Oracle Public Sector Revenue Management Self Service Implementation Guide
Release 1.1.0.0
E53305-01
June 2014
Copyright © 2012, 2014, Oracle and/or its affiliates. All rights reserved.
Documentation build: 6.22.2014 12:54:1 [TS_1403466841000]
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
Introduction
Implementation Overview
Oracle Public Sector Revenue Management Self Service offers a uniform approach across the enterprise to provide taxpayers with on-demand access to valuable information and services. The solution helps a taxation authority quickly provide taxpayers with the ability to make online payments, contact the taxation agency with questions, and request or receive self-guided automated assistance with policies and tax law.
Functional Overview
The self-service solution provides multiple services:
Registration and Enrollment
Interactive Tax Assistant (ITA)
Where Is My Refund?
Online Payments
Credit card processing with Official Payments Corporation (OPC)
Service Requests
Account Information
Taxpayer Information
Online Form Filing
Technical Overview
Products
Oracle WebCenter represents a combination of the standards-based declarative development of Java Server Faces (JSF), portals, and social networks, and a set of integrated Web 2.0 services to boost end-user productivity.
Oracle WebCenter key components are: WebCenter Framework, WebCenter Social Computing Services, WebCenter Composer, and WebCenter Spaces.
Oracle Universal Content Management is a content management solution. It is integrated with WebCenter via WebCenter Content and provides:
Oracle Application Development Framework (ADF) is Java EE framework that uses Oracle JDeveloper as development environment. ADF integrates with the Oracle SOA and WebCenter Portal frameworks, simplifying the creation of complete composite applications.
SOA BPEL Process Manager provides a comprehensive, standards-based, and easy-to-use solution for creating, deploying, and managing cross-application business processes with both automated and human workflow steps, all in a service-oriented architecture.
Oracle BPM Worklist enables business users to access and act on tasks assigned to them. For example, an agent can, from a worklist, review self-service user requests.
Oracle Policy Automation is a product family designed to automate rules and policies and integrate them into the customer enterprise.
The main technology components of Oracle Policy Automation are:
Oracle Business Intelligence Publisher. Oracle Business Intelligence (BI) Publisher is an enterprise reporting solution for authoring, managing, and delivering highly formatted documents, such as operational reports, electronic funds transfer documents, government PDF forms, shipping labels, checks, sales and marketing letters, and other types of publishable materials.
Solution Components
Architecture Overview
Online Services is a set of taxpayer-facing portal pages offering a wide range of self-service features, including payments and online form filing. It may serve as a foundation for a new Revenue Management Agency website or otherwise be incorporated into an existing website. The solution supports secure login and data viewing and management as well as verification of a self-service user’s identity for the lifetime of a single transaction. This feature allows the casual (not logged in) user to use essential functions, such as checking the status of a refund.
Settings and Configurations is a supplemental module. It maintains a set of control tables that store definitions used for data formatting, translation, and for dynamic UI rendering support. It also includes configuration tables that store business process definitions.
Interactive Tax Assistant is a feature based on integration with Oracle Web Determinations. The base product provides a web interview invocation facility.
External Payment Services. The solution supports delegation of payment services to an external website. The base product includes a pre-built integration with Official Payments Corporation, the largest US online payment services provider.
Content Management is connected to the portal application and serves as the website content repository.
Online Form Validation is implemented with the Oracle Determination Server, which is part of the Oracle Policy Automation (OPA) product suite. This provides a high performance SOAP-based web service for fully-auditable determinations.
SOA/BPEL Integration Flows facilitate communication between solution components and orchestrate message processing.
The self-service portal is loosely coupled with the back-end system(s). In addition to web services, SOA adapters support file system and direct database interaction. This approach allows use of the product in a heterogeneous environment and accommodates on-going structural changes in the back-end system topology, e.g., a revenue authority introducing a new CRM system.
BPEL processes use Domain Value Maps (DVM) to transform and translate the information maintained in different systems.
Web Services expose the revenue management system's functionality to the online user.
Resources
This Implementation Guide and other self-service application documentation and whitepapers are subject to revision and updating. For the most recent version of this and other Oracle taxation documentation, check the Public Sector Revenue Management Documentation section of the Oracle Technologies Network (OTN) at http://www.oracle.com/technetwork/documentation/pubsectrevmgmt-154608.html.
Resource	Location
Oracle Public Sector Revenue Management application documentation (If using PSRM for back-end data management.) | http://www.oracle.com/technetwork/documentation/pubsectrevmgmt-154608.html |
Oracle WebCenter documentation | http://docs.oracle.com/cd/E15523_01/webcenter.htm |
Oracle Policy Automation documentation | http://www.oracle.com/technetwork/apps-tech/policy-automation/documentation/index.html |
Oracle Enterprise Manager (SOA Management) documentation | http://docs.oracle.com/cd/E24628_01/install.121/e24215/soa_overview.htm#GSSOA9844 |
Oracle Universal Content Management documentation | http://docs.oracle.com/cd/E10316_01/ouc.htm |
Oracle Fusion Developers Guide (JDeveloper and Application Development Framework) documentation | http://docs.oracle.com/cd/E23943_01/web.1111/b31974/toc.htm |
Oracle Business Intelligence Publisher Developers Guide | http://docs.oracle.com/cd/E28280_01/bi.1111/e22259/toc.htm |
Oracle Business Process Manager Worklist | http://docs.oracle.com/cd/E15586_01/integration.1111/e10224/bp_worklist.htm |
Self-Service Application Foundation
This chapter describes the processes, procedures, and design components that comprise the self-service application framework.
Web Service Processing
Request/Response Message Flow
The self-service application offers two major types of user/revenue authority interaction:
Identification Requirements Evaluation
A person may work with self-service portal application in two ways:
The diagram below illustrates the common logic performed by online services that allow ad-hoc taxpayer identification.
Figure 1. Identification Requirement Evaluation Flow
When the user initiates the process, the system verifies that the user has already been authenticated (logged in). If so, the system checks whether a specific tax account has already been selected. If no account has been selected, the user is prompted to navigate to the My Account page and make a selection. The user may choose to continue, but, without tax account identifiers in context, the user is subsequently treated as a casual user.
Possible scenarios include:
User Registered | Enrolled/Account Selected | Identification Required | Result |
---|---|---|---|
Yes | No | Both | Identification Invoked |
Yes | Both | Identification Invoked | |
Yes | No | Unregistered | Identification Invoked |
Yes | Yes | Unregistered | Main Request Invoked |
No | N/A | Both | Identification Invoked |
No | N/A | Unregistered | Identification Invoked |
No | N/A | None | Main Request Invoked |
Tax Account Access
When the tax authority grants user an access to his/her taxes, an Access type describes the scope of a single tax account managed via self service portal.
It is referenced in various self service-related configurations; when the request is processed the revenue management system may access type to determine an appropriate logic to execute. For example an outstanding balance for a specific tax is retrieved in a different way than the overall outstanding balance for a taxpayer.
Access Keys
The tax account is identified by the access type and a set of keys. The integration supports an ability to identify with up to 10 keys.
The first key is always reserved for the taxpayer ID associated with the tax account.
Line of Business
In web self-service application Line of Business is used to broadly group areas of interest. The web pages found within a defined line of business are related to the information and tasks appropriate for that area of interest. Some example of lines of business for an implementation may be Individual taxpayers, Business taxpayers, and Tax Preparers. Another implementation may use even more granularity. For example, Non-profits may be another line of business.
Session Context
Session context is the information available to the portal application components for the duration of the single authenticated browsing session. Upon successful login, the self service user is expected to choose a tax account to view and manage. Session context is populated with user's details (username and email, if available) and selected account's identifiers (access type, access keys and line of business).
The title and the taxpayer name of the tax account in context are displayed on the top right corner of the main page area.
Session Context Evaluation
The system evaluates the session context in order to let user access the tax account-related information.
Figure 2. Session Context Evaluation Flow
Common Message Components
All XML messages include the following common fragments:
Access Keys – Up to 10 name/value pairs for business identifiers whose combination represents a single tax account.
Note:
Additional optional elements included in multiple messages:
For additional information, see Common Features of All BPEL Processes and "Common Components" in the WSDL Library (Appendix A).
Transaction Confirmation
Confirmation numbers are generated in the integration layer and assigned to the <confirmation Id> element. See Common Features of All BPEL Processes and Confirmation Number Utility Service for details.
Application Security
The base product portal application includes the following page categories:
Portal Application Security
The portal application uses the WebCenter security model, integrated with WebLogic to enforce user authentication. The self service product security model includes multiple layers:
The Identification and Access Management layer defines the access right of individuals or groups to the system. This includes administration and end-user rights. Self service product identification and access management is pre-integrated with the Oracle Identity Management suite of products:
The implementation may use the Oracle Unified Directory in conjunction with alternative security/authentication providers.
The base product portal application includes the following application roles:
The user ID and initial password for the Administrator role are provided as part of the installation procedures and may be modified later.
Additional user group(s) and roles should be defined for the actual self service customers whose access should be limited to the online services (self service secured) and public.
If your implementation wishes to use Oracle Identity and Access Management, see the PSRMSS Installation Guide for installation and configuration instructions.
Portal Application Admin Pages
All portal pages under the Settings and Configurations menus are initially secured. These pages are only accessible after a successful login with a user ID that has the Administrator role.
The initial entry into the portal secured pages is the login page which is not a secured page. After a successful login, the user is redirected to the home page with a menu bar that includes admin pages access.
Portal Application Public Pages
Public pages are available to all users.
Some of the portal's functional pages, such as online payments or refund status requests, as well as an online services "entrance" page, are all public pages.
The portal home page for taxpayers is:
http://<server>:<port number>/psrmss/index.html
Portal Application Self Service Pages
Only authenticated website users who successfully log in can access these pages. These pages provide taxpayer with ability to view and manage tax account data. The information displayed on these pages is retrieved based on the current session context which includes tax account identifiers and related taxpayer ID.
Multi-Language Support
The base product portal application is built to support multiple languages.
Multi-Language is supported at several levels:
Note: The base product portal application is provided with a default language setup of English.
Selecting the Current Language
The base product displays all pages in the default language that is set up in the system (in the System Options definitions). The base product portal Home page displays the supported languages on the top-right part of the screen. Languages are displayed as Language Code (that was defined in the system Language setting entity).
To switch to a different language, click an available language code hyperlink.
When a new language is selected, the portal page will refresh.
For more information about defining languages and the system default language, see the Settings and Configurations chapter.
Multi-Language Support for Portal Pages
Two types of text is displayed on the base product portal pages:
Static Text Multi-Language Support
All static text that is display on the base product portal pages derives its values from Resource Bundles.
The values are organized in the resource bundles according to Resource Bundle IDs. There are separate resource bundle files for each supported language (identified by a two-character language code in the file name, e.g., filename_en.xlf).
The WebCenter application framework automatically selects the value that is displayed on a page based on the values from the resource bundle files and according to the current displayed language.
Some of the multi-language support in the portal application is derived automatically from the ADF framework. For example, the labels on the buttons on the admin data search pages are not defined in the portal application, but are a part of the ADF framework. When the language is switched, ADF automatically changes the label for these buttons to the value corresponding to the new language.
Note:
There should be a separate Application Override Bundle file (WSSPortalOverrideBundle_<language code>.xlf) for each supported language so that all modified values can be displayed for the selected language.
For more information about resource bundles and the Application Override Bundle, see the Customizing the Self Service Portal Application chapter.
Dynamic Text Multi-Language Support
Portal pages that display text and fields controlled by admin data definition support multiple languages as a result of the multi-language support of the admin data management. For example, if a service request page displays a few fields included in the service request definition (which is admin data), the value of text to be displayed on the page will be taken from the appropriate value of that admin data according to the currently displayed language.
The underlying assumption here is that if your portal supports multiple languages—both English and Spanish, for example— all of the admin data that supports multiple languages is populated with the appropriate values for those languages.
Multi-Language Support for Admin Data Maintenance
Portal application admin data includes data that is language insensitive (such as numbers or codes) and data that is language sensitive (such as text values that appear on the page, for example: lookup value descriptions that appear in dropdown lists).
All the language sensitive admin data is stored in language tables according to the language code that they were saved under.
For example if a user is working as an English language user, all the language sensitive data is saved under the language code of "en". If the same user switches to the Spanish language, the language sensitive admin data is saved under a difference language code ("es").
When language sensitive data is presented to the user the only the values for the Current Language values are displayed and can be updated.
Important: Admin data language sensitive data has to be maintained for each of the supported languages. For example, if the portal supports one additional language in addition to English, when adding a new lookup, the description of the lookup and the description of the values associated with the new lookup have to be maintained once when user is working as an English user, and the second time after user switches to the second supported language.
Multi-Language Support for Data Returned by the Revenue Management System
Data returned to the portal application from a revenue management system, via base product web service calls, can contain many data types.
The base product web services returns message codes from the back-end system for the purpose of displaying data to the portal user. The back-end system can return a set of message codes that can be translated to a different set of message codes by the base product middleware layer (SOA Composites/BPEL processes) that are finally displayed on the portal page.
Since messages are a part of the portal admin data, they should contain the text to be displayed in all the supported languages so that the portal can display the correct text according to the currently selected language.
For more information about message handling, refer to Application Messages and Error Handling
Multi-Language Support for Custom Content on Portal Pages
Portal pages, whether base product or custom created, can include custom content. Some of the types of content provide multi-language support. One example is UCM content. When including UCM documents on a portal page (using WebCenter Composer, using the Content Presenter component) there are two options:
In order to support multi-language for UCM documents, implementers can do the following:
When including the UCM document on a portal page via WebCenter Composer, implementers should define the reference for that document using a resource bundle for each of the supported languages using the SAME resource bundle id. For example, if the portal supports two languages, English and Spanish then implementers have to define the reference to the UCM document while working in each of these languages.
Each time the document referenced is defined, the same resource bundle id should be used but the value is expected to be different since the documents are likely to be different.
Note:
Referencing a UCM document as a value in a resource bundle can be done by directly providing the Data Source and Data Source Type parameters to the Content Presenter component through which the UCM document is included on the page.
The Data Source Type should be Single Node and the Data Source should have the expression UCM#dDocName:<UCM Content id> entered as a resource bundle value.
For more information about including UCM documents in portal pages, refer to the chapter, Customizing the Self Service Portal Application.
Supporting Additional Languages
Implementers can add new supported languages (in addition to the languages that are supported by the base product) to the portal application. The process of enabling an additional language typically includes the following tasks:
Application Messages and Error Handling
Application Error Handling Overview
System or application errors can occur in all three layers that make up the base product application: the portal, the middleware, and the revenue management back-end system when web services are invoked.
Note: Errors typically result in messages being displayed on the portal application. For information about the handling of application messages, refer to the Application Messages Overview section.
Revenue Management System Errors
The connection between the portal application and the back-end system is made through web services. Data inquiries and updates are performed through web service calls from the middleware (BPEL) layer to the back-end system.
All of these errors are detected and dealt with in the middleware (BPEL) layer. For more information, refer to the SOA/BPEL Integration chapter.
Middleware (BPEL) Errors
The BPEL processes that make up the middleware layer are the link between the portal application and the back-end system. BPEL processes can execute Synchronous or Asynchronous requests.
In Synchronous requests, the caller (typically the portal application) is waiting for a response. In Asynchronous requests no process is waiting. Asynchronous requests are typically requests that are stored on a system queue and are picked up by a system process for execution.
The following errors can occur at this layer:
Important: When errors occur during a Synchronous request execution, a special message is returned to the caller (typically, the portal application). When errors occur during an Asynchronous request execution, the request is transferred to an Error Queue and an email message can be sent (if configured) to indicate that an error was detected.
Note: For more information about the special messages returned to the portal application by BPEL in case of errors, refer to the SOA/BPEL Integration chapter.
Portal Application Errors
The portal application includes functionality for the admin user and functionality for the taxpayer using the portal services. The following errors are possible for the portal application:
Application Messages Overview
Messages communicate information in response to a portal user's actions, including confirmation data, inquiry results, and errors. Errors originate from various sources:
Revenue Management System Messages
The back-end system responds to web service requests sent by the portal application. The web services that are used by the base product include the structure for the information returned to the caller.
The information that is returned can include many data elements but it will always include messages to communicate the result of the service call.
There are two types of messages returned by the back-end system:
Important: Confirmation messages don't have to always be "positive" in nature. There could be case that a certain request was processed in the back-end system but the result of the process is rejection of the request or even an error. In this case, the confirmation is that the request was accepted in the back-end system and was processed.
The base product web services definitions (WSDLs) support one error message and multiple confirmation messages (a header message plus a set of details messages). If an error message is returned, the base product portal application does not expect confirmation messages as well, and vice versa.
Middleware (BPEL) Messages
The base product middleware layer is a set of BPEL processes that typically receive the request from the portal application, send it to the target system and communicate the response back to the portal application, if an immediate response is required.
The following scenarios are possible:
According to the scenarios above, it is clear that the base product BPEL processes can also create messages and not just relay the messages that they receive from the back-end system to the portal application.
Note: For more information on BPEL processes logic and messages used, refer to the SOA/BPEL Integration chapter.
Message Translations and Consolidation
In some case, implementers may choose not to relay the message coming back from the revenue management back-end system directly to the taxpayer (using the portal application). The revenue management back-end system is typically designed for a revenue management system user. Such a user may have access or interest in types of information that should not be exposed to the taxpayer using the portal application.
This is why there is an optional translation process that is implemented by the base product BPEL processes. This process uses DVM tables to translate the message numbers returned by the back-end system to a different set of message numbers to be displayed on the portal application.
The BPEL message translation process enables implementers to:
The base product also allows the back-end system to communicate a message that will be displayed as is without any translations. This is a feature implementers can use if the message must be communicated to the taxpayer as is.
Message translation is done according to BPEL DVM mappings. If no mappings are defined, the messages will not be translated and will be passed to the portal application as they were received from the back-end system. If DVM mappings were provided but the message from the back-end system has no mapping defined for it, a default substitute message will be returned to the portal application so that a valid message is displayed.
Note: For more information about DVM and message translations in BPEL processes, refer to the SOA/BPEL Integration chapter.
Portal Application Messages
The portal application throws errors or displays informational messages under the following circumstances:
A special category of messages may be defined in the portal application for displaying formatted and localized information on screen.
Displaying Messages
A standard XML fragment for the message includes:
Message Category – A number or a string depending on the revenue management back-end system. The message category is NOT translated or considered in the portal application, it is for information purposes only
.A message source indicator (for example, REM for revenue management, BPEL for Integration Layer), and an original Message Category and Number are included in the response XML and displayed to the website user.
Override Message Text – The web service response may contain a fully-formatted message in text or HTML format.
The following logic is used when a message is returned from a web service call:
How Messages and Parameters are used in the Application
Error or Confirmation Messages: The message number and parameters are retrieved as part of the web service response. The portal application reads the message definition and composes text, substituting the parameters according to message definitions.
Application Information Messages: A set of parameters is retrieved as part of the web service response. The portal application reads the configuration, retrieves the message number to be used, and composes the display text, substituting the parameters according to message definitions.
Portal Message Caching
Messages on the application portal are implemented using the Java Resource Bundle. This means that changes made to the Message admin data on the portal application are not immediately reflected on the portal. In order for these changes to be reflected, the portal application must be restarted.
Portal Application
Portal Application Overview
The base product portal application comprises a set of functional admin pages. The portal application also includes a special Login Page.
All base product pages are delivered referencing the default portal application template. The application includes a single page template; thus, all pages initially share a common structure.
Login Page
Two links-- Forgot your Password? and Sign Up --point the user to the registration/identity management location, where the user may establish or restore a secure login.
The following elements on the page are configurable:
The contents of the page may be customized using WebCenter Composer.
Portal Page Template
The portal page template includes the following sections:
The top ("header") region includes:
Note: The availability of the navigation options on a specific page depends on the security settings; only those pages that the self-service user is allowed to access are visible.
The main page area below the main navigation bar is used for the page content, which varies for each specific page.
The bottom section includes:
Portal Admin Pages
The base product admin pages are divided into two categories: Settings and Configurations.
The settings pages maintain basic definitions that are used across the system.
The configurations pages define more specific options for particular services that are supported by the base product.
When selecting either of the above options from the main navigation bar an "entry" page is displayed that has the following structure:
Portal Functional Pages
The base product functional pages include the Home page, the Online Services page, and the specific functional pages for various supported services.
The Home page and Online Services page have a structure similar to the admin "entry" pages:
The functional pages have the same structure as the admin pages. The area in the middle of the page contains task flow(s) related to a specific functionality, e.g., service requests, payments, etc.
Customizing the Portal Structure and Pages
Implementers can customize the portal structure and define the content to be displayed in all the pages that have place holders designed for custom content. In addition the layout of the template page and other pages can be modified and additional content can be added to all or some of the pages. New pages can be created and they can have links to the base product pages.
For more information about the customization options of the portal application, see Customizing the Portal Application.
Monitoring the Application
The self-service application involves different and distributed systems, and the root cause of issues is sometimes difficult to identify. Monitoring of key elements can help isolate issues and make them easier to address.
For additional information, see Monitoring the Status of Oracle Fusion Middleware in the Oracle Fusion Middleware online documentation library.
Monitor the Portal Application Using Enterprise Manager
Monitor Using WebLogic Logs
WebLogic logs can be monitored to get more information on exceptions and application status.
Logs can be monitored using either Oracle Enterprise Manager or by directly accessing the physical machine on which the managed servers are running. Logs monitored from Oracle Enterprise Manager are more interactive and allow search capabilities, making it easier to diagnose an issue quickly.
Command-line administrators can also directly use the logs on the physical machine.
Monitor Portal Logs Using Enterprise Manager
Monitoring Document References
Consult the following documentation for information on monitoring document references Monitor Oracle Fusion Middleware (http://download.oracle.com/docs/cd/E17904_01/core.1111/e10105/monitor.htm#CFAEHCGG).
Settings and Configurations
System Administration Pages Overview
The portal application administration pages (commonly referred to as "admin pages") allow the user to configure the system to support the services that are included in the base product, as well as to create new services.
Admin pages are divided into two groups:
All admin pages that support configuration management have a common pattern that is described in this section.
When configuring a system or a service option the following pages are typically available:
Admin Search Page
The search page is the first page displayed when configuring a system option. This page allows the user to search for existing definitions.
The search page has a search section containing the fields for the search criteria and a result list area where the search results are displayed.
Common Actions
Search – Executes the search according to the specified search criteria.
Reset – Resets the search criteria to the default values.
Sorting – Columns that appear in the result list are sorted by clicking on either the ascending or descending sort button on the column header. The result list can only be sorted one column at a time.
Selecting a Record – Clicking on any part of the row selects the record. The selected row is highlighted in grey.
Note: When hovering on a row, the row is highlighted in light blue.
Add (the + button) – Adds a new record.
Edit (the pencil button) – Edit the selected record. A record can be also edited by pressing the value of the first column, if displayed as a hyperlink.
Delete (the X button) – Deletes the selected record.
Owner Flag
Some admin entities have an additional field that records the owner of that admin record. The owner flag value is either Oracle Tax Self Service (also referred to as Base Product) or Customer Modification. Customer-owned records are typically defined by the user or implementer and allow all the common actions. Base product records allow a limited set of actions:
Admin Maintenance Page
The maintenance page allows the user to enter or change the details of a new or existing record.
Admin maintenance can be a popup window or a full page.
When editing an existing record's details, if the record is owned by the base product, some of the details displayed on the page may be read-only.
Full page maintenance pages can have a single tab or multiple tabs.
Maintenance pages can also include a list of dependent values. The list of dependent values is displayed as a search result and usually supports adding, editing, or deleting a value, depending on the owner of the record and the dependent value.
Popup Window Actions
OK – executes records validations, and, if no errors are detected, saves the record and closes the popup window.
Cancel – cancels the operation and closes the popup window.
Full Page Actions
Save – Saves the changes made by the user.
Reset – Restores the value of the entity being maintained to their state before changes were made.
Search – Returns the user to the search page.
Search Dialogs
The primary identifiers of the admin entities are displayed in maintenance pages with a magnifying glass icon next to them. This icon initiates the Search action.
The Search action opens a popup window with search criteria fields and a result list. When a value is selected from the result list it is returned to the field that initiated the search.
Defining System Options
System options setup can be reached from the Settings page. It defines a number of global configuration values used by the portal application at run-time.
Several options are provided with the base product, and the default values can be adjusted to fit your organization needs:
DEF_DATE_FORMAT defines the date format that the portal application will expect when entering date values. The valid values for this option are: DMY (for a DD/MM/YYYY format, MDY (for MM/DD/YYYY format), YMD for (YYYY-MM-DD format). Additional values can be configured using the DATEFORMAT Lookup.
Note: The date format is defined in the Extended Value of the lookup definition. The extended value is the actual format that is used by the system.
DEF_DATETIME_FORMAT defines the DateTime format that the portal application will use when communicating with the revenue management system. The valid values for this option are stored in the DATETIME_FORMAT Lookup.
Note: The date format is defined in the Extended Value of that lookup definition. The extended value is the actual format that is used by the system.
DEF_BACKEND_DATE_FORMAT defines the date format that the portal application will use when communicating with the revenue management system. The valid values for this option are the same as in the DEF_DATE_FORMAT option.
The following options should be configured in the system to support sending mail from the portal application:
System Options List
The user can review existing system options.
The standard Edit and Delete functions are available for each system option.
You can click the Add button in order to define a new system option.
System Options Maintenance
Configuration Option is the type of system option that is being defined. The valid values for this option are defined in the CFGOPTION Lookup.
The Option Value Type defines the type of values that are expected for the system option. The valid values for this field are Freeform Text or Lookup. There is no specific validation of the values entered beyond the value type validation.
The Freeform Value field will hold the system option value if Freeform Text was selected as the option value type.
The Lookup field will hold the lookup code value if Lookup was selected as the option value type.
The Lookup Value field will hold one of the possible values of the selected lookup code, if Lookup was selected as the option value type.
Important: You should NOT change the option value type for provided system options with option value type of Lookup.
Defining Languages
The language setup can be reached from the Settings page. It allows the user to define the languages that are supported on the portal application.
Note: Adding a language in this page is the first step in enabling a new supported language. See Supporting Additional Languages for more information on the steps involved in adding a new supported language.
Language Search
The user can search existing language definitions.
The standard Edit and Delete functions are available for each language definition.
Click the Add button to define a new language.
Language Maintenance
Locale defines the ISO language code that will appear on the upper right part of the portal pages for switching between languages.
Important: You should not define country-specific language codes in this field. For example, the code "en" is for English and should only be defined once.
Extended Locale is a corresponding country-specific four-letter locale.
Reading Direction is not currently in use.
The Owner indicates whether the language definition is owned by the base product or by the implementation (Customer Modification). The system sets the owner to Customer Modification when implementer defines a new language. This information is display-only.
The Supported checkbox indicates whether this language can be used (e.g., it can be switched to by the user or by the taxpayer).
Defining Messages
The portal application communicates informational or errors to the end user via messages. The base product is provided with a set of messages that can be modified by implementers. In addition user defined messages can be added to the system.
Important: Since messages are cached in the system, changes in message definitions require a manual refresh. The corresponding action button is provided on the Message Search page.
Messages that are defined in the portal application are used as follows:
Note: For more information about message translations and revenue management system web services, see Message Translations and Consolidation.
The message setup can be reached from the Settings page.
Message Search
The user can search existing message definitions.
The standard Edit and Delete functions are available for each message definition.
You can click the Add button to define a new message.
Use the Refresh Cache button to update application cache and make all recent message modifications available.
Message Maintenance
Message Number is the identifier of the message.
Important: The base product is provided with messages in the range of 0-89,000. Customer-defined messages should use the number 90,000 and above.
The Message Category describes the general purpose of the message and may also indicate the message's origins. Valid values for the category are:
The Owner indicates whether the message definition is owned by the base product or by the implementation (Customer Modification). The system sets the owner to Customer Modification when the implementer defines a new message. This information is display only.
The Message Text is where you define the text that will be displayed to the user. Message text may contain basic HTML tags controlling display attributes such as line break, font weight etc.
The Message Parameters collection defines data types for the message's substitution parameters. Supported parameter value data types are defined in the lookup MSGPARMTYPE. The values are translated based on the parameter type. The value of the parameter whose data type is Lookup is substituted using the description of the corresponding Lookup Value.
Example: A message is to be defined as follows:
Assuming the actual XML message data contains message number 11111 and three parameters with values CASH, 33, and 01-01-2001.
At runtime, the system merges the values of the three parameters merged into the message before it is displayed to the user. The resulting message would be displayed as:
"The cash payment of $33.00 received on 01/01/2001 will be posted to your account."
Note: The system merges whatever values are supplied to it. Therefore, if a system (or a web service response) supplies an amount as the second merge parameter in the above message, this amount is merged into the message at the second place (rather than the date).
The Override Message Text is applicable if you are modifying a base product message definition in order to change the text displayed to the portal page.
Defining Lookups
A lookup is a set of discrete values grouped together under a common name: the Lookup Code.
Lookups are used in the portal application to allow a user or a taxpayer to choose from a list of possible values in certain fields. Special lookups are documented within functional section they belong to.
The base product is provided with a number of a pre-defined lookups. Some of these lookups can be modified by implementers to include additional values. In addition, new lookups can be defined and used when defining Fields.
The lookup setup can be reached from the Settings page.
Lookup Search
The user can search existing lookup definitions.
The standard Add, Edit and Delete functions are available for each lookup definition.
You can click the Duplicate button to copy a selected lookup.
Lookup Maintenance
Lookup Code is the unique identifier for the lookup.
The Owner indicates whether the message definition is owned by the base product or by the implementation. The system sets the owner to Customer Modification when an implementer defines a new message. This information is display-only. The system sets owner to Revenue Management when the Lookup is imported as part of Form Definition import.
Use Override Description to change the description of a base product lookup.
The Customizable checkbox indicates whether or not new values can be added to the lookup. This is mostly applicable to base product lookups.
Help text can be added to any lookup. While it is not displayed on the base product portal pages, it can be used in custom-developed pages. The help text can include HTML.
Use Override Help to change the help text that displays for a base product lookup.
Lookup Value List
For each lookup the user can view the defined lookup values associated with the lookup code.
The standard Edit and Delete functions are available for each lookup definition.
Click the Add button to define a new lookup value.
The Reload Values button is visible if the Lookup's owner is Revenue Management. When this button is clicked the system invokes the web service Refresh Lookup. This service returns a list of values from the back-end system. New values are added in Active status. Values that are no longer on the list are deactivated.
Lookup Value Maintenance
Lookup Value is the value that will be used when the entry is selected.
The Active checkbox indicates whether this value entry will visible in the portal application.
The Description is the value displayed for this entry on the page (in the selection list).
The Override Description field is only applicable when modifying a base product lookup value.
The Image URL specifies the graphic associated with the lookup value. This value is used by the system under special circumstances, e.g., to illustrate the payment status.
Extended Value is additional information provided for the lookup value. This value is used by the system in special cases, for example, lookup code DATEFORMAT (see Defining System Options).
Help text can be added to any lookup value. The help text can include HTML. This help is currently only displayed on the base product portal pages in special cases.
Example: Help for values of lookup code TENDERTYPE is displayed on the portal page when the taxpayer selects the type of payment to make.
The Override Help field is only applicable when modifying a base product lookup value.
Important: After adding or modifying a lookup value, the Save action (on the lookup value maintenance screen) should be used to save changes.
Note: The Save and Add New action is only applicable for lookups. It is not applicable for lookup values.
Defining Validation Rules
Validation rules are additional conditions evaluated when a value is entered in a field that has an attached validation rule.
Use Settings > Validation Rule to reach Validation Rule Search.
Validation Rule Search
The user can search existing validation rule definitions.
The standard Edit and Delete functions are available for each validation rule definition.
You can click the Add button to define a new validation rule.
Validation Rule Maintenance
Validation Rule is the identifier of the rule.
Rule Type defines validation mechanism and usage. Supported options are:
The Validation Expression has to be written using a standard Regular Expression syntax.
Example: [A-Z][0-9] will verify that the input is a single letter followed by a single digit.
A Message Number is associated with the rule to indicate what message to display when the input value fails the validation.
The OPA Rule references an Interview (rulebase) invoked to validate the object data. The rule must belong to the Interview Set whose category is Data Validation .
Defining Property Type
Custom Properties is a name-value collection existing on multiple entities, e.g., on a Form, Service Request, etc. Custom Properties are searchable and can be copied to the web service request. They can be used by the implementation as a means to deliver additional information to the back-end system and/or to group configuration items.
The Property Type entity defines the attributes of a Custom Property.
Property Type Search
The user can search existing property type definitions.
The standard Edit and Delete functions are available for each property type.
You can click the Add button to define a new property type.
Property Type Maintenance
Property Name and Description appear on the search and dropdowns.
Override Description can be used by the implementation to replace the product-supplied description.
Value Type defines the type of data that could be used as property value. Supported options are Free-form Text and Lookup.
Lookup should be specified if the Value Type is Lookup. At runtime, the appropriate dropdown is displayed on the Custom Properties grid.
Unique indicates if the entity may have more than one property of this type.
Allow Search indicates if this Property could be used as search criteria on the "owner" entity's main search.
Detailed Description is used internally to capture detailed explanation about the property.
Defining Fields
Fields are used to define the input elements placed on the dynamic UI pages, such as taxpayer service request. Field configuration controls the input element’s appearance on the screen and the input value format.
Note: Fields are reusable. Some Fields can be referenced in multiple service request definitions or even included multiple times within the same service request definition.
The base product is provided with a number of fields and new fields can be created by implementers.
The field setup can be reached from the Settings page.
Field Search
The user can search existing field definitions.
The standard Edit and Delete functions are available for each field definition.
You can click the Add button to define a new field.
Field Maintenance
Field Name is the identifier of the field.
Description is the label displayed next to the input field on the dynamic screen Data Type defines the input type for that field. The data type controls how the field is displayed on the page and what types of input are permissible. Valid values for data type are:
The implementer can associate a Validation Rule for a field. This validation rule will be executed by the portal application when value is entered in this field. See Defining Validation Rules for more information.
Display Length is applicable for all data types except for Boolean and Date. It defines the space reserved on the page for displaying the value of this field.
Field Length is applicable for all data types except for Boolean and Date. It defines the number of characters that can be entered for this field.
Precision is applicable only for Number and Currency data types. It defines the number of decimal positions reserved for this field (out of the total field length).
Example: if the field length is 6 and the precision is 2, an example for a valid number will be: "123.45" (since total length includes the decimal point).
Note:
The display length, field length and precision values are not mandatory. If not provided the portal application will apply the following defaults:
Display Length = 80 characters
Field Length = unlimited
Precision = unlimited
The Hint defined for a field is a text that will appear on the right side of the input field on the page. It can be used to provide the format that is expected in this field, for example "(999) 999-9999" for a field that expects a telephone number in it.
The Detailed Description is for documentation purposes only.
The Help text defined for a field is displayed in a popup window when the field is in focus.
Common Configurations
Address Configuration
Web services used by a portal application include a common XML fragment for address data:
<location>
<addressId/>
<addressUsage/>
<effectiveDates>
<startDate/>
<endDate/>
<seasonStart/>
<seasonEnd/>
</effectiveDates>
<address>
<name/>
<country>
<address1/>
<address2/>
<address3/>
<address4/>
<streetNumber1/>
<streetNumber2/>
<county/>
<city/>
<state/>
<postal/>
<houseType/>
<latitude/>
<longitude/>
<inCityLimit/>
<comments/>
</address>
<overrideFormattedAddress/>
</location>
The non-customizable Lookup ADDRESSFIELD contains the list of all available elements of the fragment.
Address Configuration defines the subset of standard address elements that is applicable for the country. It also controls how the portal displays formatted address information.
Use the Configurations menu to navigate to Address Configuration. You may search for an existing record or use the Add button to create a new entry.
Prerequisites for adding new address configuration:
Address Configuration definitions include:
Reference Field - Field whose definitions are used for the element when Address is rendered on the UI. It includes label, data type, and possibly the Validation Rule linked to the Field.
Note: Country must be always included in the address fields list.
Examples:
For Country United States, element <state> may reference a Field STATE, with label State associated with Lookup STATE whose values contain US states.
Address configuration for the country Canada for element <state> would reference a Field PROVINCE, with label Province associated with Lookup PROVINCE whose values contain Canadian provinces.
Access Type
Access type describes the scope of a single tax account managed via the self service portal.
Use the Configurations menu to navigate to the Access Type configuration. You may search for an existing record or use the Add button to create a new entry.
The Access Type is defined as follows:
Pay Current Balance - Payment Destination is used when the self-service user chooses to pay the tax account balance. When the one-time payment flow is triggered, the payment destination details collection is populated with access keys in context.
Note: Payment Destination TAX_ROLE is provided. It has one field and expects a single key identifier of the tax account.
For each supported Line of Business, the Access Type defines:
When defining the Access Type, make sure that the Summary Title and Details parameters data types are coordinated with the corresponding Message's parameters. If the parameter's data type is Lookup , the values returned by the web service should match one of the Lookup's values.
Example
Assuming your Account Summary Title message should read: ABC Corporation, Ltd - Corporate Income
The Message text '{1} - {2}' has two substitution parameters:
In order to display the Account Summary Title properly, the summary title parameter value CORP-INCOME (Corporate Income) returned by the web service should exist within values of the Lookup TAXTYPE.
Design Account or Enrollment Summary for a New Access Type
When designing a new Access Type, determine what information the web service needs to retrieve. It may include amounts, dates and other important data.
Create messages to be used as the Enrollment and Account Summary Title and Details.
Create new Lookups and populate them with values matching those in the Revenue Management system.
Email Definition
Email Definition defines templates for emails sent by the system. The configuration is language-sensitive and can be set up in all supported languages. The RECIPIENT lookup stores the set of pre-defined agency-owned email addresses.
Navigate to Configurations > Email Definition. Email definitions are configured as follows:
Select Configurations > Email Definitions to maintain email definitions.
Service Requests
Overview
Taxpayers may have many reasons to contact a revenue authority, such as to communicate changes in personal information, to request a tax certificate, to raise a dispute over calculated assessments, charges or other financial details, etc.
The Service Request feature is designed to implement this type of communication using configurable elements. The feature enables users to create a template for each type of request that governs a number of common attributes and steps, such as:
Service Requests can be grouped into categories. This enables taxpayers to find their particular request more quickly by first choosing an appropriate category and then selecting a request within that group.
Several special categories of service requests are used by other application features. These features use the Service Request infrastructure for dynamic UI rendering and configurable user input. However, the request processing and the response handling are different from the regular service request. Examples of such special categories are Refund Status Inquiry Request, Enrollment Request, and others.
Regular service requests can be accessed in one of two ways:
Generic Service Requests
Process Flow
Service Request Selection
On the initial Service Central screen, the taxpayer is asked to select a service category first and then to choose a specific topic.
The categories and topics appear on the screen as a drop-down list. Each topic corresponds to an active Service Request.
The service request may be available to all website users or offered exclusively to registered and signed-in users. This restriction is controlled by service request configuration.
After a topic is selected the system reads the Service Request configuration. It first determines whether this service request requires taxpayer identification.
For additional information, see Request/Response Message Flow.
Identification
If identification is required, the system reads the Identification Request definitions and invokes a Taxpayer Identification sub-flow. If the taxpayer identification step was successful, the request header is populated with taxpayer IDs. If identification is not required, the system continues to the Main Request Input step.
Main Request Input
The main service request screen is rendered dynamically according to the service request configuration. The taxpayer is prompted to enter the information required for this specific service.
Submit the Request
Note:
On request submission a web service (TSTaxpayerServiceRequest) is triggered. The request contains a collection of sequence/field name/field value entries.
If the web service call was successful, the response contains the confirmation details.
Confirmation
The expected web service response contains Confirmation number and message(s). This information is displayed to the taxpayer. Confirmation may be printed for the taxpayer's reference.
Email Service Request
Process Flow
Some Service Request types are configured to be delivered via email. No web service interaction is involved. The first two steps are similar to the Generic Service Request.
Service Request Selection
On the initial Service Central screen taxpayer is asked to select a service category first and then to choose a specific topic.
The categories and topics appear on the screen as a dropdowns. Each topic corresponds to an active Service Request.
After a topic is selected, the system reads the Service Request configuration. It first determines whether this service request requires taxpayer identification. If so, the system reads the Identification Request definitions and invokes a Taxpayer Identification sub-flow.
For additional information, see Request/Response Message Flow.
Main Request Input
The main service request screen is rendered dynamically according the service request configuration. The taxpayer is prompted to enter the information required for this specific service.
Note: The taxpayer's e-mail address should be a required part of the service request input. See the Defining Service Request section for more details.
Email the Request
The target ("From") email address is taken from taxpayers input. The recipient ("To") email is derived from the service request configuration. The SMTP server details are derived from the System Configuration Options. The service request information is e-mailed to the recipient.
The message body is generated using the email text derived from the email definition referenced on the service request. The data entered by the user is injected into a placeholder position within the email text from the list of the service request fields. The message body is formed by appending field names and their associated values for each field. If the field type is a lookup, the description is retrieved for the selected lookup value.
The subject and the sender's email address are derived from the email definition.
The email body is emitted to the responsible email handler class along with details such as recipient, subject of the email, etc.
The email handler is responsible for retrieving details such as the SMTP host and port which are determined from system configuration options.
Taxpayer Identification Request
Process Flow
Initiate Taxpayer Identification
A Taxpayer Identification request is initiated from other components as a sub-flow. The system reads the identification service request definitions and the input Taxpayer Identification screen is rendered dynamically.
Taxpayer Identification
The taxpayer is asked to provide Proof of Identity (aka POI) details. The taxpayer enters the identification information and submits the request.
Note: On request submission a web service (TSTaxpayerIdentification) is triggered and the collected input is sent to the back-end system for verification. The successful response contains a collection of taxpayer IDs.
Refund Status Inquiry Request
Process Flow
Refund Inquiry requests belong to a special category of requests and get invoked from the dedicated online page.
Refund Request Selection
On the initial screen, the description of each active service request of the special category Refund Status is displayed as a link. The taxpayer initiates the refund status inquiry by clicking on the associated link.
When the taxpayer clicks the link, the system reads the Service Request configuration. It determines whether this refund request requires taxpayer identification. If so, the system reads the Identification Request definitions and invokes a Taxpayer Identification sub-flow. If the taxpayer identification step was successful, the request header is populated with taxpayer IDs.
If taxpayer identification is not required, the system continues to the Main Request Input screen.
Main Request Input
The main service request screen is rendered dynamically according the service request configuration. Taxpayer is prompted to enter the information required for this specific service.
Note:
On request submission a web service (TSGetRefundStatus) is triggered. The request contains a collection of sequence/field name/field value entries.
If the web service call was successful, the response contains the confirmation and three amounts: refund, carry-over, and offset.
Confirmation
The expected web service response contains Confirmation number and message(s). This information is displayed to the taxpayer. Confirmation may be printed for the taxpayer's reference.
User Enrollment Request
Process Flow
User Enrollment requests, which are invoked from the dedicated online page, belong to a special category of requests.
User Enrollment Request Selection
Enrollment is initiated from the Enrollment Summary page. On the initial screen, the description of each active service request of the special category Enrollment Request is displayed as a link. Enrollment request help text is displayed beneath the description. The taxpayer triggers the flow by clicking on the associated link.
When the taxpayer clicks the link, the system reads the Service Request configuration and renders the Main Request Input screen.
Main Request Input
The main service request screen is rendered dynamically according the service request configuration. The taxpayer is prompted to enter the information required for this specific service.
Note:
On request submission, a web service (TSEnrollmentServiceRequest) is triggered. The request contains a collection of sequence/field and name/field value entries.
If the web service call is successful, the response contains the confirmation that is displayed to the user and the enrollment data is processed in the integration layer.
Confirmation
The expected web service response contains Confirmation number and message(s). This information is displayed to the taxpayer. Confirmation may be printed for the taxpayer's reference.
Defining Service Requests
A Service Request configuration defines what input the taxpayer should supply in order to receive the service and how this input should be presented on the UI. It also defines request delivery method and processing flow.
Service Request Search
The user can search for an existing Service Request.
The standard Edit and Delete functions are available for each Service Request.
You can click the Add button to define a new Service Request.
Service Request Maintenance
Service Request: Main
Processing
Category is used to group logically-related or similar requests. It can also represent a specific business feature, such as User Enrollment, Refund Status Inquiry or Taxpayer Identification. The categories are defined using the SRCAT lookup.
Response Mode controls whether the request will be sent synchronously to the Revenue Management System or placed into the queue (asynchronous mode). For Enrollment Requests, this should be set to Synchronous. For other requests, the option defines if the taxpayer will receive an instant response or just an acknowledgement from the SOA layer. In the latter case, the request is placed in the queue and later transmitted to the Revenue Management System. The decision should be made based on the anticipated volume of requests of this type and on the nature of the processing in the back-end system. This option is applicable if the Process Method is a web service or both email and a web service.
Process Method defines where and how to send the request. The request can be routed to the revenue management system via a web service call, or emailed to a specific revenue management support group, or both. For an Enrollment Request, the method should be set to webservice.
Recipient defines a support group dedicated to handling requests of this type. Not applicable for enrollment requests. For other types of requests, you can use the RECIPIENT lookup to maintain a list of support groups and their respective email addresses.
Identification Requirement
Service Request: Appearance
Display Text Area indicates whether the request should include a multi-line text field in which taxpayers can enter comments or other long text input.
Text Area Label defines the label to appear next to the text area.
Text Area Length defines the maximum length of the text.
Email Required indicates whether this request should include the prompt for an email address.
Note: Note: The e-mail address entered in this predefined field will be transmitted to the revenue management system under the <head> element.
Email Label defines the label for the email address input field
Header Text appears on the top of the dynamically rendered request screen, above the request fields. It can be entered as HTML or plain text.
Footer Text appears at the bottom of the dynamically rendered request screen, below the request fields. It can be entered as HTML or plain text.
Help appears on the Service Central screen page once the specific service request is selected. It can be entered as HTML or a plain text.
Help Override can be used by an implementation to replace the help text delivered with the product.
Service Request: Fields
This tab displays the Service Request's Fields list. Fields represent the information that should be collected in order to process this specific type of service request.
The standard Edit and Delete functions are available for each field on the list.
The Add button lets you define a new field.
Request Field
Service Request Preview
The special Preview action is available on the Service Request maintenance page. Clicking this button lets you review the service request screen. You can fine-tune the screen design, the HTML of the header and footer; check field order, etc.
Service Request - Custom Properties
Custom Properties is a configurable collection of additional data elements that may be delivered to the integration layer and/or revenue management system. The collection can also be used to establish additional criteria for grouping Service Requests.
Property Type references a property type definition. Property Type controls the value type as either free-form or restricted by the specific Lookup value's list. It also defines whether or not the property is unique and searchable.
Property Value is the actual value of the property.
Copy To Service indicates if the property type and value should be copied to the web service XML.
Examples
Using Custom Properties for grouping:
The agency would like to support multiple requests related to property taxes but want to group them by subject: tax bill questions, property ownership, tax liens, etc.
Approach: Create a Property Type (value type Lookup, searchable, non-unique) and add a Custom Property(-ies) to service request(s) accordingly.
Using Custom Properties for message routing:
A web portal consolidating all online self-services while taxes are maintained in multiple revenue management systems would require service requests to be routed into various destinations.
Approach: Create a Property Type associated with a tax Type lookup, add a Custom Property to tax type-specific service requests, and mark the property as "Copy to the Service".
BPEL Processes
The integration SOA composites invoke the revenue management system web services and send the response back to the self service portal application.
The confirmation number is generated when a service request is invoked (with the exception of taxpayer identification requests). This confirmation number is returned as part of the response.
Enrollment Request
The special features of the Enrollment Request integration flow are:
For additional information, see SOA/BPEL Integration.
Implementing Service Requests
This section describes the steps required to implement service request functionality.
Web Services
In order to support taxpayer service requests the revenue management system is expected to implement the following web services:
Web Service | Description |
---|---|
TSTaxpayerServiceRequest | Based on the information collected from the taxpayer on the web portal, it should trigger the service and return a confirmation or error with the response. The request message contains a service request type (code) and the collection of sequence/field name/field value details. The request handling in the revenue management system could be as follows:
|
TSTaxpayerIdentification | Validates POI details provided by the taxpayer on the request. The request message contains a service request type (code) and the collection of sequence/field name/field value details. If the taxpayer has been identified successfully, the response should be populated with one or more taxpayer IDs. The POI details evaluation may result in error. If so, the error message number should be populated on the response. |
TSGetRefundStatus | The service supposed to evaluate the input provided by the taxpayer and evaluate the status of a potential refund. The request message contains a service request type (code) and the collection of sequence/field name/field value details. The response expected to contain the following:
|
TSEnrollmentServiceRequest | This service is designed to evaluate input provided by the user and identify tax accounts owned by this user. The assumption is that initial enrollment results are recorded and the record(s) are traceable using the Enrollment ID provided on the request. The response is expected to contain the following:
|
Supported Service Requests
Service Request | Description |
---|---|
TAX_CLEARANCE_CERT – Tax Clearance Certificate Request | Enable user to request and receive a tax clearance certificate. User is expected to enter the following information:
Identification Requirements: IDENTIFY_TAX_CLEARANCE (Identification For Tax Clearance Request) Process synchronously, web service. |
REFUND_STATUS_UNR – Check the status of your refund | Allow users to request a status of their refund for a given tax type and tax period. User is expected to enter the following information:
Identification Requirements: none. Process synchronously, web service. |
IDENTIFY_TAX_PAYMENT – Taxpayer Identification for Payment | Provides the ability to validate taxpayer POIs required to submit a payment and receive taxpayer's ID. User is expected to enter the following information:
Identification Requirements: none. Process synchronously, web service. |
IDENTIFY_TAX_CLEARANCE - Taxpayer Identification for Tax Clearance | Provides the ability to validate taxpayer POIs required to request tax clearance. certificate and receive taxpayer's ID. User is expected to enter the following information:
Identification Requirements: none. Process synchronously, web service. |
TECHN-ISSUE – Report a website-related problem | Allows user to notify revenue authority about technical issues with the website. User is expected to enter the following information:
Identification Requirements: none. E-mail. |
ENROLL_BUSINESS – Access Your Business Accounts | Allows users to gain access to their business tax accounts. The user is expected to enter the following information:
Identification Requirements: none. Line of Business: Business. |
ENROLL_INDIV– Access Your Individual Accounts | Allows users to gain access to their individual tax accounts. The user is expected to enter the following information:
Identification Requirements: none. Line of Business: Individual. |
Messages
The following messages are defined to support service request functionality:
Service Request | Description |
---|---|
TAX_CLEARANCE_CERT | 15010, 15011, 15012 |
REFUND_STATUS_UNR | 13001,13002, 13003,13010,13011,13012,13014,13015,13016,13017 |
IDENTIFY_TAX_PAYMENT | 11001, 11002, 11003 |
IDENTIFY_TAX_CLEARANCE | 15001, 15002 |
ENROLL_BUSINESS | 10003, 30101, 30102, 30103 |
ENROLL_INDIVIDUAL | 10003, 30101, 30102, 30103 |
Configuration
In order to enable the supported service requests you may add/modify the configurations described in the following topics.
Service Request
Processing
Specify a recipient for each service request delivered via email.
Appearance
The service request description appears on the initial selection drop-down list. You can change the overall tone of your dialog with the taxpayer by re-phrasing the descriptions of the generic service request(s) and the descriptions of request categories (lookup SRCAT).
Example:
Provided description: Tax Clearance Certificate Request
Override description: Apply for a tax clearance certificate
The service request configurations are provided in the base product without Header, Footer, and Help. Consider adding these to the service requests. Header and footer are displayed on the main service request input screen. The help is displayed on the Service Request Selection screen when the taxpayer picks the topic from the dropdown. You can enrich user's experience and communicate additional information, such as notes, disclaimers, explanations, etc.
Example:
Load the service request TECHN-ISSUE.
Press the Preview button to view the request's screen.
Now switch to the Appearance tab and enter the following:
Header:
Report technical problems to the Webmaster </br> </br>

Use this email service to report anything on this website that isn't working correctly or to make comments or suggestions for improving our website.

Footer:

 NOTE : This email form is NOT SECURE.
</br>
For your security and privacy, please do not include your social security number or other personal, confidential information in your message.

Help:
Request assistance finding something on the site, understanding our different file formats,
 printing files you've downloaded, installing or using the tax products CD-ROM, or any similar technical problem.
Press the Preview button to see the result.
Field Level Help
You can add the help text for each input field on the dynamic screen. The help text appears as the callout when the focus is moved into this input field.
Field Validation
The Fields provided in the base product have no Validation Rules attached. Add validation rules to enforce format rules on service request's input.
Example:
How to validate a phone number using US standard phone format:
Specify the newly added message. Enter the following validation expression:
^\\(?([0-9]{3})\\)?[-]?([0-9]{3})[-]?([0-9]{4})$
This expression validates the US phone pattern.
Entry may start with parentheses (optional) followed by three numeric digits, followed by a dash or space, followed by three numeric digits, followed by an optional dash or space, followed by four numeric digits.
Load the Service Request TAX_CLEARANCE_CERT.
Go to the Fields tab and find the field PHONE_NBR. Attach the new Validation Rule to the field.
Now try to enter an invalid phone number when submitting the request for Tax Clearance Certificate.
Lookup
You can add values for the Lookup: RECIPIENT. The values of this lookup are used to specify a recipient of an email service request. Use the extended value to specify recipient's e-mail address.
You can also add values for Lookups referenced by service request fields such as:
Note: You can deactivate any/all of the lookup values provided with the base product.
Example:
Refund status request REFUND_STATUS_UNR includes a field TAX_TYPE. This Field is referencing a Lookup TAXTYPE. No values are provided with the base product. Decide what tax types should be available for the taxpayer paying for the filing period. Add these tax types as new lookup values.
Messages
Several info/error messages are provided for each service request (see "Supported Service Requests" for more information). You can add the DVM mapping for the messages you anticipate receiving from the revenue management system. You can also define new messages and use them instead of those provided with the base product.
Example:
Message 15001 "Your request has been processed; a Tax Clearance certificate was issued on {1}." is provided with the base product.
Scenario 1: The revenue management system returns message category 1/message number 1111 with one parameter of type Date upon successful processing of tax clearance certificate.
Use DVM OTSS_MessageNumber to map 15001 to 1:1111.
Scenario 2: The revenue management system returns message category 1/message number 1111 with no parameters upon successful processing of tax clearance certificate.
Override the message 15001 text, remove the substitution parameter and use DVM OTSS_MessageNumber to map 15001 to 1:1111.
Scenario 3: The revenue management system may return multiple messages: message category 1/message numbers 1111, 1112 and 1113 with parameters upon successful processing of tax clearance certificate.
Create brand new messages NNNNN and XXXX and use DVM OTSS_MessageNumber to map as follows:
15001 to 1:1111, NNNNN to 1:1112, XXXX to 1:1113
Validation Rules
You can add client-side validation to the service request fields. Regular expressions provide a powerful search pattern language and can be used to implement complicated business rules.
Examples:
EIN – US Employer ID Number: ^[0-9]{2}-[0-9]{7}$
EIN Pattern: Starts with 2 numeric digits, followed by a dash(-), then ends with 7 numeric digits.
US Phone Numbers:
^\\(?([0-9]{3})\\)?[-]?([0-9]{3})[-]?([0-9]{4})$
Phone Pattern: May start with parenthesis (optional) followed by 3 numeric digits, followed by dash or space, followed by 3 numeric digits, followed by optional dash or space, followed by 4 numeric digits.
Properly formatted email address:
^[a-zA-Z0-9_-]+(\\.[a-zA-Z0-9_-]+)*@[a-zA-Z0-9]+(\\.[a-zA-Z0-9]+)*(\\.[a-zA-Z]{2,})$
Email Pattern: Starts with Alphanumeric characters [a-zA-Z0-9] or dash(-) or underscore (_),then maybe optionally followed by dot (.) plus Alphanumeric characters [a-zA-Z0-9] or dash(-) or underscore (_) then followed by @, then followed by a group of alphanumeric characters then maybe optionally followed by dot (.) plus alphanumeric characters (in case email has two levels, e.g., .com.ph), then followed by dot (.) plus characters having length of 2 or more.
Advanced Navigation
You can trigger a specific service request invocation from an HTML content using the following syntax:
/faces/oracle/webcenter/portalapp/pages/TaxpayerSvcReq.jspx?serviceReq=<put your Service Request Type Code here>
BPEL DVM Mapping
OTSS_ServiceRequestType
An entry is provided for each payment destination included in the base product. The column OTSS_SRType contains service request codes.
For each entry specify the corresponding translation values from your revenue management system in the column EXT_SRType.
If your revenue management system does not use the service request code, leave the translation value blank. As a result, the <serviceRequestType> node on the request xml would be empty.
If your implementation in the revenue management system designed to use the same request type codes as in web self service portal application, delete the records from the DVM. As a result the value in the <serviceRequestType> node on the request xml would be delivered 'as is'.
Examples:
The content of the node:
<serviceRequestType>TAX_CLEARANCE_CERT</serviceRequestType>
<serviceRequestType>XXX</serviceRequestType>
<serviceRequestType></serviceRequestType>
<serviceRequestType>TAX_CLEARANCE_CERT</serviceRequestType>
OTSS_FieldCodes
To translate the values of the lookups referenced by service request fields, enter the field name and value pairs into the OTSS_FieldNameValue column in a "FIELD":"VALUE" format, then entering the corresponding value from your revenue management system in the EXT_FieldValue column. This translation is optional.
Examples:
The content of the entry on <destinationDetails> list for the request field TAX_TYPE with value IND selected from the lookup TAXTYPE:
<requestField>
<sequence>
<fieldName>TAX_TYPE</fieldname>
<fieldValue>IND</fieldValue>
</requestField>
<requestField>
<sequence>
<fieldName>TAX_TYPE</fieldname>
<fieldValue>XXX</fieldValue>
</requestField>
<requestField>
<sequence>
<fieldName>TAX_TYPE</fieldname>
<fieldValue></fieldValue>
</requestField>
<requestField>
<sequence>
<fieldName>TAX_TYPE</fieldname>
<fieldValue>IND</fieldValue>
</requestField>
OTSS_MessageNumbers
You can map the expected return message numbers from the revenue management system to the messages defined in the self service portal application.
How To Enable a New Web Service-based Request
Design considerations
Determine what information your revenue management system requires in order to provide the new service. It is usually one or more data items, including dates, amounts. You can also offer a selection of pre-defined answers (lookups). Decide whether the free-form text (comments, feedback, etc.) should be a part of the request. Define what input data is required and what is optional. Design the additional content (help, header and footer) for the user interface.
Determine whether taxpayer's identity should be verified prior to providing this service. This will define what Identification Request you will be using. One identification request IDENTIFY_TAX_CLEARANCE is provided with the base product. You may use it or create your own.
You may decide that a standalone identification step is not required and incorporate taxpayer identification details into the service request fields' collection.
Determine how you want this request to be handled by the communication layer. Consider the anticipated volume of the requests and also the actual effort required to process the request in the revenue management system. Choose to deliver the request synchronously or asynchronously.
Decide under which category this request follows. If no appropriate service request category exists, define a new one (add a new value to the lookup SRCAT, specify extended value GENERAL).
Decide how the taxpayer would invoke this service request. Several methods are available:
Configuration
Configure the service request according to the design.
In the SOA/BPEL layer, add the mapping for a service request type code and specific fields (if applicable). Also add the mapping for the response message.
Implementation
The revenue management system has to be able to interpret this service request's set of input fields, provide the appropriate service and return a confirmation message(s) under <confirmationData> or an error message under <errorMessage>.
How to Enable a New Email Service Request
Design considerations
Design the input required for this particular service and the identification requirements, similar to the generic service request. Use header, footer, or help to provide various guidelines, explanations, disclaimers, etc. You can also advise a taxpayer that sensitive private data should not be entered in the text area.
Configuration
Configure the email recipient for this request. Configure the service request itself according to the design, specify processing method Email.
How to Enable a New Identification Request
Design considerations
Determine what information your revenue management system requires in order to identify a taxpayer. Decide whether the free-form text (comments feedback etc.) should be a part of the request. Define what input data is required and what is optional. Design the additional content (help, header and footer) for the user interface.
Determine what information should be masked during the input.
This request should be delivered synchronously.
Configuration
Configure the service request according to the design.
In the SOA/BPEL layer add the mapping for a service request type code and specific fields (if applicable).
Implementation
The revenue management system has to be able to interpret this service request's set of input fields, identify a taxpayer(s) and provide the collection of the taxpayer IDs in the response <responseDetails> or an error message under <errorMessage>.
How to Enable a New Refund Status Request
Design considerations
Determine what information your back-end system requires in order to determine the refund status, similar to the generic service request. Define what input data is required and what is optional. Design the additional content (help, header and footer) for the user interface.
Determine whether a taxpayer's identity should be verified prior to providing this service. This will define what Identification Request you will be using. One identification request IDENTIFY_TAX_CLEARANCE is provided with the base product. You may use it or create your own.
You may decide that a standalone identification step is not required and incorporate taxpayer identification details into a service request fields' collection. The base product provides the refund request following this pattern.
The request should be processed synchronously.
Decide how the taxpayer would invoke this service request. Several methods are available:
Configuration
You can configure the service request according to the design.
In the SOA/BPEL layer, add the mapping for the service request type code and specific fields (if applicable).
Implementation
The revenue management system has to be able to interpret this service request's set of input fields, determine the status of the refund, and return a confirmation message(s) under <confirmationData> and, optionally, refund amounts under <responseDetails>, or an error message under <errorMessage>.
How to Enable a New Enrollment Request
Design considerations
Create a new enrollment request if you have identified a category of website users who belong to a new line of business. Determine what information your revenue management system requires in order to identify the users' tax accounts, and grant the requested access. It is usually one or more data items, including dates and amounts. You can also offer a selection of pre-defined answers (lookups). Decide whether the free-form text (comments, feedback, etc.) should be a part of the request. Define what input data is required and what is optional. Design the additional content (help, header and footer) for the user interface.
A new active enrollment request will automatically appear among the enrollment options. The request should be processed synchronously.
Decide how the taxpayer would invoke this service request. Several methods are available:
Configuration
You can configure the service request according to the design.
In the SOA/BPEL layer, add the mapping for the service request type code and specific fields (if applicable).
Implementation
The revenue management system must be able to interpret this service request's set of input fields, identify tax accounts, and provide the response with access key sets, confirmation message(s) under <confirmationData>, or an error message under <errorMessage>.
FAQ: Service Request
This section includes frequently asked questions about Service Requests.
How do I define field validation on my Service Request?
The basic data type and format validation can be defined using attributes of the Field entity. In addition, the Service Request Field can be marked as required.
You can create a new Validation Rule to implement more complicated validation logic using regular expressions.
Attach a Validation Rule to the Field (if the validation is always applicable) or to the Service Request Field, if the validation is applicable in a context of the specific service request.
Examples:
Scenario 1: A single Field is defined to represent US driver's license. There is only one valid format for the driver's license and it does not change. It is safe to assume that the same validation rule would be always applicable; therefore you can attach a Validation Rule to the Field.
Scenario 2: A single Field is defined to represent an Identifier Number. Multiple types of identifiers exist: a taxpayer ID, a driver license number, a professional license number and others and there is no universal formatting rule applicable for all of them. When this Field is used on a service request and supposed to represent one of the identifiers, you can attach request-specific Validation Rule to the Service Request Field.
Can the Service Request have multiple pages?
This feature is currently not supported. However the implementation can model a business process as a sequence of several service requests.
The service request can be triggered from the HTML content (refer to Advanced Navigation for details), therefore a hyperlink to a service request can be embedded in the confirmation message text. This way, after submitting a service request successfully, the taxpayer may be "guided" to the next step in the process.
How can I enable hyperlink to a Service Request from different places on the web site?
Refer to Advanced Navigation for the instructions.
When should the requirement be implemented as a tax or business registration form and when it can be modeled as a service request?
The service request allows to model idiosyncratic scenarios beyond the form-based processing, such as:
The service request framework can be used to address new business requirements instantaneously, "here and now", as opposed to the complex process of implementing a new tax or business registration form.
The service request interface is limited to a single screen. Therefore it is not feasible to use service requests for the functionality that requires the taxpayer to provide a lot of data.
Another aspect to be considered is the processing of the request in the revenue management system.
Scenario 1: A certain service is already available in the revenue management system. For example, there is a service that updates the account when the taxpayer is leaving the country for a prolonged time period. The input for the existing service is a taxpayer ID and the date range (start and end date). The requirement is to expose this service on the web self service portal.
This requirement is a good candidate for the service request-based implementation. It can be implemented using a service request with preliminary taxpayer identification.
Scenario 2: The change of taxpayer’s mailing address should be reported using a specific form. The new address is the only information that needs to be collected from the taxpayer; the rest: previous mailing address, taxpayer name and identifiers is already stored in the revenue management system and can be derived.
This requirement can be implemented using a service request with preliminary identification. The web service may trigger the taxpayer details retrieval followed by the form creation.
How are request fields sent to the revenue management system?
The XML node that represents the value of the service request field contains string.
The string value is formatted according to the service request Field's data type:
<serviceRequestData>
<requestField type=”list”>
<sequence> //request sequence – as defined on service request
<fieldName> //field name – as defined on service request
<fieldValue> //field value – alphanumeric
</requestField>
</serviceRequestData>
Can I control appearance of the request fields?
The field is rendered on the screen according to its data type. It may appear as a date, with adjacent calendar, as a checkbox, as a multi-line text area or as a simple single-line input.
Can I include the comments and instructions about request fields?
You can define a hint string on the Field. It will be displayed next to the input widget. The hint may simply suggest the format of the input. Another option is to define an extended help text. It will be displayed as a callout when user hovers over the field or when the field is in focus. The help defined on the Field entity will be displayed everywhere this Field is used. You can override this help for the specific service request by defining help on Service Request Field.
Enrollment
This section describes user enrollment feature implementation details.
For information on User Enrollment service request selection and configuration, see User Enrollment Request.
Overview
Enrollment vs. Registration
Self service portal registration is a process of establishing the secure login. As a result of the registration, a person obtains user name and password and able to log in into self service application and be properly authenticated.
Registration alone is not sufficient to gain an access to the tax account. The taxpayer should explicitly request access to his/her taxes and provides the information that may identify tax accounts owned by him/her in the revenue management system. The system evaluates the request and returns accessible tax accounts to the integration layer. Finally, the user/tax account association(s) are captured and become available for the account access verification purposes. This process is called enrollment.
A user enrolled into a tax account is able to view account financial information, file tax returns and make payments related to the account, update the taxpayer's contact and correspondence info, and request services.
Enrolled User
Getting Access to all Accounts
Single login provides access to multiple accounts managed by the Revenue Management Authority. Upon successful site registration, a user can log in and request access to the information and perform self-service operations on all accounts for which the access was granted. In other words, an individual who also happens to be a business owner may log in once and view and manage both individual and corporate taxes.
Each line of business may require its own set of credentials as well as its own logic in identifying tax accounts owned by the user. The self service solution provides a flexible and configurable enrollment mechanism and allows configuration of a dedicated enrollment request per line of business.
Working with a Specific Account
After the enrollment process is completed successfully, a user may work within the context of a specific tax account, and the user's identification is no longer needed for payments, service requests or other online services. Tax account identifiers are populated on every outgoing web service request and delivered to both the integration layer and the back-end system.
Session Context
The entire time an enrolled user is browsing website contents and/or performing self-service operations, selected tax account identifiers are available in the session context. The user can switch accounts and select another one from the enrollment summary list.
The User Access Store
The user-account association is captured in a special table in the database. It is not exposed directly to the portal application and accessed only by SOA composites from the integration layer. During initial enrollment and subsequent enrollment refresh, the revenue management system creates an enrollment event and provides the account access information to the integration layer along with unique enrollment event ID. Integration layer is responsible for inserting new records into the access store.
The combination of user ID, enrollment event ID and Line of Business is unique; in other words, all enrollment records for the user for a specific line of business belong to the same enrollment event.
The Access Type and Access Keys combination should identify a logical data unit in the revenue management system, for example a tax account. Upon login, user account access information is retrieved from the store and user selects one unit at the time and works with this unit.
User account access data is stored as follows:
See the PSRMSS Installation Guide for additional details on the table definitions.
Enrollment Record Status
Enrollment records may be inserted and maintained in various statuses.
Status | Description |
---|---|
P | Pending Enrollment ID pending approval. User doesn't have online access to the accounts associated with the enrollment record in this status. |
A | Approved User has online access to the accounts associated with the enrollment record in this status. |
B | Blocked Too many subsequent errors; enrollment request has been denied. |
H | Hold Indicates that the maximum allowed number of users has owner-level access to this record's account. |
1....N | Enrollment In Error (intermediate statuses used internally) "Error count" status; used by the system to indicate and process subsequent enrollment requests after an error. |
Initial Enrollment
A registered web site user that hasn't been enrolled yet starts the process from the Enrollment Summary ("My Accounts") page.
The page displays all available enrollment options, one option per line of business.
To obtain access to account(s), the user is asked to provide information that allows identifying accounts in the revenue management system.
The content of the enrollment request varies from one Line of Business to another. For each Line of Business, the implementation may configure a dedicated enrollment request.
An enrollment request is sent to the revenue management system to verify provided identification details. The system then returns access key sets, one set per tax account. Each key set contains at least one mandatory key uniquely identifying a taxpayer.
Access information is processed by the integration layer and stored in the user access repository, after which the user receives a confirmation message and can navigate to the Enrollment Summary page.
The user may always expand the enrollment scope by enrolling into accounts associated with an additional Line of Business.
Enrollment information is implicitly refreshed every time the user logs in and navigates to the Enrollment Summary page.
At this point, the self-service application requests enrollment data from the access store. The information is then forwarded to the back-end system so that the new access entries can be identified and retrieved. For example, if a user purchased a new property or filed additional taxes since the user's last login, the system may return new access information. That new information will be captured in the access store and shown on the summary.
Enrollment Event
To protect the user's enrollment information, a unique ID is generated in the integration layer and sent to the revenue management system with the initial enrollment request. Upon successful enrollment, each access "unit" in the user access store is stamped with the combination of Enrollment ID and Line of Business. The assumption is that the revenue management system captures and associates subsequent additions to the user's access within one line of business associated with the same enrollment event.
Enrollment ID remains a "shared secret" between user access store and the revenue management system and can be used for verification and reconciliation purposes.
Once the initial enrollment is successfully completed and the enrollment event is established, the system is aware of the fact that "user xxx is enrolled into his accounts for the line of business YYY with enrollment ID ZZZZZZZ". Having implicit enrollment refresh in place means that user won't need to request to enroll into same line of business again. In addition to simplifying enrollment process, this approach allows enrollment tracking and resolving enrollment issues.
Preventing Fraudulent Attempts to Enroll
Too Many Failed Attempts to Enroll
Enrollment is denied if the user submits several consecutive unsuccessful requests. This prevents automated "guessing" of POI information and protects the private and sensitive data stored in the revenue management system.
Too Many Users Requested Access to the Same Account
The system provides the ability to limit the number of users that may enroll into a single account. When the limit is reached, enrollment requests are held for the revenue management authority's review.
For additional information see Enrollment Issues.
Enrollment Summary
The Enrollment Summary shows all tax accounts accessible to the enrolled user.
Tax Accounts are grouped by Taxpayer. The taxpayer's name is returned by the web service.
The content of each entry is displayed according to the Access Type configuration.
The entry for each tax account displayed on Enrollment Summary includes three main components:
Summary Title - the Summary Title Message text defined on the Access Type and the parameters returned by the web service.
Summary Details - the Summary Details Message text defined on the Access Type and the parameters returned by the web service.
Location - Formatted location information returned by the web service (optional).
The portal application expects one entry to be marked as a default tax account. This account is automatically loaded into the session context.
Navigation
The user can navigate to Taxpayer and/or Account Information pages from the Enrollment Summary page.
Enrollment Request
See User Enrollment Request for a description of the user enrollment request process flow.
Enrollment Options Selection
When an authenticated user navigates to the Enrollment Summary ("My Accounts") page, the Get User Enrollment web service is invoked. It retrieves the indicator whether the user is already enrolled or not. If the user is enrolled, Line of Business list is also returned. Based on these results, the page displays either of the following:
Main Request Input
The main enrollment request screen is rendered dynamically, according the enrollment service request configuration. The taxpayer is prompted to enter the identification information required for enrollment within the line of business.
Upon request submission, a TSEnrollmentServiceRequest web service call is triggered. The request contains a collection of sequence/field name/field value entries.
If the web service call is successful, the response contains the list of access key sets and the confirmation.
Access information is processed in the integration layer and stored in the user access table.
Confirmation information is returned to the portal application.
See the Enrollment Issues topic for more details on failed enrollment attempts handling.
Confirmation
The expected web service response contains a confirmation number and message(s). This information is displayed to the user. The user is then redirected back to the Enrollment Summary page.
Enrollment Refresh and Summary
User access information is implicitly refreshed upon login. The Get User Enrollment web service request is initiated on load when the user navigates to the Enrollment Summary page.
The results of a successful enrollment refresh may be a creation of one or more new records in user access store. Each record is stamped with the original enrollment ID/line of business combination, meaning it belongs to the original enrollment event.
Enrollment Summary
After an enrollment request is completed, the user is redirected to the Enrollment Summary page. This immediately performs an enrollment refresh and then invokes the Get Enrollment Summary web service.
The Get Enrollment Summary web service retrieves the Approved access key(s) from the User Access Store and passes them to the revenue management system, which in turn derives information to be displayed on the page.
Formatted Enrollment Summary information for each tax account is displayed to the user.
At this point, the tax account (access keys set) that is marked as the default on the list is automatically loaded into session context.
The selected account and taxpayer info is always shown on the top right corner of the main page area.
Enrollment Issues
The following topics describe enrollment issues that may require preventive implementation measures.
Too Many Failed Attempts to Enroll
Too many failed enrollment requests coming from the self service may suggest a fraudulent attempt to "guess" taxpayer identification details and gain access to the taxpayer's account. The system provides the ability to block excessive numbers of subsequent failed attempts. It is assumed that only one enrollment event per line of business exists. The diagrams below illustrate the flow of events:
Figure 1. Blocked enrollment after excessive failed enrollment attempts
Figure 2. Handling successful access after failed enrollment attempt
See Prevent Fraudulent Enrollment for additional information on this issue.
Too Many User Account Access Requests
Too many requests to access the same tax account may suggest of the attempt to create the situation where it is possible to overwhelm the system and trigger performance problems. Consider the scenario where thousands of users are trying to access the same data simultaneously.
Even if the request to access the account is coming from a legitimate owner, the tax authority may wish to restrict the number of owners accessing the information. The product supports an ability to place enrollment request on hold and allow manual review of a specific taxpayer's situation.
The diagram below illustrate the flow of events:
Figure 1. Blocking enrollment after excessive user account requests
Review Enrollment Issues
As a result of the enrollment issues multiple messages may end up in the Worklist queue. There are two types of requests that require human intervention and manual review:
Essentially, the task in the Worklist is a web service request "stopped" on its way from one node to another; in this case, from the SOA Composite to the utility that updates the user access store table.
The reviewer uses the Worklist application to pick a task from the list, view request contents, and either approve or reject the task. Approval means the request completes the interrupted flow; rejection means the request is cancelled.
Note: To make an informed decision about approval, the enrollment administrator may need access to sensitive customer data stored in the revenue management system. Consider setting up a dedicated user group/security role for agency users responsible for enrollment issues.
See Oracle BPM Worklist documentation for more details.
Defining Enrollment
Line of business and access type are referenced in multiple tax account-related configurations and control the appearance and contents of the enrollment summary. The enrollment service request configuration defines the input that the taxpayer should supply in order to obtain access to tax accounts and define how the input is presented in the user interface.
Line of Business
Line of Business is defined using the customizable Lookup LINEOFBUSINESS .
Select Settings > Lookup to maintain the LINEOFBUSINESS lookup.
The base product is delivered with two values: Individuals and Business.
Access Type
See Access Type topic in the Configuration section of this document for details on configuring the Access Type for User Enrollment.
Service Request
Select Configurations > Service Request to configure an enrollment service request.
See the section Defining Service Requests for complete details.
BPEL Processes
Integration Overview
BPEL integration process flow diagram
The integration SOA composites invoke the revenue management system web services and send the response back to the self service portal application.
The confirmation number and enrollment ID are generated when an enrollment request is invoked. The confirmation number is returned as part of the response. The Enrollment ID, which is used for various aspects of enrollment verification, is captured in the user access store and is also assumed to be captured in the back-end system as a unique identifier of the enrollment event.
Preventing Fraudulent Enrollment
The SOA composite that processes the TSEnrollmentServiceRequest web service performs the following special logic:
Implementing Enrollment
This section describes the steps required to implement service request functionality.
Web Services
To support user enrollment, the revenue management system is expected to implement the web services described in the following table.
Web Service | Description |
---|---|
Based on the information collected from the taxpayer on the web portal, this service returns a list of access key sets. Each entry contains information sufficient to identify a tax account in the system. It should also return a confirmation or error with the response. The request message contains line of business, a service request type (code), and a collection of sequence/field name/field value details. User access data is processed in the integration layer and stored in the user access store. Request handling in the revenue management system is designed to work as follows: Determine the service request type. Determine tax accounts the user should be able to access using input line of business and request details field values. Populate the response with access key sets. Each set contains: Enrollment ID Access type that describes the purpose of this access key set; for example, ACCOUNT or TAX ROLE Access keys (name and value) Role - should be a value corresponding to one of the security user roles defined in the portal application Confirmation message(s) numbers and parameters | |
This service evaluates current user enrollment information, performs implicit refresh of user enrollment data, and returns the enrollment overview to the portal application. The new access keys form the response and are processed in the integration layer. The list of Line of Businesses for which the user is enrolled are returned to the portal. Request handling in the revenue management system is designed to work as follows: Find enrollment event(s) associated with input enrollment ID(s); then check if the user is permitted access to additional new tax accounts. Return new access key sets. | |
This service is responsible for retrieving user-friendly information to be displayed on the Enrollment Summary page The request contains a list of access key sets. For each access "unit", the response is expected to contain: Taxpayer name and account name Summary title and summary details; it could be either a finalized and formatted string (text/HTML) or a list of parameters that can be injected into a message defined in the portal app for each Access Type An indicator for default access entry, marking an access "unit" to be selected on page load |
Supported Enrollment Requests
Service Request | Description |
---|---|
ENROLL_INDIV - Individual Enrollment Request | Enables the taxpayer to request and receive a tax clearance certificate. The taxpayer is expected to provide the following information:
Identification Requirements: none Process synchronously, web service |
ENROLL_BUSINESS - Business Enrollment Request | Enables the taxpayer to enroll and manage business tax accounts. The taxpayer is expected to provide the following information:
Identification Requirements: none Process synchronously, web service |
Supported Access Types
Access Type | Description |
---|---|
TAXROLE - Tax Account | Access entity is identified by two keys: PER_ID - taxpayer ID TAX_ROLE_ID - tax account ID Line of Business - Business (BUS) Enrollment Summary Title Message 30000 Enrollment Summary Details Message 30002 Account Summary Title Message 41101 Account Summary Details Message 41100 Line of Business - Business (IND) Enrollment Summary Title Message 30000 Enrollment Summary Details Message 30001 Account Summary Title Message 41101 Account Summary Details Message 41100 For this configuration, the revenue management system is expected to return the following information as enrollment summary parameters: For Title: Tax Type; value corresponding to one of the values of TAXTYPE Lookup For Details: Tax Account start and end dates (if available) Outstanding Balance "As of" date for the balance calculation Location (address) - for Business tax types |
Messages
The following messages are defined to support enrollment functionality:
Component | Messages |
---|---|
Enrollment Summary | 30000, 30001, 30002, 41100, 41101 |
Configuration
To enable the supported service requests you may add/modify the following configurations.
Lookup
Add values for Lookups referenced by enrollment request fields. Examples:
Additional lookup values are available.
Note: You can deactivate any/all of the lookup values provided with the base product.
Example:
One of the Enrollment Summary Title parameters is Tax Type. This parameter references a Lookup TAXTYPE. No values are provided with the base product. Implementers should decide which tax types should be available for the taxpayer, and add these tax types as new lookup values.
Messages
Several info/error messages are provided for enrollment requests (see Supported Service Requests and Enrollment Summary). Add the DVM mapping for the messages you expect to receive from the revenue management system. You can also define new messages and use them instead of those provided with the base product.
BPEL DVM Mapping
OTSS_ServiceRequestType
An entry is provided for each enrollment request included in the base product. The column OTSS_SRType contains enrollment request codes.
For each entry, specify the corresponding translation values from your revenue management system in the column EXT_SRType .
If your revenue management system does not use the enrollment request code, leave the translation value blank. As a result, the <serviceRequestType> node on the request XML will be empty.
If your implementation in the revenue management system is designed to use the same request type codes as in the web self service portal application, delete the records from the DVM. As a result, the value in the < serviceRequestType> node on the request XML will be delivered 'as is'.
Examples:
The content of the node:
<serviceRequestType>ENROLL_BUSINESS</serviceRequestType>
With a translation value of "XXX" for ENROLL_BUSINESS:
<serviceRequestType>XXX</serviceRequestType>
With a blank translation value for ENROLL_BUSINESS:
<serviceRequestType></serviceRequestType>
Without an entry in the DVM for ENROLL_BUSINESS:
<serviceRequestType>ENROLL_BUSINESS</serviceRequestType>
OTSS_FieldCodes
This DVM translates the values of the lookups referenced by service request fields. Enter the field name and value pairs into the OTSS_FieldNameValue column in a format "FIELD":"VALUE". Enter the corresponding value from your revenue management system in the EXT_FieldValue column. (Note: This translation is optional.)
Examples:
The content of the entry on <requestField> list for the request field ID_TYPE with value IND selected from the lookup IDTYPEIND:
<requestField>
<sequence>
<fieldName>ID_TYPE</fieldname>
<fieldValue>SSN</fieldValue>
</requestField>
With translation value XXX for ID_TYPE:IND
<requestField>
<sequence>
<fieldName>ID_TYPE</fieldname>
<fieldValue>XXX</fieldValue>
</requestField>
With blank translation value for ID_TYPE:IND
<requestField>
<sequence>
<fieldName>ID_TYPE</fieldname>
<fieldValue></fieldValue>
</requestField>
Without an entry in the DVM for ID_TYPE:IND
<requestField>
<sequence>
<fieldName>ID_TYPE</fieldname>
<fieldValue>SSN</fieldValue>
</requestField>
OTSS_MessageNumbers
Map the expected return message numbers from the revenue management system to the messages defined in self service portal application.
How To Enable a New Enrollment Request
> Design considerations
Configuration
Implementation
One-Time Payments
Overview
The Make a Payment option is accessible from the OnLine Services pull-down menu on the web self service portal navigation bar and from the left-side navigation panel.
The taxpayer does not have to register as a web self service user and/or login in order to make a payment. The taxpayer is prompted to provide identification details prior to making the payment.
Payment
Payment Option Selection
This screen displays the available payment options. The selection represents the list of active Payment Destinations configured in the system. The taxpayer selects one by clicking on the hyperlink. The ability to make a certain type of payment may be offered to all website users or exclusively to registered and signed-in users. This restriction is controlled by payment destination configuration.
Identification Requirements Evaluation
The system verifies that the user has already been authenticated (logged in) and checks whether a specific tax accounts has already been selected. If no account has been selected, the user is prompted to navigate to the My Account page and make a selection; with no access keys in context, the user is now treated as a casual user.
The system reads the Payment Destination configuration. It determines whether this type of payment requires taxpayer identification. The possible scenarios include:
User Registered | Enrolled/Account Selected | Identification Required | Result |
---|---|---|---|
Yes | No | Yes | Identification invoked |
Yes | Yes | Yes | Payment Flow invoked |
Yes | No | No | Payment Flow invoked |
No | N/A | Yes | Payment Flow invoked |
No | N/A | No | Payment Flow invoked |
Taxpayer Identification
The user is asked to provide Proof of Identity (aka POI) details before being allowed to make a payment. This step applies to casual users only.
