
Oracle® Solaris 11.3 Linkers and Libraries
Guide

Part No: E54813
March 2018

Oracle Solaris 11.3 Linkers and Libraries Guide

Part No: E54813

Copyright © 1993, 2018, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except
as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform,
publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous
applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are
not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement
between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Référence: E54813

Copyright © 1993, 2018, Oracle et/ou ses affiliés. Tous droits réservés.

Ce logiciel et la documentation qui l'accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des restrictions d'utilisation et
de divulgation. Sauf stipulation expresse de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, accorder de licence, transmettre,
distribuer, exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est interdit de procéder à toute
ingénierie inverse du logiciel, de le désassembler ou de le décompiler, excepté à des fins d'interopérabilité avec des logiciels tiers ou tel que prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu'elles soient exemptes d'erreurs et vous
invite, le cas échéant, à lui en faire part par écrit.

Si ce logiciel, ou la documentation qui l'accompagne, est livré sous licence au Gouvernement des Etats-Unis, ou à quiconque qui aurait souscrit la licence de ce logiciel pour le
compte du Gouvernement des Etats-Unis, la notice suivante s'applique :

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d'applications de gestion des informations. Ce logiciel ou matériel n'est pas conçu ni n'est destiné à être
utilisé dans des applications à risque, notamment dans des applications pouvant causer un risque de dommages corporels. Si vous utilisez ce logiciel ou ce matériel dans le cadre
d'applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures nécessaires à son utilisation dans
des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés par l'utilisation de ce logiciel ou matériel pour des
applications dangereuses.

Oracle et Java sont des marques déposées d'Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre à des marques appartenant à d'autres propriétaires
qu'Oracle.

Intel et Intel Xeon sont des marques ou des marques déposées d'Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques
déposées de SPARC International, Inc. AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d'Advanced Micro Devices. UNIX est une
marque déposée de The Open Group.

Ce logiciel ou matériel et la documentation qui l'accompagne peuvent fournir des informations ou des liens donnant accès à des contenus, des produits et des services émanant de
tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou services émanant de tiers, sauf mention contraire stipulée
dans un contrat entre vous et Oracle. En aucun cas, Oracle Corporation et ses affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des
dommages causés par l'accès à des contenus, produits ou services tiers, ou à leur utilisation, sauf mention contraire stipulée dans un contrat entre vous et Oracle.

Accès aux services de support Oracle

Les clients Oracle qui ont souscrit un contrat de support ont accès au support électronique via My Oracle Support. Pour plus d'informations, visitez le site http://www.oracle.com/
pls/topic/lookup?ctx=acc&id=info ou le site http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs si vous êtes malentendant.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Contents

Using This Documentation .. 17

I Using the Link-Editor and Runtime Linker ...  19

1 Introduction to the Oracle Solaris Link Editors .....................................  21
Link Editing With the Link-Editor ..  22
Runtime Linking ...  23
Related Topics ..  24

2 Link Editor ... 27
Invoking the Link-Editor ..  28
Specifying the Link-Editor Options ..  30
Input File Processing ...  32
Symbol Processing ..  42
Generating the Output File ..  61
Relocation Processing ..  63
Stub Objects ...  64
Ancillary Objects ..  69
Compressed Debug Sections .. 74
Parent Objects ..  78
Debugging Aids ..  80

3 Runtime Linker ..  83
Shared Object Dependencies ...  84
Relocation Processing ..  88
Preloading Additional Objects ...  94
Lazy Loading of Dynamic Dependencies ...  95
Initialization and Termination Routines ...  99
Runtime Security ...  105
Runtime Linking Programming Interface ...  106

5

Contents

Debugging Aids ..  120

4 Shared Objects ..  127
Naming Conventions ..  127
Shared Objects With Dependencies ...  131
Dependency Ordering ...  132
Shared Objects as Filters ...  132

II Linker and Libraries Quick Reference ...  145

5 Link-Editor Quick Reference ...  147
Static Mode ..  148
Dynamic Mode .. 148

6 Symbol Capabilities Example ..  153
Creating a Symbol Capabilities Example .. 153
Exercising a Symbol Capabilities Example ...  156

III Linker and Libraries Advanced Topics ...  159

7 Direct Bindings ..  161
Observing Symbol Bindings ..  162
Enabling Direct Binding ...  164
Direct Bindings and Interposition ...  169
Preventing a Symbol from being Directly Bound to ...................................  175

8 Capability Processing .. 179
Identifying Capability Requirements ...  180
Creating a Family of Symbol Capabilities Functions ..................................  189
Creating a Family of Symbol Capabilities Data Items .................................  192
Converting Object Capabilities to Symbol Capabilities ...............................  195
Exercising a Capability Family ..  197
Development Evolution with Capabilities ...  200

9 Building Objects to Optimize System Performance .............................  203
Analyzing Files With elfdump ...  203
Underlying System ... 205
Lazy Loading of Dynamic Dependencies ...  206
Position-Independent Code ..  206
Removing Unused Material ...  209

6 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Contents

Maximizing Shareability ...  213
Minimizing Paging Activity ... 215
Relocations ...  215
Using the -B symbolic Option ... 220
Profiling Shared Objects ...  221

10 Mapfiles in the Link-Editor ..  225
Mapfile Structure and Syntax ... 225
Mapfile Directives ...  235
Predefined Segments ..  261
Mapping Examples ..  263
Link-Editor Internals: Section and Segment Processing ...............................  266

11 Interfaces and Versioning ..  271
Interface Compatibility ...  272
Internal Versioning ...  273
External Versioning ..  289

12 Establishing Dependencies with Dynamic String Tokens ..................  293
Capability Specific Shared Objects ...  293
Instruction Set Specific Shared Objects .. 295
System Specific Shared Objects ...  297
Locating Associated Dependencies ...  298

13 Extensibility Mechanisms ..  303
Link-Editor Support Interface ..  303
Runtime Linker Auditing Interface .. 311
Runtime Linker Debugger Interface ..  326

IV ELF Application Binary Interface ...  341

14 Object File Format ...  343
File Format ...  343
Data Representation ...  345
ELF Header ..  346
ELF Identification ..  350
Data Encoding ..  352
Section Headers ...  353
Section Merging ..  372
Section Compression ..  373

7

Contents

Special Sections ..  375
Ancillary Section ...  382
COMDAT Section ...  384
Group Section ...  384
Capabilities Section ..  385
Hash Table Section ..  389
Move Section ..  390
Note Section ...  393
Program Header Name Section ..  394
Relocation Sections ..  395
String Table Section ...  408
Symbol Table Section ...  409
Syminfo Table Section ..  421
Versioning Sections ..  423

15 Program Loading and Dynamic Linking ..  431
Program Header ..  431
Program Loading (Processor-Specific) ...  438
Runtime Linker ...  445
Dynamic Section ...  445
Global Offset Table (Processor-Specific) ..  464
Procedure Linkage Table (Processor-Specific) ...  465

16 Thread-Local Storage ..  475
C/C++ Programming Interface ...  475
Thread-Local Storage Section ..  476
Runtime Allocation of Thread-Local Storage ..  478
Thread-Local Storage Access Models ..  481

V Linker and Libraries Appendices ..  501

A Linker and Libraries Updates and New Features ................................  503
Oracle Solaris 11.3 Release ..  503
Oracle Solaris 11.2 Release ..  503
Oracle Solaris 11.1 Release ..  504
Oracle Solaris 11 .. 504
Oracle Solaris 10 1/13 Release ...  505
Oracle Solaris 10 8/11 Release .. 505
Solaris 10 5/08 Release ...  507

8 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Contents

Solaris 10 8/07 Release ...  507
Solaris 10 1/06 Release ...  507
Solaris 10 Release ..  508

B System V Release 4 (Version 1) Mapfiles ..  509
Mapfile Structure and Syntax ... 509
Mapping Example ..  516
Mapfile Option Defaults ...  518
Internal Map Structure ..  519

Index ..  523

9

10 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Figures

FIGURE 1 A Single dlopen() Request ...  111
FIGURE 2 Multiple dlopen() Requests ... 112
FIGURE 3 Multiple dlopen() Requests With A Common Dependency ...................  113
FIGURE 4 Unbundled Dependencies ..  298
FIGURE 5 Unbundled Co-Dependencies ...  300
FIGURE 6 rtld-debugger Information Flow ..  328
FIGURE 7 Object File Format ...  344
FIGURE 8 Data Encoding ELFDATA2LSB .. 353
FIGURE 9 Data Encoding ELFDATA2MSB ... 353
FIGURE 10 Symbol Hash Table ..  389
FIGURE 11 Note Information ...  393
FIGURE 12 Example Note Segment ...  394
FIGURE 13 ELF String Table ...  408
FIGURE 14 SPARC: Dynamic Executable File (64K alignment) ..............................  439
FIGURE 15 32-bit x86: Dynamic Executable File (64K alignment) ..........................  440
FIGURE 16 32-bit SPARC: Process Image Segments ..  442
FIGURE 17 x86: Process Image Segments ..  443
FIGURE 18 Runtime Storage Layout of Thread-Local Storage ................................  478
FIGURE 19 Thread-Local Storage Access Models and Transitions ...........................  483
FIGURE 20 Simple Map Structure ...  520

11

12 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Tables

TABLE 1 CA_SUNW_SF_1 Frame Pointer Flag Combination State Table ...................  187
TABLE 2 Double Quoted Text Escape Sequences ..  227
TABLE 3 Names And Other Widely Used Strings Found In Mapfiles ...................  227
TABLE 4 Segment Flags ...  227
TABLE 5 Predefined Conditional Expression Names ..  229
TABLE 6 Conditional Expression Operators ...  230
TABLE 7 Mapfile Directives ...  235
TABLE 8 Section FLAGS Values ..  247
TABLE 9 Symbol Scope Types ..  255
TABLE 10 SH_ATTR Values ..  258
TABLE 11 Symbol FLAGS Values .. 259
TABLE 12 Examples of Interface Compatibility ..  272
TABLE 13 ELF 32-Bit Data Types ...  345
TABLE 14 ELF 64-Bit Data Types ...  345
TABLE 15 ELF Identification Index ...  350
TABLE 16 ELF Special Section Indexes ..  354
TABLE 17 ELF Section Types, sh_type ..  358
TABLE 18 ELF Section Header Table Entry: Index 0 ... 364
TABLE 19 ELF Section Attribute Flags ...  365
TABLE 20 ELF sh_link and sh_info Interpretation ..  369
TABLE 21 ELF Extended Section Header Table Entry: Index 0 .............................  371
TABLE 22 ELF Compression Types, ch_type ..  374
TABLE 23 GNU ZLIB Compression, gch_magic ..  375
TABLE 24 ELF Special Sections ..  375
TABLE 25 ELF Ancillary Array Tags ...  383
TABLE 26 ELF Group Section Flag ...  385
TABLE 27 ELF Capability Array Tags ..  386
TABLE 28 SPARC: ELF Relocation Types ..  400

13

Tables

TABLE 29 64-bit SPARC: ELF Relocation Types .. 403
TABLE 30 32-bit x86: ELF Relocation Types ...  405
TABLE 31 x64: ELF Relocation Types .. 406
TABLE 32 ELF String Table Indexes ..  409
TABLE 33 ELF Symbol Binding, ELF32_ST_BIND and ELF64_ST_BIND ....................  411
TABLE 34 ELF Symbol Types, ELF32_ST_TYPE and ELF64_ST_TYPE .......................  412
TABLE 35 ELF Symbol Visibility ..  414
TABLE 36 ELF Symbol Table Entry: Index 0 ...  416
TABLE 37 SPARC: ELF Symbol Table Entry: Register Symbol .............................  421
TABLE 38 SPARC: ELF Register Numbers ...  421
TABLE 39 ELF Version Dependency Indexes ...  428
TABLE 40 ELF Segment Types ...  433
TABLE 41 ELF Segment Flags ..  436
TABLE 42 ELF Segment Permissions ...  437
TABLE 43 SPARC: ELF Program Header Segments (64K alignment) .....................  439
TABLE 44 32-bit x86: ELF Program Header Segments (64K alignment) ..................  440
TABLE 45 32-bit SPARC: ELF Example Shared Object Segment Addresses ............. 444
TABLE 46 32-bit x86: ELF Example Shared Object Segment Addresses ..................  444
TABLE 47 ELF Dynamic Array Tags .. 446
TABLE 48 ELF Dynamic Flags, DT_FLAGS ...  458
TABLE 49 ELF Dynamic Flags, DT_FLAGS_1 ..  458
TABLE 50 ELF Dynamic Position Flags, DT_POSFLAG_1 .......................................  462
TABLE 51 ELF Security Extension (SX) Values, DT_SUNW_SX_xxx .........................  463
TABLE 52 ELF Dynamic Relaxation Flags, DT_SUNW_RELAX ..................................  463
TABLE 53 32-bit SPARC: Procedure Linkage Table Example ................................ 465
TABLE 54 64-bit SPARC: Procedure Linkage Table Example ................................ 468
TABLE 55 32-bit x86: Absolute Procedure Linkage Table Example ........................  471
TABLE 56 32-bit x86: Position-Independent Procedure Linkage Table Example ........  471
TABLE 57 x64: Procedure Linkage Table Example ...  472
TABLE 58 ELF PT_TLS Program Header Entry ...  477
TABLE 59 SPARC: General Dynamic Thread-Local Variable Access Codes .............  484
TABLE 60 SPARC: Local Dynamic Thread-Local Variable Access Codes ................  485
TABLE 61 32-bit SPARC: Initial Executable Thread-Local Variable Access Codes ....  486
TABLE 62 64-bit SPARC: Initial Executable Thread-Local Variable Access Codes ....  487
TABLE 63 SPARC: Local Executable Thread-Local Variable Access Codes .............  487
TABLE 64 SPARC: Thread-Local Storage Relocation Types .................................  488

14 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Tables

TABLE 65 32-bit x86: General Dynamic Thread-Local Variable Access Codes .........  490
TABLE 66 32-bit x86: Local Dynamic Thread-Local Variable Access Codes ............  491
TABLE 67 32-bit x86: Initial Executable, Position Independent, Thread-Local Variable

Access Codes ..  492
TABLE 68 32-bit x86: Initial Executable, Position Dependent, Thread-Local Variable

Access Codes ..  493
TABLE 69 32-bit x86: Initial Executable, Position Independent, Dynamic Thread-

Local Variable Access Codes ...  493
TABLE 70 32-bit x86: Initial Executable, Position Independent, Thread-Local Variable

Access Codes ..  493
TABLE 71 32-bit x86: Local Executable Thread-Local Variable Access Codes ..........  494
TABLE 72 32-bit x86: Local Executable Thread-Local Variable Access Codes ..........  494
TABLE 73 32-bit x86: Local Executable Thread-Local Variable Access Codes ..........  494
TABLE 74 32-bit x86: Thread-Local Storage Relocation Types ..............................  495
TABLE 75 x64: General Dynamic Thread-Local Variable Access Codes ..................  496
TABLE 76 x64: Local Dynamic Thread-Local Variable Access Codes .....................  497
TABLE 77 x64: Initial Executable, Thread-Local Variable Access Codes .................  498
TABLE 78 x64: Initial Executable, Thread-Local Variable Access Codes II ..............  498
TABLE 79 x64: Local Executable Thread-Local Variable Access Codes ..................  499
TABLE 80 x64: Local Executable Thread-Local Variable Access Codes II ...............  499
TABLE 81 x64: Local Executable Thread-Local Variable Access Codes III ..............  499
TABLE 82 x64: Thread-Local Storage Relocation Types ....................................... 500
TABLE 83 Mapfile Segment Attributes ...  511
TABLE 84 Section Attributes ... 514

15

16 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Using This Documentation

■ Overview – Describes the operations of the Oracle Solaris Operating System (Oracle
Solaris OS) link-editor and runtime linker, and the objects on which these link-editors
operate. The book covers the Link-Editor: ld(1), the Runtime Linker: ld.so.1(1), Shared
Objects (sometimes referred to as Shared Libraries), and the ELF object file format. Special
emphasis is placed on the generation and use of dynamic executables and shared objects
because of their importance in a dynamic runtime environment.

Note - This Oracle Solaris release supports systems that use the SPARC and x86 families of
processor architectures. The supported systems appear in the Oracle Solaris OS: Hardware
Compatibility Lists. This document cites any implementation differences between the
platform types.
In this document, these x86 related terms mean the following:
■ x86 refers to the larger family of 64-bit and 32-bit x86 compatible products.
■ x64 relates specifically to 64-bit x86 compatible CPUs.
■ "32-bit x86" points out specific 32-bit information about x86 based systems.

■ Audience – This guide is intended for a range of programmers who are interested in the
Oracle Solaris link-editor, runtime linker, and related tools.
■ Beginners learn the principal operations of the link-editor and runtime linker.
■ Intermediate programmers learn to create and use efficient custom libraries.
■ Advanced programmers, such as language-tools developers, learn how to interpret and

generate object files.

Most programmers should not need to read this guide from cover to cover.
■ Required knowledge – Readers of this guide should be familiar and be able to use the

following technologies.
■ A UNIX SVR4 system – preferably the current Oracle Solaris release.
■ The C programming language and application development.

Using This Documentation 17

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ld-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ld.so.1-1
http://www.oracle.com/webfolder/technetwork/hcl/index.html
http://www.oracle.com/webfolder/technetwork/hcl/index.html

Product Documentation Library

Product Documentation Library

Late-breaking information and known issues for this product are included in the documentation
library at http://www.oracle.com/pls/topic/lookup?ctx=E53394-01.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Feedback

Provide feedback about this documentation at http://www.oracle.com/goto/docfeedback.

18 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/goto/docfeedback

PART I

Using the Link-Editor and Runtime Linker

PART I Using the Link-Editor and Runtime Linker 19

20 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

 1 ♦ ♦ ♦ C H A P T E R 1

Introduction to the Oracle Solaris Link Editors

This guide describes the operations of the Oracle Solaris link-editor and runtime linker, together
with the objects on which these utilities operate. The basic operation of the Oracle Solaris link-
editor and runtime linker involve the combination of objects. This combination results in the
symbolic references from one object being connected to the symbolic definitions within another
object.

This guide expands the following areas.

Link-Editor

The link-editor, ld(1), concatenates and interprets data from one or more input files. These
files can be relocatable objects, shared objects, or archive libraries. From these input files,
one output file is created. This file is either a dynamic executable, position-independent
executable, relocatable object, or a shared object. The link-editor is most commonly
invoked as part of the compilation environment.

Runtime Linker

The runtime linker, ld.so.1(1), processes dynamic executables, position-independent
executables, and shared objects at runtime, binding the executable and shared objects
together to create a runnable process.

Shared Objects

Shared objects are one form of output from the link-edit phase. Shared objects are
sometimes referred to as Shared Libraries. Shared objects are important in creating a
powerful, flexible runtime environment.

Object Files

The Oracle Solaris link-editor, runtime linker, and related tools, work with files that
conform to the executable and linking format, otherwise referred to as ELF.

These areas, although separable into individual topics, have a great deal of overlap. While
explaining each area, this document brings together the connecting principles.

Chapter 1 • Introduction to the Oracle Solaris Link Editors 21

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ld-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ld.so.1-1

Link Editing With the Link-Editor

Link Editing With the Link-Editor

The link-editor, ld(1), takes a variety of input files, typically generated from compilers,
assemblers, or previous invocations of the link-editor. The link-editor concatenates and
interprets the data within these input files to form an output file. The output file that is produced
is one of the following basic types.

■ Dynamic Executable - A concatenation of relocatable objects that can be executed by
exec(2). A dynamic executable is loaded at a fixed virtual address space and is executed
under control of the runtime linker, ld.so.1(1), to produce a runtime process. Dynamic
executables typically have one or more dependencies in the form of shared objects.

A dynamic executable is created when the -z type=exec option is used, or is the default
when no other options that control the output file type are provided.

■ Position-independent Executable (PIE) - A position independent form of a dynamic
executable that can be executed by exec(2). A position-independent executable is loaded at
an arbitrary virtual address space and is executed under control of the runtime linker, ld.
so.1(1), to produce a runtime process. Position-independent executables typically have one
or more dependencies in the form of shared objects.

A position-independent executable is created when the -z type=pie option is used.
■ Relocatable Object - A concatenation of relocatable objects that can be used in subsequent

link-edit phases.

A relocatable object is created when the -z type=reloc option, or -r option are used.
■ Shared Object - A concatenation of relocatable objects that provide services for other

dynamic objects. A shared object is loaded at an arbitrary virtual address space under the
control of the runtime linker, ld.so.1(1), and is bound to executables, or other shared
objects, at runtime. Shared objects can have dependencies on other shared objects.

A shared object is created when the -z type=shared option, or -G option are used.
■ Static Executable - A concatenation of relocatable objects that can be executed directly by

exec(2), without assistance from the runtime linker, ld.so.1(1).

A static executable is created when the -z type=static option, or -a option are used.
However, modern versions of the Oracle Solaris operating system do not support the
creation of static executables. See “Static Executables” on page 23.

Dynamic executables and position-independent executables are collectively referred to as
executables. These executables, together with shared objects, are collectively referred to as
dynamic objects.

Shared objects and relocatable archives, created with ar(1), are collectively referred to as
libraries.

22 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ld-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ld.so.1-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ld.so.1-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ld.so.1-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ld.so.1-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ld.so.1-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ar-1

Runtime Linking

To provide for efficient arbitrary virtual address space mapping, position-independent
executables and shared objects should be created from position-independent code (PIC).

Static Executables

The creation of static executables has been discouraged for many releases. In fact, 64-bit system
archive libraries have never been provided. Because a static executable is built against system
archive libraries, the executable contains system implementation details. This self-containment
has a number of drawbacks.

■ A static executable is immune to the benefits of system patches delivered as shared objects.
The executable therefore, must be rebuilt to take advantage of many system improvements.

■ The ability of the static executable to run on future releases can be compromised.
■ The duplication of system implementation details negatively affects system performance.

Beginning with the Oracle Solaris 10 release, the OS no longer includes 32-bit system archive
libraries. Without these libraries, specifically libc.a, the creation of a static executable is no
longer achievable without specialized system knowledge. Note, that the link-editors ability to
process static linking options, and the processing of archive libraries, remains unchanged.

Runtime Linking

Runtime linking involves the binding of objects, usually generated from one or more previous
link-edits, to generate a runnable process. During the generation of these objects by the link-
editor, appropriate bookkeeping information is produced to represent the verified binding
requirements. This information enables the runtime linker to load, relocate, and complete the
binding process.

During process execution, the facilities of the runtime linker are made available. These facilities
can be used to extend the process' address space by adding additional shared objects on
demand. The two most common components involved in runtime linking are executables and
shared objects.

Executables are applications that are executed under the control of a runtime linker. These
applications usually have dependencies in the form of shared objects, which are located, and
bound by the runtime linker to create a runnable process. Dynamic executables are the default
output file generated by the link-editor. A position-independent executable is similar to a
dynamic executable, however, a position-independent executable is not assigned to a fixed
virtual address.

Chapter 1 • Introduction to the Oracle Solaris Link Editors 23

Related Topics

Shared objects provide the key building-block to a dynamically linked system. A shared object
is similar to a position-independent executable, in that a shared object is not assigned to a fixed
virtual address.

Executables usually have dependencies on one or more shared objects. Typically, one or
more shared objects must be bound to the executable to produce a runnable process. Because
shared objects can be used by many applications, aspects of their construction directly affect
shareability, versioning, and performance.

Shared object processing by the link-editor or the runtime linker can be distinguished by the
environment in which the shared object is used.

compilation environment

Shared objects are processed by the link-editor to generate executables or other shared
objects. The shared objects become dependencies of the output file being generated.

runtime environment

Shared objects are processed by the runtime linker, together with an executable, to produce
a runnable process.

Related Topics

Dynamic Linking

Dynamic linking is a term often used to embrace a number of linking concepts. Dynamic
linking refers to those portions of the link-editing process that generate dynamic objects.
Dynamic linking also refers to the runtime linking of these objects to generate a runnable
process. Dynamic linking enables multiple applications to use the code provided by a shared
object by binding the application to the shared object at runtime.

By separating an application from the services of standard libraries, dynamic linking also
increases the portability and extensibility of an application. This separation between the
interface of a service and its implementation enables the system to evolve while maintaining
application stability. Dynamic linking is a crucial factor in providing an application binary
interface (ABI), and is the preferred compilation method for Oracle Solaris applications.

24 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Related Topics

Application Binary Interfaces

Binary interfaces between system and application components are defined to enable the
asynchronous evolution of these facilities. The Oracle Solaris link-editor and runtime linker
operate upon these interfaces to assemble applications for execution. Although all components
handled by the Oracle Solaris link-editor and runtime linker have binary interfaces, the whole
set of interfaces provided by the system is referred to as the Oracle Solaris ABI.

The Oracle Solaris ABI is a technological descendant for work on ABI's that started with the
System V Application Binary Interface. This work evolved with additions performed by SPARC
International, Inc. for SPARC processors, called the SPARC Compliance Definition (SCD).

32-Bit Environments and 64-Bit Environments

The link-editor is provided as a 32-bit application and a 64-bit application. Each link-
editor can operate on 32-bit objects and 64-bit objects. On systems that are running a 64-bit
environment, both versions of the link-editor can be executed. On systems that are running a
32-bit environment, only the 32-bit version of the link-editor can be executed.

The runtime linker is provided as a 32-bit object and a 64-bit object. The 32-bit object is used to
execute 32-bit processes, and the 64-bit object is used to execute 64-bit processes.

The operations of the link-editor and runtime linker on 32-bit objects and 64-bit objects are
identical. This document typically uses 32-bit examples. Cases where 64-bit processing differs
from the 32-bit processing are highlighted.

Environment Variables

The link-editor and runtime linker support a number of environment variables that begin with
the characters LD_, for example LD_LIBRARY_PATH. Each environment variable can exist in its
generic form, or can be specified with a _32 or _64 suffix, for example LD_LIBRARY_PATH_64.
This suffix makes the environment variable specific, respectively, to 32-bit or 64-bit processes.
This suffix also overrides any generic, non-suffixed, version of the environment variable that
might be in effect.

Chapter 1 • Introduction to the Oracle Solaris Link Editors 25

Related Topics

Note - Prior to the Oracle Solaris 10 release, the link-editor and runtime linker ignored
environment variables that were specified without a value. Therefore, in the following example,
the generic environment variable setting, /opt/lib, would have been used to search for the
dependencies of the 32-bit application prog.

$ LD_LIBRARY_PATH=/opt/lib LD_LIBRARY_PATH_32= prog

Beginning with the Oracle Solaris 10 release, environment variables specified without a value
that have a _32 or _64 suffix are processed. These environment variables effectively cancel any
associated generic environment variable setting. Thus in the previous example, /opt/lib will
not be used to search for the dependencies of the 32-bit application prog.

Throughout this document, any reference to link-editor environment variables uses the generic,
non-suffixed, variant. All supported environment variables are defined in ld(1) and ld.so.1(1).

Support Tools

The Oracle Solaris OS also provides several support tools and libraries. These tools provide
for the analysis and inspection of these objects and the linking processes. These tools include
elfdump(1), lari(1), nm(1), dump(1), ldd(1), pvs(1), elf(3ELF), and a linker debugging support
library. Throughout this document, many discussions are augmented with examples of these
tools.

26 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ld-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ld.so.1-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1elfdump-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1lari-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1nm-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1dump-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ldd-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pvs-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Delf-3elf

 2 ♦ ♦ ♦ C H A P T E R 2

Link Editor

The link-editing process creates an output file from one or more input files. Output file creation
is directed by the options that are supplied to the link-editor and the input sections provided by
the input files.

All files are represented in the executable and linking format (ELF). For a complete description
of the ELF format see Chapter 14, “Object File Format”. For this introduction, two ELF
structures are introduced, sections and segments.

Sections are the smallest indivisible units that can be processed within an ELF file. Segments
are a collection of sections that represent the smallest individual units that can be mapped to a
memory image by exec(2) or by the runtime linker ld.so.1(1).

Although many types of ELF section exist, sections fall into two categories with respect to the
link-editing phase.

■ Sections that contain program data, whose interpretation is meaningful only to the
application, such as the program instructions .text and the associated data .data and .bss.

■ Sections that contain link-editing information, such as the symbol table information found
from .symtab and .strtab, and relocation information such as .rela.text.

Basically, the link-editor concatenates the program data sections into the output file. The link-
editing information sections are interpreted by the link-editor to modify other sections. The
information sections are also used to generate new output information sections used in later
processing of the output file.

The following simple breakdown of link-editor functionality introduces the topics that are
covered in this chapter.

■ The verification and consistency checking of all options provided.
■ The concatenation of sections of the same characteristics from the input relocatable objects

to form new sections within the output file. The concatenated sections can in turn be
associated to output segments.

Chapter 2 • Link Editor 27

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ld.so.1-1

Invoking the Link-Editor

■ The processing of symbol table information from both relocatable objects and shared
objects to verify and unite references with definitions. The generation of a new symbol
table, or tables, within the output file.

■ The processing of relocation information from the input relocatable objects, and the
application of this information to sections that compose the output file. In addition, output
relocation sections might be generated for use by the runtime linker.

■ The generation of program headers that describe all the segments that are created.
■ The generation of dynamic linking information sections if necessary, which provide

information such as shared object dependencies and symbol bindings to the runtime linker.

The process of concatenating like sections and associating sections to segments is carried out
using default information within the link-editor. The default section and segment handling
provided by the link-editor is usually sufficient for most link-edits. However, these defaults can
be manipulated using the -M option with an associated mapfile. See Appendix B, “System V
Release 4 (Version 1) Mapfiles”.

Invoking the Link-Editor

You can either run the link-editor directly from the command line or have a compiler driver
invoke the link-editor for you. In the following two sections the description of both methods
are expanded. However, using the compiler driver is the preferred choice. The compilation
environment is often the consequence of a complex and occasionally changing series of
operations known only to compiler drivers.

Note - Starting with Oracle Solaris 11, various compilation components have been moved from
/usr/ccs/bin and /usr/ccs/lib, to /usr/bin and /usr/lib. However, applications exist that
refer to the original ccs names. Symbolic links have been used to maintain compatibility.

Direct Invocation

When you invoke the link-editor directly, you have to supply every object file and library
required to create the intended output. The link-editor makes no assumptions about the object
modules or libraries that you meant to use in creating the output. For example, the following
command instructs the link-editor to create a dynamic executable that is named a.out using
only the input file test.o.

$ ld test.o

28 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Invoking the Link-Editor

Typically, an executable requires specialized startup code and exit processing code. This code
can be language or operating system specific, and is usually provided through files supplied by
the compiler drivers.

Additionally, you can also supply your own initialization code and termination code. This code
must be encapsulated and be labeled correctly for the code to be correctly recognized and made
available to the runtime linker. This encapsulation and labeling can also be provided through
files supplied by the compiler drivers.

When creating a dynamic object, you should use a compiler driver to invoke the link-
editor. Direct invocation of the link-editor is recommended only when creating intermediate
relocatable objects when using the -r option.

Using a Compiler Driver

The conventional way to use the link-editor is through a language-specific compiler driver. You
supply the compiler driver, cc(1), CC(1), and so forth, with the input files that make up your
application. The compiler driver adds additional files and default libraries to complete the link-
edit. These additional files can be seen by expanding the compilation invocation.

$ cc -# -o prog main.o

/usr/bin/ld -dy /opt/COMPILER/crti.o /opt/COMPILER/crt1.o \

/usr/lib/values-Xt.o -o prog main.o \

-YP,/opt/COMPILER/lib:/lib:/usr/lib -Qy -lc \

/opt/COMPILER/crtn.o

Note - The actual files included by your compiler driver and the mechanism used to display the
link-editor invocation might differ.

Cross Link-Editing

The link-editor is a cross link-editor, able to link 32-bit objects or 64-bit objects, for SPARC
or x86 targets. The mixing of 32-bit objects and 64-bit objects is not permitted. Similarly, only
objects of a single machine type are allowed.

Typically, no command line option is required to distinguish the link-edit target. The link-editor
uses the ELF machine type of the first relocatable object on the command line to govern the
mode in which to operate. Specialized link-edits, such as linking solely from a mapfile or an
archive library, are uninfluenced by the command line object. These link-edits default to a 32-
bit native target. To explicitly define the link-edit target use the -z target option.

Chapter 2 • Link Editor 29

Specifying the Link-Editor Options

Specifying the Link-Editor Options

Typically, link-edits are completely specified using command line options. In addition, a variety
of environment variables are provided to augment command line processing. These variables
provide for supplying options that might clash with compiler options. These variables also
provide for overriding, or unsetting, the command line options that are embedded in scripts and
build environments.

Any inconsistencies between command line options result in a fatal error condition. Any
inconsistencies that involve an option provided by an environment variable result in a warning,
and the first option taking precedence. Any UNSET operation is accompanied with a warning
notification.

Initial options are interpreted from the environment and the command line in the following
order.

■ From the LD_OPTIONS environment variable.
■ From the command line.
■ From the LD_UNSET environment variable.

LD_OPTIONS can be used to pass arguments to the link-editor that would otherwise be interpreted
by the compiler drivers. For example, diagnostics related to the link-edit can be obtained using
the -D option. This option is normally interpreted by the compiler preprocessor.

$ LD_OPTIONS=-Dargs cc -o main main.c

...

debug: arg[0] option=-D: option-argument: args (LD_OPTIONS)

debug:

debug: arg[0] /usr/ccs/bin/ld

debug: arg[2] option=-o: option-argument: main

debug: arg[3] option=-Q: option-argument: y

debug: arg[4] option=-l: option-argument: c

LD_OPTIONS can also be used to override options that have a family of variants. For example, an
embedded -z text option can be overridden by a -z textoff option.

$ LD_OPTIONS=-ztextoff cc -z text -G null.o

ld: warning: option '-ztextoff' and option '-z text' are incompatible, \

 first option taken

Some options have no alternative variants, and therefore can not be overridden. However, they
can be unset. For example, a standard link-edit can create the following sections.

$ cc -o main main.c

$ elfdump -c main | egrep "symtab|debug"

30 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Specifying the Link-Editor Options

Section Header[19]: sh_name: .symtab

Section Header[22]: sh_name: .debug_info

Section Header[23]: sh_name: .debug_line

These sections can be removed with the -z strip-class option.

$ cc -o main -z strip-class=symbol -z strip-class=debug main.c

$ elfdump -c main | egrep "symtab|debug"

$

Individual strip options can be unset. The follow example unsets the stripping of debug
sections.

$ LD_UNSET=-zstrip-class=debug cc -o main -z strip-class=symbol \

 -z strip-class=debug main.c

ld: warning: unsetting option '-zstrip-class=debug': LD_UNSET directed

$ elfdump -c main | egrep "symtab|debug"

Section Header[20]: sh_name: .debug_info

Section Header[21]: sh_name: .debug_line

In addition, options that provide for multiple instances, such as -z strip-class can have
all family members unset by specifying the option without any qualifying option string. The
following example unsets the stripping of debug and symbol table sections.

$ LD_UNSET=-zstrip-class cc -o main -z strip-class=symbol \

 -z strip-class=debug main.c

ld: warning: unsetting option '-zstrip-class': LD_UNSET directed

$ elfdump -c main | egrep "symtab|debug"

Section Header[19]: sh_name: .symtab

Section Header[22]: sh_name: .debug_info

Section Header[23]: sh_name: .debug_line

From the three components, LD_OPTIONS, the command line, and LD_UNSET, the initial object
type of the output file being created, is determined. This object type is then used to investigate
any LD_{object-type}_UNSET, and LD_{object-type}_OPTIONS environment variables. These
variables can remove, or add, options specific to the object type being built.

The object-type corresponds to the values, in uppercase, accepted by the -z type option, and
is one of EXEC, PIE, RELOC or SHARED. For example, the LD_EXEC_OPTIONS option is interpreted
when the output file type is a dynamic executable.

If an LD_{object-type}_OPTIONS exists, the variable is first searched to discover whether a
-z type option is specified. This search provides a final chance to affect the object type of
the output file being created. The following example redefines a dynamic executable to be a
position-independent executable.

$ LD_EXEC_OPTIONS=-ztype=pie cc -o main main.c

Chapter 2 • Link Editor 31

Input File Processing

The object type is now finalized, and the associated environment variables for this final object
type are processed. Note that these variables can not change the object type or class.

These environment variables are processed in the following order.

■ From the LD_{object-type}_UNSET environment variable.
■ From the LD_{object-type}_OPTIONS environment variable.

The following example executes a build process where all objects created by the link-editor
have guidance enabled. Any dynamic executables become position-independent executables,
and have a number of security extensions enabled. Any shared objects are ensured to contain
position-independent code and have all their dependencies defined.

$ LD_OPTIONS=-zguidance \

 LD_EXEC_OPTIONS=-ztype=pie \

 LD_PIE_OPTIONS=-zaslr,nxheap,nxstack \

 LD_SHARED_OPTIONS='-ztext -zdefs' build.sh

Any command line options that are inconsistent with this output object type result in a fatal
error condition. Any inconsistent option provided by an environment variable results in a
warning, and the option being ignored.

See Chapter 5, “Link-Editor Quick Reference” for the most commonly used link-editor options,
and ld(1) for a complete description of all link-editor options.

Input File Processing

The link-editor reads input files in the order in which the files appear on the command line.
Each file is opened and inspected to determine the files ELF type, and therefore determine how
the file must be processed. The file types that apply as input for the link-edit are determined by
the binding mode of the link-edit, either static or dynamic.

Under static mode, the link-editor accepts only relocatable objects or archive libraries as input
files. Under dynamic mode, the link-editor also accepts shared objects.

Relocatable objects represent the most basic input file type to the link-editing process. The
program data sections within these files are concatenated into the output file image being
generated. The link-edit information sections are organized for later use. Information sections
do not become part of the output file image, as new information sections are generated to take
their place. Symbols are gathered into an internal symbol table for verification and resolution.
This table is then used to create one or more symbol tables in the output image.

32 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ld-1

Input File Processing

Although input files can be specified directly on the link-edit command line, archive libraries
and shared objects are commonly specified using the -l option. See “Linking With Additional
Libraries” on page 35. During a link-edit, the interpretation of archive libraries and shared
objects are quite different. The next two sections expand upon these differences.

Archive Processing

Archives are built using ar(1). Archives usually consist of a collection of relocatable objects
with an archive symbol table. This symbol table provides an association of symbol definitions
with the objects that supply these definitions. By default, the link-editor provides selective
extraction of archive members. The link-editor uses unresolved symbolic references to select
objects from the archive that are required to complete the binding process. You can also
explicitly extract all members of an archive.

The link-editor extracts a relocatable object from an archive under the following conditions.

■ The archive member contains a symbol definition that satisfies a symbol reference,
currently held in the link-editor's internal symbol table. This reference is sometimes referred
to as an undefined symbol.

■ The archive member contains a data symbol definition that satisfies a tentative symbol
definition currently held in the link-editor's internal symbol table. An example is a FORTRAN
COMMON block definition, which causes the extraction of a relocatable object that defines the
same DATA symbol.

■ The archive member contains a symbol definition that matches a reference that requires
hidden visibility or protected visibility. See Table 35, “ELF Symbol Visibility,” on page
414.

■ The link-editors -z allextract is in effect. This option suspends selective archive
extraction and causes all archive members to be extracted from the archive being processed.

Under selective archive extraction, a weak symbol reference does not extract an object from an
archive unless the -z weakextract option is in effect. See “Simple Resolutions” on page 45
for more information.

Note - The options -z weakextract, -z allextract, and -z defaultextract enable you to
toggle the archive extraction mechanism among multiple archives.

With selective archive extraction, the link-editor makes multiple passes through an archive.
Relocatable objects are extracted as needed to satisfy the symbol information being
accumulated in the link-editor internal symbol table. After the link-editor has made a complete
pass through the archive without extracting any relocatable objects, the next input file is
processed.

Chapter 2 • Link Editor 33

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ar-1

Input File Processing

By extracting only the relocatable objects needed when an archive is encountered, the position
of the archive on the command line can be significant. See “Position of an Archive on the
Command Line” on page 36.

Note - Although the link-editor makes multiple passes through an archive to resolve symbols,
this mechanism can be quite costly. Especially, for large archives that contain random
organizations of relocatable objects. In these cases, you should use tools like lorder(1) and
tsort(1) to order the relocatable objects within the archive. This ordering reduces the number
of passes the link-editor must carry out.

Shared Object Processing

Shared objects are indivisible whole units that have been generated by a previous link-edit of
one or more input files. When the link-editor processes a shared object, the entire contents of
the shared object become a logical part of the resulting output file image. This logical inclusion
means that all symbol entries defined in the shared object are made available to the link-editing
process.

The shared object's program data sections and most of the link-editing information sections are
unused by the link-editor. These sections are interpreted by the runtime linker when the shared
object is bound to generate a runnable process. However, the occurrence of a shared object
is remembered. Information is stored in the output file image to indicate that this object is a
dependency that must be made available at runtime.

By default, all shared objects specified as part of a link-edit are recorded as dependencies in the
object being built. This recording is made regardless of whether the object being built actually
references symbols offered by the shared object. To minimize the overhead of runtime linking,
only specify those dependencies that resolve symbol references from the object being built. The
link-editor's debugging facility, and ldd(1) with the -u option, can be used to determine unused
dependencies. The link-editor's -z discard-unused=dependencies option can be used to
suppress the dependency recording of any unused shared objects. See also “Removing Unused
Dependencies” on page 211.

If a shared object has dependencies on other shared objects, these dependencies can also be
processed. This processing occurs after all command line input files have been processed, to
complete the symbol resolution process. However, the shared object names are not recorded as
dependencies in the output file image being generated.

Although the position of a shared object on the command line has less significance than archive
processing, the position can have a global effect. Multiple symbols of the same name are
allowed to occur between relocatable objects and shared objects, and between multiple shared
objects. See “Symbol Resolution” on page 43.

34 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1lorder-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1tsort-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ldd-1

Input File Processing

The order of shared objects processed by the link-editor is maintained in the dependency
information that is stored in the output file image. In the absence of lazy loading, the runtime
linker loads the specified shared objects in the same order. Therefore, the link-editor and the
runtime linker select the first occurrence of a symbol of a multiply-defined series of symbols.

Note - Multiple symbol definitions, are reported in the load map output generated using the -m
option.

Linking With Additional Libraries

Although the compiler drivers often ensure that appropriate libraries are specified to the link-
editor, frequently you must supply your own. Shared objects and archives can be specified by
explicitly naming the input files required to the link-editor. However, a more common and more
flexible method involves using the link-editor's -l option.

Library Naming Conventions

By convention, shared objects are usually designated by the prefix lib and the suffix .so.
Archives are designated by the prefix lib and the suffix .a. For example, libfoo.so is the
shared object version of the "foo" implementation that is made available to the compilation
environment. libfoo.a is the library's archive version.

These conventions are recognized by the -l option of the link-editor. This option is commonly
used to supply additional libraries to a link-edit. The following example directs the link-editor
to search for libfoo.so. If the link-editor does not find libfoo.so, a search for libfoo.a is
made before moving on to the next directory to be searched.

$ cc -o prog file1.c file2.c -lfoo

Note - A naming convention exists regarding the compilation environment and the runtime
environment use of shared objects. The compilation environment uses the simple .so suffix,
whereas the runtime environment commonly uses the suffix with an additional version
number. See “Naming Conventions” on page 127 and “Coordination of Versioned
Filenames” on page 289.

When link-editing in dynamic mode, you can choose to link with a mix of shared objects and
archives. When link-editing in static mode, only archive libraries are acceptable for input.

Chapter 2 • Link Editor 35

Input File Processing

In dynamic mode, when using the -l option, the link-editor first searches the given directory for
a shared object that matches the specified name. If no match is found, the link-editor looks for
an archive library in the same directory. In static mode, when using the -l option, only archive
libraries are sought.

Linking With a Mix of Shared Objects and Archives

The library search mechanism in dynamic mode searches a given directory for a shared object,
and then searches for an archive library. Finer control of the search is possible through the -B
option.

By specifying the -B dynamic and -B static options on the command line, you can toggle
the library search between shared objects or archives respectively. For example, to link an
application with the archive libfoo.a and the shared object libbar.so, issue the following
command.

$ cc -o prog main.o file1.c -B static -lfoo -B dynamic -lbar

The -B static and -B dynamic options are not exactly symmetrical. When you specify
-B static, the link-editor does not accept shared objects as input until the next occurrence
of -B dynamic. However, when you specify -B dynamic, the link-editor first looks for shared
objects and then archive library's in any given directory.

The precise description of the previous example is that the link-editor first searches for
libfoo.a. The link-editor then searches for libbar.so, and if that search fails, searches for
libbar.a.

Position of an Archive on the Command Line

The position of an archive on the command line can affect the output file being produced. The
link-editor searches an archive only to resolve undefined or tentative external references that
have previously been encountered. After this search is completed and any required members
have been extracted, the link-editor moves onto the next input file on the command line.

Therefore by default, the archive is not available to resolve any new references from the input
files that follow the archive on the command line. For example, the following command
directs the link-editor to search libfoo.a only to resolve symbol references that have been
obtained from file1.c. The libfoo.a archive is not available to resolve symbol references
from file2.c or file3.c.

36 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Input File Processing

$ cc -o prog file1.c -B static -lfoo file2.c file3.c -B dynamic

Interdependencies between archives can exist, such that the extraction of members from one
archive must be resolved by extracting members from another archive. If these dependencies
are cyclic, the archives must be specified repeatedly on the command line to satisfy previous
references.

$ cc -o prog -lA -lB -lC -lA -lB -lC -lA

The determination, and maintenance, of repeated archive specifications can be tedious. The
-z rescan-now option makes this process simpler. The -z rescan-now option is processed
by the link-editor immediately when the option is encountered on the command line. All
archives that have been processed from the command line prior to this option are immediately
reprocessed. This processing attempts to locate additional archive members that resolve symbol
references. This archive rescanning continues until a pass over the archive list occurs in which
no new members are extracted. The previous example can be simplified as follows.

$ cc -o prog -lA -lB -lC -z rescan-now

Alternatively, the -z rescan-start and -z rescan-end options can be used to group mutually
dependent archives together into an archive group. These groups are reprocessed by the link-
editor immediately when the closing delimiter is encountered on the command line. Archives
found within the group are reprocessed in an attempt to locate additional archive members
that resolve symbol references. This archive rescanning continues until a pass over the archive
group occurs in which no new members are extracted. Using archive groups, the previous
example can be written as follows.

$ cc -o prog -z rescan-start -lA -lB -lC -z rescan-end

Note - You should specify any archives at the end of the command line unless multiple-
definition conflicts require you to do otherwise.

Directories Searched by the Link-Editor

All previous examples assume the link-editor knows where to search for the libraries listed on
the command line. By default, when linking 32-bit objects, the link-editor knows of only two
standard directories in which to look for libraries, /lib followed by /usr/lib. When linking
64-bit objects, only two standard directories are used, /lib/64 followed by /usr/lib/64. All
other directories to be searched must be added to the link-editor's search path explicitly.

You can change the link-editor search path by using a command line option, or by using an
environment variable.

Chapter 2 • Link Editor 37

Input File Processing

Using a Command-Line Option

You can use the -L option to add a new path name to the library search path. This option alters
the search path at the point the option is encountered on the command line. For example, the
following command searches path1, followed by /lib, and finally /usr/lib, to find libfoo.
The command searches path1 and then path2, followed by /lib, and /usr/lib, to find libbar.

$ cc -o prog main.o -Lpath1 file1.c -lfoo file2.c -Lpath2 -lbar

Path names that are defined by using the -L option are used only by the link-editor. These path
names are not recorded in the output file image being created. Therefore, these path names are
not available for use by the runtime linker.

Note - You must specify -L if you want the link-editor to search for libraries in your current
directory. You can use a period (.) to represent the current directory.

You can use the -Y option to change the default directories searched by the link-editor. The
argument supplied with this option takes the form of a colon separated list of directories. For
example, the following command searches for libfoo only in the directories /opt/COMPILER/
lib and /home/me/lib.

$ cc -o prog main.c -YP,/opt/COMPILER/lib:/home/me/lib -lfoo

The directories that are specified by using the -Y option can be supplemented by using the -L
option. Compiler drivers often use the -Y option to provide compiler specific search paths.

Using an Environment Variable

You can also use the environment variable LD_LIBRARY_PATH to add to the link-editor's library
search path. Typically, LD_LIBRARY_PATH takes a colon-separated list of directories. In its most
general form, LD_LIBRARY_PATH can also take two directory lists separated by a semicolon.
These lists are searched before and after the -Y lists supplied on the command line.

The following example shows the combined effect of setting LD_LIBRARY_PATH and calling the
link-editor with several -L occurrences.

$ LD_LIBRARY_PATH=dir1:dir2;dir3

$ export LD_LIBRARY_PATH

$ cc -o prog main.c -Lpath1 -Lpath2 -Lpathn -lfoo

The effective search path is dir1:dir2:path1:path2:....:pathn:dir3:/lib:/usr/lib.

38 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Input File Processing

If no semicolon is specified as part of the LD_LIBRARY_PATH definition, the specified directory
list is interpreted after any -L options. In the following example, the effective search path is
path1:path2:....:pathn:dir1:dir2:/lib:/usr/lib.

$ LD_LIBRARY_PATH=dir1:dir2

$ export LD_LIBRARY_PATH

$ cc -o prog main.c -Lpath1 -Lpath2 -Lpathn -lfoo

Note - This environment variable can also be used to augment the search path of the runtime
linker. See “Directories Searched by the Runtime Linker” on page 84. To prevent this
environment variable from influencing the link-editor, use the -i option.

Directories Searched by the Runtime Linker

The runtime linker looks in two default locations for dependencies. When processing 32-bit
objects, the default locations are /lib and /usr/lib. When processing 64-bit objects, the
default locations are /lib/64 and /usr/lib/64. All other directories to be searched must be
added to the runtime linker search path explicitly.

When a dynamic object is linked with additional shared objects, the shared objects are recorded
as dependencies. These dependencies must be located during process execution by the runtime
linker. When linking a dynamic object, one or more search paths can be recorded in the output
file. These search paths are referred to as a runpath. The runtime linker uses the runpath of an
object to locate the dependencies of that object.

Specialized objects can be built with the -z nodefaultlib option to suppress any search of
the default location at runtime. Use of this option implies that all the dependencies of an object
can be located using its runpaths. Without this option, no matter how you augment the runtime
linker search path, the last search paths used are always the default locations.

Note - The default search path can be administrated by using a runtime configuration file. See
“Configuring the Default Search Paths” on page 87. However, the creator of a dynamic
object should not rely on the existence of this file. You should always ensure that an object can
locate its dependencies with only its runpaths or the default locations.

You can use the -R option, which takes a colon-separated list of directories, to record a runpath
in a dynamic object. The following example records the runpath /home/me/lib:/home/you/lib
in the dynamic executable prog.

$ cc -o prog main.c -R/home/me/lib:/home/you/lib -Lpath1 \

 -Lpath2 file1.c file2.c -lfoo -lbar

Chapter 2 • Link Editor 39

Input File Processing

The runtime linker uses these paths, followed by the default location, to obtain any shared
object dependencies. In this case, this runpath is used to locate libfoo.so.1 and libbar.so.1.

The link-editor accepts multiple -R options. These multiple specifications are concatenate
together, separated by a colon. Thus, the previous example can also be expressed as follows.

$ cc -o prog main.c -R/home/me/lib -Lpath1 -R/home/you/lib \

 -Lpath2 file1.c file2.c -lfoo -lbar

For objects that can be installed in various locations, the $ORIGIN dynamic string
token provides a flexible means of recording a runpath. See “Locating Associated
Dependencies” on page 298.

Note - A historic alternative to specifying the -R option is to set the environment variable
LD_RUN_PATH, and make this available to the link-editor. The scope and function of
LD_RUN_PATH and -R are identical, but when both are specified, -R supersedes LD_RUN_PATH.

Initialization and Termination Sections

Dynamic objects can supply code that provides for runtime initialization and termination
processing. The initialization code of a dynamic object is executed once each time the dynamic
object is loaded in a process. The termination code of a dynamic object is executed once each
time the dynamic object is unloaded from a process or at process termination. This code can be
encapsulated in one of two section types, either an array of function pointers or a single code
block. Each of these section types is built from a concatenation of like sections from the input
relocatable objects.

The sections .pre_initarray, .init_array and .fini_array provide arrays of runtime pre-
initialization, initialization, and termination functions, respectively. When creating a dynamic
object, the link-editor identifies these arrays with the .dynamic tag pairs DT_PREINIT_[ARRAY/
ARRAYSZ], DT_INIT_[ARRAY/ARRAYSZ], and DT_FINI_[ARRAY/ARRAYSZ] accordingly. These tags
identify the associated sections so that the sections can be called by the runtime linker. A pre-
initialization array is applicable to executables only.

Note - Functions that are assigned to these arrays must be provided from the object that is being
built.

The sections .init and .fini provide a runtime initialization and termination code block,
respectively. The compiler drivers typically supply .init and .fini sections with files they add
to the beginning and end of your input file list. These compiler provided files have the effect of
encapsulating the .init and .fini code from your relocatable objects into individual functions.

40 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Input File Processing

These functions are identified by the reserved symbol names _init and _fini respectively.
When creating a dynamic object, the link-editor identifies these symbols with the .dynamic tags
DT_INIT and DT_FINI accordingly. These tags identify the associated sections so they can be
called by the runtime linker.

For more information about the execution of initialization and termination code at runtime see
“Initialization and Termination Routines” on page 99.

The registration of initialization and termination functions can be carried out directly by the
link-editor by using the -z initarray and -z finiarray options. For example, the following
command places the address of foo() in an .init_array element, and the address of bar() in a
.fini_array element.

$ cat main.c

#include <stdio.h>

void foo()

{

 (void) printf("initializing: foo()\n");

}

void bar()

{

 (void) printf("finalizing: bar()\n");

}

void main()

{

 (void) printf("main()\n");

}

$ cc -o main -z initarray=foo -z finiarray=bar main.c

$ main

initializing: foo()

main()

finalizing: bar()

The creation of initialization and termination sections can be carried out directly using an
assembler. However, most compilers offer special primitives to simplify their declaration. For
example, the previous code example can be rewritten using the following #pragma definitions.
These definitions result in a call to foo() being placed in an .init section, and a call to bar()
being placed in a .fini section.

$ cat main.c

#include <stdio.h>

#pragma init (foo)

#pragma fini (bar)

Chapter 2 • Link Editor 41

Symbol Processing

....

$ cc -o main main.c

$ main

initializing: foo()

main()

finalizing: bar()

Initialization and termination code, spread throughout several relocatable objects, can result
in different behavior when included in an archive library or shared object. The link-edit of an
application that uses this archive might extract only a fraction of the objects contained in the
archive. These objects might provide only a portion of the initialization and termination code
spread throughout the members of the archive. At runtime, only this portion of code is executed.
The same application built against the shared object will have all the accumulated initialization
and termination code executed when the dependency is loaded at runtime.

To determine the order of executing initialization and termination code within a process at
runtime is a complex issue that involves dependency analysis. Limit the content of initialization
and termination code to simplify this analysis. Simplified, self contained, initialization and
termination code provides predictable runtime behavior. See “Initialization and Termination
Order” on page 102 for more details.

Data initialization should be independent if the initialization code is involved with a dynamic
object whose memory can be dumped using dldump(3C).

Symbol Processing

Symbols can be categorized as local or global. See “Symbol Visibility” on page 43.

During input file processing, local symbols are copied from any input relocatable object files to
the output object being built, without examination.

The global symbols from all input relocatable objects, and the global symbols from any external
dependencies, are analyzed and combined in a process known as symbol resolution. The
link-editor places each symbol in an internal symbol table in the order that the symbols are
encountered. If a symbol with the same name was contributed by an earlier object, and already
exists in the symbol table, the symbol resolution process determines which of the two symbols
to keep. As a side effect of this process, the link-editor determines how to establish references
to external object dependencies.

On successful completion of input file processing, the link-editor applies any symbol visibility
adjustment, and determines if any unresolved symbol references remain. If any fatal symbol
resolution errors have occurred, or if any unresolved symbol references remain, the link-edit

42 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adldump-3c

Symbol Processing

terminates. Finally, the link-editor's internal symbol table is added to the symbol tables of the
image being created.

The following sections expand upon symbol visibilities, symbol resolution, and undefined
symbol processing.

Symbol Visibility

Symbols can be categorized as local or global. Local symbols can not be referenced from an
object other than the object that contains the symbol definition. By default, local symbols are
copied from any input relocatable object files to the output object being built. Local symbols
can instead be eliminated from the output object. See “Symbol Elimination” on page 60.

Global symbols can be referenced from other objects besides the object that contains the symbol
definition. After collection and resolution, global symbols are added to the symbol tables being
created in the output object. Although all global symbols are processed and resolved together,
their final visibility can be adjusted. Global symbols can define additional visibility attributes.
See Table 35, “ELF Symbol Visibility,” on page 414. In addition, mapfile symbol directives
can be used to assign symbol visibilities during a link-edit. See Table 9, “Symbol Scope Types,”
on page 255. These visibility attributes, and directives, can result in a global symbol having
its visibility adjusted when written to the output object.

When creating a relocatable object, all visibility attributes and directives are recorded in the
output object. However, the visibility changes implied by these attributes are not applied. Any
visibility processing is instead deferred to a subsequent link-edit of a dynamic object that reads
these objects as input. In special cases, the -B reduce option can be used to force the immediate
interpretation of any visibility attributes or directives.

When creating a dynamic object, symbol visibility attributes and directives are applied before
the symbols are written to any symbol tables. Visibility attributes can ensure that symbols
remain global, and are not affected by any symbol reduction techniques. Visibility attributes
and directives can also result in global symbols being demoted to local. This latter technique is
most frequently used to explicitly define an objects exported interface. See “Reducing Symbol
Scope” on page 56.

Symbol Resolution

Symbol resolution runs the entire spectrum, from simple and intuitive to complex and
perplexing. Most resolutions are carried out silently by the link-editor. However, some

Chapter 2 • Link Editor 43

Symbol Processing

relocations can be accompanied by warning diagnostics, while others can result in a fatal error
condition.

The most common simple resolutions involve binding symbol references from one object to
symbol definitions within another object. This binding can occur between two relocatable
objects, or between a relocatable object and the first definition found in a shared object
dependency. Complex resolutions typically occur between two or more relocatable objects.

The resolution of two symbols depends on their attributes, the type of file that provides the
symbol, and the type of file being generated. For a complete description of symbol attributes,
see “Symbol Table Section” on page 409. For the following discussions, however, three
basic symbol types are identified.

■ Undefined – Symbols that have been referenced in a file but have not been assigned a
storage address.

■ Tentative – Symbols that have been created within a file but have not yet been sized, or
allocated in storage. These symbols appear as uninitialized C symbols, or FORTRAN COMMON
blocks within the file.

■ Defined – Symbols that have been created, and assigned storage addresses and space within
the file.

In its simplest form, symbol resolution involves the use of a precedence relationship. This
relationship has defined symbols dominate tentative symbols, which in turn dominate undefined
symbols.

The following example of C code shows how these symbol types can be generated. Undefined
symbols are prefixed with u_. Tentative symbols are prefixed with t_. Defined symbols are
prefixed with d_.

$ cat main.c

extern int u_bar;

extern int u_foo();

int t_bar;

int d_bar = 1;

int d_foo()

{

 return (u_foo(u_bar, t_bar, d_bar));

}

$ cc -o main.o -c main.c

$ elfdump -s main.o

Symbol Table Section: .symtab

 index value size type bind oth ver shndx name

44 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Symbol Processing

 [7] 0 0 FUNC GLOB D 0 UNDEF u_foo

 [8] 0x10 0x40 FUNC GLOB D 0 .text d_foo

 [9] 0x4 0x4 OBJT GLOB D 0 COMMON t_bar

 [10] 0 0x4 NOTY GLOB D 0 UNDEF u_bar

 [11] 0 0x4 OBJT GLOB D 0 .data d_bar

Simple Resolutions

Simple symbol resolutions are by far the most common. In this case, two symbols with similar
characteristics are detected, with one symbol taking precedence over the other. This symbol
resolution is carried out silently by the link-editor. For example, with symbols of the same
binding, a symbol reference from one file is bound to a defined, or tentative symbol definition,
from another file. Or, a tentative symbol definition from one file is bound to a defined symbol
definition from another file. This resolution can occur between two relocatable objects, or
between a relocatable object and the first definition found in a shared object dependency.

Symbols that undergo resolution can have either a global or weak binding. When processing
relocatable objects, weak bindings have lower precedence than global bindings. A weak symbol
definition is silently overridden by a global definition of the same name.

Another form of simple symbol resolution, interposition, occurs between relocatable objects
and shared objects, or between multiple shared objects. In these cases, when a symbol is
multiply-defined, the relocatable object, or the first definition between multiple shared objects,
is silently taken by the link-editor. The relocatable object's definition, or the first shared object's
definition, is said to interpose on all other definitions. This interposition can be used to override
the functionality provided by another shared object. Multiply-defined symbols that occur
between relocatable objects and shared objects, or between multiple shared objects, are treated
identically. A symbols weak binding or global binding is irrelevant. By resolving to the first
definition, regardless of the symbols binding, both the link-editor and runtime linker behave
consistently.

Use the link-editor's -m option to write a list of all interposed symbol references, along with
section load address information, to the standard output.

Complex Resolutions

Complex resolutions occur when two symbols of the same name are found with differing
attributes. In these cases, the link-editor generates a warning message, while selecting the most
appropriate symbol. This message indicates the symbol, the attributes that conflict, and the

Chapter 2 • Link Editor 45

Symbol Processing

identity of the file from which the symbol definition is taken. In the following example, two
files with a definition of the data item array have different size requirements.

$ cat foo.c

int array[1];

$ cat bar.c

int array[2] = { 1, 2 };

$ ld -r -o temp.o foo.c bar.c

ld: warning: symbol 'array' has differing sizes:

 (file foo.o value=0x4; file bar.o value=0x8);

 bar.o definition taken

A similar diagnostic is produced if the symbol's alignment requirements differ. In both of these
cases, the diagnostic can be suppressed by using the link-editor's -t option.

Another form of attribute difference is the symbol's type. In the following example, the symbol
bar() has been defined as both a data item and a function.

$ cat foo.c

int bar()

{

 return (0);

}

$ cc -o libfoo.so -G -K pic foo.c

$ cat main.c

int bar = 1;

int main()

{

 return (bar);

}

$ cc -o main main.c -L. -lfoo

ld: warning: symbol 'bar' has differing types:

 (file main.o type=OBJT; file ./libfoo.so type=FUNC);

 main.o definition taken

Note - Symbol types in this context are classifications that can be expressed in ELF. These
symbol types are not related to the data types as employed by the programming language,
except in the crudest fashion.

In cases like the previous example, the relocatable object definition is taken when the resolution
occurs between a relocatable object and a shared object. Or, the first definition is taken when
the resolution occurs between two shared objects. When such resolutions occur between
symbols of weak or global binding, a warning is also produced.

Inconsistencies between symbol types are not suppressed by the link-editor's -t option.

46 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Symbol Processing

Fatal Resolutions

Symbol conflicts that cannot be resolved result in a fatal error condition and an appropriate
error message. This message indicates the symbol name together with the names of the files
that provided the symbols. No output file is generated. Although the fatal condition is sufficient
to terminate the link-edit, all input file processing is first completed. In this manner, all fatal
resolution errors can be identified.

The most common fatal error condition exists when two relocatable objects both define non-
weak symbols of the same name.

$ cat foo.c

int bar = 1;

$ cat bar.c

int bar()

{

 return (0);

}

$ ld -r -o temp.o foo.c bar.c

ld: fatal: symbol 'bar' is multiply-defined:

 (file foo.o and file bar.o);

foo.c and bar.c have conflicting definitions for the symbol bar. Because the link-editor cannot
determine which should dominate, the link-edit usually terminates with an error message.

Multiple symbol definitions should not occur. In some simple coding scenarios, multiple
symbol definition errors can be suppressed using the link-editor's -z muldefs option. This
option allows the first definition of a multiply defined symbol to be propagated to the output
file, while any other definitions of the multiply defined symbol are discarded. If all references
to a multiply defined item use the global symbol name of that item, then all references are
resolved to the first instance of the multiply defined symbol.

However, specialized compiler options, or high levels of compiler optimization, can circumvent
the use of the -z muldefs option. Under these conditions, the compilers may substitute a global
symbol reference to a local section symbol reference. This can result in the individual items of
a multiply defined item continuing to be referenced, rather than all references being directed
to a single global symbol. This inconsistency can result in multiple items having different
values, which can cause unexpected program behavior. For greater flexibility, multiple symbol
definitions should be avoided.

Chapter 2 • Link Editor 47

Symbol Processing

Undefined Symbols

After all of the input files have been read and all symbol resolution is complete, the link-editor
searches the internal symbol table for any symbol references that have not been bound to
symbol definitions. These symbol references are referred to as undefined symbols. Undefined
symbols can affect the link-edit process according to the type of symbol, together with the type
of output file being generated.

Generating an Executable Output File

When generating an executable output file, the link-editor's default behavior is to terminate
with an appropriate error message should any symbols remain undefined. A symbol remains
undefined when a symbol reference in a relocatable object is never matched to a symbol
definition.

$ cat main.c

extern int foo();

int main()

{

 return (foo());

}

$ cc -o prog main.c

Undefined first referenced

 symbol in file

foo main.o

ld: fatal: symbol referencing errors

Similarly, if a shared object is used to create an executable and leaves an unresolved symbol
definition, an undefined symbol error results.

$ cat foo.c

extern int bar;

int foo()

{

 return (bar);

}

$ cc -o libfoo.so -G -K pic foo.c

$ cc -o prog main.c -L. -lfoo

Undefined first referenced

 symbol in file

bar ./libfoo.so

ld: fatal: symbol referencing errors

48 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Symbol Processing

To allow undefined symbols, as in the previous example, use the link-editor's -z nodefs option
to suppress the default error condition.

Note - Take care when using the -z nodefs option. If an unavailable symbol reference is
required during the execution of a process, a fatal runtime relocation error occurs. This error
might be detected during the initial execution and testing of an application. However, more
complex execution paths can result in this error condition taking much longer to detect, which
can be time consuming and costly.

Symbols can also remain undefined when a symbol reference in a relocatable object is bound
to a symbol definition in an implicitly defined shared object. For example, continuing with the
files main.c and foo.c used in the previous example.

$ cat bar.c

int bar = 1;

$ cc -o libbar.so -R. -G -K pic bar.c -L. -lfoo

$ ldd libbar.so

 libfoo.so => ./libfoo.so

$ cc -o prog main.c -L. -lbar

Undefined first referenced

 symbol in file

foo main.o (symbol belongs to implicit \

 dependency ./libfoo.so)

ld: fatal: symbol referencing errors

prog is built with an explicit reference to libbar.so. libbar.so has a dependency on libfoo.
so. Therefore, an implicit reference to libfoo.so from prog is established.

Because main.c made a specific reference to the interface provided by libfoo.so, prog
really has a dependency on libfoo.so. However, only explicit shared object dependencies are
recorded in the output file being generated. Thus, prog fails to run if a new version of libbar.
so is developed that no longer has a dependency on libfoo.so.

For this reason, bindings of this type are deemed fatal. The implicit reference must be made
explicit by referencing the library directly during the link-edit of prog. The required reference is
hinted at in the fatal error message that is shown in the preceding example.

Generating a Shared Object Output File

When the link-editor is generating a shared object output file, undefined symbols are allowed
to remain at the end of the link-edit. This default behavior allows the shared object to import
symbols from an executable that defines the shared object as a dependency.

Chapter 2 • Link Editor 49

Symbol Processing

The link-editor's -z defs option can be used to force a fatal error if any undefined symbols
remain. This option is recommended when creating any shared objects. Shared objects that
reference symbols from an application can use the -z defs option, together with defining the
symbols by using an extern mapfile directive. See “SYMBOL_SCOPE and SYMBOL_VERSION
Directives” on page 254.

A self-contained shared object, in which all references to external symbols are satisfied by
named dependencies, provides maximum flexibility. The shared object can be employed by
many users without those users having to determine and establish dependencies to satisfy the
shared object's requirements.

Weak Symbols

Historically, weak symbols have been used to circumvent interposition, or test for optional
functionality. However, experience has shown that weak symbols are fragile and unreliable in
modern programming environments, and their use is discouraged.

Weak symbol aliases were frequently employed within system shared objects. The intent
was to provide an alternative interface name, typically the symbol name with a prefixed "_"
character. This alias name could be referenced from other system shared objects to avoid
interposition issues due to an application exporting their own implementation of the symbol
name. In practice, this technique proved to be overly complex and was used inconsistently.
Modern versions of Oracle Solaris establish explicit bindings between system objects with
direct bindings. See Chapter 7, “Direct Bindings”.

Weak symbol references were often employed to test for the existence of an interface at
runtime. This technique places restrictions on the build environment, the runtime environment,
and can be circumvented by compiler optimizations. The use of dlsym(3C) with the
RTLD_DEFAULT, or RTLD_PROBE handles, provides a consistent and robust means of testing for a
symbol's existence. See “Testing for Functionality” on page 117.

Tentative Symbol Order Within the Output File

Contributions from input files usually appear in the output file in the order of their contribution.
Tentative symbols are an exception to this rule, as these symbols are not fully defined until their
resolution is complete. The order of tentative symbols within the output file might not follow
the order of their contribution.

If you need to control the ordering of a group of symbols, then any tentative definition should
be redefined to a zero-initialized data item. For example, the following tentative definitions

50 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlsym-3c

Symbol Processing

result in a reordering of the data items within the output file, as compared to the original order
described in the source file foo.c.

$ cat foo.c

char One_array[0x10];

char Two_array[0x20];

char Three_array[0x30];

$ cc -o libfoo.so -G -Kpic foo.c

$ elfdump -sN.dynsym libfoo.so | grep array | sort -k 2,2

 [11] 0x10614 0x20 OBJT GLOB D 0 .bss Two_array

 [3] 0x10634 0x30 OBJT GLOB D 0 .bss Three_array

 [4] 0x10664 0x10 OBJT GLOB D 0 .bss One_array

Sorting the symbols based on their address shows that their output order is different than the
order they were defined in the source. In contrast, defining these symbols as initialized data
items ensures that the relative ordering of these symbols within the input file is carried over to
the output file.

$ cat foo.c

char A_array[0x10] = { 0 };

char B_array[0x20] = { 0 };

char C_array[0x30] = { 0 };

$ cc -o libfoo.so -G -Kpic foo.c

$ elfdump -sN.dynsym libfoo.so | grep array | sort -k 2,2

 [4] 0x10614 0x10 OBJT GLOB D 0 .data One_array

 [11] 0x10624 0x20 OBJT GLOB D 0 .data Two_array

 [3] 0x10644 0x30 OBJT GLOB D 0 .data Three_array

Defining Additional Symbols

Besides the symbols provided from input files, you can supply additional global symbol
references or global symbol definitions to a link-edit. In the simplest form, symbol references
can be generated using the link-editor's -u option. Greater flexibility is provided with the link-
editor's -M option and an associated mapfile. This mapfile enables you to define global symbol
references and a variety of global symbol definitions. Attributes of the symbol such as visibility
and type can be specified, See “SYMBOL_SCOPE and SYMBOL_VERSION Directives” on page 254
for a complete description of the available options.

Defining Additional Symbols with the -u option

The -u option provides a mechanism for generating a global symbol reference from the link-
edit command line. This option can be used to perform a link-edit entirely from archives. This

Chapter 2 • Link Editor 51

Symbol Processing

option can also provide additional flexibility in selecting the objects to extract from multiple
archives. See “Archive Processing” on page 33 for an overview of archive extraction.

For example, perhaps you want to generate a dynamic executable from the relocatable object
main.o, which refers to the symbols foo and bar. You want to obtain the symbol definition foo
from the relocatable object foo.o contained in lib1.a, and the symbol definition bar from the
relocatable object bar.o, contained in lib2.a.

However, the archive lib1.a also contains a relocatable object that defines the symbol bar.
This relocatable object is presumably of differing functionality to the relocatable object that is
provided in lib2.a. To specify the required archive extraction, you can use the following link-
edit.

$ cc -o prog -L. -u foo -l1 main.o -l2

The -u option generates a reference to the symbol foo. This reference causes extraction of the
relocatable object foo.o from the archive lib1.a. The first reference to the symbol bar occurs
in main.o, which is encountered after lib1.a has been processed. Therefore, the relocatable
object bar.o is obtained from the archive lib2.a.

Note - This simple example assumes that the relocatable object foo.o from lib1.a does
not directly or indirectly reference the symbol bar. If lib1.a does reference bar, then the
relocatable object bar.o is also extracted from lib1.a during its processing. See “Archive
Processing” on page 33 for a discussion of the link-editor's multi-pass processing of an
archive.

Defining Symbol References

The following example shows how three symbol references can be defined. These references
are then used to extract members of an archive. Although this archive extraction can be
achieved by specifying multiple -u options to the link-edit, this example also shows how the
eventual scope of a symbol can be reduced to local.

$ cat foo.c

#include <stdio.h>

void foo()

{

 (void) printf("foo: called from lib.a\n");

}

$ cat bar.c

#include <stdio.h>

void bar()

52 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Symbol Processing

{

 (void) printf("bar: called from lib.a\n");

}

$ cat main.c

extern void foo(), bar();

void main()

{

 foo();

 bar();

}

$ cc -c foo.c bar.c main.c

$ ar -rc lib.a foo.o bar.o main.o

$ cat mapfile

$mapfile_version 2

SYMBOL_SCOPE {

 local:

 foo;

 bar;

 global:

 main;

};

$ cc -o prog -M mapfile lib.a

$ prog

foo: called from lib.a

bar: called from lib.a

$ elfdump -sN.symtab prog | egrep 'main$|foo$|bar$'

 [29] 0x10f30 0x24 FUNC LOCL H 0 .text bar

 [30] 0x10ef8 0x24 FUNC LOCL H 0 .text foo

 [55] 0x10f68 0x24 FUNC GLOB D 0 .text main

The significance of reducing symbol scope from global to local is covered in more detail in the
section “Reducing Symbol Scope” on page 56.

Defining Absolute Symbols

The following example shows how two absolute symbol definitions can be defined. These
definitions are then used to resolve the references from the input file main.c.

$ cat main.c

#include <stdio.h>

extern int foo();

extern int bar;

void main()

{

Chapter 2 • Link Editor 53

Symbol Processing

 (void) printf("&foo = 0x%p\n", &foo);

 (void) printf("&bar = 0x%p\n", &bar);

}

$ cat mapfile

$mapfile_version 2

SYMBOL_SCOPE {

 global:

 foo { TYPE=FUNCTION; VALUE=0x400 };

 bar { TYPE=DATA; VALUE=0x800 };

};

$ cc -o prog -M mapfile main.c

$ prog

&foo = 0x400

&bar = 0x800

$ elfdump -sN.symtab prog | egrep 'foo$|bar$'

 [45] 0x800 0 OBJT GLOB D 0 ABS bar

 [69] 0x400 0 FUNC GLOB D 0 ABS foo

When obtained from an input file, symbol definitions for functions or data items are usually
associated with elements of data storage. A mapfile definition is insufficient to be able
to construct this data storage, so these symbols must remain as absolute values. A simple
mapfile definition that is associated with a size, but no value results in the creation of data
storage. In this case, the symbol definition is accompanied with a section index. However,
a mapfile definition that is accompanied with a value results in the creation of an absolute
symbol. If a symbol is defined in a shared object, an absolute definition should be avoided. See
“Augmenting a Symbol Definition” on page 55.

Defining Tentative Symbols

A mapfile can also be used to define a COMMON, or tentative, symbol. Unlike other types of
symbol definition, tentative symbols do not occupy storage within a file, but define storage that
must be allocated at runtime. Therefore, symbol definitions of this kind can contribute to the
storage allocation of the output file being generated.

A feature of tentative symbols that differs from other symbol types is that their value attribute
indicates their alignment requirement. A mapfile definition can therefore be used to realign
tentative definitions that are obtained from the input files of a link-edit.

The following example shows the definition of two tentative symbols. The symbol foo defines
a new storage region whereas the symbol bar is actually used to change the alignment of the
same tentative definition within the file main.c.

$ cat main.c

#include <stdio.h>

54 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Symbol Processing

extern int foo;

int bar[0x10];

void main()

{

 (void) printf("&foo = 0x%p\n", &foo);

 (void) printf("&bar = 0x%p\n", &bar);

}

$ cat mapfile

$mapfile_version 2

SYMBOL_SCOPE {

 global:

 foo { TYPE=COMMON; VALUE=0x4; SIZE=0x200 };

 bar { TYPE=COMMON; VALUE=0x102; SIZE=0x40 };

};

$ cc -o prog -M mapfile main.c

ld: warning: symbol 'bar' has differing alignments:

 (file mapfile value=0x102; file main.o value=0x4);

 largest value applied

$ prog

&foo = 0x21264

&bar = 0x21224

$ elfdump -sN.symtab prog | egrep 'foo$|bar$'

 [45] 0x21224 0x40 OBJT GLOB D 0 .bss bar

 [69] 0x21264 0x200 OBJT GLOB D 0 .bss foo

Note - This symbol resolution diagnostic can be suppressed by using the link-editor's -t option.

Augmenting a Symbol Definition

The creation of an absolute data symbol within a shared object should be avoided. An external
reference from a dynamic executable to a data item within a shared object typically requires
the creation of a copy relocation. See “Copy Relocations” on page 217. To provide for
this relocation, the data item should be associated with data storage. This association can be
produced by defining the symbol within a relocatable object file. This association can also be
produced by defining the symbol within a mapfile together with a size declaration and no
value declaration. See “SYMBOL_SCOPE and SYMBOL_VERSION Directives” on page 254.

A data symbol can be filtered. See “Shared Objects as Filters” on page 132. To provide this
filtering, an object file definition can be augmented with a mapfile definition. The following
example creates a filter containing a function and data definition.

$ cat mapfile

$mapfile_version 2

Chapter 2 • Link Editor 55

Symbol Processing

SYMBOL_SCOPE {

 global:

 foo { TYPE=FUNCTION; FILTER=filtee.so.1 };

 bar { TYPE=DATA; SIZE=0x4; FILTER=filtee.so.1 };

 local:

 *;

};

$ cc -o filter.so.1 -G -Kpic -h filter.so.1 -M mapfile -R.

$ elfdump -sN.dynsym filter.so.1 | egrep 'foo|bar'

 [1] 0x105f8 0x4 OBJT GLOB D 1 .data bar

 [7] 0 0 FUNC GLOB D 1 ABS foo

$ elfdump -y filter.so.1 | egrep 'foo|bar'

 [1] F [0] filtee.so.1 bar

 [7] F [0] filtee.so.1 foo

At runtime, a reference from an external object to either of these symbols is resolved to the
definition within the filtee.

Reducing Symbol Scope

Symbol definitions that are defined to have local scope within a mapfile can be used to reduce
the symbol's eventual binding. This mechanism removes the symbol's visibility to future link-
edits which use the generated file as part of their input. In fact, this mechanism can provide
for the precise definition of a file's interface, and so restrict the functionality made available to
others.

For example, say you want to generate a simple shared object from the files foo.c and bar.c.
The file foo.c contains the global symbol foo, which provides the service that you want to
make available to others. The file bar.c contains the symbols bar and str, which provide
the underlying implementation of the shared object. A shared object created with these files,
typically results in the creation of three symbols with global scope.

$ cat foo.c

extern const char *bar();

const char *foo()

{

 return (bar());

}

$ cat bar.c

const char *str = "returned from bar.c";

const char *bar()

{

 return (str);

56 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Symbol Processing

}

$ cc -o libfoo.so.1 -G foo.c bar.c

$ elfdump -sN.symtab libfoo.so.1 | egrep 'foo$|bar$|str$'

 [41] 0x560 0x18 FUNC GLOB D 0 .text bar

 [44] 0x520 0x2c FUNC GLOB D 0 .text foo

 [45] 0x106b8 0x4 OBJT GLOB D 0 .data str

You can now use the functionality offered by libfoo.so.1 as part of the link-edit of another
application. References to the symbol foo are bound to the implementation provided by the
shared object.

Because of their global binding, direct reference to the symbols bar and str is also possible.
This visibility can have dangerous consequences, as you might later change the implementation
that underlies the function foo. In so doing, you could unintentionally cause an existing
application that had bound to bar or str to fail or misbehave.

Another consequence of the global binding of the symbols bar and str is that these symbols
can be interposed upon by symbols of the same name. The interposition of symbols within
shared objects is covered in section “Simple Resolutions” on page 45. This interposition
can be intentional and be used as a means of circumventing the intended functionality offered
by the shared object. On the other hand, this interposition can be unintentional, the result of the
same common symbol name used for both the application and the shared object.

When developing the shared object, you can protect against these scenarios by reducing the
scope of the symbols bar and str to a local binding. In the following example, the symbols
bar and str are no longer available as part of the shared object's interface. Thus, these symbols
cannot be referenced, or interposed upon, by an external object. You have effectively defined
an interface for the shared object. This interface can be managed while hiding the details of the
underlying implementation.

$ cat mapfile

$mapfile_version 2

SYMBOL_SCOPE {

 local:

 bar;

 str;

};

$ cc -o libfoo.so.1 -M mapfile -G foo.c bar.c

$ elfdump -sN.symtab libfoo.so.1 | egrep 'foo$|bar$|str$'

 [24] 0x548 0x18 FUNC LOCL H 0 .text bar

 [25] 0x106a0 0x4 OBJT LOCL H 0 .data str

 [45] 0x508 0x2c FUNC GLOB D 0 .text foo

This symbol scope reduction has an additional performance advantage. The symbolic
relocations against the symbols bar and str that would have been necessary at runtime are
now reduced to relative relocations. See “When Relocations are Performed” on page 216 for
details of symbolic relocation overhead.

Chapter 2 • Link Editor 57

Symbol Processing

As the number of symbols that are processed during a link-edit increases, defining local scope
reduction within a mapfile becomes harder to maintain. An alternative and more flexible
mechanism enables you to define the shared object's interface in terms of the global symbols
that should be maintained. Global symbol definitions allow the link-editor to reduce all other
symbols to local binding. This mechanism is achieved using the special auto-reduction directive
"*". For example, the previous mapfile definition can be rewritten to define foo as the only
global symbol required in the output file generated.

$ cat mapfile

$mapfile_version 2

SYMBOL_VERSION ISV_1.1 {

 global:

 foo;

 local:

 *;

};

$ cc -o libfoo.so.1 -M mapfile -G foo.c bar.c

$ elfdump -sN.symtab libfoo.so.1 | egrep 'foo$|bar$|str$'

 [26] 0x570 0x18 FUNC LOCL H 0 .text bar

 [27] 0x106d8 0x4 OBJT LOCL H 0 .data str

 [50] 0x530 0x2c FUNC GLOB D 0 .text foo

This example also defines a version name, ISV_1.1, as part of the mapfile directive. This
version name establishes an internal version definition that defines the file's symbolic interface.
The creation of a version definition is recommended. The definition forms the foundation of
an internal versioning mechanism that can be used throughout the evolution of the file. See
Chapter 11, “Interfaces and Versioning”.

Note - If a version name is not supplied, the output file name is used to label the version
definition. The versioning information that is created within the output file can be suppressed
using the link-editor's -z noversion option.

Whenever a version name is specified, all global symbols must be assigned to a version
definition. If any global symbols remain unassigned to a version definition, the link-editor
generates a fatal error condition.

$ cat mapfile

$mapfile_version 2

SYMBOL_VERSION ISV_1.1 {

 global:

 foo;

};

$ cc -o libfoo.so.1 -M mapfile -G foo.c bar.c

Undefined first referenced

 symbol in file

str bar.o (symbol has no version assigned)

58 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Symbol Processing

bar bar.o (symbol has no version assigned)

ld: fatal: symbol referencing errors

The -B local option can be used to assert the auto-reduction directive "*" from the command
line. The previous example an be compiled successfully as follows.

$ cc -o libfoo.so.1 -M mapfile -B local -G foo.c bar.c

When generating an executable or shared object, any symbol reduction results in the recording
of version definitions within the output image. When generating a relocatable object, the
version definitions are created but the symbol reductions are not processed. The result is that the
symbol entries for any symbol reductions still remain global. For example, using the previous
mapfile with the auto-reduction directive and associated relocatable objects, an intermediate
relocatable object is created with no symbol reduction.

$ cat mapfile

$mapfile_version 2

SYMBOL_VERSION ISV_1.1 {

 global:

 foo;

 local:

 *;

};

$ ld -o libfoo.o -M mapfile -r foo.o bar.o

$ elfdump -s libfoo.o | egrep 'foo$|bar$|str$'

 [29] 0x10 0x2c FUNC GLOB D 2 .text foo

 [30] 0 0x4 OBJT GLOB H 0 .data str

The version definitions created within this image show that symbol reductions are required.
When the relocatable object is used eventually to generate a dynamic object, the symbol
reductions occur. In other words, the link-editor reads and interprets symbol reduction
information that is contained in the relocatable objects in the same manner as versioning data is
processed from a mapfile.

Thus, the intermediate relocatable object produced in the previous example can now be used to
generate a shared object.

$ ld -o libfoo.so.1 -G libfoo.o

$ elfdump -sN.symtab libfoo.so.1 | egrep 'foo$|bar$|str$'

 [24] 0x508 0x18 FUNC LOCL H 0 .text bar

 [25] 0x10644 0x4 OBJT LOCL H 0 .data str

 [42] 0x4c8 0x2c FUNC GLOB D 0 .text foo

Symbol reduction at the point at which an executable or shared object is created is typically the
most common requirement. However, symbol reductions can be forced to occur when creating a
relocatable object by using the link-editor's -B reduce option.

$ ld -o libfoo.o -M mapfile -B reduce -r foo.o bar.o

Chapter 2 • Link Editor 59

Symbol Processing

$ elfdump -sN.symtab libfoo.o | egrep 'foo$|bar$|str$'

 [20] 0x50 0x18 FUNC LOCL H 0 .text bar

 [21] 0 0x4 OBJT LOCL H 0 .data str

 [30] 0x10 0x2c FUNC GLOB D 2 .text foo

Symbol Elimination

An extension to symbol reduction is the elimination of a symbol entry from an object's symbol
table. Local symbols are only maintained in an object's .symtab symbol table. This entire table
can be removed from the object by using the link-editor's -z strip-class option, or after a
link-edit by using strip(1). On occasion, you might want to maintain the .symtab symbol table
but remove selected local symbol definitions.

Symbol elimination can be carried out using the mapfile keyword ELIMINATE. As with the
local directive, symbols can be individually defined, or the symbol name can be defined as
the special auto-elimination directive "*". The following example shows the elimination of the
symbol bar for the previous symbol reduction example.

$ cat mapfile

$mapfile_version 2

SYMBOL_VERSION ISV_1.1 {

 global:

 foo;

 local:

 str;

 eliminate:

 *;

};

$ cc -o libfoo.so.1 -M mapfile -G foo.c bar.c

$ elfdump -sN.symtab libfoo.so.1 | egrep 'foo$|bar$|str$'

 [26] 0x10690 0x4 OBJT LOCL H 0 .data str

 [44] 0x4e8 0x2c FUNC GLOB D 0 .text foo

The -B eliminate option can be used to assert the auto-elimination directive "*" from the
command line.

External Bindings

When a symbol reference from the object being created is satisfied by a definition within a
shared object, the symbol remains undefined. The relocation information that is associated with
the symbol provides for its lookup at runtime. The shared object that provided the definition
typically becomes a dependency.

60 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1strip-1

Generating the Output File

The runtime linker employs a default search model to locate this definition at runtime.
Typically, each object is searched, starting with the executable, and progressing through each
dependency in the same order in which the objects were loaded.

Objects can also be created to use direct bindings. With this technique, the relationship between
the symbol reference and the object that provides the symbol definition is maintained within
the object being created. The runtime linker uses this information to directly bind the reference
to the object that defines the symbol, thus bypassing the default symbol search model. See
Chapter 7, “Direct Bindings”.

String Table Compression

String tables are compressed by the link-editor by removing duplicate entries, together with tail
substrings. This compression can significantly reduce the size of any string tables. For example,
a compressed .dynstr table results in a smaller text segment and hence reduced runtime paging
activity. Because of these benefits, string table compression is enabled by default.

Objects that contribute a very large number of symbols can increase the link-edit time due
to the string table compression. To avoid this cost during development use the link-editors
-z nocompstrtab option. Any string table compression performed during a link-edit can be
displayed using the link-editors debugging tokens -D strtab,detail.

Generating the Output File

After input file processing and symbol resolution has completed with no fatal errors, the link-
editor generates the output file. The link-editor first generates the additional sections necessary
to complete the output file. These sections include the symbol tables, which contain local
symbol definitions together with resolved global symbol and weak symbol information, from all
the input files.

Also included are any output relocation and dynamic information sections required by the
runtime linker. After all the output section information has been established, the total output file
size is calculated. The output file image is then created accordingly.

When creating a dynamic object, two symbol tables are usually generated. The .dynsym table
and its associated string table .dynstr contain register, global, weak, and section symbols.
These sections become part of the text segment that is mapped as part of the process image
at runtime. See mmapobj(2). This mapping enables the runtime linker to read these sections to
perform any necessary relocations.

Chapter 2 • Link Editor 61

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2mmapobj-2

Generating the Output File

The .symtab table, and its associated string table .strtab contain all the symbols collected
from the input file processing. These sections are not mapped as part of the process image.
These sections can be stripped from the image by using the link-editor's -z strip-class
option, or after the link-edit by using strip(1).

During the generation of the symbol tables, reserved symbols are created. These symbols have
special meaning to the linking process. These symbols should not be defined in your code.

_etext

The first location after all read-only information, typically referred to as the text segment.

_edata

The first location after initialized data.

_end

The first location after all data.

_DYNAMIC

The address of the .dynamic information section.

END

The same as _end. The symbol has local scope and, together with the _START_ symbol,
provides a simple means of establishing an object's address range.

_GLOBAL_OFFSET_TABLE_

The position-independent reference to a link-editor supplied table of addresses, the .got
section. This table is constructed from position-independent data references that occur
in objects that have been compiled with the -K pic option. See “Position-Independent
Code” on page 206.

_PROCEDURE_LINKAGE_TABLE_

The position-independent reference to a link-editor supplied table of addresses, the .plt
section. This table is constructed from position-independent function references that occur
in objects that have been compiled with the -K pic option. See “Position-Independent
Code” on page 206.

START

The first location within the text segment. The symbol has local scope and, together with
the _END_ symbol, provides a simple means of establishing an object's address range.

When generating an executable, the link-editor looks for additional symbols to define the
executable's entry point. If a symbol was specified using the link-editor's -e option, that symbol
is used. Otherwise the link-editor looks for the reserved symbol names _start, and then main.

62 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1strip-1

Relocation Processing

Relocation Processing

After you have created the output file, all data sections from the input files are copied to the
new image. Any relocations specified by the input files are applied to the output image. Any
additional relocation information that must be generated is also written to the new image.

Relocation processing is normally uneventful, although error conditions might arise that are
accompanied by specific error messages. Two conditions are worth more discussion. The first
condition involves text relocations that result from position-dependent code. This condition is
covered in more detail in “Position-Independent Code” on page 206. The second condition
can arise from displacement relocations, which is described more fully in the next section.

Displacement Relocations

Error conditions might occur if displacement relocations are applied to a data item, which
can be used in a copy relocation. The details of copy relocations are covered in “Copy
Relocations” on page 217.

A displacement relocation remains valid when both the relocated offset and the relocation target
remain separated by the same displacement. A copy relocation is where a global data item
within a shared object is copied to the .bss of a dynamic executable. This copy preserves the
executable's read-only text segment. If the copied data has a displacement relocation applied
to the data, or an external relocation is a displacement into the copied data, the displacement
relocation becomes invalidated.

Two areas of validation attempt to catch displacement relocation problems.

■ The first occurs when generating a shared object. Any potential copy relocatable data items
that can be problematic if the copied data is involved in a displacement relocation are
flagged. During construction of a shared object, the link-editor has no knowledge of what
external references might be made to a data item. Thus, all that can be flagged are potential
problems.

■ The second occurs when generating a dynamic executable. The creation of a copy relocation
whose data is known to be involved in a displacement relocation is flagged.
However, displacement relocations applied to a shared object might be completed during
the shared objects creation at link-edit time. These displacement relocations might not have
been flagged. The link-edit of a dynamic executable that references an unflagged shared
object has no knowledge of a displacement being in effect in any copy-relocated data.

To help diagnose these problem areas, the link-editor indicates the displacement relocation use
of a dynamic object with one or more dynamic DT_FLAGS_1 flags, as shown in Table 49, “ELF

Chapter 2 • Link Editor 63

Stub Objects

Dynamic Flags, DT_FLAGS_1,” on page 458. In addition, the link-editor's -z verbose option
can be used to display suspicious relocations.

For example, say you create a shared object with a global data item, bar[], to which a
displacement relocation is applied. This item could be copy-relocated if referenced from a
dynamic executable. The link-editor warns of this condition.

$ cc -G -o libfoo.so.1 -z verbose -K pic foo.o

ld: warning: relocation warning: R_SPARC_DISP32: file foo.o: symbol foo: \

 displacement relocation to be applied to the symbol bar: at 0x194: \

 displacement relocation will be visible in output image

If you now create an application that references the data item bar[], a copy relocation is
created. This copy results in the displacement relocation being invalidated. Because the link-
editor can explicitly discover this situation, an error message is generated regardless of the use
of the -z verbose option.

$ cc -o prog prog.o -L. -lfoo

ld: warning: relocation error: R_SPARC_DISP32: file foo.so: symbol foo: \

 displacement relocation applied to the symbol bar at: 0x194: \

 the symbol bar is a copy relocated symbol

Note - ldd(1), when used with either the -d or -r options, uses the displacement dynamic flags
to generate similar relocation warnings.

These error conditions can be avoided by ensuring that the symbol definition being relocated
(offset) and the symbol target of the relocation are both local. Use static definitions or the
link-editor's scoping technology. See “Reducing Symbol Scope” on page 56. Relocation
problems of this type can be avoided by accessing data within shared objects by using
functional interfaces.

Stub Objects
A stub object is a shared object, built entirely from mapfiles, that supplies the same linking
interface as the real object, while containing no code or data. Stub objects cannot be used at
runtime. However, an application can be built against a stub object, where the stub object
provides the real object name to be used at runtime.

When building a stub object, the link-editor ignores any object or library files specified on the
command line, and these files need not exist in order to build a stub. Since the compilation step
can be omitted, and because the link-editor has relatively little work to do, stub objects can be
built very quickly.

Stub objects can be used to solve a variety of build problems.

64 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ldd-1

Stub Objects

■ Speed

Modern machines, using a version of the make utility with the ability to parallelize
operations, are capable of compiling and linking many objects simultaneously, and doing so
offers significant speedups. However, it is typical that a given object will depend on other
objects, and that there will be a core set of objects that nearly everything else depends on.
It is necessary to order the builds so that all objects are built ahead of their use by other
objects. This ordering creates bottlenecks that reduce the amount of parallelization that is
possible and limits the overall speed at which the code can be built.

■ Complexity/Correctness
In a large body of code, there can be a large number of dependencies between the various
objects. The makefiles or other build descriptions for these objects can become very
complex and difficult to understand or maintain. The dependencies can change as the
system evolves. This can cause a given set of makefiles to become slightly incorrect over
time, leading to race conditions and mysterious rare build failures.

■ Dependency Cycles
It might be desirable to organize code as cooperating shared objects, each of which draw
on the resources provided by the other. Such cycles cannot be supported in an environment
where objects must be built before the objects that use them, even though the runtime linker
is fully capable of loading and using such objects if they could be built.

Stub shared objects offer an alternative method for building code that sidesteps the above
issues. Stub objects can be quickly built for all the shared objects produced by the build. Then,
all the real dynamic objects can be built in parallel, in any order, using the stub objects to stand
in for the real objects at link-time. Afterwards, the real dynamic objects are kept, and the stub
shared objects are discarded.

Stub objects are built from one or more mapfiles, which must collectively satisfy the following
requirements.

■ At least one mapfile must specify the STUB_OBJECT directive. See “STUB_OBJECT
Directive” on page 253.

■ All function and data symbols that make up the external interface to the object must be
explicitly listed in the mapfile.

■ The mapfile must use symbol scope reduction ('*'), to remove any symbols not
explicitly listed from the external interface. See “SYMBOL_SCOPE and SYMBOL_VERSION
Directives” on page 254.

■ All global data exported from the object must have an ASSERT symbol attribute in the
mapfile to specify the symbol type and size. In the case where there are multiple symbols
that reference the same data, the ASSERT for one of these symbols must specify the TYPE
and SIZE attributes, while the others must use the ALIAS attribute to reference this primary
symbol. See “ASSERT Attribute” on page 256.

Chapter 2 • Link Editor 65

Stub Objects

Given such a mapfile, the stub and real versions of the shared object can be built using the
same command line for each. The -z stub option is added to the link-edit of the stub object,
and is omitted from the link-edit of the real object.

To demonstrate these ideas, the following code implements a shared object named idx5, which
exports data from a 5 element array of integers. Each element is initialized to contain its zero-
based array index. This data is made available as a global array, as an alternative alias data
symbol with weak binding, and through a functional interface.

$ cat idx5.c

int _idx5[5] = { 0, 1, 2, 3, 4 };

#pragma weak idx5 = _idx5

int

idx5_func(int index)

{

 if ((index < 0) || (index > 4))

 return (-1);

 return (_idx5[index]);

}

A mapfile is required to describe the interface provided by this shared object.

$ cat mapfile

$mapfile_version 2

STUB_OBJECT;

SYMBOL_SCOPE {

 _idx5 {

 ASSERT { TYPE=data; SIZE=4[5] };

 };

 idx5 {

 ASSERT { BINDING=weak; ALIAS=_idx5 };

 };

 idx5_func;

 local:

 *;

};

The following main program is used to print all the index values available from the idx5 shared
object.

$ cat main.c

#include <stdio.h>

extern int _idx5[5], idx5[5], idx5_func(int);

int

main(int argc, char **argv)

66 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Stub Objects

{

 int i;

 for (i = 0; i < 5; i++)

 (void) printf("[%d] %d %d %d\n",

 i, _idx5[i], idx5[i], idx5_func(i));

 return (0);

}

The following commands create a stub version of this shared object in a subdirectory named
stublib. The elfdump command is used to verify that the resulting object is a stub. The
command used to build the stub differs from that of the real object only in the addition of the
-z stub option, and the use of a different output file name. This demonstrates the ease with
which stub generation can be added to existing code.

$ cc -Kpic -G -M mapfile -h libidx5.so.1 idx5.c -o stublib/libidx5.so.1 -z stub

$ ln -s libidx5.so.1 stublib/libidx5.so

$ elfdump -d stublib/libidx5.so | grep STUB

 [11] FLAGS_1 0x4000000 [STUB]

The main program can now be built, using the stub object to stand in for the real shared object,
and setting a runpath that will find the real object at runtime. However, as the real object has not
been built, this program cannot yet be run. Attempts to cause the system to load the stub object
are rejected, as the runtime linker knows that stub objects lack the actual code and data found in
the real object, and cannot execute.

$ cc main.c -L stublib -R '$ORIGIN/lib' -lidx5 -lc

$./a.out

ld.so.1: a.out: fatal: libidx5.so.1: open failed: No such file or directory

Killed

$ LD_PRELOAD=stublib/libidx5.so.1 ./a.out

ld.so.1: a.out: fatal: stublib/libidx5.so.1: stub shared object \

 cannot be used at runtime

Killed

The real object is built using the same command used to build the stub object. The -z stub
option is omitted, and the path for the real output file is specified.

$ cc -Kpic -G -M mapfile -h libidx5.so.1 idx5.c -o lib/libidx5.so.1

Once the real object has been built in the lib subdirectory, the program can be run.

$./a.out

[0] 0 0 0

[1] 1 1 1

[2] 2 2 2

[3] 3 3 3

[4] 4 4 4

Chapter 2 • Link Editor 67

Stub Objects

Using Stub Objects to Hide Obsolete Interfaces
Libraries evolve, and sometimes the original functionality proves to be undesirable. It is
common for new abilities to be added, and for older ones to be considered obsolete. When
backward compatibility is a concern, it is necessary to maintain such older functionality in the
library for the benefit of existing objects. However, you may wish to prevent new use of these
features. Stub objects can be used to enforce this policy. The mapfile STUB_ELIMINATE flag can
be used to mark functions or data from an object that should be eliminated from the stub object,
while remaining in the real object. This prevents new code, which links to the stub object, from
using these obsolete items, and encourages code to be rewritten to use the preferred interfaces.
Since the real objects still contain these items, existing objects are able to use them.

The libidx5 example from the previous section illustrates this. That library demonstrates how
to export global data from an object. However, exported global data introduces complexity to
dynamic linking, and is best avoided. It is usually a better design to provide a function to access
such data, such as the idx5_func()function provided by libidx5. Continuing that example,
STUB_ELIMINATE can be used to make the global data unavailable to new code that links to the
stub, while providing those old interfaces in the real object for the benefit of existing programs.

The mapfile is rewritten to apply STUB_ELIMINATE to the two global data symbols. A benefit of
applying STUB_ELIMINATE to global data is that it is no longer necessary to provide an ASSERT
directive to provide the data size. In this example, the ASSERT is commented out. A real mapfile
might omit it entirely.

$ cat better_mapfile

$mapfile_version 2

STUB_OBJECT;

SYMBOL_SCOPE {

 _idx5 {

 FLAGS=STUB_ELIMINATE;

 #ASSERT { TYPE=data; SIZE=4[5] };

 };

 idx5 {

 FLAGS=STUB_ELIMINATE;

 #ASSERT { BINDING=weak; ALIAS=_idx5 };

 };

 idx5_func;

 local:

 *;

};

A new version of the test program only uses the functional interface.

$ cat better_main.c

#include <stdio.h>

68 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Ancillary Objects

extern int idx5_func(int);

int

main(int argc, char **argv)

{

 int i;

 for (i = 0; i < 5; i++)

 (void) printf("[%d] %d\n", i, idx5_func(i));

 return (0);

}

The old test program is saved, the stub object is rebuilt using the new mapfile, and the test
program is rebuilt, linking against the new stub object that employs STUB_ELIMINATE:

$ cp a.out original_a.out

$ cc -Kpic -G -M better_mapfile -h libidx5.so.1 idx5.c -o stublib/libidx5.so.1 -z stub

$ cc better_main.c -o better_a.out -L stublib -R '$ORIGIN/lib' -lidx5 -lc

$./better_a.out

[0] 0

[1] 1

[2] 2

[3] 3

[4] 4

The original test program can no longer be built, because the stub library lacks the necessary
global data symbols. However, the preexisting binary that used them continues to function
because the real library still provides the global data symbols.

$ cc main.c -L stublib -R '$ORIGIN/lib' -lidx5 -lc

Undefined first referenced

 symbol in file

idx5 main.o

_idx5 main.o

ld: fatal: symbol referencing errors

$./original_a.out

[0] 0 0 0

[1] 1 1 1

[2] 2 2 2

[3] 3 3 3

[4] 4 4 4

Ancillary Objects

By default, objects contain both allocable and non-allocable sections. Allocable sections are
the sections that contain executable code and the data needed by that code at runtime. Non-

Chapter 2 • Link Editor 69

Ancillary Objects

allocable sections contain supplemental information that is not required to execute an object
at runtime. These sections support the operation of debuggers and other observability tools.
The non-allocable sections in an object are not loaded into memory at runtime by the operating
system, and so, they have no impact on memory use or other aspects of runtime performance no
matter their size.

For convenience, both allocable and non-allocable sections are normally maintained in the same
file. However, there are situations in which it can be useful to separate these sections.

■ To reduce the size of objects in order to improve the speed at which they can be copied
across wide area networks.

■ To support fine grained debugging of highly optimized code requires considerable debug
data. In modern systems, the debugging data can easily be larger than the code it describes.
The size of a 32-bit object is limited to 4 Gbytes. In very large 32-bit objects, the debug data
can cause this limit to be exceeded and prevent the creation of the object.

■ To limit the exposure of internal implementation details.

Traditionally, objects have been stripped of non-allocable sections in order to address these
issues. Stripping is effective, but destroys data that might be needed later. The Solaris link-
editor can instead write non-allocable sections to an ancillary object. This feature is enabled
with the -z ancillary option.

$ cc -z ancillary[=outfile]

By default, the ancillary file is given the same name as the primary output object, with a .anc
file extension. However, a different name can be provided by providing an outfile value to the
-z ancillary option.

When -z ancillary is specified, the link-editor performs the following actions.

■ All allocable sections are written to the primary object. In addition, all non-allocable
sections containing one or more input sections that have the SHF_SUNW_PRIMARY section
header flag set are written to the primary object.

■ All remaining non-allocable sections are written to the ancillary object.
■ The following non-allocable sections are written to both the primary object and ancillary

object.

.shstrtab The section name string table.

.symtab The full non-dynamic symbol table.

.symtab_shndx The symbol table extended index section associated with .symtab.

.strtab The non-dynamic string table associated with .symtab.

70 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Ancillary Objects

.SUNW_ancillary Contains the information required to identify the primary and
ancillary objects, and to identify the object being examined.

■ The primary object and all ancillary objects contain the same array of sections headers.
Each section has the same section index in every file.

■ Although the primary and ancillary objects all define the same section headers, the data for
most sections will be written to a single file as described above. If the data for a section is
not present in a given file, the SHF_SUNW_ABSENT section header flag is set, and the sh_size
field is 0.

This organization makes it possible to acquire a full list of section headers, a complete symbol
table, and a complete list of the primary and ancillary objects from either of the primary or
ancillary objects.

The following example illustrates the underlying implementation of ancillary objects. An
ancillary object is created by adding the -z ancillary command line option to an otherwise
normal compilation. The file utility shows that the result is an executable named a.out, and an
associated ancillary object named a.out.anc.

$ cat hello.c

#include <stdio.h>

int

main(int argc, char **argv)

{

 (void) printf("hello, world\n");

 return (0);

}

$ cc -g -z ancillary hello.c

$ file a.out a.out.anc

a.out: ELF 32-bit LSB executable 80386 Version 1 [FPU], dynamically \

 linked, not stripped, ancillary object a.out.anc

a.out.anc: ELF 32-bit LSB ancillary 80386 Version 1, primary object a.out

$./a.out

hello world

The resulting primary object is an ordinary executable that can be executed in the usual manner.
It is no different at runtime than an executable built without the use of ancillary objects, and
then stripped of non-allocable content using the strip or mcs commands.

As previously described, the primary object and ancillary objects contain the same section
headers. To see how this works, it is helpful to use the elfdump utility to display these section
headers and compare them. The following table shows the section header information for a
selection of headers from the previous link-edit example.

Chapter 2 • Link Editor 71

Ancillary Objects

Index Section Name Type Primary Flags Ancillary Flags Primary
Size

Ancillary
Size

13 .text PROGBITS ALLOC EXECINSTR ALLOC EXECINSTR
SUNW_ABSENT

0x131 0

20 .data PROGBITS WRITE ALLOC WRITE ALLOC
SUNW_ABSENT

0x4c 0

21 .symtab SYMTAB 0 0 0x450 0x450

22 .strtab STRTAB STRINGS STRINGS 0x1ad 0x1ad

24 .debug_info PROGBITS SUNW_ABSENT 0 0 0x1a7

28 .shstrtab STRTAB STRINGS STRINGS 0x118 0x118

29 .SUNW_ancillary SUNW_ancillary 0 0 0x30 0x30

The data for most sections is only present in one of the two files, and absent from the other file.
The SHF_SUNW_ABSENT section header flag is set when the data is absent. The data for allocable
sections needed at runtime are found in the primary object. The data for non-allocable sections
used for debugging but not needed at runtime are placed in the ancillary file. A small set of non-
allocable sections are fully present in both files. These are the .SUNW_ancillary section used
to relate the primary and ancillary objects together, the section name string table .shstrtab, as
well as the symbol table.symtab, and its associated string table .strtab.

It is possible to strip the symbol table from the primary object. A debugger that encounters
an object without a symbol table can use the .SUNW_ancillary section to locate the ancillary
object, and access the symbol contained within.

The primary object, and all associated ancillary objects, contain a .SUNW_ancillary section that
allows all the objects to be identified and related together.

$ elfdump -T SUNW_ancillary a.out a.out.anc

a.out:

Ancillary Section: .SUNW_ancillary

 index tag value

 [0] ANC_SUNW_CHECKSUM 0x8724

 [1] ANC_SUNW_MEMBER 0x1 a.out

 [2] ANC_SUNW_CHECKSUM 0x8724

 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc

 [4] ANC_SUNW_CHECKSUM 0xfbe2

 [5] ANC_SUNW_NULL 0

a.out.anc:

Ancillary Section: .SUNW_ancillary

 index tag value

 [0] ANC_SUNW_CHECKSUM 0xfbe2

 [1] ANC_SUNW_MEMBER 0x1 a.out

 [2] ANC_SUNW_CHECKSUM 0x8724

72 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Ancillary Objects

 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc

 [4] ANC_SUNW_CHECKSUM 0xfbe2

 [5] ANC_SUNW_NULL 0

The ancillary sections for both objects contain the same number of elements, and are identical
except for the first element. Each object, starting with the primary object, is introduced with a
MEMBER element that gives the file name, followed by a CHECKSUM that identifies the object. In
this example, the primary object is a.out, and has a checksum of 0x8724. The ancillary object
is a.out.anc, and has a checksum of 0xfbe2. The first element in a .SUNW_ancillary section,
preceding the MEMBER element for the primary object, is always a CHECKSUM element, containing
the checksum for the file being examined.

