10-07 11:11:28 GMT EAGLE5 36.0.0
Activate Link message sent to card
```

12. Verify the in-service normal (IS-NR) status of the signaling link by using the rept-stat-slk command and specifying the card location and link values specified in step 11. For example, enter these commands.

```
rept-stat-slk:loc=1308:link=a1
```

This message should appear.

rept-stat-slk:loc=1308:link=b

This message should appear.

rept-stat-slk:loc=1308:link=b2

This message should appear.

13. Enter the netstat -p sctp pass command with the card location of the IP card to determine if any errors have occurred. For this example, enter this command.

pass:loc=1308:cmd="netstat -p sctp"

The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0
SCTP:
      0 ip packets sent
            0 ip packets sent with data chunk
            0 control chunks (excludes retransmissions)
            0 ordered data chunks (excludes retransmissions)
            0 unordered data chunks (excludes retransmissions)
            O user messages fragmented due to MTU
            0 retransmit data chunks sent
            0 sacks sent
            0 send failed
      0 ip packets received
            0 ip packets received with data chunk
            0 control chunks (excludes duplicates)
            0 ordered data chunks (excludes duplicates)
            0 unordered data chunks (excludes duplicates)
            0 user messages reassembled
            0 data chunks read
           0 duplicate tsns received
            0 sacks received
            0 gap ack blocks received
            0 out of the blue
           0 with invalid checksum
      0 connections established
           0 by upper layer
            0 by remote endpoint
      0 connections terminated
           0 ungracefully
            0 gracefully
      0 associations supported
      O associations dropped due to retransmits
      O consecutive retransmit timeouts
      0 retransmit timer count
      0 fast retransmit count
      0 heartbeat requests received
      0 heartbeat acks received
      0 heartbeat requests sent
      0 milliseconds cookie life at 4-way start-up handshake
      O retransmission attempts are allowed at start-up phase
rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0
```

NETSTAT command complete

If errors are shown in the pass command output, contact the Customer Care Center. Refer to "Customer Care Center" on page 1-9 for the contact information.

14. Repeat steps 5 through 13 to update the other IP cards in the EAGLE 5 ISS running the IPLIM and IPLIMI applications with the new SCTP checksum algorithm.

Once all the IP cards running the IPLIM and IPLIMI applications have been updated, and if the rtrv-card output in step 2 does not show any cards running the SS7IPGW or IPGWI applications, this procedure is finished after the database is backed up in step 16.

If the rtrv-card output in step 2 shows cards running the SS7IPGW or IPGWI applications, skip step 15 and go to step 16.

15. Back up the database by entering the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.

BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED) : MASP A - Backup starts on standby MASP.

BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

- **16.** At the IP near end node, stop all traffic to one of the IP cards running the SS7IPGW or IPGWI applications on the EAGLE 5 ISS.
- **17.** At the EAGLE 5 ISS, enter the msucount -1 pass command with the card location of the IP card selected in step 16. For this example, enter this command.

```
pass:loc=1315:cmd="msucount -1"
```

The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0
PASS: Command sent to card
rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0
MSUCOUNT: Command In Progress
rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0
MSUCOUNT: MSU Count Report
______
Link Measurements (Link A)
Transmit Counts
                         Receive Counts
_____
                          ______
rate msus bytes
                          rate msus bytes
                               -----
    -----
```

18. Display the IP addresses of the IP links in the database by entering the rtrv-ip-lnk command. The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:17:37 GMT EAGLE5 36.0.0
LOC PORT IPADDR SUBMASK DUPLEX SPEED MACTYPE AUTO MCAST 1202 A 192.1.1.10 255.255.255.0 HALF 10 DIX NO NO
1202 B
       ----- HALF
                                          NO
                                             NO
                                 10
                                 10
1205 A
      192.1.1.12 255.255.255.0 HALF
                                          NO NO
                                    DIX
1205 B
      ----- HALF 10 DIX NO NO
1207 A 192.1.1.14 255.255.255.0 HALF 10 DIX NO NO
1207 B
      ----- HALF 10 DIX NO NO
1303 A 192.1.1.20 255.255.255.0 HALF 10 DIX NO NO
      ----- HALF
1303 B
                                10 DIX NO NO
      192.1.1.22 255.255.255.0 HALF
                                 10 DIX NO NO
1305 A
                                         NO
                                 10
1305 B
       ----- HALF
                                    DIX
      192.1.1.24 255.255.255.0 HALF
1308 A
                                 10
                                    DIX
                                          NO
1308 B
       ----- HALF
                                 10
                                    DIX
                                          NO
                                             NO
                                 10 DIX NO NO
1315 A
     192.1.1.50 255.255.255.0 HALF
1315 B
      ------ HALF 10 DIX NO NO
1317 A 192.1.1.52
                255.255.255.0 HALF 10 DIX NO NO
1317 B ------ HALF 10 DIX NO NO
IP-LNK table is (16 of 512) 3% full.
```

19. Display the current IP host information in the database by entering the rtrv-ip-host command. The following is an example of the possible output.

rlghncxa03w 06-10-28 21:17:37 GMT EAGLE5 36.0.0

```
LOCAL IPADDR LOCAL HOST

192.1.1.10 IPNODE1-1201

192.1.1.12 IPNODE1-1203

192.1.1.14 IPNODE1-1205

192.1.1.20 IPNODE2-1201

192.1.1.22 IPNODE2-1203

192.1.1.24 IPNODE2-1205

192.1.1.32 KC-HLR2

192.1.1.50 DN-MSC1

192.1.1.50 DN-MSC2

REMOTE IPADDR REMOTE HOST

150.1.1.5 NCDEPTECONOMIC_DEVELOPMENT.SOUTHEASTERN_COORIDOR_ASHVL.GOV

IP Host table is (10 of 512) 2% full
```

20. Display the associations assigned to the IP card specified in step 17, using the rtrv-assoc command with the local host name of the associations assigned to the IP card. To find the local host name of the association, the card location of the IP card is assigned to an IP address in the IP link table (rtrv-ip-lnk output). The IP address is assigned to a hostname in the IP host table (rtrv-ip-host output).

For this example, the local host name of associations assigned to the IP card 1315 (the card specified in step 17) is DN-MSC1. Enter this command.

rtrv-assoc:lhost=dn-msc1

The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:17:37 GMT EAGLE5 36.0.0

CARD IPLNK

ANAME LOC PORT LINK ADAPTER LPORT RPORT OPEN ALW assoc3 1315 A A SUA 2345 1025 YES YES assoc6 1315 A A SUA 4156 1025 YES YES

IP Appl Sock/Assoc table is (9 of 4000) 1% full
Assoc Buffer Space Used (32 KB of 3200 KB) on LOC = 1315
```

21. At the EAGLE 5 ISS, enter the msucount -a pass command with the card location specified in step 17 and the association names shown in step 20. For this example, enter this command.

pass:loc=1315:cmd="msucount -a assoc3"

The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:17:37 GMT EAGLE5 36.0.0
PASS: Command sent to card
rlghncxa03w 06-10-28 21:17:37 GMT EAGLE5 36.0.0
MSUCOUNT: Command In Progress
rlghncxa03w 06-10-28 21:17:37 GMT EAGLE5 36.0.0
MSUCOUNT: MSU Count Report
 -----
IP Connection Measurements
______
Receive Counts
                                    Transmit Counts
______
        bytes
                                   msus
                                                    bytes
                                                     -----

    4294967295
    4294967295
    4294967295
    4294967295

                                   Transmit Discard Counts
Receive Discard Counts
______
           count reason
link state 4294967295 sccp msg type 4294967295 sccp msg type 4294967295 sccp class 4294967295 sccp class 4294967295 normalization error 4294967295 sccp called party 4294967295 invalid traffic type 4294967295 sccp calling party 4294967295 M3UA conversion error 4294967295 isup sio 4294967295 SUA conversion error 4294967295
```

IP⁷ Secure Gateway Configuration Procedures

normalization error 4294967295 error in XSRV packet 4294967295 M3UA PDU error 4294967295 SUA PDU error 4294967295 invalid rcontext 4294967295

Stored Transmit Discard Data
---no stored transmit discard data

Stored Receive Discard Data

53 41 53 49 69 73 6f 74 11 00 87 0a 01 03 01 05 05 00 01 02 03 04 05 06 07 08 09 00 00 00 00 00

END of Report

pass:loc=1315:cmd="msucount -a assoc6"

The following is an example of the possible output.

rlghncxa03w 06-10-28 21:17:37 GMT EAGLE5 36.0.0 PASS: Command sent to card

rlghncxa03w 06-10-28 21:17:37 GMT EAGLE5 36.0.0 MSUCOUNT: Command In Progress

rlghncxa03w 06-10-28 21:17:37 GMT EAGLE5 36.0.0

MSUCOUNT: MSU Count Report
-----IP Connection Measurements

Receive Counts Transmit Counts

Receive Discard Counts Transmit Discard Counts

4294967295

4294967295

 reason
 count
 reason
 count

 link state
 4294967295
 sccp msg type
 4294967295

 sccp msg type
 4294967295
 sccp class
 4294967295

 sccp class
 4294967295
 normalization error
 4294967295

 sccp called party
 4294967295
 invalid traffic type
 4294967295

 sccp calling party
 4294967295
 M3UA conversion error
 4294967295

 isup sio
 4294967295
 SUA conversion error
 4294967295

 normalization error
 4294967295

Stored Transmit Discard Data
---no stored transmit discard data

error in XSRV packet 4294967295 M3UA PDU error 4294967295

Stored Receive Discard Data

SUA PDU error

invalid rcontext

```
53 41 53 49 69 73 6f 74 11 00 87 0a 01 03 01 05 05 00 01 02 03 04 05 06 07 08 09 00 00 00 00 00 END of Report
```

- **22.** At the IP near end node, disconnect all the associations attached to the IP card specified in step 21.
- **23.** At the EAGLE 5 ISS, place the signaling link on this IP card out of service using the dact-slk command. For this example, enter this command.

```
dact-slk:loc=1315:link=a
```

When this command has successfully completed, this message appears.

```
rlghncxa03w 06-10-12 09:12:36 GMT EAGLE5 36.0.0 Deactivate Link message sent to card
```

NOTE: If the chg-sg-opts command was executed in step 3, skip steps 24 and 25, and go to step 26.

24. Change the SCTP checksum option in the database using the **chg-sg-opts** command. For this example, enter this command.

```
chg-sg-opts:sctpcsum=crc32c
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-28 21:19:37 GMT EAGLE5 36.0.0 CHG-SG-OPTS: MASP A - COMPLTD
```

25. Verify that the SCTP checksum algorithm was changed using the rtrv-sg-opts command. The SCTP checksum algorithm option value is shown in the SCTPCSUM parameter. The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0
SYNC:
       TALI
              250
SRKO:
DRKQ: 750
SNMPCONT: john doe 555-123-4567
             public
private
public
GETCOMM:
SETCOMM:
TRAPCOMM:
INHFEPALM:
SCTPCSUM:
             crc32c
IPGWABATE:
              NO
IPLIMABATE:
IPTPSALMTHRESH: 80
```

26. Change the value of the open parameter of the associations shown in step 20 to no by specifying the chg-assoc command with the open=no parameter. For this example, enter this command.

```
chg-assoc:aname=assoc3:open=no
chg-assoc:aname=assoc6:open=no
```

When this command has successfully completed, this message should appear.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0 CHG-ASSOC: MASP A - COMPLTD;
```

27. Change the value of the open parameter of the associations changed in step 26 to yes by specifying the chg-assoc command with the open=yes parameter. For this example, enter this command.

```
chg-assoc:aname=assoc3:open=yes
chg-assoc:aname=assoc6:open=yes
```

When this command has successfully completed, this message should appear.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0 CHG-ASSOC: MASP A - COMPLTD;
```

- **28.** At the IP near end node, configure all the associations attached to the IP card specified in step 27 to use the SCTP checksum algorithm.
- **29.** Put the signaling link that was placed out of service in step 23 back into service using the act-slk command. For example, enter this command.

```
act-slk:loc=1315:link=a
```

When this command has successfully completed, this message appears.

```
rlghncxa03w 06-10-07 11:11:28 GMT EAGLE5 36.0.0 Activate Link message sent to card
```

30. Verify the in-service normal (IS-NR) status of the signaling link by using the rept-stat-slk command and specifying the card location and link value specified in step 29. For example, enter this command.

```
rept-stat-slk:loc=1315:link=a
```

The following is an example of the possible output.

31. At the IP near end node, connect one of the associations attached to the IP card specified in step 29.

32. At the EAGLE 5 ISS, enter the rept-stat-assoc command specifying the association names specified with the chg-assoc command in steps 26 and 27 to verify that the association is established with the IP near end node. For this example, enter this command.

rept-stat-assoc:aname=assoc3

The following is an example of the possible output.

rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0

CARD IPLNK

LOC PORT LINK PST SST ASPID
1315 A A IS-NR ESTABLISHED 4294967295 ANAME as1

ANAME ASP-STATE ASNAME ASP-ACTIVE assoc3 as1

Command Completed.

rept-stat-assoc:aname=assoc6

The following is an example of the possible output.

rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0

CARD IPLNK

1315 A A IS-NR ESTAPT TO LOC PORT LINK PST ANAME ASPID ESTABLISHED 4294967295

ASP-STATE ASNAME ANAME ASP-ACTIVE assoc6 as6

Command Completed.

33. Enter the netstat -p sctp pass command with the card location of the IP card to determine if any errors have occurred. For this example, enter this command.

pass:loc=1315:cmd="netstat -p sctp"

The following is an example of the possible output.

rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0 SCTP: 0 ip packets sent 0 ip packets sent with data chunk

- 0 control chunks (excludes retransmissions)
- 0 ordered data chunks (excludes retransmissions)
- 0 unordered data chunks (excludes retransmissions)
- O user messages fragmented due to MTU
- 0 retransmit data chunks sent
- 0 sacks sent
- 0 send failed
- 0 ip packets received
 - 0 ip packets received with data chunk
 - 0 control chunks (excludes duplicates)
 - 0 ordered data chunks (excludes duplicates)
 - 0 unordered data chunks (excludes duplicates)

```
0 user messages reassembled
            0 data chunks read
            0 duplicate tsns received
            0 sacks received
            0 gap ack blocks received
            0 out of the blue
           0 with invalid checksum
      0 connections established
           0 by upper layer
           0 by remote endpoint
      0 connections terminated
            0 ungracefully
           0 gracefully
      0 associations supported
      O associations dropped due to retransmits
      O consecutive retransmit timeouts
      0 retransmit timer count
      0 fast retransmit count
      0 heartbeat requests received
      0 heartbeat acks received
      0 heartbeat requests sent
      0 milliseconds cookie life at 4-way start-up handshake
      O retransmission attempts are allowed at start-up phase
rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0
NETSTAT command complete
```

If errors are shown in the pass command output, contact the Customer Care Center. Refer to "Customer Care Center" on page 1-9 for the contact information.

- **34.** At the IP near end node, connect all the other associations attached to the IP card specified in step 33.
- **35.** At the IP near end node, activate one of the associations attached to the IP card specified in step 33.
- **36.** At the EAGLE 5 ISS, enter the msucount -1 pass command with the card location of the IP card specified in step 33. For this example, enter this command.

```
pass:loc=1315:cmd="msucount -1"
```

The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0
PASS: Command sent to card

rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0
MSUCOUNT: Command In Progress

rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0
MSUCOUNT: MSU Count Report
```

Link Measurements (Link A)

Transmit Counts

rate msus bytes rate msus bytes

2000 4294967295 4294967295 2000 4294967295 4294967295

MTP Primitive (MTPP) counts

sent pdus rcvd pdus dscrd pdus sent msus rcvd msus

4294967295 4294967295 4294967295 4294967295

END of Report

37. At the EAGLE 5 ISS, enter the msucount -a pass command with the card location specified in step 36 and the association names specified in step 32. For this example, enter this command.

pass:loc=1315:cmd="msucount -a assoc3"

The following is an example of the possible output.

error in XSRV packet 4294967295 M3UA PDU error 4294967295

Receive Counts		Transmit Counts				
msus	bytes	msus byte	es			
4294967295	4294967295	4294967295 429	1967295			
Receive Discard	Counts	Transmit Discard Cou	nts			
reason	count		count			
link state sccp msg type sccp class sccp called par sccp calling pa isup sio normalization e	4294967295 4294967295	sccp msg type sccp class normalization error invalid traffic type M3UA conversion error	4294967295 4294967295 4294967295 4294967295			

IP⁷ Secure Gateway Configuration Procedures

 SUA PDU error
 4294967295

 invalid rcontext
 4294967295

Stored Transmit Discard Data

no stored transmit discard data

Stored Receive Discard Data

53 41 53 49 69 73 6f 74 11 00 87 0a 01 03 01 05 05 00 01 02 03 04 05 06 07 08 09 00 00 00 00 00

END of Report

pass:loc=1315:cmd="msucount -a assoc6"

The following is an example of the possible output.

rlghncxa03w 06-10-28 21:17:37 GMT EAGLE5 36.0.0 PASS: Command sent to card

rlghncxa03w 06-10-28 21:17:37 GMT EAGLE5 36.0.0 MSUCOUNT: Command In Progress

rlghncxa03w 06-10-28 21:17:37 GMT EAGLE5 36.0.0

MSUCOUNT: MSU Count Report
-----IP Connection Measurements

Receive Counts Transmit Counts

Receive Discard Counts Transmit Discard Counts

 reason
 count
 reason
 count

 link state
 4294967295
 sccp msg type
 4294967295

 sccp msg type
 4294967295
 sccp class
 4294967295

 sccp class
 4294967295
 normalization error
 4294967295

 sccp called party
 4294967295
 invalid traffic type
 4294967295

 sccp calling party
 4294967295
 M3UA conversion error
 4294967295

 isup sio
 4294967295
 SUA conversion error
 4294967295

 normalization error
 4294967295
 4294967295

 error in XSRV packet
 4294967295

Stored Transmit Discard Data

SUA PDU error invalid rcontext

M3UA PDU error 4294967295

no stored transmit discard data

Stored Receive Discard Data

53 41 53 49 69 73 6f 74 11 00 87 0a 01 03 01 05

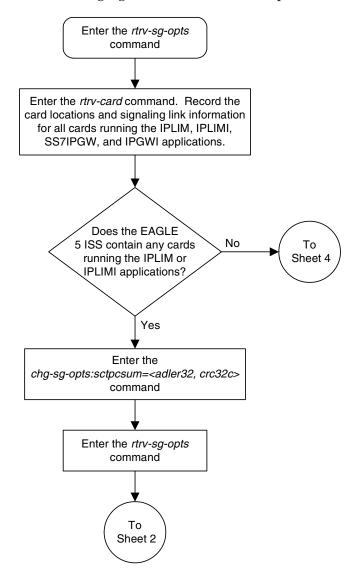
4294967295

4294967295

05 00 01 02 03 04 05 06 07 08 09 00 00 00 00

```
END of Report
```

If the outputs of the pass commands in steps 36 and 37 show that traffic is not flowing over the association, contact the Customer Care Center. Refer to "Customer Care Center" on page 1-9 for the contact information.