POI requirements are defined on Payment Destination.
Note: Taxpayer identification is implemented using Taxpayer Identification service request. Service request code is derived from Payment Definitions, then the service request configuration is retrieved and the Taxpayer Identification screen is rendered dynamically.
The taxpayer enters the identification information.
Note: At this time, a web service TSTaxpayerIdentification is triggered and the collected input is sent to the revenue management system for verification. The successful response contains a collection of taxpayer IDs.
Retrieving Payments
The one-time payment process includes this step under the following circumstances:
The list of outstanding payments due for the selected tax account is retrieved from the revenue management system and presented to the user. For example, if an enrolled user chooses to pay an amount due in a filing period, the system will retrieve all filing periods for which payments are due, along with payment amounts.
At this time, a web service, TSRetrievePaymentsDue, is triggered and the request containing access keys and payment destination is sent to the revenue management system. The successful response contains a collection of payments due.
Each entry on the collection contains payment amount and a list of payment summary parameters. These parameters are substituted on the message defined on payment Destination and the formatted payment info is displayed on-screen.
Instead of entering payment information manually, the user may select a payment from the list and navigate to the payment details page with all data pre-populated.
Payment Details
The user is prompted to enter payment amount and specific details describing this payment’s purpose. For example, when paying a collection notice, user is asked to enter collection notice number. The required input for each specific payment option is defined on the corresponding Payment Destination.
Note:
At this point, a web service TSPrepareExtPaymentData is triggered with action VALIDATEONLY, and payment details are sent to the revenue management system for verification.
The input is verified in two layers:
Payment Method Selection
After payment details are validated, taxpayer selects a payment method: credit card, checking account etc. The list is derived from the lookup TENDERTYPE.
Payment Method Details
If the payment method is supported by a single internal payment provider, Bank Account Information must be provided. The user is prompted to enter bank routing number and account number.
Selection of Payment Providers
If the payment method is supported by more than one payment provider, the list of payment providers is displayed. Each entry on the list contains the provider’s description (hyperlink) and an explanation (help text derived from the payment provider’s configuration).
Payment Review
All previously collected information is presented to the user for review. User may either submit the payment or abort the transaction.
Note: At this point, a web service TSOneTimePayment is triggered and the collected input is sent to the revenue management system for payment creation.
Confirmation
The expected web service response contains the Confirmation number and message(s). This information is displayed to the user. The confirmation may be printed for later reference.
Payment with External Provider
The flow follows this branch when user selects to pay with an external provider. It starts from Payment Method Selection page.
Selection of Payment Providers
The taxpayer selects a provider from the list by clicking on the hyperlink.
Note:
At this point, a web service TSPrepareExtPaymentData call is triggered to retrieve additional payment details. The response expected contains the information in a form of name/value pairs. This information may include taxpayer’s mailing address, e-mail etc. - according to Payment Provider’s specifications. The response may also include the indication whether taxpayer is expected to pay a convenience fee.
If the web service call was successful, BPEL process assigns a unique ID to this transaction and registers it in the internal table. This ID is included in web service response message.
Redirection To External Website
After retrieving external payment details the system invokes a plug-in defined on the provider record. Payment details are formatted and user is redirected to the provider's website with an HTTPS post. Refer to Redirect Payment Process to Official Payments for more details.
Paying on External Web Site
Taxpayer provides the required information and completes the payment.
Receiving External Payment Data
External provider transmits the information about completed payment. The transportation methods and means may vary from one provider to another. It could be an HTTP/HTTPS post or a web service. The post back message typically contains a transaction reference ID (i.e. credit card authorization code) that may be used to trace this payment in all systems involved in payment process: web self service/revenue management application, payment provider and the credit card company or bank.
Payment Report and Reconciliation
The typical integration with an external provider includes receiving and processing of a payment report. It is sent after this provider finalizes the payments, i.e. submits them to the credit card company. The web service TSProcessExtPayReportRecord is designed to accommodate the processing of a single payment report record.
Note: The model integration with Official Payments Corporation (USA) is described below. In this integration, the XML message is sent as post back HTTP. It is received in the SOA layer and transformed by a BPEL process into a One-Time Payment web service.
Defining Payment Destination
Payment Destination defines what input the taxpayer is asked to provide in order to make a certain payment. In other words, Payment Destination describes "what I’m paying for".
Payment Destination Search
The user can search for an existing Payment Destination.
The standard Edit and Delete functions are available for each Payment Destination.
You can click the Add button to define a new Payment Destination.
Payment Destination Maintenance
Payment Destination - Main
Payment Destination is a user-defined code, an identifier of the entity.
Active indicates whether this Payment Destination is ready for use. The list of active payment destination is displayed on Payment Option Selection page.
Description is the hyperlink text displayed for this entry on the Payment Options selection page.
Identification Request dropdown presents a selection of taxpayer identification service requests. At run-time this identification request is invoked and a taxpayer is prompted to enter the Proof Of Identity (POI) information. Identification is required only for casual (not signed in) website users.
Line of Business (optional) allows associating payment destination with a specific taxpayer category.
Category provides a way to define a special use for the payment destination. Those in the General category appear on the Make a Payment page; those in the Form category are used for payments performed as part of the online form filing process.
Casual User Allowed indicates if this payment destination applies to casual users. If unchecked, the destination won't appear on the payment options list if the user is not signed in.
Default Payment Amount provides a way to set a fixed charge for the payment option. The amount will be the default on the Payment Details page and may be manually overridden at run-time.
Appearance
Help appears on the Payment Details page beneath the payment destination fields. It can be entered as HTML or as plain text.
Summary Message is a message whose text is used to display formatted information on the Payments Due list. Summary parameters are retrieved by the Retrieve Payments Due web service.
Payment Destination - Fields
This tab displays the Payment Destination's Fields list. Fields represent the information that should be collected from the taxpayer in order to process this specific type of payment.
The standard Edit and Delete functions are available for each field on the list.
You can click the Add button to define a new payment destination field.
Payment Destination Field
Payment Sequence uniquely identifies the field in the list. It is copied to the web service request paymentDestinationDetails collection and sent to the revenue management system.
Field is referencing a Field entity. By default, the properties of this Field are used to render the input UI.
Display Sequence controls the order of the input fields on the screen.
Required indicates whether the input value is required or optional.
Display Description provides an alternative label for the field on the screen.
Display Help provides an alternative popup help text for the field on the screen.
Example:
Consider the following scenario: One of the required inputs for your Payment Destination is a taxpayer's legal name and you also have to explain the term 'legal name'. An existing Field, ENTITY_NAME has all the attributes you need, except it has a description 'Name', but no help. You can specify Display Description 'Legal Name' and add the necessary explanation using the Display Help.
Payment Destination - Custom Properties
Custom Properties is a configurable collection of additional data elements that may be delivered to the integration layer and/or revenue management system. It can also be used to establish additional criteria for grouping Payment Destinations.
Property Type references property type definition. Property Type controls value type as either free-form or restricted by the specific Lookup value’s list. Property Type also defines whether the property is unique and searchable.
Property Value is the actual value of the property.
Copy To Service indicates if property type and value should be copied to web service XML.
Examples
Using Custom Properties for grouping:
Using Custom Properties for message routing:
Defining Payment Provider
The Payment Provider definition is used to orchestrate the final steps in online payment submission. It represents the application (the revenue management system or an external payment service) where the payment is sent for processing.
Payment Provider Search
the user can search for an existing Payment Destination.
The standard Edit and Delete functions are available for each Payment Provider.
You can click the Add button to define a new Payment Provider.
Payment Provider Maintenance
Provider is a user-defined code identifying the entity in the system.
Active indicates whether this Payment Provider is in use. The list of active payment destination is displayed on Payment Option Selection page.
Description appears as a hyperlink text when the user is presented with the list of available providers.
Navigation Style defines whether user is redirected to provider’s web site or remains on the portal page. Valid values are: Internal and External.
Prepare Data Plug-in is a module (Java) used to prepare information to be sent to the external web site. Refer to the Preparing the Data Plug-in section for detailed technical information.
This field should contain full qualified name (e.g., the package name) for the Java class that would be used to process the payment details for an external payment provider. This field is required when Navigation Style for the payment provider is External. If the taxpayer chooses to make a payment via external provider, the web self service application instantiates the class referenced in this field.
Note:
Integration with Official Payments Corporation is provided with the base product. When creating payment provider metadata for Official Payment Corporation, choose the plug-in oracle.apps.otss.payment.txn.ui.bean.opc.OfficialPaymentBean (or implement your own class).
The base product also provides a sample Prepare Data plug-in extension class ('oracle.apps.otss.extension.payment.SamplePaymentExtension').
Redirect URL points to the external provider's web site location.
Help can be used to show the information about this provider when the user is presented with the list of available providers. May be entered as HTML or as plain text.
The Supported Payment Methods section shows all methods available in the system. The list is derived from the active values of the lookup TENDERTYPE.
On the Payment Selection Page the taxpayer selects a payment method from the dropdown, and all active providers that support this method are displayed.
Supported Payment Providers
The base product provides definitions for a single Payment Provider. This entry represents the revenue management system itself. Its definition cannot be modified by the implementation, although this provider can be deactivated.
You may need to configure an additional (external) Payment Provider as part of the implementation of the model integration with Official Payments Corp.
BPEL Processes
The integration SOA composites invoke the revenue management system web services and send the response back to self service portal application.
A confirmation number is generated when payment service is invoked. This confirmation number is returned as part of the response.
For payments processed by Official Payments Corp, the integration patterns are:
Refer to the BPEL/SOA Integration chapter for detailed information about integration layer implementation
Integration with Official Payments Corp.
This section provides information related to the product's model integration with Official Payments Corporation as an external payment provider.
OPC Integration Overview
Official Payments Corp. provides support for multiple payment vehicles: credit and debit cards, electronic checks, Bill Me Later® and Green Dot Money Pack®.
OPC Integration Process Flow
The model integration provided with the base product allows the taxpayer to select a payment option ("what am I paying for?"), enter appropriate details and amounts on the web self service portal, and have this information validated. The taxpayer is then redirected to the Official Payments web site to complete the payment using a credit card.
Credit card payments are verified/authorized immediately and the taxpayer receives the confirmation number and e-mail confirmation from Official Payments. This same confirmation number is transmitted to the revenue management system with an XML post-back.
Official Payments submits the verified payments to the final target (credit card company) and provides daily reports for further reconciliation.
This integration features a SOA composite process that reads Official Payments Corp. report (flat file), performs the transformation and issues web service calls to the revenue management system.
Redirect Payment Process to Official Payments
The last step before the redirection is a web service is to prepare the information to be sent for the HTTP Post.
Post-in Parameters
Official Payments expects to receive the following data with the HTTP post: Required:
Optional – predefined names:
In addition, the following custom data fields are configured for this model integration:
Receiving Payment Details
The values for the post-in parameters are retrieved from the revenue management system using web service TSPrepareExtPaymentData. The request contains all the information collected from the taxpayer up to this point: payment destination and destination fields, payment amount and also the taxpayer ID(s) and the Payment Provider code. The response from the revenue management system contains the payment details list in the form of name/value pairs:
<paymentDetails>
<sequence>
<fieldName>
<fieldValue>
</paymentDetails>
If none are retrieved, the Prepare Payment Data for Official Payments plug-in (described below) populates the required parameters and Custom Data Elements on the HTTP Post.
Prepare Payment Data for Official Payments
The plug-in provided with this integration, oracle.apps.otss.payment.txn.ui.bean.opc.OfficialPaymentBean, performs the following:
1. It implements prepareData() method of the interface and builds the list of name-value pairs that needs to be send to Official Payments website with the Form Post.
2. Adding the following elements to the list:
3. Add payment details as below:
The prepareData() method returns the list of this elements to the handler that does further processing.
Limitations
The provided configuration of Custom Data Elements supports up to four payment destination fields.
Post-back XML Processing
The SOA composite process OTSSPaymentPostingRequestEBF receives the post-in XML. It filters incoming post-in XMLs and further processes only successful payment submissions with <resultCode>A</resultCode>, meaning "Approved".
Transaction verification
The post-back XML contains the unique transaction/session identifier generated in web self service and transmitted to the Official Payments on the post-In XML.
The logic in SOA composite process OTSSPaymentPostingRequestEBF verifies whether the record with this identifier exists in the internal table. This is an additional security measure to prevent fraudulent payment submissions.
Payment Creation
The post-in XML is transformed and submitted to the revenue management system using TSOneTimePayment web service.
The post-back XML contains all the data transmitted with the post-in XML, including all custom data elements.
It provides the payment destination code and destination details (values only, no field names), payment amount, date, and payment type (payment method) and more. The extra information, specific for Official Payments is placed under the <externalPaymentData> node.
Note: Official Payments have their own codes to represent various payment methods (referenced as account types in Official Payments documentation) : credit cards, e-checks etc. The dedicated DVM OPC_PaymentType is provided in order to translate these codes into revenue management system's values and populate <paymentType> element.
It also contains two unique IDs:
Confirmation Number for Official Payments
When taxpayer completes his credit card payment with Official Payment Credit Card processor he receives a confirmation message. This message is produced by Official Payment and contains confirmation ID generated by it.
Self service rather than generating the confirmation number uses the number provided by Official Payment. To make this number unique in revenue management system, BPEL process adds a prefix to this number. (See the "SOA Composite OTSSPaymentPostingRequestEBF" description for more details.)
If taxpayer wants to track the payment using the confirmation number provided by Official Payment he would also need to add the same prefix.
Implementation should provide the instructions on Track Your Transaction UI that would explain the user how to make this concatenation.
Implementation may use the following methods to advise the taxpayer about this option:
Payment Report Processing
Payment Report Process Flow
Official Payments provides the payment report file for daily credit card and electronic check transactions, and returned electronic check transactions.
This comma-delimited file will be transmitted from Official Payments via e-mail or made available via FTP, on a business day basis Monday through Friday including bank holidays.
SOA composite process OTSSReportReconciliationRequestEBF reads the file and submits payment report records to the revenue management system for reconciliation using web service TTSProcessExtPayReportRecord.
Each report record contains two unique identifiers:
Note:
The assumption is that the payment created in the revenue management system can be traced by either one (or both) identifiers.
The reconciliation logic should be triggered by the TTSProcessExtPayReportRecord web service request.
Official Payments Integration Configuration
Payment Provider
Add a Payment Provider that represents Official Payments Corporation.
Specify oracle.apps.otss.payment.txn.ui.bean.opc.OfficialPaymentBean as the Prepare Data Plug-in.
Specify the Official Payments testing site https://staging.officialpayments.com/pc_entry_cobrand.jsp as the Re-direct URL. Note that this is a temporary definition and should be changed later to point to the Official Payments production site.
Define the Help contents (as an HTML or a plain text).
Indicate Credit Card as a supported Payment Method.
Convenience Fee Indicator
For this model integration, Official Payments has defined two "products", tentatively assigned descriptions Taxes1 and Taxes2:
The Product IDs are stored in the OPCPRODUCT lookup as extended values:
BPEL DVM Mapping
OTSS_FeeRequirement
Add an entry in the column EXT_FeeReq_PayVendor_PayDestination for every combination of:
For each entry, specify the corresponding Official Payment Fee Requirement value defined in the web self service application (active OPCPRODUCT lookup values) in the column OTTSS_FeeRequirement.
Example:
For provider OPC, fee requirement false and payment destination XXX, the entry would be:
OTSS_FeeRequirement EXT_FeeReq_PayVendor_PayDestination
NFEE false:OPC:XXX
OPC_PaymentType
Map account types provided by Official Payments Corp. The base product includes the entry for each Official Payments Corp. account type in the column OPC_PaymentType.
For each entry specify the corresponding translation values from your revenue management system in the column EXT_PaymentType.
Customizing the Integration With Official Payments Corporation
Official Payments Products
A customized setup is made by Official Payments Corp. for every implementation. Official Payments creates one or multiple products that represent different payment processing scenarios on their web site.
The provided model integration uses two products: one for convenience fee paid by the taxpayer and another for convenience fee absorbed by the tax authority. You may request different product setup from Official Payments. For example your business requirements may include discounted convenience fee.
The Product ID is included in the HTTP Post. The logic to determine the appropriate Product ID is performed by Prepare Data java plug-in.
Extend Convenience Fee Determination Logic
You can configure various levels of the convenience fee based on the payment destination without changing the implementation of TSPrepareExtPaymentData.
Example:
The requirement is to charge the discounted convenience fee for the timely filing period payments.
Assuming that the <convenienceFee> node on TSPrepareExtPaymentData response contains true or false .
Request to setup a separate Official Payments product 999999999 for the discounted fee. Add a new value DSCF/99999999 to the OPCPRODUCT Lookup. Using the mapping in OTSS_FeeRequirement, assign this value associated with the discounted fee to this payment destination:
Payment Methods
In addition to the credit card payments you can enable e-check, debit card and other payment process methods via Official Payments.
Add an entry to System Configuration Options as follows:
Update the Supported Payment Methods on the Payment Provider for Official Payments.
Redirect URLs
After completing the payment on the Official Payments Corporation website the taxpayer is redirected back to the web self service portal.
An implementation may customize taxpayer experience by either defining different redirection URLs or using the same URL so the taxpayer always returns to the same page on the web self service portal.
Using Web Center Composer you can create a new portal pages with HTML (or other) content and then add the following System Configuration Options:
Confirmation Number for Official Payments
The prefix for the confirmation numbers for payments made on Official Payments web site is configured in BPEL properties file. You can override the prefix.
Custom Data Elements
This integration is based on a pre-negotiated configuration of Custom Data Elements (see above).
An implementation may negotiate different Custom Data Elements with Official Payments, re-implement TSPrepareExtPaymentData so that it retrieves different external payment details and create an alternative Prepare Data plug-in.
Implementing One Time Payment
The following sections provide the information needed to fully implement the one-time payment functionality provided with the product.
Web Services
In order to support the web self service payments the revenue management system is expected to implement the following web services:
Web Service | Description |
---|---|
TSOneTimePayment | Based on the information collected from the taxpayer on the web portal, this should trigger the payment creation process and return a confirmation or error with the response. |
TSPrepareExtPaymentData | This service is called twice with different value in the <action> node: VALIDATEONLY action. Called after the taxpayer entered the payment destination details and payment amount. It expected to validate this input and return an error, if invalid. PREPARE action. Called immediately before the redirection of the payment process to the external payment provider. The request contains payment provider code, payment destination code and details and payment amount. The response expected to include the convenience fee indicator and the collection of payment details. |
TSProcessExtPayReportRecord | The request includes the single payment report information. It is expected to trigger payment reconciliation logic in the revenue management system. No response is expected. |
TSRetrievePaymentsDue | The service is invoked only when user is signed in and enrolled. The request contains user information, access type and access keys and payment destination. The response is expected to contain collections of payments due retrieved using the input. The logic is expected to identify all payments of the input "type" due as of the current date for the access "unit" identified by access type and keys. For example, for payment destination "Tax Obligation" and Tax Account 12345678, it should identify all unpaid tax obligations. Each entry on the collection contains amount, currency, and a list of summary parameters. The parameters would be injected into summary message defined on payment destination in order to display formatted payment due info on the screen. |
Prepare External Data Plug-in
This plug-in is used to finalize the list of payment details that will be sent to the payment services provider with HTTP form Post. It composes the collection of payment details (name/value pairs) according to provider's specifications.
The base product provides a default payment extension class (oracle.apps.otss.extension.payment.SamplePaymentExtension). This class can be used if the payment destination details and external payment details retrieved by the Prepare External Data web service can be sent to the external provider's website 'as is'. For all other cases, the client must implement their own extension class.
The base product supports out-of-box integration with Official Payments Corporation. When creating the payment provider metadata for Official Payment Corporation, the client could choose to use the official class provided by Oracle (oracle.apps.otss.payment.txn.ui.bean.opc.OfficialPaymentBean), or could implement their own class.
Implementing the Payment Class
The payment class provided with the self-service product can be customized and/or extended through the oracle.otss.extension shared library.
To extend the sample payment class:
Payment Class Extention Sample Code
package oracle.apps.otss.extension.payment;
import java.util.ArrayList;
import java.util.List;
import oracle.apps.otss.payment.txn.extn.Element;
import oracle.apps.otss.payment.txn.extn.PaymentDetail;
import oracle.apps.otss.payment.txn.extn.PaymentExtension;
/**
* This is the demo class that implements Payment Extension Interface. It will
* implement method prepareData that woudl be called from the WSS payments
* module for the payment provider who uses this class in 'Prepare Data Plug-in'
* attribute.
*/
public class SamplePaymentExtension implements PaymentExtension {
public SamplePaymentExtension() {
super();
}
/**
* Implement this mehtod as this will be called from the WSS application
* when making payment.
* @param paymentDetail : This method takes in object of PaymentDetail which
* contains all the details for the payment which is either provided by the
* user or collected from the backend application as response to collect
* details call.
* @return : return List of Element which needs to be send to
* external URL.
*/
public List<Element> prepareData(PaymentDetail paymentDetail) {
List<Element> dataList = new ArrayList<Element>();
// Check for empty paymentDetail
if(paymentDetail != null){
// Add all the elements/data from the payment destination details.
// Add all Payment Destination Fields.
List<Element> destDetailList = paymentDetail.getDestDetailList();
if (destDetailList != null && destDetailList.size() > 0) {
for (Element e : destDetailList) {
// Add Field Name and Field Value to the list.
dataList.add(new Element(e.getName(), e.getValue()));
}
Supported Payment Destinations
The following table lists the payment destinations supported by the product out of the box.
Payment Destination | Description |
---|---|
COLL_NOTICE – Pay a Collection Notice | User is expected to enter a Collection Notice ID, alphanumeric, up to 15 characters. Identification Requirements: IDENTIFY_TAX_PAYMENT (Identification For Payments). |
PAY_PLAN – Pay a Payment Plan | User is expected to enter a Payment Plan ID, alphanumeric, up to 15 characters. Identification Requirements: IDENTIFY_TAX_PAYMENT (Identification For Payments). |
FILE_PERIOD – Tax Type/Filing Period | User is expected to select a Tax Type from the dropdown (lookup TAX_TYPE) and also enter Filing Period Start and End dates. Identification Requirements: IDENTIFY_TAX_PAYMENT (Identification For Payments). |
Messages
Messages defined for the One Time Payment functionality are:
11001, 11002, 11003, 11004, 11005, 11006, 11007, 11008, 11009, 11010, 11101
Configuration
To enable the supported payment destination you may add/modify the Lookup, Payment Destination, and Messages configurations as described in the following topics.
Lookup
Add values for Lookups referenced by payment destination fields.
Example:
Payment destination FILE_PERIOD includes a field TAX_TYPE. This Field is referencing a Lookup TAXTYPE. No values are provided with the base product. Decide what tax types should be available for the taxpayer paying for the filing period. Add these tax types as new lookup values.
Payment Destination
Activate Applicable Entries
Decide whether you want to use any/all of the payment destinations provided in the base product. Inactive payment destinations do not appear on the Payment Options selection page.
Identification Requirements
Evaluate the Identification Request IDENTIFY_TAX_PAYMENT provided with the base product. Create another Identification Request if this one does not satisfy your business requirements.
Appearance
Example:
Load the payment Destination COLL_NOTICE. Enter the following Help:

Read your notice carefully — it'll explain how much you owe and how to pay it.

Pay the amount you owe by the date the notice asks.

Make a payment plan if you can't pay the full amount you owe.

Contact us if you disagree.

Make an attempt to pay a collection notice and observe the Help's appearance.
Custom Properties
Use custom properties to communicate additional data/configurations to the integration and revenue management layers.
Messages
Several info/error messages are provided for each service request. Add the DVM mapping for the messages you anticipate to receive from the revenue management system. You can also define new messages and use them instead of those provided with the base product.
Example:
Message 11005 "Payment of {1} received on {2} will be posted on your account." is provided with the base product.
Scenario 1 . The revenue management system returns message category 1/message number 1111 with two parameters for successful processing of the payment.
Use DVM OTSS_MessageNumber to map 11005 to 1:1111.
Scenario 2 . The revenue management system returns message category 1/message number 1111 with no parameters for successful processing of the payment.
Override message 11005 text, remove the substitution parameter, and use DVM OTSS_MessageNumber to map 11005 to 1:1111.
Scenario 3 . The revenue management system may return multiple messages: message category 1/message numbers 1111, 1112 and 1113, with parameters for successful processing of the payment.
Create new messages NNNNN and XXXX and use DVM OTSS_MessageNumber to map them:
11005 to 1:1111, NNNNN to 1:1112, XXXX to 1:1113
BPEL DVM Mapping
OTSS_PaymentDestination
An entry is provided for each payment destination included in the base product. The column OTSS_PaymentDestValue contains payment destination codes.
For each entry specify the corresponding translation values from your revenue management system in the column EXT_PaymentDestValue.
If your revenue management system does not use the payment destination code, leave the translation value blank. As a result, the <payDestinationType> node on the request xml would be empty.
If your implementation in the revenue management system designed to use the same payment destination codes as in web self service portal application, remove the records from the DVM. As a result the value in the <payDestinationType> node on the request xml would be delivered 'as is'.
Examples:
The initial content of the node is:
<payDestinationType>COLL_NOTICE</payDestinationType>
With translation value XXX for COLL_NOTICE
<payDestinationType>XXX</payDestinationType>
With blank translation value for COLL_NOTICE
<payDestinationType></payDestinationType>
Without an entry in the DVM for COLL_NOTICE
<payDestinationType>COLL_NOTICE</payDestinationType>
OTSS_FieldCodes
Translate the values of the lookups referenced by payment destination fields. Enter the payment destination field name and value pairs into the OTSS_FieldNameValue column in a format "FIELD":"VALUE". Enter the corresponding value from your revenue management system in the EXT_FieldValue column. This translation is optional.
Example:
The initial content of the entry on <destinationDetails> list for the destination field TAX_TYPE with value IND (selected from the Lookup TAXTYPE):
<destinationDetails>
<sequence>
<fieldName>TAX_TYPE</fieldname>
<fieldValue>IND</fieldValue>
</destinationDetails>
With translation value XXX for TAX_TYPE:IND
<destinationDetails>
<sequence>
<fieldName>TAX_TYPE</fieldname>
<fieldValue>XXX</fieldValue>
</destinationDetails>
With blank translation value for TAX_TYPE:IND
<destinationDetails>
<sequence>
<fieldName>TAX_TYPE</fieldname>
<fieldValue></fieldValue>
</destinationDetails>
Without an entry in the DVM for TAX_TYPE:IND
<destinationDetails>
<sequence>
<fieldName>TAX_TYPE</fieldname>
<fieldValue>IND</fieldValue>
</destinationDetails>
OTSS_PaymentType
An entry is provided for values of the TENDERTYPE lookup included in the base product. The column OTSS_PaymentTypeCode contains the lookup value. Enter the corresponding value from your revenue management system in the EXT_PaymentTypeCode column.
Example:
The initial content of the node is <paymentType>CHECKING</paymentType>:
With translation value XXX for CHECKING
<paymentType>XXX</payDestinationType>
With blank translation value for CHECKING
<paymentType></paymentType>
Without an entry in the DVM for CHECKING
<paymentType>CHECKING</paymentType>
OPC_PaymentType
This DVM is used exclusively for the integration with Official Payment Corp. It is used to map account types provided by Official Payments Corp. The base product includes the entry for each Official Payments’ Corp. 'account type' in the column OPC_PaymentType.
For each entry specify the corresponding translation values from your revenue management system in the column EXT_PaymentType
OTSS_MessageNumbers
Map the expected return message numbers from the revenue management system to the messages defined in self service portal application.
How to Enable a New Payment Destination
Design Considerations
Determine what information your revenue management system requires in order to process this payment. It is usually one or more identifiers of the payment target (aka, destination), such as tax bill number, parcel number, filing year and tax type, etc. Define what input data is required and what's optional.
Determine what identification details casual self service user supposed to provide for identity verification. This will define what Identification Request you will be using. One identification request IDENTIFY_TAX_PAYMENT is provided with the base product.
You may also decide that a stand-alone identification step is not required, and incorporate taxpayer identification details into payment destination fields' collection.
Configuration
Configure Payment Destination. Specify Identification Request. Use existing or create new Fields. Define field's display order; create the footer help (HTML or text). In SOA/BPEL layer add the mapping for payment destination code, specific field's values and fee requirements for external payment providers (if applicable). Also add the mapping for the response message
.
Implementation
The one-time payment web service implementation in the revenue management system has to to support the additional payment destination. Refer to that product's documentation for details.
How to Enable a New Payment Provider
Design Considerations
Determine whether the new payment services provider accepts payment requests via HTTP Post.
Determine what information this provider expects to receive with HTTP/S Form Post.
Determine whether the external payment details received from the revenue management system should be further manipulated in order to fit provider's requirements. If so, you will have to implement Prepare External Data plug-in.
Determine what payment methods this provider supports (e.g., credit card, bank draft, etc.) and decide what payment you will delegate to this provider.
Configuration
Configure new Payment Provider. Specify the description that will appear on available provider's list as a hyperlink. Enter the help text that will appear on the available provider's list below the hyperlink. Use help to convey important details about the provider and the services available on the external web site. Specify the redirect URL (usually, provider's web site). Finally, specify the Prepare Payment Data plug-in you've implemented. Indicate payment methods supported by this provider.
Implementation
Implement Prepare Data plug-in if necessary. You can use it to massage the data received from Prepare Payment Data web service, interpret the convenience fee indicator and perform any other data manipulation needed to prepare the form data for HTTP Post.
Implement the handling of the post-back response from the provider. There is no universal recipe for the post-back processing, but some elements of the post-back message are likely to be common. It includes a transaction reference ID (e.g., credit card authorization code) that uniquely identifies the payment in provider's system and can be used to trace the payment further to the credit card company or the bank. It is also likely to contain the same unique interaction (session) ID that was send with the HTTP Post.
Integration with Official Payments Corporation is provided with the base product. It includes the SOA/BPEL process that interprets the post-back XML message and transforms it into a One-Time Payment web service request. It also includes the processing of a payment report file by another SOA/BPEL process and the web service Payment Report Request that is generic enough and can be re-used.
FAQ: Payment
This section includes some frequently asked questions.
What if the Collection Notice in my system is represented differently; e.g., it contains two identification numbers instead of one?
Configure a new payment destination according to your requirements. Create new Fields that represent your collection notice identification details.
According to my requirements, taxpayers have to provide extra POI details for certain payment options. How do I fulfill this requirement?
Setup a Taxpayer Identification Service Request according to your requirements. Then attach this request to the appropriate payment destination.
There is no such thing as Collection Notice in my system. It is called Payment Voucher for Collection Note. Do I have to create a new payment destination?
No, you don't. If the format of the field COLLECTION_NOTICE_NO is satisfying your requirements, you can override the description of the payment destination and set the display description of destination's field. You can also override the destination field's help text (the text that appears when you hover with the cursor over the input field on the screen).
In our system, the Collection Notice Number should be entered in a specific format, e.g., 999-999999-XX. Can I modify the provided payment destination configuration so it will enforce this rule?
Yes, it is possible to apply a validation to the input value as long as this validation can be implemented using the standard regular expression syntax. Create a new Validation Rule and write a regular expression to represent your format restrictions. Then associate this new Validation Rule with payment destination's field.
According to our business rules, users aren't allowed to make collection notice payments online. How can I disable this option?
Simply de-activate this payment destination.
I want to start supporting a liquor license fee payments. How do I enable a new payment option?
Please refer to How to Enable a New Payment Destination.
Taxpayer Information
Overview
The Taxpayer Information page is accessible to registered & enrolled self-service users. It consolidates the most important information about the taxpayer: Taxpayer Summary, Contact Information and Correspondence Information. From this page, the user may edit phone number(s), email address and a collection of various addresses.
All the data is retrieved for the taxpayer currently in context. The View Account link allows direct navigation to the Account Info page. The user should navigate to the Enrollment Summary page in order to switch to a different taxpayer.
Figure 1. Standard method for retrieving Taxpayer Information
Figure 2. Standard method for updating Taxpayer Information
Taxpayer Summary
The Taxpayer Summary displays the information retrieved by the Get Taxpayer Summary web service.
The summary shows essential facts about the taxpayer, including primary contact information, if available.
The structure of the summary is as follows:
Related Configurations
Taxpayer Info Configuration
The Taxpayer Summary display is controlled by the following configuration:
Taxpayer Summary Title and Details parameter data types should be coordinated with the corresponding Message's parameters. If the parameter's data type is Lookup , the values returned by the web service should match one of the Lookup's Values.
The base product provides the following configurations:
Taxpayer Summary Title
The out-of-the-box solution applies Message 40001 to the taxpayer summary's title. The message text '{1} - {2}' contains two substitution parameters:
For example, to display the title:
ABC Corporation, Ltd - XXXXXXXXX
the summary title parameters should be: ABC Corporation and XXXXXXXXX
Taxpayer Summary Details
The out-of-the-box solution applies Message 40002 to the taxpayer summary's details. The message text Taxpayer Type:{1} contains one substitution parameter, which is of data type Lookup, where the Lookup field is TAXPAYERTYPE.
For each tax type used in the Revenue Management System, add a value to the Lookup TAXPAYERTYPE .
For example, for summary details to display:
Taxpayer Type: Corporation
the summary title parameters should be: CORPORATION.
In order to display Taxpayer Summary Details properly, the parameter value CORPORATION (description: Corporation) returned by the web service should exist as a value of the Lookup TAXPAYERTYPE.
Note: If your implementation wishes to modify the title and details' structure and/or use different parameters, you may override the message text and edit the message's parameters collection.
Contact Information
Contact Information displays the list of phone numbers and an email address retrieved by the Get Taxpayer Contact Info web service.
Each line on the phone list contains.
Upon successful processing of the contact information update request, the user receives a confirmation message containing the confirmation ID and details.
Related Configurations
The phone type selection is derived from the values of a Lookup, e.g., PHONETYPE .
The actual phone types (value of <phoneType> element) retrieved from the web service response are mapped in the Integration layer. See Phone Type DVM for more details.
Phone types can be added to the lookup and mapped according to the implementation's business requirements.
Correspondence Information
Correspondence information includes addresses associated with the taxpayer.
Addresses List
The Get Correspondence Info web service response includes a list of common Address XML fragments. Each Address is displayed according to the Address Configuration for its Country (value of the <country> element).
Each entry in the addresses list contains:
If no correspondence information is returned by the web service, an Add action becomes available. It is displayed as a link, which in turn opens an Edit Address popup window.
Add/Edit Single Address
This window displays fields for a single address. When the user clicks Save, the Maintain an Address web service is invoked.
On successful processing of the request, the user receives a confirmation message containing the confirmation ID and details.
Appearance, visibility and validation of address fields is controlled by the Address Configuration (see Related Configurations).
Related Configurations
Address Label
The Address label (e.g., the Mailing Address) is derived from the value of the <addressUsage> element on the service. This value corresponds to one of the values of the ADDRESSTYPE Lookup. The value returned from the back-end system is translated in the integration layer using Address Type DVM.
Address Change Reason
The selection of Address Change Reasons that appear on the Edit Address popup is derived from the values of the ADDRCHANGEREASON Lookup. The values are mapped in the integration layer using the Address Change Reason DVM.
Address Configuration
Address Configuration controls the appearance of the address on screen.
Configuration is applicable for web services whose XML contains the common Location fragment.
The Location XML fragment includes:
<location>
<addressId/>
<addressUsage/>
<effectiveDates>
<startDate/>
<endDate/>
<seasonStart/>
<seasonEnd/>
</effectiveDates>
<address>
<name/>
<country>
<address1/>
<address2/>
<address3/>
<address4/>
<streetNumber1/>
<streetNumber2/>
<county/>
<city/>
<state/>
<postal/>
<houseType/>
<latitude/>
<longitude/>
<inCityLimit/>
<comments/>
</address>
<overrideFormattedAddress/>
</location>
A non-customizable Lookup ADDRESSFIELD contains the list of all available elements of the fragment.
One Address Configuration is defined per Country. The base product sample configuration is delivered for Country Code USA.
See Address Configuration in the Settings and Configuration section of this document for detailed information on configuring addresses.
BPEL Processes
Integration Overview
The confirmation number is generated when Maintain Address and Taxpayer Contact Info requests are invoked. The confirmation number is returned as part of the response.
Implementing Taxpayer Information
This section describes the steps required in order to implement Taxpayer Information functionality.
Web Services
In order to support viewing of taxpayer information, the Revenue Management System is expected to implement the following web services:
Web Service | Description |
---|---|
This service retrieves a high-level overview of the taxpayer including taxpayer name, taxpayer type, primary contact details, and taxpayer summary. The request contains tax account identifiers (access keys+access type) and a line of business. The expected response includes:
The information is expected to be derived for the taxpayer identified by the Access Key 1 value. | |
This service retrieves a list of taxpayer's phones and an email address. The request contains tax account identifiers (access keys+access type) and a line of business. This request is submitted with two actions: Read and Update .For read, the expected response includes:
The information is expected to be derived for the taxpayer identified by the Access Key 1 value. For updates, the request contains an updated phones list and email address. The expected response should contain a confirmation message. | |
This service retrieves a list of addresses associated with the taxpayer. The request contains tax account identifiers (access keys+access type) and a line of business. | |
This service is used for add/update of a single address entry. The request contains tax account identifiers (access keys+access type), line of business, and address details, including an address change reason and address type. The expected response should contain a confirmation message. |
Supported Address Configurations
The address configuration sample below is provided for reference purposes only and can be modified by the implementation.
Country | Description |
---|---|
USA | United States of America. This sample address configuration conforms with the most commonly used format for mailing addresses. The address fields include:
|
Messages
The following messages are defined to support Taxpayer Information functionality:
Message Number | Description |
---|---|
40001 | {1} - {2} |
40002 | Taxpayer Type: {1} |
40003 | Address updated. |
40004 | Taxpayer Contact Information updated. |
40009 | We cannot process your request due to invalid phone format, please contact us for more details. |
Configuration
In order to enable the supported service requests, you may add/modify the following configurations:
Address Configuration
Configure address for each country your implementation intends to support.
See Address Configuration in the Settings and Configuration section of this document for detailed information on configuring addresses.
Lookup
Add values for the following Lookups:
Note: Translation using Domain Value Mapping is required if the lookup values configured above are different from those used in the revenue management system.
BPEL DVM Mapping
OTSS_AddressType
An entry should be provided for each Address Type included in the base product. The column OTSS_AddressType contains Address Type codes.
For each entry, specify the corresponding translation values from your Revenue Management system in the column EXT_AddressType .
If your implementation in the Revenue Management system is designed to use the same address types as in the web self service portal application, don't create any records from the DVM. As a result, the value in the <addressType> node on the request xml would be delivered 'as is'.
Examples:
The content of the node:
<addressType>MAILING</addressType>
<addressType>XXX</addressType>
<addressType>MAILING</addressType>
OTSS_AddressChangeReason
The column OTSS_AddressChangeReason contains values of the Lookup ADDRCHANGEREASON .
For each entry, specify the corresponding translation values from your Revenue Management system in the column EXT_AddressChangeReason .
If your Revenue Management system does not use the address change reason, leave the translation value blank. As a result, the <addressChangeReason> node on the request xml would be empty.
If your implementation in the Revenue Management system is designed to use the same address change reasons as in the web self service portal application, delete the records from the DVM. As a result, the value in the <addressChangeReason> node on the request xml would be delivered 'as is'.
Examples:
The content of the node:
<addressChangeReason>RELOC</addressChangeReason>
<addressChangeReason></addressChangeReason>
OTSS_PhoneType
An entry may be provided for each phone type. The column OTSS_PhoneType contains values of the .Lookup PHONETYPE
For each entry, specify the corresponding translation values from your Revenue Management system in the column EXT_PhoneType .
If your Revenue Management system does not use the phone type, leave the translation value blank. As a result, the <phoneType> node on the request xml would be empty.
If your implementation in the Revenue Management system is designed to use the same phone types as in the web self service portal application, delete the records from the DVM. As a result, the value in the <phoneType> node on the request xml would be delivered 'as is'.
Examples:
The content of the node:
<phoneType>HOME</phoneType>
<phoneType>XXX</phoneType>
<phoneType></phoneType>
<phoneType>HOME</phoneType>
OTSS_MessageNumbers
Map the expected return message numbers from the Revenue Management system to the messages defined in self service portal application.
Account Information Portal
Overview
The page is accessible to registered and enrolled self-service users. It consolidates the most important information about a tax account: Account Alerts, Account Summary, Filing History and Payment History.
All data is retrieved for the tax account currently in context. The description of the tax account is displayed in the top right corner of the main page area.
See Enrollment for more details about tax account definitions.
Figure 1. Standard method for retrieving Tax Account Information
Figure 2. Standard method for updating Tax Account Information
Alerts
Alerts inform the taxpayer about various urgent matters related to the tax account and in some cases advise immediate action to resolve an outstanding issue. Alerts may also be used to communicate tax legislation changes that may affect the taxpayer or provide reminders about important tax-related dates.
The Alerts region displays two categories of alerts: the effective alerts for the current account:
Effective alerts for the current account. These alerts are based on the information maintained in the revenue management system and reflect the current taxpayer's and tax account's state. The list of alerts is retrieved by the Get Tax Account Alerts web service.
Alerts pre-configured in the self service application. These alerts contain "static" content, usually related to generic tax-related issues. They can be for announcements and reminders applicable for every self service portal visitor.
Alert displays the following:
A single alert entry on a web service response contains:
Alerts are displayed according to the rules defined on Alert Type. These rules define alert's contents, appearance and availability. In order to appear on the list, alert should be activated. Alerts can be made available permanently, during a specific time period, or seasonally (covering a certain time of year).
Message text configuration supports basic HTML and it can be used to emphasize certain parts of the alert's text. Alert parameters are used by the self service application as substitution parameters for the alert message. If the document location is included in the web service response it is displayed as a hyperlink.
Related Configurations
Alert's appearance, contents and related navigation options are controlled by the configurations defined on Alert Type.
Alert Type
To configure Alert Types, navigate to Configurations > Alert Type.
Information
Description is displayed as the Alert Title.
Active indicates if the alert is currently active.
Icon references a graphic file stored in the portal application's image repository. This is optional. The preferable size of the icon is 16x16 pixels. The image file should be added to the shared extension library (/public_html/images).
Alert Source defines the origins of the alert:
For example, a static alert reminding users about individual tax return filing deadline could be made effective for a month prior to the deadline date.
Limitation: Messages used for static alerts should have no parameters.
Message represents the main alert text. Alert Parameters from the web service response are used as the message's substitution parameters.
When designing an alert, determine what information items needs to be retrieved by the web service. It may include amounts, dates and other important data.
The alert parameter's data type should be coordinated with the Alert Message's parameters. If the parameter's data type is Lookup , the values returned by the web service should match one of the Lookup values.
Example:
Assuming your Alert message should be:
Your Individual Income Tax return is due on 04/15/2014.
The Message text 'Your {1} return is due on {2}' has two substitution parameters:
1 - data type Lookup , Lookup TAXTYPE
2 - data type Date
In order to display the alert properly, the alert parameter value returned by the web service should exist within values of the Lookup TAXTYPE.
Effective Dates are applicable for static alerts (source Oracle Tax Self Service) and define the date range when the alert should be displayed. There are two methods to define effective dates:
Start and End Dates - define an absolute date range. This method could be used to alert the user about emergencies, new regulations and other one-time events. For example, an alert could be set to announce new tax credits/benefits.
Season Start and End - defines a season's boundaries. This method could be used for repeatable reminders, such as once-a-year individual tax return filing deadline.
Navigation
The following options control an alert's navigation properties:
Navigation Text is the text used for the navigation hyperlink.
Navigation Type defines the target transaction for navigation. Available options:
Account Summary
The Account Summary region/section provides at a glance an overview of the essential details about the tax account, including an address and current balance. If the balance is greater than zero, the Make Payment button is displayed. The self-service user may choose to make a payment, which triggers the one-time payment flow.
The structure of the summary is as follows:
Account Summary information is retrieved using the Get Tax Account Summary web service.
Related Configurations
Address Configuration
Address Configuration controls the appearance of the formatted address.
The Get Account Summary web service response includes standard XML fragment containing address elements. These fields are displayed according to Address Configuration for the input Country (value of the <country> element).
See Address Configuration in the Settings and Configuration section of this document for detailed information on configuring addresses.
Access Type
Access Type defines the scope of the tax account that is managed through self-service, controlling the appearance and content of the Enrollment Summary and the Tax Account Summary.
See Access Type Configuration in the Settings and Configuration section of this document for detailed information on Access Type configuration.
Filing History
Filing History displays the information retrieved by Get Tax Account Filing History web service.
Each line contains the data related to a single filing period. Items that are hidden and not displayed on the result grid: amount due, printable form location URL.
Filing History displays:
View Payment Submission Record - available if confirmation number is not blank. Triggers the navigation to Track My Transaction page with confirmation ID pre-populated
Related Configurations
The filing status displayed on Filing History line using the values of a Lookup FILINGSTATUS :
The actual status codes (value of <status> element) retrieved with web service response are mapped in the Integration layer (see BPEL DVM Mapping for more details).
More statuses can be added to the lookup and mapped according to your implementation business requirements.
Payment History
Payment History displays the information retrieved by the Get Tax Account Filing History web service.
Each line contains the data related to a single payment:
Related Configurations
Payment Method
The payment method is displayed on a Payment History line using the values of a Lookup TENDERTYPE .
The actual status codes (value of <status> element) retrieved from the web service response are mapped in the Integration layer (see BPEL DVM Mapping for more details).
Payment Status
The payment status is displayed on a Payment History line using the values of a Lookup PAYSTATUS:
The actual status codes (value of <status> element) retrieved from the web service response are mapped in the Integration layer (see BPEL DVM Mapping for more details).
More status values can be added to the lookup and mapped according to the implementation business requirements.
BPEL Processes
Integration Overview
The integration SOA composites invoke the Revenue Management System web services and send the response back to the self-service portal application.
Implementing Account Information
This section describes the steps required in order to implement account Information functionality.
Web Services
In order to support taxpayer service requests the Revenue Management System is expected to implement the following web services:
Web Service | Description |
---|---|
This service retrieves a list of alerts. The request contains tax account identifiers (access keys+access type) and a line of business. The expected response is a list of alerts, each entry includes:
Request handling in the revenue management system is designed to work as follows: Retrieve account-related alerts and populate the output. Every entry on the output list should reference an alert type that is being translated in the integration layer into corresponding self service alert type. | |
This service retrieves a high-level overview of the tax account, including taxpayer name, tax type, current balance, account summary parameters, and an address associated with the account. The request contains tax account identifiers (access keys+access type) and a line of business. The expected response includes:
Summary parameters expected to be derived according to the input access type. See Supported Access Types for more details. | |
This service retrieves filing history for the input account. The request contains tax account identifiers (access keys+access type) and a line of business. | |
This service retrieves payment history for the input account. The request contains tax account identifiers (access keys+access type) and a line of business. |
Supported Access Types
Access Type | Description |
---|---|
TAX_ROLE | Tax Account. This access type assumes that the tax account is identified by a single unique key. The access keys set for this access type include:
The base product configurations referencing this access type are designed to support:
|
Supported Alert Types
Alert Type | Description |
---|---|
OPEN COLLECTIONS | Open collections. This alert indicates that the tax account is associated with open collections. No alert parameters are expected to be returned by the web service. The web service response is expected to contain the amount due. This alert is configured to work with the payment destination Collection Notice (COLL_NOTICE). |
OVERDUE BALANCE | Overdue balance exists. This alert indicates the existence of an overdue balance for the tax account. A single alert parameter containing the balance amount is expected to be returned by the web service. The web service response is expected to contain the amount due. This alert is configured to work with the payment destination Tax Account (TAX_ROLE). |
RETURN MISSING | Stop Filer Alert. This alert indicates that a return is due for one of the filing periods. Two alert parameters are expected to be returned by the web service: tax type and filing period end date. The value of the tax type parameter should match one of the values of the lookup TAXTYPE. Alert navigation is configured to redirect the user to the online form filing page. |
TAXPAYER INFO | Taxpayer Info Incomplete. This alert indicates that taxpayer record doesn't have a valid email address. No alert parameters are expected to be returned by the web service. Alert navigation is configured to redirect the user to the taxpayer info page. |
Messages
The following messages are defined to support Account Information functionality:
Subject | Messages |
---|---|
Payment History | 41010 |
Filing History | 41010 |
Configuration
In order to enable the supported account information functionality, add/modify the following configurations:
Lookup
Add values for the following Lookups:
Note: Translation using Domain Value Mapping is required if the lookup values configured above are different from those used in the revenue management system.
BPEL DVM Mapping
OTSS_AlertType
An entry should be provided for each Alert Type included in the base product. The column OTSS_AlertType contains Alert Type codes.
For each entry, specify the corresponding translation values from your Revenue Management system in the column EXT_AlertType .
If your implementation in the Revenue Management system is designed to use the same alert types as in the web self service portal application, don't create any records from the DVM. As a result, the value in the <alertType> node on the request xml would be delivered 'as is'.
Examples:
The content of the node:
<alertType>COLLNOTE</alertType>
<alertType>XXX</alertType>
<alertType>COLLNOTE</alertType>
OTSS_FilingStatus
An entry is provided for each filing status included in the base product. The column OTSS_FilingStatus contains values of the Lookup FILINGSTATUS .
For each entry, specify the corresponding translation values from your Revenue Management system in the column EXT_FilingStatus .
If your Revenue Management system does not use the filing status, leave the translation value blank. As a result, the <status> node on the request xml would be empty.
If your implementation in the Revenue Management system is designed to use the same filing statuses as in the web self service portal application, delete the records from the DVM. As a result the value in the <status> node on the request xml would be delivered 'as is'.
Examples:
The content of the node:
<filingStatus>PAYDUE</filingStatus>
<filingStatus>XXX</filingStatus>
<filingStatus></filingStatus>
<filingStatus>PAYMENTDUE</filingStatus>
OTSS_PaymentStatus
An entry is provided for each payment status included in the base product. The column OTSS_PaymentStatus contains values of the .Lookup PAYSTATUS .
For each entry, specify the corresponding translation values from your Revenue Management system in the column EXT_PaymentStatus .
If your Revenue Management system does not use the payment status, leave the translation value blank. As a result, the <status> node on the request xml would be empty.
If your implementation in the Revenue Management system is designed to use the same payment statuses as in the web self service portal application, delete the records from the DVM. As a result, the value in the <status> node on the request xml would be delivered 'as is'.
Examples:
The content of the node:
<status>COMPLETE</status>
<status>XXX</status>
<status></status>
<status>COMPLETE</status>
OTSS_PaymentType
See the OTSS_PaymentType topic in the BPEL DVM Mapping section for a description of this DVM.
OTSS_MessageNumbers
Map the expected return message numbers from the Revenue Management system to the messages defined in the self service portal application.
Online Forms
The self service user is offered a selection of forms available for online filing. Once the form is completed, it is sent to the revenue management system for further processing. The form processing flow includes an ad-hoc identification step for the casual users and also a scenario where the user is a first-time filer.
The online form functionality provides form design capability and supports form submission via web services. The provided solution also includes document locator number generation logic and on-demand validation of the form data. The following information outlines the functionality at a high level.
Generic form data model. Form appearance and behavior vary from one form to another. However, the underlying data model is universal:
A nuclear unit carrying the actual form line's value is a field. Supported field data types include text, number, currency, boolean, date, date time, and lookup.
The XML representation of the form is self-descriptive; each <field> group element includes <value> and <dataType>.
Configurable forms. All aspects of the form filing are configured in the self service application. The configurations define the structure, the contents and the appearance of the form, processing rules and the post-submission activities such as upload of supporting documents and payment requirements.
Dynamic form rendering. The appearance of the form is controlled by the form definition. It may be amended through the configuration. The changes become effective immediately and do not require application re-deployment.
Filing Assistance. The form is equipped with various forms of online help. It includes:
Interactive filing advisors are implemented using OPA Web Interviews. All filing assistance features are configurable and can be associated with the various elements of the form.
OPA-based validation. The information entered by the taxpayer is verified using OPA rulebases. This approach allows minimizing manual data entry, preventing calculation errors and overall improving the accuracy of the filing. The integration is possible based on the following premises:
Configuration control. The product allows self service application administrator to restrict user's ability to modify form definitions and enable forms for online use.
Configuration import. Form definitions may be imported from another system.
Form Design
Form Designer
Form Designer feature provides a facility for online form configuration. The following can be configured using the designer:
The feature allows implementers to define the form in multiple languages and release one language at a time.
Once the design work is completed, the system combines all the information needed for dynamic rendering in a single XML file. This "compiled" XML layout is stored in a database table and used at run-time. Authorized users are allowed to enable the form for online use.
The following steps should be taken to configure a form:
Select Configurations > Form Designer to define a form's general information, online availability and identification options.
Defining General Behavior
Navigate to the Main tab to define the form's general behavior.
General Information
Form Type code is the main identifier for the form across the system. It is recommended that this identifier be meaningful and correspond to a real form name. For example, 1044IND for the U.S. 1040 Individual Income Tax Form .
Description appears on various queries and pages where the form type is referenced.
Category is a broad category for form types. There are two supported categories: Tax Form and Business Registration Form . Each category is processed by a dedicated web service and has its own self-service page that lists the available forms.
Currency specifies the currency that applies to the form type. If not specified, the form is rendered and processed using the default system currency (for the current currency setting, see Admin, Settings > System Configuration Options).
Filing Advisor is an interactive interview that can be launched directly from a list of available forms. Search allows selecting interviews from Interview Sets of a category Form Filing Advisor . For example, the form-level Filing Advisor may help determining whether or not the user should file this particular form. If a Filing Advisor is specified, the user can access the specified Interview from two locations: by clicking an information icon next to the form on the list of available forms, and from a link on the form itself.
See the Oracle Policy Automation section for detailed instructions on creating OPA web determinations and configuring the Filing Advisor.
Form Instruction is displayed on the collapsible panel on the right side of the online form.
To display the form instruction, create an HTML file and upload it to the Web Content Management server connected to the portal. Make sure the content item is accessible externally.
As an example, the following UCM document properties can be used to allow public consumption:
Populate the Form Instruction with the newly-created content's ID using the following syntax:
UCM#dDocName:TS_FORM_INSTR_SAMPLE
Note: Also see the UCM documentation for detailed information about general security considerations and document security.
Online Availability
The form's online availability is defined in one of two ways:
Identification
Identification Required? indicates if the user should be identified by the back-end system in order to file the form. An option to search for an appropriate Identification Request is provided. For additional information see Taxpayer Identification Request.
If First-Time Filers are allowed, the back-end system is expected to check the validity of the identification details, but not necessarily taxpayer's record existence. If no errors and no ID-s are returned by Identification Request, user may proceed further with the filing.
Defining Processing Options
Navigate to the Processing tab to define submission, post-submission and confirmation options.
Submission
Response Mode indicates whether the form should be processed synchronously or placed in the queue.
Post-Submission
The options in this section control whether or not the user is prompted for a form payment and/or supporting documents after the form is submitted.
Payment Required? indicates if payment step should follow successful form submission.
Flat Fee Amount could be defined on the forms used for business license application or one-time request for a certificate.
Alternatively, one of the form's fields could be marked as Payment Amount Field (for details, see the Line section in Designing Form Layout.
If both Flat Fee Amount and Payment Amount Field are configured, the system will check if the Payment Amount Field is populated; if so, it will use the value of the Payment Amount Field.
Override Payment Destination specifies the PaymentDestination of a special category of Form Payment. If populated, it will be is used to handle payment immediately following form submission. At the time of payment, the form may still be en route to the backend application (asynchronous submission) and the only identifier available would be the document locator number generated during submission.
The system expects this Override Payment Destination to include at least one field and populates this field with Document Locator Number.
If payment is required and no override payment destination is specified, the system will use payment destination specified on Form Process Control.
Payment Destination TAX_FORM is supplied out of the box.
Payment Instruction is text/HTML content that is displayed on the payment area of the form submission confirmation page.
Upload Supporting Document indicates if additional documents (e.g., scanned receipts, photos or other files) should be supplied with the form. If set to true , the user is prompted to upload these documents on the form submission confirmation page.
Upload Instructions is text/HTML content that is displayed on document upload region of the form submission confirmation page. File types allowed for upload are listed in System Configuration Option UPL_FILE_TYPES.
Confirmation
Confirmation Email
Specify an Email Template that defines email to be sent to the user upon successful form submission. A newly created Form Definition is populated with the template defined on Form Category Process Control. This default value can be replaced with another email definition. The email body is expected to contain the {message_details} substitution placeholder.
Dear taxpayer,
This is a confirmation of your form submission.
{message_details}
Superior Department of Revenue
101 Main Street, P.O. Box 0000-0000
Superior, SP
Message defines the text to be injected into a standard email body.
The system expects the message to contain four parameters: 1 - Form Description, 2 - Date Time, 3 - Document Locator, 4 - Confirmation Number.
Message 51301 is supplied out-of-box:
Form {1} was submitted successfully on {2}. Use Document Locator {3} and/or confirmation number {4} for all your further inquiries
Confirmation Page
The message defined on the Form Definition is also displayed on the confirmation page.
Defining Actions
Navigate to the Actions tab to configure actions available for the form during online filing.
Form Actions
The Form Actions tab displays all active values of a lookup FORM_ACTION.
For every enabled (checked) Action, an action button is available during online form filing. Several actions are required and are available for every form at runtime. Clicking the action button invokes the TSProcessTaxForm web service with the <action> element populated with the lookup value.
Some actions are optional and can be disabled. Use the checkbox to disable/enable optional actions. The button's label is derived from the lookup value's description. It can be customized using the Lookup Value override description.
Required actions:
Optional actions:
Custom Actions
Your implementation may wish to support additional actions during online filing. New actions can be added to the form processing with the following steps:
Custom Properties
Custom Properties may be used to categorize/group logically related forms; the form definition can be searched by a Custom Property code and value combination.
A Custom Property could also be included in Process Form web service request along with the form data.
For example, a custom property on the form can capture the city name. In the agency that serves multiple jurisdictions, this property can be used to group forms by city. It can also be used by the integration layer for city-specific message handling.
Defining Validation Rules
Form data is validated on several levels:
The form will be validated with an OPA rulebase for every form action, except for Submit and Copy From Previous Return.
To set the Validation Rule, navigate to the Validation tab and select Validation Rule from the dropdown.
Creating OPA Rulebase for Form Validation
The steps to create the OPA Rulebase for specific form validation are as follows:
See Form Validation Rulebase for detailed development recommendations.
The new Validation Rule can then be linked to the form definition.
Designing Form Layout
The form's data structure, UI "look and feel", inline Help and filing assistance, and certain validation and processing rules are all defined using the Layout Designer.
Click the Go To Layout Designer link in the action buttons area (upper right side) of the Form Designer page.
On the Layout Designer page, the form's structure is displayed as a tree on the left-side panel. Click a node to view/edit its properties.
Form
Form is the root element for the entire structure. It is the first node you have to create.
Section
Appearance and Data Structure
Each section appears on a separate tab. It could contain a logically related group of input fields or represent a sub-form (e.g., Schedule).
The following attributes define a section's appearance:
Section-level Help
Filing Advisor is an interview that provides the user with interactive assistance and explanation about the section. If specified, the link is displayed on the top right corner of the tab. The link text is derived from the interview's description. Search allows selecting interviews from Interview Sets of a category Form Filing Advisor.
Help - Static text/HTML help associated with the section. If specified, a help icon appears on the top right corner of the tab. Clicking on the Help icon displays the pop-up Help text.
Footer and Header are displayed above and below the section's fields. They may be entered as text or HTML.
Line Appearance and Data Structure
Name works as Line's primary identifier. No spaces are allowed. Name has to be unique within the section. When new Line is added, Name and Label are populated with default values that should be modified.
Label is displayed at runtime.
Display Sequence defines the position of the line on the display.
Line Number is an optional label. If specified, it will appear on the left of the line's label.
Field Reference (indicator and the actual Field).
A Field Reference is used to derive a line's properties - data type, length and precision, label, and validation rule from an existing Field.
Search for the Field or switch to the Component Tab of the Layout Designer and double-click on the Field. The prompt offers two options: reference the Field or just copy the Field's definitions.
When Line references a Field, the data type, length, precision, label, and validation rule are not editable.
Data Type is required. For data type Lookup, the Lookup name must be selected.
Data Length defines the maximum number of input characters.
Precision is required for numeric data types.
Predefined Value is a default value for the line and is automatically populated on a new form.
Display Only indicates that line is not editable. This option can be used for calculated lines whose value is determined by an OPA Rule (Form Validation Engine). It can also be used in conjunction with Predefined Value for displaying static information such as Tax Rate.
Payment Amount Line marks the Line that contains calculated payment amount for the form. Only one line can be selected. At runtime, the value from this line would be used for post-submission form payment.
Required indicates that Line must have a value populated. If the data type is numeric, user will be asked to enter 0.
Visible indicates whether or not the line is visible to the self-service user. By default, the Line with this setting turned on (e.g., visible). Certain fields containing static or internal information can be marked as not visible so the data is available to OPA Form Validation Engine and/or the back-end system, but hidden from the self-service user.
Masked indicates whether or not the Line's input value will be masked on screen.
Validation
Specify Validation Rule to validate line data using regular expressions.
Line-level Help
Hint is text that is displayed on screen beneath the line's label and the input widget. Hint may be entered as plain text or HTML.
Help is text displayed in a popup when the cursor is hovering over the input widget.
Filing Advisor is an interactive interview that may guide the user through complicated filing questions. If specified, the link is displayed next to the line's label. The link text is derived from the interview's description. A search allows for selecting an interview from Interview Sets of a category. Form Filing Advisor. For example, a line-level advisor may help to determine whom the taxpayer may claim as a dependent.
Table
Appearance and Data Structure
One or more Tables can be defined within the Section. The number of columns is not limited but screen dimensions should be considered at design time.
Each table row is displayed as a collapsible sub-form.
Name works as a Table's primary identifier. No spaces are allowed. Name must be unique within the section. When new Table is added, Name and Label are populated with default values that should be modified.
Display Sequence controls the position of the table on the screen.
Label is displayed above the first table row region.
Line Number is an alternative label, displayed on the left from the main label.
Table-level Help
Hint is plain text. If specified, it is displayed below the Table's label.
Filing Advisor is an interactive interview that may guide the user through complicated filing questions. If specified, the hyperlink is displayed next to the table's label. The hyperlink text is derived from the interview's description. A search allows for selecting an interview from Interview Sets of a category. Form Filing Advisor.
Table Column
The configuration options for the column are essentially the same as for the regular Line, except for Hint, which is not applicable.
Previewing the Form
Form layout rendering may be tested through the Preview functionality. Navigate to Layout Designer and press the Preview button. To return to the Layout Designer, click the corresponding link.
Note: Preview should be used for the review of form rendering only; the form cannot be submitted from the preview screen and action buttons won't trigger any process;
Multi-language Support
When a new form definition is added, all language-based configurations are created in the current user's language.
In order to make the form available in additional language(s):
Finalizing the Layout
Completing the Design
A form could be made available, one language at the time. For example, the form could be defined in the most commonly used language and enabled for online use, while implementers continue working on additional languages, add and translate validation rules etc.
When the design is completed, a single language layout should be finalized.
The Finalize Layout button is visible on the Form Definition page if the user is authorized for that action.
Press the Finalize Layout button to create a version of the form in the currently used language.
Once the layout is finalized, the form could be enabled for online use.
When at least one language layout is finalized, the Form Definition cannot be deleted. Support for additional languages can be added and changes could be made to the finalized layout. In order for any changes to take effect, the layout should be finalized again.
Locking the Design
Once all the design activities are completed, the form may be locked in order to prevent any further modifications.
When locked, neither form structure nor form layout could be modified, no new languages could be added to the form definition
The Lock action button is visible on the Form Definition page if the user is authorized for that action.
.
Re-opening a Finalized Form
Unlock Layout for Re-edit
A non-closed form definition can be re-opened for edit if needed. Once unlocked, the form's data structure and layout can be modified - i.e. sections and/or fields can be added/removed/re-arranged. The language-based information can also be modified. New language support can be added.
IMPORTANT: When all the changes are completed, the form layout(s) should be finalized and new layout versions enabled.
The Unlock action button is visible on the Form Definition page if the user is authorized for that action.
Closing the Form
When the form is no longer in use the form definition may be marked as Closed. This action is an equivalent to the deletion of the form. Closed form definition cannot be reopened for edit and remains in the system for audit purposes only.
Form Designer Security Setup
In order to have the ability to Lock, Unlock, Close, and Re-Import a Form Definition, the user should belong to the enterprise application role PSRMSSFormsAdmin.
Import Form Definition
Implementations may import form definitions from another system that uses metadata-driven dynamic rendering.
Initial Form Import
To import a form definition, navigate to Configurations > Import Form Definition and search for forms available for import. The Retrieve Active Form Types web service is used to derive the list of forms eligible for import.
From the search results, select the form(s) to import. Multiple forms can be imported at once. Click on the Import button to proceed with the import.
Imported form definition can be further modified in the self-service portal application.
Import Form
The Import Form Definition web service is used to derive form definitions from the back-end system. It allows importing form structure (sections, lines, and tables), data types, field size and other attributes describing each field's data, labels and help text in multiple languages.
Example: information imported for a single line, in two languages: ENG and XXX
<line>
<displaySequence>1</displaySequence >
<field>
<name>totalAmount</name>
<lineNumber>12a</lineNumber >
<dataType></dataType >
<lookupName></lookupName>
<fieldLength>18</fieldLength >
<fieldScale>2</fieldScale >
<description>
<languages>
<text>Total Amount</text>
<language>ENG</language>
</languages>
<languages>
<text>XTotal XAMount</text>
<language>XXX</language>
</languages>
</description>
<help>
<languages>
<text>Total Taxable Amount</text>
<language>ENG</language>
</languages>
<languages>
<text>XTotal XTaxable XAmount</text>
<language>XXX</language>
</languages>
</help>
</field>
</line>
A field may be imported with an associated list of valid values. A new Lookup is created for each of these fields, with Lookup Name = Field Name and Lookup values representing each of the valid values imported. On the Form Definition, the field's data type is set as Lookup and the newly created Lookup is referenced.
When a form is imported from another system, the definition and lookups are created with owner Revenue Management.
Form Field - Data Types
Each input field's data type should be configured in order to render and process the form correctly. Form Import may not contain sufficient information about the data. For example, it may contain a data type (Number, Date, Boolean etc) but may not specify the size or precision.
In those cases, the Form Field is created with a default 'placeholder' field reference. Use Form Data Type to define which Field to use for every available data type.
Refresh Lookup
The Refresh Lookup web service is used to retrieve an updated list of lookup values. New values are added in Active status. Values that aren't present in the returned list are deactivated.
In order to refresh a specific Lookup navigate to Settings -> Lookup, find the Lookup using a main search and then press Reload Values button on top of lookup Values grid.
Redesign Imported Form
The raw definitions imported from the back-end system may not render perfectly. They can, however, be enhanced with various on-screen help and other layout adjustments.
Note: The structure of the imported form definition cannot be changed. Node names are protected and cannot be deleted. New nodes cannot be added. You can attach valid values list to the form line, hide internal information, define default values, add help, hints and interactive filing advisors, and also design form processing and post-submission activities.
Add Value Lists
A list of valid values can be added to a Line definition if the original data type is text . The steps are as follows:
For example, a Line represents a tax rate and in the back-end system it is defined as a Foreign Key to the Tax Rate table. For a particular form, you can create a Lookup that contains only applicable rates and modify the Line to reference this Lookup
Hide Internal Information
Hide lines that aren't applicable for online user by turning off the Visible setting. Mask Lines containing sensitive data items.
Edit Form Data
Determine and mark the Line that holds the Payment Amount.
Identify calculated Lines and mark them as Display-Only.
Add line Validation Rules.
Add Online Help
Section-level and Line-level help could be a part of the import. Imported text can be edited using Layout Designer. Basic HTML is supported.
Filing Advisors on all levels, Hints, Headers and Footers can be added using Layout Designer.
Define Form Processing and Submission
Configure the form's General Behavior, Submission and post-submission activities, including confirmation, payment and supporting documents upload requirements.
Form Re-import
In order to synchronize a self-service form definition with that in the back-end system, the form could be re-imported.
Re-import is a total replacement of the existing definition and all modifications would be lost, including hints, help, and other language-based configurations.
The Re-Import action button appears on the result grid of Form Definition Main Search and would be visible to authorized users
Enabling a Form for Online Use
Finalized form layouts (one layout per language) need to be activated for online use.
To enable a form for online use, navigate to Configurations > Enable Forms, select the Form Definition and search for available layout versions. Pick up the latest version in each language and activate that version.
Only one form layout for any given language could be active at any point in time. Old (deactivated) form layouts are kept in the system for audit purposes.
Security considerations
Enabling is the last step before the form becomes available for online use. This page can be secured separately and the access to it granted to a limited number of responsible users.
Form Data Type
Form Data Type stores a collection of Fields whose properties are used to default Form Line properties if no appropriate definition is available from the Form import.
Select Configurations > Data Type to maintain data types.
Data Type references one of the values of the DATATYPE lookup
Template Field defines a Field that represents this data type.
Form Validation
All forms are different and so are their validation and calculation rules. However, all forms in the self service application share the same data structure, and this structure is captured on the Form Definition.
The self-service application and OPA rulebase may communicate form data with each other as long as the rulebase is built on the data model produced from the Form Definition.
The generated rulebase data model contains entities representing the form's Sections, Lines, and Tables. The public name of the entity, along with its attributes, properties, and containment relationships, are derived from the Form Definition.
The automatic interaction with OPA rulebases is designed based on the following assumptions:
From a high-level perspective, form data validation using OPA works as follows:
At design time, the rulebase's data model is generated based on Form Definition metadata. The implementer saves the rulebase properties file locally and then uses it as a data model for the new rulebase.
The newly-created rulebase is deployed on the Web Determinations Server.
The rulebase is linked to the Form Definition:
A rulebase (Interview) is added to an Interview Set dedicated to form validation rules.
The new Validation Rule references the Interview.
The Validation Rule is linked to the Form Definition.
At runtime, the integration layer invokes the rulebase via a web service using a generic WSDL. It is assumed that rulebase's data model remains unaltered by the rule writer and the rulebase is written following the assumptions described above.
Creating a Validation Rule Using OPA
Once the form structure is finalized and is not likely to be changed, the OPA business rule creation process may start. It contains a several steps:
Step 1
Open the form in Form Designer and navigate to the Validation tab.
Click Generate Rule Model. This opens a Windows Explorer window.
Locate the folder in which the model should be saved. Select "All" in the file type section.
Provide a name for the rulebase model and save it with the extension .XSRC.
Step 2
Create a new project for the form validation in the Oracle Policy Modeling development environment.
Incorporate the generated file as a property file, as shown in the following image:
Step 3
Open the property file.
Note that the data model has the same structure as the self service form definition. All form structure nodes are transformed into rule's entities. The entity name corresponds to the form node name and may be prefixed with the parent node name. This is done in order to ensure the uniqueness of the entity names within the generated model.
The following are used when the form definition is transformed into a rule data model:
You can modify the generated entity's text to make the entity more usable and intuitive. For example you may turn the generated "field_lineItems_firstPrepayment" into "the first prepayment". This simplifies the rule writing process and makes you rule much more readable. The following important limitations apply:
Step 4
Set up the initial values for the fields that will be used during the validation.
To validate or pre-calculate the values of the form lines you may need to perform certain mathematical operations with the values of the fields. Note that OPA does not automatically set either blank values for text or zeroes for numeric fields. Instead, it defaults them all to the special value, "unknown". Since the formula cannot operate with that value, you may need to perform an explicit initialization that will take care of the form lines whose values are not provided.
If you use a line's determined value in your calculations, the initialization step will look like the following:
Total Gross Sales' Determined Value | |
0 | The total gross sales' submitted value is unknown. |
The total gross sales' submitted value. | Otherwise |
Step 5
If the form needs to report the error, add the section that checks if there were errors determined by the rule. If any errors are encountered, set the error indicator to true. The self service application uses this information to trigger the error message popup.
For example, your code may look like the following:
the form contains an error if
any
the taxpayer information contains an error or
the preparer information contains an error or
the line items contains an error or
the schedule a - deductions and exemptions contains an error or
for at least one of the instances of the schedule b
the schedule b - local tax computation contains an error
the taxpayer information contains an error if
the name's error message is known or
the account number's error message is known or
the address's error message is known or
the address 2's error message is known or
the city's error message is known or
the state's error message is known or
the country's error message is known or
the zip code's error message is known or
the filing start date's error message is known or
the filing end date's error message is known or
the ID number's error message is known or
the ID type's error message is known
Step 6
Process all fields that should be validated by your rule. The validation may verify that required value(s) were provided, or that the field has a proper value. If any errors are found, populate the attribute error message with the appropriate error text.
Example:
The name's error message | |
Error 1 | The name's submitted value is unknown. |
Uncertain | Otherwise |
Result:
Error 1 = "Taxpayer's name must be provided"
Step 7
Perform the calculations.
The rule serves to validate the input and to perform pure calculations. The calculations are involved in both modes, but the difference may be illustrated by the following example:
Total = Total Gross Sales + Purchases Subject to Use Tax
the total's determined value = the total gross sales' determined value + the purchases subject to tax's determined value
If your rule validates that the total value entered by the user is correct according to this formula, your first step is to calculate the determined value and then to compare the submitted value and the calculation result and raise an error if they do not match.
The total's error message | |
Error 15 | The total's submitted value <> the total's determined value. |
Uncertain | Otherwise |
If your rule calculates the value, you need only set the determined values. The self service application updates the form data with newly-determined values and displays the updated form to the user when the validation is completed.
It is recommended to always populate a field's determined value with the calculation result.
Important Things to Keep in Mind
BPEL Processes
Integration Overview
The integration SOA composites invoke the Revenue Management System web services and send the response back to the self service portal application. The flows used for the form definition import are simple synchronous flows.
Implementing Form Design and Import
This section describes the steps required in order to implement service request functionality.
Web Services
In order to support the import of form definitions, the revenue management system is expected to implement the following web services:
Web Service | Description |
---|---|
This service retrieves definitions of a given form. The request contains a form type identifier and the user's language. The response contains:
Text-based information is expected to be retrieved in all languages supported by the revenue management system. | |
This service retrieves the up-to-date list values for a lookup. The request contains a lookup name and the response contains a list of values with descriptions in all languages supported by the revenue management system. | |
This service retrieves the list of form types available for import. The request includes the form category and the user's language. Each entry on the list is expected to contain:
Valid values for the form category are captured in the FORMCAT lookup. |
Messages
The following messages are defined to support form design and import functionality:
Component | Messages |
---|---|
|
|
Message 51301 is used by the system for default confirmation text.
Configuration
Form Data Type
For each supported data type, specify the template field. These fields are used as reference fields on the form lines if the imported form definition does not include any information about the line's data type. Sample template fields are provided as follows:
Data Type | Field Name |
---|---|
BOOLEAN | DT_BOOLEAN |
CURRENCY | DT_CURRENCY |
DATE | DT_DATE |
DATETIME | DT_DATETIME |
LOOKUP | DT_LOOKUP |
NUMBER | DT_NUMBER |
TEXT | DT_TEXT |
Messages
Message 51301 is used by the system for the default confirmation text.
System Options
Verify the following options:
DEF_FORM_CONFIRM_MSG defines the default message to be used for the form submission confirmation. The product is provided with the value 51301.
Email Definition
The self service product supplies the sample email definitions for tax and business registration form submission confirmations. Your implementation may wish to amend these or create new templates.
The email template includes text/HTML for email body. Use syntax {message_details} to mark a position at which the confirmation message details should be injected.
For additional details, see the email definitions topic in the Self Service Settings and Configuration section of this guide.
Form Process Control
Configure form process control records for all form categories supported by your implementation. The processing rules may be different for tax and registration forms.
Lookup
Your implementation may wish to create new lookups for the following reasons:
Note: You can de-activate any/all of the lookup values provided with the base product.
System Options
Set up the following options:
DEF_CURRENCY - Lookup, references a main system currency.
DEF_COUNTRY_CODE - Lookup, references a country code for the country in which the revenue management authority operates. Used to display formatted address information.
UPL_FILE_TYPE - Free-form, comma-delimited list of file extensions. These file types can be uploaded by the self-service user.
OPA_VERSION - Free-form, specifies the OPA version currently in use for rulebase development. This value is used by the OPA Rulebase Model generator. Example: 10.4.2.18.
BPEL DVM Mapping
OTSS_FormCategory
An entry is provided for every Form Category included in the base product. The column OTSS_FormCategory contains the FORMCAT Lookup's values REGFORM and TAXFORM.
For each entry, specify the corresponding translation values from your Revenue Management system in the column EXT_FormCategory.
If your Revenue Management system does not use the form categories, leave the translation value blank. As a result, the <formCategory> node on the request xml would be empty.
If your implementation in the Revenue Management system is designed to use the same form categories as in the web self service portal application, delete the records from the DVM. As a result the value in the < formCategory> node on the request xml would be delivered 'as is'.
Examples:
The content of the node:
<formCategory>REGFORM</formCategory>
<formCategory>XXX</formCategory>
<formCategory></formCategory>
<formCategory> REGFORM </formCategory>
OTSS_FormDataType
An entry is provided for every Data Type included in the base product. The column OTSS_FormDataType contains DATATYPE Lookup's values: BOOLEAN, TEXT, DATETIME, DATE, LOOKUP, CURRENCY, NUMBER and TIME
For each entry, specify the corresponding translation values from your Revenue Management system in the column EXT_FormDataType.
If your Revenue Management system does not use the data types, specify TEXT as translation value.
Note: NOTE!!! It is mandatory to have data type node value translated as any attempt to import form definition without data types would result in error. TEXT is a default data type.
If your implementation in the Revenue Management system is designed to use the same data types as in the web self service portal application, delete the records from the DVM. As a result, the value in the <dataType> node on the request xml would be delivered 'as is'.
Examples:
The content of the node:
<dataType>BOOLEAN</dataType>
<dataType>XXX</dataType>
<dataType></dataType>
<dataType>BOOLEAN </dataType>
OTSS_FormSectionOccurence
An entry is provided for every form occurrence type included in the base product. The column OTSS_Occurence contains OCCURENCE Lookup's values.
For each entry, specify the corresponding translation values from your Revenue Management system in the column EXT_FormSectionOccurence.
If your implementation in the Revenue Management system is designed to use the same occurrence types as in the web self service portal application, delete the records from the DVM. As a result, the value in the <occurrence> node on the request xml would be delivered 'as is'.
Examples:
The content of the node:
<occurrence>SINGLE</occurrence>
<occurrence>XXX</occurrence>
<occurrence></occurrence>
<occurrence>BOOLEAN </occurrence>
OTSS_MessageNumbers
Map the expected return message numbers from the Revenue Management system to the messages defined in the self- service portal application.
Form Processing
Filing the Form
The first step in the online form filing process is to select the form to file.
The Tax Forms and Registration Forms portal pages provide the user with a selection of currently available Forms.
When the user selects a form from the list, the system evaluates filing identification requirements (for details see the Form Design section) and the user may be prompted to provide identification information and/or select one of the tax accounts.
Upon successful identification, the form is rendered along with form instructions. The user may start entering the data and perform various form actions, including form data validation. Action buttons appear on the page according to the configuration. When the user clicks one of the action buttons, the Process Tax Form or Process Business Registration Form web service is invoked. The action code is populated on the request XML's <action> element.
The user may also print the form data before or after successful form submission.
Once the form is successfully filed, the user is prompted to make a payment (if required) and/or upload supporting documents according to the requirements. For additional details, see the Form Design section.
Available Forms
The portal includes a dedicated portal page for each major form category - tax forms and registration forms.
The page shows the list of available forms; the following is displayed for each form:
Form availability is determined based on configuration (for details see the Form Design section).
Identification
The filing of a form may require different levels of self-service user identification:
In this case, the user selects the form to file and immediately begins the filing.
In this case, the form always appears on the list.
If a casual user selects the form, the Identification Request linked to the form definition is invoked.
If a registered user selects the form, the subsequent flow depends upon whether this user also selected an account to work with. If no account has been selected, the user may either navigate to the Enrollment Summary page in order to pick an account or continue the filing. If the user chooses the latter option, he/she is further treated as a casual user and therefore the Identification Request linked to the form definition is invoked.
In this case, the form always appears on the list.
When a casual user selects the form, the Identification Request is invoked and the user is prompted to enter certain identification information. However, the back-end system is not expected to return any identifiers and may only check the validity of provided identification details - e.g. format, etc.
If a registered user selects the form, the subsequent flow depends upon whether this user also selected an account to work with. If no account has been selected, the user may either navigate to the Enrollment Summary page in order to pick an account or continue the filing. If the user chooses the latter option, he/she is further treated as casual user.
See the Form Design section for details on how to configure form identification requirements.
Form Actions
Copy From Previous Return (COPY)
The purpose of this action is to shorten and simplify the filing effort and pre-populate the form using the information stored in the back-end system.
Request XML contains self-service user identification details and/or access keys and form type. Optionally, it may contain filing period dates or other partial information.
Response XML contains a fully or partially filled form where the data is presumably copied from the previously filed form of the same kind. If no previous return was found, the response is expected to contain error/informational message
The availability of this action is based on the form definition.
Check Form Data (VALIDATE)
The purpose of this action is to verify the data entered by the user and perform as much calculations as possible.
During this action, the form is validated in multiple layers:
Request XML contains self-service user identification details and/or access keys, form type and fully or partially populated form data. It also contains the name of the OPA Validation Rule to be invoked and the location of the OPA Server.
Response XML contains form data updated with the calculation/validation results and also a list of exceptions, if any.
The availability of this action is based on the form definition.
Ready (READY)
The purpose of this action is to run the form through the final round of validations and calculations. This action is available from the very beginning and the user can invoke it at any time. The process flow is similar to that of the action VALIDATE: the form is processed by OPA Validation Engine and then sent to the back-end system for further validation. There are two possible outcomes, depending on the web service response:
Request xml contains self-service user identification details and/or access keys and fully filled form data.
Response xml is expected to contain no errors and/or exceptions, only to echo back the form data.
This action is always available.
Submit (SUBMIT)
With this action, the form is finally delivered to the back-end system.
Request XML contains self-service user identification details and/or access keys and fully filled and validated form data.
The integration layer generates a Confirmation ID (identifier of the form submission transaction) and a Document Locator Number (identifier of the form itself that will be stamped on the form and used to track it across the enterprise).
The Document Locator Number is generated as follows:
The form delivery to the back-end system is either synchronous or asynchronous, depending on the configuration. In the latter case, the request is sent to the queue. For additional details see the Form Design section.
Response XML contains confirmation ID and message, Document Locator number and form data.
This action is always available.
Print Form
This button is associated with the special action and is available when the form is fully validated and ready to be submitted (after action Ready) or after final submission. In the latter case, the document locator number is displayed on the document.
The Print Document web service is invoked and the integration layer orchestrates the creation of a printable document that can be viewed and saved locally by the user. Out-of-the-box printing of a form data with Oracle BI Publisher is supported.
Custom Actions
Implementers may design additional form actions (for details see the Form Design section) and make them available during online filing. The processing associated with the custom action could be performed in the integration layer or in the back-end system or delegated to an external application via customized BPEL/SOA composite. The self service portal application invokes the web service with custom action populated.
Request XML contains self-service user identification details and/or access keys, form type and fully or partially populated form data. The <action> element value is set to the custom action's code. As with the VALIDATE action, the request contains the name of the OPA Validation Rule and the location of the OPA Server.
Response XML is expected to contain form data updated with the calculation/validation results and also a list of exceptions, if any.
Custom action(s) are available based on the form definition.
Confirmation
Successful form submission results in the confirmation page displayed to the user. This page also provides the starting point for post-submission activities.