■ The presence of a .SUNW_ancillary section in an object indicates that the object has
associated ancillary objects.

■ The names of the primary and all associated ancillary objects can be obtained from the
ancillary section from any one of the files.

■ It is possible to determine which file is being examined from the larger set of files by
comparing the first checksum value to the checksum of each member that follows.

Note - The link editor does not read ancillary objects as input. If a relocatable object is created
using the -z ancillary option, and the resulting object is later referenced to build another
object, the sections from the ancillary object are not propagated to the final object.

Debugger Access and Use of Ancillary Objects
Debuggers and other observability tools must merge the information found in the primary
and ancillary object files in order to build a complete view of the object. This is equivalent to
processing the information from a single file. This merging is simplified by the primary object
and ancillary objects containing the same section headers, and a single symbol table.

The following steps can be used by a debugger to assemble the information contained in these
files.

1. Starting with the primary object, or any of the ancillary objects, locate the
.SUNW_ancillary section. The presence of this section identifies the object as part of an
ancillary group, contains information that can be used to obtain a complete list of the files
and determine which of those files is the one currently being examined.

2. Create a section header array in memory, using the section header array from the object
being examined as an initial template.

3. Open and read each file identified by the .SUNW_ancillary section in turn. For each file,
fill in the in-memory section header array with the information for each section that does
not have the SHF_SUNW_ABSENT flag set.

Chapter 2 • Link Editor 73

Compressed Debug Sections

The result will be a complete in-memory copy of the section headers with pointers to the data
for all sections. Once this information has been acquired, the debugger can proceed as it would
in the single file case, to access and control the running program.

Note - The ELF definition of ancillary objects provides for a single primary object, and an
arbitrary number of ancillary objects. At this time, the Oracle Solaris link-editor only produces
a single ancillary object containing all non-allocable sections. This may change in the future.
Debuggers and other observability tools should be written to handle the general case of multiple
ancillary objects.

Compressed Debug Sections

As discussed in “Ancillary Objects” on page 69, objects contain both allocable and non-
allocable sections. Allocable sections are the sections that contain executable code and the data
needed by that code at runtime. Non-allocable sections contain supplemental information that is
not required to execute an object at runtime. These sections support the operation of debuggers
and other observability tools, and are informally referred to as debug sections.

Depending on the level of debug information requested, debug sections can become very large
relative to the code they describe. Ancillary objects, which write these sections to a separate
file, offer one mechanism for dealing with these large sections. Compressed debug sections
offer a second, complimentary, option for reducing debug section size.

Debug sections are compressed with the industry standard ZLIB compression library.
Documentation for ZLIB may be found at http://www.zlib.net/.

The link-editor recognizes compressed debug sections within input objects, and automatically
decompresses these sections. This operation is transparent to the user of the link-editor, and
requires no special action.

By default, the link-editor does not compress debug sections in output objects. Use the
-z compress-debug-sections option to enable the compression of debug sections in the output
file.

$ cc -z compress-sections[=cmp-type]

The following values for cmp-type are recognized.

none No compression is done. This option is equivalent to not specifying the
-z compress-sections option.

74 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.zlib.net/

Compressed Debug Sections

zlib Compress candidate sections using ZLIB compression. The resulting
output sections have the SHF_COMPRESSED section flag set to identify the
use of compression.

zlib-gnu Compress all candidate sections using ZLIB compression, using the
GNU section compression format. This format requires candidate
sections to have a name that begins with .debug. The resulting output
sections are renamed to start with .zdebug to identify the use of
compression.

If cmp-type is omitted, the zlib style is used.

Compression for any section that would be larger in compressed form than the original non-
compressed data is quietly skipped.

To be a candidate for compression, a section must be non-allocable, and belong to one of the
following classes.

annotate Annotate sections provide information that is used by memory access
tools, and coverage related tools. These sections are identified by having
a SHT_SUNW_ANNOTATE section type.

debug Debug sections are identified by having a .compcom, .line, .stab*,
.debug*, or .zdebug* section name. These sections are also identified by
having an SHT_PROGBITS or SHT_SUNW_DEBUG* section type.

The zlib-gnu compression type is limited to sections with a name that starts with .debug.
When zlib-gnu is used, sections that would otherwise be candidates for compression are not
compressed. The underlying ZLIB compression is identical for the zlib and zlib-gnu styles,
and both formats deliver the same amount of compression for a given input section. The two
styles differ in the selection of candidate sections, the format of the compression header, and
in how compressed sections are identified. See “Section Compression” on page 373. Unless
there is a specific requirement to use the zlib-gnu style, the more general default zlib style is
recommended.

The following program demonstrates the use of compressed debug sections. For the purpose of
comparison, the program is built twice, once without compression, and once with compression.

$ cat hello.c

#include <stdio.h>

int

main(int argc, char **argv)

{

Chapter 2 • Link Editor 75

Compressed Debug Sections

 (void) printf("hello, world\n");

 return (0);

}

% cc -g hello.c -o a.out.uncompressed

% cc -g hello.c -o a.out.compressed -z compress-sections

The section headers of the uncompressed, and compressed debug sections can now be
compared.

$ elfdump -c a.out.uncompressed

....

Section Header[24]: sh_name: .debug_info

 sh_addr: 0 sh_flags: 0

 sh_size: 0x17b sh_type: [SHT_PROGBITS]

Section Header[25]: sh_name: .debug_line

 sh_addr: 0 sh_flags: 0

 sh_size: 0x4f sh_type: [SHT_PROGBITS]

Section Header[26]: sh_name: .debug_abbrev

 sh_addr: 0 sh_flags: 0

 sh_size: 0x7c sh_type: [SHT_PROGBITS]

Section Header[27]: sh_name: .debug_pubnames

 sh_addr: 0 sh_flags: 0

 sh_size: 0x1b sh_type: [SHT_PROGBITS]

$ elfdump -c a.out.compressed

....

Section Header[24]: sh_name: .debug_info

 sh_addr: 0 sh_flags: [SHF_COMPRESSED]

 sh_size: 0x14f sh_type: [SHT_PROGBITS]

 ch_size: 0x196 ch_type: [ELFCOMPRESS_ZLIB]

 ch_addralign: 0x1

Section Header[25]: sh_name: .debug_line

 sh_addr: 0 sh_flags: 0

 sh_size: 0x4f sh_type: [SHT_PROGBITS]

Section Header[26]: sh_name: .debug_abbrev

 sh_addr: 0 sh_flags: [SHF_COMPRESSED]

 sh_size: 0x79 sh_type: [SHT_PROGBITS]

76 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Compressed Debug Sections

 ch_size: 0x7c ch_type: [ELFCOMPRESS_ZLIB]

 ch_addralign: 0x1

Section Header[27]: sh_name: .debug_pubnames

 sh_addr: 0 sh_flags: 0

 sh_size: 0x1b sh_type: [SHT_PROGBITS]

Each compressed section, .debug_info, and .debug_abbrev, is identified with a
SHF_COMPRESSED section flag. In addition, the section header information is accompanied
with compression header structure information. The ch_size and ch_addralign fields
provide size and alignment requirements for the uncompressed data. See “Section
Compression” on page 373.

The .debug_line and .debug_pubnames sections would be larger compressed than in their
original uncompressed form, and have therefore been left uncompressed.

Compression Costs And Benefits

The primary benefit of compressed debug sections is a size reduction of objects. However,
compression imposes additional costs in runtime and memory use at all stages of development.

■ The compiler must produce each debug section in uncompressed form, allocate additional
memory for the compressed version, and perform the compression.

■ When reading an input object, the link-editor must read the compressed data into memory,
allocate additional memory to hold the decompressed data, and perform the decompression.

■ On output, the link-editor must create an uncompressed version of the resulting debug
sections. If compression is requested, additional memory and time are used to create the
compressed version.

■ When a debugger reads an object with compressed debug sections, the debugger must
allocate additional memory to hold the decompressed data, and perform the decompression.

Furthermore, compressed debug sections allow for smaller files, but not for larger amounts of
information. A common example involves 32-bit objects, which are fundamentally limited to 4
Gbytes due to the use of 32-bit file offsets and sizes within them. It is sometimes assumed that
compressing debug data might allow for more debug information to be generated. However,
the format of 32-bit debug data also contains 32-bit offsets, and so, is logically constrained to 4
Gbytes in uncompressed form.

For these reasons, compressed debug sections are not recommended for general development,
where speed of the compile/link/debug cycle usually outweighs the benefits of smaller debug
data. Compressed debug sections may be beneficial in cases where disk space is scarce, or for
production objects that are copied widely and debugged rarely.

Chapter 2 • Link Editor 77

Parent Objects

Parent Objects
Programs that offer extensible functionality often make use of shared objects, loaded at runtime
using the dlopen() function. These shared objects are often referred to as plugins, and provide
a flexible means to extend the abilities of the core system. The object that loads the plugins is
referred to as the parent.

A parent object loads the plugin and accesses functions and data from within the plugin. It is
also common for the parent object to provide functions and data for use by the plugin. This is
illustrated by the following parent and plugin source files. Here the parent supplies a function
named parent_callback() for the benefit of the plugin. The plugin supplies a function named
plugin_func() for the parent to call.

$ cat main.c

#include <stdio.h>

#include <dlfcn.h>

#include <link.h>

void

parent_callback(void)

{

 (void) printf("plugin_func() has called parent_callback()\n");

}

int

main(int argc, char **argv)

{

 typedef void plugin_func_t(void);

 void *hdl;

 plugin_func_t *plugin_func;

 if (argc != 2) {

 (void) fprintf(stderr, "usage: main plugin\n");

 return (1);

 }

 if ((hdl = dlopen(argv[1], RTLD_LAZY)) == NULL) {

 (void) fprintf(stderr, "unable to load plugin: %s\n",

 dlerror());

 return (1);

 }

 plugin_func = (plugin_func_t *) dlsym(hdl, "plugin_func");

 if (plugin_func == NULL) {

 (void) fprintf(stderr, "unable to find plugin_func: %s\n",

 dlerror());

78 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Parent Objects

 return (1);

 }

 (*plugin_func)();

 return (0);

}

$ cat plugin.c

#include <stdio.h>

extern void parent_callback(void);

void

plugin_func(void)

{

 (void) printf("parent has called plugin_func() from plugin.so\n");

 parent_callback();

}

$ cc -o main main.c -lc

$ cc -Kpic -G -o plugin.so plugin.c -lc

$./main ./plugin.so

parent has called plugin_func() from plugin.so

plugin_func() has called parent_callback()

When building any shared object, the -z defs option is recommended, in order to ensure that
the object specifies all of its dependencies. However, the use of -z defs prevents the plugin
object from linking due to the unsatisfied symbol from the parent object.

$ cc -z defs -Kpic -G -o plugin.so plugin.c -lc

Undefined first referenced

 symbol in file

parent_callback plugin.o

ld: fatal: symbol referencing errors

A mapfile can be used to specify to the link-edit that the parent_callback() symbol is
supplied by the parent object.

$ cat plugin.mapfile

$mapfile_version 2

SYMBOL_SCOPE {

 global:

 parent_callback { FLAGS = PARENT };

};

$ cc -z defs -Mplugin.mapfile -Kpic -G -o plugin.so plugin.c -lc

Chapter 2 • Link Editor 79

Debugging Aids

The preferred solution for building a plugin is to use the -z parent option to provide the plugin
with direct access to symbols from the parent. An added benefit of using -z parent instead of a
mapfile, is that the name of the parent object is recorded in the dynamic section of the plugin,
and is displayed by the file utility.

$ cc -z defs -z parent=main -Kpic -G -o plugin.so plugin.c -lc

$ elfdump -d plugin.so | grep PARENT

 [0] SUNW_PARENT 0xcc main

$ file plugin.so

plugin.so: ELF 32-bit LSB dynamic lib 80386 Version 1, parent main, \

 dynamically linked, not stripped

Debugging Aids

The link-editor provides a debugging facility that allows you to trace the link-editing process
in detail. This facility can help you understand and debug the link-edit of your applications and
libraries. The type of information that is displayed by using this facility is expected to remain
constant. However, the exact format of the information might change slightly from release to
release.

Some of the debugging output might be unfamiliar if you do not have an intimate knowledge of
the ELF format. However, many aspects might be of general interest to you.

Debugging is enabled by using the -D option. This option must be augmented with one or more
tokens to indicate the type of debugging that is required.

The tokens that are available with -D can be displayed by typing -D help at the command line.

$ ld -Dhelp

If the help token is specified by itself, output goes to stdout, the standard output file. If any
other tokens are specified, debug output is sent to stderr, the standard error output file. Debug
output can be directed to a file instead, using the output token. For example, the help text can
be captured in a file named ld-debug.txt.

$ ld -Dhelp,output=ld-debug.txt

Most compiler drivers assign the -D option a different meaning, often to define preprocessing
macros. The LD_OPTIONS environment variable can be used to bypass the compiler driver, and
supply the -D option directly to the link-editor.

The following example shows how input files can be traced. This syntax can be useful to
determine what libraries are used as part of a link-edit. Objects that are extracted from an
archive are also displayed with this syntax.

80 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Debugging Aids

$ LD_OPTIONS=-Dfiles cc -o prog main.o -L. -lfoo

....

debug: file=main.o [ET_REL]

debug: file=./libfoo.a [archive]

debug: file=./libfoo.a(foo.o) [ET_REL]

debug: file=./libfoo.a [archive] (again)

....

Here, the member foo.o is extracted from the archive library libfoo.a to satisfy the link-edit
of prog. Notice that the archive is searched twice to verify that the extraction of foo.o did not
warrant the extraction of additional relocatable objects. Multiple "(again)" diagnostics indicates
that the archive is a candidate for ordering using lorder(1) and tsort(1).

By using the symbols token, you can determine which symbol caused an archive member to be
extracted, and which object made the initial symbol reference.

$ LD_OPTIONS=-Dsymbols cc -o prog main.o -L. -lfoo

....

debug: symbol table processing; input file=main.o [ET_REL]

....

debug: symbol[7]=foo (global); adding

debug:

debug: symbol table processing; input file=./libfoo.a [archive]

debug: archive[0]=bar

debug: archive[1]=foo (foo.o) resolves undefined or tentative symbol

debug:

debug: symbol table processing; input file=./libfoo(foo.o) [ET_REL]

....

The symbol foo is referenced by main.o. This symbol is added to the link-editor's internal
symbol table. This symbol reference causes the extraction of the relocatable object foo.o from
the archive libfoo.a.

Note - This output has been simplified for this document.

By using the detail token together with the symbols token, the details of symbol resolution
during input file processing can be observed.

$ LD_OPTIONS=-Dsymbols,detail cc -o prog main.o -L. -lfoo

....

debug: symbol table processing; input file=main.o [ET_REL]

....

debug: symbol[7]=foo (global); adding

debug: entered 0x000000 0x000000 NOTY GLOB UNDEF REF_REL_NEED

debug:

debug: symbol table processing; input file=./libfoo.a [archive]

debug: archive[0]=bar

Chapter 2 • Link Editor 81

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1lorder-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1tsort-1

Debugging Aids

debug: archive[1]=foo (foo.o) resolves undefined or tentative symbol

debug:

debug: symbol table processing; input file=./libfoo.a(foo.o) [ET_REL]

debug: symbol[1]=foo.c

....

debug: symbol[7]=bar (global); adding

debug: entered 0x000000 0x000004 OBJT GLOB 3 REF_REL_NEED

debug: symbol[8]=foo (global); resolving [7][0]

debug: old 0x000000 0x000000 NOTY GLOB UNDEF main.o

debug: new 0x000000 0x000024 FUNC GLOB 2 ./libfoo.a(foo.o)

debug: resolved 0x000000 0x000024 FUNC GLOB 2 REF_REL_NEED

....

The original undefined symbol foo from main.o has been overridden with the symbol definition
from the extracted archive member foo.o. The detailed symbol information reflects the
attributes of each symbol.

In the previous example, you can see that using some of the debugging tokens can produce a
wealth of output. To monitor the activity around a subset of the input files, place the -D option
directly in the link-edit command line. This option can be toggled on and toggled off. In the
following example, the display of symbol processing is switched on only during the processing
of the library libbar.

$ ld -o prog main.o -L. -Dsymbols -lbar -D!symbols

Note - To obtain the link-edit command line, you might have to expand the compilation line
from any driver being used. See “Using a Compiler Driver” on page 29.

82 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

 3 ♦ ♦ ♦ C H A P T E R 3

Runtime Linker

As part of the initialization and execution of an executable, an interpreter is called to complete
the binding of the application to its dependencies. In the Oracle Solaris OS, this interpreter is
referred to as the runtime linker.

During the link-editing of an executable, a special .interp section, together with an associated
program header, are created. This section contains a path name specifying the program's
interpreter. The default name supplied by the link-editor is the name of the runtime linker:
/usr/lib/ld.so.1 for a 32-bit executable and /usr/lib/64/ld.so.1 for a 64-bit executable.

Note - ld.so.1 is a special case of a shared object. Here, a version number of 1 is used.
However, later Oracle Solaris OS releases might provide higher version numbers.

During the process of executing a dynamic object, the kernel loads the file and reads the
program header information. See “Program Header” on page 431. From this information,
the kernel locates the name of the required interpreter. The kernel loads, and transfers control to
this interpreter, passing sufficient information to enable the interpreter to continue executing the
application.

In addition to initializing an application, the runtime linker provides services that enable the
application to extend its address space. This process involves loading additional objects and
binding to symbols provided by these objects.

The runtime linker performs the following actions.

■ Analyzes the executable's dynamic information section (.dynamic) and determines what
dependencies are required.

■ Locates and loads these dependencies, analyzing their dynamic information sections to
determine if any additional dependencies are required.

■ Performs any necessary relocations to bind these objects in preparation for process
execution.

■ Calls any initialization functions provided by the dependencies.

Chapter 3 • Runtime Linker 83

Shared Object Dependencies

■ Passes control to the application.
■ Can be called upon during the application's execution, to perform any delayed function

binding.
■ Can be called upon by the application to acquire additional objects with dlopen(3C), and

bind to symbols within these objects with dlsym(3C).

Shared Object Dependencies

When the runtime linker creates the memory segments for a program, the dependencies tell
what shared objects are needed to supply the program's services. By repeatedly connecting
referenced shared objects and their dependencies, the runtime linker generates a complete
process image.

Note - Even when a shared object is referenced multiple times in the dependency list, the
runtime linker connects the object only once to the process.

Locating Shared Object Dependencies

When linking an executable, one or more shared objects are explicitly referenced. These objects
are recorded as dependencies within the executable.

The runtime linker uses this dependency information to locate, and load, the associated objects.
These dependencies are processed in the same order as the dependencies were referenced
during the link-edit of the executable.

Once all of the dependencies of the executable are loaded, each dependency is inspected, in the
order the dependency is loaded, to locate any additional dependencies. This process continues
until all dependencies are located and loaded. This technique results in a breadth-first ordering
of all dependencies.

Directories Searched by the Runtime Linker

The runtime linker looks in two default locations for dependencies. When processing 32-bit
objects, the default locations are /lib and /usr/lib. When processing 64-bit objects, the
default locations are /lib/64 and /usr/lib/64. Any dependency specified as a simple file

84 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlsym-3c

Shared Object Dependencies

name is prefixed with these default directory names. The resulting path name is used to locate
the actual file.

The dependencies of a dynamic object can be displayed using ldd(1). For example, the file
/usr/bin/cat has the following dependencies.

$ ldd /usr/bin/cat

 libc.so.1 => /lib/libc.so.1

 libm.so.2 => /lib/libm.so.2

The file /usr/bin/cat has a dependency, or needs, the files libc.so.1 and libm.so.2.

The dependencies recorded in an object can be inspected using elfdump(1). Use this command
to display the file's .dynamic section, and look for entries that have a NEEDED tag. In the
following example, the dependency libm.so.2, displayed in the previous ldd(1) example, is
not recorded in the file /usr/bin/cat. ldd(1) shows the total dependencies of the specified file,
and libm.so.2 is actually a dependency of /lib/libc.so.1.

$ elfdump -d /usr/bin/cat

Dynamic Section: .dynamic:

 index tag value

 [0] NEEDED 0x211 libc.so.1

 ...

In the previous elfdump(1) example, the dependencies are expressed as simple file names.
In other words, there is no '/' in the name. The use of a simple file name requires the runtime
linker to generate the path name from a set of default search rules. File names that contain an
embedded '/', are used as provided.

The simple file name recording is the standard, most flexible mechanism of recording
dependencies. The -h option of the link-editor records a simple name within the
dependency. See “Naming Conventions” on page 127 and “Recording a Shared Object
Name” on page 128.

Frequently, dependencies are distributed in directories other than /lib and /usr/lib, or
/lib/64 and /usr/lib/64. If a dynamic object needs to locate dependencies in another
directory, the runtime linker must explicitly be told to search this directory.

You can specify additional search path, on a per-object basis, by recording a runpath during the
link-edit of an object. See “Directories Searched by the Runtime Linker” on page 39 for details
on recording this information.

A runpath recording can be displayed using elfdump(1). Reference the .dynamic entry that
has the RUNPATH tag. In the following example, prog has a dependency on libfoo.so.1. The

Chapter 3 • Runtime Linker 85

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ldd-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1elfdump-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ldd-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ldd-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1elfdump-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1elfdump-1

Shared Object Dependencies

runtime linker must search directories /home/me/lib and /home/you/lib before it looks in the
default location.

$ elfdump -d prog | egrep "NEEDED|RUNPATH"

 [1] NEEDED 0x4ce libfoo.so.1

 [3] NEEDED 0x4f6 libc.so.1

 [21] RUNPATH 0x210e /home/me/lib:/home/you/lib

Another way to add to the runtime linker search path is to set one of the LD_LIBRARY_PATH
family of environment variables. This environment variable, which is analyzed once at process
startup, can be set to a colon-separated list of directories. These directories are searched by the
runtime linker before any runpath specification or default directory.

These environment variables are well suited to debugging purposes, such as forcing an
application to bind to a local dependency. In the following example, the file prog from the
previous example is bound to libfoo.so.1, found in the present working directory.

$ LD_LIBRARY_PATH=. prog

Although useful as a temporary mechanism of influencing the runtime linker's search path,
the use of LD_LIBRARY_PATH is strongly discouraged in production software. Any executables
that can reference this environment variable will have their search paths augmented. This
augmentation can result in an overall degradation in performance. Also, as pointed out in
“Using an Environment Variable” on page 38 and “Directories Searched by the Runtime
Linker” on page 39, LD_LIBRARY_PATH affects the link-editor.

Environmental search paths can result in a 64-bit executable searching a path that contains a 32-
bit library that matches the name being looked for. Or, the other way around. The runtime linker
rejects the mismatched 32-bit library and continues its search looking for a valid 64-bit match.
If no match is found, an error message is generated. This rejection can be observed in detail by
setting the LD_DEBUG environment variable to include the files token. See “Runtime Linker
Debugging Facility” on page 120.

$ LD_LIBRARY_PATH=/lib/64 LD_DEBUG=files /usr/bin/ls

....

00283: file=libc.so.1; needed by /usr/bin/ls

00283:

00283: file=/lib/64/libc.so.1 rejected: ELF class mismatch: 32-bit/64-bit

00283:

00283: file=/lib/libc.so.1 [ELF]; generating link map

00283: dynamic: 0xef631180 base: 0xef580000 size: 0xb8000

00283: entry: 0xef5a1240 phdr: 0xef580034 phnum: 3

00283: lmid: 0x0

00283:

00283: file=/lib/libc.so.1; analyzing [RTLD_GLOBAL RTLD_LAZY]

....

86 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Shared Object Dependencies

If a dependency cannot be located, ldd(1) indicates that the object cannot be found. Any
attempt to execute the application results in an appropriate error message from the runtime
linker.

$ ldd prog

 libfoo.so.1 => (file not found)

 libc.so.1 => /lib/libc.so.1

 libm.so.2 => /lib/libm.so.2

$ prog

ld.so.1: prog: fatal: libfoo.so.1: open failed: No such file or directory

Configuring the Default Search Paths

The default search paths used by the runtime linker are /lib and /usr/lib for 32-bit
application. For 64-bit applications, the default search paths are /lib/64 and /usr/lib/64.
These search paths can be administered using a runtime configuration file created by the
crle(1) utility. This file is often a useful aid for establishing search paths for applications that
have not been built with the correct runpaths.

A configuration file can be constructed in the default location /var/ld/ld.config, for 32-bit
applications, or /var/ld/64/ld.config, for 64-bit applications. This file affects all applications
of the respective type on a system. Configuration files can also be created in other locations,
and the runtime linker's LD_CONFIG environment variable used to select these files. This latter
method is useful for testing a configuration file before installing the file in the default location.

Dynamic String Tokens

The runtime linker allows for the expansion of various dynamic string tokens. These tokens are
applicable for filter, runpath and dependency definitions.

■ $CAPABILITY – Indicates a directory in which objects offering differing capabilities can be
located. See “Capability Specific Shared Objects” on page 293.

■ $ISALIST – Expands to the native instruction sets executable on this platform. See
“Instruction Set Specific Shared Objects” on page 295.

■ $ORIGIN – Provides the directory location of the current object. See “Locating Associated
Dependencies” on page 298.

■ $OSNAME – Expands to the name of the operating system. See “System Specific Shared
Objects” on page 297.

■ $OSREL – Expands to the operating system release level. See “System Specific Shared
Objects” on page 297.

Chapter 3 • Runtime Linker 87

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ldd-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1crle-1

Relocation Processing

■ $PLATFORM – Expands to the processor type of the current machine. See “System Specific
Shared Objects” on page 297.

Relocation Processing

After the runtime linker has loaded all the dependencies required by an application, the linker
processes each object and performs all necessary relocations.

During the link-editing of an object, any relocation information supplied with the input
relocatable objects is applied to the output file. However, when creating a dynamic object,
many of the relocations cannot be completed at link-edit time. These relocations require logical
addresses that are known only when the objects are loaded into memory. In these cases, the
link-editor generates new relocation records as part of the output file image. The runtime linker
must then process these new relocation records.

For a more detailed description of the many relocation types, see “Relocation
Entries” on page 398. Two basic types of relocation exist.

■ Non-symbolic relocations
■ Symbolic relocations

The relocation records for an object can be displayed by using elfdump(1). In the following
example, the file libbar.so.1 contains two relocation records that indicate that the global
offset table, or .got section, must be updated.

$ elfdump -r libbar.so.1

Relocation Section: .rel.got:

 type offset section symbol

 R_SPARC_RELATIVE 0x10438 .rel.got

 R_SPARC_GLOB_DAT 0x1043c .rel.got foo

The first relocation is a simple relative relocation that can be seen from the relocation type and
that no symbol is referenced. This relocation needs to use the base address at which the object is
loaded into memory to update the associated .got offset.

The second relocation requires the address of the symbol foo. To complete this relocation,
the runtime linker must locate this symbol from either the executable or from one of its
dependencies.

88 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1elfdump-1

Relocation Processing

Relocation Symbol Lookup

The runtime linker is responsible for searching for symbols that are required by objects at
runtime. Typically, users become familiar with the default search model that is applied to an
executable and its dependencies, and to the objects obtained through dlopen(3C). However,
more complex flavors of symbol lookup can result because of the symbol attributes of an object,
or through specific binding requirements.

Two attributes of an object affect symbol lookup. The first attribute is the requesting object's
symbol search scope. The second attribute is the symbol visibility offered by each object within
the process.

These attributes can be applied as defaults at the time the object is loaded. These attributes
can also be supplied as specific modes to dlopen(3C). In some cases, these attributes can be
recorded within the object at the time the object is built.

An object can define a world search scope, and/or a group search scope.

world

The object can search for symbols in any other global object within the process.

group

The object can search for symbols in any object of the same group. The dependency tree
created from an object obtained with dlopen(3C), or from an object built using the link-
editor's -B group option, forms a unique group.

An object can define that any of the object's exported symbols are globally visible or locally
visible.

global

The object's exported symbols can be referenced from any object that has world search
scope.

local

The object's exported symbols can be referenced only from other objects that make up the
same group.

The runtime symbol search can also be dictated by a symbols visibility. Symbols assigned
the STV_SINGLETON visibility are not affected by any symbol search scope. All references to a
singleton symbol are bound to the first occurrence of a singleton definition within the process.
See Table 35, “ELF Symbol Visibility,” on page 414.

Chapter 3 • Runtime Linker 89

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c

Relocation Processing

The simplest form of symbol lookup is outlined in the next section “Default Symbol
Lookup” on page 90. Typically, symbol attributes are exploited by various forms of
dlopen(3C). These scenarios are discussed in “Symbol Lookup” on page 109.

An alternative model for symbol lookup is provided when a dynamic object employs direct
bindings. This model directs the runtime linker to search for a symbol directly in the object that
provided the symbol at link-edit time. See Chapter 7, “Direct Bindings”.

Default Symbol Lookup

An executable and all the dependencies loaded with the executable are assigned world search
scope, and global symbol visibility. A default symbol lookup for an executable or for any of the
dependencies loaded with the executable, results in a search of each object. The runtime linker
starts with the executable, and progresses through each dependency in the same order in which
the objects were loaded.

ldd(1) lists the dependencies of an executable in the order in which the dependencies are
loaded. For example, suppose the executable prog specifies libfoo.so.1 and libbar.so.1 as
its dependencies.

$ ldd prog

 libfoo.so.1 => /home/me/lib/libfoo.so.1

 libbar.so.1 => /home/me/lib/libbar.so.1

Should the symbol bar be required to perform a relocation, the runtime linker first looks for
bar in the executable prog If the symbol is not found, the runtime linker then searches in the
shared object /home/me/lib/libfoo.so.1, and finally in the shared object /home/me/lib/
libbar.so.1.

Note - Symbol lookup can be an expensive operation, especially when the size of symbol names
increases and the number of dependencies increases. This aspect of performance is discussed in
more detail in Chapter 9, “Building Objects to Optimize System Performance”. See Chapter 7,
“Direct Bindings” for an alternative lookup model.

The default relocation processing model also provides for a transition into a lazy loading
environment. If a symbol can not be found in the currently loaded objects, any pending lazy
loaded objects are processed in an attempt to locate the symbol. This loading compensates
for objects that have not fully defined their dependencies. However, this compensation can
undermine the advantages of a lazy loading.

90 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ldd-1

Relocation Processing

Runtime Interposition

By default, the runtime linker searches for a symbol first in the executable and then in each
dependency. With this model, the first occurrence of the required symbol satisfies the search.
Therefore, if more than one instance of the same symbol exists, the first instance interposes on
all others.

An overview of how symbol resolution is affected by interposition is provided in “Simple
Resolutions” on page 45. A mechanism for changing symbol visibility, and hence reducing the
chance of accidental interposition is provided in “Reducing Symbol Scope” on page 56.

Note - Symbols assigned the STV_SINGLETON visibility provide a form of interposition. All
references to a singleton symbol are bound to the first occurrence of a singleton definition
within the process. See Table 35, “ELF Symbol Visibility,” on page 414.

Interposition can be enforced, on a per-object basis, if an object is explicitly identified as an
interposer. Any object loaded using the environment variable LD_PRELOAD or created with
the link-editor's -z interpose option, is identified as an interposer. When the runtime linker
searches for a symbol, any object identified as an interposer is searched after the application,
but before any other dependencies.

The use of all of the interfaces offered by an interposer can only be guaranteed if the
interposer is loaded before any process relocation has occurred. Interposers provided using
the environment variable LD_PRELOAD, or established as non-lazy loaded dependencies of the
application, are loaded before relocation processing starts. Interposers that are brought into a
process after relocation has started are demoted to normal dependencies. Interposers can be
demoted if the interposer is lazy loaded, or loaded as a consequence of using dlopen(3C). The
former category can be detected using ldd(1).

$ ldd -Lr prog

 libc.so.1 => /lib/libc.so.1

 foo.so.2 => ./foo.so.2

 libmapmalloc.so.1 => /usr/lib/libmapmalloc.so.1

 loading after relocation has started: interposition request \

 (DF_1_INTERPOSE) ignored: /usr/lib/libmapmalloc.so.1

Note - If the link-editor encounters an explicitly defined interposer while processing
dependencies for lazy loading, the interposer is recorded as a non-lazy loadable dependency.

Individual symbols within an executable can be defined as interposers using the INTERPOSE
mapfile keyword. This mechanism is more selective that using the -z interpose option, and
provides better insulation over adverse interposition that can occur as dependencies evolve. See
“Defining Explicit Interposition” on page 173.

Chapter 3 • Runtime Linker 91

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ldd-1

Relocation Processing

When Relocations Are Performed

Relocations can be separated into two types dependent upon when the relocation is performed.
This distinction arises due to the type of reference being made to the relocated offset.

■ An immediate reference
■ A lazy reference

An immediate reference refers to a relocation that must be determined immediately when an
object is loaded. These references are typically to data items used by the object code, pointers
to functions, and even calls to functions made from position-dependent shared objects. These
relocations cannot provide the runtime linker with knowledge of when the relocated item is
referenced. Therefore, all immediate relocations must be carried out when an object is loaded,
and before the application gains, or regains, control.

A lazy reference refers to a relocation that can be determined as an object executes. These
references are typically calls to global functions made from position-independent shared objects
and position-independent executables, or calls to external functions made from a dynamic
executable. During the compilation and link-editing of any dynamic module that provide these
references, the associated function calls become calls to a procedure linkage table entry. These
entries make up the .plt section. Each procedure linkage table entry becomes a lazy reference
with an associated relocation.

As part of the first call to a procedure linkage table entry, control is passed to the runtime linker.
The runtime linker looks up the required symbol and rewrites the entry information in the
associated object. Future calls to this procedure linkage table entry go directly to the function.
This mechanism enables relocations of this type to be deferred until the first instance of a
function is called. This process is sometimes referred to as lazy binding.

The runtime linker default mode is to perform lazy binding whenever procedure linkage table
relocations are provided. This default can be overridden by setting the environment variable
LD_BIND_NOW to any non-null value. This environment variable setting causes the runtime linker
to perform both immediate reference and lazy reference relocations when an object is loaded.
These relocations are performed before the application gains, or regains, control. For example,
all relocations within the file prog together within its dependencies are processed under the
following environment variable. These relocations are processed before control is transferred to
the application.

$ LD_BIND_NOW=1 prog

Objects can also be accessed with dlopen(3C) with the mode defined as RTLD_NOW. Objects can
also be built using the link-editor's -z now option to indicate that the object requires complete
relocation processing at the time the object is loaded. This relocation requirement is also
propagated to any dependencies of the marked object at runtime.

92 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c

Relocation Processing

Note - The preceding examples of immediate references and lazy references are typical.
However, the creation of procedure linkage table entries is ultimately controlled by the
relocation information provided by the relocatable object files used as input to a link-edit.
Relocation records such as R_SPARC_WPLT30 and R_386_PLT32 instruct the link-editor to create a
procedure linkage table entry. These relocations are common for position-independent code.

However, a dynamic executable is typically created from position dependent code, which might
not indicate that a procedure linkage table entry is required. Because a dynamic executable has
a fixed location, the link-editor can create a procedure linkage table entry when a reference is
bound to an external function definition. This procedure linkage table entry creation occurs
regardless of the original relocation records.

Relocation Errors
The most common relocation error occurs when a symbol cannot be found. This condition
results in an appropriate runtime linker error message together with the termination of the
application. In the following example, the symbol bar, which is referenced in the file libfoo.
so.1, cannot be located.

$ ldd prog

 libfoo.so.1 => ./libfoo.so.1

 libc.so.1 => /lib/libc.so.1

 libbar.so.1 => ./libbar.so.1

 libm.so.2 => /lib/libm.so.2

$ prog

ld.so.1: prog: fatal: relocation error: file ./libfoo.so.1: \

 symbol bar: referenced symbol not found

During the link-edit of an executable, any potential relocation errors of this sort are flagged
as fatal undefined symbols. See “Generating an Executable Output File” on page 48 for
examples. However, a runtime relocation error can occur if a dependency located at runtime is
incompatible with the original dependency referenced as part of the link-edit. In the previous
example, prog was built against a version of the shared object libbar.so.1 that contained a
symbol definition for bar.

The use of the -z nodefs option during a link-edit suppresses the validation of an objects
runtime relocation requirements. This suppression can also lead to runtime relocation errors.

If a relocation error occurs because a symbol used as an immediate reference cannot be found,
the error condition occurs immediately during process initialization. With the default mode of
lazy binding, if a symbol used as a lazy reference cannot be found, the error condition occurs
after the application has gained control. This latter case can take minutes or months, or might
never occur, depending on the execution paths exercised throughout the code.

Chapter 3 • Runtime Linker 93

Preloading Additional Objects

To guard against errors of this kind, the relocation requirements of any dynamic object can be
validated using ldd(1).

When the -d option is specified with ldd(1), every dependency is printed and all immediate
reference relocations are processed. If a reference cannot be resolved, a diagnostic message
is produced. From the previous example, the -d option would result in the following error
diagnostic.

$ ldd -d prog

 libfoo.so.1 => ./libfoo.so.1

 libc.so.1 => /lib/libc.so.1

 libbar.so.1 => ./libbar.so.1

 libm.so.2 => /lib/libm.so.2

 symbol not found: bar (./libfoo.so.1)

When the -r option is specified with ldd(1), all immediate reference and lazy reference
relocations are processed. If either type of relocation cannot be resolved, a diagnostic message
is produced.

Preloading Additional Objects

The runtime linker provides an additional level of flexibility by enabling you to introduce
new objects during process initialization by using the environment variable LD_PRELOAD. This
environment variable can be initialized to a shared object or relocatable object file name, or a
string of file names separated by white space. These objects are loaded after the executable and
before any dependencies. These objects are assigned world search scope, and global symbol
visibility.

In the following example, the dynamic executable prog is loaded, followed by the shared object
newstuff.so.1. The dependencies defined within prog are then loaded.

$ LD_PRELOAD=./newstuff.so.1 prog

The order in which these objects are processed can be displayed using ldd(1).

$ ldd -e LD_PRELOAD=./newstuff.so.1 prog

 ./newstuff.so.1 => ./newstuff.so

 libc.so.1 => /lib/libc.so.1

In the following example, the preloading is a little more complex and time consuming.

$ LD_PRELOAD="./foo.o ./bar.o" prog

The runtime linker first link-edits the relocatable objects foo.o and bar.o to generate a shared
object that is maintained in memory. This memory image is then inserted between the dynamic

94 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ldd-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ldd-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ldd-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ldd-1

Lazy Loading of Dynamic Dependencies

executable and its dependencies in the same manner as the shared object newstuff.so.1 was
preloaded in the previous example. Again, the order in which these objects are processed can be
displayed with ldd(1).

$ ldd -e LD_PRELOAD="./foo.o ./bar.o" ldd prog

 ./foo.o => ./foo.o

 ./bar.o => ./bar.o

 libc.so.1 => /lib/libc.so.1

These mechanisms of inserting an object after an executable provide for interposition. You
can use these mechanisms to experiment with a new implementation of a function that resides
in a standard shared object. If you preload an object containing this function, the object
interposes on the original. Thus, the original functionality can be completely hidden with the
new preloaded version.

Another use of preloading is to augment a function that resides in a standard shared object. The
interposition of the new symbol on the original symbol enables the new function to carry out
additional processing. The new function can also call through to the original function. This
mechanism typically obtains the original symbol's address using dlsym(3C) with the special
handle RTLD_NEXT.

Lazy Loading of Dynamic Dependencies
When a dynamic object is loaded into memory, the object is examined for any additional
dependencies. By default, any dependencies that exist are immediately loaded. This cycle
continues until the full dependency tree is exhausted. Finally, all inter-object data references
that are specified by relocations, are resolved. These operations are performed regardless of
whether the code in these dependencies is referenced by the application during its execution.

Under a lazy loading model, any dependencies that are labeled for lazy loading are loaded
only when explicitly referenced. By taking advantage of the lazy binding of a function call, the
loading of a dependency is delayed until the function is first referenced. As a result, objects that
are never referenced are never loaded.

A relocation reference can be immediate or lazy. Because immediate references must be
resolved when an object is initialized, any dependency that satisfies this reference must be
immediately loaded. Therefore, identifying such a dependency as lazy loadable has little
effect. See “When Relocations Are Performed” on page 92. Immediate references between
dynamic objects are generally discouraged.

Lazy loading is used by the link-editors reference to a debugging library, liblddbg. As
debugging is only called upon infrequently, loading this library every time that the link-editor is
invoked is unnecessary and expensive. By indicating that this library can be lazily loaded, the
expense of processing the library is moved to those invocations that ask for debugging output.

Chapter 3 • Runtime Linker 95

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ldd-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlsym-3c

Lazy Loading of Dynamic Dependencies

The alternate method of achieving a lazy loading model is to use dlopen() and dlsym() to
load and bind to a dependency when needed. This model is ideal if the number of dlsym()
references is small. This model also works well if the dependency name or location is not
known at link-edit time. For more complex interactions with known dependencies, coding to
normal symbol references and designating the dependency to be lazily loaded is simpler.

An object is designated as lazily or normally loaded through the link-editor options
-z lazyload and -z nolazyload respectively. These options are position-dependent on the
link-edit command line. Any dependency that follows the option takes on the loading attribute
specified by the option. By default, the -z nolazyload option is in effect.

The following simple program has a dependency on libdebug.so.1. The dynamic section,
.dynamic, shows libdebug.so.1 is marked for lazy loading. The symbol information section,
.SUNW_syminfo, shows the symbol reference that triggers libdebug.so.1 loading.

$ cc -o prog prog.c -L. -z lazyload -ldebug -z nolazyload -lelf -R'$ORIGIN'

$ elfdump -d prog

Dynamic Section: .dynamic

 index tag value

 [0] POSFLAG_1 0x1 [LAZY]

 [1] NEEDED 0x123 libdebug.so.1

 [2] NEEDED 0x131 libelf.so.1

 [3] NEEDED 0x13d libc.so.1

 [4] RUNPATH 0x147 $ORIGIN

 ...

$ elfdump -y prog

Syminfo section: .SUNW_syminfo

 index flgs bound to symbol

 [52] DL [1] libdebug.so.1 debug

The POSFLAG_1 with the value of LAZY designates that the following NEEDED entry, libdebug.
so.1, should be lazily loaded. As libelf.so.1 has no preceding LAZY flag, this library is loaded
at the initial startup of the program.

Note - libc.so.1 has special system requirements, that require the file not be lazy loaded. If
-z lazyload is in effect when libc.so.1 is processed, the flag is effectively ignored.

The use of lazy loading can require a precise declaration of dependencies and runpaths through
out the objects used by an application. For example, suppose two objects, libA.so and libB.
so, both make reference to symbols in libX.so. libA.so declares libX.so as a dependency,
but libB.so does not. Typically, when libA.so and libB.so are used together, libB.so can
reference libX.so because libA.so made this dependency available. But, if libA.so declares

96 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Lazy Loading of Dynamic Dependencies

libX.so to be lazy loaded, it is possible that libX.so might not be loaded when libB.so makes
reference to this dependency. A similar failure can occur if libB.so declares libX.so as a
dependency but fails to provide a runpath necessary to locate the dependency.

Regardless of lazy loading, dynamic objects should declare all their dependencies and how to
locate the dependencies. With lazy loading, this dependency information becomes even more
important.

Note - Lazy loading can be disabled at runtime by setting the environment variable
LD_NOLAZYLOAD to a non-null value.

Providing an Alternative to dlopen()

dlopen(3C) and dlsym(3C) are often used to load and exercise additional objects. See “Runtime
Linking Programming Interface” on page 106. For example, the following code from
libdep.so.1 loads libbar.so.1, and on success calls interfaces provided by libbar.so.1.

void dep()

{

 void *handle;

 if ((handle = dlopen("libbar.so.1", RTLD_LAZY)) != NULL) {

 int (*fptr)();

 if ((fptr = (int (*)())dlsym(handle, "bar1")) != NULL)

 (*fptr)(arg1);

 if ((fptr = (int (*)())dlsym(handle, "bar2")) != NULL)

 (*fptr)(arg2);

 }

}

Although very flexible, this model of using dlopen() and dlsym() is an unnatural coding style,
and has some drawbacks.

■ The object in which the symbols are expected to exist must be known.
■ The calls through function pointers provide no means of verification by either the compiler,

or lint(1).

This code can be simplified if the object that supplies the required interfaces satisfies the
following conditions.

■ The object can be established as a dependency at link-edit time.
■ The object is always available.

Chapter 3 • Runtime Linker 97

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlsym-3c

Lazy Loading of Dynamic Dependencies

By exploiting that a function reference can trigger lazy loading, the same delayed loading of
libbar.so.1 can be achieved. In this case, the reference to the function bar1() results in lazy
loading the associated dependency. This coding is far more natural, and the use of standard
function calls provides for compiler, or lint(1) validation.

void dep()

{

 bar1(arg1);

 bar2(arg2);

}

$ cc -G -o libdep.so.1 dep.c -L. -z lazyload -lbar -lc

However, this model fails if the object that provides the required interfaces is not always
available. Should the application be exercised when LD_BIND_NOW is set, or the shared object
be loaded through dlopen(3C) with the RTLD_NOW flag, then all references from the associated
objects are processed. Any failure to bind a symbol reference to a definition results in a fatal
error.

In this case, it is desirable to test for the existence of the dependency, without having to know
the dependency name. A means of testing for the availability of a dependency that satisfies a
function reference is required.

A robust model for testing for the existence of a function can be achieved with deferred
dependencies, and use of dlsym(3C) with the RTLD_PROBE handle.

Deferred symbol references differ from standard symbol references in the following details.

■ Deferred references can only be established for function calls.
■ Deferred references are directly bound at runtime to the associated dependency.
■ Deferred references are not resolved as part of standard relocation processing, or

LD_BIND_NOW processing, or through dlopen(3C) with the RTLD_NOW flag.

Deferred references are resolved during process execution, when the associated function is first
referenced. The assurance of this delayed resolution provides a window where the caller can
test for the existence of the deferred dependency before making calls to the deferred function.

Deferred Dependencies

A deferred dependency identifies a dependency for which all references to that dependency
are deferred. Deferred dependencies are established at link-edit time using the link-editors
-z deferred option.

$ cc -G -o libdef.so.1 def.c -lfoo -z deferred -lbar -lc

98 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlsym-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c

Initialization and Termination Routines

The deferred nature of these references can be observed from the symbol information and
dynamic information defined within the referring object.

$ elfdump -d libdef.so.1 | egrep "NEEDED|POSFLAG"

 [0] NEEDED 0x85 libfoo.so

 [1] POSFLAG_1 0x4 [DEFERRED]

 [2] NEEDED 0x8f libbar.so

 [3] NEEDED 0x99 libc.so

$ elfdump -y libdep.so.1 | egrep "foo|bar"

 [4] [DEPEND DEFERRED] [2] libbar.so bar1

 [7] [DEPEND] [0] libfoo.so foo1

 ...

Having established libbar.so.1 as a deferred dependency, at runtime a dlsym(RTLD_PROBE)
against one of the bar() symbols can be used to determine whether the family of symbols are
available. On success, the members of the family can be called as direct function calls. These
calls are much more legible and easier to write, and allow the compiler to catch errors in their
calling sequences.

void dep()

{

 if (dlsym(RTLD_PROBE, "bar1")) {

 bar1(arg1);

 bar2(arg2);

 }

}

Deferred dependencies offer an additional level of flexibility. Provided the dependency has not
already been loaded, the dependency can be changed at runtime. This mechanism offers a level
of flexibility similar to dlopen(3C), where different objects can be loaded and bound to by the
caller.

If the original dependency name is known, then the original dependency can be exchanged for
a new dependency using dlinfo(3C) with the RTLD_DI_DEFERRED argument. Alternatively, a
deferred symbol that is associated with the dependency can be used to identify the deferred
dependency using dlinfo(3C) with the RTLD_DI_DEFERRED_SYM argument.

Initialization and Termination Routines

Dynamic objects can supply code that provides for runtime initialization and termination
processing. The initialization code of a dynamic object is executed once each time the dynamic

Chapter 3 • Runtime Linker 99

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlinfo-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlinfo-3c

Initialization and Termination Routines

object is loaded in a process. The termination code of a dynamic object is executed once each
time the dynamic object is unloaded from a process or at process termination.

Before transferring control to an application, the runtime linker processes any initialization
sections found in the application and any loaded dependencies. If new dynamic objects are
loaded during process execution, their initialization sections are processed as part of loading the
object. The initialization sections .preinit_array, .init_array, and .init are created by the
link-editor when a dynamic object is built.

The runtime linker executes functions whose addresses are contained in the .preinit_array
and .init_array sections. These functions are executed in the same order in which their
addresses appear in the array. The runtime linker executes an .init section as an individual
function. If an object contains both .init and .init_array sections, the .init section is
processed before the functions defined by the .init_array section for that object.

An executable can provide pre-initialization functions in a .preinit_array section. These
functions are executed after the runtime linker has built the process image and performed
relocations but before any other initialization functions. Pre-initialization functions are not
permitted in shared objects.

Note - Any .init section within the executable is called from the application by the process
startup mechanism supplied by the compiler driver. The .init section within the executable is
called last, after all dependency initialization sections are executed.

Dynamic objects can also provide termination sections. The termination sections .fini_array
and .fini are created by the link-editor when a dynamic object is built.

Any termination sections are passed to atexit(3C). These termination routines are called when
the process calls exit(2). Termination sections are also called when objects are removed from
the running process with dlclose(3C).

The runtime linker executes functions whose addresses are contained in the .fini_array
section. These functions are executed in the reverse order in which their addresses appear in
the array. The runtime linker executes a .fini section as an individual function. If an object
contains both .fini and .fini_array sections, the functions defined by the .fini_array
section are processed before the .fini section for that object.

Note - Any .fini section within the executable is called from the application by the process
termination mechanism supplied by the compiler driver. The .fini section of the executable is
called first, before all dependency termination sections are executed.

For more information on the creation of initialization and termination sections by the link-editor
see “Initialization and Termination Sections” on page 40.

100 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Aatexit-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlclose-3c

Initialization and Termination Routines

Limitations and Pitfalls of Initialization and
Termination Code

ELF initialization and termination sections and routines execute at a sensitive point in the life
cycle of the object. During initialization, the object has been loaded into memory, but is not
fully initialized. During finalization, the object is still loaded in memory, but is no longer safe
to use, and may be partially removed from the process state. In either context, the process state
is not fully consistent, and there are significant limits on what code can safely do. Common
pitfalls include, but are not limited, to the following.

■ Cyclic dependencies resulting in deadlock, where the initialization code for one object
triggers the loading of another object, which in turn calls back into the initial object.

■ Thread serialization failures when a shared object is used in a multithreaded application.
Two threads may attempt to access a lazily loaded library at the same time. The thread
that gets there first will cause the runtime linker to load the object and start to run
the initialization code. Programmers are often under the mistaken impression that the
runtime linker can prevent more than one thread from accessing a given object when ELF
initialization and termination code is running, but this is not the case. The runtime linker
cannot prevent other threads from attempting to access the library once the initialization
code is running. It is therefore possible for a second thread to access the object in an
inconsistent state. It is the responsibility of the object to serialize such access, either by
providing the necessary locks, or my requiring the caller to do so.

ELF initialization and termination sections and routines allow for the execution of arbitrary
code, giving the illusion that they are capable of doing anything that code running in a normal
context might do. In this view, such code seems like nothing more than a convenient way to do
initialization or cleanup without explicit function calls. This misconception leads to failures that
can be difficult to diagnose.

Programmers should be cautious in their use of ELF initialization and termination code,
and limit the scope and complexity of operations. The link-editor and runtime linker are not
cognizant of the content or purpose of such code, and cannot diagnose or prevent unsafe code.
Small self contained operations are safe. Operations involving access to other objects or process
state may not be. Rather than attempt complex operations in initialization and termination code,
libraries should provide explicit initialization and termination functions for their callers to run,
and document the requirement to do so.

The following section considers these issues in detail.

Chapter 3 • Runtime Linker 101

Initialization and Termination Routines

Initialization and Termination Order

To determine the order of executing initialization and termination code within a process
at runtime is a complex procedure that involves dependency analysis. This procedure has
evolved substantially from the original inception of initialization and termination sections. This
procedure attempts to fulfill the expectations of modern languages and current programming
techniques. However, scenarios can exist, where user expectations are hard to meet. Flexible,
predictable runtime behavior can be achieved by understanding these scenarios together with
limiting the content of initialization code and termination code.

The goal of an initialization section is to execute a small piece of code before any other code
within the same object is referenced. The goal of a termination section is to execute a small
piece of code after an object has finished executing. Self contained initialization sections and
termination sections can easily satisfy these requirements.

However, initialization sections are typically more complex and make reference to external
interfaces that are provided by other objects. Therefore, a dependency is established where
the initialization section of one object must be executed before references are made from
other objects. Applications can establish an extensive dependency hierarchy. In addition,
dependencies can creating cycles within their hierarchies. The situation can be further
complicated by initialization sections that load additional objects, or change the relocation
mode of objects that are already loaded. These issues have resulted in various sorting and
execution techniques that attempt to satisfy the original goal of these sections.

The runtime linker constructs a topologically sorted list of objects that have been loaded. This
list is built from the dependency relationship expressed by each object, together with any
symbol bindings that occur outside of the expressed dependencies.

Initialization sections are executed in the reverse topological order of the dependencies. If
cyclic dependencies are found, the objects that form the cycle cannot be topologically sorted.
The initialization sections of any cyclic dependencies are executed in their reverse load order.
Similarly, termination sections are called in the topological order of the dependencies. The
termination sections of any cyclic dependencies are executed in their load order.

A static analysis of the initialization order of an object's dependencies can be obtained by
using ldd(1) with the -i option. For example, the following dynamic objects exhibit a cyclic
dependency.

$ elfdump -d B.so.1 | grep NEEDED

 [1] NEEDED 0xa9 C.so.1

$ elfdump -d C.so.1 | grep NEEDED

 [1] NEEDED 0xc4 B.so.1

$ elfdump -d main | grep NEEDED

 [1] NEEDED 0xd6 A.so.1

102 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ldd-1

Initialization and Termination Routines

 [2] NEEDED 0xc8 B.so.1

 [3] NEEDED 0xe4 libc.so.1

$ ldd -i main

 A.so.1 => ./A.so.1

 B.so.1 => ./B.so.1

 libc.so.1 => /lib/libc.so.1

 C.so.1 => ./C.so.1

 libm.so.2 => /lib/libm.so.2

 cyclic dependencies detected, group[1]:

 ./libC.so.1

 ./libB.so.1

 init object=/lib/libc.so.1

 init object=./A.so.1

 init object=./C.so.1 - cyclic group [1], referenced by:

 ./B.so.1

 init object=./B.so.1 - cyclic group [1], referenced by:

 ./C.so.1

The previous analysis resulted solely from the topological sorting of the explicit dependency
relationships. However, objects are frequently created that do not define their required
dependencies. For this reason, symbol bindings are also incorporated as part of dependency
analysis. The incorporation of symbol bindings with explicit dependencies can help produce a
more accurate dependency relationship. A more accurate static analysis of initialization order
can be obtained by using ldd(1) with the -i and -d options.

The most common model of loading objects uses lazy binding. With this model, only immediate
reference symbol bindings are processed before initialization processing. Symbol bindings from
lazy references might still be pending. These bindings can extend the dependency relationships
so far established. A static analysis of the initialization order that incorporates all symbol
binding can be obtained by using ldd(1) with the -i and -r options.

In practice, most applications use lazy binding. Therefore, the dependency analysis achieved
before computing the initialization order follows the static analysis using ldd -i -d. However,
because this dependency analysis can be incomplete, and because cyclic dependencies can exist,
the runtime linker provides for dynamic initialization.

Dynamic initialization attempts to execute the initialization section of an object before any
functions in the same object are called. During lazy symbol binding, the runtime linker
determines whether the initialization section of the object being bound to has been called. If not,
the runtime linker executes the initialization section before returning from the symbol binding
procedure.

Dynamic initialization can not be revealed with ldd(1). However, the exact sequence of
initialization calls can be observed at runtime by setting the LD_DEBUG environment variable to

Chapter 3 • Runtime Linker 103

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ldd-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ldd-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ldd-1

Initialization and Termination Routines

include the token init. See “Runtime Linker Debugging Facility” on page 120. Extensive
runtime initialization information and termination information can be captured by adding
the debugging token detail. This information includes dependency listings, topological
processing, and the identification of cyclic dependencies.

Dynamic initialization is only available when processing lazy references. This dynamic
initialization is circumvented by the following.

■ Use of the environment variable LD_BIND_NOW.
■ Objects that have been built with the -z now option.
■ Objects that are loaded by dlopen(3C) with the mode RTLD_NOW.

The initialization techniques that have been described so far might still be insufficient to cope
with some dynamic activities. Initialization sections can load additional objects, either explicitly
using dlopen(3C), or implicitly through lazy loading and the use of filters. Initialization
sections can also promote the relocations of existing objects. Objects that have been loaded
to employ lazy binding have these bindings resolved if the same object is referenced using
dlopen(3C) with the mode RTLD_NOW. This relocation promotion effectively suppresses the
dynamic initialization facility that is available when resolving a function call dynamically.

Whenever new objects are loaded, or existing objects have their relocations promoted, a
topological sort of these objects is initiated. Effectively, the original initialization execution
is suspended while the new initialization requirements are established and the associated
initialization sections executed. This model attempts to insure that the newly referenced objects
are suitably initialized for the original initialization section to use. However, this parallelization
can be the cause of unwanted recursion.

While processing objects that employ lazy binding, the runtime linker can detect certain levels
of recursion. This recursion can be displayed by setting LD_DEBUG=init. For example, the
execution of the initialization section of foo.so.1 might result in calling another object. If this
object then references an interface in foo.so.1 then a cycle is created. The runtime linker can
detect this recursion as part of binding the lazy function reference to foo.so.1.

$ LD_DEBUG=init prog

00905:

00905: warning: calling foo.so.1 whose init has not completed

00905:

Recursion that occurs through references that have already been relocated can not be detected
by the runtime linker.

Recursion can be expensive and problematic. Reduce the number of external references and
dynamic loading activities that can be triggered by an initialization section so as to eliminate
recursion.

104 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c

Runtime Security

Initialization processing is repeated for any objects that are added to the running process with
dlopen(3C). Termination processing is also carried out for any objects that are unloaded from
the process as a result of a call to dlclose(3C).

The preceding sections describe the various techniques that are employed to execute
initialization and termination sections in a manner that attempts to meet user expectations.
However, coding style and link-editing practices should also be employed to simplify the
initialization and termination relationships between dependencies. This simplification helps
make initialization processing and termination processing that is predictable, while less prone to
any side affects of unexpected dependency ordering.

Keep the content of initialization and termination sections to a minimum. Avoid global
constructors by initializing objects at runtime. Reduce the dependency of initialization
and termination code on other dependencies. Define the dependency requirements of all
dynamic objects. See “Generating a Shared Object Output File” on page 49. Do not express
dependencies that are not required. See “Shared Object Processing” on page 34. Avoid cyclic
dependencies. Do not depend on the order of an initialization or termination sequence. The
ordering of objects can be affected by both shared object and application development. See
“Dependency Ordering” on page 132.

Runtime Security

Secure processes have some restrictions applied to the evaluation of their dependencies and
runpaths to prevent malicious dependency substitution or symbol interposition.

The runtime linker categorizes a process as secure if the issetugid(2) system call returns true
for the process.

For 32-bit objects, the default trusted directories that are known to the runtime linker are /lib/
secure and /usr/lib/secure. For 64-bit objects, the default trusted directories that are known
to the runtime linker are /lib/secure/64 and /usr/lib/secure/64. The utility crle(1) can
be used to specify additional trusted directories that are applicable for secure applications.
Administrators who use this technique should ensure that the target directories are suitably
protected from malicious intrusion.

If an LD_LIBRARY_PATH family environment variable is in effect for a secure process, only the
trusted directories specified by this variable are used to augment the runtime linker search rules.
See “Directories Searched by the Runtime Linker” on page 84.

In a secure process, any runpath specifications provided by the application or any of its
dependencies are used. However, the runpath must be a full path name, that is, the path name
must start with a '/'.

Chapter 3 • Runtime Linker 105

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlclose-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2issetugid-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1crle-1

Runtime Linking Programming Interface

In a secure process, the expansion of the $ORIGIN string is allowed only if the string expands
to a trusted directory. See “Security in Coded Processes” on page 302. However, should a
$ORIGIN expansion match a directory that has already provided dependencies, then the directory
is implicitly secure. This directory can be used to provide additional dependencies.

In a secure process, LD_CONFIG is ignored. However, a configuration file that is recorded in
a secure application is used. See the -c option of ld(1). A recorded configuration file must
be a full path name, that is, the path name starts with a '/'. A recorded configuration file that
employs the $ORIGIN string is restricted to known trusted directories. Developers who record a
configuration file within a secure application should ensure that the configuration file directory
is suitably protected from malicious intrusion. In the absence of a recorded configuration file, a
secure process uses the default configuration file, if the configuration file exists. See crle(1).

In a secure process, LD_SIGNAL is ignored.

Additional objects can be loaded with a secure process using the LD_PRELOAD or LD_AUDIT
environment variables. These objects must be specified as full path names or simple file names.
Full path names are restricted to known trusted directories. Simple file names, in which no '/'
appears in the name, are located subject to the search path restrictions previously described.
Simple file names resolve only to known trusted directories.

In a secure process, any dependencies that consist of simple file names are processed using
the path name restrictions previously described. Dependencies expressed as full path names or
relative path names are used as is. Therefore, the developer of a secure process should ensure
that the target directory referenced as one of these dependencies is suitably protected from
malicious intrusion.

When creating a secure process, do not use relative path names to express dependencies or
to construct dlopen(3C) path names. This restriction applies to the application and to all
dependencies.

Runtime Linking Programming Interface

Dependencies specified during the link-edit of an application are processed by the runtime
linker during process initialization. In addition to this mechanism, the application can extend its
address space during its execution by binding to additional objects. The application effectively
uses the same services of the runtime linker that are used to process the applications standard
dependencies.

Delayed object binding has several advantages.

106 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ld-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1crle-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c

Runtime Linking Programming Interface

■ By processing an object when the object is required rather than during the initialization of
an application, startup time can be greatly reduced. If the services provided by an object
are not needed during a particular run of the application, the object is not required. This
scenario can occur for objects that provide help or debugging information.

■ The application can choose between several different objects, depending on the exact
services required, such as for a networking protocol.

■ Any objects added to the process address space during execution can be freed after use.

An application can use the following typical scenario to access an additional shared object.

■ A shared object is located and added to the address space of a running application using
dlopen(3C). Any dependencies of this shared object are located and added at this time.

■ The added shared object and its dependencies are relocated. Any initialization sections
within these objects are called.

■ The application locates symbols within the added objects using dlsym(3C). The application
can then reference the data or call the functions defined by these new symbols.

■ After the application has finished with the objects, the address space can be freed using
dlclose(3C). Any termination sections that exist within the objects that are being freed are
called at this time.

■ Any error conditions that occur as a result of using the runtime linker interface routines can
be displayed using dlerror(3C).

The services of the runtime linker are defined in the header file dlfcn.h and are made available
to an application by the shared object libc.so.1. In the following example, the file main.c can
make reference to any of the dlopen(3C) family of routines, and the application prog can bind
to these routines at runtime.

$ cc -o prog main.c

Note - In previous releases of the Oracle Solaris OS, the dynamic linking interfaces were
made available by the shared object libdl.so.1. libdl.so.1 remains available to support any
existing dependencies. However, the dynamic linking interfaces offered by libdl.so.1 are now
available from libc.so.1. Linking with -ldl is no longer necessary.

Loading Additional Objects

Additional objects can be added to a running process's address space by using dlopen(3C).
This function takes a path name and a binding mode as arguments, and returns a handle to
the application. This handle can be used to locate symbols for use by the application using
dlsym(3C).

Chapter 3 • Runtime Linker 107

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlsym-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlclose-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlerror-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlsym-3c

Runtime Linking Programming Interface

If the path name is specified as a simple file name, one with no '/' in the name, then the runtime
linker uses a set of rules to generate an appropriate path name. Path names that contain a '/' are
used as provided.

These search path rules are exactly the same as are used to locate any initial dependencies. See
“Directories Searched by the Runtime Linker” on page 84. For example, the file main.c
contains the following code fragment.

#include <stdio.h>

#include <dlfcn.h>

int main(int argc, char **argv)

{

 void *handle;

 if ((handle = dlopen("foo.so.1", RTLD_LAZY)) == NULL) {

 (void) printf("dlopen: %s\n", dlerror());

 return (1);

 }

To locate the shared object foo.so.1, the runtime linker uses any LD_LIBRARY_PATH definition
that is present at process initialization. Next, the runtime linker uses any runpath specified
during the link-edit of prog. Finally, the runtime linker uses the default locations /lib and
/usr/lib for 32-bit objects, or /lib/64 and /usr/lib/64 for 64-bit objects.

If the path name is specified as:

 if ((handle = dlopen("./foo.so.1", RTLD_LAZY)) == NULL) {

then the runtime linker searches for the file only in the current working directory of the process.

Note - Any shared object that is specified using dlopen(3C) should be referenced by its
versioned file name. For more information on versioning, see “Coordination of Versioned
Filenames” on page 289.

If the required object cannot be located, dlopen(3C) returns a NULL handle. In this case
dlerror(3C) can be used to display the true reason for the failure. For example.

$ cc -o prog main.c

$ prog

dlopen: ld.so.1: prog: fatal: foo.so.1: open failed: No such file or directory

If the object being added by dlopen(3C) has dependencies on other objects, they too are
brought into the process's address space. This process continues until all the dependencies of the
specified object are loaded. This dependency tree is referred to as a group.

108 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlerror-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c

Runtime Linking Programming Interface

If the object specified by dlopen(3C), or any of its dependencies, are already part of the
process image, then the objects are not processed any further. A valid handle is returned to the
application. This mechanism prevents the same object from being loaded more than once, and
enables an application to obtain a handle to itself. For example, from the previous example,
main.c can contain the following dlopen() call.

 if ((handle = dlopen(0, RTLD_LAZY)) == NULL) {

The handle returned from this dlopen(3C) can be used to locate symbols within the application
itself, within any of the dependencies loaded as part of the process's initialization, or within any
objects added to the process's address space, using a dlopen(3C) that specified the RTLD_GLOBAL
flag.

Relocation Processing
After locating and loading any objects, the runtime linker must process each object and perform
any necessary relocations. Any objects that are brought into the process's address space with
dlopen(3C) must also be relocated in the same manner.

For simple applications this process is straightforward. However, for users who have more
complex applications with many dlopen(3C) calls involving many objects, possibly with
common dependencies, this process can be quite important.

Relocations can be categorized according to when they occur. The default behavior of the
runtime linker is to process all immediate reference relocations at initialization and all lazy
references during process execution, a mechanism commonly referred to as lazy binding.

This same mechanism is applied to any objects added with dlopen(3C) when the mode is
defined as RTLD_LAZY. An alternative is to require all relocations of an object to be performed
immediately when the object is added. You can use a mode of RTLD_NOW, or record this
requirement in the object when it is built using the link-editor's -z now option. This relocation
requirement is propagated to any dependencies of the object being opened.

Relocations can also be categorized into non-symbolic and symbolic. The remainder of this
section covers issues regarding symbolic relocations, regardless of when these relocations
occur, with a focus on some of the subtleties of symbol lookup.

Symbol Lookup

If an object acquired by dlopen(3C) refers to a global symbol, the runtime linker must locate
this symbol from the pool of objects that make up the process. In the absence of direct binding,
a default symbol search model is applied to objects obtained by dlopen(). However, the mode

Chapter 3 • Runtime Linker 109

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c

Runtime Linking Programming Interface

of a dlopen() together with the attributes of the objects that make up the process, provide for
alternative symbol search models.

Objects that required direct binding, although maintaining all the attributes described later,
search for symbols directly in the associated dependency. See Chapter 7, “Direct Bindings”.

Note - Symbols assigned the STV_SINGLETON visibility are bound using the default symbol
search, regardless of any dlopen(3C) attributes. See Table 35, “ELF Symbol Visibility,” on page
414.

By default, objects obtained with dlopen(3C) are assigned world symbol search scope, and
local symbol visibility. The section, “Default Symbol Lookup Model” on page 110, uses
this default model to illustrate typical object group interactions. The sections “Defining
a Global Object” on page 113, “Isolating a Group” on page 114, and “Object
Hierarchies” on page 114 show examples of using dlopen(3C) modes and file attributes to
extend the default symbol lookup model.

Default Symbol Lookup Model

For each object added by a basic dlopen(3C), the runtime linker first looks for the symbol
in the executable. The runtime linker then looks in each of the objects provided during the
initialization of the process. If the symbol is still not found, the runtime linker continues the
search. The runtime linker next looks in the object acquired through the dlopen(3C) and in any
of its dependencies.

The default symbol lookup model provides for a transition into a lazy loading environment. If
a symbol can not be found in the currently loaded objects, any pending lazy loaded objects are
processed in an attempt to locate the symbol. This loading compensates for objects that have not
fully defined their dependencies. However, this compensation can undermine the advantages of
a lazy loading.

In the following example, the executable prog and the shared object B.so.1 have the following
dependencies.

$ ldd prog

 A.so.1 => ./A.so.1

$ ldd B.so.1

 C.so.1 => ./C.so.1

If prog acquires the shared object B.so.1 by dlopen(3C), then any symbol required to relocate
the shared objects B.so.1 and C.so.1 will first be looked for in prog, followed by A.so.1,
followed by B.so.1, and finally in C.so.1. In this simple case, think of the shared objects
acquired through the dlopen(3C) as if they had been added to the end of the original link-edit

110 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c

Runtime Linking Programming Interface

of the application. For example, the objects referenced in the previous listing can be expressed
diagrammatically as shown in the following figure.

FIGURE 1 A Single dlopen() Request

Any symbol lookup required by the objects acquired from the dlopen(3C), that is shown as
shaded blocks, proceeds from the executable prog through to the final shared object C.so.1.

This symbol lookup is established by the attributes assigned to the objects as they were loaded.
Recall that the executable and all the dependencies loaded with the executable are assigned
global symbol visibility, and that the new objects are assigned world symbol search scope.
Therefore, the new objects are able to look for symbols in the original objects. The new objects
also form a unique group in which each object has local symbol visibility. Therefore, each
object within the group can look for symbols within the other group members.

These new objects do not affect the normal symbol lookup required by either the application
or the applications initial dependencies. For example, if A.so.1 requires a function relocation
after the previous dlopen(3C) has occurred, the runtime linker normal search for the relocation
symbol is to look in prog and then A.so.1. The runtime linker does not follow through and look
in B.so.1 or C.so.1.

This symbol lookup is again a result of the attributes assigned to the objects as they were
loaded. The world symbol search scope is assigned to the executable and all the dependencies
loaded with it. This scope does not allow them to look for symbols in the new objects that only
offer local symbol visibility.

These symbol search and symbol visibility attributes maintain associations between objects.
These associations are based on their introduction into the process address space, and on any
dependency relationship between the objects. Assigning the objects associated with a given
dlopen(3C) to a unique group ensures that only objects associated with the same dlopen(3C)
are allowed to look up symbols within themselves and their related dependencies.

This concept of defining associations between objects becomes more clear in applications that
carry out more than one dlopen(3C). For example, suppose the shared object D.so.1 has the
following dependency.

Chapter 3 • Runtime Linker 111

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c

Runtime Linking Programming Interface

$ ldd D.so.1

 E.so.1 => ./E.so.1

and the prog application used dlopen(3C) to load this shared object in addition to the shared
object B.so.1. The following figure illustrates the symbol lookup relationship between the
objects.

FIGURE 2 Multiple dlopen() Requests

Suppose that both B.so.1 and D.so.1 contain a definition for the symbol foo, and both C.
so.1 and E.so.1 contain a relocation that requires this symbol. Because of the association of
objects to a unique group, C.so.1 is bound to the definition in B.so.1, and E.so.1 is bound to
the definition in D.so.1. This mechanism is intended to provide the most intuitive binding of
objects that are obtained from multiple calls to dlopen(3C).

When objects are used in the scenarios that have so far been described, the order in which
each dlopen(3C) occurs has no effect on the resulting symbol binding. However, when objects
have common dependencies, the resultant bindings can be affected by the order in which the
dlopen(3C) calls are made.

In the following example, the shared objects O.so.1 and P.so.1 have the same common
dependency.

$ ldd O.so.1

 Z.so.1 => ./Z.so.1

$ ldd P.so.1

112 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c

Runtime Linking Programming Interface

 Z.so.1 => ./Z.so.1

In this example, the prog application will dlopen(3C) each of these shared objects. Because the
shared object Z.so.1 is a common dependency of both O.so.1 and P.so.1, Z.so.1 is assigned
to both of the groups that are associated with the two dlopen(3C) calls. This relationship is
shown in the following figure.

FIGURE 3 Multiple dlopen() Requests With A Common Dependency

Z.so.1 is available for both O.so.1 and P.so.1 to look up symbols. More importantly, as far
as dlopen(3C) ordering is concerned, Z.so.1 is also be able to look up symbols in both O.so.1
and P.so.1.

Therefore, if both O.so.1 and P.so.1 contain a definition for the symbol foo, which is required
for a Z.so.1 relocation, the actual binding that occurs is unpredictable because it is affected
by the order of the dlopen(3C) calls. If the functionality of symbol foo differs between the
two shared objects in which it is defined, the overall outcome of executing code within Z.so.1
might vary depending on the application's dlopen(3C) ordering.

Defining a Global Object

The default assignment of local symbol visibility to the objects obtained by a dlopen(3C) can
be promoted to global by augmenting the mode argument with the RTLD_GLOBAL flag. Under this
mode, any objects obtained through a dlopen(3C) can be used by any other objects with world
symbol search scope to locate symbols.

Chapter 3 • Runtime Linker 113

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c

Runtime Linking Programming Interface

In addition, any object obtained by dlopen(3C) with the RTLD_GLOBAL flag is available for
symbol lookup using dlopen() with a path name whose value is 0.

Note - If a member of a group defines local symbol visibility, and is referenced by another
group that defines global symbol visibility, then the object's visibility becomes a concatenation
of both local and global. This promotion of attributes remains even if the global group reference
is later removed.

Isolating a Group

The default assignment of world symbol search scope to the objects obtained by a dlopen(3C)
can be reduced to group by augmenting the mode argument with the RTLD_GROUP flag. Under
this mode, any objects obtained through a dlopen(3C) will only be allowed to look for symbols
within their own group.

Using the link-editor's -B group option, you can assign the group symbol search scope to
objects when they are built.

Note - If a member of a group defines a group search requirement, and is referenced by another
group that defines a world search requirement, then the object's search requirement becomes a
concatenation of both group and world. This promotion of attributes remains even if the world
group reference is later removed.

Object Hierarchies

If an initial object is obtained from a dlopen(3C), and uses dlopen() to open a secondary
object, both objects are assigned to a unique group. This situation can prevent either object from
locating symbols from the other.

In some implementations the initial object has to export symbols for the relocation of the
secondary object. This requirement can be satisfied by one of two mechanisms.

■ Making the initial object an explicit dependency of the second object.
■ Use the RTLD_PARENT mode flag to dlopen(3C) the secondary object.

If the initial object is an explicit dependency of the secondary object, the initial object is
assigned to the secondary objects' group. The initial object is therefore able to provide symbols
for the secondary objects' relocation.

If many objects can use dlopen(3C) to open the secondary object, and each of these initial
objects must export the same symbols to satisfy the secondary objects' relocation, then the

114 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c

Runtime Linking Programming Interface

secondary object cannot be assigned an explicit dependency. In this case, the dlopen(3C)
mode of the secondary object can be augmented with the RTLD_PARENT flag. This flag causes
the propagation of the secondary objects' group to the initial object in the same manner as an
explicit dependency would do.

There is one small difference between these two techniques. If you specify an explicit
dependency, the dependency itself becomes part of the secondary objects' dlopen(3C)
dependency tree, and thus becomes available for symbol lookup with dlsym(3C). If you obtain
the secondary object with RTLD_PARENT, the initial object does not become available for symbol
lookup with dlsym(3C).

When a secondary object is obtained by dlopen(3C) from an initial object with global symbol
visibility, the RTLD_PARENT mode is both redundant and harmless. This case commonly
occurs when dlopen(3C) is called from an application or from one of the dependencies of the
application.

Obtaining New Symbols

A process can obtain the address of a specific symbol using dlsym(3C). This function takes
a handle and a symbol name, and returns the address of the symbol to the caller. The handle
directs the search for the symbol in the following manner.

■ A handle can be returned from a dlopen(3C) of a named object. The handle enables
symbols to be obtained from the named object and the objects that define its dependency
tree. A handle returned using the mode RTLD_FIRST, enables symbols to be obtained only
from the named object.

■ A handle can be returned from a dlopen(3C) of a path name whose value is 0. The handle
enables symbols to be obtained from the initiating object of the associated link-map and
the objects that define its dependency tree. Typically, the initiating object is the executable.
This handle also enables symbols to be obtained from any object obtained by a dlopen(3C)
with the RTLD_GLOBAL mode, on the associated link-map. A handle returned using the mode
RTLD_FIRST, enables symbols to be obtained only from the initiating object of the associated
link-map.

■ The special handle RTLD_DEFAULT, and RTLD_PROBE enable symbols to be obtained from the
initiating object of the associated link-map and objects that define its dependency tree. This
handle also enables symbols to be obtained from any object obtained by a dlopen(3C) that
belongs to the same group as the caller. Use of RTLD_DEFAULT, or RTLD_PROBE follows the
same model as used to resolve a symbolic relocation from the calling object.

■ The special handle RTLD_NEXT enables symbols to be obtained from the next associated
object on the callers link-map list.

Chapter 3 • Runtime Linker 115

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlsym-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlsym-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlsym-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c

Runtime Linking Programming Interface

In the following example, which is probably the most common, an application adds additional
objects to its address space. The application then uses dlsym(3C) to locate function or data
symbols. The application then uses these symbols to call upon services that are provided in
these new objects. The file main.c contains the following code.

#include <stdio.h>

#include <dlfcn.h>

int main()

{

 void *handle;

 int *dptr, (*fptr)();

 if ((handle = dlopen("foo.so.1", RTLD_LAZY)) == NULL) {

 (void) printf("dlopen: %s\n", dlerror());

 return (1);

 }

 if (((fptr = (int (*)())dlsym(handle, "foo")) == NULL) ||

 ((dptr = (int *)dlsym(handle, "bar")) == NULL)) {

 (void) printf("dlsym: %s\n", dlerror());

 return (1);

 }

 return ((*fptr)(*dptr));

}

The symbols foo and bar are searched for in the file foo.so.1, followed by any dependencies
that are associated with this file. The function foo is then called with the single argument bar as
part of the return() statement.

The application prog, built using the previous file main.c, contains the following dependencies.

$ ldd prog

 libc.so.1 => /lib/libc.so.1

If the file name specified in the dlopen(3C) had the value 0, the symbols foo and bar are
searched for in prog, followed by /lib/libc.so.1.

The handle indicates the root at which to start a symbol search. From this root, the
search mechanism follows the same model as described in “Relocation Symbol
Lookup” on page 89.

If the required symbol cannot be located, dlsym(3C) returns a NULL value. In this case,
dlerror(3C) can be used to indicate the true reason for the failure. In the following example,
the application prog is unable to locate the symbol bar.

116 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlsym-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlsym-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlerror-3c

Runtime Linking Programming Interface

$ prog

dlsym: ld.so.1: main: fatal: bar: can't find symbol

Testing for Functionality

The special handles RTLD_DEFAULT and RTLD_PROBE enable an application to test for the
existence of a symbol.

The RTLD_DEFAULT handle employs the same default search rules used by the runtime linker
to resolve any symbol reference from the calling object. See “Default Symbol Lookup
Model” on page 110. Two aspects of this model should be noted.

■ In the absence of direct binding, a symbol reference from a shared object that matches
a symbol reference from a dynamic executable is bound to the procedure linkage table
entry associated with the reference from the executable. See “Procedure Linkage Table
(Processor-Specific)” on page 465. This artifact of dynamic linking enables both
components within the process see a single address for a function.

■ If a symbol definition can not be found to satisfy a non-weak symbol reference within the
objects that are currently loaded in the process, a lazy loading fallback is initiated. This
fallback iterates through each loaded dynamic object, and loads any pending lazy loadable,
non-deferred, objects in an attempt to resolve the symbol. This model compensates for
objects that have not fully defined their dependencies. However, this compensation can
undermine the advantages of lazy loading. Unnecessary objects can be loaded, or an
exhaustive loading of all lazy loadable objects can occur should the relocation symbol not
be found.

RTLD_PROBE follows a similar model to RTLD_DEFAULT, but differs in the two aspects noted with
RTLD_DEFAULT.

■ RTLD_PROBE only binds to explicit symbol definitions, and is not bound to any procedure
linkage table entry within the executable.

■ RTLD_PROBE does not initiate an exhaustive lazy loading fallback.

RTLD_PROBE is the most appropriate flag to use to detect the presence of a symbol within an
existing process.

RTLD_DEFAULT and RTLD_PROBE can both initiate an explicit lazy load. An object can make
reference to a function, and that reference can be established through a lazy loadable
dependency. Prior to calling this function, RTLD_DEFAULT or RTLD_PROBE can be used to test for
the existence of the function. Because the object makes reference to the function, an attempt is
first made to load the associated lazy dependency. The rules for RTLD_DEFAULT and RTLD_PROBE

Chapter 3 • Runtime Linker 117

Runtime Linking Programming Interface

are then followed to bind to the function. In the following example, an RTLD_PROBE call is used
both to trigger a lazy load, and to bind to the loaded dependency if the dependency exists.

void foo()

{

 if (dlsym(RTLD_PROBE, "foo1")) {

 foo1(arg1);

 foo2(arg2);

}

To provide a robust and flexible model for testing for functionally, the associated lazy
dependencies should be explicitly tagged as deferred. See “Providing an Alternative to
dlopen()” on page 97. This tagging also provides a means of changing the deferred
dependency at runtime.

The use of RTLD_DEFAULT or RTLD_PROBE provide a more robust alternative to the use of
undefined weak references, as discussed in “Weak Symbols” on page 50.

Using Interposition

The special handle RTLD_NEXT enables an application to locate the next symbol in a symbol
scope. For example, the application prog can contain the following code fragment.

 if ((fptr = (int (*)())dlsym(RTLD_NEXT, "foo")) == NULL) {

 (void) printf("dlsym: %s\n", dlerror());

 return (1);

 }

 return ((*fptr)());

In this case, foo is searched for in the shared objects associated with prog, which in this case is
/lib/libc.so.1. If this code fragment was contained in the file B.so.1 from the example that
is shown in Figure 1, “A Single dlopen() Request,” on page 111, then foo is searched for in
C.so.1 only.

Use of RTLD_NEXT provides a means to exploit symbol interposition. For example, a function
within an object can be interposed upon by a preceding object, which can then augment the
processing of the original function. For example, the following code fragment can be placed in
the shared object malloc.so.1.

#include <sys/types.h>

#include <dlfcn.h>

#include <stdio.h>

118 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Runtime Linking Programming Interface

void *

malloc(size_t size)

{

 static void *(*fptr)() = 0;

 char buffer[50];

 if (fptr == 0) {

 fptr = (void *(*)())dlsym(RTLD_NEXT, "malloc");

 if (fptr == NULL) {

 (void) printf("dlopen: %s\n", dlerror());

 return (NULL);

 }

 }

 (void) sprintf(buffer, "malloc: %#x bytes\n", size);

 (void) write(1, buffer, strlen(buffer));

 return ((*fptr)(size));

}

malloc.so.1 can be interposed before the system library /lib/libc.so.1 where malloc(3C)
usually resides. Any calls to malloc() are now interposed upon before the original function is
called to complete the allocation.

$ cc -o malloc.so.1 -G -K pic malloc.c

$ cc -o prog file1.o file2.o -R. malloc.so.1

$ prog

malloc: 0x32 bytes

malloc: 0x14 bytes

....

Alternatively, the same interposition can be achieved using the following commands.

$ cc -o malloc.so.1 -G -K pic malloc.c

$ cc -o prog main.c

$ LD_PRELOAD=./malloc.so.1 prog

malloc: 0x32 bytes

malloc: 0x14 bytes

....

Note - Users of any interposition technique must be careful to handle any possibility of
recursion. The previous example formats the diagnostic message using sprintf(3C), instead
of using printf(3C) directly, to avoid any recursion caused by printf(3C) possibly using
malloc(3C).

The use of RTLD_NEXT within an executable or preloaded object, provides a predictable
interposition technique. Be careful when using this technique in a generic object dependency, as
the actual load order of objects is not always predictable.

Chapter 3 • Runtime Linker 119

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Amalloc-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Asprintf-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Aprintf-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Aprintf-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Amalloc-3c

Debugging Aids

Debugging Aids

A debugging library and a debugging mdb(1) module are provided with the Oracle Solaris
runtime linker. The debugging library enables you to trace the runtime linking process in more
detail. The mdb(1) module enables interactive process debugging.

Runtime Linker Debugging Facility

The runtime linker provides a debugging facility that allows you to trace the runtime linking of
applications and their dependencies in detail. The type of information that is displayed by using
this facility is expected to remain constant. However, the exact format of the information might
change slightly from release to release.

Some of the debugging output might be unfamiliar to users who do not have an intimate
knowledge of the runtime linker. However, many aspects might be of general interest to you.

Debugging is enabled by using the environment variable LD_DEBUG. All debugging output is
prefixed with the process identifier. This environment variable must be augmented with one or
more tokens to indicate the type of debugging that is required.

The tokens that are available with LD_DEBUG can be displayed by using LD_DEBUG=help.

$ LD_DEBUG=help prog

prog can be any executable. The process is terminated following the display of the help
information, before control transfers to prog. The choice of executable is unimportant.

If the help token is specified by itself, output goes to stdout, the standard output file. If any
other tokens are specified, debug output is sent to stderr, the standard error output file. Debug
output can be directed to a file instead by using the output token. For example, the help text
can be captured in a file named rtld-debug.txt.

$ LD_DEBUG=help,output=rtld-debug.txt prog

Alternatively, debug output can be redirected by setting the environment variable
LD_DEBUG_OUTPUT. When LD_DEBUG_OUTPUT is used, the process identifier is added as a suffix to
the output filename.

If LD_DEBUG_OUTPUT and the output token are both specified, LD_DEBUG_OUTPUT takes
precedence. If LD_DEBUG_OUTPUT and the output token are both specified, LD_DEBUG_OUTPUT
takes precedence. Use of the output token with programs that call fork(2) result in each

120 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1mdb-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1mdb-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2fork-2

Debugging Aids

process writing debug output to the same file. The debug output will become jumbled and
incomplete. LD_DEBUG_OUTPUT should be used in such cases to direct debug output for each
process to a unique file.

The debugging of secure applications is not allowed.

One of the most useful debugging options is to display the symbol bindings that occur at
runtime. The following example uses a very trivial dynamic executable that has a dependency
on two local shared objects.

$ cat bar.c

int bar = 10;

$ cc -o bar.so.1 -K pic -G bar.c

$ cat foo.c

int foo(int data)

{

return (data);

}

$ cc -o foo.so.1 -K pic -G foo.c

$ cat main.c

extern int foo();

extern int bar;

int main()

{

 return (foo(bar));

}

$ cc -o prog main.c -R/tmp:. foo.so.1 bar.so.1

The runtime symbol bindings can be displayed by setting LD_DEBUG=bindings.

$ LD_DEBUG=bindings prog

11753:

11753: binding file=prog to file=./bar.so.1: symbol bar

11753:

11753: transferring control: prog

11753:

11753: binding file=prog to file=./foo.so.1: symbol foo

11753:

The symbol bar, which is required by an immediate relocation, is bound before the application
gains control. Whereas the symbol foo, which is required by a lazy relocation, is bound after
the application gains control on the first call to the function. This relocation demonstrates
the default mode of lazy binding. If the environment variable LD_BIND_NOW is set, all symbol
bindings occur before the application gains control.

Chapter 3 • Runtime Linker 121

Debugging Aids

By setting LD_DEBUG=bindings,detail, additional information regarding the real and relative
addresses of the actual binding locations is provided.

You can use LD_DEBUG to display the various search paths used. For example, the search path
mechanism used to locate any dependencies can be displayed by setting LD_DEBUG=libs.

$ LD_DEBUG=libs prog

11775:

11775: find object=foo.so.1; searching

11775: search path=/tmp:. (RUNPATH/RPATH from file prog)

11775: trying path=/tmp/foo.so.1

11775: trying path=./foo.so.1

11775:

11775: find object=bar.so.1; searching

11775: search path=/tmp:. (RUNPATH/RPATH from file prog)

11775: trying path=/tmp/bar.so.1

11775: trying path=./bar.so.1

11775:

The runpath recorded in the application prog affects the search for the two dependencies foo.
so.1 and bar.so.1.

In a similar manner, the search paths of each symbol lookup can be displayed by setting
LD_DEBUG=symbols. A combination of symbols and bindings produces a complete picture of
the symbol relocation process.

$ LD_DEBUG=bindings,symbols prog

11782:

11782: symbol=bar; lookup in file=./foo.so.1 [ELF]

11782: symbol=bar; lookup in file=./bar.so.1 [ELF]

11782: binding file=prog to file=./bar.so.1: symbol bar

11782:

11782: transferring control: prog

11782:

11782: symbol=foo; lookup in file=prog [ELF]

11782: symbol=foo; lookup in file=./foo.so.1 [ELF]

11782: binding file=prog to file=./foo.so.1: symbol foo

11782:

In the previous example, the symbol bar is not searched for in the application prog. This
omission of a data reference lookup is due to an optimization used when processing copy
relocations. See “Copy Relocations” on page 217 for more details of this relocation type.

122 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Debugging Aids

Debugger Module

The debugger module provides a set of dcmds and walkers that can be loaded under mdb(1).
This module can be used to inspect various internal data structures of the runtime linker. Much
of the debugging information requires familiarity with the internals of the runtime linker. These
internals can change from release to release. However, some elements of these data structures
reveal the basic components of a dynamically linked process and can aid general debugging.

The following examples show some simple scenarios of using mdb(1) with the debugger
module.

$ cat main.c

#include <dlfnc.h>

int main()

{

 void *handle;

 void (*fptr)();

 if ((handle = dlopen("foo.so.1", RTLD_LAZY)) == NULL)

 return (1);

 if ((fptr = (void (*)())dlsym(handle, "foo")) == NULL)

 return (1);

 (*fptr)();

 return (0);

}

$ cc -o main main.c -R.

If mdb(1) has not automatically loaded the debugger module, ld.so, explicitly do so. The
facilities of the debugger module can then be inspected.

$ mdb main

> ::load ld.so

> ::dmods -l ld.so

ld.so

 dcmd Bind - Display a Binding descriptor

 dcmd Callers - Display Rt_map CALLERS binding descriptors

 dcmd Depends - Display Rt_map DEPENDS binding descriptors

 dcmd ElfDyn - Display Elf_Dyn entry

 dcmd ElfEhdr - Display Elf_Ehdr entry

 dcmd ElfPhdr - Display Elf_Phdr entry

 dcmd Groups - Display Rt_map GROUPS group handles

 dcmd GrpDesc - Display a Group Descriptor

Chapter 3 • Runtime Linker 123

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1mdb-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1mdb-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1mdb-1

Debugging Aids

 dcmd GrpHdl - Display a Group Handle

 dcmd Handles - Display Rt_map HANDLES group descriptors

> ::bp main

> :r

Each dynamic object within a process is expressed as a link-map, Rt_map, which is maintained
on a link-map list. All link-maps for the process can be displayed with Rt_maps.

> ::Rt_maps

Link-map lists (dynlm_list): 0xffbfe0d0

--

 Lm_list: 0xff3f6f60 (LM_ID_BASE)

 --

 lmco rtmap ADDR() NAME()

 --

 [0xc] 0xff3f0fdc 0x00010000 main

 [0xc] 0xff3f1394 0xff280000 /lib/libc.so.1

 --

 Lm_list: 0xff3f6f88 (LM_ID_LDSO)

 --

 [0xc] 0xff3f0c78 0xff3b0000 /lib/ld.so.1

An individual link-map can be displayed with Rt_map.

> 0xff3f9040::Rt_map

Rt_map located at: 0xff3f9040

 NAME: main

 PATHNAME: /export/home/user/main

 ADDR: 0x00010000 DYN: 0x000207bc

 NEXT: 0xff3f9460 PREV: 0x00000000

 FCT: 0xff3f6f18 TLSMODID: 0

 INIT: 0x00010710 FINI: 0x0001071c

 GROUPS: 0x00000000 HANDLES: 0x00000000

 DEPENDS: 0xff3f96e8 CALLERS: 0x00000000

....

The object's .dynamic section can be displayed with the ElfDyn dcmd. The following example
shows the first 4 entries.

> 0x000207bc,4::ElfDyn

Elf_Dyn located at: 0x207bc

 0x207bc NEEDED 0x0000010f

Elf_Dyn located at: 0x207c4

 0x207c4 NEEDED 0x00000124

Elf_Dyn located at: 0x207cc

 0x207cc INIT 0x00010710

Elf_Dyn located at: 0x207d4

124 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Debugging Aids

 0x207d4 FINI 0x0001071c

mdb(1) is also very useful for setting deferred break points. In this example, a break point on
the function foo() might be useful. However, until the dlopen(3C) of foo.so.1 occurs, this
symbol isn't known to the debugger. A deferred break point instructs the debugger to set a real
breakpoint when the dynamic object is loaded.

> ::bp foo.so.1`foo

> :c

> mdb: You've got symbols!

> mdb: stop at foo.so.1`foo

mdb: target stopped at:

foo.so.1`foo: save %sp, -0x68, %sp

At this point, new objects have been loaded.

> *ld.so`lml_main::Rt_maps

lmco rtmap ADDR() NAME()

--

[0xc] 0xff3f0fdc 0x00010000 main

[0xc] 0xff3f1394 0xff280000 /lib/libc.so.1

[0xc] 0xff3f9ca4 0xff380000 ./foo.so.1

[0xc] 0xff37006c 0xff260000 ./bar.so.1

The link-map for foo.so.1 shows the handle returned by dlopen(3C). You can expand this
structure using Handles.

> 0xff3f9ca4::Handles -v

HANDLES for ./foo.so.1

--

 HANDLE: 0xff3f9f60 Alist[used 1: total 1]

 --

 Group Handle located at: 0xff3f9f28

 --

 owner: ./foo.so.1

 flags: 0x00000000 [0]

 refcnt: 1 depends: 0xff3f9fa0 Alist[used 2: total 4]

 --

 Group Descriptor located at: 0xff3f9fac

 depend: 0xff3f9ca4 ./foo.so.1

 flags: 0x00000003 [AVAIL-TO-DLSYM,ADD-DEPENDENCIES]

 --

 Group Descriptor located at: 0xff3f9fd8

 depend: 0xff37006c ./bar.so.1

 flags: 0x00000003 [AVAIL-TO-DLSYM,ADD-DEPENDENCIES]

The dependencies of a handle are a list of link-maps that represent the objects of the handle that
can satisfy a dlsym(3C) request. In this case, the dependencies are foo.so.1 and bar.so.1.

Chapter 3 • Runtime Linker 125

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1mdb-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlsym-3c

Debugging Aids

Note - The previous examples provide a basic guide to the debugger module facilities, but the
exact commands, usage, and output can change from release to release. Refer to the usage and
help information from mdb(1) for the exact facilities that are available on your system.

126 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1mdb-1

 4 ♦ ♦ ♦ C H A P T E R 4

Shared Objects

Shared objects are one form of output created by the link-editor and are generated by specifying
the -G option.

A shared object is an indivisible unit that is generated from one or more relocatable objects.
Shared objects can be bound with executables to form a runnable process. As their name
implies, shared objects can be shared by more than one application. Because of this potentially
far-reaching effect, this chapter describes this form of link-editor output in greater depth than
has been covered in previous chapters.

For a shared object to be bound to a dynamic object, it must first be available to the link-edit
of the required output file. During this link-edit, any input shared objects are interpreted as
if they had been added to the logical address space of the output file being produced. All the
functionality of the shared object is made available to the output file.

Any input shared objects become dependencies of this output file. A small amount of
bookkeeping information is maintained within the output file to describe these dependencies.
The runtime linker interprets this information and completes the processing of these shared
objects as part of creating a runnable process.

The following sections expand upon the use of shared objects within the compilation and
runtime environments. These environments are introduced in “Runtime Linking” on page 23.

Naming Conventions
Neither the link-editor nor the runtime linker interprets any file by virtue of its file name.
All files are inspected to determine their ELF type (see “ELF Header” on page 346). This
information enables the link-editor to deduce the processing requirements of the file. However,
shared objects usually follow one of two naming conventions, depending on whether they are
being used as part of the compilation environment or the runtime environment.

When used as part of the compilation environment, shared objects are read and processed by the
link-editor. Although these shared objects can be specified by explicit file names as part of the

Chapter 4 • Shared Objects 127

Naming Conventions

command passed to the link-editor, the -l option is usually used to take advantage of the link-
editor's library search facilities. See “Shared Object Processing” on page 34.

A shared object that is applicable to this link-editor processing, should be designated with the
prefix lib and the suffix .so. For example, /lib/libc.so is the shared object representation
of the standard C library made available to the compilation environment. By convention, 64-bit
shared objects are placed in a subdirectory of the lib directory called 64. For example, the 64-
bit counterpart of /lib/libc.so.1, is /lib/64/libc.so.1.

When used as part of the runtime environment, shared objects are read and processed by the
runtime linker. To allow for change in the exported interface of the shared object over a series
of software releases, provide the shared object as a versioned file name.

A versioned file name commonly takes the form of a .so suffix followed by a version number.
For example, /lib/libc.so.1 is the shared object representation of version one of the standard
C library made available to the runtime environment.

If a shared object is never intended for use within a compilation environment, its name might
drop the conventional lib prefix. Examples of shared objects that fall into this category are
those used solely with dlopen(3C). A suffix of .so is still recommended to indicate the actual
file type. In addition, a version number is strongly recommended to provide for the correct
binding of the shared object across a series of software releases. Chapter 11, “Interfaces and
Versioning” describes versioning in more detail.

Note - The shared object name used in a dlopen(3C) is usually represented as a simple file
name, that has no '/' in the name. The runtime linker can then use a set of rules to locate the
actual file. See “Preloading Additional Objects” on page 94 for more details.

Recording a Shared Object Name

The recording of a dependency in a dynamic object will, by default, be the file name of the
associated shared object as it is referenced by the link-editor. For example, the following
dynamic executables, that are built against the same shared object libfoo.so, result in different
interpretations of the same dependency.

$ cc -o ../tmp/libfoo.so -G foo.o

$ cc -o prog main.o -L../tmp -lfoo

$ elfdump -d prog | grep NEEDED

 [1] NEEDED 0x123 libfoo.so.1

$ cc -o prog main.o ../tmp/libfoo.so

$ elfdump -d prog | grep NEEDED

128 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c

Naming Conventions

 [1] NEEDED 0x123 ../tmp/libfoo.so

$ cc -o prog main.o /usr/tmp/libfoo.so

$ elfdump -d prog | grep NEEDED

 [1] NEEDED 0x123 /usr/tmp/libfoo.so

As these examples show, this mechanism of recording dependencies can result in
inconsistencies due to different compilation techniques. Also, the location of a shared object
as referenced during the link-edit might differ from the eventual location of the shared object
on an installed system. To provide a more consistent means of specifying dependencies, shared
objects can record within themselves the file name by which they should be referenced at
runtime.

During the link-edit of a shared object, its runtime name can be recorded within the shared
object itself by using the -h option. In the following example, the shared object's runtime name
libfoo.so.1, is recorded within the file itself. This identification is known as an soname.

$ cc -o ../tmp/libfoo.so -G -K pic -h libfoo.so.1 foo.c

The following example shows how the soname recording can be displayed using elfdump(1)
and referring to the entry that has the SONAME tag.

$ elfdump -d ../tmp/libfoo.so | grep SONAME

 [1] SONAME 0x123 libfoo.so.1

When the link-editor processes a shared object that contains an soname, this is the name that is
recorded as a dependency within the output file being generated.

If this new version of libfoo.so is used during the creation of the dynamic executable prog
from the previous example, all three methods of creating the executable result in the same
dependency recording.

$ cc -o prog main.o -L../tmp -lfoo

$ elfdump -d prog | grep NEEDED

 [1] NEEDED 0x123 libfoo.so

$ cc -o prog main.o ../tmp/libfoo.so

$ elfdump -d prog | grep NEEDED

 [1] NEEDED 0x123 libfoo.so

$ cc -o prog main.o /usr/tmp/libfoo.so

$ elfdump -d prog | grep NEEDED

 [1] NEEDED 0x123 libfoo.so

In the previous examples, the -h option is used to specify a simple file name, that has no '/' in
the name. This convention enables the runtime linker to use a set of rules to locate the actual
file. See “Locating Shared Object Dependencies” on page 84 for more details.

Chapter 4 • Shared Objects 129

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1elfdump-1

Naming Conventions

Inclusion of Shared Objects in Archives

The mechanism of recording an soname within a shared object is essential if the shared object is
ever processed from an archive library.

An archive can be built from one or more shared objects and then used to generate a dynamic
object. Shared objects can be extracted from the archive to satisfy the requirements of the link-
edit. Unlike the processing of relocatable objects, which are concatenated to the output file
being created, any shared objects extracted from the archive are recorded as dependencies. See
“Archive Processing” on page 33 for more details on the criteria for archive extraction.

The name of an archive member is constructed by the link-editor and is a concatenation of the
archive name and the object within the archive. For example.

$ cc -o libfoo.so.1 -G -K pic foo.c

$ ar -r libfoo.a libfoo.so.1

$ cc -o main main.o libfoo.a

$ elfdump -d main | grep NEEDED

 [1] NEEDED 0x123 libfoo.a(libfoo.so.1)

Because a file with this concatenated name is unlikely to exist at runtime, providing an soname
within the shared object is the only means of generating a meaningful runtime file name for the
dependency.

Note - The runtime linker does not extract objects from archives. Therefore, in this example, the
required shared object dependencies must be extracted from the archive and made available to
the runtime environment.

Recorded Name Conflicts

When shared objects are used to create a dynamic object, the link-editor performs several
consistency checks. These checks ensure that any dependency names recorded in the output file
are unique.

Conflicts in dependency names can occur if two shared objects used as input files to a link-edit
both contain the same soname. For example.

$ cc -o libfoo.so -G -K pic -h libsame.so.1 foo.c

$ cc -o libbar.so -G -K pic -h libsame.so.1 bar.c

$ cc -o prog main.o -L. -lfoo -lbar

ld: fatal: recording name conflict: file './libfoo.so' and \

130 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Shared Objects With Dependencies

 file './libbar.so' provide identical dependency names: libsame.so.1

A similar error condition occurs if the file name of a shared object that does not have a recorded
soname matches the soname of another shared object used during the same link-edit.

If the runtime name of a shared object being generated matches one of its dependencies, the
link-editor also reports a name conflict.

$ cc -o libbar.so -G -K pic -h libsame.so.1 bar.c -L. -lfoo

ld: fatal: recording name conflict: file './libfoo.so' and \

 -h option provide identical dependency names: libsame.so.1

Shared Objects With Dependencies

Shared objects can have their own dependencies. The search rules used by the runtime linker
to locate shared object dependencies are covered in “Directories Searched by the Runtime
Linker” on page 84. If a shared object does not reside in one of the default search directories,
then the runtime linker must explicitly be told where to look. For 32-bit objects, the default
search directories are /lib and /usr/lib. For 64-bit objects, the default search directories are
/lib/64 and /usr/lib/64. The preferred mechanism of indicating the requirement of a non-
default search path, is to record a runpath in the object that has the dependencies. A runpath can
be recorded by using the link-editor's -R option.

In the following example, the shared object libfoo.so has a dependency on libbar.so, which
is expected to reside in the directory /home/me/lib at runtime or, failing that, in the default
location.

$ cc -o libbar.so -G -K pic bar.c

$ cc -o libfoo.so -G -K pic foo.c -R/home/me/lib -L. -lbar

$ elfdump -d libfoo.so | egrep "NEEDED|RUNPATH"

 [1] NEEDED 0x123 libbar.so.1

 [2] RUNPATH 0x456 /home/me/lib

The shared object is responsible for specifying all runpaths required to locate its dependencies.
Any runpaths specified in the executable are only used to locate the dependencies of the
executable. These runpaths are not used to locate any dependencies of the shared objects.

The LD_LIBRARY_PATH family of environment variables have a more global scope. Any path
names specified using these variables are used by the runtime linker to search for any shared
object dependencies. Although useful as a temporary mechanism that influences the runtime
linker search path, the use of these environment variables is strongly discouraged in production
software. See “Directories Searched by the Runtime Linker” on page 84 for a more extensive
discussion.

Chapter 4 • Shared Objects 131

Dependency Ordering

Dependency Ordering

When dynamic objects have dependencies on the same common shared objects, the order in
which the objects are processed can become less predictable.

For example, assume a shared object developer generates libfoo.so.1 with the following
dependencies.

$ ldd libfoo.so.1

 libA.so.1 => ./libA.so.1

 libB.so.1 => ./libB.so.1

 libC.so.1 => ./libC.so.1

If you create a dynamic executable prog, using this shared object, and define an explicit
dependency on libC.so.1, the resulting shared object order will be as follows.

$ cc -o prog main.c -R. -L. -lC -lfoo

$ ldd prog

 libC.so.1 => ./libC.so.1

 libfoo.so.1 => ./libfoo.so.1

 libA.so.1 => ./libA.so.1

 libB.so.1 => ./libB.so.1

Any requirement on the order of processing the shared object libfoo.so.1 dependencies would
be compromised by the construction of the dynamic executable prog.

Developers who place special emphasis on symbol interposition and .init section processing
should be aware of this potential change in shared object processing order.

Shared Objects as Filters

Shared objects can be defined to act as filters. This technique involves associating the interfaces
that the filter provides with an alternative shared object. At runtime, the alternative shared
object supplies one or more of the interfaces provided by the filter. This alternative shared
object is referred to as a filtee. A filtee is built in the same manner as any shared object is built.

Filtering provides a mechanism of abstracting the compilation environment from the runtime
environment. At link-edit time, a symbol reference that binds to a filter interface is resolved to
the filters symbol definition. At runtime, a symbol reference that binds to a filter interface can
be redirected to an alternative shared object.

Individual interfaces that are defined within a shared object can be defined as filters by
using the mapfile FILTER or AUXILIARY attributes to the SYMBOL_SCOPE and SYMBOL_VERSION

132 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Shared Objects as Filters

directives. Alternatively, a shared object can define all of the interfaces the shared object
offers as filters by using the link-editor mapfile FILTER directive or the -F or -f command line
options. These techniques are typically used individually, but can also be combined within the
same shared object.

Three forms of filtering exist.

Standard filtering

This filtering requires only a symbol table entry for the interface being filtered. At runtime,
the implementation of a filter symbol definition must be provided from a filtee.

Interfaces are defined to act as standard filters by using the link-editor's mapfile FILTER
directive, or FILTER per-symbol attribute, or by using the link-editor's -F option. The
mapfile keyword or command line option, is qualified with the name of one or more filtees
that must supply the symbol definition at runtime.
A filtee that cannot be processed at runtime is skipped. A standard filter symbol that cannot
be located within the filtee, also causes the filtee to be skipped. In both of these cases, the
symbol definition provided by the filter is not used to satisfy this symbol lookup.

Weak filtering

Weak filtering is a variation of standard filtering. At runtime, weak filters are processed
the same as standard filters. Weak filters differ from standard filters in how the link-editor
processes weak filter dependencies when unused dependency processing is enabled with
the -z discard-unused=dependencies option.
Typically, the link-editor resolves external symbols from libraries to the first library on the
command line that offers a symbol definition. In the case of weak filters, such symbols
are ignored if the filtee providing the same symbol is also present on the command line.
Resolving such symbols directly to the filtee can allow unused dependency processing to
eliminate the filter as a dependency, resulting in a simpler and more efficient object.

Interfaces are defined to act as weak filters by using the link-editor's mapfile FILTER
directive, or FILTER per-symbol attribute. This mapfile keyword is qualified with the name
of one or more filtees that must supply the symbol definition at runtime.

Auxiliary filtering

This filtering provides a similar mechanism to standard filtering, except the filter provides
a fallback implementation corresponding to the auxiliary filter interfaces. At runtime, the
implementation of the symbol definition can be provided from a filtee.

Interfaces are defined to act as auxiliary filters by using the link-editor's mapfile FILTER
directive, or with the FILTER or AUXILIARY per-symbol attribute, or by using the link-
editor's -f option. This mapfile keyword or option, is qualified with the name of one or
more filtees that can supply the symbol definition at runtime.

Chapter 4 • Shared Objects 133

Shared Objects as Filters

A filtee that cannot be processed at runtime is skipped. An auxiliary filter symbol that
cannot be located within the filtee, also causes the filtee to be skipped. In both of these
cases, the symbol definition provided by the filter is used to satisfy this symbol lookup.