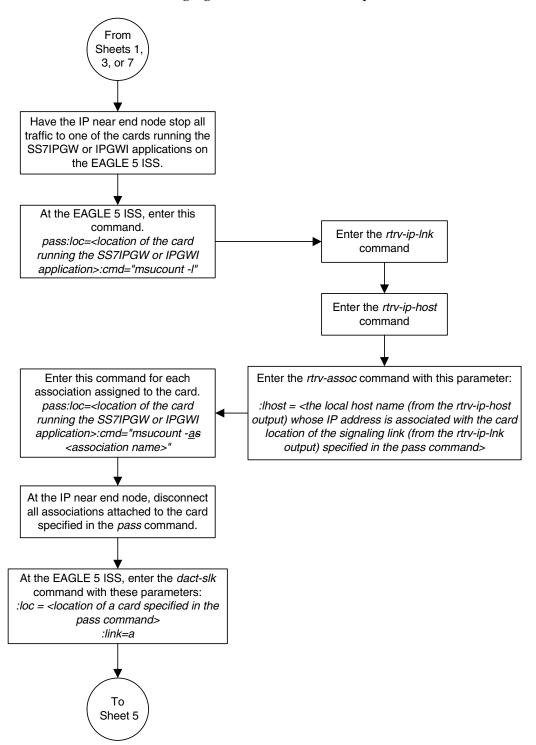

- **38.** At the IP near end node, activate all the other associations attached to the IP card specified in step 37.
- **39.** Repeat steps 16 through 38 to update the other IP cards in the EAGLE 5 ISS running the SS7IPGW and IPGWI applications with the new SCTP checksum algorithm.
- **40.** Back up the new changes using the **chg-db:action=backup:dest=fixed** command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.

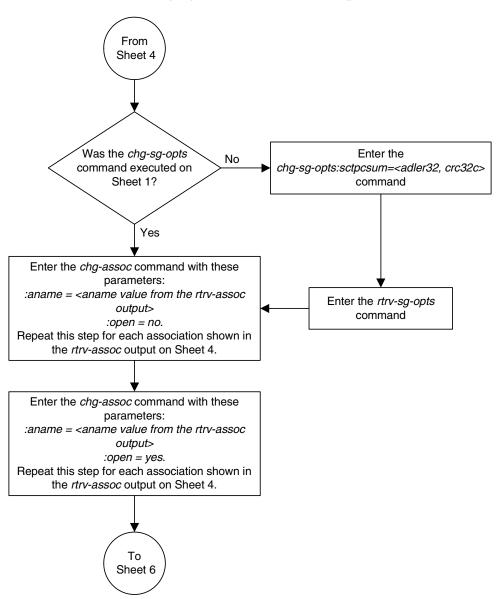
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED) : MASP A - Backup starts on standby MASP.

BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```



Flowchart 3-42. Changing the SCTP Checksum Option (Sheet 1 of 7)

From Sheets 1 or 3 Enter the dact-slk command with these parameters: :loc = <location of a card running either the Enter the rtrv-ip-lnk IPLIM or IPLIMx application> command :link = <signaling link on the card specified by the loc parameter>. Repeat this step for each signaling link assigned to the card. Enter the rtrv-ip-host command Enter the *rtrv-assoc* command with this parameter: :lhost = <the local host name (from the rtrv-ip-host output) whose IP address is associated with the card location of each signaling link (from the rtrv-ip-lnk output) specified in the canc-slk command> Enter the chg-assoc command with these parameters: :aname = <aname value from the rtrv-assoc output> :open = no. Repeat this step for each association shown in the rtrv-assoc output. Enter the chg-assoc command with these parameters: :aname = <aname value from the rtrv-assoc output> :open = yes. Repeat this step for each association shown in the rtrv-assoc output. То Sheet 3


Flowchart 3-42. Changing the SCTP Checksum Option (Sheet 2 of 7)

From Sheet 2 Enter the act-slk command with these parameters: :loc = <location of the card specified in the dact-slk command on Sheet 2> :link = <signaling link on the card specified in the dact-slk command on Sheet 2>. Repeat this step for each signaling link assigned to the card. Enter the rept-stat-slk command with these Contact the Customer Care parameters: Center. Refer to the :loc = <location of the card specified in the "Customer Care Center" act-slk command> section in Chapter 1 for the :link = <signaling link on the card specified in contact information. the act-slk command> Yes Enter the pass:loc=<card location specified in the rept-stat-slk Are any errors command>:cmd="netstat -p sctp" displayed command No Have all the cards running the IPLIM or IPLIMI applications been Yes То updated with the new SCTP Sheet 2 checksum algorithm? Does the EAGLE 5 Enter the ISS contain cards running the No chg-db:action=backup:dest=fixed SS7IPGW or IPGWI command applications? Yes То Sheet 4

Flowchart 3-42. Changing the SCTP Checksum Option (Sheet 3 of 7)

Flowchart 3-42. Changing the SCTP Checksum Option (Sheet 4 of 7)

Flowchart 3-42. Changing the SCTP Checksum Option (Sheet 5 of 7)

Enter the rept-stat-slk

command

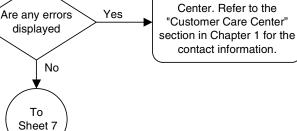
Flowchart 3-42. Changing the SCTP Checksum Option (Sheet 6 of 7)

Have the IP near end node configure all associations attached to the card specified in the *pass* command on Sheet 5 to use the new algorithm. Verify that the associations will use the algorithm.

Sheet 5

At the EAGLE 5 ISS, enter the act-slk command with these parameters.

:loc=<location of the card specified in the pass command on Sheet 5>
:link=a


At the EAGLE 5 ISS, enter the rept-stat-assoc command with this parameter:

:aname = <the association aname specified in the chg-assoc command on Sheet 5>

At the IP near end node, connect one of the associations attached to the card specified in the act-slk command.

Contact the Customer Care

Enter the pass:loc=<card location specified in the act-slk command>:cmd="netstat -p sctp" command

From Sheet 6 At the IP near end node, connect all of the other associations attached to the card specified in the act-slk and pass commands on Sheet 6. At the IP near end node, activate one of the associations attached to the card specified in the act-slk and pass commands on Sheet 6. Enter this command for each association assigned At the EAGLE 5 ISS, enter this to the card. command. pass:loc=<location of the card specified in the pass:loc=<location of the card specified previous pass command>:cmd="msucount -as in the act-slk and pass commands on <association name specified in the rept-stat-assoc Sheet 6>:cmd="msucount -l" command on Sheet 6>" At the IP near end node, activate all Is traffic flowing over the Yes No of the other associations attached to association specified in the the card specified in the pass previous pass command? command. Contact the Customer Care Center. Refer to the "Customer Care Center" section in Chapter 1 for the Have all the cards running contact information. the SS7IPGW or IPGWI applications No To been updated with the new SCTP Sheet 4 checksum algorithm? Yes Enter the chg-db:action=backup:dest=fixed command

Flowchart 3-42. Changing the SCTP Checksum Option (Sheet 7 of 7)

Changing a UA Parameter Set

Use this procedure to change the values in a UA (user adapter) parameter set using the chg-uaps command. The chg-uaps command uses these parameters:

:set – the UA parameter set being changed, from 1 - 9

:scrset – the source UA parameter set used to copy the values from one UA parameter set to another, from 1 to 10.

:timer – the timer being changed, from 1 to 10. Currently, there are only three timers defined:

- Timer 2 The False IP Connection Congestion Timer the maximum amount of time (in milliseconds) that an association is allowed to remain congested before failing due to false connection congestion.
- Timer 3 The UA Heartbeat Period Timer The frequency, in milliseconds, that heartbeat messages are transmitted.
- Timer 4 The UA Heartbeat Received Timer The amount of time, in milliseconds, that the EAGLE 5 ISS waits for a response to the heartbeat message that was transmitted. If a response to the heartbeat message is not received in the amount of time defined by Timer 4, the association is torn down

:tvalue – The value of the timer specified by the timer parameter.

- The value of timer 2 is from 0 to 30,000 milliseconds. The system default value is 3,000 milliseconds.
- The value of timer 3 is from 0 to 60,000 milliseconds. The system default value is 10,000 milliseconds.
- The value of timer 4 is from 0 to 10,000 milliseconds. The system default value is 5,000 milliseconds.

:parm – the UA parameters, from 1 to 10. Currently, only two UA parameters are defined:

- 1 Controlling ASP SNM Behavior
- 2 Controlling ASP/Application Server State Notification Behavior
- 3 UA Serviceabilty Options

:pvalue – the value of the UA parameters, which is dependent on the parm parameter value. The value of the pvalue parameter is a bit-mapped value, requiring a 0 in the specific bit position to disable the item, or a 1 in the specific bit position to enabled the item. The value of the pvalue parameter is a 32-bit number. Any bits not specified in the following lists are not used.

- If the parm value is 1, the bits used by the pvalue parameter are:
 - 0 Broadcast controls broadcast phase SNM TFPs, TFRs and TFAs

that are sent when a destination's status changes. If this flag is set, SNM TFPs/TFRs/TFAs are replicated to all associations/sockets that meet the Multicast SNM Criteria and have this enabled. The default is to enable all broadcast phase messages.

- 1 Response Method controls the sending of an SNM TFC/UPU as a reply to a message received on an association/socket for an unavailable destination. The SNM TFC/UPU is replicated to all associations/sockets that have this capability and meet the Response SNM Criteria. The default is to allow the response to be sent.
- 6 Broadcast Congestion Status Change controls the sending of unsolicited congestion status changes by an ASP. Unsolicited congestion status messages (TFCs generated when a destination's congestion status changes) are replicated to all ASPs who have this capability and meet the Multicast SNM Criteria. The default is to generate no unsolicited congestion status changes.

Table 3-36 shows the values can be entered for the **pvalue** parameter if the **parm** value is 1. The **pvalue** parameter value can be entered as a hexadecimal or a decimal number.

Table 3-36. Valid PVALUE Parameter Values if PARM=1

Bits Enabled	Bits Disabled	Hexadecimal Value	Decimal Value
None	Bit 0 - Broadcast Bit 1 - Response Method Bit 6 - Broadcast Congestion Status Change	h′0	0
Bit 0 - Broadcast	Bit 1 - Response Method Bit 6 - Broadcast Congestion Status Change	h′1	1
Bit 1 - Response Method	Bit 0 - Broadcast Bit 6 - Broadcast Congestion Status Change	h′2	2
Bit 0 - Broadcast Bit 1 - Response Method	Bit 6 - Broadcast Congestion Status Change	h′3*	3*
Bit 6 - Broadcast Congestion Status Change	Bit 0 - Broadcast Bit 1 - Response Method	h′40	64
Bit 6 - Broadcast Congestion Status Change Bit 0 - Broadcast	Bit 1 - Response Method	h′41	65
Bit 6 - Broadcast Congestion Status Change Bit 1 - Response Method	Bit 0 - Broadcast	h′42	66
Bit 0 - Broadcast Bit 1 - Response Method Bit 6 - Broadcast Congestion Status Change	None	h′43	67

Table 3-36. Valid PVALUE Parameter Values if PARM=1 (Continued)

Bits Enabled	Bits Disabled	Hexadecimal Value	Decimal Value
* The system default value			

- If the parm value is 2, the bits used by the pvalue parameter are:
 - 0 ASP Active Notifications controls the sending of ASP-Active notifications. If this value is specified, an ASP-Default notification is sent when an ASP transitions to the ASP-ACTIVE state. The default is not to send ASP-Active notifications.
 - 1 ASP Inactive Notifications controls the sending of ASP-Inactive notifications. If this value is specified, an ASP-Inactive notification is sent when an ASP transitions to the ASP-INACTIVE state. The default is not to send ASP-Inactive notifications.

NOTE: To see the ASP activations and inactivations, bits 0 and 1 of the pvalue parameter value need to be enabled. See Table 3-37 on page 3-488.

2 – ASP AS State Query – controls the sending of ASP/AS State notifications on request by an ASP. If this value is specified, the EAGLE 5 ISS responds with ASP and AS state notifications if the remote ASP sends ASP-UP or ASP-INACTIVE, while the local ASP is in the ASP-INACTIVE state, or the remote ASP sends an ASP-ACTIVE notification while the local ASP is in the ASP-ACTIVE state. The default is not to send ASP/AS state notifications.

Table 3-37 shows the values can be entered for the **pvalue** parameter if the **parm** value is 2. The **pvalue** parameter value can be entered as a hexadecimal or a decimal number.

Table 3-37. Valid PVALUE Parameter Values if PARM=2

Bits Enabled	Bits Disabled	Hexadecimal Value	Decimal Value
None	Bit 0 - ASP Activate Notifications Bit 1 - ASP Inactivate Notifications Bit 2 - ASP AS State Query	h′0*	0*
Bit 0 - ASP Activate Notifications	Bit 1 - ASP Inactivate Notifications Bit 2 - ASP AS State Query	h′1	1
Bit 1 - ASP Inactivate Notifications	Bit 0 - ASP Activate Notifications Bit 2 - ASP AS State Query	h′2	2
Bit 0 - ASP Activate Notifications Bit 1 - ASP Inactivate Notifications	Bit 2 - ASP AS State Query	h′3	3
Bit 2 - ASP AS State Query	Bit 0 - ASP Activate Notifications Bit 1 - ASP Inactivate Notifications	h′4	4

Bit 2 - ASP AS State Query Bit 1 - ASP Inactivate Notifications Bit 0 - ASP Activate Notifications	n′5	5
Bit () - ASP Activate Notifications h		
Bit 2 - ASP AS State Query	n'6	6
Bit 0 - ASP Activate Notifications Bit 1 - ASP Inactivate Notifications Bit 2 - ASP AS State Query h	n′7	7

Table 3-37. Valid PVALUE Parameter Values if PARM=2 (Continued)

• If the parm value is 3, only bit 0 (UA heartbeats) is the only bit used by the pvalue parameter. If the value of this bit is 1 (h'1), heartbeat messages are transmitted in the ASP-Down, ASP-Active, and ASP-Inactive states on connections from the Eagle 5 ISS to the far-end node. If the value of this bit is 0, the heartbeat messages are not transmitted.

UA parameter set 10 contains the default values for the UA parameter sets and cannot be changed.

The set and scrset parameter values cannot be the same.

If the scrset parameter is specified, no other optional parameter may be specified.

The timer and tvalue parameters must be specified together. If one is specified, the other must be specified.

The parm and pvalue parameters must be specified together. If one is specified, the other must be specified.

Canceling the RTRV-UAPS Command

Because the rtrv-uaps command used in this procedure can output information for a long period of time, the rtrv-uaps command can be canceled and the output to the terminal stopped. There are three ways that the rtrv-uaps command can be canceled.

- Press the F9 function key on the keyboard at the terminal where the rtrv-uaps command was entered.
- Enter the canc-cmd without the trm parameter at the terminal where the rtrv-uaps command was entered.
- Enter the canc-cmd:trm=<xx>, where <xx> is the terminal where the rtrv-uaps command was entered, from another terminal other that the terminal where the rtrv-uaps command was entered. To enter the canc-cmd:trm=<xx> command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal's permissions can

be verified with the rtrv-secu-trm command. The user's permissions can be verified with the rtry-user or rtry-secu-user commands.

For more information about the canc-cmd command, go to the Commands Manual.