Printing Form Data
When the Print Document web service is triggered from online Form UI, its <documentData> element contains form data and language-specific labels for form elements (generic structure of sections/lines/tables, raw valid XML, root node <documentData>).
<documentData>
<formType/>
<formTypeDescription/>
<formCategory/>
<currency/>
<customProperties> <!--list-->
<sequence/>
<propertyName/>
<propertyDescription/>
<value/>
</customProperties>
<documentLocator/ >
<documentLocatorLabel/>
<formData>
<id/>
<name >
<formDescription/>
<section> <!--list-->
<id/>
<name/>
<sectionLabel/>
<sequence/>
<line> <!--list-->
<field>
<id/>
<name/>
<lineLabel/>
<dataType/>
<value/>
</field>
</line>
<table> <!--list-->
<id/>
<name/>
<tableLabel/>
<tableRow> <!--list-->
<sequence/>
<field>
<id/>
<name/>
<fieldLabel/>
<dataType/>
<value/>
</field>
</tableRow>
</table>
</section>
</formData>
</documentData>
In the integration layer, the BPEL main flow invokes a sub-process that is responsible for document creation. Out-of-the-box solution includes a sub-process that interacts with Oracle BI Publisher.
The response from the sub-process is expected to contain Base64-encoded document content and mime type. The response is returned to the self-service portal and processed using ADF/browser native capabilities.
The BPEL process can be customized to work with different document generation software. See Print Form Document for additional details.
Document Creation with Oracle BI Publisher
The BI Publisher ReportService web service allows running reports using xml data supplied with the request.
The BI Publisher report GenericFormDataModel uses generic form data xml as its data model. A single rtf template provides basic layout for the form data and uses input values for section and field labels and for table titles and column headers.
The report displays form data "as is", i.e. the way it was entered online by the user.
Customization
The printing functionality is customizable.
Change Generic Layout
You can develop an alternative template using the same data model or add a new template to the report. You can also amend the BPEL process configuration and specify a new template file name in configuration.properties.
Create Individual Reports for Forms
Generic form data can be transformed into form-specific XML using XSLT (see example). In this example, the generic form is transformed into an XML file with specific tags for sections and lines. The result of the transformation depends on form configuration.
You can create new reports, one per Form, using form-specific XML files as data models. Each report's layout design can be tailored for specific form data and/or mimic the official printable form design. Individual layouts can include additional regions and details. It may, for example, include a payment voucher or instructions, or any other form-specific content.
Decide on the layout naming convention so the layout name can be easily derived by the BPEL process. You can, for example, use the form type as the layout name.
In the BPEL process, modify the logic of the BI Publisher web service invocation. Instead of deriving the template name from the configuration, you can use <formType> as the layout name.
See Create a Custom Report in Appendix F for sample source, XML, and XSL files.
BI Publisher Report
The GenericFormDataModel report is provided with the product. This report's data model contains a single XML-based data set. The XML contains form data elements along with labels and descriptions, the document locator number, and the form type.
<documentData>
<formType/>
<formTypeDescription/>
<formCategory/>
<currency/>
<customProperties> <!--list-->
<sequence/>
<propertyName/>
<propertyDescription/>
<value/>
</customProperties>
<documentLocator/ >
<documentLocatorLabel/>
<formData>
<id/>
<name >
<formDescription/>
<section> <!--list-->
<id/>
<name/>
<sectionLabel/>
<sequence/>
<line> <!--list-->
<field>
<id/>
<name/>
<lineLabel/>
<dataType/>
<value/>
</field>
</line>
<table> <!--list-->
<id/>
<name/>
<tableLabel/>
<tableRow> <!--list-->
<sequence/>
<field>
<id/>
<name/>
<fieldLabel/>
<dataType/>
<value/>
</field>
</tableRow>
</table>
</section>
</formData>
</documentData>
The report supports all output formats permitted by BI Publisher.
An RTF template, GenericFormData.rtf, is provided with the product. It displays form line values and labels based on the information derived from the Data Model.
Note: The template does not conform with any actual "official" printable form layout.
Uploading Supporting Documents
The taxpayer may be asked to supplement a tax return or a business registration form with supporting documents.
The Self service application allows the user to initiate the document upload process in two ways:
The user is prompted to browse the local directories and select a file for upload. The upload action can be repeated multiple times, but only one file can be uploaded at a time.
Permissible file types are defined in the System Configurations Option UPL_FILE_TYPE. The maximum size of the uploaded file is defined in the portal application properties XML. The initial limit is set to 10MB.
The Upload Document web service is invoked and the contents of the file are sent to the Integration layer, base64-encoded. Either the document locator number or a "target" request confirmation ID is included in the request.
The file name is assigned based on the target object's identifier so it can be cross-referenced and identified in the repository.
The back-end system may establish the link between the form and an uploaded document using the Document Locator Number, upload Confirmation ID, and file location.
The response from the back-end system is expected to contain confirmation details.
Document Repository
The provided solution uses the Web Content Manager Server as a document repository.
The supporting documents uploaded by taxpayers should not be placed in the same Web Content Manager Server repository that holds public documents, such as web site content. Taxpayer documents should be uploaded to a separate, secured repository (for example, a different UCM server). These documents will have different security settings and will not likely have the sample properties listed above.
Making a Payment
After a form is successfully submitted, there may be an option to make a payment, depending on the form type's configuration.
A proposed payment amount is determined according to Form Definition. The amount can be either a pre-defined fee or a calculated amount derived from the form data.
From the confirmation page, a user can select the option to pay and trigger the one-time payment flow. On the payment details page, the Document Locator Number is pre-populated from the Process Form web service response.
At the time of payment, the actual form may not yet be posted (asynch process). In this case, additional reconciliation logic should be triggered in the back-end system to link the payment to the form once the form is posted.
BPEL Processes
Integration Overview
The integration SOA composites invoke the revenue management system web services and send the response back to the self service portal application. Form processing flows include Document Locator Number generation.
The flow combines synchronous and asynchronous patterns.
Implementing Form Processing
This section describes the steps required in order to implement service request functionality.
Web Services
To support online form processing, the revenue management system is expected to implement the following web services:
Web Service | Description |
---|---|
This service supports the process of online filing. The request contains an XML fragment representing the form data:
The process flow is dependent on the following actions:
| |
This service is an exact clone of the TSProcessTaxForm service. It provides:
|
Support for creation of a printable file is also provided by the product. See Print Form Data for more details on configuration requirements.
Web Service | Description |
---|---|
This service is invoked from the self service portal application and is handled in the integration layer. The SOA Composite interacts with the document generation system and sends back base64-encoded document contents. The request contains the source document data in a form of raw XML. The response includes printable document contents (base64) and the document's MIME type. When invoked with the purpose of printing the form, the source document data is populated with form details, including labels and descriptions:
|
Messages
The following messages are defined to support form definition functionality:
Component | Messages |
---|---|
Form Import | 10003, 21011, 21012, 21013, 21014, 21015 |
PROCESS_TAX_FORM | 10003, 22010, 22011, 22012, 23011 |
PROCESS_REG_FORM | 10003, 22010, 22011, 22012, 23011 |
UPLOAD_DOCUMENT | 23003, 23004, 23006, 23011 |
Configuration
In order to enable the supported service requests you may add/modify the following configurations:
System Options
Set up the following options:
Advanced Navigation
In order to embed link to a specific form within HTML content, use the following syntax:
/faces/service/form?FRM=<Form Type Code>
BPEL DVM Mapping
OTSS_Currency
An entry is provided for every Currency Code used in the base product. The column OTSS_CurrencyCode contains Currency Lookup's values.
For each entry, specify the corresponding translation values from your Revenue Management system in the column EXT_CurrencyCode .
If your implementation in the Revenue Management system is designed to use the currency codes as in the web self service portal application, delete the records from the DVM. As a result, the value in the <currency> node on the request xml would be delivered 'as is'.
Examples:
The content of the node:
<currency>US</currency>
<currency></currency>
<currency>US</currency>
OTSS_MessageNumbers
Map the expected return message numbers from the Revenue Management system to the messages defined in the self service portal application.
Track Your Transaction
Overview
When a self-service user performs an operation that requires some action in the revenue management system he or she receives an acknowledgment that the request went through successfully. This acknowledgement is called a "confirmation". It contains a unique ID and a message with the current state of the request. The confirmation ID is recorded in the revenue management system, in the transaction created for the user request, in order to track the user's request and verify its status anytime from initiation to completion.
The self-service Track Your Transaction feature provides the user with the ability to trace the request using the confirmation number to trace his request using Track Your Transaction feature.
The Track Your Transaction option is accessible from the On-Line Services pull-down menu on the web self service portal navigation bar and from the left-side navigation panel.
Track Your Transaction
The following diagram describes the process flow for the Track Your Transaction feature.
A user navigates to the Track Your Transaction UI and enters the Confirmation ID for the transaction.
The TSGetConfirmationInformation web service is triggered and the collected input is sent to the revenue management system. The successful response contains a message that reflects the transaction status.
Track Your Transaction BPEL Processes
The Track Your Transaction request follows the BPEL Synchronous Flow Without Confirmation ID.
BPEL DVM Mapping
OTSS_MessageNumber
This DVM contains a cross-reference between messages defined in the self-service application and the revenue management system. It maps the revenue management System message category and message number combination to a self-service message number. The message category and message number are stored using a separator.
Add an entry to this table for every message defined in the application.
Implementing the Track Your Transaction Query
This section provides information required to fully implement the Track Your Transaction Query provided with the product.
Also see the "Confirmation Inquiry WSDL Node" in Appendix A for additional information, including a description of the WSDL nodes relevant to the Track Your Transaction feature, as well as the TSGetConfirmationInformation schema.
Web Services
To support self-service payments, the revenue management system is expected to implement the following web service:
Web Service | Description |
---|---|
TSGetConfirmationInformation | This Web Service accepts Confirmation ID as input and returns confirmation information. |
See "Confirmation Inquiry WSDL Node" in Appendix A for additional information, including a description of the WSDL nodes relevant to the Track Your Transaction feature, and a description of the TSGetConfirmationInformation schema.
Important: The response is expected to contain both the message category (alphanumeric) and the message number for both error and confirmation messages in order to be translated properly in the BPEL Domain Value Mappings (DVMs). If your revenue management system does not use a message category attribute, populate the <messageCategory> element with a dummy number, e.g., 1.
UI Customization
The Track Your Transaction UI can be customized as follows:
Using WebCenter Composer, insert html/text content at the top and/or the bottom of the page. These content items provide the guidelines on querying the status of a transaction by Confirmation ID. If the taxpayer is required to perform extra steps before searching, those steps can be outlined here.
Note: This can be useful when the customer has multiple back-end applications and each of these applications produces its own confirmation. A user may, for example, need to add a back-end system-specific "code" to the confirmation number before issuing the search (as is the case with the external payment provider Official Payments, which requires that an OPC code be added). For more information, see Adding Content to a Portal Page and Customizing Help Content.
Interactive Tax Assistant
Interactive Tax Assistant Overview
The Interactive Tax Assistant (ITA) feature allows the revenue authority to provide an interactive aid to the taxpayer. It helps with common questions regarding filing, credits, deductions, loans, and other tax policies.
ITA guides the taxpayer through an interview and provides answers based on the taxpayer's input. This feature is implemented using the Oracle Policy Automation(OPA) solution.
Web Interviews
Interactive interviews assist the taxpayer to make educated tax law-related decisions. The Oracle Policy Administration (OPA) determination engine converts the policies into a series of a problem solving dialogs.
The process of creating these interviews starts from understanding which decisions can be automated and which polices are the good candidates for Interactive Tax Assistant. They typically fall into the following categories:
These are the types of decision flows which OPA can automate consistently and accurately. A policy expert or business analyst can write rules to be applied by the Determinations Engine. A taxpayer can then access the interview via the Interactive Tax Assistant page and answer relevant questions which will be used to generate advice or assistance.
The interviews may be translated to one or more languages. Portal application supports launching the tax assistance with the language (locale) currently selected by the self-service user. If no translation is available, the default locale is used.
After web interviews are developed, tested, and deployed on a production server, they become available to taxpayers on the ITA page.
The site administrator is responsible for defining a new Interview Set and/or adding a new interview to the Interview Set.
Note: Oracle Policy Automation is a standalone product that has its own documentation and training manuals. The implementers should receive adequate OPA training in order to learn how to write web interviews. This document provides only supplemental information about OPA rules development.
Implementing Interactive Tax Assistant
Process Flow
This diagram illustrates the process of implementing a new Interactive Tax Assistant.
The roles and tasks involved in the process are as follows:
Policy Expert
Task: Define Interview Candidates
During this phase, the revenue agency policy expert analyzes legislation and defines candidates for the web interview. Call center statistics can be used to determine which policies are subject to the highest number of calls. These policies are then recommended for inclusion in the list of policies that should be automated.
Business Analyst
Task: Analyze Policy
The business analyst works with the content of the legislation to model the OPA rule. He or she determines what parts of the legislation should be modeled, and creates a design document that reflects the core structure of the model. The design document is validated by a policy expert to verify scope and design assumptions.
Task: Develop Interview
The business analyst transforms the rule design into the actual rule, implementing the logic, designing the screens, and creating help files. When development is complete, the rule is verified by a policy expert for the proper interpretation.
Task: Link Self-Service Application Functions
In some cases, an interview determination can trigger different self-service application actions. For example, if an interview determines which tax form a taxpayer should use, the taxpayer may be presented with the form so it can be filed right away. If a rule determines that the taxpayer is eligible for a specific program, the taxpayer may be presented with a hyperlink to the appropriate application form from the interview summary screen.
System Administrator
Task: Deploy Interview
When the rule is finalized, the system administrator deploys it on the server.
Self-Service Application Administrator
Task: Enable Interview on the Portal
The administrator uses the Interactive Tax Assistant portal to:
Defining Interview Sets
An Interview Set defines the logical group of the interactive interviews residing on the same Web Determinations Server.
Interview Set Search
Users can search for an existing Interview Set.
The standard Edit and Delete functions are available for each Interview Set.
You can click the Add button to define a new Interview Set.
Interview Set Maintenance
Interview Set - Main
Interview Set is a user-defined code that uniquely identifies the set.
Interview Set Category indicates the intended purpose of the interviews in this set.
Active indicates whether this Interview Set is ready for use. Only active sets are included on the list of Interview Sets displayed on the Tax Assistant page.
Description is the text displayed as the name of the top tree node on the Tax Assistant page.
Web Determinations Server represents the location of the Web Determinations Server (as a URL) where the interviews from this set are deployed. Use the following syntax:
Customizable indicates whether an implementation can modify the interviews list.
Detailed Description is for internal use.
Appearance
Help information can be entered as HTML or a plain text.
Override Help can be used to replace the Help provided with the base product
Interview Set - Interviews
This tab displays the list of Interviews.
When the new Interview Set is being added, the interview list is empty. Click the Load Interviews button in order to retrieve the full list of the interviews deployed on the Web Determinations Server referenced by the set.
The standard Edit and Delete functions are available for each field on the list.
Interview
Interview Name uniquely identifies the interview. It is derived automatically from the server.
Description appears as the tree node text (hyperlink) on the Tax Assistant page.
Display Sequence controls the order of interviews on the screen.
Launch Method indicates whether the interview should be launched in a separate popup window or be displayed on the main page area.
Active indicates that the interview is accessible online in the current user’s language. The interview should be activated separately for each deployed translations.
OPA Configuration and Customization
The interviews are embedded in the web self service portal page using the methods recommended by the official OPA documentation. The following configurations are implemented in order to achieve a look & feel that matches the host self-service portal page:
Advanced Navigation
An Interview can be invoked directly from the HTML content anywhere on the website, using the following syntax:
/faces/oracle/webcenter/portalapp/pages/IntgTaxAssist.jspx?interviewSetCd=<Interview Set Code>&interviewCd=<Interview Name>
Oracle Policy Automation
Oracle Policy Automation Overview
The Interactive Tax Assistant, Form Filing Advisors and Form Validation engine are implemented using the Oracle Policy Automation (OPA) solution, converting the policies into a series of a problem-solving dialogs.
Oracle Policy Automation comprises five main components:
For additional details on Oracle Policy Automation features and functionality, visit the product documentation at http://www.oracle.com/technetwork/apps-tech/policy-automation/documentation/index.html.
SOA/BPEL Integration
Integration Overview
Figure 1. Integration Process Flows
This integration is an AIA Direct Integration.
All interaction between the self-service application, the integration layer, the revenue management system, and other solution components use web services.
The integration layer is developed using SOA Suite installed on a WebLogic 11g application server.
The self-service application invokes web services hosted in the integration layer.
The integration layer comprises synchronous and asynchronous SOA composites.
The asynchronous processes use JMS Queues as a means of guaranteeing message delivery.
The integration SOA composites invoke web services.
The integration layer sends a response back to the self-service application.
Integration Flow Patterns
Integration flows between the self-service application and the revenue management system are designed according to the following patterns:
The integration between the self-service application and Official Payments Corporation (external payment services) includes two special asynchronous flows.
User enrollment implementation includes special synchronous flows with enrollment ID generation, enrollment data updates, and interaction with Oracle BPM Worklist.
The integration for online form processing features document locator number generation, interaction with Oracle Determinations Server, Content Management Server, and Oracle Business Intelligence Publisher, and includes special synchronous flows.
Synchronous Flow Without Confirmation ID
Synchronous Flow With Transaction ID Staging
This flow includes an additional step during response transformation; it stores a record in the internal staging table. Otherwise, this pattern is the same as Synchronous Flow Without Confirmation ID.
Synchronous Flow With Confirmation ID
Asynchronous Flow With Confirmation ID
Flows for Official Payments Corporation Integration
This integration includes two flows created for the interaction with payment services provider Official Payments Corporation.
Both flows are asynchronous; no response of any kind is expected.
The Payment Posting process includes:
Enrollment Request Flows
This integration contains three special flows that include interaction with the User Access Store and Oracle BPM Worklist.
Query/Refresh Enrollment and Retrieve Enrollment Summary flows are synchronous; both flows invoke a special utility to query the user access data. The refresh enrollment summary also invokes this utility for updates.
The Initial Enrollment Request process includes confirmation ID and Enrollment ID generation logic. The process invokes a sub-flow to perform enrollment errors and count verification and also invokes the special utility to update the User Access store.
Form Process Flows
This integration includes special flows that provide interaction with solution components as well as the revenue management application.
The Form Process flow is a combination of synchronous and asynchronous requests controlled by an interface process and is dependent on the action specified on the request. Similar flows are created for Tax and Business Registration Forms.
Form submission includes special logic for Document Locator Number creation.
Form validation is performed first through web service interaction with the rulebase installed on the Oracle Determination Server. The rulebase name and Oracle Determination Service location are specified on the request. Form data is transformed into a rulebase generic web service request format. The response from the rulebase contains validation errors and updated form data. The response from the rulebase is transformed back into the original form data XML format. If no errors are detected, the request is forwarded to the revenue management system for additional validation.
The final response from the revenue management system contains updated form data and/or errors.
The Supporting Documents (File) Upload process generates a unique file name and invokes a web service in order to store the file. The integration with Oracle Universal Content Management is provided out-of-box, but this flow may be customized to use another file storage/document management server. The web service response is expected to contain the document's URL, and this URL is populated on the request that is forwarded to the revenue management system for tracking purposes. The final response is expected to contain the confirmation message.
The Form Print process flow is synchronous; it invokes a document generation sub-flow passing the form data as well-formed XML. The out-of-box integration includes a sub-flow that uses the Oracle Business Intelligence Publisher's ReportService. It sends form data with the request and receives the printable document content. The response is sent back to the Self Service Portal.
Integration Solution Flows
Flow Name | Description | Integration Flow Pattern |
---|---|---|
Generic Taxpayer Service Request | Self-service application initiated | Combination of sync and async process with limited response (confirmation id) |
Refund Status Inquiry | Self-service application initiated | Sync flow with confirmation id |
Identify a Taxpayer | Self-service application initiated | Sync flow without confirmation id |
Payment | Self-service application initiated | Sync flow with confirmation id |
Request Status Inquiry | Self-service application initiated | Sync flow without confirmation id |
Prepare External Payment Data | Self-service application initiated | Sync flow without confirmation id |
Payment Posting | Self-service application initiated | Async flow with no response |
Report Reconciliation | Self-service application initiated | Async flow with no response |
Retrieve Payments due | Self-service application initiated | Sync flow without confirmation id |
Enrollment Request | Self-service application initiated | Combination of sync and async process with limited response (confirmation id), enrollment id generation and user access store update and Oracle BPM Worklist integration |
User Enrollment Query/Refresh | Self-service application initiated | Sync flow without confirmation id, with user access store inquiry and update |
User Enrollment Summary | Self-service application initiated | Sync flow without confirmation id, with user access store inquiry |
Tax Form Process | Self-service application initiated | Combination of sync and async process with limited response (confirmation id), document locator id generation and Oracle Determination Server integration |
Business Registration Form Process | Self-service application initiated | Combination of sync and async process with limited response (confirmation id), document locator id generation and Oracle Determination Server integration |
Supporting Document (File) Upload | Self-service application initiated | Sync flow with confirmation id and Oracle Universal Content Management integration |
Retrieve Active Form Types | Self-service application initiated | Sync flow without confirmation id |
Refresh Lookup | Self-service application initiated | Sync flow without confirmation id |
Import Form Types | Self-service application initiated | Sync flow without confirmation id |
Account Summary | Self-service application initiated | Sync flow without confirmation id |
Account Filing History | Self-service application initiated | Sync flow without confirmation id |
Account Payment History | Self-service application initiated | Sync flow without confirmation id |
Account Alerts | Self-service application initiated | Sync flow without confirmation id |
Taxpayer Summary | Self-service application initiated | Sync flow without confirmation id |
Taxpayer Contact Info | Self-service application initiated | Sync flow with optional confirmation id |
Taxpayer Correspondence Info | Self-service application initiated | Sync flow without confirmation id |
Address Maintenance | Self-service application initiated | Sync flow with confirmation id |
Common Features of All BPEL Processes
Common Mapping Rules
All self-service application messages share Audit, Custom Data, Confirmation, and Error xml fragments. The common mapping rules apply for all of these XML fragments.
Message Numbers, Message Parameters, and Currency
OTSS XML Fragment | PSRM XML Fragment |
---|---|
|
|
In the self-service application, Messages are keyed by number only. For this integration, the translation OTSS_MessageNumber DVM mapping is created to accommodate the combination of Message Category/Message Number. Specific rules apply when no mapping is found for the message number (for more, see the "Confirmation Message Error Message" and "Failed Message Delivery" topics).
The Message Parameter Type element is present on each entry of the Parameters collection. If supplied, it should be substituted using the corresponding value from the OTSS_MessageParameterType DVM mapping. If no mapping found, retain the value 'as is'.
Currency is required to support parameters whose type is Amount. The back-end application is expected to provide the appropriate value. If supplied, Currency codes should be substituted using OTSS_Currency DVM mapping. If no mapping is found, retain the value 'as is'.
Important: The response from the revenue management system is expected to contain both message category (alphanumeric) and message number for both error and confirmation messages in order to be translated properly in BPEL Domain Value Mappings (DVMs). If your revenue management system does not use a message category attribute, populate the <messageCategory> element with a dummy number (e.g., 1).
Confirmation Message (Fragment)
This common fragment will be included in multiple responses. It contains Confirmation Header group and Confirmation Details collection.
OTSS XML Fragment | PSRM XML Fragment |
---|---|
|
|
In the absence of a DVM value setup for Message Number in the Confirmation Header and Confirmation Detail, the replacement values are taken from the ConfigurationProperties.xml file (see Module Configurations).
Error Message (Fragment)
This common fragment is included in every response. It contains the error message group and status.
It is translated as follows:
OTSS XML Fragment | PSRM XML Fragment |
---|---|
|
|
Failed Message Delivery
Confirmation information is included in multiple messages.
Under normal circumstances, the web service response contains confirmation details or a valid, business rule-based error message.
Special replacement rules apply if an error occurs during the request transformation or when message delivery fails to reach the target system (synchronous flow).
If the status indicator is Failed:
OTSS XML Fragment | PSRM XML Fragment |
---|---|
|
|
Domain Value Maps (DVM)
Domain value maps (DVMs) are a standard feature of the Oracle SOA Suite which maps codes and other static values across the applications. For example, country code US versus country code USA.
DVMs are static in nature, though Administrators can add additional maps as needed. Transactional business processes never update DVMs, they only read from them. DVMs are stored in XML files and cached in memory at runtime.
To maintain information within the domain value maps:
Domain Value Mappings
Name | Integration Points | Purpose |
---|---|---|
OTSS_MessageNumber | All | Maps revenue management message category/message number combination to self-service application message number. The message category and message number will be stored using a separator defined in ConfigurationProperties.xml Columns:
|
OTSS_MessageParameterType | All | Maps revenue management message parameter type to the self-service application message parameter type. Columns:
|
OTSS_Currency | All | Maps revenue management currency code to self-service application currency code. Columns:
|
OTSS_ServiceRequestType | All service request-based integration points | Maps revenue management service request type to self-service application service task type. Columns:
|
OTSS_Field Codes | All | This DVM is mainly for translating the values of the lookup-based fields. It maps self-service application field name/value combination to a corresponding value in revenue management system. Columns:
|
OTSS_PaymentType | All payment-related integration points | Maps revenue management payment [tender] type to self-service application payment type (values of the lookup TENDERTYPE). Columns:
|
OTSS_PaymentDestination | All payment-related integration points | Maps revenue management payment destination to self-service application payment destination. Columns:
|
OTSS_PaymentVendor | All payment-related integration points | Maps revenue management payment vendor to self-service application payment provider. Columns:
|
OTSS_FeeRequirement | All payment-related integration points | Maps a combination of revenue management payment vendor, payment destination, and fee requirement combination to self service application fee requirement. Columns:
Format: [FEE REQUIREMENT][separator]PAYMENT VENDOR][separator][PAYMENT DESTINATION] where the [separator] character is defined in ConfigurationProperties.xml |
OTSS_Country | All payment-related integration points | Maps revenue management country codes to self-service and other applications country codes. Columns:
|
OPC_PaymentType | Official Payments Corp integration points | Maps Official Payments Corp. payment[account]type code to revenue management payment [tender] type. Columns:
|
OPC_PaymentCountry | Official Payments Corp integration points | Maps Official Payments Corp. payment[account]type code to revenue management payment [tender] type. Maps OPC country code to revenue management country code. |
OTSS_UserAccessStatus |
| |
OTSS_AccessType |
| |
OTSS_AlertType |
| |
OTSS_AddressType |
| |
OTSS_AddressChangeReason |
| |
OTSS_FilingStatus |
| |
OTSS_PaymentStatus |
| |
OTSS_PhoneType |
| |
OTSS_TaxType |
| |
OTSS_TaxpayerType |
| |
OTSS_FormAction |
| |
OTSS_FormCategory |
| |
OTSS_FormDataType |
| |
OTSS_FormSectionOccurence |
| |
OTSS_LineOfBusiness |
|
Note:
For all processes/all DVMs except Message Numbers, the following rules apply:
Setting Configuration Properties
The ConfigurationProperties.xml file contains property values used by the integration components. Also, it contains various flags controlling the invocation of the extension points within the integration.
ConfigurationProperties.xml file is located in MDS under the directory /apps/OTSS-PSRM/AIAMetaData/config.
Note: Whenever the ConfigurationProperties.xml file is updated, it must be reloaded to MDS for updates to be reflected in the applications or services that use the updated properties. You can perform the reload by rebooting the SOA server.
Setting System Properties
Module Configurations are the properties that are shared by multiple integration flows within this integration.
Service Configurations are the properties that are used by a specific BPEL process.
Module Configurations
Configuration Property | Default Value | Description |
---|---|---|
SOA-INFRA.AuditLevel | ON | This property needs to be set to OFF if the Audit Level is set to off for the BPEL processes. |
AdminEmailID | Administrator email id | This property will be used to set the administrator email id for the error handling process to send out an email in case of a critical failure where even the Error handling process fails. |
ConfimationHeader.Default.MessageNumber | 100 | Default value for the message number in the Confirmation header. |
Default.ErrorNumber | 101 | Default Error number |
Default.FailureNumber | 102 | Default Failure number. |
ConfimationDetails.Default.MessageNumber | 104 | Default value for message number in Confirmation Details section. |
OTSS.SOA.DataSource | This is the database where the Payment Vendor Integration Reference table OTSS_PAYMENT_VENDOR_REF is located. In this table the integration flow OTSSGetExternalPaymentDataEBF stores external payment transaction staging records. The property is set during the installation check. | |
OTSS.UserAccess.DataSource | jdbc/OTSS-USRACS | |
ConfirmationHeader.MessageDelivered.MessageNumber | 105 | The message number used by SOA composites as a confirmation header when they need to communicate successful request processing. |
ConfirmationDetails.Default.MessageNumber | 104 | The message number used by SOA composites for confirmation details when they need to communicate successful request processing. |
MessageCategoryNumber.Separator | : | |
System.UserName | SYSTEM | This is a user name specified on the payment post-back messages originating from the external Payment Vendor. Used when processing OTSSPaymentPostingRequestEBF. |
ExternalpaymentData.Status.Pending | PENDING | The status code for the new records in Payment Vendor Integration Reference (OTSS_PAYMENT_VENDOR_REF). Records in this status are created by OTSSGetExternalPaymentDataEBF. |
ExternalpaymentData.Status.Processed | PROCESSED | OTSSPaymentPostingRequestEBF uses this status code for the processed records in Payment Vendor Integration Reference (OTSS_PAYMENT_VENDOR_REF) table. |
ExternalpaymentData.ConfirmationID.Prefix | EVID | The prefix used for external payments. |
OPC.ExternalId.EmailSubject | OPC ExternalID is Empty | The subject and the contents for the notification email sent when the unique transaction identifier is missing on the post-back XML (Official Payments Corp) |
OPC.ExternalId.EmailContent | ExternalID from OPC is empty | |
DB.ExternalId.EmailSubject | OTSS_PAYMENT_REF_ID is empty in OTSS_PAYMENT_VENDOR_REF | The subject and the contents for the notification email sent when there is no matching record found in the registration table for the unique transaction identifier from the post-back XML (Official Payments Corp) |
DB.ExternalId.EmailContent | OTSS_PAYMENT_VENDOR_REF table does not have the following PaymentReferenceID/ExternalId . | |
ResultCode.EmailSubject | ResultCode is not equal to A | The subject and the contents for the notification email sent when the post-back XML (Official Payments Corp) contains payment in error. In this scenario the post-back XML is not processed any further. |
ResultCode.EmailContent | ResultCode value is not equal to A | |
OPC.PaymentReport.Error.EmailSubject | Error while pushing the message to OTSSPaymentReport Queue | The subject and the contents for the notification email sent when the error occurs during payment report record processing (Official Payments Corp) |
OPC.PaymentReport.Error.EmailContent | In the OTSSReportReconciliationRequestEBF while publishing message to the queue there is an error so rolled back the message to OTSSPaymentReport Error Queue | |
DLN.Size | 16 | |
DLN.Action.Create | CREATE | |
DLN.Action.Validate | VALIDATE | |
EnrollmentStatus.Blocked | B | |
EnrollmentStatus.Hold | H | |
EnrollmentStatus.Approved | A | |
Enrollment.UserAccessService.Name | {http://xmlns.oracle.com/OTSS/Industry/Tax/OTSSUserAccessService}OTSSUserAccessProcessorService | |
Enrollment.UserAccessService.Port | OTSSUserAccessService_pt | |
Enrollment.UserAccessService.URL | .../soa-infra/services/OTSS-PSRM/OTSSUserAccessService/OTSSUserAccessProcessorService | Updated with the actual endpoint URL during the installation |
Service Configurations
Configuration Property | Default/Delivered Value | Description |
---|---|---|
Service Name: OTSSIdentifyTaxpayerEBF | ||
Extension.PreXformOTSS | false | If set to true the request pre-transformation extension service will be invoked |
Extension.PostXformOTSS | false | If set to true the request post-transformation extension service will be invoked |
Extension.PreXformToOTSS | false | If set to true the response pre-transformation extension service will be invoked |
Extension.PreXformToOTSS | false | If set to true the response post transformation extension service will be invoked |
TaxpayerIdentification.Service.Name | {http://ouaf.oracle.com/spl/XAIXapp/xaiserver/ TSTaxpayerIdentification}TSTaxpayerIdentificationService | |
TaxpayerIdentification.Port.Name | TSTaxpayerIdentificationPort | |
TaxpayerIdentification.Endpoint.URL | .../TSTaxpayerIdentification | Updated with the actual endpoint URL during the installation |
FieldValue.Separator | : | |
Service Name: OTSSRequestStatusInquiryEBF | ||
Extension.PreXformOTSS | false | If set to true the request pre-transformation extension service will be invoked |
Extension.PostXformOTSS | false | If set to true the request post-transformation extension service will be invoked |
Extension.PreXformToOTSS | false | If set to true the response pre-transformation extension service will be invoked |
Extension.PreXformToOTSS | false | If set to true the response post transformation extension service will be invoked |
ConfirmationInformation.Service.Name | http://ouaf.oracle.com/spl/XAIXapp/xaiserver/ TSGetConfirmationInformation}ConfirmationInformation Service | |
ConfirmationInformation.Port.Name | TSGetConfirmationInformationPort | |
ConfirmationInformation.Endpoint.URL | .../TSGetConfirmationInformation | Updated with the actual endpoint URL during the installation |
RequestStatusInquiry. ConfirmationNumberService.Name | {http://xmlns.oracle.com/OTSS/OTSSConfirmationIdService/ OTSSConfirmationIdBPELProcess}otssconfirmationidbpelprocess_client_ep | |
RequestStatusInquiry.ConfirmationNumberService.Port | OTSSConfirmationIdBPELProcess_pt | |
RequestStatusInquiry.ConfirmationNumberService.URL | .../ soa-infra/services/OTSS-PSRM/OTSSConfirmationIdService/ otssconfirmationidbpelprocess_client_ep | Updated with the actual endpoint URL during the installation |
Service Name: OTSSPaymentEBF | ||
Extension.PreXformOTSS | false | If set to true the request pre-transformation extension service will be invoked |
Extension.PostXformOTSS | false | If set to true the request post-transformation extension service will be invoked |
Extension.PreXformToOTSS | false | If set to true the response pre-transformation extension service will be invoked |
Extension.PreXformToOTSS | false | If set to true the response post transformation extension service will be invoked |
PaymentSequence.Prefix | PTID | This is the prefix for the confirmation Ids generated for Payments |
OneTimePayment.Service.Name | {http://ouaf.oracle.com/spl/XAIXapp/xaiserver/ TSOneTimePayment}TSOneTimePaymentService | |
OneTimePayment.Port.Name | TSOneTimePaymentPort | |
OneTimePayment.Endpoint.URL | .../TSOneTimePayment | Updated with the actual endpoint URL during the installation |
OneTimePayment.ConfirmationNumberService.Name | {http://xmlns.oracle.com/OTSS/OTSSConfirmationIdService/ OTSSConfirmationIdBPELProcess}otssconfirmationidbpelprocess_client_ep | |
OneTimePayment.ConfirmationNumberService.Port | OTSSConfirmationIdBPELProcess_pt | |
OneTimePayment.ConfirmationNumberService.URL | ...soa-infra/services/OTSS-PSRM/OTSSConfirmationIdService/ otssconfirmationidbpelprocess_client_ep | Updated with the actual URL during the installation |
FieldValue.Separator | : | |
Service Name: OTSSRefundStatusInquiryEBF | ||
Extension.PreXformOTSS | false | If set to true the request pre-transformation extension service will be invoked |
Extension.PostXformOTSS | false | If set to true the request post-transformation extension service will be invoked |
Extension.PreXformToOTSS | false | If set to true the response pre-transformation extension service will be invoked |
Extension.PreXformToOTSS | false | If set to true the response post transformation extension service will be invoked |
RefundStatusSequence.Prefix | RSID | This is the prefix for the confirmation Ids generated for Refund Status Inquiry requests |
GetRefundStatusServiceName | {http://ouaf.oracle.com/spl/XAIXapp/xaiserver/ TSGetRefundStatus}TSGetRefundStatusService | |
GetRefundStatusPortType | TSGetRefundStatusPortType | |
GetRefundStatusEndpoint | .../TSGetRefundStatus | Updated with the actual endpoint URL during the installation |
RefundStatusInquiry. ConfirmationNumberService.Name | {http://xmlns.oracle.com/OTSS/OTSSConfirmationIdService/ OTSSConfirmationIdBPELProcess} otssconfirmationidbpelprocess_client_ep | |
RefundStatusInquiry. ConfirmationNumberService.Port | OTSSConfirmationIdBPELProcess_pt | |
RefundStatusInquiry. ConfirmationNumberService.URL | ...soa-infra/services/OTSS-PSRM/OTSSConfirmationIdService/ otssconfirmationidbpelprocess_client_ep | Updated with the actual URL during the installation |
FieldValue.Separator | : | |
Service Name OTSSTaxpayerServiceRequestProvider | ||
Extension.PreXform | false | If set to true the request pre-transformation extension service will be invoked |
Extension.PostXform | false | If set to true the request post-transformation extension service will be invoked |
ServiceRequest.Endpoint.URL | .../TSTaxpayerServiceRequest | Updated with the actual URL during the installation |
Service Name: OTSSTaxpayerServiceRequestEBF | ||
Extension.PreXformOTSS | false | If set to true the request pre-transformation extension service will be invoked |
Extension.PostXformOTSS | false | If set to true the request post-transformation extension service will be invoked |
Extension.PreXformToOTSS | false | If set to true the response pre-transformation extension service will be invoked |
Extension.PreXformToOTSS | false | If set to true the response post transformation extension service will be invoked |
ServiceRequest.Endpoint.URL | .../TSTaxpayerServiceRequest | Updated with the actual URL during the installation |
PaymentSequence.Prefix | SRID | This is the prefix for the confirmation Ids generated for Generic Service Requests |
ServiceRequest.ConfirmationNumberService.Name | {http://xmlns.oracle.com/OTSS/OTSSConfirmationIdService/ OTSSConfirmationIdBPELProcess} otssconfirmationidbpelprocess_client_ep | |
ServiceRequest.ConfirmationNumberService.Port | OTSSConfirmationIdBPELProcess_pt | |
ServiceRequest.ConfirmationNumberService.URL | ...soa-infra/services/OTSS-PSRM/OTSSConfirmationIdService/otssconfirmationidbpelprocess_client_ep | Updated with the actual endpoint URL during the installation |
ServiceRequest.RequestMode.Sync | SYNCH | The values for the <responseMode> indicator on the request XML. Based on this indicator the message is processed following either asynchronous or synchronous flow. |
ServiceRequest.RequestMode.Async | ASYNCH | |
FieldValue.Separator | : | |
Service Name: OTSSGetExternalPaymentDataEBF | ||
Extension.PreXformOTSS | false | If set to true the request pre-transformation extension service will be invoked |
Extension.PostXformOTSS | false | If set to true the request post-transformation extension service will be invoked |
Extension.PreXformToOTSS | false | If set to true the response pre-transformation extension service will be invoked |
Extension.PreXformToOTSS | false | If set to true the response post transformation extension service will be invoked |
ExternalPaymentData.Custom.Flag | false | If set to false, the default logic is triggered: a unique ID is generated, captured in the Payment Vendor Integration Reference (OTSS_PAYMENT_VENDOR_REF) table and populated in <externalId> node before the response is sent to the web self-service application. Otherwise, the custom extension service is invoked. |
ExternalPaymentData.Service.Name | {http://ouaf.oracle.com/spl/XAIXapp/xaiserver/ TSPrepareExtPaymentData} TSPrepareExtPaymentDataService | |
ExternalPaymentData.Port.Name | TSPrepareExtPaymentDataPortType | |
ExternalPaymentData.Endpoint.URL | .../TSPrepareExtPaymentData | Updated with the actual URL during the installation |
ExternalPaymentData.Action.Prepare | PREPARE | The values for the <action> on the request XML. When action is PREPARE, the process generates the unique ID and store is in Payment Vendor Integration Reference (OTSS_PAYMENT_VENDOR_REF) table before delivering the response to the web self-service application. |
ExternalPaymentData.Action.Validate | VAIDATEONLY | |
FeeRequirement.DVMValue.Separator | : | |
FieldValue.Separator | : | |
Service Name: OTSSPaymentPostingRequestEBF | ||
Extension.PreXformOTSS | false | If set to true the request pre-transformation extension service will be invoked |
Extension.PostXformOTSS | false | If set to true the request post-transformation extension service will be invoked |
TechnicalError.NotificationFlag | false | If set to true Technical error notification will be sent via email. |
PaymentPostback.PaymentVendor | Currently not in use | |
PaymentPostback.CurrencyCode | USD | The default value supported by Official Payments Corporation |
Service Name: OTSSPaymentPostingRequestProvider | ||
PaymentPostBack.Service.Name | {http://ouaf.oracle.com/spl/XAIXapp/xaiserver/ TSOneTimePayment}TSOneTimePaymentService | |
PaymentPostBack.Port.Name | TSOneTimePaymentPort | |
PaymentPostBack.Endpoint.URL | .../TSOneTimePayment | Updated with the actual endpoint URL during the installation |
Service Name: OTSSReportReconciliationRequestEBF | ||
Extension.PreXformOPC | false | If set to true the request pre-transformation extension service is invoked |
Extension.PreXformTax | false | If set to true the request post-transformation extension service will be invoked |
TechnicalError.NotificationFlag | false | Not in use |
ReportReconciliation.PaymentVendor | This value has to be updated with the Payment Vendor code configured in the revenue management system for Official Payments Corporation | |
ReportReconciliation.Currency | USD | This is the default currency supported by Official Payments Corporation |
Service name OTSSReportReconciliationRequestProvider | ||
BusinessError.NotificationFlag | false | If set to true Business error notification will be sent via email. |
TechnicalError.NotificationFlag | false | If set to true Technical error notification will be sent via email. |
Report.Endpoint.URL | .../TSProcessExtPayReportRecord | Updated with the actual URL during the installation |
Extension.PreXform | false | |
Service Name: OTSSRetrievePaymentsDueEBF | ||
Extension.PreXformOTSS | false | If set to true the request pre-transformation extension service will be invoked |
Extension.PostXformOTSS | false | If set to true the request post-transformation extension service will be invoked |
Extension.PreXformToOTSS | false | If set to true the response pre-transformation extension service will be invoked |
Extension.PreXformToOTSS | false | If set to true the response post transformation extension service will be invoked |
RetrievePaymentDue.Port.Name | TSRetrievePaymentsDuePort | |
RetrievePaymentDue.Service.Name | {http://ouaf.oracle.com/spl/XAIXapp/xaiserver/ TSRetrievePaymentsDue}TSRetrievePaymentsDueService | |
RetrievePaymentDue.Endpoint.URL | ../TSRetrievePaymentsDue | Updated with the actual URL during the installation |
FieldValue.Separator | : | |
Service Name: OTSSRetrieveActiveFormTypesEBF | ||
Extension.PreXformOTSS | false | If set to true the request pre-transformation extension service will be invoked |
Extension.PostXformOTSS | false | If set to true the request post-transformation extension service will be invoked |
Extension.PreXformToOTSS | false | If set to true the response pre-transformation extension service will be invoked |
Extension.PreXformToOTSS | false | If set to true the response post transformation extension service will be invoked |
RetrieveActiveFormTypes.Service.Name | {http://ouaf.oracle.com/spl/XAIXapp/xaiserver/ TSRetrieveActiveFormTypes}TSRetrieveActiveFormTypesService | |
RetrieveActiveFormTypes.Port.Name | TSRetrieveActiveFormTypesPort | |
RetrieveActiveFormTypes.Endpoint.URL | .../ TSRetrieveActiveFormTypes | Updated with the actual endpoint URL during the installation |
Service Name: OTSSRetrieveFormTypeDefinitionsEBF | ||
Extension.PreXformOTSS | false | If set to true the request pre-transformation extension service will be invoked |
Extension.PostXformOTSS | false | If set to true the request post-transformation extension service will be invoked |
Extension.PreXformToOTSS | false | If set to true the response pre-transformation extension service will be invoked |
Extension.PreXformToOTSS | false | If set to true the response post transformation extension service will be invoked |
RetrieveFormTypeDefinitions.Service.Name | {http://ouaf.oracle.com/spl/XAIXapp/xaiserver/ TSRetrieveFormTypeDefinitions}TSRetrieveFormTypeDefinitions | |
RetrieveFormTypeDefinitions.Port.Name | TSRetrieveFormTypeDefinitions | |
RetrieveFormTypeDefinitions.Endpoint.URL | .../ TSRetrieveFormTypeDefinitions | Updated with the actual endpoint URL during the installation |
Service Name: OTSSRefreshFormLookupEBF | ||
Extension.PreXformOTSS | false | If set to true the request pre-transformation extension service will be invoked |
Extension.PostXformOTSS | false | If set to true the request post-transformation extension service will be invoked |
Extension.PreXformToOTSS | false | If set to true the response pre-transformation extension service will be invoked |
Extension.PreXformToOTSS | false | If set to true the response post transformation extension service will be invoked |
RefreshFormLookup.Service.Name | {http://ouaf.oracle.com/spl/XAIXapp/xaiserver/ RefreshFormLookup}TSRefreshFormLookup | |
RefreshFormLookup.Port.Name | TSRefreshFormLookup | |
RefreshFormLookup.Endpoint.URL | .../ TSRefreshFormLookup | Updated with the actual endpoint URL during the installation |
Service Name: OTSSGetTaxAccountSummaryEBF | ||
Extension.PreXformOTSS | false | If set to true the request pre-transformation extension service will be invoked |
Extension.PostXformOTSS | false | If set to true the request post-transformation extension service will be invoked |
Extension.PreXformToOTSS | false | If set to true the response pre-transformation extension service will be invoked |
Extension.PreXformToOTSS | false | If set to true the response post transformation extension service will be invoked |
GetTaxAccountSummary.Service.Name | {http://ouaf.oracle.com/spl/XAIXapp/xaiserver/TS GetTaxAccountSummary } TSGetTaxAccountSummaryService | |
GetTaxAccountSummary.Port.Name | TSGetTaxAccountSummary Port | |
GetTaxAccountSummary.Endpoint.URL | .../TS GetTaxAccountSummary | Updated with the actual endpoint URL during the installation |
Service Name: OTSSGetTaxAccountAlertsEBF | ||
Extension.PreXformOTSS | false | If set to true the request pre-transformation extension service will be invoked |
Extension.PostXformOTSS | false | If set to true the request post-transformation extension service will be invoked |
Extension.PreXformToOTSS | false | If set to true the response pre-transformation extension service will be invoked |
Extension.PreXformToOTSS | false | If set to true the response post transformation extension service will be invoked |
GetTaxAccountAlerts.Service.Name | {http://ouaf.oracle.com/spl/XAIXapp/xaiserver/TS GetTaxAccountAlerts } TSGetTaxAccountAlerts Service | |
GetTaxAccountAlerts.Port.Name | TSGetTaxAccountAlerts Port | |
GetTaxAccountAlerts.Endpoint.URL | .../TS GetTaxAccountAlerts | Updated with the actual endpoint URL during the installation |
Service Name: OTSSGetPaymentHistoryEBF | ||
Extension.PreXformOTSS | false | If set to true the request pre-transformation extension service will be invoked |
Extension.PostXformOTSS | false | If set to true the request post-transformation extension service will be invoked |
Extension.PreXformToOTSS | false | If set to true the response pre-transformation extension service will be invoked |
Extension.PreXformToOTSS | false | If set to true the response post transformation extension service will be invoked |
GetPaymentHistory.Service.Name | {http://ouaf.oracle.com/spl/XAIXapp/xaiserver/TS GetPaymentHistory } TSGetPaymentHistoryService | |
GetPaymentHistory.Port.Name | TSGetPaymentHistoryPort | |
GetPaymentHistory.Endpoint.URL | .../TSGetPaymentHistory | Updated with the actual endpoint URL during the installation |
Service Name: OTSSGetFilingHistoryEBF | ||
Extension.PreXformOTSS | false | If set to true the request pre-transformation extension service will be invoked |
Extension.PostXformOTSS | false | If set to true the request post-transformation extension service will be invoked |
Extension.PreXformToOTSS | false | If set to true the response pre-transformation extension service will be invoked |
Extension.PreXformToOTSS | false | If set to true the response post transformation extension service will be invoked |
GetFilingHistory.Service.Name | {http://ouaf.oracle.com/spl/XAIXapp/xaiserver/TS GetFilingHistory } TSGetFilingHistoryService | |
GetFilingHistory.Port.Name | TSGetFilingHistoryPort | |
GetFilingHistory.Endpoint.URL | .../TSGetFilingHistory | Updated with the actual endpoint URL during the installation |
Service Name: OTSSGetTaxpayerSummaryEBF | ||
Extension.PreXformOTSS | false | If set to true the request pre-transformation extension service will be invoked |
Extension.PostXformOTSS | false | If set to true the request post-transformation extension service will be invoked |
Extension.PreXformToOTSS | false | If set to true the response pre-transformation extension service will be invoked |
Extension.PreXformToOTSS | false | If set to true the response post transformation extension service will be invoked |
GetTaxPayerSummary.Port.Name | TSGetTaxPayerSummaryPort |
|
GetTaxPayerSummary.Service.Name | {http://ouaf.oracle.com/spl/XAIXapp/xaiserver/ TSGetTaxPayerSummary}TSGetTaxPayerSummaryService |
|
GetTaxPayerSummary.Endpoint.URL | ../TSGetTaxPayerSummary | Updated with the actual endpoint URL during the installation |
Service Name: OTSSGetTaxpayerCorrespondenceInfoEBF | ||
Extension.PreXformOTSS | false | If set to true the request pre-transformation extension service will be invoked |
Extension.PostXformOTSS | false | If set to true the request post-transformation extension service will be invoked |
Extension.PreXformToOTSS | false | If set to true the response pre-transformation extension service will be invoked |
Extension.PreXformToOTSS | false | If set to true the response post transformation extension service will be invoked |
GetTaxpayerCorrespondenceInfo.Port.Name | TSGetTaxpayerCorrespondenceInformationPort |
|
GetTaxpayerCorrespondenceInfo.Service.Name | {http://ouaf.oracle.com/spl/XAIXapp/xaiserver/ TSGetTaxpayerCorrespondenceInformation} TSGetTaxpayerCorrespondenceInformationService< |
|
GetTaxpayerCorrespondenceInfo.Endpoint.URL | ../TSGetTaxpayerCorrespondenceInformation | Updated with the actual endpoint URL during the installation |
Service Name OTSSGetTaxpayerContactInfoEBF | ||
Extension.PreXformOTSS | false | If set to true the request pre-transformation extension service will be invoked |
Extension.PostXformOTSS | false | If set to true the request post-transformation extension service will be invoked |
Extension.PreXformToOTSS | false | If set to true the response pre-transformation extension service will be invoked |
Extension.PreXformToOTSS | false | If set to true the response post transformation extension service will be invoked |
GetTaxpayerContactInfo.Port.Name | TSGetTaxpayerContactInformationPort |
|
GetTaxpayerContactInfo.Service.Name | {http://ouaf.oracle.com/spl/XAIXapp/xaiserver/ TSGetTaxpayerCorrespondenceInformation} TSGetTaxpayerContactInformationService< |
|
GetTaxpayerContactInfo.Endpoint.URL | ../ TSGetTaxpayerContactInformation | Updated with the actual endpoint URL during the installation |
GetTaxpayerContactInfo.ConfirmationNumberService.Name | {http://xmlns.oracle.com/OTSS/OTSSConfirmationIdService/ OTSSConfirmationIdBPELProcess} otssconfirmationidbpelprocess_client_ep |
|
GetTaxpayerContactInfo.ConfirmationNumberService.Port | OTSSConfirmationIdBPELProcess_pt |
|
GetTaxpayerContactInfo.ConfirmationNumberService.URL | ../soa-infra/services/OTSS-PSRM/OTSSConfirmationIdService/otssconfirmationidbpelprocess_client_ep | Updated with the actual endpoint URL during the installation |
GetTaxpayerContactInfo.Prefix | CIID |
|
GetTaxpayerContactInfo.Action.Update | UPDATE |
|
Service Name: OTSSAddressMaintenanceEBF | ||
Extension.PreXformOTSS | false | If set to true the request pre-transformation extension service will be invoked |
Extension.PostXformOTSS | false | If set to true the request post-transformation extension service will be invoked |
Extension.PreXformToOTSS | false | If set to true the response pre-transformation extension service will be invoked |
Extension.PreXformToOTSS | false | If set to true the response post transformation extension service will be invoked |
AddressMaintenance.Port.Name | TSAddressMaintenancePort |
|
AddressMaintenance.Service.Name | {http://ouaf.oracle.com/spl/XAIXapp/xaiserver/ TSAddressMaintenance}TSAddressMaintenanceService |
|
AddressMaintenance.Endpoint.URL | http://<server_name>:7351/spl/ XAIApp/xaiserver/TSAddressMaintenance |
|
AddressMaintenance.ConfirmationNumberService.Name | http://xmlns.oracle.com/OTSS/OTSSConfirmationIdService/ OTSSConfirmationIdBPELProcess} otssconfirmationidbpelprocess_client_ep |
|
AddressMaintenance.ConfirmationNumberService.Port | OTSSConfirmationIdBPELProcess_pt |
|
AddressMaintenance.ConfirmationNumberService.URL | http://<server_name>:8051/soa-infra/services/ OTSS-PSRM/OTSSConfirmationIdService/ otssconfirmationidbpelprocess_client_ep |
|
AddressMaintenance.Prefix | AMID |
|
Service Name: OTSSProcessRegistrationFormServiceProvider | ||
Extension.PreXformOTSS | false | If set to true the request pre-transformation extension service will be invoked |
Extension.PostXformOTSS | false | If set to true the request post-transformation extension service will be invoked |
ProcessRegistrationForm.Endpoint.URL | ../TSProcessRegistrationForm | Updated with the actual endpoint URL during the installation |
Service Name: OTSSProcessRegistrationFormEBF | ||
Extension.PreXformOTSS | false | If set to true the request pre-transformation extension service will be invoked |
Extension.PostXformOTSS | false | If set to true the request post-transformation extension service will be invoked |
Extension.PreXformToOTSS | false | If set to true the response pre-transformation extension service will be invoked |
Extension.PreXformToOTSS | false | If set to true the response post transformation extension service will be invoked |
ProcessRegistrationForm.Endpoint.URL | http://<server_name>:7351/spl/XAIApp/ xaiserver/TSProcessRegistrationForm |
|
RegistrationFormSequence.Prefix | RFID |
|
RegistrationForm.ConfirmationNumberService.Name | {http://xmlns.oracle.com/OTSS/OTSSConfirmationIdService/ OTSSConfirmationIdBPELProcess} otssconfirmationidbpelprocess_client_ep |
|
RegistrationForm.ConfirmationNumberService.Port | OTSSConfirmationIdBPELProcess_pt |
|
RegistrationForm.ConfirmationNumberService.URL | ../soa-infra/services/OTSS-PSRM/OTSSConfirmationIdService/otssconfirmationidbpelprocess_client_ep | Updated with the actual endpoint URL during the installation |
ProcessRegistrationForm.RequestMode.Sync | SYNCH |
|
ProcessRegistrationForm.RequestMode.Async | ASYNCH |
|
FieldValue.Separator | : |
|
RegistrationForm.DLN.Prefix | RFDLN |
|
RegistrationForm.DLNService.Name | {http://xmlns.oracle.com/OTSS/OTSSDocumentLocatorNumberService/ OTSSDocumentLocatorNumberBPELProcess} otssdocumentlocatornumberbpelprocess_client_ep |
|
RegistrationForm.DLNService.Port | OTSSDocumentLocatorNumberBPELProcess_pt |
|
RegistrationForm.DLNService.URL | .../soa-infra/services/OTSS-PSRM/OTSSDocumentLocatorNumberService/otssdocumentlocatornumberbpelprocess_client_ep | Updated with the actual endpoint URL during the installation |
RegistrationForm.Action.Submit | SUBMIT |
|
RegistrationForm.Action.Validate | VALIDATE |
|
RegistrationForm.Action.Ready | READY |
|
RegistrationForm.BackEndValidation.Enabled | true |
|
RegistrationForm.FormValidationService.Name | {http://xmlns.oracle.com/OTSS/OTSSFormValidationService/ OTSSFormValidationBPELProcess} OTSSFormValidationBPELProcess_client_ep |
|
RegistrationForm.FormValidationService.Port | OTSSFormValidationBPELProcess_pt |
|
RegistrationForm.FormValidationService.URL | ../soa-infra/services/OTSS-PSRM/OTSSFormValidationService/otssformvalidationbpelprocess_client_ep | Updated with the actual endpoint URL during the installation |
Service Name: OTSSProcessTaxFormServiceProvider | ||
Extension.PreXformOTSS | false | If set to true the request pre-transformation extension service will be invoked |
Extension.PostXformOTSS | false | If set to true the request post-transformation extension service will be invoked |
ProcessTaxForm.Endpoint.URL | ../TSProcessTaxForm | Updated with the actual endpoint URL during the installation |
Service Name: OTSSProcessTaxFormEBF |
| |
Extension.PreXformOTSS | false | If set to true the request pre-transformation extension service will be invoked |
Extension.PostXformOTSS | false | If set to true the request post-transformation extension service will be invoked |
Extension.PreXformToOTSS | false | If set to true the response pre-transformation extension service will be invoked |
Extension.PreXformToOTSS | false | If set to true the response post transformation extension service will be invoked |
ProcessTaxForm.Endpoint.URL | http://<server_name>:7351/spl/XAIApp/xaiserver/TSProcessTaxForm |
|
TaxFormSequence.Prefix | TFID |
|
TaxForm.ConfirmationNumberService.Name | {http://xmlns.oracle.com/OTSS/OTSSConfirmationIdService/ OTSSConfirmationIdBPELProcess} otssconfirmationidbpelprocess_client_ep |
|
TaxForm.ConfirmationNumberService.Port | OTSSConfirmationIdBPELProcess_pt |
|
TaxForm.ConfirmationNumberService.URL | ../soa-infra/services/OTSS-PSRM/OTSSConfirmationIdService/otssconfirmationidbpelprocess_client_ep | Updated with the actual endpoint URL during the installation |
ProcessTaxForm.RequestMode.Sync | SYNCH |
|
ProcessTaxForm.RequestMode.Async | ASYNCH |
|
FieldValue.Separator | : |
|
TaxForm.DLN.Prefix | TFDLN |
|
TaxForm.DLNService.Name | {http://xmlns.oracle.com/OTSS/OTSSDocumentLocatorNumberService/ OTSSDocumentLocatorNumberBPELProcess} otssdocumentlocatornumberbpelprocess_client_ep |
|
TaxForm.DLNService.Port | OTSSDocumentLocatorNumberBPELProcess_pt |
|
TaxForm.DLNService.URL | .../soa-infra/services/OTSS-PSRM/OTSSDocumentLocatorNumberService/otssdocumentlocatornumberbpelprocess_client_ep | Updated with the actual endpoint URL during the installation |
TaxForm.Action.Submit | SUBMIT |
|
TaxForm.Action.Validate | VALIDATE |
|
TaxForm.Action.Ready | READY |
|
TaxForm.BackEndValidation.Enabled | true |
|
TaxForm.FormValidationService.Name | {http://xmlns.oracle.com/OTSS/OTSSFormValidationService/ OTSSFormValidationBPELProcess} OTSSFormValidationBPELProcess_client_ep |
|
TaxForm.FormValidationService.Port | OTSSFormValidationBPELProcess_pt |
|
TaxForm.FormValidationService.URL | ../soa-infra/services/OTSS-PSRM/OTSSFormValidationService/otssformvalidationbpelprocess_client_ep | Updated with the actual endpoint URL during the installation |
Service Name: OTSSPrintFormEBF | ||
Extension.PreXformOTSS | false | If set to true the request pre-transformation extension |
Extension.PostXformOTSS | false | If set to true the request pre-transformation extension |
DocumentService.Port.Name | ReportService |
|
DocumentService.Service.Name | {http://xmlns.oracle.com/oxp/service/v2}ReportService |
|
DocumentService.Endpoint.URL | .../xmlpserver/services/v2/ReportService | BI Publisher Server Location |
DocumentService.Username | User name for document service | |
DocumentService.Password | Password for document service. | |
DocumentService.ReportLocation | /~weblogic/Drafts/ |
|
DocumentService.ReportName | <FormCategory name="TAXFORM">GenericFormData.xdo</FormCategory> <FormCategory name="REGFORM">GenericFormData.xdo</FormCategory> |
|
DocumentService.DocumentFormat |
| |
PrintFormFailed.ErrorNumber | 150 |
|
ReportData.Transformer | Will be populated by customization | |
EncodingRequired.Flag | false |
|
PrintForm.EncodeDataService.Name | {http://xmlns.oracle.com/OTSS/Industry/Tax/ OTSSBase64EncodeDataService} OTSSBase64EncodedDataGeneratorService |
|
PrintForm.EncodeDataService.Port | OTSSBase64EncodeDataService_pt |
|
PrintForm.EncodeDataService.URL | .../soa-infra/services/OTSS-PSRM/OTSSBase64EncodeDataService/OTSSBase64EncodedDataGeneratorService | Updated with the actual endpoint URL during the installation |
Service Name OTSSFormValidationService | ||
GenericRequest.Path | /assess/soap/generic/ |
|
Service Name: OTSSFormUploadEBF | ||
Extension.PreXformOTSS | false | If set to true the request pre-transformation extension service will be invoked |
Extension.PostXformOTSS | false | If set to true the request post-transformation extension service will be invoked |
Extension.PreXformToOTSS | false | If set to true the response pre-transformation extension service will be invoked |
Extension.PreXformToOTSS | false | If set to true the response post transformation extension service will be invoked |
FileUpload.Service.Name | {http://ouaf.oracle.com/spl/XAIXapp/xaiserver/ TSUploadSupportingDocument} TSUploadSupportingDocumentService |
|
FileUpload.Port.Name | TSUploadSupportingDocumentPort |
|
FileUpload.Endpoint.URL | ../TSUploadSupportingDocument | Updated with the actual endpoint URL during the installation |
FileUpload.ConfirmationNumberService.Name | {http://xmlns.oracle.com/OTSS/OTSSConfirmationIdService/ OTSSConfirmationIdBPELProcess} otssconfirmationidbpelprocess_client_ep |
|
FileUpload.ConfirmationNumberService.Port | OTSSConfirmationIdBPELProcess_pt |
|
FileUpload.ConfirmationNumberService.URL | ../soa-infra/services/OTSS-PSRM/OTSSConfirmationIdService/otssconfirmationidbpelprocess_client_ep |
|
FileUpload.UCM.Service.Name | {urn:GenericSoap}GenericSoapService |
|
FileUpload.UCM.Port.Name | GenericSoapPort |
|
FileUpload.UCM.Endpoint.URL | ../idcws/GenericSoapPort | Updated with the actual UCM endpoint URL during the installation |
FileUpload.UCM.StatusCode.Success | 0 | Definition of status code on successful upload |
FileUpload.UCM.User | User ID for UCM connection; to be populated by the implementation | |
FileUpload.UCM.DocumentType | Document |
|
FileUpload.UCM.SecurityGroup | Secure |
|
FileUpload.UCM.DocumentAuthor | Default document author; to be populated by the implementation | |
FileUpload.UCM.DocumentAccount | webUserId | Xpath containing the value of the account of the document that will be uploaded. Xpath is relative to head element |
FileUploadSequence.Prefix | FUID | Prefix for file upload confirmation ID |
FileUpload.DocumentLocatorNumberService.Name | {http://xmlns.oracle.com/OTSS/OTSSDocumentLocatorNumberService/ OTSSDocumentLocatorNumberBPELProcess} otssdocumentlocatornumberbpelprocess_client_ep | Configuration for Document Locator Number service endpoint |
FileUpload.DocumentLocatorNumberService.Port | OTSSDocumentLocatorNumberBPELProcess_pt |
|
FileUpload.DocumentLocatorNumberService.URL | http://<server_name>:8051/soa-infra/services/ OTSS-PSRM/OTSSDocumentLocatorNumberService/ otssdocumentlocatornumberbpelprocess_client_ep |
|
FileUpload.DLN.ErrorCode | 23000 | Error code for invalid document locator number |
FileUpload.Parameter.ErrorCode | 23001 | Error code for missing file upload parameters |
FileUpload.Upload.ErrorCode | 23002 | Error code for file upload error |
FileUpload.UCM.UploadFolderID | 352885742199000201 | Default Content ID of the UCM file upload folder. This is used in case FileUpload.UCM.UploadFolderName is not specified. May be modified by the implementation |
FileUpload.UCM.UploadFolderName | Document Upload Folder Name, to be populated by the implementation | |
FileUpload.UCM.UploadFolderWebLocation | Web folder location of the uploaded file. This is concatenated with the uploaded filename to generate the complete path to the file. To be populated by the implementation | |
| ||
| ||
| ||
Service Name: OTSSCreateEnrollmentServiceProvider | ||
Extension.PreXformOTSS | false | If set to true the request pre-transformation extension service will be invoked |
Extension.PostXformOTSS | false | If set to true the request post-transformation extension service will be invoked |
CreateEnrollment.Endpoint.URL | ../TSEnrollmentServiceRequest | Updated with the actual endpoint URL during the installation |
Service Name: OTSSCreateEnrollmentEBF | ||
Extension.PreXformOTSS | false | If set to true the request pre-transformation extension service will be invoked |
Extension.PostXformOTSS | false | If set to true the request post-transformation extension service will be invoked |
Extension.PreXformToOTSS | false | If set to true the response pre-transformation extension service will be invoked |
Extension.PreXformToOTSS | false | If set to true the response post transformation extension service will be invoked |
CreateEnrollment.Endpoint.URL | ../TSEnrollmentServiceRequest | Updated with the actual endpoint URL during the installation |
CreateEnrollmentSequence.Prefix | CEID | |
CreateEnrollment.ConfirmationNumberService.Name | {http://xmlns.oracle.com/OTSS/Industry/Tax/ OTSSEnrollmentIDService} otssconfirmationidbpelprocess_client_ep | |
CreateEnrollment.ConfirmationNumberService.Port | OTSSConfirmationIdBPELProcess_pt | |
CreateEnrollment.ConfirmationNumberService.URL | ../soa-infra/services/OTSS-PSRM/OTSSConfirmationIdService/otssconfirmationidbpelprocess_client_ep | Updated with the actual endpoint URL during the installation |
CreateEnrollment.RequestMode.Sync | SYNCH | |
CreateEnrollment.RequestMode.Async | ASYNCH | |
FieldValue.Separator | : | |
UserAcessUniqueConstraintViolation.ErrorNumber | 30104 | |
MaxFailedEnrollmentAttempts.ErrorNumber | 30105 | |
PendingEnrollmentFound.MessageNumber | 30106 | |
MaxEnrolledUsersLimitReached.MessageNumber | 30107 | |
CreateEnrollment.EnrollmentIDService.Name | {http://xmlns.oracle.com/OTSS/Industry/Tax/ OTSSEnrollmentIDService} OTSSEnrollmentIDGeneratorService | |
CreateEnrollment. EnrollmentIDService.Port | OTSSEnrollmentIDService_pt | |
CreateEnrollment. EnrollmentIDService.Endpoint.URL | http://<server_name>:8051/soa-infra/services/ OTSS-PSRM/OTSSEnrollmentIDService/ OTSSEnrollmentIDGeneratorService | Updated with the actual endpoint URL during the installation |
Service Name: OTSSSummaryEnrollmentEBF | ||
Extension.PreXformOTSS | false | If set to true the request pre-transformation extension service will be invoked |
Extension.PostXformOTSS | false | If set to true the request post-transformation extension service will be invoked |
Extension.PreXformToOTSS | false | If set to true the response pre-transformation extension service will be invoked |
Extension.PreXformToOTSS | false | If set to true the response post transformation extension service will be invoked |
EnrollmentSummary.Service.Name | {http://ouaf.oracle.com/spl/XAIXapp/xaiserver/ TSGetEnrollmentSummary } TSGetEnrollmentSummaryService | |
EnrollmentSummary.Port.Name | TSGet EnrollmentSummaryPort | |
EnrollmentSummary.Endpoint.URL | .../TSGetEnrollmentSummary | Updated with the actual endpoint URL during the installation |
| ||
Service Name: OTSSQueryEnrollmentEBF | ||
Extension.PreXformOTSS | false | If set to true the request pre-transformation extension service will be invoked |
Extension.PostXformOTSS | false | If set to true the request post-transformation extension service will be invoked |
Extension.PreXformToOTSS | false | If set to true the response pre-transformation extension service will be invoked |
Extension.PreXformToOTSS | false | If set to true the response post transformation extension service will be invoked |
EnrollmentInquiry.Service.Name | {http://ouaf.oracle.com/spl/XAIXapp/xaiserver/ TSGetUserEnrollment}TSGetUserEnrollmentService | |
EnrollmentInquiry.Port.Name | TSGetUserEnrollmentPort | |
EnrollmentInquiry.Endpoint.URL | .../ TSGetUserEnrollment | Updated with the actual endpoint URL during the installation |
Service Name OTSSUserAccessService | ||
Max.EnrollmentAttempts | 5 |
|
Max.EnrolledUsers | <LineOfBusiness name="IND">2</LineOfBusiness> <LineOfBusiness name="BUS">2</LineOfBusiness> |
|
DefaultMax.EnrolledUsers | 2 |
|
CheckEnrolledUsersCount.Flag | true |
|
UserAccessService.Approval.Name | {http://xmlns.oracle.com/OTSS/Industry/Tax/ OTSSUserAccessApprovalService} OTSSUserAccessApprovalService |
|
UserAccessService.Approval.Port | OTSSUserAccessApprovalService_pt |
|
UserAccessService.Approval.URL | ../soa-infra/services/OTSS-PSRM/OTSSUserAccessApprovalService/OTSSUserAccessApproval | Updated with the actual endpoint URL during the installation |
Important: The TechnicalError.NotificationFlag and BusinessError.NotificationFlag properties found in the ConfigurationProperties.xml file are not currently in use. Do not remove them from the file; they are there for the future use.
Integration With the Revenue Management System
This section describes the integration flows participating in the integration between the self-service application and the revenue management system.
Confirmation Number Utility Service
Multiple integration processes populate a unique confirmation ID on the request XML message. This confirmation ID is delivered to the target system and can be used for transaction tracking purposes.
The Confirmation Number Utility Service encapsulates the common confirmation number generation logic. The integration flows which require confirmation number invoke this service using dynamic partnerlink URL.
The input to this service is a database sequence name; the output is the alphanumeric confirmation ID, formatted as follows:
The delivered integration configuration includes a prefix for each flow.
The service uses a DB Adapter to get the next sequence number for the input sequence ID.
The sequence IDs and sequences are:
Also see Appendix B for a sample of the GetConfirmationID Request/Response messages.
Integration Services
Name | Description |
---|---|
OTSSEnrollmentIDService | Enrollment ID SOA composite. The process uses the synchronous flow returns a unique alphanumeric ID as output. |
Adapter Services
Name | Description |
---|---|
OTSSConfirmationIdAdapter | Confirmation number SOA composite. OTSS confirmation number DB adapter. |
Enrollment ID Utility Service
This service is used to generate a unique ID for the user enrollment process.
Adapter Services
Name | Description |
---|---|
OTSSConfirmationIdAdapter | Confirmation number SOA composite. OTSS confirmation number DB adapter. |
Payment Integration Flow
Business Details
The self-service application collects the payment details from the user and sends the information to the revenue management system. This request triggers the payment creation process. The self-service application receives a response: it contains either payment confirmation details and a confirmation ID, or error information.
Technical Details
This flow conforms to the Synchronous Flow with Confirmation ID pattern.
A self-service application issues a web service call to the integration layer and invokes the payment integration flow. The SOA composite process transforms the request message and performs DVM-based translations:
The Confirmation Number Utility Service is called with input sequence name (specified in Service Configurations for OTSSPaymentEBF). The service returns a confirmation number and the process populates <confirmationId> element on the request message.
Once the transformation is completed, the request message is forwarded to the revenue management system via a web service call.
The response from the revenue management system is received by the integration layer.
The contents of the confirmation details or the error message are translated following the Common Mapping Rules.
If integration encounters an exception (e.g., connectivity error, transformation error) while processing the message, integration will return a SOAP fault.
Integration Services
Name | Description |
---|---|
OTSSPaymentEBF | Payment enterprise business flow process. The process will use the synchronous flow with confirmation id. This process performs transformation using DVMs, and includes pre- and post-extension services, as well as custom transformations. |
Web Services
Name | Description |
---|---|
TSOneTimePayment | This web service is used to initiate the payment creation process in the revenue management system. |
Prepare Payment Data Integration Flow
Business Details
This process is used in two modes:
Validation - The self-service application collects payment destination details from the user and sends it to the revenue management system for verification. The verification logic checks the validity of the input (for example, whether the taxpayer is registered for the input tax type).
External Payment Details Preparation – The self-service application sends the request to the revenue management system before redirecting the payment process to the external payment service. The request message contains payment destination details and payment amount collected from the user and also an external payment vendor’s identifier.
The response message contains the information that needs to be sent to the external payment service, for example, taxpayer’s mailing address or phone number. It also contains the fee requirement indicator.
The vendor usually charges an additional fee (convenience fee) for its services. The fee calculation is done by the vendor, but the revenue management system makes a determination whether the fee will be paid by the taxpayer or otherwise absorbed by the revenue authority.
When processing the response, the SOA composite also invokes the special logic that generates a unique ID for the interaction with external payment provider service and registers this transaction in the staging table.
Technical Details
This flow conforms to the Synchronous Flow with Transaction ID Staging pattern.
The self-service application sends the Prepare External Payment Data request in form of an XML message, which is transformed by the integration.
Upon successful transformation, the integration sends the request to the revenue management system (web service).
Depending on the value in the <action> element, the response is processed as follows:
The following DVM-based translations are performed for both response and request messages:
The contents of the error message is translated following the Common Mapping Rules.
If an exception (e.g., a connectivity or transformation error) is encountered while processing the message, the integration returns a SOAP fault.
Integration Services
Name | Description |
---|---|
OTSSGetExternalPaymentDataEBF | Prepare External Payment Data enterprise business flow process. The process uses the Synchronous Flow with Transaction ID Staging. This process includes transformation using DVMs, pre- and post-extension services, and custom transformations. In addition, this process generates a unique transaction ID and stages this ID in the Payment Vendor Integration Reference table. This step is optional, and the invocation is controlled by the ExternalPaymentData.Custom.Flag property. |
Adapter Services
Name | Description |
---|---|
OTSSExternalPaymentDataDBAdapter | OTSS External Payment data DB Adapter. This DB adapter is used to write the unique transaction id to the Payment Vendor Integration Reference table. |
Web Services
Name | Description |
---|---|
TSPrepareExtPaymentData | This web service is used to validate payment destination information provided by the taxpayer (action VALIDATEONLY) and to retrieve additional data for payments redirected to the external vendor (action is PREPARE). |
Database Tables
The table TS_PAYMENT_VENDOR_REF stores the unique transaction reference ID for payments made through external payment services. It captures the transaction ID and the internal taxpayer IDs (from the revenue management system). A new pending record is added to this table each time the self-service application prepares to redirect the payment process to the external vendor. When the finalized payment posting message comes from the external vendor, the transaction can be verified using the transaction reference ID and the record is marked as processed.
Column Name | Datatype | Mapping |
---|---|---|
PAYMENT_VENDOR | Varchar 50 | paymentVendor |
PAYMENT_REF_ID | Varchar 50 | externalId |
TAXPAYER_ID | Varchar 50 | taxpayerId |
BEHALF_OF_TAXPAYER_ID | Varchar 50 | onBehalfOfTaxpayerId |
PAYMENT_REF_STATUS | CHAR10 | Integration populates the status specified in the ExternalpaymentData.Status.Pending property or ExternalpaymentData.Status.Processed property. For details on these properties, see Module Configurations. |
ACCESS_TYPE_CD | Varchar 50 | accessTypeCd |
KEY_NAME_1 | Varchar 30 | keyName1 |
KEY_VALUE_1 | Varchar 30 | keyValue1 |
KEY_NAME_2 | Varchar 30 | keyName2 |
KEY_VALUE_2 | Varchar 30 | keyValue2 |
KEY_NAME_3 | Varchar 30 | keyName3 |
KEY_VALUE_3 | Varchar 30 | keyValue3 |
KEY_NAME_4 | Varchar 30 | keyName4 |
KEY_VALUE_4 | Varchar 30 | keyValue4 |
KEY_NAME_5 | Varchar 30 | keyName5 |
KEY_VALUE_5 | Varchar 30 | keyValue5 |
KEY_NAME_6 | Varchar 30 | keyName6 |
KEY_VALUE_6 | Varchar 30 | keyValue6 |
KEY_NAME_7 | Varchar 30 | keyName7 |
KEY_VALUE_7 | Varchar 30 | keyValue7 |
KEY_NAME_8 | Varchar 30 | keyName8 |
KEY_VALUE_8 | Varchar 30 | keyValue8 |
KEY_NAME_9 | Varchar 30 | keyName9 |
KEY_VALUE_9 | Varchar 30 | keyValue9 |
KEY_NAME_10 | Varchar 30 | keyName10 |
KEY_VALUE_10 | Varchar 30 | keyValue10 |
Generic Taxpayer Request Integration Flow
Business Details
The self-service application collects the service request details from the taxpayer. The service request feature supports a wide range of business use cases and the handling of the specific service in the revenue management system, depending on the request type.
From the self-service user perspective, the service is either provided immediately, in which case the user receives confirmation details, or the request is accepted for future processing, in which case the user receives an acknowledgement message and a confirmation ID for the later inquiries.
The service request data is delivered to the revenue management system in the form of a generic name/value collection:
<serviceRequestData>
<requestField type="list">
<sequence>
<fieldName>
<fieldValue>
</requestField>
</serviceRequestData>
The request also includes an element containing the service request type code. The receiving service in the revenue management system orchestrates the request processing based on the service request type and triggers a corresponding business process. The response contains either the confirmation details or an error message.
Technical Details
The service request message can be delivered by either synchronous or asynchronous flows, both including confirmation ID generation. The service makes a determination based on the value of the <responseMode> element.
The integration invokes a different type of flow as follows:
ASYNCH – The Asynchronous Flow with Confirmation ID is invoked. The confirmation ID is generated and populated on the message. The request message is added to the OTSSServiceRequest JMS Queue. The response with the confirmation ID and predefined generic confirmation message number is returned to the self-service application.
The provider process picks the message from the service request queue and invokes the revenue management system's web service.
The response from the revenue management system is received by the integration layer.
The process calls the Confirmation Number Utility Service with the input sequence name (specified in Service Configurations for OTSSTaxpayerServiceRequestEBF). The service returns a confirmation number and the process populates the <confirmationId> element on the request message.
DVM-based translations:
The contents of the confirmation details or the error message are translated following the Common Mapping Rules.
If integration encounters an exception (e.g., a connectivity or transformation error) while processing the message, integration returns a SOAP fault.
Integration Services
Name | Description |
---|---|
OTSSTaxpayerServiceRequestEBF | Generic taxpayer service request enterprise business flow process. Based on requestMode, this process invokes the sync or async flow. This process will have transformation using DVMs, pre- and post-extension services, and custom transformations. For the async flow, a JMS adapter puts the message in the service request queue. |
OTSSTaxpayerServiceRequestProvider | Generic taxpayer service request provider process. An SOA composite uses a JMS adapter to read the message from the service request queue and invokes the revenue management system web service. The service consists of an enrichment extension service and a dynamic endpoint URL. On error, the process will rollback the message to the error queue. |
Adapter Services
Name | Description |
---|---|
OTSSServiceRequestJMSProducer | Self-service application service request JMS producer. JMS producer adapter to write to the self-service application service request queue. |
OTSSServiceRequestJMSConsumer | OTSS service request JMS consumer. JMS consumer adapter to read from the OTSS service request queue. |
JMS Queues
Name | Description |
---|---|
OTSSServiceRequest | Self-service application Service Request queue. Used by the integration layer to add transformed service request messages from the self-service application. |
OTSSServiceRequestError | Self-service application Service Request error queue. Error Queue for self-service application Service Request. |
Web Services
Name | Description |
---|---|
TSTaxpayerServiceRequest | This web service is used to process the input request details and check the status of the expected refund based on the information provided. The response contains refund status (confirmation) details and expected refund amounts. |
Taxpayer Identification Integration Flow
Business Details
The self-service application collects the Proof Of Identity (POI) details from the taxpayer.
The information is verified in the revenue management system, and the response contains the list of Taxpayer IDs or an error message.
The request data is delivered to the revenue management system in the form of a generic name/value collection:
<serviceRequestData>
<requestField type=”list”>
<sequence>
<fieldName>
<fieldValue>
</requestField>
</serviceRequestData>
The request also includes an element containing a service request type code. The receiving service in the revenue management system orchestrates the request processing based on the service request type and triggers taxpayer identification processes.
Technical Details
This flow conforms to the Synchronous Flow Without Confirmation ID pattern.
The self-service application sends the information in form of an XML message. The message is transformed by the integration, translated using DVMs, and sent to the revenue management system. The response message is transformed, translated, and returned to the self-service application.
DVM-based translations:
The contents of the error message are translated following the Common Mapping Rules.
If integration encounters an exception (e.g., a connectivity or transformation error) while processing the message, integration returns a SOAP fault.
Integration Services
Name | Description |
---|---|
OTSSIdentifyTaxpayerEBF | Identify a Taxpayer enterprise business flow process. The process will use the synchronous flow without confirmation ID. This process will have transformation using DVMs, pre- and post-extension services, and custom transformations. |
Web Services
Name | Description |
---|---|
TSTaxpayerIdentification | This web service is used to trigger taxpayer identity verification in the revenue management system. The response includes a list of taxpayer IDs. |
Refund Status Inquiry Integration Flow
Business Details
The self-service application collects the refund status inquiry details from the taxpayer.
The information is evaluated in the revenue management system, and the response contains the refund status details and related amounts, or an error message. The response message contains the confirmation ID that the taxpayer may use as a reference when contacting the revenue authority. The refund status information is returned in the confirmation details fragment.
The request data is delivered to the revenue management system in a form of a generic name/value collection:
<serviceRequestData>
<requestField type="list">
<sequence>
<fieldName>
<fieldValue>
</requestField>
</serviceRequestData>
The request also includes an element containing a service request type code. The receiving service in the revenue management system orchestrates the request processing based on the service request type and triggers taxpayer identification processes.
Technical Details
This flow conforms to the Synchronous Flow with Confirmation ID pattern.
The self-service application sends the Refund Status Inquiry information in the form of an XML message. The request message is transformed, the values are translated using DVMs, the confirmation ID is generated and populated on the request, and the request is sent to the revenue management system. The response message is transformed, translated and returned to the self-service application.
The Confirmation Number Utility Service is called with input sequence name (specified in Service Configurations for OTSSRefundStatusInquiryEBF). The service returns a confirmation number and the process populates <confirmationId> element on the request message.
DVM-based translations:
The refund status (confirmation) details or the error message are translated following the Common Mapping Rules.
If integration encounters an exception (e.g., a connectivity or transformation error) while processing the message, integration returns a SOAP fault.
Integration Services
Name | Description |
---|---|
OTSSRefundStatusInquiryEBF | Refund Status Inquiry enterprise business flow process. The process will use the synchronous flow with confirmation ID. This process will have transformation using DVMs, pre- and post-extension services, and custom transformations. |
Web Services
Name | Description |
---|---|
TSGetRefundStatus | This web service is used to process the input request details and check the status of the expected refund based on the information provided. The response contains refund status (confirmation) details and expected refund amounts. |
Confirmation Inquiry by ID Integration Flow
Business Details
The taxpayer provides the confirmation ID as an input. The request is sent to the revenue management system and the response contains confirmation information.
Technical Details
This flow conforms to the Synchronous Flow with Confirmation ID pattern.
The self-service application sends the request in the form of an XML message to the integration. The integration forwards the request further to the revenue management system and gets the response that contains confirmation details.