Generating Standard Filters

To generate a standard filter, you first define a filtee on which the filtering is applied. The
following example builds a filtee filtee.so.1, suppling the symbols foo and bar.

$ cat filtee.c

char *bar = "defined in filtee";

char *foo()

{

 return("defined in filtee");

}

$ cc -o filtee.so.1 -G -K pic filtee.c

Standard filters can be defined at the object level, or for individual symbols. To declare all
of the interfaces offered by a shared object to be filters, use the link-editor's mapfile FILTER
directive, or -F command line option. To declare individual interfaces of a shared object to be
filters, use a link-editor mapfile and the FILTER symbol attribute.

In the following example, the shared object filter.so.1 is defined to be a filter. filter.so.1
offers the symbols foo and bar, and is a filter on the filtee filtee.so.1. In this example, the
environment variable LD_OPTIONS is used to circumvent the compiler driver from interpreting
the -F option.

$ cat filter.c

#include <stdio.h>

char *bar = NULL;

char *foo()

{

 return (NULL);

}

$ LD_OPTIONS='-F filtee.so.1' \

 cc -o filter.so.1 -G -K pic -h filter.so.1 -R. filter.c

$ elfdump -d filter.so.1 | egrep "SONAME|FILTER"

 [2] SONAME 0xee filter.so.1

 [3] FILTER 0xfb filtee.so.1

A mapfile can be used instead of the -F command line option.

134 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Shared Objects as Filters

$ cat mapfile

$mapfile_version 2

FILTER {

 FILTEE = filtee.so.1;

 TYPE = STANDARD;

};

$ cc -o filter.so.1 -G -K pic -h filter.so.1 -M mapfile -R. filter.c

$ elfdump -d filter.so.1 | egrep "SONAME|FILTER"

 [2] SONAME 0xee filter.so.1

 [3] FILTER 0xfb filtee.so.1

The link-editor can reference the standard filter filter.so.1 as a dependency when creating a
dynamic object. The link-editor uses information from the symbol table of the filter to satisfy
any symbol resolution. However, at runtime, any reference to the symbols of the filter result in
the additional loading of the filtee filtee.so.1. The runtime linker uses the filtee to resolve
any symbols defined by filter.so.1. If the filtee is not found, or a filter symbol is not found in
the filtee, the filter is skipped for this symbol lookup.

For example, the following dynamic executable prog, references the symbols foo and bar,
which are resolved during link-edit from the filter filter.so.1. The execution of prog results
in foo and bar being obtained from the filtee filtee.so.1, not from the filter filter.so.1.

$ cat main.c

extern char *bar, *foo();

void main()

{

 (void) printf("foo is %s: bar is %s\n", foo(), bar);

}

$ cc -o prog main.c -R. filter.so.1

$ prog

foo is defined in filtee: bar is defined in filtee

In the following example, the shared object filter.so.2 defines one of its interfaces, foo, to
be a filter on the filtee filtee.so.1.

Note - As no source code is supplied for foo(), the mapfile FUNCTION symbol attribute is used
to ensure a symbol table entry for foo is created.

$ cat filter.c

char *bar = "defined in filter";

$ cat mapfile

$mapfile_version 2

SYMBOL_SCOPE {

 global:

 foo { TYPE=FUNCTION; FILTER=filtee.so.1 };

};

Chapter 4 • Shared Objects 135

Shared Objects as Filters

$ cc -o filter.so.2 -G -K pic -h filter.so.2 -M mapfile -R. filter.c

$ elfdump -d filter.so.2 | egrep "SONAME|FILTER"

 [2] SONAME 0xd8 filter.so.2

 [3] SUNW_FILTER 0xfb filtee.so.1

$ elfdump -y filter.so.2 | egrep "foo|bar"

 [1] F [3] filtee.so.1 foo

 [10] D <self> bar

At runtime, any reference to the symbol foo of the filter, results in the additional loading of the
filtee filtee.so.1. The runtime linker uses the filtee to resolve only the symbol foo defined by
filter.so.2. Reference to the symbol bar always uses the symbol from filter.so.2, as no
filtee processing is defined for this symbol.

For example, the following dynamic executable prog, references the symbols foo and bar,
which are resolved during link-edit from the filter filter.so.2. The execution of prog results
in foo being obtained from the filtee filtee.so.1, and bar being obtained from the filter
filter.so.2.

$ cc -o prog main.c -R. filter.so.2

$ prog

foo is defined in filtee: bar is defined in filter

In these examples, the filtee filtee.so.1 is uniquely associated to the filter. The filtee
is not available to satisfy symbol lookup from any other objects that might be loaded as a
consequence of executing prog.

Standard filters provide a convenient mechanism for defining a subset interface of an existing
shared object. Standard filters provide for the creation of an interface group spanning a number
of existing shared objects. Standard filters also provide a means of redirecting an interface to its
implementation. Several standard filters are used in the Oracle Solaris OS.

The /lib/libxnet.so.1 filter uses multiple filtees. This library provides socket and XTI
interfaces from /lib/libsocket.so.1, /lib/libnsl.so.1, and /lib/libc.so.1.

libc.so.1 defines interface filters to the runtime linker. These interfaces provide an abstraction
between the symbols referenced in a compilation environment from libc.so.1, and the actual
implementation binding produced within the runtime environment to ld.so.1(1).

libnsl.so.1 defines the standard filter gethostname(3C) against libc.so.1. Historically,
both libnsl.so.1 and libc.so.1 have provided the same implementation for this symbol. By
establishing libnsl.so.1 as a filter, only one implementation of gethostname() need exist.
As libnsl.so.1 continues to export gethostname(), the interface of this library continues to
remain compatible with previous releases.

Because the code in a standard filter is never referenced at runtime, adding content to any
functions defined as filters is redundant. Any filter code might require relocation, which would

136 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ld.so.1-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Agethostname-3c

Shared Objects as Filters

result in an unnecessary overhead when processing the filter at runtime. Functions are best
defined as empty routines, or directly from a mapfile. See “SYMBOL_SCOPE and SYMBOL_VERSION
Directives” on page 254.

When generating data symbols within a filter, always associate the data with a section. This
association can be produced by defining the symbol within a relocatable object file. This
association can also be produced by defining the symbol within a mapfile together with
a size declaration and no value declaration. See “SYMBOL_SCOPE and SYMBOL_VERSION
Directives” on page 254. The resulting data definition ensures that references from a
dynamic executable are established correctly.

Some of the more complex symbol resolutions carried out by the link-editor require knowledge
of a symbol's attributes, including the symbol's size. Therefore, you should generate the
symbols in the filter so that their attributes match the attributes of the symbols in the filtee.
Maintaining attribute consistency ensures that the link-editing process analyzes the filter
in a manner that is compatible with the symbol definitions used at runtime. See “Symbol
Resolution” on page 43.

Note - The link-editor uses the ELF class of the first relocatable file that is processed to govern
the class of object that is created. Use the link-editor's -64 option to create a 64-bit filter solely
from a mapfile.

Generating Weak Filters

Standard filters provide a simple and effective solution to the problem of maintaining runtime
compatibility while allowing the underlying system to evolve. However, filters also impose
ongoing overhead. Although such a filter provides no functionality, it must be loaded and
processed by the system every time the program runs. It is generally recommended that
programs discontinue linking against these filters, and leave them for the benefit of old code
that hasn't yet been rebuilt.

Eliminating unnecessary filters when building an object is the best solution when feasible.
However, there are cases where this can be difficult to achieve. In particular, many open source
packages have complicated configuration systems that are intended to work across a span of
operating system versions. On some versions, a library may deliver necessary content, while on
newer ones, they are mere filters. Rather then grapple with these complexities, the configuration
simply links against everything. On Oracle Solaris, this frequently happens with libraries such
as libpthread.

Weak filters, in conjunction with the -z discard-unused=dependencies command line option,
offer an automated solution to this problem. Typically, the link-editor resolves external symbols

Chapter 4 • Shared Objects 137

Shared Objects as Filters

from libraries by taking the symbol from the first library on the command line that provides a
symbol definition. In the case of weak filters, such symbols are ignored if the filtee providing
the same filter is also present on the command line. Resolving such symbols directly to the
filtee allows unused dependency processing to eliminate the filter. This results in a simpler and
more efficient object, without requiring large changes to the upstream code base.

The following example uses a filter object named libprint, which provides the standard
printf() from libc.

$ cat mapfile-libprint-std

$mapfile_version 2

FILTER {

 FILTEE = "libc.so.1";

 TYPE = STANDARD;

};

SYMBOL_SCOPE {

 global:

 printf { TYPE = FUNCTION };

};

$ ld -o libprint.so.1 -G -h libprint.so.1 -Mmapfile-libprint-std

$ elfdump libprint.so.1 | egrep 'SONAME|FILTER'

 [0] SONAME 0x1 libprint.so.1

 [1] FILTER 0x4c libc.so.1

An application built against libprint, requires that this filter be loaded at runtime even though
the filtee libc contains the printf() function used at runtime.

$ cc hello.c -o hello -L. -R. libprint.so.1

$ elfdump -d hello | grep NEEDED

 [0] NEEDED 0x13b libprint.so.1

 [1] NEEDED 0x125 libc.so.1

$./hello

hello, world

The libprint filter is rebuilt as a weak filter. The hello world program links to libprint
as before, but with unused dependency processing enabled. The resulting program resolves
printf() directly from libc. The link-editor is therefore able to discard the unused libprint
dependency.

$ cat mapfile-libprint-weak

$mapfile_version 2

FILTER {

 FILTEE = "libc.so.1";

 TYPE = WEAK;

};

SYMBOL_SCOPE {

 global:

138 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Shared Objects as Filters

 printf { TYPE = FUNCTION };

};

$ ld -o libprint.so.1 -G -h libprint.so.1 -Mmapfile-libprint-weak

$ elfdump libprint.so.1 | egrep 'SONAME|FILTER'

 [0] SONAME 0x1 libprint.so.1

 [1] FILTER 0x4c libc.so.1

 [14] FLAGS_1 0x20000000 [WEAKFILTER]

$ cc hello.c -o hello -L. -R. libprint.so.1 -z discard-unused=dependencies

$ elfdump -d hello | grep NEEDED

 [0] NEEDED 0x125 libc.so.1

$./hello

hello, world

In current versions of Oracle Solaris, libraries such as libpthread are built as weak
filters instead of standard filters in order to enable the automatic removal of unnecessary
filter dependencies when unused dependency processing is enabled with the -z discard-
unused=dependencies option.

Note - When the -z discard-unused=dependencies option is enabled, and the symbol
resolution process determines that a weak filter symbol from a dependency is needed, the filtee
for that symbol is added to the end of the link line as an additional dependency. This allows the
link-editor to find the symbol from the filtee, and to eliminate the weak filter. Therefore, the
runpath for a weak filter must be sufficient to allow the link-editor to find the filtee.

Generating Auxiliary Filters

To generate an auxiliary filter, you first define a filtee on which the filtering is applied. The
following example builds a filtee filtee.so.1, supplying the symbol foo.

$ cat filtee.c

char *foo()

{

 return("defined in filtee");

}

$ cc -o filtee.so.1 -G -K pic filtee.c

Auxiliary filtering can be defined at the object level, or for individual symbols. To declare all
of the interfaces offered by a shared object to be auxiliary filters, use the link-editor mapfile
FILTER directive, or -f command line option. To declare individual interfaces of a shared object
to be auxiliary filters, use a link-editor mapfile FILTER directive or -f command line option. To
declare individual interfaces of a shared object to be auxiliary filters, use a link-editor mapfile
and the AUXILIARY or FILTER symbol attribute.

Chapter 4 • Shared Objects 139

Shared Objects as Filters

In the following example, the shared object filter.so.1 is defined to be an auxiliary filter.
filter.so.1 offers the symbols foo and bar, and is an auxiliary filter on the filtee filtee.
so.1. In this example, the environment variable LD_OPTIONS is used to circumvent the compiler
driver from interpreting the -f option.

$ cat filter.c

char *bar = "defined in filter";

char *foo()

{

 return ("defined in filter");

}

$ LD_OPTIONS='-f filtee.so.1' \

cc -o filter.so.1 -G -K pic -h filter.so.1 -R. filter.c

$ elfdump -d filter.so.1 | egrep "SONAME|AUXILIARY"

 [2] SONAME 0xee filter.so.1

 [3] AUXILIARY 0xfb filtee.so.1

A mapfile can be used instead of the -f command line option.

$ cat mapfile

$mapfile_version 2

FILTER {

 FILTEE = filtee.so.1;

 TYPE = AUXILIARY;

};

$ cc -o filter.so.1 -G -K pic -h filter.so.1 -M mapfile -R. filter.c

$ elfdump -d filter.so.1 | egrep "SONAME|AUXILIARY"

 [2] SONAME 0xee filter.so.1

 [3] AUXILIARY 0xfb filtee.so.1

The link-editor can reference the auxiliary filter filter.so.1 as a dependency when creating
a dynamic object. The link-editor uses information from the symbol table of the filter to satisfy
any symbol resolution. However, at runtime, any reference to the symbols of the filter result in
a search for the filtee filtee.so.1. If this filtee is found, the runtime linker uses the filtee to
resolve any symbols defined by filter.so.1. If the filtee is not found, or a symbol from the
filter is not found in the filtee, then the original symbol within the filter is used.

For example, the following dynamic executable prog, references the symbols foo and bar,
which are resolved during link-edit from the filter filter.so.1. The execution of prog results
in foo being obtained from the filtee filtee.so.1, not from the filter filter.so.1. However,
bar is obtained from the filter filter.so.1, as this symbol has no alternative definition in the
filtee filtee.so.1.

$ cat main.c

extern char *bar, *foo();

140 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Shared Objects as Filters

void main()

{

 (void) printf("foo is %s: bar is %s\n", foo(), bar);

}

$ cc -o prog main.c -R. filter.so.1

$ prog

foo is defined in filtee: bar is defined in filter

In the following example, the shared object filter.so.2 defines the interface foo, to be an
auxiliary filter on the filtee filtee.so.1.

$ cat filter.c

char *bar = "defined in filter";

char *foo()

{

 return ("defined in filter");

}

$ cat mapfile

$mapfile_version 2

SYMBOL_SCOPE {

 global:

 foo { AUXILIARY=filtee.so.1 };

};

$ cc -o filter.so.2 -G -K pic -h filter.so.2 -M mapfile -R. filter.c

$ elfdump -d filter.so.2 | egrep "SONAME|AUXILIARY"

 [2] SONAME 0xd8 filter.so.2

 [3] SUNW_AUXILIARY 0xfb filtee.so.1

$ elfdump -y filter.so.2 | egrep "foo|bar"

 [1] A [3] filtee.so.1 foo

 [10] D <self> bar

At runtime, any reference to the symbol foo of the filter, results in a search for the filtee
filtee.so.1. If the filtee is found, the filtee is loaded. The filtee is then used to resolve the
symbol foo defined by filter.so.2. If the filtee is not found, symbol foo defined by filter.
so.2 is used. Reference to the symbol bar always uses the symbol from filter.so.2, as no
filtee processing is defined for this symbol.

For example, the following dynamic executable prog, references the symbols foo and bar,
which are resolved during link-edit from the filter filter.so.2. If the filtee filtee.so.1
exists, the execution of prog results in foo being obtained from the filtee filtee.so.1, and bar
being obtained from the filter filter.so.2.

$ cc -o prog main.c -R. filter.so.2

$ prog

foo is defined in filtee: bar is defined in filter

Chapter 4 • Shared Objects 141

Shared Objects as Filters

If the filtee filtee.so.1 does not exist, the execution of prog results in foo and bar being
obtained from the filter filter.so.2.

$ prog

foo is defined in filter: bar is defined in filter

In these examples, the filtee filtee.so.1 is uniquely associated to the filter. The filtee
is not available to satisfy symbol lookup from any other objects that might be loaded as a
consequence of executing prog.

Auxiliary filters provide a mechanism for defining an alternative interface of an existing shared
object. This mechanism is used in the Oracle Solaris OS to provide optimized functionality
within hardware capability, and platform specific shared objects. See “Capability Specific
Shared Objects” on page 293, and “System Specific Shared Objects” on page 297 for
examples.

Note - The environment variable LD_NOAUXFLTR can be set to disable the runtime linkers
auxiliary filter processing. Because auxiliary filters are frequently employed to provide platform
specific optimizations, this option can be useful in evaluating filtee use and their performance
impact.

Filtering Combinations

Individual interfaces that define standard filters, together with individual interfaces that define
auxiliary filters, can be defined within the same shared object. This combination of filter
definitions is achieved by using the mapfile keywords FILTER and AUXILIARY to assign the
required filtees.

A shared object that defines all of its interfaces to be filters by using the -F, or -f option, or the
mapfile FILTER directive, is either a standard weak, or auxiliary filter.

A shared object can define individual interfaces to act as filters, together with defining all the
interfaces of the object to act as a filters. In this case, the individual filtering defined for an
interface is processed first. When a filtee for an individual interface filter can not be established,
the filtee defined for all he interfaces of the filter provides a fallback if appropriate.

For example, consider the filter filter.so.1. This filter defines that all interfaces act as
auxiliary filters against the filtee filtee.so.1 using the link-editor's -f option. filter.so.1
also defines the individual interface foo to be a standard filter against the filtee foo.so.1 using
the mapfile FILTER symbol attribute. filter.so.1 also defines the individual interface bar to
be an auxiliary filter against the filtee bar.so.1 using the mapfile AUXILIARY symbol attribute.

142 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Shared Objects as Filters

An external reference to foo results in processing the filtee foo.so.1. If foo can not be found
from foo.so.1, then no further processing of the filter is carried out. In this case, no fallback
processing is performed because foo is defined to be a standard filter.

An external reference to bar results in processing the filtee bar.so.1. If bar can not be found
from bar.so.1, then processing falls back to the filtee filtee.so.1. In this case, fallback
processing is performed because bar is defined to be an auxiliary filter. If bar can not be found
from filtee.so.1, then the definition of bar within the filter filter.so.1 is finally used to
resolve the external reference.

Filtee Processing

The runtime linker processing of a filter defers loading a filtee until a filter symbol is
referenced. This implementation is analogous to the filter performing a dlopen(3C), using mode
RTLD_LOCAL, on each of its filtees as the filtee is required. This implementation accounts for
differences in dependency reporting that can be produced by tools such as ldd(1).

The link-editor's -z loadfltr option can be used when creating a filter to cause the immediate
processing of its filtees at runtime. In addition, the immediate processing of all filtees within a
process, can be triggered by setting the LD_LOADFLTR environment variable to any value.

Chapter 4 • Shared Objects 143

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ldd-1

144 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

PART II

Linker and Libraries Quick Reference

PART II Linker and Libraries Quick Reference 145

146 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

 5 ♦ ♦ ♦ C H A P T E R 5

Link-Editor Quick Reference

The following sections provide a simple overview, or cheat sheet, of the most commonly used
link-editor scenarios. See “Link Editing With the Link-Editor” on page 22 for an introduction to
the kinds of output modules generated by the link-editor.

The examples provided show the link-editor options as supplied to a compiler driver, this being
the most common mechanism of invoking the link-editor. In these examples cc(1) is used. See
“Using a Compiler Driver” on page 29.

The link-editor places no meaning on the name of any input file. Each file is opened
and inspected to determine the type of processing it requires. See “Input File
Processing” on page 32.

Shared objects that follow a naming convention of libx.so, and archive libraries that follow
a naming convention of libx.a, can be input using the -l option. See “Library Naming
Conventions” on page 35. This provides additional flexibility in allowing search paths to be
specified using the -L option. See “Directories Searched by the Link-Editor” on page 37.

Over time, the link-editor has added many features that provide for the creation of high
quality objects. These features can enable the object to be used efficiently and reliably in
various runtime environments. However, to ensure backward compatibility with existing build
environments, many of these features are not enabled by default. For example, features such
as direct bindings and lazy loading must be explicitly enabled. The link-editor provides the
-z guidance option to help simplify the process of selecting which features to apply. When
guidance is requested, the link-editor can issue warning guidance messages. These messages
suggesting options to use, and other related changes, that can help produce higher quality
objects. Guidance messages might change over time, as new features are added to the link-
editor, or as better practices are discovered to generate high qualify objects. See ld(1).

The link-editor basically operates in one of two modes, static or dynamic.

Chapter 5 • Link-Editor Quick Reference 147

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ld-1

Static Mode

Static Mode

Static mode is selected when the -d n option is used, and enables you to create relocatable
objects and static executables. Under this mode, only relocatable objects and archive libraries
are acceptable forms of input. Use of the -l option results in a search for archive libraries.

Creating a Relocatable Object

To create a relocatable object use the -r option.

$ ld -r -o temp.o file1.o file2.o file3.o

Creating a Static Executable

Note - The use of static executables is limited. See “Static Executables” on page 23. Static
executables usually contain platform-specific implementation details that restrict the ability of
the executable to be run on an alternative platform, or version of the operating system. Many
implementations of Oracle Solaris shared objects depend on dynamic linking facilities, such as
dlopen(3C) and dlsym(3C). See “Preloading Additional Objects” on page 94. These facilities
are not available to static executables.

To create a static executable use the -d n option without the -r option.

$ cc -dn -o prog file1.o file2.o file3.o

The -a option is available to indicate the creation of a static executable. The use of -d n without
a -r implies -a.

Dynamic Mode
Dynamic mode is the default mode of operation for the link-editor. It can be enforced by
specifying the -d y option, but is implied when not using the -d n option.

Under this mode, relocatable objects, shared objects and archive libraries are acceptable forms
of input. Use of the -l option results in a directory search, where each directory is searched for
a shared object. If no shared object is found, the same directory is then searched for an archive
library. A search only for archive libraries can be enforced by using the -B static option. See
“Linking With a Mix of Shared Objects and Archives” on page 36.

148 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlsym-3c

Dynamic Mode

Creating a Shared Object

■ To create a shared object use the -G option. -d y is optional as it is implied by default.

■ The use of the link-editor -z guidance option is recommended. Guidance messages offer
suggestions for link-editor options and other actions that can improve the resulting object.

■ Input relocatable objects should be built from position-independent code. For example, the
C compiler generates position-independent code under the -K pic option. See “Position-
Independent Code” on page 206. Use the -z text option to enforce this requirement.

■ Avoid including unused relocatable objects. Or, use the -z discard-unused=sections
option, which instructs the link-editor to eliminate unreferenced ELF sections. See
“Removing Unused Material” on page 209.

■ Application registers are a feature of the SPARC architecture which are reserved for use
by the end user. SPARC shared objects intended for external use should use the -xregs=no
%appl option to the C compiler in order to ensure that the shared object does not use any
application registers. This makes the application registers available to any external users
without compromising the shared object's implementation.

■ Establish the shared object's public interface by defining the global symbols that should be
visible from the shared object, and reducing any other global symbols to local scope. This
definition is provided by the -M option together with an associated mapfile. See Chapter 11,
“Interfaces and Versioning”.

■ Use a versioned name for the shared object to allow for future upgrades. See “Coordination
of Versioned Filenames” on page 289.

■ Self-contained shared objects offer maximum flexibility. They are produced when the object
expresses all dependency needs. Use the -z defs to enforce this self containment. See
“Generating a Shared Object Output File” on page 49.

■ Avoid unneeded dependencies. Use ldd with the -u option to detect and remove unneeded
dependencies. See “Shared Object Processing” on page 34. Or, use the -z discard-
unused=dependencies option, which instructs the link-editor to record dependencies only to
objects that are referenced.

■ If the shared object being generated has dependencies on other shared objects, indicate
they should be lazily loaded using the -z lazyload option. See “Lazy Loading of Dynamic
Dependencies” on page 95.

■ If the shared object being generated has dependencies on other shared objects, and these
dependencies do not reside in the default search locations, record their path name in the
output file using the -R option. See “Shared Objects With Dependencies” on page 131.

■ If interposing symbols are not used on this object or its dependencies, establish direct
binding information with -B direct. See Chapter 7, “Direct Bindings”.

The following example combines the above points.

Chapter 5 • Link-Editor Quick Reference 149

Dynamic Mode

$ cc -c -o foo.o -K pic -xregs=no%appl foo.c

$ cc -M mapfile -G -o libfoo.so.1 -z text -z defs -B direct -z lazyload \

 -z discard-unused=sections -R /home/lib foo.o -L. -lbar -lc

■ If the shared object being generated is used as input to another link-edit, record within
it the shared object's runtime name using the -h option. See “Recording a Shared Object
Name” on page 128.

■ Make the shared object available to the compilation environment by creating a file
system link to a non-versioned shared object name. See “Coordination of Versioned
Filenames” on page 289.

The following example combines the above points.

$ cc -M mapfile -G -o libfoo.so.1 -z text -z defs -B direct -z lazyload \

 -z discard-unused=sections -R /home/lib -h libfoo.so.1 foo.o -L. -lbar -lc

$ ln -s libfoo.so.1 libfoo.so

■ Consider the performance implications of the shared object: Maximize shareability, as
described in “Maximizing Shareability” on page 213: Minimize paging activity, as
described in “Minimizing Paging Activity” on page 215: Reduce relocation overhead,
especially by minimizing symbolic relocations, as described in “Reducing Symbol
Scope” on page 56: Allow access to data through functional interfaces, as described in
“Copy Relocations” on page 217.

Creating a Dynamic Executable
■ To create a dynamic executable don't use the -G, or -d n options.
■ The use of the link-editor -z guidance option is recommended. Guidance messages offer

suggestions for link-editor options and other actions that can improve the resulting object.
■ Indicate that the dependencies of the dynamic executable should be lazily loaded using the

-z lazyload option. See “Lazy Loading of Dynamic Dependencies” on page 95.
■ Avoid unneeded dependencies. Use ldd with the -u option to detect and remove unneeded

dependencies. See “Shared Object Processing” on page 34. Or, use the -z discard-
unused=dependencies option, which instructs the link-editor to record dependencies only to
objects that are referenced.

■ If the dependencies of the dynamic executable do not reside in the default search locations,
record their path name in the output file using the -R option. See “Directories Searched by
the Runtime Linker” on page 39.

■ Establish direct binding information using -B direct. See Chapter 7, “Direct Bindings”.

The following example combines the above points.

$ cc -o prog -R /home/lib -z discard-unused=dependencies -z lazyload -B direct -L. \

150 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Dynamic Mode

 -lfoo file1.o file2.o file3.o

Chapter 5 • Link-Editor Quick Reference 151

152 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

 6 ♦ ♦ ♦ C H A P T E R 6

Symbol Capabilities Example

The following sections provide a simple example, or cheat sheet, for creating and exercising
symbol capabilities variants. The variants don't use the capabilities they are defined to need,
but simply use printf() to observe their selection at runtime. The intent behind this example
is to capture the creation and execution of a capabilities family in a simple framework. This
framework can act as a seed for creating your own capabilities build environment.

For demonstration purposes this example uses the x86 capabilities AES and AVX. In a real
solution, each variant should contain implementations that have been created to target specific
systems. The capabilities of these variants are normally established by the compiler, rather than
from a mapfile as shown here.

For a complete discussion of creating and using symbol capabilities see Chapter 8,
“Capability Processing”, and specifically “Creating a Family of Symbol Capabilities
Functions” on page 189.

Creating a Symbol Capabilities Example

The function foo() is used to create a family of variants where a compilation directive is used
to produce diagnostics that identify the eventual variant.

$ cat foo.c

#include <stdio.h>

void bar(const char *fmt, const char *str)

{

 (void) printf(fmt, str);

}

void foo()

{

 bar("called: foo-%s\n", CAPABILITY);

}

Chapter 6 • Symbol Capabilities Example 153

Creating a Symbol Capabilities Example

Three variants are created, a generic lead variant, and two variants that will have capabilities
assigned. Each variant is supplied a variant identifier string from the command line.

$ cc -c -Kpic -DCAPABILITY=\"generic\" -o foo.o foo.c

$ cc -c -Kpic -DCAPABILITY=\"HWCAP-1\" -o foo.1.o foo.c

$ cc -c -Kpic -DCAPABILITY=\"HWCAP-2\" -o foo.2.o foo.c

Normally the two capabilities variants, foo.hwcap-1.o and foo.hwcap-2.o, would be created
using targeted compiler options or specialized assembler code. The compilation tools would
record in each variant the capabilities needed. However, in this example each variant is assigned
a hard coded set of capability requirements using a mapfile. In addition, this mapfile defines
the interface that is exported for the variant.

$ cat mapfile.hwcap.1

$mapfile_version 2

CAPABILITY hwcap-1 {

 HW = AES;

};

SYMBOL_SCOPE {

 global:

 foo;

 local:

 *;

};

$ cat mapfile.hwcap.2

$mapfile_version 2

CAPABILITY hwcap-2 {

 HW = AVX;

};

SYMBOL_SCOPE {

 global:

 foo;

 local:

 *;

};

The two capabilities variants are built using these mapfiles.

$ ld -r -o foo.1.objcap.o -Breduce -M mapfile.hwcap.1 foo.1.o

$ ld -r -o foo.2.objcap.o -Breduce -M mapfile.hwcap.2 foo.2.o

The capabilities that are recorded in foo.1.objcap.o and foo.2.objcap.o apply to the entire
object.

$ elfdump -H foo.1.objcap.o

154 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Creating a Symbol Capabilities Example

...

 Object Capabilities:

 index tag value

 [0] CA_SUNW_ID 0x25 hwcap-1

 [1] CA_SUNW_HW_1 0x4000000 [AES]

$ elfdump -H foo.2.objcap.o

...

 Object Capabilities:

 index tag value

 [0] CA_SUNW_ID 0x45 hwcap-2

 [1] CA_SUNW_HW_1 0x20000000 [AVX]

The only interface that each object offers is foo(). bar() has been demoted to a local symbol.

$ elfdump -s foo.1.objcap.o | egrep "foo|bar" | fgrep FUNC

 [20] 0x10 0x36 FUNC LOCL H 0 .text bar

 [22] 0x50 0x3c FUNC GLOB D 1 .text foo

$ elfdump -s foo.2.objcap.o | egrep "foo|bar" | fgrep FUNC

 [20] 0x10 0x36 FUNC LOCL H 0 .text bar

 [22] 0x50 0x3c FUNC GLOB D 1 .text foo

Note - The sole export of foo() could have been achieved by defining bar() as static.
However, in a real solution this variant could be constructed from multiple relocatable objects.
The use of the -B reduce option and the mapfile SYMBOL_SCOPE directive illustrate how the
interfaces exported from the variant can be controlled in such cases.

The next step transforms these object capabilities variants into symbol capabilities variants.

$ ld -r -o foo.1.symcap.o -z symbolcap foo.1.objcap.o

$ ld -r -o foo.2.symcap.o -z symbolcap foo.2.objcap.o

The capabilities that are recorded in foo.1.symcap.o and foo.2.symcap.o apply to the
exported symbols of the object.

$ elfdump -H foo.1.symcap.o

...

 Symbol Capabilities:

 index tag value

 [1] CA_SUNW_ID 0x2d hwcap-1

 [2] CA_SUNW_HW_1 0x4000000 [AES]

 Symbols:

 index value size type bind oth ver shndx name

 [22] 0x50 0x3c FUNC LOCL D 0 .text foo%hwcap-1

...

Chapter 6 • Symbol Capabilities Example 155

Exercising a Symbol Capabilities Example

$ elfdump -H foo.2.symcap.o

...

 Symbol Capabilities:

 index tag value

 [1] CA_SUNW_ID 0x37 hwcap-2

 [2] CA_SUNW_HW_1 0x20000000 [AVX]

 Symbols:

 index value size type bind oth ver shndx name

 [24] 0x50 0x3c FUNC LOCL D 0 .text foo%hwcap-2

...

The three variants are now combined into a final object. Here, a shared object is created, as this
can provide capability variants to many applications.

$ cc -G -o libfoo.so.1 -Kpic foo.o foo.1.symcap.o foo.2.symcap.o

The variants are captured into a family, with foo() being the single exported interface that leads
the family.

$ elfdump -H libfoo.so.1

...

 Capabilities family: foo

 chainndx symndx name

 1 [9] foo

 2 [1] foo%hwcap-1

 3 [2] foo%hwcap-2

Note that these capability variants can also be used to create a dynamic executable.

$ cc -o main.2 main.c foo.o foo.1.symcap.o foo.2.symcap.o

Exercising a Symbol Capabilities Example

Objects can now reference foo(), and at runtime the best variant is chosen. To observe this, a
simple executable is sufficient.

$ cat main.c

extern void foo();

int main()

{

 foo();

 return (0);

}

156 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Exercising a Symbol Capabilities Example

$ cc -o main.1 main.c -R. libfoo.so.1

Note - Each variant has a set of capabilities that must be available for the variant to be selected.
In addition, the object itself may have a capabilities requirement. Any object capabilities need
to be considered when exercising the variants.

In this example, libfoo.so.1 requires object capabilities. These capabilities originate from
additional objects that the compiler added to the creation of libfoo.so.1.

$ elfdump -H libfoo.so.1

...

 Object Capabilities:

 index tag value

 [0] CA_SUNW_HW_1 0x800 [SSE]

...

The generic foo() variant can be exercised by restricting the capabilities available within a
process to the object capabilities required by libfoo.so.1.

$ LD_HWCAP=SSE LD_CAP_FILES=libfoo.so.1 ./main.1

called: foo-generic

Each variant within libfoo.so.1 can be exercised by establishing the capabilities that each
variant requires together with the object capabilities that libfoo.so.1 requires.

$ LD_HWCAP=SSE,AES LD_CAP_FILES=libfoo.so.1 ./main.1

called: foo-HWCAP-1

$ LD_HWCAP=SSE,AVX LD_CAP_FILES=libfoo.so.1 ./main.1

called: foo-HWCAP-2

Similarly, the variants within an executable containing symbol capabilities can be exercised.

$ LD_HWCAP=SSE LD_CAP_FILES=main.2 ./main.2

called: foo-generic

$ LD_HWCAP=SSE,AES LD_CAP_FILES=main.2 ./main.2

called: foo-HWCAP-1

$ LD_HWCAP=SSE,AVX LD_CAP_FILES=main.2 ./main.2

called: foo-HWCAP-2

This example demonstrates the creation and execution of a capabilities family. A real solution
would substitute the foo() capabilities variants with code that is targeted to use specific
capabilities. The appropriate capabilities variant is then chosen based on the capabilities
available to the process at runtime from the system on which the process executes.

Chapter 6 • Symbol Capabilities Example 157

158 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

PART III

Linker and Libraries Advanced Topics

PART III Linker and Libraries Advanced Topics 159

160 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

 7 ♦ ♦ ♦ C H A P T E R 7

Direct Bindings

As part of constructing a process from an executable and a number of dependencies, the runtime
linker must bind symbol references to symbol definitions. By default, symbol definitions are
discovered using a simple search model. Typically, each object is searched, starting with the
executable, and progressing through each dependency in the same order in which the objects are
loaded. This model has been in effect since dynamic linking was first introduced. This simple
model typically results in all symbol references being bound to one definition. The bound
definition is the first definition that is found in the series of dependencies that have been loaded.

Dynamic objects have evolved into far more complex processes than those that were developed
when dynamic linking was in its infancy. The number of dependencies has grown from tens
to hundreds. The number of symbolic interfaces that are referenced between dynamic objects
has also grown substantially. The size of symbol names has increased considerably with
techniques such as the name mangling used to support languages such as C++. These factors
have contributed to an increase in startup time for many applications, as symbol references are
bound to symbol definitions.

The increase in the number of symbols within a process has also led to an increase in name
space pollution. Multiple instances of symbols of the same name are becoming more common.
Unanticipated, and erroneous bindings that result from multiple instances of the same symbol
frequently result in hard to diagnose process failures.

In addition, processes now exist where individual objects of the process need to bind to
different instances of multiply defined symbols of the same name.

To address the overhead of the default search model while providing greater symbol binding
flexibility, an alternative symbol search model has been created. This model is referred to as
direct binding.

Direct binding allows for precise binding relationships to be established between the objects
of a process. Direct binding relationships can help avoid any accidental name space clashes,
by isolating the associated objects from unintentional bindings. This protection adds to the
robustness of the objects within a process, which can help avoid unexpected, hard to diagnose,
binding situations.

Chapter 7 • Direct Bindings 161

Observing Symbol Bindings

Direct bindings can affect interposition. Unintentional interposition can be avoided by
employing direct bindings. However, intentional interposition can be circumvented by direct
bindings.

This chapter describes the direct binding model together with discussing interposition issues
that should be considered when converting objects to use this model.

Observing Symbol Bindings

To understand the default symbol search model and compare this model with direct bindings,
the following components are used to build a process.

$ cat main.c

extern int W(), X();

int main() { return (W() + X()); }

$ cat W.c

extern int b();

int a() { return (1); }

int W() { return (a() - b()); }

$ cat w.c

int b() { return (2); }

$ cat X.c

extern int b();

int a() { return (3); }

int X() { return (a() - b()); }

$ cat x.c

int b() { return (4); }

$ cc -o w.so.1 -G -Kpic w.c

$ cc -o W.so.1 -G -Kpic W.c -R. w.so.1

$ cc -o x.so.1 -G -Kpic x.c

$ cc -o X.so.1 -G -Kpic X.c -R. x.so.1

$ cc -o prog1 -R. main.c W.so.1 X.so.1

The components of the application are loaded in the following order.

$ ldd prog1

 W.so.1 => ./W.so.1

 X.so.1 => ./X.so.1

 w.so.1 => ./w.so.1

 x.so.1 => ./x.so.1

162 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Observing Symbol Bindings

Both files W.so.1 and X.so.1 define a function that is named a(). Both files w.so.1 and x.
so.1 define a function that is named b(). In addition, both files W.so.1 and X.so.1 reference
the functions a() and b().

The runtime symbol search, using the default search model, together with the final binding,
can be observed by setting the LD_DEBUG environment variable. From the runtime linkers
diagnostics, the bindings to the functions a() and b() can be revealed.

$ LD_DEBUG=symbols,bindings prog1

....

17375: symbol=a; lookup in file=prog1 [ELF]

17375: symbol=a; lookup in file=./W.so.1 [ELF]

17375: binding file=./W.so.1 to file=./W.so.1: symbol 'a'

....

17375: symbol=b; lookup in file=prog1 [ELF]

17375: symbol=b; lookup in file=./W.so.1 [ELF]

17375: symbol=b; lookup in file=./X.so.1 [ELF]

17375: symbol=b; lookup in file=./w.so.1 [ELF]

17375: binding file=./W.so.1 to file=./w.so.1: symbol 'b'

....

17375: symbol=a; lookup in file=prog1 [ELF]

17375: symbol=a; lookup in file=./W.so.1 [ELF]

17375: binding file=./X.so.1 to file=./W.so.1: symbol 'a'

....

17375: symbol=b; lookup in file=prog1 [ELF]

17375: symbol=b; lookup in file=./W.so.1 [ELF]

17375: symbol=b; lookup in file=./X.so.1 [ELF]

17375: symbol=b; lookup in file=./w.so.1 [ELF]

17375: binding file=./X.so.1 to file=./w.so.1: symbol 'b'

Each reference to one of the functions a() or b(), results in a search for the associated symbol
starting with the application prog1. Each reference to a() binds to the first instance of the
symbol which is discovered in W.so.1. Each reference to b() binds to the first instance of the
symbol which is discovered in w.so.1. This example reveals how the function definitions in W.
so.1 and w.so.1 interpose on the function definitions in X.so.1 and x.so.1. The existence of
interposition is an important factor when considering the use of direct bindings. Interposition is
covered in detail in the sections that follow.

This example is concise, and the associated diagnostics are easy to follow. However, most
applications are far more complex, being constructed from many dynamic components. These
components are frequently delivered asynchronously, having been built from separate source
bases.

The analysis of the diagnostics from a complex process can be challenging. Another technique
for analyzing the interface requirements of dynamic objects is to use the lari(1) utility. lari
analyzes the binding information of a process together with the interface definitions provided

Chapter 7 • Direct Bindings 163

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1lari-1

Enabling Direct Binding

by each object. This information allows lari to concisely convey interesting information
about the symbol dependencies of a process. This information is very useful when analyzing
interposition in conjunction with direct bindings.

By default, lari conveys information that is considered interesting. This information originates
from multiple instances of a symbol definition. lari reveals the following information for
prog1.

$ lari prog1

[2:2ES]: a(): ./W.so.1

[2:0]: a(): ./X.so.1

[2:2E]: b(): ./w.so.1

[2:0]: b(): ./x.so.1

In this example, the process established from prog1 contains two multiply defined symbols, a()
and b(). The initial elements of the output diagnostics, those elements that are enclosed in the
brackets, describe the associated symbols.

The first decimal value identifies the number of instances of the associated symbol. Two
instances of a() and b() exist. The second decimal value identifies the number of bindings that
have been resolved to this symbol. The symbol definition a() from W.so.1 reveals that two
bindings have been established to this dependency. Similarly, the symbol definition b() from w.
so.1 reveals that two bindings have been established to this dependency. The letters that follow
the number of bindings, qualify the binding. The letter "E" indicates that a binding has been
established from an external object. The letter "S" indicates that a binding has been established
from the same object.

LD_DEBUG, lari, and the process examples built from these components, are used to further
investigate direct binding scenarios in the sections that follow.

Enabling Direct Binding

An object that uses direct bindings maintains the relationship between a symbol reference and
the dependency that provided the definition. The runtime linker uses this information to search
directly for the symbol in the associated object, rather than carry out the default symbol search
model.

Direct binding information for a dynamic object is recorded at link-edit time. This information
can only be established for the dependencies that are specified with the link-edit of that object.
Use the -z defs option to ensure that all of the necessary dependencies are provided as part of
the link-edit.

164 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Enabling Direct Binding

Objects that use direct bindings can exist within a process with objects that do not use direct
bindings. Those objects that do not use direct bindings use the default symbol search model.

The direct binding of a symbol reference to a symbol definition can be established with one of
the following link-editing mechanisms.

■ With the -B direct option. This option establishes direct bindings between the object
being built and all of the objects dependencies. This option also establishes direct bindings
between any symbol reference and symbol definition within the object being built.

The use of the -B direct option also enables lazy loading. This enabling is equivalent to
adding the -z lazyload option to the front of the link-edit command line. This attribute was
introduced in “Lazy Loading of Dynamic Dependencies” on page 95.

■ With the -z direct option. This option establishes direct bindings from the object being
built to any dependencies that follow the option on the command line. This option can be
used together with the -z nodirect option to toggle the use of direct bindings between
dependencies. This option does not establish direct bindings between any symbol reference
and symbol definition within the object being built.

■ With the DIRECT mapfile keyword. This keyword provides for directly binding
individual symbols. This keyword is described in “SYMBOL_SCOPE and SYMBOL_VERSION
Directives” on page 254.

Note - Direct bindings can be disabled at runtime by setting the environment variable
LD_NODIRECT to a non-null value. By setting this environment variable, all symbol binding
within a process is carried out using the default search model.

The following sections describe the use of each of the direct binding mechanisms.

Using the -B direct Option

The -B direct option provides the simplest mechanism of enabling direct binding for any
dynamic object. This option establishes direct bindings to any dependencies, and within the
object being built.

From the components used in the previous example, a directly bound object, W.so.2, can be
produced.

$ cc -o W.so.2 -G -Kpic W.c -R. -B direct w.so.1

$ cc -o prog2 -R. main.c W.so.2 X.so.1

The direct binding information is maintained in a symbol information section, .SUNW_syminfo,
within W.so.2. This section can be viewed with elfdump(1).

Chapter 7 • Direct Bindings 165

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1elfdump-1

Enabling Direct Binding

$ elfdump -y W.so.2

 [6] DB <self> a

 [7] DBL [1] w.so.1 b

The letters "DB" indicates a direct binding has been recorded for the associated symbol. The
function a() has been bound to the containing object W.so.2. The function b() has been bound
directly to the dependency w.so.1. The letter "L" indicates that the dependency w.so.1 should
also be lazily loaded.

The direct bindings that are established for W.so.2 can be observed using the LD_DEBUG
environment variable. The detail token adds additional information to the binding diagnostics.
For W.so.2, this token indicates the direct nature of the binding. The detail token also
provides additional information about the binding addresses. For simplification, this address
information has been omitted from the output generated from the following examples.

$ LD_DEBUG=symbols,bindings,detail prog2

....

18452: symbol=a; lookup in file=./W.so.2 [ELF]

18452: binding file=./W.so.2 to file=./W.so.2: symbol 'a' (direct)

18452: symbol=b; lookup in file=./w.so.1 [ELF]

18452: binding file=./W.so.2 to file=./w.so.1: symbol 'b' (direct)

The lari(1) utility can also reveal the direct binding information.

$ lari prog2

[2:2ESD]: a(): ./W.so.2

[2:0]: a(): ./X.so.1

[2:2ED]: b(): ./w.so.1

[2:0]: b(): ./x.so.1

The letter "D" indicates that the function a() defined by W.so.2 has been bound to directly.
Similarly, the function b() defined in w.so.1 has been bound to directly.

166 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1lari-1

Enabling Direct Binding

Note - The direct binding of W.so.2 to W.so.2 for the function a() results in a similar effect
as would be created had the -B symbolic option been used to build W.so.2. However, the
-B symbolic option causes references such as a(), that can be resolved internally, to be
finalized at link-edit time. This symbol resolution leaves no binding to resolve at runtime.

Unlike -B symbolic bindings, a -B direct binding is left for resolution at runtime. Therefore,
this binding can be overridden by explicit interposition, or disabled by setting the environment
variable LD_NODIRECT to a non-null value.

Symbolic bindings have often been employed to reduce the runtime relocation overhead
incurred when loading complex objects. Direct bindings can be used to establish exactly the
same symbol bindings. However, a runtime relocation is still required to create each direct
binding. Direct bindings require more overhead than symbolic bindings, but provide for greater
flexibility.

Using the -z direct Option

The -z direct option provides a mechanism of establishing direct bindings to any
dependencies that follow the option on the link-edit command line. Unlike the -B direct
option, no direct bindings are established within the object that is being built.

This option is well suited for building objects that are designed to be interposed upon. For
example, shared objects are sometimes designed that contain a number of default, or fallback,
interfaces. Applications are free to define their own definitions of these interfaces with the
intent that the application definitions are bound to at runtime. To allow an application to
interpose on the interfaces of a shared object, build the shared object using the -z direct
option rather than the -B direct option.

The -z direct option is also useful if you want to be selective over directly binding to one or
more dependencies. The -z nodirect option allows you to toggle the use of direct bindings
between the dependencies supplied with a link-edit.

From the components used in the previous example, a directly bound object X.so.2 can be
produced.

$ cc -o X.so.2 -G -Kpic X.c -R. -z direct x.so.1

$ cc -o prog3 -R. main.c W.so.2 X.so.2

The direct binding information can be viewed with elfdump(1).

$ elfdump -y X.so.2

 [6] D <self> a

Chapter 7 • Direct Bindings 167

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1elfdump-1

Enabling Direct Binding

 [7] DB [1] x.so.1 b

The function b() has been bound directly to the dependency x.so.1. The function a()is
defined as having a potential direct binding, "D", with the object X.so.2, but no direct binding is
established.

The LD_DEBUG environment variable can be used to observe the runtime bindings.

$ LD_DEBUG=symbols,bindings,detail prog3

....

06177: symbol=a; lookup in file=prog3 [ELF]

06177: symbol=a; lookup in file=./W.so.2 [ELF]

06177: binding file=./X.so.2 to file=./W.so.2: symbol 'a'

06177: symbol=b; lookup in file=./x.so.1 [ELF]

06177: binding file=./X.so.2 to file=./x.so.1: symbol 'b' (direct)

The lari(1) utility can also reveal the direct binding information.

$ lari prog3

[2:2ESD]: a(): ./W.so.2

[2:0]: a(): ./X.so.2

[2:1ED]: b(): ./w.so.1

[2:1ED]: b(): ./x.so.1

The function a() defined by W.so.2 continues to satisfy the default symbol reference made by
X.so.2. However, the function b() defined in x.so.1 has now been bound to directly from the
reference made by X.so.2.

Using the DIRECT mapfile Keyword

The DIRECT mapfile keyword provides a means of establishing a direct binding for individual
symbols. This mechanism is intended for specialized link-editing scenarios.

From the components used in the previous example, the function main() references the external
functions W() and X(). The binding of these functions follow the default search model.

$ LD_DEBUG=symbols,bindings prog3

....

18754: symbol=W; lookup in file=prog3 [ELF]

18754: symbol=W; lookup in file=./W.so.2 [ELF]

18754: binding file=prog3 to file=./W.so.2: symbol 'W'

....

18754: symbol=X; lookup in file=prog3 [ELF]

18754: symbol=X; lookup in file=./W.so.2 [ELF]

168 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1lari-1

Direct Bindings and Interposition

18754: symbol=X; lookup in file=./X.so.2 [ELF]

18754: binding file=prog3 to file=./X.so.2: symbol 'X'

prog3 can be rebuilt with DIRECT mapfile keywords so that direct bindings are established to
the functions W() and X().

$ cat mapfile

$mapfile_version 2

SYMBOL_SCOPE {

 global:

 W { FLAGS = EXTERN DIRECT };

 X { FLAGS = EXTERN DIRECT };

};

$ cc -o prog4 -R. main.c W.so.2 X.so.2 -Mmapfile

The LD_DEBUG environment variable can be used to observe the runtime bindings.

$ LD_DEBUG=symbols,bindings,detail prog4

....

23432: symbol=W; lookup in file=./W.so.2 [ELF]

23432: binding file=prog4 to file=./W.so.2: symbol 'W' (direct)

23432: symbol=X; lookup in file=./X.so.2 [ELF]

23432: binding file=prog4 to file=./x.so.2: symbol 'X' (direct)

The lari(1) utility can also reveal the direct binding information. However in this case, the
functions W() and X() are not multiply defined. Therefore, by default lari does not find these
functions interesting. The -a option must be used to display all symbol information.

$ lari -a prog4

....

[1:1ED]: W(): ./W.so.2

....

[2:1ED]: X(): ./X.so.2

....

Note - The same direct binding to W.so.2 and X.so.1, can be produced by building prog4 with
the -B direct option or the -z direct option. The intent of this example is solely to convey
how the mapfile keyword can be used.

Direct Bindings and Interposition

Interposition can occur when multiple instances of a symbol, having the same name, exist in
different dynamic objects that have been loaded into a process. Under the default search model,

Chapter 7 • Direct Bindings 169

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1lari-1

Direct Bindings and Interposition

symbol references are bound to the first definition that is found in the series of dependencies
that have been loaded. This first symbol is said to interpose on the other symbols of the same
name.

Direct bindings can circumvent any implicit interposition. As the directly bound reference
is searched for in the dependency associated with the reference, the default symbol search
model that enables interposition, is bypassed. In a directly bound environment, bindings can be
established to different definitions of a symbol that have the same name.

The ability to bind to different definitions of a symbol that have the same name is a feature of
direct binding that can be very useful. However, should an application depend upon an instance
of interposition, the use of direct bindings can subvert the applications expected execution.
Before deciding to use direct bindings with an existing application, the application should be
analyzed to determine whether interposition exists.

To determine whether interposition is possible within an application, use lari(1). By default,
lari conveys interesting information. This information originates from multiple instances of a
symbol definition, which in turn can lead to interposition.

Interposition only occurs when one instance of the symbol is bound to. Multiple instances of
a symbol that are called out by lari might not be involved in interposition. Other multiple
instance symbols can exist, but might not be referenced. These unreferenced symbols are still
candidates for interposition, as future code development might result in references to these
symbols. All instances of multiply defined symbols should be analyzed when considering the
use of direct bindings.

If multiple instances of a symbol of the same name exist, especially if interposition is observed,
one of the following actions should be performed.

■ Localize symbol instances to remove name space collision.
■ Remove the multiple instances to leave one symbol definition.
■ Define any interposition requirement explicitly.
■ Identify symbols that can be interposed upon to prevent the symbol from being directly

bound to.

The following sections explore these actions in greater detail.

Localizing Symbol Instances

Multiply defined symbols of the same name that provide different implementations, should
be isolated to avoid accidental interposition. The simplest way to remove a symbol from the
interfaces that are exported by an object, is to reduce the symbol to local. Demoting a symbol to

170 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1lari-1

Direct Bindings and Interposition

local can be achieved by defining the symbol "static", or possibly through the use of symbol
attributes provided by the compilers.

A symbol can also be reduced to local by using the link-editor and a mapfile. The following
example shows a mapfile that reduces the global function error() to a local symbol by using
the local scoping directive.

$ cc -o A.so.1 -G -Kpic error.c a.c b.c

$ elfdump -sN.symtab A.so.1 | fgrep error

 [36] 0x2d0 0x14 FUNC GLOB D 0 .text error

$ cat mapfile

$mapfile_version 2

SYMBOL_SCOPE {

 local:

 error;

};

$ cc -o A.so.2 -G -Kpic -M mapfile error.c a.c b.c

$ elfdump -sN.symtab A.so.2 | fgrep error

 [24] 0x2c8 0x14 FUNC LOCL H 0 .text error

Although individual symbols can be reduced to locals using explicit mapfile definitions,
defining the entire interface family through symbol versioning is recommended. See
Chapter 11, “Interfaces and Versioning”.

Versioning is a useful technique typically employed to identify the interfaces that are exported
from shared objects. Similarly, executables can be versioned to define their exported interfaces.
An executable need only export the interfaces that must be made available for the dependencies
of the object to bind to. Frequently, the code that you add to an executable need export no
interfaces.

Global symbols can be demoted to local symbols using the link-editor's -B local option, or the
auto-reduction mapfile directive "*". Both techniques reduce any global symbols that have not
explicitly been defined to remain global. In addition, both techniques ensure that any global
symbols that can be bound to from any dependencies, remain global.

By removing any exported interfaces from an executable, the executable is protected from
future interposition issues than might occur as the objects dependencies evolve.

Removing Multiply Defined Symbols of the Same
Name

Multiply defined symbols of the same name can be problematic within a directly bound
environment, if the implementation associated with the symbol maintains state. Data symbols

Chapter 7 • Direct Bindings 171

Direct Bindings and Interposition

are the typical offenders in this regard, however functions that maintain state can also be
problematic.

In a directly bound environment, multiple instances of the same symbol can be bound to.
Therefore, different binding instances can manipulate different state variables that were
originally intended to be a single instance within a process.

For example, suppose that two shared objects contain the same data item errval. Suppose also,
that two functions action() and inspect(), exist in different shared objects. These functions
expect to write and read the value errval respectively.

With the default search model, one definition of errval would interpose on the other definition.
Both functions action() and inspect() would be bound to the same instance of errval.
Therefore, if an error code was written to errval by action(), then inspect() could read, and
act upon this error condition.

However, suppose the objects containing action() and inspect() were bound to different
dependencies that each defined errval. Within a directly bound environment, these functions
are bound to different definitions of errval. An error code can be written to one instance of
errval by action() while inspect() reads the other, uninitialized definition of errval. The
outcome is that inspect() detects no error condition to act upon.

Multiple instances of data symbols typically occur when the symbols are declared in headers.

int bar;

This data declaration results in a data item being produced by each compilation unit that
includes the header. The resulting tentative data item can result in multiple instances of the
symbol being defined in different dynamic objects.

However, by explicitly defining the data item as external, references to the data item are
produced for each compilation unit that includes the header.

extern int bar;

These references can then be resolved to one data instance at runtime.

Occasionally, the interface for a symbol implementation that you want to remove, should be
preserved. Multiple instances of the same interface can be vectored to one implementation,
while preserving any existing interface. This model can be achieved by creating individual
symbol filters by using a FILTER mapfile keyword. This keyword is described in
“SYMBOL_SCOPE and SYMBOL_VERSION Directives” on page 254.

Creating individual symbol filters is useful when dependencies expect to find a symbol in an
object where the implementation for that symbol has been removed.

172 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Direct Bindings and Interposition

For example, suppose the function error() exists in two shared objects, A.so.1 and B.
so.1. To remove the symbol duplication, you want to remove the implementation from A.
so.1. However, other dependencies are relying on error() being provided from A.so.1. The
following example shows the definition of error() in A.so.1. A mapfile is then used to
allow the removal of the error() implementation, while leaving a filter for this symbol that is
directed to B.so.1.

$ cc -o A.so.1 -G -Kpic error.c a.c b.c

$ elfdump -sN.dynsym A.so.1 | fgrep error

 [3] 0x300 0x14 FUNC GLOB D 0 .text error

$ cat mapfile

$mapfile_version 2

SYMBOL_SCOPE {

 global:

 error { TYPE=FUNCTION; FILTER=B.so.1 };

};

$ cc -o A.so.2 -G -Kpic -M mapfile a.c b.c

$ elfdump -sN.dynsym A.so.2 | fgrep error

 [3] 0 0 FUNC GLOB D 0 ABS error

$ elfdump -y A.so.2 | fgrep error

 [3] F [0] B.so.1 error

The function error() is global, and remains an exported interface of A.so.2. However, any
runtime binding to this symbol is vectored to the filtee B.so.1. The letter "F" indicates the filter
nature of this symbol.

This model of preserving existing interfaces, while vectoring to one implementation has been
used in several Oracle Solaris libraries. For example, a number of math interfaces that were
once defined in libc.so.1 are now vectored to the preferred implementation of the functions in
libm.so.2.

Defining Explicit Interposition
The default search model can result in instances of the same named symbol interposing on later
instances of the same name. Even without any explicit labelling, interposition still occurs, so
that one symbol definition is bound to from all references. This implicit interposition occurs as a
consequence of the symbol search, not because of any explicit instruction the runtime linker has
been given. This implicit interposition can be circumvented by direct bindings.

Although direct bindings work to resolve a symbol reference directly to an associated symbol
definition, explicit interposition is processed prior to any direct binding search. Therefore, even
within a direct binding environment, interposers can be designed, and be expected to interpose
on any direct binding associations. Interposers can be explicitly defined using the following
techniques.

Chapter 7 • Direct Bindings 173

Direct Bindings and Interposition

■ With the LD_PRELOAD environment variable.
■ With the link-editors -z interpose option.
■ With the INTERPOSE mapfile keyword.
■ As a consequence of a singleton symbol definition.

The interposition facilities of the LD_PRELOAD environment variable, and the -z interpose
option, have been available for some time. See “Runtime Interposition” on page 91. As these
objects are explicitly defined to be interposers, the runtime linker inspects these objects before
processing any direct binding.

Interposition that is established for a shared object applies to all the interfaces of that dynamic
object. This object interposition is established when a object is loaded using the LD_PRELOAD
environment variable. Object interposition is also established when an object that has been built
with the -z interpose option, is loaded. This object model is important when techniques such
as dlsym(3C) with the special handle RTLD_NEXT are used. An interposing object should always
have a consistent view of the next object.

An executable has additional flexibility, in that the executable can define individual interposing
symbols using the INTERPOSE mapfile keyword. Because an executable is the first object
loaded in a process, the executables view of the next object is always consistent.

The following example shows an application that explicitly wants to interpose on the exit()
function.

$ cat mapfile

$mapfile_version 2

SYMBOL_SCOPE {

 global:

 exit { FLAGS = INTERPOSE };

};

$ cc -o prog -M mapfile exit.c a.c b.c

$ elfdump -y prog | fgrep exit

[6] DI <self> exit

The letter "I" indicates the interposing nature of this symbol. Presumably, the implementation
of this exit() function directly references the system function _exit(), or calls through to the
system function exit() using dlsym() with the RTLD_NEXT handle.

At first, you might consider identifying this object using the -z interpose option. However,
this technique is rather heavy weight, because all of the interfaces exported by the application
would act as interposers. A better alternative would be to localize all of the symbols provided
by the application except for the interposer, together with using the -z interpose option.

174 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlsym-3c

Preventing a Symbol from being Directly Bound to

However, use of the INTERPOSE mapfile keyword provides greater flexibility. The use of this
keyword allows an application to export several interfaces while selecting those interfaces that
should act as interposers.

Symbols that are assigned the STV_SINGLETON visibility effectively provide a form of
interposition. See Table 35, “ELF Symbol Visibility,” on page 414. These symbols can
be assigned by the compilation system to an implementation that might become multiply
instantiated in a number of objects within a process. All references to a singleton symbol are
bound to the first occurrence of a singleton symbol within a process.

Preventing a Symbol from being Directly Bound to

Direct bindings can be overridden with explicit interposition. See “Defining Explicit
Interposition” on page 173. However, cases can exist where you do not have control over
establishing explicit interposition.

For example, you might deliver a family of shared objects that you would like to use direct
bindings. Customers are known to be interposing on symbols that are provided by shared
objects of this family. If these customers have not explicitly defined their interpositioning
requirements, their interpositioning can be compromised by a re-delivery of shared objects that
employ direct bindings.

Shared objects can also be designed that provide a number of default interfaces, with an
expectation that users provide their own interposing routines.

To prevent disrupting existing applications, shared objects can be delivered that explicitly
prevent directly binding to one or more of their interfaces.

Directly binding to a dynamic object can be prevented using one of the following options.

■ With the -B nodirect option. This option prevents directly binding to any interfaces that are
offered by the object being built.

■ With the NODIRECT mapfile keyword. This keyword provides for preventing direct binding
to individual symbols. This keyword is described in “SYMBOL_SCOPE and SYMBOL_VERSION
Directives” on page 254.

■ As a consequence of a singleton symbol definition.

An interface that is labelled as nodirect, can not be directly bound to from an external object.
In addition, an interface that is labelled as nodirect, can not be directly bound to from within
the same object.

The following sections describe the use of each of the direct binding prevention mechanisms.

Chapter 7 • Direct Bindings 175

Preventing a Symbol from being Directly Bound to

Using the -B nodirect Option

The -B nodirect option provides the simplest mechanism of preventing direct binding from
any dynamic object. This option prevents direct binding from any other object, and from within
the object being built.

The following components are used to build three shared objects, A.so.1, O.so.1 and X.so.1.
The -B nodirect option is used to prevent A.so.1 from directly binding to O.so.1. However,
O.so.1 can continue to establish direct bindings to X.so.1 using the -z direct option.

$ cat a.c

extern int o(), p(), x(), y();

int a() { return (o() + p() - x() - y()); }

$ cat o.c

extern int x(), y();

int o() { return (x()); }

int p() { return (y()); }

$ cat x.c

int x() { return (1); }

int y() { return (2); }

$ cc -o X.so.1 -G -Kpic x.c

$ cc -o O.so.1 -G -Kpic o.c -B nodirect -z direct -R. X.so.1

$ cc -o A.so.1 -G -Kpic a.c -B direct -R. O.so.1 X.so.1

The symbol information for A.so.1 and O.so.1 can be viewed with elfdump(1).

$ elfdump -y A.so.1

 [1] DBL [3] X.so.1 x

 [5] DBL [3] X.so.1 y

 [6] DL [1] O.so.1 o

 [9] DL [1] O.so.1 p

$ elfdump -y O.so.1

 [3] DB [0] X.so.1 x

 [4] DB [0] X.so.1 y

 [6] N o

 [7] N p

The letter "N" indicates that no direct bindings be allowed to the functions o() and p(). Even
though A.so.1 has requested direct bindings by using the -B direct option, direct bindings
have not be established to the functions o() and p(). O.so.1 can still request direct bindings to
its dependency X.so.1 using the -z direct option.

The Oracle Solaris library libproc.so.1 is built with the -B nodirect option. Users of
this library are expected to provide their own call back interfaces for many of the libproc

176 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1elfdump-1

Preventing a Symbol from being Directly Bound to

functions. References to the libproc functions from any dependencies of libproc should bind
to any user definitions when such definitions exist.

Using the NODIRECT mapfile Keyword

The NODIRECT mapfile keyword provides a means of preventing a direct binding to individual
symbols. This keyword allows for more fine grained control over preventing direct binding than
the -B nodirect option.

From the components used in the previous example, O.so.2 can be built to prevent direct
binding to the function o().

$ cat mapfile

$mapfile_version 2

SYMBOL_SCOPE {

 global:

 o { FLAGS = NODIRECT };

};

$ cc -o O.so.2 -G -Kpic o.c -M mapfile -z direct -R. X.so.1

$ cc -o A.so.2 -G -Kpic a.c -B direct -R. O.so.2 X.so.1

The symbol information for A.so.2 and O.so.2 can be viewed with elfdump(1).

$ elfdump -y A.so.2

 [1] DBL [3] X.so.1 x

 [5] DBL [3] X.so.1 y

 [6] DL [1] O.so.1 o

 [9] DBL [1] O.so.1 p

$ elfdump -y O.so.1

 [3] DB [0] X.so.1 x

 [4] DB [0] X.so.1 y

 [6] N o

 [7] D <self> p

O.so.1 only declares that the function o() can not be directly bound to. Therefore, A.so.2 is
able to directly bind to the function p() in O.so.1.

Several individual interfaces within the Oracle Solaris libraries have been defined to not
allow direct binding. One example is the data item errno. This data item is defined in libc.
so.1. This data item can be referenced by including the header file stdio.h. However, many
applications were commonly taught to defined their own errno. These applications would be
compromised if a family of system libraries were delivered which directly bound to the errno
that is defined in libc.so.1.

Chapter 7 • Direct Bindings 177

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1elfdump-1

Preventing a Symbol from being Directly Bound to

Another family of interfaces that have been defined to prevent direct binding to, are the
malloc(3C) family. The malloc() family are another set of interfaces that are frequently
implemented within user applications. These user implementations are intended to interpose
upon any system definitions.

Note - Various system interposing libraries are provided with the Oracle Solaris OS that provide
alternative malloc() implementations. In addition, each implementation expects to be the only
implementation used within a process. All of the malloc() interposing libraries have been built
with the -z interpose option. This option is not really necessary as the malloc() family within
libc.so.1 have been labelled to prevent any direct binding.

However, the interposing libraries have been built with -z interpose to set a precedent for
building interposers. This explicit interposition has no adverse interaction with the direct
binding prevention definitions established within libc.so.1.

Symbols that are assigned the STV_SINGLETON visibility can not be directly bound to. See
Table 35, “ELF Symbol Visibility,” on page 414. These symbols can be assigned by the
compilation system to an implementation that might become multiply instantiated in a number
of objects within a process. All references to a singleton symbol are bound to the first
occurrence of a singleton symbol within a process.

178 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Amalloc-3c

 8 ♦ ♦ ♦ C H A P T E R 8

Capability Processing

Systems can offer various capabilities that are required for code to execute correctly. Systems
can also offer services that are required to establish a process, or might be important for
debugging or monitoring that process. Objects convey these requirements by defining their
capability needs within a capabilities section.

Code that can only be executed when certain capabilities are available should identify these
requirements by means of a capabilities section. Recording capability requirements within
an object allows the system to validate the object before attempting to execute the associated
code. These requirements can also provide a framework where the system can select the most
appropriate object from a family of objects, or symbol from a family of symbols. A family
consists of instances of the same object or symbol, where each instance requires different
capabilities.
The following capabilities provide for the validation of an object. These capabilities also
provide for the selection of capabilities instances from a family of objects or symbols.

■ A platform capability - identifies a specific platform by name.
■ A machine capability - identifies a specific machine hardware by name.
■ Hardware capabilities - identify instruction set extensions and other hardware details with

capabilities flags.

When more than one capability instance can be exercised on the same system, a set of
precedence rules are used to select one instance. These rules are the same for selecting from a
family of objects, or for selecting from a family of symbols within an object.

■ A capability group that defines a platform name takes precedence over a group that does not
define a platform name.

■ A capability group that defines a machine hardware name takes precedence over a group
that does not define a machine hardware name.

■ A larger hardware capabilities value takes precedence over a smaller hardware capabilities
value.

Objects can also use capabilities to affect process creation or relay other software environment
requirements. These capabilities are not inspected as part of object validation, or as part of

Chapter 8 • Capability Processing 179

Identifying Capability Requirements

object or symbol selection, but provide additional information that can affect the process. The
following capability provides software information.

■ Software capabilities - reflect attributes of the software environment with capabilities flags.

Each of these capabilities can be defined individually, or combined to produce a capabilities
group.

Dynamic objects, as well as individual functions or initialized data items within an object, can
be associated with capability requirements. Some capability requirements are recorded in the
relocatable objects that are produced by the compiler, and reflect the options or optimization
that was specified at compile time. The link-editor combines the capabilities of any input
relocatable objects to create a final capabilities section for the output file. See “Capabilities
Section” on page 385.

In addition, capabilities can be defined when the link-editor creates an output file. These
capabilities are identified using a mapfile and the link-editor's -M option. Capabilities that are
defined by using a mapfile can augment, or override, the capabilities that are specified within
any input relocatable objects. Mapfiles are usually used to augment compilers that do not
generate the necessary capability information, or to override compiler generated capabilities
information in special circumstances.

For a cheat sheet that describes creating and exercising symbol capability variants, see
Chapter 6, “Symbol Capabilities Example”.

This chapter describes the creation and use of capabilities together with techniques for
exercising capabilities instances.

Identifying Capability Requirements

System capabilities are the capabilities that describe a running system. The platform name,
and machine hardware name can be displayed with uname(1) using the -i option and -m option
respectively. The system hardware capabilities can be displayed with isainfo(1) using the
-v option. At runtime, the platform name, machine hardware name, and hardware capability
requirements of an object are compared against the system capabilities to determine whether the
object can be loaded, or a symbol within the object can be used.

Object capabilities are capabilities that are associated with an object. These capabilities define
the requirements of the entire object. The platform, machine, and hardware capabilities control
whether the object can be loaded at runtime. If an object requires capabilities that can not be
satisfied by the system, then the object can not be loaded at runtime. Capabilities can be used
to provide more than one instance of a given object, each optimized for systems that match the

180 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1uname-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1isainfo-1

Identifying Capability Requirements

objects requirements. The runtime linker can transparently select the best instance from such a
family of object instances by comparing the objects capability requirements to the capabilities
provided by the system.

Symbol capabilities are capabilities that are associated with individual functions, or initialized
data items, within an object. The platform, machine, and hardware capabilities define the
requirements of one or more symbols within an object, and control whether the symbol can
be used at runtime. Symbol capabilities allow for the presence of multiple instances of a
function within a single object. Each instance of the function can be optimized for a system
with different capabilities. Symbol capabilities also allow for the presence of multiple instances
of an initialized data item within an object. Each instance of the data can define system specific
data. If a symbol instance requires capabilities that can not be satisfied by the system, then that
symbol instance can not be used at runtime. Instead, an alternative instance of the same symbol
name must be used. Symbol capabilities offer the ability to construct a single object that can
be used on systems of varying abilities. A family of functions can provide optimized instances
for systems that can support the capabilities, and more generic instances for other, less capable
systems. A family of initialized data items can provide system specific data. The runtime linker
transparently selects the best instance from such a family of symbol instances by comparing the
symbols capability requirements to the capabilities provided by the system.

Object and symbol capabilities provide for selecting the best object, and the best symbol
within an object, for the currently running system. Object and symbol capabilities are optional
features, both independent of each other. However, an object that defines symbol capabilities
may also define object capabilities. In this case, any family of capabilities symbols should
be accompanied with one instance of the symbol that satisfies the object capabilities. If no
object capabilities exist, any family of capability symbols should be accompanied with one
instance of the symbol that requires no capabilities. This symbol instance provides the default
implementation, should no capability instance be applicable for a given system.

The following x86 example displays the object capabilities of foo.o. These capabilities apply to
the entire object. In this example, no symbol capabilities exist.

$ elfdump -H foo.o

Capabilities Section: .SUNW_cap

 Object Capabilities:

 index tag value

 [0] CA_SUNW_HW_1 0x840 [SSE MMX]

The following x86 example displays the symbol capabilities of bar.o. These capabilities apply
to the individual functions foo() and bar(). Two instances of each symbol exist, each instance
being assigned to a different set of capabilities. In this example, no object capabilities exist.

$ elfdump -H bar.o

Chapter 8 • Capability Processing 181

Identifying Capability Requirements

Capabilities Section: .SUNW_cap

 Symbol Capabilities:

 index tag value

 [1] CA_SUNW_HW_1 0x40 [MMX]

 Symbols:

 index value size type bind oth ver shndx name

 [25] 0 0x21 FUNC LOCL D 0 .text foo%mmx

 [26] 0x24 0x1e FUNC LOCL D 0 .text bar%mmx

 Symbol Capabilities:

 index tag value

 [3] CA_SUNW_HW_1 0x800 [SSE]

 Symbols:

 index value size type bind oth ver shndx name

 [33] 0x44 0x21 FUNC LOCL D 0 .text foo%sse

 [34] 0x68 0x1e FUNC LOCL D 0 .text bar%sse

Note - In this example, the capability symbols follow a naming convention that appends a
capability identifier to the generic symbol name. This convention can be produced by the link-
editor when object capabilities are converted to symbol capabilities, and is discussed later in
“Converting Object Capabilities to Symbol Capabilities” on page 195.

Capability definitions provide for many combinations that allow you to identify the
requirements of an object, or of individual symbols within an object.

Note - Platform names and machine hardware names have converged into very few variations.
Although these capability names originated to target specific machines, and have the highest
precedence, their usefulness is now limited. Targeting code to a specific platform or machine
can be useful in some instances, however the development of a hardware capabilities family can
provide greater flexibility, and is recommended. Hardware capabilities families can provide for
optimized code to be exercised on a broader range of systems.

The following sections describe how capabilities can be defined, and used by the link-editor.

Identifying a Platform and Machine Capability

The platform or machine capability of an object identifies the platform name or machine
hardware name of the systems that the object, or specific symbols within the object, can execute
upon. Multiple platform or machine capabilities can be defined. These identifications are very
specific, and take precedence over any other capability types. These identifications can be used

182 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Identifying Capability Requirements

by specialized system libraries, however hardware capabilities typically provide a more flexible
means of creating capabilities instances.

The platform name of a system can be displayed by the utility uname(1) with the -i option. A
platform capability requirement can be defined using the following mapfile syntax.

 $mapfile_version 2

 CAPABILITY {

 PLATFORM = platform_name...;
 PLATFORM += platform_name...;
 PLATFORM -= platform_name...;
 };

The machine hardware name of a system can be displayed by the utility uname(1) with the -m
option. A machine capability requirement can be defined using the following mapfile syntax.

 $mapfile_version 2

 CAPABILITY {

 MACHINE = machine_name...;
 MACHINE += machine_name...;
 MACHINE -= machine_name...;
 };

A PLATFORM or MACHINE attribute is qualified with one or more, space separated platform or
machine names. The "+=" form of assignment augments the platform or machine capabilities
specified by the input objects, while the "=" form overrides them. The "-=" form of assignment
is used to exclude platform or machine capabilities from the output object.

The following SPARC example identifies the object foo.so.1 as being specific to the sun4v
machine hardware name.

$ cat mapfile

$mapfile_version 2

CAPABILITY {

 MACHINE = sun4v;

};

$ cc -o foo.so.1 -G -K pic -Mmapfile foo.c -lc

$ elfdump -H foo.so.1

Capabilities Section: .SUNW_cap

 Object Capabilities:

 index tag value

 [0] CA_SUNW_MACH sun4v

Relocatable objects can define platform and machine capabilities. These capabilities are
gathered together to define the final capability requirements of the object being built.

Chapter 8 • Capability Processing 183

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1uname-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1uname-1

Identifying Capability Requirements

The platform or machine capability of an object can be controlled explicitly from a mapfile by
using the "=" form of assignment to override any platform or machine capabilities that might
be provided from any input relocatable objects. An empty PLATFORM or MACHINE attribute used
with the "=" form of assignment effectively removes any platform or machine capabilities
requirement from the object being built.

A platform or machine capability requirement defined in a dynamic object is validated by the
runtime linker against the platform and machine name of the system. The object is only used
if one of the platform or machine names recorded in the object match the platform or machine
name of the system.

Identifying Hardware Capabilities
The hardware capabilities of an object identify the hardware requirements of a system necessary
for the object, or specific symbol, to execute correctly. An example of this requirement might
be the identification of code that requires the MMX or SSE features that are available on x86
architectures.

Hardware capability requirements can be identified using the following mapfile syntax.

 $mapfile_version 2

 CAPABILITY {

 HW = hwcap_flag...;
 HW += hwcap_flag...;
 HW -= hwcap_flag...;
 };

The HW attribute to the CAPABILITY directive is qualified with one or more tokens, which are
symbolic representations of hardware capabilities. The "+=" form of assignment augments the
hardware capabilities specified by the input objects, while the "=" form overrides them. The "-
=" form of assignment is used to exclude hardware capabilities from the output object.

For SPARC systems, hardware capabilities are defined as AV_ values in sys/auxv_SPARC.h. For
x86 systems, hardware capabilities are defined as AV_ values in sys/auxv_386.h.

The following x86 example shows the declaration of MMX and SSE as hardware capabilities
required by the object foo.so.1.

$ egrep "MMX|SSE" /usr/include/sys/auxv_386.h

#define AV_386_MMX 0x0040

#define AV_386_SSE 0x0800

$ cat mapfile

$mapfile_version 2

CAPABILITY {

 HW += SSE MMX;

184 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Identifying Capability Requirements

};

$ cc -o foo.so.1 -G -K pic -Mmapfile foo.c -lc

$ elfdump -H foo.so.1

Capabilities Section: .SUNW_cap

 Object Capabilities:

 index tag value

 [0] CA_SUNW_HW_1 0x840 [SSE MMX]

Relocatable objects can contain hardware capabilities values. The link-editor combines
any hardware capabilities values from multiple input relocatable objects. The resulting
CA_SUNW_HW_1 value is a bitwise-inclusive OR of the associated input values. By default, these
values are combined with the hardware capabilities specified by a mapfile.

The hardware capability requirements of an object can be controlled explicitly from a mapfile
by using the "=" form of assignment to override any hardware capabilities that might be
provided from any input relocatable objects. An empty HW attribute used with the "=" form of
assignment effectively removes any hardware capabilities requirement from the object being
built.

The following example suppresses any hardware capabilities data defined by the input
relocatable object foo.o from being included in the output file, bar.o.

$ elfdump -H foo.o

Capabilities Section: .SUNW_cap

 Object Capabilities:

 index tag value

 [0] CA_SUNW_HW_1 0x840 [SSE MMX]

$ cat mapfile

$mapfile_version 2

CAPABILITY {

 HW = ;

};

$ ld -o bar.o -r -Mmapfile foo.o

$ elfdump -H bar.o

$

Any hardware capability requirements defined by a dynamic object are validated by the runtime
linker against the hardware capabilities that are provided by the system. If any of the hardware
capability requirements can not be satisfied, the object is not loaded at runtime. For example, if
the SSE feature is not available to a process, ldd(1) indicates the following error.

$ ldd prog

 foo.so.1 => ./foo.so.1 - hardware capability unsupported: 0x800 [SSE]

Chapter 8 • Capability Processing 185

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ldd-1

Identifying Capability Requirements

Multiple instances of a dynamic object that exploit different hardware capabilities can
provide a flexible runtime environment using filters. See “Capability Specific Shared
Objects” on page 293.

Hardware capabilities can also be used to identify the capabilities of individual functions
within a single object. In this case, the runtime linker can select the most appropriate function
instance to use based upon the current system capabilities. See “Creating a Family of Symbol
Capabilities Functions” on page 189.

Identifying Software Capabilities
The software capabilities of an object identify characteristics of the software that might be
important for debugging or monitoring processes. Software capabilities can also influence
process execution. Currently, the only software capabilities that are recognized relate to frame
pointer usage by the object, and process address space restrictions.

Objects can indicate that their frame pointer use is known. This state is then qualified by
declaring the frame pointer as being used or not.

64-bit objects can indicate that at runtime they must be exercised within a 32-bit address space.

Software capabilities flags are defined in sys/elf.h.

#define SF1_SUNW_FPKNWN 0x001

#define SF1_SUNW_FPUSED 0x002

#define SF1_SUNW_ADDR32 0x004

These software capability requirements can be identified using the following mapfile syntax.

 $mapfile_version 2

 CAPABILITY {

 SF = sfcap_flags...;
 SF += sfcap_flags...;
 SF -= sfcap_flags...;
 };

The SF attribute to the CAPABILITY directive can be assigned any of the tokens FPKNWN, FPUSED
and ADDR32.

Relocatable objects can contain software capabilities values. The link-editor combines the
software capabilities values from multiple input relocatable objects. Software capabilities can
also be supplied with a mapfile. By default, any mapfile values are combined with the values
supplied by relocatable objects.

The software capability requirements of an object can be controlled explicitly from a mapfile
by using the "=" form of assignment to override any software capabilities that might be

186 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Identifying Capability Requirements

provided from any input relocatable objects. An empty SF attribute used with the "=" form of
assignment effectively removes any software capabilities requirement from the object being
built.

The following example suppresses any software capabilities data defined by the input
relocatable object foo.o from being included in the output file, bar.o.

$ elfdump -H foo.o

Object Capabilities:

 index tag value

 [0] CA_SUNW_SF_1 0x3 [SF1_SUNW_FPKNWN SF1_SUNW_FPUSED]

$ cat mapfile

$mapfile_version 2

CAPABILITY {

 SF = ;

};

$ ld -o bar.o -r -Mmapfile foo.o

$ elfdump -H bar.o

$

Software Capability Frame Pointer Processing

The computation of a CA_SUNW_SF_1 value from two frame pointer input values is as follows.

TABLE 1 CA_SUNW_SF_1 Frame Pointer Flag Combination State Table

Input file 1 Input file 2 Result

SF1_SUNW_FPKNWN SF1_SUNW_FPUSED SF1_SUNW_FPKNWN SF1_SUNW_FPUSED SF1_SUNW_FPKNWN SF1_SUNW_FPUSED

SF1_SUNW_FPKNWN SF1_SUNW_FPUSED SF1_SUNW_FPKNWN SF1_SUNW_FPKNWN

SF1_SUNW_FPKNWN SF1_SUNW_FPUSED <unknown> SF1_SUNW_FPKNWN SF1_SUNW_FPUSED

SF1_SUNW_FPKNWN SF1_SUNW_FPKNWN SF1_SUNW_FPUSED SF1_SUNW_FPKNWN

SF1_SUNW_FPKNWN SF1_SUNW_FPKNWN SF1_SUNW_FPKNWN

SF1_SUNW_FPKNWN <unknown> SF1_SUNW_FPKNWN

<unknown> SF1_SUNW_FPKNWN SF1_SUNW_FPUSED SF1_SUNW_FPKNWN SF1_SUNW_FPUSED

<unknown> SF1_SUNW_FPKNWN SF1_SUNW_FPKNWN

<unknown> <unknown> <unknown>

This computation is applied to each relocatable object value and mapfile value. The frame
pointer software capabilities of an object are unknown if no capabilities section exists, or if the
section contains no CA_SUNW_SF_1 value, or if neither the SF1_SUNW_FPKNW or SF1_SUNW_FPUSED
flags are set.

Chapter 8 • Capability Processing 187

Identifying Capability Requirements

Software Capability Address Space Restriction Processing

64-bit objects that are identified with the SF1_SUNW_ADDR32 software capabilities flag can
contain optimized code that requires a 32-bit address space. 64-bit objects that are identified
in this manner can interoperate with any other 64-bit objects whether they are identified with
the SF1_SUNW_ADDR32 flag or not. An occurrence of the SF1_SUNW_ADDR32 flag within a 64-bit
input relocatable object is propagated to the CA_SUNW_SF_1 value that is created for the output
file being created by the link-editor.

The existence of the SF1_SUNW_ADDR32 flag within a 64-bit executable ensures that the
associated process is restricted to the lower 32-bit address space. This restricted address space
includes the process stack and all process dependencies. Within such a process, all objects,
whether they are identified with the SF1_SUNW_ADDR32 flag or not, are loaded within the
restricted 32-bit address space.

64-bit shared objects can contain the SF1_SUNW_ADDR32 flag. However, the restricted
address space requirement can only be established by a 64-bit executable containing the
SF1_SUNW_ADDR32 flag. Therefore, a 64-bit SF1_SUNW_ADDR32 shared object must be a
dependency of a 64-bit SF1_SUNW_ADDR32 executable.

A 64-bit SF1_SUNW_ADDR32 shared object that is encountered by the link-editor when building
an unrestricted 64-bit executable results in a warning.

$ cc -m64 -o main main.c -lfoo

ld: warning: file libfoo.so: section .SUNW_cap: software capability ADDR32: \

 requires executable be built with ADDR32 capability

A 64-bit SF1_SUNW_ADDR32 shared object that is encountered at runtime by a process that is
created from an unrestricted 64-bit executable, results in a fatal error.

$ ldd main

 libfoo.so => ./libfoo.so - software capability unsupported: 0x4 [ADDR32]

$ main

ld.so.1: main: fatal: ./libfoo.so: software capability unsupported: 0x4 [ADDR32]

An executable can be seeded with the SF1_SUNW_ADDR32 using a mapfile.

$ cat mapfile

$mapfile_version 2

CAPABILITY {

 SF += ADDR32;

};

$ cc -m64 -o main main.c -Mmapfile -lfoo

$ elfdump -H main

Object Capabilities:

188 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Creating a Family of Symbol Capabilities Functions

 index tag value

 [0] CA_SUNW_SF_1 0x4 [SF1_SUNW_ADDR32]

Creating a Family of Symbol Capabilities Functions

Developers often desire to provide multiple instances of functions, each optimized for a
particular set of capabilities, within a single object. It is desirable for the selection and use of
these instances to be transparent to any consumers. A generic, front-end function can be created
to provide an external interface. This generic instance, together with the optimized instances,
can be combined into one object. The generic instance might use getisax(2) to determine the
systems capabilities and then call the appropriate optimized function instance to handle a task.
Although this model works, it suffers from a lack of generality, and incurs a runtime overhead.

Symbol capabilities offer an alternative mechanism to construct such an object. This mechanism
is simpler, more efficient, and does not require you to write additional front-end code. Multiple
instances of a function can be created and associated with different capabilities. These
instances, together with a default instance of the function, can be combined into a single
dynamic object. The selection of the most appropriate member from this family of symbols is
carried out by the runtime linker using the symbol capabilities information.

In the following example, the x86 objects foobar.mmx.o and foobar.sse.o, contain the
same function foo() and bar(), that have been compiled to use the MMX and SSE instructions
respectively.

$ elfdump -H foobar.mmx.o

Capabilities Section: .SUNW_cap

 Symbol Capabilities:

 index tag value

 [1] CA_SUNW_ID mmx

 [2] CA_SUNW_HW_1 0x40 [MMX]

 Symbols:

 index value size type bind oth ver shndx name

 [10] 0 0x21 FUNC LOCL D 0 .text foo%mmx

 [16] 0x24 0x1e FUNC LOCL D 0 .text bar%mmx

$ elfdump -H foobar.sse.o

Capabilities Section: .SUNW_cap

 Symbol Capabilities:

 index tag value

Chapter 8 • Capability Processing 189

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2getisax-2

Creating a Family of Symbol Capabilities Functions

 [1] CA_SUNW_ID sse

 [2] CA_SUNW_HW_1 0x800 [SSE]

 Capabilities symbols:

 index value size type bind oth ver shndx name

 [16] 0 0x2f FUNC LOCL D 0 .text foo%sse

 [18] 0x48 0x30 FUNC LOCL D 0 .text bar%sse

Each of these objects contain a local symbol identifying the capabilities function foo%*() and
bar%*(). In addition, each object also defines a global reference to the function foo() and
bar(). Any internal references to foo() or bar() are relocated through these global references,
as are any external references.

These two objects can now be combined with a default instance of foo() and bar(). These
default instances satisfy the global references, and provide an implementation that is compatible
with any object capabilities. These default instances are said to lead each capabilities family. If
no object capabilities exist, this default instance should also require no capabilities. Effectively,
three instances of foo() and bar() exist, the global instance provides the default, and the local
instances provide implementations that are used at runtime if the associated capabilities are
available.

$ cc -o libfoobar.so.1 -G foobar.o foobar.sse.o foobar.mmx.o

$ elfdump -sN.dynsym libfoobar.so.1 | egrep "foo|bar"

 [2] 0x700 0x21 FUNC LOCL D 0 .text foo%mmx

 [4] 0x750 0x2f FUNC LOCL D 0 .text foo%sse

 [8] 0x784 0x1e FUNC LOCL D 0 .text bar%mmx

 [9] 0x7b0 0x30 FUNC LOCL D 0 .text bar%sse

 [15] 0x7a0 0x14 FUNC GLOB D 1 .text foo

 [17] 0x7c0 0x14 FUNC GLOB D 1 .text bar

The capabilities information for a dynamic object displays the capabilities symbols, and reveals
the capabilities families that are available.

$ elfdump -H libfoobar.so.1

Capabilities Section: .SUNW_cap

 Symbol Capabilities:

 index tag value

 [1] CA_SUNW_ID mmx

 [2] CA_SUNW_HW_1 0x40 [MMX]

 Symbols:

 index value size type bind oth ver shndx name

 [2] 0x700 0x21 FUNC LOCL D 0 .text foo%mmx

 [8] 0x784 0x1e FUNC LOCL D 0 .text bar%mmx

 Symbol Capabilities:

190 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Creating a Family of Symbol Capabilities Functions

 index tag value

 [4] CA_SUNW_ID sse

 [5] CA_SUNW_HW_1 0x800 [SSE]

 Symbols:

 index value size type bind oth ver shndx name

 [4] 0x750 0x2f FUNC LOCL D 0 .text foo%sse

 [9] 0x7b0 0x30 FUNC LOCL D 0 .text bar%sse

Capabilities Chain Section: .SUNW_capchain

 Capabilities family: foo

 chainndx symndx name

 1 [15] foo

 2 [2] foo%mmx

 3 [4] foo%sse

 Capabilities family: bar

 chainndx symndx name

 5 [17] bar

 6 [8] bar%mmx

 7 [9] bar%sse

At runtime, all references to foo() and bar() are initially bound to the global symbols.
However, the runtime linker recognizes that these functions are the lead instance of a
capabilities family. The runtime linker inspects each family member to determine if a better
capability function is available. There is a one time cost to this operation, which occurs on the
first call to the function. Subsequent calls to foo() and bar() are bound directly to the function
instance selected by the first call. This function selection can be observed by using the runtime
linkers debugging capabilities.

In the following example, the underlying system does not provide MMX or SSE support. The
lead instance of foo() requires no special capabilities support, and thus satisfies any relocation
reference.

$ LD_DEBUG=symbols main

....

debug: symbol=foo; lookup in file=./libfoo.so.1 [ELF]

debug: symbol=foo[15]: capability family default

debug: symbol=foo%mmx[2]: capability specific (CA_SUNW_HW_1): [0x40 [MMX]]

debug: symbol=foo%mmx[2]: capability rejected

debug: symbol=foo%sse[4]: capability specific (CA_SUNW_HW_1): [0x800 [SSE]]

debug: symbol=foo%sse[4]: capability rejected

debug: symbol=foo[15]: used

In the following example, MMX is available, but SSE is not. The MMX capable instance of foo()
satisfies any relocation reference.

Chapter 8 • Capability Processing 191

Creating a Family of Symbol Capabilities Data Items

$ LD_DEBUG=symbols main

....

debug: symbol=foo; lookup in file=./libfoo.so.1 [ELF]

debug: symbol=foo[15]: capability family default

debug: symbol=foo%mmx[2]: capability specific (CA_SUNW_HW_1): [0x40 [MMX]]

debug: symbol=foo%mmx[2]: capability candidate

debug: symbol=foo%sse[4]: capability specific (CA_SUNW_HW_1): [0x800 [SSE]]

debug: symbol=foo%sse[4]: capability rejected

debug: symbol=foo[2]: used

A family of capabilities function instances must be accessed from a procedure linkage table
entry. See “Procedure Linkage Table (Processor-Specific)” on page 465. This procedure
linkage reference requires the runtime linker to resolve the function. During this process, the
runtime linker can process the associated symbol capabilities information, and select the best
function from the available family of function instances.

When symbol capabilities are not used, there are cases where the link-editor can resolve
references to code without the need of a procedure linkage table entry. For example, within an
executable, a reference to a function that exists within the executable can be bound internally
at link-edit time. Hidden and protected functions within shared objects can also be bound
internally at link-edit time. In these cases, there is normally no need for the runtime linker to be
involved in resolving a reference to these functions.

However, when symbol capabilities are used, the function must be resolved from a procedure
linkage table entry. This entry is necessary in order for the runtime linker to be involved
in selecting the appropriate function, while maintaining a read-only text segment. This
mechanism results in an indirection through a procedure linkage table entry for all calls to
a capability function. This indirection might not be necessary if symbol capabilities are not
used. Therefore, there is a small trade off between the cost of calling the capability function,
and any performance improvement gained from using the capability function over its default
counterpart.

Note - Although a capability function must be accessed through a procedure linkage table
entry, the function can still be defined as hidden or protected. The runtime linker honors these
visibility states and restricts any binding to these functions. This behavior results in the same
bindings as are produced when symbol capabilities are not associated with the function. A
hidden function can not be bound to from an external object. A reference to a protected function
from within an object will only be bound to within the same object.

Creating a Family of Symbol Capabilities Data Items
Multiple instances of initialized data, where each instance is specific to a system, can be
provided within the same object. However, providing such data through functional interfaces

192 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Creating a Family of Symbol Capabilities Data Items

is often simpler, and is recommended. See “Creating a Family of Symbol Capabilities
Functions” on page 189. Special care is required to provide multiple instances of initialized
data within an executable.

The following example initializes a data item foo within foo.c, to point to a machine name
string. This file can be compiled for various machines, and each instance is identified with a
machine capability. A reference to this data item is made from bar() from the file bar.c. A
shared object foobar.so.1 is then created by combining bar() with two capabilities instances
of foo.

$ cat foo.c

char *foo = MACHINE;

$ cat bar.c

#include <stdio.h>

extern char *foo = MACHINE;

void bar()

{

 (void) printf("machine: %s\n", foo);

}

$ elfdump -H foobar.so.1

Capabilities Section: .SUNW_cap

 Symbol Capabilities:

 index tag value

 [1] CA_SUNW_ID sun4

 [2] CA_SUNW_MACH sun4

 Symbols:

 index value size type bind oth ver shndx name

 [1] 0x108d4 0x4 OBJT LOCL D 0 .data foo%sun4

 Symbol Capabilities:

 index tag value

 [4] CA_SUNW_ID sun4v

 [5] CA_SUNW_MACH sun4v

 Symbols:

 index value size type bind oth ver shndx name

 [2] 0x108d8 0x4 OBJT LOCL D 0 .data foo%sun4v

An application can reference bar(), and the runtime linker binds to the instance of foo that is
associated with the underlying system.

$ uname -m

Chapter 8 • Capability Processing 193

Creating a Family of Symbol Capabilities Data Items

sun4v

$ main

machine: sun4v

The proper operation of this code depends on the code having been compiled to be
position-independent, as is normally the case for code in sharable objects. See “Position-
Independent Code” on page 206. Position-independent data references are indirect
references, which allow the runtime linker to locate the required reference and update elements
of the data segment. This relocation update of the data segment preserves the text segment as
read-only.

However, the code within a dynamic executable is typically position-dependent. In addition,
data references within a dynamic executable are bound at link-edit time. Within a dynamic
executable, a symbol capabilities data reference must remain unresolved through a global data
item, so that the runtime linker can select from the symbol capabilities family. If the reference
from bar() in the previous example bar.c is compiled as position-dependent code, then the
text segment of the dynamic executable must be relocated at runtime. By default, this condition
results in a fatal link-time error.

$ cc -o main main.c bar.c foo.o foo.1.o foo.2.o ...

warning: Text relocation remains referenced

 against symbol offset in file

foo 0x0 bar.o

foo 0x8 bar.o

One approach to solve this error condition is to compile bar.c as position-independent. Note
however, that all references to any symbol capabilities data items from within the executable
must be compiled position-independent for this technique to work.

Although data can be accessed using the symbol capabilities mechanism, making data items a
part of the public interface to an object can be problematic. An alternative, and more flexible
model, is to encapsulate each data item within a symbol capabilities function. This function
provides the sole means of access to the data. Hiding data behind a symbol capabilities function
has the important benefit of allowing the data to be defined static and kept private. The previous
example can be coded to use symbol capabilities functions.

$ cat foobar.c

cat bar.c

#include <stdio.h>

static char *foo = MACHINE;

void bar()

{

 (void) printf("machine: %s\n", foo);

}

$ elfdump -H main

194 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Converting Object Capabilities to Symbol Capabilities

Capabilities Section: .SUNW_cap

 Symbol Capabilities:

 index tag value

 [1] CA_SUNW_ID sun4

 [2] CA_SUNW_MACH sun4

 Symbols:

 index value size type bind oth ver shndx name

 [1] 0x1111c 0x1c FUNC LOCL D 0 .text bar%sun4

 Symbol Capabilities:

 index tag value

 [4] CA_SUNW_ID sun4v

 [5] CA_SUNW_MACH sun4v

 Symbols:

 index value size type bind oth ver shndx name

 [2] 0x11138 0x1c FUNC LOCL D 0 .text bar%sun4v

$ uname -m

sun4v

$ main

machine: sun4v

Converting Object Capabilities to Symbol Capabilities

Ideally, the compiler can generate objects that are identified with symbol capabilities. If the
compiler can not create symbol capabilities, the link-editor offers a solution.

A relocatable object that defines object capabilities can be transformed into a relocatable object
that defines symbol capabilities using the link-editor. Using the link-editor -z symbolcap
option, any capability data section is converted to define symbol capabilities. All global
functions within the object are converted into local functions, and are associated with
symbol capabilities. All global initialized data items are converted to local data items, and
are associated with symbol capabilities. These transformed symbols are appended with any
capability identifier specified as part of the object capabilities group. If a capability identifier is
not defined, a default group name is appended.

For each original global function or initialized data item, a global reference is created. This
reference is associated to any relocation requirements, and provides for binding to a default,
global symbol when this object is finally combined to create a dynamic object.

Chapter 8 • Capability Processing 195

Converting Object Capabilities to Symbol Capabilities

Note - The -z symbolcap option only applies to objects that contain an object capabilities
section. The option has no affect upon relocatable objects that already contain symbol
capabilities, relocatable objects that contain both object and symbol capabilities, or relocatable
objects that contain no capabilities. This design allows multiple objects to be combined by the
link-editor, with only those objects that contain object capabilities being affected by the option.

In the following example, a x86 relocatable object contains two global functions foo() and
bar(). This object has been compiled to require the MMX and SSE hardware capabilities. In
these examples, the capabilities group has been named with a capabilities identifier entry. This
identifier name is appended to the transformed symbol names. Without this explicit identifier,
the link-editor appends a default capabilities group name.

$ elfdump -H foo.o

Capabilities Section: .SUNW_cap

 Object Capabilities:

 index tag value

 [0] CA_SUNW_ID sse,mmx

 [1] CA_SUNW_HW_1 0x840 [SSE MMX]

$ elfdump -s foo.o | egrep "foo|bar"

 [25] 0 0x21 FUNC GLOB D 0 .text foo

 [26] 0x24 0x1e FUNC GLOB D 0 .text bar

$ elfdump -r foo.o | fgrep foo

 R_386_PLT32 0x38 .rel.text foo

This relocatable object can now be transformed into a symbol capabilities relocatable object.

$ ld -r -o foo.1.o -z symbolcap foo.o

$ elfdump -H foo.1.o

Capabilities Section: .SUNW_cap

 Symbol Capabilities:

 index tag value

 [1] CA_SUNW_ID sse,mmx

 [2] CA_SUNW_HW_1 0x840 [SSE MMX]

 Symbols:

 index value size type bind oth ver shndx name

 [25] 0 0x21 FUNC LOCL D 0 .text foo%sse,mmx

 [26] 0x24 0x1e FUNC LOCL D 0 .text bar%sse,mmx

$ elfdump -s foo.1.o | egrep "foo|bar"

 [25] 0 0x21 FUNC LOCL D 0 .text foo%sse,mmx

196 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Exercising a Capability Family

 [26] 0x24 0x1e FUNC LOCL D 0 .text bar%sse,mmx

 [37] 0 0 FUNC GLOB D 0 UNDEF foo

 [38] 0 0 FUNC GLOB D 0 UNDEF bar

$ elfdump -r foo.1.o | fgrep foo

 R_386_PLT32 0x38 .rel.text foo

This object can now be combined with other objects containing instances of the same functions,
associated with different symbol capabilities, to produce a dynamic object. In addition, a
default instance of each function, one that is not associated with any symbol capabilities, must
be provided to lead each capabilities family. This default instance provides for all external
references, and ensures that an instance of the function is available on any system.

At runtime, any references to foo() and bar() are directed to the lead instances. However, the
runtime linker selects the best symbol capabilities instance if the system accommodates the
appropriate capabilities.

Archive Considerations

Archive libraries usually contain a collection of relocatable objects. The link-editor can
extract individual relocatable objects to resolve unresolved symbol references. See “Archive
Processing” on page 33.

If a family of capabilities relocatable objects were added to an archive, any reference to the lead
capability symbol only extracts the generic relocatable object that defines that symbol. No other
capabilities objects are extracted.

If capabilities objects are required to be deployed using an archive library, a single capability
family relocatable object should be created. Combine any capabilities objects, and any generic
object containing the capabilities lead symbol, into one relocatable object. Add this single
object, containing the entire capabilities family collection, to the archive.

$ ld -r -o all.foo.o foo.o foo.1.o foo.2.o

$ ar -cr libfoo.o all.foo.o

Exercising a Capability Family

Objects are normally designed and built so that they can execute on all systems of a given
architecture. However, individual systems, with special capabilities, are often targeted for

Chapter 8 • Capability Processing 197

Exercising a Capability Family

optimization. Optimized code can be identified with the capabilities that the code requires to
execute, using the mechanisms described in the previous sections.

To exercise and test optimized instances it is necessary to use a system that provides the
required capabilities. For each system, the runtime linker determines the capabilities that are
available, and then chooses the most capable instances. To aid testing and experimentation, the
runtime linker can be told to use an alternative set of capabilities than those provided by the
system. In addition, you can specify that only specific files should be validated against these
alternative capabilities.

An alternative set of capabilities is derived from the system capabilities, and can be re-
initialized or have capabilities added or removed.

A family of environment variables is available to create and target the use of an alternative set
of capabilities.

LD_PLATCAP={name}

Identifies an alternative platform name.

LD_MACHCAP={name}

Identifies an alternative machine hardware name.

LD_HWCAP=[+-]{token | [index]number},....

Identifies an alternative hardware capabilities value.

LD_SFCAP=[+-]{token | [index]number},....

Identifies an alternative software capabilities value.

LD_CAP_FILES=file,....

Identifies the files that should be validated against the alternative capabilities.

The capabilities environment variables LD_PLATCAP and LD_MACHCAP accept a string that defines
the platform name and machine hardware names respectively. See “Identifying a Platform and
Machine Capability” on page 182.

The capabilities environment variables LD_HWCAP and LD_SFCAP accept a comma separated
list of tokens as a symbolic representation of capabilities. See “Identifying Hardware
Capabilities” on page 184, and “Identifying Software Capabilities” on page 186. A token
can also be a numeric value. To provide for setting numeric values for different masks, such
as CA_SUNW_HW_1 and CA_SUNW_HW_2, the number can be prefixed with a bracketed index. For
example, LD_HWCAP=[2]0x80 sets CA_SUNW_HW_2 to the value 0x80. If no index is specified, 1 is
assumed. Invalid indexes are ignored.

198 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Exercising a Capability Family

A "+" prefix results in the capabilities that follow being added to the alternative capabilities. A
"-" prefix results in the capabilities that follow being removed from the alternative capabilities.
The lack of "+-" result in the capabilities that follow replacing the alternative capabilities.

The removal of a capability results in a more restricted capabilities environment being
emulated. Normally, when a family of capabilities instances is available, a generic, non-
capabilities specific instance is also provided. A more restricted capabilities environment can
therefore be used to force the use of less capable, or generic code instances.

The addition of a capability results in a more enhanced capabilities environment being
emulated. This environment should be created with caution, but can be used to exercise the
framework of a capabilities family. For example, a family of functions can be created that
define their expected capabilities using mapfiles. These functions can use printf(3C) to
confirm their execution. The creation of the associated objects can then be validated and
exercised with various capability combinations. This prototyping of a capabilities family can
prove useful before the real capabilities requirements of the functions are coded. However, if
the code within a family instance requires a specific capability to execute correctly, and this
capability is not provided by the system, but is set as an alternative capability, the code instance
will fail to execute correctly.

Establishing a set of alternative capabilities without also using LD_CAP_FILES results in all of
the capabilities specific objects of a process being validated against the alternative capabilities.
This approach should also be exercised with caution, as many system objects require system
capabilities to execute correctly. Any alteration of capabilities can cause system objects to fail
to execute correctly.

A best environment for capabilities experimentation is to use a system that provides all the
capabilities your objects are targeted to use. LD_CAP_FILES should also be used to isolate the
objects you wish to experiment with. Capabilities can then be disabled, using the "-" syntax,
so that the various instances of your capabilities family can be exercised. Each instance is fully
supported by the true capabilities of the system.

For example, suppose you have two x86 capabilities objects, libfoo.so and libbar.so.
These objects contain capability functions that use SSE2 instructions, functions that use MMX
instructions, and generic functions that require no capabilities. The underlying system provides
both SSE2 and MMX. By default, the SSE2 functions are used.

libfoo.so and libbar.so can be restricted to use the functions that use MMX instructions by
removing the SSE2 capability by using a LD_HWCAP definition. The most flexible means of
defining LD_CAP_FILES is to use the base name of the required files.

$ LD_HWCAP=-sse2 LD_CAP_FILES=libfoo.so,libbar.so ./main

libfoo.so and libbar.so can be further restricted to use only generic functions by removing
the SSE2 and MMX capabilities.

Chapter 8 • Capability Processing 199

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Aprintf-3c

Development Evolution with Capabilities

$ LD_HWCAP=-sse2,mmx LD_CAP_FILES=libfoo.so,libbar.so ./main

Note - The capabilities available for an application, and any alternative capabilities that have
been set, can be observed using the runtime linkers diagnostics.

$ LD_DEBUG=basic LD_HWCAP=-sse2,mmx,cx8 ./main

....

02328: hardware capabilities (CA_SUNW_HW_1) - 0x5c6f \

 [SSE3 SSE2 SSE FXSR MMX CMOV SEP CX8 TSC FPU]

02328: alternative hardware capabilities (CA_SUNW_HW_1) - 0x4c2b \

 [SSE3 SSE FXSR CMOV SEP TSC FPU]

....

Development Evolution with Capabilities

Capabilities allow you to extend the functionality of generic objects with platform, machine or
hardware specific instances. These instances typically target new or more specialized systems.
However, over time many capabilities that might once have been thought of as specialized,
become more common, and may become available on all the systems on which your code
executes. It is therefore necessary to revisit these details from time to time, and revise objects to
keep the capabilities current.

Capabilities instances should be monitored to ensure they have not become redundant. If a
capabilities instance becomes available on all the systems your code is targeted towards, then
maintaining the instance is pointless. The base object version of the capability instance should
be replaced with the capability instance.

The link-editor can not assume that the platform on which you build your software is the same
platform on which the software will be executed. Therefore, the link-editor can not provide a
thorough validation of the relevance of any instance. However, if the symbol capabilities of an
object do not extend the object capabilities of the object, a warning diagnostic can be produced.

While creating the following object, foo.so, both object capabilities and symbol capabilities are
detected, and the symbol capabilities do not extend the capabilities of the base object.

$ cc -o foo.so -G -Kpic foo.o foo.cap.o

ld: warning: file foo.cap.o: section [3].SUNW_cap: symbol capabilities \

 do not extend object capabilities and are redundant

 (object: CA_SUNW_HW_1 0x800 [SSE]);

 (symbol: CA_SUNW_HW_1 0x80 [AMD_MMX]);

As foo.so can not be loaded unless SSE is available, and the SSE capability is greater than
AMD_MMX, then the presence of SSE implies the presence of AMD_MMX. Hence the AMD_MMX instance

200 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Development Evolution with Capabilities

is redundant. The base object version of the capability instance should be replaced with the
capability instance.

Note - If a symbol capabilities family exists, and at lease one instance of this family is capable
of executing, this instance will be chosen at runtime over the generic lead instance. The object
capabilities may exceed the capability instance, but the runtime linker can not determine if
these object capabilities are used by the lead instance. The object capabilities may only capture
components that are outside of this capability family. Retaining redundant family instances can
lower the performance of your object.

Chapter 8 • Capability Processing 201

202 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

 9 ♦ ♦ ♦ C H A P T E R 9

Building Objects to Optimize System
Performance

Dynamic objects require runtime processing to establish the processes these objects contribute
to. Multiple instances of a process can be active at any one time, and shared objects can be
used by different processes at the same time. The construction of a dynamic object affects the
runtime initialization and potential sharing of the object between processes, and overall system
performance.

The following sections investigate the runtime initialization and processing of dynamic objects,
examining factors that affect their runtime performance such as text size and purity, and
relocation overhead.

Analyzing Files With elfdump

Various tools are available to analyze the contents of an ELF file, including the standard
UNIX utilities dump(1), nm(1), and size(1). Under Oracle Solaris, these tools have been largely
superseded by elfdump(1).

The use of eldump to diagnose the contents of an ELF object can be useful to explore the
various performance issues described in the following sections.

The ELF format organizes data into sections. Sections are in turn allocated to units known as
segments. Segments describe how portions of a file are mapped into memory. See mmapobj(2).
These loadable segments can be displayed by using the elfdump(1) command and examining
the PT_LOAD entries.