Procedure

1. Display the values in the UA parameter set being changed by entering the rtrv-uaps command and specifying the desired UA parameter set number, from 1 to 9. For this example, enter this command.

rtrv-uaps:set=3

This is an example of possible output.

rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0

```
0 10
TIMER 2: False IP Connection Congestion Timer, max time an
        association can be congested before failing due to false
        congestion. SS7IPGW and IPGWI applications enforce
        0-30000 (ms).
TVALUE : Valid range = 32-bits
TIMER 3: UA Heartbeat Period Timer T(beat), time (ms) between sending
       of BEAT msgs by NE, SS7IPGW and IPGWI applications enforce
        100(ms)-60000(ms).
TVALUE : Valid range = 32-bits
TIMER 4: UA Heartbeat Received Timer T(beat ack), timeout period for
       response BEAT ACK msgs by NE, SS7IPGW and IPGWI applications
        enforce 100(ms)-10000(ms).
TVALUE : Valid range = 32-bits
PARM 1: ASP SNM options. Each bit is used as an enabled/disabled
       flag for a particular ASP SNM option.
PVALUE : Valid range = 32-bits
                                         BIT VALUE
        0=Broadcast
                                          0=Disabled , 1=Enabled
        1=Response Method
                                          0=Disabled , 1=Enabled
        2-5=Reserved
        6=Broadcast Congestion Status Change 0=Disabled , 1=Enabled
PARM 2: ASP/AS Notification options. Each bit is used an
        enabled/disabled flag for a particular ASP/AS
        Notification option.
PVALUE : Valid range = 32-bits
        BIT
                                          BIT VALUE
        0=ASP Active Notifications
                                          0=Disabled , 1=Enabled
```

```
1=ASP Inactive Notifications 0=Disabled , 1=Enabled 2=ASP AS State Query 0=Disabled , 1=Enabled 3-31=Reserved

PARM 3: UA Serviceabilty Options. Each bit is used as an enabled/disabled flag for a particular UA serviceability option.

PVALUE: Valid range = 32-bits
BIT BIT VALUE 0=UA Heartbeats 0=Disabled , 1=Enabled 1-31=Reserved
```

2. Change the UA parameter set values using the chg-uaps command with the UA parameter set value used in step 1. If the parm and pvalue parameters are being specified, see Table 3-36 on page 3-487, Table 3-37 on page 3-488, or the description of the parm=3 parameter on page 3-489 for the valid values of the pvalue parameter. For this example, enter this command.

```
chg-uaps:set=3:timer=2:tvalue=2000:parm=2:pvalue=1
```

The value of the pvalue parameter can be entered as either a decimal value or a hexadecimal value. This example shows the pvalue parameter value of the chg-uaps command being entered as a decimal value. To specify the value of the pvalue parameter in the example used in this step as a hexadecimal value, specify the pvalue=h'1 parameter.

```
chg-uaps:set=3:timer=2:tvalue=2000:parm=2:pvalue=h'1
```

If the values from one UA parameter set are being copied to another UA parameter set, only the set and scrset parameters can be specified with the chg-uaps command. For example, to copy the values from UA parameter set 10 to UA parameter set 5, enter this command.

```
chg-uaps:set=5:scrset=10
```

When this command has successfully completed, this message should appear.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0 CHG-UAPS: MASP A - COMPLTD
```

3. Verify the changes using the **rtrv-uaps** command with the UA parameter set name used in step 2. For this example, enter this command.

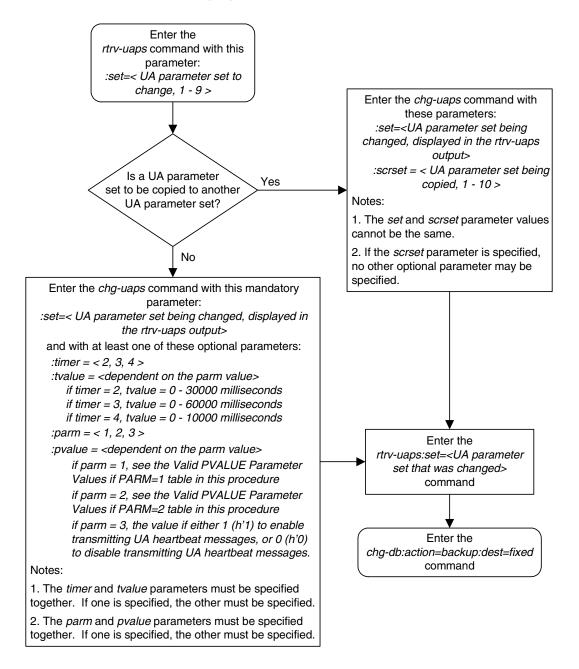
rtrv-uaps:set=3

This is an example of possible output.

rlgh	ncxa03w	06-10-28	09	:12:36	GMT	EAGLE5	36.0.0
SET	TIMER	TVALU	JΕ	PARM		PVALUE	
3	1		0	1		3	
3	2	200	0 0	2		1	
3	3	1000	0 0	3		1	
3	4	500	0 0	4		0	
3	5		0	5		0	
3	6		0	6		0	
3	7		0	7		0	
3	8		0	8		0	
3	9		0	9		0	

```
10
                   0 10
TIMER 2: False IP Connection Congestion Timer, max time an
         association can be congested before failing due to false
         congestion. SS7IPGW and IPGWI applications enforce
         0-30000 (ms).
TVALUE : Valid range = 32-bits
TIMER 3: UA Heartbeat Period Timer T(beat), time (ms) between sending
        of BEAT msgs by NE, SS7IPGW and IPGWI applications enforce
        100(ms)-60000(ms).
TVALUE : Valid range = 32-bits
TIMER 4: UA Heartbeat Received Timer T(beat ack), timeout period for
         response BEAT ACK msgs by NE, SS7IPGW and IPGWI applications
         enforce 100(ms)-10000(ms).
TVALUE : Valid range = 32-bits
PARM 1: ASP SNM options. Each bit is used as an enabled/disabled
        flag for a particular ASP SNM option.
PVALUE : Valid range = 32-bits
        BIT
                                             BIT VALUE
         0=Broadcast
                                             0=Disabled , 1=Enabled
         1=Response Method
                                              0=Disabled , 1=Enabled
         2-5=Reserved
         6=Broadcast Congestion Status Change 0=Disabled , 1=Enabled
         7-31=Reserved
PARM 2: ASP/AS Notification options. Each bit is used an
         enabled/disabled flag for a particular ASP/AS
        Notification option.
PVALUE : Valid range = 32-bits
                                            BIT VALUE
        BIT
         0=ASP Active Notifications
1=ASP Inactive Notifications
                                             0=Disabled , 1=Enabled
                                             0=Disabled , 1=Enabled
         2=ASP AS State Query
                                             0=Disabled , 1=Enabled
         3-31=Reserved
PARM 3: UA Serviceabilty Options. Each bit is used as an
         enabled/disabled flag for a particular
         UA serviceability option.
         PVALUE : Valid range = 32-bits
         BIT
                                                  BIT VALUE
         0=UA Heartbeats
                                                  0=Disabled , 1=Enabled
         1-31=Reserved
```

4. Back up the new changes, using the chg-db:action=backup:dest=fixed command. These messages should appear; the active Maintenance and Administration Subsystem Processor (MASP) appears first.


```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.

BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED) : MASP A - Backup starts on standby MASP.

BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

Flowchart 3-43. Changing a UA Parameter Set

IP⁷ Secure Gateway Configuration Procedures

ISUP Variant Table Provisioning

Overview	4–2
Adding New ISUP PSTN Presentation Values	4–6
Changing ISUP Presentation Values	4–11
Removing ISUP Presentation Values	4–13
Changing ISUP Variant Table Entries	4–17
Copying ISUP Variant Table Entries	4–26

Overview

ISUP Normalization is Tekelec's process of converting/translating different customized versions of the ISUP protocol into one standard protocol (Normalized ISUP) for transmission to an IP device. This process also includes the reverse scenario, receiving Normalized ISUP messages from an IP device and denormalizing the message into customized versions.

The EAGLE 5 ISS supports end-user ISUP Normalization Administration. It is now possible to use the EAGLE 5 ISS's commands to achieve the following:

- Define and display new PSTN Presentation values for user-defined variants
- Provision a variant database starting from scratch
- Provision a variant database by copying another variants database
- Define the ISUP message types for a variant
- Define the ISUP parameters for a variant and the minimum length that is valid for each parameter
- Define the optional ISUP parameters supported for each ISUP message type
- Define the mandatory-fixed and mandatory-variable parameters that are supported for each ISUP message type and the order they appear in the message
- Assign a "conversion action" to ISUP messages and message/parameter combinations within a specific variant that require special software treatment
- Display the variant database

Prior implementations of the ISUP Normalization feature kept the ISUP data in hard-coded software tables. Changing ISUP parameters could only be achieved by means of a software revision. The disk-resident ISUP variant table eliminates this problem and increases flexibility and maintainability. This table include an entry in the variant's ISUP database table for each variant. When the <code>ent-pstn-pres</code> command is used to define a PSTN value, the first available entry in the ISUP variant database table is automatically allocated. The table entry is initialized to default values.

The ETSI V3 variant database is treated differently from other variants. It is automatically configured by the EAGLE 5 ISS during an upgrade or new installation. You will not have to enter the <code>ent-pstn-pres</code> command to define it. You cannot modify or delete the table entry for this variant, except to change the descriptive text.

The ISUP variant table supports a maximum of 21 entries, one of which is always the ETSI V3 variant. This allows for 20 entries for Tekelec-defined or user-defined ISUP variants.

The normalization process occurs in the following steps:

- 1. The EAGLE 5 ISS receives a variant ISUP message from a PSTN.
- **2.** The routing key variant database tables are accessed and provide the following information:
 - Indicates the message is to be routed to an IP device
 - Contains the PSTN Presentation value identifying the variant
 - Contains a "normalization flag" indicating the message is to be normalized
- **3.** The software accesses database tables for the variant. The software performs some minor syntax validation on the received message and then constructs a normalized ISUP message.
- **4.** The normalized message is sent in a TALI packet across an IPGWI connection to a far-end IP device.

The normalization function is performed entirely on the IPGWI card in the EAGLE 5 ISS. Everything presented to the MGCs that are using this feature is in normalized ISUP format. Everything that is presented to the MTP3 portion of the IPGWI card (to be routed back to a DS0 link towards the PSTN) is in the format for a specific ISUP variant. Each DS0 LIM (or any LIM in the EAGLE 5 ISS other than the IPGWI) receives MSUs from the PSTN wire and from the IMT in the same ISUP variant format. The DS0 LIMS do not know how to perform ISUP Normalization, and do not even know that it is occurring on the IPGWI cards.

The ISUP Normalization feature supports the normalization of the ISUP variants shown in Table 4-1.

Table 4-1. ISUP Variants Supported by this Feature

ISUP Variant	Part No.	PSTN Category	PSTN ID
ISUP Normalization	893000201	1	*
ITU Q.767 Normalization	893000501	1	1
ESTI V3 Normalization	893000601	1	2
UK PNO-ISC7 Normalization	893000401	1	3
German ISUP Normalization	893000301	1	4
French ISUP Normalization	893-0007-01	1	5
Sweden ISUP Normalization	893-0008-01	1	6
Belgium ISUP Normalization	893-0009-01	1	7
Netherlands ISUP Normalization	893-0010-01	1	8

 Table 4-1.
 ISUP Variants Supported by this Feature (Continued)

ISUP Variant	Part No.	PSTN Category	PSTN ID
Switzerland ISUP Normalization	893-0011-01	1	9
Austria ISUP Normalization	893-0012-01	1	10
Italy ISUP Normalization	893-0013-01	1	11
Ireland ISUP Normalization	893-0014-01	1	12
India ISUP Normalization	893-0015-01	1	13
Malaysia ISUP Normalization	893-0016-01	1	14
Vietnam ISUP Normalization	893-0017-01	1	15
South Africa ISUP Normalization	893-0018-01	1	16
Argentina ISUP Normalization	893-0019-01	1	17
Chile ISUP Normalization	893-0020-01	1	18
Venezuela ISUP Normalization	893-0021-01	1	19
Mexico ISUP Normalization	893-0022-01	1	20
Brazil ISUP Normalization	893-0023-01	1	21
Spain ISUP Normalization	893-0024-01	1	22
Colombia ISUP Normalization	893-0025-01	1	23
Peru ISUP Normalization	893-0026-01	1	24
Hong Kong ISUP Normalization	893-0027-01	1	25
China ISUP Normalization	893-0028-01	1	26
Japan ISUP Normalization	893-0029-01	1	27
Korea ISUP Normalization	893-0030-01	1	28
Taiwan ISUP Normalization	893-0031-01	1	29
Philippines ISUP Normalization	893-0032-01	1	30
Singapore ISUP Normalization	893-0033-01	1	31
Australia ISUP Normalization	893-0034-01	1	32
Reserved for future definition by Tekelec		2 through 4095	
Available for user-defined categories		4095 through 65535	

ISUP Variant Table Provisioning

The Quantity Control feature allows a customer to provision a specified quantity of user-defined variants within the PSTN categories 4096 - 65535. Each Quantity Control Feature is associated with a specific quantity of variants. To provision user-defined variants, it is necessary to purchase the appropriate Feature Access Keys from Tekelec. Variants enabled using the Quantity Control feature do not have associated PSTN Presentation values.

The part number for user-defined variants is 893-0100-nn, where nn is a number ranging from 01 to 20. Use part number 893-0100-01 to order one new variant, 893-0100-05 to order five new variants, and so on.

Adding New ISUP PSTN Presentation Values

This procedure is used to add a new ISUP presentation value to the ISUP variant table, using the ent-pstn-pres command.

The PSTN Presentation value, consisting of a PSTN Category and PSTN ID, is used by the EAGLE 5 ISS to uniquely define an ISUP variant. The assignment of a new PSTN value also creates a new entry in the ISUP variant table. The new PSTN value must be unique.

This procedure may be used to define values within the Tekelec-defined range (PSTN Category 0-4095) as long as these control features are enabled:

- the controlled feature for the new PSTN category
- ISUP Normalization control feature

This command may be used to define values within the user-defined range (PSTN Category 4096-65535) as long as these control features are enabled:

- the controlled feature for the new PSTN category
- ISUP Normalization control feature
- ISUP Normalization Quantity control feature, to make sure that the quantity of user-defined PSTN categories is not exceeded.

The ent-pstn-pres command uses these parameters:

:pstncat - The PSTN Category identifying the new variant being defined is mandatory. Valid values for this parameter range from 0 to 65535.

:pstnid - The PSTN ID identifying the new variant being defined is mandatory. Valid values for this parameter range from 0 to 65535.

:pstndesc - The PSTN Description, a text description of the PSTN Presentation value, is optional. It should be used to describe the variant associated with the PSTN. This field is displayed by the rtrv-pstn-pres command and it has no other purpose. This alphanumeric string 0 -31 characters in length is delimited with quotation marks.

Valid pstncat and pstnid parameter values are listed in Table 4-1 on page 4-3.

Procedure

1. Display the current value of the ISUP PSTNs using the rtrv-pstn-pres command. This is an example of possible output:

```
rlghncxa03w 06-10-28 21:17:37 GMT EAGLE5 36.0.0
PSTNCAT PSTNID PSTNDESC
00001 00001 ITU Q.767
00001 00002 ETSI V3
00001 00003 UK PNO-ISC7
00001 00004 GERMAN ISUP
00001* 00020 Mexico
04096 01000 User Defined 4096/1000

ISUP Variant table is (6 of 21) 29% full
```

NOTE: An * will be displayed next to the PSTN Category for entries that are no longer usable. These are entries that are disabled because their temporary feature key expired.

2. Display enabled controlled feature information in the database by entering the rtrv-ctrl-feat command. The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0 The following features have been permanently enabled:
```

```
Feature Name Partnum Status Quantity
IPGWx Signaling TPS 893012814 on 20000
ISUP Normalization 893000201 on ----
ETSI v3 Normalization 893000601 on ----
HC-MIM SLK Capacity 893012707 on 64
```

The following features have been temporarily enabled:

Feature Name Partnum Status Quantity Trial Period Left Zero entries found.

The following features have expired temporary keys:

Feature Name Partnum Zero entries found.

If the ISUP Normalization control feature, the controlled feature for the new PSTN category, and if a user-defined PSTN category is being changed, or the ISUP Normalization Quantity control feature have not been enabled and turned on, go to the "Enabling Controlled Features" procedure on page 6-2 and to "Turning On and Off Controlled Features" procedure on page 6-10 to enable and turn on these controlled features.

3. Enter the desired new ISUP PSTN using the ent-pstn-pres command. For this example, enter this command.