The contents of the confirmation details or the error message are translated following the Common Mapping Rules.
If integration encounters an exception (e.g., a connectivity or transformation error) while processing the message, integration returns a SOAP fault.
Integration Services
Name | Description |
---|---|
OTSSRequestStatusInquiryEBF | Request Status Inquiry enterprise business flow process. The process uses the synchronous flow without confirmation ID. This process will have transformation using DVMs, pre- and post-extension services, and custom transformations. |
Web Services
Name | Description |
---|---|
TSGetConfirmationInformation | This web service retrieves the confirmation details using the input confirmation ID. |
User Access Store
Column | Comments |
---|---|
USER_ACCESS_ID | Number 10. Unique identifier for the user access record. |
USER_ID | Web user ID; matches the record in the OID. |
ENROLLMENT_ID | Char 32. Unique ID used to track enrollment event. |
LINE_OF_BUSINESS_CD | Indicates user's area of activities. Valid Values match values of LINEOFBUSINESS WSS Lookup. |
USER_ROLE | Char 10. Level of user’s access to the account. Defaulted to OWNER |
ACCESS_TYPE_CD | Char identifies the name of the access key set, e.g, TAXROLE. |
REVENUE_MNGT_CD | Char 10. Identifies a back-end system where the record with access keys resides |
Access Keys 1 – 10: KEY_NAME_1 KEY_VALUE_1 KEY_NAME_2 KEY_VALUE_2 ……… | These columns contain key names and values whose combination identifies a high-level object in the revenue management system to which the user has access. KEY_NAME_N – CHAR 30 KEY_VALUE_N – CHAR 30 |
STATUS | Indicates whether enrollment record is active Valid Values :
|
CREATED_BY | Web user id that creates the user access record |
CREATION_DATE | Indicates the date when the user access record was created |
LAST_UPDATED_BY | Web user ID that last updated the user access record |
LAST_UPDATE_DATE | Keeps track of the date when the user access record was last updated |
For additional details, see the PSRMSS Intallation Guide.
User Enrollment Request Integration Flow
Business Details
The self-service portal user selects an enrollment option associated with a line of business and provides set of identification details as an input.
The request is sent to the revenue management system. Based on the input, the revenue management determines which tax accounts owned by the user and retrieve the corresponding taxpayer and tax account identifiers (one or more keys) and the confirmation information.
Tax account identifiers are processed by the integration layer and captured in user access store, and the self-service user receives confirmation ID and details
Technical Details
This synchronous flow is one of the idiosyncratic User Enrollment Flows.
The self-service application sends the request in the form of an XML message to the integration.
The integration performs the following:
Confirmation ID is generated using Confirmation Number Utility Service
Previous Enrollment Attempts Verification invokes DB Adapter to retrieve an enrollment record for the input Line Of Business. If not found, the new Enrollment ID is generated using Enrollment ID Utility Service. If existing enrollment record found, check the status:
Blocked (B) - return error message back to the portal
Other than Blocked - copy enrollment ID to the main request, and forward the request to the revenue management system
Response Processing invokes User Access Service
Successful response - the User Access Service inserts the new records into user access store. It checks enrollment count for each access keys set. If too many users have access to a specific account, the entry is added in status On Hold (H) and the activation request is forwarded to the Worklist for revenue management agency approval.
Error response the User Access Service is checking errors count. If the empty enrollment record in Error status already exists, it checks if the maximum number of attempts is reached. If so, the enrollment record status is set to Blocked(B). If that's the first error attempt, the service creates empty enrollment record in status 1 (First Error)
The final response with confirmation message is returned to the portal.
The following fields are translated using DVM:
<lineOfBusiness> is translated using OTSS_LineOfBusiness
<accessType> is translated using OTSS_AccessTypes
<status> is translated using OTSS_EnrollmentStatus
The contents of the confirmation details or the error message are translated following the Common Mapping Rules.
If integration encounters an exception (e.g., a connectivity or transformation error) while processing the message, integration returns a SOAP fault.
Integration Services
Name | Description |
OTSSCreateEnrollmentEBF | Enrollment Request enterprise business flow process. The process uses the synchronous flow with confirmation ID. This process will have transformation using DVMs, pre- and post-extension services, and custom transformations. |
Web Services
Name | Description |
TSEnrollmentServiceRequest | This web service retrieves the user account access keys collection and confirmation details for the input line of business and user identification information. |
Get User Enrollment Integration Flow
Business Details
On the self-service portal, the taxpayer navigates to My Accounts page. This flow is invoked immediately and the request is sent to the integration layer/revenue management system in order to evaluate and refresh user's enrollment.
The revenue management system is expected to re-evaluate user's information, identify new tax accounts user should have access to, and deliver the new access keys to the integration layer.
The integration layer orchestrates the insertion of new user access records (if any received) and re-queries the enrollment line of businesses.
The final response to the self-service portal is expected to answer the following questions:
whether this user is enrolled already;
if so, into what lines of business
Technical Details
This synchronous flow is one of the idiosyncratic User Enrollment Flows.
The self-service application sends the request in the form of an XML message to the integration.
The integration invokes DB Adapter to retrieve a distinct list of enrollment ID-s of approved access records. Logically, it checks if the user is already enrolled successfully and gets the id-s of successful enrollment events.
If the query returned no records, the empty response is returned to the portal application
If the query returned at least one enrollmentID:
The DB Adapter is invoked to retrieve all enrollment records for each enrollment ID.
The result is copied to the main request and the request is forwarded to the revenue management system for further verification and refresh
The response from revenue management system may contain a list of new enrollment access keys. Integration is processing the response as follows:
Invokes User Access Service to insert new user access records.
If maximum number of enrolled users per account is reached, the enrollment records are placed on hold and the task is forwarded to the Worklist application for approval
Invokes DB Adapter to query the distinct list of Line Of Business record where user is enrolled
The final response delivered to the portal application contains the collection of Line Of Business(es) where the user is already enrolled.
The following fields are translated using DVM:
<lineOfBusiness> is translated using OTSS_LineOfBusiness
The contents of the confirmation details or the error message are translated following the Common Mapping Rules.
If integration encounters an exception (e.g., a connectivity or transformation error) while processing the message, integration returns a SOAP fault.
Integration Services
Name | Description |
OTSSQueryEnrollmentEBF | Query/Refresh Enrolment enterprise business flow process. The process uses the synchronous flow without confirmation ID. This process will have transformation using DVMs, pre- and post-extension services, and custom transformations. |
Web Services
Name | Description |
TSGetUserEnrollment | This web service retrieves the current status of user enrollment - a collection of Line Of Business (codes) where user is currently enrolled and new access keys collection |
Enrollment Summary Integration Flow
Business Details
The self-service portal user is navigating to the Account Info portal page. The request is sent to the revenue management system and the response contains the list of tax accounts to which this user has an access and summary details
Technical Details
This synchronous flow is one of the idiosyncratic User Enrollment Flows.
The self-service application sends the request in the form of an XML message to the integration. The integration is orchestrating the subsequent process as follows:
Invokes Adapter Service Select User Access Keys to query the tax accounts to which user has an access
Forwards the request further to the revenue management system
Gets the response that contains the list of enrollment summary records. Each entry on the list includes:
Taxpayer name, line of business and a source system code
Access type code and up to ten key name-key value pairs with tax account identifiers
An indicator if the tax account should be picked up by the portal page as a default account
Enrollment summary title and details parameters
The following fields are translated using DVM:
<lineOfBusiness> is translated using OTSS_LineOfBusiness
<accessType> is translated using OTSS_AccessTypes
The contents of the error message are translated following the Common Mapping Rules.
If integration encounters an exception (e.g., a connectivity or transformation error) while processing the message, integration returns a SOAP fault.
Integration Services
Name | Description |
OTSSSummaryEnrollmentEBF | User Enrollment Summary enterprise business flow process. The process uses the synchronous flow without confirmation ID with database query. This process will have transformation using DVMs, pre- and post-extension services, and custom transformations. |
Web Services
Name | Description |
TSGetEnrollmentSummary | This web service retrieves the confirmation details using the input confirmation ID. |
User Access Service
This service encapsulates user enrollment verification and user access maintenance logic.
This service inserts new access keys sets into user access store.
It also checks two aspects of the response from revenue management system:
Number of Failed Enrollment Attempts. In this scenario the input isError indicator is set to true. The logic retrieves an enrollment record using the input Enrollment ID and checks the status.
If the enrollment record is not found, it creates a new one and sets the status to 1 (First Error).
If the enrollment record is found, it checks the status against the max number of attempts allowed. (See Service Configurations for more details.)
If the max number is reached, the existing enrollment record status is sent to Blocked (B). The system sends an un-blocking request to the Worklist using User Access Approval Service.
If the max number is not reached yet, it updates the status of the enrollment record to N (Nth Error).
Too Many Users Access the Same Account In this scenario the input isError indicator is set to false and the input contains a collection of new user access keys sets and the Line of Business. The logic counts enrolled users for the access key set/access type combination for each input enrollment record. If the max number allowed for input Line of Business (See Service Configurations for more details) is reached, the system updates the specific access record's status to On Hold (H) and sends an un-blocking request to the Worklist using User Access Approval Service.
The user access keys are deleted from the response.
Integration Services
Name | Description |
OTSSUserAccessService | User Access SOA composite The process will use the synchronous flow which takes user access keys, user id, enrollment id, line of business, failed attempts count, and isError indicator as input and returns the updated user access keys and hasRecordsOnHold indicator as output. |
User Access Approval Service
Business Details
This service handles the inclusion of blocked and held enrollment records as tasks to the worklist application. The approval or rejection of the specific task is also handled in this service
Technical Details
The service receives a single enrollment record (enrollment ID, status, access keys, access type and line of business) and creates the corresponding human task.
The approval workflow depends on the status of the input enrollment record:
On Hold(H) - approving the task will just update the status of the user access keys record to Approved (A). Rejecting will delete the user enrollment record and user can enroll on the same account again.
Blocked (B) - approving will update the status of the user access keys record to 1 (First Error) Rejecting will just do nothing and enrollment status remains blocked.
Integration Services
Name | Description |
OTSSUserAccessService | User Access SOA composite The process will use the synchronous flow which takes user access keys, user id, enrollment id, line of business, failed attempts count, and isError indicator as input and returns the updated user access keys and hasRecordsOnHold indicator as output. |
Tax Account Alerts Integration Flow
Business Details
The taxpayer selects one of the tax accounts and navigating to the Account Info portal page. The request is sent to the revenue management system and the response contains list of alerts related to the tax account
Technical Details
This flow conforms to the Synchronous Flow without Confirmation ID pattern.
The self-service application sends the request in the form of an XML message to the integration. The request contains an account identifier (set of access keys and access type) and the line of business. The integration forwards the request further to the revenue management system and gets the response that contains a list of alerts, each entry includes:
Alert Type
List of Alert Parameters
The following fields are translated using DVM:
<alertType> is translated using OTSS_AlertType
<lineOfBusiness> is translated using OTSS_LineOfBusiness
<accessType> is translated using OTSS_AccessType
The contents of the error message are translated following the Common Mapping Rules.
If integration encounters an exception (e.g., a connectivity or transformation error) while processing the message, integration returns a SOAP fault.
Integration Services
Name | Description |
OTSSGetTaxAccountAlertsEBF | Tax Account Alerts enterprise business flow process. The process uses the synchronous flow without confirmation ID. This process will have transformation using DVMs, pre- and post-extension services, and custom transformations. |
Web Services
Name | Description |
TSGetTaxAccountAlerts | This web service sends account identifiers (the access keys and access types) and retrieves the list of account alerts |
Account Summary Integration Flow
Business Details
The taxpayer selects one of the tax accounts and navigating to the Account Info portal page. The request is sent to the revenue management system and the response contains the high-level details of the tax account
Technical Details
This flow conforms to the Synchronous Flow without Confirmation ID pattern.
The self-service application sends the request in the form of an XML message to the integration. The request contains an account identifier (set of access keys and access type) and the line of business. The integration forwards the request further to the revenue management system and gets the response that contains:
Summary title parameters
Summary details parameters,
The address associated with the account
The tax account's current balance.
The following fields are translated using DVM:
<country> is translated using OTSS_Country
<taxType> is translated using OTSS_TaxType
<lineOfBusiness> is translated using OTSS_LineOfBusiness
<accessType> is translated using OTSS_AccessType
The contents of the error message are translated following the Common Mapping Rules.
If integration encounters an exception (e.g., a connectivity or transformation error) while processing the message, integration returns a SOAP fault.
Integration Services
Name | Description |
OTSSGetTaxAccountSummaryEBF | Request Status Inquiry enterprise business flow process. The process uses the synchronous flow without confirmation ID. This process will have transformation using DVMs, pre- and post-extension services, and custom transformations. |
Web Services
Name | Description |
TSGetTaxAccountSummary | This web service retrieves tax account summary for the input account identifiers (access keys and access type) and the line of business |
Filing History Integration Flow
Business Details
The taxpayer is navigating to the Account Info portal page and the request for account payment history is sent to the revenue management system. The response contains the filing history, each entry on the list describes one filing period. The taxpayer can limit the result by start/end date range
Technical Details
This flow conforms to the Synchronous Flow without Confirmation ID pattern.
The self-service application sends the request in the form of an XML message to the integration. The request contains an account identifier (set of access keys and access type) and optional date range. The integration forwards the request further to the revenue management system and gets the response that contains account's filing history.
The following fields are translated using DVM:
<filingStatus> is translated using OTSS_FilingStatus
<taxType> is translated using OTSS_taxType
<accessType> is translated using OTSS_AccessType
The contents of the confirmation details or the error message are translated following the Common Mapping Rules.
If integration encounters an exception (e.g., a connectivity or transformation error) while processing the message, integration returns a SOAP fault.
Integration Services
Name | Description |
OTSSGetFilingHistoryEBF | Get Filing History enterprise business flow process. The process uses the synchronous flow without confirmation ID. This process will have transformation using DVMs, pre- and post-extension services, and custom transformations. |
Web Services
Name | Description |
TSGetFilingHistory | This web service sends account identifiers (the access keys and access types) and retrieves account's filing history. |
Payment History Integration Flow
Business Details
The taxpayer is navigating to the Account Info portal page and the request for account payment history is sent to the revenue management system. The response contains the list of payments. The taxpayer can limit the result by start/end date range
Technical Details
This flow conforms to the Synchronous Flow without Confirmation ID pattern.
The self-service application sends the request in the form of an XML message to the integration. The request contains an account identifier (set of access keys and access type) and optional date range. The integration forwards the request further to the revenue management system and gets the response that contains a list of payments.
The following fields are translated using DVM:
<status> is translated using OTSS_PaymentStatus
<paymentType> is translated using OTSS_PaymentType
<accessType> is translated using OTSS_AccessType
The contents of the confirmation details or the error message are translated following the Common Mapping Rules.
If integration encounters an exception (e.g., a connectivity or transformation error) while processing the message, integration returns a SOAP fault.
Integration Services
Name | Description |
OTSSGetPaymentHistoryEBF | Get Payment History enterprise business flow process. The process uses the synchronous flow without confirmation ID. This process will have transformation using DVMs, pre- and post-extension services, and custom transformations. |
Web Services
Name | Description |
TSGetPaymentHistory | This web service sends account identifiers (the access keys and access types) and retrieves list of payments. |
Taxpayer Summary Integration Flow
Business Details
The taxpayer is navigating to the Taxpayer Info portal page. The request is sent to the revenue management system and the response contains the essential info about this taxpayer and also primary contact details (applicable for businesses)
Technical Details
This flow conforms to the Synchronous Flow without Confirmation ID pattern.
The self-service application sends the request in the form of an XML message to the integration. The integration forwards the request further to the revenue management system. The request includes taxpayer ID and other access keys, access keys and also line of business.
The response that contains taxpayer name, taxpayer type and summary title and detail parameters, and also primary contact's type, name and email address
The following fields are translated using DVM:
<lineOfBusiness> is translated using OTSS_LineOfBusiness
<taxpayerType> is translated using OTSS_TaxpayerType
<accessType> is translated using OTSS_AccessType
The contents of the error message are translated following the Common Mapping Rules.
If integration encounters an exception (e.g., a connectivity or transformation error) while processing the message, integration returns a SOAP fault.
Integration Services
Name | Description |
OTSSGetTaxpayerSummaryEBF | Get Taxpayer Summary enterprise business flow process. The process uses the synchronous flow without confirmation ID. This process will have transformation using DVMs, pre- and post-extension services, and custom transformations. |
Web Services
Name | Description |
TSGetTaxpayerSummary | This web service retrieves the essential taxpayer details using input taxpayer ID, access keys, access type and line of business.. |
Taxpayer Contact Info Integration Flow
Business Details
The taxpayer is navigating to the Taxpayer Info portal page. The request is sent to the revenue management system and the response contains the list of addresses associated with this taxpayer.
Technical Details
This flow conforms to the Synchronous Flow with Confirmation ID pattern.
This flow operates in two modes, depends on the action (value of the <action> element):
Read (Action READ) - initially, the self-service application sends the request in the form of an XML message to the integration. The integration forwards the request further to the revenue management system and gets back the response containing the list of phone numbers and an email address associated with the input taxpayer (first access key).
Update (Action UPDATE) - The taxpayer may choose to modify the information and then the request is sent to the revenue management system. In this case the response contains confirmation details.
The following fields are translated using DVM:
<phoneType> is translated using OTSS_PhoneType
<accessType> is translated using OTSS_AccessType
The contents of the confirmation details or the error message are translated following the Common Mapping Rules.
If integration encounters an exception (e.g., a connectivity or transformation error) while processing the message, integration returns a SOAP fault.
Integration Services
Name | Description |
OTSSGetTaxpayerContactInfoEBF | Get Taxpayer Contact Info enterprise business flow process. The process uses the synchronous flow without confirmation ID. This process will have transformation using DVMs, pre- and post-extension services, and custom transformations. |
Web Services
Name | Description |
TSGetTaxpayerContactInfo | This web service retrieves the list of phone numbers and an email address associated the input taxpayer ID in the request header. |
Taxpayer Correspondence Info Integration Flow
Business Details
The taxpayer is navigating to the Taxpayer Info portal page. The request is sent to the revenue management system and the response contains the list of addresses associated with this taxpayer.
Technical Details
This flow conforms to the Synchronous Flow without Confirmation ID pattern.
The self-service application sends the request in the form of an XML message to the integration. The integration forwards the request further to the revenue management system and gets the response that contains confirmation details.
The following fields are translated using DVM:
<country> is translated using OTSS_Country
<addressType> is translated using OTSS_AddressType
<accessType> is translated using OTSS_AccessType
The contents of the confirmation details or the error message are translated following the Common Mapping Rules.
If integration encounters an exception (e.g., a connectivity or transformation error) while processing the message, integration returns a SOAP fault.
Integration Services
Name | Description |
OTSSGetTaxpayerCorrespondenceInfoEBF | Get Taxpayer Correspondence enterprise business flow process. The process uses the synchronous flow without confirmation ID. This process will have transformation using DVMs, pre- and post-extension services, and custom transformations. |
Web Services
Name | Description |
TSGetTaxpayerCorrespondenceInfo | This web service retrieves the list of taxpayer's addresses using the input taxpayer ID in the request header. |
Address Maintenance Integration Flow
Business Details
The taxpayer provides the address details and address change reason when applicable. The information is sent to the revenue management system and the taxpayer receives the confirmation of this transaction.
Technical Details
This flow conforms to the Synchronous Flow with Confirmation ID pattern.
The self-service application sends the request in the form of an XML message to the integration. The integration forwards the request further to the revenue management system and gets the response that contains confirmation details.
The following fields are translated using DVM:
<country> is translated using OTSS_Country
<addressType> is translated using OTSS_AddressType
<addressChangeReason> is translated using OTSS_AddressChangeReason
The contents of the confirmation details or the error message are translated following the Common Mapping Rules.
If integration encounters an exception (e.g., a connectivity or transformation error) while processing the message, integration returns a SOAP fault.
Integration Services
Name | Description |
OTSSAddressMaintenanceEBF | Address Maintenance enterprise business flow process. The process uses the synchronous flow with confirmation ID. This process will have transformation using DVMs, pre- and post-extension services, and custom transformations. |
Web Services
Name | Description |
TSAddressMaintenance | This web service is used to add or update the single address and returns confirmation ID. |
Process Tax Form Integration Flow
Business Details
The taxpayer is filing the tax return or other tax-related form online. This is an interactive process, and the data entered may be validated and re-entered multiple times before final submission. User may request to copy the information from the previous return and/or re-calculate the numbers, or perform other custom actions. When form is finally submitted, the taxpayer receives Document Locator Number that can be used to track the form across the enterprise.
Technical Details
This combined synchronous/asynchronous flow is one of the idiosyncratic Form Process Flows.
The form data is sent from the portal application along with action code (value of the element <action>.
The flow continues depends on the action:
Validation logic is performed if the input action is VALIDATE or READY.
If the <validationRule> element is populated, the process retrieves validation service URL, populates validation rule name on the input and invokes OTSSFormValidationService (see below). The out-of-box solution includes validation service via Oracle Policy Automation rulebase deployed on Oracle Determination Server.
The response from validation service contains updated form data and exceptions collection. The data is copied back to the main request.
If the validation returned no errors the process continues, otherwise the response is returned back to the portal application.
The process determines if the revenue management system supports on-demand form data validation. It checks whether configuration property Backend.Validation.Enabled is set to true. If so, the request is forwarded to the revenue management system for validation.
The response is expected to contain updated form data and exceptions collection.
All other Actions, including Custom Actions logic is performed if the input action is anything but VALIDATE or READY or SUBMIT.
The request is sent to the revenue management system. The response is expected to contain updated form data and exceptions collection.
Submission logic is performed if the input action is SUBMIT.
The process determines endpoint URLs of confirmation ID and document locator number generation services and calls the Confirmation ID generation service, and then Document Location Number generation service (the latter with action specified in DLN.Action.Create property).
The following process is controlled by <responseMode> element on the input message that is populated based on the admin configuration in portal application. The valid values are: ASYNCH and SYNCH.
If the response mode is SYNCH then the process invokes the web service and forwards the message to the revenue management system.
If the response mode ASYNCH the transformed message is sent to the queue using JMS Producer adapter and the response containing confirmation ID and document locator is sent to the portal application.
The contents of the confirmation details or the error message are translated following the Common Mapping Rules.
If integration encounters an exception (e.g., a connectivity or transformation error) while processing the message, integration returns a SOAP fault.
Integration Services
Name | Description |
OTSSProcessTaxFormEBF | Process Tax Form enterprise business flow process. The process uses the special combined synchronous/asynchronous flow with confirmation ID generation, document locator number generation and form data validation. This process will have transformation using DVMs, pre- and post-extension services, and custom transformations. |
Adapter Services
Name | Description |
OTSSProcessTaxFormJMSProducer | Self-service application Process Tax Form JMS producer. JMS producer adapter to write to the self-service application tax form queue. |
OTSSProcessTaxFormtJMSConsumer | OTSS Process Tax Form JMS consumer. JMS consumer adapter to read from the OTSS service tax form queue. |
JMS Queues
Name | Description |
OTSSProcessTaxForm | Self-service application Process Tax Form queue. Used by the integration layer to add transformed tax form messages from the self-service application. |
OTSSProcessTaxError | Self-service application Process Tax Form error queue. Error Queue for self-service application Process Tax Form. |
Web Services
Name | Description |
TSProcessTaxForm | This web service handles all aspects of online form processing: intermediate form data validation, custom actions, and final form submission. Depending on the action, the response contains either an updated form data and the list of exceptions or the confirmation ID and details. |
Process Registration Form Integration Flow
Business Details
Similar to Process Tax Form Integration flow, Business Details.
Technical Details
Similar to Process Tax Form Integration flow, Technical Details .
Integration Services
Name | Description |
OTSSProcessTaxFormEBF | Process Tax Form enterprise business flow process. The process uses the special combined synchronous/asynchronous flow with confirmation ID generation, document locator number generation and form data validation. This process will have transformation using DVMs, pre- and post-extension services, and custom transformations. |
Adapter Services
Name | Description |
OTSSProcessRegistrationFormJMSProducer | Self-service application Process Tax Form JMS producer. JMS producer adapter to write to the self-service application tax form queue. |
OTSSProcessRegistrationFormtJMSConsumer | OTSS Process Tax Form JMS consumer. JMS consumer adapter to read from the OTSS service tax form queue. |
JMS Queues
Name | Description |
OTSSProcessRegistrationForm | Self-service application Process Tax Form queue. Used by the integration layer to add transformed tax form messages from the self-service application. |
OTSSProcessRegistrationFormError | Self-service application Process Tax Form error queue. Error Queue for self-service application Process Tax Form. |
Web Services
Name | Description |
TSProcessRegistrationForm | This web service handles all aspects of online form processing: intermediate form data validation, custom actions and final form submission. Depends on the action the response contains either an updated form data and the list of exceptions or the confirmation ID and details. |
Form Validation Integration Flow
Business Details
The online form data needs to be validated and the validation rule is specified on form definition (self service portal application configuration). Integration layer detects validation rule name and invokes this service to perform the validation.
The response from this service contains an updated form data and a collection of exceptions.
Technical Details
This flow is synchronous pattern and it communicates with Oracle Determinations Server via web service. This integration is using generic WSDL; the endpoint URL is calculated dynamically by concatenation of the Oracle Determinations Server location (flow's input), web services directory and operation name (service configurations) and validation rule name (flow's input) (see Service Configurations for more details).
The form data is transformed into rulebase web service format and back via XSL. The transformation is based on the assumption that the rulebase was created using OPA Data Model Generator in portal self-service application. It relays on a specific data model structure and element's public names generation rules.
For each form line the transformed rulebase-bound request contains an original value sent from the portal application.
The response from the rulebase contains determined values for calculated or corrected lines and/or an error message. The transformation applies the updates and creates updated form data. form data The errors received from the rulebase are collected and added to the exceptions list.
The response from the flow contains updated form data and the exceptions collection.
If integration encounters an exception (e.g., a connectivity or transformation error) while processing the message, integration returns a SOAP fault.
Integration Services
Name | Description |
OTSSFormValidationService | Refresh Lookup enterprise business flow process. The process uses the synchronous flow.. |
Web Services
Name | Description |
OPA Rulebase web service, generic WSDL | When this web service is invoked with operation Assess, it receives the form data and returns the validated form data and exceptions list. One web service per rulebase is available when the rulebase is deployed on Oracle Determinations Server . |
Upload Supporting Document Integration Flow
Business Details
The taxpayer uploads supporting documents (scanned receipts, letters or other) immediately following the online form filing or later, upon request from revenue management agency. The documents need to be associated with either a specific form or other self-service transaction.
Taxpayer enters document locator or reference transaction confirmation ID and uploads file from the local file system. The request is sent to the integration layer. This flow orchestrates file delivery to a document repository, generates confirmation ID for the transaction and sends file location, document locator and confirmation ID to the revenue management system so it may establish the link between the form and the uploaded file. The response from the revenue management system contains confirmation information.
Technical Details
This synchronous flow is one of the idiosyncratic Form Process Flows.
The self-service application sends the request in the form of an XML message to the integration. The request contains: uploaded file contents as base64-encoded stream, the original file name (with extension) and either document locator number or reference confirmation ID.
The integration flow performs the follows:
Document Locator Number Validation. If the input request contains document locator number, the system checks its validity. The validation service endpoint URL is calculated based on service configurations. Out-of-box solution invokes OTSSDocumentLocatorNumberBPELProcess.
Document Name Assignment the original document name is replaced with concatenation of reference ID (either document locator number or reference confirmation ID) concatenated with current timestamp, to ensure its uniqueness. For example, if the input document locator number is TFDLN00000005082, the file name may become TFDLN00000005082-1396561401300.
Document Upload Service Call the details of the target document repository are calculated and the document contents are sent there with synchronous web service request. The response from the document repository expected to contain file location. The out-of-box solution includes interaction with UCM.
Confirmation ID is generated upon successful response from the document repository.
File Location is forwarded to the revenue management system along with the original input document location number (or reference confirmation ID) and the newly-generated confirmation ID for the upload transaction.
File Contents are sent to the back-end system if the RetainContent configuration property is set to true.
See Service Configurations for more details.
The final response from the revenue management system contains confirmation details.
The contents of the confirmation details or the error message are translated following the Common Mapping Rules.
If integration encounters an exception (e.g., a connectivity or transformation error) while processing the message, integration returns a SOAP fault.
Integration Services
Name | Description |
OTSSFormUploadEBF | Upload Document enterprise business flow process. The process uses the special synchronous flow with confirmation ID. This process will have transformations, confirmation ID generation, document locator number validation, pre- and post-extension services, and custom transformations. |
Web Services
Name | Description |
TSUploadSupportingDocument | This web service uploads file contents to the document repository and receives back the confirmation details. |
Print Form Document Integration Flow
Business Details
The user has the opportunity to print or save the form upon submission. When Print button pressed, the request form data is sent to the integration layer and this flow is triggered. The printable document file is created and sent back to the portal application as base64-encoded byte stream. The response also contains the generated document's MIME type.
The actual document generation is performed by an external system. Out-of-box solution includes web service-based interaction with Oracle Business Intelligence Publisher.
Technical Details
This synchronous flow is one of the idiosyncratic Form Process Flows.
The self-service application sends the request to the integration. The request contains a document data in form of a valid XML.
The request is transformed as follows based on the service configurations (see Service Configurations for more details).
Data Encoding. There is an encoding indicator. If set to true, the document data XML is base64 encoded. Encoding Service endpoint URL is determined based on the configurations. Base solution includes OTSSBase64EncodedDataGeneratorService.
Data Transformation additional custom transformation is applied.
Document Generation Service the dynamic endpoint is calculated based on the configuration.
BI Publisher-specific details the out-of-box solution uses Oracle BI Publisher for document generation. The specific inputs for Oracle BI Publisher's ReportService include: report name and location, user and password for the connection and the output document's format. All these are defined in Service Configurations and can be customized by the implementation.
After completing the transformations the process invokes Document Generation Service web service. The response is transformed and returned to the self-service portal.
If document generation is failed, the final response is populated with pre-configured error message number. The contents of the error message are translated following the Common Mapping Rules.
If integration encounters an exception (e.g., a connectivity or transformation error) while processing the message, integration returns a SOAP fault.
Integration Services
Name | Description |
OTSSPrintFormEBF | Print Form enterprise business flow process. The process uses the special synchronous flow. This process will have transformation using DVMs, pre- and post-extension services, and custom transformations. |
Web Services
Name | Description |
TSPrintForm | This web service retrieves the document contents base64-encoded and MIME document type. |
Document Locator Number Utility Service
Process Tax Form, Process registration Form and Upload Supporting Document integration processes use a unique document locator number on the request XML message. This unique identifier is communicated to all integration participants and can be used for form tracking purposes across the enterprise.
The Document Locator Number Utility Service encapsulates the common document locator number generation and validation logic. The integration flows which require document locator number generation or validation invoke this service using dynamic partnerlink URL.
The input to this service is an alphanumeric prefix for the document locator name; the output is the alphanumeric document locator number, calculated and formatted as follows:
The final length of the output document locator is derived from Module Configurations.
The size of the numeric portion N is calculated as final length -1 - prefix' size. One position is reserved for the check digit.
The next available sequence number derived.
The check sum is generated for the sequence number based on Luhn's algorithm and appended to the end of the sequence number.
Note:
The Luhn algorithm or Luhn formula, also known as the "modulus 10" or "mod 10" algorithm, is a simple checksum formula used to validate a variety of identification numbers, such as credit card numbers, IMEI numbers, National Provider Identifier numbers in US and Canadian Social Insurance Numbers. The algorithm is in the public domain and is in wide use today. It is specified in ISO/IEC 7812-1.[1] It is not intended to be a cryptographically secure hash function; it was designed to protect against accidental errors, not malicious attacks. Most credit cards and many government identification numbers use the algorithm as a simple method of distinguishing valid numbers from collections of random digits.
The result is formatted as N-digit number, right-padded with zeroes.
The prefix is concatenated with N-digit number and returned to the caller process.
The delivered integration configuration includes a prefix for each flow.
The service uses a DB Adapter to get the next sequence number.
Also see Appendix B for a sample of the Get Document Locator Number Request/Response messages.
Integration Services
Name | Description |
OTSSDocumentLocatorNumberBPELProcess | Document locator number SOA composite. The process uses the synchronous flow which takes a document locator prefix and the action as input and returns:
|
Adapter Services
Name | Description |
OTSSDocumentLocatorNumberAdapter | OTSS Document Locator Number DB adapter. |
Get Active Form Types Integration Flow
Business Details
The taxpayer provides the form category as an input. The language currently used by the taxpayer is also populated on the request. The request is sent to the revenue management system and the response contains the list of form types that are eligible for import.
Technical Details
This flow conforms to the Synchronous Flow without Confirmation ID pattern.
The self-service application sends the request in the form of an XML message to the integration. The integration forwards the request further to the revenue management system and gets the response that contains form types list.
The following elements are transformed using DVM:
<language> element value is translated using OTSS_Language.
<formSubType> element value is translated using OTSS_FormCategory.
The contents of the error message are translated following the Common Mapping Rules.
If integration encounters an exception (e.g., a connectivity or transformation error) while processing the message, integration returns a SOAP fault.
Integration Services
Name | Description |
OTSSRetrieveActiveFormTypesEBF | Retrieve Active Form Types enterprise business flow process. The process uses the synchronous flow without confirmation ID. This process will have transformation using DVMs, pre- and post-extension services, and custom transformations. |
Web Services
Name | Description |
TSRetrieveActiveFormTypes | This web service retrieves the list of available form types with descriptions for the given form category and language |
Import Form Definitions Integration Flow
Business Details
The taxpayer selects one or more form types as an input. The request is sent to the revenue management system and the response contains the definitions for each form type and a collection of lookups. Lookup represents a list of valid values for the given form line. Textual information is retrieved in multiple languages supported by revenue management system.
Technical Details
This flow conforms to the Synchronous Flow without Confirmation ID pattern.
The self-service application sends the request in the form of an XML message to the integration. The integration forwards the request further to the revenue management system and gets the response that contains the requested form types and lookup collection.
The following elements are transformed using DVM:
<language> element value is translated using OTSS_Language.
<occurrence> element under <section> group is translated using OTSS_FormSectionOccurence.
<dataType> element under <field> group is translated using OTSS_FormDataType.
If integration encounters an exception (e.g., a connectivity or transformation error) while processing the message, integration returns a SOAP fault.
Integration Services
Name | Description |
OTSSRetrieveFormTypeDefinitionsEBF | Retrieve Form Definitions enterprise business flow process. The process uses the synchronous flow without confirmation ID. This process will have transformation using DVMs, pre- and post-extension services, and custom transformations. |
Web Services
Name | Description |
TSRetrieveFormTypeDefinitions | This web service retrieves the definitions of the input form types. The response also contains a collection of Lookups |
Refresh Lookup Integration Flow
Business Details
The taxpayer selects a Lookup that was initially imported from the revenue management system and requests to update the lookup values.. The request is sent to the revenue management system and the response contains the current list of lookup values with descriptions in all languages supported by revenue management system.
Technical Details
This flow conforms to the Synchronous Flow without Confirmation ID pattern.
The self-service application sends the request in the form of an XML message to the integration. The integration forwards the request further to the revenue management system and gets the response that contains confirmation details.
The contents of the confirmation details or the error message are translated following the Common Mapping Rules.
If integration encounters an exception (e.g., a connectivity or transformation error) while processing the message, integration returns a SOAP fault.
Integration Services
Name | Description |
OTSSRfreshFormLookupEBF | Refresh Lookup enterprise business flow process. The process uses the synchronous flow without confirmation ID. This process supports pre- and post-extension services, and custom transformations. |
Web Services
Name | Description |
TSRefreshFormLookup | This web service retrieves the lookup values with descriptions in all languages supported by revenue management system. |
Integration With Official Payments Corporation
This section describes the integration flows for the integration between Official Payments Corporation and the revenue management system.
Post Payment (Official Payments) Integration Flow
Business Details
The payment post-back XML is sent from Official Payments Corporation and received by a SOA composite process. The transaction is verified and then the message is transformed, assigned a confirmation ID, and transmitted to the revenue management system via a web service call.
The verification step provides additional protection against fraudulent payment submissions. The payment posting message contains a unique transaction ID that was initially generated by the integration and staged in the Payment Vendor Integration Reference table (Prepare Payment Data Integration Flow). This unique ID is transmitted to Official Payments Corporation when the payment process is redirected to their website, and is captured on the payment record in their system.
The payment post-back XML message is considered valid if the following conditions are satisfied:
Technical Details
This is an asynchronous flow without response.
Official Payments Corporation sends the Payment Posting information in the form of an XML message.
If the message does not contain a unique transaction ID (custom defined element, sequence 5 is empty) the integration sends an error notification e-mail and aborts further processing.
The message is transformed into a TSOneTimePayment request; the values are translated using DVMs as follows:
The <currency> element is populated with the value of PaymentPostback.CurrencyCode property.
See "Official Payments Post-back XML Mapping" in Appendix C for more transformation details.
After transforming the XML, integration checks if the record with the request's external ID exists in the OTSS_PAYMENT_VENDOR_REF table.
If the record does not exists, the integration sends an error notification e-mail and aborts further processing. The email notification configurations are defined in Module Configurations.
If payment posting has been verified successfully, the integration adds the message to Payment Posting JMS Queue.
The provider process picks the message from the Payment Posting queue and invokes revenue management system's TSOneTimePayment web service.
If the provider is not able to send the message to the revenue management system, the message is rolled back to the error queue the administrator can move the message back to the Main request queue from where it will be retried. See How to Retry Technical Error Failure Messages for more details.
Optional email notifications for the failure may be sent out from the integration layer (see How To Configure Email Notification).
Integration Services
Name | Description |
---|---|
OTSSPaymentPostingRequestEBF | Payment Posting enterprise business flow process. This process will have transformation using DVMs, pre- and post-extension services, and custom transformations. For Async flow, a JMS adapter will put the message in the Payment Posting queue. |
OTSSPaymentPostingRequestProvider | Payment Posting provider process. SOA composite uses JMS adapter to read the message from Payment Posting queue and invokes PSRM XAI Inbound service. Consists of enrichment extension service and dynamic endpoint url. On error, the process will rollback the message to the error queue. |
Adapter Services
Name | Description |
---|---|
OTSSPaymentPostingJMSProducer | OTSS Payment Posting JMS producer. JMS producer adapter to write to OTSS Payment Posting queue. |
OTSSPaymentPostingJMSConsumer | OTSS Payment Posting JMS consumer. JMS consumer adapter to read from OTSS Payment Posting queue. |
OTSSPaymentPostingDBAdapter | OTSS Payment Posting DB Adapter. DB adapter to query the OTSS_PAYMENT_VENDOR_REF to get the externalId. |
JMS Queues
Name | Description |
---|---|
OTSSPaymentPosting | OTSS Payment Posting queue. Used by the integration layer to add transformed Payment Posting messages from OTSS. |
OTSSPaymentPostingError | OTSS Payment Posting error queue. Error Queue for OTSS Payment Posting. |
Web Services
Name | Description |
---|---|
TSOneTimePayment |
Process Payment Report (Official Payments) Integration Flow
Business Details
Official Payments Corporation emits the payment report (flat file, comma-delimited) to the customer (revenue authority) after finalizing the payment. The file is uploaded to the file server and picked up and transformed by the integration. The SOA composite process sends each report record as a web service request to the revenue management system for reconciliation.
Technical Details
Integration Services
Name | Description |
---|---|
OTSSReportReconciliationRequestEBF | Report Reconciliation enterprise business flow process. This process will have transformation using DVMs, pre- and post-extension services, and custom transformations. For Async flow, a JMS adapter will put the message in the Payment Posting queue. |
OTSSReportReconciliationRequestProvider | Report Reconciliation provider process. SOA composite uses the JMS adapter to read the message from the Payment Report queue and invokes the PSRM XAI Inbound service. Consists of enrichment extension service and dynamic endpoint URL. On error, the process will rollback the message to the error queue. |
Adapter Services
Name | Description |
---|---|
OTSSPaymentReportJMSProducer | OTSS Report Reconciliation JMS producer. JMS producer adapter to write to OTSS Report Reconciliation queue. |
OTSSPaymentReportJMSConsumer | OTSS Report Reconciliation JMS consumer. JMS consumer adapter to read from OTSS Report Reconciliation queue. |
OTSSReportReconciliationFileAdapter | OTSS Report Reconciliation File adapter. This file adapter will read the messages from the Payment Reconciliation Report sent by OPC. |
JMS Queues
Name | Description |
---|---|
OTSSPaymentReport | OTSS Payment Report queue. Used by the integration layer to add transformed Payment Posting messages from OTSS. |
OTSSPaymentReportError | OTSS Payment Report error queue. Error Queue for OTSS Payment Posting. |
Web Services
Name | Description |
---|---|
TSProcessExtPayReportRecord | Process External Payment Record enterprise business flow process. The process will use the synchronous flow with confirmation ID. This process will have transformation using DVMs, pre- and post-extension services, and custom transformations. |
Monitoring the Integration
To monitor the integration flows use either one of the following methods:
Monitoring Using WebLogic SOA Enterprise Manager
Monitoring Using WebLogic Logs
Log in to the machine where SOA server is installed. The SOA logs are stored in:
<WebLogic installation folder>/user_projects/domains/<SOA Domain name>/servers/<SOA Server name>/logs
Example:
/slot/ems1234/oracle/Middleware/user_projects/domains/soa_domain/servers/soa_server1/logs
Data Purge
To maintain maximum system integrity, the Oracle Fusion Middleware database should be purged periodically. For information about how to complete this task, refer to note 815896.1 on https://support.oracle.com.
Error Processing
The integration includes two types of errors:
This integration includes two types of errors:
Business Errors is a "valid" business rules-related error returned from the revenue management system (see "Error Message" in Appendix A: Common XML Fragments).
Technical Errors are triggered if integration encounters connectivity error, transformation error or other technical issue.
For asynchronous processes, the messages failed with technical errors are sent to the error queue and can be re-tried from integration layer. The error retry instructions and optional e-mail notification configuration are described below.
How to Configure Email Notification
How to Retry Technical Error Failure Messages For Asynch Processes
This action moves all messages to the source queue, so that the integration layer processes all messages again.
Integration Flow | Type of Error | Action | Notification Type | Retry |
---|---|---|---|---|
Message sent by a Synchronous Request Flow from the Web Self Service to the Revenue Management system. All processes except the asynchronous Taxpayer Service Request | Business Error | Error is sent to the Web Self Service application | None | Retry can be triggered by the self service user |
Technical Error | Error is sent to the Web Self Service application | |||
Message sent using Asynchronous Request Flow from the Web Self Service application to the Revenue Management system. Asynchronous Taxpayer Service Request | Business Error | Message is moved into the error queue | Email notification (optional) | Retry can be triggered by the self service user |
Technical Error | Message is moved into the error queue | Email notification (optional) | Administrator has to move the messages from the error queue to the request queue from WebLogic Admin console. | |
Message sent using Asynchronous Request Flow from external application to the Revenue Management system Processes for the Integration with Official Payments | Business Error | Message is moved into the error queue | Email notification (optional) | Administrator has to move the messages from the error queue to the request queue from WebLogic Admin console |
Technical Error | Message is moved into the error queue | Email notification (optional) | Administrator has to move the messages from the error queue to the request queue from WebLogic Admin console. |
Integration Extensibility
The typical Integration Process allows extensibility of the messages using three different methods:
In addition this integration offers an ability to customize the confirmation number generation logic and also features a dynamic end-point URL.
Important: Always create a back-up of your integration customizations before deploying a product update.
Pre-Transformation Extension Point
The pre-transformation extension point is invoked before the main transformation is executed. This transformation aids in transforming the source XML coming as an input to the integration process.
The integration layer defines an external call from the pre-transformation extension point. This extension point accepts source XML as input and gives the source XML as output. The implementation can choose to plug in a concrete WSDL instead of the abstract WSDL. This can assist the implementation in invoking any external web service and transform the input XML.
Post-Transformation Extension Point
The post-transformation extension point is invoked after the main transformation is executed. This transformation aids in transforming the target XML going as an input to the target queue.
The integration layer defines an external call from the post transformation extension point. This extension point accepts the target XML as input and gives the target XML as output. The implementation can choose to plug in a concrete WSDL instead of the abstract WSDL. This can assist the implementation in invoking any external web service and transform the output XML.
Custom Transformations
The custom transformations are used to add data to custom elements in the incoming and outgoing messages. The incoming and outgoing messages have custom elements defined in the message. These custom elements refer to a custom XML schema. The main transformation invokes custom transformation.
Empty custom transformation and custom schemas are shipped with the product. The implementation team can add additional fields in the custom schema and map them using the custom transformations.
Using custom transformations allows the implementation to define and pass additional data from the source system to the target system.
Dynamic End-Point URL
The end-point URL for all integration services is dynamic. They are derived at run-time from the ConfigurationProperties.xml file. This feature allows an implementation to support heterogeneous multi-system environments in which several back-end applications support separate functional areas. The end-point URL can, in fact, point to another custom web service instead of pointing to a back-end system web service. Use this option if a single request message needs to be routed to a similar back-end application. For example, if individual taxes are maintained in one system and the business taxes in another, the end-point URL for the refund status request could be a routing process that evaluates the input values and routes the request accordingly.
Open apps/OTSS-PSRM/AIAMetaData/config/ConfigurationProperties.xml and change the end-point URL of a specific service.
In the product install home, update MDS using the ant deploy command for Deploying MDS folder. For more information about the command to use to deploy to MDS, see "Deploying MDS Folder" in the Installation Guide.
After deploying the files to MDS, restart the SOA server.
Confirmation Number Utility
The confirmation number assignment can be customized for all or some of the integration flows.
Option 1. Modify the default confirmation number prefix.
Locate the prefix property in the ConfigurationProperties.xml file (see Service Configurations for details) and change the value.
Modify the $PRODUCT_HOME/ /services/industry/Tax/EBF/OTSSConfirmationIdService/xsl/Xform_GetConfirmationId.xsl. Update the prefix check with the new value.
Redeploy the OTSSConfirmationIdService process using the DeployComposite action. See the PSRMSS Installation Guide for additional details on this process.
Option 2. Replace the confirmation number generation logic.
Create your own confirmation number generation service(s) using the integration OTSSConfirmationIdBPELProcess WSDL located at:
$PRODUCT_HOME/MDS-Artifacts/OTSS-PSRM/AIAMetaData/AIAComponents/BusinessProcessServiceLibrary/OTSSConfirmationIdService/
Deploy this service at the location accessible from the SOA server.
In ConfigurationProperties.xml, update the service-level properties for those services that should be using a new confirmation number utility service:
After updating files in the product install home, update MDS using the ant deploy command for Deploying MDS folder. For more information about the command to deploy to MDS, see "Deploying MDS Folder" in the PSRMSS Installation Guide.
After deploying the files to MDS, restart the SOA server.
Document Locator Number Utility
The confirmation number assignment can be customized for all or some of the integration flows.
Option 1. Modify the result using configurations only.
Locate the size property DLN.Size (see the Module Configurations topic for details) and the prefix property TaxForm.DLN.Prefix (see Service Configurations) in the ConfigurationProperties.xml file and change the values.
Note: The maximum length of the Document Locator Number, including the prefix, should not exceed 50 characters.
Modify the $PRODUCT_HOME/ /services/industry/Tax/EBF/OTSSDocumentLocatorNumberService/xsl/Xform_GetDocumentLocatorNumber.xsl file.
Update the prefix check with the new value.
Redeploy the OTSSDocumentLocatorNumberService process using the DeployComposite action. See the PSRMSS Installation Guide for additional details on this process.
Option 2. Replace the confirmation number generation logic.
Create your own document locator number generation service(s) using the integration OTSSDocumentLocatorNumberBPELProcess WSDL located at:
$PRODUCT_HOME/MDS-Artifacts/OTSS-PSRM/AIAMetaData/AIAComponents/BusinessProcessServiceLibrary/OTSSDocumentLocatorNumberService/
Deploy this service at the location accessible from the SOA server.
In the ConfigurationProperties.xml file, update the service-level properties for those services that should be using a new document locator number utility service:
After updating files in the product install home, update MDS using the ant deploy command for Deploying MDS folder. For more information about the command to deploy to MDS, see "Deploying MDS Folder" in the PSRMSS Installation Guide.
After deploying the files to MDS, restart the SOA server.
Steps to Implement Extension Points
Each process in the integration has a pre- and post-transformation extension point which can be used to invoke web services and transform the payload.
The desired extension point can be triggered from the process by enabling it using the ConfigurationProperties.xml pre- and post-transformation extension flags, as described in the Setting Configuration Properties section.
Each process has its own concrete WSDL which is used to read the endpoint location for the extension service.
These concrete WSDL files are located in MDS in the following directory:
/apps/ OTSS-PSRM/AIAMetaData/AIAComponents/ExtensionServiceLibrary/
Update the concrete WSDL file; modify service soap:address location to point to the URL of the extension service to be called, and move the concrete WSDL file to MDS.
To move the concrete WSDL to MDS, update the appropriate WSDL in the product install home. The directories to put the concrete WSDLs in product install home are the following:
$PRODUCT_HOME/MDS-Artifacts/OTSS-PSRM
/AIAMetaData/AIAComponents/ExtensionServiceLibrary/
Then deploy the concrete WSDLs to MDS by running the ant deploy command for Deploying MDS folder. For more information about the command to use to deploy to MDS, see "Deploying MDS Folder" the Installation Guide.
After deploying the files to MDS, restart the SOA server.
After restarting the SOA server, the extension point invokes the web service in the concrete WSDL.
Example:
To enable the extension points for OTSSPaymentExtension, modify the service element in the OTSSPaymentExtensionConcrete.wsdl. In the following code, replace <put your extension service URL here"/> with the location of your extension service:
<service name="OTSSPaymentExtensionService">
<port name="OTSSPaymentV1ExtensionService_pt" binding="otssext:OTSSPaymentV1ExtensionServiceBinding">
<!-- <soap:address location="http://<server_name>:8001/soa-infra/services/Extension/OTSSPaymentExtensionProcess/OTSSPaymentExtensionService"/>-->
<soap:address location="<your extension service URL here"/>
</port>
</service>
Note: The WSDL service can be edited using Oracle JDeveloper 11g.
Steps to Implement Custom Transformations
Each process in the integration has its own XSD file.
The revenue management system – bound messages have custom elements which can be used to pass additional data.
Refer to message mappings to see the location of customElements in each message.
Each XSD has a corresponding CustomType XSD file in which the complexType elements for each customElements tag are defined.
To pass additional elements in the customElements tag, the corresponding complexType needs to be modified. Add the additional elements required in complexType element XSD.
Each process has a main transformation which invokes custom templates. Each main transformation file has a corresponding custom XSL and custom templates are defined in the custom XSL.
These custom templates are invoked at the location where each customElements tag is present.
The custom XSL can be modified to add transformation for the newly added elements in custom XSD files.
The custom XSD files are located in product install home under the following directories:
OTSSPSRM/MDS-Artifacts/OTSS-PSRM/AIAMetaData/AIAComponents/ ApplicationObjectLibrary/OTSS/V1/schemas
OTSSPSRM/MDS-Artifacts/OTSS-PSRM/AIAMetaData/AIAComponents/
ApplicationObjectLibrary/OPC/V1/schemas
...etc.
The custom XSL files are located in product install home under the directory:
OTSS-PSRM/services/industry/Utilities/EBF/<Process Name>/xsl
After updating the XSD and XSL files in the product install home, update MDS using the ant deploy command for Deploying MDS folder. For more information about the command to use to deploy to MDS, see "Deploying MDS Folder" in the Installation Guide.
After deploying the files to MDS, restart the SOA server.
After restarting the SOA server, the changes to the custom XSD and XSL will be reflected in the integration.
Customizing the Portal Application
The self-service website is a Web Center application that comprises two types of pages:
Admin pages that are used by implementers, administrators, and other users to configure the portal application.
These pages are secured and are not intended to be exposed to taxpayers.
The most typical customization effort is likely to include:
This chapter starts with an exploration of two options for customizations:
This chapter also explores the incorporation of Universal Content Management (UCM) content in the portal pages.
For more information on WebCenter Composer and UCM, refer to Oracle WebCenter documentation. For more detailed information on WebCenter task flows and more advanced customization techniques, see the Oracle Fusion Middleware Developer's Guide for Oracle WebCenter 11g.
WebCenter Portal Application Override Bundle
The WebCenter Application Override Bundle is a file resource that is part of the WebCenter application framework. While this resource is used by WebCenter tools such as WebCenter Composer (described in the next section), it can also be used independently to support customizations without using additional tools.
The base product portal application, which is based on ADF and the WebCenter portal framework, references Resource Bundles for many portal-related elements, including:
Resource Bundles are XML files (with an extension of .xlf) that hold values defined for Bundle IDs. For example:
<trans-unit id="BUNDLE_ID1">
<source>Value for Bundle ID No. 1</source>
<target/>
</trans-unit>
Resource bundles are used by the portal application at runtime to retrieve the values required for display or other purposes.
The base product contains many bundle files that are used to hold values for many components, with bundle IDs that are used throughout the application.
Resource bundle files are also language sensitive, which means that is the application supports multiple languages. There will be multiple resource bundles files covering the supported languages.
The base product also supports the use of an Application Override Bundle.
The Application Override Bundle is a special file that is used to provide override values for internal resource bundles. The override resource bundle is created automatically by the application framework and can be modified by implementers.
The base portal application uses the following logic to determine the value of a given resource bundle ID:
The base product provides an Application Override Bundle Template File named WSSPortalOverrideBundle_ReferenceXLF.txt that includes the all the bundle IDs used by the portal application.
To change values of application elements that reference resource bundles, the following steps are required:
Add the appropriate entries to the override bundle file (the bundle ID and value). For example:
<trans-unit id="BUNDLE_ID1">
<source>Override value for Bundle ID No. 1</source>
<target/>
</trans-unit>
Upload/Download of the Override Application Bundle
The application override bundle can be accessed through Oracle Enterprise Manager.
To download the override application bundle:
To upload the modified file back to the system:
For more information about MDS Configuration and Oracle Enterprise Manager, refer to the Oracle Enterprise Manager documentation.
WebCenter Composer and Administration Console
WebCenter Composer is a WebCenter tool that allows runtime customizations of a portal application. It allows users to modify existing portal pages or create new ones, all without changing the base product portal pages and structure.
The WebCenter Administration Console is a part of the WebCenter framework. It manages the application portal resources (such as pages, security information, etc.) and it invokes WebCenter Composer when editing or creating a new page.
To use the WebCenter Administration Console, implementers should be logged into the portal application using the admin login user ID and password.
The Customization link on the home page leads to the WebCenter Administration Console.
Administration Console Resources - Pages
In the admin console Resources tab implementers can find the Pages resource that lists all the portal pages. This page supports the following common actions:
The Create Page button will create a new page that will become a part of the portal application.
The Show Page checkbox on the pages list will determine whether the page is visible in the main navigation bar (and therefore if it is accessible independently without the need for hyperlinks).
The Edit Page action allows the implementer to modify the page definition and structure.
The Set Access action allows the implementer to define or change the access to that page based on the security rules and users defined in the system.
Important: Changing an existing page's access level can affect the base product portal behavior and is not recommended. New pages created from the admin console can be secured or made public as needed.
The Delete Page action allows the implementer to delete a page.
Important: Deleting base product pages will affect the base product portal behavior and is not recommended. New pages created from the admin console can be deleted as necessary.
Implementers can also change the order of the pages by using the Move Page action. This will change the order of pages in the portal main navigation bar.
For more information about the administration console and all the available actions please refer to Oracle WebCenter documentation.
Administration Console Resources - Page Templates
In the admin console Resources tab implementers can find the Page Templates resource that lists all the available page templates.
Implementers can Create new page templates, Copy an existing template or Edit a template in order to view or make changes.
Editing a page template can be done visually or by editing the actual page template code by using the Edit Source action.
Important: Changes to existing page templates can affect the way the base product portal behaves and therefore is not recommended If additional template features are required for custom pages, implementers should create a new page template, copying the base template if appropriate, to avoid potential upgrade issues if base product templates change in future releases.
Administration Console Resources - Skins
In the admin console Resources tab implementers can find the Skins resource that lists all the available skins.
Implementers can Create new skins, Copy an existing skin or Edit a skin in order to view or make changes.
Editing a skin can be done visually or by editing the actual skin code by using the Edit Source action.
Important: Changes to existing skins can affect the way the base product portal behaves and should be done with care.
Administration Console Services - Content
In the admin console Services tab implementers can find the Content service that shows the configured content server linked to the portal application.
In this page implementers can view the folder structure and documents in the content server linked to the application.
Note: While some Content management functions are available in this page, the administration functions of the Content server are described in the UCM related sections.
Administration Console Configuration Page
The admin console Configuration allows implementers to make changes to default portal settings.
Implementers can change the Default Page Template which will change the page template on all portal pages.
The Default Skin for the portal pages can also be changed to provide a different look and feel to all pages at once.
Note: For more information about the actions and options available in the WebCenter Administration Console, see the Oracle WebCenter documentation.
Portal Navigation
The base product implements portal navigation by referencing a navigation model. Navigation model provides out-of-the-box multi-language support and allows product to utilize WebCenter's own task flows for left-side navigation menu and the breadcrumbs navigation.
Navigation models are managed on the WebCenter Administration Console and can be added/maintained/customized via WebCenter Composer. Refer to Application Bookmarks chapter for important customization remarks.
Navigation Components
The base product is provided with a single default navigation model, WSSPortalNavigation, which uses three portal navigation components:
Application Bookmarks
Navigation in the portal application is typically done by either using the navigation menus (the top bar or the side panel) or using various hyperlinks provided by the portal application itself. For example, such hyperlink is used for navigation to My Accounts page in order to switch the tax account in context.
The navigation model is customizable. Implementers may wish to change the location of the existing portal pages in the overall navigation hierarchy. For example, you may choose to move the My Accounts page under the Online Services page group.
To ensure the integrity of the internal application navigation when modifying the navigation model, the application defines a set of Application Bookmarks. Each bookmark is referencing the location of a base product page. In a runtime the application derives the navigation target from the bookmark rather than point directly to a page location.
Application Bookmarks are defined as a value of a Lookup SYS_BOOKMARKS.
This lookup includes the values of all the portal pages. For each defined value the Extended Value captures the URL of the page according to the current navigation model. For example, the navigation URL for Service Requests is /faces/service/servicereq.
Changing Bookmarks
If the page hierarchy of the current navigation model is modified, changes should propagated to the application bookmarks. For example, if you move the My Accounts page under the Online Services page group, its navigation URL (in the application bookmarks definition) should change from /faces/myaccount to /faces/service/myaccount.
To amend the application bookmarks, a new set of bookmarks must be created and noted in the system configuration options, following these steps:
Customizing Navigation
Various customization requirements are supported:
Modify the text of the navigation links. The text of the navigation links can be modified via WebCenter Composer. Login as an administrator, select the navigation model from the portal resources list and edit the navigation items.
Modify/rearrange the existing navigation structure. The navigation model is customizable. The items could be re-arranged, re-named and re-structured according to the business requirements.
Note: Application Bookmarks must be updated if you modify the hierarchy of the pages provided with the base product, Please see Application Bookmarks chapter for more details.
Add new pages added to the portal. When new page is added to the portal application, the corresponding entry should be added to the navigation model.
Note: The top-level pages appear on the top menu bar. The pages added to the hierarchy beneath one of the top menu pages appear on the pull-down menus.
Create a special set of navigation links. Your implementation may wish to support a scenario where one or more pages display a different set of navigation links. To create the links:
Portal Page Link Reference
When adding content to the portal or referencing the portal from an external website there are a set of links that can be used to navigate to a base portal page.
The links will differ slightly depending on whether they are used in one of the portal pages or an external page or document.
Note: References from UCM documents are considered to be in the external pages category.
Portal Page Links From Within the Portal
The base product supports direct internal navigation to the portal pages and in some cases allows pre-loading a specific item. For example, the HTML may include a hyperlink Apply for Tax Clearance Certificate that initiates a specific service request. The hyperlinks can be placed in the application messages, summary pages of the interactive tax assistance, and/or everywhere else HTML is supported. The following table describes the syntax:.
Target | URL |
---|---|
Online Service | /psrmss/faces/service |
Service Request – initiates specific service request | /psrmss/faces/service/servicereq?serviceReq=<Service Request Code> |
Make a Payment – initiates specific payment with pre-populated payment amount (optional) | /psrmss/faces/service/payment?payDest=<Payment Destination Code>&payAmount=<Value> |
Where Is My Refund? - initiates specific refund request | /psrmss/faces/service/refundstatus?refundReq=<Refund Request Code> |
Track Your Transaction - initiates transaction tracking with confirmation ID pre-populated | /psrmss/faces/service/querytrans?CNFID=<Confirmation ID> |
Tax Assistant - initiates specific interactive tax assistance | /psrmss/faces/taxassist?interviewSetCd=<Interview Set Code>&interviewCd=<Interview Code> |
Tax Forms [List] | /psrmss/faces/service/fileonline/taxforms |
Form [Specific Form] - initiates filing of a specific form | /psrmss/faces/oracle/webcenter/portalapp/pages/Form.jspx?FRM=<Form Type Code> |
Upload File | /psrmss/faces/service/fileonline/uploaddoc |
Business Registration [List] | /psrmss/faces/service/fileonline/regforms |
My Accounts | /psrmss/faces/myaccount |
Taxpayer Info | /psrmss/faces/taxpayerinfo |
Account Info | /psrmss/faces/ myaccount/accountinfo |
Settings | /psrmss/faces/sysadmin |
System Options | /psrmss/faces/sysadmin/sysoption |
Language | /psrmss/faces/sysadmin/syslang |
Message | /psrmss/faces/sysadmin/sysmsg |
Lookup | /psrmss/faces/sysadmin/syslookup |
Field | /psrmss/faces/sysadmin/sysfield |
Validation Rule | /psrmss/faces/sysadmin/sysval |
Property Type | /psrmss/faces/sysadmin/sysprop |
Email Definition | /psrmss/faces/sysadmin/sysemail |
Alert Type | /psrmss/faces/sysadmin/sysalerttype |
Configurations | /psrmss/faces/svcadmin |
Service Request | /psrmss/faces/svcadmin/svcreq |
Interview Set | /psrmss/faces/svcadmin/intrvset |
Payment Destination | /psrmss/faces/svcadmin/paydest |
Payment Provider | /psrmss/faces/svcadmin/paypvdr |
Form Designer | /psrmss/faces/svcadmin/frmdsgnr?FRM=<Form Type Code> |
Import Form Definition | /psrmss/faces/svcadmin/importfrm |
Release Forms | /psrmss/faces/svcadmin/relfrm |
Process Control | /psrmss/faces/svcadmin/procctrl |
Data Type | /psrmss/faces/svcadmin/datatype |
Access Type | /psrmss/faces/svcadmin/accesstype |
Address Configuration | /psrmss/faces/svcadmin/addressconfig |
Portal Links from External Documents or Sites
To access a base portal page from an external document, web site or from a UCM document, the prefix "/psrmss" should be added to the link.
For example, the ITA page link will be:
/psrmss/faces/oracle/webcenter/portalapp/pages/IntgTaxAssist.jspx
Portal Links for New Portal Pages
When new pages are added into the portal via WebCenter Composer, these pages are given a URL by WebCenter. You can view the link to the page by selecting the About This Page action from the WebCenter administration console.
For example, a new page with an assigned URL of /oracle/webcenter/portalapp/pagehierarchy/Page1.jspx can be displayed from within the portal by using the assigned URL, or /faces/oracle/webcenter/portalapp/pagehierarchy/Page1.jspx, or by using the /psrmss/faces/oracle/webcenter/portalapp/pagehierarchy/Page1.jspx URL if accessed from a UCM document or external site.
Configuring the Logo and Company Tag Line
Changing the template page header and logo images is described in the following section about overriding portal application images.
The company tag line text that appears under the logo in the page template is derived from a resource bundle with the ID TAG_LINE. The text displayed for this ID can be modified using the same procedure used to modify any other resource bundle-based text values in the portal application (for more information, see the WebCenter Portal Application Override Bundle section of this document).
Overriding Portal Application Images
The base product portal application uses various images in its portal pages. These can be overridden by the implementation.
All images used in the portal application are included in the WSSExtensionWar.war file.
To override a base product image:
For more information about deployment of the portal application refer to the WebLogic documentation and the PSRMSS Installation Guide.
Configuring the Portal Custom Icons and Links
The portal custom icons area is a horizontal bar on the page template that can contain images with links to common websites, such as Facebook, YouTube, Twitter, etc.
The portal custom links area is set of hyperlinks on the page template that can contain links to common pages both inside and outside the portal. Examples include an agency contact information page, agency general information, privacy policy link, and more.
Defining Portal Custom Icons
The base product portal application supports up to five custom icons defined by implementers.
To define a custom icon, implementers should define the image that will be displayed and the URL to use when the user clicks on the image.
All definitions are done using the resource bundle values in the Application Override Bundle with the following bundle ids:
n can be 1 to 5.
The following example is for an icon definition for YouTube:
<trans-unit id="COMMONICON1.IMAGE">
<source>/images/youtube.png</source>
<target/>
</trans-unit>
<trans-unit id="COMMONICON1.LINK">
<source>http://www.youtube.com</source>
<target/>
</trans-unit>
As a general guideline, the typical icon image size is 32x32 pixels.
Important: The icon image should be copied into the WSSExtensionWar.war file so it can be referenced as "/images/...".
Defining Portal Custom Links
The base product portal application supports up to 10 links defined by implementers. The base product is configured with a default set of sample links. These default links can be changed or removed by implementers.
In order to define a custom link, implementers should define the link name and the destination URL for that link.
All the definitions are done using resource bundle values in the Application Override Bundle using the following bundle IDs:
n can be 1 to 10.
The following is an example of a link definition:
<trans-unit id="COMMONLINK1">
<source>Contact Us</source>
<target/>
</trans-unit>
<trans-unit id="COMMONLINK1.DESTINATION">
<source>http://www.YourCompanyContactInfo.com</source>
<target/>
</trans-unit>
Configuring the Portal Copyright Message
The base product portal includes a copyright message, defined at the bottom of the portal page template. This message has a default value but can be changed by implementers.
The copyright message definition is resource bundle values in the Application Override Bundle using the following bundle ID: COPYRIGHT_MSG.
Adding a New Page to the Portal
Adding a new page to the portal is done from the WebCenter administration console.
The new page can include any content that can be added using WebCenter Composer and can have links to external pages or existing portal pages.
The new page can be secured or unsecured. If it is defined as visible, it will automatically be shown on the portal main navigation bar if the user has the appropriate security access.
Adding Content to a Portal Page
Many of the base product portal pages have some reserved space for specific portal content. This portal content is likely to change from one implementation to another.
Many types of content can be added, including HTML documents, images, links, custom developed control, and more.
Adding content to a portal page is done by using WebCenter Composer. In order to add something to a portal page the page has to be edited by using the Edit Page action in the WebCenter administration console. When the page is in edit mode, using WebCenter Composer, implementers can add content in the areas that are available for modification on the page.
Areas available for adding content will typically show as a dashed-line box with the caption, "Add Content".
When the area for adding content is chosen, the type of content to add can be selected from the available components in WebCenter Composer.
Adding WebCenter Managed Content to a Portal Page
WebCenter provides the ability to manage documents in a document management repository called WebCenter Content Server (UCM). These documents can be any documents, text or binary, HTML or images.
WebCenter Content Server provides the ability to securely manage the documents, providing a version control mechanism such as check-in and check-out capabilities.
Documents stored and managed by WebCenter Content Server can be included on the base product or new portal pages.
For more information about WebCenter Managed Content and UCM, refer to the WebCenter documentation.
In order to add a UCM document to a portal page, the Content Management category should be selected (after selecting the Add Content action) and within that category the Content Presenter can be selected.
Note that there are many ways to include UCM documents and other WebCenter Content features in a page. For more information about that, refer to WebCenter documentation.
When adding a UCM document using the Content Presenter Component, the user should select a document stored in one of the WebCenter Content server Folders.
For more information about Setting up UCM folders, refer to the WebCenter documentation.
Including Images and References in UCM Documents
UCM documents that will be included in the portal may include attachments that will be uploaded to UCM as well and should be accessible from the portal page that includes the UCM main document.
The following guidelines ensure that attachments (e.g., images) of a UCM documents can be visible on the portal page if presented using the Content Presenter component:
If the document includes references to the attachments (for example if the document is an HTML fragment that includes images then the images are the attachments that are referenced inside that document) the following path should be used:
/psrmss/content/conn/UCM/path/Contribution%20Folders/<directory name>
Changing Portal Page Content
Implementers can choose to make certain changes in the base provided portal pages. Some of the typical changes include adding content to the page, changing the look-and-feel of certain component on the page and changing text on the page (e.g., labels or headings).
Most portal pages are provided with the left-side navigation panel. It may be removed or made invisible via WebCenter Composer, using the Edit Page action.
All these changes are done using WebCenter Composer after selecting the Edit Page action from the WebCenter administration console.
Changes made using WebCenter Composer can be revoked so that the page returns to its original setup. The revocation of changes can be done at a component or page level.
For more information on how to use WebCenter Composer to make and revoke changes in page elements, refer to the WebCenter documentation.
While implementers can use WebCenter Composer to make changes to many page elements, there are some changes that can be done using a different technique. These are changes that are either more global in nature such as changing many labels or help text items, all of which are explored in the following sections.
Changing Page Labels
Most of the base product labels on the portal pages can be changed. Labels can be field labels, titles, headings or any static text that is displayed on a page. Label text values are derived from resource bundles based on a bundle ID. Updating the page labels can be done in two ways:
Identifying the Bundle ID for a Label on a Page
The bundle ID for a label can be located either in the application override template file (provided with the base product), according to the naming convention listed below, or by using WebCenter Composer, following these steps:
Select View > Source and navigate to the label.
Note: The easiest way to find the component in source mode is to click on the component in the design/preview section. For pages that are visible only after navigation, first navigate to the page and then change view to Source. You may be asked to confirm the Edit inside task flow; if so, select Edit.
Click on the label or the component that contains the label and click on edit in toolbar, a popup will be launched. Go the display options tab and copy the value for the Text/Label property. This will represent an EL expression in which second part is the bundle id for example TS_ADMIN_MANAGELANG_LANGUAGE_ADMIN_LBL.
Note: Sometimes the label itself cannot be selected, but the component that contains it will allow changing it.
Label Bundle ID Format
Base product bundle IDs have the following naming convention:
For Admin functionality (e.g., Lookup admin, Service request admin, etc):
TS_Admin_<Page or Fragment file name>_<Component Name>_LBL
TS_<Page or Fragment file name>_<Component Name>_LBL
All label bundle IDs have the prefix TS_ and the suffix _LBL.
If the label belongs to an admin module, the prefix is followed by the keyword ADMIN.
If the label is part of a transaction page, the page name or page fragment name directly follows the prefix.
For a complete list of all bundle IDs, refer to the application override bundle template file that is provided with the base product.
Changing Label Text
Label text can either be changed using the application override bundle or through WebCenter Composer.
Changing the Label Text Value Using Application Override Bundle
Modifying the help text in the Application Override Bundle is done according to the Label resource bundle ID. Once the identifier of the bundle is located, an entry can be added to the override bundle file.
Refer to the WebCenter Portal Application Override Bundle section for more details about the procedure of overriding resource bundle values in the base portal application.
Changing the Label Text Value Using WebCenter Composer
Modifying the label text using WebCenter Composer involves the following steps:
The Text/Label property contains the text to be displayed and can include a simple text or a resource bundle reference. It is recommended to use WebCenter Composer to create a New bundle ID entry in the portal application override bundle with the new text that needs to be displayed. This new bundle ID will be specific to the implementation.
Referencing a resource bundle value will allow implementers to retain the multi-language support for this label.
Customizing Help Content
The base product portal application provides context specific help in all the admin pages.
All transactional pages have placeholders for help which are hidden by default. The typical customizations of help component include:
Help Component Structure
All help components are isolated ADF task flows with the following input parameters:
bypassBundleLookup | Specifies if the help text is to be taken from the bundle or from the string parameter passed in helpText. Possible values are true or false . true – skip the bundle and display text string provided. false – find text in the bundle. |
helpText | Required when bypassBundleLookup is true . String provided will be displayed as help for the given component. |
bundleId | Required when bypassBundleLookup is false . Help text against this bundle ID will be displayed in UI. |
visible | Possible value is true or false . Specifies if the help text needs to be displayed or hidden. |
Base product help text is derived from the resource bundle and is referenced by a bundle ID. This bundle ID can be used to override the help text value in the application override bundle.
Identifying the Bundle ID for a Help Component on a Page
The bundle ID for a Help component can be located either in the application override template file (provided with the base product), according to the naming convention listed below, or by using WebCenter Composer, following these steps:
Select View > Source and navigate to the help component (task flow).
The easiest way to find the component in source mode is to click on the component in the design/preview section. For pages that are visible only after navigation, first navigate to the page and then change view to Source. You may be asked to confirm the Edit inside task flow; if so, select Edit.
In source view select the task flow region and click on edit in toolbar, a popup will be launched. Go the parameters tab and copy the value for Bundle ID parameter. In the EL expression (the value that was copied), the second part of the expression is the bundle ID. For example: TS_ADMIN_MANAGEMSG_MAIN_HELP.
Help Bundle ID Format
Base product bundle IDs have the following naming convention:
For Admin functionality (e.g., Lookup admin, Service request admin, etc):
TS_Admin_<Page or Fragment file name>_<Component Name>_HELP
TS_<Page or Fragment file name>_<Component Name>_HELP
All help bundle IDs have the prefix TS_ and the suffix _HELP.
If the help belongs to an admin module, the prefix is followed by the keyword ADMIN.
If the help is part of a transaction page, the page name or page fragment name directly follows the prefix.
For a complete list of all bundle IDs, refer to the application override bundle template file that is provided with the base product.
Changing Help Text
Help text can either be changed using the application override bundle or through WebCenter Composer.
Changing the Help Text Using Application Override Bundle
Modifying the help text in the Application Override Bundle is done according to the help text resource bundle ID. Once the identifier of the bundle is located, an entry can be added to the override bundle file.
Refer to the WebCenter Portal Application Override Bundle section for more details about the procedure of overriding resource bundle values in the base portal application.
Changing the Help Text Using WebCenter Composer
Modifying the help text using WebCenter Composer involves the following steps:
The helpText property contains the text to be displayed and can include simple text or a resource bundle reference. It is recommended to use WebCenter Composer to create a New bundle ID entry in the portal application override bundle with the new text that needs to be displayed. This new bundle ID will be specific to the implementation.
Referencing a resource bundle value will allow implementers to retain the multi-language support for the Help text.
Hide/Show a Help Component on a Page
Base product is provided with help components that are visible and some that are hidden.
Follow the steps below to hide and/or show Help on pages.
Changing the Portal Page Template
A base product template page is supplied with the portal application. This template page can be copied or modified by using WebCenter Composer. Implementers can update the page template visually or by directly accessing and updating the template source code.
The "breadcrumbs" navigation bar situated right below the page header may be removed or made invisible using the WebCenter Composer.
Note that changes made to a Page Template have global implications. They affect all the pages referencing the modified template.
Important: If more advanced customizations, beyond what is described in this chapter, are required, it is recommended that the base product page template be copied and changes made on the new customized template.
If a new page template is created, implementers can switch all or some of the existing pages, include the base product pages, to use the new template. This is done by using the WebCenter administration console configuration page.
Changing the Portal Skin
The base product includes a default skin WSSPortalTemplate_v1 (a .css file). UI elements reference the style selectors (classes, properties) and other definitions from the skin.
WSSRightOuterLayout | Alias associated with right hand layout of the page |
WSSPageTitle | Alias associated with the page title. |
WSSHelpImage | Alias associated with the help image. |
WSSSubHeaderLayout | Alias associated with the subheader layout. |
WSSSubHeader | Alias associated with the subheader. |
WSSCommonIcon | Alias associated the images in the footer bar area. |
WSSSiteBackgroundColor | Alias associated with the background color of the self-service application. |
The skin is maintained using WebCenter Composer, and may be updated visually or by directly accessing the skin source code.
Important: If skin changes are required, it is recommended that the base product skin be copied and changes made on the new customized skin.
Managing Portal Customization
Portal customizations that are done for one operational environment may be needed in other environments as well. For example, customization done in development environment can be moved to the testing environment before approval and finally moved to the production environment.
In addition, portal customization should be preserved as much as possible when a new product release is installed.
Porting Portal Customizations from One Environment to Another
In order to move all the portal customizations from environment A to environment B, the following steps are required:
For more information about MDS Configuration and Oracle Enterprise Manager, refer to the Oracle Enterprise Manager documentation.
Retaining Portal Customization After New Product Release Installation
When installing a new product version, there are no specific steps that have to be taken to retain the portal customization.
If the MDS repository of the existing application remains intact and the new portal version is installed and deployed on top of the existing portal, all portal customization should persist.
Important: Importing (using Oracle Enterprise Manager) MDS data from a previous version product environment into a new install product version is NOT recommended since it can override the new version portal pages.
For more information about MDS, refer to WebCenter and WebLogic documentation.
Moving UCM Content from One Environment to Another
Documents managed via WebCenter Content Server can be referenced on portal pages.
Given that a typical installation of the base product includes a separate UCM repository for each environment, the UCM document should be moved between environments when the application is moved.
Moving UCM documents between UCM environments is done using the WebCenter Content Server Archiver process.
Moving documents between UCM environments involves the following steps:
For more information about the WebCenter Archiver and the process of exporting UCM data, refer to the system migration and archiving in the WebCenter and WebCenter Content Server documentation.
Appendix A
WSDL Library
Process Tax Form (TSProcessTaxForm)
These are the node elements of the Processs Tax Form WSDL.
Node | Description |
---|---|
< TSProcessTaxForm> | This is the main node of the Process Tax Form WSDL. Its dateTimeTagFormat property is set to 'xsd'. |
<head> | This node is a sub-node of <TSProcessTaxForm>. It contains the access keys and audit information of the request. Refer to Access Keys and Audit Node. |
<lineOfBusiness> | This node is a sub-node of <TSProcessTaxForm>. It contains the line of business of the request. |
<requestStatus> <errorMessage> | These nodes are sub-nodes of <TSProcessTaxForm>. They hold the details of the error message thrown by the web service. Refer to Error Message Node. |
<confirmationData> | This node is a sub-node of <TSProcessTaxForm>. It holds the details of the confirmation message returned by the web service. Refer to Confirmation Message Node. |
<linkedRequest> | This node is a sub-node of <TSProcessTaxForm>. It may contain the reference number identifying Taxpayer Identification performed for this form processing |
<customInfo> | This node is a sub-node of < TSProcessTaxForm>. It holds the holds the details of any customization incorporated into the web service. Refer to Custom Information Node. |
<mainData> | This node is a sub-node of <TSProcessTaxForm>. It contains the data for the request. |
<validationRule/> <validationServer/> | These nodes are sub-nodes of < mainData> that are used to determine where the validation is invoked. |
<formType/> <formCategory/> <formData/>
| These nodes are sub-nodes of <mainData> that holds the form data. It contains the following information: formType - Contains the form type code in the revenue management system formCategory - Contains the form category formData - Contains the form content (structure and data) |
<customProperties> <sequence/> <propertyName/> <value/> </customProperties>
| This node is a sub-node of <mainData>. It contains optional form attributes that can be used for various purposes or capture an idiosyncratic information about forms of this type. sequence - Contains the order of the property propertyName - Contains the given name for the property value - Contains the value of the property |
<exceptions> <exception> <sequence/> <elementReference/> <errorMessage> <messageCategory/> <messageNumber/> <messageParameters> <parameters> <sequence/> <parameterType/> <parameterValue/> </parameters> </messageParameters> <currency/> <messageTxtOvrd/> <messageReference/> </errorMessage> </exception> </exceptions> | This node is a sub-node of <mainData>. It contains the form exceptions encountered when validating the form. It holds the following: sequence - Contains the order of form exceptions elementReference - Contains the category for which the error originated messageCategory - Contains the message category number messageNumber - Contains the message number currency - Contains the currency code to be used for amount messageTxtOvrd - Contains the message text to display instead of the portal message messageReference - Contains details on the origin of message Holds parameters for the messages sequence - Contains the order of parameters parameterType - Contains the type of parameter parameterValue - Contains the value |
Upload Supporting Document (TSUploadSupportingDocument)
These are the node elements of the Upload Supporting Document WSDL.
Node | Description |
---|---|
<TSUploadSupportingDocument> | This is the main node of the Upload Supporting Document WSDL. Its dateTimeTagFormat property is set to 'xsd'. |
<head> | This node is a sub-node of <TSUploadSupportingDocument>. It contains the access keys and audit information of the request. Refer to Access Keys and Audit Node. |
<requestStatus> <errorMessage> | These nodes are sub-nodes of <TSUploadSupportingDocument>. They hold the details of the error message thrown by the web service. Refer to Error Message Node. |
<confirmationData> | This node is a sub-node of <TSUploadSupportingDocument>. It holds the details of the confirmation message returned by the web service. Refer to Confirmation Message Node. |
<customInfo> | This node is a sub-node of <TSUploadSupportingDocument>. It holds the holds the details of any customization incorporated into the web service. Refer to Custom Information Node. |
<mainData> | This node is a sub-node of <TSUploadSupportingDocument>. It contains the data for the request. |
<documentLocator/> <targetConfirmationId/> <fileURL/> <content/> | These nodes are sub-nodes of <mainData>. It holds the document content in binary form to be stored in the document repository, the location of the stored document and document locator and/or target confirmation id to determine the the Form Service Task to which the file is related. documentLocator - Contains the document locator number of the tax form targetConfirmationId - Contains the form submission's original confirmation id fileURL - Contains document location URL generated by the document repository content - Contains the content of document in binary form |
GetTax Account Summary (TSGetTaxAccountSummary)
These are the node elements of the Get Tax Account Summary WSDL.
Node | Description |
---|---|
<TSGetTaxAccountSummary> | This is the main node of the Get Tax Account Summary WSDL. Its dateTimeTagFormat property is set to 'xsd'. |
<head> | This node is a sub-node of <TSGetTaxAccountSummary>. It contains the access keys and audit information of the request. Refer to Access Keys and Audit Node. |
<lineOfBusiness> | This node is a sub-node of <TSGetTaxAccountSummary>. It contains the line of business of the request. |
<requestStatus> <errorMessage> | These nodes are sub-nodes of <TSGetTaxAccountSummary>. They hold the details of the error message thrown by the web service. Refer to Error Message Node. |
<customInfo> | This node is a sub-node of <TSGetTaxAccountSummary>. It holds the holds the details of any customization incorporated into the web service. Refer to Custom Information Node. |
<responseData> | This node is a sub-node of <TSGetTaxAccountSummary>. It contains the response of the request. |
<taxpayerName/> <currentBalance/> <currency/> <taxType/>
| These nodes are sub-nodes of < responseData>. taxpayerName - Contains the name of taxpayer currentBalance - Contains the balance with P&I forecasting taxType - Contains the tax type |
<summaryTitleParameters> <sequence > <value/> </summaryTitleParameters> <summaryTextParameters> <sequence > <value/> </summaryTextParameters> <overrideSummaryTitle/> <overrideSummaryText/> | This node is a sub-node of <responseData>. It holds the parameters for the title and detail messages configured in the portal. sequence - Contains the order of the parameter value - Contains the value of the parameter It may also contain the override messages to replace the portal configuration. overrideSummaryTitle - Contains override message for title override SummaryText - Contains override message for text |
<location> <addressId/> <addressUsage/> <effectiveDates> <startDate/> <endDate/> <seasonStart/> <seasonEnd/> </effectiveDates> <address> <name/> <country/> <address1/> <address2/> <address3/> <address4/> <streetNumber1/> <streetNumber2/> <county/> <city/> <state/> <postal/> <houseType/> <latitude/> <longitude/> <inCityLimit/> <comments/> </address> </location> | This node is a sub-node of <requestData>. It contains the address to be added or updated for the taxpayer. addressId - Uniquely identifies the address in the revenue management system addressUsage - Defines a purpose for the address startDate - Start of effectivity of the address endDate - End of effectivity of the address seasonalStart - Start of effectivity for a season seasonalEnd - End of effectivity for a season name - Taxpayer name Contains the address information. |
Get Payment History (TSGetPaymentHistory)
These are the node elements of the Get Payment History WSDL.