$ elfdump -p -NPT_LOAD libfoo.so.1

Program Header[0]:

 p_vaddr: 0 p_flags: [PF_X PF_R]

 p_paddr: 0 p_type: [PT_LOAD]

 p_filesz: 0x53c p_memsz: 0x53c

 p_offset: 0 p_align: 0x10000

Chapter 9 • Building Objects to Optimize System Performance 203

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1dump-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1nm-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1size-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1elfdump-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2mmapobj-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1elfdump-1

Analyzing Files With elfdump

Program Header[1]:

 p_vaddr: 0x1053c p_flags: [PF_X PF_W PF_R]

 p_paddr: 0 p_type: [PT_LOAD]

 p_filesz: 0x114 p_memsz: 0x13c

 p_offset: 0x53c p_align: 0x10000

There are two loadable segments in the shared object libfoo.so.1, commonly referred to as
the text and data segments. The text segment is mapped to allow reading and execution of its
contents, PF_X and PF_R. The data segment is mapped to also allow its contents to be modified,
PF_W. The memory size, p_memsz, of the data segment differs from the file size, p_filesz. This
difference accounts for the .bss section, which is part of the data segment, and is dynamically
created when the segment is loaded.

Programmers usually think of a file in terms of the symbols that define the functions and data
elements within their code. These symbols can be displayed using the -s option to elfdump.

$ elfdump -sN.symtab libfoo.so.1

Symbol Table Section: .symtab

 index value size type bind oth ver shndx name

 [36] 0x10628 0x28 OBJT GLOB D 0 .data data

 [38] 0x10650 0x28 OBJT GLOB D 0 .bss bss

 [40] 0x520 0xc FUNC GLOB D 0 .init _init

 [44] 0x508 0x14 FUNC GLOB D 0 .text foo

 [46] 0x52c 0xc FUNC GLOB D 0 .fini _fini

The symbol table information displayed by elfdump includes the section the symbol is
associated with. The elfdump -c option can be used to display information about these sections.

$ elfdump -c libfoo.so.1

....

Section Header[6]: sh_name: .text

 sh_addr: 0x4f8 sh_flags: [SHF_ALLOC SHF_EXECINSTR]

 sh_size: 0x28 sh_type: [SHT_PROGBITS]

 sh_offset: 0x4f8 sh_entsize: 0

 sh_link: 0 sh_info: 0

 sh_addralign: 0x8

Section Header[7]: sh_name: .init

 sh_addr: 0x520 sh_flags: [SHF_ALLOC SHF_EXECINSTR]

 sh_size: 0xc sh_type: [SHT_PROGBITS]

 sh_offset: 0x520 sh_entsize: 0

204 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Underlying System

 sh_link: 0 sh_info: 0

 sh_addralign: 0x4

Section Header[8]: sh_name: .fini

 sh_addr: 0x52c sh_flags: [SHF_ALLOC SHF_EXECINSTR]

 sh_size: 0xc sh_type: [SHT_PROGBITS]

 sh_offset: 0x52c sh_entsize: 0

 sh_link: 0 sh_info: 0

 sh_addralign: 0x4

....

Section Header[12]: sh_name: .data

 sh_addr: 0x10628 sh_flags: [SHF_WRITE SHF_ALLOC]

 sh_size: 0x28 sh_type: [SHT_PROGBITS]

 sh_offset: 0x628 sh_entsize: 0

 sh_link: 0 sh_info: 0

 sh_addralign: 0x4

....

Section Header[14]: sh_name: .bss

 sh_addr: 0x10650 sh_flags: [SHF_WRITE SHF_ALLOC]

 sh_size: 0x28 sh_type: [SHT_NOBITS]

 sh_offset: 0x650 sh_entsize: 0

 sh_link: 0 sh_info: 0

 sh_addralign: 0x4

....

The output from elfdump(1) in the previous examples shows the association of the functions
_init, foo, and _fini to the sections .init, .text and .fini. These sections, because of their
read-only nature, are part of the text segment.

Similarly, the data arrays data, and bss are associated with the sections .data and .bss
respectively. These sections, because of their writable nature, are part of the data segment.

Underlying System

Applications are built from an executable and one or more shared object dependencies. The
entire loadable contents of these dynamic objects are mapped into the virtual address space of
that process at runtime. Each process starts by referencing a single copy of the dynamic objects
in memory.

Relocations within the dynamic objects are processed to bind symbolic references to their
appropriate definitions. This results in the calculation of true virtual addresses that could not
be derived at the time the objects were generated by the link-editor. These relocations usually
result in updates to entries within the process's data segments.

Chapter 9 • Building Objects to Optimize System Performance 205

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1elfdump-1

Lazy Loading of Dynamic Dependencies

The memory management scheme underlying the dynamic linking of objects shares memory
among processes at the granularity of a page. Memory pages can be shared between processes
as long as the pages are not modified at runtime. If a process writes to a page of an object when
writing a data item, or relocating a reference to a shared object, a private copy of that page is
generated. This private copy has no effect on other users of the object. However, this page has
lost any benefit of sharing between other processes. Text pages that become modified in this
manner are referred to as impure.

The segments of a dynamic object that are mapped into memory fall into two basic categories;
the text segment, which is read-only, and the data segment, which is read-write. See “Analyzing
Files With elfdump” on page 203 on how to obtain this information from an ELF file.
An overriding goal when developing a dynamic object is to maximize the text segment and
minimize the data segment. This partitioning optimizes the amount of code sharing while
reducing the amount of processing needed to initialize and use the dynamic object. The
following sections present mechanisms that can help achieve this goal.

Lazy Loading of Dynamic Dependencies

You can defer the loading of a shared object dependency until the dependencies first
reference, by establishing the object as lazy loadable. See “Lazy Loading of Dynamic
Dependencies” on page 95.

For small applications, a typical thread of execution can reference all the applications
dependencies. The application loads all of its dependencies whether the dependencies are
defined lazy loadable or not. However, under lazy loading, dependency processing can be
deferred from process startup and spread throughout the process's execution.

For applications with many dependencies, lazy loading often results in some dependencies not
being loaded at all. Dependencies that are not referenced for a particular thread of execution,
are not loaded.

Position-Independent Code

The code within a dynamic executable is typically position-dependent, and is tied to a fixed
address in memory. Position-independent executables and shared objects, on the other hand, can
be loaded at different addresses in different processes. Position-independent code is not tied to a
specific address. This independence allows the code to execute efficiently at a different address
in each process that uses the code. Position-independent code is recommended for the creation
of position-independent executables and shared objects.

206 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Position-Independent Code

The compiler can generate position-independent code under the -K pic option.

If a shared object is built from position-dependent code, the text segment can require
modification at runtime. This modification allows relocatable references to be assigned to
the location that the object has been loaded. The relocation of the text segment requires the
segment to be remapped as writable. This modification requires a swap space reservation, and
results in a private copy of the text segment for the process. The text segment is no longer
sharable between multiple processes. Position-dependent code typically requires more runtime
relocations than the corresponding position-independent code. Overall, the overhead of
processing text relocations can cause serious performance degradation.

When a shared object is built from position-independent code, relocatable references are
generated as indirections through data in the shared object's data segment. The code within
the text segment requires no modification. All relocation updates are applied to corresponding
entries within the data segment. See “Global Offset Table (Processor-Specific)” on page 464
and “Procedure Linkage Table (Processor-Specific)” on page 465 for more details on the
specific indirection techniques.

The runtime linker attempts to handle text relocations should these relocations exist. However,
some relocations can not be satisfied at runtime.

The x64 position-dependent code sequence can generate code which can only be loaded
into the lower 32-bits of memory. The upper 32-bits of any address must all be zeros. Since
shared objects are typically loaded at the top of memory, the upper 32-bits of an address are
required. Position-dependent code within an x64 shared object is therefore insufficient to cope
with relocation requirements. Use of such code within a shared object can result in runtime
relocation errors.

$ prog

ld.so.1: prog: fatal: relocation error: R_AMD64_32: file \

 libfoo.so.1: symbol (unknown): value 0xfffffd7fff0cd457 does not fit

Position-independent code can be loaded in any region in memory, and hence satisfies the
requirements of shared objects for x64.

This situation differs from the default ABS64 mode that is used for 64-bit SPARCV9 code.
This position-dependent code is typically compatible with the full 64-bit address range. Thus,
position-dependent code sequences can exist within SPARCV9 shared objects. Use of either the
ABS32 mode, or ABS44 mode for 64-bit SPARCV9 code, can still result in relocations that can
not be resolved at runtime. However, each of these modes require the runtime linker to relocate
the text segment.

Regardless of the runtime linkers facilities, or differences in relocation requirements, shared
objects should be built using position-independent code.

Chapter 9 • Building Objects to Optimize System Performance 207

Position-Independent Code

You can identify a shared object that requires relocations against its text segment. The following
example uses elfdump(1) to determine whether a TEXTREL entry dynamic entry exists.

$ cc -o libfoo.so.1 -G -R. foo.c

$ elfdump -d libfoo.so.1 | grep TEXTREL

 [9] TEXTREL 0

Note - The value of the TEXTREL entry is irrelevant. The presence of this entry in a shared object
indicates that text relocations exist.

To prevent the creation of a shared object that contains text relocations use the link-editor's
-z text flag. This flag causes the link-editor to generate diagnostics indicating the source
of any position-dependent code used as input. The following example shows how position-
dependent code results in a failure to generate a shared object.

$ cc -o libfoo.so.1 -z text -G -R. foo.c

Text relocation remains referenced

 against symbol offset in file

foo 0x0 foo.o

bar 0x8 foo.o

ld: fatal: relocations remain against allocatable but \

non-writable sections

Two relocations are generated against the text segment because of the position-dependent
code generated from the file foo.o. Where possible, these diagnostics indicate any symbolic
references that are required to carry out the relocations. In this case, the relocations are against
the symbols foo and bar.

Text relocations within a shared object can also occur when hand written assembler code is
included and does not include the appropriate position-independent prototypes.

Note - You might want to experiment with some simple source files to determine coding
sequences that enable position-independence. Use the compilers ability to generate intermediate
assembler output.

-K pic and -K PIC Options

For SPARC binaries, a subtle difference between the -K pic option and an alternative -K PIC
option affects references to global offset table entries. See “Global Offset Table (Processor-
Specific)” on page 464.

208 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1elfdump-1

Removing Unused Material

The global offset table is an array of pointers, the size of whose entries are constant for 32-bit (4
bytes) and 64-bit (8 bytes). The following code sequence makes reference to an entry under -K
pic.

 ld [%l7 + j], %o0 ! load &j into %o0

Where %l7 is the precomputed value of the symbol _GLOBAL_OFFSET_TABLE_ of the object
making the reference.

This code sequence provides a 13-bit displacement constant for the global offset table entry.
This displacement therefore provides for 2048 unique entries for 32-bit objects, and 1024
unique entries for 64-bit objects. If the creation of an object requires more than the available
number of entries, the link-editor produces a fatal error.

$ cc -K pic -G -o lobfoo.so.1 a.o b.o z.o

ld: fatal: too many symbols require 'small' PIC references: \

 have 2050, maximum 2048 -- recompile some modules -K PIC.

To overcome this error condition, compile some of the input relocatable objects with the -K PIC
option. This option provides a 32-bit constant for the global offset table entry.

 sethi %hi(j), %g1

 or %g1, %lo(j), %g1 ! get 32-bit constant GOT offset

 ld [%l7 + %g1], %o0 ! load &j into %o0

You can investigate the global offset table requirements of an object using elfdump(1) with the
-G option. You can also examine the processing of these entries during a link-edit using the link-
editors debugging tokens -D got,detail.

Ideally, frequently accessed data items benefit from using the -K pic model. You can reference
a single entry using both models. However, determining which relocatable objects should be
compiled with either option can be time consuming, and the performance improvement realized
small. A recompilation of all relocatable objects with the -K PIC option is typically easier.

Removing Unused Material

The inclusion of functions and data from input relocatable object files, when this material is not
used by the object being built, is wasteful. This unneeded material causes the object to be larger
than necessary, resulting in added overhead when the object is used at runtime.

References to unused shared object dependencies are also wasteful. Particularly in the absence
of lazy loading, these references result in the unnecessary loading and processing of these
shared objects at runtime.

Chapter 9 • Building Objects to Optimize System Performance 209

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1elfdump-1

Removing Unused Material

Unused sections, unused relocatable object files, and unused shared object dependencies can be
diagnosed during a link-edit by using the link-editors debugging option -D unused.

Unused files and dependencies are also diagnosed when using the -z guidance option.

Unused sections, unused files, and unused dependencies should be removed from the link-edit.
This removal reduces the cost of the link-edit, and reduces the runtime cost of using the object
being built. However, if removing these items is problematic, unused material can be discarded
from the object being built by using the -z discard-unused option.

Removing Unused Sections

An ELF section, from an input relocatable object file, is determined to be unused when three
conditions are true.

■ The section provides no global symbols.
■ The section contributes to an allocatable segment.
■ The section is not referenced by any other used section, from any object, that contributes to

the link-edit.

Unused sections can be discarded from the link-edit by using the -z discard-unused=sections
option.

You can improve the link-editor's ability to diagnose and discard unused sections by defining
the dynamic object's external interfaces. See Chapter 11, “Interfaces and Versioning”. By
defining an interface, global symbols that are not defined as part of the interface are reduced to
locals. Reduced symbols that are unreferenced from other objects, are then clearly identified as
candidates for discarding.

Individual functions and data variables can be discarded by the link-editor if these items are
assigned to their own sections. This section refinement can be achieved by using the -xF
compiler option.

Removing Unused Files

An input relocatable object file is determined to be unused if all allocatable sections provided
by the relocatable object are unused.

Unused files are diagnosed with the -z guidance option, and can be discarded from the link-
edit by using the -z discard-unused=files option.

210 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Removing Unused Material

The -z discard-unused option provides independent control over unused sections and unused
files in order to compliment -z guidance processing. Under -z guidance, files that are
determined to be unused are identified. Unused files can often easily be removed from a link-
edit. However, sections that are determined to be unused are not identified under -z guidance
processing. Unused sections can involve much more investigation and effort to remove and can
be a consequence of compiler actions that are beyond your control.

By using the -z discard-unused=sections option together with the -z guidance option,
unused sections are automatically removed, while unused files are identified for you to remove
from the link-edit.

Removing Unused Dependencies

An explicit, shared object dependency is one that is defined on the command line, either using
the path name, or more commonly by using the -l option. Explicit dependencies include those
that might be provided by the compiler drivers, such as -lc.

Implicit dependencies are the dependencies of explicit dependencies. Implicit dependencies can
be processed as part of a link-edit to complete the closure of all symbol resolution. This symbol
closure ensures that the object being built is self-contained, with no unreferenced symbols
remaining.

All dynamic objects should define the dependencies they require. This requirement is enforced
by default when building an executable, but not when building a shared object. Use the -z defs
option to enforce this requirement when building a shared object.

All dynamic objects should refrain from defining dependencies that they do not require.
Loading such unused dependencies at runtime is unnecessary and wasteful.

An explicit dependency is determined to be unused if two conditions are true.

■ No global symbols that are provided by the dependency are referenced from the object
being built.

■ The dependency does not compensate for the requirements of any implicit dependencies.

Unused dependencies are diagnosed with the -z guidance option. These dependencies
should be removed from the link-edit. However, if removing these items is problematic,
unused dependencies can be discarded from the object being built by using the -z discard-
unused=dependencies option.

Unfortunately, shared objects exist that have not defined all the dependencies they require.
In these cases, developers often add the missing dependencies to the executable, or other

Chapter 9 • Building Objects to Optimize System Performance 211

Removing Unused Material

shared objects they are building, rather than rebuild the original dependency correctly. Such
dependencies are referred to as compensating dependencies.

For example, consider a shared object, foo.so, that references the symbol bar() from the
shared object bar.so. However, foo.so does not express a dependency upon bar.so. An
inspection of foo.so reveals the lack of the required dependency, as the symbol bar() can not
be found.

% ldd -r foo.so

 libc.so.1 => /lib/libc.so.1

 symbol not found: bar (foo.so)

Now consider an application developer that wishes to create an executable that references
the symbol foo() from the shared object foo.so. The required dependency upon foo.so is
specified, but the link-edit of the executable fails.

% cc -B direct -o main main.c -L. -lfoo

Undefined first referenced

 symbol in file

 bar ./libfoo.so

ld: fatal: symbol referencing errors

The developer forcibly corrects this situation by adding a compensating dependency on bar.so.

% cc -B direct -o main main.c -L. -lfoo -lbar

This correction creates an application that loads all the necessary dependencies at runtime, and
therefore appears to resolve the issue. However, the result is fragile. If a future delivery of foo.
so is made that does not require a symbol from bar.so, then this application will load bar.so
for no reason. The better solution is to correct foo.so by adding the missing dependency bar.
so.

The occurrence of a compensating dependency is diagnosed though guidance.

% cc -B direct -z guidance -o main main.c -L. -lfoo -lbar

ld: guidance: removal of compensating dependency recommended: libbar.so

Compensating dependencies are diagnosed through guidance, but they are not removed under
-z discard-unused=dependencies. Although the dependency might be unused in relation
to the object being created, the dependency is used by other components of the link-edit. To
remove this dependency could result in creating an object that can not be executed at runtime.

The need for compensating dependencies can be eliminated by the systematic use of the
-z defs option to build all dynamic objects.

The -z ignore and -z record options are positional options that can be used in conjunction
with the -z discard-unused=dependencies option. These positional options turn the discard
feature on and off selectively for targeted objects.

212 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Maximizing Shareability

Maximizing Shareability

As mentioned in “Underlying System” on page 205, only a shared object's text segment is
shared by all processes that use the object. The object's data segment typically is not shared.
Each process using a shared object, generates a private memory copy of its entire data segment
as data items within the segment are written to. Reduce the data segment, either by moving data
elements that are never written to the text segment, or by removing the data items completely.

The following sections describe several mechanisms that can be used to reduce the size of the
data segment.

Move Read-Only Data to Text

Data elements that are read-only should be moved into the text segment using const
declarations. For example, the following character string resides in the .data section, which is
part of the writable data segment.

 char *rdstr = "this is a read-only string";

In contrast, the following character string resides in the .rodata section, which is the read-only
data section contained within the text segment.

 const char *rdstr = "this is a read-only string";

Reducing the data segment by moving read-only elements into the text segment is admirable.
However, moving data elements that require relocations can be counterproductive. For example,
examine the following array of strings.

 char *rdstrs[] = { "this is a read-only string",

 "this is another read-only string" };

A better definition might seem to be to use the following definition.

 const char *const rdstrs[] = { };

This definition ensures that the strings and the array of pointers to these strings are placed in a
.rodata section. Unfortunately, although the user perceives the array of addresses as read-only,
these addresses must be relocated at runtime. This definition therefore results in the creation of
text relocations. Representing the array as:

 const char *rdstrs[] = { };

ensures the array pointers are maintained in the writable data segment where they can be
relocated. The array strings are maintained in the read-only text segment.

Chapter 9 • Building Objects to Optimize System Performance 213

Maximizing Shareability

Note - Some compilers, when generating position-independent code, can detect read-only
assignments that result in runtime relocations. These compilers arrange for placing such items
in writable segments. For example, .picdata.

Collapse Multiply-Defined Data

Data can be reduced by collapsing multiply-defined data. A program with multiple occurrences
of the same error messages can be better off by defining one global datum, and have all other
instances reference this. For example.

const char *Errmsg = "prog: error encountered: %d";

foo()

{

 (void) fprintf(stderr, Errmsg, error);

The main candidates for this sort of data reduction are strings. String usage in a shared object
can be investigated using strings(1). The following example generates a sorted list of the
data strings within the file libfoo.so.1. Each entry in the list is prefixed with the number of
occurrences of the string.

$ strings -10 libfoo.so.1 | sort | uniq -c | sort -rn

Use Automatic Variables

Permanent storage for data items can be removed entirely if the associated functionality can be
designed to use automatic (stack) variables. Any removal of permanent storage usually results
in a corresponding reduction in the number of runtime relocations required.

Allocate Buffers Dynamically

Large data buffers should usually be allocated dynamically rather than being defined
using permanent storage. Often this results in an overall saving in memory, as only those
buffers needed by the present invocation of an application are allocated. Dynamic allocation
also provides greater flexibility by enabling the buffer's size to change without affecting
compatibility.

214 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1strings-1

Minimizing Paging Activity

Minimizing Paging Activity

Any process that accesses a new page causes a page fault, which is an expensive operation.
Because shared objects can be used by many processes, any reduction in the number of page
faults that are generated by accessing a shared object can benefit the process and the system as a
whole.

Organizing frequently used routines and their data to an adjacent set of pages frequently
improves performance because it improves the locality of reference. When a process calls one
of these functions, the function might already be in memory because of its proximity to the
other frequently used functions. Similarly, grouping interrelated functions improves locality
of references. For example, if every call to the function foo() results in a call to the function
bar(), place these functions on the same page. Tools like cflow(1), tcov(1), prof(1) and
gprof(1) are useful in determining code coverage and profiling.

Isolate related functionality to its own shared object. The standard C library has historically
been built containing many unrelated functions. Only rarely, for example, will any single
executable use everything in this library. Because of widespread use, determining what set
of functions are really the most frequently used is also somewhat difficult. In contrast, when
designing a shared object from scratch, maintain only related functions within the shared object.
This improves locality of reference and has the side effect of reducing the object's overall size.

Relocations

In “Relocation Processing” on page 88, the mechanisms by which the runtime linker
relocates dynamic objects to create a runnable process was covered. “Relocation Symbol
Lookup” on page 89 and “When Relocations are Performed” on page 216 categorized this
relocation processing into two areas to simplify and help illustrate the mechanisms involved.
These same two categorizations are also ideally suited for considering the performance impact
of relocations.

Symbol Lookup

When the runtime linker needs to look up a symbol, by default it does so by searching in each
object. The runtime linker starts with the executable, and progresses through each shared object
in the same order that the objects are loaded. In many instances, the shared object that requires a
symbolic relocation turns out to be the provider of the symbol definition.

Chapter 9 • Building Objects to Optimize System Performance 215

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1prof-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1gprof-1

Relocations

In this situation, if the symbol used for this relocation is not required as part of the shared
object's interface, then this symbol is a strong candidate for conversion to a static or automatic
variable. A symbol reduction can also be applied to removed symbols from a shared objects
interface. See “Reducing Symbol Scope” on page 56 for more details. By making these
conversions, the link-editor incurs the expense of processing any symbolic relocation against
these symbols during the shared object's creation.

The only global data items that should be visible from a shared object are those that contribute
to its user interface. Historically this has been a hard goal to accomplish, because global data
are often defined to allow reference from two or more functions located in different source files.
By applying symbol reduction, unnecessary global symbols can be removed. See “Reducing
Symbol Scope” on page 56. Any reduction in the number of global symbols exported from a
shared object results in lower relocation costs and an overall performance improvement.

The use of direct bindings can also significantly reduce the symbol lookup overhead within a
dynamic process that has many symbolic relocations and many dependencies. See Chapter 7,
“Direct Bindings”.

When Relocations are Performed
All immediate reference relocations must be carried out during process initialization before the
application gains control. However, any lazy reference relocations can be deferred until the first
instance of a function being called. Immediate relocations typically result from data references.
Therefore, reducing the number of data references also reduces the runtime initialization of a
process.

Initialization relocation costs can also be deferred by converting data references into function
references. For example, you can return data items by a functional interface. This conversion
usually results in a perceived performance improvement because the initialization relocation
costs are effectively spread throughout the process's execution. Some of the functional
interfaces might never be called by a particular invocation of a process, thus removing their
relocation overhead altogether.

The advantage of using a functional interface can be seen in the section, “Copy
Relocations” on page 217. This section examines a special, and somewhat expensive,
relocation mechanism employed between dynamic executables and shared objects. It also
provides an example of how this relocation overhead can be avoided.

Combined Relocation Sections
The relocation sections within relocatable objects are typically maintained in a one-to-one
relationship with the sections to which the relocations must be applied. However, when the

216 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Relocations

linker editor creates a dynamic object, all but the procedure linkage table relocations are placed
into a single common section named .SUNW_reloc.

Combining relocation records in this manner enables all RELATIVE relocations to be grouped
together. All symbolic relocations are sorted by symbol name. The grouping of RELATIVE
relocations permits optimized runtime processing using the DT_RELACOUNT/DT_RELCOUNT
.dynamic entries. Sorted symbolic entries help reduce runtime symbol lookup.

Copy Relocations

Shared objects are usually built with position-independent code. References to external data
items from code of this type employs indirect addressing through a set of tables. See “Position-
Independent Code” on page 206 for more details. These tables are updated at runtime with
the real address of the data items. These updated tables enable access to the data without the
code itself being modified.

Dynamic executables, however, are generally not created from position-independent code. Any
references to external data they make can seemingly only be achieved at runtime by modifying
the code that makes the reference. Modifying a read-only text segment is to be avoided. The
copy relocation technique can solve this reference.

Suppose the link-editor is used to create a dynamic executable, and a reference to a data item
is found to reside in one of the dependent shared objects. Space is allocated in the dynamic
executable's .bss, equivalent in size to the data item found in the shared object. This space
is also assigned the same symbolic name as defined in the shared object. Along with this
data allocation, the link-editor generates a special copy relocation record that instructs the
runtime linker to copy the data from the shared object to the allocated space within the dynamic
executable.

Because the symbol assigned to this space is global, it is used to satisfy any references from
any shared objects. The dynamic executable inherits the data item. Any other objects within the
process that make reference to this item are bound to this copy. The original data from which
the copy is made effectively becomes unused.

The following example of this mechanism uses an array of system error messages that is
maintained within the standard C library. In previous SunOS operating system releases, the
interface to this information was provided by two global variables, sys_errlist[], and
sys_nerr. The first variable provided the array of error message strings, while the second
conveyed the size of the array itself. These variables were commonly used within an application
in the following manner.

$ cat foo.c

extern int sys_nerr;

Chapter 9 • Building Objects to Optimize System Performance 217

Relocations

extern char *sys_errlist[];

char *

error(int errnumb)

{

 if ((errnumb < 0) || (errnumb >= sys_nerr))

 return (0);

 return (sys_errlist[errnumb]);

}

The application uses the function error to provide a focal point to obtain the system error
message associated with the number errnumb.

Examining a dynamic executable built using this code shows the implementation of the copy
relocation in more detail.

$ cc -o prog main.c foo.c

$ elfdump -sN.dynsym prog | grep ' sys_'

 [24] 0x21240 0x260 OBJT GLOB D 1 .bss sys_errlist

 [39] 0x21230 0x4 OBJT GLOB D 1 .bss sys_nerr

$ elfdump -c prog

....

Section Header[19]: sh_name: .bss

 sh_addr: 0x21230 sh_flags: [SHF_WRITE SHF_ALLOC]

 sh_size: 0x270 sh_type: [SHT_NOBITS]

 sh_offset: 0x1230 sh_entsize: 0

 sh_link: 0 sh_info: 0

 sh_addralign: 0x8

....

$ elfdump -r prog

Relocation Section: .SUNW_reloc

 type offset addend section symbol

 R_SPARC_COPY 0x21240 0 .SUNW_reloc sys_errlist

 R_SPARC_COPY 0x21230 0 .SUNW_reloc sys_nerr

The link-editor has allocated space in the dynamic executable's .bss to receive the data
represented by sys_errlist and sys_nerr. These data are copied from the C library by the
runtime linker at process initialization. Thus, each application that uses these data gets a private
copy of the data in its own data segment.

There are two drawbacks to this technique. First, each application pays a performance penalty
for the overhead of copying the data at runtime. Second, the size of the data array sys_errlist
has now become part of the C library's interface. Suppose the size of this array were to change,
perhaps as new error messages are added. Any dynamic executables that reference this array
have to undergo a new link-edit to be able to access any of the new error messages. Without this

218 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Relocations

new link-edit, the allocated space within the dynamic executable is insufficient to hold the new
data.

These drawbacks can be eliminated if the data required by a dynamic executable are provided
by a functional interface. The ANSI C function strerror(3C) returns a pointer to the
appropriate error string, based on the error number supplied to it. One implementation of this
function might be:

$ cat strerror.c

static const char *sys_errlist[] = {

 "Error 0",

 "Not owner",

 "No such file or directory",

};

static const int sys_nerr = sizeof (sys_errlist) / sizeof (char *);

char *

strerror(int errnum)

{

 if ((errnum < 0) || (errnum >= sys_nerr))

 return (0);

 return ((char *)sys_errlist[errnum]);

}

The error routine in foo.c can now be simplified to use this functional interface. This
simplification in turn removes any need to perform the original copy relocations at process
initialization.

Additionally, because the data are now local to the shared object, the data are no longer part
of its interface. The shared object therefore has the flexibility of changing the data without
adversely effecting any dynamic executables that use it. Eliminating data items from a shared
object's interface generally improves performance while making the shared object's interface
and code easier to maintain.

ldd(1), when used with either the -d or -r options, can verify any copy relocations that exist
within a dynamic executable.

For example, suppose the dynamic executable prog had originally been built against the shared
object libfoo.so.1 and the following two copy relocations had been recorded.

$ cat foo.c

int _size_gets_smaller[16];

int _size_gets_larger[16];

$ cc -o libfoo.so -G foo.c

$ cc -o prog main.c -L. -R. -lfoo

$ elfdump -sN.symtab prog | grep _size

Chapter 9 • Building Objects to Optimize System Performance 219

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Astrerror-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ldd-1

Using the -B symbolic Option

 [49] 0x211d0 0x40 OBJT GLOB D 0 .bss _size_gets_larger

 [59] 0x21190 0x40 OBJT GLOB D 0 .bss _size_gets_smaller

$ elfdump -r prog | grep _size

 R_SPARC_COPY 0x211d0 0 .SUNW_reloc _size_gets_larger

 R_SPARC_COPY 0x21190 0 .SUNW_reloc _size_gets_smaller

A new version of this shared object is supplied that contains different data sizes for these
symbols.

$ cat foo2.c

int _size_gets_smaller[4];

int _size_gets_larger[32];

$ cc -o libfoo.so -G foo2.c

$ elfdump -sN.symtab libfoo.so | grep _size

 [37] 0x105cc 0x10 OBJT GLOB D 0 .bss _size_gets_smaller

 [41] 0x105dc 0x80 OBJT GLOB D 0 .bss _size_gets_larger

Running ldd(1) against the dynamic executable reveals the following.

$ ldd -d prog

 libfoo.so.1 => ./libfoo.so.1

 relocation R_SPARC_COPY sizes differ: _size_gets_larger

 (file prog size=0x40; file ./libfoo.so size=0x80)

 prog size used; possible data truncation

 relocation R_SPARC_COPY sizes differ: _size_gets_smaller

 (file prog size=0x40; file ./libfoo.so size=0x10)

 ./libfoo.so size used; possible insufficient data copied

....

ldd(1) shows that the dynamic executable will copy as much data as the shared object has to
offer, but only accepts as much as its allocated space allows.

Copy relocations can be eliminated by building the application from position-independent code.
See “Position-Independent Code” on page 206.

Using the -B symbolic Option

The link-editor's -B symbolic option enables you to bind symbol references to their global
definitions within a shared object. This option is historic, in that it was designed for use in
creating the runtime linker itself.

Defining an object's interface and reducing non-public symbols to local is preferable to using
the -B symbolic option. See “Reducing Symbol Scope” on page 56. Using -B symbolic can
often result in some non-intuitive side effects.

220 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ldd-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ldd-1

Profiling Shared Objects

If a symbolically bound symbol is interposed upon, then references to the symbol from outside
of the symbolically bound object bind to the interposer. The object itself is already bound
internally. Essentially, two symbols with the same name are now being referenced from within
the process. A symbolically bound data symbol that results in a copy relocation creates the same
interposition situation. See “Copy Relocations” on page 217.

Note - Symbolically bound shared objects are identified by the .dynamic flag DF_SYMBOLIC.
This flag is informational only. The runtime linker processes symbol lookups from these objects
in the same manner as any other object. Any symbolic binding is assumed to have been created
at the link-edit phase.

Profiling Shared Objects

The runtime linker can generate profiling information for any shared objects that are
processed during the running of an application. The runtime linker is responsible for binding
shared objects to an application and is therefore able to intercept any global function
bindings. These bindings take place through .plt entries. See “When Relocations are
Performed” on page 216 for details of this mechanism.

The LD_PROFILE environment variable specifies the name of a shared object to profile. You can
analyze a single shared object using this environment variable. The setting of the environment
variable can be used to analyze the use of the shared object by one or more applications. In the
following example, the use of libc by the single invocation of the command ls(1) is analyzed.

$ LD_PROFILE=libc.so.1 ls -l

In the following example, the environment variable setting is recorded in a configuration file.
This setting causes any application's use of libc to accumulate the analyzed information.

crle -e LD_PROFILE=libc.so.1

$ ls -l

$ make

$

When profiling is enabled, a profile data file is created, if it does not already exist. The
file is mapped by the runtime linker. In the previous examples, this data file is /var/tmp/
libc.so.1.profile. 64-bit libraries require an extended profile format and are written using
the .profilex suffix. You can also specify an alternative directory to store the profile data
using the LD_PROFILE_OUTPUT environment variable.

This profile data file is used to deposit profil(2) data and call count information related to the
use of the specified shared object. This profiled data can be directly examined with gprof(1).

Chapter 9 • Building Objects to Optimize System Performance 221

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ls-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2profil-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1gprof-1

Profiling Shared Objects

Note - gprof(1) is most commonly used to analyze the gmon.out profile data created by an
executable that has been compiled with the -xpg option of cc(1). The runtime linker profile
analysis does not require any code to be compiled with this option. Applications whose
dependent shared objects are being profiled should not make calls to profil(2), because this
system call does not provide for multiple invocations within the same process. For the same
reason, these applications must not be compiled with the -xpg option of cc(1). This compiler-
generated mechanism of profiling is also built on top of profil(2).

One of the most powerful features of this profiling mechanism is to enable the analysis of a
shared object as used by multiple applications. Frequently, profiling analysis is carried out
using one or two applications. However, a shared object, by its very nature, can be used by a
multitude of applications. Analyzing how these applications use the shared object can offer
insights into where energy might be spent to improvement the overall performance of the shared
object.

The following example shows a performance analysis of libc over a creation of several
applications within a source hierarchy.

$ LD_PROFILE=libc.so.1 ; export LD_PROFILE

$ make

$ gprof -b /lib/libc.so.1 /var/tmp/libc.so.1.profile

....

granularity: each sample hit covers 4 byte(s)

 called/total parents

index %time self descendents called+self name index

 called/total children

....

 0.33 0.00 52/29381 _gettxt [96]

 1.12 0.00 174/29381 _tzload [54]

 10.50 0.00 1634/29381 <external>

 16.14 0.00 2512/29381 _opendir [15]

 160.65 0.00 25009/29381 _endopen [3]

[2] 35.0 188.74 0.00 29381 _open [2]

....

granularity: each sample hit covers 4 byte(s)

 % cumulative self self total

 time seconds seconds calls ms/call ms/call name

 35.0 188.74 188.74 29381 6.42 6.42 _open [2]

 13.0 258.80 70.06 12094 5.79 5.79 _write [4]

 9.9 312.32 53.52 34303 1.56 1.56 _read [6]

 7.1 350.53 38.21 1177 32.46 32.46 _fork [9]

222 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1gprof-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2profil-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2profil-2

Profiling Shared Objects

The special name <external> indicates a reference from outside of the address range of the
shared object being profiled. Thus, in the previous example, 1634 calls to the function open(2)
within libc occurred from the dynamic objects, bound with libc while the profiling analysis
was in progress.

Note - The profiling of shared objects is multithread safe, except in the case where one thread
calls fork(2) while another thread is updating the profile data information. The use of fork(2)
removes this restriction.

Chapter 9 • Building Objects to Optimize System Performance 223

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2open-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2fork-2

224 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

 10 ♦ ♦ ♦ C H A P T E R 1 0

Mapfiles in the Link-Editor

Mapfiles provide a large degree of control over the operation of the link-editor, and the resulting
output object.

■ Create and/or modify output segments.
■ Define how input sections are assigned to segments, and the relative order of those sections.
■ Specify symbol scope and/or versioning, creating stable backward compatible interfaces for

sharable objects.
■ Define the versions to use from sharable object dependencies.
■ Set header options in the output object.
■ Set process stack attributes for an executable.
■ Set or override hardware and software capabilities.

Note - The link-editor used without a mapfile will always produce a valid ELF output file. The
mapfile option provides the user with a great deal of flexibility and control over the output
object, some of which has the potential to produce an invalid or unusable object. The user is
expected to have knowledge of the rules and conventions that govern the ELF format.

The -M command line option is used to specify the mapfile to be used. Multiple mapfiles can
be used in a single link operation. When more than one mapfile is specified, the link-editor
processes each one in the order given, as if they represented a single logical mapfile. This
occurs before any input objects are processed.

The system provides sample mapfiles for solving common problems in the /usr/lib/ld
directory.

Mapfile Structure and Syntax

Mapfile directives can span more than one line, and can have any amount of white space,
including new lines.

Chapter 10 • Mapfiles in the Link-Editor 225

Mapfile Structure and Syntax

For all syntax discussions, the following notations apply.

■ Spaces, or newlines, can appear anywhere except in the middle of a name or value.
■ Comments beginning with a hash character (#) and ending at a newline can appear

anywhere that a space can appear. Comments are not interpreted by the link-editor, and exist
solely for documentation purposes.

■ All directives are terminated by a semicolon (;). The final semicolon within a {....}
section can be omitted.

■ All entries in constant width, all colons (:), semicolons (;), assignment (=, +=, -=), and
{....} brackets are typed in literally.

■ All entries in italics are substitutable.
■ [....] brackets are used to delineate optional syntax. The brackets are not literal, and do

not appear in the actual directives.
■ Names are case sensitive strings. Table 3, “Names And Other Widely Used Strings Found

In Mapfiles,” on page 227 contains a list of names and other strings commonly found in
mapfiles. Names can be specified in three different forms.
■ Unquoted

An unquoted name is a sequence of letters and digits. The first character must be a letter,
followed by zero or more letters or digits. The characters percent (%), slash (/), period
(.), and underscore (_) count as a letter. The characters dollar ($), and hyphen (-) count
as a digit.

■ Single Quotes

Within single quotes ('), a name can contain any character other than a single quote,
or newline. All characters are interpreted as literal characters. This form of quoting is
convenient when specifying file paths, or other names that contain normal printable
characters that are not allowed in an unquoted name.

■ Double Quotes

Within double quotes ("), a name can contain any character other than a double quote,
or newline. Backslash(\) is an escape character which operates similarly to the way it
is used in the C programming language within a string literal. Characters prefixed by
a backslash are replaced by the character they represent, as shown in Table 2, “Double
Quoted Text Escape Sequences,” on page 227. Any character following a backslash,
other than the ones shown in Table 2, “Double Quoted Text Escape Sequences,” on page
227 is an error.

■ value represents a numeric value, and can be hexadecimal, decimal, or octal, following the
rules used by the C language for integer constants. All values are unsigned integer values,
and are 32-bit for 32-bit output objects, and 64-bit for 64-bit output objects.

■ segment_flags specify memory access permissions as a space separated list of one or more
of the values given in Table 4, “Segment Flags,” on page 227, which correspond to the
PF_ values defined in <sys/elf.h>.

226 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Mapfile Structure and Syntax

TABLE 2 Double Quoted Text Escape Sequences

Escape Sequence Meaning

\a alert (bell)

\b backspace

\f formfeed

\n newline

\r return

\t horizontal tab

\v vertical tab

\\ backslash

\' single quote

\" double quote

\ooo An octal constant, where ooo is one to three octal digits (0....7)

TABLE 3 Names And Other Widely Used Strings Found In Mapfiles

Name Purpose

segment_name Name of ELF segment

section_name Name of ELF section

symbol_name Name of ELF symbol

file_path A UNIX file path of slash (/) delimited names used to reference an
ELF object, or an archive that contains ELF objects

file_basename Final component (basename(1)) of a file_path

objname Either a file_basename or the name of an object contained within an
archive

soname Sharable object name, as used for the SONAME of a sharable object (e.
g. libc.so.1)

version_name Name of a symbol version, as used within an ELF versioning section

inherited_version_name Name of a symbol version inherited by another symbol version

TABLE 4 Segment Flags

Flag Value Meaning

READ Segment is readable

WRITE Segment is writable

EXECUTE Segment is executable

0 All permission flags are cleared

DATA The combination of READ, WRITE, and EXECUTE flags appropriate for a
data segment on the target platform

Chapter 10 • Mapfiles in the Link-Editor 227

Mapfile Structure and Syntax

Flag Value Meaning

STACK The combination of READ, WRITE, and EXECUTE flags appropriate for
the target platform, as defined by the platform ABI

Mapfile Version

The first non-comment, non-empty, line in a mapfile is expected to be a mapfile version
declaration. This declaration establishes the version of the mapfile language used by the
remainder of the file. The mapfile language documented in this manual is version 2.

 $mapfile_version 2

A mapfile that does not begin with a version declaration is assumed to be written in the
original mapfile language defined for System V Release 4 UNIX (SVR4) by AT&T. The link-
editor retains the ability to process such mapfiles. Their syntax is documented in Appendix B,
“System V Release 4 (Version 1) Mapfiles”.

Conditional Input

Lines within a mapfile can be conditionalized to only apply to a specific ELFCLASS (32 or 64-
bit) or machine type.

 $if expr

 [$elif expr]

 [$else]

 $endif

A conditional input expression evaluates to a logical true or false value. Each of the directives
($if, $elif, $else, and $endif) appear alone on a line. The expressions in $if and subsequent
$elif lines are evaluated in order until an expression that evaluates to true is found. Text
following a line with a false value is discarded. The text following a successful directive line
is treated normally. Text here refers to any material, that is not part of the conditional structure.
Once a successful $if or $elif has been found, and its text processed, succeeding $elif and
$else lines, together with their text, are discarded. If all the expressions are zero, and there is a
$else, the text following the $else is treated normally.

228 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Mapfile Structure and Syntax

The scope of an $if directive cannot extend across multiple mapfiles. An $if directive must
be terminated by a matching $endif within the mapfile that uses the $if directive, or the link-
editor issues an error.

The link-editor maintains an internal table of names that can be used in the logical expressions
evaluated by $if and $elif. At startup, this table is initialized with each of the names in the
following table that apply to the output object being created.

TABLE 5 Predefined Conditional Expression Names

Name Meaning

_ELF32 32-bit object

_ELF64 64-bit object

_ET_DYN shared object

_ET_EXEC executable object

_ET_REL relocatable object

_sparc SPARC machine (32 or 64-bit)

_x86 x86 machine (32 or 64-bit)

true Always defined

The names are case sensitive, and must be used exactly as shown. For example, true is defined,
but TRUE is not. Any of these names can be used by themselves as a logical expression. For
example.

 $if _ELF64

 $endif

This example will evaluate to true, and allow the link-editor to process the enclosed text,
when the output object is 64-bit. Although numeric values are not allowed in these logical
expressions, a special exception is made for the value 1, which evaluates to true, and 0 for false.

Any undefined name evaluates to false. It is common to use the undefined name false to mark
lines of input that should be unconditionally skipped.

 $if false

 $endif

More complex logical expressions can be written, using the operators shown in the following
table.

Chapter 10 • Mapfiles in the Link-Editor 229

Mapfile Structure and Syntax

TABLE 6 Conditional Expression Operators

Operator Meaning

&& Logical AND

|| Logical OR

(expr) Sub-expression

! Negate boolean value of following expression

Expressions are evaluated from left to right. Sub-expressions are evaluated before enclosing
expressions.

For example, the lines in the following construct will be evaluated when building 64-bit objects
for x86 platforms.

 $if _ELF64 && _x86

 $endif

The $add directive can be used to add a new name to the link-editor's table of known names.
Using the previous example, it might be convenient to define the name amd64 to stand for 64-bit
x86 objects, in order to simplify $if directives.

 $if _ELF64 && _x86

 $add amd64

 $endif

This can be used to simplify the previous example.

 $if amd64

 $endif

New names can also be added to the link-editor's table of known names by using the link-
editor's -z mapfile-add option. This option is useful when mapfile input needs to be
conditionally enabled based on an attribute of the external environment, such as the compiler
being used.

The $clear directive is the reverse of the $add directive. It is used to remove names from the
internal table.

 $clear amd64

The effect of the $add directive persists beyond the end of the mapfile that uses $add, and
is visible to any subsequent mapfile that is processed by the link-editor in the same link
operation. If this is not desired, use $clear at the end of the mapfile containing the $add to
remove the definition.

230 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Mapfile Structure and Syntax

Finally, the $error directive causes the link-editor to print all remaining text on the line as
a fatal error, and halt the link operation. The $error directive can be used to ensure that a
programmer porting an object to a new machine type will not be able to silently build an
incorrect object that is missing a necessary mapfile definition.

 $if _sparc

 $elif _x86

 $else

 $error unknown machine type

 $endif

C language programmers will recognize that the syntax used for mapfile conditional input
resembles that of the C preprocessor macro language. This similarity is intentional. However,
mapfile conditional input directives are by design considerably less powerful than those
provided by the C preprocessor. They provide only the most basic facilities required to support
linking operations in a cross platform environment.

Among the significant differences between the two languages.

■ The C preprocessor defines a full macro language, and the macros are applied to both the
source text, and to the expressions evaluated by the #if and #elif preprocessor statements.
Link-editor mapfiles do not implement a macro capability.

■ The expressions evaluated by the C preprocessor involve numeric types, and a rich set of
operators. Mapfile logical expressions involve boolean true and false values, and a limited
set of operators.

■ C preprocessor expressions involve arbitrary numeric values, possibly defined as macros,
and defined() is used to evaluate whether a given macro is defined or not, yielding a
true (nonzero) or false (zero) value. Mapfile logical expressions only manipulate boolean
values, and names are used directly without a defined() operation. The specified names
are considered to be true if they exist in the link-editor's table of known names, and false
otherwise.

Those requiring more sophisticated macro processing should consider using an external macro
processor, such as m4(1).

Directive Syntax

Mapfile directives exist to specify many aspects of the output object. These directives share
a common syntax, using name value pairs for attributes, and {....} constructs to represent
hierarchy and grouping.

Chapter 10 • Mapfiles in the Link-Editor 231

Mapfile Structure and Syntax

The syntax of mapfile directives is based on the following generic forms.

The simplest form is a directive name without a value.

 directive;

The next form is a directive name with a value, or a white space separated list of values.

 directive = value....;

In addition to the "=" assignment operator shown, the "+=" and "-=" forms of assignment
are allowed. The "=" operator sets the given directive to the given value, or value list. The
"+=" operator is used to add the value on the right hand side to the current value, and the "-="
operator is used to remove values.

More complex directives manipulate items that take multiple attributes enclosed within {....}
brackets to group the attributes together as a unit.

 directive [name] {
 attribute [directive = value];

 } [name];

There can be a name before the opening brace ({), which is used to name the result of the given
statement. Similarly, one or more optional names can follow the closing brace (}), prior to
the terminating semicolon (;). These names are used to express that the defined item has a
relationship with other named items.

Note that the format for attributes within a grouping use the same syntax described above for
simple directives with a value, with an assignment operator (=, +=, -=) followed by a value, or
white space separated list of values, terminated with a semicolon (;).

A directive can have attributes that in turn have sub-attributes. In such cases, the sub-attributes
are also grouped within nested {....} brackets to reflect this hierarchy.

 directive [name] {
 attribute {
 subattribute [= value];

 };

 } [name....];

The mapfile syntax grammar puts no limit on the depth to which such nesting is allowed. The
depth of nesting depends solely on the requirements of the directive.

232 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Mapfile Structure and Syntax

MATCH and MATCHREF Expressions

MATCH and MATCHREF expressions provide the ability to match strings against a pattern, and to
generate new strings that incorporate substrings from the original string. Their specific use is
described by the documentation for each mapfile directive that supports these expressions, in
the sections that follow.

A MATCH expression allows strings to be matched against a pattern, delimited by slash (/)
characters.

 MATCH(g/match-pattern/[i])
 MATCH(r/match-pattern/[i])
 MATCH(t/match-pattern/[i])

The type of matching to be done is specified by a single character code that precedes the
pattern. The type of matching to be done defines the syntax of the match-pattern.

g

Glob pattern matching. The match-pattern is specified using the glob syntax described by
fnmatch(5).

r

Regular Expression matching. The match-pattern is specified using the extended regular
expression (ERE) syntax described by regex(5).

t

Plain text matching. The match-pattern follows the standard mapfile syntax for
double quoted strings, where the slash (/) character is used in place of the usual (") quote
character. The rules for double quoted strings are described in “Mapfile Structure and
Syntax” on page 225.

By default, case sensitive pattern matching is employed. Case insensitive matching can be
specified by specifying the character 'i' immediately following the closing slash (/) character.

The MATCHREF expression is used to generate a new string, based on a template string, which can
incorporate substrings matched by a previous MATCH. MATCHREF, particularly in conjunction with
a regular expression MATCH, provides a flexible mechanism for renaming.

 MATCHREF(/template-string/)

The template-string follows the standard mapfile syntax for double quoted strings, where the
slash (/) character is used in place of the usual quote (") character. The rules for double quoted
strings are described in “Mapfile Structure and Syntax” on page 225.

Chapter 10 • Mapfiles in the Link-Editor 233

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN5fnmatch-5
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN5regex-5

Mapfile Structure and Syntax

Within template-string, substrings to be copied from the related MATCH expression are indicated
by tokens of the form ${cN}, where c is a single character that identifies a MATCH directive, and
N is an integer that identifies a substring within that MATCH. The identifier characters allowed
with MATCHREF depend on the mapfile directive that employs the MATCHREF. The documentation
for each mapfile directive that supports the use of MATCH and MATCHREF defines the set of
MATCHREF identifier characters that are allowed by that directive.

The string that results from a MATCHREF expression consists of the template-string, with all
${cN} tokens replaced by the MATCH substrings that they refer to. The zeroth token, ${c0},
represents the full string matched by the MATCH expression, and is supported with all MATCH
expressions. Tokens specifying a value of n larger than 0 are only supported with regular
expression MATCH expressions. When used with a regular expression, a value of n larger than 0
corresponds to the nth open parenthesis found in the MATCH pattern, and represents the substring
matched by that subpart of the regular expression.

If a given ${cN} does not correspond to any MATCH substring, an empty ("") string is substituted.
This occurs for any non-zero value of n with glob or text matching, or for a value of n greater
than the number of parenthesis within a regular expression pattern.

Example: Redirecting Sections

Normally, the link-editor copies input sections to the output object, creating output sections
with the same names as the input. The LOAD_SEGMENT directive allows the use of MATCH and
MATCHREF to match sections by name, and optionally to redirect them to differently named
output sections. The following mapfile redirects all non-writable allocable sections with a
name staring with the string ".appXtext.", and redirects each section to an output section named
by replacing this prefix with ".text.".

 $mapfile_version 2

 LOAD_SEGMENT text {

 ASSIGN_SECTION apptext {

 IS_NAME = MATCH(r/^\.appXtext\.(.*)$/);

 FLAGS = ALLOC !WRITE;

 OUTPUT_SECTION {

 NAME = MATCHREF(/.text.${n1}/);

 };

 };

 };

234 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Mapfile Directives

Mapfile Directives

The following directives are accepted by the link-editor.

TABLE 7 Mapfile Directives

Directive Purpose

CAPABILITY Hardware, software, machine, and platform capabilities

DEPEND_VERSIONS Specify allowed versions from sharable object dependencies

FILTER Specify that object is a shared object filter

HDR_NOALLOC ELF header and program headers are not allocable

LOAD_SEGMENT Create new loadable segment, or modify an existing load segment

NOTE_SEGMENT Create note segment, or modify an existing note segment

NULL_SEGMENT Create null segment, or modify an existing null segment

PHDR_ADD_NULL Add Null Program Header Entries

RESERVE_SEGMENT Create memory reservation segment

SEGMENT_ORDER Specify the order of segments in the output object and program header array

STACK Process Stack Attributes

STUB_OBJECT Specify that object can be built as a stub object

SYMBOL_SCOPE Set symbol attributes and scope within the unnamed global version

SYMBOL_VERSION Set symbol attributes and scope within an explicitly named version

The specific syntax for each supported mapfile directive is shown in the sections that follow.

CAPABILITY Directive

The hardware, software, machine, and platform capabilities of a relocatable object are typically
recorded within an object at compile time. The link-editor combines the capabilities of any
input relocatable objects to create a final capabilities section for the output file. Capabilities
can be defined within a mapfile, to augment, or completely replace, the capabilities that are
supplied from input relocatable objects.

 CAPABILITY [capid] {
 HW = [hwcap_flag....];
 HW += [hwcap_flag....];
 HW -= [hwcap_flag....];

 HW_1 = [value....];

Chapter 10 • Mapfiles in the Link-Editor 235

Mapfile Directives

 HW_1 += [value....];
 HW_1 -= [value....];

 HW_2 = [value....];
 HW_2 += [value....];
 HW_2 -= [value....];

 MACHINE = [machine_name....];
 MACHINE += [machine_name....];
 MACHINE -= [machine_name....];

 PLATFORM = [platform_name....];
 PLATFORM += [platform_name....];
 PLATFORM -= [platform_name....];

 SF = [sfcap_flag....];
 SF += [sfcap_flag....];
 SF -= [sfcap_flag....];

 SF_1 = [value....];
 SF_1 += [value....];
 SF_1 -= [value....];
 };

If present, the optional capid name provides a symbolic name for the object capabilities,
resulting in a CA_SUNW_ID capability entry in the output object. If multiple CAPABILITY
directives are seen, the capid provided by the final directive is used.

An empty CAPABILITY directive can be used to specify a capid for the object capabilities
without specifying any capability values.

 CAPABILITY capid;

For each type of capability, the link-editor maintains a current value (value), and a set of values
to be excluded (exclude). For hardware and software capabilities, these values are bitmasks.
For machine and platform capabilities, they are lists of names. Prior to processing mapfiles,
the value and exclude values for all capabilities are cleared. The assignment operators work as
follows.

■ If the "+=" operator is used, the value specified is added to the current value for that
capability, and removed from the exclude values for that capability.

■ If the "-=" operator is used, the value specified is added to the exclude values for that
capability, and removed from the current value for that capability.

■ If the "=" operator is used, the value specified replaces the previous value, and exclude is
reset to 0. In addition, the use of "=" overrides any capabilities that are collected from input
file processing.

236 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Mapfile Directives

Input objects are processed after mapfiles have been read. Capability values specified by
the input objects are merged with those from the mapfiles, unless the "=" operator was used,
in which case that capability is ignored when encountered in an input object. Hence, the "="
operator overrides the input objects, whereas the "+=" operator is used to augment them.

Prior to writing the resulting capability value to the output object, the link-editor subtracts any
capability values specified with the "-=" operator.

To completely eliminate a given capability from the output object, it suffices to use the
"=" operator and an empty value list. For example, the following suppresses any hardware
capabilities contributed by the input objects:

 $mapfile_version 2

 CAPABILITY {

 HW = ;

 };

Within an ELF object, hardware and software capabilities are represented as bit assignments
within one or more bitmasks found in the capabilities section of the object. The HW and SF
mapfile attributes provide a more abstract view of this implementation, accepting a space
separated list of symbolic capability names that the link-editor translates to the appropriate
mask and bit. The numbered attributes (HW_1, HW_2, SF_1) exist in order to allow direct
numeric access to the underlying capability bitmasks. They can be used to specify capability
bits that have not been officially defined. Where possible, use of the HW and SF attributes is
recommended.

HW Attribute

Hardware capabilities are specified as a space separated list of symbolic capability names. For
SPARC platforms, hardware capabilities are defined as AV_ values in <sys/auxv_SPARC.h>. For
x86 platforms, hardware capabilities are defined as AV_ values in <sys/auxv_386.h>. Mapfiles
use the same names, without the AV_ prefix. For example, the x86 AV_SSE hardware capability
is called SSE within a mapfile. This list can contain any of the capability names defined for the
CA_SUNW_HW_ capability masks.

HW_1 / HW_2 Attributes

The HW_1 and HW_2 attributes allow the CA_SUNW_HW_1 and CA_SUNW_HW_2 capability masks
to be specified directly as numeric values, or as the symbolic hardware capability names that
correspond to that mask.

Chapter 10 • Mapfiles in the Link-Editor 237

Mapfile Directives

MACHINE Attribute

The MACHINE attribute specifies the machine hardware names for the systems that the object can
execute upon. The machine hardware name of a system can be displayed by the utility uname(1)
with the -m option. A CAPABILITY directive can specify multiple machine names. Each name
results in a CA_SUNW_MACH capability entry in the output object.

PLATFORM Attribute

The PLATFORM attribute specifies the platform names for the systems that the object can execute
upon. The platform name of a system can be displayed by the utility uname(1) with the -i
option. A CAPABILITY directive can specify multiple platform names. Each name results in a
CA_SUNW_PLAT capability entry in the output object.

SF Attribute

Software capabilities are specified as a space separated list of symbolic capability names.
Software capabilities are defined as SF1_SUNW_ values in <sys/elf.h>. Mapfiles use the same
names, without the SF1_SUNW_ prefix. For example, the SF1_SUNW_ADDR32 software capability
is called ADDR32 in a mapfile. This list can contain any of the capability names defined for the
CA_SUNW_SF_1.

SF_1 Attribute

The SF_1 attribute allows the CA_SUNW_SF_1 capability mask to be specified directly as a
numeric value, or as symbolic software capability names that correspond to that mask.

DEPEND_VERSIONS Directive

When linking against a sharable object, the symbols from all versions exported by the object are
normally available for use by the link-editor. The DEPEND_VERSIONS directive is used to limit
access to specified versions only. Restricting version access can be used to ensure that a given
output object does not use newer features that might not be available on an older version of the
system.

A DEPEND_VERSIONS directive has the following syntax.

238 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1uname-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1uname-1

Mapfile Directives

 DEPEND_VERSIONS objname {
 ALLOW = version_name;
 REQUIRE = version_name;

 };

objname is the name of the sharable object, as specified on the command line. In the common
case where the object is specified using the -l command line option, this will be the specified
name with a lib prefix. For instance, libc is commonly referenced as -lc on the command line,
and is therefore specified as libc.so in a DEPEND_VERSIONS directive.

ALLOW Attribute

The ALLOW attribute specifies that the specified version, and versions inherited by that version,
are available to the link-editor for resolving symbols in the output object. The link-editor will
add a requirement for the highest version used in the inheritance chain containing this version to
the output object requirements.

REQUIRE Attribute

REQUIRE adds the specified version to the output object requirements, whether or not the version
is actually required to satisfy the link operation.

FILTER Directive

The FILTER directive can be used when building a shared object. The symbol table of this object
acts as a filter to one or more shared objects, referred to as filtees. At runtime, filters are used
to redirect symbol lookup from one object to another. Filters are frequently used to provide
backward compatibility for existing executables when functionality is moved from one library
to another. See “Shared Objects as Filters” on page 132.

FILTER {

 FILTEE = soname;
 TYPE = filter_type;
};

FILTER can only be used with shared objects. Multiple FILTER directives of a single type can be
specified. If multiple FILTER directives are used, their values are merged such that the resulting
object will act as a filter to all of the specified filtees.

Chapter 10 • Mapfiles in the Link-Editor 239

Mapfile Directives

FILTEE Attribute

The FILTEE attribute specifies the target shared object for the filter.

TYPE Attribute

The TYPE attribute defines the type of filter. The allowed filter types are as follows. If no TYPE
attribute is specified, STANDARD is assumed.

STANDARD

A standard filter. See “Generating Standard Filters” on page 134

AUXILIARY

An auxiliary filter. See “Generating Auxiliary Filters” on page 139

WEAK

A weak standard filter. Weak filters are identical to standard filters at runtime. At link-edit
time, if unused dependency processing is active, a weak filter symbol from a dependency
can be ignored in favor of the same symbol from the target filtee. Weak filters are the
preferred type when using filters to provide backward compatibility when code moves
between libraries. See “Generating Weak Filters” on page 137.

HDR_NOALLOC Directive

Every ELF object has an ELF header at offset 0 in the file. Dynamic objects also contain
program headers, which are accessed through the ELF header. The link-editor normally
arranges for these items to be included as part of the first loadable segment. The information
contained in these headers is therefore visible within the mapped image, and is typically used by
the runtime linker. The HDR_NOALLOC directive prevents this.

 HDR_NOALLOC;

When HDR_NOALLOC is specified, the ELF header and program header array still appear at the
start of the resulting output object file, but are not contained in a loadable segment, and virtual
address calculations for the image start at the first section of the first segment rather than at the
base of the ELF header.

240 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Mapfile Directives

PHDR_ADD_NULL Directive

The PHDR_ADD_NULL directive causes the link-editor to add a specified number of additional
program header entries of type PT_NULL at the end of the program header array. Extra PT_NULL
entries can be used by post processing utilities.

 PHDR_ADD_NULL = value;

value must be a positive integer value, and gives the number of extra PT_NULL entries to create.
All fields of the resulting program header entries will be set to 0.

LOAD, NOTE, NULL, and RESERVE_SEGMENT Directives

A segment is a contiguous portion of the output object that contains sections, or a memory
reservation within the process that uses the object. The family of mapfile segment directives
are used to specify the segments for an object. The following directives are provided.

LOAD_SEGMENT Directive

A loadable segment contains code or data that is mapped into the address space of a
process at runtime. The link-editor creates a PT_LOAD program header entry for each
allocable segment, which is used by the runtime linker to locate and map the segment.

 LOAD_SEGMENT segment_name {
 ALIGN = value;

 ASSIGN_SECTION [assign_name];
 ASSIGN_SECTION [assign_name] {
 FILE_BASENAME = file_basename;
 FILE_BASENAME = MATCH(...);

 FILE_OBJNAME = objname;
 FILE_OBJNAME = MATCH(...);

 FILE_PATH = file_path;
 FILE_PATH = MATCH(...);

 FLAGS = section_flags;
 TYPE = section_type;

 IS_NAME = section_name;
 IS_NAME = MATCH(...);

Chapter 10 • Mapfiles in the Link-Editor 241

Mapfile Directives

 OUTPUT_SECTION {

 DISCARD;

 FLAGS = section_flags;
 FLAGS += section_flags;
 FLAGS -= section_flags;

 NAME = section_name;
 NAME = MATCHREF(...);

 TYPE = section_type;
 };

 };

 DISABLE;

 FLAGS = segment_flags;
 FLAGS += segment_flags;
 FLAGS -= segment_flags;

 IS_ORDER = assign_name....;
 IS_ORDER += assign_name....;

 MAX_SIZE = value;
 NOHDR;

 OS_ORDER = section_name....;
 OS_ORDER += section_name....;

 PADDR = value;
 ROUND = value;

 SIZE_SYMBOL = symbol_name....;
 SIZE_SYMBOL += symbol_name....;

 VADDR = value;
 };

NOTE_SEGMENT Directive

A note segment contains note sections. The link-editor creates a PT_NOTE program header
entry that references the segment. Note segments are not allocable.

The syntax of the ASSIGN_SECTION attribute is identical to that of the LOAD_SEGMENT
directive, and is not reproduced here in the interest of brevity.

 NOTE_SEGMENT segment_name {
 ASSIGN_SECTION [assign_name];
 ASSIGN_SECTION [assign_name] {

242 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Mapfile Directives

 ...See LOAD_SEGMENT above...
 };

 DISABLE;

 IS_ORDER = assign_name....;
 IS_ORDER += assign_name....;

 OS_ORDER = section_name....;
 OS_ORDER += section_name....;
 };

NULL_SEGMENT Directive

A null segment holds sections that are included in the output object, but which are not
available to the object at runtime. Common examples of such sections are the .symtab
symbol table, and the various sections produced for the benefit of debuggers. No program
header is created for a null segment.

The syntax of the ASSIGN_SECTION attribute is identical to that of the LOAD_SEGMENT
directive, and is not reproduced here in the interest of brevity.

 NULL_SEGMENT segment_name {
 ASSIGN_SECTION [assign_name];
 ASSIGN_SECTION [assign_name] {
 See LOAD_SEGMENT above...
 };

 DISABLE;

 IS_ORDER = assign_name....;
 IS_ORDER += assign_name....;

 OS_ORDER = section_name....;
 OS_ORDER += section_name....;
 };

RESERVE_SEGMENT Directive

A virtual address reservation provides the means to reserve a portion of a process address.
Mapping operations such as mmap(2), and shmat(2) are able to use the reserved memory by
explicitly specifying a fixed address within the reserved range. However, the system will
not otherwise choose to map objects and or other files within a reserved range. The link-
editor creates a PT_LOAD program header entry with the p_flags, and p_filesz fields set
to zero. The VADDR, and SIZE attributes are required for a RESERVE_SEGMENT directive. The
PADDR and SIZE_SYMBOL attributes are optional.

 RESERVE_SEGMENT segment_name {
 PADDR = value;

Chapter 10 • Mapfiles in the Link-Editor 243

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2shmat-2

Mapfile Directives

 SIZE = value;

 SIZE_SYMBOL = symbol_name....;
 SIZE_SYMBOL += symbol_name....;

 VADDR = value;
 };

Segment directives are used to create new segments in the output file, or to change the attribute
values of an existing segment. An existing segment is one that was previous defined, or one of
the built-in segments discussed in “Predefined Segments” on page 261. Each new segment is
added to the object after the last such segment of the same type. Loadable segments are added
first, then note segments, and finally null segments. Any program headers associated with these
segments are placed in the program header array in the same relative order as the segments
themselves. This default placement can be altered by setting an explicit address in the case of a
loadable segment, or using the SEGMENT_ORDER directive.

If segment_name is a preexisting segment, then the attributes specified modify the existing
segment. Otherwise, a new segment is created and the specified attributes are applied to the new
segment. The link-editor fills in default values for attributes not explicitly supplied.

Note - When selecting a segment name, bear in mind that a future version of the link-editor
might add new predefined segments. If the name used in your segment directive matches this
new name, the new predefined segment will alter the meaning of your mapfile, from creating
a new segment to modifying an existing one. The best way to prevent this situation is to avoid
generic names for segments, and give all of your segment names a unique prefix, such as a
company/project identifier, or even the name of the program. For example, a program named
hello_world might use the segment name hello_world_data_segment.

The LOAD_SEGMENT, NOTE_SEGMENT, and NULL_SEGMENT directives can be specified as an
empty directive. When an empty segment directive creates a new segment, default values are
established for all segment attributes. Empty segments are declared as follows.

 LOAD_SEGMENT segment_name;

 NOTE_SEGMENT segment_name;

 NULL_SEGMENT segment_name;

The RESERVE_SEGMENT directive always requires the VADDR, and SIZE attributes to be specified,
and so, cannot be empty.

All of the attributes accepted by one or more of the segment directives are described below.
For each attribute, the name of the directives that accept it are shown in the section title, in
parenthesis, with the _SEGMENT suffix omitted.

244 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Mapfile Directives

ALIGN Attribute (LOAD)

The ALIGN attribute is used to specify the alignment for a loadable segment. The value specified
is set in the p_align field of the program header corresponding to the segment. Segment
alignment is used in calculating the virtual address of the beginning of the segment.

The alignment specified must be 0 or a power of 2. By default, the link-editor sets the alignment
of a segment to the built-in default. This default differs from one CPU to another and might
even be different between software revisions.

The ALIGN attribute is related to the PADDR and VADDR attributes, and must be compatible with
them.

ASSIGN_SECTION Attribute (LOAD, NOTE, NULL)

ASSIGN_SECTION specifies a combination of section attributes, such as section name, type, and
flags, that collectively qualify a section for assignment to a given segment. Each such set of
attributes is called an entrance criterion. A section matches when the section attributes match
those of an entrance criterion exactly. An ASSIGN_SECTION that does not specify any attributes
matches any section that criterion is compared to.

Multiple ASSIGN_SECTION attributes are allowed for a given segment. Each ASSIGN_SECTION
attribute is independent of the others. A section will be assigned to a segment if the section
matches any one of the ASSIGN_SECTION definitions associated with that segment. The link-
editor will not assign sections to a segment unless the segment has at least one ASSIGN_SECTION
attribute.

The link-editor uses an internal list of entrance criteria to assign sections to segments.
Each ASSIGN_SECTION declaration encountered in the mapfile is placed on this list, in the
order encountered. The entrance criteria for the built-in segments discussed in “Predefined
Segments” on page 261 are placed on this list immediately following the final mapfile
defined entry.

The entrance criterion can be given an optional name (assign_name). This name can be used in
conjunction with the IS_ORDER attribute to specify the order in which input sections are placed
in the output section.

To place an input section, the link-editor starts at the head of the entrance criteria list, and
compares the attributes of the section to each entrance criterion in turn. The section is assigned
to the segment associated with the first entrance criterion that matches the section attributes
exactly. If there is no match, the section is placed at the end of the file, as is generally the case
for all non-allocable sections.

Chapter 10 • Mapfiles in the Link-Editor 245

Mapfile Directives

ASSIGN_SECTION accepts the following.

FILE_BASENAME, FILE_OBJNAME, FILE_PATH

These attributes allow the selection of sections based on the path (FILE_PATH), basename
(FILE_BASENAME), or object name (FILE_OBJNAME) of the file they come from. The path
or name can be specified as a string literal, or as a MATCH expression. See “MATCH and
MATCHREF Expressions” on page 233.
File paths are specified using the standard UNIX slash delimited convention. The final path
segment is the basename of the path, also known simply as the filename. In the case of an
archive, the basename can be augmented with the name of the archive member, using the
form archive_name(component_name). For example, /lib/libfoo.a(bar.o)specifies the
object bar.o, found in an archive named /lib/libfoo.a.

FILE_BASENAME and FILE_OBJNAME are equivalent when applied to a non-archive,
and compare the given name to the basename of the file. When applied to an archive,
FILE_BASENAME examines the basename of the archive name, while FILE_OBJNAME
examines the name of the object contained within the archive.

Each ASSIGN_SECTION maintains a list of all FILE_BASENAME, FILE_PATH, and
FILE_OBJNAME values. A file match occurs if any one of these definitions match an input
file.

IS_NAME

Input section name. The name can be specified as a string literal, or as a MATCH expression.
See “MATCH and MATCHREF Expressions” on page 233.

TYPE

Specifies an ELF section_type, which can be any of the SHT_ constants defined in <sys/
elf.h>, with the SHT_ prefix removed. For example, PROGBITS, SYMTAB, or NOBITS.

FLAGS

The FLAGS attribute uses section_flags to specify section attributes as a space separated list
of one or more of the SHF_ constants defined in <sys/elf.h>, with the SHF prefix removed.
The most commonly used flags are given in Table 8, “Section FLAGS Values,” on page
247, which correspond to the SHF_ values defined in <sys/elf.h>. If an individual flag
is preceded by an exclamation mark (!), that attribute must explicitly not be present. In the
following example, a section is defined allocable and not writable.

 ALLOC !WRITE

Flags not explicitly in a section_flags list are ignored. In the above example, only the value
of ALLOC and WRITE are examined when matching a section against the specified flags. The
other section flags can have any value.

246 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Mapfile Directives

OUTPUT_SECTION

By default, output sections inherit their name and other properties from the input sections
that are assigned to them. The OUTPUT_SECTION attribute is used to modify or override these
properties. OUTPUT_SECTION accepts the following.

DISCARD Discard the matched input section instead of copying it to the output
object. The DISCARD attribute cannot be combined with any other
OUTPUT_SECTION attribute.

FLAGS The FLAGS attribute specifies section flags as a space separated list
of the SHF_ constants defined in <sys/elf.h>, with the SHF_ prefix
removed. There are three forms allowed.

 FLAGS = section_flags;
 FLAGS += section_flags;
 FLAGS -= section_flags;

The simple "=" assignment operator replaces the flags inherited from
the input section with the new set, the "+=" form adds the new flags
to the existing set, and the "-=" form removes the specified flags
from the existing set.

NAME Specifies a new name for the output section, either as a string
literal, or with a MATCHREF expression. When a MATCHREF expression
is used, substrings from the input section and file name can be
substituted from MATCH expressions used with the ASSIGN_SECTION
FILE_BASENAME, FILE_OBJNAME, FILE_PATH, and IS_NAME attributes.
The MATCHREF substitution tokens for the FILE_ attributes use the
identifier character f, and are of the form ${fN}, where N is an
integer value specifying the substring. Substitution tokens for the
IS_NAME attribute use the identifier character n, and have the form
${nN}. See “MATCH and MATCHREF Expressions” on page 233.

TYPE Specifies an ELF section_type, which can be any of the SHT_
constants defined in <sys/elf.h>, with the SHT_ prefix removed.
For example, PROGBITS, SYMTAB, or NOBITS.

TABLE 8 Section FLAGS Values

Flag Value Meaning

ALLOC Section is allocable

WRITE Section is writable

Chapter 10 • Mapfiles in the Link-Editor 247

Mapfile Directives

Flag Value Meaning

EXECUTEINSTR / EXECUTE Section is executable

AMD64_LARGE Section can be larger than 2 Gbytes

DISABLE Attribute (LOAD, NOTE, NULL)

The DISABLE attribute causes the link-editor to ignore the segment. No sections will be assigned
to a disabled segment. The segment is automatically re-enabled when referenced by a following
segment directive. Hence, an empty reference suffices to re-enable a disabled section.

segment segment_name;

FLAGS Attribute (LOAD)

The FLAGS attribute specifies segment permissions as a space separated list of the permissions
in Table 4, “Segment Flags,” on page 227. By default, user defined segments receive READ,
WRITE, and EXECUTE permissions. The default flags for the predefined segments described in
“Predefined Segments” on page 261 are supplied by the link-editor, and in some cases can be
platform-dependent.

There are three forms allowed.

 FLAGS = segment_flags....;
 FLAGS += segment_flags....;
 FLAGS -= segment_flags....;

The simple "=" assignment operator replaces the current flags with the new set, the "+=" form
adds the new flags to the existing set, and the "-=" form removes the specified flags from the
existing set.

IS_ORDER Attribute (LOAD, NOTE, NULL)

The link-editor normally places output sections into the segment in the order they are
encountered. Similarly, the input sections that make up the output section are placed in the order
they are encountered. The IS_ORDER attribute can be used to alter this default placement of input
sections. IS_ORDER specifies a space separated list of entrance criterion names (assign_name).
Sections matched by one of these entrance criteria are placed at the head of the output section,
sorted in the order given by IS_ORDER. Sections matched by entrance criteria not found in the
IS_ORDER list are placed following the sorted sections, in the order they are encountered.

248 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Mapfile Directives

When the "=" form of assignment is used, the previous value of IS_ORDER for the given segment
is discarded, and replaced with the new list. The "+=" form of IS_ORDER concatenates the new
list to the end of the existing list.

The IS_ORDER attribute is of particular interest when used in conjunction with the -xF option to
the compilers. When a file is compiled with the -xF option, each function in that file is placed in
a separate section with the same attributes as the text section. These sections are called .text%
function_name.

For example, a file containing three functions, main(), foo() and bar(), when compiled with
the -xF option, yields a relocatable object file with text for the three functions being placed
in sections called .text%main, .text%foo, and .text%bar. When the link-editor places these
sections into the output, the % and anything following the % are removed. Hence, all three of
these functions will be placed in the .text output section. The IS_ORDER attribute can be used
to force them to be placed in a specific order within the .text output section relative to each
other.

Consider the following user-defined mapfile.

 $mapfile_version 2

 LOAD_SEGMENT text {

 ASSIGN_SECTION text_bar { IS_NAME = .text%bar };

 ASSIGN_SECTION text_main { IS_NAME = .text%main };

 ASSIGN_SECTION text_foo { IS_NAME = .text%foo };

 IS_ORDER = text_foo text_bar text_main;

 };

No matter the order in which these three functions are found in the source code, or encountered
by the link-editor, their order in the output object text segment will be foo(), bar(), and
main().

MAX_SIZE Attribute (LOAD)

By default, the link-editor will allow a segment to grow to the size required by the contents of
the segment. The MAX_SIZE attribute can be used to specify a maximum size for the segment. If
MAX_SIZE is set, the link-editor will generate an error if the segment grows beyond the specified
size.

NOHDR Attribute (LOAD)

If a segment with the NOHDR attribute set becomes the first loadable segment in the output
object, the ELF and program headers will not be included within the segment.

Chapter 10 • Mapfiles in the Link-Editor 249

Mapfile Directives

The NOHDR attribute differs from the top level HDR_NOALLOC directive in that HDR_NOALLOC is a
per-segment value, and only has an effect if the segment becomes the first loadable segment.
This feature exists primarily to provide feature parity with the older mapfiles. See Appendix B,
“System V Release 4 (Version 1) Mapfiles” for more details.

The HDR_NOALLOC directive is recommended in preference to the segment NOHDR attribute.

OS_ORDER Attribute (LOAD, NOTE, NULL)

The link-editor normally places output sections into the segment in the order they are
encountered. The OS_ORDER attribute can be used to alter this default placement of output
sections. OS_ORDER specifies a space separated list of output section names (section_name). The
listed sections are placed at the head of the segment, sorted in the order given by OS_ORDER.
Sections not listed in OS_ORDER are placed following the sorted sections, in the order they are
encountered.

When the "=" form of assignment is used, the previous value of OS_ORDER for the given segment
is discarded, and replaced with the new list. The "+=" form of OS_ORDER concatenates the new
list to the end of the existing list.

PADDR Attribute (LOAD, RESERVE)

The PADDR attribute is used to specify an explicit physical address for the segment. The value
specified must be 0 or a power of 2. The value specified is set in the p_addr field of the
program header corresponding to the segment. By default, the link-editor sets the physical
address of segments to 0, as this field has no meaning for user mode objects, and is primarily of
interest non-userland objects such as operating system kernels.

ROUND Attribute (LOAD)

The ROUND attribute is used to align the offset of the first section of a segment within the file
image being created. By default, sections within a file image are concatenated together based
on the alignment requirements of each section. Padding is added by the link editor between
sections to ensure that the overall alignment requirement for each section are met. This model
produces the most compact file image, but can yield segment offsets within the file image
that do not align with virtual memory pages. The ROUND attribute can be used to align segment
offsets optimally for mapping to a memory image.

250 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Mapfile Directives

The alignment of the first segment in an ELF object is sufficient to create an optimal mapping
without the use of ROUND. ROUND is commonly used on segments other than the first, usually for
the data segment that follows the text segment.

Note - The first segment typically starts with ELF headers, followed by section data. ROUND
applies to the section data. As such, the application of ROUND to the first segment can require the
link-editor to introduce a padding gap between the headers and the section data.

The rounding value specified must be 0 or a power of 2. By default, the link-editor sets the
rounding factor of a segment to 1, meaning that the segment size is not rounded up. The system
provides /usr/lib/ld/map.pagealign to set alignments that are the most appropriate for
memory mapping on a given platform.

SIZE Attribute (RESERVE)

The SIZE attribute specifies the size of a memory reservation segment.

SIZE_SYMBOL Attribute (LOAD, RESERVE)

The SIZE_SYMBOL attribute defines a space separated list of section size symbol names to be
created by the link-editor. A size symbol is a global-absolute symbol that represents the size, in
bytes, of the segment. These symbols can be referenced in your object files. In order to access
the symbol within your code, you should ensure that symbol_name is a legal identifier in that
language. The symbol naming rules for the C programming language are recommended, as such
symbols are likely to be accessible from any other language.

The "=" form of assignment can be used to establish an initial value, and can only be used once
per link-editor session. The "+=" form of SIZE_SYMBOL concatenates the new list to the end of
the existing list, and can be used as many times as desired.

VADDR (LOAD, RESERVE)

The VADDR attribute is used to specify an explicit virtual address for the segment. The value
specified is set in the p_vaddr field of the program header corresponding to the segment. By
default, the link-editor assigns virtual addresses to LOAD segments as the output file is created,
and the VADDR attribute is optional. The VADDR attribute is required for RESERVE segments.

Chapter 10 • Mapfiles in the Link-Editor 251

Mapfile Directives

SEGMENT_ORDER Directive

The SEGMENT_ORDER directive is used to specify a non-default ordering for segments in the
output object.

SEGMENT_ORDER accepts a space separated list of segment names.

 SEGMENT_ORDER = segment_name....;
 SEGMENT_ORDER += segment_name....;

When the "=" form of assignment is used, the previous SEGMENT_ORDER list is discarded, and
replaced with the new list. The "+=" form of assignment concatenates the new list to the end of
the existing list.

By default, the link-editor orders segments as follows.

1. Loadable segments with explicit addresses set with the VADDR attribute of the LOAD_SEGMENT
directive, sorted by address.

2. Segments ordered using the SEGMENT_ORDER directive, in the order specified.
3. Loadable segments without explicit addresses, not found in the SEGMENT_ORDER list.
4. Note segments without explicit addresses, not found in the SEGMENT_ORDER list.
5. Null segments without explicit addresses, not found in the SEGMENT_ORDER list.

Note - ELF has some implicit conventions that must be followed by a well formed object.

■ The first loadable segment is expected to be read-only, allocable, and executable, and
receives the ELF header and program header array. This is usually the predefined text
segment.

■ The final loadable segment in an executable is expected to be writable, and the head of the
dynamic heap is usually located immediately following within the same virtual memory
mapping.

Mapfiles can be used to create objects that violate these requirements. This should be avoided,
as the result of running such an object is undefined.

Unless the HDR_NOALLOC directive is specified, the link-editor enforces the requirement that the
first segment must be a loadable segment, and not a note or null segment. HDR_NOALLOC cannot
be used for userland objects, and is therefore of little practical use. This feature is used when
building operating system kernels.

252 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Mapfile Directives

STACK Directive

The STACK directive specifies attributes of the process stack.

 STACK {

 FLAGS = segment_flags....;
 FLAGS += segment_flags....;
 FLAGS -= segment_flags....;
 };

The FLAGS attribute specifies a white space separated list of segment permissions consisting of
any of the values described in Table 4, “Segment Flags,” on page 227.

There are three forms allowed. The simple "=" assignment operator replaces the current flags
with the new set, the "+=" form adds the new flags to the existing set, and the "-=" form
removes the specified flags from the existing set.

The default stack permissions are defined by the platform ABI, and vary between platforms.
The value for the target platform is specified using the segment flag name STACK.

On some platforms, the ABI mandated default permissions include EXECUTE. EXECUTE is rarely
if ever needed and is generally considered to be a potential security risk. Removing EXECUTE
permission from the stack is a recommended practice.

 STACK {

 FLAGS -= EXECUTE;

 };

The STACK directive is reflected in the output ELF object as a PT_SUNWSTACK program header
entry.

STUB_OBJECT Directive

The STUB_OBJECT directive informs the link-editor that the object described by the mapfile can
be built as a stub object.

 STUB_OBJECT;

A stub shared object is built entirely from the information in the mapfiles supplied on the
command line. When the -z stub option is specified to build a stub object, the presence of
the STUB_OBJECT directive in a mapfile is required, and the link-editor uses the information in
symbol ASSERT attributes to create global symbols that match those of the real object.

Chapter 10 • Mapfiles in the Link-Editor 253

Mapfile Directives

SYMBOL_SCOPE and SYMBOL_VERSION Directives

The SYMBOL_SCOPE and SYMBOL_VERSION directives are used to specify the scope and attributes
of global symbols. SYMBOL_SCOPE operates within the context of the unnamed base symbol
version, while SYMBOL_VERSION is used to gather symbols into explicitly named global versions.
The SYMBOL_VERSION directive allows the creation of stable interfaces that support object
evolution in a backward compatible manner.

SYMBOL_VERSION has the following syntax.

 SYMBOL_VERSION version_name {
 symbol_scope:
 *;

 symbol_name;
 symbol_name {
 ASSERT = {

 ALIAS = symbol_name;
 BINDING = symbol_binding;
 TYPE = symbol_type;

 SIZE = size_value;
 SIZE = size_value[count];
 VALUE = value;
 };

 AUXILIARY = soname;
 FILTER = soname;
 FILTER {

 FILTEE = soname;
 TYPE = filter_type;
 };

 FLAGS = symbol_flags....;

 SIZE = size_value;
 SIZE = size_value[count];

 TYPE = symbol_type;
 VALUE = value;
 };

 } [inherited_version_name....];

SYMBOL_SCOPE does not accept version names, but is otherwise identical.

 SYMBOL_SCOPE {

254 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Mapfile Directives

 };

In a SYMBOL_VERSION directive, version_name provides a label for this set of symbol definitions.
This label identifies a version definition within the output object. One or more inherited
versions (inherited_version_name) can be specified, separated by white space, in which case
the newly defined version inherits from the versions named. See Chapter 11, “Interfaces and
Versioning”.

symbol_scope defines the scope of symbols in a SYMBOL_SCOPE or SYMBOL_VERSION directive.
By default, symbols are assumed to have global scope. This can be modified by specifying a
symbol_scope followed by a colon (:). These lines determine the symbol scope for all symbols
that follow, until changed by a subsequent scope declaration. The possible scope values and
their meanings are given in the following table.

TABLE 9 Symbol Scope Types

Scope Meaning

default / global Global symbols of this scope are visible to all external objects. References to such
symbols from within the object are bound at runtime, thus allowing interposition
to take place. This visibility scope provides a default, that can be demoted, or
eliminated by other symbol visibility techniques. This scope definition has the
same affect as a symbol with STV_DEFAULT visibility. See Table 35, “ELF Symbol
Visibility,” on page 414.

hidden / local Global symbols of this scope are reduced to symbols with a local binding.
Symbols of this scope are not visible to other external objects. This scope
definition has the same affect as a symbol with STV_HIDDEN visibility. See Table
35, “ELF Symbol Visibility,” on page 414.

protected / symbolic Global symbols of this scope are visible to all external objects. References to these
symbols from within the object are bound at link-edit, thus preventing runtime
interposition. This visibility scope can be demoted, or eliminated by other symbol
visibility techniques. This scope definition has the same affect as a symbol with
STV_PROTECTED visibility. See Table 35, “ELF Symbol Visibility,” on page 414.

exported Global symbols of this scope are visible to all external objects. References to such
symbols from within the object are bound at runtime, thus allowing interposition
to take place. This symbol visibility can not be demoted, or eliminated by any
other symbol visibility technique. This scope definition has the same affect as a
symbol with STV_EXPORTED visibility. See Table 35, “ELF Symbol Visibility,” on
page 414.

singleton Global symbols of this scope are visible to all external objects. References to
such symbols from within the object are bound at runtime, and ensure that only
one instance of the symbol is bound to from all references within a process.
This symbol visibility can not be demoted, or eliminated by any other symbol
visibility technique. This scope definition has the same affect as a symbol with
STV_SINGLETON visibility. See Table 35, “ELF Symbol Visibility,” on page 414.

eliminate Global symbols of this scope are hidden. Their symbol table entries are
eliminated. This scope definition has the same affect as a symbol with
STV_ELIMINATE visibility. See Table 35, “ELF Symbol Visibility,” on page 414.

Chapter 10 • Mapfiles in the Link-Editor 255

Mapfile Directives

A symbol_name is the name of a symbol. This name can result in a symbol definition, or a
symbol reference, depending on any qualifying attributes. In the simplest form, without any
qualifying attributes, a symbol reference is created. This reference is exactly the same as
would be generated using the -u option discussed in “Defining Additional Symbols with the -u
option” on page 51. Typically, if the symbol name is followed by any qualifying attributes, then
a symbol definition is generated using the associated attributes.

When a local scope is defined, the symbol name can be defined as the special "*" auto-
reduction directive. Symbols that have no explicitly defined visibility are demoted to a local
binding within the dynamic object being generated. Explicit visibility definitions originate from
mapfile definitions, or visibility definitions that are encapsulated within relocatable objects.
Similarly, when an eliminate scope is defined, the symbol name can be defined as the special
"*" auto-elimination directive. Symbols that have no explicitly defined visibility are eliminated
from the dynamic object being generated.

If a SYMBOL_VERSION directive is specified, or if auto-reduction is specified with either
SYMBOL_VERSION or SYMBOL_SCOPE, then versioning information is recorded in the image
created. If this image is a dynamic object, then any symbol reduction is also applied.

If the image being created is a relocatable object, then by default, no symbol reduction is
applied. In this case, any symbol reductions are recorded as part of the versioning information.
These reductions are applied when the relocatable object is finally used to generate a dynamic
object. The link-editor's -B reduce option can be used to force symbol reduction when
generating a relocatable object.

A more detailed description of the versioning information is provided in Chapter 11, “Interfaces
and Versioning”.

Note - To ensure interface definition stability, no wildcard expansion is provided for defining
symbol names.

A symbol_name can be listed by itself in order to simply assign the symbol to a version and/
or specify its scope. Optional symbol attributes can be specified within {} brackets. Valid
attributes are described below.

ASSERT Attribute

The ASSERT attribute is used to specify the expected characteristics of the symbol. The link-
editor compares the symbol characteristics that result from the link-edit to those given by
ASSERT attributes. If the real and asserted attributes do not agree, a fatal error is issued and the
output object is not created.

256 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Mapfile Directives

The interpretation of the ASSERT attribute is dependent on whether the STUB_OBJECT directive or
-z stub command line option are used. The three possible cases are as follows.

1. ASSERT attributes are not required when the STUB_OBJECT directive is not used. However, if
ASSERT attributes exist, their attributes are verified against the real values collected with the
link-edit. Should any ASSERT attributes not match their associated real values, the link-edit
terminates unsuccessfully.

2. When the STUB_OBJECT directive is used, and the -z stub command line option is specified,
the link-editor uses the ASSERT directives to define the attributes of the global symbols
provided by the object. See “Stub Objects” on page 64.

3. When the STUB_OBJECT directive is used, and -z stub command line option is not specified,
the link-editor requires that all global data in the resulting object have an associated ASSERT
directive that declares it as data and supplies a size. In this mode, if the TYPE ASSERT
attribute is not specified, GLOBAL is assumed. Similarly, if SH_ATTR is not specified, a default
value of BITS is assumed. These defaults ensure that the data attributes of the stub and real
objects are compatible. The resulting ASSERT statements are evaluated in the same manner
as in the first case above. See “STUB_OBJECT Directive” on page 253.

ASSERT accepts the following attributes.

ALIAS

Defines an alias for a previously defined symbol. An alias symbol has the same type, value,
and size as the main symbol. The ALIAS attribute cannot be used with the TYPE, SIZE,
and SH_ATTR attributes. When ALIAS is specified, the type, size, and section attributes are
obtained from the alias symbol.

BIND

Specifies an ELF symbol_binding, which can be any of the STB_ values defined in <sys/
elf.h>, with the STB_ prefix removed. For example, GLOBAL, or WEAK.

TYPE

Specifies an ELF symbol_type, which can be any of the STT_ constants defined in <sys/
elf.h>, with the STT_ prefix removed. For example, OBJECT, COMMON, or FUNC. In addition,
for compatibility with other mapfile usage, FUNCTION and DATA can be specified for
STT_FUNC and STT_OBJECT, respectively. TYPE cannot be used with ALIAS.

SH_ATTR

Specifies attributes of the section associated with the symbol. The section_attributes that
can be specified are given in Table 10, “SH_ATTR Values,” on page 258. SH_ATTR cannot
be used with ALIAS.

Chapter 10 • Mapfiles in the Link-Editor 257

Mapfile Directives

SIZE

Specifies the expected symbol size. SIZE cannot be used with ALIAS. The syntax for the
size_value argument is as described in the discussion of the SIZE attribute. See “SIZE
Attribute” on page 260.

VALUE

Specifies the expected symbol value.

TABLE 10 SH_ATTR Values

Section Attribute Meaning

BITS Section is not of type SHT_NOBITS

NOBITS Section is of type SHT_NOBITS

AUXILIARY Attribute

Indicates that this symbol is an auxiliary filter on the shared object name (soname). See
“Generating Auxiliary Filters” on page 139.

The AUXILIARY attribute is equivalent to the following.

 FILTER {

 FILTEE = soname;
 TYPE = AUXILIARY;

 };

FILTER Attribute

The FILTER attribute indicates that this symbol is a filter to another shared object. It shares the
same syntax as the FILTER directive, differing in that it works at the per-symbol level rather
than the entire object.

FILTER accepts the following attributes.

STANDARD

A standard filter. Standard filter symbols do not require any backing implementation to
be provided from an input relocatable object. Therefore, use this directive together with
defining the symbol's type, to create an absolute symbol table entry. See “Generating
Standard Filters” on page 134.

258 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Mapfile Directives

AUXILIARY

An auxiliary filter. See “Generating Auxiliary Filters” on page 139.

WEAK

A weak standard filter. Weak filters are identical to standard filters at runtime. At link-edit
time, if unused dependency processing is active, a weak filter symbol from a dependency
can be ignored in favor of the same symbol from the target filtee. Weak filters are the
preferred type when using filters to provide backward compatibility when code moves
between libraries. See “Generating Weak Filters” on page 137.

The simplified form of the FILTER attribute has the following form.

 FILTER = soname;

This creates a standard filter, and is equivalent to the following.

 FILTER {

 FILTEE = soname;
 TYPE = STANDARD;

 };

FLAGS Attribute

symbol_flags specify symbol attributes as a space separated list of one or more of the following
values.

TABLE 11 Symbol FLAGS Values

Flag Meaning

DIRECT Indicates that this symbol should be directly bound to. When used with a symbol definition,
this keyword results in any reference from within the object being built to be directly bound to
the definition. When used with a symbol reference, this flag results in a direct binding to the
dependency that provides the definition. See Chapter 7, “Direct Bindings”. This flag can also be
used with the PARENT flag to establish a direct binding to any parent at runtime.

DYNSORT Indicates that this symbol should be included in a sort section. See “Symbol Sort
Sections” on page 418. The symbol type must be STT_FUNC, STT_OBJECT, STT_COMMON, or
STT_TLS.

EXTERN Indicates the symbol is defined externally to the object being created. This keyword is typically
defined to label callback routines. Undefined symbols that would be flagged with the -z defs
option are suppressed with this flag. This flag is only meaningful when generating a symbol
reference. Should a definition for this symbol occur within the objects combined at link-edit,
then the keyword is silently ignored.

INTERPOSE Indicates that this symbol acts an interposer. This flag can only be used when generating an
executable. This flag provides for finer control of defining interposing symbols than is possible
by using the -z interpose option.

Chapter 10 • Mapfiles in the Link-Editor 259

Mapfile Directives

Flag Meaning

NODIRECT Indicates that this symbol should not be directly bound to. This state applies to references from
within the object being created and from external references. See Chapter 7, “Direct Bindings”.
This flag can also be used with the PARENT flag to prevent a direct binding to any parent at
runtime.

NODYNSORT Indicates that this symbol should not be included in a sort section. See “Symbol Sort
Sections” on page 418.

PARENT Indicates the symbol is defined in the parent of the object being created. A parent is an object
that references this object at runtime as an explicit dependency. A parent can also reference this
object at runtime using dlopen(3C). This flag is typically defined to label callback routines. This
flag can be used with the DIRECT or NODIRECT flags to establish individual direct, or no-direct
references to the parent. Undefined symbols that would be flagged with the -z defs option are
suppressed with this flag. This flag is only meaningful when generating a symbol reference.
Should a definition for this symbol occur within the objects combined at link-edit, then the
keyword is silently ignored.

STUB_ELIMINATE Indicates that this symbol should be omitted from stub objects. See “Using Stub Objects to Hide
Obsolete Interfaces” on page 68.

SIZE Attribute

Sets the size attribute. This attribute results in the creation of a symbol definition.

The size_value argument can be a numeric value, or it can be the symbolic name addrsize.
addrsize represents the size of a machine word capable of holding a memory address. The
link-editor substitutes the value 4 for addrsize when building 32-bit objects, and the value 8
when building 64-bit objects. addrsize is useful for representing the size of pointer variables
and C variables of type long, as it automatically adjusts for 32 and 64-bit objects without
requiring the use of conditional input.

The size_value argument can be optionally suffixed with a count value, enclosed in square
brackets. If count is present, size_value and count are multiplied together to obtain the final size
value.

TYPE Attribute

The symbol type attribute. This attribute can be either COMMON, DATA, or FUNCTION. COMMON
results in a tentative symbol definition. DATA and FUNCTION result in a section symbol definition
or an absolute symbol definition. See “Symbol Table Section” on page 409.

A data attribute results in the creation of an OBJT symbol. A data attribute that is accompanied
with a size, but no value creates a section symbol by associating the symbol with an ELF
section. This section is filled with zeros. A function attribute results in the creation of an FUNC
symbol.

260 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c

Predefined Segments

A function attribute that is accompanied with a size, but no value creates a section symbol by
associating the symbol with an ELF section. This section is assigned a void function, generated
by the link-editor, with the following signature.

 void (*)(void)

A data or function attribute that is accompanied with a value results in the appropriate symbol
type together with an absolute, ABS, section index.

The creation of a section data symbol is useful for the creation of filters. External references
to a section data symbol of a filter from an executable result in the appropriate copy relocation
being generated. See “Copy Relocations” on page 217.

VALUE Attribute

Indicates the value attribute. This attribute results in the creation of a symbol definition.

Predefined Segments

The link-editor provides a predefined set of output segment descriptors and entrance criteria.
These definitions satisfy the needs of most linking scenarios, and comply with the ELF layout
rules and conventions expected by the system.

The text, data, and extra segments are of primary interest, while the others serve more
specialized purposes, as described below.

■ text

The text segment defines a read-only executable loadable segment that accepts allocable,
non-writable sections. This includes executable code, read-only data needed by the program,
and read-only data produced by the link-editor for use by the runtime linker such as the
dynamic symbol table.

The text segment is the first segment in the process, and is therefore assigned the ELF
header, and the program header array by the link-editor. This can be prevented using the
HDR_NOALLOC mapfile directive.

■ data

The data segment defines a writable loadable segment. The data segment is used for
writable data needed by the program, and for writable data used by the runtime linker, such
as the Global Offset Table (GOT), and the Procedure Linkage Table (PLT), on architectures
such as SPARC that require the PLT sections to be writable.

Chapter 10 • Mapfiles in the Link-Editor 261

Predefined Segments

■ extra

The extra segment captures all sections not assigned elsewhere, directed there by the final
entrance criterion record. Common examples are the full symbol table (.symtab), and the
various sections produced for the benefit of debuggers. This is a null segment, and has no
corresponding program header table entry.

■ note

The note segment captures all sections of type SHT_NOTE. The link-editor provides a
PT_NOTE program header entry to reference the note segment.

■ lrodata / ldata
The x86–64 ABI defines small, medium, and large compilation models. The ABI requires
sections for the medium and large models to set the SHF_AMD64_LARGE section flag. An input
section lacking the SHF_AMD64_LARGE must be placed in an output segment that does not
exceed 2 Gbytes in size. The lrodata and ldata predefined segments are present for x86–
64 output objects only, and are used to handle sections with the SHF_AMD64_LARGE flag set.
lrodata receives read-only sections, and ldata receives the others.

■ bss

ELF allows for any segment to contain NOBITS sections. The link-editor places such sections
at the end of the segment they are assigned to. This is implemented using the program
header entry p_filesz and p_memsz fields, which must follow the following rule.

 p_memsz >= p_filesz

If p_memsz is greater than p_filesz, the extra bytes are NOBITS. The first p_filesz bytes
come from the object file, and any remaining bytes up to p_memsz are zeroed by the system
prior to use.

The default assignment rules assign read-only NOBITS sections to the text segment, and
writable NOBITS sections to the data segment. The link-editor defines the bss segment as an
alternative segment that can accept writable NOBITS sections. This segment is disabled by
default, and must be explicitly enabled to be used.

Since writable NOBITS sections are easily handled as part of the data segment, the benefit of
having a separate bss segment may not be immediately obvious. By convention, the process
dynamic memory heap starts at the end of the final segment, which must be writable. This
is usually the data segment, but if bss is enabled, bss becomes the final segment. When
building a dynamic executable, enabling the bss segment with an appropriate alignment can
be used to enable large page assignment of the heap. For example, the following enables the
bss segment and sets an alignment of 4 Mbytes.

 LOAD_SEGMENT bss {

 ALIGN=0x400000;

 };

262 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Mapping Examples

Note - Users are cautioned that an alignment specification can be machine-specific, and
may not have the same benefit on different hardware platforms. A more flexible means of
requesting the most optimal underlying page size may evolve in future releases.

Mapping Examples

The following are examples of user-defined mapfiles. The numbers on the left are included
in the example for tutorial purposes. Only the information to the right of the numbers actually
appears in the mapfile.

Example: Section to Segment Assignment

This example demonstrates how to define segments and assign input sections to them.

EXAMPLE 1 Basic Section to Segment Assignment

 1 $mapfile_version 2

 2 LOAD_SEGMENT elephant {

 3 ASSIGN_SECTION {

 4 IS_NAME=.data;

 5 FILE_PATH=peanuts.o;

 6 };

 7 ASSIGN_SECTION {

 8 IS_NAME=.data;

 9 FILE_OBJNAME=popcorn.o;

 10 };

 11 };

 12

 13 LOAD_SEGMENT monkey {

 14 VADDR=0x80000000;

 15 MAX_SIZE=0x4000;

 16 ASSIGN_SECTION {

 17 TYPE=progbits;

 18 FLAGS=ALLOC EXECUTE;

 19 };

 20 ASSIGN_SECTION {

 21 IS_NAME=.data

Chapter 10 • Mapfiles in the Link-Editor 263

Mapping Examples

 22 };

 23 };

 24

 25 LOAD_SEGMENT donkey {

 26 FLAGS=READ EXECUTE;

 27 ALIGN=0x1000;

 28 ASSIGN_SECTION {

 29 IS_NAME=.data;

 30 };

 31 };

 32

 33 LOAD_SEGMENT text {

 34 VADDR=0x80008000

 35 };

Four separate segments are manipulated in this example. Every mapfile starts with a
$mapfile_version declaration as shown on line 1. Segment elephant (lines 2-11) receives all
of the data sections from the files peanuts.o or popcorn.o. The object popcorn.o can come
from an archive, in which case the archive file can have any name. Alternatively, popcorn.o
can come from any file with a basename of popcorn.o. In contrast, peanuts.o can only come
from a file with exactly that name. For example, the file /var/tmp/peanuts.o supplied to a
link-edit does not match peanuts.o.

Segment monkey (lines 13-23) has a virtual address of 0x80000000, and a maximum length of
0x4000. This segment receives all sections that are both PROGBITS and allocable-executable, as
well as all sections not already in the segment elephant with the name .data. The .data sections
entering the monkey segment need not be PROGBITS or allocable-executable, because they
match the entrance criterion on line 20 rather than the one on line 16. This illustrates that and
and relationship exists between the sub-attributes within a ASSIGN_SECTION attribute, while an
or relationship exists between the different ASSIGN_SECTION attributes for a single segment.

The donkey segment (lines 25-31) is given non-default permission flags and alignment, and
will accept all sections named .data. However, this segment will never be assigned any sections,
and as a result, segment donkey will never appear in the output object. The reason for this is
that the link-editor examines entrance criteria in the order they appear in the mapfile. In this
mapfile, segment elephant accepts some .data sections, and segment monkey takes any that are
left, leaving none for donkey.

Lines 33-35 set the virtual address of the text segment to 0x80008000. The text segment is one
of the standard predefined segments, as described in “Predefined Segments” on page 261, so
this statement modifies the existing segment rather than creating a new one.

264 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Mapping Examples

Example: Predefined Section Modification

The following mapfile example manipulates the predefined text and data segments, header
options and section within segment ordering.

EXAMPLE 2 Predefined Section Manipulation and Section to Segment Assignment

 1 $mapfile_version 2

 2 HDR_NOALLOC;

 3

 4 LOAD_SEGMENT text {

 5 VADDR=0xf0004000;

 6 FLAGS=READ EXECUTE;

 7 OS_ORDER=.text .rodata;

 9 ASSIGN_SECTION {

 10 TYPE=PROGBITS;

 11 FLAGS=ALLOC !WRITE;

 12 };

 13 };

 14

 15 LOAD_SEGMENT data {

 16 FLAGS=READ WRITE EXECUTE;

 17 ALIGN=0x1000;

 18 ROUND=0x1000;

 19 };

As always, the first line declares the mapfile language version to be used. The HDR_NOALLOC
directive (line 2) specifies that the resulting object should not include the ELF header or
program header array within the first allocable segment in the object, which is the predefined
text segment.

The segment directive on lines 4-13 set a virtual address and permission flags for the text
segment. This directive also specifies that sections named .text sections should be placed at
the head of the segment, followed by any sections named .rodata, and that all other sections
will follow these. Finally, allocable, non-writable PROGBITS sections are assigned to the
segment.

The segment directive on lines 15-19 specifies that the data segment must be aligned on a
boundary of 0x1000. This has the effect of aligning the first section within the segment at the
same alignment. The length of the segment is to be rounded up to a multiple of the same value
as the alignment. The segment permissions are set to read, write, and execute.

Chapter 10 • Mapfiles in the Link-Editor 265

Link-Editor Internals: Section and Segment Processing

Link-Editor Internals: Section and Segment Processing

The internal process used by the link-editor to assign sections to output segments is described
here. This information is not necessary in order to use mapfiles. This information is
primarily of interest to those interested in link-editor internals, and for those who want a deep
understanding of how segment mapfile directives are interpreted and executed by the link-
editor.

Section To Segment Assignment

The process of assigning input sections to output segments involves the following data
structures.

■ Input Sections
Input sections are read from relocatable objects input to the link editor. Some are examined
and processed by the link-editor, while others are simply passed to the output without
examination of their contents (e.g. PROGBITS).

■ Output Sections
Output sections are sections that are written to the output object. Some are formed from the
concatenation of sections passed through from the input objects. Others, such as symbol
tables and relocation sections are generated by the link-editor itself, often incorporating
information read from the input objects.
When the link-editor passes an input section through to become an output section, the
section usually retains the input section name. However, the link-editor can modify the
name in certain circumstances. For instance, the link-editor translates input section names of
the form name%XXX, dropping the % character and any characters following from the output
section name.

■ Segment Descriptors
The link-editor maintains a list of known segments. This list initially contains the predefined
segments, described in “Predefined Segments” on page 261. When a LOAD_SEGMENT,
NOTE_SEGMENT, or NULL_SEGMENT mapfile directive is used to create a new segment, an
additional segment descriptor for the new segment is added to this list. The new segment
goes at the end of the list following other segments of the same type, unless explicitly
ordered by setting a virtual address (LOAD_SEGMENT), or by using the SEGMENT_ORDER
directive.
When creating the output object, the link-editor only creates program headers for the
segments that receive a section. Empty segments are quietly ignored. Hence, user specified
segment definitions have the power to completely replace the use of the predefined

266 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Link-Editor Internals: Section and Segment Processing

segments definitions, despite the fact that there is no explicit facility for removing a
segment definition from the link-editor list.

■ Entrance Criteria
A set of section attributes required in order to place that section in a given segment is called
an entrance criterion for the segment. A given segment can have an arbitrary number of
entrance criteria.
The link-editor maintains an internal list of all defined entrance criteria. This list is used
to place sections into segments, as described below. Each mapfile inserts the entrance
criterion created by the ASSIGN_SECTION attribute to the LOAD_SEGMENT, NOTE_SEGMENT, or
NULL_SEGMENT mapfile directive at the top of this list, in the order they are encountered
in the mapfile. The entrance criteria for the built-in segments discussed in “Predefined
Segments” on page 261 are placed at the end of this list. Therefore, mapfile defined
entrance criteria take precedence over the built in rules, and mapfiles at the end of the
command line take precedence over those found at the beginning.

For each section written to the output object, the link-editor performs the following steps to
place the section in an output segment.

1. The attributes of the section are compared to each record in the internal entrance criteria
list, starting at the head of the list and considering each entrance criterion in turn. A match
occurs when every attribute in the entrance criterion matches exactly, and the segment
associated with the entrance criterion is not disabled. The search stops with the first
entrance criterion that matches, and the section is directed to the associated segment.
If no Entrance Criterion match is found, the section is placed at the end of the output file
after all other segments. No program header entry is created for this information. Most non-
allocable sections (e.g. debug sections) end up in this area.

2. When the section falls into a segment, the link-editor checks the list of existing output
sections in that segment as follows.
If the section attribute values match those of an existing output section exactly, the section
is placed at the end of the list of sections associated with that output section.
If no matching output section is found, a new output section is created with the attributes of
the section being placed, and the input section is placed within the new output section. This
new output section is positioned within the segment following any other output sections
with the same section type, or at the end of the segment if there are none.

Note - If the input section has a user-defined section type value between SHT_LOUSER and
SHT_HIUSER, the section is treated as a PROGBITS section. No method exists for naming
this section type value in the mapfile, but these sections can be redirected using the other
attribute value specifications (section flags, section name) in the entrance criterion.

Chapter 10 • Mapfiles in the Link-Editor 267

Link-Editor Internals: Section and Segment Processing

Mapfile Directives for Predefined Segments and
Entrance Criteria

The link-editor provides a predefined set of output segment descriptors and entrance criteria,
as described in “Predefined Segments” on page 261. The link-editor already knows about
these sections, so mapfile directives are not required to create them. The mapfile directives
that could be used to produce them are shown for illustrative purposes, and as an example of a
relatively complex mapfile specification. Mapfile segment directives can be used to modify or
augment these built in definitions.