```
ent-pstn-pres:pstncat=5000:pstnid=1
:pstndesc="Mexican ISUP v1.8"
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-10 11:43:04 GMT EAGLE5 36.0.0 ENT-PSTN-PRES: MASP A - COMPLTD
```

4. Verify that the new ISUP PSTN has been added to the database using the rtrv-pstn-pres command. This is an example of possible output:

```
rlghncxa03w 06-10-28 21:17:37 GMT EAGLE5 36.0.0
PSTNCAT PSTNID PSTNDESC

00001 00001 ITU Q.767

00001 00002 ETSI V3

00001 00003 UK PNO-ISC7

00001 00004 GERMAN ISUP

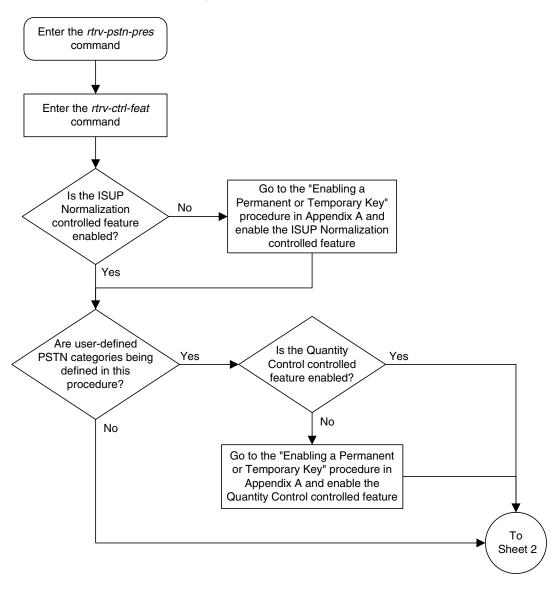
00001* 00020 Mexico

04096 01000 User Defined 4096/1000

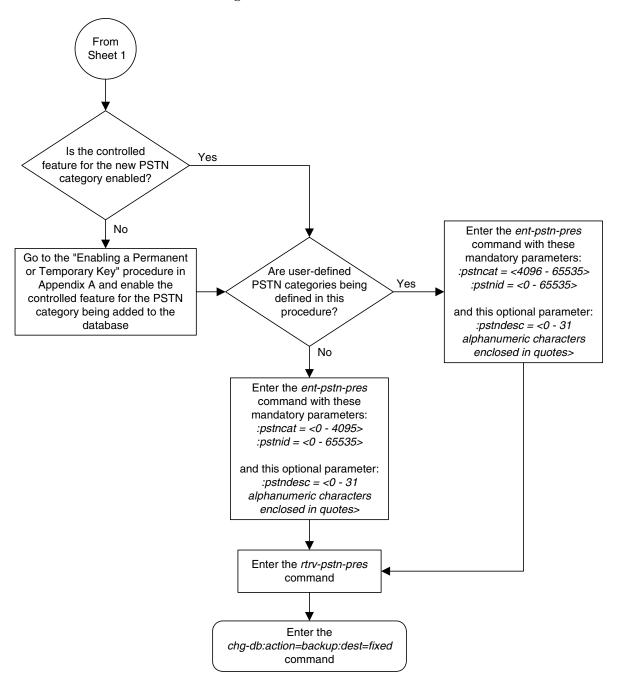
05000 00001 Mexican ISUP v1.8

ISUP Variant table is (7 of 21) 33% full
```

NOTE: An * will be displayed next to the PSTN Category for entries that are no longer usable. These are entries that are disabled because their temporary feature key expired.


5. Back up the new changes, using the chg-db:action=backup:dest=fixed command. These messages should appear; the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.


BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED) : MASP A - Backup starts on standby MASP.

BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```


Flowchart 4-1. Adding ISUP PSTN Presentation Value (Sheet 1 of 2)

Flowchart 4-1. Adding ISUP PSTN Presentation Value (Sheet 2 of 2)

Changing ISUP Presentation Values

This procedure is used to change the description for a previously defined PSTN presentation value in the ISUP Variant Table, using the chg-pstn-pres command. The description of the PSTN presentation value is shown in the PSTNDESC column in the rtrv-pstn-pres output.

The chg-pstn-pres command uses these parameters:

:pstncat - The PSTN Category identifying the variant being changed is mandatory. Valid values for this parameter range from 0 to 65535.

:pstnid - The PSTN ID identifying the variant being changed is mandatory. Valid values for this parameter range from 0 to 65535.

:pstndesc - The PSTN Description, a text description of the PSTN Presentation value, is mandatory. It should be used to describe the variant associated with the PSTN. This field is displayed by the rtrv-pstn-pres command and it has no other purpose. This alphanumeric string 0 -31 characters in length is delimited with quotation marks.

Procedure

1. Display the current value of the ISUP PSTNs using the rtrv-pstn-pres command. This is an example of possible output:

```
rlghncxa03w 06-10-28 21:17:37 GMT EAGLE5 36.0.0
PSTNCAT PSTNID PSTNDESC
00001 00001 ITU Q.767
00001 00002 ETSI V3
00001 00003 UK PNO-ISC7
00001 00004 GERMAN ISUP
00001* 00020 Mexico
04096 01000 User Defined 4096/1000
05000 00001 Mexican ISUP v1.8
```

ISUP Variant table is (7 of 21) 33% full

NOTE: An * will be displayed next to the PSTN Category for entries that are no longer usable. These are entries that are disabled because their temporary feature key expired.

2. Change the PSTN descriptive text using the **chg-pstn-pres** command. For this example, enter this command.

```
chg-pstn-pres:pstncat=4096:pstnid=1000
:pstndesc="French ISUP v5.7"
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-10 11:43:04 GMT EAGLE5 36.0.0 CHG-PSTN-PRES: MASP A - COMPLTD
```

3. Verify the changes using the **rtrv-pstn-pres** command. This is an example of possible output:

```
rlghncxa03w 06-10-28 21:17:37 GMT EAGLE5 36.0.0
PSTNCAT PSTNID PSTNDESC

00001 00001 ITU Q.767

00001 00002 ETSI V3

00001 00003 UK PNO-ISC7

00001 00004 GERMAN ISUP

00001* 00020 Mexico

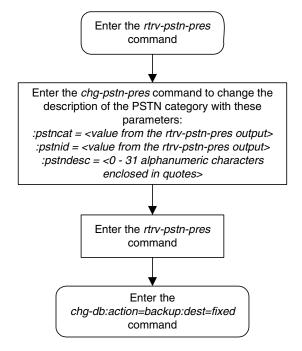
04096 01000 French ISUP v5.7

05000 00001 Mexican ISUP v1.8

ISUP Variant table is (7 of 21) 33% full
```

NOTE: An * will be displayed next to the PSTN Category for entries that are no longer usable. These are entries that are disabled because their temporary feature key expired.

4. Back up the new changes, using the chg-db:action=backup:dest=fixed command. These messages should appear; the active Maintenance and Administration Subsystem Processor (MASP) appears first.


```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.

BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED) : MASP A - Backup starts on standby MASP.

BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

Flowchart 4-2. Changing ISUP PSTN Presentation Value

Removing ISUP Presentation Values

This procedure is used to remove a previously defined ISUP presentation value from the ISUP variant table, using the dlt-pstn-pres command.

The PSTN Presentation value, consisting of a PSTN Category and PSTN ID, is used by the EAGLE 5 ISS to uniquely define an ISUP variant.

This command will also cause all the ISUP parameters provisioned for the variant with the chg-isupvar-attrib command to be deleted.

NOTE: Deleting the PSTN Presentation value may cause a loss of traffic if any routing keys are using that PSTN value. Use caution when performing this action. To display the routing keys that are using the PSTN value being removed from the database, enter the rtrv-appl-rtkey command with the pstncat and pstnid parameters.

NOTE: You cannot delete the PSTN Present value with Category=1, ID=2 (the ETSI V3 ISUP variant).

The dlt-pstn-pres command uses these parameters:

:pstncat - The PSTN Category identifying the variant being deleted is mandatory. Valid values for this parameter range from 0 to 65535.

:pstnid - The PSTN ID identifying the variant being deleted is mandatory. Valid values for this parameter range from 0 to 65535.

:force - You will need to set force=yes when deleting the PSTN presentation value.

Procedure

1. Display the current value of the ISUP PSTNs using the rtrv-pstn-pres command. This is an example of possible output:

```
rlghncxa03w 06-10-10 11:43:04 GMT EAGLE5 36.0.0
PSTNCAT PSTNID PSTNDESC
00001 00001 ITU Q.767
00001 00002 ETSI V3
00001 00003 UK PNO-ISC7
00001 00004 GERMAN ISUP
00001* 00020 Mexico
04096 01000 French ISUP v5.7
05000 00001 Mexican ISUP v1.8

ISUP Variant table is (7 of 21) 33% full
```

NOTE: An * will be displayed next to the PSTN Category for entries that are no longer usable. These are entries that are disabled because their temporary feature key expired.

2. Display any routing keys that are using the PSTN value being removed from the database using the rtrv-appl-rtkey command with the pstncat and pstnid parameter values associated with the PSTN value being removed from the database, and the display=all parameter. For this example, enter this command.

rtrv-appl-rtkey:pstncat=04096:pstnid=01000:display=all

This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0

KEY:LOC DPC SI SSN OPCA CICS CICE
STATIC 12323-DE 5 --- 12212-DE 1 1000
ATTR:PSTNCAT PSTNID NORM DUP
4096 1000 Y -
SNAMES:socket6

STATIC Route Key table is (2 of 2000) 1% full
1105 Route Key table is (2 of 500) 1% full
1107 Route Key table is (2 of 500) 1% full
STATIC Route Key Socket Association table is (2 of 32000) 1% full
1105 Route Key Socket Association table is (2 of 8000) 1% full
1107 Route Key Socket Association table is (2 of 8000) 1% full
```

If there is a routing key using the PSTN information being removed from the database, go to the "Changing the PSTN Presentation and Normalization Attributes in a Routing Key" procedure on page 3-303 and change the routing keys so that they do not reference the PSTN value.

3. Remove the ISUP PSTN value from the database using the dlt-pstn-pres command with the pstncat, pstnid, and force=yes parameters. For this example, enter this command.

dlt-pstn-pres:pstncat=04096:pstnid=01000:force=yes

NOTE: The ISUP variant ETSI V3 (PSTNCAT=1, PSTNID=2) cannot be removed from the database.

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-10 11:43:04 GMT EAGLE5 36.0.0 DLT-PSTN-PRES: MASP A - COMPLTD
```

4. Verify the changes using the **rtrv-pstn-pres** command. This is an example of possible output:

```
rlghncxa03w 06-10-28 21:17:37 GMT EAGLE5 36.0.0
PSTNCAT PSTNID PSTNDESC

00001 00001 ITU Q.767

00001 00002 ETSI V3

00001 00003 UK PNO-ISC7

00001 00004 GERMAN ISUP

00001* 00020 Mexico
05000 00001 Mexican ISUP v1.8

ISUP Variant table is (7 of 21) 33% full
```

NOTE: An * will be displayed next to the PSTN Category for entries that are no longer usable. These are entries that are disabled because their temporary feature key expired.

5. Back up the new changes, using the chg-db:action=backup:dest=fixed command. These messages should appear; the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.

BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED) : MASP A - Backup starts on standby MASP.

BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

Enter the rtrv-pstn-pres command Enter the rtrv-appl-rtkey:pstncat=<value to be removed>:pstnid=<value to be removed> :display=all command Go to the "Changing the PSTN Presentation and Normalization Attributes in an Application Routing Is the PSTN Yes Key" procedure in Chapter 3 and presentation information change the applicable routing keys used by a routing key? so that they do not reference the PSTN presentation data being removed from the database. No Enter the dlt-pstn-pres command to remove the PSTN data from the database with these parameters: :pstncat = <value from the rtrv-pstn-pres output> :pstnid = <value from the rtrv-pstn-pres output> :force = yes (See Notes) Notes: Enter the rtrv-pstn-pres 1. The parameter combinaton pstncat=1 command and pstnid=2 cannot be specified in this procedure. 2. This procedure will also remove all ISUP parameters provisioned for the ISUP Enter the variant with the chg-isupvar-attrib chg-db:action=backup:dest=fixed command. command

Flowchart 4-3. Removing ISUP PSTN Presentation Value

Changing ISUP Variant Table Entries

This procedure is used to add a new ISUP presentation value to the ISUP variant table, using the chg-isupvar-attrib command.

An ISUP variant table entry exists for each variant defined in the EAGLE 5 ISS. Each entry contains ISUP message and parameter data specific to the ISUP protocol used by that variant. A variant is uniquely defined by its PSTN Presentation value, consisting of a PSTN Category and PSTN ID.

The pstncat and pstnid parameters identify the ISUP variant table entry to be changed. Use the rtrv-pstn-pres command to display the only allowed values for the PSTN Category and ID. This procedure may be used to change any Tekelec-defined or user-defined variants that are displayed by rtrv-pstn-pres.

You can make the following changes to ISUP variant table entries.

- All the ISUP messages and parameters for the variant can be provisioned as defined or not defined. All the ISUP messages and parameters default to not defined until set to defined by this command.
- All the ISUP parameters for specific messages in the variant can be provisioned as supported or not supported. All the ISUP parameters default to not supported until set to supported by this command.
- The minimum valid parameter length can be specified for each defined ISUP parameter.
- All the ISUP messages that are provisioned as defined can also have a message conversion action assigned.
- All the ISUP parameters that are provisioned as supported can also have a parameter conversion action assigned.
- All the ISUP parameters that are provisioned as supported, can also be assigned as optional, mandatory-fixed (MF), or mandatory-variable (MV).
- If assigned as MF or MV, the numerical order the parameter appears in the message must be specified.

NOTE: You cannot change the attributes for the ETSI V3 ISUP variant (PSTN Category=1, PSTN ID=2).

The PSTN presentation value, consisting of a PSTN category and PSTN ID, is used by the EAGLE 5 ISS to uniquely define an ISUP variant. The assignment of a new PSTN value also creates a new entry in the ISUP variant table. The new PSTN value must be unique.

This procedure may be used to change values within the Tekelec-defined range (PSTN Category 0-4095) as long as these control features are enabled:

- the controlled feature for the new PSTN category
- ISUP Normalization control feature

This procedure may be used to change values within the user-defined range (PSTN Category 4096-65535) as long as these control features are enabled:

- the controlled feature for the new PSTN category
- ISUP Normalization control feature
- ISUP Normalization Quantity control feature, to make sure that the quantity of user-defined PSTN categories is not exceeded.

The chg-isupvar-attrib command uses these parameters:

:pstncat - The PSTN category identifying the new variant being defined. Valid values for this parameter range from 0 to 65535.

:pstnid - The PSTN ID identifying the new variant being defined. Valid values for this parameter range from 0 to 65535.

:msgcode - The ISUP message type code. This parameter is used to identify a specific ISUP message that is going to have its attributes changed. Valid values are 0-255 (h'00 - h'FF).

:parmcode - The ISUP parameter code. This parameter is used to identify a specific ISUP parameter that is going to have its attributes changed. When specified with the msgcode parameter, the parmcode parameter identifies a parameter within the msgcode parameter that is going to have its attributes changed. Valid values are 0-255 (h'00 - h'FF).

:attrib - The attribute being assigned to a message or parameter. This parameter can have values of defined, notdefined, supp ,or notsupp.

- **defined** the message or parameter is defined in the variant.
- notdefined the message or parameter is not defined in the variant.
- **supp** the parameter is supported in the specified message in the variant.
- **notsupp** the parameter is not supported in the specified message in the variant

:minlen - The minimum parameter length. This parameter has valid values of 0-255 (h'00 - h'FF). It is used for validating that the length of the received parameter is at least as long as the minlen parameter value.

:parmtyp - The type of ISUP parameter, and has valid values of opt, mf, or mv.

- opt The parameter may appear in the Optional part of the ISUP message. This is the default and it does not have to be specified unless the parameter needs to be changed from either mf or mv to optional.
- mf The parameter must appear in the Mandatory Fixed part of the ISUP message.
- mv The parameter must appear in the Mandatory Variable part of the ISUP message.

:order - The order in which the mandatory parameters appear in the message. Valid values are from 1 to 7.

:action - The message or parameter conversion action the software will follow when a message is received with the specified msgcode parameter value or the msgcode/parmcode parameter combination. Valid values are none, convert, and passthru.

- none The software will follow its normal conversion rules. No special conversions will occur. This is the default.
- convert The software will invoke a special conversion routine that is available in the EAGLE 5 ISS for the specified msgcode parameter value or msgcode/parmcode parameter combination.
- passthru, for the msgcode parameter, The specified message code should be passed through unconverted using the raw MTP3 transfer method.
- passthru, for the msgcode/parmcode parameter combination, The
 parameter code, when encountered in message code, should be passed
 through to the normalized section of the message (ignoring the defined or
 supp attributes of the normalized specification).

:force – Used to allow the ISUP Message Type Code to be changed to notdefined. This parameter has values of yes and no.

Table 4-2 on page 4-20 shows the parameter combinations that can be used with the chg-isupvar-attrib command.

Table 4-2. CHG-ISUPVAR-ATTRIB Parameter Combinations

Parameter	Parameter	Parameter	Parameter	Parameter
Combination 1	Combination 2	Combination 3	Combination 4	Combination 5
pstncat = 0-65535 ¹ pstnid = 0-65535 ¹ msgcode = 0-255 attrib = defined action = none, convert, passthru ^{6, 7}	pstncat = 0-65535 ¹ pstnid = 0-65535 ¹ msgcode = 0-255 attrib = notdefined force ³	pstncat = 0-65535 ¹ pstnid = 0-65535 ¹ parmcode = 0-255 attrib = defined minlen = 0-255 ²	pstncat = 0-65535 ¹ pstnid = 0-65535 ¹ parmcode = 0-255 attrib = notdefined	pstncat = 0-65535 ¹ pstnid = 0-65535 ¹ msgcode = 0-255 parmcode = 0-255 attrib = supp action = none, convert, passthru ^{6, 7}
Parameter	Parameter	Parameter	Parameter	
Combination 6	Combination 7	Combination 8	Combination 9	
pstncat = 0-65535 ¹ pstnid = 0-65535 ¹ msgcode = 0-255 parmcode = 0-255 attrib = supp parmtyp = opt ⁴ action = none, convert, passthru ^{6, 7}	pstncat = 0-65535 ¹ pstnid = 0-65535 ¹ msgcode = 0-255 parmcode = 0-255 attrib = supp parmtyp = mf ⁵ order = 1-7 action = none, convert, passthru ^{6, 7}	pstncat = 0-65535 ¹ pstnid = 0-65535 ¹ msgcode = 0-255 parmcode = 0-255 attrib = supp parmtyp = mv ⁵ order = 1-7 action = none, convert, passthru ^{6, 7}	pstncat = 0-65535 ¹ pstnid = 0-65535 ¹ msgcode = 0-255 parmcode = 0-255 attrib = notsupp	

Notes:

- 1. The parameter combination pstncat=1 and pstnid=2 cannot be specified with the chg-isupvar-attrib command.
- 2. The minlen=0 parameter is valid only for the parmcode=0 (EOP) parameter. Otherwise, the values for this parameter are from 1 to 255.
- 3. Changing an ISUP Message Type Code to notdefined will clear all the associated parameter data. In this case, the force=yes parameter is required. Changing an ISUP Message Type Code to notdefined is destructive and will clear all the associated parameter data for that ISUP Message Type Code.
- 4. The opt value is the default value for the parmtyp parameter and it does not have to be specified unless the parameter value needs to be changed from mf or mv to opt.
- 5. The parmtyp parameter may be changed as long as the change does not violate the rules of the order parameter. The mf parameters must be specified in an ordered list starting with 1. The mv parameters must be specified in a different ordered list starting with 1. There can be no gaps in order number. A mf or mv parameter cannot be removed from a list (that is, changing parmtyp parameter value, or changing the attrib parameter value to notsupp) unless all parameters with a higher order number are deleted first.
- 6. The none value is the only valid value for the action parameter when the parmcode=0 parameter is specified.
- 7. The action parameter can be specified for user-defined variants, however the EAGLE 5 ISS will ignore the convert value. There will be no supported conversion action.