Node | Description |
---|---|
<TSGetPaymentHistory> | This is the main node of the Get Payment History WSDL. Its dateTimeTagFormat property is set to 'xsd'. |
<head> | This node is a sub-node of <TSGetPaymentHistory>. It contains the access keys and audit information of the request. Refer to Access Keys and Audit Node. |
<lineOfBusiness> | This node is a sub-node of < TSGetPaymentHistory>. It contains the line of business of the request. |
<requestStatus> <errorMessage> | These nodes are sub-nodes of <TSGetPaymentHistory>. They hold the details of the error message thrown by the web service. Refer to Error Message Node. |
<customInfo> | This node is a sub-node of <TSGetPaymentHistory>. It holds the holds the details of any customization incorporated into the web service. Refer to Custom Information Node. |
<requestData> | This node is a sub-node of <TSGetPaymentHistory>. It contains the input data of the request. |
<fromDate/> <toDate/> | This node is a sub-node of <requestData>. It may contain the date range to filter the payment history retrieval. |
<responseData> | This node is a sub-node of <TSGetPaymentHistory>. It contains the response of the request. |
<paymentList> <paymentId/> <amount/> <date/> <currency/> <status/> </paymentList> | This list node is a sub-node of < responseData>. It contains payment records of the taxpayer, all or for a specified period. It holds the following information: paymentId - Contains unique identifier of the payment in the revenue management system amount - Contains the payment amount date - Contains the payment date currency - Contains the currency of the amount status - Contains the status of the payment |
Get Filing History (TSGetFilingHistory)
These are the node elements of the Get Filing History WSDL.
Node | Description |
---|---|
<TSGetFilingHistory> | This is the main node of the Get Filing History WSDL. Its dateTimeTagFormat property is set to 'xsd'. |
<head> | This node is a sub-node of <TSGetFilingHistory>. It contains the access keys and audit information of the request. Refer to Access Keys and Audit Node. |
<lineOfBusiness> | This node is a sub-node of <TSGetFilingHistory>. It contains the line of business of the request. |
<requestStatus> <errorMessage> | These nodes are sub-nodes of <TSGetFilingHistory>. They hold the details of the error message thrown by the web service. Refer to Error Message Node. |
<customInfo> | This node is a sub-node of <TSGetFilingHistory>. It holds the holds the details of any customization incorporated into the web service. Refer to Custom Information Node. |
<requestData> | This node is a sub-node of <TSGetFilingHistory>. It contains the input data of the request. |
<fromDate/> <toDate/> <taxType/> | This node is a sub-node of <requestData>. It may contain the date range and/or tax type to filter the payment history retrieval. |
<responseData> | This node is a sub-node of <TSGetFilingHistory>. It contains the response of the request. |
<taxForm> <formType/> <overrideDescription/> <formId/> <filingPeriodStartDate/> <filingPeriodEndDate/> <taxType/> <filingStatus/> <confirmationId/> <formSource/> <dueDate/> <receivedDate/> <amountDue/> <currency/> <documentLocatorNumber/> <documentLocation/> </taxForm>
| This list node is a sub-node of < responseData>. It contains tax filing records of the taxpayer, all or for a specified period. It holds the following information: formType - Contains the type of form overrideDescription - Contains the description for override formId - Contains the unique identifier for forms in the revenue management system filingPeriodStartDate - Contains the start of filing period filingPeriodEndDate - Contains the end of filing period taxType - contains the tax type of the tax role filingStatus - contains the derived filing status for the portal dueDate - contains the due date for filing form receivedDate - contains the date form was received amountDue - contains the amount due with P&I forecasting of the obligation currency - Contains the currency code of the amount documentLocatorNumber - Contains the related document locator number documentLocation - Contains the location to the printable tax form |
Get Tax Account Alerts (TSGetTaxAccountAlerts)
These are the node elements of the Get Tax Account Alerts WSDL.
Node | Description |
---|---|
<TSGetTaxAccountAlerts> | This is the main node of the Get Tax Account Alerts WSDL. Its dateTimeTagFormat property is set to 'xsd'. |
<head> | This node is a sub-node of <TSGetTaxAccountAlerts>. It contains the access keys and audit information of the request. Refer to Access Keys and Audit Node. |
<lineOfBusiness> | This node is a sub-node of <TSGetTaxAccountAlerts>. It contains the line of business of the request. |
<requestStatus> <errorMessage> | These nodes are sub-nodes of <TSGetTaxAccountAlerts>. They hold the details of the error message thrown by the web service. Refer to Error Message Node. |
<customInfo> | This node is a sub-node of <TSGetTaxAccountAlerts>. It holds the holds the details of any customization incorporated into the web service. Refer to Custom Information Node. |
<requestData> | This node is a sub-node of <TSGetTaxAccountAlerts>. It contains the input data of the request. |
<includeAccountAlerts/> <includeGeneralAlerts/> | This node is a sub-node of <requestData>. It contains the indicators if account and/or general alerts are going to be retrieved. |
<responseData> | This node is a sub-node of <TSGetTaxAccountAlerts>. It contains the response of the request. |
<alert> <alertType/> <alertParameters> <sequence/> <value/> </alertParameters> <overrideAlertText/> <overrideNavigation URL/> <documentLocation/> </alert>
| This list node is a sub-node of < responseData>. It contains the alerts for the account. It holds the following information: alertType - Contains the type of alert overrideAlertText - Contains the message text to override the portal message overrideNavigation - Contains the url to override navigation documentLocation - Contains the url for the document Holds also the list of alert parameters for the message. Parameter list contains: sequence - Contains the order of the alert parameter value - Contains the value of the alert parameter |
Get Taxpayer Summary (TSGetTaxpayerSummary)
These are the node elements of the Get Taxpayer Summary WSDL.
Node | Description |
---|---|
<TSGetTaxpayerSummary> | This is the main node of the Get Taxpayer Summary WSDL. Its dateTimeTagFormat property is set to 'xsd'. |
<head> | This node is a sub-node of < TSGetTaxpayerSummary>. It contains the access keys and audit information of the request. Refer to Access Keys and Audit Node. |
<lineOfBusiness> | This node is a sub-node of < TSGetTaxpayerSummary>. It contains the line of business of the request. |
<requestStatus> <errorMessage> | These nodes are sub-nodes of < TSGetTaxpayerSummary>. They hold the details of the error message thrown by the web service. Refer to Error Message Node. |
<customInfo> | This node is a sub-node of < TSGetTaxpayerSummary>. It holds the holds the details of any customization incorporated into the web service. Refer to Custom Information Node. |
<responseData> | This node is a sub-node of < TSGetTaxpayerSummary>. It contains the response of the request. |
<name/> <taxpayerType/> | These nodes are sub-nodes of < responseData>. It provides details on the taxpayer such as name and type. |
<summaryTitleParameters> <sequence > <value/> </summaryTitleParameters> <summaryTextParameters> <sequence > <value/> </summaryTextParameters> <overrideSummaryTitle/> <overrideSummaryText/> | This node is a sub-node of <responseData>. It holds the parameters for the title and detail messages configured in the portal. sequence - Contains the order of the parameter value - Contains the value of the parameter It may also contain the override messages to replace the portal configuration. overrideSummaryTitle - Contains override message for title override SummaryText - Contains override message for text |
<primaryContact> <contactType/> <contactName/> <emailAddress/> </primaryContact> | This node is a sub-node of <responseData>. It contains information on the primary contact. contactType - Contains the relationship to main taxpayer contactName - Contains name of contact retrieved based on configured name type emailAddress - Contains email address of the contact |
Get Taxpayer Contact Information (TSGetTaxpayerContactInformation)
These are the node elements of the Get Taxpayer Contact Information WSDL.
Node | Description |
---|---|
<TSGetTaxpayerContactInformation> | This is the main node of the Get Taxpayer Contact Information WSDL. Its dateTimeTagFormat property is set to 'xsd'. |
<head> | This node is a sub-node of <TSGetTaxpayerContactInformation >. It contains the access keys and audit information of the request. Refer to Access Keys and Audit Node. |
<lineOfBusiness> | This node is a sub-node of <TSGetTaxpayerContactInformation >. It contains the line of business of the request. |
<requestStatus> <errorMessage> | These nodes are sub-nodes of <TSGetTaxpayerContactInformation >. They hold the details of the error message thrown by the web service. Refer to Error Message Node. |
<confirmationData> | This node is a sub-node of <TSGetTaxpayerContactInformation >. It holds the details of the confirmation message returned by the web service. Refer to Confirmation Message Node. |
<customInfo> | This node is a sub-node of <TSGetTaxpayerContactInformation>. It holds the holds the details of any customization incorporated into the web service. Refer to Custom Information Node. |
<responseData> | This node is a sub-node of <TSGetTaxpayerContactInformation>. It contains the request and response of the request. |
<emailId/> | This node is a sub-node of <responseData>. It contains the new email address in the case of update, or the retrieved email address in the case of read. |
<phones> <sequence/> <phoneType/> <phoneNumber/> <extension/> </phones>
| This node is a sub-node of <responseData>. It holds the updated list of phone numbers in the case of update, or the retrieved phones in the case of read. sequence - Contains the order of the parameter phoneType - Contains the type of contact number phoneNumber - Contains the contact number extension - Contains the extension number |
Get Taxpayer Correspondence Information (TSGetTaxpayerCorrespondenceInformation)
These are the node elements of the Get Taxpayer Contact Information WSDL.
Node | Description |
---|---|
<TSGetTaxpayerCorrespondenceInformation> | This is the main node of the Get Taxpayer Contact Information WSDL. Its dateTimeTagFormat property is set to 'xsd'. |
<head> | This node is a sub-node of <TSGetTaxpayerCorrespondenceInformation>. It contains the access keys and audit information of the request. Refer to Access Keys and Audit Node. |
<lineOfBusiness> | This node is a sub-node of <TSGetTaxpayerCorrespondenceInformation>. It contains the line of business of the request. |
<requestStatus> <errorMessage> | These nodes are sub-nodes of <TSGetTaxpayerCorrespondenceInformation>. They hold the details of the error message thrown by the web service. Refer to Error Message Node. |
<confirmationData> | This node is a sub-node of <TSGetTaxpayerCorrespondenceInformation>. It holds the details of the confirmation message returned by the web service. Refer to Confirmation Message Node. |
<customInfo> | This node is a sub-node of <TSGetTaxpayerCorrespondenceInformation>. It holds the holds the details of any customization incorporated into the web service. Refer to Custom Information Node. |
<responseData> | This node is a sub-node of <TSGetTaxpayerCorrespondenceInformation >. It contains the response of the request. |
<location> <sequence/> <allowEdit/> <allowDelete/> <addressId/> <addressUsage/> <effectiveDates> <startDate/> <endDate/> <seasonStart/> <seasonEnd/> </effectiveDates> <address> <name/> <country/> <address1/> <address2/> <address3/> <address4/> <streetNumber1/> <streetNumber2/> <county/> <city/> <state/> <postal/> <houseType/> <latitude/> <longitude/> <inCityLimit/> <comments/> </address> <overrideFormattedAddress/> </location>
| This node is a sub-node of <responseData>. It holds the list of addresses of the taxpayer. sequence - Contains the ordering of addresses allowEdit - Indicates whether address is editable allowDelete - Indicates whether address may be deleted addressId - Uniquely identifies the address in the revenue management system addressUsage - Defines a purpose for the address startDate - Start of effectivity of the address endDate - End of effectivity of the address seasonalStart - Start of effectivity for a season seasonalEnd - End of effectivity for a season name - Taxpayer name country - Contains the country address1 - Contains the address address2 - Contains the address address3 - Contains the address address4 - Contains the address streetNumber1 - Contains the street number streetNumber2 - Contains the street number county - Contains the county city - Contains the city state - Contains the state postal - Contains the postal code houseType - Contains the type of houde latitude - Contains geographic coordinate north-to-south position of the address longitude - Contains the geographic coordinate east-to-west position of the address inCityLimit - Contains the indicator if within city comments - Contains comments overrideFormattedAddress - Contains the address to override in portal |
Taxpayer Address Maintenance (TSAddressMaintenance)
These are the node elements of the Taxpayer Address Maintenance WSDL.
Node | Description |
---|---|
<TSAddressMaintenance> | This is the main node of the Taxpayer Address Maintenance WSDL. Its dateTimeTagFormat property is set to 'xsd'. |
<head> | This node is a sub-node of <TSAddressMaintenance>. It contains the access keys and audit information of the request. Refer to Access Keys and Audit Node. |
<lineOfBusiness> | This node is a sub-node of <TSAddressMaintenance>. It contains the line of business of the request. |
<requestStatus> <errorMessage> | These nodes are sub-nodes of <TSAddressMaintenance>. They hold the details of the error message thrown by the web service. Refer to Error Message Node. |
<confirmationData> | This node is a sub-node of <TSAddressMaintenance>. It holds the details of the confirmation message returned by the web service. Refer to Confirmation Message Node. |
<customInfo> | This node is a sub-node of <TSAddressMaintenance>. It holds the holds the details of any customization incorporated into the web service. Refer to Custom Information Node. |
<requestData> | This node is a sub-node of <TSAddressMaintenance>. It contains the input data of the request. |
<addressChangeReason/> <location> <addressId/> <addressUsage/> <effectiveDates> <startDate/> <endDate/> <seasonStart/> <seasonEnd/> </effectiveDates> <address> <name/> <country/> <address1/> <address2/> <address3/> <address4/> <streetNumber1/> <streetNumber2/> <county/> <city/> <state/> <postal/> <houseType/> <latitude/> <longitude/> <inCityLimit/> <comments/> </address> </location>
| This node is a sub-node of <requestData>. It contains the address to be added or updated for the taxpayer. addressId - Contains the unique identifier of the address in the revenue management system addressUsage - Contains the purpose for the address startDate - Contains the start of effectivity of the address endDate - Contains the end of effectivity of the address seasonalStart - Contains the start of effectivity for a season seasonalEnd - Contains the end of effectivity for a season name - Containst the taxpayer name country - Contains the country address1 - Contains the address address2 - Contains the address address3 - Contains the address address4 - Contains the address streetNumber1 - Contains the street number streetNumber2 - Contains the street number county - Contains the county city - Contains the city state - Contains the state postal - Contains the postal code houseType - Contains the type of houde latitude - Contains geographic coordinate north-to-south position of the address longitude - Contains the geographic coordinate east-to-west position of the address inCityLimit - Contains the indicator if within city comments - Contains comments |
Enrollment Service Request (TSEnrollmentServiceRequest) - WSDL
These are the node elements of the Prepare External Payment Data WSDL.
Node | Description |
---|---|
<TSEnrollmentServiceRequest> | This is the main node of the Generic Service Request WSDL. Its dateTimeTagFormat property is set to 'xsd'. |
<head> | This node is a sub-node of <TSEnrollmentServiceRequest>. It contains the access keys and audit information of the request. Refer to Access Keys and Audit Node. |
<requestStatus> <errorMessage> | These nodes are sub-nodes of <TSEnrollmentServiceRequest>. They hold the details of the error message thrown by the web service. Refer to Error Message Node. |
<linkedRequest> | This node is a sub-node of <TSEnrollmentServiceRequest>. It may contain the reference number identifying Taxpayer Identification performed for this payment |
<confirmationData> | This node is a sub-node of <TSEnrollmentServiceRequest>. It holds the details of the confirmation message returned by the web service. Refer to Confirmation Message Node. |
<mainData> | This node is a sub-node of <TSEnrollmentServiceRequest>. It contains the main data in the request. |
<serviceRequestType> | This node is a sub-node of <mainData>. It contains the type of Service Request that was submitted. |
<responseMode> | This node is a sub-node of <mainData>. It holds the mode of response that is associated with the request. Value can either be Synchronous or Asynchronous. |
<serviceRequestData> <enrollmentID> <lineOfBusiness> <requestField> <sequence> <fieldName> <fieldValue> </requestField> </serviceRequestData> | This node is a sub-node of <mainData>. It holds: Line of Business and Enrollment ID. This pair of values should be captured on the enrollment event record and uniquely identify enrollment event in the back-end system. A list of service request fields. <requestField> - Each sub-node holds the information of a specific field in the request. <sequence> - Contains the field's sequence number. <fieldName> - Contains the name of a field. <fieldValue> - Contains the value of a field. |
<customInfo> | This node is a sub-node of <TSEnrollmentServiceRequest>. It holds the holds the details of any customization incorporated into the web service. Refer to Custom Information Node. |
<userAccess type="group"> <accessEntity type="list"> <sequence/> <lineOfBusiness/> <revenueMgmtSystem/> <enrollmentId/> <status/> <accessType/> <ACCESS KEYS 1 - 10> </accessEntity> </userAccess> | This node is a sub-node of <TSEnrollmentServiceRequest>. It holds one or more access keys that represent the taxpayer's information in the revenue management system. |
Get Enrollment Summary (TSGetEnrollmentSummary) - WSDL
These are the node elements of the Get Enrollment Summary message.
Node | Description |
---|---|
<TSGetEnrollmentSummary> | This is the main node of the request. Its dateTimeTagFormat property is set to 'xsd'. |
<head> | This node is a sub-node of <TSGetEnrollmentSummary>. It contains the access keys and audit information of the request. Refer to Access Keys and Audit Node. |
<requestStatus> <errorMessage> | These nodes are sub-nodes of <TSGetRefundStatus>. They hold the details of the error message thrown by the web service. Refer to Error Message Node. |
<linkedRequest> | This node is a sub-node of < TSGetEnrollmentSummary>. Part of the common message fragment, not in use. |
<confirmationData> | This node is a sub-node of <TSGetEnrollmentSummary>. It may hold the details of the confirmation message returned by the web service. Refer to Confirmation Message Node. Not in use. |
<mainData> | This node is a sub-node of <TSGetEnrollmentSummary>. It contains the main data of the request. |
<userAccess> | This node is a sub-node of <mainData>. It contains the list of access "units". |
<accessEntity> | This is a list. Each element contains the data related to the single access keys set. |
<sequence/> <taxpayerName/> <accountName/> <isDefaultAccessEntry/> <lineOfBusiness/> <revenueMgmtSystem/> <enrollmentId/> <status/> <accessType/> <key1> <name/> <value/> </key1> <key2> <name/> <value/> </key2> <key10> <name/> <value/> </key10> <summaryTitle> <parameters> <sequence/> <value/> </parameters> </summaryTitle> <summaryDetail> <parameters> <sequence/> <value/> </parameters> </summaryDetail> | The elements in bold are populated in the integration layer with data queried from the User Access store. The rest is populated by the revenue management system and returned with the response. |
<customInfo> | This node is a sub-node of <TSGetEnrollmentSummary>. It holds the details of any customization incorporated into the web service. Refer to Custom Information Node. |
User Enrollment (TSGetUserEnrollment) - WSDL
These are the node elements of the TSGetUserEnrollment message.
Node | Description |
---|---|
<TSGetUserEnrollment> | This is the main node of the Get User Enrollment Request WSDL. Its dateTimeTagFormat property is set to 'xsd'. |
<head> | This node is a sub-node of <TSGetUserEnrollment>. It contains the access keys and audit information of the request. Refer to Access Keys and Audit Node. |
<requestStatus> <errorMessage> | These nodes are sub-nodes of < TSGetUserEnrollment >. They hold the details of the error message thrown by the web service. Refer to Error Message Node. |
<linkedRequest> | This node is a sub-node of <TSGetUserEnrollment>. Part of the common message fragment, and not in use. |
<confirmationData> | This node is a sub-node of <TSGetUserEnrollment>. It holds the details of the confirmation message returned by the web service. Refer to Confirmation Message Node. |
<mainData> | This node is a sub-node of <TSGetUserEnrollment>. It contains the main data of the request. |
<isUserEnrolled> | This node is a sub-node of <mainData>. Indicates whether user already has at least one Approved record in User Access Store. |
<newKeysExists> | This node is a sub-node of <mainData>. Indicates whether revenue management found new information and granted the access to it (for implicit enrollment). |
<enrollmrentSummary> <enrollmentEvent> <lineOfBusiness> <enrollmentId> </enrollmentEvent> </ enrollmrentSummary> | This node is a sub-node of <mainData>. It provides the snapshot of user enrollment(what Lines of Business have already been enrolled, along with the corresponding enrollment ID). |
<userAccess> | This node is a sub-node of <mainData>. It contains the list of access "units" |
<accessEntity> | This is a list. Each element contains the data related to the single access keys set. |
<sequence/> <lineOfBusiness/> <revenueMgmtSystem/> <enrollmentId/> <status/> <accessType/> <key1> <name/> <value/> </key1> <key2> <name/> <value/> </key2> <key10> <name/> <value/> </key10> | Access entity information includes access type, access keys, and line of business. On the request it is populated with existing records queried from the User Access store. On the response, it is populated with new access keys determined in the revenue management system (implicit enrollment refresh). |
<customInfo> | This node is a sub-node of <TSGetUserEnrollment>. It holds the holds the details of any customization incorporated into the web service. Refer to Custom Information Node. |
Generic Service Request - TSTaxpayerServiceRequest
Node | Description |
---|---|
<TSTaxpayerServiceRequest> | This is the main node of the Generic Service Request WSDL. dateTimeTagFormat property value is set to 'xsd'. |
<head> | This node is a sub node of <TSTaxpayerServiceRequest> It contains the access keys and audit information of the request. Refer to Access Keys and Audit Node. |
<requestStatus> <errorMessage> | These nodes are sub nodes of <TSTaxpayerServiceRequest> Refer to Error Message Node for details. |
<confirmationData> | This node is a sub node of <TSTaxpayerServiceRequest>. Refer to Confirmation Message Node for details. |
<linkedRequest> | This node is a sub node of <TSTaxpayerServiceRequest>. It may contain the reference number identifying Taxpayer Identification performed for this form processing. |
<mainData> | This node is a sub node of <TSTaxpayerServiceRequest>. It contains the main data of the request. |
<serviceRequestType> | This node is a sub node of <mainData>. Service Request Type code, alphanumeric. |
<responseMode> | This node is a sub node of <mainData>. It holds the mode of response that is associated with the request. Valid values: SYNCH (Synchronous), ASYNCH (Asynchronous). |
<serviceRequestData> <requestField> <sequence> <fieldName> <fieldValue> </requestField> </serviceRequestData> | This node is a sub node of <mainData>. It holds a list of service request fields. requestField – a list of service reques fieldssequence contains the field’s sequence number.fieldName contains the name of a field.fieldValue contains the value of a field. |
<customInfo> | This node is a sub node of <TSTaxpayerServiceRequest>. Contains generic name/value collection. This is a placeholder for additional information that can be utilized by the implementation. Refer to Custom Information Node for detals. |
Taxpayer Identification Request - TSTaxpayerIdentification
Node | Description |
---|---|
<TSTaxpayerIdentification> | This is the main node of the Taxpayer Identification Service Request WSDL. dateTimeTagFormat property value is set to ‘xsd’.. |
<head> | This node is a sub node of <TSTaxpayerIdentification>. It contains the access keys and the audit information of the request. Refer to Access Keys and Audit Node. |
<requestStatus> <errorMessage> | These nodes are sub nodes of <TSTaxpayerIdentification>. Refer to Error Message Node for details |
<confirmationData> | This node is a sub node of <TSTaxpayerIdentification>. Refer to Confirmation Message Node for details |
<mainData> | This node is a sub node of <TSTaxpayerIdentification>. It contains the main data of the request. |
<serviceRequestType> | This node is a sub node of <mainData>. Service Request Type code, alphanumeric. |
<responseMode> | This node is a sub node of <mainData>. It holds the mode of response that is associated with the request. Valid values: SYNCH (Synchronous), ASYNCH (Asynchronous) |
<serviceRequestData> <requestField> <sequence> <fieldName> <fieldValue> </requestField> </serviceRequestData> | This node is a sub node of <mainData>. It holds a list of service request fields. requestField – a list of service reques fieldssequence contains the field’s sequence number.fieldName contains the name of a field.fieldValue contains the value of a field. |
<customInfo> | This node is a sub node of <TSTaxpayerIdentification>. Contains generic name/value collection. This is a placeholder for additional information that can be utilized by the implementation. Refer to Custom Information Node for detals. |
<responseData> <responseDetails> <sequence> <taxpayerId> </responseDetails> </responseData> | This node is a sub node of <TSTaxpayerIdentification>. It holds response details from the web service. responseDetails – the list of taxpayer ID-s identified based on the input request data information.sequence contains the response details’ sequence number.taxpayerId contains the Taxpayer ID retrieved based on the query. |
Refund Inquiry Request - TSGetRefundStatus
Node | Description |
---|---|
<TSGetRefundStatus> | This is the main node of the Refund Inquiry Service Request WSDL. dateTimeTagFormat property value is set to 'xsd'. |
<head> | This node is a sub node of <TSGetRefundStatus>. It contains the access keys and the audit information of the request. Refer to Access Keys and Audit Node. |
<requestStatus> <errorMessage> | These nodes are sub nodes of <TSGetRefundStatus>. Refer to Error Message Node for details. |
<confirmationData> | This node is a sub node of <TSGetRefundStatus>. Refer to Confirmation Message Node for details. |
<linkedRequest> | This node is a sub node of <TSGetRefundStatus>. It may contain the reference number identifying Taxpayer Identification performed for this form processing. |
<mainData> | This node is a sub node of <TSGetRefundStatus>. It contains the main data of the request. |
<serviceRequestType> | This node is a sub node of <mainData>. Service Request Type code, alphanumeric. |
<serviceRequestData> <requestField> <sequence> <fieldName> <fieldValue> </requestField> </serviceRequestData> | This node is a sub node of <mainData>. It holds a list of service request fields. responseDetails – the list of taxpayer ID-s identified based on the input request data information.sequence contains the response details' sequence number.taxpayerId contains the Taxpayer ID retrieved based on the query. |
<responseData> <responseDetails> <expectedDate> <refundAmount> <carryOverAmount> <offsetAmount> </responseDetails> </responseData> | This node is a sub node of <TSGetRefundStatus>. It holds response details from the web service. responseDetails contains the details of the refund that will be returned to the taxpayer.expectedDate contains the Expected Refund Date.refundAmount contains the amount of refund that will be returned.carryOverAmount contains the carry over amount (if there are any).offsetAmount contains the offset amount (if there’s any). |
<customInfo> | This node is a sub node of <TSTaxpayerIdentification>. Contains generic name/value collection. This is a placeholder for additional information that can be utilized by the implementation. Refer to Custom Information Node for detals. |
One Time Payment - TSOneTimePayment
Node | Description |
---|---|
<TSOneTimePayment> | This is the main node of the One Time Payment WSDL. dateTimeTagFormat property value is set to 'xsd' |
<head> | This node is a sub node of <TSOneTimePayment>. It contains the access keys and the audit information of the request. Refer to Access Keys and Audit Node. |
<requestStatus> <errorMessage> | These nodes are sub nodes of <TSOneTimePayment>. Refer to Error Message Node for details. |
<confirmationData> | This node is a sub node of <TSOneTimePayment>. Refer to Confirmation Message Node for details. |
<linkedRequest> | This node is a sub node of <TSOneTimePayment>. It may contain the reference number identifying Taxpayer Identification performed for this form processing. |
<mainData> | This node is a sub node of <TSOneTimePayment>. It contains the main data of the request. |
<payDestinationType> | This node is a sub node of <mainData>. Contains Payment Destination code for the payment. Defines the purpose of the payment, configured in self-service application |
<destinationDetails> <sequence> <fieldName> <fieldValue> </destinationDetails> | This node is a sub node of <mainData>. Each sub node holds the information of a specific field destination in the request. sequence contains the field’s sequence number.fieldName contains the name of a field.fieldValue contains the value of a field. |
<paymentType> | This node is a sub node of <mainData> contains the payment type code, identifies the payment instruments |
<amount> | This node is a sub node of <mainData> contains payment amount |
<currency> | This node is a sub node of <mainData> the currency of the payment. |
<paymentDate> | This node is a sub node of <mainData>. Contains payment date. |
<bankAcctInfo> <routingNumber> <acctNumber> </bankAcctInfo> | This node is a sub node of <mainData>. It holds the information regarding the bank account. routingNumber contains the routing number of the bankacctNumber contains taxpayer account number |
<extTransactionRefID> | This node is a sub node of <mainData>. It holds the reference id of the payment made via external payment services provider. This node may contain credit card authorization code, receipt number or any other transaction identifier. |
<contactEmailAddress> | This node is a sub node of <mainData>. It holds the value of the email address of the taxpayer. |
<externalId> | This node is a sub node of <mainData>. It holds the unique id generated to trace the interaction with external payment services system. |
<paymentVendor> | This node is a sub node of <mainData>. It holds the identifier of the payment vendor that processed the payment. |
<externalPaymentData> | This node is a sub node of <mainData>. It holds vendor-specific information for the payment made using external payment services. |
<customInfo> | This node is a sub node of <TSTaxpayerIdentification>. Contains generic name/value collection. This is a placeholder for additional information that can be utilized by the implementation. Refer to the Custom Information Node for details. |
Prepare Payment Data - TSPrepareExtPaymentData
Node | Description |
---|---|
<TSPrepareExtPaymentData> | This is the main node of the Prepare External Payment Data WSDL. dateTimeTagFormat property value is set to ‘xsd’ |
<head> | This node is a sub node of <TSPrepareExtPaymentData>. It contains the access keys and the audit information of the request. The valid vaues for the <action> element are: VALIDATEONLY and PREPARE. Refer to Access Keys and Audit Node for moe details. |
<requestStatus> <errorMessage> | These nodes are sub nodes of <TSPrepareExtPaymentData>. Refer to Error Message Node for details |
<confirmationData> | This node is a sub node of <TSPrepareExtPaymentData>. Common fragment, not in use for this web service |
<mainData> | This node is a sub node of <TSPrepareExtPaymentData>. It contains the main data of the request. |
<taxpayerID> | This node is a sub node of <mainData>. Contains internal taxpayer identifier in the revenue management system. |
<onBehalfOfTaxpayerID> | This node is a sub node of <mainData>. Contains internal taxpayer identifier in the revenue management system. |
<paymentVendor> | This node is a sub node of <mainData>. It holds the identifier of the payment vendor that processed the payment. |
<amount> | This node is a sub node of <mainData>. Contains payment amount. |
<paymentDate> | This node is a sub node of <mainData>. Contains payment date. |
<payDestinationType> | This node is a sub node of <mainData>. Contains Payment Destination code for the payment. Defines the purpose of the payment, configured in self-service application |
<destinationDetails> <sequence> <fieldName> <fieldValue> </destinationDetails> | This node is a sub node of <mainData>. Each sub node holds the information of a specific field destination in the request. sequence contains the field’s sequence number.fieldName contains the name of a field.fieldValue contains the value of a field. |
<paymentDetails> <sequence> <fieldName> <fieldValue> </paymentDetails> | This node is a sub node of <mainData>. Contains payment-related information prepared in the revenue management system for subsequent transmission to external payment services provider. sequence contains the detail’s sequence number.fieldName contains the name of a field.fieldValue contains the value of a field. |
<externalId> | This node is a sub node of <mainData>. It holds the unique id generated to trace the interaction with external payment services system. |
<feeRequirement> | This node is a sub node of <mainData>. It contains the indicator that determines whether and how convenience fees will be collected for this payment. Applicable for payments made via external payment services providers. |
<customInfo> | This node is a sub node of <TSPrepareExtPaymentData>. Contains generic field name/field value pairs collection. This is a placeholder for additional information that can be utilized by the implementation. Refer to Custom Information Node for detals. |
Process Reconciliation Report - TSProcessExtPayReportRecord
Node | Description |
---|---|
<TSProcessExtPayReportRecord> | This is the main node of the One Time Payment WSDL. dateTimeTagFormat property value is set to ‘xsd’ |
<head> | This node is a sub node of <TSProcessExtPayReportRecord>. It contains the access keys and the audit information of the request. Refer to Access Keys and Audit Node for moe details.. |
<requestStatus> <errorMessage> | These nodes are sub nodes of <TSProcessExtPayReportRecord>. Refer to Error Message Node for details |
<confirmationData> | This node is a sub node of <TSProcessExtPayReportRecord>. Common fragment, not in use by this web service |
<paymentReportRecord> | This node is a sub node of <TSProcessExtPayReportRecord>. It contains the main data of the request. |
<paymentVendor> | This node is a sub node of <mainData>. It holds the identifier of the payment vendor that processed the payment. |
<amount> | This node is a sub node of <mainData>. Contains payment amount. |
<paymentDate> | This node is a sub node of <mainData>. Contains payment date. |
<payDestinationType> | This node is a sub node of <mainData>. Contains Payment Destination code for the payment. Defines the purpose of the payment, configured in self-service application |
<destinationDetails> <sequence> <fieldName> <fieldValue> </destinationDetails> | This node is a sub node of <mainData>. Each sub node holds the information of a specific field destination in the request. sequence contains the field’s sequence number.fieldName contains the name of a field.fieldValue contains the value of a field. |
<paymentType> | This node is a sub node of <mainData> contains the payment type code, identifies the payment instruments |
<extTransactionRefID> | This node is a sub node of <mainData>. It holds the reference id of the payment made via external payment services provider. This node may contain credit card authorization code, receipt number or any other transaction identifier. |
<externalId> | This node is a sub node of <mainData>. It holds the unique id generated to trace the interaction with external payment services system. |
<externalPaymentReportData> | This node is a sub node of <mainData> It holds vendor-specific pament information. |
<customInfo> | This node is a sub node of <TSProcessExtPayReportRecord>. It holds the holds the details of any customization incorporated into the web service. Refer to Custom Information Node. |
Confirmation Inquiry - TSGetConfirmationInformation
Node | Description |
---|---|
<TSGetConfirmationInformation> | This is the main node of the Confirmation Inquiry WSDL. dateTimeTagFormat property value is set to ‘xsd’. |
<head> | This node is a sub node of <TSGetConfirmationInformation>. It contains the access keys and the audit information of the request. Refer to Access Keys and Audit Node. |
<requestStatus> <errorMessage> | These nodes are sub nodes of <TSGetConfirmationInformation>. Refer to Error Message Node for more details. |
<confirmationData> | This node is a sub node of <TSGetConfirmationInformation>. Contains confirmation ID, confirmation header and te list of confirmation details. For detailed description refer to Confirmation Message Node. |
Common XML Fragments
These fragments are included in every XML message transmitted from the self-service application.
Address Data Common
This is the common node that contains address details.
Node | Description |
---|---|
<addressId> | addressed contains the unique identifier of this address in the back-end system |
<addressUsage> | This node is a sub node of <head>. It indicates the specific business purpose of the request. Optional. |
<effectiveDates> <startDate/> <endDate/> <seasonalStart/> <seasonalEnd/> </effectiveDates> | This node is a sub node of <head>. It contains the access key for the service. Most often the access to the revenue management data is keyed by a taxpayer ID (key name=PER_ID) |
<address> <name/> <country/> <address1/> <address2/> <address3/> <address4/> <streetNumber1/> <streetNumber2/> <county/> <city/> <state/> <postal/> <houseType/> <latitude/> <longitude/> <inCityLimit/> <comments/> </address> | This node is contains the address details. name contains the entity name of the taxpayer country contains the country code address1 contains specific details such as number, lot, building, street address2 additional node for specific details such as number, lot, building, street address3 additional node for specific details such as number, lot, building, street address4 additional node for specific details such as number, lot, building, street streetNumber1 contains the street and number streetNumber2 additional node for street and number county contains the county value city contains the city state contains the state code postal contains the postal code houseType contains the house type (House Boat Reference, Trailer Reference) latitude contains the geographic coordinate that specifies the north-south position longitude contains the geographic coordinate that specifies the east-west position inCityLimit contains the indicator if the address is within city limit comments contains additional information on the address |
Access Keys and Audit
This is a common node that contains the access keys and audit information of the request.
Node | Description |
---|---|
<head> | Request audit info: accessing user details an access keys |
<action> | This node is a sub node of <head>. It indicates the specific business purpose of the request. Optional. |
<key1> <name> <value/> </key1> | This node is a sub node of <head>. It contains the access key for the service. Most often the access to the revenue management data is keyed by a taxpayer ID (key name=PER_ID) |
<key2> <name> <value> </key2> | This node is a sub node of <head>. Contains the access key for the service: account ID, taxpayer ID, tax type, etc. |
<key3> <name> <value> </key3> | This node is a sub node of <head>. Contains the access key for the service: account ID, taxpayer ID, tax type, etc. |
<key4> <name> <value> </key4> | This node is a sub node of <head>. Contains the access key for the service: account ID, taxpayer ID, tax type, etc. |
<key5> <name> <value> </key5> | This node is a sub node of <head>. Contains the access key for the service: account ID, taxpayer ID, tax type, etc. |
<key6> <name> <value> </key6> | This node is a sub node of <head>. Contains the access key for the service: account ID, taxpayer ID, tax type, etc. |
<key7> <name> <value> </key7> | This node is a sub node of <head>. Contains the access key for the service: account ID, taxpayer ID, tax type, etc. |
<key8> <name> <value> </key8> | This node is a sub node of <head>. Contains the access key for the service: account ID, taxpayer ID, tax type, etc. |
<key9> <name> <value> </key9> | This node is a sub node of <head>. Contains the access key for the service: account ID, taxpayer ID, tax type, etc. |
<key10> <name> <value> </key10> | This node is a sub node of <head>. Contains the access key for the service: account ID, taxpayer ID, tax type, etc. |
<webUserId> | This node is a sub node of <head>. It contains the User ID of the online user. For casual (not logged in) web user, the value defaulted to anonymous. |
<webUserName> | This node is a sub node of <head>. It contains the User Name of the online user. For casual (not logged in) web user, the value defaulted to anonymous. |
<emailAddress> | This node is a sub node of <head>. It contains the Email Address of the online user. |
<ipAddress> | This node is a sub node of <head>. It contains the Internet Protocol (IP) Address of the computer terminal used by the online user. |
<accessType> | This node is a sub node of <head>. It contains the access type that identifies a high level entity in the revenue management system to which the user has access. |
Error Message
This is a common fragment that contains error message details.
Node | Description |
---|---|
<requestStatus> | This node indicates the status of the request. Evaluated by the SOA composite processes in the integration layer. |
<errorMessage> <messageCategory> <messageNumber> <messageParameters> <parameters> <sequence> <parameterType> <parameterValue> <parameters> <messageParameters> <currency> <messageTxtOvrd> <errorMessage> | This node contains error message information. messageCategory contains the Message Category number of the error.messageNumber contains the error Message NumbermessageParameters Message Parameters of the errorparameters parameters listsequence contains the sequence number of the parameter.parameterType contains the type of the parameter. Valid values: DATE (Date), STRING (String), NUMBER (Number) or CURRENCY (Currency).parameterValue contains the value of the parameter.currency contains the currency code to be used in the message when translating parameters of type CURRENCYmessageTxtOvrd contains the override message text. |
Confirmation Message
This is a common node that holds the confirmation info returned upon successful processing of the request.
Node | Description |
---|---|
<confirmationData> | This node contains the confirmation information |
<confirmationId> | This node is a sub node of <confirmationData>. It contains Confirmation ID of the request returned by the web service. |
<header> <messageCategory> <messageNumber> <messageParameters> <parameters> <sequence> <parameterType> <parameterValue> </parameters> </messageParameters> <currency> <messageTxtOvrd> </header> | This node is a sub node of <confirmationData>. It contains a list of the header information of the confirmation message. messageCategory contains the Message Category number of the confirmation.messageNumber contains the Message NumbermessageParameters contains Message Parametersparameters parameters listsequence contains the sequence number of the parameter.parameterType contains the type of the parameter. Valid values: DATE (Date), STRING (String), NUMBER (Number) or CURRENCY (Currency).parameterValue contains the value of the parameter.currency contains the currency code to be used in the message when translating parameters of type CURRENCYmessageTxtOvrd contains the override message text. |
<details> <messageCategory> <messageNumber> <messageParameters> <parameters> <sequence> <parameterType> <parameterValue> </parameters> <currency> <messageTxtOvrd> </details> | This node is a sub node of <confirmationData>. It contains a list of confirmation details (messages). messageCategory contains the Message Category number of the confirmation.messageNumber contains the Message Number messageParameters contains Message Parametersparameters parameters listsequence contains the sequence number of the parameter.parameterType contains the type of the parameter. Valid values: DATE (Date), STRING (String), NUMBER (Number) or CURRENCY (Currency).parameterValue contains the value of the parameter.currency contains the currency code to be used in the message when translating parameters of type CURRENCYmessageTxtOvrd contains the override message text. |
Custom Information
This is a common node that contains a generic field name/field value pair’s collection. It can be used by various customization extension components for information exchange.
Node | Description |
---|---|
<customInfo> <sequence> <fieldName> <fieldValue> </customInfo> | This node contains a list of generic field name/value pairs. It is a placeholder for the data populated by various customization extensions. sequence contains the sequence number of the entry.fieldName contains the name of the field.fieldValue contains the value |
Print Document (TSPrintDocument)
The following table describes the node elements of the Print Document message.
Node | Description |
---|---|
<TSPrintDocument> | This is the main node of the Print Document WSDL. dateTimeTagFormat property value is set to 'xsd'. |
<head> | This node is a sub node of <TSPrintDocument>. It contains the access keys and the audit information of the request. Refer to Access Keys and Audit Node. |
<requestStatus> <errorMessage> | These nodes are sub nodes of <TSPrintDocument>. Refer to Error Message Node for details. |
<confirmationData> | This node is a sub node of <TSPrintDocument>. Refer to Confirmation Message Node for details. |
<linkedRequest> | This node is a sub-node of <TSPrintDocument>. Part of the common message fragment, and not in use. |
<input> | This node is a sub node of <TSPrintDocument>. It contains the input data of the request. |
<documentSource> | This node is a sub node of <input>. It contains the Form Category with values could be either TAXFORM or REGFORM. |
<documentData> | This node is a sub node of < input >. It contains the actual form data which to be formatted to generate a printable document. |
<output> | This node is a sub node of <TSPrintDocument>. It contains the output data of the request. |
<documentContent> | This node is a sub node of <output>. It contains the base - 64 encoded data of the input document data. |
<documentType> | This node is a sub node of <output> and contains the file type the input document data was transformed to. |
<customInfo> | This node is a sub node of < TSPrintDocument >. Contains generic name/value collection. This is a placeholder for additional information that can be utilized by the implementation. Refer to Custom Information Node for details. |
Import Form Definition (TSRetrieveFormTypeDefinitions) - WSDL
The following table describes the node elements of the Import Form Definition message.
Node | Description |
---|---|
<TSRetrieveFormTypeDefinitions> | This is the main node of the Import Form Definition WSDL. dateTimeTagFormat property value is set to 'xsd'. |
<head> | This node is a sub node of <TSRetrieveFormTypeDefinitions>. It contains the access keys and the audit information of the request. Refer to Access Keys and Audit Node. |
<requestStatus> <errorMessage> | These nodes are sub nodes of <TSRetrieveFormTypeDefinitions>. Refer to Error Message Node for details. |
<confirmationData> | This node is a sub node of <TSRetrieveFormTypeDefinitions>. Refer to Confirmation Message Node for details. |
<mainData> | This node is a sub node of <TSRetrieveFormTypeDefinitions>. It contains the main data of the request. |
<input> | This node is a sub node of <main>. It contains the input data of the request. |
<formType> | This node is a sub node of <input> and contains the form type code |
<language> | This node is a sub node of <input> and contains the specific language that that the form represented by form type will be imported |
<output> | This node is a sub node of <main>. It contains the output data of the request. |
<formDef/> <formLookups/> <availableLanguages/> | These nodes are sub-nodes of <output> that holds the structure of the imported form. It contains the following information: formDef - Contains the structure of the import form formLookups - Contains the lookups available on the form availableLanguages - Contains the list of languages to which the form can be imported to. |
<customInfo> | This node is a sub node of < TSRetrieveFormTypeDefinitions >. Contains generic name/value collection. This is a placeholder for additional information that can be utilized by the implementation. Refer to Custom Information Node for details. |
Refresh Lookup (TSRefreshFormLookup) - WSDL
These are the node elements of the Refresh Lookup message.
Node | Description |
---|---|
<TSRefreshFormLookup> | This is the main node of the Refresh Form Lookup WSDL. dateTimeTagFormat property value is set to 'xsd'. |
<head> | This node is a sub node of <TSRefreshFormLookup>. It contains the access keys and the audit information of the request. Refer to Access Keys and Audit Node. |
<requestStatus> <errorMessage> | These nodes are sub nodes of <TSRefreshFormLookup>. Refer to Error Message Node for details. |
<confirmationData> | This node is a sub node of <TSRefreshFormLookup>. Refer to Confirmation Message Node for details. |
<mainData> | This node is a sub node of <TSRefreshFormLookup>. It contains the main data of the request. |
<input> | This node is a sub node of <mainData>. It contains the input data of the request. |
<lookupName> | This node is a sub node of <input> and contains the lookup name where values will be collected |
<output> | This node is a sub node of <TSRefreshFormLookup>. It contains the output data of the request. |
<values> | This node is a sub node of <output>. It contains the lookup values available for the specific lookup. |
<value> <description> | These nodes are sub-nodes of <values> that holds the following information: value - Contains the lookup value code description - Contains the lookup value descriptions in various languages |
<customInfo> | This node is a sub node of < TSRefreshFormLookup >. Contains generic name/value collection. This is a placeholder for additional information that can be utilized by the implementation. Refer to Custom Information Node for details. |
Retrieve Active Form Types (TSRetrieveActiveFormTypes)
The following table describes the node elements of the Retrieve Active Form Types message.
Node | Description |
---|---|
<TSRetrieveActiveFormTypes> | This is the main node of the Retrieve Active Form Types WSDL. dateTimeTagFormat property value is set to 'xsd'. |
<head> | This node is a sub node of <TSRetrieveActiveFormTypes>. It contains the access keys and the audit information of the request. Refer to Access Keys and Audit Node. |
<requestStatus> <errorMessage> | These nodes are sub nodes of <TSRetrieveActiveFormTypes>. Refer to Error Message Node for details. |
<confirmationData> | This node is a sub node of <TSRetrieveActiveFormTypes>. Refer to Confirmation Message Node for details. |
<mainData> | This node is a sub node of <TSRetrieveActiveFormTypes>. It contains the main data of the request. |
<formSubType> <language> <startDate> <endDate> <description> | These nodes are sub-nodes of <mainData> that holds the following information: formSubType - Contains the form category of the form types that will be retrieved. Valid values are TAXFORM and REGFORM. language - Contains the language of the description for the form types returned startDate - Filters the form types to be active since this date endDate - Filters the form types to be active before this date description - It filters the form types to match this description. The symbol % can be used as wild character. |
<forms> | This node is a sub node of <mainData>. It contains the retrieved active form types. |
<formType> <startDate> <endDate> <description> | These nodes are sub-nodes of <mainData> that holds the following information: formType - Contains the form type code startDate - Contains the form type start date endDate - Contains the form type start date description - Contains the description within the specified language in the input |
<customInfo> | This node is a sub node of < TSRetrieveActiveFormTypes >. Contains generic name/value collection. This is a placeholder for additional information that can be utilized by the implementation. Refer to Custom Information Node for details. |
Appendix B
Sample Messages
GetConfirmationID
GetConfirmationID Request
<part name="payload"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<process xmlns="http://xmlns.oracle.com/OTSS/OTSSConfirmationIdService/OTSSConfirmationIdBPELProcess">
<input name="PaymentSequence.Prefix">SRID</input>
</process>
</part>
GetConfirmationID Response
<processResponse xmlns:client="http://xmlns.oracle.com/OTSS/OTSSConfirmationIdService/OTSSConfirmationIdBPELProcess"
xmlns="http://xmlns.oracle.com/OTSS/OTSSConfirmationIdService/OTSSConfirmationIdBPELProcess">
<client:result>SRID81000000</client:result>
</processResponse>
Document Locator Number Service
DocumentLocatorNumberService Action CREATE Request
<process xmlns="http://xmlns.oracle.com/OTSS/OTSSDocumentLocatorNumberService/OTSSDocumentLocatorNumberBPELProcess">
<action name="DLN.Action.Create">CREATE</action>
<prefix name="TaxForm.DLN.Prefix">TFDLN</prefix>
<documentLocatorNumber/>
</process>
DocumentLocatorNumberService Action CREATE Response
<processResponse xmlns:client="http://xmlns.oracle.com/OTSS/OTSSDocumentLocatorNumberService/OTSSDocumentLocatorNumberBPELProcess" xmlns="http://xmlns.oracle.com/OTSS/OTSSDocumentLocatorNumberService/OTSSDocumentLocatorNumberBPELProcess"><client:documentLocatorNumber>TFDLN00000005090</client:documentLocatorNumber>
<client:valid/>
</processResponse>
DocumentLocatorNumberService Action VALIDATE Request
<process xmlns="http://xmlns.oracle.com/OTSS/OTSSDocumentLocatorNumberService/OTSSDocumentLocatorNumberBPELProcess">
<action name="DLN.Action.Validate">VALIDATE</action>
<prefix/>
<documentLocatorNumber>TFDLN00000004218</documentLocatorNumber>
</process>
DocumentLocatorNumberService Action CREATE Response
<processResponse xmlns="http://xmlns.oracle.com/OTSS/OTSSDocumentLocatorNumberService/OTSSDocumentLocatorNumberBPELProcess">
<valid>true</valid>
<documentLocatorNumber/>
</processResponse>
GetRefundStatus
GetRefundStatus Request
The following samples illustrate a scenario in which a casual user makes an inquiry about a tax refund status.
<ns1:TSGetRefundStatus xmlns:ns1="http://oracle.com/TSGetRefundStatus.xsd">
<ns1:head>
<ns1:action/>
<ns1:webUserId>anonymous</ns1:webUserId>
<ns1:webUserName>anonymous</ns1:webUserName>
<ns1:emailAddress/>
<ns1:ipAddress>10.159.122.216</ns1:ipAddress>
</ns1:head>
<ns1:mainData>
<ns1:serviceRequestType>
REFUND_STATUS_UNR</ns1:serviceRequestType>
<ns1:serviceRequestData>
<ns1:requestField>
<ns1:sequence>1</ns1:sequence>
<ns1:fieldName>ENTITY_NAME</ns1:fieldName>
<ns1:fieldValue>Hansen Peter</ns1:fieldValue>
</ns1:requestField>
<ns1:requestField>
<ns1:sequence>2</ns1:sequence>
<ns1:fieldName>ID_TYPE</ns1:fieldName>
<ns1:fieldValue>DVL</ns1:fieldValue>
</ns1:requestField>
<ns1:requestField>
<ns1:sequence>3</ns1:sequence>
<ns1:fieldName>ID_VALUE</ns1:fieldName>
<ns1:fieldValue>123-456-009</ns1:fieldValue>
</ns1:requestField>
<ns1:requestField>
<ns1:sequence>4</ns1:sequence>
<ns1:fieldName>TAX_TYPE</ns1:fieldName>
<ns1:fieldValue>IND-INCOME</ns1:fieldValue>
</ns1:requestField>
<ns1:requestField>
<ns1:sequence>5</ns1:sequence>
<ns1:fieldName>FILING_START_DATE</ns1:fieldName>
<ns1:fieldValue>2010-01-01</ns1:fieldValue>
</ns1:requestField>
<ns1:requestField>
<ns1:sequence>6</ns1:sequence>
<ns1:fieldName>FILING_END_DATE</ns1:fieldName>
<ns1:fieldValue>2010-12-31</ns1:fieldValue>
</ns1:requestField>
<ns1:requestField>
<ns1:sequence>7</ns1:sequence>
<ns1:fieldName>EXPECTED_REFUND</ns1:fieldName>
<ns1:fieldValue>4628</ns1:fieldValue>
</ns1:requestField>
</ns1:serviceRequestData>
</ns1:mainData>
</ns1:TSGetRefundStatus>
GetRefundStatus Response
<TSGetRefundStatus xmlns:ns0="http://oracle.com/TSGetRefundStatus.xsd"
dateTimeTagFormat=""
xmlns="http://oracle.com/TSGetRefundStatus.xsd">
<ns0:head>
<ns0:action/>
<ns0:key1>
<ns0:name/>
<ns0:value/>
</ns0:key1>
<ns0:key2>
<ns0:name/>
<ns0:value/>
</ns0:key2>
<ns0:key3>
<ns0:name/>
<ns0:value/>
</ns0:key3>
<ns0:key4>
<ns0:name/>
<ns0:value/>
</ns0:key4>
<ns0:key5>
<ns0:name/>
<ns0:value/>
</ns0:key5>
<ns0:key6>
<ns0:name/>
<ns0:value/>
</ns0:key6>
<ns0:key7>
<ns0:name/>
<ns0:value/>
</ns0:key7>
<ns0:key8>
<ns0:name/>
<ns0:value/>
</ns0:key8>
<ns0:key9>
<ns0:name/>
<ns0:value/>
</ns0:key9>
<ns0:key10>
<ns0:name/>
<ns0:value/>
</ns0:key10>
<ns0:accessType/>
<ns0:webUserId>anonymous</ns0:webUserId>
<ns0:webUserName>anonymous</ns0:webUserName>
<ns0:emailAddress/>
<ns0:ipAddress>10.159.122.216</ns0:ipAddress>
</ns0:head>
<ns0:requestStatus/>
<ns0:confirmationData>
<ns0:confirmationId>RSID66000000</ns0:confirmationId>
<ns0:header>
<ns0:messageCategory>11126</ns0:messageCategory>
<ns0:messageNumber>13001</ns0:messageNumber>
<ns0:messageParameters/>
<ns0:messageTxtOvrd/>
</ns0:header>
</ns0:confirmationData>
<ns0:mainData>
<ns0:serviceRequestType>
SS-REFUND-STATUS</ns0:serviceRequestType>
<ns0:serviceRequestData>
<ns0:requestField>
<ns0:sequence>1</ns0:sequence>
<ns0:fieldName>ENTITY_NAME</ns0:fieldName>
<ns0:fieldValue>Hansen Peter</ns0:fieldValue>
</ns0:requestField>
<ns0:requestField>
<ns0:sequence>2</ns0:sequence>
<ns0:fieldName>ID_TYPE</ns0:fieldName>
<ns0:fieldValue>DVL</ns0:fieldValue>
</ns0:requestField>
<ns0:requestField>
<ns0:sequence>3</ns0:sequence>
<ns0:fieldName>ID_VALUE</ns0:fieldName>
<ns0:fieldValue>123-456-009</ns0:fieldValue>
</ns0:requestField>
<ns0:requestField>
<ns0:sequence>4</ns0:sequence>
<ns0:fieldName>TAX_TYPE</ns0:fieldName>
<ns0:fieldValue>IND-INCOME</ns0:fieldValue>
</ns0:requestField>
<ns0:requestField>
<ns0:sequence>5</ns0:sequence>
<ns0:fieldName>FILING_START_DATE</ns0:fieldName>
<ns0:fieldValue>2010-01-01</ns0:fieldValue>
</ns0:requestField>
<ns0:requestField>
<ns0:sequence>6</ns0:sequence>
<ns0:fieldName>FILING_END_DATE</ns0:fieldName>
<ns0:fieldValue>2010-12-31</ns0:fieldValue>
</ns0:requestField>
<ns0:requestField>
<ns0:sequence>7</ns0:sequence>
<ns0:fieldName>EXPECTED_REFUND</ns0:fieldName>
<ns0:fieldValue>4628</ns0:fieldValue>
</ns0:requestField>
</ns0:serviceRequestData>
</ns0:mainData>
<ns0:responseData>
<ns0:refundAmount>309.00</ns0:refundAmount>
<ns0:expectedDate>2011-02-03</ns0:expectedDate>
</ns0:responseData>
</TSGetRefundStatus>
IdentifyTaxpayer
IdentifyTaxpayer Request
<ns1:TSTaxpayerIdentification xmlns:ns1="http://oracle.com/TSTaxpayerIdentification.xsd">
<ns1:head>
<ns1:webUserId>anonymous</ns1:webUserId>
<ns1:webUserName>anonymous</ns1:webUserName>
<ns1:ipAddress>10.159.240.238</ns1:ipAddress>
</ns1:head>
<ns1:mainData>
<ns1:serviceRequestType>
IDENTIFY_TAX_CLERANCE</ns1:serviceRequestType>
<ns1:responseMode>SYNCH</ns1:responseMode>
<ns1:serviceRequestData>
<ns1:requestField>
<ns1:sequence>1</ns1:sequence>
<ns1:fieldName>ENTITY_NAME</ns1:fieldName>
<ns1:fieldValue>Hansen Peter</ns1:fieldValue>
</ns1:requestField>
<ns1:requestField>
<ns1:sequence>2</ns1:sequence>
<ns1:fieldName>BIRTH_DATE</ns1:fieldName>
<ns1:fieldValue>1965-01-20</ns1:fieldValue>
</ns1:requestField>
<ns1:requestField>
<ns1:sequence>3</ns1:sequence>
<ns1:fieldName>TAXPAYER_TYPE</ns1:fieldName>
<ns1:fieldValue>IND</ns1:fieldValue>
</ns1:requestField>-
<ns1:requestField>
<ns1:sequence>4</ns1:sequence>
<ns1:fieldName>ID_TYPE</ns1:fieldName>
<ns1:fieldValue>DVL</ns1:fieldValue>
</ns1:requestField>-
<ns1:requestField>
<ns1:sequence>5</ns1:sequence>
<ns1:fieldName>ID_VALUE</ns1:fieldName>
<ns1:fieldValue>123-567-009</ns1:fieldValue>
</ns1:requestField></ns1:serviceRequestData>
</ns1:mainData>
</ns1:TSTaxpayerIdentification>
IdentifyTaxpayer Response
<TSTaxpayerIdentification xmlns:p="http://schemas.oracle.com/service/bpel/common"
xmlns:ns4="http://ouaf.oracle.com/spl/XAIXapp/xaiserver/OTSSIdentifyTaxpayerExtension/V1"
xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"
xmlns:ns0="http://oracle.com/TSTaxpayerIdentification.xsd"
dateTimeTagFormat=""
xmlns="http://oracle.com/TSTaxpayerIdentification.xsd">
<ns0:head>
<ns0:action/>
<ns0:key1>
<ns0:name/>
<ns0:value/>
</ns0:key1>
<ns0:key2>
<ns0:name/>
<ns0:value/>
</ns0:key2>
<ns0:key3>
<ns0:name/>
<ns0:value/>
</ns0:key3>
<ns0:key4>
<ns0:name/>
<ns0:value/>
</ns0:key4>
<ns0:key5>
<ns0:name/>
<ns0:value/>
</ns0:key5>
<ns0:key6>
<ns0:name/>
<ns0:value/>
</ns0:key6>
<ns0:key7>
<ns0:name/>
<ns0:value/>
</ns0:key7>
<ns0:key8>
<ns0:name/>
<ns0:value/>
</ns0:key8>
<ns0:key9>
<ns0:name/>
<ns0:value/>
</ns0:key9>
<ns0:key10>
<ns0:name/>
<ns0:value/>
</ns0:key10>
<ns0:accessType/>
<ns0:webUserId>anonymous</ns0:webUserId>
<ns0:webUserName>anonymous</ns0:webUserName>
<ns0:emailAddress/>
<ns0:ipAddress>10.159.240.238</ns0:ipAddress>
</ns0:head>
<ns0:requestStatus/>
<ns0:mainData>
<ns0:serviceRequestType>
IDENTITY-CHECK-TAX-CLR</ns0:serviceRequestType>
<ns0:responseMode>SYNCH</ns0:responseMode>
<ns0:serviceRequestData>
<ns0:requestField>
<ns0:sequence>1</ns0:sequence>
<ns0:fieldName>ENTITY_NAME</ns0:fieldName>
<ns0:fieldValue>Hansen Peter</ns0:fieldValue>
</ns0:requestField>
<ns0:requestField>
<ns0:sequence>2</ns0:sequence>
<ns0:fieldName>BIRTH_DATE</ns0:fieldName>
<ns0:fieldValue>1965-01-20</ns0:fieldValue>
</ns0:requestField>
<ns0:requestField>
<ns0:sequence>3</ns0:sequence>
<ns0:fieldName>TAXPAYER_TYPE</ns0:fieldName>
<ns0:fieldValue>INDIVIDUAL</ns0:fieldValue>
</ns0:requestField>
<ns0:requestField>
<ns0:sequence>4</ns0:sequence>
<ns0:fieldName>ID_TYPE</ns0:fieldName>
<ns0:fieldValue>DVL</ns0:fieldValue>
</ns0:requestField>
<ns0:requestField>
<ns0:sequence>5</ns0:sequence>
<ns0:fieldName>ID_VALUE</ns0:fieldName>
<ns0:fieldValue>123-456-009</ns0:fieldValue>
</ns0:requestField>
</ns0:serviceRequestData>
</ns0:mainData>
<ns0:responseData>
<ns0:responseDetails>
<ns0:sequence>1</ns0:sequence>
<ns0:taxpayerId>9047106386</ns0:taxpayerId>
</ns0:responseDetails>
</ns0:responseData>
</TSTaxpayerIdentification>
OneTimePayment
OneTimePayment Request
<ns1:TSOneTimePayment xmlns:ns1="http://oracle.com/TSOneTimePayment.xsd">
<ns1:head>
<ns1:action/>
<ns1:key1>
<ns1:name>PER_ID</ns1:name>
<ns1:value>6888315916</ns1:value>
</ns1:key1>
<ns1:webUserId>anonymous</ns1:webUserId>
<ns1:webUserName>anonymous</ns1:webUserName>
<ns1:emailAddress>john.hanses@gmail.com</ns1:emailAddress>
<ns1:ipAddress>10.159.101.209</ns1:ipAddress>
</ns1:head>
<ns1:mainData>
<ns1:payDestinationType>COLL_NOTICE</ns1:payDestinationType>
<ns1:destinationDetails>
<ns1:sequence>1</ns1:sequence>
<ns1:fieldName>COLLECTION_NOTICE_NO</ns1:fieldName>
<ns1:fieldValue>6888315374</ns1:fieldValue>
</ns1:destinationDetails>
<ns1:paymentType>CHECKING</ns1:paymentType>
<ns1:amount>100</ns1:amount>
<ns1:currency>USD</ns1:currency>
<ns1:paymentDate>2012-10-01-04:00</ns1:paymentDate>
<ns1:bankAcctInfo>
<ns1:routingNumber>321171184</ns1:routingNumber>
<ns1:acctNumber>111111</ns1:acctNumber>
</ns1:bankAcctInfo>
<ns1:contactEmailAddress>
john.hanses@gmail.com</ns1:contactEmailAddress>
<ns1:paymentVendor>PSRMSS</ns1:paymentVendor>
</ns1:mainData>
</ns1:TSOneTimePayment>
OneTimePayment Response
<TSOneTimePayment xmlns:ns0="http://oracle.com/TSOneTimePayment.xsd"
dateTimeTagFormat=""
xmlns="http://oracle.com/TSOneTimePayment.xsd">
<ns0:head>
<ns0:action/>
<ns0:key1>
<ns0:name>PER_ID</ns0:name>
<ns0:value>6888315916</ns0:value>
</ns0:key1>
<ns0:key2>
<ns0:name/>
<ns0:value/>
</ns0:key2>
<ns0:key3>
<ns0:name/>
<ns0:value/>
</ns0:key3>
<ns0:key4>
<ns0:name/>
<ns0:value/>
</ns0:key4>
<ns0:key5>
<ns0:name/>
<ns0:value/>
</ns0:key5>
<ns0:key6>
<ns0:name/>
<ns0:value/>
</ns0:key6>
<ns0:key7>
<ns0:name/>
<ns0:value/>
</ns0:key7>
<ns0:key8>
<ns0:name/>
<ns0:value/>
</ns0:key8>
<ns0:key9>
<ns0:name/>
<ns0:value/>
</ns0:key9>
<ns0:key10>
<ns0:name/>
<ns0:value/>
</ns0:key10>
<ns0:accessType/>
<ns0:webUserId>anonymous</ns0:webUserId>
<ns0:webUserName>anonymous</ns0:webUserName>
<ns0:emailAddress>john.hansen@gmail.com</ns0:emailAddress>
<ns0:ipAddress>10.159.101.209</ns0:ipAddress>
</ns0:head>
<ns0:requestStatus/>
<ns0:errorMessage/>
<ns0:confirmationData>
<ns0:confirmationId>PTID61000000</ns0:confirmationId>
<ns0:header>
<ns0:messageCategory>11126</ns0:messageCategory>
<ns0:messageNumber>11004</ns0:messageNumber>
<ns0:messageParameters/>
<ns0:messageTxtOvrd/>
</ns0:header>
<ns0:details>
<ns0:sequence>1</ns0:sequence>
<ns0:messageCategory>11126</ns0:messageCategory>
<ns0:messageNumber>11005</ns0:messageNumber>
<ns0:messageParameters>
<ns0:parameters>
<ns0:sequence>1</ns0:sequence>
<ns0:parameterValue>$100.00</ns0:parameterValue>
</ns0:parameters>
<ns0:parameters>
<ns0:sequence>2</ns0:sequence>
<ns0:parameterValue>10-01-2012</ns0:parameterValue>
</ns0:parameters>
</ns0:messageParameters>
<ns0:messageTxtOvrd/>
</ns0:details>
</ns0:confirmationData>
<ns0:mainData>
<ns0:payDestinationType>COLL_NOTICE</ns0:payDestinationType>
<ns0:destinationDetails>
<ns0:sequence>1</ns0:sequence>
<ns0:fieldName>COLLECTION_NOTICE_NO</ns0:fieldName>
<ns0:fieldValue>6888315374</ns0:fieldValue>
</ns0:destinationDetails>
<ns0:paymentType>CHECKING</ns0:paymentType>
<ns0:amount>100</ns0:amount>
<ns0:currency>USD</ns0:currency>
<ns0:paymentDate>2012-10-01</ns0:paymentDate>
<ns0:bankAcctInfo>
<ns0:routingNumber>321171184</ns0:routingNumber>
<ns0:acctNumber>111111</ns0:acctNumber>
</ns0:bankAcctInfo>
<ns0:extTransactionRefID/>
<ns0:contactEmailAddress>
john.hansen@gmail.com</ns0:contactEmailAddress>
</ns0:mainData>
</TSOneTimePayment>
PrepareExtPaymentData
PrepareExtPaymentData Request
<ns1:TSPrepareExtPaymentData xmlns:ns1="http://oracle.com/TSPrepareExtPaymentData.xsd">
<ns1:head>
<ns1:action>VALIDATEONLY</ns1:action>
<ns1:key1>
<ns1:name>PER_ID</ns1:name>
<ns1:value>6888315916</ns1:value>
</ns1:key1>
<ns1:webUserId>anonymous</ns1:webUserId>
<ns1:webUserName>anonymous</ns1:webUserName>
<ns1:emailAddress/>
<ns1:ipAddress>10.154.132.208</ns1:ipAddress>
</ns1:head>
<ns1:mainData>
<ns1:amount>200</ns1:amount>
<ns1:paymentDate>2012-10-02</ns1:paymentDate>
<ns1:payDestinationType>COLL_NOTICE</ns1:payDestinationType>
<ns1:destinationDetails>
<ns1:sequence>1</ns1:sequence>
<ns1:fieldName>COLLECTION_NOTICE_NO</ns1:fieldName>
<ns1:fieldValue>6888315374</ns1:fieldValue>
</ns1:destinationDetails>
</ns1:mainData>
</ns1:TSPrepareExtPaymentData>
PrepareExtPaymentData Response
<TSPrepareExtPaymentData xmlns:p="http://schemas.oracle.com/service/bpel/common"
xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"
xmlns:ns1="http://schemas.oracle.com/service/bpel/common"
xmlns:client="http://oracle.com/TSPrepareExtPaymentData.xsd"
dateTimeTagFormat=""
xmlns="http://oracle.com/TSPrepareExtPaymentData.xsd">
<client:head>
<client:action>VALIDATEONLY</client:action>
<client:key1>
<client:name>PER_ID</client:name>
<client:value>6888315916</client:value>
</client:key1>
<client:key2/>
<client:key3/>
<client:key4/>
<client:key5/>
<client:key6>
<client:key7/>
<client:key8/>
<client:key9/>
<client:key10/>
<client:accessType/>
<client:webUserId>JohnSmith</client:webUserId>
<client:webUserName>JohnSmith</client:webUserName>
<client:emailAddress/>
<client:ipAddress>10.154.132.208</client:ipAddress>
</client:head>
<client:errorMessage/>
<client:confirmationData>
<client:header>
<client:messageCategory/>
<client:messageParameters/>
<client:messageTxtOvrd/>
</client:header>
</client:confirmationData>
<client:mainData>
<client:taxpayerID>6888315916</client:taxpayerID>
<client:amount>200</client:amount>
<client:paymentDate>2012-10-02</client:paymentDate>
<client:payDestinationType>
COLL_NOTICE</client:payDestinationType>
<client:destinationDetails>
<client:sequence>1</client:sequence>
<client:fieldName>COLLECTION_NOTICE_NO</client:fieldName>
<client:fieldValue>6888315374</client:fieldValue>
</client:destinationDetails>
<client:externalID>
0915acde-5f95-4dfd-8497-511137b02a1d</client:externalID>
<client:feeRequirement/>
</client:mainData>
</TSPrepareExtPaymentData>
RetrievePaymentsDue
RetrievePaymentsDue Request
This example illustrates the request for payment destination OBLIGATION (pay tax obligation). This request is submitted when an enrolled user signs in, chooses a specific tax account, and then selects the option, Pay Tax Obligation .
<ns1:TSRetrievePaymentsDue xmlns:ns1="http://oracle.com/TSRetrievePaymentsDue.xsd">
<ns1:head>
<ns1:key1>
<ns1:name>PER_ID</ns1:name>
<ns1:value>6638893506</ns1:value>
</ns1:key1>
<ns1:key2>
<ns1:name>TAX_ROLE_ID</ns1:name>
<ns1:value>9037315275</ns1:value>
</ns1:key2>
<ns1:webUserId>USER01</ns1:webUserId>
<ns1:webUserName>John Doe</ns1:webUserName>
<ns1:emailAddress/>
<ns1:ipAddress>10.186.253.49</ns1:ipAddress>
<ns1:accessType>TAXROLE</ns1:accessType>
</ns1:head>
<ns1:mainData>
<ns1:paymentDestination>OBLIGATION</ns1:paymentDestination>
</ns1:mainData>
</ns1:TSRetrievePaymentsDue>
RetrievePaymentsDue Response
The response contains details of two payments due for tax obligations. This information is derived using input tax account id. Each entry includes payment amount, payment destination field with tax obligation id and payment summary parameters: tax obligation type code and payment due date.
<ns0:TSRetrievePaymentsDue xmlns:ns0="http://oracle.com/TSRetrievePaymentsDue.xsd" dateTimeTagFormat="" xmlns="http://oracle.com/TSRetrievePaymentsDue.xsd">
<ns0:head>
<ns0:key1>
<ns0:name>PER_ID</ns0:name>
<ns0:value>1237870586</ns0:value>
</ns0:key1>
<ns0:key2>
<ns0:name>TAX_ROLE_ID</ns0:name>
<ns0:value>0453614936</ns0:value>
</ns0:key2>
<ns0:key3/>
<ns0:key4/>
<ns0:key5/>
<ns0:key6/>
<ns0:key7/>
<ns0:key8/>
<ns0:key9/>
<ns0:key10/>
<ns0:accessType>TAXROLE</ns0:accessType>
<ns0:webUserId>QAUSER1</ns0:webUserId>
<ns0:webUserName>QAUSER1</ns0:webUserName>
<ns0:emailAddress/>
<ns0:ipAddress>10.186.252.171</ns0:ipAddress>
</ns0:head>
<ns0:errorMessage>
<ns0:currency/>
<ns0:messageTxtOvrd/>
</ns0:errorMessage>
<ns0:confirmationData>
<ns0:header>
<ns0:messageCategory/>
<ns0:messageTxtOvrd/>
</ns0:header>
</ns0:confirmationData>
<ns0:mainData>
<ns0:paymentDestination>OBLIGATION</ns0:paymentDestination>
<ns0:paymentsDue>
<ns0:amount>10229.72</ns0:amount>
<ns0:destinationFields>
<ns0:sequence>1</ns0:sequence>
<ns0:fieldValue>0453614113</ns0:fieldValue>
</ns0:destinationFields>
<ns0:summary>
<ns0:parameters>
<ns0:sequence>1</ns0:sequence>
<ns0:value>IND-PAYSA</ns0:value>
</ns0:parameters>
<ns0:parameters>
<ns0:sequence>3</ns0:sequence>
<ns0:value>2014-05-31</ns0:value>
</ns0:parameters>
</ns0:summary>
</ns0:paymentsDue>
<ns0:paymentsDue>
<ns0:amount>1689.23</ns0:amount>
<ns0:destinationFields>
<ns0:sequence>1</ns0:sequence>
<ns0:fieldValue>0453623344</ns0:fieldValue>
</ns0:destinationFields>
<ns0:summary>
<ns0:parameters>
<ns0:sequence>2</ns0:sequence>
<ns0:value>IND-PAYSA</ns0:value>
</ns0:parameters>
<ns0:parameters>
<ns0:sequence>3</ns0:sequence>
<ns0:value>2014-04-30</ns0:value>
</ns0:parameters>
</ns0:summary>
</ns0:paymentsDue>
</ns0:mainData>
</ns0:TSRetrievePaymentsDue>
RequestStatusInquiry
RequestStatusInquiry Request
The examples below illustrate the Track Your Transaction flow. The user provides an input confirmation ID and the system returns the confirmation details associated with this input.
<ns1:TSGetConfirmationInformation dateTimeTagFormat="xsd"
xmlns:ns1="http://oracle.com/TSGetConfirmationInformation.xsd">
<ns1:head>
<ns1:key1/>
<ns1:key2/>
<ns1:key3/>
<ns1:key4/>
<ns1:key5/>
<ns1:key6/>
<ns1:key7/>
<ns1:key8/>
<ns1:key9/>
<ns1:key10/>
<ns1:accessType/>
<ns1:webUserId>anonymous</ns1:webUserId>
<ns1:webUserName>anonymous</ns1:webUserName>
<ns1:ipAddress>10.154.186.249</ns1:ipAddress>
</ns1:head>
<ns1:errorMessage>
<ns1:messageParameters>
<ns1:parameters/>
</ns1:messageParameters>
</ns1:errorMessage>
<ns1:confirmationData>
<ns1:confirmationId>SRID10000000</ns1:confirmationId>
<ns1:header>
<ns1:messageParameters>
<ns1:parameters/>
</ns1:messageParameters>
</ns1:header>
<ns1:details>
<ns1:messageParameters>
<ns1:parameters/>
</ns1:messageParameters>
</ns1:details>
</ns1:confirmationData>
</ns1:TSGetConfirmationInformation>
RequestStatusInquiry Response
<TSGetConfirmationInformation xmlns:ns0="http://oracle.com/TSGetConfirmationInformation.xsd"
dateTimeTagFormat="xsd"
xmlns="http://oracle.com/TSGetConfirmationInformation.xsd">
<ns0:head>
<ns0:action/>
<ns0:key1>
<ns0:name/>
<ns0:value/>
</ns0:key1>
<ns0:key2>
<ns0:name/>
<ns0:value/>
</ns0:key2>
<ns0:key3>
<ns0:name/>
<ns0:value/>
</ns0:key3>
<ns0:key4>
<ns0:name/>
<ns0:value/>
</ns0:key4>
<ns0:key5>
<ns0:name/>
<ns0:value/>
</ns0:key5>
<ns0:webUserId>anonymous</ns0:webUserId>
<ns0:webUserName>anonymous</ns0:webUserName>
<ns0:emailAddress/>
<ns0:ipAddress>10.154.186.249</ns0:ipAddress>
</ns0:head>
<ns0:requestStatus/>
<ns0:errorMessage>
<ns0:currency/>
</ns0:errorMessage>
<ns0:confirmationData>
<ns0:confirmationId>SRID10000000</ns0:confirmationId>
<ns0:header>
<ns0:messageCategory>11126</ns0:messageCategory>
<ns0:messageNumber>10001</ns0:messageNumber>
<ns0:messageParameters/>
<ns0:messageTxtOvrd/>
</ns0:header>
<ns0:details>
<ns0:sequence>1</ns0:sequence>
<ns0:messageCategory>11126</ns0:messageCategory>
<ns0:messageNumber>15012</ns0:messageNumber>
<ns0:messageParameters>
<ns0:parameters>
<ns0:sequence>1</ns0:sequence>
<ns0:parameterValue>
peter.hansen@gmail.com</ns0:parameterValue>
</ns0:parameters>
</ns0:messageParameters>
<ns0:messageTxtOvrd/>
</ns0:details>
</ns0:confirmationData>
</TSGetConfirmationInformation>
TaxClearanceCertificate
TaxClearanceCertificate Request
This example illustrates the generic service request flow. The sample shows the request for a tax clearance certificate submitted by a casual user.