Normally, section to segment assignments are done within a single segment directive. However,
the predefined sections have more complex requirements, requiring their entrance criteria to be
processed in a different order than the segments are laid out in memory. Two passes are used to
achieve this, the first to define all the segments in the desired order, and the second to establish
entrance criteria in an order that will achieve the desired results. It is rare for a user mapfile to
require this strategy.

 # Predefined segments and entrance criteria for the Oracle Solaris

 # link-editor

 $mapfile_version 2

 # The lrodata and ldata segments only apply to x86-64 objects.

 # Establish amd64 as a convenient token for conditional input

 $if _ELF64 && _x86

 $add amd64

 $endif

 # Pass 1: Define the segments and their attributes, but

 # defer the entrance criteria details to the 2nd pass.

 LOAD_SEGMENT text {

 FLAGS = READ EXECUTE;

 };

 LOAD_SEGMENT data {

 FLAGS = READ WRITE EXECUTE;

 };

 LOAD_SEGMENT bss {

 DISABLE;

 FLAGS=DATA;

 };

 $if amd64

 LOAD_SEGMENT lrodata {

 FLAGS = READ

 };

 LOAD_SEGMENT ldata {

 FLAGS = READ WRITE;

268 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Link-Editor Internals: Section and Segment Processing

 };

 $endif

 NOTE_SEGMENT note;

 NULL_SEGMENT extra;

 # Pass 2: Define ASSIGN_SECTION attributes for the segments defined

 # above, in the order the link-editor should evaluate them.

 # All SHT_NOTE sections go to the note segment

 NOTE_SEGMENT note {

 ASSIGN_SECTION {

 TYPE = NOTE;

 };

 };

 $if amd64

 # Medium/large model x86-64 readonly sections to lrodata

 LOAD_SEGMENT lrodata {

 ASSIGN_SECTION {

 FLAGS = ALLOC AMD64_LARGE;

 };

 };

 $endif

 # text receives all readonly allocable sections

 LOAD_SEGMENT text {

 ASSIGN_SECTION {

 FLAGS = ALLOC !WRITE;

 };

 };

 # If bss is enabled, it takes the writable NOBITS sections

 # that would otherwise end up in ldata or data.

 LOAD_SEGMENT bss {

 DISABLE;

 ASSIGN_SECTION {

 FLAGS = ALLOC WRITE;

 TYPE = NOBITS;

 };

 };

 $if amd64

 # Medium/large model x86-64 writable sections to ldata

 LOAD_SEGMENT ldata {

 ASSIGN_SECTION {

 FLAGS = ALLOC WRITE AMD64_LARGE;

 };

 ASSIGN_SECTION {

 TYPE = NOBITS;

Chapter 10 • Mapfiles in the Link-Editor 269

Link-Editor Internals: Section and Segment Processing

 FLAGS = AMD64_LARGE

 };

 };

 $endif

 # Any writable allocable sections not taken above go to data

 LOAD_SEGMENT data {

 ASSIGN_SECTION {

 FLAGS = ALLOC WRITE;

 };

 };

 # Any section that makes it to this point ends up at the

 # end of the object file in the extra segment. This accounts

 # for the bulk of non-allocable sections.

 NULL_SEGMENT extra {

 ASSIGN_SECTION;

 };

270 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

 11 ♦ ♦ ♦ C H A P T E R 1 1

Interfaces and Versioning

ELF objects processed by the link-editor and runtime linker provide many global symbols
to which other objects can bind. These symbols describe the object's application binary
interface (ABI). During the evolution of an object, this interface can change due to the
addition or deletion of global symbols. In addition, the object's evolution can involve internal
implementation changes.

Versioning refers to several techniques that can be applied to an object to indicate interface and
implementation changes. These techniques provide for controlled evolution of the object, while
maintaining backward compatibility.

This chapter describes how to define an object's ABI. Also covered, are how changes to this
ABI interface can affect backward compatibility. These concepts are explored with models that
convey how interface, together with implementation changes, can be incorporated into a new
release of an object.

The focus of this chapter is on the runtime interfaces of dynamic objects. The techniques used
to describe and manage changes within these dynamic objects are presented in generic terms.

Developers of dynamic objects must be aware of the ramifications of an interface change and
understand how such changes can be managed, especially in regards to maintaining backward
compatibility with previously shipped objects.

The global symbols that are made available by any dynamic object represent the object's public
interface. Frequently, the number of global symbols that remain in an object after a link-edit are
more than you would like to make public. These global symbols stem from the symbol state that
is required between the relocatable objects used to create the object. These symbols represent
private interfaces within the object.

To define an object'sABI, you should first determine those global symbols that you want to
make publicly available from the object. These public symbols can be established using the
link-editor's -M option and an associated mapfile as part of the final link-edit. This technique
is introduced in “Reducing Symbol Scope” on page 56. This public interface establishes one or
more version definitions within the object being created. These definitions form the foundation
for the addition of new interfaces as the object evolves.

Chapter 11 • Interfaces and Versioning 271

Interface Compatibility

The following sections build upon this initial public interface. First though, you should
understand how various changes to an interface can be categorized so that these interfaces can
be managed appropriately.

Interface Compatibility

Many types of change can be made to an object. In their simplest terms, these changes can be
categorized into one of two groups.

■ Compatible updates. These updates are additive. All previously available interfaces remain
intact.

■ Incompatible updates. These updates change the existing interface. Existing users of the
interface can fail, or behave incorrectly.

The following table categorizes some common object changes.

TABLE 12 Examples of Interface Compatibility

Object Change Update Type

The addition of a symbol Compatible

The removal of a symbol Incompatible

The addition of an argument to a non-variadic function Incompatible

The removal of an argument from a function Incompatible

The change of size, or content, of a data item to a function or as an external definition Incompatible

A bug fix, or internal enhancement to a function, providing the semantic properties of
the object remain unchanged

Compatible

A bug fix, or internal enhancement to a function when the semantic properties of the
object change

Incompatible

Note - Because of interposition, the addition of a symbol can constitute an incompatible update.
The new symbol might conflict with an applications use of that symbol. However, this form
of incompatibility does seem rare in practice as source-level name space management is
commonly used.

Compatible updates can be accommodated by maintaining version definitions that are internal
to the object being generated. Incompatible updates can be accommodated by producing a new
object with a new external versioned name. Both of these versioning techniques enable the
selective binding of applications. These techniques also enable verification of correct version
binding at runtime. These two techniques are explored in more detail in the following sections.

272 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Internal Versioning

Internal Versioning

A dynamic object can have one or more internal version definitions associated with the object.
Each version definition is commonly associated with one or more symbol names. A symbol
name can only be associated with one version definition. However, a version definition can
inherit the symbols from other version definitions. Thus, a structure exists to define one or more
independent, or related, version definitions within the object being created. As new changes are
made to the object, new version definitions can be added to express these changes.

Version definitions within a shared object provide two facilities.

■ Dynamic objects that are built against a versioned shared object can record their
dependency on the version definitions bound to. These version dependencies are verified
at runtime to ensure that the appropriate interfaces, or functionality, are available for the
correct execution of an application.

■ Dynamic objects can select the version definitions of a shared object to bind to during their
link-edit. This mechanism enables developers to control their dependency on a shared object
to the interfaces, or functionality, that provide the most flexibility.

Creating a Version Definition

Version definitions commonly consist of an association of symbol names to a unique version
name. These associations are established within a mapfile and supplied to the final link-edit of
an object using the link-editor's -M option. This technique is introduced in the section “Reducing
Symbol Scope” on page 56.

A version definition is established whenever a version name is specified as part of the mapfile
directive. In the following example, two source files are combined, together with mapfile
directives, to produce an object with a defined public interface.

$ cat foo.c

#include <stdio.h>

extern const char *_foo1;

void foo1()

{

 (void) printf(_foo1);

}

$ cat data.c

const char *_foo1 = "string used by foo1()\n";

Chapter 11 • Interfaces and Versioning 273

Internal Versioning

$ cat mapfile

$mapfile_version 2

SYMBOL_VERSION SUNW_1.1 { # Release X

 global:

 foo1;

 local:

 *;

};

$ cc -c -Kpic foo.c data.c

$ cc -o libfoo.so.1 -M mapfile -G foo.o data.o

$ elfdump -sN.symtab libfoo.so.1 | grep 'foo.$'

 [32] 0x1074c 0x4 OBJT LOCL H 0 .data _foo1

 [53] 0x560 0x38 FUNC GLOB D 0 .text foo1

The symbol foo1 is the only global symbol that is defined to provide the shared object's public
interface. The special auto-reduction directive "*" causes the reduction of all other global
symbols to have local binding within the object being generated. The auto-reduction directive
is described in “SYMBOL_SCOPE and SYMBOL_VERSION Directives” on page 254. The associated
version name, SUNW_1.1, causes the generation of a version definition. Thus, the shared object's
public interface consists of the global symbol foo1 associated to the internal version definition
SUNW_1.1.

Whenever a version definition, or the auto-reduction directive, are used to generate an object, a
base version definition is also created. This base version is defined using the name of the object
being built. This base version is used to associate any reserved symbols generated by the link-
editor. See “Generating the Output File” on page 61 for a list of reserved symbols.

The version definitions that are contained within an object can be displayed using pvs(1) with
the -d option.

$ pvs -d libfoo.so.1

 libfoo.so.1;

 SUNW_1.1;

The object libfoo.so.1 has an internal version definition named SUNW_1.1, together with a
base version definition libfoo.so.1.

Note - The link-editor's -z noversion option allows symbol reduction to be directed by a
mapfile but suppresses the creation of version definitions.

From this initial version definition, the object can evolve by adding new interfaces together
with updated functionality. For example, a new function, foo2, together with its supporting data
structures, can be added to the object by updating the source files foo.c and data.c.

$ cat foo.c

274 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pvs-1

Internal Versioning

#include <stdio.h>

extern const char *_foo1, *_foo2;

void foo1()

{

 (void) printf(_foo1);

}

void foo2()

{

 (void) printf(_foo2);

}

$ cat data.c

const char *_foo1 = "string used by foo1()\n";

const char *_foo2 = "string used by foo2()\n";

A new version definition, SUNW_1.2, can be created to define a new interface representing
the symbol foo2. In addition, this new interface can be defined to inherit the original version
definition SUNW_1.1.

The creation of this new interface is important, as the interface describes the evolution of the
object. These interfaces enable users to verify and select the interfaces to bind with. These
concepts are covered in more detail in “Binding to a Version Definition” on page 279 and in
“Specifying a Version Binding” on page 283.

The following example shows the mapfile directives that create these two interfaces.

$ cat mapfile

$mapfile_version 2

SYMBOL_VERSION SUNW_1.1 { # Release X

 global:

 foo1;

 local:

 *;

};

SYMBOL_VERSION SUNW_1.2 { # Release X+1

 global:

 foo2;

} SUNW_1.1;

$ cc -o libfoo.so.1 -M mapfile -G foo.o data.o

$ elfdump -sN.symtab libfoo.so.1 | grep 'foo.$'

 [28] 0x107a4 0x4 OBJT LOCL H 0 .data _foo1

 [29] 0x107a8 0x4 OBJT LOCL H 0 .data _foo2

 [48] 0x5e8 0x20 FUNC GLOB D 0 .text foo1

 [51] 0x618 0x20 FUNC GLOB D 0 .text foo2

Chapter 11 • Interfaces and Versioning 275

Internal Versioning

The symbols foo1 and foo2 are both defined to be part of the shared object's public interface.
However, each of these symbols is assigned to a different version definition. foo1 is assigned to
version SUNW_1.1. foo2 is assigned to version SUNW_1.2.

These version definitions, their inheritance, and their symbol association can be displayed using
pvs(1) together with the -d, -v and -s options.

$ pvs -dsv libfoo.so.1

 libfoo.so.1:

 _end;

 _GLOBAL_OFFSET_TABLE_;

 _DYNAMIC;

 _edata;

 _PROCEDURE_LINKAGE_TABLE_;

 _etext;

 SUNW_1.1:

 foo1;

 SUNW_1.1;

 SUNW_1.2: {SUNW_1.1}:

 foo2;

 SUNW_1.2

The version definition SUNW_1.2 has a dependency on the version definition SUNW_1.1.

The inheritance of one version definition by another version definition is a useful technique.
This inheritance reduces the version information that is eventually recorded by any object that
binds to a version dependency. Version inheritance is covered in more detail in the section
“Binding to a Version Definition” on page 279.

A version definition symbol is created and associated with a version definition. As shown in the
previous pvs(1) example, these symbols are displayed when using the -v option.

Creating a Weak Version Definition

Internal changes to an object that do not require the introduction of a new interface definition
can be defined by creating a weak version definition. Examples of such changes are bug fixes
or performance improvements. Such a version definition is empty. The version definition has no
global interface symbols associated with the definition.

For example, suppose the data file data.c, used in the previous examples, is updated to provide
more detailed string definitions.

$ cat data.c

const char *_foo1 = "string used by function foo1()\n";

276 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pvs-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pvs-1

Internal Versioning

const char *_foo2 = "string used by function foo2()\n";

A weak version definition can be introduced to identify this change.

$ cat mapfile

$mapfile_version 2

SYMBOL_VERSION SUNW_1.1 { # Release X

 global:

 foo1;

 local:

 *;

};

SYMBOL_VERSION SUNW_1.2 { # Release X+1

 global:

 foo2;

} SUNW_1.1;

SYMBOL_VERSION SUNW_1.2.1 { } SUNW_1.2; # Release X+2

$ cc -o libfoo.so.1 -M mapfile -G foo.o data.o

$ pvs -dv libfoo.so.1

 libfoo.so.1;

 SUNW_1.1;

 SUNW_1.2: {SUNW_1.1};

 SUNW_1.2.1 [WEAK]: {SUNW_1.2};

The empty version definition is signified by the weak label. These weak version definitions
enable applications to verify the existence of a particular implementation detail. An application
can bind to the version definition that is associated with an implementation detail that the
application requires. The section “Binding to a Version Definition” on page 279 illustrates
how these definitions can be used in more detail.

Defining Unrelated Interfaces

The previous examples show how new version definitions added to an object inherit any
existing version definitions. You can also create version definitions that are unique and
independent. In the following example, two new files, bar1.c and bar2.c, are added to the
object libfoo.so.1. These files contribute two new symbols, bar1 and bar2, respectively.

$ cat bar1.c

extern void foo1();

void bar1()

{

 foo1();

Chapter 11 • Interfaces and Versioning 277

Internal Versioning

}

$ cat bar2.c

extern void foo2();

void bar2()

{

 foo2();

}

These two symbols are intended to define two new public interfaces. Neither of these new
interfaces are related to each other. However, each interface expresses a dependency on the
original SUNW_1.2 interface.

The following mapfile definition creates the required association.

$ cat mapfile

$mapfile_version 2

SYMBOL_VERSION SUNW_1.1 { # Release X

 global:

 foo1;

 local:

 *;

};

SYMBOL_VERSION SUNW_1.2 { # Release X+1

 global:

 foo2;

} SUNW_1.1;

SYMBOL_VERSION SUNW_1.2.1 { } SUNW_1.2; # Release X+2

SYMBOL_VERSION SUNW_1.3a { # Release X+3

 global:

 bar1;

} SUNW_1.2;

SYMBOL_VERSION SUNW_1.3b { # Release X+3

 global:

 bar2;

} SUNW_1.2;

The version definitions created in libfoo.so.1 when using this mapfile, and their related
dependencies, can be inspected using pvs(1).

$ cc -o libfoo.so.1 -M mapfile -G foo.o bar1.o bar2.o data.o

$ pvs -dv libfoo.so.1

 libfoo.so.1;

 SUNW_1.1;

278 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pvs-1

Internal Versioning

 SUNW_1.2: {SUNW_1.1};

 SUNW_1.2.1 [WEAK]: {SUNW_1.2};

 SUNW_1.3a: {SUNW_1.2};

 SUNW_1.3b: {SUNW_1.2};

Version definitions can be used to verify runtime binding requirements. Version definitions
can also be used to control the binding of an object during the objects creation. The following
sections explore these version definition usages in more detail.

Binding to a Version Definition
When a dynamic object is built against other shared objects, these dependencies are recorded
in the resulting object. See “Shared Object Processing” on page 34 and “Recording a Shared
Object Name” on page 128 for more details. If a dependency also contain version definitions,
then an associated version dependency is recorded in the object being built.

The following example uses the data files from the previous section to generate a shared object,
libfoo.so.1, which is suitable for a compile time environment.

$ cc -o libfoo.so.1 -h libfoo.so.1 -M mapfile -G foo.o bar.o data.o

$ ln -s libfoo.so.1 libfoo.so

$ pvs -dsv libfoo.so.1

 libfoo.so.1:

 _end;

 _GLOBAL_OFFSET_TABLE_;

 _DYNAMIC;

 _edata;

 _PROCEDURE_LINKAGE_TABLE_;

 _etext;

 SUNW_1.1:

 foo1;

 SUNW_1.1;

 SUNW_1.2: {SUNW_1.1}:

 foo2;

 SUNW_1.2;

 SUNW_1.2.1 [WEAK]: {SUNW_1.2}:

 SUNW_1.2.1;

 SUNW_1.3a: {SUNW_1.2}:

 bar1;

 SUNW_1.3a;

 SUNW_1.3b: {SUNW_1.2}:

 bar2;

 SUNW_1.3b

Six public interfaces are offered by the shared object libfoo.so.1. Four of these interfaces,
SUNW_1.1, SUNW_1.2, SUNW_1.3a, and SUNW_1.3b, define exported symbol names. One interface,

Chapter 11 • Interfaces and Versioning 279

Internal Versioning

SUNW_1.2.1, describes an internal implementation change to the object. One interface,
libfoo.so.1, defines several reserved labels. Dynamic objects created with libfoo.so.1 as a
dependency, record the version names of the interfaces the dynamic object binds to.

The following example creates an application that references symbols foo1 and foo2. The
versioning dependency information that is recorded in the application can be examined using
pvs(1) with the -r option.

$ cat prog.c

extern void foo1();

extern void foo2();

main()

{

 foo1();

 foo2();

}

$ cc -o prog prog.c -L. -R. -lfoo

$ pvs -r prog

 libfoo.so.1 (SUNW_1.2, SUNW_1.2.1);

In this example, the application prog has bound to the two interfaces SUNW_1.1 and SUNW_1.2.
These interfaces provided the global symbols foo1 and foo2 respectively.

Because version definition SUNW_1.1 is defined within libfoo.so.1 as being inherited by the
version definition SUNW_1.2, you only need to record the one dependency. This inheritance
provides for the normalization of version definition dependencies. This normalization reduces
the amount of version information that is maintained within an object. This normalization also
reduces the version verification processing that is required at runtime.

Because the application prog was built against the shared object's implementation containing
the weak version definition SUNW_1.2.1, this dependency is also recorded. Even though this
version definition is defined to inherit the version definition SUNW_1.2, the version's weak
nature precludes its normalization with SUNW_1.1. A weak version definition results in a
separate dependency recording.

Had there been multiple weak version definitions that inherited from each other, then these
definitions are normalized in the same manner as non-weak version definitions are.

Note - The recording of a version dependency can be suppressed by the link-editor's
-z noversion option.

The runtime linker validates the existence of any recorded version definitions from the objects
that are bound to when the application is executed. This validation can be displayed using

280 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pvs-1

Internal Versioning

ldd(1) with the -v option. For example, by running ldd(1) on the application prog, the version
definition dependencies are shown to be found correctly in the dependency libfoo.so.1.

$ ldd -v prog

 find object=libfoo.so.1; required by prog

 libfoo.so.1 => ./libfoo.so.1

 find version=libfoo.so.1;

 libfoo.so.1 (SUNW_1.2) => ./libfoo.so.1

 libfoo.so.1 (SUNW_1.2.1) => ./libfoo.so.1

Note - ldd(1) with the -v option implies verbose output. A recursive list of all dependencies,
together with all versioning requirements, is generated.

If a non-weak version definition dependency cannot be found, a fatal error occurs during
application initialization. Any weak version definition dependency that cannot be found
is silently ignored. For example, if the application prog is run in an environment in which
libfoo.so.1 only contains the version definition SUNW_1.1, then the following fatal error
occurs.

$ pvs -dv libfoo.so.1

 libfoo.so.1;

 SUNW_1.1;

$ prog

ld.so.1: prog: fatal: libfoo.so.1: version 'SUNW_1.2' not \

 found (required by file prog)

If prog had not recorded any version definition dependencies, the nonexistence of the symbol
foo2 could result in a fatal relocation error a runtime. This relocation error might occur at
process initialization, or during process execution. An error condition might not occur at
all if the execution path of the application did not call the function foo2. See “Relocation
Errors” on page 93.

A version definition dependency provides an alternative and immediate indication of the
availability of the interfaces required by the application.

For example, prog might run in an environment in which libfoo.so.1 only contains the
version definitions SUNW_1.1 and SUNW_1.2. In this event, all non-weak version definition
requirements are satisfied. The absence of the weak version definition SUNW_1.2.1 is deemed
nonfatal. In this case, no runtime error condition is generated.

$ pvs -dv libfoo.so.1

 libfoo.so.1;

 SUNW_1.1;

 SUNW_1.2: {SUNW_1.1};

Chapter 11 • Interfaces and Versioning 281

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ldd-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ldd-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ldd-1

Internal Versioning

$ prog

string used by foo1()

string used by foo2()

ldd(1) can be used to display all version definitions that cannot be found.

$ ldd prog

 libfoo.so.1 => ./libfoo.so.1

 libfoo.so.1 (SUNW_1.2.1) => (version not found)

At runtime, if an implementation of a dependency contains no version definition information,
then any version verification of the dependency is silently ignored. This policy provides a
level of backward compatibility as a transition from non-versioned to versioned shared objects
occurs. ldd(1) can always be used to display any version requirement discrepancies.

Note - The environment variable LD_NOVERSION can be used to suppress all runtime versioning
verification.

Verifying Versions in Additional Objects

Version definition symbols also provide a mechanism for verifying the version requirements
of an object obtained by dlopen(3C). An object that is added to the process's address space by
using dlopen(3C) receives no automatic version dependency verification. Thus, the caller of
dlopen(3C) is responsible for verifying that any versioning requirements are met.

The presence of a required version definition can be verified by looking up the associated
version definition symbol using dlsym(3C). The following example adds the shared object
libfoo.so.1 to a process using dlopen(3C). The availability of the interface SUNW_1.2 is then
verified.

#include <stdio.h>

#include <dlfcn.h>

main()

{

 void *handle;

 const char *file = "libfoo.so.1";

 const char *vers = "SUNW_1.2";

 if ((handle = dlopen(file, (RTLD_LAZY | RTLD_FIRST))) == NULL) {

 (void) printf("dlopen: %s\n", dlerror());

 return (1);

282 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ldd-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ldd-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlsym-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c

Internal Versioning

 }

 if (dlsym(handle, vers) == NULL) {

 (void) printf("fatal: %s: version '%s' not found\n", file, vers);

 return (1);

 }

Note - The use of the dlopen(3C) flag RTLD_FIRST ensures that the dlsym(3C) search is
restricted to libfoo.so.1.

Specifying a Version Binding

When creating a dynamic object that is linked against a shared object containing version
definitions, you can instruct the link-editor to limit the binding to specific version definitions.
Effectively, the link-editor enables you to control an object's binding to specific interfaces.

An object's binding requirements can be controlled using a DEPEND_VERSIONS mapfile
directive. This directive is supplied using the link-editor's -M option and an associated mapfile.
The DEPEND_VERSIONS directive uses the following syntax.

 $mapfile_version 2

 DEPEND_VERSIONS objname {
 ALLOW = version_name;
 REQUIRE = version_name;

 };

■ objname represents the name of the shared object dependency. This name should match
the shared object's compilation environment name as used by the link-editor. See “Library
Naming Conventions” on page 35.

■ The ALLOW attribute is used to specify version definition names within the shared object that
should be made available for binding. Multiple ALLOW attributes can be specified.

■ The REQUIRE attribute allows additional version definitions to be recorded. Multiple
REQUIRE attributes can be specified.

The control of version binding can be useful in the following scenarios.

■ When a shared object defines independent, unique versions. This versioning is possible
when defining different standards interfaces. An object can be built with binding controls to
ensure the object only binds to a specific interface.

■ When a shared object has been versioned over several software releases. An object can be
built with binding controls to restrict its binding to the interfaces that were available in a

Chapter 11 • Interfaces and Versioning 283

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlsym-3c

Internal Versioning

previous software release. Thus, an object can run with an old release of the shared object
dependency, after being built using the latest release of the shared object.

The following example illustrates the use of the version control mechanism. This example uses
the shared object libfoo.so.1 containing the following version interface definitions.

$ pvs -dsv libfoo.so.1

 libfoo.so.1:

 _end;

 _GLOBAL_OFFSET_TABLE_;

 _DYNAMIC;

 _edata;

 _PROCEDURE_LINKAGE_TABLE_;

 _etext;

 SUNW_1.1:

 foo1;

 foo2;

 SUNW_1.1;

 SUNW_1.2: {SUNW_1.1}:

 bar;

The version definitions SUNW_1.1 and SUNW_1.2 represent interfaces within libfoo.so.1 that
were made available in software Release X and Release X+1 respectively.

An application can be built to bind only to the interfaces available in Release X by using the
following version control mapfile directive.

$ cat mapfile

$mapfile_version 2

DEPEND_VERSIONS libfoo.so {

 ALLOW = SUNW_1.1;

}

For example, suppose you develop an application, prog, and want to ensure that the application
can run on Release X. The application must only use the interfaces available in Release X. If the
application mistakenly references the symbol bar, then the application is not compliant with the
required interface. This condition is signalled by the link-editor as an undefined symbol error.

$ cat prog.c

extern void foo1();

extern void bar();

main()

{

 foo1();

 bar();

}

$ cc -o prog prog.c -M mapfile -L. -R. -lfoo

284 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Internal Versioning

Undefined first referenced

 symbol in file

bar prog.o (symbol belongs to unavailable \

 version ./libfoo.so (SUNW_1.2))

ld: fatal: symbol referencing errors

To be compliant with the SUNW_1.1 interface, you must remove the reference to bar. You can
either rework the application to remove the requirement on bar, or add an implementation of
bar to the creation of the application.

Note - By default, shared object dependencies encountered as part of a link-edit, are also
verified against any file control directives. Use the environment variable LD_NOVERSION to
suppress the version verification of any shared object dependencies.

Binding to Additional Version Definitions

To record more version dependencies than would be produced from the normal symbol
binding of an object, use the REQUIRE attribute to the DEPEND_VERSIONS mapfiile directive. The
following sections describe scenarios where this additional binding can be useful.

Redefining an Interface

One scenario is the consumption of an ISV specific interface into a public standard interface.

From the previous libfoo.so.1 example, assume that in Release X+2, the version definition
SUNW_1.1 is subdivided into two standard releases, STAND_A and STAND_B. To preserve
compatibility, the SUNW_1.1 version definition must be maintained. In this example, this version
definition is expressed as inheriting the two standard definitions.

$ pvs -dsv libfoo.so.1

 libfoo.so.1:

 _end;

 _GLOBAL_OFFSET_TABLE_;

 _DYNAMIC;

 _edata;

 _PROCEDURE_LINKAGE_TABLE_;

 _etext;

 SUNW_1.1: {STAND_A, STAND_B}:

 SUNW_1.1;

 SUNW_1.2: {SUNW_1.1}:

 bar;

 STAND_A:

 foo1;

Chapter 11 • Interfaces and Versioning 285

Internal Versioning

 STAND_A;

 STAND_B:

 foo2;

 STAND_B;

If the only requirement of application prog is the interface symbol foo1, the application will
have a single dependency on the version definition STAND_A. This precludes running prog on
a system where libfoo.so.1 is less than Release X+2. The version definition STAND_A did not
exist in previous releases, even though the interface foo1 did.

The application prog can be built to align its requirement with previous releases by creating a
dependency on SUNW_1.1.

$ cat mapfile

$mapfile_version 2

DEPEND_VERSIONS libfoo.so {

 ALLOW = SUNW_1.1;

 REQUIRE = SUNW_1.1;

};

$ cat prog

extern void foo1();

main()

{

 foo1();

}

$ cc -M mapfile -o prog prog.c -L. -R. -lfoo

$ pvs -r prog

 libfoo.so.1 (SUNW_1.1);

This explicit dependency is sufficient to encapsulate the true dependency requirements. This
dependency satisfies compatibility with older releases.

Binding to a Weak Version

“Creating a Weak Version Definition” on page 276 described how weak version definitions
can be used to mark an internal implementation change. These version definitions are well
suited to indicate bug fixes and performance improvements made to an object. If the existence
of a weak version is required, an explicit dependency on this version definition can be
generated. The creation of such a dependency can be important when a bug fix, or performance
improvement, is critical for the object to function correctly.

From the previous libfoo.so.1 example, assume a bug fix is incorporated as the weak version
definition SUNW_1.2.1 in software Release X+3:

$ pvs -dsv libfoo.so.1

286 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Internal Versioning

 libfoo.so.1:

 _end;

 _GLOBAL_OFFSET_TABLE_;

 _DYNAMIC;

 _edata;

 _PROCEDURE_LINKAGE_TABLE_;

 _etext;

 SUNW_1.1: {STAND_A, STAND_B}:

 SUNW_1.1;

 SUNW_1.2: {SUNW_1.1}:

 bar;

 STAND_A:

 foo1;

 STAND_A;

 STAND_B:

 foo2;

 STAND_B;

 SUNW_1.2.1 [WEAK]: {SUNW_1.2}:

 SUNW_1.2.1;

Normally, if an application is built against this libfoo.so.1, the application records a weak
dependency on the version definition SUNW_1.2.1. This dependency is informational only. This
dependency does not cause termination of the application should the version definition not exist
in the implementation of libfoo.so.1 that is used at runtime.

The REQUIRE attribute to the DEPEND_VERSIONS mapfile directive can be used to generate
an explicit dependency on a version definition. If this definition is weak, then this explicit
reference also the version definition to be promoted to a strong dependency.

The application prog can be built to enforce the requirement that the SUNW_1.2.1 interface be
available at runtime by using the following file control directive.

$ cat mapfile

$mapfile_version 2

DEPEND_VERSIONS libfoo.so {

 ALLOW = SUNW_1.1;

 REQUIRE = SUNW_1.2.1;

};

$ cat prog

extern void foo1();

main()

{

 foo1();

}

$ cc -M mapfile -o prog prog.c -L. -R. -lfoo

$ pvs -r prog

 libfoo.so.1 (SUNW_1.2.1);

Chapter 11 • Interfaces and Versioning 287

Internal Versioning

prog has an explicit dependency on the interface STAND_A. Because the version definition
SUNW_1.2.1 is promoted to a strong version, the version SUNW_1.2.1 is normalized with the
dependency STAND_A. At runtime, if the version definition SUNW_1.2.1 cannot be found, a fatal
error is generated.

Note - When working with a small number of dependencies, you can use the link-editor's
-u option to explicitly bind to a version definition. Use this option to reference the version
definition symbol. However, a symbol reference is nonselective. When working with multiple
dependencies, that contain similarly named version definitions, this technique might be
insufficient to create explicit bindings.

Version Stability

Various models have been described that provide for binding to a version definition within
an object. These models allow for the runtime validation of interface requirements. This
verification only remains valid if the individual version definitions remain constant over the life
time of the object.

A version definition for an object can be created for other objects to bind with. This version
definition must continue to exist in subsequent releases of the object. Both the version name
and the symbols associated with the version must remain constant. To help enforce these
requirements, wildcard expansion of the symbol names defined within a version definition is
not supported. The number of symbols that can match a wildcard might differ over the course of
an objects evolution. This difference can lead to accidental interface instability.

Relocatable Objects

The previous sections have described how version information can be recorded within dynamic
objects. Relocatable objects can maintain versioning information in a similar manner. However,
subtle differences exist regarding how this information is used.

Any version definitions supplied to the link-edit of a relocatable object are recorded in the
object. These definitions follow the same format as version definitions recorded in dynamic
objects. However, by default, symbol reduction is not carried out on the relocatable object being
created. Symbol reductions that are defined by the versioning information are applied to the
relocatable object when the object is used to create a dynamic object.

In addition, any version definition found in a relocatable object is propagated to the dynamic
object. For an example of version processing in relocatable objects, see “Reducing Symbol
Scope” on page 56.

288 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

External Versioning

Note - Symbol reduction that is implied by a version definition can be applied to a relocatable
object by using the link-editors -B reduce option.

External Versioning

Runtime references to a shared object should always refer to the versioned file name. A
versioned file name is usually expressed as a file name with a version number suffix.

Should a shared object's interface changes in an incompatible manner, such a change can
break old applications. In this instance, a new shared object should be distributed with a new
versioned file name. In addition, the original versioned file name must still be distributed to
provide the interfaces required by the old applications.

You should provide shared objects as separate versioned file names within the runtime
environment when building applications over a series of software releases. You can then
guarantee that the interface against which the applications were built is available for the
application to bind during their execution.

The following section describes how to coordinate the binding of an interface between the
compilation and runtime environments.

Coordination of Versioned Filenames

A link-edit commonly references shared object dependencies using the link-editors -l option.
This option uses the link-editor's library search mechanism to locate shared objects that are
prefixed with lib and suffixed with .so.

However, at runtime, any shared object dependencies should exist as a versioned file name.
Instead of maintaining two distinct shared objects that follow two naming conventions, create
file system links between the two file names.

For example, the shared object libfoo.so.1 can be made available to the compilation
environment by using a symbolic link. The compilation file name is a symbolic link to the
runtime file name.

$ cc -o libfoo.so.1 -G -K pic foo.c

$ ln -s libfoo.so.1 libfoo.so

$ ls -l libfoo*

lrwxrwxrwx 1 usr grp 11 1991 libfoo.so -> libfoo.so.1

-rwxrwxr-x 1 usr grp 3136 1991 libfoo.so.1

Chapter 11 • Interfaces and Versioning 289

External Versioning

Either a symbolic link or hard link can be used. However, as a documentation and diagnostic
aid, symbolic links are more useful.

The shared object libfoo.so.1 has been generated for the runtime environment. The symbolic
link libfoo.so, has also enabled this file's use in a compilation environment.

$ cc -o prog main.o -L. -lfoo

The link-editor processes the relocatable object main.o with the interface described by the
shared object libfoo.so.1, which is found by following the symbolic link libfoo.so.

Over a series of software releases, new versions of libfoo.so can be distributed with changed
interfaces. The compilation environment can be constructed to use the interface that is
applicable by changing the symbolic link.

$ ls -l libfoo*

lrwxrwxrwx 1 usr grp 11 1993 libfoo.so -> libfoo.so.3

-rwxrwxr-x 1 usr grp 3136 1991 libfoo.so.1

-rwxrwxr-x 1 usr grp 3237 1992 libfoo.so.2

-rwxrwxr-x 1 usr grp 3554 1993 libfoo.so.3

In this example, three major versions of the shared object are available. Two versions, libfoo.
so.1 and libfoo.so.2, provide the dependencies for existing applications. libfoo.so.3 offers
the latest major release for creating and running new applications.

The use of this symbolic link mechanism solely is insufficient to coordinate the compilation
shared object with a runtime versioned file name. As the example currently stands, the link-
editor records in the dynamic executable prog the file name of the shared object the link-editor
processes. In this case, that file name seen by the link-editor is the compilation environment
file.

$ elfdump -d prog | grep libfoo

 [0] NEEDED 0x1b7 libfoo.so

When the application prog is executed, the runtime linker searches for the dependency libfoo.
so. prog binds to the file to which this symbolic link is pointing.

To ensure the correct runtime name is recorded as a dependency, the shared object libfoo.so.1
should be built with an soname definition. This definition identifies the shared object's runtime
name. This name is used as the dependency name by any object that links against the shared
object. This definition can be provided using the -h option during the creation of the shared
object.

$ cc -o libfoo.so.1 -G -K pic -h libfoo.so.1 foo.c

$ ln -s libfoo.so.1 libfoo.so

$ cc -o prog main.o -L. -lfoo

290 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

External Versioning

$ elfdump -d prog | grep libfoog

 [0] NEEDED 0x1b7 libfoo.so.1

This symbolic link and the soname mechanism establish a robust coordination between the
shared-object naming conventions of the compilation and runtime environment. The interface
processed during the link-edit is accurately recorded in the output file generated. This recording
ensures that the intended interface are furnished at runtime.

Multiple External Versioned Files in the Same
Process

The creation of a new externally versioned shared object is a major change. Be sure you
understand the complete dependencies of any processes that use a member of a family of
externally versioned shared objects.

For example, an application might have a dependency on libfoo.so.1 and an externally
delivered object libISV.so.1. This latter object might also have a dependency on libfoo.
so.1. The application might be redesigned to use the new interfaces in libfoo.so.2. However,
the application might not change the use of the external object libISV.so.1. Depending on the
scope of visibility of the implementations of libfoo.so that get loaded at runtime, both major
versions of the file can be brought into the running process. The only reason to change the
version of libfoo.so is to mark an incompatible change. Therefore, having both versions of the
object within a process can lead to incorrect symbol binding and hence undesirable interactions.

The creation of an incompatible interface change should be avoided. Only if you have full
control over the interface definition, and all of the objects that reference this definition, should
an incompatible change be considered.

Chapter 11 • Interfaces and Versioning 291

292 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

 12 ♦ ♦ ♦ C H A P T E R 1 2

Establishing Dependencies with Dynamic String
Tokens

A dynamic object can establish dependencies explicitly or through filters. Each of these
mechanisms can be augmented with a runpath, which directs the runtime linker to search
for and load the required dependency. String names used to record filters, dependencies and
runpath information can be augmented with the following reserved dynamic string tokens.

■ $CAPABILITY ($HWCAP)
■ $ISALIST

■ $OSNAME, $OSREL, $PLATFORM and $MACHINE
■ $ORIGIN

This appendix provides examples of how each of these tokens can be employed.

Capability Specific Shared Objects

The dynamic token $CAPABILITY can be used to specify a directory in which capability specific
shared objects exist. This token is available for filters and dependencies. As this token can
expand to multiple objects, its use with dependencies is controlled. Dependencies obtained with
dlopen(3C), can use this token with the mode RTLD_FIRST. Explicit dependencies that use this
token will load the first appropriate dependency found.

Note - The original capabilities implementation was based solely on hardware capabilities.
The token $HWCAP was used to select this capability processing. Capabilities have since
been extended beyond hardware capabilities, and the $HWCAP token has been replaced by
the $CAPABILITY token. For compatibility, the $HWCAP token is interpreted as an alias for the
$CAPABILITY token.

The path name specification must consist of a full path name terminated with the $CAPABILITY
token. Shared objects that exist in the directory that is specified with the $CAPABILITY token

Chapter 12 • Establishing Dependencies with Dynamic String Tokens 293

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c

Capability Specific Shared Objects

are inspected at runtime. These objects should indicate their capability requirements. See
“Identifying Capability Requirements” on page 180. Each object is validated against the
capabilities that are available to the process. Those objects that are applicable for use with the
process, are sorted in descending order of their capability values. These sorted filtees are used
to resolve symbols that are defined within the filter.

Filtees within the capabilities directory have no naming restrictions. The following example
shows how the auxiliary filter libfoo.so.1 can be designed to access hardware capability
filtees.

$ LD_OPTIONS='-f /opt/ISV/lib/cap/$CAPABILITY' \

 cc -o libfoo.so.1 -G -K pic -h libfoo.so.1 -R. foo.c

$ elfdump -d libfoo.so.1 | egrep 'SONAME|AUXILIARY'

 [2] SONAME 0x1 libfoo.so.1

 [3] AUXILIARY 0x96 /opt/ISV/lib/cap/$CAPABILITY

$ elfdump -H /opt/ISV/lib/cap/*

/opt/ISV/lib/cap/filtee.so.3:

Capabilities Section: .SUNW_cap

 Object Capabilities:

 index tag value

 [0] CA_SUNW_HW_1 0x1000 [SSE2]

/opt/ISV/lib/cap/filtee.so.1:

Capabilities Section: .SUNW_cap

 Object Capabilities:

 index tag value

 [0] CA_SUNW_HW_1 0x40 [MMX]

/opt/ISV/lib/cap/filtee.so.2:

Capabilities Section: .SUNW_cap

 Object Capabilities:

 index tag value

 [0] CA_SUNW_HW_1 0x800 [SSE]

If the filter libfoo.so.1 is processed on a system where the MMX and SSE hardware capabilities
are available, the following filtee search order occurs.

$ cc -o prog prog.c -R. -lfoo

$ LD_DEBUG=symbols prog

....

01233: symbol=foo; lookup in file=libfoo.so.1 [ELF]

294 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Instruction Set Specific Shared Objects

01233: symbol=foo; lookup in file=cap/filtee.so.2 [ELF]

01233: symbol=foo; lookup in file=cap/filtee.so.1 [ELF]

....

Note that the capability value for filtee.so.2 is greater than the capability value for filtee.
so.1. filtee.so.3 is not a candidate for inclusion in the symbol search, as the SSE2 capability
is not available.

Reducing Capability Filtee Searches

The use of $CAPABILITY within a filter enables one or more filtees to provide implementations
of interfaces that are defined within the filter.

All shared objects within the specified $CAPABILITY directory are inspected to validate their
availability, and to sort those found appropriate for the process. Once sorted, all objects are
loaded in preparation for use.

A filtee can be built with the link-editor's -z endfiltee option to indicate that it is the last of
the available filtees. A filtee identified with this option, terminates the sorted list of filtees for
that filter. No objects sorted after this filtee are loaded for the filter. From the previous example,
if the filter.so.2 filtee was tagged with -z endfiltee, the filtee search would be as follows.

$ LD_DEBUG=symbols prog

....

01424: symbol=foo; lookup in file=libfoo.so.1 [ELF]

01424: symbol=foo; lookup in file=cap/filtee.so.2 [ELF]

....

Instruction Set Specific Shared Objects

The dynamic token $ISALIST is expanded at runtime to reflect the native instruction sets
executable on this platform, as displayed by the utility isalist(1). This token is available for
filters, runpath definitions, and dependencies. As this token can expand to multiple objects,
its use with dependencies is controlled. Dependencies obtained with dlopen(3C), can use this
token with the mode RTLD_FIRST. Explicit dependencies that use this token will load the first
appropriate dependency found.

Note - This token is obsolete, and might be removed in a future release of Oracle Solaris.
See “Capability Specific Shared Objects” on page 293 for the recommended technique for
handling instruction set extensions.

Chapter 12 • Establishing Dependencies with Dynamic String Tokens 295

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1isalist-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c

Instruction Set Specific Shared Objects

Any string name that incorporates the $ISALIST token is effectively duplicated into multiple
strings. Each string is assigned one of the available instruction sets.

The following example shows how the auxiliary filter libfoo.so.1 can be designed to access
an instruction set specific filtee libbar.so.1.

$ LD_OPTIONS='-f /opt/ISV/lib/$ISALIST/libbar.so.1' \

 cc -o libfoo.so.1 -G -K pic -h libfoo.so.1 -R. foo.c

$ elfdump -d libfoo.so.1 | egrep 'SONAME|AUXILIARY'

 [2] SONAME 0x1 libfoo.so.1

 [3] AUXILIARY 0x96 /opt/ISV/lib/$ISALIST/libbar.so.1

Or alternatively the runpath can be used.

$ LD_OPTIONS='-f libbar.so.1' \

 cc -o libfoo.so.1 -G -K pic -h libfoo.so.1 -R'/opt/ISV/lib/$ISALIST' foo.c

$ elfdump -d libfoo.so.1 | egrep 'RUNPATH|AUXILIARY'

 [3] AUXILIARY 0x96 libbar.so.1

 [4] RUNPATH 0xa2 /opt/ISV/lib/$ISALIST

In either case the runtime linker uses the platform available instruction list to construct multiple
search paths. For example, the following application is dependent on libfoo.so.1 and
executed on a SUNW,Ultra-2.

$ ldd -ls prog

....

 find object=libbar.so.1; required by ./libfoo.so.1

 search path=/opt/ISV/lib/$ISALIST (RPATH from file ./libfoo.so.1)

 trying path=/opt/ISV/lib/sparcv9+vis/libbar.so.1

 trying path=/opt/ISV/lib/sparcv9/libbar.so.1

 trying path=/opt/ISV/lib/sparcv8plus+vis/libbar.so.1

 trying path=/opt/ISV/lib/sparcv8plus/libbar.so.1

 trying path=/opt/ISV/lib/sparcv8/libbar.so.1

 trying path=/opt/ISV/lib/sparcv8-fsmuld/libbar.so.1

 trying path=/opt/ISV/lib/sparcv7/libbar.so.1

 trying path=/opt/ISV/lib/sparc/libbar.so.1

Or an application with similar dependencies is executed on an MMX configured Pentium Pro.

$ ldd -ls prog

....

 find object=libbar.so.1; required by ./libfoo.so.1

 search path=/opt/ISV/lib/$ISALIST (RPATH from file ./libfoo.so.1)

 trying path=/opt/ISV/lib/pentium_pro+mmx/libbar.so.1

 trying path=/opt/ISV/lib/pentium_pro/libbar.so.1

 trying path=/opt/ISV/lib/pentium+mmx/libbar.so.1

 trying path=/opt/ISV/lib/pentium/libbar.so.1

 trying path=/opt/ISV/lib/i486/libbar.so.1

 trying path=/opt/ISV/lib/i386/libbar.so.1

296 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

System Specific Shared Objects

 trying path=/opt/ISV/lib/i86/libbar.so.1

Reducing Instruction Set Filtee Searches

The use of $ISALIST within a filter enables one or more filtees to provide implementations of
interfaces defined within the filter.

Any interface defined in a filter can result in an exhaustive search of all potential filtees in an
attempt to locate the required interface. If filtees are being employed to provide performance
critical functions, this exhaustive filtee searching can be counterproductive.

A filtee can be built with the link-editor's -z endfiltee option to indicate that it is the last of
the available filtees. This option terminates any further filtee searching for that filter. From the
previous SPARC example, if the SPARCV9 filtee existed, and was tagged with -z endfiltee,
the filtee searches would be as follows.

$ ldd -ls prog

....

 find object=libbar.so.1; required by ./libfoo.so.1

 search path=/opt/ISV/lib/$ISALIST (RPATH from file ./libfoo.so.1)

 trying path=/opt/ISV/lib/sparcv9+vis/libbar.so.1

 trying path=/opt/ISV/lib/sparcv9/libbar.so.1

System Specific Shared Objects

The dynamic tokens $OSNAME, $OSREL, $PLATFORM and $MACHINE are expanded at runtime
to provide system specific information. These tokens are available for filters, runpath, or
dependency definitions.

$OSNAME expands to reflect the name of the operating system, as displayed by the utility
uname(1) with the -s option. $OSREL expands to reflect the operating system release level,
as displayed by uname -r. $PLATFORM expands to reflect the underlying platform name, as
displayed by uname -i. $MACHINE expands to reflect the underlying machine hardware name, as
displayed by uname -m.

The following example shows how the auxiliary filter libfoo.so.1 can be designed to access a
platform specific filtee libbar.so.1.

$ LD_OPTIONS='-f /platform/$PLATFORM/lib/libbar.so.1' \

 cc -o libfoo.so.1 -G -K pic -h libfoo.so.1 -R. foo.c

$ elfdump -d libfoo.so.1 | egrep 'SONAME|AUXILIARY'

Chapter 12 • Establishing Dependencies with Dynamic String Tokens 297

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1uname-1

Locating Associated Dependencies

 [2] SONAME 0x1 libfoo.so.1

 [3] AUXILIARY 0x96 /platform/$PLATFORM/lib/libbar.so.1

Note - Platform names and machine hardware names have converged into very few variations,
and the use of any of this family of tokens has become rare. Providing optimized variants by
providing a hardware capabilities family can provide greater flexibility, and is recommended.
See “Identifying Hardware Capabilities” on page 184.

Locating Associated Dependencies

Typically, an unbundled product is designed to be installed in a unique location. This product
is composed of binaries, shared object dependencies, and associated configuration files. For
example, the unbundled product ABC might have the layout shown in the following figure.

FIGURE 4 Unbundled Dependencies

Assume that the product is designed for installation under /opt. Normally, you would augment
your PATH with /opt/ABC/bin to locate the product's binaries. Each binary locates their
dependencies using a hard-coded runpath within the binary. For the application abc, this
runpath would be as follows.

$ cc -o abc abc.c -R/opt/ABC/lib -L/opt/ABC/lib -lA

$ elfdump -d abc | egrep 'NEEDED|RUNPATH'

 [0] NEEDED 0x1b5 libA.so.1

 [4] RUNPATH 0x1bf /opt/ABC/lib

Similarly, for the dependency libA.so.1 the runpath would be as follows.

$ cc -o libA.so.1 -G -Kpic A.c -R/opt/ABC/lib -L/opt/ABC/lib -lB

$ elfdump -d libA.so.1 | egrep 'NEEDED|RUNPATH'

298 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Locating Associated Dependencies

 [0] NEEDED 0x96 libB.so.1

 [4] RUNPATH 0xa0 /opt/ABC/lib

This dependency representation works until the product is installed in some directory other than
the recommended default.

The dynamic token $ORIGIN expands to the directory in which an object originated. This token
is available for filters, runpath, or dependency definitions. Use this technology to redefine the
unbundled application to locate its dependencies in terms of $ORIGIN.

$ cc -o abc abc.c '-R$ORIGIN/../lib' -L/opt/ABC/lib -lA

$ elfdump -d abc | egrep 'NEEDED|RUNPATH'

 [0] NEEDED 0x1b5 libA.so.1

 [4] RUNPATH 0x1bf $ORIGIN/../lib

The dependency libA.so.1 can also be defined in terms of $ORIGIN.

$ cc -o libA.so.1 -G -Kpic A.c '-R$ORIGIN' -L/opt/ABC/lib -lB

$ elfdump -d lib/libA.so.1 | egrep 'NEEDED|RUNPATH'

 [0] NEEDED 0x96 libB.so.1

 [4] RUNPATH 0xa0 $ORIGIN

If this product is now installed under /usr/local/ABC and your PATH is augmented with
/usr/local/ABC/bin, invocation of the application abc result in a path name lookup for its
dependencies as follows.

$ ldd -s abc

....

 find object=libA.so.1; required by abc

 search path=$ORIGIN/../lib (RUNPATH/RPATH from file abc)

 trying path=/usr/local/ABC/lib/libA.so.1

 libA.so.1 => /usr/local/ABC/lib/libA.so.1

 find object=libB.so.1; required by /usr/local/ABC/lib/libA.so.1

 search path=$ORIGIN (RUNPATH/RPATH from file /usr/local/ABC/lib/libA.so.1)

 trying path=/usr/local/ABC/lib/libB.so.1

 libB.so.1 => /usr/local/ABC/lib/libB.so.1

Note - Objects that contain a $ORIGIN token can be referenced using a symbolic link. In this
case, the symbolic link is fully resolved in order to determine the true origin of the object.

Dependencies Between Unbundled Products
Another issue related to dependency location is how to establish a model whereby unbundled
products express dependencies between themselves.

Chapter 12 • Establishing Dependencies with Dynamic String Tokens 299

Locating Associated Dependencies

For example, the unbundled product XYZ might have dependencies on the product ABC. This
dependency can be established by a host package installation script. This script generates a
symbolic link to the installation point of the ABC product, as shown in the following figure.

FIGURE 5 Unbundled Co-Dependencies

The binaries and shared objects of the XYZ product can represent their dependencies on the ABC
product using the symbolic link. This link is now a stable reference point. For the application
xyz, this runpath would be as follows.

$ cc -o xyz xyz.c '-R$ORIGIN/../lib:$ORIGIN/../ABC/lib' \

 -L/opt/ABC/lib -lX -lA

$ elfdump -d xyz | egrep 'NEEDED|RUNPATH'

 [0] NEEDED 0x1b5 libX.so.1

 [1] NEEDED 0x1bf libA.so.1

 [2] NEEDED 0x18f libc.so.1

 [5] RUNPATH 0x1c9 $ORIGIN/../lib:$ORIGIN/../ABC/lib

and similarly for the dependency libX.so.1 this runpath would be as follows.

$ cc -o libX.so.1 -G -Kpic X.c '-R$ORIGIN:$ORIGIN/../ABC/lib' \

 -L/opt/ABC/lib -lY -lC

$ elfdump -d libX.so.1 | egrep 'NEEDED|RUNPATH'

 [0] NEEDED 0x96 libY.so.1

 [1] NEEDED 0xa0 libC.so.1

 [5] RUNPATH 0xaa $ORIGIN:$ORIGIN/../ABC/lib

300 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Locating Associated Dependencies

If this product is now installed under /usr/local/XYZ, its post-install script would be required
to establish a symbolic link.

$ ln -s ../ABC /usr/local/XYZ/ABC

If your PATH is augmented with /usr/local/XYZ/bin, then invocation of the application xyz
results in a path name lookup for its dependencies as follows.

$ ldd -s xyz

....

 find object=libX.so.1; required by xyz

 search path=$ORIGIN/../lib:$ORIGIN/../ABC/lib (RUNPATH/RPATH from file xyz)

 trying path=/usr/local/XYZ/lib/libX.so.1

 libX.so.1 => /usr/local/XYZ/lib/libX.so.1

 find object=libA.so.1; required by xyz

 search path=$ORIGIN/../lib:$ORIGIN/../ABC/lib (RUNPATH/RPATH from file xyz)

 trying path=/usr/local/XYZ/lib/libA.so.1

 trying path=/usr/local/ABC/lib/libA.so.1

 libA.so.1 => /usr/local/ABC/lib/libA.so.1

 find object=libY.so.1; required by /usr/local/XYZ/lib/libX.so.1

 search path=$ORIGIN:$ORIGIN/../ABC/lib \

 (RUNPATH/RPATH from file /usr/local/XYZ/lib/libX.so.1)

 trying path=/usr/local/XYZ/lib/libY.so.1

 libY.so.1 => /usr/local/XYZ/lib/libY.so.1

 find object=libC.so.1; required by /usr/local/XYZ/lib/libX.so.1

 search path=$ORIGIN:$ORIGIN/../ABC/lib \

 (RUNPATH/RPATH from file /usr/local/XYZ/lib/libX.so.1)

 trying path=/usr/local/XYZ/lib/libC.so.1

 trying path=/usr/local/ABC/lib/libC.so.1

 libC.so.1 => /usr/local/ABC/lib/libC.so.1

 find object=libB.so.1; required by /usr/local/ABC/lib/libA.so.1

 search path=$ORIGIN (RUNPATH/RPATH from file /usr/local/ABC/lib/libA.so.1)

 trying path=/usr/local/ABC/lib/libB.so.1

 libB.so.1 => /usr/local/ABC/lib/libB.so.1

Note - An objects origin can be obtained at runtime using dlinfo(3C) together with the
RTLD_DI_ORIGIN flag. This origin path can be used to access additional files from the associated
product hierarchy.

Chapter 12 • Establishing Dependencies with Dynamic String Tokens 301

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlinfo-3c

Locating Associated Dependencies

Security in Coded Processes

In a secure process, the expansion of the $ORIGIN string is allowed only if it expands to a
trusted directory. The occurrence of other relative path names, poses a security risk.

A path like $ORIGIN/../lib apparently points to a fixed location, fixed by the location of the
executable. However, the location is not actually fixed. A writable directory in the same file
system could exploit a secure program that uses $ORIGIN.

The following example shows this possible security breach if $ORIGIN was arbitrarily expanded
within a secure process.

$ cd /worldwritable/dir/in/same/fs

$ mkdir bin lib

$ ln $ORIGIN/bin/program bin/program

$ cp ~/crooked-libc.so.1 lib/libc.so.1

$ bin/program

.... using crooked-libc.so.1

You can use the utility crle(1) to specify trusted directories that enable secure applications to
use $ORIGIN. Administrators who use this technique should ensure that the target directories are
suitably protected from malicious intrusion.

302 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1crle-1

 13 ♦ ♦ ♦ C H A P T E R 1 3

Extensibility Mechanisms

The link-editor and runtime linker provide interfaces that enable the monitoring, and
modification, of link-editor and runtime linker processing. These interfaces typically require
a more advanced understanding of link-editing concepts than has been described in previous
chapters. The following interfaces are described in this chapter.

■ ld-support – “Link-Editor Support Interface” on page 303
■ rtld-audit – “Runtime Linker Auditing Interface” on page 311
■ rtld-debugger – “Runtime Linker Debugger Interface” on page 326

Link-Editor Support Interface

The link-editor performs many operations including the opening of files and the concatenation
of sections from these files. Monitoring, and sometimes modifying, these operations can often
be beneficial to components of a compilation system.

This section describes the ld-support interface. This interface provides for input file inspection,
and to some degree, input file data modification of those files that compose a link-edit. Two
applications that employ this interface are the link-editor and the make(1S) utility. The link
editor uses the interface to process debugging information within relocatable objects. The make
utility uses the interface to save state information.

The ld-support interface is composed of a support library that offers one or more support
interface routines. This library is loaded as part of the link-edit process. Any support routines
that are found in the library are called at various stages of link-editing.

You should be familiar with the elf(3ELF) structures and file format when using this interface.

Chapter 13 • Extensibility Mechanisms 303

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1make-1s
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Delf-3elf

Link-Editor Support Interface

Invoking the Support Interface

The link-editor accepts one or more support libraries provided by either the SGS_SUPPORT
environment variable or with the link-editor's -S option. The environment variable consists of a
colon separated list of support libraries.

$ SGS_SUPPORT=support.so.1:support.so.2 cc

The -S option specifies a single support library. Multiple -S options can be specified.

$ LD_OPTIONS='-Ssupport.so.1 -Ssupport.so.2' cc

A support library is a shared object. The link-editor opens each support library, in the order the
libraries are specified, using dlopen(3C). If both the environment variable and -S option are
encountered, then the support libraries specified with the environment variable are processed
first. Each support library is then searched, using dlsym(3C), for any support interface routines.
These support routines are then called at various stages of link-editing.

A support library must be consistent with the ELF class of the link-editor being invoked, either
32-bit or 64-bit. See “32-Bit Environments and 64-Bit Environments” on page 304 for more
details.

Note - By default, the Solaris OS support library libldstab.so.1 is used by the link-editor
to process, and compact, compiler-generated debugging information supplied within input
relocatable objects. This default processing is suppressed if you invoke the link-editor with
any support libraries specified using the -S option. The default processing of libldstab.so.1
can be required in addition to your support library services. In this case, add libldstab.so.1
explicitly to the list of support libraries that are supplied to the link-editor.

32-Bit Environments and 64-Bit Environments

As described in “32-Bit Environments and 64-Bit Environments” on page 25, the 64-bit link-
editor, ld(1), is capable of generating 32-bit objects. In addition, the 32-bit link-editor is
capable of generating 64-bit objects. Each of these objects has an associated support interface
defined.

The support interface for 64-bit objects is similar to the interface of 32-bit objects, but ends
in a 64 suffix. For example ld_start() and ld_start64(). This convention allows both
implementations of the support interface to reside in a single shared object of each class, 32-bit
and 64-bit.

The SGS_SUPPORT environment variable can be specified with a _32 or _64 suffix, and the
link-editor options -z ld32 and -z ld64 can be used to define -S option requirements. These

304 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlsym-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ld-1

Link-Editor Support Interface

definitions will only be interpreted, respectively, by the 32-bit or 64-bit class of the link-editor.
This enables both classes of support library to be specified when the class of the link-editor
might not be known.

Support Interface Functions

All ld-support interfaces are defined in the header file link.h. All interface arguments are basic
C types or ELF types. The ELF data types can be examined with the ELF access library libelf.
See elf(3ELF) for a description of libelf contents. The following interface functions are
provided by the ld-support interface, and are described in their expected order of use.

ld_version()

This function provides the initial handshake between the link-editor and the support library.

uint_t ld_version(uint_t version);

The link-editor calls this interface with the highest version of the ld-support interface
that the link-editor is capable of supporting. The support library can verify this version is
sufficient for its use. The support library can then return the version that the support library
expects to use. This version is normally LD_SUP_VCURRENT.
If the support library does not provide this interface, the initial support level
LD_SUP_VERSION1 is assumed.

If the support library returns the version LD_SUP_VNONE, the link-editor silently unloads
the support library, and proceeds without using it. If the returned version is greater than
the ld-support interface the link-editor supports, a fatal error is issued, and the link-editor
terminates execution. Otherwise, execution continues, using the support library at the
specified ld-support interface version.

ld_start()

This function is called after initial validation of the link-editor command line. This function
indicates the start of input file processing.

void ld_start(const char *name, const Elf32_Half type,
 const char *caller);

void ld_start64(const char *name, const Elf64_Half type,
 const char *caller);

name is the output file name being created. type is the output file type, which is either
ET_DYN, ET_REL, or ET_EXEC, as defined in sys/elf.h. caller is the application calling the
interface, which is normally /usr/bin/ld, or /usr/ccs/bin/ld.

Chapter 13 • Extensibility Mechanisms 305

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Delf-3elf

Link-Editor Support Interface

ld_open()

This function is called for each file input to the link-edit. This function, which was added
in version LD_SUP_VERSION3, provides greater flexibility than the ld_file() function.
This function allows the support library to replace the file descriptor, ELF descriptor,
together with the associated file names. This function provides the following possible usage
scenarios.
■ The addition of new sections to an existing ELF file. In this case, the original ELF

descriptor should be replaced with a descriptor that allows the ELF file to be updated.
See the ELF_C_RDWR argument of elf_begin(3ELF).

■ The entire input file can be replaced with an alternative. In this case, the original file
descriptor and ELF descriptor should be replaced with descriptors that are associated
with the new file.

In both scenarios the path name and file name can be replaced with alternative names that
indicate the input file has been modified.

void ld_open(const char **pname, const char **fname, int *fd,
 int flags, Elf **elf, Elf *ref, size_t off, Elf_Kind kind);

void ld_open64(const char **pname, const char **fname, int *fd,
 int flags, Elf **elf, Elf *ref, size_t off, Elf_Kind kind);

pname is the path name of the input file about to be processed. fname is the file name of the
input file about to be processed. fname is typically the base name of the pname. Both pname
and fname can be modified by the support library.
fd is the file descriptor of the input file. This descriptor can be closed by the support library,
and a new file descriptor can be returned to the link-editor. A file descriptor with the value
-1 can be returned to indicate that the file should be ignored.

Note - The fd passed to ld_open() is set to the value -1 if the link-editor is unable to allow
ld_open() to close the file descriptor. The most common reason where this can occur is in the
case of processing an archive member. If a value of -1 is passed to ld_open(), the descriptor
can not be closed, nor should a replacement descriptor be returned by the support library.

The flags field indicates how the link-editor obtained the file. This field can be one or
more of the following definitions.
■ LD_SUP_DERIVED – The file name was not explicitly named on the command line.

The file was derived from a -l expansion. Or, the file identifies an extracted archive
member.

■ LD_SUP_EXTRACTED – The file was extracted from an archive.
■ LD_SUP_INHERITED – The file was obtained as a dependency of a command line shared

object.

306 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Delf-begin-3elf

Link-Editor Support Interface

If no flags values are specified, then the input file has been explicitly named on the
command line.
elf is the ELF descriptor of the input file. This descriptor can be closed by the support
library, and a new ELF descriptor can be returned to the link-editor. An ELF descriptor
with the value 0 can be returned to indicate that the file should be ignored. When the
elf descriptor is associated with a member of an archive library, the ref descriptor is the
ELF descriptor of the underlying archive file. The off represents the offset of the archive
member within the archive file.

kind indicates the input file type, which is either ELF_K_AR, or ELF_K_ELF, as defined in
libelf.h.

ld_file()

This function is called for each file input to the link-edit. This function is called before any
processing of the files data is carried out.

void ld_file(const char *name, const Elf_Kind kind, int flags,
 Elf *elf);

void ld_file64(const char *name, const Elf_Kind kind, int flags,
 Elf *elf);

name is the input file about to be processed. kind indicates the input file type, which is
either ELF_K_AR, or ELF_K_ELF, as defined in libelf.h. The flags field indicates how the
link-editor obtained the file. This field can contain the same definitions as the flags field
for ld_open().
■ LD_SUP_DERIVED – The file name was not explicitly named on the command line.

The file was derived from a -l expansion. Or, the file identifies an extracted archive
member.

■ LD_SUP_EXTRACTED – The file was extracted from an archive.
■ LD_SUP_INHERITED – The file was obtained as a dependency of a command line shared

object.

If no flags values are specified, then the input file has been explicitly named on the
command line.

elf is the ELF descriptor of the input file.

ld_input_section()

This function is called for each section of the input file. This function, which was added
in version LD_SUP_VERSION2, is called before the link-editor has determined whether the
section should be propagated to the output file. This function differs from ld_section()
processing, which is only called for sections that contribute to the output file.

void ld_input_section(const char *name, Elf32_Shdr **shdr,

Chapter 13 • Extensibility Mechanisms 307

Link-Editor Support Interface

 Elf32_Word sndx, Elf_Data *data, Elf *elf, unit_t flags);

void ld_input_section64(const char *name, Elf64_Shdr **shdr,
 Elf64_Word sndx, Elf_Data *data, Elf *elf, uint_t flags);

name is the input section name. shdr is a pointer to the associated section header. sndx is
the section index within the input file. data is a pointer to the associated data buffer. elf is
a pointer to the file's ELF descriptor. flags is reserved for future use.
Modification of the section header is permitted by reallocating a section header and
reassigning the *shdr to the new header. The link-editor uses the section header
information that *shdr points to upon return from ld_input_section() to process the
section.

You can modify the data by reallocating the data and reassigning the Elf_Data buffer's
d_buf pointer. Any modification to the data should ensure the correct setting of the
Elf_Data buffer's d_size element. For input sections that become part of the output image,
setting the d_size element to zero effectively removes the data from the output image.
This function is called before compressed sections are decompressed, complicating the task
of examining the data or replacing the data. For this reason, it is recommended that support
libraries defer the examination and possible replacement of section data to ld_section().

The flags field points to a uint_t data field that is initially zero filled. No flags are
currently assigned, although the ability to assign flags in future updates, by the link-editor
or the support library, is provided.

ld_section()

This function is called for each section of the input file that is propagated to the output file.
This function is called before any processing of the section data is carried out. However,
sections containing compressed data are decompressed before this function is called.

void ld_section(const char *name, Elf32_Shdr *shdr,
 Elf32_Word sndx, Elf_Data *data, Elf *elf);

void ld_section64(const char *name, Elf64_Shdr *shdr,
 Elf64_Word sndx, Elf_Data *data, Elf *elf);

name is the input section name. shdr is a pointer to the associated section header. sndx is
the section index within the input file. data is a pointer to the associated data buffer. elf is
a pointer to the files ELF descriptor.

You can modify the data by reallocating the data and reassigning the Elf_Data buffer's
d_buf pointer. Any modification to the data should ensure the correct setting of the
Elf_Data buffer's d_size element. For input sections that become part of the output image,
setting the d_size element to zero effectively removes the data from the output image.

308 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Link-Editor Support Interface

Note - Sections that are removed from the output file are not reported to ld_section().
Sections are stripped using the link-editor's -z strip-class option. Sections are discarded
due to SHT_SUNW_COMDAT processing or SHF_EXCLUDE identification. See “COMDAT
Section” on page 384, and Table 19, “ELF Section Attribute Flags,” on page 365.

ld_input_done()

This function, which was added in version LD_SUP_VERSION2, is called when input file
processing is complete.
At this point, all input sections have been assigned to the output file image. In addition,
the information required to create and update this image, has been collected in preparation
to apply to the initial image. Great care should be exercised with any attempt by
ld_input_done() to alter any data recorded from previous support routines. Any change
to the identification or relationship of sections will be lost, or may compromise the creation
of the output file image. Minor updates, such as the addition of section data that does not
require relocation, or affect existing relocations, can be applied.

void ld_input_done(uint_t *flags);

The flags field points to a uint_t data field that is initially zero filled. No flags are
currently assigned, although the ability to assign flags in future updates, by the link-editor
or the support library, is provided.

ld_atexit()

This function is called when the link-edit is complete.

void ld_atexit(int status);

void ld_atexit64(int status);

status is the exit(2) code that will be returned by the link-editor and is either
EXIT_FAILURE or EXIT_SUCCESS, as defined in stdlib.h.

Support Interface Example

The following example creates a support library that prints the section name of any relocatable
object file processed as part of a 32-bit link-edit.

$ cat support.c

#include <link.h>

#include <stdio.h>

static int indent = 0;

Chapter 13 • Extensibility Mechanisms 309

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2exit-2

Link-Editor Support Interface

void

ld_start(const char *name, const Elf32_Half type, const char *caller)

{

 (void) printf("output image: %s\n", name);

}

void

ld_file(const char *name, const Elf_Kind kind, int flags, Elf *elf)

{

 if (flags & LD_SUP_EXTRACTED)

 indent = 4;

 else

 indent = 2;

 (void) printf("%*sfile: %s\n", indent, "", name);

}

void

ld_section(const char *name, Elf32_Shdr *shdr, Elf32_Word sndx,

 Elf_Data *data, Elf *elf)

{

 Elf32_Ehdr *ehdr = elf32_getehdr(elf);

 if (ehdr->e_type == ET_REL)

 (void) printf("%*s section [%ld]: %s\n", indent,

 "", (long)sndx, name);

}

This support library is dependent upon libelf to provide the ELF access function
elf32_getehdr(3ELF) that is used to determine the input file type. The support library is built
using the following.

$ cc -o support.so.1 -G -K pic support.c -lelf -lc

The following example shows the section diagnostics resulting from the construction of a trivial
application from a relocatable object and a local archive library. The invocation of the support
library, in addition to default debugging information processing, is brought about by the -S
option usage.

$ LD_OPTIONS=-S./support.so.1 cc -o prog main.c -L. -lfoo

output image: prog

 file: /opt/COMPILER/crti.o

 section [1]: .shstrtab

 section [2]: .text

 file: /opt/COMPILER/crt1.o

310 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Delf32-getehdr-3elf

Runtime Linker Auditing Interface

 section [1]: .shstrtab

 section [2]: .text

 file: /opt/COMPILER/values-xt.o

 section [1]: .shstrtab

 section [2]: .text

 file: main.o

 section [1]: .shstrtab

 section [2]: .text

 file: ./libfoo.a

 file: ./libfoo.a(foo.o)

 section [1]: .shstrtab

 section [2]: .text

 file: /lib/libc.so

 file: /opt/COMPILER/crtn.o

 section [1]: .shstrtab

 section [2]: .text

Note - The number of sections that are displayed in this example have been reduced to simplify
the output. Also, the files included by the compiler driver can vary.

Runtime Linker Auditing Interface

The rtld-audit interface enables you to access information pertaining to the runtime linking of
a process. The rtld-audit interface is implemented as an audit library that offers one or more
auditing interface routines. If this library is loaded as part of a process, the audit routines are
called by the runtime linker at various stages of process execution. These interfaces enable the
audit library to access the following information.

■ The search for dependencies. Search paths can be substituted by the audit library.
■ Information regarding loaded objects.
■ Symbol bindings that occur between loaded objects. These bindings can be altered by the

audit library.
■ The lazy binding mechanism that is provided by procedure linkage table entries, allow the

auditing of function calls and their return values. See “Procedure Linkage Table (Processor-
Specific)” on page 465. The arguments to a function and return value of a function can
be modified by the audit library.

Chapter 13 • Extensibility Mechanisms 311

Runtime Linker Auditing Interface

Some of this information can be obtained by preloading specialized shared objects. However,
a preloaded object exists within the same namespace as the objects of a application. This
preloading often restricts, or complicates the implementation of the preloaded shared object.
The rtld-audit interface offers you a unique namespace in which to execute audit libraries. This
namespace ensures that the audit library does not intrude upon the normal bindings that occur
within the application.

An example of using the rtld-audit interface is the runtime profiling of shared objects that is
described in “Profiling Shared Objects” on page 221.

Establishing a Namespace

When the runtime linker binds an executable with its dependencies, a linked list of link-maps
is generated to describe the application. The link-map structure describes each object within
the application. The link-map structure is defined in /usr/include/sys/link.h. The symbol
search mechanism that is required to bind together the objects of an application traverse this list
of link-maps. This link-map list is said to provide the namespace for the applications symbol
resolution.

The runtime linker is also described by a link-map. This link-map is maintained on a different
list from the list of application objects. The runtime linker therefore resides in its own unique
namespace, which prevents the application from seeing, or being able to directly access, any
services within the runtime linker. An application can therefore only access the runtime linker
through the filters provided by libc.so.1, or libdl.so.1.

Two identifiers are defined in /usr/include/link.h to define the application and runtime
linker link-map lists.

#define LM_ID_BASE 0 /* application link-map list */

#define LM_ID_LDSO 1 /* runtime linker link-map list */

In addition to these two standard link-map lists, the runtime linker allows the creation of an
arbitrary number of additional link-map lists. Each of these additional link-map lists provides
a unique namespace. The rtld-audit interface employs its own link-map list on which the audit
libraries are maintained. The audit libraries are therefore isolated from the symbol binding
requirements of the application. Every rtld-audit support library is assigned a unique new link-
map identifier.

An audit library can inspect the application link-map list using dlmopen(3C). When dlmopen()
is used with the RTLD_NOLOAD flag, the audit library can query the existence of an object without
causing the object to be loaded.

312 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlmopen-3c

Runtime Linker Auditing Interface

Creating an Audit Library

An audit library is built like any other shared object. However, the audit libraries unique
namespace within a process requires some additional care.

■ The library must provide all dependency requirements.
■ The library should not use system interfaces that do not provide for multiple instances of the

interface within a process.

If an audit library references external interfaces, then the audit library must define the
dependency that provides the interface definition. For example, if the audit library calls
printf(3C), then the audit library must define a dependency on libc. See “Generating a Shared
Object Output File” on page 49. Because the audit library has a unique name space, symbol
references cannot be satisfied by the libc that is present in the application being audited. If an
audit library has a dependency on libc, then two versions of libc.so.1 are loaded into the
process. One version satisfies the binding requirements of the application link-map list. The
other version satisfies the binding requirements of the audit link-map list.

To ensure that audit libraries are built with all dependencies recorded, use the link-editors
-z defs option.

Some system interfaces assume that the interfaces are the only instance of their implementation
within a process. Examples of such implementations are signals and malloc(3C). Audit libraries
should avoid using such interfaces, as doing so can inadvertently alter the behavior of the
application.

Note - An audit library can allocate memory using mapmalloc(3MALLOC), as this allocation
method can exist with any allocation scheme normally employed by the application.

Invoking the Auditing Interface

The rtld-audit interface is enabled by one of two means. Each method implies a scope to the
objects that are audited.

■ Local auditing is enabled by defining one or more auditors at the time the object is built. See
“Recording Local Auditors” on page 314. The audit libraries that are made available at
runtime by this method are provided with information regarding the dynamic objects that
have requested local auditing.

■ Global auditing is enabled by defining one or more auditors using the environment
variable LD_AUDIT. Global auditing can also be enabled for an application by combining
a local auditing definition with the -z globalaudit option. See “Recording Global

Chapter 13 • Extensibility Mechanisms 313

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Aprintf-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Amalloc-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Amapmalloc-3malloc

Runtime Linker Auditing Interface

Auditors” on page 315. The audit libraries that are made available at runtime by
these methods are provided with information regarding all dynamic objects used by the
application.

Both methods of defining auditors employ a string consisting of a colon-separated list of shared
objects that are loaded by dlmopen(3C). Each object is loaded onto its own audit link-map list.
Each object is searched for audit routines using dlsym(3C). Audit routines that are found are
called at various stages during the applications execution.

Secure applications can only obtain audit libraries from trusted directories. By default, the only
trusted directories that are known to the runtime linker for 32-bit objects are /lib/secure and
/usr/lib/secure. For 64-bit objects, the trusted directories are /lib/secure/64 and /usr/
lib/secure/64.

Note - Auditing can be disabled at runtime by setting the environment variable LD_NOAUDIT to a
non-null value.

Recording Local Auditors

Local auditing requirements can be established when an object is built using the link-editor
options -p or -P. For example, to audit libfoo.so.1, with the audit library audit.so.1, record
the requirement at link-edit time using the -p option.

$ cc -G -o libfoo.so.1 -Wl,-paudit.so.1 -K pic foo.c

$ elfdump -d libfoo.so.1 | grep AUDIT

 [2] AUDIT 0x96 audit.so.1

At runtime, the existence of this audit identifier results in the audit library being loaded.
Information is then passed to the audit library regarding the identifying object.

With this mechanism alone, information such as searching for the identifying object occurs
prior to the audit library being loaded. To provide as much auditing information as possible,
the existence of an object requiring local auditing is propagated to users of that object. For
example, if an application is built with a dependency on libfoo.so.1, then the application is
identified to indicate its dependencies require auditing.

$ cc -o main main.c libfoo.so.1

$ elfdump -d main | grep AUDIT

 [4] DEPAUDIT 0x1be audit.so.1

The auditing enabled through this mechanism results in the audit library being passed
information regarding all of the applications explicit dependencies. This dependency auditing
can also be recorded directly when creating an object by using the link-editor's -P option.

314 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlmopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlsym-3c

Runtime Linker Auditing Interface

$ cc -o main main.c -Wl,-Paudit.so.1

$ elfdump -d main | grep AUDIT

 [3] DEPAUDIT 0x1b2 audit.so.1

Recording Global Auditors

Global auditing requirements can be established by setting the environment variable LD_AUDIT.
For example, this environment variable can be used to audit the application main together with
all the dependencies of the application, with the audit library audit.so.1.

$ LD_AUDIT=audit.so.1 main

Global auditing can also be achieved by recording a local auditor in the application, together
with the -z globalaudit option. For example, the application main can be built to enable
global auditing by using the link-editor's -P option and -z globalaudit option.

$ cc -o main main.c -Wl,-Paudit.so.1 -z globalaudit

$ elfdump -d main | grep AUDIT

 [3] DEPAUDIT 0x1b2 audit.so.1

 [26] FLAGS_1 0x1000000 [GLOBAL-AUDITING]

The auditing enabled through either of these mechanisms results in the audit library being
passed information regarding all of the dynamic objects of the application.

Audit Interface Interactions

Audit routines are provided one or more cookies. A cookie is a data item that describes an
individual dynamic object. An initial cookie is provided to the la_objopen() routine when
a dynamic object is initially loaded. This cookie is a pointer to the associated Link_map of
the loaded dynamic object. However, the la_objopen() routine is free to allocate, and return
to the runtime linker, an alternative cookie. This mechanism provides the auditor a means
of maintaining their own data with each dynamic object, and receiving this data with all
subsequent audit routine calls.

The rtld-audit interface enables multiple audit libraries to be supplied. In this case, the return
information from one auditor is passed to the same audit routine of the next auditor. Similarly,
a cookie that is established by one auditor is passed to the next auditor. Care should be taken
when designing an audit library that expects to coexist with other audit libraries. A safe
approach should not alter the bindings, or cookies, that would normally be returned by the
runtime linker. Alteration of these data can produce unexpected results from audit libraries that
follow. Otherwise, all auditors should be designed to cooperate in safely changing any binding
or cookie information.

Chapter 13 • Extensibility Mechanisms 315

Runtime Linker Auditing Interface

Audit Interface Functions

The following routines are provided by the rtld-audit interface. The routines are described in
their expected order of use.

Note - References to architecture, or object class specific interfaces are reduced to their
generic name to simplify the discussions. For example, a reference to la_symbind32() and
la_symbind64() is specified as la_symbind().

la_version()

This routine provides the initial handshake between the runtime linker and the audit library.
This interface must be provided for the audit library to be loaded.

uint_t la_version(uint_t version);

The runtime linker calls this interface with the highest version of the rtld-audit interface
the runtime linker is capable of supporting. The audit library can verify this version is
sufficient for its use, and return the version the audit library expects to use. This version is
normally LAV_CURRENT, which is defined in /usr/include/link.h.
If the audit library return is zero, or a version that is greater than the rtld-audit interface the
runtime linker supports, the audit library is discarded.

The remaining audit routines are provided one or more cookies. See “Audit Interface
Interactions” on page 315.

Following the la_version() call, two calls are made to the la_objopen() routine. The first
call provides link-map information for the executable, and the second call provides link-map
information for the runtime linker.

la_objopen()

This routine is called when a new object is loaded by the runtime linker.

uint_t la_objopen(Link_map *lmp, Lmid_t lmid, uintptr_t *cookie);

lmp provides the link-map structure that describes the new object. lmid identifies the link-
map list to which the object has been added. cookie provides a pointer to an identifier.
This identifier is initialized to the objects lmp. This identifier can be reassigned by the audit
library to better identify the object to other rtld-audit interface routines.

The la_objopen() routine returns a value that indicates the symbol bindings of interest
for this object. The return value is a mask of the following values that are defined in/usr/
include/link.h.

316 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Runtime Linker Auditing Interface

■ LA_FLG_BINDTO – Audit symbol bindings to this object.
■ LA_FLG_BINDFROM – Audit symbol bindings from this object.

These values allow an auditor to select the objects to monitor with la_symbind(). A return
value of zero indicates that binding information is of no interest for this object.

For example, an auditor can monitor the bindings from libfoo.so to libbar.so.
la_objopen() for libfoo.so should return LA_FLG_BINDFROM. la_objopen() for libbar.
so should return LA_FLG_BINDTO.

An auditor can monitor all bindings between libfoo.so and libbar.so. la_objopen() for
both objects should return LA_FLG_BINDFROM and LA_FLG_BINDTO.

An auditor can monitor all bindings to libbar.so. la_objopen() for libbar.so should
return LA_FLG_BINDTO. All la_objopen() calls should return LA_FLG_BINDFROM.

With the auditing version LAV_VERSION5, an la_objopen() call that represents the
executable is provided to a local auditor. In this case, the auditor should not return a symbol
binding flag, as the auditor may have been loaded too late to monitor any symbol bindings
associated with the executable. Any flags that are returned by the auditor are ignored. The
la_objopen() call provides the local auditor an initial cookie which is required for any
subsequent la_preinit() or la_activity() calls.

la_activity()

This routine informs an auditor that link-map activity is occurring.

void la_activity(uintptr_t *cookie, uint_t flags);

cookie identifies the object heading the link-map. flags indicates the type of activity as
defined in /usr/include/link.h.
■ LA_ACT_ADD – Objects are being added to the link-map list.
■ LA_ACT_DELETE – Objects are being deleted from the link-map list.
■ LA_ACT_CONSISTENT – Object activity has been completed.

An LA_ACT_ADD activity is called on process start up, following the la_objopen() calls for
the executable and runtime linker, to indicate that new dependencies are being added. This
activity is also called for lazy loading and dlopen(3C) events. An LA_ACT_DELETE activity
is also called when objects are deleted with dlclose(3C).

Both the LA_ACT_ADD and LA_ACT_DELETE activities are a hint of the events that are
expected to follow. There are a number of scenarios where the events that unfold might be
different. For example, the addition of new objects can result in some of the new objects
being deleted should the objects fail to relocate fully. The deletion of objects can also result
in new objects being added should .fini executions result in lazy loading new objects.
An LA_ACT_CONSISTENT activity follows any object additions or object deletions, and
can be relied upon to indicate that the application link-map list is consistent. Auditors

Chapter 13 • Extensibility Mechanisms 317

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlclose-3c

Runtime Linker Auditing Interface

should be careful to verify actual results rather than blindly trusting the LA_ACT_ADD and
LA_ACT_DELETE hints.

For auditing versions LAV_VERSION1 through LAV_VERSION4, la_activity() was only
called for global auditors. With the auditing version LAV_VERSION5, activity events
can be obtained by local auditors. An activity event provides a cookie that represents
the application link-map. To prepare for this activity, and allow the auditor to control
the content of this cookie, an la_objopen() call is first made to the local auditor. The
la_objopen() call provides an initial cookie representing the application link-map. See
“Audit Interface Interactions” on page 315.

la_objsearch()

This routine informs an auditor that an object is about to be searched for.

char *la_objsearch(const char *name, uintptr_t *cookie, uint_t flags);

name indicates the file or path name being searched for. cookie identifies the object
initiating the search. flags identifies the origin and creation of name as defined in /usr/
include/link.h.
■ LA_SER_ORIG – The initial search name. Typically, this name indicates the file name that

is recorded as a DT_NEEDED entry, or the argument supplied to dlopen(3C).
■ LA_SER_LIBPATH – The path name has been created from a LD_LIBRARY_PATH

component.
■ LA_SER_RUNPATH – The path name has been created from a runpath component.
■ LA_SER_DEFAULT – The path name has been created from a default search path

component.
■ LA_SER_CONFIG – The path component originated from a configuration file. See

crle(1).
■ LA_SER_SECURE – The path component is specific to secure objects.

The return value indicates the search path name that the runtime linker should continue to
process. A value of NULL indicates that this path should be ignored. An audit library that
monitors search paths should return name.

la_objfilter()

This routine is called when a filter loads a new filtee. See “Shared Objects as
Filters” on page 132.

int la_objfilter(uintptr_t *fltrcook, const char *fltestr,
 uintptr_t *fltecook, uint_t flags);

fltrcook identifies the filter. fltestr points to the filtee string. fltecook identifies the
filtee. flags is currently unused. la_objfilter() is called after calls to la_objopen() for
both the filter and filtee have been made.

318 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1crle-1

Runtime Linker Auditing Interface

A return value of zero indicates that this filtee should be ignored. An audit library that
monitors the use of filters should return a non-zero value.

la_preinit()

This routine is called once after all immediate dependencies have been loaded for the
application.

void la_preinit(uintptr_t *cookie);

cookie identifies the primary object that started the process, normally the executable.

When la_preinit() is called, the process still requires threads initialization, including
the creation of any initial thread local storage. See “Program Startup” on page 478. In
addition, the initialization sections of all loaded objects still require collecting and sorting
prior to their execution. See “Initialization and Termination Routines” on page 99. This
function provides a convenient control point to add additional objects to the initial process.
These objects can contribute to the initial thread local storage, and initialization of the
process.

For auditing versions LAV_VERSION1 through LAV_VERSION4, la_preinit() was only
called for global auditors. With the auditing version LAV_VERSION5, a preinit event can be
obtained by local auditors. A preinit event provides a cookie that represents the application
link-map. To prepare for this preinit, and allow the auditor to control the content of this
cookie, an la_objopen() call is first made to the local auditor. The la_objopen() call
provides an initial cookie representing the application link-map. See “Audit Interface
Interactions” on page 315.

la_callinit()

This routine is called after threads initialization has completed, and all initial thread local
storage has been established. In addition, all initialization routines have been collected and
sorted ready for execution.

void la_callinit(uintptr_t *cookie);

cookie, and the calling from global or local auditors, is as described for la_preinit().

This interface, added with auditing version LAV_VERSION6, marks the transition to
executing application code.

la_callentry()

This routine is called after all initialization routines have been executed.

void la_callentry(uintptr_t *cookie);

cookie, and the calling from global or local auditors, is as described for la_preinit().

This interface, added with auditing version LAV_VERSION6, marks the transition to the
applications entry point.

Chapter 13 • Extensibility Mechanisms 319

Runtime Linker Auditing Interface

la_symbind()

This routine is called when a binding occurs between two objects that have been tagged for
binding notification from la_objopen().

uintptr_t la_symbind32(Elf32_Sym *sym, uint_t ndx,
 uintptr_t *refcook, uintptr_t *defcook, uint_t *flags);

uintptr_t la_symbind64(Elf64_Sym *sym, uint_t ndx,
 uintptr_t *refcook, uintptr_t *defcook, uint_t *flags,
 const char *sym_name);

sym is a constructed symbol structure, whose sym->st_value indicates the address of
the symbol definition being bound. See /usr/include/sys/elf.h. la_symbind32()
adjusts the sym->st_name to point to the actual symbol name. la_symbind64() leaves sym-
>st_name to be the index into the bound objects string table.

ndx indicates the symbol index within the bound object's dynamic symbol table. refcook
identifies the object making reference to this symbol. This identifier is the same identifier
as passed to the la_objopen() routine that returned LA_FLG_BINDFROM. defcook identifies
the object defining this symbol. This identifier is the same as passed to the la_objopen()
that returned LA_FLG_BINDTO.

flags points to a data item that can convey information regarding the binding. This data
item can also be used to modify the continued auditing of this procedure linkage table
entry. This value is a mask of the symbol binding flags that are defined in /usr/include/
link.h.

The following flags can be supplied to la_symbind().
■ LA_SYMB_DLSYM – The symbol binding occurred as a result of calling dlsym(3C).
■ LA_SYMB_ALTVALUE (LAV_VERSION2) – An alternate value was returned for the symbol

value by a previous call to la_symbind().

If la_pltenter() or la_pltexit() routines exist, these routines are called after
la_symbind() for procedure linkage table entries. These routines are called each time that
the symbol is referenced. See also “Audit Interface Limitations” on page 325.

The following flags can be supplied from la_symbind() to alter this default behavior.
These flags are applied as a bitwise-inclusive OR with the value pointed to by the flags
argument.
■ LA_SYMB_NOPLTENTER – Do not call the la_pltenter() routine for this symbol.
■ LA_SYMB_NOPLTEXIT – Do not call the la_pltexit() routine for this symbol.

The return value indicates the address to which control should be passed following this call.
An audit library that monitors symbol binding should return the value of sym->st_value
so that control is passed to the bound symbol definition. An audit library can intentionally
redirect a symbol binding by returning a different value.

320 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlsym-3c

Runtime Linker Auditing Interface

sym_name, which is applicable for la_symbind64() only, contains the name of the symbol
being processed. This name is available in the sym->st_name field for the 32-bit interface.

la_pltenter()

These routines are system specific. These routines are called when a procedure linkage
table entry, between two objects that have been tagged for binding notification, is called.

uintptr_t la_sparcv8_pltenter(Elf32_Sym *sym, uint_t ndx,
 uintptr_t *refcook, uintptr_t *defcook,
 La_sparcv8_regs *regs, uint_t *flags);

uintptr_t la_sparcv9_pltenter(Elf64_Sym *sym, uint_t ndx,
 uintptr_t *refcook, uintptr_t *defcook,
 La_sparcv9_regs *regs, uint_t *flags,
 const char *sym_name);

uintptr_t la_i86_pltenter(Elf32_Sym *sym, uint_t ndx,
 uintptr_t *refcook, uintptr_t *defcook,
 La_i86_regs *regs, uint_t *flags);

uintptr_t la_amd64_pltenter(Elf64_Sym *sym, uint_t ndx,
 uintptr_t *refcook, uintptr_t *defcook,
 La_amd64_regs *regs, uint_t *flags, const char *sym_name);

sym, ndx, refcook, defcook and sym_name provide the same information as passed to
la_symbind().

For la_sparcv8_pltenter() and la_sparcv9_pltenter(), regs points to the out
registers. For la_i86_pltenter(), regs points to the stack and frame registers. For
la_amd64_pltenter(), regs points to the stack and frame registers, and the registers used
in passing integer arguments. regs are defined in /usr/include/link.h.

flags points to a data item that can convey information regarding the binding. This data
item can be used to modify the continued auditing of this procedure linkage table entry.
This data item is the same as pointed to by the flags from la_symbind()

The following flags can be supplied from la_pltenter() to alter the present auditing
behavior. These flags are applied as a bitwise-inclusive OR with the value pointed to by the
flags argument.
■ LA_SYMB_NOPLTENTER – la_pltenter() is not be called again for this symbol.
■ LA_SYMB_NOPLTEXIT – la_pltexit() is not be called for this symbol.

The return value indicates the address to which control should be passed following this call.
An audit library that monitors symbol binding should return the value of sym->st_value
so that control is passed to the bound symbol definition. An audit library can intentionally
redirect a symbol binding by returning a different value.

Chapter 13 • Extensibility Mechanisms 321

Runtime Linker Auditing Interface

la_pltexit()

This routine is called when a procedure linkage table entry, between two objects that have
been tagged for binding notification, returns. This routine is called before control reaches
the caller.

uintptr_t la_pltexit(Elf32_Sym *sym, uint_t ndx, uintptr_t *refcook,
 uintptr_t *defcook, uintptr_t retval);

uintptr_t la_pltexit64(Elf64_Sym *sym, uint_t ndx, uintptr_t *refcook,
 uintptr_t *defcook, uintptr_t retval, const char *sym_name);

sym, ndx, refcook, defcook and sym_name provide the same information as passed to
la_symbind(). retval is the return code from the bound function. An audit library that
monitors symbol binding should return retval. An audit library can intentionally return a
different value.

Note - The la_pltexit() interface is experimental. See “Audit Interface
Limitations” on page 325.

la_objclose()

This routine is called after any termination code for an object has been executed and prior
to the object being unloaded.

uint_t la_objclose(uintptr_t *cookie);

cookie identifies the object, and was obtained from a previous la_objopen(). Any return
value is currently ignored.

Audit Interface Control Flow

The following sections describe the auditing interface routines and actions an audit library
can perform with each interface. The emphasis is on process initialization. These routines are
presented in the order they are called in the common case of a global auditor that is provided at
process startup.

Auditing interfaces fall into one of two categories, informational, and control.

Informational interfaces provide the audit library information about the executing process, such
as object searching, object loading, and symbol bindings. In addition, these interfaces allow
the auditor to modify the objects loaded, and to ask for notification of future symbol binding
events.

322 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Runtime Linker Auditing Interface

Control interfaces are called to allow the audit library to track the start or end of a phase of
activity within the process execution. These interfaces allow the auditor to safely inspect a
consistent set of objects, and can even allow new objects to be loaded.

When an auditing library is first loaded, an immediate call is made to the library's
la_version() interface. This handshake verifies that the audit library is supportable, and allows
the audit library to define the interface version that the library requires from the runtime linker.

An audit library can be established at process startup, either from using LD_AUDIT, or from a
local auditing definition within the executable object that starts the process. See “Invoking
the Auditing Interface” on page 313. In this scenario, an la_objopen() call, for both the
executable object, and the runtime linker, are provided to the audit library.

At this point the process is still in the early stages of construction. The auditor should refrain
from performing any actions that might disturb this construction, such as adding additional
objects to the process, or exhaustive symbol searches of the process. These actions can result in
prematurely loading and relocating objects in an attempt to satisfy a symbol look up.

Dependencies that are immediately loaded at process initialization are each reported to the
auditor library's la_objopen() interface. For processes that employ lazy loading, only a
few dependencies may be loaded at process initialization. See “Lazy Loading of Dynamic
Dependencies” on page 95. Each loaded object is relocated, which results in symbol bindings
being established between symbol references and symbol definitions. These bindings are
reported to the audit library's la_symbind() interface.

Once all immediate dependencies have been loaded, and relocated, the audit library's
la_preinit() interface is called. At this point, the process is still under construction. Threads
initialization and initialization routine collection are still pending. However, this interface
provides a convenient control point to add additional objects to the initial process.

Once threads initialization is completed, the audit library's la_callinit() interface is called.
At this point, all loaded objects are ready to execute, and their initialization routines have
been collected and sorted in preparation for execution. See “Initialization and Termination
Routines” on page 99. The la_callinit() control point marks the transition to executing
application code.

The execution of application code results in function call bindings being established between
symbol references and symbol definitions. These bindings are reported to the audit library's
la_symbind() and/or la_pltenter() interfaces. With lazy loading, additional objects can be
loaded to satisfy symbol references, which are reported to the audit library's la_objopen().

Once all initialization code has been executed, the audit library's la_callentry() interface is
called. The la_callentry() control point marks the end of processes initialization, and the
transition to the applications entry point, typically start() or main().

Chapter 13 • Extensibility Mechanisms 323

Runtime Linker Auditing Interface

As the process continues to execute, more symbol bindings can occur, resulting in
la_symbind() and/or la_pltenter() calls. Addition dependencies can be loaded, resulting
in la_objopen() calls. New dependencies can also be unloaded, resulting in la_objclose()
calls. Any loading or unloading of objects is bound by a pair of la_activity() calls. The
first la_activity() hints at the targeted behavior, an object addition or deletion. The second
la_activity() indicates that the dependency structure within the process is consistent.
Auditors should restrict their inspection of the process to follow a consistent notification.

Audit Interface Example

The following simple example creates an audit library that prints the name of each shared object
dependency loaded by the executable date(1).

$ cat audit.c

#include <link.h>

#include <stdio.h>

uint_t

la_version(uint_t version)

{

 return (LAV_CURRENT);

}

uint_t

la_objopen(Link_map *lmp, Lmid_t lmid, uintptr_t *cookie)

{

 if (lmid == LM_ID_BASE)

 (void) printf("file: %s loaded\n", lmp->l_name);

 return (0);

}

$ cc -o audit.so.1 -G -K pic -z defs audit.c -lmapmalloc -lc

$ LD_AUDIT=./audit.so.1 date

file: date loaded

file: /lib/libc.so.1 loaded

file: /lib/libm.so.2 loaded

file: /usr/lib/locale/en_US/en_US.so.2 loaded

Thur Aug 10 17:03:55 PST 2012

Audit Interface Demonstrations

A number of demonstration applications that use the rtld-audit interface are provided in the
pkg:/source/demo/system package under /usr/demo/link_audit.

324 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1date-1

Runtime Linker Auditing Interface

sotruss

This demo provides tracing of procedure calls between the dynamic objects of a named
application.

whocalls

This demo provides a stack trace for a specified function whenever called by a named
application.

perfcnt

This demo traces the amount of time spent in each function for a named application.

symbindrep

This demo reports all symbol bindings performed to load a named application.

sotruss(1) and whocalls(1) are included in the pkg:/developer/base-developer-utilities
package. perfcnt and symbindrep are example programs. These applications are not intended
for use in a production environment.

Audit Interface Limitations

Limitations exist within the rtld-audit implementation. Take care to understand these limitation
when designing an auditing library.

Exercising Application Code

An audit library receives information as objects are added to a process. At the time the audit
library receives such information, the object being monitored might not be ready to execute. For
example, an auditor can receive an la_objopen() call for a loaded object. However, the object
must load its own dependencies and be relocated before any code within the object can be
exercised. An audit library might want to inspect the loaded object by obtaining a handle using
dlopen(3C). This handle can then be used to search for interfaces using dlsym(3C). However,
interfaces obtained in this manner should not be called unless it is known that the initialization
of the destination object has completed.

Use of la_pltexit()

There are some limitations to the use of the la_pltexit() family. These limitations stem from
the need to insert an extra stack frame between the caller and callee to provide a la_pltexit()

Chapter 13 • Extensibility Mechanisms 325

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1sotruss-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1whocalls-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlsym-3c

Runtime Linker Debugger Interface

return value. This requirement is not a problem when calling just the la_pltenter() routines,
as. In this case, any intervening stack can be cleaned up prior to transferring control to the
destination function.

Because of these limitations, la_pltexit() should be considered an experimental interface.
When in doubt, avoid the use of the la_pltexit() routines.

Functions That Directly Inspect the Stack

A small number of functions exist that directly inspect the stack or make assumptions of its
state. Some examples of these functions are the setjmp(3C) family, vfork(2), and any function
that returns a structure, not a pointer to a structure. These functions are compromised by the
extra stack that is created to support la_pltexit().

The runtime linker cannot detect functions of this type, and thus the audit library creator is
responsible for disabling la_pltexit() for such routines.

Runtime Linker Debugger Interface

The runtime linker performs many operations including the mapping of objects into memory
and the binding of symbols. Debugging programs often need to access information that
describes these runtime linker operations as part of analyzing an application. These debugging
programs run as a separate process from the application the debugger is analyzing.

This section describes the rtld-debugger interface for monitoring and modifying a dynamically
linked application from another process. The architecture of this interface follows the model
used in libc_db(3LIB).

When using the rtld-debugger interface, at least two processes are involved.

■ One or more target processes. The target processes must be dynamically linked and use the
runtime linker /usr/lib/ld.so.1 for 32-bit processes, or /usr/lib/64/ld.so.1 for 64-bit
processes.

■ A controlling process links with the rtld-debugger interface library and uses the interface to
inspect the dynamic aspects of the target processes. A 64-bit controlling process can debug
both 64-bit targets and 32-bit targets. However, a 32-bit controlling process is limited to 32-
bit targets.

The most anticipated use of the rtld-debugger interface is when the controlling process is a
debugger and its target is an executable.

326 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Asetjmp-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2vfork-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Flibc-db-3lib

Runtime Linker Debugger Interface

The rtld-debugger interface enables the following activities with a target process.

■ Initial rendezvous with the runtime linker.
■ Notification of the loading and unloading of dynamic objects.
■ Retrieval of information regarding any loaded objects.
■ Stepping over procedure linkage table entries.
■ Enabling object padding.

Interaction Between Controlling and Target
Process

To be able to inspect and manipulate a target process, the rtld-debugger interface employs
an exported interface, an imported interface, and agents for communicating between these
interfaces.

The controlling process is linked with the rtld-debugger interface provided by librtld_db.
so.1, and makes requests of the interface exported from this library. This interface is defined in
/usr/include/rtld_db.h. In turn, librtld_db.so.1 makes requests of the interface imported
from the controlling process. This interaction allows the rtld-debugger interface to perform the
following.

■ Look up symbols in a target process.
■ Read and write memory in the target process.

The imported interface consists of a number of proc_service(3PROC) routines that most
debuggers already employ to analyze processes. These routines are described in “Debugger
Import Interface” on page 338.

The rtld-debugger interface assumes that the process being analyzed is stopped when requests
are made of the rtld-debugger interface. If this halt does not occur, data structures within the
runtime linker of the target process might not be in a consistent state for examination.

The flow of information between librtld_db.so.1, the controlling process (debugger) and the
target process (dynamic executable) is diagrammed in the following figure.

Chapter 13 • Extensibility Mechanisms 327

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Hproc-service-3proc

Runtime Linker Debugger Interface

FIGURE 6 rtld-debugger Information Flow

A sample implementation of a controlling process that uses the rtld-debugger interface is
provided in the pkg:/source/demo/system package under /usr/demo/librtld_db. This
debugger, rdb, provides an example of using the proc_service imported interface, and shows
the required calling sequence for all librtld_db.so.1 exported interfaces. The following
sections describe the rtld-debugger interfaces. More detailed information can be obtained by
examining the sample debugger.

Debugger Interface Agents

An agent provides an opaque handle that can describe internal interface structures. The agent
also provides a mechanism of communication between the exported and imported interfaces.
The rtld-debugger interface is intended to be used by a debugger that can manipulate several
processes at the same time, these agents are used to identify the process.

struct ps_prochandle

An opaque structure, created by the controlling process to identify the target process, that is
passed between the exported and imported interface.

328 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Runtime Linker Debugger Interface

struct rd_agent

An opaque structure, created by the rtld-debugger interface to identify the target process,
that is passed between the exported and imported interface.

Debugger Exported Interface

This section describes the various interfaces exported by the /usr/lib/librtld_db.so.1
library. It is broken down into functional groups.

Agent Manipulation Interfaces

rd_init()

This function establishes the rtld-debugger version requirements. The base version is
defined as RD_VERSION1. The current version is always defined by RD_VERSION.

rd_err_e rd_init(int version);

If the version requirement of the controlling process is greater than the rtld-debugger
interface available, then RD_NOCAPAB is returned.

rd_new()

This function creates a new exported interface agent.

rd_agent_t *rd_new(struct ps_prochandle *php);

php is a cookie created by the controlling process to identify the target process. This cookie
is used by the imported interface offered by the controlling process to maintain context, and
is opaque to the rtld-debugger interface.

rd_reset()

This function resets the information within the agent based off the same ps_prochandle
structure given to rd_new().

rd_err_e rd_reset(struct rd_agent *rdap);

This function is called when a target process is restarted.

rd_delete()

This function deletes an agent and frees any state associated with it.

Chapter 13 • Extensibility Mechanisms 329

Runtime Linker Debugger Interface

void rd_delete(struct rd_agent *rdap);

Error Handling

The following error states can be returned by the rtld-debugger interface (defined in
rtld_db.h).

typedef enum {

 RD_ERR,

 RD_OK,

 RD_NOCAPAB,

 RD_DBERR,

 RD_NOBASE,

 RD_NODYNAM,

 RD_NOMAPS

} rd_err_e;

The following interfaces can be used to gather the error information.

rd_errstr()

This function returns a descriptive error string describing the error code rderr.

char *rd_errstr(rd_err_e rderr);

rd_log()

This function turns logging on (1) or off (0).

void rd_log(const int onoff);

When logging is turned on, the imported interface function ps_plog() provided by the
controlling process, is called with more detailed diagnostic information.

Scanning Loadable Objects

Information for each object maintained on the runtime linkers link-map can be obtained from
the following structure, defined in rtld_db.h.

typedef struct rd_loadobj {

 psaddr_t rl_nameaddr;

 unsigned rl_flags;

 psaddr_t rl_base;

 psaddr_t rl_data_base;

 unsigned rl_lmident;

330 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Runtime Linker Debugger Interface

 psaddr_t rl_refnameaddr;

 psaddr_t rl_plt_base;

 unsigned rl_plt_size;

 psaddr_t rl_bend;

 psaddr_t rl_padstart;

 psaddr_t rl_padend;

 psaddt_t rl_dynamic;

 unsigned long rl_tlsmodid;

} rd_loadobj_t;

All addresses provided in this structure, including string pointers, are addresses in the target
process and not in the address space of the controlling process itself.

rl_nameaddr

A pointer to a string that contains the name of the dynamic object.

rl_flags

With revision RD_VERSION2, dynamically loaded relocatable objects are identified with
RD_FLG_MEM_OBJECT.

rl_base

The base address of the dynamic object.

rl_data_base

The base address of the data segment of the dynamic object.

rl_lmident

The link-map identifier (see “Establishing a Namespace” on page 312).

rl_refnameaddr

If the dynamic object is a standard filter, then this points to the name of the filtees.

rl_plt_base, rl_plt_size

These elements are present for backward compatibility and are currently unused.

rl_bend

The end address of the object (text + data + bss). With revision RD_VERSION2, the
end address of a dynamically loaded relocatable object is the end of the created object,
including the object section headers.

rl_padstart

The base address of the padding before the dynamic object (refer to “Dynamic Object
Padding” on page 337).

Chapter 13 • Extensibility Mechanisms 331

Runtime Linker Debugger Interface

rl_padend

The base address of the padding after the dynamic object (refer to “Dynamic Object
Padding” on page 337).

rl_dynamic

This field, added with RD_VERSION2, provides the base address of the object's dynamic
section, which allows reference to such entries as DT_CHECKSUM (see Table 47, “ELF
Dynamic Array Tags,” on page 446).

rl_tlsmodid

This field, added with RD_VERSION4, provides the module identifier for thread local storage,
TLS, references. The module identifier is a small integer unique to the object. This identifier
can be passed to the libc_db function td_thr_tlsbase() in order to obtain the base
address of a thread's TLS block for the object in question. See td_thr_tlsbase(3C_DB).

The rd_loadobj_iter() routine uses this object data structure to access information from the
runtime linker link-map lists.

rd_loadobj_iter()

This function iterates over all dynamic objects currently loaded in the target process.

typedef int rl_iter_f(const rd_loadobj_t *, void *);

rd_err_e rd_loadobj_iter(rd_agent_t *rap, rl_iter_f *cb,
 void *clnt_data);

On each iteration the imported function specified by cb is called. clnt_data can be used to
pass data to the cb call. Information about each object is returned by means of a pointer to a
volatile (stack allocated) rd_loadobj_t structure.

Return codes from the cb routine are examined by rd_loadobj_iter() and have the
following meaning.
■ 1 – continue processing link-maps.
■ 0 – stop processing link-maps and return control to the controlling process.

rd_loadobj_iter() returns RD_OK on success. A return of RD_NOMAPS indicates the runtime
linker has not yet loaded the initial link-maps.

Event Notification

A controlling process can track certain events that occur within the scope of the runtime linker
that. These events are:

332 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Atd-thr-tlsbase-3c-db

Runtime Linker Debugger Interface

RD_PREINIT

The runtime linker has loaded and relocated all the dynamic objects and is about to start
calling the .init sections of each object loaded.

RD_POSTINIT

The runtime linker has finished calling all of the .init sections and is about to transfer
control to the primary executable.

RD_DLACTIVITY

The runtime linker has been invoked to either load or unload a dynamic object.

These events can be monitored using the following interface, defined in sys/link.h and
rtld_db.h.

typedef enum {

 RD_NONE = 0,

 RD_PREINIT,

 RD_POSTINIT,

 RD_DLACTIVITY

} rd_event_e;

/*

 * Ways that the event notification can take place:

 */

typedef enum {

 RD_NOTIFY_BPT,

 RD_NOTIFY_AUTOBPT,

 RD_NOTIFY_SYSCALL

} rd_notify_e;

/*

 * Information on ways that the event notification can take place:

 */

typedef struct rd_notify {

 rd_notify_e type;

 union {

 psaddr_t bptaddr;

 long syscallno;

 } u;

} rd_notify_t;

The following functions track events.

rd_event_enable()

This function enables (1) or disables (0) event monitoring.

Chapter 13 • Extensibility Mechanisms 333

Runtime Linker Debugger Interface

rd_err_e rd_event_enable(struct rd_agent *rdap, int onoff);

Note - Currently, for performance reasons, the runtime linker ignores event disabling. The
controlling process should not assume that a given break-point can not be reached because of
the last call to this routine.

rd_event_addr()

This function specifies how the controlling program is notified of a given event.

rd_err_e rd_event_addr(rd_agent_t *rdap, rd_event_e event,
 rd_notify_t *notify);

Depending on the event type, the notification of the controlling process takes place
by calling a benign, cheap system call that is identified by notify->u.syscallno, or
executing a break point at the address specified by notify->u.bptaddr. The controlling
process is responsible for tracing the system call or place the actual break-point.