Procedure

1. Display the current value of the ISUP supported parameters for all the variants using the rtrv-isupvar-attrib command. This is an example of possible output.

```
rlghncxa03w 06-10-10 11:43:04 GMT EAGLE5 36.0.0
PSTNCAT PSTNID
00001
        00001
 MSGCODE PARMCODE TYPE ORDER ACTION
       --- - NONE
          45h MF 1
00h OPT -
40h OPT -
                                   NONE
                                   NONE
                                   NONE
 MSGCODE PARMCODE TYPE ORDER ACTION
  OAh
          --- - CONVERT
          45h MF 1 NONE
4Ch MV 1 NONE
00h OPT - NONE
56h OPT - PASSTHRU
 MSGCODE PARMCODE TYPE ORDER ACTION
          ---
                     ---
  0Bh
                                   NONE
          45h MF 1 NONE
71h MF 2 NONE
00h OPT - NONE
72h OPT - CONVERT
                     MF 1
PSTNCAT PSTNID
00001 00002
 MSGCODE PARMCODE TYPE ORDER ACTION
          --- -- -
45h MF 1
                                   NONE
  01h
                                   NONE
          45h MF 1
00h OPT -
40h OPT -
                                   NONE
                                   NONE
 MSGCODE PARMCODE TYPE ORDER ACTION
          --- ---
                                   NONE
           45h MF 1 NONE
4Ch MV 1 NONE
00h OPT - NONE
10h OPT - NONE
56h OPT - NONE
PSTNCAT PSTNID
04097
       00001
 MSGCODE PARMCODE TYPE ORDER ACTION
  01h --- -
                                  NONE
          45h MF 1 NONE
00h OPT - NONE
40h OPT - PASS
                                   PASSTHRU
  MSGCODE PARMCODE TYPE ORDER ACTION
          --- - - CONVERT
45h MF 1 NONE
4Ch MV 1 NONE
00h OPT - NONE
56h OPT - CONVERT
  0Ah
ISUP Variant table is (5 of 20) 25% full
```

2. Display enabled controlled feature information in the database by entering the rtrv-ctrl-feat command. The following is an example of the possible output.

rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0 The following features have been permanently enabled:

Feature Name	Partnum	Status	Quantity
IPGWx Signaling TPS	893012814	on	20000
ISUP Normalization	893000201	on	
ETSI v3 Normalization	893000601	on	
HC-MIM SLK Capacity	893012707	on	64

The following features have been temporarily enabled:

Feature Name $\hspace{1.5cm} \text{Partnum} \hspace{1.5cm} \text{Status} \hspace{1.5cm} \text{Quantity} \hspace{1.5cm} \text{Trial Period Left} \\ \text{Zero entries found.}$

The following features have expired temporary keys:

Feature Name Partnum Zero entries found.

If the ISUP Normalization control feature, the controlled feature for the new PSTN category, and if a user-defined PSTN category is being changed, or the ISUP Normalization Quantity control feature have not been enabled and turned on, go to the "Enabling Controlled Features" procedure on page 6-2 and to "Turning On and Off Controlled Features" procedure on page 6-10 to enable and turn on these controlled features.

3. Enter the desired new values of the ISUP supported parameters using the chg-isupvar-attrib command and using one of the parameter combinations shown in Table 4-2 on page 4-20. For this example, enter this command.

```
chg-isupvar-attrib:pstncat=4097:pstnid=1:msgcode=10
:parmcode=100:attrib=supp:parmtyp=mv:order=1:action=passthru
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-10 11:43:04 GMT EAGLE5 36.0.0 CHG-ISUPVAR-ATTRIB: MASP A - COMPLTD
```

4. Verify the changes using the rtrv-isupvar-attrib command with the pstncat and pstnid values used in step 3. For this example, enter this command.

rtrv-isupvar-attrib:pstncat=4097:pstnid=1

```
rlghncxa03w 06-10-10 11:43:04 GMT EAGLE5 36.0.0

PSTNCAT PSTNID

04097 00001

MSGCODE PARMCODE TYPE ORDER ACTION

01h --- -- -- NONE

45h MF 1 NONE

00h OPT - NONE

40h OPT - PASSTHRU

MSGCODE PARMCODE TYPE ORDER ACTION

0Ah --- -- -- CONVERT

45h MF 1 NONE

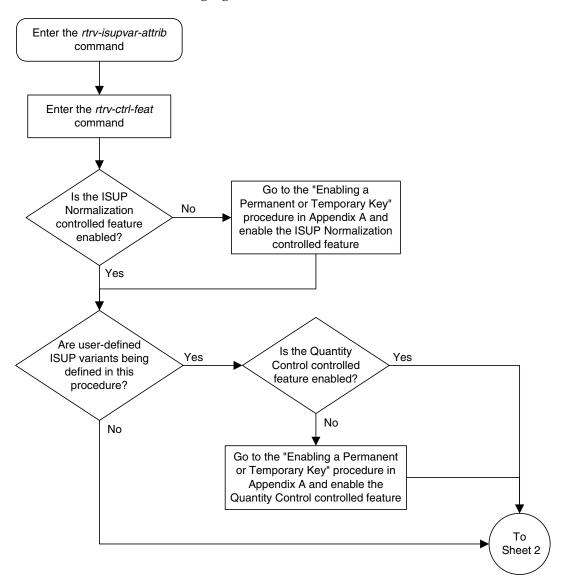
40h OPT - CONVERT

45h MV 1 NONE

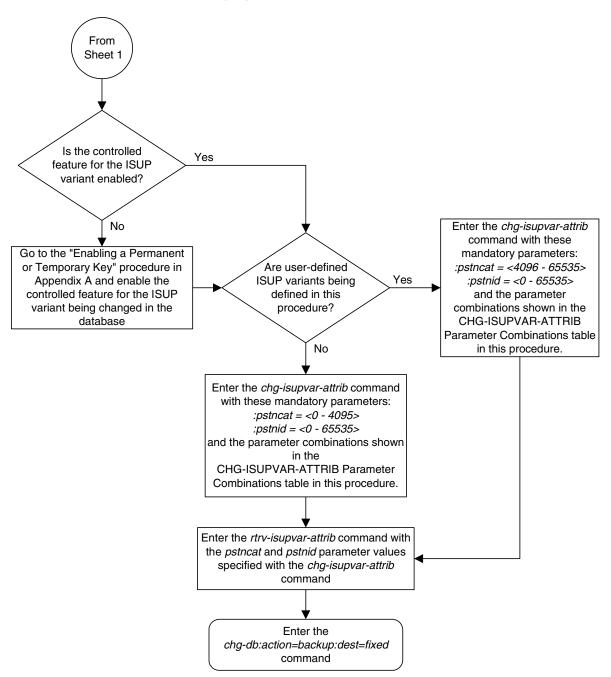
56h OPT - CONVERT

64h MV 1 PASSTHRU

ISUP Variant table is (5 of 20) 25% full
```


5. Back up the new changes, using the chg-db:action=backup:dest=fixed command. These messages should appear; the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.


BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED) : MASP A - Backup starts on standby MASP.

BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```


Flowchart 4-4. Changing ISUP Attribute Values (Sheet 1 of 2)

Flowchart 4-4. Changing ISUP Attribute Values (Sheet 2 of 2)

Copying ISUP Variant Table Entries

The **copy-isupvar-attrib** command is used to copy one ISUP variant table entry to another ISUP variant table entry.

This command provides you with an easy way to provision a new ISUP variant table entry by copying all the data from another entry. You can then change the entry with the chg-isupvar-attrib command.

An ISUP variant table entry exists for each variant defined in the EAGLE 5 ISS. Each entry contains ISUP message and parameter data specific to the ISUP protocol used by that variant. A variant is uniquely defined by its PSTN presentation value, consisting of a PSTN category and PSTN ID.

The PSTN presentation is used to identify both the source and destination table entries. Both entries must be previously defined PSTN presentation values, that is, either a Tekelec-defined PSTN or a user-defined PSTN entered into the database by the ent-pstn-pres commands. Use the rtrv-pstn-pres command to display the only allowed values for the source and destination PSTNs.

Tekelec-defined PSTNs (PSTN Category 0-4095) require that these control features are enabled:

- The controlled feature for the PSTN category
- ISUP Normalization control feature

User-defined PSTNs (PSTN Category 4096-65535) require that these control features are enabled:

- The controlled feature for the PSTN category
- ISUP Normalization control feature
- ISUP Normalization Quantity control feature, to make sure that the quantity of user-defined PSTN categories is not exceeded.

NOTE: The destination PSTN cannot be the ETSI V3 ISUP variant (PSTNCAT=1, PSTNID=2).

The copy-isupvar-attrib command uses these parameters:

- :pstncat The source variant table entry being copied. Valid values for this parameter range from 0 to 65535.
- :pstnid The source variant table entry being copied. Valid values for this parameter range from 0 to 65535.
- :dpstncat The destination variant table entry where the source variant table is being copied. Valid values for this parameter range from 0 to 65535.
- :dpstnid The destination variant table entry where the source variant table is being copied. Valid values for this parameter range from 0 to 65535.

Procedure

1. Display the current value of the ISUP supported parameters for all the variants using the rtrv-isupvar-attrib command. This is an example of possible output:

```
rlghncxa03w 06-10-28 21:17:37 GMT EAGLE5 36.0.0
PSTNCAT PSTNID
00001
        00001
 MSGCODE PARMCODE TYPE ORDER ACTION
      --- - NONE
          45h MF 1
00h OPT -
40h OPT -
                                  NONE
                                  NONE
                                  NONE
 MSGCODE PARMCODE TYPE ORDER ACTION
  OAh
          --- -
                                  CONVERT
          45h MF 1 NONE
4Ch MV 1 NONE
00h - NONE
56h - PASS
                                  PASSTHRU
  MSGCODE PARMCODE TYPE ORDER ACTION
          --- -- -
45h MF 1
   0Bh
                                  NONE
                                  NONE
          45h MF 1 NONE
71h MF 2 NONE
00h OPT - NONE
72h OPT - CONVERT
PSTNCAT PSTNID
00001 00002
 MSGCODE PARMCODE TYPE ORDER ACTION
   01h --- - - 45h MF 1
                                  NONE
                                  NONE
          00h OPT -
40h OPT -
                                  NONE
                                  NONE
 MSGCODE PARMCODE TYPE ORDER ACTION
          --- - NONE
          45h MF 1 NONE
4Ch MV 1 NONE
00h OPT - NONE
10h OPT - NONE
56h OPT - NONE
PSTNCAT PSTNID
04097 00001
 MSGCODE PARMCODE TYPE ORDER ACTION
  01h --- - NONE
          45h MF 1 NONE
00h OPT - NONE
40h OPT - PASS
                                  PASSTHRU
  MSGCODE PARMCODE TYPE ORDER ACTION
          --- -- - CONVI

45h MF 1 NONE

4Ch MV 1 NONE

00h OPT - NONE

56h OPT - CONVI
  0Ah
                                   CONVERT
                                   CONVERT
ISUP Variant table is (5 of 20) 25% full
```

2. Display enabled controlled feature information in the database by entering the rtrv-ctrl-feat command. The following is an example of the possible output.

rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0 The following features have been permanently enabled:

Feature Name	Partnum	Status	Quantity
IPGWx Signaling TPS	893012814	on	20000
ISUP Normalization	893000201	on	
ETSI v3 Normalization	893000601	on	
HC-MIM SLK Capacity	893012707	on	64

The following features have been temporarily enabled:

Feature Name Partnum Status Quantity Trial Period Left Zero entries found.

The following features have expired temporary keys:

Feature Name Partnum Zero entries found.

If the ISUP Normalization control feature, the controlled feature for the new PSTN category, and if a user-defined PSTN category is being changed, or the ISUP Normalization Quantity control feature have not been enabled and turned on, go to the "Enabling Controlled Features" procedure on page 6-2 and to "Turning On and Off Controlled Features" procedure on page 6-10 to enable and turn on these controlled features.

3. Copy an ISUP PSTN value using the **copy-isupvar-attrib** command. For this example, enter this command.

copy-isupvar-attrib:pstncat=1:pstnid=2:dpstncat=1:dpstnid=20 When this command has successfully completed, the following message should appear.

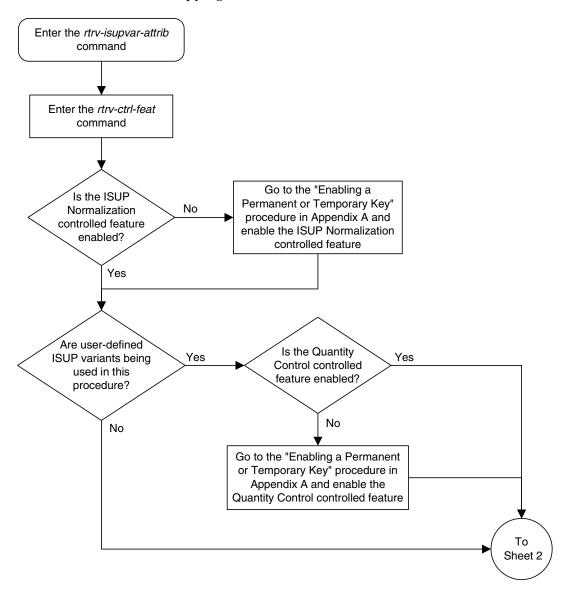
rlghncxa03w 06-10-10 11:43:04 GMT EAGLE5 36.0.0 COPY-ISUPVAR-ATTRIB: MASP A - COMPLTD

4. Verify the changes using the rtrv-isupvar-attrib command with the pstncat and pstnid parameters. Use the dpstncat and dpstnid parameter values used in step 3 for the values of the pstncat and pstnid parameters. For this example, enter this command.

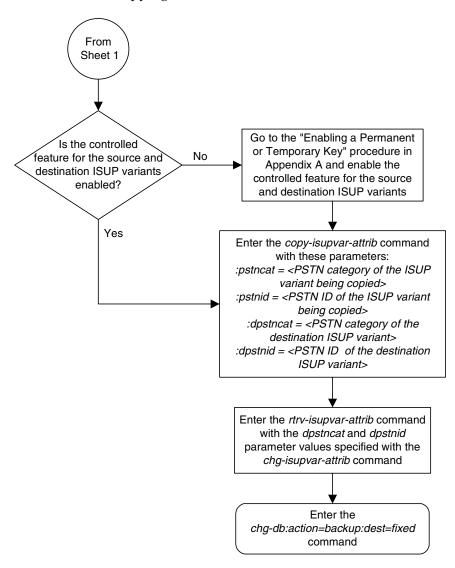
rtrv-isupvar-attrib:pstncat=1:pstnid=20

This is an example of the possible output.

PSTNCAT	PSTNID			
00001	00020			
				2 000 017
MSGCOD:	E PARMCODE	TYPE	ORDER	ACTION
01h			-	NONE
	45h	MF	1	NONE
	00h	OPT	-	NONE
	40h	OPT	-	NONE
MSGCOD	E PARMCODE	TYPE	ORDER	ACTION
TIDG COD.	E FARRICODE	IIPE	OKDEK	ACITON
0Ah			-	NONE
	 45h	TIPE MF	- 1	
			-	NONE
	 45h	MF	1	NONE NONE
	 45h 4Ch	MF MV	1	NONE NONE NONE
	 45h 4Ch 00h	MF MV OPT	1	NONE NONE NONE


5. Back up the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear; the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.


BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED) : MASP A - Backup starts on standby MASP.

BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```


Flowchart 4-5. Copying ISUP Attribute Values (Sheet 1 of 2)

Flowchart 4-5. Copying ISUP Attribute Values (Sheet 2 of 2)

ISUP Variant Table Provisioning

End Office Support

Overview	5–2
Internal Point Code	5–4
Adding an End Node Internal Point Code	5–14
Removing an End Node Internal Point Code	5–18

Overview

End Office Support enables the EAGLE 5 ISS to share its true point code (TPC) with an IP-based node without the need for a separate point code for the IP node. When the End Office Support feature is in use, the EAGLE 5 ISS shares a point code for up to three network types with attached IP network elements.

The EAGLE 5 ISS lets you take advantage of next generation network technology by migrating existing signaling end points from the PSTN to the IP network. The fact that the EAGLE 5 ISS is a signaling transfer point and has its own point code, however, can present a significant network management issue. This feature provides the means to perform the migration without obtaining a new point code or reconfiguring the network to interface with both the EAGLE 5 ISS and an IP end office node.