<ns1:TSTaxpayerServiceRequest xmlns:ns1="http://oracle.com/TSTaxpayerServiceRequest.xsd">
<ns1:head>
<ns1:key1>
<ns1:name>PER_ID</ns1:name>
<ns1:value>9047106386</ns1:value>
</ns1:key1>
<ns1:webUserId>anonymous</ns1:webUserId>
<ns1:webUserName>anonymous</ns1:webUserName>
<ns1:ipAddress>10.159.122.216</ns1:ipAddress>
</ns1:head>
<ns1:mainData>
<ns1:serviceRequestType>
TAX_CLEARANCE_CERT</ns1:serviceRequestType>
<ns1:responseMode>SYNCH</ns1:responseMode>
<ns1:serviceRequestData>
<ns1:requestField>
<ns1:sequence>1</ns1:sequence>
<ns1:fieldName>EMAIL_ADDRESS</ns1:fieldName>
<ns1:fieldValue>peter.hansen@gmail.com</ns1:fieldValue>
</ns1:requestField>
<ns1:requestField>
<ns1:sequence>2</ns1:sequence>
<ns1:fieldName>PHONE_NUMBER</ns1:fieldName>
<ns1:fieldValue>415 235-3421</ns1:fieldValue>
</ns1:requestField>
<ns1:requestField>
<ns1:sequence>3</ns1:sequence>
<ns1:fieldName>TAX_CERT_PURPOSE</ns1:fieldName>
<ns1:fieldValue>PERSONAL</ns1:fieldValue>
</ns1:requestField>
<ns1:requestField>
<ns1:sequence>4</ns1:sequence>
<ns1:fieldName>PAPER_COPY_REQUIRED</ns1:fieldName>
<ns1:fieldValue>true</ns1:fieldValue>
</ns1:requestField>
<ns1:requestField>
<ns1:fieldName>Please provide additional comments
here</ns1:fieldName>
<ns1:fieldValue>Requried for Goverment
Grant</ns1:fieldValue>
</ns1:requestField>
</ns1:serviceRequestData>
</ns1:mainData>
</ns1:TSTaxpayerServiceRequest>
TaxClearanceCertificate Response
<TSTaxpayerServiceRequest xmlns:params="http://schemas.oracle.com/service/bpel/common"
xmlns:otss="http://oracle.com/TSTaxpayerServiceRequest.xsd"
dateTimeTagFormat=""
xmlns="http://oracle.com/TSTaxpayerServiceRequest.xsd">
<otss:head>
<otss:key1>
<otss:name>PER_ID</otss:name>
<otss:value>9047106386</otss:value>
</otss:key1>
<otss:key2/>
<otss:key3/>
<otss:key4/>
<otss:key5/>
<otss:key6/>
<otss:key7/>
<otss:key8/>
<otss:key9/>
<otss:key10/>
<otss:accessType/>
<otss:webUserId>anonymous</otss:webUserId>
<otss:webUserName>anonymous</otss:webUserName>
<otss:ipAddress>10.159.122.216</otss:ipAddress>
</otss:head>
<otss:errorMessage>
<otss:currency/>
<otss:messageTxtOvrd/>
</otss:errorMessage>
<otss:confirmationData>
<otss:confirmationId>SRID81000000</otss:confirmationId>
<otss:header>
<otss:messageCategory>11126</otss:messageCategory>
<otss:messageNumber>10001</otss:messageNumber>
<otss:messageTxtOvrd/>
</otss:header>
<otss:details>
<otss:sequence>1</otss:sequence>
<otss:messageCategory>11126</otss:messageCategory>
<otss:messageNumber>15010</otss:messageNumber>
<otss:messageParameters>
<otss:parameters>
<otss:sequence>1</otss:sequence>
<otss:parameterType>DATE</otss:parameterType>
<otss:parameterValue>2012-10-02</otss:parameterValue>
</otss:parameters>
</otss:messageParameters>
<otss:messageTxtOvrd/>
</otss:details>
</otss:confirmationData>
<otss:mainData>
<otss:serviceRequestType>
TAX-CLR-CERTIFICATE</otss:serviceRequestType>
<otss:responseMode>SYNCH</otss:responseMode>
<otss:serviceRequestData>
<otss:requestField>
<otss:sequence>1</otss:sequence>
<otss:fieldName>EMAIL_ADDRESS</otss:fieldName>
<otss:fieldValue>peter.hansen@oracle.com</otss:fieldValue>
</otss:requestField>
<otss:requestField>
<otss:sequence>2</otss:sequence>
<otss:fieldName>PHONE_NUMBER</otss:fieldName>
<otss:fieldValue>415 235-3421</otss:fieldValue>
</otss:requestField>
<otss:requestField>
<otss:sequence>3</otss:sequence>
<otss:fieldName>TAX_CERT_PURPOSE</otss:fieldName>
<otss:fieldValue>C1P</otss:fieldValue>
</otss:requestField>
<otss:requestField>
<otss:sequence>4</otss:sequence>
<otss:fieldName>PAPER_COPY_REQUIRED</otss:fieldName>
<otss:fieldValue>true</otss:fieldValue>
</otss:requestField>
<otss:requestField>
<otss:fieldName>Please provide additional comments
here</otss:fieldName>
<otss:fieldValue>Requried for Goverment
Grant</otss:fieldValue>
</otss:requestField>
</otss:serviceRequestData>
</otss:mainData>
</TSTaxpayerServiceRequest>
PrepareExtPaymentData for Official Payments Corporation
PrepareExtPaymentData Request
<ns1:TSPrepareExtPaymentData xmlns:ns1="http://oracle.com/TSPrepareExtPaymentData.xsd">
<ns1:head>
<ns1:action>PREPARE</ns1:action>
<ns1:key1>
<ns1:name>PER_ID</ns1:name>
<ns1:value>9351058855</ns1:value>
</ns1:key1>
<ns1:key2>
<ns1:name>PER_ID</ns1:name>
<ns1:value>2574389464</ns1:value>
</ns1:key2>
<ns1:webUserId>anonymous</ns1:webUserId>
<ns1:webUserName>anonymous</ns1:webUserName>
<ns1:emailAddress />
<ns1:ipAddress>10.154.106.179</ns1:ipAddress>
</ns1:head>
<ns1:mainData>
<ns1:paymentVendor>OPC</ns1:paymentVendor>
<ns1:amount>33</ns1:amount>
<ns1:paymentDate>2012-09-24</ns1:paymentDate>
<ns1:payDestinationType>COLL_NOTICE</ns1:payDestinationType>
<ns1:destinationDetails>
<ns1:sequence>1</ns1:sequence>
<ns1:fieldName>COLLECTION_NOTICE_NO</ns1:fieldName>
<ns1:fieldValue>2574389884</ns1:fieldValue>
</ns1:destinationDetails>
</ns1:mainData>
</ns1:TSPrepareExtPaymentData>
PrepareExtPaymentData Response
<TSPrepareExtPaymentData xmlns:p="http://schemas.oracle.com/service/bpel/common"
xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"
xmlns:ns1="http://schemas.oracle.com/service/bpel/common"
xmlns:client="http://oracle.com/TSPrepareExtPaymentData.xsd"
dateTimeTagFormat=""
xmlns="http://oracle.com/TSPrepareExtPaymentData.xsd">
<client:head>
<client:action>PREPARE</client:action>
<client:key1>
<client:name>PER_ID</client:name>
<client:value>9351058855</client:value>
</client:key1>
<client:key2>
<client:name>PER_ID</client:name>
<client:value>2574389464</client:value>
</client:key2>
<client:key3 />
<client:key4 />
<client:key5 />
<client:webUserId>anonymous</client:webUserId>
<client:webUserName>anonymous</client:webUserName>
<client:emailAddress />
<client:ipAddress>10.154.106.179</client:ipAddress>
</client:head>
<client:errorMessage />
<client:confirmationData>
<client:header>
<client:messageCategory />
<client:messageParameters />
<client:messageTxtOvrd />
</client:header>
</client:confirmationData>
<client:mainData>
<client:taxpayerID>9351058855</client:taxpayerID>
<client:onBehalfOfTaxpayerID>
2574389464</client:onBehalfOfTaxpayerID>
<client:paymentVendor>OPC</client:paymentVendor>
<client:amount>33</client:amount>
<client:paymentDate>2012-09-24</client:paymentDate>
<client:payDestinationType>
COLL_NOTICE</client:payDestinationType>
<client:destinationDetails>
<client:sequence>1</client:sequence>
<client:fieldName>COLLECTION_NOTICE_NO</client:fieldName>
<client:fieldValue>2574389884</client:fieldValue>
</client:destinationDetails>
<client:paymentDetails>
<client:sequence>1</client:sequence>
<client:fieldName>paymentAmount</client:fieldName>
<client:fieldValue>33</client:fieldValue>
</client:paymentDetails>
<client:paymentDetails>
<client:sequence>2</client:sequence>
<client:fieldName>firstName</client:fieldName>
<client:fieldValue>John</client:fieldValue>
</client:paymentDetails>
<client:paymentDetails>
<client:sequence>3</client:sequence>
<client:fieldName>middleName</client:fieldName>
<client:fieldValue />
</client:paymentDetails>
<client:paymentDetails>
<client:sequence>4</client:sequence>
<client:fieldName>lastName</client:fieldName>
<client:fieldValue>Smith</client:fieldValue>
</client:paymentDetails>
<client:paymentDetails>
<client:sequence>5</client:sequence>
<client:fieldName>suffix</client:fieldName>
<client:fieldValue />
</client:paymentDetails>
<client:paymentDetails>
<client:sequence>6</client:sequence>
<client:fieldName>address1</client:fieldName>
<client:fieldValue>33 Sansome St.</client:fieldValue>
</client:paymentDetails>
<client:paymentDetails>
<client:sequence>7</client:sequence>
<client:fieldName>address2</client:fieldName>
<client:fieldValue />
</client:paymentDetails>
<client:paymentDetails>
<client:sequence>8</client:sequence>
<client:fieldName>cityName</client:fieldName>
<client:fieldValue>San Francisco</client:fieldValue>
</client:paymentDetails>
<client:paymentDetails>
<client:sequence>9</client:sequence>
<client:fieldName>provinceCd</client:fieldName>
<client:fieldValue>CA</client:fieldValue>
</client:paymentDetails>
<client:paymentDetails>
<client:sequence>10</client:sequence>
<client:fieldName>postalCd</client:fieldName>
<client:fieldValue>94111</client:fieldValue>
</client:paymentDetails>
<client:paymentDetails>
<client:sequence>11</client:sequence>
<client:fieldName>email</client:fieldName>
<client:fieldValue />
</client:paymentDetails>
<client:paymentDetails>
<client:sequence>12</client:sequence>
<client:fieldName>cde-Field-1</client:fieldName>
<client:fieldValue>2574389884</client:fieldValue>
</client:paymentDetails>
<client:paymentDetails>
<client:sequence>13</client:sequence>
<client:fieldName>cde-RefeLine-7</client:fieldName>
<client:fieldValue>2574389884</client:fieldValue>
</client:paymentDetails>
<client:paymentDetails>
<client:sequence>14</client:sequence>
<client:fieldName>cde-BusiName-8</client:fieldName>
<client:fieldValue />
</client:paymentDetails>
<client:externalID>
ddac3a78-8d0d-4589-bc8a-57306fddbd69</client:externalID>
<client:feeRequirement>CNVF</client:feeRequirement>
</client:mainData>
</TSPrepareExtPaymentData>
Process Payment Post-back from Official Payments Corporation
PaymentPostBack from Official Payments Corporation
<PaymentPostBack xmlns="http://www.officialpayments.com/PaymentPostBack/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<paymentIdentifier>
f2891efc-e65d-4ca5-b9da-175586c83369</paymentIdentifier>
<resultCode>A</resultCode>
<resultText>Approved</resultText>
<customDataElements>
<customDataElement sequenceNumber="1">
COLL_NOTICE</customDataElement>
<customDataElement sequenceNumber="2">Collection
Notice</customDataElement>
<customDataElement sequenceNumber="3">
2574389884</customDataElement>
<customDataElement sequenceNumber="5">
f2891efc-e65d-4ca5-b9da-175586c83369</customDataElement>
<customDataElement sequenceNumber="6">
2574389884</customDataElement>
</customDataElements>
<transactionDate>2012-10-01</transactionDate>
<transactionTime>10:28:04</transactionTime>
<paymentAmounts>
<paymentAmount sequenceNumber="1">1.00</paymentAmount>
</paymentAmounts>
<transactionFee>3.95</transactionFee>
<totalCharge>4.95</totalCharge>
<accountType>VISA</accountType>
<authorizationCode>123456</authorizationCode>
<receiptNumber>123456</receiptNumber>
<paymentID>1</paymentID>
<phoneNumber>1234567890</phoneNumber>
<name>
<first>Amit</first>
<middle></middle>
<last>Seth</last>
<suffix></suffix>
</name>
<address>
<street1>33 Sansome St.</street1>
<street2></street2>
<city>San Francisco</city>
<stateOrProvince>CA</stateOrProvince>
<zipOrPostalCode>94111</zipOrPostalCode>
<countryCode>US</countryCode>
</address>
<emailAddress>taxpayer@mailoption.com</emailAddress>
<paymentChannel>net</paymentChannel>
</PaymentPostBack>
TSOneTimePayment Request
<TSOneTimePayment xmlns:ns1="http://oracle.com/TSOneTimePayment.xsd">
<ns1:head>
<ns1:key1>
<ns1:name>PER_ID</ns1:name>
<ns1:value>1004567890</ns1:value>
</ns1:key1>
<ns1:key2>
<ns1:name>PER_ID</ns1:name>
<ns1:value />
</ns1:key2>
</ns1:head>
<ns1:confirmationData>
<ns1:confirmationId>EVID123456</ns1:confirmationId>
</ns1:confirmationData>
<ns1:mainData>
<ns1:paymentType>APCC</ns1:paymentType>
<ns1:payDestinationType>C1CN</ns1:payDestinationType>
<ns1:destinationDetails>
<ns1:sequence>1</ns1:sequence>
<ns1:fieldValue>2574389884</ns1:fieldValue>
<ns1:sequence>2</ns1:sequence>
<ns1:fieldValue />
<ns1:sequence>3</ns1:sequence>
<ns1:fieldValue />
<ns1:sequence>4</ns1:sequence>
<ns1:fieldValue />
</ns1:destinationDetails>
<ns1:amount>1.00</ns1:amount>
<ns1:currency>USD</ns1:currency>
<ns1:paymentDate>2012-10-01</ns1:paymentDate>
<ns1:contactEmailAddress>
taxpayer@mailoption.com</ns1:contactEmailAddress>
<ns1:extTransactionRefID>123456</ns1:extTransactionRefID>
<ns1:externalId>
f2891efc-e65d-4ca5-b9da-175586c83369</ns1:externalId>
<ns1:paymentVendor>OPC</ns1:paymentVendor>
<ns1:externalPaymentData>
<ns1:paymentIdentifier>
f2891efc-e65d-4ca5-b9da-175586c83369</ns1:paymentIdentifier>
<ns1:resultCode>A</ns1:resultCode>
<ns1:resultText>Approved</ns1:resultText>
<ns1:transactionTime>10:28:04</ns1:transactionTime>
<ns1:transactionFee>3.95</ns1:transactionFee>
<ns1:totalCharge>4.95</ns1:totalCharge>
<ns1:accountType>VISA</ns1:accountType>
<ns1:businessName />
<ns1:name>
<ns1:firstName>John</ns1:firstName>
<ns1:middleName />
<ns1:lastName>Smith</ns1:lastName>
<ns1:suffix />
</ns1:name>
<ns1:address>
<ns1:street1>33 Sansome St.</ns1:street1>
<ns1:street2 />
<ns1:city>San Francisco</ns1:city>
<ns1:state>CA</ns1:state>
<ns1:postal>94111</ns1:postal>
<ns1:country>USA</ns1:country>
</ns1:address>
<ns1:emailAddress>taxpayer@mailoption.com</ns1:emailAddress>
<ns1:phoneNumber>1324567890</ns1:phoneNumber>
<ns1:recieptNumber>123456</ns1:recieptNumber>
<ns1:paymentID>1</ns1:paymentID>
<ns1:trafficSchool />
<ns1:paymentChannel>net</ns1:paymentChannel>
</ns1:externalPaymentData>
</ns1:mainData>
</TSOneTimePayment>
Process Payment Report from Official Payments Corporation
ReportReconciliation from Official Payments Corporation
<ReportReconciliation xmlns="http://www.officialpayments.com/ReportReconciliation">
<customDataElement1>COLL_NOTICE</customDataElement1>
<customDataElement2>Collection Notice</customDataElement2>
<customDataElement3>2574389884</customDataElement3>
<customDataElement4></customDataElement4>
<customDataElement5>
b5e9c218-c940-4137-ad00-b9d2dac95529</customDataElement5>
<customDataElement6>2574389884</customDataElement6>
<customDataElement7></customDataElement7>
<customDataElement8></customDataElement8>
<customDataElement9></customDataElement9>
<transactionDate>20120824</transactionDate>
<transactionTime>142758</transactionTime>
<paymentAmount1>13.00</paymentAmount1>
<paymentAmount2>0.00</paymentAmount2>
<paymentAmount3>0.00</paymentAmount3>
<paymentAmount4>0.00</paymentAmount4>
<paymentAmount5>0.00</paymentAmount5>
<paymentAmount6>0.00</paymentAmount6>
<paymentAmount7>0.00</paymentAmount7>
<paymentAmount8>0.00</paymentAmount8>
<paymentAmount9>0.00</paymentAmount9>
<transactionFee>3.95</transactionFee>
<totalCharge>16.95</totalCharge>
<accountType>V</accountType>
<authorizationCode>123456</authorizationCode>
<receiptNumber>123456</receiptNumber>
<trafficSchoolFlag>0</trafficSchoolFlag>
<paymentID>1</paymentID>
<phoneNumber>1234567890</phoneNumber>
<ANI></ANI>
<firstName>John</firstName>
<middleName></middleName>
<lastName>Smith</lastName>
<street1>33 Sansome St</street1>
<street2></street2>
<city>San Francisco</city>
<reservedField></reservedField>
<stateOrProvince>CA</stateOrProvince>
<zipOrPostalCode>94111</zipOrPostalCode>
<emailAddress>taxpayer@mailoption.com</emailAddress>
<countryCode>US</countryCode>
<returnedDate></returnedDate>
<returnedDescription></returnedDescription>
<paymentChannel>NET</paymentChannel>
<uniqueIdentifier>
b5e9c218-c940-4137-ad00-b9d2dac95529</uniqueIdentifier>
</ReportReconciliation>
ProcessPaymentReportRecord from Official Payments Corporation
<TSProcessExtPayReportRecord xmlns:aia="http://www.oracle.com/XSL/Transform/java/oracle.apps.aia.core.xpath.AIAFunctions"
xmlns:ns0="http://oracle.com/TSProcessExtPayReportRecord.xsd"
xmlns="http://oracle.com/TSProcessExtPayReportRecord.xsd">
<ns0:head>
<ns0:action />
<ns0:key1>
<ns0:name />
<ns0:value />
</ns0:key1>
<ns0:key2>
<ns0:name />
<ns0:value />
</ns0:key2>
<ns0:key3>
<ns0:name />
<ns0:value />
</ns0:key3>
<ns0:key4>
<ns0:name />
<ns0:value />
</ns0:key4>
<ns0:key5>
<ns0:name />
<ns0:value />
</ns0:key5>
<ns0:webUserId />
<ns0:webUserName />
<ns0:emailAddress />
<ns0:ipAddress />
</ns0:head>
<ns0:requestStatus />
<ns0:errorMessage>
<ns0:messageCategory />
<ns0:messageNumber />
<ns0:messageParameters />
<ns0:currency />
<ns0:messageTxtOvrd />
</ns0:errorMessage>
<ns0:paymentReportRecord>
<ns0:paymentVendor>OPC</ns0:paymentVendor>
<ns0:amount>13.00</ns0:amount>
<ns0:paymentDate>2012-08-24</ns0:paymentDate>
<ns0:payDestinationType>C1CN</ns0:payDestinationType>
<ns0:destinationDetails>
<ns0:sequence>1</ns0:sequence>
<ns0:fieldName />
<ns0:fieldValue>2574389884</ns0:fieldValue>
</ns0:destinationDetails>
<ns0:destinationDetails>
<ns0:sequence>2</ns0:sequence>
<ns0:fieldName />
<ns0:fieldValue />
</ns0:destinationDetails>
<ns0:destinationDetails>
<ns0:sequence>3</ns0:sequence>
<ns0:fieldName />
<ns0:fieldValue />
</ns0:destinationDetails>
<ns0:destinationDetails>
<ns0:sequence>4</ns0:sequence>
<ns0:fieldName />
<ns0:fieldValue />
</ns0:destinationDetails>
<ns0:paymentType>APCC</ns0:paymentType>
<ns0:extTransactionRefID>123456</ns0:extTransactionRefID>
<ns0:externalId>
b5e9c218-c940-4137-ad00-b9d2dac95529</ns0:externalId>
<ns0:externalPaymentReportData>
<ns0:paymentIdentifier />
<ns0:resultCode />
<ns0:resultText />
<ns0:transactionFee>3.95</ns0:transactionFee>
<ns0:transactionTime>14:27:58</ns0:transactionTime>
<ns0:totalCharge>16.95</ns0:totalCharge>
<ns0:accountType>V</ns0:accountType>
<ns0:businessName />
<ns0:name>
<ns0:first>John</ns0:first>
<ns0:middle />
<ns0:last>Smith</ns0:last>
<ns0:suffix />
</ns0:name>
<ns0:address>
<ns0:street1>33 Sansome St.</ns0:street1>
<ns0:street2></ns0:street2>
<ns0:city>San Francisco</ns0:city>
<ns0:stateOrProvince />
<ns0:postal>94111</ns0:postal>
<ns0:country>US</ns0:country>
</ns0:address>
<ns0:phoneNumber>9085478888</ns0:phoneNumber>
<ns0:emailAddress>taxpayer@mailoption.com</ns0:emailAddress>
<ns0:receiptNumber>123456</ns0:receiptNumber>
<ns0:paymentID />
<ns0:trafficSchool>0</ns0:trafficSchool>
<ns0:paymentChannel>NET</ns0:paymentChannel>
<ns0:uniqueIdentifier />
</ns0:externalPaymentReportData>
</ns0:paymentReportRecord>
</TSProcessExtPayReportRecord>
Initial Enrollment Request
The examples below illustrate the initial enrollment request flow.
CreateEnrollment Request (Self Service to Integration Layer)
This example shows an initial enrollment request submitted by user USER01 (John Doe). The user is requesting enrollment for business taxes (Line Of Business BUS).
<ns1:TSEnrollmentServiceRequest xmlns:ns1="http://oracle.com/TSEnrollmentServiceRequest.xsd">
<ns1:head>
<ns1:webUserId>USER01</ns1:webUserId>
<ns1:webUserName>John Doe</ns1:webUserName>
<ns1:ipAddress>10.154.138.130</ns1:ipAddress>
</ns1:head>
<ns1:mainData>
<ns1:serviceRequestType>ENROLL_BUSINESS</ns1:serviceRequestType>
<ns1:responseMode>SYNCH</ns1:responseMode>
<ns1:serviceRequestData>
<ns1:lineOfBusiness>BUS</ns1:lineOfBusiness>
<ns1:requestField>
<ns1:sequence>1</ns1:sequence>
<ns1:fieldName>ID_TYPE_BUS</ns1:fieldName>
<ns1:fieldValue>SSN</ns1:fieldValue>
</ns1:requestField>
<ns1:requestField>
<ns1:sequence>2</ns1:sequence>
<ns1:fieldName>ID_VALUE</ns1:fieldName>
<ns1:fieldValue>111-00-6644</ns1:fieldValue>
</ns1:requestField>
<ns1:requestField>
<ns1:sequence>3</ns1:sequence>
<ns1:fieldName>BIRTH_DATE</ns1:fieldName>
<ns1:fieldValue>1966-11-12</ns1:fieldValue>
</ns1:requestField>
</ns1:serviceRequestData>
</ns1:mainData>
</ns1:TSEnrollmentServiceRequest>
CreateEnrollment Request (Integration Layer to Revenue Management)
Once the request has reached the integration layer, the SOA composite assigns the confirmation ID and enrollment ID.
<TSEnrollmentServiceRequest xmlns:params="http://schemas.oracle.com/service/bpel/common" xmlns:ns0="http://oracle.com/TSEnrollmentServiceRequest.xsd" dateTimeTagFormat="" xmlns="http://oracle.com/TSEnrollmentServiceRequest.xsd">
<ns0:head>
<ns0:key1/>
<ns0:key2/>
<ns0:key3/>
<ns0:key4/>
<ns0:key5/>
<ns0:key6/>
<ns0:key7/>
<ns0:key8/>
<ns0:key9/>
<ns0:key10/>
<ns0:webUserId>USER01</ns0:webUserId>
<ns0:webUserName>John Doe</ns0:webUserName>
<ns0:ipAddress>10.154.138.130</ns0:ipAddress>
</ns0:head>
<ns0:errorMessage>
<ns0:messageParameters/>
</ns0:errorMessage>
<ns0:confirmationData>
<ns0:confirmationId>CEID15410000</ns0:confirmationId>
<ns0:header>
<ns0:messageParameters/>
</ns0:header>
</ns0:confirmationData>
<ns0:mainData>
<ns0:serviceRequestType>ZZ-BUSINESS-ENROLLMENT</ns0:serviceRequestType>
<ns0:responseMode>SYNCH</ns0:responseMode>
<ns0:serviceRequestData>
<ns0:lineOfBusiness>C1BU</ns0:lineOfBusiness>
<ns0:enrollmentId>1aa7720f134c42c98ce9aac9c0a8af3b</ns0:enrollmentId>
<ns0:requestField>
<ns0:sequence>1</ns0:sequence>
<ns0:fieldName>ID_TYPE_BUS</ns0:fieldName>
<ns0:fieldValue>SSN</ns0:fieldValue>
</ns0:requestField>
<ns0:requestField>
<ns0:sequence>2</ns0:sequence>
<ns0:fieldName>ID_VALUE</ns0:fieldName>
<ns0:fieldValue>111-00-6644</ns0:fieldValue>
</ns0:requestField>
<ns0:requestField>
<ns0:sequence>3</ns0:sequence>
<ns0:fieldName>BIRTH_DATE</ns0:fieldName>
<ns0:fieldValue>1966-11-12</ns0:fieldValue>
</ns0:requestField>
</ns0:serviceRequestData>
</ns0:mainData>
</TSEnrollmentServiceRequest>
CreateEnrollment Response (Revenue Management to Integration Layer)
The response from the revenue management system contains tax account identifiers and confirmation information. In this example the response contains information about two tax accounts.
This response is processed in the integration layer as follows:
<TSEnrollmentServiceRequest xmlns="http://oracle.com/TSEnrollmentServiceRequest.xsd"
dateTimeTagFormat="">
<head>
<key1/>
<key2/>
<key3/>
<key4/>
<key5/>
<key6/>
<key7/>
<key8/>
<key9/>
<key10/>
<webUserId>GUEST</webUserId>
<webUserName>GUEST</webUserName>
<ipAddress>10.154.138.130</ipAddress>
</head>
<errorMessage>
<messageParameters/>
</errorMessage>
<confirmationData>
<confirmationId>CEID15410000</confirmationId>
<header>
<messageCategory>11126</messageCategory>
<messageNumber>12012</messageNumber>
</header>
<details>
<sequence>1</sequence>
<messageCategory>11126</messageCategory>
<messageNumber>12013</messageNumber>
</details>
</confirmationData>
<mainData>
<serviceRequestType>ZZ-BUSINESS-ENROLLMENT</serviceRequestType>
<responseMode>SYNCH</responseMode>
<serviceRequestData>
<lineOfBusiness>C1BU</lineOfBusiness>
<enrollmentId>1aa7720f134c42c98ce9aac9c0a8af3b</enrollmentId>
<requestField>
<sequence>1</sequence>
<fieldName>ID_TYPE_BUS</fieldName>
<fieldValue>SSN</fieldValue>
</requestField>
<requestField>
<sequence>2</sequence>
<fieldName>ID_VALUE</fieldName>
<fieldValue>111-00-6644</fieldValue>
</requestField>
<requestField>
<sequence>3</sequence>
<fieldName>BIRTH_DATE</fieldName>
<fieldValue>1966-11-12</fieldValue>
</requestField>
</serviceRequestData>
</mainData>
<userAccess>
<accessEntity>
<sequence>1</sequence>
<lineOfBusiness>BUS</lineOfBusiness>
<revenueMgmtSystem>PSRM</revenueMgmtSystem>
<enrollmentId>1aa7720f134c42c98ce9aac9c0a8af3b</enrollmentId>
<status>A</status>
<accessType>TAXROLE</accessType>
<key1>
<name>PER_ID</name>
<value>5786245203</value>
</key1>
<key2>
<name>TAX_ROLE_ID</name>
<value>2057941062</value>
</key2>
</accessEntity>
<accessEntity>
<sequence>2</sequence>
<lineOfBusiness>BUS</lineOfBusiness>
<revenueMgmtSystem>PSRM</revenueMgmtSystem>
<enrollmentId>1aa7720f134c42c98ce9aac9c0a8af3b</enrollmentId>
<status>A</status>
<accessType>TAXROLE</accessType>
<key1>
<name>PER_ID</name>
<value>5786245203</value>
</key1>
<key2>
<name>TAX_ROLE_ID</name>
<value>12311876678</value>
</key2>
</accessEntity>
</userAccess>
</TSEnrollmentServiceRequest>
CreateEnrollment Response (Integration Layer to Self Service)
This example shows a final response message sent from the integration layer to the self service application.
<ns0:TSEnrollmentServiceRequest xmlns:params="http://schemas.oracle.com/service/bpel/common"
xmlns:ns0="http://oracle.com/TSEnrollmentServiceRequest.xsd" dateTimeTagFormat=""
xmlns="http://oracle.com/TSEnrollmentServiceRequest.xsd">
<ns0:head>
<ns0:key1/>
<ns0:key2/>
<ns0:key3/>
<ns0:key4/>
<ns0:key5/>
<ns0:key6/>
<ns0:key7/>
<ns0:key8/>
<ns0:key9/>
<ns0:key10/>
<ns0:webUserId>USER01</ns0:webUserId>
<ns0:webUserName>John Doe</ns0:webUserName>
<ns0:ipAddress>10.154.138.130</ns0:ipAddress>
</ns0:head>
<ns0:errorMessage>
<ns0:messageTxtOvrd/>
</ns0:errorMessage>
<ns0:confirmationData>
<ns0:confirmationId>CEID15410000</ns0:confirmationId>
<ns0:header>
<ns0:messageCategory>11126</ns0:messageCategory>
<ns0:messageNumber>30101</ns0:messageNumber>
<ns0:messageTxtOvrd/>
</ns0:header>
<ns0:details>
<ns0:sequence>1</ns0:sequence>
<ns0:messageCategory>11126</ns0:messageCategory>
<ns0:messageNumber>30102</ns0:messageNumber>
<ns0:messageTxtOvrd/>
</ns0:details>
</ns0:confirmationData>
<ns0:mainData>
<ns0:serviceRequestType>ENROLL_BUSINESS</ns0:serviceRequestType>
<ns0:responseMode>SYNCH</ns0:responseMode>
<ns0:serviceRequestData>
<ns0:lineOfBusiness>BUS</ns0:lineOfBusiness>
<ns0:enrollmentId>1aa7720f134c42c98ce9aac9c0a8af3b</ns0:enrollmentId>
<ns0:requestField>
<ns0:sequence>1</ns0:sequence>
<ns0:fieldName>ID_TYPE_BUS</ns0:fieldName>
<ns0:fieldValue>SSN</ns0:fieldValue>
</ns0:requestField>
<ns0:requestField>
<ns0:sequence>2</ns0:sequence>
<ns0:fieldName>ID_VALUE</ns0:fieldName>
<ns0:fieldValue>111-00-6644</ns0:fieldValue>
</ns0:requestField>
<ns0:requestField>
<ns0:sequence>3</ns0:sequence>
<ns0:fieldName>BIRTH_DATE</ns0:fieldName>
<ns0:fieldValue>1966-11-12</ns0:fieldValue>
</ns0:requestField>
</ns0:serviceRequestData>
</ns0:mainData>
</ns0:TSEnrollmentServiceRequest>
Enrollment Query Refresh
The examples below illustrate the enrollment query/refresh flow. This flow is initiated when user navigates to My Accounts page.
GetUserEnrollment Request (Self Service to Integration Layer)
The request sent from the self service contains web user id.
<ns1:TSGetUserEnrollment xmlns:ns1="http://oracle.com/TSGetUserEnrollment.xsd">
<ns1:head>
<ns1:webUserId>USER01</ns1:webUserId>
<ns1:webUserName>John Doe</ns1:webUserName>
<ns1:emailAddress/>
<ns1:ipAddress>10.154.141.154</ns1:ipAddress>
</ns1:head>
<ns1:mainData>
<ns1:isUserEnrolled>false</ns1:isUserEnrolled>
<ns1:newKeysExist>false</ns1:newKeysExist>
</ns1:mainData>
</ns1:TSGetUserEnrollment>
GetUserEnrollment Request (Integration Layer to Revenue Management System)
The integration layer queries user account access data, populates the results on the message and forwards the request to the revenue management system. In this example the user is already enrolled and has access to four individual tax accounts. The request is populated with current user access information.
<TSGetUserEnrollment xmlns:params="http://schemas.oracle.com/service/bpel/common" xmlns:ns0="http://oracle.com/TSGetUserEnrollment.xsd" dateTimeTagFormat="" xmlns="http://oracle.com/TSGetUserEnrollment.xsd">
<ns0:head>
<ns0:key1/>
<ns0:key2/>
<ns0:key3/>
<ns0:key4/>
<ns0:key5/>
<ns0:key6/>
<ns0:key7/>
<ns0:key8/>
<ns0:key9/>
<ns0:key10/>
<ns0:webUserId>USER01</ns0:webUserId>
<ns0:webUserName>John Doe</ns0:webUserName>
<ns0:emailAddress/>
<ns0:ipAddress>10.186.253.49</ns0:ipAddress>
</ns0:head>
<ns0:errorMessage>
<ns0:messageParameters/>
</ns0:errorMessage>
<ns0:confirmationData>
<ns0:header>
<ns0:messageParameters/>
</ns0:header>
</ns0:confirmationData>
<ns0:mainData>
<ns0:enrollmentSummary>
<ns0:enrollmentEvent>
<ns0:enrollmentId>3e40e6c2904849a582a06d5cd7127a77<
/ns0:enrollmentId>
</ns0:enrollmentEvent>
</ns0:enrollmentSummary>
<ns0:userAccess>
<ns0:accessEntity>
<ns0:sequence>1</ns0:sequence>
<ns0:lineOfBusiness>IND</ns0:lineOfBusiness>
<ns0:revenueMgmtSystem>ETPM</ns0:revenueMgmtSystem>
<ns0:enrollmentId>3e40e6c2904849a582a06d5cd7127a77<
/ns0:enrollmentId>
<ns0:accessType>TAXROLE</ns0:accessType>
<ns0:key1>
<ns0:name>PER_ID</ns0:name>
<ns0:value>6638893506</ns0:value>
</ns0:key1>
<ns0:key2>
<ns0:name>TAX_ROLE_ID</ns0:name>
<ns0:value>9037315407</ns0:value>
</ns0:key2>
<ns0:status>A</ns0:status>
</ns0:accessEntity>
<ns0:accessEntity>
<ns0:sequence>2 </ns0:sequence>
<ns0:lineOfBusiness>IND</ns0:lineOfBusiness> <ns0:revenueMgmtSystem>PSRM</ns0:revenueMgmtSystem> <ns0:enrollmentId>3e40e6c2904849a582a06d5cd7127a77</ns0:enrollmentId>
<ns0:accessType>TAXROLE</ns0:accessType>
<ns0:key1>
<ns0:name>PER_ID</ns0:name>
<ns0:value>6638893506</ns0:value>
</ns0:key1>
<ns0:key2>
<ns0:name>TAX_ROLE_ID</ns0:name>
<ns0:value>9037315434</ns0:value>
</ns0:key2>
<ns0:status>A</ns0:status>
</ns0:accessEntity>
<ns0:accessEntity>
<ns0:sequence>3</ns0:sequence>
<ns0:lineOfBusiness>IND</ns0:lineOfBusiness> <ns0:revenueMgmtSystem>PSRM</ns0:revenueMgmtSystem> <ns0:enrollmentId>3e40e6c2904849a582a06d5cd7127a77</ns0:enrollmentId>
<ns0:accessType>TAXROLE</ns0:accessType>
<ns0:key1>
<ns0:name>PER_ID</ns0:name>
<ns0:value>6638893506</ns0:value>
</ns0:key1>
<ns0:key2>
<ns0:name>TAX_ROLE_ID</ns0:name>
<ns0:value>9037315640</ns0:value>
</ns0:key2>
<ns0:status>A</ns0:status>
</ns0:accessEntity>
<ns0:accessEntity>
<ns0:sequence>4</ns0:sequence>
<ns0:lineOfBusiness>IND</ns0:lineOfBusiness>
<ns0:revenueMgmtSystem> PSRM</ns0:revenueMgmtSystem> <ns0:enrollmentId>3e40e6c2904849a582a06d5cd7127a77</ns0:enrollmentId>
<ns0:accessType>TAXROLE</ns0:accessType>
<ns0:key1>
<ns0:name>PER_ID</ns0:name>
<ns0:value>6638893506</ns0:value>
</ns0:key1>
<ns0:key2>
<ns0:name>TAX_ROLE_ID</ns0:name>
<ns0:value>9037315933</ns0:value>
</ns0:key2>
<ns0:status>A</ns0:status>
</ns0:accessEntity>
</ns0:userAccess>
</ns0:mainData>
</TSGetUserEnrollment>
GetUserEnrollment Response (Revenue Management System to Integration Layer)
The response from the revenue management system is received in the integration layer. In this example the response indicates that user is already enrolled and that new tax accounts were identified. The SOA composite adds new entries to the user account access store and then removes tax account identifiers from the message.
<TSGetUserEnrollment xmlns="http://oracle.com/TSGetUserEnrollment.xsd" dateTimeTagFormat="">
<head>
<key1/>
<key2/>
<key3/>
<key4/>
<key5/>
<key6/>
<key7/>
<key8/>
<key9/>
<key10/>
<webUserId>USER01</webUserId>
<webUserName>John Doe</webUserName>
<emailAddress/>
<ipAddress>10.186.253.49</ipAddress>
</head>
<errorMessage>
<messageParameters/>
</errorMessage>
<confirmationData>
<header>
<messageCategory/>
<messageNumber/>
<messageParameters/>
</header>
</confirmationData>
<mainData>
<isUserEnrolled>true</isUserEnrolled>
<newKeysExist>true</newKeysExist>
<enrollmentSummary>
<enrollmentEvent> <enrollmentId>3e40e6c2904849a582a06d5cd7127a77</enrollmentId>
</enrollmentEvent>
</enrollmentSummary>
<userAccess>
<accessEntity>
<sequence>1</sequence>
<lineOfBusiness>IND</lineOfBusiness>
<revenueMgmtSystem>PSRM</revenueMgmtSystem> <enrollmentId>3e40e6c2904849a582a06d5cd7127a77</enrollmentId>
<status>A</status>
<accessType>TAXROLE</accessType>
<key1>
<name>PER_ID</name>
<value>6638893506</value>
</key1>
<key2>
<name>TAX_ROLE_ID</name>
<value>9037315275</value>
</key2>
<key3/>
<key4/>
<key5/>
<key6/>
<key7/>
<key8/>
<key9/>
<key10/>
</accessEntity>
<accessEntity>
<sequence>2</sequence>
<lineOfBusiness>IND</lineOfBusiness>
<revenueMgmtSystem>PSRM</revenueMgmtSystem> <enrollmentId>3e40e6c2904849a582a06d5cd7127a77</enrollmentId>
<status>A</status>
<accessType>TAXROLE</accessType>
<key1>
<name>PER_ID</name>
<value>6638893506</value>
</key1>
<key2>
<name>TAX_ROLE_ID</name>
<value>9037315639</value>
</key2>
<key3/>
<key4/>
<key5/>
<key6/>
<key7/>
<key8/>
<key9/>
<key10/>
</accessEntity>
</userAccess>
</mainData>
</TSGetUserEnrollment>
GetUserEnrollment Response (Integration Layer to Self Service)
This sample shows the response that is sent from integration layer to the self service application. This final response only contains the list of Line of Business-es that user is enrolled into.
<TSGetUserEnrollment xmlns:params="http://schemas.oracle.com/service/bpel/common" xmlns:ns0="http://oracle.com/TSGetUserEnrollment.xsd" dateTimeTagFormat="" xmlns="http://oracle.com/TSGetUserEnrollment.xsd">
<ns0:head>
<ns0:key1/>
<ns0:key2/>
<ns0:key3/>
<ns0:key4/>
<ns0:key5/>
<ns0:key6/>
<ns0:key7/>
<ns0:key8/>
<ns0:key9/>
<ns0:key10/>
<ns0:webUserId>USER01</ns0:webUserId>
<ns0:webUserName>John Doe</ns0:webUserName>
<ns0:emailAddress/>
<ns0:ipAddress>10.186.253.49</ns0:ipAddress>
</ns0:head>
<ns0:errorMessage>
<ns0:messageTxtOvrd/>
</ns0:errorMessage>
<ns0:confirmationData>
<ns0:header>
<ns0:messageCategory>11126</ns0:messageCategory>
<ns0:messageNumber>10004</ns0:messageNumber>
<ns0:messageTxtOvrd/>
</ns0:header>
</ns0:confirmationData>
<ns0:mainData>
<ns0:isUserEnrolled>true</ns0:isUserEnrolled>
<ns0:newKeysExist>true</ns0:newKeysExist>
<ns0:enrollmentSummary>
<ns0:enrollmentEvent>
<ns0:lineOfBusiness>IND</ns0:lineOfBusiness>
</ns0:enrollmentEvent>
</ns0:enrollmentSummary>
</ns0:mainData>
</TSGetUserEnrollment>
Enrollment Summary
The examples below illustrate the enrollment summary inquiry request. This flow immediately follows Enrollment Query/Refresh.
GetEnrollmentSummary Request (Self Service to Integration Layer)
The request sent from the self service contains the web user ID.
<ns1:TSGetEnrollmentSummary xmlns:ns1="http://oracle.com/TSGetEnrollmentSummary.xsd">
<ns1:head>
<ns1:webUserId>USER02</ns1:webUserId>
<ns1:webUserName>Mary Doe</ns1:webUserName>
<ns1:emailAddress/>
<ns1:ipAddress>10.154.153.69</ns1:ipAddress>
</ns1:head>
</ns1:TSGetEnrollmentSummary>
GetEnrollmentSummary Request (Integration Layer to Revenue Management System)
The integration layer queries user account access data, populates the results on the message and forwards the request to the revenue management system. In this example the user is already enrolled and has access to individual and business tax accounts. The request is populated with current user access information.
<TSGetEnrollmentSummary xmlns:ns0="http://oracle.com/TSGetEnrollmentSummary.xsd" dateTimeTagFormat="" xmlns="http://oracle.com/TSGetEnrollmentSummary.xsd">
<ns0:head>
<ns0:key1/>
<ns0:key2/>
<ns0:key3/>
<ns0:key4/>
<ns0:key5/>
<ns0:key6/>
<ns0:key7/>
<ns0:key8/>
<ns0:key9/>
<ns0:key10/>
<ns0:webUserId>USER02</ns0:webUserId>
<ns0:webUserName>Mary Doe</ns0:webUserName>
<ns0:emailAddress/>
<ns0:ipAddress>10.148.114.176</ns0:ipAddress>
</ns0:head>
<ns0:errorMessage>
<ns0:messageParameters/>
</ns0:errorMessage>
<ns0:confirmationData>
<ns0:header>
<ns0:messageParameters/>
</ns0:header>
</ns0:confirmationData>
<ns0:mainData>
<ns0:userAccess>
<ns0:accessEntity>
<ns0:sequence>1</ns0:sequence>
<ns0:lineOfBusiness>IND</ns0:lineOfBusiness> <ns0:revenueMgmtSystem>PSRM</ns0:revenueMgmtSystem> <ns0:enrollmentId>a8f2a4f83f37474886458731acf13540</ns0:enrollmentId>
<ns0:accessType>TAXROLE</ns0:accessType>
<ns0:key1>
<ns0:name>PER_ID</ns0:name>
<ns0:value>6238276573</ns0:value>
</ns0:key1>
<ns0:key2>
<ns0:name>TAX_ROLE_ID</ns0:name>
<ns0:value>7255030361</ns0:value>
</ns0:key2>
<ns0:status>C1AP</ns0:status>
</ns0:accessEntity>
<ns0:accessEntity>
<ns0:sequence>2</ns0:sequence>
<ns0:lineOfBusiness>IND</ns0:lineOfBusiness> <ns0:revenueMgmtSystem>PSRM</ns0:revenueMgmtSystem> <ns0:enrollmentId>a8f2a4f83f37474886458731acf13540</ns0:enrollmentId>
<ns0:accessType>C1TR</ns0:accessType>
<ns0:key1>
<ns0:name>PER_ID</ns0:name>
<ns0:value>6238276573</ns0:value>
</ns0:key1>
<ns0:key2>
<ns0:name>TAX_ROLE_ID</ns0:name>
<ns0:value>7255030624</ns0:value>
</ns0:key2>
<ns0:status>A</ns0:status>
</ns0:accessEntity>
<ns0:accessEntity>
<ns0:sequence>3</ns0:sequence>
<ns0:lineOfBusiness>BUS</ns0:lineOfBusiness> <ns0:revenueMgmtSystem>PSRM</ns0:revenueMgmtSystem> <ns0:enrollmentId>f522c4e613384fcc93a774f4046912ac</ns0:enrollmentId>
<ns0:accessType>C1TR</ns0:accessType>
<ns0:key1>
<ns0:name>PER_ID</ns0:name>
<ns0:value>7801557905</ns0:value>
</ns0:key1>
<ns0:key2>
<ns0:name>TAX_ROLE_ID</ns0:name>
<ns0:value>8326266070</ns0:value>
</ns0:key2>
<ns0:status>A</ns0:status>
</ns0:accessEntity>
<ns0:accessEntity>
<ns0:sequence>4</ns0:sequence>
<ns0:lineOfBusiness>BUS</ns0:lineOfBusiness> <ns0:revenueMgmtSystem>PSRM</ns0:revenueMgmtSystem> <ns0:enrollmentId>f522c4e613384fcc93a774f4046912ac</ns0:enrollmentId>
<ns0:accessType>TAXROLE</ns0:accessType>
<ns0:key1>
<ns0:name>PER_ID</ns0:name>
<ns0:value>7801557905</ns0:value>
</ns0:key1>
<ns0:key2>
<ns0:name>TAX_ROLE_ID</ns0:name>
<ns0:value>8326266509</ns0:value>
</ns0:key2>
<ns0:status>A</ns0:status>
</ns0:accessEntity>
<ns0:accessEntity>
<ns0:sequence>5</ns0:sequence>
<ns0:lineOfBusiness>BUS</ns0:lineOfBusiness> <ns0:revenueMgmtSystem>PSRM</ns0:revenueMgmtSystem> <ns0:enrollmentId>f522c4e613384fcc93a774f4046912ac</ns0:enrollmentId>
<ns0:accessType>TAXROLE</ns0:accessType>
<ns0:key1>
<ns0:name>PER_ID</ns0:name>
<ns0:value>7801557905</ns0:value>
</ns0:key1>
<ns0:key2>
<ns0:name>TAX_ROLE_ID</ns0:name>
<ns0:value>8326266639</ns0:value>
</ns0:key2>
<ns0:status>A</ns0:status>
</ns0:accessEntity>
<ns0:accessEntity>
<ns0:sequence>6</ns0:sequence>
<ns0:lineOfBusiness>BUS</ns0:lineOfBusiness> <ns0:revenueMgmtSystem>PSRM</ns0:revenueMgmtSystem> <ns0:enrollmentId>f522c4e613384fcc93a774f4046912ac</ns0:enrollmentId>
<ns0:accessType>TAXROLE</ns0:accessType>
<ns0:key1>
<ns0:name>PER_ID</ns0:name>
<ns0:value>7801557905</ns0:value>
</ns0:key1>
<ns0:key2>
<ns0:name>TAX_ROLE_ID</ns0:name>
<ns0:value>8326266664</ns0:value>
</ns0:key2>
<ns0:status>A</ns0:status>
</ns0:accessEntity>
</ns0:userAccess>
</ns0:mainData>
</TSGetEnrollmentSummary>
GetEnrollmentSummary Response (Revenue Management System to Self Service Portal)
The response contains list of tax accounts. Each entry includes tax account identifiers (access type + keys), line of business and enrollment summary parameters.
<TSGetEnrollmentSummary xmlns:params="http://schemas.oracle.com/service/bpel/common" xmlns:ns0="http://oracle.com/TSGetEnrollmentSummary.xsd" dateTimeTagFormat="" xmlns="http://oracle.com/TSGetEnrollmentSummary.xsd">
<ns0:head>
<ns0:key1/>
<ns0:key2/>
<ns0:key3/>
<ns0:key4/>
<ns0:key5/>
<ns0:key6/>
<ns0:key7/>
<ns0:key8/>
<ns0:key9/>
<ns0:key10/>
<ns0:webUserId>USER02</ns0:webUserId>
<ns0:webUserName>Mary Doe</ns0:webUserName>
<ns0:emailAddress/>
<ns0:ipAddress>10.148.114.176</ns0:ipAddress>
</ns0:head>
<ns0:errorMessage>
<ns0:messageTxtOvrd/>
</ns0:errorMessage>
<ns0:confirmationData>
<ns0:header>
<ns0:messageCategory>11126</ns0:messageCategory>
<ns0:messageNumber>10004</ns0:messageNumber>
<ns0:messageTxtOvrd/>
</ns0:header>
</ns0:confirmationData>
<ns0:mainData>
<ns0:userAccess>
<ns0:accessEntity>
<ns0:sequence>1</ns0:sequence>
<ns0:taxpayerName>Moore, James</ns0:taxpayerName> <ns0:isDefaultAccessEntry>true</ns0:isDefaultAccessEntry>
<ns0:lineOfBusiness>IND</ns0:lineOfBusiness> <ns0:revenueMgmtSystem>ETPM</ns0:revenueMgmtSystem> <ns0:enrollmentId>a8f2a4f83f37474886458731acf13540</ns0:enrollmentId>
<ns0:status>A</ns0:status>
<ns0:accessType>TAXROLE</ns0:accessType>
<ns0:key1>
<ns0:name>PER_ID</ns0:name>
<ns0:value>6238276573</ns0:value>
</ns0:key1>
<ns0:key2>
<ns0:name>TAX_ROLE_ID</ns0:name>
<ns0:value>7255030361</ns0:value>
</ns0:key2>
<ns0:summaryTitle>
<ns0:parameters>
<ns0:sequence>1</ns0:sequence>
<ns0:value>ZZINDINCOME</ns0:value>
</ns0:parameters>
</ns0:summaryTitle>
<ns0:summaryDetail>
<ns0:parameters>
<ns0:sequence>1</ns0:sequence>
<ns0:value>2013-03-21</ns0:value>
</ns0:parameters>
<ns0:parameters>
<ns0:sequence>2</ns0:sequence>
</ns0:parameters>
<ns0:parameters>
<ns0:sequence>3</ns0:sequence>
<ns0:value>0.00</ns0:value>
</ns0:parameters>
<ns0:parameters>
<ns0:sequence>4</ns0:sequence>
<ns0:value>2014-04-07</ns0:value>
</ns0:parameters>
</ns0:summaryDetail>
</ns0:accessEntity>
<ns0:accessEntity>
<ns0:sequence>2</ns0:sequence>
<ns0:taxpayerName>Moore, James</ns0:taxpayerName> <ns0:isDefaultAccessEntry>false</ns0:isDefaultAccessEntry>
<ns0:lineOfBusiness>IND</ns0:lineOfBusiness> <ns0:revenueMgmtSystem>ETPM</ns0:revenueMgmtSystem> <ns0:enrollmentId>a8f2a4f83f37474886458731acf13540</ns0:enrollmentId>
<ns0:status>A</ns0:status>
<ns0:accessType>TAXROLE</ns0:accessType>
<ns0:key1>
<ns0:name>PER_ID</ns0:name>
<ns0:value>6238276573</ns0:value>
</ns0:key1>
<ns0:key2>
<ns0:name>TAX_ROLE_ID</ns0:name>
<ns0:value>7255030624</ns0:value>
</ns0:key2>
<ns0:summaryTitle>
<ns0:parameters>
<ns0:sequence>1</ns0:sequence>
<ns0:value>IND-INCOME</ns0:value>
</ns0:parameters>
</ns0:summaryTitle>
<ns0:summaryDetail>
<ns0:parameters>
<ns0:sequence>1</ns0:sequence>
<ns0:value>2010-01-01</ns0:value>
</ns0:parameters>
<ns0:parameters>
<ns0:sequence>2</ns0:sequence>
</ns0:parameters>
<ns0:parameters>
<ns0:sequence>3</ns0:sequence>
<ns0:value>-2075.00</ns0:value>
</ns0:parameters>
<ns0:parameters>
<ns0:sequence>4</ns0:sequence>
<ns0:value>2014-04-07</ns0:value>
</ns0:parameters>
</ns0:summaryDetail>
</ns0:accessEntity>
<ns0:accessEntity>
<ns0:sequence>3</ns0:sequence>
<ns0:taxpayerName>Cooks For a Cause</ns0:taxpayerName> <ns0:isDefaultAccessEntry>true</ns0:isDefaultAccessEntry>
<ns0:lineOfBusiness>BUS</ns0:lineOfBusiness>
<ns0:revenueMgmtSystem>ETPM</ns0:revenueMgmtSystem>
<ns0:enrollmentId>f522c4e613384fcc93a774f4046912ac</ns0:enrollmentId>
<ns0:status>A</ns0:status>
<ns0:accessType>TAXROLE</ns0:accessType>
<ns0:key1>
<ns0:name>PER_ID</ns0:name>
<ns0:value>7801557905</ns0:value>
</ns0:key1>
<ns0:key2>
<ns0:name>TAX_ROLE_ID</ns0:name>
<ns0:value>8326266070</ns0:value>
</ns0:key2>
<ns0:summaryTitle>
<ns0:parameters>
<ns0:sequence>1</ns0:sequence>
<ns0:value>SALESTAX</ns0:value>
</ns0:parameters>
</ns0:summaryTitle>
<ns0:summaryDetail>
<ns0:parameters>
<ns0:sequence>1</ns0:sequence>
<ns0:value>1990-11-26</ns0:value>
</ns0:parameters>
<ns0:parameters>
<ns0:sequence>2</ns0:sequence>
<ns0:value>1991-12-31</ns0:value>
</ns0:parameters>
<ns0:parameters>
<ns0:sequence>3</ns0:sequence>
<ns0:value>0.00</ns0:value>
</ns0:parameters>
<ns0:parameters>
<ns0:sequence>4</ns0:sequence>
<ns0:value>2014-04-07</ns0:value>
</ns0:parameters>
<ns0:parameters>
<ns0:sequence>5</ns0:sequence>
<ns0:value>77 Union Streets, San Francisco, CA, 94111</ns0:value>
</ns0:parameters>
</ns0:summaryDetail>
</ns0:accessEntity>
<ns0:accessEntity>
<ns0:sequence>4</ns0:sequence>
<ns0:taxpayerName>Cooks For a Cause</ns0:taxpayerName> <ns0:isDefaultAccessEntry>false</ns0:isDefaultAccessEntry>
<ns0:lineOfBusiness>BUS</ns0:lineOfBusiness> <ns0:revenueMgmtSystem>PSRM</ns0:revenueMgmtSystem> <ns0:enrollmentId>f522c4e613384fcc93a774f4046912ac</ns0:enrollmentId>
<ns0:status>A</ns0:status>
<ns0:accessType>TAXROLE</ns0:accessType>
<ns0:key1>
<ns0:name>PER_ID</ns0:name>
<ns0:value>7801557905</ns0:value>
</ns0:key1>
<ns0:key2>
<ns0:name>TAX_ROLE_ID</ns0:name>
<ns0:value>8326266509</ns0:value>
</ns0:key2>
<ns0:summaryTitle>
<ns0:parameters>
<ns0:sequence>1</ns0:sequence>
<ns0:value>SALESTAX</ns0:value>
</ns0:parameters>
</ns0:summaryTitle>
<ns0:summaryDetail>
<ns0:parameters>
<ns0:sequence>1</ns0:sequence>
<ns0:value>2001-12-15</ns0:value>
</ns0:parameters>
<ns0:parameters>
<ns0:sequence>2</ns0:sequence>
</ns0:parameters>
<ns0:parameters>
<ns0:sequence>3</ns0:sequence>
<ns0:value>0.00</ns0:value>
</ns0:parameters>
<ns0:parameters>
<ns0:sequence>4</ns0:sequence>
<ns0:value>2014-04-07</ns0:value>
</ns0:parameters>
<ns0:parameters>
<ns0:sequence>5</ns0:sequence>
<ns0:value>77 Union Streets, San Francisco, CA, 94111</ns0:value>
</ns0:parameters>
</ns0:summaryDetail>
</ns0:accessEntity>
<ns0:accessEntity>
<ns0:sequence>5</ns0:sequence>
<ns0:taxpayerName>Cooks For a Cause</ns0:taxpayerName> <ns0:isDefaultAccessEntry>false</ns0:isDefaultAccessEntry>
<ns0:lineOfBusiness>BUS</ns0:lineOfBusiness> <ns0:revenueMgmtSystem>PSRM</ns0:revenueMgmtSystem> <ns0:enrollmentId>f522c4e613384fcc93a774f4046912ac</ns0:enrollmentId>
<ns0:status>A</ns0:status>
<ns0:accessType>TAXROLE</ns0:accessType>
<ns0:key1>
<ns0:name>PER_ID</ns0:name>
<ns0:value>7801557905</ns0:value>
</ns0:key1>
<ns0:key2>
<ns0:name>TAX_ROLE_ID</ns0:name>
<ns0:value>8326266639</ns0:value>
</ns0:key2>
<ns0:summaryTitle>
<ns0:parameters>
<ns0:sequence>1</ns0:sequence>
<ns0:value>SALES-USE</ns0:value>
</ns0:parameters>
</ns0:summaryTitle>
<ns0:summaryDetail>
<ns0:parameters>
<ns0:sequence>1</ns0:sequence>
<ns0:value>2008-01-01</ns0:value>
</ns0:parameters>
<ns0:parameters>
<ns0:sequence>2</ns0:sequence>
</ns0:parameters>
<ns0:parameters>
<ns0:sequence>3</ns0:sequence>
<ns0:value>12492.00</ns0:value>
</ns0:parameters>
<ns0:parameters>
<ns0:sequence>4</ns0:sequence>
<ns0:value>2014-04-07</ns0:value>
</ns0:parameters>
<ns0:parameters>
<ns0:sequence>5</ns0:sequence>
<ns0:value>77 Union Streets, San Francisco, CA, 94111</ns0:value>
</ns0:parameters>
</ns0:summaryDetail>
</ns0:accessEntity>
<ns0:accessEntity>
<ns0:sequence>6</ns0:sequence>
<ns0:taxpayerName>Cooks For a Cause</ns0:taxpayerName> <ns0:isDefaultAccessEntry>false</ns0:isDefaultAccessEntry>
<ns0:lineOfBusiness>BUS</ns0:lineOfBusiness> <ns0:revenueMgmtSystem>PSRM</ns0:revenueMgmtSystem> <ns0:enrollmentId>f522c4e613384fcc93a774f4046912ac</ns0:enrollmentId>
<ns0:status>A</ns0:status>
<ns0:accessType>TAXROLE</ns0:accessType>
<ns0:key1>
<ns0:name>PER_ID</ns0:name>
<ns0:value>7801557905</ns0:value>
</ns0:key1>
<ns0:key2>
<ns0:name>TAX_ROLE_ID</ns0:name>
<ns0:value>8326266664</ns0:value>
</ns0:key2>
<ns0:summaryTitle>
<ns0:parameters>
<ns0:sequence>1</ns0:sequence>
<ns0:value>CORP-INCOME</ns0:value>
</ns0:parameters>
</ns0:summaryTitle>
<ns0:summaryDetail>
<ns0:parameters>
<ns0:sequence>1</ns0:sequence>
<ns0:value>2008-01-01</ns0:value>
</ns0:parameters>
<ns0:parameters>
<ns0:sequence>2</ns0:sequence>
</ns0:parameters>
<ns0:parameters>
<ns0:sequence>3</ns0:sequence>
<ns0:value>0.00</ns0:value>
</ns0:parameters>
<ns0:parameters>
<ns0:sequence>4</ns0:sequence>
<ns0:value>2014-04-07</ns0:value>
</ns0:parameters>
<ns0:parameters>
<ns0:sequence>5</ns0:sequence>
<ns0:value>77 Union Streets, San Francisco, CA, 94111</ns0:value>
</ns0:parameters>
</ns0:summaryDetail>
</ns0:accessEntity>
</ns0:userAccess>
</ns0:mainData>
</TSGetEnrollmentSummary>
Tax Account Alerts
GetTaxAccountAlerts Request
The request contains user id and single tax account's identifiers (access type and access keys).
<ns1:TSGetTaxAccountAlerts xmlns:ns1="http://oracle.com/TSGetTaxAccountAlerts.xsd">
<ns1:head>
<ns1:key1>
<ns1:name>PER_ID</ns1:name>
<ns1:value>2885984738</ns1:value>
</ns1:key1>
<ns1:key2>
<ns1:name>TAX_ROLE_ID</ns1:name>
<ns1:value>6294658291</ns1:value>
</ns1:key2>
<ns1:webUserId>USER02</ns1:webUserId>
<ns1:webUserName>Mary Doe</ns1:webUserName>
<ns1:emailAddress/>
<ns1:ipAddress>10.154.179.54</ns1:ipAddress>
<ns1:accessType>TAXROLE</ns1:accessType>
</ns1:head>
<ns1:lineOfBusiness>BUS</ns1:lineOfBusiness>
</ns1:TSGetTaxAccountAlerts>
GetTaxAccountAlerts Response
This sample response contains two alerts.
<TSGetTaxAccountAlerts xmlns:params="http://schemas.oracle.com/service/bpel/common" xmlns:ns0="http://oracle.com/TSGetTaxAccountAlerts.xsd" dateTimeTagFormat="" xmlns="http://oracle.com/TSGetTaxAccountAlerts.xsd">
<ns0:head>
<ns0:key1>
<ns0:name>PER_ID</ns0:name>
<ns0:value>2885984738</ns0:value>
</ns0:key1>
<ns0:key2>
<ns0:name>TAX_ROLE_ID</ns0:name>
<ns0:value>6294658291</ns0:value>
</ns0:key2>
<ns0:key3/>
<ns0:key4/>
<ns0:key5/>
<ns0:key6/>
<ns0:key7/>
<ns0:key8/>
<ns0:key9/>
<ns0:key10/>
<ns0:accessType>TAXROLE</ns0:accessType>
<ns0:webUserId>USER02</ns0:webUserId>
<ns0:webUserName>Mary Doe</ns0:webUserName>
<ns0:emailAddress/>
<ns0:ipAddress>10.154.179.54</ns0:ipAddress>
</ns0:head>
<ns0:lineOfBusiness>BUS</ns0:lineOfBusiness>
<ns0:errorMessage>
<ns0:messageTxtOvrd/>
</ns0:errorMessage>
<ns0:requestData>
<ns0:includeAccountAlerts>true</ns0:includeAccountAlerts>
<ns0:includeGeneralAlerts>true</ns0:includeGeneralAlerts>
</ns0:requestData>
<ns0:responseData>
<ns0:alert>
<ns0:alertType>OVERDUE_BALANCE</ns0:alertType>
<ns0:alertParameters>
<ns0:sequence>1</ns0:sequence>
<ns0:value>18636.61</ns0:value>
</ns0:alertParameters>
</ns0:alert>
<ns0:alert>
<ns0:alertType>TAXPAYER_INFO</ns0:alertType>
</ns0:alert>
</ns0:responseData>
</TSGetTaxAccountAlerts>
Tax Account Summary
GetTaxAccountSummary Request
The request contains user id and single tax account's identifiers (access type and access keys).
<ns1:TSGetTaxAccountSummary xmlns:ns1="http://oracle.com/TSGetTaxAccountSummary.xsd">
<ns1:head>
<ns1:key1>
<ns1:name>PER_ID</ns1:name>
<ns1:value>2885984738</ns1:value>
</ns1:key1>
<ns1:key2>
<ns1:name>TAX_ROLE_ID</ns1:name>
<ns1:value>6294658291</ns1:value>
</ns1:key2>
<ns1:webUserId>USER02</ns1:webUserId>
<ns1:webUserName>Mary Doe</ns1:webUserName>
<ns1:emailAddress/>
<ns1:ipAddress>10.154.179.54</ns1:ipAddress>
<ns1:accessType>TAXROLE</ns1:accessType>
</ns1:head>
<ns1:lineOfBusiness>BUS</ns1:lineOfBusiness>
</ns1:TSGetTaxAccountSummary>
GetTaxAccountSummary Response
<TSGetTaxAccountSummary xmlns:params="http://schemas.oracle.com/service/bpel/common" xmlns:ns0="http://oracle.com/TSGetTaxAccountSummary.xsd" dateTimeTagFormat="" xmlns="http://oracle.com/TSGetTaxAccountSummary.xsd">
<ns0:head>
<ns0:key1>
<ns0:name>PER_ID</ns0:name>
<ns0:value>2885984738</ns0:value>
</ns0:key1>
<ns0:key2>
<ns0:name>TAX_ROLE_ID</ns0:name>
<ns0:value>6294658291</ns0:value>
</ns0:key2>
<ns0:key3/>
<ns0:key4/>
<ns0:key5/>
<ns0:key6/>
<ns0:key7/>
<ns0:key8/>
<ns0:key9/>
<ns0:key10/>
<ns0:accessType>TAXROLE</ns0:accessType>
<ns0:webUserId>USER02</ns0:webUserId>
<ns0:webUserName>Maty Doe</ns0:webUserName>
<ns0:emailAddress/>
<ns0:ipAddress>10.154.179.54</ns0:ipAddress>
</ns0:head>
<ns0:lineOfBusiness>BUS</ns0:lineOfBusiness>
<ns0:errorMessage>
<ns0:messageTxtOvrd/>
</ns0:errorMessage>
<ns0:responseData>
<ns0:summaryTitleParameters>
<ns0:sequence>1</ns0:sequence>
<ns0:value>West Of Soho</ns0:value>
</ns0:summaryTitleParameters>
<ns0:summaryTitleParameters>
<ns0:sequence>2</ns0:sequence>
<ns0:value>SALES-USE</ns0:value>
</ns0:summaryTitleParameters>
<ns0:summaryTextParameters>
<ns0:sequence>1</ns0:sequence>
<ns0:value>18636.61</ns0:value>
</ns0:summaryTextParameters>
<ns0:summaryTextParameters>
<ns0:sequence>2</ns0:sequence>
</ns0:summaryTextParameters>
<ns0:summaryTextParameters>
<ns0:sequence>3</ns0:sequence>
</ns0:summaryTextParameters>
<ns0:summaryTextParameters>
<ns0:sequence>4</ns0:sequence>
<ns0:value>2008-04-01</ns0:value>
</ns0:summaryTextParameters>
<ns0:summaryTextParameters>
<ns0:sequence>5</ns0:sequence>
</ns0:summaryTextParameters>
<ns0:currentBalance>18636.61</ns0:currentBalance>
<ns0:taxType>SALES-USE</ns0:taxType>
<ns0:location>
<ns0:effectiveDates/>
<ns0:address>
<ns0:name>West Of Soho</ns0:name>
<ns0:country>USA</ns0:country>
<ns0:address1>304 South Str</ns0:address1>
<ns0:county>Morris</ns0:county>
<ns0:city>Morristown</ns0:city>
<ns0:state>NJ</ns0:state>
<ns0:postal>07960</ns0:postal>
<ns0:inCityLimit>true</ns0:inCityLimit>
</ns0:address>
</ns0:location>
</ns0:responseData>
</TSGetTaxAccountSummary>
Tax Account Payments History
GetPaymentHistory Request
The request contains user id and single tax account's identifiers (access type and access keys).
<ns1:TSGetPaymentHistory xmlns:ns1="http://oracle.com/TSGetPaymentHistory.xsd">
<ns1:head>
<ns1:key1>
<ns1:name>PER_ID</ns1:name>
<ns1:value>1874847454</ns1:value>
</ns1:key1>
<ns1:key2>
<ns1:name>TAX_ROLE_ID</ns1:name>
<ns1:value>1823125926</ns1:value>
</ns1:key2>
<ns1:webUserId>USER02</ns1:webUserId>
<ns1:webUserName>Mary Doe</ns1:webUserName>
<ns1:emailAddress/>
<ns1:ipAddress>10.154.182.223</ns1:ipAddress>
<ns1:accessType>TAXROLE</ns1:accessType>
</ns1:head>
<ns1:lineOfBusiness>IND</ns1:lineOfBusiness>
<ns1:requestData/>
</ns1:TSGetPaymentHistory>
GetPaymentHistory Response
This sample response contains two payments.
<TSGetPaymentHistory xmlns:params="http://schemas.oracle.com/service/bpel/common" xmlns:ns0="http://oracle.com/TSGetPaymentHistory.xsd" dateTimeTagFormat="" xmlns="http://oracle.com/TSGetPaymentHistory.xsd">
<ns0:head>
<ns0:key1>
<ns0:name>PER_ID</ns0:name>
<ns0:value>1874847454</ns0:value>
</ns0:key1>
<ns0:key2>
<ns0:name>TAX_ROLE_ID</ns0:name>
<ns0:value>1823125926</ns0:value>
</ns0:key2>
<ns0:key3/>
<ns0:key4/>
<ns0:key5/>
<ns0:key6/>
<ns0:key7/>
<ns0:key8/>
<ns0:key9/>
<ns0:key10/>
<ns0:accessType>TAXROLE</ns0:accessType>
<ns0:webUserId>USER02</ns0:webUserId>
<ns0:webUserName>Mary Doe</ns0:webUserName>
<ns0:emailAddress/>
<ns0:ipAddress>10.154.182.223</ns0:ipAddress>
</ns0:head>
<ns0:lineOfBusiness>IND</ns0:lineOfBusiness>
<ns0:errorMessage>
<ns0:messageTxtOvrd/>
</ns0:errorMessage>
<ns0:requestData/>
<ns0:responseData>
<ns0:payment>
<ns0:paymentId>182312514618</ns0:paymentId>
<ns0:amount>22.00</ns0:amount>
<ns0:date>2014-01-31</ns0:date>
<ns0:currency>USD</ns0:currency>
<ns0:status>COMPLETE</ns0:status>
<ns0:paymentType>CHECKING</ns0:paymentType>
<ns0:confirmationId>PTID16500000</ns0:confirmationId>
</ns0:payment>
<ns0:payment>
<ns0:paymentId>182312551858</ns0:paymentId>
<ns0:amount>20.00</ns0:amount>
<ns0:date>2014-01-31</ns0:date>
<ns0:currency>USD</ns0:currency>
<ns0:status>COMPLETE</ns0:status>
<ns0:paymentType>CHECKING</ns0:paymentType>
<ns0:confirmationId>PTID16400000</ns0:confirmationId>
</ns0:payment>
</ns0:responseData>
</TSGetPaymentHistory>
Tax Account Filing History
GetFilingHistory Request
The request contains user id and single tax account's identifiers (access type and access keys).
<ns1:TSGetFilingHistory xmlns:ns1="http://oracle.com/TSGetFilingHistory.xsd">
<ns1:head>
<ns1:key1>
<ns1:name>PER_ID</ns1:name>
<ns1:value>2885984738</ns1:value>
</ns1:key1>
<ns1:key2>
<ns1:name>TAX_ROLE_ID</ns1:name>
<ns1:value>6294658291</ns1:value>
</ns1:key2>
<ns1:webUserId>USER02</ns1:webUserId>
<ns1:webUserName>Mary Doe</ns1:webUserName>
<ns1:emailAddress/>
<ns1:ipAddress>10.154.179.54</ns1:ipAddress>
<ns1:accessType>TAXROLE</ns1:accessType>
</ns1:head>
<ns1:lineOfBusiness>BUS</ns1:lineOfBusiness>
<ns1:requestData/>
</ns1:TSGetFilingHistory>
GetFilingHistory Response
This sample response contains the details for one tax form/filing period.
<TSGetFilingHistory xmlns:params="http://schemas.oracle.com/service/bpel/common" xmlns:ns0="http://oracle.com/TSGetFilingHistory.xsd" dateTimeTagFormat="" xmlns="http://oracle.com/TSGetFilingHistory.xsd">
<ns0:head>
<ns0:key1>
<ns0:name>PER_ID</ns0:name>
<ns0:value>2885984738</ns0:value>
</ns0:key1>
<ns0:key2>
<ns0:name>TAX_ROLE_ID</ns0:name>
<ns0:value>6294658291</ns0:value>
</ns0:key2>
<ns0:key3/>
<ns0:key4/>
<ns0:key5/>
<ns0:key6/>
<ns0:key7/>
<ns0:key8/>
<ns0:key9/>
<ns0:key10/>
<ns0:accessType>TAXROLE</ns0:accessType>
<ns0:webUserId>USER02</ns0:webUserId>
<ns0:webUserName>Mary Doe</ns0:webUserName>
<ns0:emailAddress/>
<ns0:ipAddress>10.154.179.54</ns0:ipAddress>
</ns0:head>
<ns0:lineOfBusiness>BUS</ns0:lineOfBusiness>
<ns0:errorMessage>
<ns0:messageTxtOvrd/>
</ns0:errorMessage>
<ns0:requestData>
<ns0:taxType/>
</ns0:requestData>
<ns0:responseData>
<ns0:taxForm>
<ns0:formType>SALESDST2008</ns0:formType>
<ns0:formId>928706863748</ns0:formId>
<ns0:filingPeriodStartDate>2010-01-01</ns0:filingPeriodStartDate>
<ns0:filingPeriodEndDate>2010-03-31</ns0:filingPeriodEndDate>
<ns0:taxType>SALES-USE</ns0:taxType>
<ns0:filingStatus>PAYMENTDUE</ns0:filingStatus>
<ns0:confirmationId>TFID50200000</ns0:confirmationId>
<ns0:dueDate>2010-04-15</ns0:dueDate>
<ns0:receivedDate>2014-04-03</ns0:receivedDate>
<ns0:amountDue>18636.61</ns0:amountDue>
<ns0:documentLocatorNumber>TFDLN00000005082</ns0:documentLocatorNumber>
</ns0:taxForm>
</ns0:responseData>
</TSGetFilingHistory>
Taxpayer Summary
GetTaxpayerSummary Request
The request contains user id and single tax account's identifiers (access type and access keys).
<ns1:TSGetTaxpayerSummary xmlns:ns1="http://oracle.com/TSGetTaxpayerSummary.xsd">
<ns1:head>
<ns1:key1>
<ns1:name>PER_ID</ns1:name>
<ns1:value>7801557905</ns1:value>
</ns1:key1>
<ns1:key2>
<ns1:name>TAX_ROLE_ID</ns1:name>
<ns1:value>8326266070</ns1:value>
</ns1:key2>
<ns1:webUserId>USER01</ns1:webUserId>
<ns1:webUserName>John Doe</ns1:webUserName>
<ns1:emailAddress/>
<ns1:ipAddress>10.186.252.129</ns1:ipAddress>
<ns1:accessType>TAXROLE</ns1:accessType>
</ns1:head>
<ns1:lineOfBusiness>BUS</ns1:lineOfBusiness>
</ns1:TSGetTaxpayerSummary>
GetTaxpayerSummary Response
<TSGetTaxpayerSummary xmlns:ns0="http://oracle.com/TSGetTaxpayerSummary.xsd" dateTimeTagFormat="" xmlns="http://oracle.com/TSGetTaxpayerSummary.xsd">
<ns0:head>
<ns0:key1>
<ns0:name>PER_ID</ns0:name>
<ns0:value>7801557905</ns0:value>
</ns0:key1>
<ns0:key2>
<ns0:name>TAX_ROLE_ID</ns0:name>
<ns0:value>8326266070</ns0:value>
</ns0:key2>
<ns0:key3/>
<ns0:key4/>
<ns0:key5/>
<ns0:key6/>
<ns0:key7/>
<ns0:key8/>
<ns0:key9/>
<ns0:key10/>
<ns0:accessType>TAXROLE</ns0:accessType>
<ns0:webUserId>USER01</ns0:webUserId>
<ns0:webUserName>John Doe</ns0:webUserName>
<ns0:emailAddress/>
<ns0:ipAddress>10.186.252.129</ns0:ipAddress>
</ns0:head>
<ns0:lineOfBusiness>BUS</ns0:lineOfBusiness>
<ns0:errorMessage>
<ns0:currency/>
<ns0:messageTxtOvrd/>
</ns0:errorMessage>
<ns0:responseData>
<ns0:name>Cooks For a Cause</ns0:name>
<ns0:taxpayerType>CORPORATION</ns0:taxpayerType>
<ns0:summaryTitleParameters>
<ns0:sequence>1</ns0:sequence>
<ns0:value>Cooks For a Cause</ns0:value>
</ns0:summaryTitleParameters>
<ns0:summaryTitleParameters>
<ns0:sequence>2</ns0:sequence>
<ns0:value>55-8947563</ns0:value>
</ns0:summaryTitleParameters>
<ns0:summaryTextParameters>
<ns0:sequence>1</ns0:sequence>
<ns0:value>CORPORATION</ns0:value>
</ns0:summaryTextParameters>
<ns0:primaryContact>
<ns0:contactType>PRES</ns0:contactType>
<ns0:contactName>Gatmaitan, Francine</ns0:contactName>
<ns0:emailAddress>franG@myMail.com</ns0:emailAddress>
</ns0:primaryContact>
</ns0:responseData>
</TSGetTaxpayerSummary>
Taxpayer Contact Info
GetTaxpayerContactInformation Request – Action READ
This sample illustrates the flow invoked on load from Taxpayer Info portal page. The request contains the user ID, the single tax account's identifiers (access type and access keys), and the action.
<ns1: TSGetTaxpayerContactInformation xmlns:ns1="http://oracle.com/ TSGetTaxpayerContactInformation.xsd">
<ns1:head>
<ns0:action>READ</ns0:action>
<ns1:key1>
<ns1:name>PER_ID</ns1:name>
<ns1:value>7801557905</ns1:value>
</ns1:key1>
<ns1:key2>
<ns1:name>TAX_ROLE_ID</ns1:name>
<ns1:value>8326266070</ns1:value>
</ns1:key2>
<ns1:webUserId>USER01</ns1:webUserId>
<ns1:webUserName>John Doe</ns1:webUserName>
<ns1:emailAddress/>
<ns1:ipAddress>10.186.252.129</ns1:ipAddress>
<ns1:accessType>TAXROLE</ns1:accessType>
</ns1:head>
<ns1:lineOfBusiness>BUS</ns1:lineOfBusiness>
</ns1: TSGetTaxpayerContactInformation>
GetTaxpayerContactInformation Response – Action READ
This sample illustrates the flow invoked on load from Taxpayer Info portal page. The response contains the list of phone numbers and the email address.
<TSGetTaxpayerContactInformation xmlns:ns0="http://oracle.com/TSGetTaxpayerContactInformation.xsd" dateTimeTagFormat="" xmlns="http://oracle.com/TSGetTaxpayerContactInformation.xsd">
<ns0:head>
<ns0:action>READ</ns0:action>
<ns0:key1>
<ns0:name>PER_ID</ns0:name>
<ns0:value>5786245203</ns0:value>
</ns0:key1>
<ns0:key2>
<ns0:name>TAX_ROLE_ID</ns0:name>
<ns0:value>2057941062</ns0:value>
</ns0:key2>
<ns0:key3/>
<ns0:key4/>
<ns0:key5/>
<ns0:key6/>
<ns0:key7/>
<ns0:key8/>
<ns0:key9/>
<ns0:key10/>
<ns0:accessType>TAXROLE</ns0:accessType>
<ns0:webUserId>USER01</ns0:webUserId>
<ns0:webUserName>John Doe</ns0:webUserName>
<ns0:emailAddress/>
<ns0:ipAddress>10.154.138.130</ns0:ipAddress>
</ns0:head>
<ns0:lineOfBusiness>BUS</ns0:lineOfBusiness>
<ns0:errorMessage>
<ns0:currency/>
<ns0:messageTxtOvrd/>
</ns0:errorMessage>
<ns0:confirmationData>
<ns0:header>
<ns0:messageCategory/>
<ns0:messageTxtOvrd/>
</ns0:header>
</ns0:confirmationData>
<ns0:responseData>
<ns0:phones>
<ns0:sequence>1</ns0:sequence>
<ns0:phoneType>BUSN</ns0:phoneType>
<ns0:phoneNumber>415-884-9888</ns0:phoneNumber>
</ns0:phones>
</ns0:responseData>
</TSGetTaxpayerContactInformation>
GetTaxpayerContactInformation Request – Action UPDATE
This sample illustrates the flow invoked when user updates the contact information. The request contains action, user id and single tax account's identifiers (access type and access keys) and also the updated contact information.
<ns1:TSGetTaxpayerContactInformation xmlns:ns1="http://oracle.com/TSGetTaxpayerContactInformation.xsd">
<ns1:head>
<ns1:action>UPDATE</ns1:action>
<ns1:key1>
<ns1:name>PER_ID</ns1:name>
<ns1:value>5786245203</ns1:value>
</ns1:key1>
<ns1:key2>
<ns1:name>TAX_ROLE_ID</ns1:name>
<ns1:value>2057941062</ns1:value>
</ns1:key2>
<ns1:webUserId>USER01</ns1:webUserId>
<ns1:webUserName>John Doe</ns1:webUserName>
<ns1:emailAddress/>
<ns1:ipAddress>10.154.138.130</ns1:ipAddress>
<ns1:accessType>TAXROLE</ns1:accessType>
</ns1:head>
<ns1:lineOfBusiness>BUS</ns1:lineOfBusiness>
<ns1:responseData>
<ns1:phones>
<ns1:sequence>1</ns1:sequence>
<ns1:phoneType>BUSN</ns1:phoneType>
<ns1:phoneNumber>(415) 884-9888</ns1:phoneNumber>
<ns1:extension>123</ns1:extension>
</ns1:phones>
<ns1:phones>
<ns1:sequence>2</ns1:sequence>
<ns1:phoneType>CELL</ns1:phoneType>
<ns1:phoneNumber>(617) 123-4567</ns1:phoneNumber>
</ns1:phones>
<ns1:email>esmith@jemjewels.com</ns1:email>
</ns1:responseData>
</ns1:TSGetTaxpayerContactInformation>
GetTaxpayerContactInformation Response – Action UPDATE
The response contains confirmation details and an updated contact information.
<TSGetTaxpayerContactInformation xmlns:ns0="http://oracle.com/TSGetTaxpayerContactInformation.xsd" dateTimeTagFormat="" xmlns="http://oracle.com/TSGetTaxpayerContactInformation.xsd">
<ns0:head>
<ns0:action>UPDATE</ns0:action>
<ns0:key1>
<ns0:name>PER_ID</ns0:name>
<ns0:value>5786245203</ns0:value>
</ns0:key1>
<ns0:key2>
<ns0:name>TAX_ROLE_ID</ns0:name>
<ns0:value>2057941062</ns0:value>
</ns0:key2>
<ns0:key3/>
<ns0:key4/>
<ns0:key5/>
<ns0:key6/>
<ns0:key7/>
<ns0:key8/>
<ns0:key9/>
<ns0:key10/>
<ns0:accessType>TAXROLE</ns0:accessType>
<ns0:webUserId>GUEST</ns0:webUserId>
<ns0:webUserName>GUEST</ns0:webUserName>
<ns0:emailAddress/>
<ns0:ipAddress>10.154.138.130</ns0:ipAddress>
</ns0:head>
<ns0:lineOfBusiness>BUS</ns0:lineOfBusiness>
<ns0:errorMessage>
<ns0:currency/>
<ns0:messageTxtOvrd/>
</ns0:errorMessage>
<ns0:confirmationData>
<ns0:confirmationId>CIID30200000</ns0:confirmationId>
<ns0:header>
<ns0:messageCategory>11126</ns0:messageCategory>
<ns0:messageNumber>10004</ns0:messageNumber>
<ns0:messageTxtOvrd/>
</ns0:header>
<ns0:details>
<ns0:sequence>1</ns0:sequence>
<ns0:messageCategory>11126</ns0:messageCategory>
<ns0:messageNumber>40004</ns0:messageNumber>
<ns0:messageTxtOvrd/>
</ns0:details>
</ns0:confirmationData>
<ns0:responseData>
<ns0:phones>
<ns0:sequence>1</ns0:sequence>
<ns0:phoneType>BUSN</ns0:phoneType>
<ns0:phoneNumber>(415) 884-9888</ns0:phoneNumber>
<ns0:extension>123</ns0:extension>
</ns0:phones>
<ns0:phones>
<ns0:sequence>2</ns0:sequence>
<ns0:phoneType>CELL</ns0:phoneType>
<ns0:phoneNumber>(617) 123-4567</ns0:phoneNumber>
</ns0:phones>
<ns0:email>esmith@jemjewels.com</ns0:email>
</ns0:responseData>
</TSGetTaxpayerContactInformation>
Taxpayer Correspondence Info
GetTaxpayerCorrespondenceInformation Request
The request contains user id and single tax account's identifiers (access type and access keys).
<ns1:TSGetTaxpayerCorrespondenceInformation xmlns:ns1="http://oracle.com/TSGetTaxpayerCorrespondenceInformation.xsd">
<ns1:head>
<ns1:key1>
<ns1:name>PER_ID</ns1:name>
<ns1:value>7801557905</ns1:value>
</ns1:key1>
<ns1:key2>
<ns1:name>TAX_ROLE_ID</ns1:name>
<ns1:value>8326266070</ns1:value>
</ns1:key2>
<ns1:webUserId>USER01</ns1:webUserId>
<ns1:webUserName>John Doe</ns1:webUserName>
<ns1:emailAddress/>
<ns1:ipAddress>10.186.252.129</ns1:ipAddress>
<ns1:accessType>TAXROLE</ns1:accessType>
</ns1:head>
<ns1:lineOfBusiness>BUS</ns1:lineOfBusiness>
</ns1:TSGetTaxpayerCorrespondenceInformation>
GetTaxpayerCorrespondenceInformation Response
This sample response contains one address entry.
<TSGetTaxpayerCorrespondenceInformation xmlns:ns0="http://oracle.com/TSGetTaxpayerCorrespondenceInformation.xsd" dateTimeTagFormat="" xmlns="http://oracle.com/TSGetTaxpayerCorrespondenceInformation.xsd">
<ns0:head>
<ns0:key1>
<ns0:name>PER_ID</ns0:name>
<ns0:value>7801557905</ns0:value>
</ns0:key1>
<ns0:key2>
<ns0:name>TAX_ROLE_ID</ns0:name>
<ns0:value>8326266070</ns0:value>
</ns0:key2>
<ns0:key3/>
<ns0:key4/>
<ns0:key5/>
<ns0:key6/>
<ns0:key7/>
<ns0:key8/>
<ns0:key9/>
<ns0:key10/>
<ns0:accessType>TAXROLE</ns0:accessType>
<ns0:webUserId>USER01</ns0:webUserId>
<ns0:webUserName>John Doe</ns0:webUserName>
<ns0:emailAddress/>
<ns0:ipAddress>10.186.252.129</ns0:ipAddress>
</ns0:head>
<ns0:lineOfBusiness>BUS</ns0:lineOfBusiness>
<ns0:errorMessage>
<ns0:currency/>
<ns0:messageTxtOvrd/>
</ns0:errorMessage>
<ns0:responseData>
<ns0:location>
<ns0:sequence>1</ns0:sequence>
<ns0:allowEdit>true</ns0:allowEdit>
<ns0:allowDelete>false</ns0:allowDelete>
<ns0:effectiveDates/>
<ns0:address>
<ns0:country>USA</ns0:country>
<ns0:address1>77 Union Streets</ns0:address1>
<ns0:county>san Francisco</ns0:county>
<ns0:city>San Francisco</ns0:city>
<ns0:state>CA</ns0:state>
<ns0:postal>94111</ns0:postal>
<ns0:inCityLimit>false</ns0:inCityLimit>
</ns0:address>
</ns0:location>
</ns0:responseData>
</TSGetTaxpayerCorrespondenceInformation>
Address Maintenance
The address maintenance service is invoked when user adds or edits a single address.
AddressMaintenance Request
This example shows the request sent to the revenue management system. The confirmation id is populated by the integration layer.