When an event has occurred, additional information can be obtained by this interface, defined in
rtld_db.h.

typedef enum {

 RD_NOSTATE = 0,

 RD_CONSISTENT,

 RD_ADD,

 RD_DELETE

} rd_state_e;

typedef struct rd_event_msg {

 rd_event_e type;

 union {

 rd_state_e state;

 } u;

} rd_event_msg_t;

The rd_state_e values are:

RD_NOSTATE

There is no additional state information available.

RD_CONSISTENT

The link-maps are in a stable state and can be examined.

RD_ADD

A dynamic object is in the process of being loaded and the link-maps are not in a stable
state. They should not be examined until the RD_CONSISTENT state is reached.

334 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Runtime Linker Debugger Interface

RD_DELETE

A dynamic object is in the process of being deleted and the link-maps are not in a stable
state. They should not be examined until the RD_CONSISTENT state is reached.

The rd_event_getmsg() function is used to obtain this event state information.

rd_event_getmsg()

This function provides additional information concerning an event.

rd_err_e rd_event_getmsg(struct rd_agent *rdap, rd_event_msg_t *msg);

The following table shows the possible state for each of the different event types.

RD_PREINIT RD_POSTINIT RD_DLACTIVITY

RD_NOSTATE RD_NOSTATE RD_CONSISTENT

RD_ADD

RD_DELETE

Procedure Linkage Table Skipping

The rtld-debugger interface enables a controlling process to skip over procedure linkage table
entries. When a controlling process, such as a debugger, is asked to step into a function for the
first time, the procedure linkage table processing, causes control to be passed to the runtime
linker to search for the function definition.

The following interface enables a controlling process to step over the runtime linker procedure
linkage table processing. The controlling process can determine when a procedure linkage table
entry is encountered based on external information provided in the ELF file.

Once a target process has stepped into a procedure linkage table entry, the process calls the
rd_plt_resolution() interface.

rd_plt_resolution()

This function returns the resolution state of the current procedure linkage table entry and
information on how to skip it.

rd_err_e rd_plt_resolution(rd_agent_t *rdap, paddr_t pc,
 lwpid_t lwpid, paddr_t plt_base, rd_plt_info_t *rpi);

pc represents the first instruction of the procedure linkage table entry. lwpid provides
the lwp identifier and plt_base provides the base address of the procedure linkage table.
These three variables provide information sufficient for various architectures to process the
procedure linkage table.

Chapter 13 • Extensibility Mechanisms 335

Runtime Linker Debugger Interface

rpi provides detailed information regarding the procedure linkage table entry as defined in
the following data structure, defined in rtld_db.h.

typedef enum {

 RD_RESOLVE_NONE,

 RD_RESOLVE_STEP,

 RD_RESOLVE_TARGET,

 RD_RESOLVE_TARGET_STEP

} rd_skip_e;

typedef struct rd_plt_info {

 rd_skip_e pi_skip_method;

 long pi_nstep;

 psaddr_t pi_target;

 psaddr_t pi_baddr;

 unsigned int pi_flags;

} rd_plt_info_t;

#define RD_FLG_PI_PLTBOUND 0x0001

The elements of the rd_plt_info_tstructure are:

pi_skip_method

Identifies how the procedure linkage table entry can be traversed. This method is set to one
of the rd_skip_e values.

pi_nstep

Identifies how many instructions to step over when RD_RESOLVE_STEP or
RD_RESOLVE_TARGET_STEP are returned.

pi_target

Specifies the address at which to set a breakpoint when RD_RESOLVE_TARGET_STEP or
RD_RESOLVE_TARGET are returned.

pi_baddr

The procedure linkage table destination address, added with RD_VERSION3. When the
RD_FLG_PI_PLTBOUND flag of the pi_flags field is set, this element identifies the resolved
(bound) destination address.

pi_flags

A flags field, added with RD_VERSION3. The flag RD_FLG_PI_PLTBOUND identifies the
procedure linkage entry as having been resolved (bound) to its destination address, which is
available in the pi_baddr field.

The following scenarios are possible from the rd_plt_info_t return values.

336 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Runtime Linker Debugger Interface

■ The first call through this procedure linkage table must be resolved by the runtime linker. In
this case, the rd_plt_info_t contains:

{RD_RESOLVE_TARGET_STEP, M, <BREAK>, 0, 0}

The controlling process sets a breakpoint at BREAK and continues the target process. When
the breakpoint is reached, the procedure linkage table entry processing has finished. The
controlling process can then step M instructions to the destination function. Notice that the
bound address (pi_baddr) has not been set since this is the first call through a procedure
linkage table entry.

■ On the Nth time through this procedure linkage table, rd_plt_info_t contains:

{RD_RESOLVE_STEP, M, 0, <BoundAddr>, RD_FLG_PI_PLTBOUND}

The procedure linkage table entry has already been resolved and the controlling process can
step M instructions to the destination function. The address that the procedure linkage table
entry is bound to is <BoundAddr> and the RD_FLG_PI_PLTBOUND bit has been set in the flags
field.

Dynamic Object Padding

The default behavior of the runtime linker relies on the operating system to load dynamic
objects where they can be most efficiently referenced. Some controlling processes benefit from
the existence of padding around the objects loaded into memory of the target process. This
interface enables a controlling process to request this padding.

rd_objpad_enable()

This function enables or disables the padding of any subsequently loaded objects with the
target process. Padding occurs on both sides of the loaded object.

rd_err_e rd_objpad_enable(struct rd_agent *rdap, size_t padsize);

padsize specifies the size of the padding, in bytes, to be preserved both before and after
any objects loaded into memory. This padding is reserved as a memory mapping from a
mmapobj(2) request. Effectively, an area of the virtual address space of the target process,
adjacent to any loaded objects, is reserved. These areas can later be used by the controlling
process.

A padsize of 0 disables any object padding for later objects.

Note - Reservations obtained using mmapobj(2) can be reported using the proc(1) facilities and
by referring to the link-map information provided in rd_loadobj_t.

Chapter 13 • Extensibility Mechanisms 337

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2mmapobj-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2mmapobj-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1proc-1

Runtime Linker Debugger Interface

Debugger Import Interface

The imported interface that a controlling process must provide to librtld_db.so.1 is defined
in /usr/include/proc_service.h. A sample implementation of these proc_service functions
can be found in the rdb demonstration debugger. The rtld-debugger interface uses only a subset
of the proc_service interfaces available. Future versions of the rtld-debugger interface might
take advantage of additional proc_service interfaces without creating an incompatible change.

The following interfaces are currently being used by the rtld-debugger interface.

ps_pauxv()

This function returns a pointer to a copy of the auxv vector.

ps_err_e ps_pauxv(const struct ps_prochandle *ph, auxv_t **aux);

Because the auxv vector information is copied to an allocated structure, the pointer remains
as long as the ps_prochandle is valid.

ps_pread()

This function reads data from the target process.

ps_err_e ps_pread(const struct ps_prochandle *ph, paddr_t addr,
 char *buf, int size);

From address addr in the target process, size bytes are copied to buf.

ps_pwrite()

This function writes data to the target process.

ps_err_e ps_pwrite(const struct ps_prochandle *ph, paddr_t addr,
 char *buf, int size);

size bytes from buf are copied into the target process at address addr.

ps_plog()

This function is called with additional diagnostic information from the rtld-debugger
interface.

void ps_plog(const char *fmt,);

The controlling process determines where, or if, to log this diagnostic information. The
arguments to ps_plog() follow the printf(3C) format.

ps_pglobal_lookup()

This function searches for the symbol in the target process.

338 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Aprintf-3c

Runtime Linker Debugger Interface

ps_err_e ps_pglobal_lookup(const struct ps_prochandle *ph,
 const char *obj, const char *name, ulong_t *sym_addr);

The symbol named name is searched for within the object named obj within the target
process ph. If the symbol is found, the symbol address is stored in sym_addr.

ps_pglobal_sym()

This function searches for the symbol in the target process.

ps_err_e ps_pglobal_sym(const struct ps_prochandle *ph,
 const char *obj, const char *name, ps_sym_t *sym_desc);

The symbol named name is searched for within the object named obj within the target
process ph. If the symbol is found, the symbol descriptor is stored in sym_desc.

In the event that the rtld-debugger interface needs to find symbols within the application
or runtime linker prior to any link-map creation, the following reserved values for obj are
available.

#define PS_OBJ_EXEC ((const char *)0x0) /* application id */

#define PS_OBJ_LDSO ((const char *)0x1) /* runtime linker id */

The controlling process can use the procfs file system for these objects, using the following
pseudo code.

ioctl(...., PIOCNAUXV,) - obtain AUX vectors

ldsoaddr = auxv[AT_BASE];

ldsofd = ioctl(...., PIOCOPENM, &ldsoaddr);

/* process elf information found in ldsofd */

execfd = ioctl(...., PIOCOPENM, 0);

/* process elf information found in execfd */

Once the file descriptors are found, the ELF files can be examined for their symbol information
by the controlling program.

Chapter 13 • Extensibility Mechanisms 339

340 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

PART IV

ELF Application Binary Interface

PART IV ELF Application Binary Interface 341

342 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

 14 ♦ ♦ ♦ C H A P T E R 1 4

Object File Format

This chapter describes the executable and linking format (ELF) of the object files produced by
the assembler and link-editor. Three significant types of object file exist.

■ A relocatable object file holds sections containing code and data. This file is suitable to be
linked with other relocatable object files to create dynamic objects, or another relocatable
object.

■ A executable file holds a program that is ready to execute. The file specifies how exec(2)
creates a program's process image. This file is typically bound to shared object files at
runtime to create a process image.

■ A shared object file holds code and data that is suitable for additional linking. The link-
editor can process this file with other relocatable object files and shared object files to create
other object files. The runtime linker combines this file with an executable file and other
shared object files to create a process image.

Programs can manipulate object files with the functions that are provided by the ELF access
library, libelf. Refer to elf(3ELF) for a description of libelf contents. Sample source code
that uses libelf is provided in the pkg:/source/demo/system package under the /usr/demo/
ELF directory.

File Format

Object files participate in both program linking and program execution. For convenience and
efficiency, the object file format provides parallel views of a file's contents, reflecting the
differing needs of these activities. The following figure shows an object file's organization.

Chapter 14 • Object File Format 343

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Delf-3elf

File Format

FIGURE 7 Object File Format

An ELF header resides at the beginning of an object file and describes the file's organization.

Note - Only the ELF header has a fixed position in the file. The flexibility of the ELF format
requires no specified order for header tables, sections or segments. However, this figure is
typical of the layout used in the Oracle Solaris OS.

Sections represent the smallest indivisible units that can be processed within an ELF file.
Segments are a collection of sections. Segments represent the smallest individual units that can
be mapped to a memory image by exec(2) or by the runtime linker.

Sections hold the bulk of object file information for the linking view. This data includes
instructions, data, symbol table, and relocation information. Descriptions of sections appear in
the first part of this chapter. The second part of this chapter discusses segments and the program
execution view of the file.

A program header table, if present, tells the system how to create a process image. Files used
to generate a process image, executable files and shared objects, must have a program header
table. Relocatable object files do not need a program header table.

344 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2exec-2

Data Representation

A section header table contains information describing the file's sections. Every section has an
entry in the table. Each entry gives information such as the section name and section size. Files
that are used in link-editing must have a section header table.

Data Representation

The object file format supports various processors with 8-bit bytes, 32-bit architectures and 64-
bit architectures. Nevertheless, the data representation is intended to be extensible to larger, or
smaller, architectures. Table 13, “ELF 32-Bit Data Types,” on page 345 and Table 14, “ELF
64-Bit Data Types,” on page 345 list the 32-bit data types and 64-bit data types.

Object files represent some control data with a machine-independent format. This format
provides for the common identification and interpretation of object files. The remaining data in
an object file use the encoding of the target processor, regardless of the machine on which the
file was created.

TABLE 13 ELF 32-Bit Data Types

Name Size Alignment Purpose

Elf32_Addr 4 4 Unsigned program address

Elf32_Half 2 2 Unsigned medium integer

Elf32_Off 4 4 Unsigned file offset

Elf32_Sword 4 4 Signed integer

Elf32_Word 4 4 Unsigned integer

unsigned char 1 1 Unsigned small integer

TABLE 14 ELF 64-Bit Data Types

Name Size Alignment Purpose

Elf64_Addr 8 8 Unsigned program address

Elf64_Half 2 2 Unsigned medium integer

Elf64_Off 8 8 Unsigned file offset

Elf64_Sword 4 4 Signed integer

Elf64_Word 4 4 Unsigned integer

Elf64_Xword 8 8 Unsigned long integer

Elf64_Sxword 8 8 Signed long integer

unsigned char 1 1 Unsigned small integer

Chapter 14 • Object File Format 345

ELF Header

All data structures that the object file format defines follow the natural size and alignment
guidelines for the relevant class. Data structures can contain explicit padding to ensure 4-byte
alignment for 4-byte objects, to force structure sizes to a multiple of 4, and so forth. Data also
have suitable alignment from the beginning of the file. Thus, for example, a structure containing
an Elf32_Addr member is aligned on a 4-byte boundary within the file. Similarly, a structure
containing an Elf64_Addr member is aligned on an 8-byte boundary.

Note - For portability, ELF uses no bit-fields.

ELF Header

Some control structures within object files can grow because the ELF header contains their
actual sizes. If the object file format does change, a program can encounter control structures
that are larger or smaller than expected. Programs might therefore ignore extra information. The
treatment of missing information depends on context and is specified if and when extensions are
defined.

The ELF header has the following structure. See sys/elf.h.

#define EI_NIDENT 16

typedef struct {

 unsigned char e_ident[EI_NIDENT];

 Elf32_Half e_type;

 Elf32_Half e_machine;

 Elf32_Word e_version;

 Elf32_Addr e_entry;

 Elf32_Off e_phoff;

 Elf32_Off e_shoff;

 Elf32_Word e_flags;

 Elf32_Half e_ehsize;

 Elf32_Half e_phentsize;

 Elf32_Half e_phnum;

 Elf32_Half e_shentsize;

 Elf32_Half e_shnum;

 Elf32_Half e_shstrndx;

} Elf32_Ehdr;

typedef struct {

 unsigned char e_ident[EI_NIDENT];

 Elf64_Half e_type;

 Elf64_Half e_machine;

 Elf64_Word e_version;

346 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

ELF Header

 Elf64_Addr e_entry;

 Elf64_Off e_phoff;

 Elf64_Off e_shoff;

 Elf64_Word e_flags;

 Elf64_Half e_ehsize;

 Elf64_Half e_phentsize;

 Elf64_Half e_phnum;

 Elf64_Half e_shentsize;

 Elf64_Half e_shnum;

 Elf64_Half e_shstrndx;

} Elf64_Ehdr;

e_ident

The initial bytes mark the file as an object file. These bytes provide machine-independent
data with which to decode and interpret the file's contents. Complete descriptions appear in
“ELF Identification” on page 350.

e_type

Identifies the object file type, as listed in the following table.

Name Value Meaning

ET_NONE 0 No file type

ET_REL 1 Relocatable file

ET_EXEC 2 Executable file

ET_DYN 3 Shared object file

ET_CORE 4 Core file

ET_LOSUNW 0xfefe Start operating system specific range

ET_SUNW_ANCILLARY 0xfefe Ancillary object file

ET_HISUNW 0xfefd End operating system specific range

ET_LOPROC 0xff00 Start processor-specific range

ET_HIPROC 0xffff End processor-specific range

Although the core file contents are unspecified, type ET_CORE is reserved to mark the file.
Values from ET_LOPROC through ET_HIPROC (inclusive) are reserved for processor-specific
semantics. Other values are reserved for future use.

e_machine

Specifies the required architecture for an individual file. Relevant architectures are listed in
the following table.

Chapter 14 • Object File Format 347

ELF Header

Name Value Meaning

EM_NONE 0 No machine

EM_SPARC 2 SPARC

EM_386 3 Intel 80386

EM_SPARC32PLUS 18 Sun SPARC 32+

EM_SPARCV9 43 SPARC V9

EM_AMD64 62 AMD 64

Other values are reserved for future use. Processor-specific ELF names are distinguished
by using the machine name. For example, the flags defined for e_flags use the prefix EF_.
A flag that is named WIDGET for the EM_XYZ machine would be called EF_XYZ_WIDGET.

e_version

Identifies the object file version, as listed in the following table.

Name Value Meaning

EV_NONE 0 Invalid version

EV_CURRENT >=1 Current version

The value 1 signifies the original file format. The value of EV_CURRENT changes as
necessary to reflect the current version number.

e_entry

The virtual address to which the system first transfers control, thus starting the process. If
the file has no associated entry point, this member holds zero.

e_phoff

The program header table's file offset in bytes. If the file has no program header table, this
member holds zero.

e_shoff

The section header table's file offset in bytes. If the file has no section header table, this
member holds zero.

e_flags

Processor-specific flags associated with the file. Flag names take the form
EF_machine_flag. This member is currently zero for x86. The SPARC flags are listed in the
following table.

348 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

ELF Header

Name Value Meaning

EF_SPARC_EXT_MASK 0xffff00 Vendor Extension mask

EF_SPARC_32PLUS 0x000100 Generic V8+ features

EF_SPARC_SUN_US1 0x000200 Sun UltraSPARC™ 1 Extensions

EF_SPARC_HAL_R1 0x000400 HAL R1 Extensions

EF_SPARC_SUN_US3 0x000800 Sun UltraSPARC 3 Extensions

EF_SPARCV9_MM 0x3 Mask for Memory Model

EF_SPARCV9_TSO 0x0 Total Store Ordering

EF_SPARCV9_PSO 0x1 Partial Store Ordering

EF_SPARCV9_RMO 0x2 Relaxed Memory Ordering

e_ehsize

The ELF header's size in bytes.

e_phentsize

The size in bytes of one entry in the file's program header table. All entries are the same
size.

e_phnum

The number of entries in the program header table. The product of e_phentsize and
e_phnum gives the table's size in bytes. If a file has no program header table, e_phnum holds
the value zero.

If the number of program headers is greater than 65534, this member has the value PN_XNUM
(0xffff). The actual number of program header table entries is contained in the sh_info
field of the section header at index 0. Otherwise, the sh_info member of the initial section
header entry contains the value zero. See “Extended Section Header” on page 370.

e_shentsize

A section header's size in bytes. A section header is one entry in the section header table.
All entries are the same size.

e_shnum

The number of entries in the section header table. The product of e_shentsize and
e_shnum gives the section header table's size in bytes. If a file has no section header table,
e_shnum holds the value zero.

If the number of sections is greater than 65279, e_shnum has the value zero. The actual
number of section header table entries is contained in the sh_size field of the section
header at index 0. Otherwise, the sh_size member of the initial section header entry
contains the value zero. See “Extended Section Header” on page 370.

Chapter 14 • Object File Format 349

ELF Identification

e_shstrndx

The section header table index of the entry that is associated with the section name string
table. If the file has no section name string table, this member holds the value SHN_UNDEF.

If the section name string table section index is greater than 65279, this member has the
value SHN_XINDEX (0xffff) and the actual index of the section name string table section
is contained in the sh_link field of the section header at index 0. Otherwise, the sh_link
member of the initial section header entry contains the value zero. See “Extended Section
Header” on page 370.

ELF Identification

ELF provides an object file framework to support multiple processors, multiple data encoding,
and multiple classes of machines. To support this object file family, the initial bytes of the file
specify how to interpret the file. These bytes are independent of the processor on which the
inquiry is made and independent of the file's remaining contents.

The initial bytes of an ELF header and an object file correspond to the e_ident member.

TABLE 15 ELF Identification Index

Name Value Purpose

EI_MAG0 0 File identification

EI_MAG1 1 File identification

EI_MAG2 2 File identification

EI_MAG3 3 File identification

EI_CLASS 4 File class

EI_DATA 5 Data encoding

EI_VERSION 6 File version

EI_OSABI 7 Operating system/ABI identification

EI_ABIVERSION 8 ABI version

EI_PAD 9 Start of padding bytes

EI_NIDENT 16 Size of e_ident[]

These indexes access bytes that hold the following values.

EI_MAG0 - EI_MAG3

A 4-byte magic number, identifying the file as an ELF object file, as listed in the following
table.

350 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

ELF Identification

Name Value Position

ELFMAG0 0x7f e_ident[EI_MAG0]

ELFMAG1 'E' e_ident[EI_MAG1]

ELFMAG2 'L' e_ident[EI_MAG2]

ELFMAG3 'F' e_ident[EI_MAG3]

EI_CLASS

Byte e_ident[EI_CLASS] identifies the file's class, or capacity, as listed in the following
table.

Name Value Meaning

ELFCLASSNONE 0 Invalid class

ELFCLASS32 1 32-bit objects

ELFCLASS64 2 64-bit objects

The file format is designed to be portable among machines of various sizes, without
imposing the sizes of the largest machine on the smallest. The class of the file defines
the basic types used by the data structures of the object file container. The data that is
contained in object file sections can follow a different programming model.

Class ELFCLASS32 supports machines with files and virtual address spaces up to 4
gigabytes. This class uses the basic types that are defined in Table 13, “ELF 32-Bit Data
Types,” on page 345.

Class ELFCLASS64 is reserved for 64-bit architectures such as 64-bit SPARC and x64. This
class uses the basic types that are defined in Table 14, “ELF 64-Bit Data Types,” on page
345.

EI_DATA

Byte e_ident[EI_DATA] specifies the data encoding of the processor-specific data in the
object file, as listed in the following table.

Name Value Meaning

ELFDATANONE 0 Invalid data encoding

ELFDATA2LSB 1 See Figure 8, “Data Encoding ELFDATA2LSB,” on
page 353.

ELFDATA2MSB 2 See Figure 9, “Data Encoding ELFDATA2MSB,” on
page 353.

Chapter 14 • Object File Format 351

Data Encoding

More information on these encodings appears in the section “Data
Encoding” on page 352. Other values are reserved for future use.

EI_VERSION

Byte e_ident[EI_VERSION] specifies the ELF header version number. Currently, this value
must be EV_CURRENT.

EI_OSABI

Byte e_ident[EI_OSABI] identifies the operating system together with the ABI to which
the object is targeted. Some fields in other ELF structures have flags and values that have
operating system or ABI specific meanings. The interpretation of those fields is determined
by the value of this byte. ABI values relevant to Oracle Solaris are listed in the following
table

Name Value Meaning

ELFOSABI_NONE / ELFOSABI_SYSV 0 No extensions or unspecified

ELFOSABI_SOLARIS 6 Solaris

EI_ABIVERSION

Byte e_ident[EI_ABIVERSION] identifies the version of the ABI to which the object is
targeted. This field is used to distinguish among incompatible versions of an ABI. The
interpretation of this version number is dependent on the ABI identified by the EI_OSABI
field. If no values are specified for the EI_OSABI field for the processor, or no version
values are specified for the ABI determined by a particular value of the EI_OSABI byte, the
value zero is used to indicate unspecified.

EI_PAD

This value marks the beginning of the unused bytes in e_ident. These bytes are reserved
and are set to zero. Programs that read object files should ignore these values.

Data Encoding
A file's data encoding specifies how to interpret the integer types in a file. Class ELFCLASS32
files and class ELFCLASS64 files use integers that occupy 1, 2, 4, and 8 bytes to represent offsets,
addresses and other information. Under the defined encodings, objects are represented as
described by the figures that follow. Byte numbers appear in the upper left corners.

ELFDATA2LSB encoding specifies 2's complement values, with the least significant byte
occupying the lowest address. This encoding if often referred to informally as little endian.

352 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Section Headers

FIGURE 8 Data Encoding ELFDATA2LSB

ELFDATA2MSB encoding specifies 2's complement values, with the most significant byte
occupying the lowest address. This encoding if often referred to informally as big endian.

FIGURE 9 Data Encoding ELFDATA2MSB

Section Headers

An object file's section header table allows you to locate all of the sections of the file. The
section header table is an array of Elf32_Shdr or Elf64_Shdr structures. A section header table
index is a subscript into this array. The ELF header's e_shoff member indicates the byte offset

Chapter 14 • Object File Format 353

Section Headers

from the beginning of the file to the section header table. The e_shnum member indicates how
many entries that the section header table contains. The e_shentsize member indicates the size
in bytes of each entry.

If the number of sections is greater than or equal to SHN_LORESERVE (0xff00), e_shnum has
the value SHN_UNDEF (0). The actual number of section header table entries is contained in the
sh_size field of the section header at index 0. Otherwise, the sh_size member of the initial
entry contains the value zero. See “Extended Section Header” on page 370.

Some section header table indexes are reserved in contexts where index size is restricted. For
example, the st_shndx member of a symbol table entry and the e_shnum and e_shstrndx
members of the ELF header. In such contexts, the reserved values do not represent actual
sections in the object file. Also in such contexts, an escape value indicates that the actual
section index is to be found elsewhere, in a larger field.

TABLE 16 ELF Special Section Indexes

Name Value

SHN_UNDEF 0

SHN_LORESERVE 0xff00

SHN_LOPROC 0xff00

SHN_BEFORE 0xff00

SHN_AFTER 0xff01

SHN_AMD64_LCOMMON 0xff02

SHN_HIPROC 0xff1f

SHN_LOOS 0xff20

SHN_LOSUNW 0xff3f

SHN_SUNW_IGNORE 0xff3f

SHN_HISUNW 0xff3f

SHN_HIOS 0xff3f

SHN_ABS 0xfff1

SHN_COMMON 0xfff2

SHN_XINDEX 0xffff

SHN_HIRESERVE 0xffff

Note - Although index 0 is reserved as the undefined value, the section header table contains an
entry for index 0. That is, if the e_shnum member of the ELF header indicates a file has 6 entries
in the section header table, the sections have the indexes 0 through 5. The contents of the initial
entry are specified later in this section.

354 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Section Headers

SHN_UNDEF

An undefined, missing, irrelevant, or otherwise meaningless section reference. For
example, a symbol defined relative to section number SHN_UNDEF is an undefined symbol.

SHN_LORESERVE

The lower boundary of the range of reserved indexes.

SHN_LOPROC - SHN_HIPROC

Values in this inclusive range are reserved for processor-specific semantics.

SHN_LOOS - SHN_HIOS

Values in this inclusive range are reserved for operating system-specific semantics.

SHN_LOSUNW - SHN_HISUNW

Values in this inclusive range are reserved for Sun-specific semantics.

SHN_SUNW_IGNORE

This section index provides a temporary symbol definition within relocatable objects.
Reserved for internal use by dtrace(1M).

SHN_BEFORE, SHN_AFTER

Provide for initial and final section ordering in conjunction with SHF_LINK_ORDER
section flags. See Table 19, “ELF Section Attribute Flags,” on page 365. SHN_BEFORE
and SHN_AFTER are incompatible with objects that use extended section indexes.
They are considered deprecated, and their use is discouraged. See “Extended Section
Header” on page 370.

SHN_AMD64_LCOMMON

x64 specific common block label. This label is similar to SHN_COMMON, but provides for
identifying a large common block.

SHN_ABS

Absolute values for the corresponding reference. For example, symbols defined relative to
section number SHN_ABS have absolute values and are not affected by relocation.

SHN_COMMON

Symbols defined relative to this section are common symbols, such as FORTRAN COMMON
or unallocated C external variables. These symbols are sometimes referred to as tentative.

Chapter 14 • Object File Format 355

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1Mdtrace-1m

Section Headers

SHN_XINDEX

An escape value indicating that the actual section header index is too large to fit in the
containing field. The header section index is found in another location specific to the
structure where the section index appears. See “Extended Section Header” on page 370.

SHN_HIRESERVE

The upper boundary of the range of reserved indexes. The system reserves indexes between
SHN_LORESERVE and SHN_HIRESERVE, inclusive. The values do not reference the section
header table. The section header table does not contain entries for the reserved indexes.

Sections contain all information in an object file except the ELF header, the program header
table, and the section header table. Moreover, the sections in object files satisfy several
conditions.

■ Every section in an object file has exactly one section header describing the section. Section
headers can exist that do not have a section.

■ Each section occupies one contiguous, possibly empty, sequence of bytes within a file.
■ Sections in a file cannot overlap. No byte in a file resides in more than one section.
■ An object file can have inactive space. The various headers and the sections might not cover

every byte in an object file. The contents of the inactive data are unspecified.

A section header has the following structure. See sys/elf.h.

typedef struct {

 elf32_Word sh_name;

 Elf32_Word sh_type;

 Elf32_Word sh_flags;

 Elf32_Addr sh_addr;

 Elf32_Off sh_offset;

 Elf32_Word sh_size;

 Elf32_Word sh_link;

 Elf32_Word sh_info;

 Elf32_Word sh_addralign;

 Elf32_Word sh_entsize;

} Elf32_Shdr;

typedef struct {

 Elf64_Word sh_name;

 Elf64_Word sh_type;

 Elf64_Xword sh_flags;

 Elf64_Addr sh_addr;

 Elf64_Off sh_offset;

 Elf64_Xword sh_size;

 Elf64_Word sh_link;

 Elf64_Word sh_info;

 Elf64_Xword sh_addralign;

356 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Section Headers

 Elf64_Xword sh_entsize;

} Elf64_Shdr;

sh_name

The name of the section. This members value is an index into the section header string
table section giving the location of a null-terminated string. Section names and their
descriptions are listed in Table 24, “ELF Special Sections,” on page 375.

sh_type

Categorizes the section's contents and semantics. Section types and their descriptions are
listed in Table 17, “ELF Section Types, sh_type,” on page 358.

sh_flags

Sections support 1-bit flags that describe miscellaneous attributes. Flag definitions are
listed in Table 19, “ELF Section Attribute Flags,” on page 365.

sh_addr

If the section appears in the memory image of a process, this member gives the address at
which the section's first byte should reside. Otherwise, the member contains the value zero.

sh_offset

The byte offset from the beginning of the file to the first byte in the section. For a
SHT_NOBITS section, this member indicates the conceptual offset in the file, as the section
occupies no space in the file.

sh_size

The section's size in bytes. Unless the section type is SHT_NOBITS, the section occupies
sh_size bytes in the file. A section of type SHT_NOBITS can have a nonzero size, but the
section occupies no space in the file.

sh_link

A section header table index link, whose interpretation depends on the section type. Table
20, “ELF sh_link and sh_info Interpretation,” on page 369 describes the values.

sh_info

Extra information, whose interpretation depends on the section type. Table 20, “ELF
sh_link and sh_info Interpretation,” on page 369 describes the values. If the sh_flags
field for this section header includes the attribute SHF_INFO_LINK, then this member
represents a section header table index.

sh_addralign

Some sections have address alignment constraints. For example, if a section holds a
double-word, the system must ensure double-word alignment for the entire section. In this

Chapter 14 • Object File Format 357

Section Headers

case, the value of sh_addr must be congruent to 0, modulo the value of sh_addralign.
Currently, only 0 and positive integral powers of two are allowed. Values 0 and 1 mean the
section has no alignment constraints.

sh_entsize

Some sections hold a table of fixed-size entries, such as a symbol table. For such a section,
this member gives the size in bytes of each entry. The member contains the value zero if
the section does not hold a table of fixed-size entries.

A section header's sh_type member specifies the section's semantics, as shown in the following
table.

TABLE 17 ELF Section Types, sh_type

Name Value

SHT_NULL 0

SHT_PROGBITS 1

SHT_SYMTAB 2

SHT_STRTAB 3

SHT_RELA 4

SHT_HASH 5

SHT_DYNAMIC 6

SHT_NOTE 7

SHT_NOBITS 8

SHT_REL 9

SHT_SHLIB 10

SHT_DYNSYM 11

SHT_INIT_ARRAY 14

SHT_FINI_ARRAY 15

SHT_PREINIT_ARRAY 16

SHT_GROUP 17

SHT_SYMTAB_SHNDX 18

SHT_LOOS 0x60000000

SHT_LOSUNW 0x6fffffed

SHT_SUNW_phname 0x6fffffed

SHT_SUNW_ancillary 0x6fffffee

SHT_SUNW_capchain 0x6fffffef

SHT_SUNW_capinfo 0x6ffffff0

SHT_SUNW_symsort 0x6ffffff1

358 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Section Headers

Name Value

SHT_SUNW_tlssort 0x6ffffff2

SHT_SUNW_LDYNSYM 0x6ffffff3

SHT_SUNW_dof 0x6ffffff4

SHT_SUNW_cap 0x6ffffff5

SHT_SUNW_SIGNATURE 0x6ffffff6

SHT_SUNW_ANNOTATE 0x6ffffff7

SHT_SUNW_DEBUGSTR 0x6ffffff8

SHT_SUNW_DEBUG 0x6ffffff9

SHT_SUNW_move 0x6ffffffa

SHT_SUNW_COMDAT 0x6ffffffb

SHT_SUNW_syminfo 0x6ffffffc

SHT_SUNW_verdef 0x6ffffffd

SHT_SUNW_verneed 0x6ffffffe

SHT_SUNW_versym 0x6fffffff

SHT_HISUNW 0x6fffffff

SHT_HIOS 0x6fffffff

SHT_LOPROC 0x70000000

SHT_SPARC_GOTDATA 0x70000000

SHT_AMD64_UNWIND 0x70000001

SHT_HIPROC 0x7fffffff

SHT_LOUSER 0x80000000

SHT_HIUSER 0xffffffff

SHT_NULL

Identifies the section header as inactive. This section header does not have an associated
section. Other members of the section header have undefined values.

SHT_PROGBITS

Identifies information defined by the program, whose format and meaning are determined
solely by the program.

SHT_SYMTAB, SHT_DYNSYM, SHT_SUNW_LDYNSYM

Identifies a symbol table. Typically, a SHT_SYMTAB section provides symbols for link-
editing. As a complete symbol table, the table can contain many symbols that are
unnecessary for dynamic linking. Consequently, an object file can also contain a
SHT_DYNSYM section, which holds a minimal set of dynamic linking symbols, to save space.

Chapter 14 • Object File Format 359

Section Headers

SHT_DYNSYM can also be augmented with a SHT_SUNW_LDYNSYM section. This additional
section provides local function symbols to the runtime environment, but is not required
for dynamic linking. This section allows debuggers to produce accurate stack traces in
runtime contexts when the non-allocable SHT_SYMTAB is not available, or has been stripped
from the file. This section also provides the runtime environment with additional symbolic
information for use with dladdr(3C).

When both a SHT_SUNW_LDYNSYM section and a SHT_DYNSYM section exist, the link-editor
places their data regions immediately adjacent to each other. The SHT_SUNW_LDYNSYM
section precedes the SHT_DYNSYM section. This placement allows the two tables to be
viewed as a single larger contiguous symbol table, containing a reduced set of symbols
from SHT_SYMTAB.
See “Symbol Table Section” on page 409 for details.

SHT_STRTAB, SHT_DYNSTR

Identifies a string table. An object file can have multiple string table sections. See “String
Table Section” on page 408 for details.

SHT_RELA

Identifies relocation entries with explicit addends, such as type Elf32_Rela for the 32-bit
class of object files. An object file can have multiple relocation sections. See “Relocation
Sections” on page 395 for details.

SHT_HASH

Identifies a symbol hash table. A dynamically linked object file must contain a symbol hash
table. Currently, an object file can have only one hash table, but this restriction might be
relaxed in the future. See “Hash Table Section” on page 389 for details.

SHT_DYNAMIC

Identifies information for dynamic linking. Currently, an object file can have only one
dynamic section. See “Dynamic Section” on page 445 for details.

SHT_NOTE

Identifies information that marks the file in some way. See “Note Section” on page 393
for details.

SHT_NOBITS

Identifies a section that occupies no space in the file but otherwise resembles
SHT_PROGBITS. Although this section contains no bytes, the sh_offset member contains
the conceptual file offset.

360 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adladdr-3c

Section Headers

SHT_REL

Identifies relocation entries without explicit addends, such as type Elf32_Rel for the 32-bit
class of object files. An object file can have multiple relocation sections. See “Relocation
Sections” on page 395 for details.

SHT_SHLIB

Identifies a reserved section which has unspecified semantics. Programs that contain a
section of this type do not conform to the ABI.

SHT_INIT_ARRAY

Identifies a section containing an array of pointers to initialization functions. Each pointer
in the array is taken as a parameterless procedure with a void return. See “Initialization and
Termination Sections” on page 40 for details.

SHT_FINI_ARRAY

Identifies a section containing an array of pointers to termination functions. Each pointer
in the array is taken as a parameterless procedure with a void return. See “Initialization and
Termination Sections” on page 40 for details.

SHT_PREINIT_ARRAY

Identifies a section containing an array of pointers to functions that are invoked before
all other initialization functions. Each pointer in the array is taken as a parameterless
procedure with a void return. See “Initialization and Termination Sections” on page 40 for
details.

SHT_GROUP

Identifies a section group. A section group identifies a set of related sections that must
be treated as a unit by the link-editor. Sections of type SHT_GROUP can appear only in
relocatable objects. See “Group Section” on page 384 for details.

SHT_SYMTAB_SHNDX

Identifies a section containing extended section indexes, that are associated with a symbol
table. If any section header indexes referenced by a symbol table, contain the escape value
SHN_XINDEX (0xffff), an associated SHT_SYMTAB_SHNDX entry is required. See “Extended
Section Header” on page 370.

SHT_LOOS – SHT_HIOS

Values in this inclusive range are reserved for operating system-specific semantics.

SHT_LOSUNW – SHT_HISUNW

Values in this inclusive range are reserved for Oracle Solaris OS semantics.

Chapter 14 • Object File Format 361

Section Headers

SHT_SUNW_phname

An array of string table indices, one per program header element, that associate
program headers to names within the dynamic string table. See “Program Header Name
Section” on page 394 for details.

SHT_SUNW_ancillary

Indicates that the object is part of a group of ancillary objects. Contains
information required to identify all the files that make up the group. See “Ancillary
Section” on page 382 for details.

SHT_SUNW_capchain

An array of indices that collect capability family members. The first element of the array
is the chain version number. Following this element are a chain of 0 terminated capability
symbol indices. Each 0 terminated group of indices represents a capabilities family. The
first element of each family is the capabilities lead symbol. The following elements point to
family members. See “Capabilities Section” on page 385 for details.

SHT_SUNW_capinfo

An array of indices that associate symbol table entries to capabilities requirements,
and their lead capabilities symbol. An object that defines symbol capabilities contains
a SHT_SUNW_cap section. The SHT_SUNW_cap section header information points to the
associated SHT_SUNW_capinfo section. The SHT_SUNW_capinfo section header information
points to the associated symbol table section. See “Capabilities Section” on page 385 for
details.

SHT_SUNW_symsort

An array of indices into the dynamic symbol table that is formed by the adjacent
SHT_SUNW_LDYNSYM section and SHT_DYNSYM section. These indices are relative to the
start of the SHT_SUNW_LDYNSYM section. The indices reference those symbols that contain
memory addresses. The indices are sorted such that the indices reference the symbols by
increasing address.

SHT_SUNW_tlssort

An array of indices into the dynamic symbol table that is formed by the adjacent
SHT_SUNW_LDYNSYM section and SHT_DYNSYM section. These indices are relative to the start
of the SHT_SUNW_LDYNSYM section. The indices reference thread-local storage symbols. See
Chapter 16, “Thread-Local Storage”. The indices are sorted such that the indices reference
the symbols by increasing offset.

SHT_SUNW_LDYNSYM

Dynamic symbol table for non-global symbols. See previous SHT_SYMTAB, SHT_DYNSYM,
SHT_SUNW_LDYNSYM description.

362 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Section Headers

SHT_SUNW_dof

Reserved for internal use by dtrace(1M).

SHT_SUNW_cap

Specifies capability requirements. See “Capabilities Section” on page 385 for details.

SHT_SUNW_SIGNATURE

Identifies module verification signature.

SHT_SUNW_ANNOTATE

The processing of an annotate section follows all of the default rules for processing a
section. The only exception occurs if the annotate section is in non-allocatable memory. If
the section header flag SHF_ALLOC is not set, the link-editor silently ignores any unsatisfied
relocations against this section.

SHT_SUNW_DEBUGSTR, SHT_SUNW_DEBUG

Identifies debugging information. Sections of this type are stripped from the object using
the link-editor's -z strip-class option, or after the link-edit using strip(1).

SHT_SUNW_move

Identifies data to handle partially initialized symbols. See “Move Section” on page 390
for details.

SHT_SUNW_COMDAT

Identifies a section that allows multiple copies of the same data to be reduced to a single
copy. See “COMDAT Section” on page 384 for details.

SHT_SUNW_syminfo

Identifies additional symbol information. See “Syminfo Table Section” on page 421 for
details.

SHT_SUNW_verdef

Identifies fine-grained versions defined by this file. See “Version Definition
Section” on page 423 for details.

SHT_SUNW_verneed

Identifies fine-grained dependencies required by this file. See “Version Dependency
Section” on page 425 for details.

SHT_SUNW_versym

Identifies a table describing the relationship of symbols to the version definitions offered
by the file. See “Version Symbol Section” on page 428 for details.

Chapter 14 • Object File Format 363

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1Mdtrace-1m
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1strip-1

Section Headers

SHT_LOPROC - SHT_HIPROC

Values in this inclusive range are reserved for processor-specific semantics.

SHT_SPARC_GOTDATA

Identifies SPARC specific data, referenced using GOT-relative addressing. That is, offsets
relative to the address assigned to the symbol _GLOBAL_OFFSET_TABLE_. For 64-bit SPARC,
data in this section must be bound at link-edit time to locations within {+-} 2^32 bytes of
the GOT address.

SHT_AMD64_UNWIND

Identifies x64 specific data, containing unwind function table entries for stack unwinding.

SHT_LOUSER

Specifies the lower boundary of the range of indexes that are reserved for application
programs.

SHT_HIUSER

Specifies the upper boundary of the range of indexes that are reserved for application
programs. Section types between SHT_LOUSER and SHT_HIUSER can be used by the
application without conflicting with current or future system-defined section types.

Other section-type values are reserved. As mentioned before, the section header for index 0
(SHN_UNDEF) exists, even though the index marks undefined section references. The following
table shows the values.

TABLE 18 ELF Section Header Table Entry: Index 0

Name Value Note

sh_name 0 No name

sh_type SHT_NULL Inactive

sh_flags 0 No flags

sh_addr 0 No address

sh_offset 0 No file offset

sh_size 0 No size

sh_link SHN_UNDEF No link information

sh_info 0 No auxiliary information

sh_addralign 0 No alignment

sh_entsize 0 No entries

364 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Section Headers

Should the number of sections or program headers exceed the ELF header data sizes, elements
of section header 0 are used to define extended ELF header attributes. See “Extended Section
Header” on page 370.

A section header's sh_flags member holds 1-bit flags that describe the section's attributes.

TABLE 19 ELF Section Attribute Flags

Name Value

SHF_WRITE 0x1

SHF_ALLOC 0x2

SHF_EXECINSTR 0x4

SHF_MERGE 0x10

SHF_STRINGS 0x20

SHF_INFO_LINK 0x40

SHF_LINK_ORDER 0x80

SHF_OS_NONCONFORMING 0x100

SHF_GROUP 0x200

SHF_TLS 0x400

SHF_COMPRESSED 0x800

SHF_MASKOS 0x0ff00000

SHF_SUNW_NODISCARD 0x00100000

SHF_SUNW_ABSENT 0x00200000

SHF_SUNW_PRIMARY 0x00400000

SHF_MASKPROC 0xf0000000

SHF_AMD64_LARGE 0x10000000

SHF_ORDERED 0x40000000

SHF_EXCLUDE 0x80000000

If a flag bit is set in sh_flags, the attribute is on for the section. Otherwise, the attribute is off,
or does not apply. Undefined attributes are reserved and are set to zero.

SHF_WRITE

Identifies a section that should be writable during process execution.

SHF_ALLOC

Identifies a section that occupies memory during process execution. Some control sections
do not reside in the memory image of an object file. This attribute is off for those sections.

Chapter 14 • Object File Format 365

Section Headers

SHF_EXECINSTR

Identifies a section that contains executable machine instructions.

SHF_MERGE

Identifies a section containing data that can be merged to eliminate duplication. Unless the
SHF_STRINGS flag is also set, the data elements in the section are of a uniform size. The size
of each element is specified in the section header's sh_entsize field. If the SHF_STRINGS
flag is also set, the data elements consist of null-terminated character strings. The size of
each character is specified in the section header's sh_entsize field.

SHF_STRINGS

Identifies a section that consists of null-terminated character strings. The size of each
character is specified in the section header's sh_entsize field.

SHF_INFO_LINK

This section header's sh_info field holds a section header table index.

SHF_LINK_ORDER

This section adds special ordering requirements for link-editors. The requirements apply
to the referenced section identified by the sh_link field of this section's header. If this
section is combined with other sections in the output file, the section must appear in the
same relative order with respect to those sections, as the referenced section appears with
respect to sections the referenced section is combined with. The linked-to section must be
unordered, and cannot in turn specify SHF_LINK_ORDER or SHF_ORDERED.
A typical use of this flag is to build a table that references text or data sections in address
order.

In addition to adding ordering requirements, SHF_LINK_ORDER indicates that the section
contains metadata describing the referenced section. When performing unused section
elimination, the link editor ensures that both the section and the referenced section
are retained or discarded together. Relocations from an SHF_LINK_ORDER section to its
referenced section do not, by themselves, indicate that the referenced section is used.

In the absence of the sh_link ordering information, sections from a single input file
combined within one section of the output file are contiguous. These sections have the
same relative ordering as the sections did in the input file. The contributions from multiple
input files appear in link-line order.

366 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Section Headers

Note - The special sh_link values SHN_BEFORE and SHN_AFTER imply that the sorted section
is to precede or follow, respectively, all other sections in the set being ordered. See Table
16, “ELF Special Section Indexes,” on page 354. Input file link-line order is preserved if
multiple sections in an ordered set have one of these special values. SHN_BEFORE and SHN_AFTER
are incompatible with objects that use extended section indexes. They are considered
deprecated, and their use is discouraged. See “Extended Section Header” on page 370.

SHF_OS_NONCONFORMING

This section requires special OS-specific processing beyond the standard linking rules to
avoid incorrect behavior. If this section has either an sh_type value or contains sh_flags
bits in the OS-specific ranges for those fields, and the link-editor does not recognize these
values, then the object file containing this section is rejected with an error.

SHF_GROUP

This section is a member, perhaps the only member, of a section group. The section must
be referenced by a section of type SHT_GROUP. The SHF_GROUP flag can be set only for
sections that are contained in relocatable objects. See “Group Section” on page 384 for
details.

SHF_TLS

This section holds thread-local storage. Each thread within a process has a distinct instance
of this data. See Chapter 16, “Thread-Local Storage” for details.

SHF_COMPRESSED

Identifies a section containing compressed data. SHF_COMPRESSED applies only to non-
allocable sections, and cannot be used in conjunction with SHF_ALLOC. In addition,
SHF_COMPRESSED cannot be applied to sections of type SHT_NOBITS. See “Section
Compression” on page 373 for details.

SHF_MASKOS

All bits that are included in this mask are reserved for operating system-specific semantics.

SHF_SUNW_NODISCARD

The link-editor's -z discard-unused option can result in unreferenced SHF_ALLOC sections
being discarded from a link-edit. SHF_SUNW_NODISCARD ensures that an SHF_ALLOC section
is not discarded using the -z discard-unused option, even if the section is unreferenced.

SHF_SUNW_ABSENT

Indicates that the data for this section is not present in this file. When ancillary objects
are created, the primary object and any ancillary objects, all have the same section header
array. This organization facilitates the merging of the information contained in these

Chapter 14 • Object File Format 367

Section Headers

objects, and allows the use of a single symbol table. Each file contains a subset of the
section data. The data for allocable sections is written to the primary object while the
data for non-allocable sections is written to an ancillary file. The SHF_SUNW_ABSENT flag
indicates that the data for the section is not present in the object being examined. When
the SHF_SUNW_ABSENT flag is set, the sh_size field of the section header must be 0. An
application encountering an SHF_SUNW_ABSENT section can choose to ignore the section,
or to search for the section data within one of the related ancillary files. See “Debugger
Access and Use of Ancillary Objects” on page 73.

SHF_SUNW_PRIMARY

The default behavior when ancillary objects are created is to write all allocable sections
to the primary object and all non-allocable sections to the ancillary objects. The
SHF_SUNW_PRIMARY flag overrides this behavior. Any output section containing one more
input section with the SHF_SUNW_PRIMARY flag set is written to the primary object.

SHF_MASKPROC

All bits that are included in this mask are reserved for processor-specific semantics.

SHF_AMD64_LARGE

The default compilation model for x64 only provides for 32-bit displacements. This
displacement limits the size of sections, and eventually segments, to 2 Gbytes. This
attribute flag identifies a section that can hold more than 2 Gbyte. This flag allows the
linking of object files that use different code models.

An x64 object file section that does not contain the SHF_AMD64_LARGE attribute flag can be
freely referenced by objects using small code models. A section that contains this flag can
only be referenced by objects that use larger code models. For example, an x64 medium
code model object can refer to data in sections that contain the attribute flag and sections
that do not contain the attribute flag. However, an x64 small code model object can only
refer to data in a section that does not contain this flag.

SHF_ORDERED

SHF_ORDERED is an older version of the functionality provided by SHF_LINK_ORDER, and has
been superseded by SHF_LINK_ORDER. SHF_ORDERED is no longer supported. The following
information is provided for historical context.

SHF_ORDERED offers two distinct and separate abilities. First, an output section can be
specified, and second, special ordering requirements are required from the link-editor.

The sh_link field of an SHF_ORDERED section forms a linked list of sections. This list is
terminated by a final section with a sh_link that points at itself. All sections in this list are
assigned to the output section with the name of the final section in the list.

If the sh_info entry of the ordered section is a valid section within the same input file,
the ordered section is sorted based on the relative ordering within the output file of the

368 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Section Headers

section pointed to by the sh_info entry. The section pointed at by the sh_info entry must
be unordered, and cannot in turn specify SHF_LINK_ORDER or SHF_ORDERED.

In the absence of the sh_info ordering information, sections from a single input file
combined within one section of the output file are contiguous. These sections have the
same relative ordering as the sections appear in the input file. The contributions from
multiple input files appear in link-line order.

Note - The special sh_info values SHN_BEFORE and SHN_AFTER imply that the sorted section
is to precede or follow, respectively, all other sections in the set being ordered. See Table
16, “ELF Special Section Indexes,” on page 354. Input file link-line order is preserved if
multiple sections in an ordered set have one of these special values. SHN_BEFORE and SHN_AFTER
are incompatible with objects that use extended section indexes. They are considered
deprecated, and their use is discouraged. See “Extended Section Header” on page 370.

SHF_EXCLUDE

This section is excluded from input to the link-edit of an executable or shared object. This
flag is ignored if the SHF_ALLOC flag is also set, or if relocations exist against the section.

Two members in the section header, sh_link and sh_info, hold special information, depending
on section type.

TABLE 20 ELF sh_link and sh_info Interpretation

sh_type sh_link sh_info

SHT_DYNAMIC The section header index of the
associated string table.

0

SHT_HASH The section header index of the
associated symbol table.

0

SHT_REL

SHT_RELA

The section header index of the
associated symbol table.

The section header index of the
section to which the relocation applies,
otherwise 0. See also Table 24, “ELF
Special Sections,” on page 375 and
“Relocation Sections” on page 395.

SHT_SYMTAB

SHT_DYNSYM

The section header index of the
associated string table.

One greater than the symbol table
index of the last local symbol,
STB_LOCAL.

SHT_GROUP The section header index of the
associated symbol table.

The symbol table index of an entry in
the associated symbol table. The name
of the specified symbol table entry
provides a signature for the section
group.

SHT_SYMTAB_SHNDX The section header index of the
associated symbol table.

0

SHT_SUNW_phname The section header index of the
associated string table. This index

0

Chapter 14 • Object File Format 369

Section Headers

sh_type sh_link sh_info

is the same string table used by the
SHT_DYNAMIC section.

SHT_SUNW_ancillary The section header index of the
associated string table.

0

SHT_SUNW_cap If symbol capabilities exist, the
section header index of the associated
SHT_SUNW_capinfo table, otherwise 0.

If any capabilities refer to named
strings, the section header index of the
associated string table, otherwise 0.

SHT_SUNW_capinfo The section header index of the
associated symbol table.

For a dynamic object, the section
header index of the associated
SHT_SUNW_capchain table, otherwise 0.

SHT_SUNW_symsort The section header index of the
associated symbol table.

0

SHT_SUNW_tlssort The section header index of the
associated symbol table.

0

SHT_SUNW_LDYNSYM The section header index of the
associated string table. This index
is the same string table used by the
SHT_DYNSYM section.

One greater than the symbol table
index of the last local symbol,
STB_LOCAL. Since SHT_SUNW_LDYNSYM
only contains local symbols, sh_info
is equivalent to the number of symbols
in the table.

SHT_SUNW_move The section header index of the
associated symbol table.

0

SHT_SUNW_COMDAT 0 0

SHT_SUNW_syminfo The section header index of the
associated symbol table.

The section header index of the
associated .dynamic section.

SHT_SUNW_verdef The section header index of the
associated string table.

The number of version definitions
within the section.

SHT_SUNW_verneed The section header index of the
associated string table.

The number of version dependencies
within the section.

SHT_SUNW_versym The section header index of the
associated symbol table.

0

Extended Section Header

There are limitations on the number of sections that can be represented by standard ELF data
structures.

The e_shnum and e_shstrndx elements of the ELF header are both limited to being able to
represent 65535 sections.

In addition, symbol table entries can reference their associated section using the st_shndx
element, which is limited to being able to represent 65279 sections. Although the size of this

370 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Section Headers

element could represent 65535 sections, a range of values is reserved for special symbol types,
SHN_LORESERVE (0xff00) - SHN_HIRESERVE (0xffff).

To allow an ELF object to contain more than 65279 sections, a number of special definitions
and a special section type are provided. The resultant ELF object is said to contain extended
section header information.

In a standard ELF object, the first section header is zero filled. See Table 36, “ELF Symbol
Table Entry: Index 0,” on page 416. When the number of sections exceed the ELF header
data sizes, elements of section header 0 are used to define extended ELF header attributes. The
following table shows the values.

TABLE 21 ELF Extended Section Header Table Entry: Index 0

Name Value Note

sh_name 0 No name

sh_type SHT_NULL Inactive

sh_flags 0 No flags

sh_addr 0 No address

sh_offset 0 No file offset

sh_size e_shnum The number of entries in the section
header table

sh_link e_shstrndx The section header index of the entry
that is associated with the section
name string table

sh_info e_phnum The number of entries in the program
header table

sh_addralign 0 No alignment

sh_entsize 0 No entries

When this section header 0 information is used, the ELF header e_shnum element is set to 0, and
the e_shstrndx element is set to SHN_XINDEX (0xffff).

For a symbol table to be able to reference more than 65279 sections, an extended section header
index table, identified as SHT_SYMTAB_SHNDX, is created.

The SHT_SYMTAB_SHNDX section is an array of Elf32_Word values. Each value corresponds one
to one with a symbol table entry and appears in the same order as the symbol table entries. The
values represent the section header indexes against which the symbol table entries are defined.
Only if the st_shndx field of a symbol table entry contains the escape value SHN_XINDEX
(0xffff), does the corresponding SHT_SYMTAB_SHNDX entry hold the actual section header index.
Otherwise, the SHT_SYMTAB_SHNDX entry must be SHN_UNDEF (0).

Chapter 14 • Object File Format 371

Section Merging

Should an ELF file require more than 65534 program headers, the sh_info element of section
header 0 is used to define the number of program headers, and the e_phnum element of the ELF
header contains PN_XNUM (0xffff).

To aid in the processing of extended section header information, the libelf routines
elf_getphdrnum(3ELF), elf_getshdrnum(3ELF), and elf_getshdrstrndx(3ELF) are
provided.

Section Merging

The SHF_MERGE section flag can be used to mark SHT_PROGBITS sections within relocatable
objects. See Table 19, “ELF Section Attribute Flags,” on page 365. This flag indicates that
the section can be merged with compatible sections from other objects. Such merging has the
potential to reduce the size of any dynamic object that is built from these relocatable objects.
This size reduction can also have a positive effect on the runtime performance of the resulting
object.

A SHF_MERGE flagged section indicates that the section adheres to the following characteristics.

■ The section is read-only. It must not be possible for a program containing this section to
alter the section data at runtime.

■ Every item in the section is accessed from an individual relocation record. The program
code must not make any assumptions about the relative position of items in the section
when generating the code that accesses the items.

■ If the section also has the SHF_STRINGS flag set, then the section can only contain null
terminated strings. Null characters are only allowed as string terminators, and null
characters must not appear within the middle of any string.

SHF_MERGE is an optional flag indicating a possible optimization. The link-editor is allowed to
perform the optimization, or to ignore the optimization. The link-editor creates a valid output
object in either case. The link-editor currently implements section merging only for sections
containing string data marked with the SHF_STRINGS flag.

When the SHF_STRINGS section flag is set in conjunction with the SHF_MERGE flag, the strings
in the section are available to be merged with strings from other compatible sections. The link-
editor merges such sections using the same string compression algorithm as used to compress
the SHT_STRTAB string tables, .strtab and .dynstr.

■ Duplicate strings are reduced to a single copy.
■ Tail strings are eliminated. For example, if input sections contain the strings "bigdog" and

"dog", then the smaller "dog" string is eliminated, and the tail of the larger string is used to
represent the smaller string.

372 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Delf-getphdrnum-3elf
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Delf-getshdrnum-3elf
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Delf-getshdrstrndx-3elf

Section Compression

The link-editor currently implements string merging only for strings that consist of byte sized
characters that do not have special alignment constraints. Specifically, the following section
characteristics are required.

■ sh_entsize must be 0, or 1. Sections containing wide characters are not supported.
■ Only sections where sh_addralign is 0, or a power of 2, are merged.

Note - Any string table compression can be suppressed with the link-editors -z nocompstrtab
option.

Section Compression
The SHF_COMPRESSED section flag identifies a section containing compressed data.
SHF_COMPRESSED applies only to non-allocable sections, and cannot be used in conjunction with
SHF_ALLOC. In addition, SHF_COMPRESSED cannot be applied to sections of type SHT_NOBITS.

Any relocations that must be applied to a compressed section specify offsets to the
uncompressed section data. It is therefore necessary to uncompress section data before
relocations can be applied. Each compressed section specifies the algorithm independently.
Different sections in a given ELF object can employ different compression algorithms.

Compressed sections start with a compression header structure that identifies the compression
algorithm.

typedef struct {

 Elf32_Word ch_type;

 Elf32_Word ch_size;

 Elf32_Word ch_addralign;

} Elf32_Chdr;

typedef struct {

 Elf64_Word ch_type;

 Elf64_Word ch_reserved;

 Elf64_Xword ch_size;

 Elf64_Xword ch_addralign;

} Elf64_Chdr;

ch_type

Specifies the compression algorithm. Supported algorithms and their descriptions are listed
in Table 22, “ELF Compression Types, ch_type,” on page 374.

ch_size

The size in bytes of the uncompressed data. See sh_size.

Chapter 14 • Object File Format 373

Section Compression

ch_addralign

Required alignment for the uncompressed data. See sh_addralign.

The sh_size and sh_addralign fields of the section header for a compressed section reflect
the requirements of the compressed section. The ch_size and ch_addralign fields of the
compression header provide the corresponding values for the uncompressed data, thereby
supplying the values that sh_size and sh_addralign would have if the section had not been
compressed.

The layout and interpretation of the data that follows the compression header is specific to each
algorithm. This layout may contain algorithm specific parameters and alignment padding in
addition to compressed data bytes.

A compression header's ch_type member specifies the compression algorithm employed, as
shown in the following table.

TABLE 22 ELF Compression Types, ch_type

Name Value

ELFCOMPRESS_ZLIB 1

ELFCOMPRESS_LOOS 0x60000000

ELFCOMPRESS_HIOS 0x6fffffff

ELFCOMPRESS_LOPROC 0x70000000

ELFCOMPRESS_HIPROC 0x7fffffff

ELFCOMPRESS_ZLIB

The section data is compressed with the ZLIB compression algorithm. The compressed
ZLIB data bytes begin with the byte immediately following the compression header, and
extend to the end of the section. Documentation for ZLIB may be found at http://www.
zlib.net/.

ELFCOMPRESS_LOOS - ELFCOMPRESS_HIOS

Values in this inclusive range are reserved for operating system-specific semantics.

ELFCOMPRESS_LOPROC - ELFCOMPRESS_HIPROC

Values in this inclusive range are reserved for processor-specific semantics.

GNU-Style Section Compression
In addition to the compression format discussed previously, the Oracle Solaris link-editor
understands an alternative format used by the GNU tool chain. This format does not employ a

374 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.zlib.net/
http://www.zlib.net/

Special Sections

section flag to indicate compression. Instead, a section name that starts with the .zdebug prefix
identifies a section containing compressed data. GNU-style compressed sections start with the
following compression header structure.

typedef struct {

 uchar_t gch_magic[4];

 uchar_t gch_size[8];

} Chdr_GNU;

gch_magic

A 4-byte magic number identifying the compression algorithm. At this time, only ZLIB
compression is supported. The values of gch_magic for ZLIB compression is as listed in
Table 23, “GNU ZLIB Compression, gch_magic,” on page 375.

gch_size

The size in bytes of the uncompressed data, encoded as a 64-bit ELFDATA2MSB big endian
integer value.

TABLE 23 GNU ZLIB Compression, gch_magic

Name Value

gch_magic[0] 'Z'

gch_magic[1] 'L'

gch_magic[2] 'I'

gch_magic[3] 'B'

Special Sections
Various sections hold program and control information. Sections in the following table are used
by the system and have the indicated types and attributes.

TABLE 24 ELF Special Sections

Name Type Attribute

.bss SHT_NOBITS SHF_ALLOC + SHF_WRITE

.comment SHT_PROGBITS None

.data, .data1 SHT_PROGBITS SHF_ALLOC + SHF_WRITE

.dynamic SHT_DYNAMIC SHF_ALLOC + SHF_WRITE

.dynstr SHT_STRTAB SHF_ALLOC

.dynsym SHT_DYNSYM SHF_ALLOC

.eh_frame_hdr SHT_AMD64_UNWIND SHF_ALLOC

Chapter 14 • Object File Format 375

Special Sections

Name Type Attribute

.eh_frame SHT_AMD64_UNWIND SHF_ALLOC + SHF_WRITE

.fini SHT_PROGBITS SHF_ALLOC + SHF_EXECINSTR

.fini_array SHT_FINI_ARRAY SHF_ALLOC + SHF_WRITE

.got SHT_PROGBITS See “Global Offset Table (Processor-
Specific)” on page 464

.hash SHT_HASH SHF_ALLOC

.init SHT_PROGBITS SHF_ALLOC + SHF_EXECINSTR

.init_array SHT_INIT_ARRAY SHF_ALLOC + SHF_WRITE

.interp SHT_PROGBITS See “Program Interpreter” on page 444

.note SHT_NOTE None

.lbss SHT_NOBITS SHF_ALLOC + SHF_WRITE +

SHF_AMD64_LARGE

.ldata, .ldata1 SHT_PROGBITS SHF_ALLOC + SHF_WRITE +

SHF_AMD64_LARGE

.lrodata, .lrodata1 SHT_PROGBITS SHF_ALLOC + SHF_AMD64_LARGE

.plt SHT_PROGBITS See “Procedure Linkage Table (Processor-
Specific)” on page 465

.preinit_array SHT_PREINIT_ARRAY SHF_ALLOC + SHF_WRITE

.rela SHT_RELA None

.relname SHT_REL See “Relocation Sections” on page 395

.relaname SHT_RELA See “Relocation Sections” on page 395

.rodata, .rodata1 SHT_PROGBITS SHF_ALLOC

.shstrtab SHT_STRTAB None

.strtab SHT_STRTAB Refer to the explanation following this table.

.symtab SHT_SYMTAB See “Symbol Table Section” on page 409

.symtab_shndx SHT_SYMTAB_SHNDX See “Symbol Table Section” on page 409

.tbss SHT_NOBITS SHF_ALLOC + SHF_WRITE + SHF_TLS

.tdata, .tdata1 SHT_PROGBITS SHF_ALLOC + SHF_WRITE + SHF_TLS

.text SHT_PROGBITS SHF_ALLOC + SHF_EXECINSTR

.SUNW_ancillary SHT_SUNW_ancillary None

.SUNW_bss SHT_NOBITS SHF_ALLOC + SHF_WRITE

.SUNW_cap SHT_SUNW_cap SHF_ALLOC

.SUNW_capchain SHT_SUNW_capchain SHF_ALLOC

.SUNW_capinfo SHT_SUNW_capinfo SHF_ALLOC

.SUNW_heap SHT_PROGBITS SHF_ALLOC + SHF_WRITE

.SUNW_ldynsym SHT_SUNW_LDYNSYM SHF_ALLOC

.SUNW_dynsymsort SHT_SUNW_symsort SHF_ALLOC

376 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Special Sections

Name Type Attribute

.SUNW_dymtlssort SHT_SUNW_tlssort SHF_ALLOC

.SUNW_move SHT_SUNW_move SHF_ALLOC

.SUNW_phname SHT_SUNW_phname SHF_ALLOC

.SUNW_reloc SHT_REL

SHT_RELA

SHF_ALLOC

.SUNW_syminfo SHT_SUNW_syminfo SHF_ALLOC

.SUNW_version SHT_SUNW_verdef

SHT_SUNW_verneed

SHT_SUNW_versym

SHF_ALLOC

.bss

Uninitialized data that contribute to the program's memory image. By definition, the system
initializes the data with zeros when the program begins to run. The section occupies no file
space, as indicated by the section type SHT_NOBITS.

.comment

Comment information, typically contributed by the components of the compilation system.
This section can be manipulated by mcs(1).

.data, .data1

Initialized data that contribute to the program's memory image.

.dynamic

Dynamic linking information. See “Dynamic Section” on page 445 for details.

.dynstr

Strings needed for dynamic linking, most commonly the strings that represent the names
associated with symbol table entries.

.dynsym

Dynamic linking symbol table. See “Symbol Table Section” on page 409 for details.

.eh_frame_hdr, .eh_frame

Call frame information used to unwind the stack.

Chapter 14 • Object File Format 377

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1mcs-1

Special Sections

.fini

Executable instructions that contribute to a single termination function for the dynamic
object containing the section. See “Initialization and Termination Routines” on page 99 for
details.

.fini_array

An array of function pointers that contribute to a single termination array for the dynamic
object containing the section. See “Initialization and Termination Routines” on page 99 for
details.

.got

The global offset table. See “Global Offset Table (Processor-Specific)” on page 464 for
details.

.hash

Symbol hash table. See “Hash Table Section” on page 389 for details.

.init

Executable instructions that contribute to a single initialization function for the dynamic
object containing the section. See “Initialization and Termination Routines” on page 99 for
details.

.init_array

An array of function pointers that contributes to a single initialization array for the dynamic
object containing the section. See “Initialization and Termination Routines” on page 99 for
details.

.interp

The path name of a program interpreter. See “Program Interpreter” on page 444 for
details.

.lbss

x64 specific uninitialized data. This data is similar to .bss, but provides for a section that is
larger than 2 Gbytes.

.ldata, .ldata1

x64 specific initialized data. This data is similar to .data, but provides for a section that is
larger than 2 Gbytes.

.lrodata, .lrodata1

x64 specific read-only data. This data is similar to .rodata, but provides for a section that
is larger than 2 Gbytes.

378 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Special Sections

.note

Information in the format described in “Note Section” on page 393.

.plt

The procedure linkage table. See “Procedure Linkage Table (Processor-
Specific)” on page 465 for details.

.preinit_array

An array of function pointers that contribute to a single pre-initialization array for the
executable containing the section. See “Initialization and Termination Routines” on page 99
for details.

.rela

Relocations that do not apply to a particular section. One use of this section is for register
relocations. See “Register Symbols” on page 420 for details.

.relname, .relaname

Relocation information, as “Relocation Sections” on page 395 describes. If the file has
a loadable segment that includes relocation, the sections' attributes include the SHF_ALLOC
bit. Otherwise, that bit is off. Conventionally, name is supplied by the section to which the
relocations apply. Thus, a relocation section for .text normally will have the name .rel.
text or .rela.text.

.rodata, .rodata1

Read-only data that typically contribute to a non-writable segment in the process image.
See “Program Header” on page 431 for details.

.shstrtab

Section names.

.strtab

Strings, most commonly the strings that represent the names that are associated with
symbol table entries. If the file has a loadable segment that includes the symbol string table,
the section's attributes include the SHF_ALLOC bit. Otherwise, that bit is turned off.

.symtab

Symbol table, as “Symbol Table Section” on page 409 describes. If the file has a
loadable segment that includes the symbol table, the section's attributes include the
SHF_ALLOC bit. Otherwise, that bit is turned off.

Chapter 14 • Object File Format 379

Special Sections

.symtab_shndx

This section holds the special symbol table section index array, as described by .symtab.
The section's attributes include the SHF_ALLOC bit if the associated symbol table section
does. Otherwise, that bit is turned off.

.tbss

This section holds uninitialized thread-local data that contribute to the program's memory
image. By definition, the system initializes the data with zeros when the data is instantiated
for each new execution flow. The section occupies no file space, as indicated by the section
type, SHT_NOBITS. See Chapter 16, “Thread-Local Storage” for details.

.tdata, .tdata1

These sections hold initialized thread-local data that contribute to the program's memory
image. A copy of its contents is instantiated by the system for each new execution flow.
See Chapter 16, “Thread-Local Storage” for details.

.text

The text or executable instructions of a program.

.SUNW_ancillary

Ancillary group information. See “Ancillary Section” on page 382 for details.

.SUNW_bss

Partially initialized data for shared objects that contribute to the program's memory image.
The data is initialized at runtime. The section occupies no file space, as indicated by the
section type SHT_NOBITS.

.SUNW_cap

Capability requirements. See “Capabilities Section” on page 385 for details.

.SUNW_capchain

Capability chain table. See “Capabilities Section” on page 385 for details.

.SUNW_capinfo

Capability symbol information. See “Capabilities Section” on page 385 for details.

.SUNW_heap

The heap of a dynamic executable created from dldump(3C).

.SUNW_dynsymsort

An array of indices to symbols in the combined .SUNW_ldynsym – .dynsym symbol table.
The indices are sorted to reference symbols in order of increasing address. Symbols that

380 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adldump-3c

Special Sections

do not represent variables or do not represent functions are not included. In the case of
redundant global symbols and weak symbols, only the weak symbol is kept. See “Symbol
Sort Sections” on page 418 for details.

.SUNW_dyntlssort

An array of indices to thread-local storage symbols in the combined .SUNW_ldynsym –
.dynsym symbol table. The indices are sorted to reference symbols in order of increasing
offset. Symbols that do not represent TLS variables are not included. In the case of
redundant global symbols and weak symbols, only the weak symbol is kept. See “Symbol
Sort Sections” on page 418 for details.

.SUNW_ldynsym

Augments the .dynsym section. This section contains local function symbols, for use in
contexts where the full .symtab section is not available. The link-editor always places
the data for a .SUNW_ldynsym section immediately before, and adjacent to, the .dynsym
section. Both sections always use the same .dynstr string table section. This placement
and organization, allows both symbol tables to be treated as a single larger symbol table.
See “Symbol Table Section” on page 409.

.SUNW_move

Additional information for partially initialized data. See “Move Section” on page 390
for details.

.SUNW_phname

Program header names. See “Program Header Name Section” on page 394 for details.

.SUNW_reloc

Relocation information, as “Relocation Sections” on page 395 describes. This section
is a concatenation of relocation sections that provides better locality of reference of the
individual relocation records. Only the offset of the relocation record is meaningful, thus
the section sh_info value is zero.

.SUNW_syminfo

Additional symbol table information. See “Syminfo Table Section” on page 421 for
details.

.SUNW_version

Versioning information. See “Versioning Sections” on page 423 for details.

Section names with a dot (.) prefix are reserved for the system, although applications can use
these sections if their existing meanings are satisfactory. Applications can use names without
the prefix to avoid conflicts with system sections. The object file format enables you to define

Chapter 14 • Object File Format 381

Ancillary Section

sections that are not reserved. An object file can have more than one section with the same
name.

Section names that are reserved for a processor architecture are formed by placing an
abbreviation of the architecture name ahead of the section name. The name should be taken
from the architecture names that are used for e_machine. For example, .Foo.psect is the psect
section defined by the FOO architecture.

Existing extensions use their historical names.

Ancillary Section
In addition to the primary output object, the Solaris link-editor can produce one or more
ancillary objects. Ancillary objects contain non-allocable sections that are normally written
to the primary object. When ancillary objects are produced, the primary object and all of the
associated ancillary objects contain a SHT_SUNW_ancillary section, containing information
that identifies these related objects. The ancillary section from any of these objects provides the
information needed to identify and interpret the other members of the group.

This section contains an array of the following structures. See sys/elf.h.

typedef struct {

 Elf32_Word a_tag;

 union {

 Elf32_Word a_val;

 Elf32_Addr a_ptr;

 } a_un;

} Elf32_Ancillary;

typedef struct {

 Elf64_Xword a_tag;

 union {

 Elf64_Xword a_val;

 Elf64_Addr a_ptr;

 } a_un;

} Elf64_Ancillary;

For each object with this type, a_tag controls the interpretation of a_un.

a_val

These objects represent integer values with various interpretations.

a_ptr

These objects represent program virtual addresses.

382 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Ancillary Section

The following ancillary tags exist.

TABLE 25 ELF Ancillary Array Tags

Name Value c_un

ANC_SUNW_NULL 0 Ignored

ANC_SUNW_CHECKSUM 1 a_val

ANC_SUNW_MEMBER 2 a_ptr

ANC_SUNW_NULL

Marks the end of a group of the ancillary section.

ANC_SUNW_CHECKSUM

Provides the checksum for a file in the c_val element. When ANC_SUNW_CHECKSUM precedes
the first instance of ANC_SUNW_MEMBER, it provides the checksum for the object from which
the ancillary section is being read. When it follows an ANC_SUNW_MEMBER tag, it provides the
checksum for that member.

ANC_SUNW_MEMBER

Specifies an object name. The a_ptr element contains the string table offset of a null-
terminated string, that provides the file name.

An ancillary section must always contain an ANC_SUNW_CHECKSUM before the first instance
of ANC_SUNW_MEMBER, identifying the current object. Following that, there should be
an ANC_SUNW_MEMBER for each object that makes up the complete set of objects. Each
ANC_SUNW_MEMBER should be followed by an ANC_SUNW_CHECKSUM for that object. A typical
ancillary section is therefore be structured as follows.

Tag Meaning

ANC_SUNW_CHECKSUM Checksum of this object

ANC_SUNW_MEMBER Name of object #1

ANC_SUNW_CHECKSUM Checksum for object #1

…

ANC_SUNW_MEMBER Name of object N

ANC_SUNW_CHECKSUM Checksum for object N

ANC_SUNW_NULL

An object can therefore identify itself by comparing the initial ANC_SUNW_CHECKSUM to each of
the ones that follow, until it finds a match.

Chapter 14 • Object File Format 383

COMDAT Section

COMDAT Section

COMDAT sections are uniquely identified by their section name (sh_name). If the link-editor
encounters multiple sections of type SHT_SUNW_COMDAT, with the same section name, the first
section is retained and the rest discarded. Any relocations that are applied to a discarded
SHT_SUNW_COMDAT section are ignored. Any symbols that are defined in a discarded section are
removed.

Additionally, the link-editor supports the section naming convention that is used for section
reordering when the compiler is invoked with the -xF option. If a function is placed in a
SHT_SUNW_COMDAT section that is named .sectname%funcname, the final SHT_SUNW_COMDAT
sections that are retained are coalesced into the section that is named .sectname. This method
can be used to place SHT_SUNW_COMDAT sections into the .text, .data, or any other section as
their final destination.

Group Section

Some sections occur in interrelated groups. For example, an out-of-line definition of an inline
function might require additional information besides the section containing executable
instructions. This additional information can be a read-only data section containing literals
referenced, one or more debugging information sections, or other informational sections.

There can be internal references among group sections. However, these references make no
sense if one of the sections were removed, or one of the sections were replaced by a duplicate
from another object. Therefore, these groups are included, or these groups are omitted, from the
linked object as a unit.

A section of type SHT_GROUP defines such a grouping of sections. The name of a symbol from
one of the containing object's symbol tables provides a signature for the section group. The
section header of the SHT_GROUP section specifies the identifying symbol entry. The sh_link
member contains the section header index of the symbol table section that contains the entry.
The sh_info member contains the symbol table index of the identifying entry. The sh_flags
member of the section header contains the value zero. The name of the section (sh_name) is not
specified.

The section data of a SHT_GROUP section is an array of Elf32_Word entries. The first entry is a
flag word. The remaining entries are a sequence of section header indices.

The following flag is currently defined.

384 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Capabilities Section

TABLE 26 ELF Group Section Flag

Name Value

GRP_COMDAT 0x1

GRP_COMDAT

GRP_COMDAT is a COMDAT group. This group can duplicate another COMDAT group in another
object file, where duplication is defined as having the same group signature. In such
cases, only one of the duplicate groups is retained by the link-editor. The members of the
remaining groups are discarded.

The section header indices in the SHT_GROUP section, identify the sections that make up the
group. These sections must have the SHF_GROUP flag set in their sh_flags section header
member. If the link-editor decides to remove the section group, the link-editor removes all
members of the group.

To facilitate removing a group without leaving dangling references and with only minimal
processing of the symbol table, the following rules are followed.

■ References to the sections comprising a group from sections outside of the group must be
made through symbol table entries with STB_GLOBAL or STB_WEAK binding and section index
SHN_UNDEF. A definition of the same symbol in the object containing the reference must
have a separate symbol table entry from the reference. Sections outside of the group can not
reference symbols with STB_LOCAL binding for addresses that are contained in the group's
sections, including symbols with type STT_SECTION.

■ Non-symbol references to the sections comprising a group are not allowed from outside the
group. For example, you cannot use a group member's section header index in an sh_link
or sh_info member.

■ A symbol table entry defined relative to one of the group's sections can be removed if the
group members are discarded. This removal occurs if the symbol table entry is contained in
a symbol table section that is not part of the group.

Capabilities Section

A SHT_SUNW_cap section identifies the capability requirements of an object. These capabilities
are referred to as object capabilities. This section can also identify the capability requirements
of functions, or initialized data items, within an object. These capabilities are referred to as
symbol capabilities. This section contains an array of the following structures. See sys/elf.h.

typedef struct {

 Elf32_Word c_tag;

Chapter 14 • Object File Format 385

Capabilities Section

 union {

 Elf32_Word c_val;

 Elf32_Addr c_ptr;

 } c_un;

} Elf32_Cap;

typedef struct {

 Elf64_Xword c_tag;

 union {

 Elf64_Xword c_val;

 Elf64_Addr c_ptr;

 } c_un;

} Elf64_Cap;

For each object with this type, c_tag controls the interpretation of c_un.

c_val

These objects represent integer values with various interpretations.

c_ptr

These objects represent program virtual addresses.

The following capabilities tags exist.

TABLE 27 ELF Capability Array Tags

Name Value c_un

CA_SUNW_NULL 0 Ignored

CA_SUNW_HW_1 1 c_val

CA_SUNW_SF_1 2 c_val

CA_SUNW_HW_2 3 c_val

CA_SUNW_PLAT 4 c_ptr

CA_SUNW_MACH 5 c_ptr

CA_SUNW_ID 6 c_ptr

CA_SUNW_NULL

Marks the end of a group of capabilities.

CA_SUNW_HW_1, CA_SUNW_HW_2

Indicates hardware capability values. The c_val element contains a value that represents
the associated hardware capabilities. On SPARC platforms, hardware capabilities are
defined in sys/auxv_SPARC.h. On x86 platforms, hardware capabilities are defined in sys/
auxv_386.h.

386 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Capabilities Section

CA_SUNW_SF_1

Indicates software capability values. The c_val element contains a value that represents the
associated software capabilities that are defined in sys/elf.h.

CA_SUNW_PLAT

Specifies a platform name. The c_ptr element contains the string table offset of a null-
terminated string, that defines a platform name.

CA_SUNW_MACH

Specifies a machine name. The c_ptr element contains the string table offset of a null-
terminated string, that defines a machine hardware name.

CA_SUNW_ID

Specifies a capability identifier name. The c_ptr element contains the string table offset
of a null-terminated string, that defines an identifier name. This element does not define a
capability, but assigns a unique symbolic name to the capability group by which the group
can be referenced. This identifier name is appended to any global symbol names that are
transformed to local symbols as part of the link-editors -z symbolcap processing. See
“Converting Object Capabilities to Symbol Capabilities” on page 195.

Relocatable objects can contain a capabilities section. The link-editor combines any capabilities
sections from multiple input relocatable objects into a single capabilities section. The link-
editor also allows capabilities to be defined at the time an object is built. See “Identifying
Capability Requirements” on page 180.

Multiple CA_SUNW_NULL terminated groups of capabilities can exist within an object. The first
group, starting at index 0, identifies the object capabilities. A dynamic object that defines object
capabilities, has a PT_SUNWCAP program header associated to the section. This program header
allows the runtime linker to validate the object against the system capabilities that are available
to the process. Dynamic objects that use different object capabilities can provide a flexible
runtime environment using filters. See “Capability Specific Shared Objects” on page 293.

Additional groups of capabilities identify symbol capabilities. Symbol capabilities allow
multiple instances of the same symbol to exist within an object. Each instance is associated to a
set of capabilities that must be available for the instance to be used. When symbol capabilities
are present, the sh_link element of the SHT_SUNW_cap section points to the associated
SHT_SUNW_capinfo table. Dynamic objects that use symbol capabilities can provide a flexible
means of enabling optimized functions for specific systems. See “Creating a Family of Symbol
Capabilities Functions” on page 189.

The SHT_SUNW_capinfo table parallels the associated symbol table. The sh_link element of the
SHT_SUNW_capinfo section points to the associated symbol table. Functions that are associated

Chapter 14 • Object File Format 387

Capabilities Section

with capabilities, have indexes within the SHT_SUNW_capinfo table that identify the capabilities
group within the SHT_SUNW_cap section.

Within a dynamic object, the sh_info element of the SHT_SUNW_capinfo section points to a
capabilities chain table, SHT_SUNW_capchain. This table is used by the runtime linker to locate
members of a capabilities family.

A SHT_SUNW_capinfo table entry has the following format. See sys/elf.h.

typedef Elf32_Word Elf32_Capinfo;

typedef Elf64_Xword Elf64_Capinfo;

Elements within this table are interpreted using the following macros. See sys/elf.h.

#define ELF32_C_SYM(info) ((info)>>8)

#define ELF32_C_GROUP(info) ((unsigned char)(info))

#define ELF32_C_INFO(sym, grp) (((sym)<<8)+(unsigned char)(grp))

#define ELF64_C_SYM(info) ((info)>>32)

#define ELF64_C_GROUP(info) ((Elf64_Word)(info))

#define ELF64_C_INFO(sym, grp) (((Elf64_Xword)(sym)<<32)+(Elf64_Xword)(grp))

A SHT_SUNW_capinfo entry group element contains the index of the SHT_SUNW_cap table that
this symbol is associated with. This element thus associates symbols to a capability group. A
reserved group index, CAPINFO_SUNW_GLOB, identifies a lead symbol of a family of capabilities
instances, that provides a default instance.

Name Value Meaning

CAPINFO_SUNW_GLOB 0xff Identifies a default symbol. This symbol is not associated
with any specific capabilities, but leads a symbol
capabilities family.

A SHT_SUNW_capinfo entry symbol element contains the index of the lead symbol associated
with this symbol. The group and symbol information allow the link-editor to process
families of capabilities symbols from relocatable objects, and construct the necessary
capabilities information in any output object. Within a dynamic object, the symbol element
of a lead symbol, one tagged with the group CAPINFO_SUNW_GLOB, is an index into the
SHT_SUNW_capchain table. This index allows the runtime linker to traverse the capabilities chain
table, starting at this index, and inspects each following entry until a 0 entry is found. The chain
entries contain symbol indices for each capabilities family member.

A dynamic object that defines symbol capabilities, has a DT_SUNW_CAP dynamic entry,
and a DT_SUNW_CAPINFO dynamic entry. These entries identify the SHT_SUNW_cap section,
and SHT_SUNW_capinfo section respectively. The object also contains DT_SUNW_CAPCHAIN,
DT_SUNW_CAPCHAINENT and DT_SUNW_CAPCHAINSZ entries that identify the SHT_SUNW_capchain

388 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Hash Table Section

section, the sections entry size and total size. These entries allow the runtime linker to establish
the best symbol to use, from a family of symbol capability instances.

An object can define only object capabilities, or can define only symbol capabilities, or
can define both types of capabilities. An object capabilities group starts at index 0. Symbol
capabilities groups start at any index other than 0. If an object defines symbol capabilities, but
no object capabilities, then a single CA_SUNW_NULL entry must exist at index 0 to indicate the
start of symbol capabilities.

Hash Table Section

A hash table consists of Elf32_Word or Elf64_Word objects that provide for symbol table
access. The SHT_HASH section provides this hash table. The symbol table to which the hashing is
associated is specified in the sh_link entry of the hash table's section header. Labels are used in
the following figure to help explain the hash table organization, but these labels are not part of
the specification.

FIGURE 10 Symbol Hash Table

The bucket array contains nbucket entries, and the chain array contains nchain entries.
Indexes start at 0. Both bucket and chain hold symbol table indexes. Chain table entries
parallel the symbol table. The number of symbol table entries should equal nchain, so symbol
table indexes also select chain table entries.

A hashing function that accepts a symbol name, returns a value to compute a bucket index.
Consequently, if the hashing function returns the value x for some name, bucket [x% nbucket]

Chapter 14 • Object File Format 389

Move Section

gives an index y. This index is an index into both the symbol table and the chain table. If the
symbol table entry is not the name desired, chain[y] gives the next symbol table entry with the
same hash value.

The chain links can be followed until the selected symbol table entry holds the desired name, or
the chain entry contains the value STN_UNDEF.

The hash function is as follows.

unsigned long

elf_Hash(const unsigned char *name)

{

 unsigned int h = 0, g;

 while (*name)

 {

 h = (h << 4) + *name++;

 if (g = h & 0xf0000000)

 h ^= g >> 24;

 h &= ~g;

 }

 return h;

}

Move Section
Typically, within ELF files, initialized data variables are maintained within the object file. If a
data variable is very large, and contains only a small number of initialized (nonzero) elements,
the entire variable is still maintained in the object file.

Objects that contain large partially initialized data variables, such as FORTRAN COMMON blocks,
can result in a significant disk space overhead. The SHT_SUNW_move section provides a
mechanism of compressing these data variables. This compression reduces the disk size of the
associated object.

The SHT_SUNW_move section contains multiple entries of the type ELF32_Move or Elf64_Move.
These entries allow data variables to be defined as tentative items (.bss). These items occupy
no space in the object file, but contribute to the object's memory image at runtime. The move
records establish how the memory image is initialized with data to construct the complete data
variable.

ELF32_Move and Elf64_Move entries are defined as follows.

typedef struct {

 Elf32_Lword m_value;

390 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Move Section

 Elf32_Word m_info;

 Elf32_Word m_poffset;

 Elf32_Half m_repeat;

 Elf32_Half m_stride;

} Elf32_Move;

#define ELF32_M_SYM(info) ((info)>>8)

#define ELF32_M_SIZE(info) ((unsigned char)(info))

#define ELF32_M_INFO(sym, size) (((sym)<<8)+(unsigned char)(size))

typedef struct {

 Elf64_Lword m_value;

 Elf64_Xword m_info;

 Elf64_Xword m_poffset;

 Elf64_Half m_repeat;

 Elf64_Half m_stride;

} Elf64_Move;

#define ELF64_M_SYM(info) ((info)>>8)

#define ELF64_M_SIZE(info) ((unsigned char)(info))

#define ELF64_M_INFO(sym, size) (((sym)<<8)+(unsigned char)(size))

The elements of these structures are as follows.

m_value

The initialization value, which is the value that is moved into the memory image.

m_info

The symbol table index, with respect to which the initialization is applied, together with the
size, in bytes, of the offset being initialized. The lower 8 bits of the member define the size,
which can be 1, 2, 4 or 8. The upper bytes define the symbol index.

m_poffset

The offset relative to the associated symbol to which the initialization is applied.

m_repeat

A repetition count.

m_stride

The stride count. This value indicates the number of units that should be skipped when
performing a repetitive initialization. A unit is the size of an initialization object as defined
by m_info. An m_stride value of zero indicates that the initialization be performed
contiguously for units.

The following data definition would traditionally consume 0x8000 bytes within an object file.

Chapter 14 • Object File Format 391

Move Section

typedef struct {

 int one;

 char two;

} Data;

Data move[0x1000] = {

 {0, 0}, {1, '1'}, {0, 0},

 {0xf, 'F'}, {0xf, 'F'}, {0, 0},

 {0xe, 'E'}, {0, 0}, {0xe, 'E'}

};

A SHT_SUNW_move section can be used to describe this data. The data item is defined within the
.bss section. The non-zero elements of the data item are initialized with the appropriate move
entries.

$ elfdump -s data | fgrep move

 [17] 0x20868 0x8000 OBJT GLOB 0 .bss move

$ elfdump -m data

Move Section: .SUNW_move

 symndx offset size repeat stride value with respect to

 [17] 0x44 4 1 1 0x45000000 move

 [17] 0x40 4 1 1 0xe move

 [17] 0x34 4 1 1 0x45000000 move

 [17] 0x30 4 1 1 0xe move

 [17] 0x1c 4 2 1 0x46000000 move

 [17] 0x18 4 2 1 0xf move

 [17] 0xc 4 1 1 0x31000000 move

 [17] 0x8 4 1 1 0x1 move

Move sections that are supplied from relocatable objects are concatenated and output in the
object being created by the link-editor. However, the following conditions cause the link-editor
to process the move entries. This processing expands the move entry contents into a traditional
data item.

■ The output file is a static executable.
■ The size of the move entries is greater than the size of the symbol into which the move data

would be expanded.
■ The -z nopartial option is in effect.

392 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Note Section

Note Section

A vendor or system engineer might need to mark an object file with special information that
other programs can check for conformance or compatibility. Sections of type SHT_NOTE and
program header elements of type PT_NOTE can be used for this purpose.

The note information in sections and program header elements holds any number of entries, as
shown in the following figure. For 64-bit objects and 32-bit objects, each entry is an array of 4-
byte words in the format of the target processor. Labels are shown in Figure 12, “Example Note
Segment,” on page 394 to help explain note information organization, but are not part of the
specification.

FIGURE 11 Note Information

namesz and name

The first namesz bytes in name contain a null-terminated character representation of the
entry's owner or originator. No formal mechanism exists for avoiding name conflicts.
By convention, vendors use their own name, such as "XYZ Computer Company", as the
identifier. If no name is present, namesz contains the value zero. Padding is present, if
necessary, to ensure 4-byte alignment for the descriptor. Such padding is not included in
namesz.

descsz and desc

The first descsz bytes in desc hold the note descriptor. If no descriptor is present, descsz
contains the value zero. Padding is present, if necessary, to ensure 4-byte alignment for the
next note entry. Such padding is not included in descsz.

Chapter 14 • Object File Format 393

Program Header Name Section

type

Provides the interpretation of the descriptor. Each originator controls its own types.
Multiple interpretations of a single type value can exist. A program must recognize both
the name and the type to understand a descriptor. Types currently must be nonnegative.

The note segment that is shown in the following figure holds two entries.

FIGURE 12 Example Note Segment

Note - The system reserves note information with no name (namesz == 0) and with a zero-
length name (name[0] == '\0'), but currently defines no types. All other names must have at
least one non-null character.

Program Header Name Section

A SHT_SUNW_phname section associates names to the elements of the program header array in an
ELF object. A program header name section provides an array of Elf32_Word or Elf64_Word

394 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Relocation Sections

elements, one per program header array element. Each element provides the index within
the associated SHT_STRTAB string table for the associated program header name. A value of
0 indicates a program header that does not have a name. The string table associated to the
SHT_SUNW_phname section must be the same string table associated with the SHT_DYNAMIC
section.

Relocation Sections

Relocation is the process of connecting symbolic references with symbolic definitions. For
example, when a program calls a function, the associated call instruction must transfer control
to the proper destination address at execution. Relocatable files must have information that
describes how to modify their section contents. This information allows dynamic object files to
hold the right information for a process's program image. Relocation entries are these data.

Relocation entries can have the following structure. See sys/elf.h.

typedef struct {

 Elf32_Addr r_offset;

 Elf32_Word r_info;

} Elf32_Rel;

typedef struct {

 Elf32_Addr r_offset;

 Elf32_Word r_info;

 Elf32_Sword r_addend;

} Elf32_Rela;

typedef struct {

 Elf64_Addr r_offset;

 Elf64_Xword r_info;

} Elf64_Rel;

typedef struct {

 Elf64_Addr r_offset;

 Elf64_Xword r_info;

 Elf64_Sxword r_addend;

} Elf64_Rela;

r_offset

This member gives the location at which to apply the relocation action. Different object
files have slightly different interpretations for this member.

Chapter 14 • Object File Format 395

Relocation Sections

For a relocatable file, the value indicates a section offset. The relocation section describes
how to modify another section in the file. Relocation offsets designate a storage unit within
the second section.
For a dynamic object, the value indicates the virtual address of the storage unit affected by
the relocation. This information makes the relocation entries more useful for the runtime
linker.
Although the interpretation of the member changes for different object files to allow
efficient access by the relevant programs, the meanings of the relocation types stay the
same.

r_info

This member gives both the symbol table index, with respect to which the relocation must
be made, and the type of relocation to apply. For example, a call instruction's relocation
entry holds the symbol table index of the function being called. If the index is STN_UNDEF,
the undefined symbol index, the relocation uses zero as the symbol value.
Relocation types are processor-specific. A relocation entry's relocation type or symbol table
index is the result of applying ELF32_R_TYPE or ELF32_R_SYM, respectively, to the entry's
r_info member.

#define ELF32_R_SYM(info) ((info)>>8)

#define ELF32_R_TYPE(info) ((unsigned char)(info))

#define ELF32_R_INFO(sym, type) (((sym)<<8)+(unsigned char)(type))

#define ELF64_R_SYM(info) ((info)>>32)

#define ELF64_R_TYPE(info) ((Elf64_Word)(info))

#define ELF64_R_INFO(sym, type) (((Elf64_Xword)(sym)<<32)+ \

 (Elf64_Xword)(type))

For 64-bit SPARC Elf64_Rela structures, the r_info field is further broken down into
an 8-bit type identifier and a 24-bit type dependent data field. For the existing relocation
types, the data field is zero. New relocation types, however, might make use of the data
bits.

#define ELF64_R_TYPE_DATA(info) (((Elf64_Xword)(info)<<32)>>40)

#define ELF64_R_TYPE_ID(info) (((Elf64_Xword)(info)<<56)>>56)

#define ELF64_R_TYPE_INFO(data, type) (((Elf64_Xword)(data)<<8)+ \

 (Elf64_Xword)(type))

r_addend

This member specifies a constant addend used to compute the value to be stored into the
relocatable field.

Rela entries contain an explicit addend. Entries of type Rel store an implicit addend in the
location to be modified. In all cases, the addend and the computed result use the same byte

396 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Relocation Sections

order. The relocation entry type and interpretation of the addend value are defined by the
platform specific ABI.

SPARC 32-bit SPARC uses Elf32_Rela relocation entries. 64-bit SPARC
uses Elf64_Rela relocation entries. The prior value of the field to be
relocated, added to the r_addend member, serves as the relocation
addend.

32-bit x86 32-bit x86 uses Elf32_Rel relocation entries. The field to be relocated
holds the addend.

64-bit x86 64-bit x86 uses Elf64_Rela relocation entries. The r_addend member
serves as the relocation addend. The prior value of the field to be
relocated is ignored.

A relocation section can reference two other sections: a symbol table, identified by the sh_link
section header entry, and a section to modify, identified by the sh_info section header entry.
“Section Headers” on page 353 specifies these relationships. A sh_info entry is required
when a relocation section exists in a relocatable object, but is optional for dynamic objects. The
relocation offset is sufficient to perform the relocation.

In all cases, the r_offset value designates the offset or virtual address of the first byte of the
affected storage unit. The relocation type specifies which bits to change and how to calculate
their values.

Relocation Calculations

The following notation is used to describe relocation computations.

A The addend used to compute the value of the relocatable field.

B The base address at which a shared object is loaded into memory during
execution. Generally, a shared object file is built with a base virtual
address of 0. However, the execution address of the shared object is
different. See “Program Header” on page 431.

G The offset into the global offset table at which the address of the
relocation entry's symbol resides during execution. See “Global Offset
Table (Processor-Specific)” on page 464.

GOT The address of the global offset table. See “Global Offset Table
(Processor-Specific)” on page 464.

Chapter 14 • Object File Format 397

Relocation Sections

L The section offset or address of the procedure linkage table
entry for a symbol. See “Procedure Linkage Table (Processor-
Specific)” on page 465.

P The section offset or address of the storage unit being relocated,
computed using r_offset.

S The value of the symbol whose index resides in the relocation entry.

Z The size of the symbol whose index resides in the relocation entry.

SPARC: Relocation Entries

On the SPARC platform, relocation entries apply to bytes (byte8), half-words (half16), words
(word32), and extended-words (xword64).

The dispn family of relocation fields (disp19, disp22, disp30) are word-aligned, sign-
extended, PC-relative displacements. All encode a value with its least significant bit in position
0 of the word, and differ only in the number of bits allocated to the value.

398 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Relocation Sections

The d2/disp8 and d2/disp14 variants encode 16 and 10-bit displacement values using two
non-contiguous bit fields, d2, and dispn.

The immn family of relocation fields (imm5, imm6, imm7, imm10, imm13, imm22) represent
unsigned integer constants. All encode a value with its least significant bit in position 0 of the
word, and differ only in the number of bits allocated to the value.

The simmn family of relocation fields (simm10, simm11, simm13, simm22) represent signed
integer constants. All encode a value with its least significant bit in position 0 of the word, and
differ only in the number of bits allocated to the value.

SPARC: Relocation Types

Field names in the following table tell whether the relocation type checks for overflow. A
calculated relocation value can be larger than the intended field, and a relocation type can verify
(V) the value fits or truncate (T) the result. As an example, V-simm13 means that the computed
value can not have significant, nonzero bits outside the simm13 field.

Chapter 14 • Object File Format 399

Relocation Sections

TABLE 28 SPARC: ELF Relocation Types

Name Value Field Calculation

R_SPARC_NONE 0 None None

R_SPARC_8 1 V-byte8 S + A

R_SPARC_16 2 V-half16 S + A

R_SPARC_32 3 V-word32 S + A

R_SPARC_DISP8 4 V-byte8 S + A - P

R_SPARC_DISP16 5 V-half16 S + A - P

R_SPARC_DISP32 6 V-disp32 S + A - P

R_SPARC_WDISP30 7 V-disp30 (S + A - P) >> 2

R_SPARC_WDISP22 8 V-disp22 (S + A - P) >> 2

R_SPARC_HI22 9 T-imm22 (S + A) >> 10

R_SPARC_22 10 V-imm22 S + A

R_SPARC_13 11 V-simm13 S + A

R_SPARC_LO10 12 T-simm13 (S + A) & 0x3ff

R_SPARC_GOT10 13 T-simm13 G & 0x3ff

R_SPARC_GOT13 14 V-simm13 G

R_SPARC_GOT22 15 T-simm22 G >> 10

R_SPARC_PC10 16 T-simm13 (S + A - P) & 0x3ff

R_SPARC_PC22 17 V-disp22 (S + A - P) >> 10

R_SPARC_WPLT30 18 V-disp30 (L + A - P) >> 2

R_SPARC_COPY 19 None Refer to the explanation following this table.

R_SPARC_GLOB_DAT 20 V-word32 S + A

R_SPARC_JMP_SLOT 21 None Refer to the explanation following this table.

R_SPARC_RELATIVE 22 V-word32 B + A

R_SPARC_UA32 23 V-word32 S + A

R_SPARC_PLT32 24 V-word32 L + A

R_SPARC_HIPLT22 25 T-imm22 (L + A) >> 10

R_SPARC_LOPLT10 26 T-simm13 (L + A) & 0x3ff

R_SPARC_PCPLT32 27 V-word32 L + A - P

R_SPARC_PCPLT22 28 V-disp22 (L + A - P) >> 10

R_SPARC_PCPLT10 29 V-simm13 (L + A - P) & 0x3ff

R_SPARC_10 30 V-simm10 S + A

R_SPARC_11 31 V-simm11 S + A

R_SPARC_HH22 34 V-imm22 (S + A) >> 42

R_SPARC_HM10 35 T-simm13 ((S + A) >> 32) & 0x3ff

R_SPARC_LM22 36 T-imm22 (S + A) >> 10

400 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Relocation Sections

Name Value Field Calculation

R_SPARC_PC_HH22 37 V-imm22 (S + A - P) >> 42

R_SPARC_PC_HM10 38 T-simm13 ((S + A - P) >> 32) & 0x3ff

R_SPARC_PC_LM22 39 T-imm22 (S + A - P) >> 10

R_SPARC_WDISP16 40 V-d2/disp14 (S + A - P) >> 2

R_SPARC_WDISP19 41 V-disp19 (S + A - P) >> 2

R_SPARC_7 43 V-imm7 S + A

R_SPARC_5 44 V-imm5 S + A

R_SPARC_6 45 V-imm6 S + A

R_SPARC_HIX22 48 V-imm22 ((S + A) ^ 0xffffffffffffffff) >> 10

R_SPARC_LOX10 49 T-simm13 ((S + A) & 0x3ff) | 0x1c00

R_SPARC_H44 50 V-imm22 (S + A) >> 22

R_SPARC_M44 51 T-imm10 ((S + A) >> 12) & 0x3ff

R_SPARC_L44 52 T-imm13 (S + A) & 0xfff

R_SPARC_REGISTER 53 V-word32 S + A

R_SPARC_UA16 55 V-half16 S + A

R_SPARC_GOTDATA_HIX22 80 V-imm22 ((S + A - GOT) >> 10) ^ ((S + A - GOT)

>> 31)

R_SPARC_GOTDATA_LOX10 81 T-imm13 ((S + A - GOT) & 0x3ff) | (((S + A -

GOT) >> 31) & 0x1c00)

R_SPARC_GOTDATA_OP_HIX22 82 T-imm22 (G >> 10) ^ (G >> 31)

R_SPARC_GOTDATA_OP_LOX10 83 T-imm13 (G & 0x3ff) | ((G >> 31) & 0x1c00)

R_SPARC_GOTDATA_OP 84 Word32 Refer to the explanation following this table.

R_SPARC_SIZE32 86 V-word32 Z + A

R_SPARC_WDISP10 88 V-d2/disp8 (S + A - P) >> 2

Note - Additional relocations are available for thread-local storage references. These relocations
are covered in Chapter 16, “Thread-Local Storage”.

Some relocation types have semantics beyond simple calculation.

R_SPARC_GOT10

Resembles R_SPARC_LO10, except that the relocation refers to the address of the symbol's
GOT entry. Additionally, R_SPARC_GOT10 instructs the link-editor to create a global offset
table.

Chapter 14 • Object File Format 401

Relocation Sections

R_SPARC_GOT13

Resembles R_SPARC_13, except that the relocation refers to the address of the symbol's GOT
entry. Additionally, R_SPARC_GOT13 instructs the link-editor to create a global offset table.

R_SPARC_GOT22

Resembles R_SPARC_22, except that the relocation refers to the address of the symbol's GOT
entry. Additionally, R_SPARC_GOT22 instructs the link-editor to create a global offset table.

R_SPARC_WPLT30

Resembles R_SPARC_WDISP30, except that the relocation refers to the address of the
symbol's procedure linkage table entry. Additionally, R_SPARC_WPLT30 instructs the link-
editor to create a procedure linkage table.

R_SPARC_COPY

Created by the link-editor for dynamic executables to preserve a read-only text segment.
The relocation offset member refers to a location in a writable segment. The symbol table
index specifies a symbol that should exist both in the current object file and in a shared
object. During execution, the runtime linker copies data associated with the shared object's
symbol to the location specified by the offset. See “Copy Relocations” on page 217.

R_SPARC_GLOB_DAT

Resembles R_SPARC_32, except that the relocation sets a GOT entry to the address of the
specified symbol. The special relocation type enables you to determine the correspondence
between symbols and GOT entries.

R_SPARC_JMP_SLOT

Created by the link-editor for dynamic objects to provide lazy binding. The relocation
offset member gives the location of a procedure linkage table entry. The runtime linker
modifies the procedure linkage table entry to transfer control to the designated symbol
address.

R_SPARC_RELATIVE

Created by the link-editor for dynamic objects. The relocation offset member gives the
location within a shared object that contains a value representing a relative address. The
runtime linker computes the corresponding virtual address by adding the virtual address
at which the shared object is loaded to the relative address. Relocation entries for this type
must specify a value of zero for the symbol table index.

R_SPARC_UA32

Resembles R_SPARC_32, except that the relocation refers to an unaligned word. The word to
be relocated must be treated as four separate bytes with arbitrary alignment, not as a word
aligned according to the architecture requirements.

402 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Relocation Sections

R_SPARC_LM22

Resembles R_SPARC_HI22, except that the relocation truncates rather than validates.

R_SPARC_PC_LM22

Resembles R_SPARC_PC22, except that the relocation truncates rather than validates.

R_SPARC_HIX22

Used with R_SPARC_LOX10 for executables that are confined to the uppermost 4 gigabytes
of the 64-bit address space. Similar to R_SPARC_HI22, but supplies ones complement of
linked value.

R_SPARC_LOX10

Used with R_SPARC_HIX22. Similar to R_SPARC_LO10, but always sets bits 10 through 12 of
the linked value.

R_SPARC_L44

Used with the R_SPARC_H44 and R_SPARC_M44 relocation types to generate a 44-bit absolute
addressing model.

R_SPARC_REGISTER

Used to initialize a register symbol. The relocation offset member contains the register
number to be initialized. A corresponding register symbol must exist for this register. The
symbol must be of type SHN_ABS.

R_SPARC_GOTDATA_OP_HIX22, R_SPARC_GOTDATA_OP_LOX10, and R_SPARC_GOTDATA_OP

These relocations provide for code transformations.

64-bit SPARC: Relocation Types

The following notation, used in relocation calculation, is unique to 64-bit SPARC.

O The secondary addend used to compute the value of the relocation
field. This addend is extracted from the r_info field by applying the
ELF64_R_TYPE_DATA macro.

The relocations that are listed in the following table extend, or alter, the relocations defined for
32-bit SPARC. See “Relocation Types” on page 399.

TABLE 29 64-bit SPARC: ELF Relocation Types

Name Value Field Calculation

R_SPARC_HI22 9 V-imm22 (S + A) >> 10

Chapter 14 • Object File Format 403

Relocation Sections

Name Value Field Calculation

R_SPARC_GLOB_DAT 20 V-xword64 S + A

R_SPARC_RELATIVE 22 V-xword64 B + A

R_SPARC_64 32 V-xword64 S + A

R_SPARC_OLO10 33 V-simm13 ((S + A) & 0x3ff) + O

R_SPARC_DISP64 46 V-xword64 S + A - P

R_SPARC_PLT64 47 V-xword64 L + A

R_SPARC_REGISTER 53 V-xword64 S + A

R_SPARC_UA64 54 V-xword64 S + A

R_SPARC_H34 85 V-imm22 (S + A) >> 12

R_SPARC_SIZE64 87 V-xword64 Z + A

The following relocation type has semantics beyond simple calculation.

R_SPARC_OLO10

Resembles R_SPARC_LO10, except that an extra offset is added to make full use of the 13-bit
signed immediate field.

x86: Relocation Entries

On x86, relocation entries apply to words (word32), and extended-words (xword64).

word32 specifies a 32-bit field occupying 4 bytes with an arbitrary byte alignment. These values
use the same byte order as other word values in the x86 architecture.

404 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Relocation Sections

32-bit x86: Relocation Types

The relocations that are listed in the following table are defined for 32-bit x86.

TABLE 30 32-bit x86: ELF Relocation Types

Name Value Field Calculation

R_386_NONE 0 None None

R_386_32 1 word32 S + A

R_386_PC32 2 word32 S + A - P

R_386_GOT32 3 word32 G + A

R_386_PLT32 4 word32 L + A - P

R_386_COPY 5 None Refer to the explanation following this table.

R_386_GLOB_DAT 6 word32 S

R_386_JMP_SLOT 7 word32 S

R_386_RELATIVE 8 word32 B + A

R_386_GOTOFF 9 word32 S + A - GOT

R_386_GOTPC 10 word32 GOT + A - P

R_386_32PLT 11 word32 L + A

R_386_16 20 word16 S + A

R_386_PC16 21 word16 S + A - P

R_386_8 22 word8 S + A

R_386_PC8 23 word8 S + A - P

R_386_SIZE32 38 word32 Z + A

Note - Additional relocations are available for thread-local storage references. These relocations
are covered in Chapter 16, “Thread-Local Storage”.

Some relocation types have semantics beyond simple calculation.

R_386_GOT32

Computes the distance from the base of the GOT to the symbol's GOT entry. The relocation
also instructs the link-editor to create a global offset table.

R_386_PLT32

Computes the address of the symbol's procedure linkage table entry and instructs the link-
editor to create a procedure linkage table.