Characteristics of this feature include:

- The EAGLE 5 ISS allows a set of IP network elements to share its true point code.
- The EAGLE 5 ISS allows messages destined to its true point code and having SI>=3 to be forwarded to an IP network element.
- The EAGLE 5 ISS enables IP networks elements sharing its true point code to participate in network management.
- The EAGLE 5 ISS supports ANSI, ITU national and international end office nodes.
- The EAGLE 5 ISS implements the MTP procedures required for an end office node.
- The End Office Support feature does not reduce the rated TPS of any EAGLE 5 ISS application.

The Remote Application Table contains fields for assigning each user part to an end office node. The default value is 'not assigned'.

New Remote Application Table commands provide for adding, deleting, and retrieving user-part assignments:

- ent-rmt-appl
- dlt-rmt-appl
- rtrv-rmt-appl

The user parts SI=0, SI=1, and SI=2 cannot be assigned to an end office node. The SNM case is a special case in that UPUs may be forwarded, even though SI=0 cannot be assigned to a remote application. All other SNMs are processed as destined to the EAGLE 5 ISS rather than the end office node. This often results in a multicast throughout the EAGLE 5 ISS that updates the routing tables on all cards. An end office node can receive these messages via replication performed by MTPP.

Each SS7-based application that receives a message destined to a TSPC checks the user-part assignment within the Remote Application Table. If the user-part is assigned and the SI is greater than or equal to 3, then the message is forwarded to the appropriate application, otherwise it is processed as though destined to the EAGLE 5 ISS.

To assign a remote application for the SCCP (SI=3) user part, you must also specify a subsystem number. The Remote Application Table maintains a record of assignments for all possible subsystems (256). Subsystems are either assigned or not assigned.

NOTE: SSN=0 is normally an invalid value. This feature makes use of SSN=0 for the purpose of forwarding certain MSUs to the end office node.

- Received SCCP Messages that indicate route-on-global-title are treated as having SSN=0 for remote application assignment. If a remote application is assigned to SSN=0, then the message is forwarded, otherwise it is distributed to the local SCCP application. In previous releases, this would occur only for mis-configured networks. Messages indicating route-on-global-title and intended for the EAGLE 5 ISS, not the end office node, should be sent to the EAGLE 5 ISS's capability point code.
- Received SCCP Messages that lack a Called Party SS are treated as having SSN=0 for remote application assignment. If a remote application is assigned to SSN=0, then the message is forwarded, otherwise it is distributed to the local SCCP application.
- Received SCCP Messages having a Called Party SS equal to SCMG (SSN=1)
 are processed and terminated by the EAGLE 5 ISS, and if SSN=1 has a remote
 application assigned, the MSU is also replicated and forwarded to the end
 office node.
- Received SSCP Messages having a Called Party SSN not equal to 0 or SCMG (1) and for which a remote application is assigned are forwarded to the end office node. Messages received for unassigned subsystems are distributed to the local SCCP application.
- The end office node cannot share SCCP subsystems (other than SCMG) with the EAGLE 5 ISS. If the end office node assigns a given subsystem, such as LNP, then the subsystem local to the EAGLE 5 ISS cannot receive messages. Remote applications take priority over local applications.

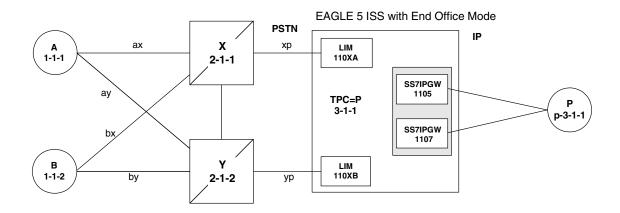
Internal Point Code

To route SS7 messages to the IP address without adding another external point code, the End Office feature uses an internal point code (IPC). This point code is private to the EAGLE 5 ISS, and the PSTN has no awareness of it. Its sole purpose is to allow messages destined to the End Office Node to be routed from the inbound LIM to the IPGWx card (a card running either the SS7IPGW or IPGWI applications). An IPC must be entered as a destination and must be assigned for each network type having an end office node. This point code is also used internally by the EAGLE 5 ISS in order to route inbound messages to the outbound IPGWx card. The EAGLE 5 ISS can have up to three IPCs, one for ANSI, one for ITU International, and one for ITU National networks.

Table 5-1 displays a sample Remote Application Table. The Network Type and SI are used to index into the table, rather than being stored in the table.

Table 5-1. Sample IPC Values

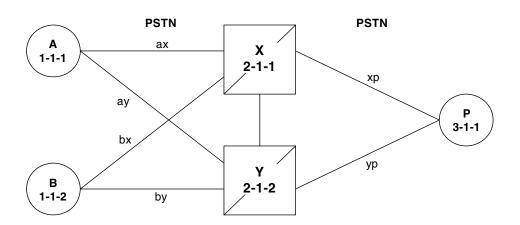
IPC	Assigned to End Office Node	Assigned SSNs	Network Type	User-Part (SI)	Action taken when MSU is received for the TPC
p-0-1-0	FALSE	n/a	ANSI	0	No application can be assigned for SI=0. Note that TFCs are processed, replicated and sent to an end office node, if an application is assigned to any other user part. UPUs are forwarded if the application specified by the affected SI is assigned.
	FALSE	n/a		1	No application can be assigned for SI=1.
	FALSE	n/a		2	No application can be assigned for SI=2.
	TRUE	3, 7, 100		3	SCCP messages destined to the TSPC and with SSN assigned are forwarded to an end office node. SCCP messages destined to a TSPC and SSN not assigned are distributed to subsystems local to the EAGLE 5 ISS (e.g. LNP).
	FALSE	n/a		4	Terminate with UPU.
	TRUE	n/a		5	ISUP messages destined to a TSPC are forwarded to the end office node.
	FALSE	n/a		6 - 15	Terminate with UPU.
110	FALSE	n/a	ITU-N	0	No application can be assigned for SI=0. TFCs are processed, replicated and sent to an end office node, if an application is assigned to any other user part. UPUs are forwarded if the application specified by the affected SI is assigned.


 Table 5-1.
 Sample IPC Values (Continued)

IPC	Assigned to End Office Node	Assigned SSNs	Network Type	User-Part (SI)	Action taken when MSU is received for the TPC
	FALSE	n/a		1	No application can be assigned for SI=1.
	FALSE	n/a		2	No application can be assigned for SI=2.
	FALSE	NULL		3	Distribute to local SCCP.
	TRUE	n/a		4	TUP messages destined to the TSPC are forwarded to the end office node.
	FALSE	n/a		5 - 12	Terminate with UPU.
	TRUE	n/a		13	QBICC messages destined to the TSPC are forwarded to the end office node.
	FALSE	n/a		14, 15	Terminate with UPU.
0-10-1	FALSE	n/a	ITU-I	0	No application can be assigned for SI=0. TFCs are processed, replicated and sent to an end office node, if an application is assigned to any other user part. UPUs are forwarded if the application specified by the affected SI is assigned.
	FALSE	n/a		1	No application can be assigned for SI=1.
	FALSE	n/a		2	No application can be assigned for SI=2.
	FALSE	NULL		3	Distribute to local SCCP.
	TRUE	n/a		4	TUP messages destined to the TSPC are forwarded to the end office node.
	FALSE	n/a		5 - 15	Terminate with UPU.

New Installation of VXI Behind a EAGLE 5 ISS with End Office Support

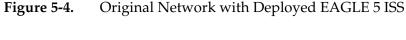
Figure 5-1 depicts a network in which a VXI node is deployed behind a EAGLE 5 ISS with End Office Support. Note that the VXI node resides in the IP network and shares the EAGLE 5 ISS's true point code. The PSTN views the EAGLE 5 ISS and VXI as one network element (one point code).

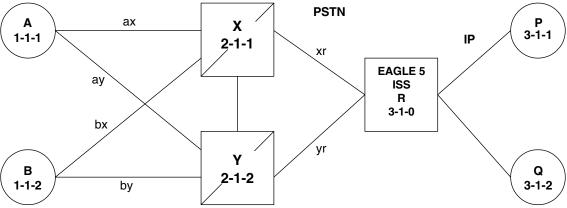

Figure 5-1. A EAGLE 5 ISS with End Office Support and VXI Node

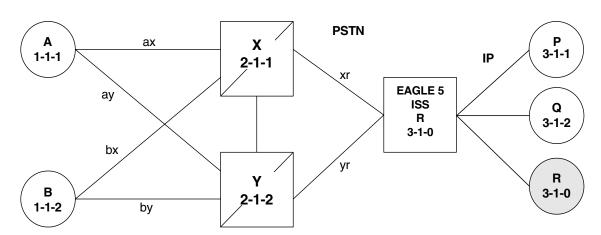
One Node Migrates from PSTN to IP

Figure 5-2 and Figure 5-3 depict the migration of a signaling end point from the PSTN to an IP network using the EAGLE 5 ISS with the End Office Support feature.

Figure 5-2. Network Before a EAGLE 5 ISS with End Office, Node P is to Migrate

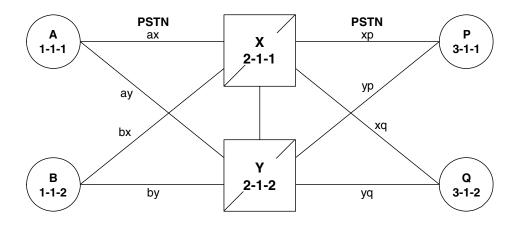

EAGLE 5 ISS with End Office Mode **PSTN** ax Χ хр LIM 110XA 1-1-1 2-1-1 SS7IPGW ay 1105 TPC=P 3-1-1 SS7IPGW bx 1107 LIM 1-1-2 110XB by 2-1-2 yp


Figure 5-3. Network After a EAGLE 5 ISS with End Office, Node P has Migrated


In Figure 5-3 the EAGLE 5 ISS no longer acts like a signaling transfer point, but rather acts like a signaling end point that has an IP-attached application user-part. The EAGLE 5 ISS and the IP network element share the point code P. All messages received by the EAGLE 5 ISS should be destined to P and all messages sent to the PSTN from the EAGLE 5 ISS have an OPC of P.

A Signaling End Point is Added to a Deployed EAGLE 5 ISS Using End Office

Another possible scenario for the End Office feature is that a customer has a deployed EAGLE 5 ISS with attached IP nodes, and wants to make use of the End Office feature to add a new IP node. Consider the following network diagrams, Figure 5-4 and Figure 5-5.


Figure 5-5. New Network with a EAGLE 5 ISS Using End Office and End Node R

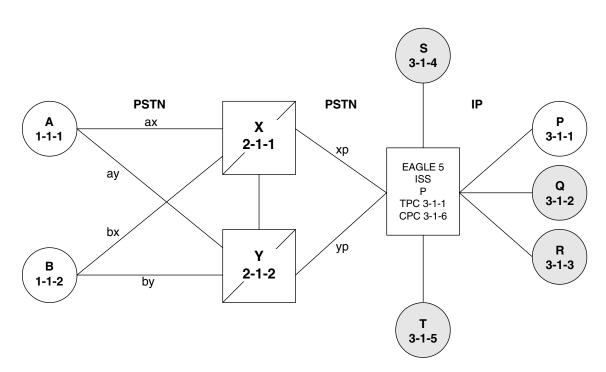
In Figure 5-5 the customer saves a point code by using the End Office feature and making the new IP network element an end office node. No change is required in the PSTN or at P or Q. Non-network-management and non-test messages destined to R are now forwarded to an IP network element, rather than terminated by the EAGLE 5 ISS.

Two Signaling End Points Move from PSTN to IP Using End Office

A more complex scenario arises when multiple signaling end points are to migrate from the PSTN to an IP network using the End Office feature. Consider Figure 5-6 and Figure 5-7.

Figure 5-6. Network before Two Signaling End Points Migrate from PSTN to IP

EAGLE 5 ISS with End Office Mode **PSTN** X ax LIM xsg 1-1-1 110XA p-3-1-1 2-1-1 SS7IPGW ay 1105 3-1-1 bx SS7IPGW 1107 3-1-2 Υ 1-1-2 110XB by 2-1-2 ysg

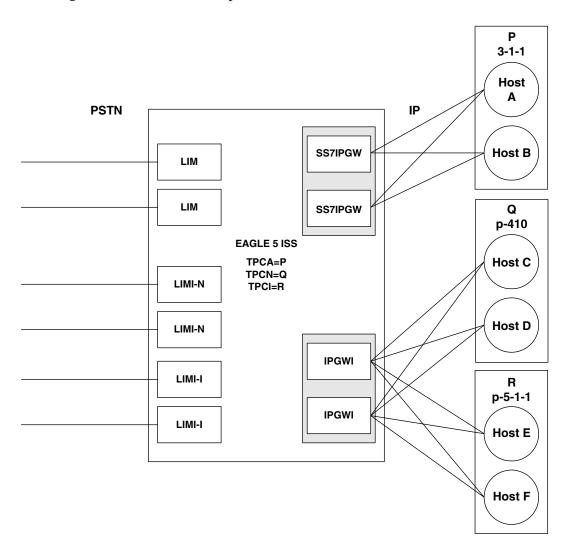

Figure 5-7. Network after Two Signaling End Points Migrate from PSTN to IP

In Figure 5-7, P is an end office node, and so P serves as the adjacent point code for nodes X and Y. The following are key points about this figure:

- Q is not an end office node, and so the EAGLE 5 ISS behaves as an STP for messages originated by and destined to Q.
- Reprovisioning is required in the PSTN, since the Q is now behind P. One
 example of this is that the linksets between X and Q and between Y and Q
 must change.
- Traffic between P and Q are no longer routed through X/Y, but are routed within the EAGLE 5 ISS.

The EAGLE 5 ISS Simultaneously Acts as STP and End Office

Figure 5-8 on page 5-10 depicts the EAGLE 5 ISS supporting three IP network elements, only one of which use the End Office feature, and two PSTN network elements. In addition, a capability point code is provisioned on the EAGLE 5 ISS, thereby allowing the use of GTT.


Figure 5-8. The EAGLE 5 ISS Simultaneously Acts as STP and End Office

Notes regarding Figure 5-8:

- P is the end office node, and so the EAGLE 5 ISS TPC=P.
- Assume that end node P has an application assignment for SCCP.
- SCCP traffic destined to P is forwarded to the IP node via the SS7IPGW application.
- SCCP traffic destined to the CPC is distributed to the EAGLE 5 ISS's local SCCP application (e.g. GTT).
- Network elements Q, R, S, and T are not end office nodes, and so the EAGLE 5 ISS generates TFx network management concerning them.
- IP Network element P is an end office node, and so the EAGLE 5 ISS generates only UPU/SSP concerning it.

The EAGLE 5 ISS Supports Multiple Network Types and Multiple Hosts as an End Node

In Figure 5-9 on page 5-11 the EAGLE 5 ISS supports an end office node for each of the three network types. Each end office node comprises multiple IP network elements. The IP network elements are distinguished by the remote host and remote port values of the IP network elements (IP address parameters).

Figure 5-9. Three Multiple-Element End Office Nodes

Mated Pair Supports Two End Office Nodes

Figure 5-10 depicts a mated pair of EAGLE 5 ISSs with each EAGLE 5 ISS supporting an End Office Node. Note that EAGLE 5 ISS P lacks IP links to IPNE-Q and EAGLE 5 ISS Q lacks IP links to IPNE-P, since such links would conflict with the C-links of linkset pq.

Figure 5-10. Mated Pair Supports Two End Office Nodes

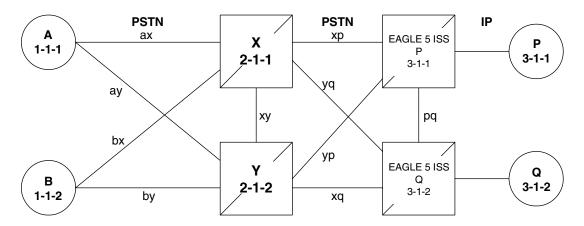


Figure 5-10 shows that a mated pair of EAGLE 5 ISSs cannot share an End Office Node. Each EAGLE 5 ISS requires its own unique point code and so any attached End Office Nodes share those point codes. It would be possible for a single IP network element to act as both P and Q (have IP connections to both EAGLE 5 ISS P and EAGLE 5 ISS Q). This configuration, however, would not provide true redundancy. Messages destined to P are terminated either at EAGLE 5 ISS P or IPNE-P, and message destined to Q are terminated either at EAGLE 5 ISS Q or IPNE-Q. Should the IP link between EAGLE 5 ISS P and IPNE-P fail, this feature provides no way for EAGLE 5 ISS P to forward messages to the End Office Node using the linkset pq (the linkset between systems P and Q).

End Office Support Configuration

In addition to the internal point code provisioned in the database with the "Adding an End Node Internal Point Code" procedure on page 5-14, these entities must be configured in the database to support the End Office feature.

- The internal point code must be in the destination point code table go to the "Adding a Destination Point Code" procedure in the *Database Administration Manual SS7*.
- An SS7 route to the internal point code go to either the "Adding a Route containing an SS7 DPC" or "Adding a Route Containing an IPGWx Linkset" procedure in the *Database Administration Manual SS7*.
- Signaling links assigned to the cards running either the SS7IPGW or IPGWI applications "Adding an IP Signaling Link" procedure on page 3-84.
- Sockets or associations (with the corresponding ASPs and application servers):
 - "Adding an Application Socket" procedure on page 3-181
 - "Adding an Association" procedure on page 3-327
 - "Removing an Association from an Application Server" procedure on page 3-441
- Routing key matching the user part specified in the "Adding an End Node Internal Point Code" procedure and with the DPC of the routing key equal to the true point code of the EAGLE 5 ISS (shown in the rtrv-sid output) See either the "Adding a Routing Key Containing a Socket" procedure on page 3-233 or the "Adding a Routing Key Containing an Application Server" procedure on page 3-250.