<TSAddressMaintenance xmlns:ns0="http://oracle.com/TSAddressMaintenance.xsd" dateTimeTagFormat="" xmlns="http://oracle.com/TSAddressMaintenance.xsd">
<ns0:head>
<ns0:action>UPDATE</ns0:action>
<ns0:key1>
<ns0:name>PER_ID</ns0:name>
<ns0:value>2407057766</ns0:value>
</ns0:key1>
<ns0:key2>
<ns0:name>TAX_ROLE_ID</ns0:name>
<ns0:value>2797085032</ns0:value>
</ns0:key2>
<ns0:key3/>
<ns0:key4/>
<ns0:key5/>
<ns0:key6/>
<ns0:key7/>
<ns0:key8/>
<ns0:key9/>
<ns0:key10/>
<ns0:accessType>TAXROLE</ns0:accessType>
<ns0:webUserId>USER01</ns0:webUserId>
<ns0:webUserName>John Doe</ns0:webUserName>
<ns0:emailAddress/>
<ns0:ipAddress>10.186.252.242</ns0:ipAddress>
</ns0:head>
<ns0:lineOfBusiness>IND</ns0:lineOfBusiness>
<ns0:errorMessage>
<ns0:currency/>
<ns0:messageTxtOvrd/>
</ns0:errorMessage>
<ns0:confirmationData>
<ns0:confirmationId>AMID12200000</ns0:confirmationId>
<ns0:header>
<ns0:messageCategory/>
<ns0:messageNumber/>
<ns0:messageTxtOvrd/>
</ns0:header>
<ns0:details>
<ns0:sequence>1</ns0:sequence>
<ns0:messageCategory>11126</ns0:messageCategory>
<ns0:messageNumber>40003</ns0:messageNumber>
<ns0:messageTxtOvrd/>
</ns0:details>
</ns0:confirmationData>
<ns0:requestData>
<ns0:addressChangeReason>MOVE</ns0:addressChangeReason>
<ns0:location>
<ns0:addressUsage>MAILING</ns0:addressUsage>
<ns0:effectiveDates/>
<ns0:address>
<ns0:country>USA</ns0:country>
<ns0:address1>12 West Lane</ns0:address1>
<ns0:address2/>
<ns0:city>California</ns0:city>
<ns0:state>CA</ns0:state>
<ns0:postal>1234</ns0:postal>
</ns0:address>
</ns0:location>
</ns0:requestData>
</TSAddressMaintenance>
AddressMaintenance Response
<TSAddressMaintenance xmlns:ns0="http://oracle.com/TSAddressMaintenance.xsd" dateTimeTagFormat="" xmlns="http://oracle.com/TSAddressMaintenance.xsd">
<ns0:head>
<ns0:action>UPDATE</ns0:action>
<ns0:key1>
<ns0:name>PER_ID</ns0:name>
<ns0:value>2407057766</ns0:value>
</ns0:key1>
<ns0:key2>
<ns0:name>TAX_ROLE_ID</ns0:name>
<ns0:value>2797085032</ns0:value>
</ns0:key2>
<ns0:key3/>
<ns0:key4/>
<ns0:key5/>
<ns0:key6/>
<ns0:key7/>
<ns0:key8/>
<ns0:key9/>
<ns0:key10/>
<ns0:accessType>TAXROLE</ns0:accessType>
<ns0:webUserId>USER01</ns0:webUserId>
<ns0:webUserName>John Doe</ns0:webUserName>
<ns0:emailAddress/>
<ns0:ipAddress>10.186.252.242</ns0:ipAddress>
</ns0:head>
<ns0:lineOfBusiness>IND</ns0:lineOfBusiness>
<ns0:errorMessage>
<ns0:currency/>
<ns0:messageTxtOvrd/>
</ns0:errorMessage>
<ns0:confirmationData>
<ns0:confirmationId>AMID12200000</ns0:confirmationId>
<ns0:header>
<ns0:messageCategory>11126</ns0:messageCategory>
<ns0:messageNumber>10004</ns0:messageNumber>
<ns0:messageTxtOvrd/>
</ns0:header>
<ns0:details>
<ns0:sequence>1</ns0:sequence>
<ns0:messageCategory>11126</ns0:messageCategory>
<ns0:messageNumber>40003</ns0:messageNumber>
<ns0:messageTxtOvrd/>
</ns0:details>
</ns0:confirmationData>
<ns0:requestData>
<ns0:addressChangeReason>MOVE</ns0:addressChangeReason>
<ns0:location>
<ns0:addressUsage>MAILING</ns0:addressUsage>
<ns0:effectiveDates/>
<ns0:address>
<ns0:country>USA</ns0:country>
<ns0:address1>12 West Lane</ns0:address1>
<ns0:address2/>
<ns0:city>California</ns0:city>
<ns0:state>CA</ns0:state>
<ns0:postal>1234</ns0:postal>
</ns0:address>
</ns0:location>
</ns0:requestData>
</TSAddressMaintenance>
Process Tax or Registration Form
The examples in this section illustrate the tax/business registration form process flow.
ProcessTaxForm – Action VALIDATE. Request
This example shows the request submitted with action VALIDATE (applicable for all other actions, except SUBMIT)
.
<ns1:TSProcessTaxForm xmlns:ns1="http://oracle.com/TSProcessTaxForm.xsd">
<ns1:head>
<ns1:action>VALIDATE</ns1:action>
<ns1:key1>
<ns1:name>PER_ID</ns1:name>
<ns1:value>2885984738</ns1:value>
</ns1:key1>
<ns1:key2>
<ns1:name>TAX_ROLE_ID</ns1:name>
<ns1:value>6294658291</ns1:value>
</ns1:key2>
<ns1:accessType>TAXROLE</ns1:accessType>
<ns1:webUserId>USER01</ns1:webUserId>
<ns1:webUserName>John Doe</ns1:webUserName>
<ns1:ipAddress>10.154.153.69</ns1:ipAddress>
</ns1:head>
<ns1:requestStatus/>
<ns1:linkedRequest/>
<ns1:mainData>
<ns1:validationRule>SALES-USE</ns1:validationRule>
<ns1:validationServer>http://tudevlv0220.us.oracle.com:9200/determinations-server</ns1:validationServer>
<ns1:formType>SALESDST2008</ns1:formType>
<ns1:formCategory>TAXFORM</ns1:formCategory>
<ns1:responseMode>SYNCH</ns1:responseMode>
<ns1:formData>
<ns1:id>SALESDST2008</ns1:id>
<ns1:name>SALESDST2008</ns1:name>
<ns1:section>
<ns1:id>75560</ns1:id>
<ns1:name>taxpayerInfo</ns1:name>
<ns1:sequence>1</ns1:sequence>
<ns1:line>
<ns1:field>
<ns1:id>75561</ns1:id>
<ns1:name>name</ns1:name>
<ns1:dataType>TEXT</ns1:dataType>
<ns1:value>West Coast Office Supplies</ns1:value>
</ns1:field>
</ns1:line>
<ns1:line>
<ns1:field>
<ns1:id>75562</ns1:id>
<ns1:name>idType</ns1:name>
<ns1:dataType>LOOKUP</ns1:dataType>
<ns1:value>EIN</ns1:value>
</ns1:field>
</ns1:line>
<ns1:line>
<ns1:field>
<ns1:id>75563</ns1:id>
<ns1:name>idNumber</ns1:name>
<ns1:dataType>TEXT</ns1:dataType>
<ns1:value>82-0000001</ns1:value>
</ns1:field>
</ns1:line>
<ns1:line>
<ns1:field>
<ns1:id>75565</ns1:id>
<ns1:name>address</ns1:name>
<ns1:dataType>TEXT</ns1:dataType>
<ns1:value>123 South Str</ns1:value>
</ns1:field>
</ns1:line>
<ns1:line>
<ns1:field>
<ns1:id>75566</ns1:id>
<ns1:name>address2</ns1:name>
<ns1:dataType>TEXT</ns1:dataType>
<ns1:value/>
</ns1:field>
</ns1:line>
<ns1:line>
<ns1:field>
<ns1:id>75567</ns1:id>
<ns1:name>city</ns1:name>
<ns1:dataType>TEXT</ns1:dataType>
<ns1:value>Morristown</ns1:value>
</ns1:field>
</ns1:line>
<ns1:line>
<ns1:field>
<ns1:id>75568</ns1:id>
<ns1:name>state</ns1:name>
<ns1:dataType>TEXT</ns1:dataType>
<ns1:value>New Jersey</ns1:value>
</ns1:field>
</ns1:line>
<ns1:line>
<ns1:field>
<ns1:id>75569</ns1:id>
<ns1:name>zipCode</ns1:name>
<ns1:dataType>TEXT</ns1:dataType>
<ns1:value>07960</ns1:value>
</ns1:field>
</ns1:line>
<ns1:line>
<ns1:field>
<ns1:id>75564</ns1:id>
<ns1:name>country</ns1:name>
<ns1:dataType>TEXT</ns1:dataType>
<ns1:value>Uni</ns1:value>
</ns1:field>
</ns1:line>
<ns1:line>
<ns1:field>
<ns1:id>75570</ns1:id>
<ns1:name>accountNumber</ns1:name>
<ns1:dataType>TEXT</ns1:dataType>
<ns1:value/>
</ns1:field>
</ns1:line>
<ns1:line>
<ns1:field>
<ns1:id>75571</ns1:id>
<ns1:name>filingStartDate</ns1:name>
<ns1:dataType>DATE</ns1:dataType>
<ns1:value/>
</ns1:field>
</ns1:line>
<ns1:line>
<ns1:field>
<ns1:id>75572</ns1:id>
<ns1:name>filingEndDate</ns1:name>
<ns1:dataType>DATE</ns1:dataType>
<ns1:value/>
</ns1:field>
</ns1:line>
</ns1:section>
<ns1:section>
<ns1:id>75573</ns1:id>
<ns1:name>lineItems</ns1:name>
<ns1:sequence>1</ns1:sequence>
<ns1:line>
<ns1:field>
<ns1:id>75574</ns1:id>
<ns1:name>totalGrossSales</ns1:name>
<ns1:dataType>CURRENCY</ns1:dataType>
<ns1:value>160000</ns1:value>
</ns1:field>
</ns1:line>
<ns1:line>
<ns1:field>
<ns1:id>75575</ns1:id>
<ns1:name>purchasesSubjectToTax</ns1:name>
<ns1:dataType>CURRENCY</ns1:dataType>
<ns1:value>30000</ns1:value>
</ns1:field>
</ns1:line>
<ns1:line>
<ns1:field>
<ns1:id>75576</ns1:id>
<ns1:name>total</ns1:name>
<ns1:dataType>CURRENCY</ns1:dataType>
<ns1:value/>
</ns1:field>
</ns1:line>
<ns1:line>
<ns1:field>
<ns1:id>75577</ns1:id>
<ns1:name>totalExemptTransactions</ns1:name>
<ns1:dataType>CURRENCY</ns1:dataType>
<ns1:value/>
</ns1:field>
</ns1:line>
<ns1:line>
<ns1:field>
<ns1:id>75578</ns1:id>
<ns1:name>taxableTransactions</ns1:name>
<ns1:dataType>CURRENCY</ns1:dataType>
<ns1:value/>
</ns1:field>
</ns1:line>
<ns1:line>
<ns1:field>
<ns1:id>75579</ns1:id>
<ns1:name>taxRate</ns1:name>
<ns1:dataType>NUMBER</ns1:dataType>
<ns1:value>6.25</ns1:value>
</ns1:field>
</ns1:line>
<ns1:line>
<ns1:field>
<ns1:id>75580</ns1:id>
<ns1:name>totalAssessedTaxAmount</ns1:name>
<ns1:dataType>CURRENCY</ns1:dataType>
<ns1:value/>
</ns1:field>
</ns1:line>
<ns1:line>
<ns1:field>
<ns1:id>75581</ns1:id>
<ns1:name>transactionsSubjectToLocalTax</ns1:name>
<ns1:dataType>CURRENCY</ns1:dataType>
<ns1:value/>
</ns1:field>
</ns1:line>
<ns1:line>
<ns1:field>
<ns1:id>75582</ns1:id>
<ns1:name>localTax</ns1:name>
<ns1:dataType>CURRENCY</ns1:dataType>
<ns1:value/>
</ns1:field>
</ns1:line>
<ns1:line>
<ns1:field>
<ns1:id>75583</ns1:id>
<ns1:name>totalTax</ns1:name>
<ns1:dataType>CURRENCY</ns1:dataType>
<ns1:value/>
</ns1:field>
</ns1:line>
<ns1:line>
<ns1:field>
<ns1:id>75584</ns1:id>
<ns1:name>firstPrepayment</ns1:name>
<ns1:dataType>CURRENCY</ns1:dataType>
<ns1:value/>
</ns1:field>
</ns1:line>
<ns1:line>
<ns1:field>
<ns1:id>75585</ns1:id>
<ns1:name>secondPrepayment</ns1:name>
<ns1:dataType>CURRENCY</ns1:dataType>
<ns1:value/>
</ns1:field>
</ns1:line>
<ns1:line>
<ns1:field>
<ns1:id>75586</ns1:id>
<ns1:name>taxPrepayments</ns1:name>
<ns1:dataType>CURRENCY</ns1:dataType>
<ns1:value/>
</ns1:field>
</ns1:line>
<ns1:line>
<ns1:field>
<ns1:id>75587</ns1:id>
<ns1:name>remainingTaxDue</ns1:name>
<ns1:dataType>CURRENCY</ns1:dataType>
<ns1:value/>
</ns1:field>
</ns1:line>
<ns1:line>
<ns1:field>
<ns1:id>75588</ns1:id>
<ns1:name>penalty</ns1:name>
<ns1:dataType>CURRENCY</ns1:dataType>
<ns1:value/>
</ns1:field>
</ns1:line>
<ns1:line>
<ns1:field>
<ns1:id>75589</ns1:id>
<ns1:name>interest</ns1:name>
<ns1:dataType>CURRENCY</ns1:dataType>
<ns1:value/>
</ns1:field>
</ns1:line>
<ns1:line>
<ns1:field>
<ns1:id>75590</ns1:id>
<ns1:name>totalAmountOwed</ns1:name>
<ns1:dataType>CURRENCY</ns1:dataType>
<ns1:value/>
</ns1:field>
</ns1:line>
</ns1:section>
<ns1:section>
<ns1:id>75597</ns1:id>
<ns1:name>deductExempt</ns1:name>
<ns1:sequence>1</ns1:sequence>
<ns1:line>
<ns1:field>
<ns1:id>75598</ns1:id>
<ns1:name>salesToOtherRetailers</ns1:name>
<ns1:dataType>CURRENCY</ns1:dataType>
<ns1:value>2000</ns1:value>
</ns1:field>
</ns1:line>
<ns1:line>
<ns1:field>
<ns1:id>75599</ns1:id>
<ns1:name>nonTaxableSales</ns1:name>
<ns1:dataType>CURRENCY</ns1:dataType>
<ns1:value>3000</ns1:value>
</ns1:field>
</ns1:line>
<ns1:line>
<ns1:field>
<ns1:id>75600</ns1:id>
<ns1:name>nonTaxableLabor</ns1:name>
<ns1:dataType>CURRENCY</ns1:dataType>
<ns1:value/>
</ns1:field>
</ns1:line>
<ns1:line>
<ns1:field>
<ns1:id>75601</ns1:id>
<ns1:name>salesToGovernment</ns1:name>
<ns1:dataType>CURRENCY</ns1:dataType>
<ns1:value/>
</ns1:field>
</ns1:line>
<ns1:line>
<ns1:field>
<ns1:id>75602</ns1:id>
<ns1:name>salesInterstateForeignCommer</ns1:name>
<ns1:dataType>CURRENCY</ns1:dataType>
<ns1:value/>
</ns1:field>
</ns1:line>
<ns1:line>
<ns1:field>
<ns1:id>75603</ns1:id>
<ns1:name>salesTaxInGrossSales</ns1:name>
<ns1:dataType>CURRENCY</ns1:dataType>
<ns1:value/>
</ns1:field>
</ns1:line>
<ns1:line>
<ns1:field>
<ns1:id>75604</ns1:id>
<ns1:name>lossesTaxableSales</ns1:name>
<ns1:dataType>CURRENCY</ns1:dataType>
<ns1:value/>
</ns1:field>
</ns1:line>
<ns1:line>
<ns1:field>
<ns1:id>75605</ns1:id>
<ns1:name>lenderLosses</ns1:name>
<ns1:dataType>CURRENCY</ns1:dataType>
<ns1:value/>
</ns1:field>
</ns1:line>
<ns1:line>
<ns1:field>
<ns1:id>75606</ns1:id>
<ns1:name>taxPaidPurchaseResold</ns1:name>
<ns1:dataType>CURRENCY</ns1:dataType>
<ns1:value/>
</ns1:field>
</ns1:line>
<ns1:line>
<ns1:field>
<ns1:id>75607</ns1:id>
<ns1:name>returnedTaxableMerchandise</ns1:name>
<ns1:dataType>CURRENCY</ns1:dataType>
<ns1:value/>
</ns1:field>
</ns1:line>
<ns1:line>
<ns1:field>
<ns1:id>75608</ns1:id>
<ns1:name>cashDiscountsTaxableSales</ns1:name>
<ns1:dataType>CURRENCY</ns1:dataType>
<ns1:value/>
</ns1:field>
</ns1:line>
<ns1:line>
<ns1:field>
<ns1:id>75609</ns1:id>
<ns1:name>totalFullDeductExempt</ns1:name>
<ns1:dataType>CURRENCY</ns1:dataType>
<ns1:value/>
</ns1:field>
</ns1:line>
</ns1:section>
<ns1:section>
<ns1:id>75610</ns1:id>
<ns1:name>localTaxCompSchedule</ns1:name>
<ns1:sequence>1</ns1:sequence>
<ns1:line>
<ns1:field>
<ns1:id>75611</ns1:id>
<ns1:name>transactionsSubjectToLocalTax</ns1:name>
<ns1:dataType>CURRENCY</ns1:dataType>
<ns1:value>1000</ns1:value>
</ns1:field>
</ns1:line>
<ns1:line>
<ns1:field>
<ns1:id>75612</ns1:id>
<ns1:name>salesToLocationNotInArea</ns1:name>
<ns1:dataType>CURRENCY</ns1:dataType>
<ns1:value/>
</ns1:field>
</ns1:line>
<ns1:line>
<ns1:field>
<ns1:id>75613</ns1:id>
<ns1:name>netAmountSubjectToLocalTax</ns1:name>
<ns1:dataType>CURRENCY</ns1:dataType>
<ns1:value/>
</ns1:field>
</ns1:line>
<ns1:line>
<ns1:field>
<ns1:id>75614</ns1:id>
<ns1:name>totalLocalTax</ns1:name>
<ns1:dataType>CURRENCY</ns1:dataType>
<ns1:value/>
</ns1:field>
</ns1:line>
<ns1:table>
<ns1:id>75615</ns1:id>
<ns1:name>compArea</ns1:name>
<ns1:tableRow>
<ns1:sequence>1</ns1:sequence>
<ns1:field>
<ns1:id>75616</ns1:id>
<ns1:name>localAreaName</ns1:name>
<ns1:dataType>LOOKUP</ns1:dataType>
<ns1:value>CMA2</ns1:value>
</ns1:field>
<ns1:field>
<ns1:id>75617</ns1:id>
<ns1:name>allocatedAmount</ns1:name>
<ns1:dataType>CURRENCY</ns1:dataType>
<ns1:value>1000</ns1:value>
</ns1:field>
<ns1:field>
<ns1:id>75618</ns1:id>
<ns1:name>localAreaTaxRate</ns1:name>
<ns1:dataType>NUMBER</ns1:dataType>
<ns1:value/>
</ns1:field>
<ns1:field>
<ns1:id>75619</ns1:id>
<ns1:name>areaTaxDue</ns1:name>
<ns1:dataType>CURRENCY</ns1:dataType>
<ns1:value/>
</ns1:field>
</ns1:tableRow>
</ns1:table>
</ns1:section>
<ns1:section>
<ns1:id>75591</ns1:id>
<ns1:name>preparerInformation</ns1:name>
<ns1:sequence>1</ns1:sequence>
<ns1:line>
<ns1:field>
<ns1:id>75592</ns1:id>
<ns1:name>taxpayerTelephoneNumber</ns1:name>
<ns1:dataType>TEXT</ns1:dataType>
<ns1:value/>
</ns1:field>
</ns1:line>
<ns1:line>
<ns1:field>
<ns1:id>75593</ns1:id>
<ns1:name>preparationDate</ns1:name>
<ns1:dataType>DATE</ns1:dataType>
<ns1:value/>
</ns1:field>
</ns1:line>
<ns1:line>
<ns1:field>
<ns1:id>75594</ns1:id>
<ns1:name>paidPreparerTelephoneNumber</ns1:name>
<ns1:dataType>TEXT</ns1:dataType>
<ns1:value/>
</ns1:field>
</ns1:line>
<ns1:line>
<ns1:field>
<ns1:id>75595</ns1:id>
<ns1:name>paidPreparerIdType</ns1:name>
<ns1:dataType>TEXT</ns1:dataType>
<ns1:value/>
</ns1:field>
</ns1:line>
<ns1:line>
<ns1:field>
<ns1:id>75596</ns1:id>
<ns1:name>paidPreparerIdNumber</ns1:name>
<ns1:dataType>TEXT</ns1:dataType>
<ns1:value/>
</ns1:field>
</ns1:line>
</ns1:section>
</ns1:formData>
</ns1:mainData>
</ns1:TSProcessTaxForm>
ProcessTaxForm – Action SUBMIT. Request
In this example, the request contains tax account identifiers (access keys and access type) and the form data. Integration layer generates the confirmation id and the document locator number and populates it on the request.
<TSProcessTaxForm xmlns:params="http://schemas.oracle.com/service/bpel/common" xmlns:otss="http://oracle.com/TSProcessTaxForm.xsd" dateTimeTagFormat="" xmlns="http://oracle.com/TSProcessTaxForm.xsd">
<otss:head>
<otss:action>SUBMIT</otss:action>
<otss:key1>
<otss:name>PER_ID</otss:name>
<otss:value>2885984738</otss:value>
</otss:key1>
<otss:key2>
<otss:name>TAX_ROLE_ID</otss:name>
<otss:value>6294658291</otss:value>
</otss:key2>
<otss:key3/>
<otss:key4/>
<otss:key5/>
<otss:key6/>
<otss:key7/>
<otss:key8/>
<otss:key9/>
<otss:key10/>
<otss:accessType>TAXROLE</otss:accessType>
<otss:webUserId>USER02</otss:webUserId>
<otss:webUserName>Mary Doe</otss:webUserName> <otss:emailAddress>myEmail@mail.com</otss:emailAddress>
<otss:ipAddress>10.154.153.69</otss:ipAddress>
</otss:head>
<otss:requestStatus/>
<otss:errorMessage>
<otss:messageTxtOvrd/>
</otss:errorMessage>
<otss:confirmationData>
<otss:confirmationId>TFID51600000</otss:confirmationId>
</otss:confirmationData>
<otss:linkedRequest/>
<otss:mainData>
<otss:formType>SALESDST2008</otss:formType>
<otss:formCategory>TAXFORM</otss:formCategory>
<otss:responseMode>SYNCH</otss:responseMode> <otss:documentLocator>TFDLN00000005223</otss:documentLocator>
<otss:formData>
<otss:id>SALESDST2008</otss:id>
<otss:name>SALESDST2008</otss:name>
<otss:section>
<otss:id>75560</otss:id>
<otss:name>taxpayerInfo</otss:name>
<otss:sequence>1</otss:sequence>
<otss:line>
<otss:field>
<otss:id>75561</otss:id>
<otss:name>name</otss:name>
<otss:dataType>TEXT</otss:dataType>
<otss:value>West Of Soho</otss:value>
</otss:field>
</otss:line>
<otss:line>
<otss:field>
<otss:id>75562</otss:id>
<otss:name>idType</otss:name>
<otss:dataType>LOOKUP</otss:dataType>
<otss:value>EIN</otss:value>
</otss:field>
</otss:line>
<otss:line>
<otss:field>
<otss:id>75563</otss:id>
<otss:name>idNumber</otss:name>
<otss:dataType>TEXT</otss:dataType>
<otss:value>78-9999999</otss:value>
</otss:field>
</otss:line>
<otss:line>
<otss:field>
<otss:id>75565</otss:id>
<otss:name>address</otss:name>
<otss:dataType>TEXT</otss:dataType>
<otss:value>230 South Str</otss:value>
</otss:field>
</otss:line>
<otss:line>
<otss:field>
<otss:id>75566</otss:id>
<otss:name>address2</otss:name>
<otss:dataType>TEXT</otss:dataType>
<otss:value/>
</otss:field>
</otss:line>
<otss:line>
<otss:field>
<otss:id>75567</otss:id>
<otss:name>city</otss:name>
<otss:dataType>TEXT</otss:dataType>
<otss:value>Morristown</otss:value>
</otss:field>
</otss:line>
<otss:line>
<otss:field>
<otss:id>75568</otss:id>
<otss:name>state</otss:name>
<otss:dataType>TEXT</otss:dataType>
<otss:value>NJ</otss:value>
</otss:field>
</otss:line>
<otss:line>
<otss:field>
<otss:id>75569</otss:id>
<otss:name>zipCode</otss:name>
<otss:dataType>TEXT</otss:dataType>
<otss:value>07960</otss:value>
</otss:field>
</otss:line>
<otss:line>
<otss:field>
<otss:id>75564</otss:id>
<otss:name>country</otss:name>
<otss:dataType>TEXT</otss:dataType>
<otss:value>USA</otss:value>
</otss:field>
</otss:line>
<otss:line>
<otss:field>
<otss:id>75570</otss:id>
<otss:name>accountNumber</otss:name>
<otss:dataType>TEXT</otss:dataType>
<otss:value/>
</otss:field>
</otss:line>
<otss:line>
<otss:field>
<otss:id>75571</otss:id>
<otss:name>filingStartDate</otss:name>
<otss:dataType>DATE</otss:dataType>
<otss:value>2010-04-01</otss:value>
</otss:field>
</otss:line>
<otss:line>
<otss:field>
<otss:id>75572</otss:id>
<otss:name>filingEndDate</otss:name>
<otss:dataType>DATE</otss:dataType>
<otss:value>2010-06-30</otss:value>
</otss:field>
</otss:line>
</otss:section>
<otss:section>
<otss:id>75573</otss:id>
<otss:name>lineItems</otss:name>
<otss:sequence>1</otss:sequence>
<otss:line>
<otss:field>
<otss:id>75574</otss:id>
<otss:name>totalGrossSales</otss:name>
<otss:dataType>CURRENCY</otss:dataType>
<otss:value>160000.0</otss:value>
</otss:field>
</otss:line>
<otss:line>
<otss:field>
<otss:id>75575</otss:id> <otss:name>purchasesSubjectToTax</otss:name>
<otss:dataType>CURRENCY</otss:dataType>
<otss:value>30000.0</otss:value>
</otss:field>
</otss:line>
<otss:line>
<otss:field>
<otss:id>75576</otss:id>
<otss:name>total</otss:name>
<otss:dataType>CURRENCY</otss:dataType>
<otss:value>190000.0</otss:value>
</otss:field>
</otss:line>
<otss:line>
<otss:field>
<otss:id>75577</otss:id>
<otss:name>totalExemptTransactions</otss:name>
<otss:dataType>CURRENCY</otss:dataType>
<otss:value>15000.0</otss:value>
</otss:field>
</otss:line>
<otss:line>
<otss:field>
<otss:id>75578</otss:id>
<otss:name>taxableTransactions</otss:name>
<otss:dataType>CURRENCY</otss:dataType>
<otss:value>175000.0</otss:value>
</otss:field>
</otss:line>
<otss:line>
<otss:field>
<otss:id>75579</otss:id>
<otss:name>taxRate</otss:name>
<otss:dataType>NUMBER</otss:dataType>
<otss:value>6.25</otss:value>
</otss:field>
</otss:line>
<otss:line>
<otss:field>
<otss:id>75580</otss:id> <otss:name>totalAssessedTaxAmount</otss:name>
<otss:dataType>CURRENCY</otss:dataType>
<otss:value>10937.5</otss:value>
</otss:field>
</otss:line>
<otss:line>
<otss:field>
<otss:id>75581</otss:id> <otss:name>transactionsSubjectToLocalTax</otss:name>
<otss:dataType>CURRENCY</otss:dataType>
<otss:value>3000.0</otss:value>
</otss:field>
</otss:line>
<otss:line>
<otss:field>
<otss:id>75582</otss:id>
<otss:name>localTax</otss:name>
<otss:dataType>CURRENCY</otss:dataType>
<otss:value>60.0</otss:value>
</otss:field>
</otss:line>
<otss:line>
<otss:field>
<otss:id>75583</otss:id>
<otss:name>totalTax</otss:name>
<otss:dataType>CURRENCY</otss:dataType>
<otss:value>10997.5</otss:value>
</otss:field>
</otss:line>
<otss:line>
<otss:field>
<otss:id>75584</otss:id>
<otss:name>firstPrepayment</otss:name>
<otss:dataType>CURRENCY</otss:dataType>
<otss:value>0.0</otss:value>
</otss:field>
</otss:line>
<otss:line>
<otss:field>
<otss:id>75585</otss:id>
<otss:name>secondPrepayment</otss:name>
<otss:dataType>CURRENCY</otss:dataType>
<otss:value>0.0</otss:value>
</otss:field>
</otss:line>
<otss:line>
<otss:field>
<otss:id>75586</otss:id>
<otss:name>taxPrepayments</otss:name>
<otss:dataType>CURRENCY</otss:dataType>
<otss:value>0.0</otss:value>
</otss:field>
</otss:line>
<otss:line>
<otss:field>
<otss:id>75587</otss:id>
<otss:name>remainingTaxDue</otss:name>
<otss:dataType>CURRENCY</otss:dataType>
<otss:value>10997.5</otss:value>
</otss:field>
</otss:line>
<otss:line>
<otss:field>
<otss:id>75588</otss:id>
<otss:name>penalty</otss:name>
<otss:dataType>CURRENCY</otss:dataType>
<otss:value>0.0</otss:value>
</otss:field>
</otss:line>
<otss:line>
<otss:field>
<otss:id>75589</otss:id>
<otss:name>interest</otss:name>
<otss:dataType>CURRENCY</otss:dataType>
<otss:value>0.0</otss:value>
</otss:field>
</otss:line>
<otss:line>
<otss:field>
<otss:id>75590</otss:id>
<otss:name>totalAmountOwed</otss:name>
<otss:dataType>CURRENCY</otss:dataType>
<otss:value>10997.5</otss:value>
</otss:field>
</otss:line>
</otss:section>
<otss:section>
<otss:id>75610</otss:id>
<otss:name>localTaxCompSchedule</otss:name>
<otss:sequence>1</otss:sequence>
<otss:line>
<otss:field>
<otss:id>75611</otss:id>
<otss:name>transactionsSubjectToLocalTax</otss:name>
<otss:dataType>CURRENCY</otss:dataType>
<otss:value>3000.0</otss:value>
</otss:field>
</otss:line>
<otss:line>
<otss:field>
<otss:id>75612</otss:id> <otss:name>salesToLocationNotInArea</otss:name>
<otss:dataType>CURRENCY</otss:dataType>
<otss:value>0.0</otss:value>
</otss:field>
</otss:line>
<otss:line>
<otss:field>
<otss:id>75613</otss:id> <otss:name>netAmountSubjectToLocalTax</otss:name>
<otss:dataType>CURRENCY</otss:dataType>
<otss:value>3000.0</otss:value>
</otss:field>
</otss:line>
<otss:line>
<otss:field>
<otss:id>75614</otss:id>
<otss:name>totalLocalTax</otss:name>
<otss:dataType>CURRENCY</otss:dataType>
<otss:value>60.0</otss:value>
</otss:field>
</otss:line>
<otss:table>
<otss:id>75615</otss:id>
<otss:name>compArea</otss:name>
<otss:tableRow>
<otss:sequence>1</otss:sequence>
<otss:field>
<otss:id>75616</otss:id>
<otss:name>localAreaName</otss:name>
<otss:dataType>LOOKUP</otss:dataType>
<otss:value>CMA2</otss:value>
</otss:field>
<otss:field>
<otss:id>75617</otss:id>
<otss:name>allocatedAmount</otss:name>
<otss:dataType>CURRENCY</otss:dataType>
<otss:value>3000.0</otss:value>
</otss:field>
<otss:field>
<otss:id>75618</otss:id>
<otss:name>localAreaTaxRate</otss:name>
<otss:dataType>NUMBER</otss:dataType>
<otss:value>0.02</otss:value>
</otss:field>
<otss:field>
<otss:id>75619</otss:id>
<otss:name>areaTaxDue</otss:name>
<otss:dataType>CURRENCY</otss:dataType>
<otss:value>60.0</otss:value>
</otss:field>
</otss:tableRow>
</otss:table>
</otss:section>
</otss:formData>
<otss:exceptions/>
</otss:mainData>
</TSProcessTaxForm>
ProcessTaxForm – Action VALIDATE. Response from Form Validation Service in BPEL
The integration layer evaluates request contents and invokes Form Validation service if the validation rule name is populated on the request. This sample illustrates the scenario where exceptions were returned by the validation engine (in this case, OPA rulebase).
<FormValidation xmlns:typ="http://oracle.com/determinations/server/10.4/rulebase/assess/types" xmlns:i18n="http://www.w3.org/2005/09/ws-i18n" xmlns="http://xmlns.oracle.com/OTSS/OTSSFormValidationService/OTSSFormValidationBPELProcess">
<ots:mainData xmlns:ots="http://xmlns.oracle.com/OTSS/OTSSFormValidationService/OTSSFormValidationBPELProcess">
<ots:formType>SALESDST2008</ots:formType>
<ots:formData>
<ots:name>SALESDST2008</ots:name>
<ots:id>SALESDST2008</ots:id>
<ots:section>
<ots:id>75560</ots:id>
<ots:name>taxpayerInfo</ots:name>
<ots:sequence>1</ots:sequence>
<ots:line>
<ots:field>
<ots:id>75570</ots:id>
<ots:name>accountNumber</ots:name>
<ots:value/>
</ots:field>
</ots:line>...
[………………form data ………………………]
...<ots:line>
<ots:field>
<ots:id>75609</ots:id>
<ots:name>totalFullDeductExempt</ots:name>
<ots:value>5000.0</ots:value>
</ots:field>
</ots:line>
</ots:section>
</ots:formData>
<ots:exceptions>
<ots:exception>
<ots:sequence>4</ots:sequence>
<ots:elementReference>75572-1</ots:elementReference>
<ots:errorMessage>
<ots:messageTxtOvrd> Filing period end date must be provided</ots:messageTxtOvrd>
</ots:errorMessage>
</ots:exception>
<ots:exception>
<ots:sequence>5</ots:sequence>
<ots:elementReference>75571-1</ots:elementReference>
<ots:errorMessage>
<ots:messageTxtOvrd> Filing period start date must be provided</ots:messageTxtOvrd>
</ots:errorMessage>
</ots:exception>
</ots:exceptions>
</ots:mainData>
</FormValidation>
ProcessTaxForm – Action VALIDATE. Response
This is a sample response received after invoking action VALIDATE. Similar response is expected from all actions except SUBMIT. Note that the form data validation issues are captured on exceptions collection.
<TSProcessTaxForm xmlns:otss="http://oracle.com/TSProcessTaxForm.xsd" dateTimeTagFormat="" xmlns="http://oracle.com/TSProcessTaxForm.xsd">
<otss:head>
<otss:action>VALIDATE</otss:action>
<otss:key1>
<otss:name>PER_ID</otss:name>
<otss:value>6638893506</otss:value>
</otss:key1>
<otss:key2>
<otss:name>TAX_ROLE_ID</otss:name>
<otss:value>9037315275</otss:value>
</otss:key2>
<otss:key3/>
<otss:key4/>
<otss:key5/>
<otss:key6/>
<otss:key7/>
<otss:key8/>
<otss:key9/>
<otss:key10/>
<otss:accessType>TAXROLE</otss:accessType>
<otss:webUserId>USER01</otss:webUserId>
<otss:webUserName>John Doe</otss:webUserName>
<otss:ipAddress>10.186.253.49</otss:ipAddress>
</otss:head>
<otss:requestStatus/>
<otss:errorMessage>
<otss:messageParameters/>
</otss:errorMessage>
<otss:confirmationData>
<otss:header>
<otss:messageParameters/>
</otss:header>
</otss:confirmationData>
<otss:linkedRequest/>
<otss:mainData>...
[………………form data ………………………]
...</otss:line>
</otss:section>
</otss:formData>
<otss:exceptions>
<otss:exception>
<otss:sequence>4</otss:sequence>
<otss:elementReference>75572-1</otss:elementReference>
<otss:errorMessage>
<otss:messageParameters/>
<otss:messageTxtOvrd>Filing period end date must be provided</otss:messageTxtOvrd>
</otss:errorMessage>
</otss:exception>
<otss:exception>
<otss:sequence>5</otss:sequence>
<otss:elementReference>75571-1</otss:elementReference>
<otss:errorMessage>
<otss:messageParameters/>
<otss:messageTxtOvrd>Filing period start date must be provided</otss:messageTxtOvrd>
</otss:errorMessage>
</otss:exception>
</otss:exceptions>
</otss:mainData>
</TSProcessTaxForm>
ProcessTaxForm – Action SUBMIT. Response
The response contains confirmation details. Note that form data is echoed back to the self service application. This data is used if user chooses to print the form.
<TSProcessTaxForm xmlns:params="http://schemas.oracle.com/service/bpel/common"
xmlns:otss="http://oracle.com/TSProcessTaxForm.xsd" dateTimeTagFormat=""
xmlns="http://oracle.com/TSProcessTaxForm.xsd">
<otss:head>
<otss:action>SUBMIT</otss:action>
<otss:key1>
<otss:name>PER_ID</otss:name>
<otss:value>2885984738</otss:value>
</otss:key1>
<otss:key2>
<otss:name>TAX_ROLE_ID</otss:name>
<otss:value>6294658291</otss:value>
</otss:key2>
<otss:key3/>
<otss:key4/>
<otss:key5/>
<otss:key6/>
<otss:key7/>
<otss:key8/>
<otss:key9/>
<otss:key10/>
<otss:accessType>TAXROLE</otss:accessType>
<otss:webUserId>USER02</otss:webUserId>
<otss:webUserName>Mary Doe</otss:webUserName>
<otss:emailAddress>myEmail@mail.com</otss:emailAddress>
<otss:ipAddress>10.154.153.69</otss:ipAddress>
</otss:head>
<otss:requestStatus/>
<otss:errorMessage>
<otss:messageTxtOvrd/>
</otss:errorMessage>
<otss:confirmationData>
<otss:confirmationId>TFID51600000</otss:confirmationId>
<otss:header>
<otss:messageCategory>11126</otss:messageCategory>
<otss:messageNumber>10004</otss:messageNumber>
<otss:messageTxtOvrd/>
</otss:header>
</otss:confirmationData>
<otss:linkedRequest/>
<otss:mainData>
<otss:formType>SALESDST2008</otss:formType>
<otss:formCategory>TAXFORM</otss:formCategory>
<otss:responseMode>SYNCH</otss:responseMode>
<otss:documentLocator>TFDLN00000005223</otss:documentLocator>
<otss:formData>
<otss:id>SALESDST2008</otss:id>
<otss:name>SALESDST2008</otss:name>
<otss:section>
<otss:id>75560</otss:id>
<otss:name>taxpayerInfo</otss:name>
<otss:sequence>1</otss:sequence>
<otss:line>
[………………form data ………………………]
<otss:field>
<otss:id>75619</otss:id>
<otss:name>areaTaxDue</otss:name>
<otss:dataType>CURRENCY</otss:dataType>
<otss:value>60.0</otss:value>
</otss:field>
</otss:tableRow>
</otss:table>
</otss:section>
</otss:formData>
<otss:exceptions/>
</otss:mainData>
</TSProcessTaxForm>
Print Form Data
PrintForm Request
The request contains a user ID, form category, and the language currently used on the self service portal.
<ns1:TSPrintDocument xmlns:ns1="http://oracle.com/TSPrintDocument.xsd">
<ns1:head>
<ns1:action/>
<ns1:key1>
<ns1:name>PER_ID</ns1:name>
<ns1:value>4121934169</ns1:value>
</ns1:key1>
<ns1:key2>
<ns1:name>TAX_ROLE_ID</ns1:name>
<ns1:value>8690587828</ns1:value>
</ns1:key2>
<ns1:webUserId>USER02</ns1:webUserId>
<ns1:webUserName>Mary Doe</ns1:webUserName>
<ns1:ipAddress>10.154.117.135</ns1:ipAddress>
<ns1:accessType>TAXROLE</ns1:accessType>
</ns1:head>
<ns1:requestStatus/>
<ns1:linkedRequest/>
<ns1:input>
<ns1:documentSource>TAXFORM</ns1:documentSource>
<ns1:documentData>
<documentData>
<formType>ZZ-SS-TEST02</formType>
<formCategory>TAXFORM</formCategory>
<currency/>
<formTypeDescription>Self Service Test Form 02 - Internet Purchases</formTypeDescription>
<documentLocator/>
<documentLocatorLabel>Document Locator</documentLocatorLabel>
<customProperties/>
<formData>
<id>ZZ-SS-TEST02</id>
<name>Self Service Test Form 02 - Internet Purchases</name>
<section>
<id>63821</id>
<name>identification</name>
<sectionLabel>Taxpayer Identification</sectionLabel>
<sequence>1</sequence>
<line>
<field>
<id>63822</id>
<name>name</name>
<lineLabel>Name</lineLabel>
<dataType>TEXT</dataType>
<value>John Segal</value>
</field>
</line>
<line>
<field>
<id>63823</id>
<name>idType</name>
<lineLabel>ID Type</lineLabel>
<dataType>LOOKUP</dataType>
<value>Social Security Number </value>
</field>
</line>
<line>
<field>
<id>63824</id>
<name>idNumber</name>
<lineLabel>ID Number</lineLabel>
<dataType>TEXT</dataType>
<value>666-77-8888</value>
</field>
</line>
<line>
<field>
<id>63825</id>
<name>address</name>
<lineLabel>Address</lineLabel>
<dataType>TEXT</dataType>
<value>400 Crossing Blvd</value>
</field>
</line>
<line>
<field>
<id>63826</id>
<name>city</name>
<lineLabel>City</lineLabel>
<dataType>TEXT</dataType>
<value>Bridgewater</value>
</field>
</line>
<line>
<field>
<id>63827</id>
<name>state</name>
<lineLabel>State</lineLabel>
<dataType>TEXT</dataType>
<value>NJ</value>
</field>
</line>
<line>
<field>
<id>63828</id>
<name>postal</name>
<lineLabel>Postal</lineLabel>
<dataType>TEXT</dataType>
<value>08648</value>
</field>
</line>
<line>
<field>
<id>63829</id>
<name>contry</name>
<lineLabel>Country</lineLabel>
<dataType>TEXT</dataType>
<value>USA</value>
</field>
</line>
<line>
<field>
<id>63830</id>
<name>fileStartDate</name>
<lineLabel>Filing Period Start Date</lineLabel>
<dataType>DATE</dataType>
<value>06/10/2014</value>
</field>
</line>
<line>
<field>
<id>63831</id>
<name>fileEndDate</name>
<lineLabel>Filing Period End Date</lineLabel>
<dataType>DATE</dataType>
<value>06/17/2014</value>
</field>
</line>
</section>
<section>
<id>63832</id>
<name>financialData</name>
<sectionLabel>Financial Data</sectionLabel>
<sequence>1</sequence>
<line>
<field>
<id>63833</id>
<name>stateInternetPurchases</name>
<lineLabel>Total Internet Purchases in State</lineLabel>
<dataType>CURRENCY</dataType>
<value>1</value>
</field>
</line>
<line>
<field>
<id>63834</id>
<name>outInternetPurchases</name>
<lineLabel>Internet Purchases out of State</lineLabel>
<dataType>CURRENCY</dataType>
<value>1</value>
</field>
</line>
<line>
<field>
<id>63835</id>
<name>totalPurchases</name>
<lineLabel>Total Internet Purchases</lineLabel>
<dataType>CURRENCY</dataType>
<value>2</value>
</field>
</line>
<line>
<field>
<id>63836</id>
<name>exemptPurchases</name>
<lineLabel>Purchases exempt from Tax</lineLabel>
<dataType>CURRENCY</dataType>
<value>1</value>
</field>
</line>
<line>
<field>
<id>63837</id>
<name>totalTaxablePurchases</name>
<lineLabel>Total Taxable Purchases</lineLabel>
<dataType>CURRENCY</dataType>
<value>1</value>
</field>
</line>
<line>
<field>
<id>63838</id>
<name>taxRateType</name>
<lineLabel>Tax Rate Type</lineLabel>
<dataType>LOOKUP</dataType>
<value>Self Determined Rate</value>
</field>
</line>
<line>
<field>
<id>63839</id>
<name>taxRateValue</name>
<lineLabel>Tax Rate Value</lineLabel>
<dataType>NUMBER</dataType>
<value>1000000</value>
</field>
</line>
<line>
<field>
<id>63840</id>
<name>calcTax</name>
<lineLabel>Calculated Tax</lineLabel>
<dataType>CURRENCY</dataType>
<value>1</value>
</field>
</line>
<line>
<field>
<id>63841</id>
<name>prepayAmount</name>
<lineLabel>Prepayment Amount Received</lineLabel>
<dataType>CURRENCY</dataType>
<value>1</value>
</field>
</line>
<line>
<field>
<id>63842</id>
<name>totalTaxDue</name>
<lineLabel>Total Tax Due</lineLabel>
<dataType>CURRENCY</dataType>
<value>1</value>
</field>
</line>
</section>
<section>
<id>63843</id>
<name>dependentsInfo</name>
<sectionLabel>Dependents Information</sectionLabel>
<sequence>1</sequence>
<table>
<id>63844</id>
<name>dependentTable</name>
<tableLabel>Dependent Table</tableLabel>
<tableRow>
<sequence>1</sequence>
<field>
<id>63845</id>
<name>name</name>
<fieldLabel>Name</fieldLabel>
<dataType>TEXT</dataType>
<value>test</value>
</field>
<field>
<id>63846</id>
<name>age</name>
<fieldLabel>Age</fieldLabel>
<dataType>NUMBER</dataType>
<value>1</value>
</field>
<field>
<id>63847</id>
<name>schoolGrade</name>
<fieldLabel>School Grade Number</fieldLabel>
<dataType>NUMBER</dataType>
<value>1</value>
</field>
</tableRow>
</table>
</section>
</formData>
</documentData>
</ns1:documentData>
</ns1:input>
</ns1:TSPrintDocument>
ReportService (BI Publisher) call
The samples illustrate the interaction with document generation flow. The provided solution uses Oracle Business Intelligence Publisher for printable form document creation.
ReportService, operation RunReport Request
The service accepts input data in two forms: raw XML and base64-encoded binary stream. The example below shows raw XML.
The integration layer configuration defines if the data needs to be base64-encoded.
<runReport xmlns="http://xmlns.oracle.com/oxp/service/v2">
<reportRequest>
<XDOPropertyList/>
<attributeCalendar/>
<attributeFormat>pdf</attributeFormat>
<attributeLocale/>
<attributeTemplate/>
<attributeTimezone/>
<byPassCache>true</byPassCache>
<dynamicDataSource/>
<flattenXML>false</flattenXML>
<parameterNameValues/>
<reportAbsolutePath>/~weblogic/Drafts/GenericFormData.xdo</reportAbsolutePath>
<reportData/>
<reportOutputPath/>
<reportRawData><documentData><formType>SALESDST2008</formType><formCategory>TAXFORM</formCategory><currency>USD</currency><formTypeDescription>Sales and Use (w/ Local Distribution) Tax Form</formTypeDescription><documentLocator/><documentLocatorLabel>Document Locator</documentLocatorLabel><customProperties/><formData><id>SALESDST2008</id><name>Sales and Use (w/ Local Distribution) Tax Form</name><section><id>75560</id><name>taxpayerInfo</name><sectionLabel>Taxpayer Information</sectionLabel><sequence>1</sequence><line><field><id>75561</id><name>name</name><lineLabel>Name</lineLabel><dataType>TEXT</dataType><value>West of Soho</value></field></line><line><field><id>75562</id><name>idType</name><lineLabel>ID Type</lineLabel><dataType>LOOKUP</dataType><value>Employer Identification Number</value></field></line><line><field><id>75563</id><name>idNumber</name><lineLabel>ID Number</lineLabel><dataType>TEXT</dataType><value>78-9999999</value></field></line><line><field><id>75565</id><name>address</name><lineLabel>Address</lineLabel><dataType>TEXT</dataType><value>235 South Str</value></field></line><line><field><id>75566</id><name>address2</name><lineLabel>Address 2</lineLabel><dataType>TEXT</dataType><value/></field></line><line><field><id>75567</id><name>city</name><lineLabel>City</lineLabel><dataType>TEXT</dataType><value>Morristown</value></field></line><line><field><id>75568</id><name>state</name><lineLabel>State</lineLabel><dataType>TEXT</dataType><value>New Jersey</value></field></line><line><field><id>75569</id><name>zipCode</name><lineLabel>Postal</lineLabel><dataType>TEXT</dataType><value>07960</value></field></line><line><field><id>75564</id><name>country</name><lineLabel>Country</lineLabel><dataType>TEXT</dataType><value>USA</value></field></line><line><field><id>75570</id><name>accountNumber</name><lineLabel>Account</lineLabel><dataType>TEXT</dataType><value/></field></line><line><field><id>75571</id><name>filingStartDate</name><lineLabel>Filing Period Start Date</lineLabel><dataType>DATE</dataType><value>04/01/2010</value></field></line><line><field><id>75572</id><name>filingEndDate</name><lineLabel>Filing Period End Date</lineLabel><dataType>DATE</dataType><value>06/30/2010</value></field></line></section><section><id>75573</id><name>lineItems</name><sectionLabel>Line Items</sectionLabel><sequence>1</sequence><line><field><id>75574</id><name>totalGrossSales</name><lineLabel>Total Gross Sales</lineLabel><dataType>CURRENCY</dataType><value>180000.0</value></field></line><line><field><id>75575</id><name>purchasesSubjectToTax</name><lineLabel>Purchases Subject to Tax </lineLabel><dataType>CURRENCY</dataType><value>30000.0</value></field></line><line><field><id>75576</id><name>total</name><lineLabel>Total Assessed Tax Amount</lineLabel><dataType>CURRENCY</dataType><value>210000.0</value></field></line><line><field><id>75577</id><name>totalExemptTransactions</name><lineLabel>Total Deductions / Exemptions</lineLabel><dataType>CURRENCY</dataType><value>7300.0</value></field></line><line><field><id>75578</id><name>taxableTransactions</name><lineLabel>Transactions Subject To Tax</lineLabel><dataType>CURRENCY</dataType><value>202700.0</value></field></line><line><field><id>75579</id><name>taxRate</name><lineLabel>State Tax Rate</lineLabel><dataType>NUMBER</dataType><value>6.25</value></field></line><line><field><id>75580</id><name>totalAssessedTaxAmount</name><lineLabel>Assessed Tax Amount</lineLabel><dataType>CURRENCY</dataType><value>12668.75</value></field></line><line><field><id>75581</id><name>transactionsSubjectToLocalTax</name><lineLabel>Transactions Subject To Local Tax</lineLabel><dataType>CURRENCY</dataType><value>1000.0</value></field></line><line><field><id>75582</id><name>localTax</name><lineLabel>Local Tax</lineLabel><dataType>CURRENCY</dataType><value>20.0</value></field></line><line><field><id>75583</id><name>totalTax</name><lineLabel>Total Tax</lineLabel><dataType>CURRENCY</dataType><value>12688.75</value></field></line><line><field><id>75584</id><name>firstPrepayment</name><lineLabel>First Prepayment</lineLabel><dataType>CURRENCY</dataType><value>0.0</value></field></line><line><field><id>75585</id><name>secondPrepayment</name><lineLabel>Second Prepayment</lineLabel><dataType>CURRENCY</dataType><value>0.0</value></field></line><line><field><id>75586</id><name>taxPrepayments</name><lineLabel>Total Tax Prepayments</lineLabel><dataType>CURRENCY</dataType><value>0.0</value></field></line><line><field><id>75587</id><name>remainingTaxDue</name><lineLabel>Remaining Tax Due</lineLabel><dataType>CURRENCY</dataType><value>12688.75</value></field></line><line><field><id>75588</id><name>penalty</name><lineLabel>Penalty</lineLabel><dataType>CURRENCY</dataType><value>0.0</value></field></line><line><field><id>75589</id><name>interest</name><lineLabel>Interest</lineLabel><dataType>CURRENCY</dataType><value>0.0</value></field></line><line><field><id>75590</id><name>totalAmountOwed</name><lineLabel>Total Amount Owed</lineLabel><dataType>CURRENCY</dataType><value>12688.75</value></field></line></section><section><id>75597</id><name>deductExempt</name><sectionLabel>Schedule A - Deductions / Exemptions</sectionLabel><sequence>1</sequence><line><field><id>75598</id><name>salesToOtherRetailers</name><lineLabel>Sales to Other Retailers</lineLabel><dataType>CURRENCY</dataType><value>5000.0</value></field></line><line><field><id>75599</id><name>nonTaxableSales</name><lineLabel>Non-Taxable Sales of Food Products</lineLabel><dataType>CURRENCY</dataType><value>2300.0</value></field></line><line><field><id>75600</id><name>nonTaxableLabor</name><lineLabel>Non-Taxable Labor</lineLabel><dataType>CURRENCY</dataType><value>0.0</value></field></line><line><field><id>75601</id><name>salesToGovernment</name><lineLabel>Sales to Government</lineLabel><dataType>CURRENCY</dataType><value>0.0</value></field></line><line><field><id>75602</id><name>salesInterstateForeignCommer</name><lineLabel>Sales in Interstate Foreign Commerce</lineLabel><dataType>CURRENCY</dataType><value>0.0</value></field></line><line><field><id>75603</id><name>salesTaxInGrossSales</name><lineLabel>Sales Tax in Gross Sales</lineLabel><dataType>CURRENCY</dataType><value>0.0</value></field></line><line><field><id>75604</id><name>lossesTaxableSales</name><lineLabel>Bad Debt Losses on Taxable Sales </lineLabel><dataType>CURRENCY</dataType><value>0.0</value></field></line><line><field><id>75605</id><name>lenderLosses</name><lineLabel>Bad Debt Lender Losses</lineLabel><dataType>CURRENCY</dataType><value>0.0</value></field></line><line><field><id>75606</id><name>taxPaidPurchaseResold</name><lineLabel>Cost of Tax-Paid Purchases Resold Prior to Use</lineLabel><dataType>CURRENCY</dataType><value>0.0</value></field></line><line><field><id>75607</id><name>returnedTaxableMerchandise</name><lineLabel>Returned Taxable Merchandise</lineLabel><dataType>CURRENCY</dataType><value>0.0</value></field></line><line><field><id>75608</id><name>cashDiscountsTaxableSales</name><lineLabel>Cash Discounts on Taxable Sales</lineLabel><dataType>CURRENCY</dataType><value>0.0</value></field></line><line><field><id>75609</id><name>totalFullDeductExempt</name><lineLabel>Total Deductions / Exemptions</lineLabel><dataType>CURRENCY</dataType><value>7300.0</value></field></line></section><section><id>75610</id><name>localTaxCompSchedule</name><sectionLabel>Schedule B - Local Tax Computation</sectionLabel><sequence>1</sequence><line><field><id>75611</id><name>transactionsSubjectToLocalTax</name><lineLabel>Transactions Subject to Local Tax</lineLabel><dataType>CURRENCY</dataType><value>1000.0</value></field></line><line><field><id>75612</id><name>salesToLocationNotInArea</name><lineLabel>Sales Delivered to Locations Not in Any Area</lineLabel><dataType>CURRENCY</dataType><value>0.0</value></field></line><line><field><id>75613</id><name>netAmountSubjectToLocalTax</name><lineLabel>Net Amount Subject to Local Tax</lineLabel><dataType>CURRENCY</dataType><value>1000.0</value></field></line><table><id>75615</id><name>compArea</name><tableLabel>Computation for Local Area</tableLabel><tableRow><sequence>1</sequence><field><id>75616</id><name>localAreaName</name><fieldLabel>Local Area</fieldLabel><dataType>LOOKUP</dataType><value>Chester</value></field><field><id>75617</id><name>allocatedAmount</name><fieldLabel>Allocated Amount</fieldLabel><dataType>CURRENCY</dataType><value>1000.0</value></field><field><id>75618</id><name>localAreaTaxRate</name><fieldLabel>Local Area Tax Rate</fieldLabel><dataType>NUMBER</dataType><value>0.02</value></field><field><id>75619</id><name>areaTaxDue</name><fieldLabel>Area Tax Due</fieldLabel><dataType>CURRENCY</dataType><value>20.0</value></field></tableRow></table><line><field><id>75614</id><name>totalLocalTax</name><lineLabel>Total Local Tax</lineLabel><dataType>CURRENCY</dataType><value>20.0</value></field></line></section><section><id>75591</id><name>preparerInformation</name><sectionLabel>Preparer Information</sectionLabel><sequence>1</sequence><line><field><id>75592</id><name>taxpayerTelephoneNumber</name><lineLabel>Taxpayer Telephone Number</lineLabel><dataType>TEXT</dataType><value/></field></line><line><field><id>75593</id><name>preparationDate</name><lineLabel>Preparation Date</lineLabel><dataType>DATE</dataType><value/></field></line><line><field><id>75594</id><name>paidPreparerTelephoneNumber</name><lineLabel>Paid Preparer Telephone Number</lineLabel><dataType>TEXT</dataType><value/></field></line><line><field><id>75595</id><name>paidPreparerIdType</name><lineLabel>Paid Preparer ID Type</lineLabel><dataType>TEXT</dataType><value/></field></line><line><field><id>75596</id><name>paidPreparerIdNumber</name><lineLabel>Paid Preparer ID Number</lineLabel><dataType>TEXT</dataType><value/></field></line></section></formData></documentData></reportRawData>
<sizeOfDataChunkDownload>-1</sizeOfDataChunkDownload>
</reportRequest>
<userID>WSSUSER</userID>
<password>password</password>
</runReport>
ReportService, operation RunReport Response
<runReportResponse xmlns="http://xmlns.oracle.com/oxp/service/v2"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<runReportReturn>
<metaDataList xsi:nil="true"/>
<reportBytes>
…[report data, base64-encoded binary stream]…
</reportBytes>
<reportContentType>application/pdf</reportContentType>
<reportFileID xsi:nil="true"/>
<reportLocale xsi:nil="true"/>
</runReportReturn>
</runReportResponse>
PrintForm Response
T
he response contains base-64 encoded document contents and the MIME type.
<TSPrintDocument xmlns:ns0="http://oracle.com/TSPrintDocument.xsd" dateTimeTagFormat=""
xmlns="http://oracle.com/TSPrintDocument.xsd">
<ns0:head>
<ns0:action/>
<ns0:key1>
<ns0:name>PER_ID</ns0:name>
<ns0:value>2885984738</ns0:value>
</ns0:key1>
<ns0:key2>
<ns0:name>TAX_ROLE_ID</ns0:name>
<ns0:value>6294658291</ns0:value>
</ns0:key2>
<ns0:key3/>
<ns0:key4/>
<ns0:key5/>
<ns0:key6/>
<ns0:key7/>
<ns0:key8/>
<ns0:key9/>
<ns0:key10/>
<ns0:accessType>TAXROLE</ns0:accessType>
<ns0:webUserId>SPLVXF</ns0:webUserId>
<ns0:webUserName>SPLVXF</ns0:webUserName>
<ns0:ipAddress>10.154.153.69</ns0:ipAddress>
</ns0:head>
<ns0:requestStatus/>
<ns0:errorMessage>
<ns0:messageParameters/>
</ns0:errorMessage>
<ns0:confirmationData>
<ns0:header>
<ns0:messageParameters/>
</ns0:header>
</ns0:confirmationData>
<ns0:linkedRequest/>
<ns0:input>
<ns0:documentSource>TAXFORM</ns0:documentSource>
<ns0:documentData>
... [……raw XML……]...
</ns0:documentData>
</ns0:input>
<ns0:output>
<ns0:documentContent>
... [……base64-encoded stream……]...
</ns0:documentContent>
<ns0:documentType>application/pdf</ns0:documentType>
</ns0:output>
</TSPrintDocument>
Upload File
UploadSupportingDocument Request (Self Service to Integration Layer)
The request originated from the self service application includes uploaded file details, tax account identifiers and user id. This example illustrates file upload with target form's Document Locator Number. The name of the uploaded file is captured in <fileURL> element. File contents are base-64 encoded.
<ns1:TSUploadSupportingDocument xmlns:ns1="http://oracle.com/TSUploadSupportingDocument.xsd">
<ns1:head>
<ns1:key1>
<ns1:name>PER_ID</ns1:name>
<ns1:value>6638893506</ns1:value>
</ns1:key1>
<ns1:key2>
<ns1:name>TAX_ROLE_ID</ns1:name>
<ns1:value>9037315275</ns1:value>
</ns1:key2>
<ns1:accessType>TAXROLE</ns1:accessType>
<ns1:webUserId>USER01</ns1:webUserId>
<ns1:webUserName>John Doe</ns1:webUserName>
<ns1:emailAddress/>
<ns1:ipAddress>10.186.253.49</ns1:ipAddress>
</ns1:head>
<ns1:mainData>
<ns1:documentLocator>TFDLN00000005868</ns1:documentLocator>
<ns1:fileURL>MySample.txt</ns1:fileURL>
<ns1:content>aGVsbG8gd29ybGQ=</ns1:content>
</ns1:mainData>
</ns1:TSUploadSupportingDocument>
Interaction with Document Repository (Oracle Web Content Management) (Integration Layer)
The integration layer generates a new unique file name and sends file to the document repository via a web service. The provided solution interacts with the Oracle Web Content Management server.
The response is expected to contain the location of the newly-uploaded file.
Generic Service, Request
<GenericRequest webKey="cs" xmlns:params="http://schemas.oracle.com/service/bpel/common" xmlns:ns1="http://www.oracle.com/UCM" xmlns="http://www.oracle.com/UCM">
<ns1:Service IdcService="CHECKIN_UNIVERSAL">
<ns1:Document>
<ns1:Field name="dUser">WSSUSER</ns1:Field>
<ns1:Field name="dDocName">TFDLN00000005868-1400139517361</ns1:Field>
<ns1:Field name="dDocType">Document</ns1:Field>
<ns1:Field name="dSecurityGroup">Secure</ns1:Field>
<ns1:Field name="dDocAccount">USER01</ns1:Field>
<ns1:Field name="dDocTitle">TFDLN00000005868-1400139517361.txt</ns1:Field>
<ns1:Field name="dDocAuthor">WSSUSER</ns1:Field>
<ns1:Field name="dCollectionID">352885742199000201</ns1:Field>
<ns1:File name="primaryFile" href="TFDLN00000005868-1400139517361.txt">
<ns1:Contents>aGVsbG8gd29ybGQ=</ns1:Contents>
</ns1:File>
</ns1:Document>
</ns1:Service>
</GenericRequest>
Generic Service, Response
<ns2:GenericResponse xmlns:ns2="http://www.oracle.com/UCM" xmlns:wsa="http://www.w3.org/2005/08/addressing">
<ns2:Service IdcService="CHECKIN_UNIVERSAL">
<ns2:Document>
<ns2:Field name="reserveLocation">false</ns2:Field>
<ns2:Field name="IdcService">CHECKIN_UNIVERSAL</ns2:Field>
<ns2:Field name="dSecurityGroup">Secure</ns2:Field>
<ns2:Field name="WebfilePath">/otss/dev_v110/user_projects/domains/base_domain/ucm/cs/weblayout/groups/secure/@irreyes/documents/document/mtm5/nte3/~edisp/tfdln00000005868-1400139517361~1.txt</ns2:Field>
<ns2:Field name="dpTriggerField">xIdcProfile</ns2:Field>
<ns2:Field name="dDocType">Document</ns2:Field>
<ns2:Field name="scriptableActionErr"/>
<ns2:Field name="xPartitionId:isSetDefault">1</ns2:Field>
<ns2:Field name="xWebFlag"/>
<ns2:Field name="dDocCreator">WSSUSER</ns2:Field>
<ns2:Field name="dDocAccount">USER01</ns2:Field>
<ns2:Field name="xClbraUserList"/>
<ns2:Field name="dLocation"/>
<ns2:Field name="xWCPageId:isSetDefault">1</ns2:Field>
<ns2:Field name="dWebExtension">txt</ns2:Field>
<ns2:Field name="isNew">1</ns2:Field>
<ns2:Field name="IsAutoNumber">1</ns2:Field>
<ns2:Field name="xReadOnly">FALSE</ns2:Field>
<ns2:Field name="xWCTags"/>
<ns2:Field name="LockedContents1">dDocName:TFDLN00000005868-1400139517361</ns2:Field>
<ns2:Field name="dClbraName"/>
<ns2:Field name="dChildManipulation">1</ns2:Field>
<ns2:Field name="dCreateDate">5/15/14 3:38 AM</ns2:Field>
<ns2:Field name="xClbraAliasList"/>
<ns2:Field name="dActionMillis">481237532</ns2:Field>
<ns2:Field name="dCollectionModifier">WSSUSER</ns2:Field>
<ns2:Field name="StatusMessage">Successfully checked in content item 'TFDLN00000005868-1400139517361'.</ns2:Field>
<ns2:Field name="xCollectionID">352885742199000201</ns2:Field>
<ns2:Field name="isInfoOnly"/>
<ns2:Field name="dIsPrimary">1</ns2:Field>
<ns2:Field name="dActionDate">5/15/14 3:38 AM</ns2:Field>
<ns2:Field name="xWCPageId"/>
<ns2:Field name="dDocID">6842</ns2:Field>
<ns2:Field name="dPublishState"/>
<ns2:Field name="dCollectionType">0</ns2:Field>
<ns2:Field name="numlevels">0</ns2:Field>
<ns2:Field name="dRevisionID">1</ns2:Field>
<ns2:Field name="primaryFile">TFDLN00000005868-1400139517361.txt</ns2:Field>
<ns2:Field name="scriptableActionFunction">determineCheckin</ns2:Field>
<ns2:Field name="xExternalDataSet"/>
<ns2:Field name="noDocLock">1</ns2:Field>
<ns2:Field name="dID">8020</ns2:Field>
<ns2:Field name="xPartitionId"/>
<ns2:Field name="xWCTags:isSetDefault">1</ns2:Field>
<ns2:Field name="xComments:isSetDefault">1</ns2:Field>
<ns2:Field name="dInDate">5/15/14 3:38 AM</ns2:Field>
<ns2:Field name="dDocOwner">WSSUSER</ns2:Field>
<ns2:Field name="dUser">WSSUSER</ns2:Field>
<ns2:Field name="isDocProfileUsed">true</ns2:Field>
<ns2:Field name="dCollectionGUID">6FAE748F-4409-E572-E3FB-A50A9ADA434D</ns2:Field>
<ns2:Field name="scriptableActionParams"/>
<ns2:Field name="dpEvent">OnImport</ns2:Field>
<ns2:Field name="xExternalDataSet:isSetDefault">1</ns2:Field>
<ns2:Field name="dDocLastModifier">WSSUSER</ns2:Field>
<ns2:Field name="DocExists"/>
<ns2:Field name="dCollectionEnabled">1</ns2:Field>
<ns2:Field name="dConversion">PassThru</ns2:Field>
<ns2:Field name="StatusCode">0</ns2:Field>
<ns2:Field name="xStorageRule:isSetDefault">1</ns2:Field>
<ns2:Field name="dStatus">DONE</ns2:Field>
<ns2:Field name="dOriginalName">TFDLN00000005868-1400139517361.txt</ns2:Field>
<ns2:Field name="dCollectionQueries">1</ns2:Field>
<ns2:Field name="dLastModifiedDate">{ts '2013-07-22 22:30:00.000'}</ns2:Field>
<ns2:Field name="dRevClassID">7620</ns2:Field>
<ns2:Field name="dDocName">TFDLN00000005868-1400139517361</ns2:Field>
<ns2:Field name="dRevLabel">1</ns2:Field>
<ns2:Field name="idcToken"/>
<ns2:Field name="xWCWorkflowApproverUserList:isSetDefault">1</ns2:Field>
<ns2:Field name="xStorageRule">DispByContentId</ns2:Field>
<ns2:Field name="localizedForResponse">1</ns2:Field>
<ns2:Field name="dPublishType"/>
<ns2:Field name="dCollectionInherit">0</ns2:Field>
<ns2:Field name="xForceFolderSecurity">FALSE</ns2:Field>
<ns2:Field name="dParentCollectionID">352885742199000002</ns2:Field>
<ns2:Field name="dFormat">text/plain</ns2:Field>
<ns2:Field name="scriptableActionType">3</ns2:Field>
<ns2:Field name="dDocTitle">TFDLN00000005868-1400139517361.txt</ns2:Field>
<ns2:Field name="dpAction">CheckinNew</ns2:Field>
<ns2:Field name="primaryFile:path">/otss/dev_v110/user_projects/domains/base_domain/ucm/cs/vault/~temp/1833286365.txt</ns2:Field>
<ns2:Field name="dCollectionID">352885742199000201</ns2:Field>
<ns2:Field name="xInhibitUpdate">FALSE</ns2:Field>
<ns2:Field name="refreshMonikers"/>
<ns2:Field name="xWCWorkflowAssignment"/>
<ns2:Field name="isEditMode">1</ns2:Field>
<ns2:Field name="refreshSubMonikers"/>
<ns2:Field name="xHidden">FALSE</ns2:Field>
<ns2:Field name="dCollectionOwner">WSSUSER</ns2:Field>
<ns2:Field name="changedMonikers"/>
<ns2:Field name="dRevRank">0</ns2:Field>
<ns2:Field name="dPromptForMetadata">0</ns2:Field>
<ns2:Field name="StorageRule">DispByContentId</ns2:Field>
<ns2:Field name="xComments"/>
<ns2:Field name="xWCWorkflowApproverUserList"/>
<ns2:Field name="dAction">Checkin</ns2:Field>
<ns2:Field name="isDocProfileDone">1</ns2:Field>
<ns2:Field name="xWebFlag:isSetDefault">1</ns2:Field>
<ns2:Field name="dRawDocID">6841</ns2:Field>
<ns2:Field name="xIdcProfile:isSetDefault">1</ns2:Field>
<ns2:Field name="dProcessingState">Y</ns2:Field>
<ns2:Field name="dWorkflowState"/>
<ns2:Field name="dDocCreatedDate">{ts '2014-05-15 03:38:37.459'}</ns2:Field>
<ns2:Field name="dDocAuthor">WSSUSER</ns2:Field>
<ns2:Field name="dOutDate"/>
<ns2:Field name="dIsWebFormat">0</ns2:Field>
<ns2:Field name="scriptableActionFlags">12</ns2:Field>
<ns2:Field name="isCheckin">1</ns2:Field>
<ns2:Field name="hasCollectionID">1</ns2:Field>
<ns2:Field name="RenditionId">webViewableFile</ns2:Field>
<ns2:Field name="dExtension">txt</ns2:Field>
<ns2:Field name="prevReleaseState"/>
<ns2:Field name="VaultfilePath">/otss/dev_v110/user_projects/domains/base_domain/ucm/cs/vault/document/@irreyes/mtm5/nte3/8020.txt</ns2:Field>
<ns2:Field name="dCollectionCreator">WSSUSER</ns2:Field>
<ns2:Field name="dCollectionName">Portal Uploads</ns2:Field>
<ns2:Field name="isStatusChanged">1</ns2:Field>
<ns2:Field name="dReleaseState">N</ns2:Field>
<ns2:Field name="dWebOriginalName">TFDLN00000005868-1400139517361~1.txt</ns2:Field>
<ns2:Field name="xWCWorkflowAssignment:isSetDefault">1</ns2:Field>
<ns2:Field name="dDocLastModifiedDate">{ts '2014-05-15 03:38:37.459'}</ns2:Field>
<ns2:Field name="dFileSize">11</ns2:Field>
<ns2:Field name="xIdcProfile"/>
</ns2:Document>
</ns2:Service>
</ns2:GenericResponse>
UploadSupportingDocument Request (Integration Layer to Revenue Management)
This is a sample request that the integration layer forwards to the revenue management system. It contains the file location URL and the confirmation ID for the upload transaction. Optionally, it also includes the original file contents.
<TSUploadSupportingDocument xmlns:ns0="http://ouaf.oracle.com/" xmlns:ouaf="urn:oracle:ouaf" xmlns:otss="http://oracle.com/TSUploadSupportingDocument.xsd" dateTimeTagFormat="" xmlns="http://oracle.com/TSUploadSupportingDocument.xsd">
<otss:head>
<otss:key1>
<otss:name>PER_ID</otss:name>
<otss:value>6638893506</otss:value>
</otss:key1>
<otss:key2>
<otss:name>TAX_ROLE_ID</otss:name>
<otss:value>9037315275</otss:value>
</otss:key2>
<otss:key3/>
<otss:key4/>
<otss:key5/>
<otss:key6/>
<otss:key7/>
<otss:key8/>
<otss:key9/>
<otss:key10/>
<otss:accessType>TAXROLE</otss:accessType>
<otss:webUserId>USER01</otss:webUserId>
<otss:webUserName>IRREYES</otss:webUserName>
<otss:emailAddress/>
<otss:ipAddress>10.186.253.49</otss:ipAddress>
</otss:head>
<otss:errorMessage>
<otss:messageParameters/>
</otss:errorMessage>
<otss:confirmationData>
<otss:confirmationId>FUID56800000</otss:confirmationId>
<otss:header>
<otss:messageParameters/>
</otss:header>
</otss:confirmationData>
<otss:mainData>
<otss:documentLocator>TFDLN00000005868</otss:documentLocator>
<otss:fileURL>http://[port]:[host]/cs/Contribution%20Folders/Portal%20Uploads/TFDLN00000005868-1400139517361.txt</otss:fileURL>
<otss:content>aGVsbG8gd29ybGQ=</otss:content>
</otss:mainData>
</TSUploadSupportingDocument>
UploadSupportingDocument Response (Revenue Management to Self Service)
This is a sample response from the revenue management system. It contains confirmation details.
<TSUploadSupportingDocument xmlns="http://oracle.com/TSUploadSupportingDocument.xsd" dateTimeTagFormat="">
<head>
<key1>
<name>PER_ID</name>
<value>6638893506</value>
</key1>
<key2>
<name>TAX_ROLE_ID</name>
<value>9037315275</value>
</key2>
<key3/>
<key4/>
<key5/>
<key6/>
<key7/>
<key8/>
<key9/>
<key10/>
<webUserId>USER01</webUserId>
<webUserName>John Doe</webUserName>
<emailAddress/>
<ipAddress>10.186.253.49</ipAddress>
<accessType>TAXROLE</accessType>
</head>
<errorMessage>
<messageParameters/>
</errorMessage>
<confirmationData>
<confirmationId>FUID56800000</confirmationId>
<header>
<messageParameters/>
</header>
<details>
<sequence>1</sequence>
<messageCategory>11126</messageCategory>
<messageNumber>20108</messageNumber>
<messageParameters>
<parameters>
<sequence>1</sequence>
<parameterType>STRING</parameterType>
<parameterValue>TFDLN00000005868-1400139517361.txt</parameterValue>
</parameters>
<parameters>
<sequence>2</sequence>
<parameterType>STRING</parameterType>
<parameterValue>FUID56800000</parameterValue>
</parameters>
<parameters>
<sequence>3</sequence>
<parameterType>STRING</parameterType>
<parameterValue>TFID57600000</parameterValue>
</parameters>
</messageParameters>
</details>
</confirmationData>
<mainData>
<documentLocator>TFDLN00000005868</documentLocator>
<fileURL>http://[port]:[host]/cs/Contribution%20Folders/Portal%20Uploads/TFDLN00000005868-1400139517361.txt</fileURL>
<content>aGVsbG8gd29ybGQ=</content>
</mainData>
</TSUploadSupportingDocument>
Available Form Types
RetrieveActiveFormTypes Request
The request contains the user ID, form category, and the language currently used on the self service portal.
<ns1:TSRetrieveActiveFormTypes xmlns:ns1="http://oracle.com/TSRetrieveActiveFormTypes.xsd">
<ns1:head>
<ns1:key1/
<ns1:accessType/>
<ns1:webUserId>FORMADMUSER</ns1:webUserId>
<ns1:webUserName>Forms Administrator</ns1:webUserName>
<ns1:emailAddress/>
<ns1:ipAddress>10.154.184.11</ns1:ipAddress>
</ns1:head>
<ns1:mainData>
<ns1:formSubType>TAXFORM</ns1:formSubType>
<ns1:language>en</ns1:language>
<ns1:description/>
</ns1:mainData>
</ns1:TSRetrieveActiveFormTypes>
RetrieveActiveFormTypes Response
The response contains list of forms whose definitions are available for import.
<TSRetrieveActiveFormTypes xmlns:schemans2="http://oracle.com/TSRetrieveActiveFormTypes.xsd" dateTimeTagFormat="" xmlns="http://oracle.com/TSRetrieveActiveFormTypes.xsd">
<schemans2:head>
<schemans2:key1/>
<schemans2:key2/>
<schemans2:key3/>
<schemans2:key4/>
<schemans2:key5/>
<schemans2:key6/>
<schemans2:key7/>
<schemans2:key8/>
<schemans2:key9/>
<schemans2:key10/>
<schemans2:accessType/>
<schemans2:webUserId>FORMADMUSER</schemans2:webUserId>
<schemans2:webUserName>Forms Administrator</schemans2:webUserName>
<schemans2:emailAddress/>
<schemans2:ipAddress>10.154.184.11</schemans2:ipAddress>
</schemans2:head>
<schemans2:requestStatus/>
<schemans2:confirmationData>
<schemans2:confirmationId/>
</schemans2:confirmationData>
<schemans2:mainData>
<schemans2:formSubType>TAXFORM </schemans2:formSubType>
<schemans2:language>en</schemans2:language>
<schemans2:startDate/>
<schemans2:endDate/>
<schemans2:description>%</schemans2:description>
<schemans2:forms>
<schemans2:formType>CORPINC2008</schemans2:formType>
<schemans2:startDate>2008-01-01</schemans2:startDate>
<schemans2:endDate>2008-12-31</schemans2:endDate>
<schemans2:description>2008 Corporate Income Tax Form </schemans2:description>
</schemans2:forms>
<schemans2:forms>
<schemans2:formType>INDIV2008</schemans2:formType>
<schemans2:startDate>2008-01-01</schemans2:startDate>
<schemans2:endDate>2008-12-31</schemans2:endDate>
<schemans2:description>2008 Individual Income Tax Return</schemans2:description>
</schemans2:forms>
</schemans2:mainData>
</TSRetrieveActiveFormTypes>
Import Form Definitions
RetrieveFormTypeDefinitions Request
This example illustrates a scenario in which a single form is selected for import.
<ns1:TSRetrieveFormTypeDefinitions xmlns:ns1="http://oracle.com/TSRetrieveFormTypeDefinitions.xsd">
<ns1:head>
<ns1:key1/>
<ns1:key2/>
<ns1:accessType/>
<ns1:webUserId>FORMADMUSER</ns1:webUserId>
<ns1:webUserName>Forms Administrator</ns1:webUserName>
<ns1:emailAddress/>
<ns1:ipAddress>10.154.98.232</ns1:ipAddress>
</ns1:head>
<ns1:mainData>
<ns1:input>
<ns1:formType>CORPINC2010</ns1:formType>
<ns1:language>en</ns1:language>
</ns1:input>
</ns1:mainData>
</ns1:TSRetrieveFormTypeDefinitions>
RetrieveFormTypeDefinitions Response
This example shows an import of a single form with two sections.