Chapter 14 • Object File Format 405

Relocation Sections

R_386_COPY

Created by the link-editor for dynamic executables to preserve a read-only text segment.
The relocation offset member refers to a location in a writable segment. The symbol table
index specifies a symbol that should exist both in the current object file and in a shared
object. During execution, the runtime linker copies data associated with the shared object's
symbol to the location specified by the offset. See “Copy Relocations” on page 217.

R_386_GLOB_DAT

Used to set a GOT entry to the address of the specified symbol. The special relocation type
enable you to determine the correspondence between symbols and GOT entries.

R_386_JMP_SLOT

Created by the link-editor for dynamic objects to provide lazy binding. The relocation
offset member gives the location of a procedure linkage table entry. The runtime linker
modifies the procedure linkage table entry to transfer control to the designated symbol
address.

R_386_RELATIVE

Created by the link-editor for dynamic objects. The relocation offset member gives the
location within a shared object that contains a value representing a relative address. The
runtime linker computes the corresponding virtual address by adding the virtual address
at which the shared object is loaded to the relative address. Relocation entries for this type
must specify a value of zero for the symbol table index.

R_386_GOTOFF

Computes the difference between a symbol's value and the address of the GOT. The
relocation also instructs the link-editor to create the global offset table.

R_386_GOTPC

Resembles R_386_PC32, except that it uses the address of the GOT in its calculation. The
symbol referenced in this relocation normally is _GLOBAL_OFFSET_TABLE_, which also
instructs the link-editor to create the global offset table.

x64: Relocation Types

The relocations that are listed in the following table are defined for x64.

TABLE 31 x64: ELF Relocation Types

Name Value Field Calculation

R_AMD64_NONE 0 None None

406 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Relocation Sections

Name Value Field Calculation

R_AMD64_64 1 word64 S + A

R_AMD64_PC32 2 word32 S + A - P

R_AMD64_GOT32 3 word32 G + A

R_AMD64_PLT32 4 word32 L + A - P

R_AMD64_COPY 5 None Refer to the explanation following this table.

R_AMD64_GLOB_DAT 6 word64 S

R_AMD64_JUMP_SLOT 7 word64 S

R_AMD64_RELATIVE 8 word64 B + A

R_AMD64_GOTPCREL 9 word32 G + GOT + A - P

R_AMD64_32 10 word32 S + A

R_AMD64_32S 11 word32 S + A

R_AMD64_16 12 word16 S + A

R_AMD64_PC16 13 word16 S + A - P

R_AMD64_8 14 word8 S + A

R_AMD64_PC8 15 word8 S + A - P

R_AMD64_PC64 24 word64 S + A - P

R_AMD64_GOTOFF64 25 word64 S + A - GOT

R_AMD64_GOTPC32 26 word32 GOT + A + P

R_AMD64_SIZE32 32 word32 Z + A

R_AMD64_SIZE64 33 word64 Z + A

Note - Additional relocations are available for thread-local storage references. These relocations
are covered in Chapter 16, “Thread-Local Storage”.

The special semantics for most of these relocation types are identical to those used for x86.
Some relocation types have semantics beyond simple calculation.

R_AMD64_GOTPCREL

This relocations has different semantics from the R_AMD64_GOT32 or equivalent
R_386_GOTPC relocation. The x64 architecture provides an addressing mode that is relative
to the instruction pointer. Therefore, an address can be loaded from the GOT using a single
instruction.

The calculation for the R_AMD64_GOTPCREL relocation provides the difference between
the location in the GOT where the symbol's address is given, and the location where the
relocation is applied.

Chapter 14 • Object File Format 407

String Table Section

R_AMD64_32

The computed value is truncated to 32 bits. The link-editor verifies that the generated value
for the relocation zero-extends to the original 64-bit value.

R_AMD64_32S

The computed value is truncated to 32 bits. The link-editor verifies that the generated value
for the relocation sign-extends to the original 64-bit value.

R_AMD64_8, R_AMD64_16, R_AMD64_PC16, and R_AMD64_PC8

These relocations are not conformant to the x64 ABI, but are added here for documentation
purposes. The R_AMD64_8 relocation truncates the computed value to 8-bits. The
R_AMD64_16 relocation truncates the computed value to 16-bits.

String Table Section

String table sections hold null-terminated character sequences, commonly called strings. The
object file uses these strings to represent symbol and section names. You reference a string as an
index into the string table section.

The first byte, which is index zero, holds a null character. Likewise, a string table's last byte
holds a null character, ensuring null termination for all strings. A string whose index is zero
specifies either no name or a null name, depending on the context.

An empty string table section is permitted. The section header's sh_size member contains zero.
Nonzero indexes are invalid for an empty string table.

A section header's sh_name member holds an index into the section header string table section.
The section header string table is designated by the e_shstrndx member of the ELF header.
The following figure shows a string table with 25 bytes and the strings associated with various
indexes.

FIGURE 13 ELF String Table

408 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Symbol Table Section

The following table shows the strings of the string table that are shown in the preceding figure.

TABLE 32 ELF String Table Indexes

Index String

0 None

1 name

7 Variable

11 able

16 able

24 null string

As the example shows, a string table index can refer to any byte in the section. A string can
appear more than once. References to substrings can exist. A single string can be referenced
multiple times. Unreferenced strings also are allowed.

Symbol Table Section

An object file's symbol table holds information needed to locate and relocate a program's
symbolic definitions and symbolic references. A symbol table index is a subscript into this
array. Index 0 both designates the first entry in the table and serves as the undefined symbol
index. See Table 36, “ELF Symbol Table Entry: Index 0,” on page 416.

A symbol table entry has the following format. See sys/elf.h.

typedef struct {

 Elf32_Word st_name;

 Elf32_Addr st_value;

 Elf32_Word st_size;

 unsigned char st_info;

 unsigned char st_other;

 Elf32_Half st_shndx;

} Elf32_Sym;

typedef struct {

 Elf64_Word st_name;

 unsigned char st_info;

 unsigned char st_other;

 Elf64_Half st_shndx;

 Elf64_Addr st_value;

 Elf64_Xword st_size;

} Elf64_Sym;

Chapter 14 • Object File Format 409

Symbol Table Section

st_name

An index into the object file's symbol string table, which holds the character
representations of the symbol names. If the value is nonzero, the value represents a string
table index that gives the symbol name. Otherwise, the symbol table entry has no name.

st_value

The value of the associated symbol. The value can be an absolute value or an address,
depending on the context. See “Symbol Values” on page 416.

st_size

Many symbols have associated sizes. For example, a data object's size is the number of
bytes that are contained in the object. This member holds the value zero if the symbol has
no size or an unknown size.

st_info

The symbol's type and binding attributes. A list of the values and meanings appears in
Table 33, “ELF Symbol Binding, ELF32_ST_BIND and ELF64_ST_BIND,” on page 411.
The following code shows how to manipulate the values. See sys/elf.h.

#define ELF32_ST_BIND(info) ((info) >> 4)

#define ELF32_ST_TYPE(info) ((info) & 0xf)

#define ELF32_ST_INFO(bind, type) (((bind)<<4)+((type)&0xf))

#define ELF64_ST_BIND(info) ((info) >> 4)

#define ELF64_ST_TYPE(info) ((info) & 0xf)

#define ELF64_ST_INFO(bind, type) (((bind)<<4)+((type)&0xf))

st_other

A symbol's visibility. A list of the values and meanings appears in Table 35, “ELF Symbol
Visibility,” on page 414. The following code shows how to manipulate the values for
both 32-bit objects and 64-bit objects. Other bits are set to zero, and have no defined
meaning.

#define ELF32_ST_VISIBILITY(o) ((o)&0x3)

#define ELF64_ST_VISIBILITY(o) ((o)&0x3)

st_shndx

Every symbol table entry is defined in relation to some section. This member holds the
relevant section header table index. Some section indexes indicate special meanings. See
Table 16, “ELF Special Section Indexes,” on page 354.

If this member contains SHN_XINDEX, then the actual section header index is too large
to fit in this field. The actual value is contained in the associated section of type
SHT_SYMTAB_SHNDX. See “Extended Section Header” on page 370.

410 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Symbol Table Section

A symbol's binding, determined from its st_info field, determines the linkage visibility and
behavior.

TABLE 33 ELF Symbol Binding, ELF32_ST_BIND and ELF64_ST_BIND

Name Value

STB_LOCAL 0

STB_GLOBAL 1

STB_WEAK 2

STB_LOOS 10

STB_HIOS 12

STB_LOPROC 13

STB_HIPROC 15

STB_LOCAL

Local symbol. These symbols are not visible outside the object file containing their
definition. Local symbols of the same name can exist in multiple files without interfering
with each other.

STB_GLOBAL

Global symbols. These symbols are visible to all object files being combined. One file's
definition of a global symbol satisfies another file's undefined reference to the same global
symbol.

STB_WEAK

Weak symbols. These symbols resemble global symbols, but their definitions have lower
precedence.

STB_LOOS - STB_HIOS

Values in this inclusive range are reserved for operating system-specific semantics.

STB_LOPROC - STB_HIPROC

Values in this inclusive range are reserved for processor-specific semantics.

Global symbols and weak symbols differ in two major ways.

■ When the link-editor combines several relocatable object files, multiple definitions of
STB_GLOBAL symbols with the same name are not allowed. However, if a defined global
symbol exists, the appearance of a weak symbol with the same name does not cause an
error. The link-editor honors the global definition and ignores the weak definitions.

Chapter 14 • Object File Format 411

Symbol Table Section

Similarly, if a common symbol exists, the appearance of a weak symbol with the same name
does not cause an error. The link-editor uses the common definition and ignores the weak
definition. A common symbol has the st_shndx field holding SHN_COMMON. See “Symbol
Resolution” on page 43.

■ When the link-editor searches archive libraries, archive members that contain definitions of
undefined or tentative global symbols are extracted. The member's definition can be either a
global or a weak symbol.
The link-editor, by default, does not extract archive members to resolve undefined weak
symbols. Unresolved weak symbols have a zero value. The use of -z weakextract
overrides this default behavior. This options enables weak references to cause the extraction
of archive members.

Note - Weak symbols are intended primarily for use in system software. Their use in application
programs is discouraged.

In each symbol table, all symbols with STB_LOCAL binding precede the weak symbols and global
symbols. As “Section Headers” on page 353 describes, a symbol table section's sh_info
section header member holds the symbol table index for the first non-local symbol.

A symbol's type, as determined from its st_info field, provides a general classification for the
associated entity.

TABLE 34 ELF Symbol Types, ELF32_ST_TYPE and ELF64_ST_TYPE

Name Value

STT_NOTYPE 0

STT_OBJECT 1

STT_FUNC 2

STT_SECTION 3

STT_FILE 4

STT_COMMON 5

STT_TLS 6

STT_LOOS 10

STT_HIOS 12

STT_LOPROC 13

STT_SPARC_REGISTER 13

STT_HIPROC 15

STT_NOTYPE

The symbol type is not specified.

412 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Symbol Table Section

STT_OBJECT

This symbol is associated with a data object, such as a variable, an array, and so forth.

STT_FUNC

This symbol is associated with a function or other executable code.

STT_SECTION

This symbol is associated with a section. Symbol table entries of this type exist primarily
for relocation and normally have STB_LOCAL binding.

STT_FILE

Conventionally, the symbol's name gives the name of the source file that is associated with
the object file. A file symbol has STB_LOCAL binding and a section index of SHN_ABS. This
symbol, if present, precedes the other STB_LOCAL symbols for the file.

Symbol index 1 of the SHT_SYMTAB is an STT_FILE symbol representing the object file.
Conventionally, this symbol is followed by the files STT_SECTION symbols. These section
symbols are then followed by any global symbols that have been reduced to locals.

STT_COMMON

This symbol labels an uninitialized common block. This symbol is treated exactly the same
as STT_OBJECT.

STT_TLS

The symbol specifies a thread-local storage entity. When defined, this symbol gives the
assigned offset for the symbol, not the actual address.

For allocable sections, symbols of type STT_TLS can be referenced only by special thread-
local storage relocations. Thread-local storage relocations can reference only symbols
of type STT_TLS, or symbols of type STT_SECTION where the referenced section has the
SHF_TLS flag. See Chapter 16, “Thread-Local Storage” for details. A reference to a symbol
of type STT_TLS from a non-allocatable section does not have this restriction.

STT_LOOS - STT_HIOS

Values in this inclusive range are reserved for operating system-specific semantics.

STT_LOPROC - STT_HIPROC

Values in this inclusive range are reserved for processor-specific semantics.

A symbol's visibility is determined from its st_other field. This visibility can be specified in a
relocatable object. This visibility defines how that symbol can be accessed once the symbol has
become part of a dynamic object.

Chapter 14 • Object File Format 413

Symbol Table Section

TABLE 35 ELF Symbol Visibility

Name Value

STV_DEFAULT 0

STV_INTERNAL 1

STV_HIDDEN 2

STV_PROTECTED 3

STV_EXPORTED 4

STV_SINGLETON 5

STV_ELIMINATE 6

STV_DEFAULT

The visibility of symbols with the STV_DEFAULT attribute is as specified by the symbol's
binding type. Global symbols and weak symbols are visible outside of their defining
dynamic object. Local symbols are hidden. Global symbols and weak symbols can also be
preempted. These symbols can by interposed by definitions of the same name in another
component.

STV_PROTECTED

A symbol that is defined in the current component is protected if the symbol is visible
in other components, but cannot be preempted. Any reference to such a symbol from
within the defining component must be resolved to the definition in that component.
This resolution must occur, even if a symbol definition exists in another component that
would interpose by the default rules. A symbol with STB_LOCAL binding will not have
STV_PROTECTED visibility.

STV_HIDDEN

A symbol that is defined in the current component is hidden if its name is not visible to
other components. Such a symbol is necessarily protected. This attribute is used to control
the external interface of a component. An object named by such a symbol can still be
referenced from another component if its address is passed outside.
A hidden symbol contained in a relocatable object is either removed or converted to
STB_LOCAL binding when the object is included in a dynamic object.

STV_INTERNAL

This visibility attribute is interpreted the same as STV_HIDDEN.

STV_EXPORTED

This visibility attribute ensures that a symbol remains global. This visibility can not be
demoted, or eliminated by any other symbol visibility technique. A symbol with STB_LOCAL
binding will not have STV_EXPORTED visibility.

414 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Symbol Table Section

STV_SINGLETON

This visibility attribute ensures that a symbol remains global, and that a single instance
of the symbol definition is bound to by all references within a process. This visibility can
not be demoted, or eliminated by any other symbol visibility technique. A symbol with
STB_LOCAL binding will not have STV_SINGLETON visibility. A STV_SINGLETON can not be
directly bound to.

STV_ELIMINATE

This visibility attribute extends STV_HIDDEN. A symbol that is defined in the current
component as eliminate is not visible to other components. The symbol is not written to
any symbol table of a dynamic object from which the component is used.

The STV_SINGLETON visibility attribute can affect the resolution of symbols within an executable
or shared object during link-editing. Only one instance of a singleton can be bound to from any
reference within a process.

A STV_SINGLETON can be combined with a STV_DEFAULT visibility attribute, with the
STV_SINGLETON taking precedence. A STV_EXPORT can be combined with a STV_DEFAULT
visibility attribute, with the STV_EXPORT taking precedence. A STV_SINGLETON or STV_EXPORT
visibility can not be combined with any other visibility attribute. Such an event is deemed fatal
to the link-edit.

Other visibility attributes do not affect the resolution of symbols within a dynamic object during
link-editing. Such resolution is controlled by the binding type. Once the link-editor has chosen
its resolution, these attributes impose two requirements. Both requirements are based on the
fact that references in the code being linked might have been optimized to take advantage of the
attributes.

■ All of the non-default visibility attributes, when applied to a symbol reference, imply that
a definition to satisfy that reference must be provided within the object being linked. If this
type of symbol reference has no definition within the object being linked, then the reference
must have STB_WEAK binding. In this case, the reference is resolved to zero.

■ If any reference to a name, or definition of a name is a symbol with a non-default visibility
attribute, the visibility attribute is propagated to the resolving symbol in the object being
linked. If different visibility attributes are specified for distinct instances of a symbol, the
most constraining visibility attribute is propagated to the resolving symbol in the object
being linked. The attributes, ordered from least to most constraining, are STV_PROTECTED,
STV_HIDDEN and STV_INTERNAL.

If a symbol's value refers to a specific location within a section, the symbol's section index
member, st_shndx, holds an index into the section header table. As the section moves during
relocation, the symbol's value changes as well. References to the symbol continue to point to
the same location in the program. Some special section index values give other semantics.

Chapter 14 • Object File Format 415

Symbol Table Section

SHN_ABS

This symbol has an absolute value that does not change because of relocation.

SHN_COMMON, and SHN_AMD64_LCOMMON

This symbol labels a common block that has not yet been allocated. The symbol's value
gives alignment constraints, similar to a section's sh_addralign member. The link-editor
allocates the storage for the symbol at an address that is a multiple of st_value. The
symbol's size tells how many bytes are required.

SHN_UNDEF

This section table index indicates that the symbol is undefined. When the link-editor
combines this object file with another object that defines the indicated symbol, this file's
references to the symbol is bound to the definition.

As mentioned previously, the symbol table entry for index 0 (STN_UNDEF) is reserved. This entry
holds the values listed in the following table.

TABLE 36 ELF Symbol Table Entry: Index 0

Name Value Note

st_name 0 No name

st_value 0 Zero value

st_size 0 No size

st_info 0 No type, local binding

st_other 0  

st_shndx SHN_UNDEF No section

Symbol Values

Symbol table entries for different object file types have slightly different interpretations for the
st_value member.

■ In relocatable files, st_value holds alignment constraints for a symbol whose section index
is SHN_COMMON.

■ In relocatable files, st_value holds a section offset for a defined symbol. st_value is an
offset from the beginning of the section that st_shndx identifies.

■ In dynamic object files, st_value holds a virtual address. To make these files' symbols
more useful for the runtime linker, the section offset (file interpretation) gives way to a
virtual address (memory interpretation) for which the section number is irrelevant.

416 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Symbol Table Section

Although the symbol table values have similar meanings for different object files, the data allow
efficient access by the appropriate programs.

Symbol Table Layout and Conventions

The symbols in a symbol table are written in the following order.

■ Index 0 in any symbol table is used to represent undefined symbols. This first entry in a
symbol table is always completely zeroed. The symbol type is therefore STT_NOTYPE.

■ If the symbol table contains any local symbols, the second entry of the symbol table is an
STT_FILE symbol giving the name of the file.

■ Section symbols of type STT_SECTION.
■ Register symbols of type STT_REGISTER.
■ Global symbols that have been reduced to local scope.
■ For each input file that supplies local symbols, a STT_FILE symbol giving the name of the

input file, followed by the symbols in question.
■ The global symbols immediately follow the local symbols in the symbol table. The first

global symbol is identified by the symbol table sh_info value. Local and global symbols
are always kept separate in this manner, and cannot be mixed together.

Three symbol tables are of special interest in the Oracle Solaris OS.

.symtab (SHT_SYMTAB)

This symbol table contains every symbol that describes the associated ELF file. This
symbol table is typically non-allocable, and is therefore not available in the memory image
of the process.

Global symbols can be eliminated from the .symtab by using a mapfile together with
the ELIMINATE keyword. See “Symbol Elimination” on page 60, and “SYMBOL_SCOPE and
SYMBOL_VERSION Directives” on page 254.

.dynsym (SHT_DYNSYM)

This table contains a subset of the symbols from the .symtab table that are needed to
support dynamic linking. This symbol table is allocable, and is therefore available in the
memory image of the process.

The .dynsym table begins with the standard NULL symbol, followed by the files global
symbols. STT_FILE symbols are typically not present in this symbol table. STT_SECTION
symbols might be present if required by relocation entries.

Chapter 14 • Object File Format 417

Symbol Table Section

.SUNW_ldynsym (SHT_SUNW_LDYNSYM)

An optional symbol table that augments the information that is found in the .dynsym
table. The .SUNW_ldynsym table contains local function symbols. This symbol table is
allocable, and is therefore available in the memory image of the process. This section
allows debuggers to produce accurate stack traces in runtime contexts when the non-
allocable .symtab is not available, or has been stripped from the file. This section also
provides the runtime environment with additional symbolic information for use with
dladdr(3C).

A .SUNW_ldynsym table only exists when a .dynsym table is present. When both a
.SUNW_ldynsym section and a .dynsym section exist, the link-editor places their data regions
directly adjacent to each other, with the .SUNW_ldynsym first. This placement allows the two
tables to be viewed as a single larger contiguous symbol table. This symbol table follows the
standard layout rules that were enumerated previously.

The .SUNW_ldynsym table can be eliminated by using the link-editor -z noldynsym option.

Symbol Sort Sections

The dynamic symbol table formed by the adjacent .SUNW_ldynsym section and .dynsym section
can be used to map memory addresses to their corresponding symbol. This mapping can be used
to determine which function or variable that a given address represents. However, analyzing the
symbol tables to determine a mapping is complicated by the order in which symbols are written
to symbol tables. See “Symbol Table Layout and Conventions” on page 417. This layout
complicates associating an address to a symbol name in the follows ways.

■ Symbols are not sorted by address, which forces an expensive linear search of the entire
table.

■ More than one symbol can refer to a given address. Although these symbols are valid and
correct, the choice of which of these equivalent names to use by a debugging tool might not
be obvious. Different tools might use different alternative names. These issues are likely to
lead to user confusion.

■ Many symbols provide non-address information. These symbols should not be considered
as part of such a search.

Symbol sort sections are used to solve these problems. A symbol sort section is an array of
Elf32_Word or Elf64_Word objects. Each element of this array is an index into the combined
.SUNW_ldynsym – .dynsym symbol table. The elements of the array are sorted so that the
symbols that are reference are provided in sorted order. Only symbols representing functions or
variables are included. The symbols that are associated with a sort array can be displayed using
elfdump(1) with the -S option.

418 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adladdr-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1elfdump-1

Symbol Table Section

Regular symbols and thread-local storage symbols can not be sorted together. The value
of a regular symbol is the address of the function or the address of the variable the symbol
references. The value of a thread-local storage symbol is the variable's thread offset. Therefore,
regular symbols and thread-local storage symbols use two different sort sections.

.SUNW_dynsymsort

A section of type SHT_SUNW_SYMSORT, containing indexes to regular symbols in the
combined .SUNW_ldynsym – .dynsym symbol table, sorted by address. Symbols that do not
represent variables or functions are not included.

.SUNW_dyntlssort

A section of type SHT_SUNW_TLSSORT, containing indexes to TLS symbols in the combined
.SUNW_ldynsym – .dynsym symbol table, sorted by offset. This section is only produced if
the object file contains TLS symbols.

The link-editor uses the following rules, in the order that is shown, to select which symbols are
referenced by the sort sections.

■ The symbol must have a function or variable type: STT_FUNC, STT_OBJECT, STT_COMMON, or
STT_TLS.

■ The following symbols are always included, if present: _DYNAMIC, _end, _fini,
_GLOBAL_OFFSET_TABLE_, _init, _PROCEDURE_LINKAGE_TABLE_, and _start.

■ If a global symbol and a weak symbol are found to reference the same item, the weak
symbol is included and the global symbol is excluded.

■ The symbol must not be undefined.
■ The symbol must have a non-zero size.

These rules filter out automatically generated compiler and link-editor generated symbols. The
symbols that are selected are of interest to the user. However, two cases exist where manual
intervention might be necessary to improve the selection process.

■ The rules did not select a needed special symbol. For example, some special symbols have a
zero size.

■ Unwanted extra symbols are selected. For example, shared objects can define multiple
symbols that reference the same address and have the same size. These alias symbols
effectively reference the same item. You might prefer to include only one of a multiple
symbol family, within the sort section.

The mapfile keywords DYNSORT and NODYNSORT provide for additional control over symbol
selection. See “SYMBOL_SCOPE and SYMBOL_VERSION Directives” on page 254.

DYNSORT

Identifies a symbol that should be included in a sort section. The symbol type must be
STT_FUNC, STT_OBJECT, STT_COMMON, or STT_TLS.

Chapter 14 • Object File Format 419

Symbol Table Section

NODYNSORT

Identifies a symbol that should not be included in a sort section.

For example, an object might provide the following symbol table definitions.

$ elfdump -sN.symtab foo.so.1 | egrep "foo$|bar$"

 [37] 0x4b0 0x1c FUNC GLOB D 0 .text bar

 [38] 0x4b0 0x1c FUNC WEAK D 0 .text foo

The symbols foo and bar represent an aliases pair. By default, when creating a sorted array,
only the symbol foo is represented.

$ cc -o foo.so.1 -G foo.c

$ elfdump -S foo.so.1 | egrep "foo$|bar$"

 [13] 0x4b0 0x1c FUNC WEAK D 0 .text foo

In the case where a global and a weak symbol are found by the link-editor to reference the
same item, the weak symbol is normally kept. The symbol bar is omitted from the sorted array
because of the association to the weak symbol foo.

The following mapfile results in the symbol bar being represented in the sorted array. The
symbol foo is omitted.

$ cat mapfile

{

 global:

 bar = DYNSORT;

 foo = NODYNSORT;

};

$ cc -M mapfile -o foo.so.2 -Kpic -G foo.c

$ elfdump -S foo.so.2 | egrep "foo$|bar$"

 [13] 0x4b0 0x1c FUNC GLOB D 0 .text bar

The .SUNW_dynsymsort section and .SUNW_dyntlssort section, require that a .SUNW_ldynsym
section be present. Therefore, use of the -z noldynsym option also prevents the creation of any
sort section.

Register Symbols

The SPARC architecture supports register symbols, which are symbols that initialize a global
register. A symbol table entry for a register symbol contains the entries that are listed in the
following table.

420 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Syminfo Table Section

TABLE 37 SPARC: ELF Symbol Table Entry: Register Symbol

Field Meaning

st_name Index into the string table for the name of the symbol, or the value 0 for a scratch
register.

st_value Register number. See the ABI manual for integer register assignments.

st_size Unused (0).

st_info Bind is typically STB_GLOBAL, type must be STT_SPARC_REGISTER.

st_other Unused (0).

st_shndx SHN_ABS if this object initializes this register symbol,SHN_UNDEF otherwise.

The register values that are defined for SPARC are listed in the following table.

TABLE 38 SPARC: ELF Register Numbers

Name Value Meaning

STO_SPARC_REGISTER_G2 0x2 %g2

STO_SPARC_REGISTER_G3 0x3 %g3

Absence of an entry for a particular global register means that the particular global register is
not used at all by the object.

Syminfo Table Section

The syminfo section contains multiple entries of the type Elf32_Syminfo or Elf64_Syminfo.
The .SUNW_syminfo section contains one entry for every entry in the associated symbol table
(sh_link).

If this section is present in an object, additional symbol information is to be found by taking
the symbol index from the associated symbol table and using that to find the corresponding
Elf32_Syminfo entry or Elf64_Syminfo entry in this section. The associated symbol table and
the Syminfo table will always have the same number of entries.

Index 0 is used to store the current version of the Syminfo table, which is SYMINFO_CURRENT.
Since symbol table entry 0 is always reserved for the UNDEF symbol table entry, this usage does
not pose any conflicts.

An Syminfo entry has the following format. See sys/link.h.

typedef struct {

 Elf32_Half si_boundto;

Chapter 14 • Object File Format 421

Syminfo Table Section

 Elf32_Half si_flags;

} Elf32_Syminfo;

typedef struct {

 Elf64_Half si_boundto;

 Elf64_Half si_flags;

} Elf64_Syminfo;

si_boundto

An index to an entry in the .dynamic section, identified by the sh_info field, which
augments the Syminfo flags. For example, a DT_NEEDED entry identifies a dynamic
object associated with the Syminfo entry. The entries that follow are reserved values for
si_boundto.

Name Value Meaning

SYMINFO_BT_SELF 0xffff Symbol bound to self.

SYMINFO_BT_PARENT 0xfffe Symbol bound to parent. The parent is the first
object to cause this dynamic object to be loaded.

SYMINFO_BT_NONE 0xfffd Symbol has no special symbol binding.

SYMINFO_BT_EXTERN 0xfffc Symbol definition is external.

si_flags

This bit-field can have flags set, as shown in the following table.

Name Value Meaning

SYMINFO_FLG_DIRECT 0x01 Symbol reference has an association to the
object containing the definition.

SYMINFO_FLG_FILTER 0x02 Symbol definition acts as a standard filter.

SYMINFO_FLG_COPY 0x04 Symbol definition is the result of a copy-
relocation.

SYMINFO_FLG_LAZYLOAD 0x08 Symbol reference is to an object that should be
lazily loaded.

SYMINFO_FLG_DIRECTBIND 0x10 Symbol reference should be bound directly to
the definition.

SYMINFO_FLG_NOEXTDIRECT 0x20 Do not allow an external reference to directly
bind to this symbol definition.

SYMINFO_FLG_AUXILIARY 0x40 Symbol definition acts as an auxiliary filter.

SYMINFO_FLG_INTERPOSE 0x80 Symbol definition acts as an interposer. This
attribute is only applicable for executables.

SYMINFO_FLG_CAP 0x100 Symbol is associated with capabilities.

422 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Versioning Sections

Name Value Meaning

SYMINFO_FLG_DEFERRED 0x200 Symbol is associated with a deferred reference,
and should not be included in BIND_NOW
relocations.

SYMINFO_FLG_WEAKFILTER 0x400 Set in conjunction with SYMINFO_FLG_FILTER to
specify a weak standard filter. At runtime, the
behavior is identical to SYMINFO_FLG_FILTER. At
link-edit time, if unused dependency processing
is active, a weak filter symbol can be ignored in
favor of the same symbol from the target filtee.
See “Generating Weak Filters” on page 137

Versioning Sections

Objects created by the link-editor can contain two types of versioning information.

■ Version definitions provide associations of global symbols and are implemented using
sections of type SHT_SUNW_verdef and SHT_SUNW_versym.

■ Version dependencies indicate the version definition requirements from other object
dependencies and are implemented using sections of type SHT_SUNW_verneed and
SHT_SUNW_versym.

The structures that form these sections are defined in sys/link.h. Sections that contain
versioning information are named .SUNW_version.

Version Definition Section

This section is defined by the type SHT_SUNW_verdef. If this section exists, a SHT_SUNW_versym
section must also exist. These two structures provide an association of symbols to version
definitions within the file. See “Creating a Version Definition” on page 273. Elements of this
section have the following structure.

typedef struct {

 Elf32_Half vd_version;

 Elf32_Half vd_flags;

 Elf32_Half vd_ndx;

 Elf32_Half vd_cnt;

 Elf32_Word vd_hash;

 Elf32_Word vd_aux;

 Elf32_Word vd_next;

} Elf32_Verdef;

Chapter 14 • Object File Format 423

Versioning Sections

typedef struct {

 Elf32_Word vda_name;

 Elf32_Word vda_next;

} Elf32_Verdaux;

typedef struct {

 Elf64_Half vd_version;

 Elf64_Half vd_flags;

 Elf64_Half vd_ndx;

 Elf64_Half vd_cnt;

 Elf64_Word vd_hash;

 Elf64_Word vd_aux;

 Elf64_Word vd_next;

} Elf64_Verdef;

typedef struct {

 Elf64_Word vda_name;

 Elf64_Word vda_next;

} Elf64_Verdaux;

vd_version

This member identifies the version of the structure, as listed in the following table.

Name Value Meaning

VER_DEF_NONE 0 Invalid version.

VER_DEF_CURRENT >=1 Current version.

The value 1 signifies the original section format. Extensions require new versions with
higher numbers. The value of VER_DEF_CURRENT changes as necessary to reflect the current
version number.

vd_flags

This member holds version definition-specific information, as listed in the following table.

Name Value Meaning

VER_FLG_BASE 0x1 Version definition of the file.

VER_FLG_WEAK 0x2 Weak version identifier.

The base version definition is always present when version definitions, or symbol auto-
reduction, have been applied to the file. The base version provides a default version for

424 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Versioning Sections

the files reserved symbols. A weak version definition has no symbols associated with the
version. See “Creating a Weak Version Definition” on page 276.

vd_ndx

The version index. Each version definition has a unique index that is used to associate
SHT_SUNW_versym entries to the appropriate version definition.

vd_cnt

The number of elements in the Elf32_Verdaux array.

vd_hash

The hash value of the version definition name. This value is generated using the same
hashing function that is described in “Hash Table Section” on page 389.

vd_aux

The byte offset from the start of this Elf32_Verdef entry to the Elf32_Verdaux array of
version definition names. The first element of the array must exist. This element points
to the version definition string this structure defines. Additional elements can be present.
The number of elements is indicated by the vd_cnt value. These elements represent the
dependencies of this version definition. Each of these dependencies will have its own
version definition structure.

vd_next

The byte offset from the start of this Elf32_Verdef structure to the next Elf32_Verdef
entry.

vda_name

The string table offset to a null-terminated string, giving the name of the version definition.

vda_next

The byte offset from the start of this Elf32_Verdaux entry to the next Elf32_Verdaux entry.

Version Dependency Section

The version dependency section is defined by the type SHT_SUNW_verneed. This section
complements the dynamic dependency requirements of the file by indicating the version
definitions required from these dependencies. A recording is made in this section only if a
dependency contains version definitions. Elements of this section have the following structure.

typedef struct {

Chapter 14 • Object File Format 425

Versioning Sections

 Elf32_Half vn_version;

 Elf32_Half vn_cnt;

 Elf32_Word vn_file;

 Elf32_Word vn_aux;

 Elf32_Word vn_next;

} Elf32_Verneed;

typedef struct {

 Elf32_Word vna_hash;

 Elf32_Half vna_flags;

 Elf32_Half vna_other;

 Elf32_Word vna_name;

 Elf32_Word vna_next;

} Elf32_Vernaux;

typedef struct {

 Elf64_Half vn_version;

 Elf64_Half vn_cnt;

 Elf64_Word vn_file;

 Elf64_Word vn_aux;

 Elf64_Word vn_next;

} Elf64_Verneed;

typedef struct {

 Elf64_Word vna_hash;

 Elf64_Half vna_flags;

 Elf64_Half vna_other;

 Elf64_Word vna_name;

 Elf64_Word vna_next;

} Elf64_Vernaux;

vn_version

This member identifies the version of the structure, as listed in the following table.

Name Value Meaning

VER_NEED_NONE 0 Invalid version.

VER_NEED_CURRENT >=1 Current version.

The value 1 signifies the original section format. Extensions require new versions with
higher numbers. The value of VER_NEED_CURRENT changes as necessary to reflect the
current version number.

vn_cnt

The number of elements in the Elf32_Vernaux array.

426 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Versioning Sections

vn_file

The string table offset to a null-terminated string, providing the file name of a version
dependency. This name matches one of the .dynamic dependencies found in the file. See
“Dynamic Section” on page 445.

vn_aux

The byte offset, from the start of this Elf32_Verneed entry, to the Elf32_Vernaux array
of version definitions that are required from the associated file dependency. At least one
version dependency must exist. Additional version dependencies can be present, the
number being indicated by the vn_cnt value.

vn_next

The byte offset, from the start of this Elf32_Verneed entry, to the next Elf32_Verneed
entry.

vna_hash

The hash value of the version dependency name. This value is generated using the same
hashing function that is described in “Hash Table Section” on page 389.

vna_flags

Version dependency specific information, as listed in the following table.

Name Value Meaning

VER_FLG_WEAK 0x2 Weak version identifier.

VER_FLG_INFO 0x4 SHT_SUNW_versym reference exists for
informational purposes, and need not be
validated at runtime.

A weak version dependency indicates an original binding to a weak version definition.

vna_other

If non-zero, the version index assigned to this dependency version. This index is used
within the SHT_SUNW_versym to assign global symbol references to this version.
Versions of Solaris up to and including the Oracle Solaris 10 release, did not assign version
symbol indexes to dependency versions. In these objects, the value of vna_other is 0.

vna_name

The string table offset to a null-terminated string, giving the name of the version
dependency.

Chapter 14 • Object File Format 427

Versioning Sections

vna_next

The byte offset from the start of this Elf32_Vernaux entry to the next Elf32_Vernaux entry.

Version Symbol Section

The version symbol section is defined by the type SHT_SUNW_versym. This section consists of an
array of elements of the following structure.

typedef Elf32_Half Elf32_Versym;

typedef Elf64_Half Elf64_Versym;

The number of elements of the array must equal the number of symbol table entries that are
contained in the associated symbol table. This number is determined by the section's sh_link
value. Each element of the array contains a single index that can have the values shown in the
following table.

TABLE 39 ELF Version Dependency Indexes

Name Value Meaning

VER_NDX_LOCAL 0 Symbol has local scope.

VER_NDX_GLOBAL 1 Symbol has global scope and is assigned to the
base version definition.

VER_NDX_GLOBAL >1 Symbol has global scope and is assigned to a user-
defined version definition, SHT_SUNW_verdef, or a
version dependency, SHT_SUNW_verneed.

A symbol may be assigned the special reserved index 0. This index can be assigned for any of
the following reasons.

■ A non-global symbol is always assigned VER_NDX_LOCAL. However, this is rare in practice.
Versioning sections are usually created only in conjunction with the dynamic symbol table,
.dynsym, which only contains global symbols.

■ A global symbol defined within an object that does not have a SHT_SUNW_verdef version
definition section.

■ An undefined global symbol defined within an object that does not have a
SHT_SUNW_verneed version dependency section. Or, an undefined global symbol defined
within an object in which the version dependency section does not assign version indexes.

■ The first entry of a symbol table is always NULL. This entry always receives VER_NDX_LOCAL,
however the value has no particular meaning.

Versions defined by an object are assigned version indexes starting at 1 and incremented by 1
for each version. Index 1 is reserved for the first global version. If the object does not have a

428 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Versioning Sections

SHT_SUNW_verdef version definition section, then all the global symbols defined by the object
receive index 1. If the object does have a version definition section, then VER_NDX_GLOBAL
simply refers to the first such version.

Versions required by the object from other SHT_SUNW_verneed dependencies, are assigned
version indexes that start 1 past the final version definition index. These indexes are also
incremented by 1 for each version. Since index 1 is always reserved for VER_NDX_GLOBAL, the
first possible index for a dependency version is 2.

Versions of Solaris up to and including the Oracle Solaris 10 release, did not assign a version
index to a SHT_SUNW_verneed dependency version. In such an object, any symbol reference had
a version index of 0 indicating that no versioning information is available for that symbol.

Chapter 14 • Object File Format 429

430 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

 15 ♦ ♦ ♦ C H A P T E R 1 5

Program Loading and Dynamic Linking

This chapter describes the object file information and system actions that create running
programs. Most information here applies to all systems. Information specific to one processor
resides in sections marked accordingly.

Executables and shared objects statically represent application programs. To execute such
programs, the system uses the objects to create dynamic program representations, or process
images. A process image has segments that contain its text, data, stack, and so on. The
following major sections are provided.

■ “Program Header” on page 431 describes object file structures that are directly involved
in program execution. The primary data structure, a program header table, locates segment
images in the file and contains other information that is needed to create the memory image
of the program.

■ “Program Loading (Processor-Specific)” on page 438 describes the information used to
load a program into memory.

■ “Runtime Linker” on page 445 describes the information used to specify and resolve
symbolic references among the object files of the process image.

Program Header

The program header table of a dynamic object is an array of structures. Each structure
describes a segment or other information that the system needs to prepare the program for
execution. An object file segment contains one or more sections, as described in “Segment
Contents” on page 437.

Program headers are meaningful only for dynamic objects. A file specifies its own program
header size with the ELF header's e_phentsize and e_phnum members.

Program headers can have names associated to them. These names are assigned by the link
editor, or are specified by mapfiles that create mapped segments. See “Program Header Name
Section” on page 394.

Chapter 15 • Program Loading and Dynamic Linking 431

Program Header

A program header has the following structure. See sys/elf.h.

typedef struct {

 Elf32_Word p_type;

 Elf32_Off p_offset;

 Elf32_Addr p_vaddr;

 Elf32_Addr p_paddr;

 Elf32_Word p_filesz;

 Elf32_Word p_memsz;

 Elf32_Word p_flags;

 Elf32_Word p_align;

} Elf32_Phdr;

typedef struct {

 Elf64_Word p_type;

 Elf64_Word p_flags;

 Elf64_Off p_offset;

 Elf64_Addr p_vaddr;

 Elf64_Addr p_paddr;

 Elf64_Xword p_filesz;

 Elf64_Xword p_memsz;

 Elf64_Xword p_align;

} Elf64_Phdr;

p_type

The kind of segment this array element describes or how to interpret the array element's
information. Type values and their meanings are specified in Table 40, “ELF Segment
Types,” on page 433.

p_offset

The offset from the beginning of the file at which the first byte of the segment resides.

p_vaddr

The virtual address at which the first byte of the segment resides in memory.

p_paddr

The segment's physical address for systems in which physical addressing is relevant.
Because the system ignores physical addressing for application programs, this member has
unspecified contents for dynamic objects.

p_filesz

The number of bytes in the file image of the segment, which can be zero.

p_memsz

The number of bytes in the memory image of the segment, which can be zero.

432 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Program Header

p_flags

Flags that are relevant to the segment. Type values and their meanings are specified in
Table 41, “ELF Segment Flags,” on page 436.

p_align

Loadable process segments must have congruent values for p_vaddr and p_offset, modulo
the page size. This member gives the value to which the segments are aligned in memory
and in the file. Values 0 and 1 mean no alignment is required. Otherwise, p_align should
be a positive, integral power of 2, and p_vaddr should equal p_offset, modulo p_align.
See “Program Loading (Processor-Specific)” on page 438.

Some entries describe process segments. Other entries give supplementary information and
do not contribute to the process image. Segment entries can appear in any order, except as
explicitly noted. Defined type values are listed in the following table.

TABLE 40 ELF Segment Types

Name Value

PT_NULL 0

PT_LOAD 1

PT_DYNAMIC 2

PT_INTERP 3

PT_NOTE 4

PT_SHLIB 5

PT_PHDR 6

PT_TLS 7

PT_LOOS 0x60000000

PT_SUNW_UNWIND 0x6464e550

PT_SUNW_EH_FRAME 0x6474e550

PT_LOSUNW 0x6ffffff7

PT_SUNW_SYSSTAT_ZONE 0x6ffffff8

PT_SUNW_SYSSTAT 0x6ffffff8

PT_SUNW_RESERVE 0x6ffffff9

PT_SUNW_BSS 0x6ffffffa

PT_SUNW_STACK 0x6ffffffb

PT_SUNW_DTRACE 0x6ffffffc

PT_SUNW_CAP 0x6ffffffd

PT_HISUNW 0x6fffffff

PT_HIOS 0x6fffffff

PT_LOPROC 0x70000000

Chapter 15 • Program Loading and Dynamic Linking 433

Program Header

Name Value

PT_HIPROC 0x7fffffff

PT_NULL

Unused. Member values are undefined. This type enables the program header table to
contain ignored entries.

PT_LOAD

Specifies a loadable segment, described by p_filesz and p_memsz. The bytes from the
file are mapped to the beginning of the memory segment. If the segment's memory size
(p_memsz) is larger than the file size (p_filesz), the extra bytes are defined to hold the
value 0. These bytes follow the initialized area of the segment. The file size can not be
larger than the memory size. Loadable segment entries in the program header table appear
in ascending order, and are sorted on the p_vaddr member.

PT_DYNAMIC

Specifies dynamic linking information. See “Dynamic Section” on page 445.

PT_INTERP

Specifies the location and size of a null-terminated path name to invoke as an interpreter.
This type is mandatory for executables. This type can occur in shared objects. This type
cannot occur more than once in an executable. This type, if present, must precede any
loadable segment entries. See “Program Interpreter” on page 444 for details.

PT_NOTE

Specifies the location and size of auxiliary information. See “Note Section” on page 393
for details.

PT_SHLIB

Reserved but has unspecified semantics.

PT_PHDR

Specifies the location and size of the program header table, both in the file and in the
memory image of the program. This segment type cannot occur more than once in a file.
Moreover, this segment can occur only if the program header table is part of the memory
image of the program. This type, if present, must precede any loadable segment entry. See
“Program Interpreter” on page 444 for details.

PT_TLS

Specifies a thread-local storage template. See “Thread-Local Storage
Section” on page 476 for details.

434 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Program Header

PT_LOOS - PT_HIOS

Values in this inclusive range are reserved for OS-specific semantics.

PT_SUNW_UNWIND

This segment contains the stack unwind tables.

PT_SUNW_EH_FRAME

This segment contains the stack unwind table. PT_SUNW_EH_FRAME is equivalent to
PT_SUNW_EH_UNWIND.

PT_LOSUNW - PT_HISUNW

Values in this inclusive range are reserved for Sun-specific semantics.

PT_SUNW_SYSSTAT_ZONE

Reserved for internal use.

PT_SUNW_SYSSTAT

Reserved for internal use.

PT_SUNW_RESERVE

Memory reservation.

PT_SUNW_BSS

The same attributes as a PT_LOAD element and used to describe a .SUNW_bss section.

PT_SUNW_STACK

Describes a process stack. Only one PT_SUNW_STACK element can exist. Only access
permissions, as defined in the p_flags field, are meaningful.

PT_SUNW_DTRACE

Reserved for internal use by dtrace(1M).

PT_SUNW_CAP

Specifies capability requirements. See “Capabilities Section” on page 385 for details.

PT_LOPROC - PT_HIPROC

Values in this inclusive range are reserved for processor-specific semantics.

Note - Unless specifically required elsewhere, all program header segment types are optional. A
file's program header table can contain only those elements that are relevant to its contents.

Chapter 15 • Program Loading and Dynamic Linking 435

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1Mdtrace-1m

Program Header

Base Address

Dynamic objects have a base address, which is the lowest virtual address associated with
the memory image of the program's object file. One use of the base address is to relocate the
memory image of the program during dynamic linking.

The base address of a dynamic object is calculated during execution from three values: the
memory load address, the maximum page size, and the lowest virtual address of a program's
loadable segment. The virtual addresses in the program headers might not represent the
actual virtual addresses of the program's memory image. See “Program Loading (Processor-
Specific)” on page 438.

To compute the base address, you determine the memory address that are associated with the
lowest p_vaddr value for a PT_LOAD segment. You then obtain the base address by truncating
the memory address to the nearest multiple of the maximum page size. Depending on the kind
of file being loaded into memory, the memory address might not match the p_vaddr values.

Segment Permissions

A program to be loaded by the system must have at least one loadable segment, although this
restriction is not required by the file format. When the system creates loadable segment memory
images, the system gives access permissions, as specified in the p_flags member. All bits that
are included in the PF_MASKPROC mask are reserved for processor-specific semantics.

TABLE 41 ELF Segment Flags

Name Value Meaning

PF_X 0x1 Execute

PF_W 0x2 Write

PF_R 0x4 Read

PF_MASKPROC 0xf0000000 Unspecified

If a permission bit is 0, that bit's type of access is denied. Actual memory permissions
depend on the memory management unit, which can vary between systems. Although all
flag combinations are valid, the system can grant more access than requested. In no case,
however, will a segment have write permission unless this permission is specified explicitly.
The following table lists both the exact flag interpretation and the allowable flag interpretation.

436 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Program Header

TABLE 42 ELF Segment Permissions

Flags Value Exact Allowable

None 0 All access denied All access denied

PF_X 1 Execute only Read, execute

PF_W 2 Write only Read, write, execute

PF_W + PF_X 3 Write, execute Read, write, execute

PF_R 4 Read only Read, execute

PF_R + PF_X 5 Read, execute Read, execute

PF_R + PF_W 6 Read, write Read, write, execute

PF_R + PF_W + PF_X 7 Read, write, execute Read, write, execute

For example, typical text segments have read and execute, but not write permissions. Data
segments normally have read, write, and execute permissions.

Segment Contents

An object file segment consists of one or more sections, though this fact is transparent to
the program header. Whether the file segment holds one section or many sections, is also
immaterial to program loading. Nonetheless, various data must be present for program
execution, dynamic linking, and so on. The following diagrams illustrate segment contents in
general terms. The order and membership of sections within a segment can vary.

Text segments contain read-only instructions and data. Data segments contain writable-data and
instructions. See Table 24, “ELF Special Sections,” on page 375 for a list of all special sections.

A PT_DYNAMIC program header element points at the .dynamic section. The .got and .plt
sections also hold information related to position-independent code and dynamic linking.

The .plt can reside in a text or a data segment, depending on the processor. See “Global
Offset Table (Processor-Specific)” on page 464 and “Procedure Linkage Table (Processor-
Specific)” on page 465 for details.

Sections of type SHT_NOBITS occupy no space in the file, but contribute to the segment's
memory image. Normally, these uninitialized data reside at the end of the segment, thereby
making p_memsz larger than p_filesz in the associated program header element.

Chapter 15 • Program Loading and Dynamic Linking 437

Program Loading (Processor-Specific)

Program Loading (Processor-Specific)

As the system creates or augments a process image, the system logically copies a file's segment
to a virtual memory segment. When, and if, the system physically reads the file depends on the
program's execution behavior, system load, and so forth.

A process does not require a physical page unless the process references the logical page during
execution. Processes commonly leave many pages unreferenced. Therefore, delaying physical
reads can improve system performance. To obtain this efficiency in practice, dynamic objects
must have segment images whose file offsets and virtual addresses are congruent, modulo the
page size.

Virtual addresses and file offsets for 32-bit segments are congruent modulo 64K (0x10000).
Virtual addresses and file offsets for 64-bit segments are congruent modulo 1 Mbyte
(0x100000). By aligning segments to the maximum page size, the files are suitable for paging
regardless of physical page size.

By default, 64-bit SPARC programs are linked with a starting address of 0x100000000. The
whole program is located above 4 gigabytes, including its text, data, heap, stack, and shared
object dependencies. This helps ensure that 64-bit programs are correct because the program
will fault in the least significant 4 gigabytes of its address space if the program truncates any
of its pointers. While 64-bit programs are linked above 4 gigabytes, you can still link programs
below 4 gigabytes by using a mapfile and the -M option to the link-editor. See /usr/lib/ld/
sparcv9/map.below4G.

The following figure presents the SPARC version of the dynamic executable.

438 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Program Loading (Processor-Specific)

FIGURE 14 SPARC: Dynamic Executable File (64K alignment)

The following table defines the loadable segment elements for the previous figure.

TABLE 43 SPARC: ELF Program Header Segments (64K alignment)

Member Text Data

p_type PT_LOAD PT_LOAD

p_offset 0x0 0x4000

p_vaddr 0x10000 0x24000

p_paddr Unspecified Unspecified

p_filesize 0x3a82 0x4f5

p_memsz 0x3a82 0x10a4

p_flags PF_R + PF_X PF_R + PF_W + PF_X

p_align 0x10000 0x10000

The following figure presents the x86 version of the dynamic executable.

Chapter 15 • Program Loading and Dynamic Linking 439

Program Loading (Processor-Specific)

FIGURE 15 32-bit x86: Dynamic Executable File (64K alignment)

The following table defines the loadable segment elements for the previous figure.

TABLE 44 32-bit x86: ELF Program Header Segments (64K alignment)

Member Text Data

p_type PT_LOAD PT_LOAD

p_offset 0x0 0x4000

p_vaddr 0x8050000 0x8064000

p_paddr Unspecified Unspecified

p_filesize 0x32fd 0x3a0

p_memsz 0x32fd 0xdc4

p_flags PF_R + PF_X PF_R + PF_W + PF_X

p_align 0x10000 0x10000

440 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Program Loading (Processor-Specific)

The example's file offsets and virtual addresses are congruent modulo the maximum page size
for both text and data. Up to four file pages hold impure text or data depending on page size and
file system block size.

■ The first text page contains the ELF header, the program header table, and other
information.

■ The last text page holds a copy of the beginning of data.
■ The first data page has a copy of the end of text.
■ The last data page can contain file information not relevant to the running process.

Logically, the system enforces the memory permissions as if each segment were complete
and separate The segments addresses are adjusted to ensure that each logical page in the
address space has a single set of permissions. In the previous examples, the region of the file
holding the end of text and the beginning of data is mapped twice: at one virtual address for
text and at a different virtual address for data.

Note - The previous examples reflect typical Oracle Solaris OS binaries that have their text
segments rounded.

The end of the data segment requires special handling for uninitialized data, which the system
defines to begin with zero values. If a file's last data page includes information not in the
logical memory page, the extraneous data must be set to zero, not the unknown contents of the
executable file.

Impurities in the other three pages are not logically part of the process image. Whether the
system expunges these impurities is unspecified. The memory image for this program is
shown in the following figures, assuming 4 Kbyte (0x1000) pages. For simplicity, these figures
illustrate only one page size.

Chapter 15 • Program Loading and Dynamic Linking 441

Program Loading (Processor-Specific)

FIGURE 16 32-bit SPARC: Process Image Segments

442 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Program Loading (Processor-Specific)

FIGURE 17 x86: Process Image Segments

One aspect of segment loading differs between dynamic executables and position-independent
executables and shared objects. Dynamic executable segments typically contain absolute code.
For the process to execute correctly, the segments must reside at the virtual addresses used to
create the executable file. The system uses the p_vaddr values unchanged as virtual addresses.

On the other hand, position-independent executables and shared object segments typically
contain position-independent code. This code enables a segment's virtual address change
between different processes, without invalidating execution behavior.

Chapter 15 • Program Loading and Dynamic Linking 443

Program Loading (Processor-Specific)

Though the system chooses virtual addresses for individual processes, it maintains the relative
positions of the segments. Because position-independent code uses relative addressing between
segments, the difference between virtual addresses in memory must match the difference
between virtual addresses in the file.

The following tables show possible shared object virtual address assignments for several
processes, illustrating constant relative positioning. The tables also include the base address
computations.

TABLE 45 32-bit SPARC: ELF Example Shared Object Segment Addresses

Source Text Data Base Address

File 0x0 0x4000 0x0

Process 1 0xc0000000 0xc0024000 0xc0000000

Process 2 0xc0010000 0xc0034000 0xc0010000

Process 3 0xd0020000 0xd0024000 0xd0020000

Process 4 0xd0030000 0xd0034000 0xd0030000

TABLE 46 32-bit x86: ELF Example Shared Object Segment Addresses

Source Text Data Base Address

File 0x0 0x4000 0x0

Process 1 0x8000000 0x8004000 0x80000000

Process 2 0x80081000 0x80085000 0x80081000

Process 3 0x900c0000 0x900c4000 0x900c0000

Process 4 0x900c6000 0x900ca000 0x900c6000

Program Interpreter

An executable that initiates dynamic linking can have one PT_INTERP program header element.
During exec(2), the system retrieves a path name from the PT_INTERP segment and creates
the initial process image from the interpreter file's segments. The interpreter is responsible for
receiving control from the system and providing an environment for the application program.

In the Oracle Solaris OS, the interpreter is known as the runtime linker, ld.so.1(1).

444 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ld.so.1-1

Runtime Linker

Runtime Linker

When creating a dynamic object that initiates dynamic linking, the link-editor adds a program
header element of type PT_INTERP to an executable file. This element instructing the system to
invoke the runtime linker as the program interpreter. exec(2) and the runtime linker cooperate to
create the process image for the program.

The link-editor constructs various data for dynamic objects that assist the runtime linker. These
data reside in loadable segments, thus making the data available during execution. These
segments include.

■ A .dynamic section with type SHT_DYNAMIC that holds various data. The structure residing at
the beginning of the section holds the addresses of other dynamic linking information.

■ The .got and .plt sections with type SHT_PROGBITS that hold two separate tables: the
global offset table and the procedure linkage table. Sections that follow, explain how the
runtime linker uses and changes the tables to create memory images for object files.

■ The .hash section with type SHT_HASH that holds a symbol hash table.

Shared objects can occupy virtual memory addresses that are different from the addresses that
are recorded in the file's program header table. The runtime linker relocates the memory image,
updating absolute addresses before the application gains control.

Dynamic Section
If an object file participates in dynamic linking, its program header table will have an element
of type PT_DYNAMIC. This segment contains the .dynamic section. A special symbol, _DYNAMIC,
labels the section, which contains an array of the following structures. See sys/link.h.

typedef struct {

 Elf32_Sword d_tag;

 union {

 Elf32_Word d_val;

 Elf32_Addr d_ptr;

 Elf32_Off d_off;

 } d_un;

} Elf32_Dyn;

typedef struct {

 Elf64_Xword d_tag;

 union {

 Elf64_Xword d_val;

 Elf64_Addr d_ptr;

Chapter 15 • Program Loading and Dynamic Linking 445

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2exec-2

Dynamic Section

 } d_un;

} Elf64_Dyn;

For each object with this type, d_tag controls the interpretation of d_un.

d_val

These objects represent integer values with various interpretations.

d_ptr

These objects represent program virtual addresses. A file's virtual addresses might not
match the memory virtual addresses during execution. When interpreting addresses
contained in the dynamic structure, the runtime linker computes actual addresses, based on
the original file value and the memory base address. For consistency, files do not contain
relocation entries to correct addresses in the dynamic structure.

In general, the value of each dynamic tag determines the interpretation of the d_un union. This
convention provides for simpler interpretation of dynamic tags by third party tools. A tag whose
value is an even number indicates a dynamic section entry that uses d_ptr. A tag whose value
is an odd number indicates a dynamic section entry that uses d_val, or that the tag uses neither
d_ptr nor d_val. Tags with values in the following special compatibility ranges do not follow
these rules. Third party tools must handle these exception ranges explicitly on an item by item
basis.

■ Tags whose values are less than the special value DT_ENCODING.
■ Tags with values that fall between DT_LOOS and DT_SUNW_ENCODING.
■ Tags with values that fall between DT_HIOS and DT_LOPROC.

The following table summarizes the tag requirements for dynamic objects. If a tag is marked
mandatory, then the dynamic linking array must have an entry of that type. Likewise, optional
means an entry for the tag can appear but is not required.

TABLE 47 ELF Dynamic Array Tags

Name Value d_un Executable Shared Object

DT_NULL 0 Ignored Mandatory Mandatory

DT_NEEDED 1 d_val Optional Optional

DT_PLTRELSZ 2 d_val Optional Optional

DT_PLTGOT 3 d_ptr Optional Optional

DT_HASH 4 d_ptr Mandatory Mandatory

DT_STRTAB 5 d_ptr Mandatory Mandatory

DT_SYMTAB 6 d_ptr Mandatory Mandatory

DT_RELA 7 d_ptr Mandatory Optional

DT_RELASZ 8 d_val Mandatory Optional

446 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Dynamic Section

Name Value d_un Executable Shared Object

DT_RELAENT 9 d_val Mandatory Optional

DT_STRSZ 10 d_val Mandatory Mandatory

DT_SYMENT 11 d_val Mandatory Mandatory

DT_INIT 12 d_ptr Optional Optional

DT_FINI 13 d_ptr Optional Optional

DT_SONAME 14 d_val Ignored Optional

DT_RPATH 15 d_val Optional Optional

DT_SYMBOLIC 16 Ignored Ignored Optional

DT_REL 17 d_ptr Mandatory Optional

DT_RELSZ 18 d_val Mandatory Optional

DT_RELENT 19 d_val Mandatory Optional

DT_PLTREL 20 d_val Optional Optional

DT_DEBUG 21 d_ptr Optional Ignored

DT_TEXTREL 22 Ignored Optional Optional

DT_JMPREL 23 d_ptr Optional Optional

DT_BIND_NOW 24 Ignored Optional Optional

DT_INIT_ARRAY 25 d_ptr Optional Optional

DT_FINI_ARRAY 26 d_ptr Optional Optional

DT_INIT_ARRAYSZ 27 d_val Optional Optional

DT_FINI_ARRAYSZ 28 d_val Optional Optional

DT_RUNPATH 29 d_val Optional Optional

DT_FLAGS 30 d_val Optional Optional

DT_ENCODING 32 Unspecified Unspecified Unspecified

DT_PREINIT_ARRAY 32 d_ptr Optional Ignored

DT_PREINIT_ARRAYSZ 33 d_val Optional Ignored

DT_MAXPOSTAGS 34 Unspecified Unspecified Unspecified

DT_LOOS 0x6000000d Unspecified Unspecified Unspecified

DT_SUNW_AUXILIARY 0x6000000d d_ptr Unspecified Optional

DT_SUNW_RTLDINF 0x6000000e d_ptr Optional Optional

DT_SUNW_FILTER 0x6000000e d_ptr Unspecified Optional

DT_SUNW_CAP 0x60000010 d_ptr Optional Optional

DT_SUNW_SYMTAB 0x60000011 d_ptr Optional Optional

DT_SUNW_SYMSZ 0x60000012 d_val Optional Optional

DT_SUNW_ENCODING 0x60000013 Unspecified Unspecified Unspecified

DT_SUNW_SORTENT 0x60000013 d_val Optional Optional

DT_SUNW_SYMSORT 0x60000014 d_ptr Optional Optional

Chapter 15 • Program Loading and Dynamic Linking 447

Dynamic Section

Name Value d_un Executable Shared Object

DT_SUNW_SYMSORTSZ 0x60000015 d_val Optional Optional

DT_SUNW_TLSSORT 0x60000016 d_ptr Optional Optional

DT_SUNW_TLSSORTSZ 0x60000017 d_val Optional Optional

DT_SUNW_CAPINFO 0x60000018 d_ptr Optional Optional

DT_SUNW_STRPAD 0x60000019 d_val Optional Optional

DT_SUNW_CAPCHAIN 0x6000001a d_ptr Optional Optional

DT_SUNW_LDMACH 0x6000001b d_val Optional Optional

DT_SUNW_CAPCHAINENT 0x6000001d d_val Optional Optional

DT_SUNW_CAPCHAINSZ 0x6000001f d_val Optional Optional

DT_SUNW_PHNAME 0x60000020 d_ptr Optional Optional

DT_SUNW_PARENT 0x60000021 d_val Optional Optional

DT_SUNW_SX_ASLR 0x60000023 d_val Optional Ignored

DT_SUNW_RELAX 0x60000025 d_val Optional Optional

DT_SUNW_SX_NXHEAP 0x60000029 d_val Optional Ignored

DT_SUNW_SX_NXSTACK 0x6000002b d_val Optional Ignored

DT_SUNW_SX_ADIHEAP 0x6000002d d_val Optional Ignored

DT_HIOS 0x6ffff000 Unspecified Unspecified Unspecified

DT_VALRNGLO 0x6ffffd00 Unspecified Unspecified Unspecified

DT_CHECKSUM 0x6ffffdf8 d_val Optional Optional

DT_PLTPADSZ 0x6ffffdf9 d_val Optional Optional

DT_MOVEENT 0x6ffffdfa d_val Optional Optional

DT_MOVESZ 0x6ffffdfb d_val Optional Optional

DT_POSFLAG_1 0x6ffffdfd d_val Optional Optional

DT_SYMINSZ 0x6ffffdfe d_val Optional Optional

DT_SYMINENT 0x6ffffdff d_val Optional Optional

DT_VALRNGHI 0x6ffffdff Unspecified Unspecified Unspecified

DT_ADDRRNGLO 0x6ffffe00 Unspecified Unspecified Unspecified

DT_CONFIG 0x6ffffefa d_ptr Optional Optional

DT_DEPAUDIT 0x6ffffefb d_ptr Optional Optional

DT_AUDIT 0x6ffffefc d_ptr Optional Optional

DT_PLTPAD 0x6ffffefd d_ptr Optional Optional

DT_MOVETAB 0x6ffffefe d_ptr Optional Optional

DT_SYMINFO 0x6ffffeff d_ptr Optional Optional

DT_ADDRRNGHI 0x6ffffeff Unspecified Unspecified Unspecified

DT_RELACOUNT 0x6ffffff9 d_val Optional Optional

DT_RELCOUNT 0x6ffffffa d_val Optional Optional

448 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Dynamic Section

Name Value d_un Executable Shared Object

DT_FLAGS_1 0x6ffffffb d_val Optional Optional

DT_VERDEF 0x6ffffffc d_ptr Optional Optional

DT_VERDEFNUM 0x6ffffffd d_val Optional Optional

DT_VERNEED 0x6ffffffe d_ptr Optional Optional

DT_VERNEEDNUM 0x6fffffff d_val Optional Optional

DT_LOPROC 0x70000000 Unspecified Unspecified Unspecified

DT_SPARC_REGISTER 0x70000001 d_val Optional Optional

DT_AUXILIARY 0x7ffffffd d_val Unspecified Optional

DT_USED 0x7ffffffe d_val Optional Optional

DT_FILTER 0x7fffffff d_val Unspecified Optional

DT_HIPROC 0x7fffffff Unspecified Unspecified Unspecified

DT_NULL

Marks the end of the _DYNAMIC array.

DT_NEEDED

The DT_STRTAB string table offset of a null-terminated string, giving the name of a needed
dependency. The dynamic array can contain multiple entries of this type. The relative order
of these entries is significant, though their relation to entries of other types is not. See
“Shared Object Dependencies” on page 84.

DT_PLTRELSZ

The total size, in bytes, of the relocation entries associated with the procedure linkage table.
See “Procedure Linkage Table (Processor-Specific)” on page 465.

DT_PLTGOT

An address associated with the procedure linkage table or the global offset table. See
“Procedure Linkage Table (Processor-Specific)” on page 465 and “Global Offset Table
(Processor-Specific)” on page 464.

DT_HASH

The address of the symbol hash table. This table refers to the symbol table indicated by the
DT_SYMTAB element. See “Hash Table Section” on page 389.

DT_STRTAB

The address of the string table. Symbol names, dependency names, and other strings
required by the runtime linker reside in this table. See “String Table Section” on page 408.

Chapter 15 • Program Loading and Dynamic Linking 449

Dynamic Section

DT_SYMTAB

The address of the symbol table. See “Symbol Table Section” on page 409.

DT_RELA

The address of a relocation table. See “Relocation Sections” on page 395.
An object file can have multiple relocation sections. When creating the relocation table
for a dynamic object, the link-editor concatenates those sections to form a single table.
Although the sections can remain independent in the object file, the runtime linker sees a
single table. When the runtime linker creates the process image for an executable file or
adds a shared object to the process image, the runtime linker reads the relocation table and
performs the associated actions.

This element requires the DT_RELASZ and DT_RELAENT elements also be present. When
relocation is mandatory for a file, either DT_RELA or DT_REL can occur.

DT_RELASZ

The total size, in bytes, of the DT_RELA relocation table.

DT_RELAENT

The size, in bytes, of the DT_RELA relocation entry.

DT_STRSZ

The total size, in bytes, of the DT_STRTAB string table.

DT_SYMENT

The size, in bytes, of the DT_SYMTAB symbol entry.

DT_INIT

The address of an initialization function. See “Initialization and Termination
Sections” on page 40.

DT_FINI

The address of a termination function. See “Initialization and Termination
Sections” on page 40.

DT_SONAME

The DT_STRTAB string table offset of a null-terminated string, identifying the name of the
shared object. See “Recording a Shared Object Name” on page 128.

450 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Dynamic Section

DT_RPATH

The DT_STRTAB string table offset of a null-terminated library search path string. This
element's use has been superseded by DT_RUNPATH. See “Directories Searched by the
Runtime Linker” on page 84.

DT_SYMBOLIC

Indicates the object contains symbolic bindings that were applied during its link-edit. This
elements use has been superseded by the DF_SYMBOLIC flag. See “Using the -B symbolic
Option” on page 220.

DT_REL

Similar to DT_RELA, except its table has implicit addends. This element requires that the
DT_RELSZ and DT_RELENT elements also be present.

DT_RELSZ

The total size, in bytes, of the DT_REL relocation table.

DT_RELENT

The size, in bytes, of the DT_REL relocation entry.

DT_PLTREL

Indicates the type of relocation entry to which the procedure linkage table refers, either
DT_REL or DT_RELA. All relocations in a procedure linkage table must use the same
relocation. See “Procedure Linkage Table (Processor-Specific)” on page 465. This
element requires a DT_JMPREL element also be present.

DT_DEBUG

Used for debugging.

DT_TEXTREL

Indicates that one or more relocation entries might request modifications to a non-writable
segment, and the runtime linker can prepare accordingly. This element's use has been
superseded by the DF_TEXTREL flag. See “Position-Independent Code” on page 206.

DT_JMPREL

The address of relocation entries that are associated solely with the procedure linkage table.
See “Procedure Linkage Table (Processor-Specific)” on page 465. The separation of
these relocation entries enables the runtime linker to ignore these entries when the object is
loaded with lazy binding enabled. This element requires the DT_PLTRELSZ and DT_PLTREL
elements also be present.

Chapter 15 • Program Loading and Dynamic Linking 451

Dynamic Section

DT_POSFLAG_1

Various state flags which are applied to the DT_ element immediately following. See Table
50, “ELF Dynamic Position Flags, DT_POSFLAG_1,” on page 462.

DT_BIND_NOW

Indicates that all relocations for this object must be processed before returning control
to the program. The presence of this entry takes precedence over a directive to use lazy
binding when specified through the environment or by means of dlopen(3C). This
element's use has been superseded by the DF_BIND_NOW flag. See “When Relocations are
Performed” on page 216.

DT_INIT_ARRAY

The address of an array of pointers to initialization functions. This element requires
that a DT_INIT_ARRAYSZ element also be present. See “Initialization and Termination
Sections” on page 40.

DT_FINI_ARRAY

The address of an array of pointers to termination functions. This element requires
that a DT_FINI_ARRAYSZ element also be present. See “Initialization and Termination
Sections” on page 40.

DT_INIT_ARRAYSZ

The total size, in bytes, of the DT_INIT_ARRAY array.

DT_FINI_ARRAYSZ

The total size, in bytes, of the DT_FINI_ARRAY array.

DT_RUNPATH

The DT_STRTAB string table offset of a null-terminated library search path string. See
“Directories Searched by the Runtime Linker” on page 84.

DT_FLAGS

Flag values specific to this object. See Table 48, “ELF Dynamic Flags, DT_FLAGS,” on page
458.

DT_ENCODING

Dynamic tag values that are greater than or equal to DT_ENCODING, and less than or equal to
DT_LOOS, follow the rules for the interpretation of the d_un union.

DT_PREINIT_ARRAY

The address of an array of pointers to pre-initialization functions. This element requires
that a DT_PREINIT_ARRAYSZ element also be present. This array is processed only in an

452 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c

Dynamic Section

executable. This array is ignored if contained in a shared object. See “Initialization and
Termination Sections” on page 40.

DT_PREINIT_ARRAYSZ

The total size, in bytes, of the DT_PREINIT_ARRAY array.

DT_MAXPOSTAGS

The number of positive dynamic array tag values.

DT_LOOS - DT_HIOS

Values in this inclusive range are reserved for operating system-specific semantics. All
such values follow the rules for the interpretation of the d_un union.

DT_SUNW_AUXILIARY

The DT_STRTAB string table offset of a null-terminated string that names one or more per-
symbol, auxiliary filtees. See “Generating Auxiliary Filters” on page 139.

DT_SUNW_RTLDINF

Reserved for internal use by the runtime-linker.

DT_SUNW_FILTER

The DT_STRTAB string table offset of a null-terminated string that names one or more per-
symbol, standard filtees. See “Generating Standard Filters” on page 134.

DT_SUNW_CAP

The address of the capabilities section. See “Capabilities Section” on page 385.

DT_SUNW_SYMTAB

The address of the symbol table containing local function symbols that augment the
symbols provided by DT_SYMTAB. These symbols are always adjacent to, and immediately
precede the symbols provided by DT_SYMTAB. See “Symbol Table Section” on page 409.

DT_SUNW_SYMSZ

The combined size of the symbol tables given by DT_SUNW_SYMTAB and DT_SYMTAB.

DT_SUNW_ENCODING

Dynamic tag values that are greater than or equal to DT_SUNW_ENCODING, and less than or
equal to DT_HIOS, follow the rules for the interpretation of the d_un union.

DT_SUNW_SORTENT

The size, in bytes, of the DT_SUNW_SYMSORT and DT_SUNW_TLSSORT symbol sort entries.

Chapter 15 • Program Loading and Dynamic Linking 453

Dynamic Section

DT_SUNW_SYMSORT

The address of the array of symbol table indices that provide sorted access to function and
variable symbols in the symbol table referenced by DT_SUNW_SYMTAB. See “Symbol Sort
Sections” on page 418.

DT_SUNW_SYMSORTSZ

The total size, in bytes, of the DT_SUNW_SYMSORT array.

DT_SUNW_TLSSORT

The address of the array of symbol table indices that provide sorted access to thread
local symbols in the symbol table referenced by DT_SUNW_SYMTAB. See “Symbol Sort
Sections” on page 418.

DT_SUNW_TLSSORTSZ

The total size, in bytes, of the DT_SUNW_TLSSORT array.

DT_SUNW_CAPINFO

The address of the array of symbol table indices that provide the association of symbols to
their capability requirements. See “Capabilities Section” on page 385.

DT_SUNW_STRPAD

The total size, in bytes, of the unused reserved space at the end of the dynamic string table.
If DT_SUNW_STRPAD is not present in an object, no reserved space is available.

DT_SUNW_CAPCHAIN

The address of the array of capability family indices. Each family of indices is terminated
with a 0 entry.

DT_SUNW_LDMACH

The machine architecture of the link-editor that produced the object. DT_SUNW_LDMACH uses
the same EM_ integer values used for the e_machine field of the ELF header. See “ELF
Header” on page 346. DT_SUNW_LDMACH is used to identify the class, 32-bit or 64-bit, and
the platform of the link-editor that built the object. This information is not used by the
runtime linker, but exists purely for documentation.

DT_SUNW_SYMTAB_SHNDX

The address of the SHT_SYMTAB_SHNDX section associated with the dynamic symbol table
referenced by the DT_SUNW_SYMTAB element. See “Extended Section Header” on page 370.

DT_SUNW_CAPCHAINENT

The size, in bytes, of the DT_SUNW_CAPCHAIN entries.

454 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Dynamic Section

DT_SUNW_CAPCHAINSZ

The total size, in bytes, or the DT_SUNW_CAPCHAIN chain.

DT_SUNW_PHNAME

Array of DT_STRTAB string table offsets, one per program header array element, providing
program header names. See “Program Header Name Section” on page 394.

DT_SUNW_PARENT

The DT_STRTAB string table offset of a null terminated parent object name. The name
provided is a basename, containing only a file name without any path component. See
“Parent Objects” on page 78.

DT_SUNW_SX_ASLR

The Address Space Layout Randomization (ASLR) security extension (SX) values specific
to this object. See sxadm(1M) and Table 51, “ELF Security Extension (SX) Values,
DT_SUNW_SX_xxx,” on page 463.

DT_SUNW_RELAX

The validity checking relaxation options, that were specified with the link-editor's -z relax
option, when the object was built. See Table 52, “ELF Dynamic Relaxation Flags,
DT_SUNW_RELAX,” on page 463.

DT_SUNW_SX_NXHEAP

The non-executable heap (NXHEAP) security extension (SX) values specific to this object.
See sxadm(1M) and Table 51, “ELF Security Extension (SX) Values, DT_SUNW_SX_xxx,” on
page 463.

DT_SUNW_SX_NXSTACK

The non-executable stack (NXSTACK) security extension (SX) values specific to
this object. See sxadm(1M) and Table 51, “ELF Security Extension (SX) Values,
DT_SUNW_SX_xxx,” on page 463.

DT_SUNW_SX_ADIHEAP

The ADI memory allocator (ADIHEAP) security extension (SX) values specific to
this object. See sxadm(1M) and Table 51, “ELF Security Extension (SX) Values,
DT_SUNW_SX_xxx,” on page 463.

DT_SYMINFO

The address of the symbol information table. This element requires that the DT_SYMINENT
and DT_SYMINSZ elements also be present. See “Syminfo Table Section” on page 421.

Chapter 15 • Program Loading and Dynamic Linking 455

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1Msxadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1Msxadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1Msxadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1Msxadm-1m

Dynamic Section

DT_SYMINENT

The size, in bytes, of the DT_SYMINFO information entry.

DT_SYMINSZ

The total size, in bytes, of the DT_SYMINFO table.

DT_VERDEF

The address of the version definition table. Elements within this table contain indexes into
the string table DT_STRTAB. This element requires that the DT_VERDEFNUM element also be
present. See “Version Definition Section” on page 423.

DT_VERDEFNUM

The number of entries in the DT_VERDEF table.

DT_VERNEED

The address of the version dependency table. Elements within this table contain indexes
into the string table DT_STRTAB. This element requires that the DT_VERNEEDNUM element also
be present. See “Version Dependency Section” on page 425.

DT_VERNEEDNUM

The number of entries in the DT_VERNEEDNUM table.

DT_RELACOUNT

Indicates the RELATIVE relocation count, which is produced from the concatenation of all
Elf32_Rela, or Elf64_Rela relocations. See “Combined Relocation Sections” on page 216.

DT_RELCOUNT

Indicates the RELATIVE relocation count, which is produced from the concatenation of all
Elf32_Rel relocations. See “Combined Relocation Sections” on page 216.

DT_AUXILIARY

The DT_STRTAB string table offset of a null-terminated string that names one or more
auxiliary filtees. See “Generating Auxiliary Filters” on page 139.

DT_FILTER

The DT_STRTAB string table offset of a null-terminated string that names one or more
standard filtees. See “Generating Standard Filters” on page 134.

DT_CHECKSUM

A simple checksum of selected sections of the object. See gelf_checksum(3ELF).

456 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Dgelf-checksum-3elf

Dynamic Section

DT_MOVEENT

The size, in bytes, of the DT_MOVETAB move entries.

DT_MOVESZ

The total size, in bytes, of the DT_MOVETAB table.

DT_MOVETAB

The address of a move table. This element requires that the DT_MOVEENT and DT_MOVESZ
elements also be present. See “Move Section” on page 390.

DT_CONFIG

The DT_STRTAB string table offset of a null-terminated string defining a configuration file.
The configuration file is only meaningful in an executable, and is typically unique to this
object. See “Configuring the Default Search Paths” on page 87.

DT_DEPAUDIT

The DT_STRTAB string table offset of a null-terminated string defining one or more audit
libraries. See “Runtime Linker Auditing Interface” on page 311.

DT_AUDIT

The DT_STRTAB string table offset of a null-terminated string defining one or more audit
libraries. See “Runtime Linker Auditing Interface” on page 311.

DT_FLAGS_1

Flag values specific to this object. See Table 49, “ELF Dynamic Flags, DT_FLAGS_1,” on
page 458.

DT_VALRNGLO - DT_VALRNGHI

Values in this inclusive range use the d_un.d_val field of the dynamic structure.

DT_ADDRRNGLO - DT_ADDRRNGHI

Values in this inclusive range use the d_un.d_ptr field of the dynamic structure. If any
adjustment is made to the ELF object after the object has been built, these entries must be
updated accordingly.

DT_SPARC_REGISTER

The index of an STT_SPARC_REGISTER symbol within the DT_SYMTAB symbol table. One
dynamic entry exists for every STT_SPARC_REGISTER symbol in the symbol table. See
“Register Symbols” on page 420.

DT_LOPROC - DT_HIPROC

Values in this inclusive range are reserved for processor-specific semantics.

Chapter 15 • Program Loading and Dynamic Linking 457

Dynamic Section

Except for the DT_NULL element at the end of the dynamic array and the relative order of
DT_NEEDED and DT_POSFLAG_1 elements, entries can appear in any order. Tag values not
appearing in the table are reserved.

TABLE 48 ELF Dynamic Flags, DT_FLAGS

Name Value Meaning

DF_ORIGIN 0x1 $ORIGIN processing required

DF_SYMBOLIC 0x2 Symbolic symbol resolution required

DF_TEXTREL 0x4 Text relocations exist

DF_BIND_NOW 0x8 Non-lazy binding required

DF_STATIC_TLS 0x10 Object uses static thread-local storage scheme

DF_ORIGIN

Indicates that the object requires $ORIGIN processing. See “Locating Associated
Dependencies” on page 298.

DF_SYMBOLIC

Indicates that the object contains symbolic bindings that were applied during its link-edit.
See “Using the -B symbolic Option” on page 220.

DF_TEXTREL

Indicates that one or more relocation entries might request modifications to a non-writable
segment, and the runtime linker can prepare accordingly. See “Position-Independent
Code” on page 206.

DF_BIND_NOW

Indicates that all relocations for this object must be processed before returning control
to the program. The presence of this entry takes precedence over a directive to use lazy
binding when specified through the environment or by means of dlopen(3C). See “When
Relocations are Performed” on page 216.

DF_STATIC_TLS

Indicates that the object contains code using a static thread-local storage scheme. Static
thread-local storage should not be used in objects that are dynamically loaded, either using
dlopen(3C), or using lazy loading.

TABLE 49 ELF Dynamic Flags, DT_FLAGS_1

Name Value Meaning

DF_1_NOW 0x1 Perform complete relocation processing.

458 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c

Dynamic Section

Name Value Meaning

DF_1_GLOBAL 0x2 Unused.

DF_1_GROUP 0x4 Indicate object is a member of a group.

DF_1_NODELETE 0x8 Object cannot be deleted from a process.

DF_1_LOADFLTR 0x10 Ensure immediate loading of filtees.

DF_1_INITFIRST 0x20 Objects' initialization occurs first.

DF_1_NOOPEN 0x40 Object can not be used with dlopen(3C).

DF_1_ORIGIN 0x80 $ORIGIN processing required.

DF_1_DIRECT 0x100 Direct bindings enabled.

DF_1_INTERPOSE 0x400 Object is an interposer.

DF_1_NODEFLIB 0x800 Ignore the default library search path.

DF_1_NODUMP 0x1000 Object cannot be dumped with dldump(3C).

DF_1_CONFALT 0x2000 Object is a configuration alternative.

DF_1_ENDFILTEE 0x4000 Filtee terminates filter's search.

DF_1_DISPRELDNE 0x8000 Displacement relocation has been carried out.

DF_1_DISPRELPND 0x10000 Displacement relocation pending.

DF_1_NODIRECT 0x20000 Object contains non-direct bindings.

DF_1_IGNMULDEF 0x40000 Internal use.

DF_1_NOKSYMS 0x80000 Internal use.

DF_1_NOHDR 0x100000 Internal use.

DF_1_EDITED 0x200000 Object has been modified since originally built.

DF_1_NORELOC 0x400000 Internal use.

DF_1_SYMINTPOSE 0x800000 Individual symbol interposers exist.

DF_1_GLOBAUDIT 0x1000000 Establish global auditing.

DF_1_SINGLETON 0x2000000 Singleton symbols exist.

DF_1_STUB 0x4000000 Object is a stub.

DF_1_PIE 0x8000000 Object is a position-independent executable.

DF_1_WEAKFILTER 0x20000000 Object is a weak standard filter.

DF_1_NOW

Indicates that all relocations for this object must be processed before returning control
to the program. The presence of this flag takes precedence over a directive to use lazy
binding when specified through the environment or by means of dlopen(3C). See “When
Relocations are Performed” on page 216.

Chapter 15 • Program Loading and Dynamic Linking 459

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adldump-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c

Dynamic Section

DF_1_GROUP

Indicates that the object is a member of a group. This flag is recorded in the object using
the link-editor's -B group option. See “Object Hierarchies” on page 114.

DF_1_NODELETE

Indicates that the object cannot be deleted from a process. If the object is loaded in a
process, either directly or as a dependency, with dlopen(3C), the object cannot be unloaded
with dlclose(3C). This flag is recorded in the object using the link-editor -z nodelete
option.

DF_1_LOADFLTR

Meaningful only for filters. Indicates that all associated filtees be processed immediately.
This flag is recorded in the object using the link-editor's -z loadfltr option. See “Filtee
Processing” on page 143.

DF_1_INITFIRST

Indicates that this object's initialization section be run before any other objects loaded. This
flag is intended for specialized system libraries only, and is recorded in the object using the
link-editor's -z initfirst option.

DF_1_NOOPEN

Indicates that the object cannot be added to a running process with dlopen(3C). This flag is
recorded in the object using the link-editor's -z nodlopen option.

DF_1_ORIGIN

Indicates that the object requires $ORIGIN processing. See “Locating Associated
Dependencies” on page 298.

DF_1_DIRECT

Indicates that the object should use direct binding information. See Chapter 7, “Direct
Bindings”.

DF_1_INTERPOSE

Indicates that the objects symbol table is to interpose before all symbols except the primary
load object, which is typically the executable. This flag is recorded with the link-editor's
-z interpose option. See “Runtime Interposition” on page 91.

DF_1_NODEFLIB

Indicates that the search for dependencies of this object ignores any default library search
paths. This flag is recorded in the object using the link-editor's -z nodefaultlib option.
See “Directories Searched by the Runtime Linker” on page 39.

460 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlclose-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c

Dynamic Section

DF_1_NODUMP

Indicates that this object is not dumped by dldump(3C). Candidates for this option include
objects with no relocations that might get included when generating alternative objects
using crle(1). This flag is recorded in the object using the link-editor's -z nodump option.

DF_1_CONFALT

Identifies this object as a configuration alternative object generated by crle(1). This flag
triggers the runtime linker to search for a configuration file $ORIGIN/ld.config.app-
name.

DF_1_ENDFILTEE

Meaningful only for filtees. Terminates a filters search for any further filtees. This flag
is recorded in the object using the link-editor's -z endfiltee option. See “Reducing
Capability Filtee Searches” on page 295, and “Reducing Instruction Set Filtee
Searches” on page 297.

DF_1_DISPRELDNE

Indicates that this object has displacement relocations applied. The displacement relocation
records no longer exist within the object as the records were discarded once the relocation
was applied. See “Displacement Relocations” on page 63.

DF_1_DISPRELPND

Indicates that this object has displacement relocations pending. The displacement
relocations exits within the object so the relocation can be completed at runtime. See
“Displacement Relocations” on page 63.

DF_1_NODIRECT

Indicates that this object contains symbols that can not be directly bound to. See
“SYMBOL_SCOPE and SYMBOL_VERSION Directives” on page 254.

DF_1_IGNMULDEF

Reserved for internal use by the kernel runtime-linker.

DF_1_NOKSYMS

Reserved for internal use by the kernel runtime-linker.

DF_1_NOHDR

Reserved for internal use by the kernel runtime-linker.

Chapter 15 • Program Loading and Dynamic Linking 461

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adldump-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1crle-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1crle-1

Dynamic Section

DF_1_EDITED

Indicates that this object has been edited or has been modified since the objects original
construction by the link-editor. This flag serves as a warning to debuggers that an object
might have had an arbitrary change made since the object was originally built.

DF_1_NORELOC

Reserved for internal use by the kernel runtime-linker.

DF_1_SYMINTPOSE

Indicates that the object contains individual symbols that should interpose before all
symbols except the primary load object, which is typically the executable. This flag
is recorded when the object is built using a mapfile and the INTERPOSE keyword. See
“SYMBOL_SCOPE and SYMBOL_VERSION Directives” on page 254.

DF_1_GLOBAUDIT

Indicates that the executable requires global auditing. See “Recording Global
Auditors” on page 315.

DF_1_SINGLETON

Indicates that the object defines, or makes reference to singleton symbols. See
“SYMBOL_SCOPE and SYMBOL_VERSION Directives” on page 254.

DF_1_STUB

Indicates that the object is a stub. See “Stub Objects” on page 64.

DF_1_PIE

Indicates that the object is a position-independent executable, which is a special case of a
shared object, that specifies an interpreter. See the link-editor's -z type option.

DF_1_WEAKFILTER

Indicates that the object is a weak standard filter. At runtime, the behavior is identical to a
normal standard filter. At link-edit time, if unused dependency processing is active, a weak
filter symbol can be ignored in favor of the same symbol from the target filtee given by
DT_FILTER. See “Generating Weak Filters” on page 137.

TABLE 50 ELF Dynamic Position Flags, DT_POSFLAG_1

Name Value Meaning

DF_P1_LAZYLOAD 0x1 Identify lazy loaded dependency.

DF_P1_GROUPPERM 0x2 Identify group dependency.

DF_P1_DEFERRED 0x4 Identify deferred dependency.

462 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Dynamic Section

Name Value Meaning

DF_P1_EXISTING 0x8 Resolve to existing dependency.

DF_P1_LAZYLOAD

Identifies the following DT_NEEDED entry as an object to be lazy loaded. This flag is
recorded in the object as a consequence of using the link-editor's -z lazyload option. See
“Lazy Loading of Dynamic Dependencies” on page 95.

DF_P1_GROUPPERM

Identifies the following DT_NEEDED entry as an object to be loaded as a group. This flag is
recorded in the object as a consequence of using the link-editor's -z groupperm option. See
“Isolating a Group” on page 114.

DF_P1_DEFERRED

Identifies the following DT_NEEDED entry as a deferred dependency. This flag is recorded in
the object as a consequence of using the link-editor's -z deferred option. See “Providing
an Alternative to dlopen()” on page 97.

DF_P1_EXISTING

Identifies that the following DT_SUNW_FILTER entry can be satisfied from an existing
process dependency. Internal use.

TABLE 51 ELF Security Extension (SX) Values, DT_SUNW_SX_xxx

Name Value Meaning

DV_SUNW_SX_DEFAULT 0 Follow system default

DV_SUNW_SX_DISABLE 1 Disable security extension

DV_SUNW_SX_ENABLE 2 Enable security extension

TABLE 52 ELF Dynamic Relaxation Flags, DT_SUNW_RELAX

DF_SUNW_RELAX_COMDAT 0x1 Relocation symbols substituted for discarded COMDAT

DF_SUNW_RELAX_SECADJ 0x2 Section adjacency verification disabled

DF_SUNW_RELAX_SYMBOUND 0x4 Symbol/section boundary verification disabled

DF_SUNW_RELAX_COMMON 0x8 Tentative (common) data with different size or different
alignment enabled

DF_SUNW_RELAX_ flags are recorded in the object as a consequence of using the link-editor's
-z relax option.

Chapter 15 • Program Loading and Dynamic Linking 463

Global Offset Table (Processor-Specific)

Global Offset Table (Processor-Specific)

Position-independent code cannot, in general, contain absolute virtual addresses. Global
offset tables hold absolute addresses in private data. Addresses are therefore available without
compromising the position-independence and shareability of a program's text. A program
references its GOT using position-independent addressing and extracts absolute values. This
technique redirects position-independent references to absolute locations.

Initially, the GOT holds information as required by its relocation entries. After the system creates
memory segments for a loadable object file, the runtime linker processes the relocation entries.
Some relocations can be of type R_xxxx_GLOB_DAT, referring to the GOT.

The runtime linker determines the associated symbol values, calculates their absolute addresses,
and sets the appropriate memory table entries to the proper values. Although the absolute
addresses are unknown when the link-editor creates an object file, the runtime linker knows the
addresses of all memory segments and can thus calculate the absolute addresses of the symbols
contained therein.

If a program requires direct access to the absolute address of a symbol, that symbol will have
a GOT entry. Because dynamic objects have a separate GOT, a symbol's address can appear in
several tables. The runtime linker processes all the GOT relocations before giving control to any
code in the process image. This processing ensures that absolute addresses are available during
execution.

The table's entry zero is reserved to hold the address of the dynamic structure, referenced with
the symbol _DYNAMIC. This symbol enables a program, such as the runtime linker, to find its
own dynamic structure without having yet processed its relocation entries. This method is
especially important for the runtime linker, because it must initialize itself without relying on
other programs to relocate its memory image.

The system can choose different memory segment addresses for the same shared object in
different programs. The system can even choose different library addresses for different
executions of the same program. Nonetheless, memory segments do not change addresses once
the process image is established. As long as a process exists, its memory segments reside at
fixed virtual addresses.

A GOT format and interpretation are processor-specific. The symbol _GLOBAL_OFFSET_TABLE_
can be used to access the table. This symbol can reside in the middle of the .got section,
allowing both negative and nonnegative subscripts into the array of addresses. The symbol type
is an array of Elf32_Addr for 32-bit code, and an array of Elf64_Addr for 64-bit code.

extern Elf32_Addr _GLOBAL_OFFSET_TABLE_[];

extern Elf64_Addr _GLOBAL_OFFSET_TABLE_[];

464 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Procedure Linkage Table (Processor-Specific)

Procedure Linkage Table (Processor-Specific)

The global offset table converts position-independent address calculations to absolute locations.
Similarly the procedure linkage table converts position-independent function calls to absolute
locations. The link-editor cannot resolve execution transfers such as function calls between
different dynamic objects. So, the link-editor arranges to have the program transfer control
to entries in the procedure linkage table. The runtime linker thus redirects the entries without
compromising the position-independence and shareability of the program's text. Dynamic
objects have separate procedure linkage tables.

32-bit SPARC: Procedure Linkage Table

For 32-bit SPARC dynamic objects, the procedure linkage table resides in private data. The
runtime linker determines the absolute addresses of the destinations and modifies the procedure
linkage table's memory image accordingly.

The first four procedure linkage table entries are reserved. The original contents of these entries
are unspecified, despite the example that is shown in Table 53, “Procedure Linkage Table
Example,” on page 465. Each entry in the table occupies 3 words (12 bytes), and the last
table entry is followed by a nop instruction.

A relocation table is associated with the procedure linkage table. The DT_JMP_REL entry in the
_DYNAMIC array gives the location of the first relocation entry. The relocation table has one
entry, in the same sequence, for each non-reserved procedure linkage table entry. The relocation
type of each of these entries is R_SPARC_JMP_SLOT. The relocation offset specifies the address
of the first byte of the associated procedure linkage table entry. The symbol table index refers to
the appropriate symbol.

To illustrate procedure linkage tables, Table 53, “Procedure Linkage Table Example,” on page
465 shows four entries. Two of the four are initial reserved entries. The third entry is a call to
name101. The fourth entry is a call to name102. The example assumes that the entry for name102
is the table's last entry. A nop instruction follows this last entry. The left column shows the
instructions from the object file before dynamic linking. The right column illustrates a possible
instruction sequence that the runtime linker might use to fix the procedure linkage table entries.

TABLE 53 32-bit SPARC: Procedure Linkage Table Example

Object File Memory Segment

.PLT0: .PLT0:

Chapter 15 • Program Loading and Dynamic Linking 465

Procedure Linkage Table (Processor-Specific)

Object File Memory Segment
 unimp

 unimp

 unimp

.PLT1:

 unimp

 unimp

 unimp

 save %sp, -64, %sp

 call runtime_linker

 nop

.PLT1:

 .word identification

 unimp

 unimp

.PLT101:

 sethi (.-.PLT0), %g1

 ba,a .PLT0

 nop

.PLT102:

 sethi (.-.PLT0), %g1

 ba,a .PLT0

 nop

 nop

.PLT101:

 nop

 ba,a name101

 nop

.PLT102:

 sethi (.-.PLT0), %g1

 sethi %hi(name102), %g1

 jmpl %g1+%lo(name102), %g0

 nop

The following steps describe how the runtime linker and program jointly resolve the symbolic
references through the procedure linkage table. The steps that are described are for explanation
only. The precise execution-time behavior of the runtime linker is not specified.

1. When the memory image of the program is initially created, the runtime linker changes
the initial procedure linkage table entries. These entries are modified so that control can
be transferred to one of the runtime linker's own routines. The runtime linker also stores a
word of identification information in the second entry. When the runtime linker receives
control, this word is examined to identify the caller.

2. All other procedure linkage table entries initially transfer to the first entry. Thus, the
runtime linker gains control at the first execution of a table entry. For example, the program
calls name101, which transfers control to the label .PLT101.

3. The sethi instruction computes the distance between the current and the initial procedure
linkage table entries, .PLT101 and .PLT0, respectively. This value occupies the most
significant 22 bits of the %g1 register.

4. Next, the ba,a instruction jumps to .PLT0, establishing a stack frame, and calls the runtime
linker.

5. With the identification value, the runtime linker gets its data structures for the object,
including the relocation table.

6. By shifting the %g1 value and dividing by the size of the procedure linkage table entries, the
runtime linker calculates the index of the relocation entry for name101. Relocation entry 101
has type R_SPARC_JMP_SLOT. This relocation offset specifies the address of .PLT101, and its
symbol table index refers to name101. Thus, the runtime linker gets the symbol's real value,
unwinds the stack, modifies the procedure linkage table entry, and transfers control to the
desired destination.

466 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Procedure Linkage Table (Processor-Specific)

The runtime linker does not have to create the instruction sequences under the memory segment
column. If the runtime linkers does, some points deserve more explanation.

■ To make the code re-entrant, the procedure linkage table's instructions are changed in a
particular sequence. If the runtime linker is fixing a function's procedure linkage table entry
and a signal arrives, the signal handling code must be able to call the original function with
predictable and correct results.

■ The runtime linker changes three words to convert an entry. The runtime linker can update
only a single word atomically with regard to instruction execution. Therefore, re-entrancy
is achieved by updating each word in reverse order. If a re-entrant function call occurs
just prior to the last patch, the runtime linker gains control a second time. Although both
invocations of the runtime linker modify the same procedure linkage table entry, their
changes do not interfere with each other.

■ The first sethi instruction of a procedure linkage table entry can fill the delay slot of the
previous entry's jmp1 instruction. Although the sethi changes the value of the %g1 register,
the previous contents can be safely discarded.

■ After conversion, the last procedure linkage table entry, .PLT102, needs a delay instruction
for its jmp1. The required, trailing nop fills this delay slot.

Note - The different instruction sequences that are shown for .PLT101, and .PLT102
demonstrate how the update can be optimized for the associated destination.

The LD_BIND_NOW environment variable changes dynamic linking behavior. If its value is non-
null, the runtime linker processes R_SPARC_JMP_SLOT relocation entries before transferring
control to the program.

64-bit SPARC: Procedure Linkage Table

For 64-bit SPARC dynamic objects, the procedure linkage table resides in private data. The
runtime linker determines the absolute addresses of the destination and modifies the procedure
linkage table's memory image accordingly.

The first four procedure linkage table entries are reserved. The original contents of these entries
are unspecified, despite the example that is shown in Table 54, “Procedure Linkage Table
Example,” on page 468. Each of the first 32,768 entries in the table occupies 8 words (32
bytes), and must be aligned on a 32-byte boundary. The table as a whole must be aligned on a
256-byte boundary. If more than 32,768 entries are required, the remaining entries consist of
6 words (24 bytes) and 1 pointer (8 bytes). The instructions are collected together in blocks of
160 entries followed by 160 pointers. The last group of entries and pointers can contain less
than 160 items. No padding is required.

Chapter 15 • Program Loading and Dynamic Linking 467

Procedure Linkage Table (Processor-Specific)

Note - The numbers 32,768 and 160 are based on the limits of branch and load displacements
respectively with the second rounded down to make the divisions between code and data fall on
256-byte boundaries so as to improve cache performance.

A relocation table is associated with the procedure linkage table. The DT_JMP_REL entry in the
_DYNAMIC array gives the location of the first relocation entry. The relocation table has one
entry, in the same sequence, for each non-reserved procedure linkage table entry. The relocation
type of each of these entries is R_SPARC_JMP_SLOT. For the first 32,767 slots, the relocation
offset specifies the address of the first byte of the associated procedure linkage table entry, the
addend field is zero. The symbol table index refers to the appropriate symbol. For slots 32,768
and beyond, the relocation offset specifies the address of the first byte of the associated pointer.
The addend field is the unrelocated value -(.PLTN + 4). The symbol table index refers to the
appropriate symbol.

To illustrate procedure linkage tables, Table 54, “Procedure Linkage Table Example,” on page
468 shows several entries. The first three show initial reserved entries. The following three
show examples of the initial 32,768 entries together with possible resolved forms that might
apply if the target address was +/- 2 Gbytes of the entry, within the lower 4 Gbytes of the
address space, or anywhere respectively. The final two show examples of later entries, which
consist of instruction and pointer pairs. The left column shows the instructions from the object
file before dynamic linking. The right column demonstrates a possible instruction sequence that
the runtime linker might use to fix the procedure linkage table entries.

TABLE 54 64-bit SPARC: Procedure Linkage Table Example

Object File Memory Segment

.PLT0:

 unimp

 unimp

 unimp

 unimp

 unimp

 unimp

 unimp

 unimp

.PLT1:

 unimp

 unimp

 unimp

 unimp

 unimp

 unimp

 unimp

 unimp

.PLT2:

 unimp

.PLT0:

 save %sp, -176, %sp

 sethi %hh(runtime_linker_0), %l0

 sethi %lm(runtime_linker_0), %l1

 or %l0, %hm(runtime_linker_0), %l0

 sllx %l0, 32, %l0

 or %l0, %l1, %l0

 jmpl %l0+%lo(runtime_linker_0), %o1

 mov %g1, %o0

.PLT1:

 save %sp, -176, %sp

 sethi %hh(runtime_linker_1), %l0

 sethi %lm(runtime_linker_1), %l1

 or %l0, %hm(runtime_linker_1), %l0

 sllx %l0, 32, %l0

 or %l0, %l1, %l0

 jmpl %l0+%lo(runtime_linker_0), %o1

 mov %g1, %o0

.PLT2:

 .xword identification

.PLT101:

 sethi (.-.PLT0), %g1

 ba,a %xcc, .PLT1

.PLT101:

 nop

 mov %o7, %g1

468 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Procedure Linkage Table (Processor-Specific)

Object File Memory Segment
 nop

 nop

 nop; nop

 nop; nop

.PLT102:

 sethi (.-.PLT0), %g1

 ba,a %xcc, .PLT1

 nop

 nop

 nop; nop

 nop; nop

.PLT103:

 sethi (.-.PLT0), %g1

 ba,a %xcc, .PLT1

 nop

 nop

 nop

 nop

 nop

 nop

 call name101

 mov %g1, %o7

 nop; nop

 nop; nop

.PLT102:

 nop

 sethi %hi(name102), %g1

 jmpl %g1+%lo(name102), %g0

 nop

 nop; nop

 nop; nop

.PLT103:

 nop

 sethi %hh(name103), %g1

 sethi %lm(name103), %g5

 or %hm(name103), %g1

 sllx %g1, 32, %g1

 or %g1, %g5, %g5

 jmpl %g5+%lo(name103), %g0

 nop

.PLT32768:

 mov %o7, %g5

 call .+8

 nop

 ldx [%o7+.PLTP32768 -

 (.PLT32768+4)], %g1

 jmpl %o7+%g1, %g1

 mov %g5, %o7

.PLT32927:

 mov %o7, %g5

 call .+8

 nop

 ldx [%o7+.PLTP32927 -

 (.PLT32927+4)], %g1

 jmpl %o7+%g1, %g1

 mov %g5, %o7

.PLT32768:

 <unchanged>

 <unchanged>

 <unchanged>

 <unchanged>

 <unchanged>

 <unchanged>

.PLT32927:

 <unchanged>

 <unchanged>

 <unchanged>

 <unchanged>

 <unchanged>

 <unchanged>

.PLTP32768

 .xword .PLT0 -

 (.PLT32768+4)

.PLTP32927

 .xword .PLT0 -

 (.PLT32927+4)

.PLTP32768

 .xword name32768 -

 (.PLT32768+4)

 .PLTP32927

 .xword name32927 -

 (.PLT32927+4)

The following steps describe how the runtime linker and program jointly resolve the symbolic
references through the procedure linkage table. The steps that are described are for explanation
only. The precise execution-time behavior of the runtime linker is not specified.

1. When the memory image of the program is initially created, the runtime linker changes the
initial procedure linkage table entries. These entries are modified so that control is transfer
to the runtime linker's own routines. The runtime linker also stores an extended word of

Chapter 15 • Program Loading and Dynamic Linking 469

Procedure Linkage Table (Processor-Specific)

identification information in the third entry. When the runtime linker receives control, this
word is examined to identify the caller.

2. All other procedure linkage table entries initially transfer to the first or second entry. These
entries establish a stack frame and call the runtime linker.

3. With the identification value, the runtime linker gets its data structures for the object,
including the relocation table.

4. The runtime linker computes the index of the relocation entry for the table slot.
5. With the index information, the runtime linker gets the symbol's real value, unwinds the

stack, modifies the procedure linkage table entry, and transfers control to the desired
destination.

The runtime linker does not have to create the instruction sequences under the memory segment
column. If the runtime linker does, some points deserve more explanation.

■ To make the code re-entrant, the procedure linkage table's instructions are changed in a
particular sequence. If the runtime linker is fixing a function's procedure linkage table entry
and a signal arrives, the signal handling code must be able to call the original function with
predictable and correct results.

■ The runtime linker can change up to eight words to convert an entry. The runtime linker
can update only a single word atomically with regard to instruction execution. Therefore,
re-entrancy is achieved by first overwriting the nop instructions with their replacement
instructions, and then patching the ba,a, and the sethi if using a 64-bit store. If a re-entrant
function call occurs just prior to the last patch, the runtime linker gains control a second
time. Although both invocations of the runtime linker modify the same procedure linkage
table entry, their changes do not interfere with each other.

■ If the initial sethi instruction is changed, the instruction can only be replaced by a nop.

Changing the pointer as done for the second form of entry is done using a single atomic 64-bit
store.

Note - The different instruction sequences that are shown for .PLT101, .PLT102, and .PLT103
demonstrate how the update can be optimized for the associated destination.

The LD_BIND_NOW environment variable changes dynamic linking behavior. If its value is non-
null, the runtime linker processes R_SPARC_JMP_SLOT relocation entries before transferring
control to the program.

32-bit x86: Procedure Linkage Table

For 32-bit x86 dynamic objects, the procedure linkage table resides in shared text but uses
addresses in the private global offset table. The runtime linker determines the absolute

470 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Procedure Linkage Table (Processor-Specific)

addresses of the destinations and modifies the global offset table's memory image accordingly.
The runtime linker thus redirects the entries without compromising the position-independence
and shareability of the program's text. Dynamic objects have separate procedure linkage tables.

TABLE 55 32-bit x86: Absolute Procedure Linkage Table Example

.PLT0:

 pushl got_plus_4

 jmp *got_plus_8

 nop; nop

 nop; nop

.PLT1:

 jmp *name1_in_GOT

 pushl $offset

 jmp .PLT0@PC

.PLT2:

 jmp *name2_in_GOT

 pushl $offset

 jmp .PLT0@PC

TABLE 56 32-bit x86: Position-Independent Procedure Linkage Table Example

.PLT0:

 pushl 4(%ebx)

 jmp *8(%ebx)

 nop; nop

 nop; nop

.PLT1:

 jmp *name1@GOT(%ebx)

 pushl $offset

 jmp .PLT0@PC

.PLT2:

 jmp *name2@GOT(%ebx)

 pushl $offset

 jmp .PLT0@PC

Note - As the preceding examples show, the procedure linkage table instructions use different
operand addressing modes for absolute code and for position-independent code. Nonetheless,
their interfaces to the runtime linker are the same.

The following steps describe how the runtime linker and program cooperate to resolve the
symbolic references through the procedure linkage table and the global offset table.

1. When the memory image of the program is initially created, the runtime linker sets the
second and third entries in the global offset table to special values. The following steps
explain these values.

2. If the procedure linkage table is position-independent, the address of the global offset table
must be in %ebx. Each shared object file in the process image has its own procedure linkage
table, and control transfers to a procedure linkage table entry only from within the same

Chapter 15 • Program Loading and Dynamic Linking 471

Procedure Linkage Table (Processor-Specific)

object file. So, the calling function must set the global offset table base register before
calling the procedure linkage table entry.

3. For example, the program calls name1, which transfers control to the label .PLT1.
4. The first instruction jumps to the address in the global offset table entry for name1. Initially,

the global offset table holds the address of the following pushl instruction, not the real
address of name1.

5. The program pushes a relocation offset (offset) on the stack. The relocation offset is a 32-
bit, nonnegative byte offset into the relocation table. The designated relocation entry has
the type R_386_JMP_SLOT, and its offset specifies the global offset table entry used in the
previous jmp instruction. The relocation entry also contains a symbol table index, which the
runtime linker uses to get the referenced symbol, name1.

6. After pushing the relocation offset, the program jumps to .PLT0, the first entry in the
procedure linkage table. The pushl instruction pushes the value of the second global offset
table entry (got_plus_4 or 4(%ebx)) on the stack, giving the runtime linker one word of
identifying information. The program then jumps to the address in the third global offset
table entry (got_plus_8 or 8(%ebx)), to jump to the runtime linker.

7. The runtime linker unwinds the stack, checks the designated relocation entry, gets the
symbol's value, stores the actual address of name1 in its global offset entry table, and jumps
to the destination.

8. Subsequent executions of the procedure linkage table entry transfer directly to name1,
without calling the runtime linker again. The jmp instruction at .PLT1 jumps to name1
instead of falling through to the pushl instruction.

The LD_BIND_NOW environment variable changes dynamic linking behavior. If its value is non-
null, the runtime linker processes R_386_JMP_SLOT relocation entries before transferring control
to the program.

x64: Procedure Linkage Table

For x64 dynamic objects, the procedure linkage table resides in shared text but uses addresses
in the private global offset table. The runtime linker determines the absolute addresses
of the destinations and modifies the global offset table's memory image accordingly. The
runtime linker thus redirects the entries without compromising the position-independence and
shareability of the program's text. Dynamic objects have separate procedure linkage tables.

TABLE 57 x64: Procedure Linkage Table Example

.PLT0:

 pushq GOT+8(%rip) # GOT[1]

 jmp *GOT+16(%rip) # GOT[2]

472 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Procedure Linkage Table (Processor-Specific)

 nop; nop

 nop; nop

.PLT1:

 jmp *name1@GOTPCREL(%rip) # 16 bytes from .PLT0

 pushq $index1

 jmp .PLT0

.PLT2:

 jmp *name2@GOTPCREL(%rip) # 16 bytes from .PLT1

 pushl $index2

 jmp .PLT0

The following steps describe how the runtime linker and program cooperate to resolve the
symbolic references through the procedure linkage table and the global offset table.