Adding an End Node Internal Point Code

This procedure is used to assign user parts to an internal point code (IPC), and thereby to an end office node using the ent-rmt-appl command. An internal point code is assigned to remote applications.

Only one IPC value for each network type can be configured. If you are adding an IPC value of the same network type as an existing IPC (for example, adding an ANSI IPC when the rtrv-rmt-appl output contains an ANSI IPC), the IPC value must be the same as the existing IPC value.

The ent-rmt-appl command uses these parameters:

:ipc/ipca/ipci/ipcn/ipcn24 – The end node's internal point code can be an ANSI (ipc/ipca), ITU-I or ITU-I spare (ipci), 14-bit ITU-N or 14-bit ITU-N spare (ipcn), or 24-bit ITU-N (ipcn24) point code.

NOTE: The point code value can also be either a private (p-) or a private spare (ps-) point code, but does not have to be a private or private spare point code. Any point code can be a private point code. Only ITU-I or 14-bit ITU-N point codes can be private spare point codes. The point code value must be shown in the rtrv-dstn command output.

NOTE: The EAGLE 5 ISS can contain 14-bit ITU-N point codes or 24-bit ITU-N point codes, but not both at the same time.

:si – The service indicator value designates which MSU user part is being assigned to a remote application. Valid values range from 3 to 15.

:ssn – The SCCP subsystem number parameter. This parameter is required if the si=3 parameter is specified and is not valid for any other si value. If the ssne parameter is also specified, then the ssn parameter serves as the starting value of a range. Valid values range from 0 to 255.

:ssne – The SCCP subsystem number range end parameter. The ssne value can be specified only if the si=3 parameter is specified and is not valid for any other si value. This parameter serves as an end of a range, and so must be greater than the ssn parameter value. Valid values range from 1 to 255.

The specified assignment cannot be an existing assignment, including SSN subsets.

Procedure

1. Display a report listing the remote application assignments using the rtrv-rmt-appl command. This is an example of possible output:

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0

IPCA SI SSN

003-003-003 3 100, 110-119, 200
```

```
IPCI SI SSN
p-3-003-3 3 5, 50-100, 250
5

IPCN SI SSN
IPCN24 SI SSN
```

2. Display the current destination point codes, using the rtrv-dstn command. This is an example of the possible output.

```
rlghncxa03w 06-10-17 16:02:05 GMT EAGLE5 36.0.0
   DPCA CLLI BEI ELEI ALIASI 003-003-003 ----- yes ---
                                            ALIASN
                                                           DOMAIN
                                                          SS7
                                              -----
  ----- SS7
                                                            SS7
                                                            SS7
                                                           SS7
                                                           SS7
   244-020-004 ls06clli yes --- -----
                                              ---- X25
   244-020-005 ls07clli yes --- -----
                                               ----- X25
   244-020-006 ls08clli yes --- -----
                                               _____
                                                          X25
  244-020-007 ------ yes --- ------
244-020-008 ------ yes --- ------
-003-003-003 ------ yes --- ------
                                               -----
                                                            X25
                                                            X25
 p-003-003-003
                                               -----
               CLLI
            CLLI BEI ELEI ALIASA ALIASN/N24 rlghncbb023 no --- 222-210-000 10789
   DPCI
                                               ALIASN/N24 DOMAIN
   2-131-1
                                                            SS7
  2-131-2
2-131-3
               ----- no --- 222-211-001 1138
                                                            SS7
               no --- 222-211-001 1138
                                                            SS7
 p-3-003-3
               ----- no --- -----
                                                            SS7
               CLLI BEI ELEI ALIASA ALIASI
   DPCN
                                                            DOMAIN
               rlghncbb013 no --- 222-200-200 2-121-1 rlghncbb013 no --- 222-200-201 2-121-2
   7701
                                                            SS7
 11038
p-16380
                                                            SS7
                                  -----
               ---- no ---
                                                            SS7
   DPCN24
               CLLI BEI ELEI ALIASA
                                               ALIASI
                                                            DOMAIN
DESTINATION ENTRIES ALLOCATED: 2000
FULL DPC(s):

EXCEPTION DPC(s):

NETWORK DPC(s):

CLUSTER DPC(s):

TOTAL DPC(s):

CAPACITY (% FULL):

ALIASES ALLOCATED:

18
   FULL DPC(s): 17
   ALIASES USED:
    CAPACITY (% FULL):
                                1%
X-LIST ENTRIES ALLOCATED:
                               500
```

If the IPC being added to the database is not shown in the rtrv-dstn output, go to the "Adding a Destination Point Code" procedure in the *Database Administration Manual - SS7* and add the IPC to the DPC table.

3. Add the remote application assignments using the ent-rmt-appl command. For this example, enter these commands.

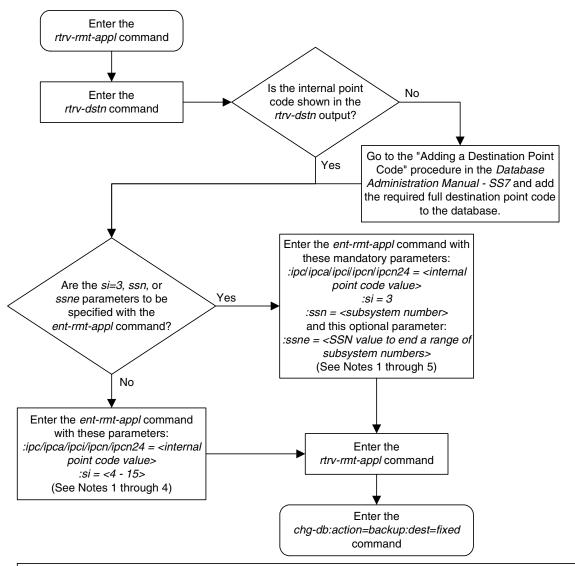
```
ent-rmt-appl:ipcn=p-16380:si=3:ssn=250
ent-rmt-appl:ipcn=p-16380:si=5
ent-rmt-appl:ipca=003-003-003:si=13
ent-rmt-appl:ipca=003-003-003:si=3:ssn=50:ssne=75
```

When each of these commands have successfully completed, the following message should appear.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0 ENT-RMT-APPL: MASP A - COMPLTD;
```

4. Verify the changes using the **rtrv-rmt-appl** command. This is an example of possible output:

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0
         SI SSN
                3 50-75, 100, 110-119, 200
  003-003-003
                 5
                 13
  IPCI
                SI SSN
p-3-003-3
                3 5, 50-100, 250
                 5
  IPCN
                SI SSN
p-16380
                3 250
                 5
                 SI SSN
  IPCN24
```


5. Back up the new changes, using the chg-db:action=backup:dest=fixed command. These messages should appear; the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.

BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED) : MASP A - Backup starts on standby MASP.

BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```


Flowchart 5-1. Adding an End Node Internal Point Code

Notes:

- 1. If the ipc or ipca parameter is specified, only a full point code value can be specified.
- 2. The EAGLE 5 ISS can contain 14-bit ITU-N point codes or 24-bit ITU-N point codes, but not both at the same time.
- 3. The point code value can be a non-spare, non-private, spare (s-), private (p-) or a private spare (ps-) point code, but does not have to be a spare, private, or private spare point code. Any point code can be a private point code. Only ITU-I or 14-bit ITU-N point codes can be private spare point codes or spare point codes. The point code value must be shown in the *rtrv-dstn* command output.
- 4. Only one IPC value for each network type can be configured. If you are adding an IPC value of the same network type as an existing IPC (for example, adding an ANSI IPC when the *rtrv-rmt-appl* output contains an ANSI IPC), the IPC value must be the same as the existing IPC value.
- 5. The ssn parameter value cannot be greater than the ssne parameter value.

Removing an End Node Internal Point Code

The dlt-rmt-appl command is used to remove remote application assignments from the database.

The dlt-rmt-appl command uses these parameters:

- :ipc/ipca/ipci/ipcn/ipcn24 The end node's internal point code can be an ANSI, ANSI private (ipc/ipca), ITU-I, ITU-I spare, ITU-I private spare (ipci), 14-bit ITU-N, 14-bit ITU-N spare, 14-bit ITU-N private spare (ipcn), or 24-bit ITU-N, or 24-bit ITU-N private (ipcn24) point code.
- :si The service indicator value designates which MSU user part is being assigned to a remote application. Valid values range from 3 to 15.
- :ssn The SCCP subsystem number parameter. This parameter is required if the si=3 parameter is specified and is not valid for any other si value. If the ssne parameter is also specified, then the ssn parameter serves as the starting value of a range. Valid values range from 0 to 255.
- :ssne The SCCP subsystem number range end parameter. The ssne value can be specified only if the si=3 parameter is specified and is not valid for any other si value. This parameter serves as an end of a range, and so must be greater than the ssn parameter value. Valid values range from 1 to 255.

Procedure

1. Display a report listing the remote application assignments using the rtrv-rmt-appl command. This is an example of possible output:

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0
             SI SSN
  003-003-003
                 3 50-75, 100, 110-119, 200
                  5
                  13
  IPCI
                 SI SSN
                 3 5, 50-100, 250
p-3-003-3
                 SI SSN
  IPCN
p-16380
                  3 250
                   5
  IPCN24
                  SI SSN
```

2. Delete remote application assignments using the dlt-rmt-appl command. For this example, enter these commands.

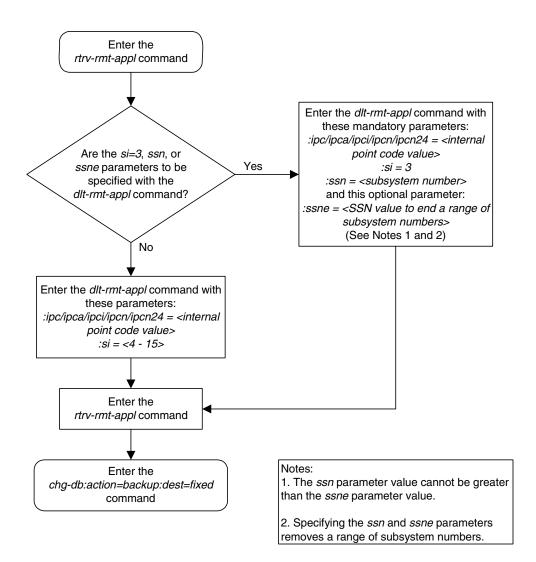
```
dlt-rmt-appl:ipca=003-003-003:si=3:ssn=100
dlt-rmt-appl:ipca=003-003-003:si=13
```

When each of these commands have successfully completed, the following message should appear.

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0 DLT-RMT-APPL: MASP A - COMPLTD;
```

3. Verify the changes using the rtrv-rmt-appl command. This is an example of possible output:

```
rlghncxa03w 06-10-28 09:12:36 GMT EAGLE5 36.0.0
               SI SSN
  003-003-003
                 3 50-75, 110-119, 200
                SI SSN
  IPCI
p-3-003-3
                 3 5, 50-100, 250
                 5
  TPCN
                SI SSN
p-16380
                  3 250
                  5
                SI SSN
  IPCN24
```


4. Back up the new changes, using the chg-db:action=backup:dest=fixed command. These messages should appear; the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.

BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED) : MASP A - Backup starts on standby MASP.

BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```


Flowchart 5-2. Removing an End Node Internal Point Code

Activating Controlled Features

Introduction	6–2
Enabling Controlled Features	6–2
Enabling a Permanent or Temporary Key	6–3
Temporary Feature Keys	6–7
Turning On and Off Controlled Features	6–10
Turning On an Enabled Controlled Feature	6–10
Turning Off an Enabled Controlled Feature	6–12

Introduction

Controlled features are features that are activated using a feature access key. These features can be either features that can be turned on or off, or features that operate at a particular performance level.

Enabling Controlled Features

The enable-ctrl-feat command is used to enable a controlled feature by entering the controlled feature's access key and the controlled feature's part number with these parameters:

: fak – The feature access key generated by Tekelec's feature access key generator, and supplied to you when you purchase or temporarily try a controlled feature. The feature access key contains 13 alphanumeric characters and is not case sensitive.

:partnum – The Tekelec-issued part number associated with the controlled feature. The part number is a 9-digit number, not including dashes; the first three digits must be 893 (that is, 893xxxxxx, where x is a numeric value).

The enable-ctrl-feat command requires that the database contain a valid serial number for the EAGLE 5 ISS, and that this serial number is locked. This can be verified with the rtrv-serial-num command. The EAGLE 5 ISS is shipped with a serial number in the database, but the serial number is not locked. The serial number can be changed, if necessary, and locked once the EAGLE 5 ISS is on-site, by using the ent-serial-num command. The ent-serial-num command uses these parameters.

:serial – The serial number assigned to the EAGLE 5 ISS. The serial number is not case sensitive.

:lock – Specifies whether or not the serial number is locked. This parameter has only one value, yes, which locks the serial number. Once the serial number is locked, it cannot be changed.

NOTE: To enter and lock the EAGLE 5 ISS's serial number, the ent-serial-num command must be entered twice, once to add the correct serial number to the database with the serial parameter, then again with the serial and the lock=yes parameters to lock the serial number. You should verify that the serial number in the database is correct before locking the serial number. The serial number can be found on a label affixed to the control shelf (shelf 1100).

Features can be enabled by entering a permanent feature access key. Some features can be tried or tested by entering a temporary feature access key. By requiring a feature access key to enable and activate a controlled feature, unauthorized enabling and activation of a controlled feature can be prevented.

Activating Controlled Features

Features enabled with a permanent feature access key remain enabled for as long as the EAGLE 5 ISS remains in service. Once features are permanently enabled, they cannot be disabled.

Enabling a Permanent or Temporary Key

This procedure explains how to enable controlled features in the EAGLE 5 ISS by entering either a permanent feature access key or a temporary feature access key for the controlled features. This procedure uses the enable-ctrl-feat, and ent-serial-num commands.

If the temporary key is being enabled, it must not be in the *in-use*, *expired*, or *unavailable* state.

The examples in this procedure are used to enable the controlled features in Table 6-1.

Table 6-1. Sample Controlled Feature Part Numbers

Feature Name	Part Number
ISUP Normalization	893000201
ETSI v3 Normalization	893000601

Procedure

1. Display the serial number in the database with the rtrv-serial-num command. This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
System serial number = nt00001231
System serial number is not locked.
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
Command Completed
```

NOTE: If the serial number is correct and locked, skip steps 2, 3, and 4, and go to step 5. If the serial number is correct but not locked, skip steps 2 and 3, and go to step 4. If the serial number is not correct, but is locked, this feature cannot be enabled and the remainder of this procedure cannot be performed. Contact the Customer Care Center to get an incorrect and locked serial number changed. Refer to "Customer Care Center" on page 1-9 for the contact information. The serial number can be found on a label affixed to the control shelf (shelf 1100).

2. Enter the correct serial number into the database using the ent-serial-num command with the serial parameter.

For this example, enter this command.

ent-serial-num:serial=<EAGLE 5 ISS's correct serial number> When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0 ENT-SERIAL-NUM: MASP A - COMPLTD
```

3. Verify that the serial number entered into step 2 was entered correctly using the rtrv-serial-num command. This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
System serial number = nt00001231
System serial number is not locked.
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
Command Completed
```

If the serial number was not entered correctly, repeat steps 3 and 4 and re-enter the correct serial number.

4. Lock the serial number in the database by entering the ent-serial-num command with the serial number shown in step 1, if the serial number shown in step 1 is correct, or with the serial number shown in step 3, if the serial number was changed in step 2, and with the lock=yes parameter.

For this example, enter this command.

```
ent-serial-num:serial=<EAGLE 5 ISS's serial number>:lock=yes
When this command has successfully completed, the following message
should appear.
```

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0 ENT-SERIAL-NUM: MASP A - COMPLTD
```

5. Display an update of all of the controlled features that have been purchased and all of the temporary keys that have been issued by entering the rtrv-ctrl-feat command. The following is an example of the possible output.

6. Enable the purchased permanent key or temporary key for controlled features being enabled by entering the **enable-ctrl-feat** command. For this example, enter this command using the part numbers shown in Table 6-1 on page 6-3.