<TSRetrieveFormTypeDefinitions xmlns:schemans2="http://oracle.com/ TSRetrieveFormTypeDefinitions.xsd" dateTimeTagFormat="">
<schemans2:head>
<schemans2:key1/>
<schemans2:key2/>
<schemans2:key3/>
<schemans2:key4/>
<schemans2:key5/>
<schemans2:key6/>
<schemans2:key7/>
<schemans2:key8/>
<schemans2:key9/>
<schemans2:key10/>
<schemans2:accessType>TAXROLE</schemans2:accessType>
<schemans2:webUserId>FORMADMUSER</schemans2:webUserId>
<schemans2:webUserName>Forms Administrator</schemans2:webUserName>
<schemans2:emailAddress/>
<schemans2:ipAddress>10.154.98.232</schemans2:ipAddress>
</schemans2:head>
<schemans2:requestStatus xmlns:schemans2="http://oracle.com/TSRetrieveFormTypeDefinitions.xsd"/>
<schemans2:confirmationData xmlns:schemans2="http://oracle.com/TSRetrieveFormTypeDefinitions.xsd">
<schemans2:confirmationId/>
</schemans2:confirmationData>
<schemans2:mainData xmlns:schemans2="http://oracle.com/TSRetrieveFormTypeDefinitions.xsd">
<schemans2:input>
<schemans2:formType>CORPINC2010</schemans2:formType>
<schemans2:language>en</schemans2:language>
</schemans2:input>
<schemans2:output>
<schemans2:formDef>
<schemans2:formType>CORPINC2010</schemans2:formType>
<schemans2:startDate>2010-01-01</schemans2:startDate>
<schemans2:endDate>2010-12-31</schemans2:endDate>
<schemans2:description>
<schemans2:languages>
<schemans2:text>2010 Corporate Income Tax Form</schemans2:text>
<schemans2:language>en</schemans2:language>
</schemans2:languages>
</schemans2:description>
<schemans2:section>
<schemans2:name>taxpayerInfo</schemans2:name>
<schemans2:occurrence>SINGLE</schemans2:occurrence>
<schemans2:displaySequence>10</schemans2:displaySequence>
<schemans2:description>
<schemans2:languages>
<schemans2:text>Taxpayer Information</schemans2:text>
<schemans2:language>en</schemans2:language>
</schemans2:languages>
</schemans2:description>
<schemans2:help>
<schemans2:languages>
<schemans2:text/>
<schemans2:language>en</schemans2:language>
</schemans2:languages>
</schemans2:help>
<schemans2:line>
<schemans2:displaySequence>10</schemans2:displaySequence>
<schemans2:field>
<schemans2:name>taxYrBeginDt</schemans2:name>
<schemans2:lineNumber/>
<schemans2:dataType>DATE</schemans2:dataType>
<schemans2:fieldLength>10</schemans2:fieldLength>
<schemans2:description>
<schemans2:languages>
<schemans2:text>Tax Year Begin Date</schemans2:text>
<schemans2:language>en</schemans2:language>
</schemans2:languages>
</schemans2:description>
<schemans2:help>
<schemans2:languages>
<schemans2:text/>
<schemans2:language>en</schemans2:language>
</schemans2:languages>
</schemans2:help>
</schemans2:field>
</schemans2:line>
<schemans2:line>
<schemans2:displaySequence>20</schemans2:displaySequence>
<schemans2:field>
<schemans2:name>taxYrEndDt</schemans2:name>
<schemans2:lineNumber/>
<schemans2:dataType>DATE</schemans2:dataType>
<schemans2:fieldLength>10</schemans2:fieldLength>
<schemans2:description>
<schemans2:languages>
<schemans2:text>Tax Year End Date</schemans2:text>
<schemans2:language>en</schemans2:language>
</schemans2:languages>
</schemans2:description>
<schemans2:help>
<schemans2:languages>
<schemans2:text/>
<schemans2:language>en</schemans2:language>
</schemans2:languages>
</schemans2:help>
</schemans2:field>
</schemans2:line>
<schemans2:line>
<schemans2:displaySequence>30</schemans2:displaySequence>
<schemans2:field>
<schemans2:name>name</schemans2:name>
<schemans2:lineNumber/>
<schemans2:dataType>TEXT</schemans2:dataType>
<schemans2:fieldLength>254</schemans2:fieldLength>
<schemans2:description>
<schemans2:languages>
<schemans2:text>Name</schemans2:text>
<schemans2:language>en</schemans2:language>
</schemans2:languages>
</schemans2:description>
<schemans2:help>
<schemans2:languages>
<schemans2:text/>
<schemans2:language>en</schemans2:language>
</schemans2:languages>
</schemans2:help>
</schemans2:field>
</schemans2:line>
<schemans2:line>
<schemans2:displaySequence>40</schemans2:displaySequence>
<schemans2:field>
<schemans2:name>country</schemans2:name>
<schemans2:lineNumber/>
<schemans2:dataType>TEXT</schemans2:dataType>
<schemans2:fieldLength>3</schemans2:fieldLength>
<schemans2:description>
<schemans2:languages>
<schemans2:text>Country</schemans2:text>
<schemans2:language>en</schemans2:language>
</schemans2:languages>
</schemans2:description>
<schemans2:help>
<schemans2:languages>
<schemans2:text/>
<schemans2:language>en</schemans2:language>
</schemans2:languages>
</schemans2:help>
</schemans2:field>
</schemans2:line>
<schemans2:line>
<schemans2:displaySequence>50</schemans2:displaySequence>
<schemans2:field>
<schemans2:name>address</schemans2:name>
<schemans2:lineNumber/>
<schemans2:dataType>TEXT</schemans2:dataType>
<schemans2:fieldLength>254</schemans2:fieldLength>
<schemans2:description>
<schemans2:languages>
<schemans2:text>Address</schemans2:text>
<schemans2:language>en</schemans2:language>
</schemans2:languages>
</schemans2:description>
<schemans2:help>
<schemans2:languages>
<schemans2:text/>
<schemans2:language>en</schemans2:language>
</schemans2:languages>
</schemans2:help>
</schemans2:field>
</schemans2:line>
<schemans2:line>
<schemans2:displaySequence>60</schemans2:displaySequence>
<schemans2:field>
<schemans2:name>address2</schemans2:name>
<schemans2:lineNumber/>
<schemans2:dataType>TEXT</schemans2:dataType>
<schemans2:fieldLength>254</schemans2:fieldLength>
<schemans2:description>
<schemans2:languages>
<schemans2:text>Address 2</schemans2:text>
<schemans2:language>en</schemans2:language>
</schemans2:languages>
</schemans2:description>
<schemans2:help>
<schemans2:languages>
<schemans2:text/>
<schemans2:language>en</schemans2:language>
</schemans2:languages>
</schemans2:help>
</schemans2:field>
</schemans2:line>
<schemans2:line>
<schemans2:displaySequence>70</schemans2:displaySequence>
<schemans2:field>
<schemans2:name>city</schemans2:name>
<schemans2:lineNumber/>
<schemans2:dataType>TEXT</schemans2:dataType>
<schemans2:fieldLength>30</schemans2:fieldLength>
<schemans2:description>
<schemans2:languages>
<schemans2:text>City</schemans2:text>
<schemans2:language>en</schemans2:language>
</schemans2:languages>
</schemans2:description>
<schemans2:help>
<schemans2:languages>
<schemans2:text/>
<schemans2:language>en</schemans2:language>
</schemans2:languages>
</schemans2:help>
</schemans2:field>
</schemans2:line>
<schemans2:line>
<schemans2:displaySequence>80</schemans2:displaySequence>
<schemans2:field>
<schemans2:name>state</schemans2:name>
<schemans2:lineNumber/>
<schemans2:dataType>TEXT</schemans2:dataType>
<schemans2:fieldLength>6</schemans2:fieldLength>
<schemans2:description>
<schemans2:languages>
<schemans2:text>State</schemans2:text>
<schemans2:language>en</schemans2:language>
</schemans2:languages>
</schemans2:description>
<schemans2:help>
<schemans2:languages>
<schemans2:text/>
<schemans2:language>en</schemans2:language>
</schemans2:languages>
</schemans2:help>
</schemans2:field>
</schemans2:line>
<schemans2:line>
<schemans2:displaySequence>90</schemans2:displaySequence>
<schemans2:field>
<schemans2:name>zipCode</schemans2:name>
<schemans2:lineNumber/>
<schemans2:dataType>TEXT</schemans2:dataType>
<schemans2:fieldLength>12</schemans2:fieldLength>
<schemans2:description>
<schemans2:languages>
<schemans2:text>Postal</schemans2:text>
<schemans2:language>en</schemans2:language>
</schemans2:languages>
</schemans2:description>
<schemans2:help>
<schemans2:languages>
<schemans2:text/>
<schemans2:language>en</schemans2:language>
</schemans2:languages>
</schemans2:help>
</schemans2:field>
</schemans2:line>
</schemans2:section>
<schemans2:section>
<schemans2:name>rtrnCorpInfo</schemans2:name>
<schemans2:occurrence>SINGLE</schemans2:occurrence>
<schemans2:displaySequence>20</schemans2:displaySequence>
<schemans2:description>
<schemans2:languages>
<schemans2:text>Return / Corporation Information</schemans2:text>
<schemans2:language>en</schemans2:language>
</schemans2:languages>
</schemans2:description>
<schemans2:help>
<schemans2:languages>
<schemans2:text/>
<schemans2:language>en</schemans2:language>
</schemans2:languages>
</schemans2:help>
<schemans2:line>
<schemans2:displaySequence>20</schemans2:displaySequence>
<schemans2:field>
<schemans2:name>consReturn</schemans2:name>
<schemans2:lineNumber>1 a</schemans2:lineNumber>
<schemans2:dataType>BOOLEAN</schemans2:dataType>
<schemans2:fieldLength>1</schemans2:fieldLength>
<schemans2:description>
<schemans2:languages>
<schemans2:text>Consolidated Return</schemans2:text>
<schemans2:language>en</schemans2:language>
</schemans2:languages>
</schemans2:description>
<schemans2:help>
<schemans2:languages>
<schemans2:text/>
<schemans2:language>en</schemans2:language>
</schemans2:languages>
</schemans2:help>
</schemans2:field>
</schemans2:line>
<schemans2:line>
<schemans2:displaySequence>30</schemans2:displaySequence>
<schemans2:field>
<schemans2:name>lifeNonLifeConsReturn</schemans2:name>
<schemans2:lineNumber>1 b</schemans2:lineNumber>
<schemans2:dataType>BOOLEAN</schemans2:dataType>
<schemans2:fieldLength>1</schemans2:fieldLength>
<schemans2:description>
<schemans2:languages>
<schemans2:text>Life / Non-Life Consolidated Return</schemans2:text>
<schemans2:language>en</schemans2:language>
</schemans2:languages>
</schemans2:description>
<schemans2:help>
<schemans2:languages>
<schemans2:text/>
<schemans2:language>en</schemans2:language>
</schemans2:languages>
</schemans2:help>
</schemans2:field>
</schemans2:line>
<schemans2:line>
<schemans2:displaySequence>40</schemans2:displaySequence>
<schemans2:field>
<schemans2:name>persHoldngCo</schemans2:name>
<schemans2:lineNumber>2</schemans2:lineNumber>
<schemans2:dataType>BOOLEAN</schemans2:dataType>
<schemans2:fieldLength>1</schemans2:fieldLength>
<schemans2:description>
<schemans2:languages>
<schemans2:text>Personal Holding Company</schemans2:text>
<schemans2:language>en</schemans2:language>
</schemans2:languages>
</schemans2:description>
<schemans2:help>
<schemans2:languages>
<schemans2:text/>
<schemans2:language>en</schemans2:language>
</schemans2:languages>
</schemans2:help>
</schemans2:field>
</schemans2:line>
<schemans2:line>
<schemans2:displaySequence>50</schemans2:displaySequence>
<schemans2:field>
<schemans2:name>persnlSvcCorp</schemans2:name>
<schemans2:lineNumber>3</schemans2:lineNumber>
<schemans2:dataType>BOOLEAN</schemans2:dataType>
<schemans2:fieldLength>1</schemans2:fieldLength>
<schemans2:description>
<schemans2:languages>
<schemans2:text>Personal Service Corporation</schemans2:text>
<schemans2:language>en</schemans2:language>
</schemans2:languages>
</schemans2:description>
<schemans2:help>
<schemans2:languages>
<schemans2:text/>
<schemans2:language>en</schemans2:language>
</schemans2:languages>
</schemans2:help>
</schemans2:field>
</schemans2:line>
<schemans2:line>
<schemans2:displaySequence>60</schemans2:displaySequence>
<schemans2:field>
<schemans2:name>netIncomeLossRecon</schemans2:name>
<schemans2:lineNumber>4</schemans2:lineNumber>
<schemans2:dataType>BOOLEAN</schemans2:dataType>
<schemans2:fieldLength>1</schemans2:fieldLength>
<schemans2:description>
<schemans2:languages>
<schemans2:text>Net Income / Loss Reconciliation Form Attached</schemans2:text>
<schemans2:language>en</schemans2:language>
</schemans2:languages>
</schemans2:description>
<schemans2:help>
<schemans2:languages>
<schemans2:text/>
<schemans2:language>en</schemans2:language>
</schemans2:languages>
</schemans2:help>
</schemans2:field>
</schemans2:line>
<schemans2:line>
<schemans2:displaySequence>70</schemans2:displaySequence>
<schemans2:field>
<schemans2:name>idNumber</schemans2:name>
<schemans2:lineNumber>B</schemans2:lineNumber>
<schemans2:dataType>TEXT</schemans2:dataType>
<schemans2:fieldLength>16</schemans2:fieldLength>
<schemans2:description>
<schemans2:languages>
<schemans2:text>Employer Identification Number</schemans2:text>
<schemans2:language>en</schemans2:language>
</schemans2:languages>
</schemans2:description>
<schemans2:help>
<schemans2:languages>
<schemans2:text/>
<schemans2:language>en</schemans2:language>
</schemans2:languages>
</schemans2:help>
</schemans2:field>
</schemans2:line>
<schemans2:line>
<schemans2:displaySequence>80</schemans2:displaySequence>
<schemans2:field>
<schemans2:name>dateIncorp</schemans2:name>
<schemans2:lineNumber>C</schemans2:lineNumber>
<schemans2:dataType>DATE</schemans2:dataType>
<schemans2:fieldLength>10</schemans2:fieldLength>
<schemans2:description>
<schemans2:languages>
<schemans2:text>Date Incorporated</schemans2:text>
<schemans2:language>en</schemans2:language>
</schemans2:languages>
</schemans2:description>
<schemans2:help>
<schemans2:languages>
<schemans2:text/>
<schemans2:language>en</schemans2:language>
</schemans2:languages>
</schemans2:help>
</schemans2:field>
</schemans2:line>
<schemans2:line>
<schemans2:displaySequence>120</schemans2:displaySequence>
<schemans2:field>
<schemans2:name>finalRetrn</schemans2:name>
<schemans2:lineNumber>2</schemans2:lineNumber>
<schemans2:dataType>BOOLEAN</schemans2:dataType>
<schemans2:fieldLength>1</schemans2:fieldLength>
<schemans2:description>
<schemans2:languages>
<schemans2:text>Final Return</schemans2:text>
<schemans2:language>en</schemans2:language>
</schemans2:languages>
</schemans2:description>
<schemans2:help>
<schemans2:languages>
<schemans2:text/>
<schemans2:language>en</schemans2:language>
</schemans2:languages>
</schemans2:help>
</schemans2:field>
</schemans2:line>
<schemans2:line>
<schemans2:displaySequence>130</schemans2:displaySequence>
<schemans2:field>
<schemans2:name>nameChng</schemans2:name>
<schemans2:lineNumber>3</schemans2:lineNumber>
<schemans2:dataType>BOOLEAN</schemans2:dataType>
<schemans2:fieldLength>1</schemans2:fieldLength>
<schemans2:description>
<schemans2:languages>
<schemans2:text>Name Change</schemans2:text>
<schemans2:language>en</schemans2:language>
</schemans2:languages>
</schemans2:description>
<schemans2:help>
<schemans2:languages>
<schemans2:text/>
<schemans2:language>en</schemans2:language>
</schemans2:languages>
</schemans2:help>
</schemans2:field>
</schemans2:line>
<schemans2:line> <schemans2:displaySequence>140</schemans2:displaySequence>
<schemans2:field>
<schemans2:name>addrChng</schemans2:name>
<schemans2:lineNumber>4</schemans2:lineNumber>
<schemans2:dataType>BOOLEAN</schemans2:dataType>
<schemans2:fieldLength>1</schemans2:fieldLength>
<schemans2:description>
<schemans2:languages>
<schemans2:text>Address Change</schemans2:text>
<schemans2:language>en</schemans2:language>
</schemans2:languages>
</schemans2:description>
<schemans2:help>
<schemans2:languages>
<schemans2:text/>
<schemans2:language>en</schemans2:language>
</schemans2:languages>
</schemans2:help>
</schemans2:field>
</schemans2:line>
</schemans2:section>
</schemans2:formDef>
<schemans2:availableLanguages>
<schemans2:language>en</schemans2:language>
</schemans2:availableLanguages>
</schemans2:output>
</schemans2:mainData>
</TSRetrieveFormTypeDefinitions>
Refresh Lookup
The samples below illustrate a refresh of a single lookup SALES_AREA_NAME.
RefreshLookup Request
<ns1:TSRefreshFormLookup xmlns:ns1="http://oracle.com/TSRefreshFormLookup.xsd">
<ns1:head>
<ns1:key1/>
<ns1:key2/>
<ns1:webUserId>FORMADMUSER</ns1:webUserId>
<ns1:webUserName>Form Administrator</ns1:webUserName>
<ns1:emailAddress/>
<ns1:ipAddress>10.154.120.204</ns1:ipAddress>
</ns1:head>
<ns1:mainData>
<ns1:input>
<ns1:lookupName>SALES_AREA_NAME </ns1:lookupName>
</ns1:input>
</ns1:mainData>
</ns1:TSRefreshFormLookup>
RefreshLookup Response
<TSRefreshFormLookup xmlns:schemans2="http://oracle.com/TSRefreshFormLookup.xsd" dateTimeTagFormat="" xmlns="http://oracle.com/TSRefreshFormLookup.xsd">
<schemans2:head>
<schemans2:key1/>
<schemans2:key2/>
<schemans2:key3/>
<schemans2:key4/>
<schemans2:key5/>
<schemans2:key6/>
<schemans2:key7/>
<schemans2:key8/>
<schemans2:key9/>
<schemans2:key10/>
<schemans2:webUserId>FORMADMUSER</schemans2:webUserId>
<schemans2:webUserName>Form Administrator</schemans2:webUserName>
<schemans2:emailAddress/>
<schemans2:ipAddress>10.154.113.115</schemans2:ipAddress>
</schemans2:head>
<schemans2:requestStatus/>
<schemans2:confirmationData>
<schemans2:confirmationId/>
</schemans2:confirmationData>
<schemans2:mainData>
<schemans2:input>
<schemans2:lookupName> SALES_AREA_NAME</schemans2:lookupName>
</schemans2:input>
<schemans2:output>
<schemans2:values>
<schemans2:value>CMA1</schemans2:value>
<schemans2:description>
<schemans2:languages>
<schemans2:text>Area 1</schemans2:text>
<schemans2:language>en</schemans2:language>
</schemans2:languages>
</schemans2:description>
</schemans2:values>
<schemans2:values>
<schemans2:value>CMA2</schemans2:value>
<schemans2:description>
<schemans2:languages>
<schemans2:text>Area 2</schemans2:text>
<schemans2:language>en</schemans2:language>
</schemans2:languages>
</schemans2:description>
</schemans2:values>
<schemans2:values>
<schemans2:value>CMA3</schemans2:value>
<schemans2:description>
<schemans2:languages>
<schemans2:text>Area 3</schemans2:text>
<schemans2:language>en</schemans2:language>
</schemans2:languages>
</schemans2:description>
</schemans2:values>
<schemans2:values>
<schemans2:value>CMA4</schemans2:value>
<schemans2:description>
<schemans2:languages>
<schemans2:text>Area 4</schemans2:text>
<schemans2:language>en</schemans2:language>
</schemans2:languages>
</schemans2:description>
</schemans2:values>
<schemans2:values>
<schemans2:value>CMA5</schemans2:value>
<schemans2:description>
<schemans2:languages>
<schemans2:text>Area 5</schemans2:text>
<schemans2:language>en</schemans2:language>
</schemans2:languages>
</schemans2:description>
</schemans2:values>
</schemans2:output>
</schemans2:mainData>
</TSRefreshFormLookup>
Appendix C
Integration with Official Payments Corporation
Official Payments XML Payment PostBack Schema
<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xpp="http://www.officialpayments.com/PaymentPostBack/" targetNamespace="http://www.officialpayments.com/PaymentPostBack/" elementFormDefault="qualified">
<xsd:annotation>
<xsd:documentation>
Official Payments Corp. Payment Post Back
Copyright (c) 2003-2005 by Official Payments Corp. All Rights Reserved.
</xsd:documentation>
</xsd:annotation>
<xsd:element name="PaymentPostBack">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="paymentIdentifier" type="xsd:string" minOccurs="1" maxOccurs="1"/>
<xsd:element name="resultCode" type="xpp:PaymentResultCodeType" minOccurs="1" maxOccurs="1"/>
<xsd:element name="resultText" type="xsd:string" minOccurs="1" maxOccurs="1"/>
<xsd:element name="customDataElements" type="xpp:CustomDataElementsType" minOccurs="1" maxOccurs="1"/>
<xsd:element name="transactionDate" type="xsd:date" minOccurs="1" maxOccurs="1"/>
<!-- Note that the time will include the offset from Co-Ordinated Universal Time. -->
<xsd:element name="transactionTime" type="xsd:time" minOccurs="1" maxOccurs="1"/>
<xsd:element name="paymentAmounts" type="xpp:PaymentAmountsType" minOccurs="1" maxOccurs="1"/>
<xsd:element name="transactionFee" type="xsd:decimal" minOccurs="1" maxOccurs="1"/>
<xsd:element name="totalCharge" type="xsd:decimal" minOccurs="1" maxOccurs="1"/>
<xsd:element name="accountType" type="xpp:AccountTypeType" minOccurs="1" maxOccurs="1"/>
<xsd:element name="authorizationCode" type="xsd:string" minOccurs="0" maxOccurs="1"/>
<xsd:element name="receiptNumber" type="xsd:string" minOccurs="0" maxOccurs="1"/>
<xsd:element name="trafficSchool" type="xsd:nonNegativeInteger" minOccurs="0" maxOccurs="1"/>
<xsd:element name="paymentID" type="xsd:nonNegativeInteger" minOccurs="1" maxOccurs="1"/>
<xsd:element name="phoneNumber" type="xsd:string" minOccurs="1" maxOccurs="1"/>
<xsd:element name="ani" type="xsd:string" minOccurs="0" maxOccurs="1"/>
<xsd:element name="name" type="xpp:IndividualNameType" minOccurs="0" maxOccurs="1"/>
<xsd:element name="address" type="xpp:AddressType" minOccurs="0" maxOccurs="1"/>
<xsd:element name="emailAddress" type="xpp:EmailAddressType" minOccurs="0" maxOccurs="1"/>
<xsd:element name="paymentChannel" type="xpp:PaymentChannelType" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<!-- The payment result codes -->
<xsd:simpleType name="PaymentResultCodeType">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="A"/>
<!-- An approval -->
<xsd:enumeration value="D"/>
<!-- A decline -->
<xsd:enumeration value="E"/>
<!-- An error -->
</xsd:restriction>
</xsd:simpleType>
<!-- List of Custom Data Elements -->
<xsd:complexType name="CustomDataElementsType">
<xsd:sequence>
<xsd:element name="customDataElement" type="xpp:CustomDataElementType" minOccurs="1" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
<!-- Single Custom Data Element -->
<xsd:complexType name="CustomDataElementType">
<xsd:simpleContent>
<xsd:extension base="xsd:string">
<xsd:attribute name="sequenceNumber" type="xsd:positiveInteger" use="required"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
<!-- List of Payment Amounts -->
<xsd:complexType name="PaymentAmountsType">
<xsd:sequence>
<xsd:element name="paymentAmount" type="xpp:PaymentAmountType" minOccurs="1" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
<!-- Single Payment Amount -->
<xsd:complexType name="PaymentAmountType">
<xsd:simpleContent>
<xsd:extension base="xsd:decimal">
<xsd:attribute name="sequenceNumber" type="xsd:positiveInteger" use="required"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
<!-- The account types -->
<xsd:simpleType name="AccountTypeType">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="AMEX"/>
<!-- American Express -->
<xsd:enumeration value="DISC"/>
<!-- Discover -->
<xsd:enumeration value="MC"/>
<!-- MasterCard -->
<xsd:enumeration value="VISA"/>
<!-- VISA -->
<xsd:enumeration value="EC"/>
<!-- E-Check Personal Checking Account -->
<xsd:enumeration value="ES"/>
<!-- E-Check Personal Savings Account -->
<xsd:enumeration value="EBC"/>
<!-- E-Check Business Checking Account -->
<xsd:enumeration value="EBS"/>
<!-- E-Check Business Savings Account -->
</xsd:restriction>
</xsd:simpleType>
<!-- An individual's name -->
<xsd:complexType name="IndividualNameType">
<xsd:sequence>
<xsd:element name="first" type="xsd:string" minOccurs="1" maxOccurs="1"/>
<xsd:element name="middle" type="xsd:string" minOccurs="0" maxOccurs="1"/>
<xsd:element name="last" type="xsd:string" minOccurs="1" maxOccurs="1"/>
<xsd:element name="suffix" type="xsd:string" minOccurs="0" maxOccurs="1"/>
</xsd:sequence>
</xsd:complexType>
<!-- An address -->
<xsd:complexType name="AddressType">
<xsd:sequence>
<xsd:element name="street1" type="xsd:string" minOccurs="0" maxOccurs="1"/>
<xsd:element name="street2" type="xsd:string" minOccurs="0" maxOccurs="1"/>
<xsd:element name="city" type="xsd:string" minOccurs="0" maxOccurs="1"/>
<xsd:element name="county" type="xsd:string" minOccurs="0" maxOccurs="1"/>
<xsd:element name="stateOrProvince" type="xsd:string" minOccurs="0" maxOccurs="1"/>
<xsd:element name="zipOrPostalCode" type="xsd:string" minOccurs="1" maxOccurs="1"/>
<!-- See the following link for ISO 3166 country codes:
http://www.iso.ch/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html -->
<xsd:element name="countryCode" type="xsd:string" minOccurs="0" maxOccurs="1"/>
</xsd:sequence>
</xsd:complexType>
<!-- An email address. -->
<xsd:simpleType name="EmailAddressType">
<xsd:restriction base="xsd:string">
<xsd:pattern value="([a-zA-Z0-9_\-\.]+)@((\[[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.)|(([a-zA-Z0-9\-]+\.)+))([a-zA-Z]{2,4}|[0-9]{1,3})(\]?)"/>
</xsd:restriction>
</xsd:simpleType>
<!-- The payment channels -->
<xsd:simpleType name="PaymentChannelType">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="net"/>
<!-- the web/internet -->
<xsd:enumeration value="ivr"/>
<!-- telephone through an IVR -->
<xsd:enumeration value="filepay"/>
<!-- a file and pay partner -->
<xsd:enumeration value="cs"/>
<!-- with the help of a customer service rep -->
</xsd:restriction>
</xsd:simpleType>
</xsd:schema>
Official Payments Post-back XML Mapping
Official Payments Post-back XML Message | TSOneTimePayment Message | DVM Mapping | ||||
---|---|---|---|---|---|---|
Element Name | Parent Element | Type | Element Name | Parent Element | Type | DVM/Value Source |
PaymentPostBack | Outermost Tag | TSOneTimePayment | Outermost Tag | |||
mainData | TSOneTimePayment | Group | ||||
paymentVendor | mainData | Field | This value is taken from Configuration Properties | |||
paymentAmounts | PaymentPostBack | List | ||||
paymentAmount | paymentAmounts | Field | amount | mainData | Field | The first paymentAmount field in the list |
currency | mainData | Field | Default Currency code from Configuration Properties | |||
transactionDate | PaymentPostBack | paymentDate | mainData | Field | Convert to xsd:Date | |
bankAcctInfo | mainData | Group | ||||
routingNumber | bankAcctInfo | Field | ||||
acctNumber | bankAcctInfo | Field | ||||
emailAddress | PaymentPostBack | Field | contactEmailAddress | mainData | Field | Same field from OPC mapped twice |
customDataElements | PaymentPostBack | List | ||||
customDataElement | customDataElements | Field | payDestinationType | mainData | Field | OTSS_PaymentDestination Populate with customDataElement with attribute sequenceNumber = 1 |
destinationDetails | mainData | List | ||||
sequence | destinationDetails | Field | Populate the sequenceNumber from 1 to 4 in a loop | |||
fieldName | destinationDetails | Field | ||||
customDataElement | customDataElements | Field | fieldValue | destinationDetails | Field | Populate the values for customDataElement in a loop where sequenceNumber = 6,7,8 and 9 |
authorizationCode | PaymentPostBack | Field | extTransactionRefID | mainData | Field | This is the confirmation ID coming back from OPC |
customDataElement | customDataElements | Field | externalID | mainData | Field | Populate with customDataElement with attribute sequenceNumber = 5 |
externalPaymentData | mainData | Group | ||||
paymentIdentifier | PaymentPostBack | Field | paymentIdentifier | externalPaymentData | Field | Same as a unique id |
resultCode | PaymentPostBack | Field | resultCode | externalPaymentData | Field | If the code is anything other than A drop the message i.e. Do not send it. |
resultText | PaymentPostBack | Field | resultText | externalPaymentData | Field | New field |
transactionTime | PaymentPostBack | Field | transactionTime | externalPaymentData | Field | xsd:Time |
transactionFee | PaymentPostBack | Field | transactionFee | externalPaymentData | Field | |
totalCharge | PaymentPostBack | Field | totalCharge | externalPaymentData | Field | |
accountType | PaymentPostBack | Field | accountType | externalPaymentData | Field | |
accountType | PaymentPostBack | Field | paymentType | mainData | Field | OPC_PaymentType This field is in the mainData section and will be populated using the DVM. Same field from OPC is mapped to two different fields. |
name | PaymentPostBack | Group | name | externalPaymentData | Group | |
first | name | Field | firstName | name | Field | |
middle | name | Field | middleName | name | Field | |
last | name | Field | lastName | name | Field | |
suffix | name | Field | suffix | name | Field | |
customDataElement | customDataElements | Field | businessName | externalPaymentData | Field | Populate with customDataElement with attribute sequenceNumber = 4 |
address | PaymentPostBack | Group | address | externalPaymentData | Group | |
street1 | address | Field | street1 | address | Field | |
street2 | address | Field | street2 | address | Field | |
city | address | Field | city | address | Field | |
stateOrProvince | address | Field | state | address | Field | |
zipOrPostalCode | address | Field | postal | address | Field | |
countryCode | address | Field | country | address | Field | OTSS_Country |
emailAddress | PaymentPostBack | Field | emailAddress | externalPaymentData | Field | |
phoneNumber | PaymentPostBack | Field | phoneNumber | externalPaymentData | Field | |
receiptNumber | PaymentPostBack | Field | recieptNumber | externalPaymentData | Field | Same as an authorization code |
paymentID | PaymentPostBack | Field | paymentID | externalPaymentData | Field | |
trafficSchool | PaymentPostBack | Field | trafficSchool | externalPaymentData | Field | |
paymentChannel | PaymentPostBack | Field | paymentChannel | externalPaymentData | Field |
Official Payments Payment Report Mapping
Official Payments Payment Report File Format | TSProcessExtPayReportRecord Message | DVM Mapping | ||||||
---|---|---|---|---|---|---|---|---|
Field # | Description | Max Length | Type | Format and Example | Element Name | Parent Element | Type | DVM/Value Source |
TSProcessExtPayReportRecord | OutermostTag | |||||||
paymentReportRecord | TSProcessExtPayReportRecord | Group | ||||||
paymentVendor | paymentReportRecord | Field | This value be picked from Configuration Properties | |||||
currency | paymentReportRecord | Field | Default the Currency code from Configuration Properties | |||||
1 | Custom Data Element #1 | 75 | Alphanumeric | payDestinationType | paymentReportRecord | Field | OTSS_PaymentDestination Populate with customDataElement with attribute sequenceNumber = 1 | |
2 | Custom Data Element #2 | 75 | Alphanumeric | |||||
3 | Custom Data Element #3 | 75 | Alphanumeric | |||||
4 | Custom Data Element #4 | 75 | Alphanumeric | businessName | externalPaymentReportData | Field | Populate with customDataElement with attribute sequenceNumber = 4 | |
5 | Custom Data Element #5 | 75 | Alphanumeric | externalID | paymentReportRecord | Field | Populate with customDataElement with attribute sequenceNumber = 5 | |
destinationDetails | paymentReportRecord | List | Populated in a loop | |||||
sequence | destinationDetails | Field | Populate the sequenceNumber from 1 to 4 in a loop | |||||
fieldName | destinationDetails | Field | ||||||
6 | Custom Data Element #6 | 75 | Alphanumeric | fieldValue | destinationDetails | Field | Populate the values for customDataElement in a loop where sequenceNumber = 6 | |
7 | Custom Data Element #7 | 75 | Alphanumeric | fieldValue | destinationDetails | Field | Populate the values for customDataElement in a loop where sequenceNumber =7 | |
8 | Custom Data Element #8 | 75 | Alphanumeric | fieldValue | destinationDetails | Field | Populate the values for customDataElement in a loop where sequenceNumber =8 | |
9 | Custom Data Element #9 | 75 | Alphanumeric | fieldValue | destinationDetails | Field | Populate the values for customDataElement in a loop where sequenceNumber = 9 | |
10 | Date of Transaction | 8 | Numeric | Format: yyyymmdd; Example: 20030531 | paymentDate | paymentReportRecord | Field | Convert to xsd:Date |
11 | Time of Transaction | 6 | Numeric | Format: hhmmss; Example: 134504 | transactionTime | externalPaymentReportData | Field | Convert to xsd:Time |
12 | Payment Amount #1 | 15 | Currency | Format: dollars.cents; Examples: 1837.13, 11633.00 | amount | paymentReportRecord | Field | Pick the first paymentAmount field in the list |
13 | Payment Amount #2 | 15 | Currency | |||||
14 | Payment Amount #3 | 15 | Currency | |||||
15 | Payment Amount #4 | 15 | Currency | |||||
16 | Payment Amount #5 | 15 | Currency | |||||
17 | Payment Amount #6 | 15 | Currency | |||||
18 | Payment Amount #7 | 15 | Currency | |||||
19 | Payment Amount #8 | 15 | Currency | |||||
20 | Payment Amount #9 | 15 | Currency | |||||
externalPaymentReportData | paymentReportRecord | Group | ||||||
21 | Transaction Fee | 15 | Currency | Format: dollars.cents; Example: 2.50 | transactionFee | externalPaymentReportData | Field | |
22 | Total Charge | 15 | Currency | Format: dollars.cents; (Sum of Payment Amount(s) and Transaction Fee) | totalCharge | externalPaymentReportData | Field | |
23 | Account Type | 10 | Alphanumeric | See Table – Account Type, indicates credit card type | accountType | externalPaymentReportData | Field | This field is in the paymentReportRecord section and will be populated using the DVM. Same field from OPC mapped to two different fields OPC_PaymentType and maps to accountType from OPC |
paymentType | paymentReportRecord | Field | OPC_PaymentType | |||||
24 | Authorization Code | 50 | Alphanumeric | Examples: 123456, T34997 | extTransactionRefID | paymentReportRecord | Field | |
25 | Receipt Number | 50 | Alphanumeric | Generally the same as the Authorization Code unless Receipt Number is otherwise provided or specified. | recieptNumber | externalPaymentReportData | Field | |
26 | Traffic School Flag | 4 | Numeric | (0=No TS; 1..9=Fee in Payment Amt. #x) | trafficSchool | externalPaymentReportData | Field | |
27 | Payment ID | 4 | Numeric | IVR Main Menu choice or Court ID | ||||
28 | Phone Number | 20 | Numeric | The phone number as specified by payer | phoneNumber | externalPaymentReportData | Field | |
29 | ANI | 20 | Numeric | IVR only - caller’s phone number as collected via caller-ID | ||||
name | externalPaymentReportData | Group | ||||||
30 | First Name | 64 | Alphanumeric | firstName | name | Field | ||
31 | Middle Name | 64 | Alphanumeric | middleName | name | Field | ||
32 | Last Name | 64 | Alphanumeric | lastName | name | Field | ||
suffix | name | Field | ||||||
address | externalPaymentReportData | Group | ||||||
33 | Street Address #1 | 64 | Alphanumeric | street1 | address | Field | ||
34 | Street Address #2 | 64 | Alphanumeric | street2 | address | Field | ||
35 | City/Town | 64 | Alphanumeric | city | address | Field | ||
36 | Reserved | 64 | Alphanumeric | Reserved for future use | ||||
37 | State/Province | 64 | Alphanumeric | state | address | Field | ||
38 | Zip/Postal Code | 20 | Alphanumeric | postal | address | Field | ||
39 | Email Address | 75 | Alphanumeric | emailAddress | externalPaymentReportData | Field | ||
40 | Country | 2 | Alphanumeric | See Table - Country Code | country | address | Field | OTSS_Country |
41 | Returned Date | 8 | Alphanumeric | Format: yyyymmdd; Chargeback date | ||||
42 | Returned Description | 35 | Alphanumeric | Chargeback - Description ACH and NOC codes (see Return Description table) | ||||
43 | Payment Channel | 10 | Alphanumeric | IVR or NET | paymentChannel | externalPaymentReportData | Field | |
44 | Unique Identifier | 50 | Alphanumeric | Used for Co-Brand+ and STP only. Unique Identifier for the transaction as provided by the Client. | uniqueIdentifier | externalPaymentReportData | Field | Payment unique identifier |
Appendix D
Setup Parameters for Official Payments Co-branding
If you choose Official Payments Corporation (OPC) as your external payment provider for the self-service application, you must contact OPC for required configuration and setup information. To co-brand an OPC page with your own information (including images), you must also complete and submit the following information.
OPC's central web site is available for viewing at https://www.officialpayments.com/index.jsp.
OPC Client CoBranding Parameters and Image Specifications
Appendix E
Glossary
Term/Abbreviation | Definition |
---|---|
ADF | Oracle Application Development Framework. |
Base product, "out-of-the-box" product | PSRMSS base product as delivered to the revenue management authority. |
BPEL | Business Process Execution Language. |
Casual user | Taxpayer who may use a limited set of features that do not require registration or login. |
Confirmation number | An automatically-generated unique reference identifier provided to the taxpayer on all transactions and service requests. |
DDL | Data Definition Language. |
DVM | Domain value maps operate on actual data values that transit through the infrastructure at runtime. |
EM/OEM | Oracle Enterprise Manager |
Enrolled user | Registered user who requested and was granted the ability to manage all or some of the information kept in the revenue management system through the self-service portal. |
External payment provider | A third-party resource that specializes in providing automated taxation and often other types of payments, and supports automated transactional processing and reconciliation. |
Implementer, implementer | Those who implement PSRMSS for the revenue management authority. |
ITA | Interactive Tax Assistant |
JSF | Java Server Faces |
Line of Business (LOB) | Broad category of self-service site users with similar interests; used throughout the portal to group the services and features appropriately. Examples: Individual, Business. |
Managed Content | Documents that are available through WebCenter Content. |
MDS | Metadata Services |
Oracle BPM Worklist | Enables business users to access and act on tasks assigned to them. |
ODS | Oracle Determinations Server. Part of Oracle Policy Automation. |
OIM | Oracle Identity Management |
OPA | Oracle Policy Automation. Automates complex policies, delivering self-service guidance and high volume decision making in both batch and real-time environments. |
OPC | Official Payments Corporation. (See "External payment provider" definition) |
OUC | Oracle Unified Content |
OWD | Oracle Web Determinations. Part of Oracle Policy Automation. |
OUD | Oracle Unified Directory |
OWSM | Oracle Web Services Manager |
POI | Proof of identity. Identification details required only for casual (not signed in) website users. (Also see "taxpayer identification".) |
PSRM | Oracle Public Sector Revenue Management |
PSRMSS | Oracle Public Sector Revenue Management Self Service |
Registered user | Web portal visitor who established a user ID and password via the Identity Manager. This user is authenticated upon login and may access secured pages that are not accessible for a casual user. |
Revenue management authority | Public sector entities that manage taxation and/or revenue. |
Revenue management system (or "back-end" system) | Software application(s) used for revenue management. The Web Self-Service Portal provides public access to a limited set of functions in this system. |
Session context | Basic information (user name, selected taxpayer, account, etc.) available to all portal pages throughout a single session. |
SOA | Service Oriented Architecture. (Also see SOA Composer.) |
SOA Composer (Oracle SOA Composer) | SOA tool for managing SOA Metadata at runtime. This is a part of the SOA Suite. |
Taxpayer validation | A form in which unregistered taxpayers provide basic identification, along with certain specific information pertaining to previously-recorded data, in order to access self-service application services such as payments or enquiries. |
UCM | Oracle Universal Content Management, a document management tool. The UCM server is included with WebCenter installation. |
UCM Documents | Documents on the UCM server. |
WC | Oracle WebCenter |
WebCenter Administration Console | A part of the WebCenter application framework that calls WebCenter Composer when you choose to add new pages or edit existing ones. |
WebCenter Composer (or Oracle Composer) | WebCenter tool that allows runtime customization of WebCenter applications using the MetaData Services (MDS) in WebLogic. |
WebCenter Content Manager (or WebCenter Content) | WebCenter Content Manager is officially WebCenter Content (formerly Oracle Enterprise Content Management). It is solution for all types of content management from file server consolidation to sophisticated multi-site web content management including UCM. |
WLS | Oracle WebLogic Server |
WSDL | Web Services Description Language. XML-based interface description language that is used for describing the functionality offered by a web service. |
Appendix F
Print Form Data - Print Custom Transformation
This example illustrates how a generic form data sample is transformed into Form-specific XML using XSLT
Sample Form Data
This XML fragment contains generic form data and language-specific labels. It represents the original input for the form print service.
<documentData>
<formType>SALESDST2008</formType>
<formCategory>TAXFORM</formCategory>
<currency/>
<formTypeDescription>Sales and Use (w/ Local Distribution) Tax Form</formTypeDescription>
<documentLocator/>
<documentLocatorLabel>Document Locator</documentLocatorLabel>
<customProperties>
<sequence>1</sequence>
<propertyName>CITY</propertyName>
<propertyDescription>City</propertyDescription>
<value>Tacoma</value>
</customProperties>
<customProperties>
<sequence>2</sequence>
<propertyName>CITY</propertyName>
<propertyDescription>City</propertyDescription>
<value>London</value>
</customProperties>
<formData>
<id>SALESDST2008</id>
<name>SALESDST2008</name>
<section>
<id>75560</id>
<name>taxpayerInfo</name>
<sectionLabel>Taxpayer Information</sectionLabel>
<sequence>1</sequence>
<line>
<field>
<id>75572</id>
<name>filingEndDate</name>
<lineLabel>Filing Period End Date</lineLabel>
<dataType>DATE</dataType>
<value>03/31/2012</value>
</field>
</line>
<line>
<field>
<id>75561</id>
<name>name</name>
<lineLabel>Name</lineLabel>
<dataType>TEXT</dataType>
<value>Cooks For a Cause</value>
</field>
</line>
<line>
<field>
<id>75562</id>
<name>idType</name>
<lineLabel>ID Type</lineLabel>
<dataType>TEXT</dataType>
<value>EIN</value>
</field>
</line>
<line>
<field>
<id>75563</id>
<name>idNumber</name>
<lineLabel>ID Number</lineLabel>
<dataType>TEXT</dataType>
<value>55-8947563</value>
</field>
</line>
<line>
<field>
<id>75564</id>
<name>country</name>
<lineLabel>Country</lineLabel>
<dataType>TEXT</dataType>
<value>USA</value>
</field>
</line>
<line>
<field>
<id>75565</id>
<name>address</name>
<lineLabel>Address</lineLabel>
<dataType>TEXT</dataType>
<value>1 main st.</value>
</field>
</line>
<line>
<field>
<id>75566</id>
<name>address2</name>
<lineLabel>Address 2</lineLabel>
<dataType>TEXT</dataType>
<value/>
</field>
</line>
<line>
<field>
<id>75567</id>
<name>city</name>
<lineLabel>City</lineLabel>
<dataType>TEXT</dataType>
<value>Midwood</value>
</field>
</line>
<line>
<field>
<id>75568</id>
<name>state</name>
<lineLabel>State</lineLabel>
<dataType>TEXT</dataType>
<value>VA</value>
</field>
</line>
<line>
<field>
<id>75569</id>
<name>zipCode</name>
<lineLabel>Postal</lineLabel>
<dataType>TEXT</dataType>
<value>09809</value>
</field>
</line>
<line>
<field>
<id>75570</id>
<name>accountNumber</name>
<lineLabel>Account</lineLabel>
<dataType>TEXT</dataType>
<value/>
</field>
</line>
<line>
<field>
<id>75571</id>
<name>filingStartDate</name>
<lineLabel>Filing Period Start Date</lineLabel>
<dataType>DATE</dataType>
<value>01/01/2012</value>
</field>
</line>
</section>
<section>
<id>75573</id>
<name>lineItems</name>
<sectionLabel>Line Items</sectionLabel>
<sequence>1</sequence>
<line>
<field>
<id>75574</id>
<name>totalGrossSales</name>
<lineLabel>Total Gross Sales</lineLabel>
<dataType>CURRENCY</dataType>
<value>120000.0</value>
</field>
</line>
<line>
<field>
<id>75581</id>
<name>transactionsSubjectToLocalTax</name>
<lineLabel>Transactions Subject To Local Tax</lineLabel>
<dataType>CURRENCY</dataType>
<value>0.0</value>
</field>
</line>
<line>
<field>
<id>75575</id>
<name>purchasesSubjectToTax</name>
<lineLabel>Purchases Subject to Tax</lineLabel>
<dataType>CURRENCY</dataType>
<value>2543.0</value>
</field>
</line>
<line>
<field>
<id>75576</id>
<name>total</name>
<lineLabel>Total</lineLabel>
<dataType>CURRENCY</dataType>
<value>122543.0</value>
</field>
</line>
<line>
<field>
<id>75577</id>
<name>totalExemptTransactions</name>
<lineLabel>Total Deductions / Exemptions</lineLabel>
<dataType>CURRENCY</dataType>
<value>0.0</value>
</field>
</line>
<line>
<field>
<id>75578</id>
<name>taxableTransactions</name>
<lineLabel>Transactions Subject To Tax</lineLabel>
<dataType>CURRENCY</dataType>
<value>122543.0</value>
</field>
</line>
<line>
<field>
<id>75579</id>
<name>taxRate</name>
<lineLabel>Tax Rate</lineLabel>
<dataType>NUMBER</dataType>
<value>10.0</value>
</field>
</line>
<line>
<field>
<id>75580</id>
<name>totalAssessedTaxAmount</name>
<lineLabel>Tax</lineLabel>
<dataType>CURRENCY</dataType>
<value>12254.3</value>
</field>
</line>
<line>
<field>
<id>75582</id>
<name>localTax</name>
<lineLabel>Local Tax</lineLabel>
<dataType>CURRENCY</dataType>
<value>0.0</value>
</field>
</line>
<line>
<field>
<id>75583</id>
<name>totalTax</name>
<lineLabel>Total Tax</lineLabel>
<dataType>CURRENCY</dataType>
<value>12254.3</value>
</field>
</line>
<line>
<field>
<id>75584</id>
<name>firstPrepayment</name>
<lineLabel>First Prepayment</lineLabel>
<dataType>CURRENCY</dataType>
<value>0.0</value>
</field>
</line>
<line>
<field>
<id>75585</id>
<name>secondPrepayment</name>
<lineLabel>Second Prepayment</lineLabel>
<dataType>CURRENCY</dataType>
<value>0.0</value>
</field>
</line>
<line>
<field>
<id>75586</id>
<name>taxPrepayments</name>
<lineLabel>Total Tax Prepayments</lineLabel>
<dataType>CURRENCY</dataType>
<value>0.0</value>
</field>
</line>
<line>
<field>
<id>75587</id>
<name>remainingTaxDue</name>
<lineLabel>Remaining Tax Due</lineLabel>
<dataType>CURRENCY</dataType>
<value>12254.3</value>
</field>
</line>
<line>
<field>
<id>75588</id>
<name>penalty</name>
<lineLabel>Penalty</lineLabel>
<dataType>CURRENCY</dataType>
<value>0.0</value>
</field>
</line>
<line>
<field>
<id>75589</id>
<name>interest</name>
<lineLabel>Interest</lineLabel>
<dataType>CURRENCY</dataType>
<value>0.0</value>
</field>
</line>
<line>
<field>
<id>75590</id>
<name>totalAmountOwed</name>
<lineLabel>Total Amount Owed</lineLabel>
<dataType>CURRENCY</dataType>
<value>12254.3</value>
</field>
</line>
</section>
<section>
<id>75597</id>
<name>deductExempt</name>
<sectionLabel>Schedule A - Deductions / Exemptions</sectionLabel>
<sequence>1</sequence>
<line>
<field>
<id>75598</id>
<name>salesToOtherRetailers</name>
<lineLabel>Sales to Other Retailers</lineLabel>
<dataType>CURRENCY</dataType>
<value>0.0</value>
</field>
</line>
<line>
<field>
<id>75599</id>
<name>nonTaxableSales</name>
<lineLabel>Non-Taxable Sales</lineLabel>
<dataType>CURRENCY</dataType>
<value>0.0</value>
</field>
</line>
<line>
<field>
<id>75600</id>
<name>nonTaxableLabor</name>
<lineLabel>Non-Taxable Labor</lineLabel>
<dataType>CURRENCY</dataType>
<value>0.0</value>
</field>
</line>
<line>
<field>
<id>75601</id>
<name>salesToGovernment</name>
<lineLabel>Sales to Government</lineLabel>
<dataType>CURRENCY</dataType>
<value>0.0</value>
</field>
</line>
<line>
<field>
<id>75602</id>
<name>salesInterstateForeignCommer</name>
<lineLabel>Sales in Interstate Foreign Commerce</lineLabel>
<dataType>CURRENCY</dataType>
<value>0.0</value>
</field>
</line>
<line>
<field>
<id>75603</id>
<name>salesTaxInGrossSales</name>
<lineLabel>Sales Tax in Gross Sales</lineLabel>
<dataType>CURRENCY</dataType>
<value>0.0</value>
</field>
</line>
<line>
<field>
<id>75604</id>
<name>lossesTaxableSales</name>
<lineLabel>Bad Debt Losses on Taxable Sales</lineLabel>
<dataType>CURRENCY</dataType>
<value>0.0</value>
</field>
</line>
<line>
<field>
<id>75605</id>
<name>lenderLosses</name>
<lineLabel>Bad Debt Lender Losses</lineLabel>
<dataType>CURRENCY</dataType>
<value>0.0</value>
</field>
</line>
<line>
<field>
<id>75606</id>
<name>taxPaidPurchaseResold</name>
<lineLabel>Cost of Tax-Paid Purchases Resold Prior to Use</lineLabel>
<dataType>CURRENCY</dataType>
<value>0.0</value>
</field>
</line>
<line>
<field>
<id>75607</id>
<name>returnedTaxableMerchandise</name>
<lineLabel>Returned Taxable Merchandise</lineLabel>
<dataType>CURRENCY</dataType>
<value>0.0</value>
</field>
</line>
<line>
<field>
<id>75608</id>
<name>cashDiscountsTaxableSales</name>
<lineLabel>Cash Discounts on Taxable Sales</lineLabel>
<dataType>CURRENCY</dataType>
<value>0.0</value>
</field>
</line>
<line>
<field>
<id>75609</id>
<name>totalFullDeductExempt</name>
<lineLabel>Total Deductions / Exemptions</lineLabel>
<dataType>CURRENCY</dataType>
<value>0.0</value>
</field>
</line>
</section>
<section>
<id>75610</id>
<name>localTaxCompSchedule</name>
<sectionLabel>Schedule B - Local Tax Computation</sectionLabel>
<sequence>1</sequence>
<table>
<id>75615</id>
<name>compArea</name>
<tableLabel>Computation for Local Area</tableLabel>
<tableRow>
<sequence>1</sequence>
<field>
<id>75616</id>
<name>localAreaName</name>
<fieldLabel>Local Area</fieldLabel>
<dataType>LOOKUP</dataType>
<value>Denvile</value>
</field>
<field>
<id>75618</id>
<name>localAreaTaxRate</name>
<fieldLabel>Local Area Tax Rate</fieldLabel>
<dataType>NUMBER</dataType>
<value>0.05</value>
</field>
<field>
<id>75619</id>
<name>areaTaxDue</name>
<fieldLabel>Area Tax Due</fieldLabel>
<dataType>CURRENCY</dataType>
<value>0.0</value>
</field>
<field>
<id>75617</id>
<name>allocatedAmount</name>
<fieldLabel>Allocated Amount</fieldLabel>
<dataType>CURRENCY</dataType>
<value>0.0</value>
</field>
</tableRow>
</table>
<line>
<field>
<id>75612</id>
<name>salesToLocationNotInArea</name>
<lineLabel>Sales Delivered to Locations Not in Any Area</lineLabel>
<dataType>CURRENCY</dataType>
<value>0.0</value>
</field>
</line>
<line>
<field>
<id>75613</id>
<name>netAmountSubjectToLocalTax</name>
<lineLabel>Net Amount Subject to Local Tax</lineLabel>
<dataType>CURRENCY</dataType>
<value>0.0</value>
</field>
</line>
<line>
<field>
<id>75611</id>
<name>transactionsSubjectToLocalTax</name>
<lineLabel>Transactions Subject to Local Tax</lineLabel>
<dataType>CURRENCY</dataType>
<value>0.0</value>
</field>
</line>
<line>
<field>
<id>75614</id>
<name>totalLocalTax</name>
<lineLabel>Total Local Tax</lineLabel>
<dataType>CURRENCY</dataType>
<value>0.0</value>
</field>
</line>
</section>
<section>
<id>75591</id>
<name>preparerInformation</name>
<sectionLabel>Preparer Information</sectionLabel>
<sequence>1</sequence>
<line>
<field>
<id>75592</id>
<name>taxpayerTelephoneNumber</name>
<lineLabel>Taxpayer Telephone Number</lineLabel>
<dataType>TEXT</dataType>
<value/>
</field>
</line>
<line>
<field>
<id>75593</id>
<name>preparationDate</name>
<lineLabel>Preparation Date</lineLabel>
<dataType>DATE</dataType>
<value/>
</field>
</line>
<line>
<field>
<id>75594</id>
<name>paidPreparerTelephoneNumber</name>
<lineLabel>Paid Preparer Telephone Number</lineLabel>
<dataType>TEXT</dataType>
<value/>
</field>
</line>
<line>
<field>
<id>75595</id>
<name>paidPreparerIdType</name>
<lineLabel>Paid Preparer ID Type</lineLabel>
<dataType>TEXT</dataType>
<value/>
</field>
</line>
<line>
<field>
<id>75596</id>
<name>paidPreparerIdNumber</name>
<lineLabel>Paid Preparer ID Number</lineLabel>
<dataType>TEXT</dataType>
<value/>
</field>
</line>
</section>
</formData>
</documentData>
XSLT
This XSLT transforms generic form data using the value in the <name> element as the tag name of the form-specific XML.
For example, it transforms the following fragment:
<field>
<name>total</name>
<value>120.00</value>
</field>
...into the following single tag: <total>120.00</total>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:msxsl="urn:schemas-microsoft-com:xslt" exclude-result-prefixes="msxsl">
<xsl:output method="xml" indent="yes"/>
<xsl:element name="formType"><xsl:value-of select="formType"/></xsl:element>
<xsl:element name="formCategory"><xsl:value-of select="formCategory"/></xsl:element>
<xsl:element name="documentLocator"><xsl:value-of select="documentLocator"/></xsl:element>
<xsl:template match="customProperties">
<xsl:if test="propertyName" >
<xsl:variable name="propertyName" select="propertyName"/>
<xsl:element name="{$propertyName}">
<xsl:value-of select="value"/>
</xsl:element>
</xsl:if>
</xsl:template>
<xsl:template match="formData">
<xsl:element name="formID"><xsl:value-of select="id"/></xsl:element>
<xsl:element name="formName"><xsl:value-of select="id"/></xsl:element>
<xsl:apply-templates select="section"/>
</xsl:template>
<xsl:template match="section">
<xsl:variable name="sectionName" select="name" />
<xsl:element name="{$sectionName}">
<xsl:element name="sequence"><xsl:value-of select="sequence"/></xsl:element>
<xsl:apply-templates select="line/field"/>
<xsl:apply-templates select="table"/>
</xsl:element>
</xsl:template>
<xsl:template match="table">
<xsl:variable name="tableName" select="name"/>
<xsl:element name="{$tableName}">
<xsl:apply-templates select="tableRow">
<xsl:with-param name="myTableName" select="$tableName"/>
</xsl:apply-templates>
</xsl:element>
</xsl:template>
<xsl:template match="tableRow">
<xsl:param name="myTableName"></xsl:param>
<xsl:variable name="rowname" select="concat($myTableName,'List')"/>
<xsl:element name="{$rowname}">
<xsl:element name="sequence"><xsl:value-of select="sequence"/></xsl:element>
<xsl:apply-templates select="field"/>
</xsl:element>
</xsl:template>
<xsl:template match="field">
<xsl:variable name="fieldName" select="name" />
<xsl:element name="{$fieldName}">
<xsl:value-of select="value"/>
</xsl:element>
</xsl:template>
<xsl:template match="@* | node()">
<xsl:copy>
<xsl:apply-templates select="@* | node()"/>
</xsl:copy>
</xsl:template>
</xsl:stylesheet>
Form-specific XML
Transformation result:
<?xml version="1.0" encoding="UTF-8"?><documentData>
<formType>SALESDST2008</formType>
<formCategory>TAXFORM</formCategory>
<currency/>
<formTypeDescription>Sales and Use (w/ Local Distribution) Tax Form</formTypeDescription>
<documentLocator/>
<documentLocatorLabel>Document Locator</documentLocatorLabel>
<CITY>Tacoma</CITY>
<CITY>London</CITY>
<formID>SALESDST2008</formID>
<formName>SALESDST2008</formName>
<taxpayerInfo>
<sequence>1</sequence>
<filingEndDate>03/31/2012</filingEndDate>
<name>Cooks For a Cause</name>
<idType>EIN</idType>
<idNumber>55-8947563</idNumber>
<country>USA</country>
<address>1 main st.</address>
<address2/>
<city>Midwood</city>
<state>VA</state>
<zipCode>09809</zipCode>
<accountNumber/>
<filingStartDate>01/01/2012</filingStartDate>
</taxpayerInfo>
<lineItems>
<sequence>1</sequence>
<totalGrossSales>120000.0</totalGrossSales>
<transactionsSubjectToLocalTax>0.0</transactionsSubjectToLocalTax>
<purchasesSubjectToTax>2543.0</purchasesSubjectToTax>
<total>122543.0</total>
<totalExemptTransactions>0.0</totalExemptTransactions>
<taxableTransactions>122543.0</taxableTransactions>
<taxRate>10.0</taxRate>
<totalAssessedTaxAmount>12254.3</totalAssessedTaxAmount>
<localTax>0.0</localTax>
<totalTax>12254.3</totalTax>
<firstPrepayment>0.0</firstPrepayment>
<secondPrepayment>0.0</secondPrepayment>
<taxPrepayments>0.0</taxPrepayments>
<remainingTaxDue>12254.3</remainingTaxDue>
<penalty>0.0</penalty>
<interest>0.0</interest>
<totalAmountOwed>12254.3</totalAmountOwed>
</lineItems>
<deductExempt>
<sequence>1</sequence>
<salesToOtherRetailers>0.0</salesToOtherRetailers>
<nonTaxableSales>0.0</nonTaxableSales>
<nonTaxableLabor>0.0</nonTaxableLabor>
<salesToGovernment>0.0</salesToGovernment>
<salesInterstateForeignCommer>0.0</salesInterstateForeignCommer>
<salesTaxInGrossSales>0.0</salesTaxInGrossSales>
<lossesTaxableSales>0.0</lossesTaxableSales>
<lenderLosses>0.0</lenderLosses>
<taxPaidPurchaseResold>0.0</taxPaidPurchaseResold>
<returnedTaxableMerchandise>0.0</returnedTaxableMerchandise>
<cashDiscountsTaxableSales>0.0</cashDiscountsTaxableSales>
<totalFullDeductExempt>0.0</totalFullDeductExempt>
</deductExempt>
<localTaxCompSchedule>
<sequence>1</sequence>
<salesToLocationNotInArea>0.0</salesToLocationNotInArea>
<netAmountSubjectToLocalTax>0.0</netAmountSubjectToLocalTax>
<transactionsSubjectToLocalTax>0.0</transactionsSubjectToLocalTax>
<totalLocalTax>0.0</totalLocalTax>
<compArea>
<compAreaList>
<sequence>1</sequence>
<localAreaName>Denvile</localAreaName>
<localAreaTaxRate>0.05</localAreaTaxRate>
<areaTaxDue>0.0</areaTaxDue>
<allocatedAmount>0.0</allocatedAmount>
</compAreaList>
</compArea>
</localTaxCompSchedule>
<preparerInformation>
<sequence>1</sequence>
<taxpayerTelephoneNumber/>
<preparationDate/>
<paidPreparerTelephoneNumber/>
<paidPreparerIdType/>
<paidPreparerIdNumber/>
</preparerInformation>
</documentData>
Create a Custom Report
The following <documentData> sample is transformed into Report-specific XML using XSLT.
Sample Report Data
<?xml version="1.0" encoding="UTF-8"?>
<!--
To change this license header, choose License Headers in Project Properties.
To change this template file, choose Tools | Templates
and open the template in the editor.
-->
<documentData>
<formType>2008SALESUSE</formType>
<formTypeDescription>Sales and Use 2008 (with Local Distribution)</formTypeDescription>
<formCategory>TAXFORM</formCategory>
<currency>USD</currency>
<customProperties>
<sequence>1</sequence>
<propertyName>CITY</propertyName>
<propertyDescription>City</propertyDescription>
<value>Tacoma</value>
</customProperties>
<customProperties>
<sequence>2</sequence>
<propertyName>CITY</propertyName>
<propertyDescription>City</propertyDescription>
<value>London</value>
</customProperties>
<documentLocator>TTF-U890625</documentLocator>
<documentLocatorLabel>Document Locator</documentLocatorLabel>
<formData>
<id>82036165155</id>
<name>SALESUSE2008</name>
<formDescription>Sales and Use 2008</formDescription>
<section>
<id>1233</id>
<name>exemption</name>
<sectionLabel>Exemptions</sectionLabel>
<sequence>0</sequence>
<line>
<field>
<id>1234</id>
<name>exemptPrimaryInd</name>
<lineLabel>Primary Taxpayer Exempt</lineLabel>
<dataType>boolean</dataType>
<value>false</value>
</field>
</line>
<line>
<field>
<id>1234</id>
<name>exemptSpouseInd</name>
<lineLabel>Spouse Exempt</lineLabel>
<dataType>boolean</dataType>
<value>true</value>
</field>
</line>
<line>
<field>
<id>1234</id>
<name>exemptSpouseName</name>
<lineLabel>Exempt Spouse Name</lineLabel>
<dataType>text</dataType>
<value>Mary Smith</value>
</field>
</line>
</section>
<section>
<id>1234</id>
<name>officerComp</name>
<sectionLabel>Officer Compensations</sectionLabel>
<sequence>1</sequence>
<line>
<field>
<id>2344</id>
<name>officeLocation</name>
<lineLabel>Location</lineLabel>
<dataType>text</dataType>
<value>69-01 South Port Dr., Millford VA 80892</value>
</field>
</line>
<line>
<field>
<id>2344</id>
<name>totalCompensation</name>
<lineLabel>Total Compensation</lineLabel>
<dataType>money</dataType>
<value>14700.90</value>
</field>
</line>
<table>
<id>66682</id>
<name>compensations</name>
<tableLabel>Computation</tableLabel>
<tableRow>
<sequence>1</sequence>
<field>
<id>3166</id>
<name>officerLegalName</name>
<fieldLabel>Legal Name</fieldLabel>
<dataType>text</dataType>
<value>Brian Kelly</value>
</field>
<field>
<id>3166</id>
<name>officerSSN</name>
<fieldLabel>SSN</fieldLabel>
<dataType>text</dataType>
<value>981-77-1010</value>
</field>
<field>
<id>2344</id>
<name>salary</name>
<fieldLabel>Salary</fieldLabel>
<dataType>money</dataType>
<value>3507.23</value>
</field>
</tableRow>
<tableRow>
<sequence>2</sequence>
<field>
<id>3166</id>
<name>officerLegalName</name>
<fieldLabel>Legal Name</fieldLabel>
<dataType>text</dataType>
<value>Pier Morgan</value>
</field>
<field>
<id>3166</id>
<name>officerSSN</name>
<fieldLabel>SSN</fieldLabel>
<dataType>text</dataType>
<value>080-81-5335</value>
</field>
<field>
<id>2344</id>
<name>salary</name>
<fieldLabel>Salary</fieldLabel>
<dataType>money</dataType>
<value>2400.23</value>
</field>
</tableRow>
</table>
</section>
<section>
<id>1234</id>
<name>officerComp</name>
<sectionLabel>Officer Compensations</sectionLabel>
<sequence>2</sequence>
<line>
<field>
<id>2344</id>
<name>officeLocation</name>
<lineLabel>Location</lineLabel>
<dataType>text</dataType>
<value>425 Grove st., New Heaven CT 65010</value>
</field>
</line>
<line>
<field>
<id>2344</id>
<name>totalCompensation</name>
<lineLabel>Total Compensation</lineLabel>
<dataType>money</dataType>
<value>75133.00</value>
</field>
</line>
<table>
<id>66682</id>
<name>compensations</name>
<tableLabel>Computation</tableLabel>
<tableRow>
<sequence>1</sequence>
<field>
<id>3166</id>
<name>officerLegalName</name>
<fieldLabel>Legal Name</fieldLabel>
<dataType>text</dataType>
<value>Wendy Shark</value>
</field>
<field>
<id>3166</id>
<name>officerSSN</name>
<fieldLabel>SSN</fieldLabel>
<dataType>text</dataType>
<value>809-88-2918</value>
</field>
<field>
<id>2344</id>
<name>salary</name>
<fieldLabel>Salary</fieldLabel>
<dataType>money</dataType>
<value>4108.66</value>
</field>
</tableRow>
<tableRow>
<sequence>2</sequence>
<field>
<id>3166</id>
<name>officerLegalName</name>
<fieldLabel>Legal Name</fieldLabel>
<dataType>text</dataType>
<value>Bob Marley</value>
</field>
<field>
<id>3166</id>
<name>officerSSN</name>
<fieldLabel>SSN</fieldLabel>
<dataType>text</dataType>
<value>421-11-3222</value>
</field>
<field>
<id>2344</id>
<name>salary</name>
<fieldLabel>Salary</fieldLabel>
<dataType>money</dataType>
<value>1000.99</value>
</field>
</tableRow>
</table>
</section>
</formData>
</documentData>
XSLT Transform
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:msxsl="urn:schemas-microsoft-com:xslt" exclude-result-prefixes="msxsl">
<xsl:output method="xml" indent="yes"/>
<xsl:element name="formType"><xsl:value-of select="formType"/></xsl:element>
<xsl:element name="formCategory"><xsl:value-of select="formCategory"/></xsl:element>
<xsl:element name="documentLocator"><xsl:value-of select="documentLocator"/></xsl:element>
<xsl:template match="customProperties">
<xsl:variable name="propertyName" select="propertyName"/>
<xsl:element name="{$propertyName}">
<xsl:value-of select="value"/>
</xsl:element>
</xsl:template>
<xsl:template match="formData">
<xsl:element name="formID"><xsl:value-of select="id"/></xsl:element>
<xsl:element name="formName"><xsl:value-of select="name"/></xsl:element>
<xsl:apply-templates select="section"/>
</xsl:template>
<xsl:template match="section">
<xsl:variable name="sectionName" select="name" />
<xsl:element name="{$sectionName}">
<xsl:element name="sequence"><xsl:value-of select="sequence"/></xsl:element>
<xsl:apply-templates select="line/field"/>
<xsl:apply-templates select="table"/>
</xsl:element>
</xsl:template>
<xsl:template match="table">
<xsl:variable name="tableName" select="name"/>
<xsl:element name="{$tableName}">
<xsl:apply-templates select="tableRow">
<xsl:with-param name="myTableName" select="$tableName"/>
</xsl:apply-templates>
</xsl:element>
</xsl:template>
<xsl:template match="tableRow">
<xsl:param name="myTableName"></xsl:param>
<xsl:variable name="rowname" select="concat($myTableName,'List')"/>
<xsl:element name="{$rowname}">
<xsl:element name="sequence"><xsl:value-of select="sequence"/></xsl:element>
<xsl:apply-templates select="field"/>
</xsl:element>
</xsl:template>
<xsl:template match="field">
<xsl:variable name="fieldName" select="name" />
<xsl:element name="{$fieldName}">
<xsl:value-of select="value"/>
</xsl:element>
</xsl:template>
<xsl:template match="@* | node()">
<xsl:copy>
<xsl:apply-templates select="@* | node()"/>
</xsl:copy>
</xsl:template>
</xsl:stylesheet>
Report-specific XML
The result of the transformation:
<?xml version="1.0" encoding="UTF-8"?><documentData>
<formType>SALESDST2008</formType>
<formCategory>TAXFORM</formCategory>
<currency/>
<formTypeDescription>Sales and Use (w/ Local Distribution) Tax Form</formTypeDescription>
<documentLocator/>
<documentLocatorLabel>Document Locator</documentLocatorLabel>
<CITY>Tacoma</CITY>
<CITY>London</CITY>
<formID>SALESDST2008</formID>
<formName>SALESDST2008</formName>
<taxpayerInfo>
<sequence>1</sequence>
<filingEndDate>03/31/2012</filingEndDate>
<name>Cooks For a Cause</name>
<idType>EIN</idType>
<idNumber>55-8947563</idNumber>
<country>USA</country>
<address>1 main st.</address>
<address2/>
<city>Midwood</city>
<state>VA</state>
<zipCode>09809</zipCode>
<accountNumber/>
<filingStartDate>01/01/2012</filingStartDate>
</taxpayerInfo>
<lineItems>
<sequence>1</sequence>
<totalGrossSales>120000.0</totalGrossSales>
<transactionsSubjectToLocalTax>0.0</transactionsSubjectToLocalTax>
<purchasesSubjectToTax>2543.0</purchasesSubjectToTax>
<total>122543.0</total>
<totalExemptTransactions>0.0</totalExemptTransactions>
<taxableTransactions>122543.0</taxableTransactions>
<taxRate>10.0</taxRate>
<totalAssessedTaxAmount>12254.3</totalAssessedTaxAmount>
<localTax>0.0</localTax>
<totalTax>12254.3</totalTax>
<firstPrepayment>0.0</firstPrepayment>
<secondPrepayment>0.0</secondPrepayment>
<taxPrepayments>0.0</taxPrepayments>
<remainingTaxDue>12254.3</remainingTaxDue>
<penalty>0.0</penalty>
<interest>0.0</interest>
<totalAmountOwed>12254.3</totalAmountOwed>
</lineItems>
<deductExempt>
<sequence>1</sequence>
<salesToOtherRetailers>0.0</salesToOtherRetailers>
<nonTaxableSales>0.0</nonTaxableSales>
<nonTaxableLabor>0.0</nonTaxableLabor>
<salesToGovernment>0.0</salesToGovernment>
<salesInterstateForeignCommer>0.0</salesInterstateForeignCommer>
<salesTaxInGrossSales>0.0</salesTaxInGrossSales>
<lossesTaxableSales>0.0</lossesTaxableSales>
<lenderLosses>0.0</lenderLosses>
<taxPaidPurchaseResold>0.0</taxPaidPurchaseResold>
<returnedTaxableMerchandise>0.0</returnedTaxableMerchandise>
<cashDiscountsTaxableSales>0.0</cashDiscountsTaxableSales>
<totalFullDeductExempt>0.0</totalFullDeductExempt>
</deductExempt>
<localTaxCompSchedule>
<sequence>1</sequence>
<salesToLocationNotInArea>0.0</salesToLocationNotInArea>
<netAmountSubjectToLocalTax>0.0</netAmountSubjectToLocalTax>
<transactionsSubjectToLocalTax>0.0</transactionsSubjectToLocalTax>
<totalLocalTax>0.0</totalLocalTax>
<compArea>
<compAreaList>
<sequence>1</sequence>
<localAreaName>Denvile</localAreaName>
<localAreaTaxRate>0.05</localAreaTaxRate>
<areaTaxDue>0.0</areaTaxDue>
<allocatedAmount>0.0</allocatedAmount>
</compAreaList>
</compArea>
</localTaxCompSchedule>
<preparerInformation>
<sequence>1</sequence>
<taxpayerTelephoneNumber/>
<preparationDate/>
<paidPreparerTelephoneNumber/>
<paidPreparerIdType/>
<paidPreparerIdNumber/>
</preparerInformation>
</documentData>
Creating a Form-Specific Report
Steps to create a form-specific report:
Build/define the form-specific XML sample. For example, fill and submit the form online and use the SOA Enterprise Management Console to get the sample generic form data from the BPEL Process instance XML. Apply the XSL to transform the generic data into form-specific XML.
Login to the BI Publisher Enterprise Console, navigate to a Catalog, and locate the directory in which the product reports are located (see the PSRMSS Installation Guide for additional details).
Create a new Data Model. Use the form data XML created above to add a data set. It can also be used as sample data.
Establish a naming convention for Report Layout names. It should be coordinated with the BPEL process custom logic for layout name derivation. For example, the Form Type code may be used as the Layout name.
Create a new Report and add a Layout using the native BI Publisher's Layout Editor or Microsoft Word (for RTF templates).
Table of Contents
Product Overview
Functional Overview
Technical Overview
Products
Solution Components
Architecture Overview
Related Documentation and Resources
Self-Service Application Foundation
Web Service Processing
Request/Response Message Flow
Common Message Components
Transaction Confirmation
Application Security
Portal Application Security
Portal Application Admin Pages
Portal Application Public Pages
Portal Application Self Service Pages
Multi-Language Support
Selecting the Current Language
Multi-Language Support for Portal Pages
Static Text Multi-Language Support
Dynamic Text Multi-Language Support
Multi-Language Support for Admin Data Maintenance
Multi-Language Support for Data Returned by the Revenue Management System
Multi-Language Support for Custom Content on Portal Pages
Supporting Additional Languages
Application Messages and Error Handling
Application Error Handling Overview
Revenue Management System Errors
Middleware (BPEL) Errors
Portal Application Errors
Application Messages Overview
Revenue Management System Messages
Middleware (BPEL) Messages
Message Translations and Consolidation
Portal Application Messages
Displaying Web Services Messages
Portal Messages Caching
Portal Application
Portal Application Overview
Login Page
Portal Page Template
Portal Admin Pages
Portal Functional Pages
Customizing the Portal Structure and Pages
Monitoring the Application
Monitor the Portal Application Using Enterprise Manager
Monitor Using WebLogic Logs
Monitor Logs Using Enterprise Manager
Monitoring Document References
System Administration Pages Overview
Admin Search Page
Admin Maintenance Page
Defining System Options
System Options List
System Options Maintenance
Defining Languages
Language Search
Language Maintenance
Defining Messages
Message Search
Message Maintenance
Defining Lookups
Lookup Search
Lookup Maintenance
Lookup Value List
Lookup Value Maintenance
Defining Validation Rules
Validation Rule Search
Validation Rule Maintenance
Defining Property Type
Property Type Search
Property Type Maintenance
Defining Fields
Field Search
Field Maintenance
Common Configurations
Address Configuration
Access Type
Email Definition
Overview
Generic Service Requests
Email Service Request
Taxpayer Identification Request
Refund Status Inquiry Request
User Enrollment Request
Defining Service Requests
Service Request Search
Service Request Maintenance
Service Request: Main
Service Request: Appearance
Service Request: Fields
Service Request: Preview
Service Request - Custom Properties
BPEL Processes
Implementing Service Requests
Web Services
Supported Service Requests
Messages
Configuration
Service Request Config
Lookup
Messages
Validation Rules
Advanced Navigation
BPEL DVM Mapping
OTSS_ServiceRequestType
OTSS_FieldCodes
OTSS_MessageNumbers
How To Enable a New Web Service-based Request
How to Enable a New Email Service Request
How to Enable a New Identification Request
How to Enable a New Refund Status Request
How to Enable a New Enrollment Request
FAQ: Service Request
Overview
Enrollment vs. Registration
Enrolled User
User Access Store
Initial Enrollment
Enrollment Event
Preventing Fraudulent Attempts to Enroll
Enrollment Summary
Enrollment Request
Enrollment Refresh and Summary
Enrollment Issues
Too Many Failed Attempts to Enroll
Too Many User Account Access Requests
Review Enrollment Issues
Defining Enrollment
Line of Business
Access Type
Service Request
BPEL Processes
Integration Overview
Preventing Fraudulent Enrollment
Implementing Enrollment
Web Services
Supported Enrollment Requests
Supported Access Types
Messages
Configuration
Lookup
Messages
BPEL DVM Mapping
OTSS_ServiceRequestType
OTSS_FieldCodes
OTSS_MessageNumbers
How To Enable a New Enrollment Request
Overview
Payment
Payment with External Provider
Defining Payment Destination
Payment Destination Search
Payment Destination Maintenance
Payment Destination - Main
Payment Destination - Fields
Payment Destination - Custom Properties
Defining Payment Provider
Payment Provider Search
Payment Provider Maintenance
Supported Payment Providers
BPEL Processes
Integration with Official Payments Corp.
OPC Integration Overview
OPC Integration Process Flow
Redirect Payment Process to Official Payments
Post-back XML Processing
Payment Report Processing
Payment Report Process Flow
Official Payments Integration Configuration
Customizing the Integration With Official Payments Corporation
Implementing One Time Payment
Web Services
Prepare External Data Plug-in
Implementing the Payment Class
Supported Payment Destinations
Messages
Configuration
Lookup
Payment Destination
Messages
BPEL DVM Mapping
OTSS_PaymentDestination
OTSS_FieldCodes
OTSS_PaymentType
OPC_PaymentType
OTSS_MessageNumbers
How to Enable a New Payment Destination
How to Enable a New Payment Provider
FAQ: Payment
Overview
Taxpayer Summary
Related Configurations
Taxpayer Info Configuration
Contact Information
Related Configurations
Correspondence Information
Addresses List
Add/Edit Single Address
Related Configurations
Address Label
Address Change Reason
Address Configuration
BPEL Processes
Integration Overview
Implementing Taxpayer Information
Web Services
Supported Address Configurations
Messages
Configuration
Address Configuration
Lookup
BPEL DVM Mapping
OTSS_AddressType
OTSS_AddressChangeReason
OTSS_PhoneType
OTSS_MessageNumbers
Overview
Alerts
Related Configurations
Alert Type
Account Summary
Related Configurations
Address Configuration
Access Type
Filing History
Related Configurations
Payment History
Related Configurations
Payment Method
Payment Status
BPEL Processes
Integration Overview
Implementing Account Information
Web Services
Supported Access Types
Supported Alert Types
Messages
Configuration
Lookup
BPEL DVM Mapping
OTSS_AlertType
OTSS_FilingStatus
OTSS_PaymentStatus
OTSS_PaymentType
OTSS_MessageNumbers
Form Design
Form Designer
Defining General Behavior
General Information
Online Availability
Identification
Defining Processing Options
Submission
Post-Submission
Confirmation
Defining Actions
Form Actions
Custom Properties
Defining Validation Rules
Designing Form Layout
Form
Section
Line Appearance and Data Structure
Table
Table Column
Previewing the Form
Multi-language Support
Finalizing the Layout
Reopening a Finalized Form
Form Designer Security Setup
Import Form Definition
Initial Form Import
Form Field - Data Types
Refresh Lookup
Redesign Imported Form
Form Re-import
Enabling a Form for Online Use
Form Data Type
Form Validation
Creating a Validation Rule Using OPA
BPEL Processes
Integration Overview
Implementing Form Design and Import
Web Services
Messages
Configuration
Form Data Type
Messages
System Options
Email Definition
Form Process Control
Lookup
System Options
BPEL DVM Mapping
OTSS_FormCategory
OTSS_FormDataType
OTSS_FormSectionOccurence
OTSS_MessageNumbers
Form Processing
Filing the Form
Available Forms
Identification
Form Actions
Copy From Previous Return (COPY)
Check Form Data (VALIDATE)
Ready (READY)
Submit (SUBMIT)
Print Form
Custom Actions
Confirmation
Printing Form Data
Document Creation with Oracle BI Publisher
Customization
BI Publisher Report
Uploading Supporting Documents
Making a Payment
BPEL Processes
Integration Overview
Implementing Form Processing
Web Services
Messages
Configuration
System Options
Advanced Navigation
BPEL DVM Mapping
OTSS_Currency
OTSS_MessageNumbers
Overview
Track Your Transaction
Track Your Transaction BPEL Processes
Implementing the Track Your Transaction Query
Web Services
UI Customization
Interactive Tax Assistant Overview
Web Interviews
Implementing Interactive Tax Assistant
Process Flow
Defining Interview Sets
Interview Set Search
Interview Set Maintenance
Interview Set - Main
Interview Set - Interviews
OPA Configuration and Customization
Advanced Navigation
Oracle Policy Automation (OPA)
OPA Overview
Integration Overview
Integration Flow Patterns
Synchronous Flow Without Confirmation ID
Synchronous Flow With Transaction ID Staging
Synchronous Flow With Confirmation ID
Asynchronous Flow With Confirmation ID
Flows for Official Payments Corporation Integration
Flows for Official Payments Corporation Integration
Flows for Official Payments Corporation Integration
Integration Solution Flows
Common Features of All BPEL Processes
Common Mapping Rules
Domain Value Maps (DVM)
Setting Configuration Properties
Setting System Properties
Module Configurations
Service Configurations
Integration With the Revenue Management System
Confirmation Number Utility Service
Integration Services
Adapter Services
Enrollment ID Utility Service
Integration Services
Payment Integration Flow
Business Details
Technical Details
Integration Services
Web Services
Prepare Payment Data Integration Flow
Business Details
Technical Details
Integration Services
Adapter Services
Web Services
Database Tables
Generic Taxpayer Request Integration Flow
Business Details
Technical Details
Integration Services
Adapter Services
JMS Queues
Web Services
Taxpayer Identification Integration Flow
Business Details
Technical Details
Integration Services
Web Services
Refund Status Inquiry Integration Flow
Business Details
Technical Details
Integration Services
Web Services
Confirmation Inquiry by ID Integration Flow
Business Details
Technical Details
Integration Services
Web Services
The User Access Store
User Enrollment Request Integration Flow
Business Details
Technical Details
Integration Services
Web Services
Get User Enrollment Integration Flow
Business Details
Technical Details
Integration Services
Web Services
Enrollment Summary Integration Flow
Business Details
Technical Details
Integration Services
Web Services
User Access Service
Integration Services
User Access Approval Service
Business Details
Technical Details
Integration Services
Tax Account Alerts Integration Flow
Business Details
Technical Details
Integration Services
Web Services
Account Summary Integration Flow
Business Details
Technical Details
Integration Services
Web Services
Filing History Integration Flow
Business Details
Technical Details
Integration Services
Web Services
Payment History Integration Flow
Business Details
Technical Details
Integration Services
Web Services
Taxpayer Summary Integration Flow
Business Details
Technical Details
Integration Services
Web Services
Taxpayer Contact Info Integration Flow
Business Details
Technical Details
Integration Services
Web Services
Taxpayer Correspondence Info Integration Flow
Business Details
Technical Details
Integration Services
Web Services
Address Maintenance Integration Flow
Business Details
Technical Details
Integration Services
Web Services
Process Tax Form Integration Flow
Business Details
Technical Details
Integration Services
Adapter Services
JMS Queues
Web Services
Process Registration Form Integration Flow
Business Details
Technical Details
Integration Services
Adapter Services
JMS Queues
Web Services
Form Validation Integration Flow
Business Details
Technical Details
Integration Services
Web Services
Upload Supporting Document Integration Flow
Business Details
Technical Details
Integration Services
Web Services
Print Form Document Integration Flow
Business Details
Technical Details
Integration Services
Web Services
Document Locator Number Utility Service
Integration Services
Adapter Services
Get Active Form Types Integration Flow
Business Details
Technical Details
Integration Services
Web Services
Import Form Definitions Integration Flow
Business Details
Technical Details
Integration Services
Web Services
Refresh Lookup Integration Flow
Business Details
Technical Details
Integration Services
Web Services
Integration With Official Payments Corporation
Post Payment (Official Payments) Integration Flow
Business Details
Technical Details
Integration Services
Adapter Services
JMS Queues
Web Services
Process Payment Report (Official Payments) Integration Flow
Business Details
Technical Details
Integration Services
Adapter Services
JMS Queues
Web Services
Monitoring the Integration
Monitoring Using WebLogic SOA Enterprise Manager
Monitoring Using WebLogic Logs
Error Processing
Integration Extensibility
Pre-Transformation Extension Point
Post-Transformation Extension Point
Custom Transformations
Dynamic End-Point URL
Confirmation Number Utility
Document Locator Number Utility
Steps to Implement Extension Points
Steps to Implement Custom Transformations
Customizing the Portal Application
WebCenter Portal Application Override Bundle
Upload/Download of the Override Application Bundle
WebCenter Composer and Administration Console
Administration Console Resources - Pages
Administration Console Resources - Page Templates
Administration Console Resources - Skins
Administration Console Services - Content
Administration Console Configuration Page
Portal Navigation
Navigation Components
Application Bookmarks
Changing Application Bookmarks
Customizing Portal Navigation
Portal Page Link Reference
Portal Page Links From Within the Portal
Portal Links from External Documents or Sites
Portal Links for New Portal Pages
Configuring the Logo and Company Tag Line
Overriding Portal Application Images
Configuring the Portal Custom Icons and Links
Defining Portal Custom Icons
Defining Portal Custom Links
Configuring the Portal Copyright Message
Adding a New Page to the Portal
Adding Content to a Portal Page
Adding WebCenter Managed Content to a Portal Page
Including Images and References in UCM Documents
Changing Portal Page Content
Changing Page Labels
Identifying the Bundle ID for a Label on a Page
Changing Label Text
Changing the Label Text Value Using Application Override Bundle
Changing the Label Text Value Using WebCenter Composer
Customizing Help Content
Help Component Structure
Identifying the Bundle ID for a Help Component on a Page
Changing Help Text
Changing the Help Text Using Application Override Bundle
Changing the Help Text Using WebCenter Composer
Hide/Show a Help Component on a Page
Changing the Portal Page Template
Changing the Portal Skin
Managing Portal Customization
Porting Portal Customizations from One Environment to Another
Retaining Portal Customization After New Product Release Installation
Moving UCM Content from One Environment to Another
WSDL Library
Process Tax Form (TSProcessTaxForm)
Upload Supporting Document (TSUploadSupportingDocument)
GetTax Account Summary (TSGetTaxAccountSummary)
Get Payment History (TSGetPaymentHistory)
Get Filing History (TSGetFilingHistory)
Get Tax Account Alerts (TSGetTaxAccountAlerts)
Get Taxpayer Summary (TSGetTaxpayerSummary)
Get Taxpayer Contact Information (TSGetTaxpayerContactInformation)
Get Taxpayer Correspondence Information (TSGetTaxpayerCorrespondenceInformation)
Taxpayer Address Maintenance (TSAddressMaintenance)
Enrollment Service Request (TSEnrollmentServiceRequest) - WSDL
Get Enrollment Summary (TSGetEnrollmentSummary) - WSDL
User Enrollment (TSGetUserEnrollment) - WSDL
Generic Service Request - TSTaxpayerServiceRequest
Taxpayer Identification Request - TSTaxpayerIdentification
Refund Inquiry Request - TSGetRefundStatus
One Time Payment - TSOneTimePayment
Prepare Payment Data - TSPrepareExtPaymentData
Process Reconciliation Report - TSProcessExtPayReportRecord
Confirmation Inquiry - TSGetConfirmationInformation
Common XML Fragments
Print Document (TSPrintDocument)
Import Form Definition (TSRetrieveFormTypeDefinitions) - WSDL
Refresh Lookup (TSRefreshFormLookup) - WSDL
Retrieve Active Form Types (TSRetrieveActiveFormTypes)
Sample Messages
Generate Confirmation ID
Document Locator Number Service
GetRefundStatus
IdentifyTaxpayer
OneTimePayment
PrepareExtPaymentData
RetrievePaymentsDue
RequestStatusInquiry
TaxClearanceCertificate
PrepareExtPaymentData for Official Payments Corporation
Process Payment Post-back from Official Payments Corporation
Process Payment Report from Official Payments Corporation
Initial Enrollment Request
Enrollment Query/Refresh
Enrollment Summary
Tax Account Alerts
Tax Account Summary
Tax Account Payments History
Tax Account Filing History
Taxpayer Summary
Taxpayer Contact Info
Taxpayer Correspondence Info
Address Maintenance
Process Tax or Registration Form
Print Form Data
Upload File
Available Form Types
Import Form Definitions
Refresh Lookup
Integration with Official Payments Corporation
Setup Parameters for Official Payments Co-branding
Glossary
Print Form Data - Print Custom Transformation
Create a Custom Report
Sample Report Data
XSLT Transform
Report-specific XML
Create Form-Specific Report