```
enable-ctrl-feat:partnum=893000201:fak=<feature access key>
enable-ctrl-feat:partnum=893000601:fak=<feature access key>
```

NOTE: The values for the feature access key (the fak parameter) are provided by Tekelec. If you do not have the controlled feature part number or the feature access key for the feature you wish to enable, contact your Tekelec Sales Representative or Account Representative.

When the enable-crtl-feat command has successfully completed, this message should appear.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0 ENABLE-CTRL-FEAT: MASP B - COMPLTD
```

7. Verify the changes by entering the rtrv-ctrl-feat command. The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0 The following features have been permanently enabled:
```

```
Feature Name Partnum Status Quantity IPGWx Signaling TPS 893012814 on 20000 ISUP Normalization 893000201 off ---- ETSI v3 Normalization 893000601 off ---- HC-MIM SLK Capacity 893012707 on 64
```

The following features have been temporarily enabled:

```
Feature Name Partnum Status Quantity Trial Period Left Zero entries found.
```

```
The following features have expired temporary keys:

Feature Name Partnum
```

Zero entries found.

8. Back up the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.

BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED) : MASP A - Backup starts on standby MASP.

BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

9. If the controlled features enabled in step 4 are On/Off features, the features must be turned on using the chg-ctrl-feat command. Specify the controlled feature part number used in step 4 and the status=on parameter. For this example, enter these commands. Go to the procedure in "Turning On and Off Controlled Features" on page 6-10 to turn each feature on.

This feature cannot be enabled without the correct serial number in the database. Contact the Customer Enter the rtrv-serial-num Care Center to get the correct serial command number entered into the database. Refer to the "Customer Care Center" section in Chapter 1 for the contact information. Yes Is the EAGLE 5 ISS's serial number Is the EAGLE in the database correct and No 5 ISS's serial number No Is the EAGLE 5 ISS's is the serial number locked? in the database serial number locked? correct? (See Notes 1, 2, and 3) Yes No Yes Enter the ent-serial-num command with this Enter the ent-serial-num parameter: command with these :serial=<EAGLE 5 ISS's parameters: correct serial number> :serial=<EAGLE 5 ISS's serial number> :lock=yes Enter the rtrv-serial-num command Enter the rtrv-ctrl-feat command Enter the Is the EAGLE enable-ctrl-feat 5 ISS's serial number Yes :partnum=<controlled feature part in the database number> correct? :fak=<feature access key> command (See Note 4) 1. If the serial number is locked, it Enter the rtrv-ctrl-feat cannot be changed. command 2. If the serial number is not locked, the controlled feature cannot be 3. The serial number can be found on Enter the a label affixed to the control shelf chg-db:action=backup:dest=fixed (shelf 1100). command 4. If you do not have the controlled feature part number or the feature access key for the controlled feature you wish to enable, contact your Tekelec sales representative or account representative.

Flowchart 6-1. Enabling a Permanent or Temporary Key

Temporary Feature Keys

Features enabled with a temporary feature access key are enabled for only 30 days. On the twenty-third day, seven days before the temporary key expires, a major alarm (UAM 0367) is generated to inform the user that the one or more temporary feature access keys will expire soon.

```
0367.0181 ** SYSTEM Temp Key(s) expiring soon.
```

If a temporary feature access key expires, the controlled feature is disabled and a critical alarm (UAM 0368) is generated.

```
0368.0181 *C SYSTEM Temp Key(s) have expired.
```

Any attempts to enable the controlled feature with the temporary feature access key are rejected. The controlled feature can be enabled only by entering the permanent feature access key for the controlled feature.

To clear the critical alarm (UAM 0368), the user can either enter the chg-ctrl-feat command with the alarm=clear parameter, or permanently enable the controlled feature by entering the permanent feature access key for the controlled feature.

If the critical alarm is cleared with the chg-ctrl-feat command, the controlled feature is disabled and cannot be enabled with the temporary feature access key. The feature can be enabled only by entering the permanent feature access key for the controlled feature.

Clearing a Temporary Feature Access Key Alarm

This procedure is used to clear the EAGLE 5 ISS alarms using the chg-ctrl-feat command after a temporary feature access key has expired.

NOTE: The alarm is cleared when no temporary feature access keys are in danger of expiration or in an *expired* state.

The chg-ctrl-feat command uses the following parameters:

:partnum - The part number of the controlled feature that was temporarily enabled and is causing the alarm.

:alarm - Clear. Specifying clear for this parameter clears the alarm.

The following dependencies apply to this procedure:

The controlled feature part number must be valid. It must match the part number of the temporary controlled feature that is causing the alarm.

The controlled feature must have been temporarily enabled and is now in danger of expiration or in an *expired* state.

Procedure

1. Display enabled controlled feature information that is causing the EAGLE 5 ISS alarm in the database by entering the rtrv-ctrl-feat:expired=yes command. The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:17:37 GMT EAGLE5 36.0.0
The following features have expired temporary keys:
Feature Name Partnum
ISUP Normalization 893000201
```

2. Clear the EAGLE 5 ISS alarm in the database by entering the chg-ctrl-feat command. For example, enter this command.

```
chg-ctrl-feat:partnum=893000201:alarm=clear
```

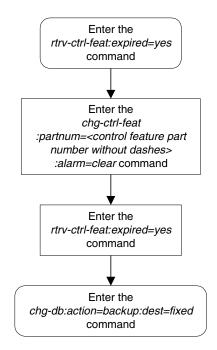
When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-30 21:16:37 GMT EAGLE5 36.0.0 CHG-CTRL-FEAT: MASP A - COMPLTD
```

3. Verify that the alarm has cleared in the database by using the rtrv-ctrl-feat:expired=yes command. The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0 0367.0181 * SYSTEM Temp Key(s) expiration alarm cleared.
```

4. Back up the changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.


```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.

BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED) : MASP A - Backup starts on standby MASP.

BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

Flowchart 6-2. Clearing a Temporary Feature Access Key Alarm

Turning On and Off Controlled Features

Some controlled features must be turned on after they are enabled, and can be turned off without disabling them in the EAGLE 5 ISS. The chg-ctrl-feat command is used to turn the features on and off, and to clear the critical alarm that occurs when a temporary feature key expires (see "Temporary Feature Keys" on page 6-7).

The chg-ctrl-feat command uses the following parameters:

:partnum – The Tekelec-issued part number associated with the controlled feature. The part number is a 9-digit number, not including dashes; the first three digits must be 893 (that is, 893xxxxxx, where x is a numeric value).

:status – Changes the activation status of the feature (On or Off).

:alarm=clear – Use only to clear the critical alarm that is generated when a temporary feature key expires.

The part number that you enter must be for an On/Off feature that has already been enabled with the enable-ctrl-feat command (see "Enabling Controlled Features" on page 6-2).

Turning On an Enabled Controlled Feature

This procedure allows the user to turn on enabled controlled features in the EAGLE 5 ISS, by using the chg-ctrl-feat command.

The chg-ctrl-feat command uses these parameters:

:partnum – The Tekelec-issued part number associated with the controlled feature. The part number is a 9-digit number, not including dashes. The first three digits must be 893 (that is, 893xxxxxx, where x is a numeric value).

:status – used to activate the controlled features that customer has purchased and enabled.

The examples in this procedure are used to enable and activate the controlled features in Table 6-2.

Table 6-2. Sample Controlled Feature Part Numbers

Feature Name	Part Number
ISUP Normalization	893000201
ETSI v3 Normalization	893000601

Procedure

1. Enter the rtrv-ctrl-feat command to display the status of the controlled features in the EAGLE 5 ISS. The following is an example of the possible output.

2. The controlled features listed in Table 6-2 on page 6-10 must be turned on using the chg-ctrl-feat command, specifying the controlled feature part number used to enable the feature and the status=on parameter. For this example, enter these commands.

```
chg-ctrl-feat:partnum=893000201:status=on
chg-ctrl-feat:partnum=893000601:status=on
When this command has successfully completed, the following message should appear.
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
CHG-CTRL-FEAT: MASP B - COMPLTD
```

3. Verify the changes by entering the rtrv-ctrl-feat command. The following is an example of the possible output.

```
The following features have been permanently enabled:

Feature Name Partnum Status Quantity
IPGWx Signaling TPS 893012814 on 20000
ISUP Normalization 893000201 on ----
ETSI v3 Normalization 893000601 on ----
HC-MIM SLK Capacity 893012707 on 64

The following features have been temporarily enabled:

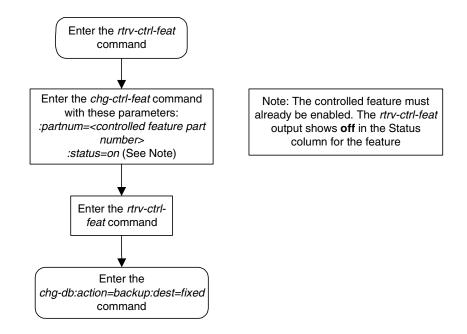
Feature Name Partnum Status Quantity Trial Period Left Zero entries found.
```

The following features have expired temporary keys:

rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0

Feature Name Partnum Zero entries found.

4. Back up the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.


```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.

BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED) : MASP A - Backup starts on standby MASP.

BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

Flowchart 6-3. Turning On an Enabled Controlled Feature

Turning Off an Enabled Controlled Feature

Some controlled features that have been enabled and turned on can be turned off without disabling them in the EAGLE 5 ISS. This procedure allows the user to turn off enabled controlled features in the EAGLE 5 ISS, by using the chg-ctrl-feat command.

CAUTION: Refer to the Feature Notice or the appropriate feature manual to determine the results of turning a feature off. For example, you might use a feature to add entries to a database table. When the feature is turned off after entries have been added to the table, the commands to delete and retrieve the entries might still function, but the commands to enter or change entries no longer function.

The chg-ctrl-feat command uses these parameters:

:partnum – The Tekelec-issued part number associated with the controlled feature. The part number is a 9-digit number, not including dashes. The first three digits must be 893 (that is, 893xxxxxx, where x is a numeric value).

:status – used to activate the controlled features that customer has purchased and enabled.

The examples in this procedure are used to enable and activate the controlled features in Table 6-3.

Table 6-3. Sample Controlled Feature Part Numbers

Feature Name	Part Number
ISUP Normalization	893000201
ETSI v3 Normalization	893000601

Procedure

1. Enter the rtrv-ctrl-feat command to display the status of the controlled features in the EAGLE 5 ISS. The following is an example of the possible output.

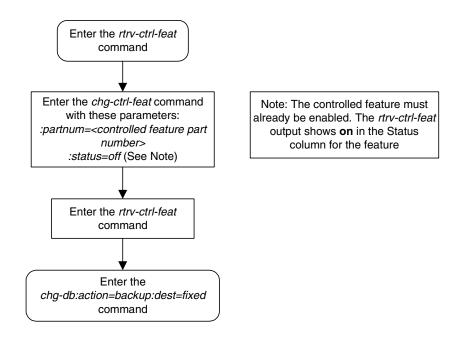
2. The controlled features listed in Table 6-2 on page 6-10 are turned on using the chg-ctrl-feat command, specifying the controlled feature part number used to enable the feature and the status=off parameter. For this example, enter these commands.

```
chg-ctrl-feat:partnum=893000201:status=off
chg-ctrl-feat:partnum=893000601:status=off
When this command has successfully completed, the following message should appear.
```

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0 CHG-CTRL-FEAT: MASP B - COMPLTD
```

3. Verify the changes by entering the rtrv-ctrl-feat command. The following is an example of the possible output.

4. Back up the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.


```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.

BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.

BACKUP (FIXED) : MASP A - Backup starts on standby MASP.

BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

Flowchart 6-4. Turning Off an Enabled Controlled Feature

Index

Numerics	Controlled Feature
1500 Signaling Links, 3-104	Large System # Links - Enabling, 3-104
2000 Signaling Links, 3-104	Customer Care Center, 1-9
0 0	
A	D
Α	
acronyms, 1-14	database partitions
activate signaling link, act-slk	overview, 1-11
IPGWI, 3-75, 3-127, 3-144, 3-167, 3-189,	dcm, 3-4
3-190, 3-211, 3-212, 3-333, 3-337,	DCM parameter set, 3-3
3-362, 3-368	dcmps, 3-202
IPLIM, 3-75, 3-127, 3-144	Default Routing Keys, 2-27
SS7IPGW, 3-75, 3-127, 3-144, 3-167,	Display, 3-165
3-189, 3-190, 3-211, 3-212, 3-333,	display card status, rept-stat-card
3-337, 3-362, 3-368	IPGWI, 3-125, 3-140, 3-165 IPLIM, 3-140, 3-165
Adding an Application Socket, 3-181	
Adding an IP Host, 3-153	SS7IPGW, 3-125, 3-140, 3-165
alw, 3-202	display signaling link status, rept-stat-slk IPGWI, 3-124, 3-127, 3-139, 3-144, 3-163,
appl, 3-4	3-167, 3-188, 3-210, 3-332, 3-362,
Applications, 2-3, 2-4	3-466, 3-473
	IPLIM, 3-127, 3-139, 3-144, 3-163, 3-466,
С	3-473
_	SS7IPGW, 3-124, 3-127, 3-139, 3-144,
cancel	3-163, 3-167, 3-189, 3-190, 3-211,
rtrv-dstn, 3-41	3-212, 3-333, 3-337, 3-363, 3-368,
rtrv-ls, 3-41	3-466, 3-473
Changing a DCM Parameter Set, 3-226	documentation set, 1-8
Changing an Application Socket, 3-202	dpc, 3-272
Changing an IP Link 2.135	drkq, 3-130
Changing an IP7 Secure Catavary	₁ / ₁ / 0 200
Changing an IP7 Secure Gateway Option, 3-37	
cice, 3-234, 3-251, 3-273, 3-283, 3-284, 3-296,	E
3-304	Emergency response, 1-10
cics, 3-234, 3-251, 3-272, 3-273, 3-283, 3-296,	Enabling a Permanent or Temporary
3-304	Key, 6-3
Clearing a Temporary FAK alarm, 6-7	Enabling the Large System # Links
C-link linkset, 3-7	Controlled Feature, 3-104
Configuring a Mate IPGWx Linkset, 3-63	End node internal point codes, 3-4
Configuring an IPGWx Linkset, 3-37	Errors - contacting the Customer Care
Configuring IP Retransmission	Center, 1-9
Parameters, 3-220	
Connectivity, 2-21, 2-22	

F	ipgwi, 2-4, 2-22
fixed disk drive	IPGWx Linkset
overview, 1-12	Configuring, 3-37
Full Routing Keys, 2-26	Mate - Configuring, 3-63
	IPLIM
	activate signaling link, act-slk, 3-75,
G	3-127, 3-144
getcomm, 3-130	display card status,
	rept-stat-card, 3-140, 3-165
	display signaling link status,
l	rept-stat-slk, 3-127, 3-139, 3-144,
in, 3-127, 3-167, 3-466, 3-473	3-163, 3-466, 3-473
inhfepalm, 3-130	iplim, 2-3
internal point codes, 3-4	iplimabate, 3-130
IP application routing key, 3-3	iplimi, 2-3
IP application servers, 3-4	ISUP Normalization, 2-40
IP application socket, 3-3	ISUP variant provisioning, 3-4
IP associations, 3-3	
IP card, 3-3	1
IP host, 3-3	Large System # Links Controlled Feature
IP link, 3-3	Large System # Links Controlled Feature Enabling, 3-104
IP options	Linkset
drkq, 3-130	IPGWx
getcomm, 3-130	Configuring, 3-37
inhfepalm, 3-130	Mate IPGWx - Configuring, 3-63
ipgwabate, 3-130	mate if GVVX Configuring, 0 00
iplimabate, 3-130	
sctpcsum, 3-130, 3-462, 3-486	M
setcomm, 3-130	maintenance and administration subsystem
snmpcont, 3-130	overview, 1-10
srkq, 3-130 sync, 3-123, 3-130	manual
trapcomm, 3-130	admonishments, 1-8
IP protocol option, 3-123	organization, 1-2
IP routes, 3-3	related publications, 1-3
IP7 Secure Gateway Options, 3-3	Mate IPGWx Linkset - Configuring, 3-63
ipgwabate, 3-130	mated gateways, 3-7
IPGWI	
activate signaling link, act-slk, 3-75,	
3-127, 3-144, 3-167, 3-189, 3-190,	N
3-211, 3-212, 3-333, 3-337, 3-362, 3-368	Nagle's Algorithm, 2-39
display card status,	ncice, 3-283, 3-296, 3-305
rept-stat-card, 3-125, 3-140, 3-165	ncics, 3-283, 3-296, 3-305
display signaling link status,	Network appearances, 3-4
rept-stat-slk, 3-124, 3-127, 3-139,	
3-144, 3-163, 3-167, 3-188, 3-210,	
3-332, 3-362, 3-466, 3-473	

0 SS7IPGW activate signaling link, act-slk, 3-75, opc/opca, 3-233, 3-234, 3-250, 3-272, 3-283, 3-127, 3-144, 3-167, 3-189, 3-190, 3-295, 3-304 3-211, 3-212, 3-333, 3-337, 3-362, 3-368 open, 3-202 display card status, overview rept-stat-card, 3-125, 3-140, 3-165 database partitions, 1-11 display signaling link status, fixed disk drive, 1-12 rept-stat-slk, 3-124, 3-127, 3-139, maintenance and administration 3-144, 3-163, 3-167, 3-189, 3-190, subsystem, 1-10 3-211, 3-212, 3-333, 3-337, 3-363, removable cartridge, 1-13 3-368, 3-466, 3-473 ss7ipgw, 2-4, 2-22 P ssn, 3-272 Support - contacting the Customer Care Partial Routing Keys, 2-27 Center, 1-9 Point-to-Multipoint, 2-22 sync, 3-123, 3-130 Point-to-Point, 2-21 Problems - contacting the Customer Care Center, 1-9 Т PSTN presentation data, 3-4 Technical Assistance - contacting the Customer Care Center, 1-9 trapcomm, 3-130 R turning On and Off Controlled removable cartridge Features, 6-10 overview, 1-13 Type of Service, 2-39 removing signaling link, 3-113 Removing an Application Socket, 3-198 Removing an DCM, 3-28, 3-177 Removing an IP Card, 3-28, 3-177 Routing Key Lookup Hierarchy, 2-29 Routing Key Tables, 2-27 SCTP checksum algorithm option, 3-462, 3-486 sctpcsum, 3-130, 3-462, 3-486 server, 3-202 setcomm, 3-130 si, 3-272 signaling link removing, 3-113 signaling links, 1500, 3-104 signaling links, 2000, 3-104 sname, 3-272 snmpcont, 3-130 split, 3-283, 3-296, 3-305

srkq, 3-130