1. When the memory image of the program is initially created, the runtime linker sets the
second and third entries in the global offset table to special values. The following steps
explain these values.

2. Each shared object file in the process image has its own procedure linkage table, and
control transfers to a procedure linkage table entry only from within the same object file.

3. For example, the program calls name1, which transfers control to the label .PLT1.
4. The first instruction jumps to the address in the global offset table entry for name1. Initially,

the global offset table holds the address of the following pushq instruction, not the real
address of name1.

5. The program pushes a relocation index (index1) on the stack. The relocation offset is
a 32-bit, nonnegative index into the relocation table. The relocation table is identified
by the DT_JUMPREL dynamic section entry. The designated relocation entry has the type
R_AMD64_JMP_SLOT, and its offset specifies the global offset table entry used in the previous
jmp instruction. The relocation entry also contains a symbol table index, which the runtime
linker uses to get the referenced symbol, name1.

6. After pushing the relocation index, the program jumps to .PLT0, the first entry in the
procedure linkage table. The pushq instruction pushes the value of the second global
offset table entry (GOT+8) on the stack, giving the runtime linker one word of identifying
information. The program then jumps to the address in the third global offset table entry
(GOT+16), to jump to the runtime linker.

7. The runtime linker unwinds the stack, checks the designated relocation entry, gets the
symbol's value, stores the actual address of name1 in its global offset entry table, and jumps
to the destination.

8. Subsequent executions of the procedure linkage table entry transfer directly to name1,
without calling the runtime linker again. The jmp instruction at .PLT1 jumps to name1
instead of falling through to the pushq instruction.

The LD_BIND_NOW environment variable changes dynamic linking behavior. If its value is non-
null, the runtime linker processes R_AMD64_JMP_SLOT relocation entries before transferring
control to the program.

Chapter 15 • Program Loading and Dynamic Linking 473

474 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

 16 ♦ ♦ ♦ C H A P T E R 1 6

Thread-Local Storage

The compilation environment supports the declaration of thread-local data. This data is
sometimes referred to as thread-specific, or thread-private data, but more typically by the
acronym TLS. By declaring variables to be thread-local, the compiler automatically arranges for
these variables to be allocated on a per-thread basis.

The built-in support for this feature serves three purposes.

■ A foundation is provided upon which the POSIX interfaces for allocating thread specific
data are built.

■ A convenient, and efficient mechanism for direct use of thread local variables by
applications and libraries is provided.

■ Compilers can allocate TLS as necessary when performing loop-parallelizing optimizations.

C/C++ Programming Interface

Variables are declared thread-local using the __thread keyword, as in the following examples.

__thread int i;

__thread char *p;

__thread struct state s;

During loop optimizations, the compiler can choose to create thread-local temporaries as
needed.

Applicability

The __thread keyword can be applied to any global, file-scoped static, or function-scoped
static variable. It has no effect on automatic variables, which are always thread-local.

Chapter 16 • Thread-Local Storage 475

Thread-Local Storage Section

Initialization

In C++, a thread-local variable can not be initialized if the initialization requires a static
constructor. Otherwise, a thread-local variable can be initialized to any value that would be
legal for an ordinary static variable.
No variable, thread-local or otherwise, can be statically initialized to the address of a
thread-local variable.

Binding

Thread-local variables can be declared externally and referenced externally. Thread-local
variables are subject to the same interposition rules as normal symbols.

Dynamic loading restrictions

Various TLS access models are available. See “Thread-Local Storage Access
Models” on page 481. Shared object developers should be aware of the restrictions
imposed by some of these access models in relation to object loading. A shared object can
be dynamically loaded during process startup, or after process startup by means of lazy
loading, filters, or dlopen(3C). At the completion of process startup, the thread pointer for
the main thread is established. All static TLS storage requirements are calculated before the
thread pointer is established.
Shared objects that reference thread-local variables, should insure that every translation
unit containing the reference is compiled with a dynamic TLS model. This model of access
provides the greatest flexibility for loading shared objects. However, static TLS models can
generate faster code. Shared objects that use a static TLS model can be loaded as part of
process initialization. However, after process initialization, shared objects that use a static
TLS model can only be loaded if sufficient backup TLS storage is available. See “Program
Startup” on page 478.

Address-of operator

The address-of operator, &, can be applied to a thread-local variable. This operator is
evaluated at runtime, and returns the address of the variable within the current thread. The
address obtained by this operator can be used freely by any thread in the process as long as
the thread that evaluated the address remains in existence. When a thread terminates, any
pointers to thread-local variables in that thread become invalid.

When dlsym(3C) is used to obtain the address of a thread-local variable, the address that is
returned is the address of the instance of that variable in the thread that called dlsym().

Thread-Local Storage Section
Separate copies of thread-local data that have been allocated at compile-time, must be
associated with individual threads of execution. To provide this data, TLS sections are used to

476 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlsym-3c

Thread-Local Storage Section

specify the size and initial contents. The compilation environment allocates TLS in sections that
are identified with the SHF_TLS flag. These sections provide initialized TLS and uninitialized
TLS based on how the storage is declared.

■ An initialized thread-local variable is allocated in a .tdata, or .tdata1 section. This
initialization can require relocation.

■ An uninitialized thread-local variable is defined as a COMMON symbol. The resulting
allocation is made in a .tbss section.

The uninitialized section is allocated immediately following any initialized sections, subject
to padding for proper alignment. Together, the combined sections form a TLS template that is
used to allocate TLS whenever a new thread is created. The initialized portion of this template
is called the TLS initialization image. All relocations that are generated as a result of initialized
thread-local variables are applied to this template. The relocated values are used when a new
thread requires the initial values.

TLS symbols have the symbol type STT_TLS. These symbols are assigned offsets relative to the
beginning of the TLS template. The actual virtual address that is associated with these symbols
is irrelevant. The address refers only to the template, and not to the per-thread copy of each data
item. In dynamic objects, the st_value field of a STT_TLS symbol contains the assigned TLS
offset for defined symbols. This field contains zero for undefined symbols.

Several relocations are defined to support access to TLS. See “Thread-Local Storage Relocation
Types” on page 488, “Thread-Local Storage Relocation Types” on page 494 and “Thread-
Local Storage Relocation Types” on page 499. TLS relocations typically reference symbols
of type STT_TLS. TLS relocations can also reference local section symbols in association with a
GOT entry. In this case, the assigned TLS offset is stored in the associated GOT entry.

For relocations against static TLS items, the relocation address is encoded as a negative offset
from the end of the static TLS template. This offset is calculated by first rounding the template
size to the nearest 8-byte boundary in a 32-bit object, and to the nearest 16-byte boundary in a
64-bit object. This rounding ensures that the static TLS template is suitably aligned for any use.

In dynamic objects, a PT_TLS program entry describes a TLS template. This template has the
following members.

TABLE 58 ELF PT_TLS Program Header Entry

Member Value

p_offset File offset of the TLS initialization image

p_vaddr Virtual memory address of the TLS initialization image

p_paddr 0

p_filesz Size of the TLS initialization image

p_memsz Total size of the TLS template

Chapter 16 • Thread-Local Storage 477

Runtime Allocation of Thread-Local Storage

Member Value

p_flags PF_R

p_align Alignment of the TLS template

Runtime Allocation of Thread-Local Storage

TLS is created at three occasions during the lifetime of a program.

■ At program startup.
■ When a new thread is created.
■ When a thread references a TLS block for the first time after a shared object is loaded

following program startup.

Thread-local data storage is laid out at runtime as illustrated in Figure 18, “Runtime Storage
Layout of Thread-Local Storage,” on page 478.

FIGURE 18 Runtime Storage Layout of Thread-Local Storage

Program Startup

At program startup, the runtime system creates TLS for the main thread.

First, the runtime linker logically combines the TLS templates for all loaded dynamic objects,
into a single static template. Each dynamic object's TLS template is assigned an offset within
the combined template, tlsoffsetm, as follows.

478 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Runtime Allocation of Thread-Local Storage

■ tlsoffset1 = round(tlssize1, align1)
■ tlsoffsetm+1 = round(tlsoffsetm + tlssizem+1, alignm+1)

tlssizem+1 and alignm+1 are the size and alignment, respectively, for the allocation template
for dynamic object m. Where 1 <= m <= M, and M is the total number of loaded dynamic objects.
The round(offset, align) function returns an offset rounded up to the next multiple of align.

Next, the runtime linker computes the allocation size that is required for the startup TLS,
tlssizeS. This size is equal to tlsoffsetM, plus an additional 512 bytes. This addition
provides a backup reservation for static TLS references. Shared objects that make static TLS
references, and are loaded after process initialization, are assigned to this backup reservation.
However, this reservation is a fixed, limited size. In addition, this reservation is only capable
of providing storage for uninitialized TLS data items. For maximum flexibility, shared objects
should reference thread-local variables using a dynamic TLS model.

The static TLS arena associated with the calculated TLS size tlssizeS, is placed immediately
preceding the thread pointer tpt. Accesses to this TLS data is based off of subtractions from tpt.

The static TLS arena is associated with a linked list of initialization records. Each record in this
list describes the TLS initialization image for one loaded dynamic object. Each record contains
the following fields.

■ A pointer to the TLS initialization image.
■ The size of the TLS initialization image.
■ The tlsoffsetm of the object.
■ A flag indicating whether the object uses a static TLS model.

The thread library uses this information to allocate storage for the initial thread. This storage is
initialized, and a dynamic TLS vector for the initial thread is created.

Thread Creation
For the initial thread, and for each new thread created, the thread library allocates a new
TLS block for each loaded dynamic object. Blocks can be allocated separately, or as a single
contiguous block.

Each thread t, has an associated thread pointer tpt, which points to the thread control block, TCB.
The thread pointer, tp, always contains the value of tpt for the current running thread.

The thread library then creates a vector of pointers, dtvt, for the current thread t. The first
element of each vector contains a generation number gent, which is used to determine
when the vector needs to be extended. See “Deferred Allocation of Thread-Local Storage
Blocks” on page 480.

Chapter 16 • Thread-Local Storage 479

Runtime Allocation of Thread-Local Storage

Each element remaining in the vector dtvt,m, is a pointer to the block that is reserved for the
TLS belonging to the dynamic object m.

For dynamically loaded, post-startup objects, the thread library defers the allocation of TLS
blocks. Allocation occurs when the first reference is made to a TLS variable within the
loaded object. For blocks whose allocation has been deferred, the pointer dtvt,m is set to an
implementation-defined special value.

Note - The runtime linker can group TLS templates for all startup objects so as to share a single
element in the vector, dtv t,1. This grouping does not affect the offset calculations described
previously or the creation of the list of initialization records. For the following sections,
however, the value of M, the total number of objects, start with the value of 1.

The thread library then copies the initialization images to the corresponding locations within the
new block of storage.

Post-Startup Dynamic Loading
A shared object containing only dynamic TLS can be loaded following process startup
without limitations. The runtime linker extends the list of initialization records to include the
initialization template of the new object. The new object is given an index of m = M + 1. The
counter M is incremented by 1. However, the allocation of new TLS blocks is deferred until the
blocks are actually referenced.

When a shared object that contains only dynamic TLS is unloaded, the TLS blocks used by that
shared object are freed.

A shared object containing static TLS can be loaded following process startup with limitations.
Static TLS references can only be satisfied from any remaining backup TLS reservation.
See “Program Startup” on page 478. This reservation is limited in size. In addition, this
reservation can only provide storage for uninitialized TLS data items.

A shared object that contains static TLS is never unloaded. The shared object is tagged as non-
deletable as a consequence of processing the static TLS.

Deferred Allocation of Thread-Local Storage
Blocks
In a dynamic TLS model, when a thread t needs to access a TLS block for object m, the
code updates the dtvt and performs the initial allocation of the TLS block. The thread library
provides the following interface to provide for dynamic TLS allocation.

480 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Thread-Local Storage Access Models

typedef struct {

 unsigned long ti_moduleid;

 unsigned long ti_tlsoffset;

} TLS_index;

extern void *__tls_get_addr(TLS_index *ti); (SPARC and x64)

extern void *___tls_get_addr(TLS_index *ti); (32-bit x86)

Note - The SPARC and 64-bit x86 definitions of this function have the same function signature.
However, the 32-bit x86 version does not use the default calling convention of passing
arguments on the stack. Instead, the 32-bit x86 version passes its arguments by means of the
%eax register which is more efficient. To denote that this alternate calling method is used, the
32-bit x86 function name has three leading underscores in its name.

Both versions of tls_get_addr() check the per-thread generation counter, gent, to determine
whether the vector needs to be updated. If the vector dtvt is out of date, the routine updates the
vector, possibly reallocating the vector to make room for more entries. The routine then checks
to see if the TLS block corresponding to dtvt,m has been allocated. If the vector has not been
allocated, the routine allocates and initializes the block. The routine uses the information in the
list of initialization records provided by the runtime linker. The pointer dtv t,m is set to point to
the allocated block. The routine returns a pointer to the given offset within the block.

Thread-Local Storage Access Models

Each TLS reference follows one of the following access models. These models are listed from
the most general, but least optimized, to the fastest, but most restrictive.

General Dynamic (GD) - dynamic TLS

This model allows reference of all TLS variables, from a dynamic object. This model also
supports the deferred allocation of a TLS block when the block is first referenced from a
specific thread.

Local Dynamic (LD) - dynamic TLS of local symbols

This model is a optimization of the GD model. The compiler might determine that a
variable is bound locally, or protected, within the object being built. In this case, the
compiler instructs the link-editor to statically bind the dynamic tlsoffset and use this
model. This model provides a performance benefit over the GD model. Only one call to
tls_get_addr() is required per function, to determine the address of dtv0,m. The dynamic
TLS offset, bound at link-edit time, is added to the dtv0,m address for each reference.

Chapter 16 • Thread-Local Storage 481

Thread-Local Storage Access Models

Initial Executable (IE) - static TLS with assigned offsets

This model can only reference TLS variables which are available as part of the initial static
TLS template. This template is composed of all TLS blocks that are available at process
startup, plus a small backup reservation. See “Program Startup” on page 478. In this
model, the thread pointer-relative offset for a given variable x is stored in the GOT entry for
x.
This model can reference a limited number of TLS variables from shared libraries loaded
after initial process startup, such as by means of lazy loading, filters, or dlopen(3C). This
access is satisfied from a fixed backup reservation. This reservation can only provide
storage for uninitialized TLS data items. For maximum flexibility, shared objects should
reference thread-local variables using a dynamic TLS model.

Note - Filters can be employed to dynamically select the use of static TLS. A shared object
can be built to use dynamic TLS, and act as an auxiliary filter upon a counterpart built to
use static TLS. If resources allow the static TLS object to be loaded, the object is used.
Otherwise, a fallback to the dynamic TLS object insures that the functionality provided by
the shared object is always available. For more information on filters see “Shared Objects as
Filters” on page 132.

Local Executable (LE) - static TLS

This model can only reference TLS variables which are part of the TLS block of the
dynamic executable. The link-editor calculates the thread pointer-relative offsets statically,
without the need for dynamic relocations, or the extra reference to the GOT. This model can
not be used to reference variables outside of the dynamic executable.

The link-editor can transition code from the more general access models to the more optimized
models, if the transition is determined appropriate. This transition is possible through the use of
unique TLS relocations. These relocations, not only request updates be performed, but identify
which TLS access model is being used.

Knowledge of the TLS access model, together with the type of object being created, allows the
link-editor to perform translations. An example is if a relocatable object using the GD access
model is being linked into a dynamic executable. In this case, the link-editor can transition the
references using the IE or LE access models, as appropriate. The relocations that are required
for the model are then performed.

The following diagram illustrates the different access models, together with the transition of one
model to another model.

482 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c

Thread-Local Storage Access Models

FIGURE 19 Thread-Local Storage Access Models and Transitions

SPARC: Thread-Local Variable Access

On SPARC, the following code sequence models are available for accessing thread-local
variables.

Chapter 16 • Thread-Local Storage 483

Thread-Local Storage Access Models

SPARC: General Dynamic (GD)

This code sequence implements the GD model described in “Thread-Local Storage Access
Models” on page 481.

TABLE 59 SPARC: General Dynamic Thread-Local Variable Access Codes

Code Sequence Initial Relocations Symbol

%l7 - initialized to GOT pointer

0x00 sethi %hi(@dtlndx(x)), %o0

0x04 add %o0, %lo(@dtlndx(x)), %o0

0x08 add %l7, %o0, %o0

0x0c call x@TLSPLT

%o0 - contains address of TLS variable

R_SPARC_TLS_GD_HI22

R_SPARC_TLS_GD_LO10

R_SPARC_TLS_GD_ADD

R_SPARC_TLS_GD_CALL

x

x

x

x

→ Outstanding Relocations: 32-bit Symbol

GOT[n]

GOT[n + 1]

R_SPARC_TLS_DTPMOD32

R_SPARC_TLS_DTPOFF32

x

x

→ Outstanding Relocations: 64-bit Symbol

GOT[n]

GOT[n + 1]

R_SPARC_TLS_DTPMOD64

R_SPARC_TLS_DTPOFF64

x

x

The sethi, and add instructions generate R_SPARC_TLS_GD_HI22 and R_SPARC_TLS_GD_LO10
relocations respectively. These relocations instruct the link-editor to allocate space in the
GOT to hold a TLS_index structure for variable x. The link-editor processes this relocation by
substituting the GOT-relative offset for the new GOT entry.

The load object index and TLS block index for x are not known until runtime. Therefore, the
link-editor places the R_SPARC_TLS_DTPMOD32 and R_SPARC_TLS_DPTOFF32 relocations against
the GOT for processing by the runtime linker.

The second add instruction causes the generation of the R_SPARC_TLS_GD_ADD relocation. This
relocation is used only if the GD code sequence is changed to another sequence by the link-
editor.

The call instruction uses the special syntax, x@TLSPLT. This call references the TLS variable
and generates the R_SPARC_TLS_GD_CALL relocation. This relocation instructs the link-editor to
bind the call to the __tls_get_addr() function, and associates the call instruction with the GD
code sequence.

484 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Thread-Local Storage Access Models

Note - The add instruction must appear before the call instruction. The add instruction
can not be placed into the delay slot for the call. This requirement is necessary as the code-
transformations that can occur later require a known order.

The register used as the GOT-pointer for the add instruction tagged by the R_SPARC_TLS_GD_ADD
relocation, must be the first register in the add instruction. This requirement permits the link-
editor to identify the GOT-pointer register during a code transformation.

SPARC: Local Dynamic (LD)

This code sequence implements the LD model described in “Thread-Local Storage Access
Models” on page 481.

TABLE 60 SPARC: Local Dynamic Thread-Local Variable Access Codes

Code Sequence Initial Relocations Symbol

%l7 - initialized to GOT pointer

0x00 sethi %hi(@tmndx(x1)), %o0

0x04 add %o0, %lo(@tmndx(x1)), %o0

0x08 add %l7, %o0, %o0

0x0c call x@TLSPLT

%o0 - contains address of TLS block of current object

0x10 sethi %hi(@dtpoff(x1)), %l1

0x14 xor %l1, %lo(@dtpoff(x1)), %l1

0x18 add %o0, %l1, %l1

%l1 - contains address of local TLS variable x1

0x20 sethi %hi(@dtpoff(x2)), %l2

0x24 xor %l2, %lo(@dtpoff(x2)), %l2

0x28 add %o0, %l2, %l2

%l2 - contains address of local TLS variable x2

R_SPARC_TLS_LDM_HI22

R_SPARC_TLS_LDM_LO10

R_SPARC_TLS_LDM_ADD

R_SPARC_TLS_LDM_CALL

R_SPARC_TLS_LDO_HIX22

R_SPARC_TLS_LDO_LOX10

R_SPARC_TLS_LDO_ADD

R_SPARC_TLS_LDO_HIX22

R_SPARC_TLS_LDO_LOX10

R_SPARC_TLS_LDO_ADD

x1

x1

x1

x1

x1

x1

x1

x2

x2

x2

→ Outstanding Relocations: 32-bit Symbol

GOT[n]

GOT[n + 1]

R_SPARC_TLS_DTPMOD32

<none>

x1

→ Outstanding Relocations: 64-bit Symbol

GOT[n]

GOT[n + 1]

R_SPARC_TLS_DTPMOD64

<none>

x1

The first sethi instruction and add instruction generate R_SPARC_TLS_LDM_HI22 and
R_SPARC_TLS_LDM_LO10 relocations respectively. These relocations instruct the link-editor to

Chapter 16 • Thread-Local Storage 485

Thread-Local Storage Access Models

allocate space in the GOT to hold a TLS_index structure for the current object. The link-editor
processes this relocation by substituting the GOT -relative offset for the new GOT entry.

The load object index is not known until runtime. Therefore, a R_SPARC_TLS_DTPMOD32
relocation is created, and the ti_tlsoffset field of the TLS_index structure is zero filled.

The second add and the call instruction are tagged with the R_SPARC_TLS_LDM_ADD and
R_SPARC_TLS_LDM_CALL relocations respectively.

The following sethi instruction and xor instruction generate the R_SPARC_LDO_HIX22 and
R_SPARC_TLS_LDO_LOX10 relocations, respectively. The TLS offset for each local symbol is
known at link-edit time, therefore these values are filled in directly. The add instruction is
tagged with the R_SPARC_TLS_LDO_ADD relocation.

When a procedure references more than one local symbol, the compiler generates code to obtain
the base address of the TLS block once. This base address is then used to calculate the address
of each symbol without a separate library call.

Note - The register containing the TLS object address in the add instruction tagged by the
R_SPARC_TLS_LDO_ADD must be the first register in the instruction sequence. This requirement
permits the link-editor to identify the register during a code transformation.

32-bit SPARC: Initial Executable (IE)

This code sequence implements the IE model described in “Thread-Local Storage Access
Models” on page 481.

TABLE 61 32-bit SPARC: Initial Executable Thread-Local Variable Access Codes

Code Sequence Initial Relocations Symbol

%l7 - initialized to GOT pointer, %g7 - thread pointer

0x00 sethi %hi(@tpoff(x)), %o0

0x04 or %o0, %lo(@tpoff(x)), %o0

0x08 ld [%l7 + %o0], %o0

0x0c add %g7, %o0, %o0

%o0 - contains address of TLS variable

R_SPARC_TLS_IE_HI22

R_SPARC_TLS_IE_LO10

R_SPARC_TLS_IE_LD

R_SPARC_TLS_IE_ADD

x

x

x

x

→ Outstanding Relocations Symbol

GOT[n] R_SPARC_TLS_TPOFF32 x

The sethi instruction and or instruction generate R_SPARC_TLS_IE_HI22 and
R_SPARC_TLS_IE_LO10 relocations, respectively. These relocations instruct the link-editor to

486 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Thread-Local Storage Access Models

create space in the GOT to store the static TLS offset for symbol x. An R_SPARC_TLS_TPOFF32
relocation is left outstanding against the GOT for the runtime linker to fill in with the
negative static TLS offset for symbol x. The ld and the add instructions are tagged with the
R_SPARC_TLS_IE_LD and R_SPARC_TLS_IE_ADD relocations respectively.

Note - The register used as the GOT-pointer for the add instruction tagged by the
R_SPARC_TLS_IE_ADD relocation must be the first register in the instruction. This requirement
permits the link-editor to identify the GOT-pointer register during a code transformation.

64-bit SPARC: Initial Executable (IE)

This code sequence implements the IE model described in “Thread-Local Storage Access
Models” on page 481.

TABLE 62 64-bit SPARC: Initial Executable Thread-Local Variable Access Codes

Code Sequence Initial Relocations Symbol

%l7 - initialized to GOT pointer, %g7 - thread pointer

0x00 sethi %hi(@tpoff(x)), %o0

0x04 or %o0, %lo(@tpoff(x)), %o0

0x08 ldx [%l7 + %o0], %o0

0x0c add %g7, %o0, %o0

%o0 - contains address of TLS variable

R_SPARC_TLS_IE_HI22

R_SPARC_TLS_IE_LO10

R_SPARC_TLS_IE_LD

R_SPARC_TLS_IE_ADD

x

x

x

x

→ Outstanding Relocations Symbol

GOT[n] R_SPARC_TLS_TPOFF64 x

SPARC: Local Executable (LE)

This code sequence implements the LE model described in “Thread-Local Storage Access
Models” on page 481.

TABLE 63 SPARC: Local Executable Thread-Local Variable Access Codes

Code Sequence Initial Relocations Symbol

%g7 - thread pointer

0x00 sethi %hix(@tpoff(x)), %o0

0x04 xor %o0,%lo(@tpoff(x)),%o0

0x08 add %g7, %o0, %o0

R_SPARC_TLS_LE_HIX22

R_SPARC_TLS_LE_LOX10

<none>

x

x

Chapter 16 • Thread-Local Storage 487

Thread-Local Storage Access Models

%o0 - contains address of TLS variable

The sethi and xor instructions generate R_SPARC_TLS_LE_HIX22 and R_SPARC_TLS_LE_LOX10
relocations respectively. The link-editor binds these relocations directly to the static TLS offset
for the symbol defined in the executable. No relocation processing is required at runtime.

SPARC: Thread-Local Storage Relocation Types

The TLS relocations that are listed in the following table are defined for SPARC. Descriptions
in the table use the following notation.

@dtlndx(x)

Allocates two contiguous entries in the GOT to hold a TLS_index structure. This information
is passed to __tls_get_addr(). The instruction referencing this entry is bound to the
address of the first of the two GOT entries.

@tmndx(x)

Allocates two contiguous entries in the GOT to hold a TLS_index structure. This information
is passed to __tls_get_addr(). The ti_tlsoffset field of this structure is set to 0, and
the ti_moduleid is filled in at runtime. The call to __tls_get_addr() returns the starting
offset of the dynamic TLS block.

@dtpoff(x)

Calculates the tlsoffset relative to the TLS block.

@tpoff(x)

Calculates the negative tlsoffset relative to the static TLS block. This value is added to
the thread-pointer to calculate the TLS address.

@dtpmod(x)

Calculates the object identifier of the object containing a TLS symbol.

TABLE 64 SPARC: Thread-Local Storage Relocation Types

Name Value Field Calculation

R_SPARC_TLS_GD_HI22 56 T-simm22 @dtlndx(S + A) >> 10

R_SPARC_TLS_GD_LO10 57 T-simm13 @dtlndx(S + A) & 0x3ff

R_SPARC_TLS_GD_ADD 58 None Refer to the explanation following this table.

488 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Thread-Local Storage Access Models

Name Value Field Calculation

R_SPARC_TLS_GD_CALL 59 V-disp30 Refer to the explanation following this table.

R_SPARC_TLS_LDM_HI22 60 T-simm22 @tmndx(S + A) >> 10

R_SPARC_TLS_LDM_LO10 61 T-simm13 @tmndx(S + A) & 0x3ff

R_SPARC_TLS_LDM_ADD 62 None Refer to the explanation following this table.

R_SPARC_TLS_LDM_CALL 63 V-disp30 Refer to the explanation following this table.

R_SPARC_TLS_LDO_HIX22 64 T-simm22 @dtpoff(S + A) >> 10

R_SPARC_TLS_LDO_LOX10 65 T-simm13 @dtpoff(S + A) & 0x3ff

R_SPARC_TLS_LDO_ADD 66 None Refer to the explanation following this table.

R_SPARC_TLS_IE_HI22 67 T-simm22 @got(@tpoff(S + A)) >> 10

R_SPARC_TLS_IE_LO10 68 T-simm13 @got(@tpoff(S + A)) & 0x3ff

R_SPARC_TLS_IE_LD 69 None Refer to the explanation following this table.

R_SPARC_TLS_IE_LDX 70 None Refer to the explanation following this table.

R_SPARC_TLS_IE_ADD 71 None Refer to the explanation following this table.

R_SPARC_TLS_LE_HIX22 72 T-imm22 (@tpoff(S + A) ^0xffffffffffffffff) >> 10

R_SPARC_TLS_LE_LOX10 73 T-simm13 (@tpoff(S + A) & 0x3ff) | 0x1c00

R_SPARC_TLS_DTPMOD32 74 V-word32 @dtpmod(S + A)

R_SPARC_TLS_DTPMOD64 75 V-word64 @dtpmod(S + A)

R_SPARC_TLS_DTPOFF32 76 V-word32 @dtpoff(S + A)

R_SPARC_TLS_DTPOFF64 77 V-word64 @dtpoff(S + A)

R_SPARC_TLS_TPOFF32 78 V-word32 @tpoff(S + A)

R_SPARC_TLS_TPOFF64 79 V-word64 @tpoff(S + A)

Some relocation types have semantics beyond simple calculations.

R_SPARC_TLS_GD_ADD

This relocation tags the add instruction of a GD code sequence. The register used for the
GOT-pointer is the first register in the sequence. The instruction tagged by this relocation
comes before the call instruction tagged by the R_SPARC_TLS_GD_CALL relocation. This
relocation is used to transition between TLS models at link-edit time.

R_SPARC_TLS_GD_CALL

This relocation is handled as if it were a R_SPARC_WPLT30 relocation referencing the
__tls_get_addr() function. This relocation is part of a GD code sequence.

R_SPARC_LDM_ADD

This relocation tags the first add instruction of a LD code sequence. The register used for
the GOT-pointer is the first register in the sequence. The instruction tagged by this relocation

Chapter 16 • Thread-Local Storage 489

Thread-Local Storage Access Models

comes before the call instruction tagged by the R_SPARC_TLS_GD_CALL relocation. This
relocation is used to transition between TLS models at link-edit time.

R_SPARC_LDM_CALL

This relocation is handled as if it were a R_SPARC_WPLT30 relocation referencing the
__tls_get_addr() function. This relocation is part of a LD code sequence.

R_SPARC_LDO_ADD

This relocation tags the final add instruction in a LD code sequence. The register which
contains the object address that is computed in the initial part of the code sequence is
the first register in this instruction. This relocation permits the link-editor to identify this
register for code transformations.

R_SPARC_TLS_IE_LD

This relocation tags the ld instruction in the 32-bit IE code sequence. This relocation is
used to transition between TLS models at link-edit time.

R_SPARC_TLS_IE_LDX

This relocation tags the ldx instruction in the 64-bit IE code sequence. This relocation is
used to transition between TLS models at link-edit time.

R_SPARC_TLS_IE_ADD

This relocation tags the add instruction in the IE code sequence. The register that is used
for the GOT-pointer is the first register in the sequence.

32-bit x86: Thread-Local Variable Access

On x86, the following code sequence models are available for accessing TLS.

32-bit x86: General Dynamic (GD)

This code sequence implements the GD model described in “Thread-Local Storage Access
Models” on page 481.

TABLE 65 32-bit x86: General Dynamic Thread-Local Variable Access Codes

Code Sequence Initial Relocations Symbol

0x00 leal x@tlsgd(,%ebx,1), %eax

0x07 call x@tlsgdplt

R_386_TLS_GD

R_386_TLS_GD_PLT

x

x

490 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Thread-Local Storage Access Models

%eax - contains address of TLS variable

→ Outstanding Relocations Symbol

GOT[n]

GOT[n + 1]

R_386_TLS_DTPMOD32

R_386_TLS_DTPOFF32

x

The leal instruction generates a R_386_TLS_GD relocation which instructs the link-editor to
allocate space in the GOT to hold a TLS_index structure for variable x. The link-editor processes
this relocation by substituting the GOT-relative offset for the new GOT entry.

Since the load object index and TLS block index for x are not known until runtime, the link-
editor places the R_386_TLS_DTPMOD32 and R_386_TLS_DTPOFF32 relocations against the GOT for
processing by the runtime linker. The address of the generated GOT entry is loaded into register
%eax for the call to ___tls_get_addr().

The call instruction causes the generation of the R_386_TLS_GD_PLT relocation. This instructs
the link-editor to bind the call to the ___tls_get_addr() function and associates the call
instruction with the GD code sequence.

The call instruction must immediately follow the leal instruction. This requirement is
necessary to permit the code transformations.

x86: Local Dynamic (LD)

This code sequence implements the LD model described in “Thread-Local Storage Access
Models” on page 481.

TABLE 66 32-bit x86: Local Dynamic Thread-Local Variable Access Codes

Code Sequence Initial Relocations Symbol

0x00 leal x1@tlsldm(%ebx), %eax

0x06 call x1@tlsldmplt

%eax - contains address of TLS block of current object

0x10 leal x1@dtpoff(%eax), %edx

%edx - contains address of local TLS variable x1

0x20 leal x2@dtpoff(%eax), %edx

%edx - contains address of local TLS variable x2

R_386_TLS_LDM

R_386_TLS_LDM_PLT

R_386_TLS_LDO_32

R_386_TLS_LDO_32

x1

x1

x1

x2

→ Outstanding Relocations Symbol

GOT[n] R_386_TLS_DTPMOD32 x

Chapter 16 • Thread-Local Storage 491

Thread-Local Storage Access Models

GOT[n + 1] <none>

The first leal instruction generates a R_386_TLS_LDM relocation. This relocation instructs the
link-editor to allocate space in the GOT to hold a TLS_index structure for the current object. The
link-editor process this relocation by substituting the GOT -relative offset for the new linkage
table entry.

The load object index is not known until runtime. Therefore, a R_386_TLS_DTPMOD32 relocation
is created, and the ti_tlsoffset field of the structure is zero filled. The call instruction is
tagged with the R_386_TLS_LDM_PLT relocation.

The TLS offset for each local symbol is known at link-edit time so the link-editor fills these
values in directly.

When a procedure references more than one local symbol, the compiler generates code to obtain
the base address of the TLS block once. This base address is then used to calculate the address
of each symbol without a separate library call.

32-bit x86: Initial Executable (IE)

This code sequence implements the IE model described in “Thread-Local Storage Access
Models” on page 481.

Two code-sequences for the IE model exist. One sequence is for position independent code
which uses a GOT-pointer. The other sequence is for position dependent code which does not use
a GOT-pointer.

TABLE 67 32-bit x86: Initial Executable, Position Independent, Thread-Local Variable Access Codes

Code Sequence Initial Relocations Symbol

0x00 movl %gs:0, %eax

0x06 addl x@gotntpoff(%ebx), %eax

%eax - contains address of TLS variable

<none>

R_386_TLS_GOTIE x

→ Outstanding Relocations Symbol

GOT[n] R_386_TLS_TPOFF x

The addl instruction generates a R_386_TLS_GOTIE relocation. This relocation instructs the link-
editor to create space in the GOT to store the static TLS offset for symbol x. A R_386_TLS_TPOFF
relocation is left outstanding against the GOT table for the runtime linker to fill in with the static
TLS offset for symbol x.

492 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Thread-Local Storage Access Models

TABLE 68 32-bit x86: Initial Executable, Position Dependent, Thread-Local Variable Access Codes

Code Sequence Initial Relocations Symbol

0x00 movl %gs:0, %eax

0x06 addl x@indntpoff, %eax

%eax - contains address of TLS variable

<none>

R_386_TLS_IE x

→ Outstanding Relocations Symbol

GOT[n] R_386_TLS_TPOFF x

The addl instruction generates a R_386_TLS_IE relocation. This relocation instructs the link-
editor to create space in the GOT to store the static TLS offset for symbol x. The main difference
between this sequence and the position independent form, is that the instruction is bound
directly to the GOT entry created, instead of using an offset off of the GOT-pointer register. A
R_386_TLS_TPOFF relocation is left outstanding against the GOT for the runtime linker to fill in
with the static TLS offset for symbol x.

The contents of variable x, rather than the address, can be loaded by embedding the offset
directly into the memory reference as shown in the next two sequences.

TABLE 69 32-bit x86: Initial Executable, Position Independent, Dynamic Thread-Local Variable
Access Codes

Code Sequence Initial Relocations Symbol

0x00 movl x@gotntpoff(%ebx), %eax

0x06 movl %gs:(%eax), %eax

%eax - contains address of TLS variable

R_386_TLS_GOTIE

<none>

x

→ Outstanding Relocations Symbol

GOT[n] R_386_TLS_TPOFF x

TABLE 70 32-bit x86: Initial Executable, Position Independent, Thread-Local Variable Access Codes

Code Sequence Initial Relocations Symbol

0x00 movl x@indntpoff, %ecx

0x06 movl %gs:(%ecx), %eax

%eax - contains address of TLS variable

R_386_TLS_IE

<none>

x

→ Outstanding Relocations Symbol

GOT[n] R_386_TLS_TPOFF x

In the last sequence, if the %eax register is used instead of the %ecx register, the first instruction
can be either 5 or 6 bytes long.

Chapter 16 • Thread-Local Storage 493

Thread-Local Storage Access Models

32-bit x86: Local Executable (LE)

This code sequence implements the LE model described in “Thread-Local Storage Access
Models” on page 481.

TABLE 71 32-bit x86: Local Executable Thread-Local Variable Access Codes

Code Sequence Initial Relocations Symbol

0x00 movl %gs:0, %eax

0x06 leal x@ntpoff(%eax), %eax

%eax - contains address of TLS variable

<none>

R_386_TLS_LE x

The movl instruction generates a R_386_TLS_LE_32 relocation. The link-editor binds this
relocation directly to the static TLS offset for the symbol defined in the executable. No
processing is required at runtime.

The contents of variable x, rather then the address, can be accessed with the same relocation by
using the following instruction sequence.

TABLE 72 32-bit x86: Local Executable Thread-Local Variable Access Codes

Code Sequence Initial Relocations Symbol

0x00 movl %gs:0, %eax

0x06 movl x@ntpoff(%eax), %eax

%eax - contains address of TLS variable

<none>

R_386_TLS_LE x

Rather than computing the address of the variable, a load from the variable or store to the
variable can be accomplished using the following sequence. Note, the x@ntpoff expression is
not used as an immediate value, but as an absolute address.

TABLE 73 32-bit x86: Local Executable Thread-Local Variable Access Codes

Code Sequence Initial Relocations Symbol

0x00 movl %gs:x@ntpoff, %eax

%eax - contains address of TLS variable

R_386_TLS_LE x

32-bit x86: Thread-Local Storage Relocation Types
The TLS relocations that are listed in the following table are defined for x86. Descriptions in
the table use the following notation.

494 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Thread-Local Storage Access Models

@tlsgd(x)

Allocates two contiguous entries in the GOT to hold a TLS_index structure. This structure is
passed to ___tls_get_addr(). The instruction referencing this entry will be bound to the
first of the two GOT entries.

@tlsgdplt(x)

This relocation is handled as if it were a R_386_PLT32 relocation referencing the
___tls_get_addr() function.

@tlsldm(x)

Allocates two contiguous entries in the GOT to hold a TLS_index structure. This structure
is passed to the ___tls_get_addr(). The ti_tlsoffset field of the TLS_index is set to
0, and the ti_moduleid is filled in at runtime. The call to ___tls_get_addr() returns the
starting offset of the dynamic TLS block.

@gotntpoff(x)

Allocates a entry in the GOT, and initializes the entry with the negative tlsoffset relative
to the static TLS block. This sequence is performed at runtime using the R_386_TLS_TPOFF
relocation.

@indntpoff(x)

This expression is similar to @gotntpoff, but is used in position dependent code.
@gotntpoff resolves to a GOT slot address relative to the start of the GOT in the movl or addl
instructions. @indntpoff resolves to the absolute GOT slot address.

@ntpoff(x)

Calculates the negative tlsoffset relative to the static TLS block.

@dtpoff(x)

Calculates the tlsoffset relative to the TLS block. The value is used as an immediate
value of an addend and is not associated with a specific register.

@dtpmod(x)

Calculates the object identifier of the object containing a TLS symbol.

TABLE 74 32-bit x86: Thread-Local Storage Relocation Types

Name Value Field Calculation

R_386_TLS_GD_PLT 12 Word32 @tlsgdplt

R_386_TLS_LDM_PLT 13 Word32 @tlsldmplt

R_386_TLS_TPOFF 14 Word32 @ntpoff(S)

Chapter 16 • Thread-Local Storage 495

Thread-Local Storage Access Models

Name Value Field Calculation

R_386_TLS_IE 15 Word32 @indntpoff(S)

R_386_TLS_GOTIE 16 Word32 @gotntpoff(S)

R_386_TLS_LE 17 Word32 @ntpoff(S)

R_386_TLS_GD 18 Word32 @tlsgd(S)

R_386_TLS_LDM 19 Word32 @tlsldm(S)

R_386_TLS_LDO_32 32 Word32 @dtpoff(S)

R_386_TLS_DTPMOD32 35 Word32 @dtpmod(S)

R_386_TLS_DTPOFF32 36 Word32 @dtpoff(S)

x64: Thread-Local Variable Access

On x64, the following code sequence models are available for accessing TLS.

x64: General Dynamic (GD)

This code sequence implements the GD model described in “Thread-Local Storage Access
Models” on page 481.

TABLE 75 x64: General Dynamic Thread-Local Variable Access Codes

Code Sequence Initial Relocations Symbol

0x00 .byte 0x66

0x01 leaq x@tlsgd(%rip), %rdi

0x08 .word 0x6666

0x0a rex64

0x0b call __tls_get_addr@plt

%rax - contains address of TLS variable

<none>

R_AMD64_TLSGD

<none>

<none>

R_AMD64_PLT32

x

__tls_get_addr

→ Outstanding Relocations Symbol

GOT[n]

GOT[n + 1]

R_AMD64_DTPMOD64

R_AMD64_DTPOFF64

x

x

The __tls_get_addr() function takes a single parameter, the address of the tls_index
structure. The R_AMD64_TLSGD relocation that is associated with the x@tlsgd(%rip) expression,
instructs the link-editor to allocate a tls_index structure within the GOT. The two elements
required for the tls_index structure are maintained in consecutive GOT entries, GOT[n] and
GOT[n+1]. These GOT entries are associated to the R_AMD64_DTPMOD64 and R_AMD64_DTPOFF64
relocations.

496 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Thread-Local Storage Access Models

The instruction at address 0x00 computes the address of the first GOT entry. This computation
adds the PC relative address of the beginning of the GOT, which is known at link-edit time, to the
current instruction pointer. The result is passed using the %rdi register to the __tls_get_addr()
function.

Note - The leaq instruction computes the address of the first GOT entry. This computation is
carried out by adding the PC-relative address of the GOT, which was determined at link-edit
time, to the current instruction pointer. The .byte, .word, and .rex64 prefixes insure that the
whole instruction sequence occupies 16 bytes. Prefixes are employed, as prefixes have no
negative impact on the code.

x64: Local Dynamic (LD)

This code sequence implements the LD model described in “Thread-Local Storage Access
Models” on page 481.

TABLE 76 x64: Local Dynamic Thread-Local Variable Access Codes

Code Sequence Initial Relocations Symbol

0x00 leaq x1@tlsld(%rip), %rdi

0x07 call __tls_get_addr@plt

%rax - contains address of TLS block

0x10 leaq x1@dtpoff(%rax), %rcx

%rcx - contains address of TLS variable x1

0x20 leaq x2@dtpoff(%rax), %r9

%r9 - contains address of TLS variable x2

R_AMD64_TLSLD

R_AMD64_PLT32

R_AMD64_DTOFF32

R_AMD64_DTOFF32

x1

__tls_get_addr

x1

x2

→ Outstanding Relocations Symbol

GOT[n] R_AMD64_DTMOD64 x1

The first two instructions are equivalent to the code sequence used for the general dynamic
model, although without any padding. The two instructions must be consecutive. The x1@tlsld
(%rip) sequence generates a the tls_index entry for symbol x1. This index refers to the
current module that contains x1 with an offset of zero. The link-editor creates one relocation for
the object, R_AMD64_DTMOD64.

The R_AMD64_DTOFF32 relocation is unnecessary, because offsets are loaded separately.
The x1@dtpoff expression is used to access the offset of the symbol x1. Using the
instruction as address 0x10, the complete offset is loaded and added to the result of the

Chapter 16 • Thread-Local Storage 497

Thread-Local Storage Access Models

__tls_get_addr() call in %rax to produce the result in %rcx. The x1@dtpoff expression creates
the R_AMD64_DTPOFF32 relocation.

Instead of computing the address of the variable, the value of the variable can be loaded using
the following instruction. This instruction creates the same relocation as the original leaq
instruction.

movq x1@dtpoff(%rax), %r11

Provided the base address of a TLS block is maintained within a register, loading, storing or
computing the address of a protected thread-local variable requires one instruction.

Benefits exist in using the local dynamic model over the general dynamic model. Every
additional thread-local variable access only requires three new instructions. In addition, no
additional GOT entries, or runtime relocations are required.

x64: Initial Executable (IE)

This code sequence implements the IE model described in “Thread-Local Storage Access
Models” on page 481.

TABLE 77 x64: Initial Executable, Thread-Local Variable Access Codes

Code Sequence Initial Relocations Symbol

0x00 movq %fs:0, %rax

0x09 addq x@gottpoff(%rip), %rax

%rax - contains address of TLS variable

<none>

R_AMD64_GOTTPOFF x

→ Outstanding Relocations Symbol

GOT[n] R_AMD64_TPOFF64 x

The R_AMD64_GOTTPOFF relocation for the symbol x requests the link-editor to generate a GOT
entry and an associated R_AMD64_TPOFF64 relocation. The offset of the GOT entry relative to the
end of the x@gottpoff(%rip) instruction, is then used by the instruction. The R_AMD64_TPOFF64
relocation uses the value of the symbol x that is determined from the currently loaded modules.
The offset is written in the GOT entry and is later loaded by the addq instruction.

To load the contents of x, rather than the address of x, the following sequence is available.

TABLE 78 x64: Initial Executable, Thread-Local Variable Access Codes II

Code Sequence Initial Relocations Symbol

0x00 movq x@gottpoff(%rip), %rax

0x07 movq %fs:(%rax), %rax

R_AMD64_GOTTPOFF

<none>

x

498 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Thread-Local Storage Access Models

%rax - contains contents of TLS variable

→ Outstanding Relocations Symbol

GOT[n] R_AMD64_TPOFF64 x

x64: Local Executable (LE)

This code sequence implements the LE model described in “Thread-Local Storage Access
Models” on page 481.

TABLE 79 x64: Local Executable Thread-Local Variable Access Codes

Code Sequence Initial Relocations Symbol

0x00 movq %fs:0, %rax

0x09 leaq x@tpoff(%rax), %rax

%rax - contains address of TLS variable

<none>

R_AMD64_TPOFF32

x

To load the contents of a TLS variable instead of the address of a TLS variable, the following
sequence can be used.

TABLE 80 x64: Local Executable Thread-Local Variable Access Codes II

Code Sequence Initial Relocations Symbol

0x00 movq %fs:0, %rax

0x09 movq x@tpoff(%rax), %rax

%rax - contains contents of TLS variable

<none>

R_AMD64_TPOFF32

x

The following sequence is even shorter.

TABLE 81 x64: Local Executable Thread-Local Variable Access Codes III

Code Sequence Initial Relocations Symbol

0x00 movq %fs:x@tpoff, %rax

%rax - contains contents of TLS variable

R_AMD64_TPOFF32 x

x64: Thread-Local Storage Relocation Types
The TLS relocations that are listed in the following table are defined for x64. Descriptions in
the table use the following notation.

Chapter 16 • Thread-Local Storage 499

Thread-Local Storage Access Models

@tlsgd(%rip)

Allocates two contiguous entries in the GOT to hold a TLS_index structure. This structure
is passed to __tls_get_addr(). This instruction can only be used in the exact general
dynamic code sequence.

@tlsld(%rip)

Allocates two contiguous entries in the GOT to hold a TLS_index structure. This structure
is passed to __tls_get_addr(). At runtime, the ti_offset offset field of the object is set
to zero, and the ti_module offset is initialized. A call to the __tls_get_addr() function
returns the starting offset if the dynamic TLS block. This instruction can be used in the
exact code sequence.

@dtpoff

Calculates the offset of the variable relative to the start of the TLS block which contains
the variable. The computed value is used as an immediate value of an addend, and is not
associated with a specific register.

@dtpmod(x)

Calculates the object identifier of the object containing a TLS symbol.

@gottpoff(%rip)

Allocates a entry in the GOT, to hold a variable offset in the initial TLS block. This offset is
relative to the TLS blocks end, %fs:0. The operator can only be used with a movq or addq
instruction.

@tpoff(x)

Calculates the offset of a variable relative to the TLS block end, %fs:0. No GOT entry is
created.

TABLE 82 x64: Thread-Local Storage Relocation Types

Name Value Field Calculation

R_AMD64_DPTMOD64 16 Word64 @dtpmod(s)

R_AMD64_DTPOFF64 17 Word64 @dtpoff(s)

R_AMD64_TPOFF64 18 Word64 @tpoff(s)

R_AMD64_TLSGD 19 Word32 @tlsgd(s)

R_AMD64_TLSLD 20 Word32 @tlsld(s)

R_AMD64_DTPOFF32 21 Word32 @dtpoff(s)

R_AMD64_GOTTPOFF 22 Word32 @gottpoff(s)

R_AMD64_TPOFF32 23 Word32 @gottpoff(s)

500 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

PART V

Linker and Libraries Appendices

PART V Linker and Libraries Appendices 501

502 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

 A ♦ ♦ ♦ A P P E N D I X A

Linker and Libraries Updates and New Features

This appendix provides an overview of the updates and new features that have been added to
releases of the Oracle Solaris OS.

Oracle Solaris 11.3 Release

■ ld(1) provides the -z nxheap and -z nxstack options to control non-executable heap and
stack for individual executables. elfedit(1) has been modified to allow simplified editing
of the associated DT_SUNW_SX_NXHEAP and DT_SUNW_SX_NXSTACK dynamic section entries.

■ Mapfiles can match input section and file names against glob, regular expression, or
literal text patterns, and generate output section names that incorporate substrings from
the input names. See “MATCH and MATCHREF Expressions” on page 233.

■ Shared objects can act as weak filters at the object and per-symbol level, See “Generating
Weak Filters” on page 137.

■ The FILTER mapfile directive allows standard, auxiliary, and weak object level filters to be
declared from within a mapfile, rather than by using the -F (standard filter) or -f (auxiliary
filter) command line options. See “FILTER Directive” on page 239.

■ The FILTER attribute to the SYMBOL_SCOPE and SYMBOL_VERSION mapfile directives allows
standard, auxiliary, and weak symbol level filters to be defined on a per-symbol basis. See
“FILTER Attribute” on page 258.

■ The RESERVE_SEGMENT mapfile directive provides for declaring memory reservations. See
“LOAD, NOTE, NULL, and RESERVE_SEGMENT Directives” on page 241.

Oracle Solaris 11.2 Release

■ The link-editor can decompress and compress debug sections. See “Compressed Debug
Sections” on page 74 and “Section Compression” on page 373.

Appendix A • Linker and Libraries Updates and New Features 503

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ld-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1elfedit-1

Oracle Solaris 11.1 Release

■ Improved synchronization between runtime auditors and process initialization is
provided with the la_callinit() and la_callentry() functions. See “Audit Interface
Functions” on page 316 and “Audit Interface Control Flow” on page 322.

■ The -z relax option can be used to relax items of the link-editor's default validity checking.
This option allows the creation of an output object that would otherwise be rejected. The
-z relax option supersedes the -t and -z relaxreloc options. See ld(1)).

■ Greater flexibility in option processing is provided with the link-editor -z type option,
and the additional LD_UNSET, LD_{object-type}_OPTIONS and LD_{object-type}_UNSET
environment variables. See “Specifying the Link-Editor Options” on page 30.

■ The new -F option to elfdump(1) provides output format options.
■ Stub objects can omit symbols found in the associated real object. This technique prevents

the use of those symbols in new code development that link against the stub object, while
maintaining the symbols in the real object for backward compatibility. See “Using Stub
Objects to Hide Obsolete Interfaces” on page 68.

Oracle Solaris 11.1 Release

■ Ancillary objects allow debug sections that are not required at runtime to be written to a
separate object file. See “Ancillary Objects” on page 69.

■ Parent Objects simplify the construction of plugin objects, by allowing a plugin to link
directly against its parent. See “Parent Objects” on page 78.

■ ld(1) provides the -z aslr option to control the Address Space Layout and Randomization
for individual executables. elfedit(1) has been modified to allow simplified editing of the
associated DT_SUNW_SX_ASLR dynamic section entry.

Oracle Solaris 11

■ Archive libraries and their members can be examined more fully with the new utility
elffile(1).

■ 64-bit processes can be restricted to the lower 32-bit address space by encoding a
software capabilities attribute. See “Software Capability Address Space Restriction
Processing” on page 188.

504 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ld-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1elfdump-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ld-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1elfedit-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1elffile-1

Oracle Solaris 10 1/13 Release

Oracle Solaris 10 1/13 Release

■ Greater flexibility in discarding unused material from a link-edit is provided with the link-
editor -z discard-unused option. See “Removing Unused Material” on page 209.

■ Greater flexibility in stripping nonessential sections from an object is provided with the
link-editor -z strip-class option. The -z strip-class option supersedes the older -s
option, and provides finer grained control over the sections to be stripped.

Oracle Solaris 10 8/11 Release

■ The link-editor can create stub objects. Stub objects are shared objects, built entirely from
mapfiles, that supply the same linking interface as the real object while containing no code
or data. Stub objects can be built very quickly by the link-editor, and can be used to increase
build parallelism and to reduce build complexity. See “Stub Objects” on page 64.

■ The link-editor can provide guidance in creating high quality objects using the -z guidance
option. See ld(1).

■ Archive processing now allows the creation of archives greater than 4 Gbytes in size.
■ Local auditors can now receive la_preinit() and la_activity() events. See “Runtime

Linker Auditing Interface” on page 311.
■ A more robust model for testing for the existence of functionality is provided with deferred

dependencies. See “Testing for Functionality” on page 117 and “Providing an Alternative to
dlopen()” on page 97.

■ A new mapfile syntax is provided. See Chapter 10, “Mapfiles in the Link-Editor”. This
syntax provides a more human readable, and extensible language than the original System
V Release 4 language. Full support for processing original mapfiles is maintained within
the link-editor. See Appendix B, “System V Release 4 (Version 1) Mapfiles” for the original
mapfile syntax and use.

■ Individual symbols can be associated with capability requirements. See “Identifying
Capability Requirements” on page 180. This functionality provides for the creation of a
family of optimized functions within a dynamic object. See “Creating a Family of Symbol
Capabilities Functions” on page 189, and “Capabilities Section” on page 385.

■ Objects that are created with the link-editor, and contain Oracle Solaris specific ELF data,
are tagged with ELFOSABI_SOLARIS in the e_ident[EI_OSABI] ELF header. Historically,
ELFOSABI_NONE has been used for all objects. This change is primarily of informational
value, as the runtime linker continues to consider ELFOSABI_NONE and ELFOSABI_SOLARIS
to be equivalent. However, elfdump(1), and similar diagnostic tools, can use this ABI
information to produce more accurate information for a given object.

Appendix A • Linker and Libraries Updates and New Features 505

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ld-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1elfdump-1

Oracle Solaris 10 8/11 Release

■ elfdump(1) has been extended to use the value of e_ident[EI_OSABI] ELF header, or the
new -O option, to identify ELF data types and values that are specific to a given ABI, and to
use this information to provide a more accurate display of the object contents. The ability
to display ABI-specific information in objects from the Linux operating system has been
greatly expanded.

■ The segment mapping information for an object that is loaded with a process can be
obtained using the dlinfo(3C) flags RTLD_DI_MMAPCNT and RTLD_DI_MMAPS.

■ The link-editor recognizes a number of GNU link-editor options. See ld(1).
■ The link-editor provides cross linking for SPARC and x86 targets. See “Cross Link-

Editing” on page 29.
■ The link-editor now provides for merging SHF_MERGE | SHF_STRING string sections. See

“Section Merging” on page 372.
■ The merging of relocation sections when creating dynamic objects is now the default

behavior. See “Combined Relocation Sections” on page 216. This behavior used to require
the link-editor's -z combreloc option. The -z nocombreloc is provided to disable this
default behavior, and preserve the one-to-one relationship with the sections to which the
relocations must be applied.

■ ELF objects can be edited with the new utility elfedit(1).
■ Arbitrary data files can be encapsulated within ELF relocatable objects using the new utility

elfwrap(1).
■ Additional symbol visibility attributes are provided. See the exported, singleton

and eliminate attribute descriptions under “SYMBOL_SCOPE and SYMBOL_VERSION
Directives” on page 254 and Table 35, “ELF Symbol Visibility,” on page 414.

■ The link-editor, and associated ELF utilities have been moved from /usr/ccs/bin to /usr/
bin. See “Invoking the Link-Editor” on page 28.

■ Symbol sort sections have been added, that allow for simplified correlation of memory
addresses to symbolic names. See “Symbol Sort Sections” on page 418.

■ The symbol table information that is available with dynamic objects has been extended with
the addition of a new .SUNW_ldynsym section. See “Symbol Table Section” on page 409 and
Table 17, “ELF Section Types, sh_type,” on page 358.

■ The format of configuration files that are managed with crle(1) has been enhanced for
better file identification. The improved format ensures that the runtime linker does not use a
configuration file generated on an incompatible platform.

■ New relocation types have been added that use the size of the associated symbol in the
relocation calculation. See “Relocation Entries” on page 398.

■ The -z rescan-now, -z recan-start, and -z rescan-end options provide additional
flexibility in specifying archive libraries to a link-edit. See “Position of an Archive on the
Command Line” on page 36.

506 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1elfdump-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlinfo-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1ld-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1elfedit-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1elfwrap-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1crle-1

Solaris 10 5/08 Release

Obsolete Feature

The following items have been made obsolete. These items provided internal, or seldom used
features. Any existing use of the associated ELF definitions is ignored, however the definitions
can still be displayed by tools such as elfdump(1).

DT_FEATURE_1

This dynamic section tag identified runtime feature requirements. See “Dynamic
Section” on page 445. This tag provided the feature flags DTF_1_PARINIT and
DTF_1_CONVEXP. The DT_FEATURE_1 tag and the associated flags are no longer created by
the link-editor, or processed by the runtime linker.

Solaris 10 5/08 Release

■ Global auditing can now be enabled by recording an auditor within an application together
with the link-editor -z globalaudit option. See “Recording Global Auditors” on page 315.

■ Additional link-editor support interfaces, ld_open() and ld_open64() have been added.
See “Support Interface Functions” on page 305.

Solaris 10 8/07 Release

■ Greater flexibility in executing an alternative link-editor is provided with the link-editor
-z altexec64 option, and the LD_ALTEXEC environment variable.

■ Symbol definitions that are generated using mapfiles can now be associated to ELF
sections. See “SYMBOL_SCOPE and SYMBOL_VERSION Directives” on page 254.

■ The link-editor and runtime linker provide for the creation of static TLS within shared
objects. In addition, a backup TLS reservation is established to provide for limited use of
static TLS within post-startup shared objects. See “Program Startup” on page 478.

Solaris 10 1/06 Release

■ Support for the x64 medium code model is provided. See Table 16, “ELF Special Section
Indexes,” on page 354, Table 19, “ELF Section Attribute Flags,” on page 365, and Table 24,
“ELF Special Sections,” on page 375.

Appendix A • Linker and Libraries Updates and New Features 507

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1elfdump-1

Solaris 10 Release

■ The command line arguments, environment variables, and auxiliary vector array of the
process, can be obtained using the dlinfo(3C) flag RTLD_DI_ARGSINFO.

■ Greater flexibility in prohibiting direct binding from external references is provided with the
link-editor -B nodirect option. See Chapter 7, “Direct Bindings”.

Solaris 10 Release

■ x64 is now supported. See Table 17, “ELF Section Types, sh_type,” on page 358,
“Special Sections” on page 375, “Relocation Types” on page 406, “Thread-Local Variable
Access” on page 496, and “Thread-Local Storage Relocation Types” on page 499.

■ A restructuring of the file system has moved many components from under /usr/lib to
/lib. Both the link-editor and runtime linkers default search paths have been changed
accordingly. See “Directories Searched by the Link-Editor” on page 37, “Directories
Searched by the Runtime Linker” on page 84, and “Runtime Security” on page 105.

■ System archive libraries are no longer provided. Therefore, the creation of a statically linked
executable is no longer possible. See “Static Executables” on page 23.

■ Greater flexibility for defining alternative dependencies is provided with the -A option of
crle(1).

■ The link-editor and runtime linker process environment variables specified without a value.
See “Environment Variables” on page 25.

■ Path names used with dlopen(3C), and as explicit dependency definitions, can now use
any reserved tokens. See Chapter 12, “Establishing Dependencies with Dynamic String
Tokens”. The evaluation of path names that use reserved tokens is provided with the new
utility moe(1).

■ An optimal means of testing for the existence of an interface is provide with dlsym(3C) and
the new handle RTLD_PROBE. See “Providing an Alternative to dlopen()” on page 97.

508 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlinfo-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1crle-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlopen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1moe-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN3Adlsym-3c

 B ♦ ♦ ♦ A P P E N D I X B

System V Release 4 (Version 1) Mapfiles

Note - This appendix describes the original System V Release 4 mapfile language (version 1).
Although this mapfile syntax remains supported, the version 2 mapfile language described in
Chapter 10, “Mapfiles in the Link-Editor” is recommended for new applications.

The link-editor automatically and intelligently maps input sections from relocatable objects to
segments in the output file being created. The -M option with an associated mapfile enables
you to change the default mapping provided by the link-editor. In addition, new segments can
be created, attributes modified, and symbol versioning information can be supplied with the
mapfile.

Note - When using a mapfile option, you can easily create an output file that does not execute.
The link-editor knows how to produce a correct output file without the use of the mapfile
option.

Sample mapfiles provided on the system reside in the /usr/lib/ld directory.

Mapfile Structure and Syntax

You can enter the following basic types of directives into a mapfile.

■ Segment declarations.
■ Mapping directives.
■ Section-to-segment ordering.
■ Size-symbol declarations.
■ File control directives.

Each directive can span more than one line and can have any amount of white space, including
new lines, as long as that white space is followed by a semicolon.

Appendix B • System V Release 4 (Version 1) Mapfiles 509

Mapfile Structure and Syntax

Typically, segment declarations are followed by mapping directives. You declare a segment
and then define the criteria by which a section becomes part of that segment. If you enter a
mapping directive or size-symbol declaration without first declaring the segment to which you
are mapping, except for built-in segments, the segment is given default attributes. Such segment
is an implicitly declared segment.

Size-symbol declarations and file control directives can appear anywhere in a mapfile.

The following sections describe each directive type. For all syntax discussions, the following
notations apply.

■ All entries in constant width, all colons, semicolons, equal signs, and at (@) signs are typed
in literally.

■ All entries in italics are substitutable.
■ { }* means "zero or more".
■ { }+ means "one or more".
■ [....] means "optional".
■ section_names and segment_names follow the same rules as C identifiers, where a period

(.) is treated as a letter. For example, .bss is a legal name.
■ section_names, segment_names, file_names, and symbol_names are case sensitive.

Everything else is not case sensitive.
■ Spaces, or new-lines, can appear anywhere except before a number or in the middle of a

name or value.
■ Comments beginning with # and ending at a newline can appear anywhere that a space can

appear.

Segment Declarations

A segment declaration creates a new segment in the output file, or changes the attribute values
of an existing segment. An existing segment is one that you previously defined or one of the
four built-in segments described immediately following.

A segment declaration has the following syntax.

 segment_name = {segment_attribute_value}*;

For each segment_name, you can specify any number of segment_attribute_values in any
order, each separated by a space. Only one attribute value is allowed for each segment attribute.
The segment attributes and their valid values are as shown in the following table.

510 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Mapfile Structure and Syntax

TABLE 83 Mapfile Segment Attributes

Attribute Value

segment_type LOAD | NOTE | NULL | STACK

segment_flags ? [E] [N] [O] [R] [W] [X]

virtual_address Vnumber

physical_address Pnumber

length Lnumber

rounding Rnumber

alignment Anumber

Four built-in segments exist with the following default attribute values.

■ text – LOAD, ?RX, no virtual_address, physical_address, or length specified.
alignment values are set to defaults per CPU type.

■ data – LOAD, ?RWX, no virtual_address, physical_address, or length specified.
alignment values are set to defaults per CPU type.

■ bss – disabled, LOAD, ?RWX, no virtual_address, physical_address, or length specified.
alignment values are set to defaults per CPU type.

■ note – NOTE.

By default, the bss segment is disabled. Any sections of type SHT_NOBITS, which are its sole
input, are captured in the data segment. See Table 17, “ELF Section Types, sh_type,” on page
358 for a full description of SHT_NOBITS sections. The simplest bss declaration is sufficient to
enable the creation of a bss segment.

 bss =;

Any SHT_NOBITS sections is captured by this segment, rather than captured in the data segment.
In its simplest form, this segment is aligned using the same defaults as applied to any other
segment. The declaration can also provide additional segment attributes that both enable the
segment creation, and assign the specified attributes.

The link-editor behaves as if these segments are declared before your mapfile is read in. See
“Mapfile Option Defaults” on page 518.

Note the following when entering segment declarations.

■ A number can be hexadecimal, decimal, or octal, following the same rules as in the C
language.

■ No space is allowed between the V, P, L, R, or A and the number.
■ The segment_type value can be either LOAD, NOTE, NULL or STACK. If unspecified, the

segment type defaults to LOAD.

Appendix B • System V Release 4 (Version 1) Mapfiles 511

Mapfile Structure and Syntax

■ The segment_flags values are R for readable, W for writable, X for executable, and O for
order. No spaces are allowed between the question mark (?) and the individual flags that
make up the segment_flags value.

■ The segment_flags value for a LOAD segment defaults to RWX.
■ NOTE segments cannot be assigned any segment attribute value other than a segment_type.
■ One segment_type of value STACK is permitted. Only the access requirements of the

segment, selected from the segment_flags, can be specified.
■ Implicitly declared segments default to segment_type value LOAD, segment_flags value

RWX, a default virtual_address, physical_address, and alignment value, and have no
length limit.

Note - The link-editor calculates the addresses and length of the current segment based on
the previous segment's attribute values.

■ LOAD segments can have an explicitly specified virtual_address value or
physical_address value, as well as a maximum segment length value.

■ If a segment has a segment_flags value of ? with nothing following, the value defaults to
not readable, not writable, and not executable.

■ The alignment value is used in calculating the virtual address of the beginning of the
segment. This alignment only affects the segment for which the alignment is specified.
Other segments still have the default alignment unless their alignment values are also
changed.

■ If any of the virtual_address, physical_address, or length attribute values are not set,
the link-editor calculates these values as the output file is created.

■ If an alignment value is not specified for a segment, the alignment is set to the built-
in default. This default differs from one CPU to another and might even differ between
software revisions.

■ If both a virtual_address and an alignment value are specified for a segment, the
virtual_address value takes priority.

■ If a virtual_address value is specified for a segment, the alignment field in the program
header contains the default alignment value.

■ If the rounding value is set for a segment, that segment's virtual address is rounded to the
next address that conforms to the value that is given. This value only effects the segments
that the value is specified for. If no value is given, no rounding is performed.

Note - If a virtual_address value is specified, the segment is placed at that virtual address.
For the system kernel, this method creates a correct result. For files that start through exec(2),
this method creates an incorrect output file because the segments do not have correct offsets
relative to their page boundaries.

512 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN2exec-2

Mapfile Structure and Syntax

The ?E flag allows the creation of an empty segment. This empty segment has no sections
associated with the segment. This segment can be a LOAD segment or a NULL segment. Empty
LOAD segments can only be specified for executables. These segments must have a specified size
and alignment. These segments result in the creation of memory reservations at process startup.
Empty NULL segments provide for adding program header entries that can be used by post-
processing utilities. These segments should have no additional attributes specified. Multiple
definitions for LOAD segments and NULL segments are permitted.

The ?N flag enables you to control whether the ELF header, and any program headers are
included as part of the first loadable segment. By default, the ELF header and program headers
are included with the first segment. The information in these headers is used within the mapped
image, typically by the runtime linker. The use of the ?N option causes the virtual address
calculations for the image to start at the first section of the first segment.

The ?O flag enables you control the order of sections in the output file. This flag is intended for
use in conjunction with the -xF option to the compilers. When a file is compiled with the -xF
option, each function in that file is placed in a separate section with the same attributes as the
.text section. These sections are called .text%function_name.

For example, a file containing three functions, main(), foo() and bar(), when compiled with
the -xF option, yields a relocatable object file with text for the three functions being placed in
sections called .text%main, .text%foo, and .text%bar. Because the -xF option forces one
function per section, the use of the ?O flag to control the order of sections in effect controls the
order of functions.

Consider the following user-defined mapfile.

 text = LOAD ?RXO;

 text: .text%foo;

 text: .text%bar;

 text: .text%main;

The first declaration associates the ?O flag with the default text segment.

If the order of function definitions in the source file is main, foo, and bar, then the final
executable contains functions in the order foo, bar, and main.

For static functions with the same name, the file names must also be used. The ?O flag forces
the ordering of sections as requested in the mapfile. For example, if a static function bar()
exists in files a.o and b.o, and function bar() from file a.o is to be placed before function
bar() from file b.o, then the mapfile entries should read as follows.

 text: .text%bar: a.o;

 text: .text%bar: b.o;

The syntax allows for the following entry.

Appendix B • System V Release 4 (Version 1) Mapfiles 513

Mapfile Structure and Syntax

 text: .text%bar: a.o b.o;

However, this entry does not guarantee that function bar() from file a.o is placed before
function bar() from file b.o. The second format is not recommended as the results are not
reliable.

Mapping Directives

A mapping directive instructs the link-editor how to map input sections to output
segments. Basically, you name the segment that you are mapping to and indicate what
the attributes of a section must be in order to map into the named segment. The set of
section_attribute_values that a section must have to map into a specific segment is called
the entrance criteria for that segment. In order to be placed in a specified segment of the output
file, a section must meet the entrance criteria for a segment exactly.

A mapping directive has the following syntax.

 segment_name : {section_attribute_value}* [: {file_name}+];

For a segment_name, you specify any number of section_attribute_values in any order, each
separated by a space. At most, one section attribute value is allowed for each section attribute.
You can also specify that the section must come from a certain .o file through a file_name
declaration. The section attributes and their valid values are shown in the following table.

TABLE 84 Section Attributes

Section Attribute Value

section_name Any valid section name

section_type $PROGBITS

$SYMTAB

$STRTAB

$REL

$RELA

$NOTE

$NOBITS

section_flags ? [[!]A] [[!]W] [[!]X]

Note the following points when entering mapping directives.

514 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Mapfile Structure and Syntax

■ You must choose at most one section_type from the section_types listed previously.
The section_types listed previously are built-in types. For more information on
section_types, see “Section Headers” on page 353.

■ The section_flags values are A for allocatable, W for writable, or X for executable. If an
individual flag is preceded by an exclamation mark (!), the link-editor checks that the flag
is not set. No spaces are allowed between the question mark, exclamation marks, and the
individual flags that make up the section_flags value.

■ file_name can be any legal file name, of the form *filename, or of the form archive_name
(component_name), for example, /lib/libc.a(printf.o). The link-editor does not check
the syntax of file names.

■ If a file_name is of the form *filename, the link-editor determines the basename(1) of the
file from the command line. This base name is used to match against the specified file
name. In other words, the filename from the mapfile only needs to match the last part of
the file name from the command line. See “Mapping Example” on page 516.

■ If you use the -l option during a link-edit, and the library after the -l option is in the current
directory, you must precede the library with ./, or the entire path name, in the mapfile in
order to create a match.

■ More than one directive line can appear for a particular output segment. For example, the
following set of directives is legal.

 S1 : $PROGBITS;

 S1 : $NOBITS;

Entering more than one mapping directive line for a segment is the only way to specify
multiple values of a section attribute.

■ A section can match more than one entrance criteria. In this case, the first segment
encountered in the mapfile with that entrance criteria is used. For example, if a mapfile
reads as follows.

 S1 : $PROGBITS;

 S2 : $PROGBITS;

The $PROGBITS sections are mapped to segment S1.

Section-Within-Segment Ordering

By using the following notation you can specify the order that sections are placed within a
segment.

 segment_name | section_name1;

 segment_name | section_name2;

Appendix B • System V Release 4 (Version 1) Mapfiles 515

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1basename-1

Mapping Example

 segment_name | section_name3;

The sections that are named in the above form are placed before any unnamed sections, and in
the order they are listed in the mapfile.

Size-Symbol Declarations

Size-symbol declarations enable you to define a new global-absolute symbol that represents the
size, in bytes, of the specified segment. This symbol can be referenced in your object files. A
size-symbol declaration has the following syntax.

 segment_name @ symbol_name;

symbol_name can be any legal C identifier. The link-editor does not check the syntax of the
symbol_name.

File Control Directives

File control directives enable you to specify which version definitions within shared objects are
to be made available during a link-edit. The file control definition has the following syntax.

 shared_object_name - version_name [version_name];

version_name is a version definition name contained within the specified
shared_object_name.

Mapping Example

The following example is a user-defined mapfile. The numbers on the left are included in the
example for tutorial purposes. Only the information to the right of the numbers actually appears
in the mapfile.

EXAMPLE 3 User-Defined Mapfile

 1. elephant : .data : peanuts.o *popcorn.o;

 2. monkey : $PROGBITS ?AX;

 3. monkey : .data;

516 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Mapping Example

 4. monkey = LOAD V0x80000000 L0x4000;

 5. donkey : .data;

 6. donkey = ?RX A0x1000;

 7. text = V0x80008000;

Four separate segments are manipulated in this example. The implicitly declared segment
elephant (line 1) receives all of the .data sections from the files peanuts.o and popcorn.o.
Notice that *popcorn.o matches any popcorn.o file that can be supplied to the link-edit.
The file need not be in the current directory. On the other hand, if /var/tmp/peanuts.o was
supplied to the link-edit, it does not match peanuts.o because it is not preceded by an *.

The implicitly declared segment monkey (line 2) receives all sections that are both $PROGBITS
and allocatable-executable (?AX), as well as all sections not already in the segment elephant
with the name .data (line 3). The .data sections entering the monkey segment need not be
$PROGBITS or allocatable-executable because the section_type and section_flags values are
entered on a separate line from the section_name value.

An "and" relationship exists between attributes on the same line as illustrated by $PROGBITS
"and" ?AX on line 2. An "or" relationship exists between attributes for the same segment that
span more than one line, as illustrated by $PROGBITS ?AX on line 2 "or" .data on line 3.

The monkey segment is implicitly declared in line 2 with segment_type value LOAD,
segment_flags value RWX, and no virtual_address, physical_address, length or alignment
values specified (defaults are used). In line 4 the segment_type value of monkey is set to
LOAD. Because the segment_type attribute value does not change, no warning is issued. The
virtual_address value is set to 0x80000000 and the maximum length value to 0x4000.

Line 5 implicitly declares the donkey segment. The entrance criteria are designed to route all
.data sections to this segment. Actually, no sections fall into this segment because the entrance
criteria for monkey in line 3 capture all of these sections. In line 6, the segment_flags value
is set to ?RX and the alignment value is set to 0x1000. Because both of these attribute values
changed, a warning is issued.

Line 7 sets the virtual_address value of the text segment to 0x80008000.

The example of a user-defined mapfile is designed to cause warnings for illustration purposes.
If you want to change the order of the directives to avoid warnings, use the following example.

 1. elephant : .data : peanuts.o *popcorn.o;

 4. monkey = LOAD V0x80000000 L0x4000;

 2. monkey : $PROGBITS ?AX;

 3. monkey : .data;

 6. donkey = ?RX A0x1000;

 5. donkey : .data;

Appendix B • System V Release 4 (Version 1) Mapfiles 517

Mapfile Option Defaults

 7. text = V0x80008000;

The following mapfile example uses the section-within-segment ordering.

 1. text = LOAD ?RXN V0xf0004000;

 2. text | .text;

 3. text | .rodata;

 4. text : $PROGBITS ?A!W;

 5. data = LOAD ?RWX R0x1000;

The text and data segments are manipulated in this example. Line 1 declares the text segment
to have a virtual_address of 0xf0004000 and to not include the ELF header or any program
headers as part of this segment's address calculations. Lines 2 and 3 turn on section-within-
segment ordering and specify that the .text and .rodata sections are the first two sections in
this segment. The result is that the .text section have a virtual address of 0xf0004000, and the
.rodata section immediately follows that address.

Any other $PROGBITS section that makes up the text segment follows the .rodata section.
Line 5 declares the data segment and specifies that its virtual address must begin on a 0x1000
byte boundary. The first section that constitutes the data segment also resides on a 0x1000 byte
boundary within the file image.

Mapfile Option Defaults

The link-editor defines four built-in segments (text, data, bss and note) with default
segment_attribute_values and corresponding default mapping directives. Even though
the link-editor does not use an actual mapfile to provide the defaults, the model of a default
mapfile helps illustrate what happens when the link-editor encounters your mapfile.

The following example shows how a mapfile would appear for the link-editor defaults. The
link-editor begins execution behaving as if the mapfile has already been read in. Then the link-
editor reads your mapfile and either augments or makes changes to the defaults.

 text = LOAD ?RX;

 text : ?A!W;

 data = LOAD ?RWX;

 data : ?AW;

 note = NOTE;

 note : $NOTE;

As each segment declaration in your mapfile is read in, it is compared to the existing list of
segment declarations as follows.

518 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Internal Map Structure

1. If the segment does not already exist in the mapfile but another with the same segment-
type value exists, the segment is added before all of the existing segments of the same
segment_type.

2. If none of the segments in the existing mapfile has the same segment_type value as the
segment just read in, then the segment is added by segment_type value to maintain the
following order.

INTERP

LOAD

DYNAMIC

NOTE

3. If the segment is of segment_type LOAD and you have defined a virtual_address value
for this LOADable segment, the segment is placed before any LOADable segments without
a defined virtual_address value or with a higher virtual_address value, but after any
segments with a virtual_address value that is lower.

As each mapping directive in a mapfile is read in, the directive is added after any other
mapping directives that you already specified for the same segment but before the default
mapping directives for that segment.

Internal Map Structure

One of the most important data structures in the ELF-based link-editor is the map structure. A
default map structure, corresponding to the model default mapfile, is used by the link-editor.
Any user mapfile augments or overrides certain values in the default map structure.

A typical although somewhat simplified map structure is illustrated in Figure 20, “Simple Map
Structure,” on page 520. The "Entrance Criteria" boxes correspond to the information in
the default mapping directives. The "Segment Attribute Descriptors" boxes correspond to the
information in the default segment declarations. The "Output Section Descriptors" boxes give
the detailed attributes of the sections that fall under each segment. The sections themselves are
shown in circles.

Appendix B • System V Release 4 (Version 1) Mapfiles 519

Internal Map Structure

FIGURE 20 Simple Map Structure

The link-editor performs the following steps when mapping sections to segments.

1. When a section is read in, the link-editor checks the list of Entrance Criteria looking for a
match. All specified criteria must be matched.

In Figure 20, “Simple Map Structure,” on page 520, a section that falls into the text
segment must have a section_type value of $PROGBITS and have a section_flags value
of ?A!W. It need not have the name .text since no name is specified in the Entrance
Criteria. The section can be either X or !X in the section_flags value because nothing was
specified for the execute bit in the Entrance Criteria.
If no Entrance Criteria match is found, the section is placed at the end of the output file
after all other segments. No program header entry is created for this information.

2. When the section falls into a segment, the link-editor checks the list of existing Output
Section Descriptors in that segment as follows.

520 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Internal Map Structure

If the section attribute values match those of an existing Output Section Descriptor exactly,
the section is placed at the end of the list of sections associated with that Output Section
Descriptor.

For instance, a section with a section_name value of .data1, a section_type value of
$PROGBITS, and a section_flags value of ?AWX falls into the second Entrance Criteria box
in Figure 20, “Simple Map Structure,” on page 520, placing it in the data segment. The
section matches the second Output Section Descriptor box exactly (.data1, $PROGBITS, ?
AWX) and is added to the end of the list associated with that box. The .data1 sections from
fido.o, rover.o, and sam.o illustrate this point.
If no matching Output Section Descriptor is found but other Output Section Descriptors of
the same section_type exist, a new Output Section Descriptor is created with the same
attribute values as the section and that section is associated with the new Output Section
Descriptor. The Output Section Descriptor and the section are placed after the last Output
Section Descriptor of the same section type. The .data2 section in Figure 20, “Simple Map
Structure,” on page 520 was placed in this manner.
If no other Output Section Descriptors of the indicated section type exist, a new Output
Section Descriptor is created and the section is placed in that section.

Note - If the input section has a user-defined section type value between SHT_LOUSER
and SHT_HIUSER, it is treated as a $PROGBITS section. No method exists for naming this
section_type value in the mapfile, but these sections can be redirected using the other
attribute value specifications (section_flags, section_name) in the entrance criteria.

3. If a segment contains no sections after all of the command line object files and libraries are
read in, no program header entry is produced for that segment.

Note - Input sections of type $SYMTAB, $STRTAB, $REL, and $RELA are used internally by the link-
editor. Directives that refer to these section types can only map output sections produced by the
link-editor to segments.

Appendix B • System V Release 4 (Version 1) Mapfiles 521

522 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Index

Numbers and Symbols
$CAPABILITY See search paths
$ISALIST See search paths
$ORIGIN See search paths
$OSNAME See search paths
$OSREL See search paths
$PLATFORM See search paths
32-bit/64-bit, 25

environment variables, 25
ld-support, 304
rtld-audit, 316
runtime linker, 83
search paths

configuration, 87
link-editor, 37
runtime linker, 39, 84, 108
security, 105

___tls_get_addr, 480
__thread, 475
__tls_get_addr, 480

A
ABI See Application Binary Interface
Application Binary Interface, 25, 271
ar(1), 33
archives, 35

inclusion of shared objects in, 130
link-editor processing, 33
multiple passes through, 33
naming conventions, 35

as(1), 22
atexit(3C), 100

auxiliary filters, 133, 139

B
base address, 436, 436
binding

dependency ordering, 132
direct, 216
lazy, 92, 109, 121
to shared object dependencies, 128, 279
to version definitions, 279
to weak version definitions, 286

C
capabilities

converting object capabilities to symbol
capabilities, 195
creating a symbol capabilities example, 153
development evolution, 200
exercising a capabilities example, 156
exercising capabilities, 197
hardware, 179
machine, 179
object, 179
platform, 179
software, 180
symbol, 179

CC(1), 29
cc(1), 22, 29
COMDAT, 309, 384
COMMON, 44, 355
compilation environment, 21, 24, 35, 127

523

Index

See also link-editing and link-editor
compiler driver, 29
compiler options

-K pic, 149, 206
-K PIC, 208
-xF, 210, 384
-xpg, 222
-xregs=no%appl, 149

compression, 74
crle(1)

auditing, 318
interaction with, 461, 461
options

-e, 221
-l, 87
-s, 105

security, 105, 106, 302

D
data representation, 345
debugging aids

link-editing, 80
runtime linking, 120

demonstrations
prefcnt, 325
sotruss, 325
symbindrep, 325
whocalls, 325

direct binding
and interposition, 169
conversion to, 161
performance, 216
singleton symbols, 174, 175

dlclose(3C), 100, 107
dldump(3C), 42
dlerror(3C), 107
dlfcn.h, 107
dlinfo(3C)

modes
RTLD_DI_DEFERRED, 99
RTLD_DI_DEFERRED_SYM, 99

RTLD_DI_ORIGIN, 301
dlopen(3C), 84, 107, 107, 114

effects of ordering, 112
group, 89, 108
modes

RTLD_FIRST, 115, 293, 295
RTLD_GLOBAL, 113, 115
RTLD_GROUP, 114
RTLD_LAZY, 109
RTLD_NOLOAD, 312
RTLD_NOW, 92, 104, 109
RTLD_PARENT, 114, 114, 115, 115

of a dynamic executable, 109, 114
shared object naming conventions, 128
version verification, 282

dlsym(3C), 84, 107, 115
special handle

RTLD_DEFAULT, 50, 115
RTLD_NEXT, 95, 115, 174, 174
RTLD_PROBE, 50, 98, 115

version verification, 282
dynamic executables, 22
dynamic information tags

NEEDED, 85, 128
RUNPATH, 85
SONAME, 129
SYMBOLIC, 221
TEXTREL, 208

dynamic linking, 24
implementation, 395, 441

E
ELF, 21, 27, 343

See also object files
elf(3E), 303
elfdump(1), 203
environment variables

32-bit/64-bit, 25
LD_AUDIT, 106, 313
LD_BIND_NOW, 92, 104, 121
LD_CONFIG, 106

524 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Index

LD_DEBUG, 120
LD_EXEC_OPTIONS, 31
LD_EXEC_UNSET, 31
LD_LIBRARY_PATH, 38, 86, 131

auditing, 318
security, 105

LD_LOADFLTR, 143
LD_NOAUDIT, 314
LD_NOAUXFLTR, 142
LD_NODIRECT, 165, 167
LD_NOLAZYLOAD, 97
LD_NOVERSION, 285
LD_OPTIONS, 30, 80
LD_PIE_OPTIONS, 31
LD_PIE_UNSET, 31
LD_PRELOAD, 91, 94, 106, 174
LD_PROFILE, 221
LD_PROFILE_OUTPUT, 221
LD_RELOC_OPTIONS, 31
LD_RELOC_UNSET, 31
LD_RUN_PATH, 40
LD_SHARED_OPTIONS, 31
LD_SHARED_UNSET, 31
LD_SIGNAL, 106
LD_UNSET, 30
SGS_SUPPORT, 304

error messages
link-editor

multiply-defined symbols, 47
relocations against non-writable sections, 208
shared object name conflicts, 130
soname conflicts, 130
symbol not assigned to version, 58
symbol warnings, 46, 46
undefined symbols, 48, 48
undefined symbols from an implicit
reference, 49
version unavailable, 284

runtime linker
copy relocation size differences, 64, 219
relocation errors, 93, 281
unable to find shared object, 87, 108

unable to find version definition, 281
unable to locate symbol, 116

exec(2), 27, 344
executable and linking format See ELF

F
filtee, 132
filters, 132

auxiliary, 133, 139
capabilities families, 293
instruction set specific, 295
reducing filtee searches, 295, 297
standard, 133, 134
system specific, 297
weak, 133, 137

G
.got See global offset table
generating a shared object, 49
generating an executable, 48
generating the output file image, 61
global offset table, 445, 464

.got, 378
_GLOBAL_OFFSET_TABLE_, 62
dynamic reference, 449
inspection, 88
position-independent code, 207
relocation, 397, 397

combined with procedure linkage
table, 470, 472
SPARC, 399
x64, 406
x86, 405

global symbols, 271, 411
GOT See global offset table

I
initialization and termination, 29, 40, 99
input file processing, 32

525

Index

interface
private, 271
public, 271

interposition, 45, 91, 95, 118
explicit definition, 173
inspection, 45
interface stability, 272
with direct binding, 163

interpreter See runtime linker

L
/lib, 37, 39, 84, 108
/lib/64, 37, 39, 84, 108
/lib/secure, 105
/lib/secure/64, 105
lari(1), 164
lazy binding, 92, 109, 121, 311
LCOMMON, 355
ld(1) See link-editor
ld.so.1(1) See runtime linker
LD_AUDIT, 106, 313
LD_BIND_NOW, 92, 104, 121

IA relocation, 472, 473
SPARC 32-bit relocation, 467
SPARC 64-bit relocation, 470

LD_CONFIG, 106
LD_DEBUG, 120
LD_EXEC_OPTIONS, 31
LD_EXEC_UNSET, 31
LD_LIBRARY_PATH, 86, 131

auditing, 318
security, 105

LD_LOADFLTR, 143
LD_NOAUDIT, 314
LD_NOAUXFLTR, 142
LD_NODIRECT, 165, 167
LD_NOLAZYLOAD, 97
LD_NOVERSION, 285
LD_OPTIONS, 30, 80
LD_PIE_OPTIONS, 31
LD_PIE_UNSET, 31

LD_PRELOAD, 91, 94, 106, 174
LD_PROFILE, 221
LD_PROFILE_OUTPUT, 221
LD_RELOC_OPTIONS, 31
LD_RELOC_UNSET, 31
LD_RUN_PATH, 40
LD_SHARED_OPTIONS, 31
LD_SHARED_UNSET, 31
LD_SIGNAL, 106
LD_UNSET, 30
ldd(1), 85
ldd(1) options

-d, 64, 94, 219
-i, 102
-r, 64, 94, 219
-u, 34
-v, 280

libelf.so.1, 305, 343
libldstab.so.1, 304
libraries

archives, 35
naming conventions, 35
shared, 395, 441

link-editing, 22, 409, 441
adding additional libraries, 35
archive processing, 33
binding to a version definition, 279, 283
dynamic, 395, 441
input file processing, 32
library input processing, 33
library linking options, 33
mixing shared objects and archives, 36
position of files on command line, 36
search paths, 37, 38
shared object processing, 34

link-editor, 21, 27
cross link-editing, 29
debugging aids, 80
error messages See error messages
external bindings, 61
invoking directly, 28
invoking using compiler driver, 29

526 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Index

overview, 27
sections, 27
segments, 27
specifying options, 30
updates and new features, 503

link-editor options
-64, 137
-a, 148
-B direct, 149, 150, 165, 165
-B dynamic, 36
-B eliminate, 60
-B group, 89, 114, 460
-B local, 59, 171
-B nodirect, 176
-B reduce, 59, 256, 289
-B static, 36, 148
-B symbolic, 167, 220
-D, 80
-d n, 148, 150
-d y, 148
-e, 62
-F, 132
-f, 133
-G, 127, 149, 150
-h, 85, 129, 150, 290
-i, 39
-l, 33, 35, 127, 147
-L, 38, 147
-M, 225

defining interfaces, 149
defining segments, 28
defining symbols, 51, 51
defining versions, 273

-m, 35, 45
-p, 314
-P, 314
-r, 29, 148
-R, 39, 131, 149, 150
-S, 304
-t, 46, 46
-u, 51, 51

-Y, 38
-z type, 22
-z allextract, 33
-z ancillary, 70
-z compress-sections, 74
-z defaultextract, 33
-z deferred, 98, 98, 463
-z defs, 50, 149, 313
-z direct, 165, 167
-z discard-unused, 209

dependency elimination, 34, 150, 211
file elimination, 210
prevent section discarding, 367
section elimination, 149, 210

-z endfiltee, 461
-z finiarray, 41
-z globalaudit, 315
-z groupperm, 463
-z guidance, 147, 149, 150

unused dependencies, 211
unused files, 210

-z ignore, 211
-z initarray, 41
-z initfirst, 460
-z interpose, 91, 174, 460
-z lazyload, 96, 149, 150, 463
-z ld32, 304
-z ld64, 304
-z loadfltr, 143, 460
-z mapfile-add, 230
-z muldefs, 47
-z nocompstrtab, 61, 373
-z nodefaultlib, 39, 460
-z nodefs, 49, 93
-z nodelete, 460
-z nodirect, 165
-z nodlopen, 460
-z nodump, 461
-z nolazyload, 96
-z noldynsym, 418, 420
-z nopartial, 392

527

Index

-z noversion, 58, 274, 280
-z now, 92, 104, 109
-z parent, 80
-z record, 211
-z redlocsym, 417
-z relax, 463
-z rescan-end, 37
-z rescan-now, 37
-z rescan-start, 37
-z strip-class, 60, 62, 309, 363
-z target, 29
-z text, 149, 208
-z verbose, 63
-z weakextract, 33, 412

link-editor output
dynamic executables, 22
position-independent executables, 22
relocatable objects, 22
shared objects, 22
static executable, 22

link-editor support interface (ld-support), 303
ld_atexit(), 309
ld_atexit64(), 309
ld_file(), 307
ld_file64(), 307
ld_input_done(), 309
ld_input_section(), 307
ld_input_section64(), 307
ld_open(), 306
ld_open64(), 306
ld_section(), 308
ld_section64(), 308
ld_start(), 305
ld_start64(), 305
ld_version(), 305

local symbols, 411
lorder(1), 34, 81

M
mapfiles, 225

conditional input, 228
defaults, 261
directive

CAPABILITY, 235
DEPEND_VERSIONS, 238
HDR_NOALLOC, 240
LOAD_SEGMENT, 241
NOTE_SEGMENT, 242
NULL_SEGMENT, 243
PHDR_ADD_NULL, 241
RESERVE_SEGMENT, 243
SEGMENT, 241
SEGMENT_ORDER, 252
STACK, 253
SYMBOL_SCOPE, 254
SYMBOL_VERSION, 254

directive syntax, 231
example, 263
lexical conventions, 225
local scoping, 171
mapping directives, 514
symbol attributes

AUXILIARY, 132, 133, 142
DIRECT, 165, 168
DYNSORT, 419, 419
ELIMINATE, 60, 417
FILTER, 132, 142, 172
FUNCTION, 135
INTERPOSE, 91, 174, 462
NODIRECT, 175, 177
NODYNSORT, 419, 420

syntax version, 228
mapfiles (version 1 syntax)

defaults, 518
example, 516
map structure, 519
mapping directives, 514
segment declarations, 510
size-symbol declarations, 516
structure, 509
syntax, 509

mmapobj(2), 61, 203, 337

528 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Index

multiply-defined data, 384
multiply-defined symbols, 34, 45, 384

N
namespace, 312
naming conventions

archives, 35
libraries, 35
shared objects, 35, 127

NEEDED, 85, 128

O
object capabilities, 179
object files, 21

ancillary, 69
base address, 436, 436
data representation, 345
extended section header, 370
global offset table See global offset table
note section, 393, 394
preloading at runtime, 94
procedure linkage table See procedure linkage table
program header, 394, 431, 435, 435, 435
program interpreter, 444
program loading, 438
relocation, 395
section alignment, 357
section attributes, 365, 381
section group flags, 384
section header, 353, 381
section names, 381, 381
section types, 358, 381
segment contents, 437, 437
segment permissions, 436, 437
segment types, 432, 436
string table, 408, 409
symbol table, 409, 417

Oracle Solaris ABI See Application Binary Interface
Oracle Solaris Application Binary Interface See
Application Binary Interface

P
.plt See procedure linkage table
paging, 438, 441
performance

allocating buffers dynamically, 214
collapsing multiple definitions, 214
improving locality of references, 215, 221
maximizing shareability, 213
minimizing data segment, 213
position-independent code See position-dependent
code
relocations, 215, 221
the underlying system, 205
using automatic variables, 214

PIC See position-independent code
pkg:/developer/base-developer-utilities, 325
pkg:/source/demo/system, 324, 328, 343
position-independent code, 206, 451

global offset table, 464
position-independent executables, 22
preloading objects See LD_PRELOAD
procedure linkage table, 379, 445

_PROCEDURE_LINKAGE_TABLE_, 62
dynamic reference, 449, 449, 451, 451
lazy reference, 92
position-independent code, 207
relocation, 398, 465

64-bit SPARC, 467
SPARC, 399, 465
x64, 406, 472
x86, 405, 470

profil(2), 221
program interpreter, 83, 444

See also runtime linker
pvs(1), 274, 276, 278, 280

R
relocatable objects, 22
relocation, 88, 215, 220, 395

copy, 63, 217
displacement, 63

529

Index

immediate, 92
lazy, 92
non-symbolic, 88, 215
runtime linker

symbol lookup, 89, 92, 109, 121
symbolic, 88, 215

RPATH See runpath
RTLD_DEFAULT, 50, 115

See also dependency ordering
RTLD_FIRST, 115, 293, 295
RTLD_GLOBAL, 113, 115
RTLD_GROUP, 114
RTLD_LAZY, 109
RTLD_NEXT, 115
RTLD_NOLOAD, 312
RTLD_NOW, 92, 104, 109
RTLD_PARENT, 114, 114, 115, 115
RTLD_PROBE, 50, 98, 115

See also dependency ordering
RUNPATH See runpath
runpath, 39, 85, 108, 131

security, 105
runtime environment, 24, 35, 127
runtime linker, 23, 83, 445

direct binding, 216
initialization and termination routines, 99
lazy binding, 92, 109, 121
link-maps, 312
loading additional objects, 94
namespace, 312
programming interface, 106

See also dladdr(3C), dlclose(3C), dldump(3C),
dlerror(3C), dlinfo(3C), dlopen(3C), dlsym
(3C)

relocation processing, 88
search paths, 39, 84
security, 105
shared object processing, 84
updates and new features, 503
version definition verification, 280

runtime linker support interfaces (rtld-audit), 303, 311
cookies, 315

la_activity(), 317
la_amd64_pltenter(), 321
la_callentry(), 319
la_callinit(), 319
la_i86_pltenter(), 321
la_objclose(), 322
la_objfilter(), 318
la_objopen(), 316
la_objseach(), 318
la_pltexit(), 322
la_preinit(), 319
la_sparcv8_pltenter(), 321
la_sparcv9_pltenter(), 321
la_symbind32(), 320
la_symbind64(), 320
la_version(), 316

runtime linker support interfaces (rtld-debugger), 303,
326

ps_global_sym(), 338
ps_pglobal_sym(), 339, 339
ps_plog(), 338
ps_pread(), 338
ps_pwrite(), 338
rd_delete(), 329
rd_errstr(), 330
rd_event_addr(), 334
rd_event_enable(), 333
rd_event_getmsg(), 335
rd_init(), 329
rd_loadobj_iter(), 332
rd_log(), 330
rd_new(), 329
rd_objpad_enable(), 337
rd_plt_resolution(), 335
rd_reset(), 329

runtime linking, 23

S
SCD See Application Binary Interface
search paths

530 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Index

link-editing, 37
runtime linker, 39, 84

$CAPABILITY token, 293
$HWCAP token See $CAPABILITY
$ISALIST token, 295
$ORIGIN token, 298
$OSNAME token, 297
$OSREL token, 297
$PLATFORM token, 297

section flags
SHF_ALLOC, 365, 379
SHF_COMPRESSED, 75, 367, 373
SHF_EXCLUDE, 309, 369
SHF_EXECINSTR, 366
SHF_GROUP, 367, 385
SHF_INFO_LINK, 366
SHF_LINK_ORDER, 355, 366
SHF_MASKOS, 367
SHF_MASKPROC, 368
SHF_MERGE, 366, 372
SHF_ORDERED, 369
SHF_OS_NONCONFORMING, 367
SHF_STRINGS, 366, 372
SHF_TLS, 367, 477
SHF_WRITE, 365

section header, 353
extended section header, 370

section names
.bss, 27, 217
.data, 27, 213
.debug, 75
.dynamic, 62, 83, 221
.dynstr, 61
.dynsym, 61
.fini, 40, 100
.fini_array, 40, 100
.got, 62, 88
.init, 40, 100
.init_array, 40, 100
.interp, 83
.picdata, 214

.plt, 62, 92, 221

.preinit_array, 40, 100

.rela.text, 27

.rodata, 213

.strtab, 27, 62

.SUNW_reloc, 217

.SUNW_version, 423

.symtab, 27, 60, 62

.tbss, 477

.tdata, 477

.tdata1, 477

.text, 27

.zdebug, 75
section numbers

SHN_ABS, 355, 413, 416
SHN_AFTER, 355, 367, 369
SHN_AMD64_LCOMMON, 355, 416
SHN_BEFORE, 355, 367, 369
SHN_COMMON, 355, 412, 416, 416
SHN_HIOS, 355, 355
SHN_HIPROC, 355
SHN_HIRESERVE, 356
SHN_LOOS, 355, 355
SHN_LOPROC, 355
SHN_LORESERVE, 355
SHN_SUNW_IGNORE, 355
SHN_UNDEF, 355, 416
SHN_XINDEX, 356, 371

section types
SHT_DYNAMIC, 360, 445
SHT_DYNSTR, 360
SHT_DYNSYM, 359
SHT_FINI_ARRAY, 361
SHT_GROUP, 361, 367, 384, 385
SHT_HASH, 360, 389, 445
SHT_HIOS, 361
SHT_HIPROC, 364
SHT_HISUNW, 361
SHT_HIUSER, 364
SHT_INIT_ARRAY, 361
SHT_LOOS, 361

531

Index

SHT_LOPROC, 364
SHT_LOSUNW, 361
SHT_LOUSER, 364
SHT_NOBITS, 360

.bss, 377

.lbss, 378

.SUNW_bss, 380

.tbss, 380
p_memsz calculation, 437
sh_offset, 357
sh_size, 357

SHT_NOTE, 360, 393
SHT_NULL, 359
SHT_PREINIT_ARRAY, 361
SHT_PROGBITS, 359, 445
SHT_REL, 361
SHT_RELA, 360
SHT_SHLIB, 361
SHT_SPARC_GOTDATA, 364, 364
SHT_STRTAB, 360
SHT_SUNW_ANNOTATE, 75, 75, 363
SHT_SUNW_cap, 363
SHT_SUNW_COMDAT, 309, 363, 384
SHT_SUNW_DEBUG, 363
SHT_SUNW_DEBUGSTR, 363
SHT_SUNW_dof, 363
SHT_SUNW_LDYNSYM, 359, 362
SHT_SUNW_move, 363, 390
SHT_SUNW_SIGNATURE, 363
SHT_SUNW_syminfo, 363
SHT_SUNW_symsort, 362
SHT_SUNW_tlssort, 362
SHT_SUNW_verdef, 363, 423, 428
SHT_SUNW_verneed, 363, 423, 425
SHT_SUNW_versym, 363, 423, 425, 428
SHT_SYMTAB, 359, 413
SHT_SYMTAB_SHNDX, 361, 371

sections, 27, 27, 203
See also section flags, section names, section
numbers and section types

security

$ORIGIN, 302
runtime security, 105

segments, 27, 203
data, 204, 206
text, 204, 206

SGS_SUPPORT, 304
shared libraries See shared objects
shared objects, 21, 22, 84, 127

as filters, 132
compensating dependencies, 211
dependency groups, 89, 108
dependency ordering, 132
explicit definition, 49
implementation, 395, 441
implicit definition, 49
link-editor processing, 34
naming conventions, 35, 127
recording a runtime name, 128
used dependency elimination, 34
with dependencies, 131

SONAME, 129
SPARC Compliance Definition See Application Binary
Interface
standard filters, 133, 134
static executable, 22
strings(1), 214
strip(1), 60, 62
support interfaces

link-editor (ld-support), 303
runtime linker (rtld-audit), 303, 311
runtime linker (rtld-debugger), 303, 326

symbol capabilities, 179
symbol processing, 42
symbol reserved names, 62

_DYNAMIC, 62
_edata, 62
_end, 62
END, 62
_etext, 62
_fini, 40
_GLOBAL_OFFSET_TABLE_, 62, 209, 464
_init, 40

532 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

Index

_PROCEDURE_LINKAGE_TABLE_, 62
_start, 62
START, 62
main, 62

symbol resolution, 43
complex, 45
fatal, 47
generating the output file image, 61
interposition, 91
multiple definitions, 34
search scope

group, 89
world, 89

simple, 45
symbol visibility, 43
SYMBOLIC, 221
symbols

absolute, 355, 355
archive extraction, 33
auto-elimination, 60
auto-reduction, 274
COMMON, 44, 355
defined, 44
definition, 33
elimination, 60
global, 271, 411
LCOMMON, 355
local, 411
multiply-defined, 34, 45, 384
ordered, 355
private interface, 271
public interface, 271
reference, 33
registers, 403, 420
runtime lookup, 109, 119

deferred, 92, 98, 109, 121
scope, 109, 114
tentative, 44

COMMON, 355
LCOMMON, 355
ordering in the output file, 50
realignment, 54

type, 412

undefined, 33, 44, 48, 355
visibility, 411, 413

global, 89
local, 89
singleton, 89, 91, 110
singleton affect on direct binding, 174, 175

weak, 50, 411, 411
System V Application Binary Interface See Application
Binary Interface

T
tentative symbols, 44
TEXTREL, 208
thread-local storage, 475

access models, 481
runtime storage allocation, 478
section definition, 476

TLS See thread-local storage
tsort(1), 34, 81

U
/usr/bin/ld See link-editor
/usr/ccs/bin/ld See link-editor
/usr/ccs/lib, 28
/usr/lib, 37, 39, 84, 108
/usr/lib/64, 37, 39, 84, 108
/usr/lib/64/ld.so.1, 83, 326
/usr/lib/ld, 509
/usr/lib/ld.so.1, 83, 326
/usr/lib/secure, 105, 314
/usr/lib/secure/64, 105, 314
undefined symbols, 48
updates and new features, 503

V
versioning, 271

base version definition, 274
binding to a definition, 279, 283

533

Index

defining a public interface, 58, 273
definitions, 272, 273, 279
file name, 272
generating definitions within an image, 58, 273
normalization, 280
overview, 271
runtime verification, 280, 282

virtual addressing, 438

W
weak filters, 133, 137
weak symbols, 50, 411, 411

undefined, 33

534 Oracle Solaris 11.3 Linkers and Libraries Guide • March 2018

	Oracle® Solaris 11.3 Linkers and Libraries Guide
	Contents
	Using This Documentation
	Product Documentation Library
	Access to Oracle Support
	Feedback

	PART I Using the Link-Editor and Runtime Linker
	Chapter 1 • Introduction to the Oracle Solaris Link Editors
	Link Editing With the Link-Editor
	Static Executables

	Runtime Linking
	Related Topics
	Dynamic Linking
	Application Binary Interfaces
	32-Bit Environments and 64-Bit Environments
	Environment Variables
	Support Tools

	Chapter 2 • Link Editor
	Invoking the Link-Editor
	Direct Invocation
	Using a Compiler Driver
	Cross Link-Editing

	Specifying the Link-Editor Options
	Input File Processing
	Archive Processing
	Shared Object Processing
	Linking With Additional Libraries
	Library Naming Conventions
	Linking With a Mix of Shared Objects and Archives
	Position of an Archive on the Command Line
	Directories Searched by the Link-Editor
	Using a Command-Line Option
	Using an Environment Variable

	Directories Searched by the Runtime Linker

	Initialization and Termination Sections

	Symbol Processing
	Symbol Visibility
	Symbol Resolution
	Simple Resolutions
	Complex Resolutions
	Fatal Resolutions

	Undefined Symbols
	Generating an Executable Output File
	Generating a Shared Object Output File
	Weak Symbols

	Tentative Symbol Order Within the Output File
	Defining Additional Symbols
	Defining Additional Symbols with the -u option
	Defining Symbol References
	Defining Absolute Symbols
	Defining Tentative Symbols
	Augmenting a Symbol Definition

	Reducing Symbol Scope
	Symbol Elimination

	External Bindings
	String Table Compression

	Generating the Output File
	Relocation Processing
	Displacement Relocations

	Stub Objects
	Using Stub Objects to Hide Obsolete Interfaces

	Ancillary Objects
	Debugger Access and Use of Ancillary Objects

	Compressed Debug Sections
	Compression Costs And Benefits

	Parent Objects
	Debugging Aids

	Chapter 3 • Runtime Linker
	Shared Object Dependencies
	Locating Shared Object Dependencies
	Directories Searched by the Runtime Linker
	Configuring the Default Search Paths
	Dynamic String Tokens

	Relocation Processing
	Relocation Symbol Lookup
	Default Symbol Lookup
	Runtime Interposition

	When Relocations Are Performed
	Relocation Errors

	Preloading Additional Objects
	Lazy Loading of Dynamic Dependencies
	Providing an Alternative to dlopen()
	Deferred Dependencies

	Initialization and Termination Routines
	Limitations and Pitfalls of Initialization and Termination Code
	Initialization and Termination Order

	Runtime Security
	Runtime Linking Programming Interface
	Loading Additional Objects
	Relocation Processing
	Symbol Lookup
	Default Symbol Lookup Model
	Defining a Global Object
	Isolating a Group
	Object Hierarchies

	Obtaining New Symbols
	Testing for Functionality
	Using Interposition

	Debugging Aids
	Runtime Linker Debugging Facility
	Debugger Module

	Chapter 4 • Shared Objects
	Naming Conventions
	Recording a Shared Object Name
	Inclusion of Shared Objects in Archives
	Recorded Name Conflicts

	Shared Objects With Dependencies
	Dependency Ordering
	Shared Objects as Filters
	Generating Standard Filters
	Generating Weak Filters
	Generating Auxiliary Filters
	Filtering Combinations
	Filtee Processing

	PART II Linker and Libraries Quick Reference
	Chapter 5 • Link-Editor Quick Reference
	Static Mode
	Creating a Relocatable Object
	Creating a Static Executable

	Dynamic Mode
	Creating a Shared Object
	Creating a Dynamic Executable

	Chapter 6 • Symbol Capabilities Example
	Creating a Symbol Capabilities Example
	Exercising a Symbol Capabilities Example

	PART III Linker and Libraries Advanced Topics
	Chapter 7 • Direct Bindings
	Observing Symbol Bindings
	Enabling Direct Binding
	Using the -B direct Option
	Using the -z direct Option
	Using the DIRECT mapfile Keyword

	Direct Bindings and Interposition
	Localizing Symbol Instances
	Removing Multiply Defined Symbols of the Same Name
	Defining Explicit Interposition

	Preventing a Symbol from being Directly Bound to
	Using the -B nodirect Option
	Using the NODIRECT mapfile Keyword

	Chapter 8 • Capability Processing
	Identifying Capability Requirements
	Identifying a Platform and Machine Capability
	Identifying Hardware Capabilities
	Identifying Software Capabilities
	Software Capability Frame Pointer Processing
	Software Capability Address Space Restriction Processing

	Creating a Family of Symbol Capabilities Functions
	Creating a Family of Symbol Capabilities Data Items
	Converting Object Capabilities to Symbol Capabilities
	Archive Considerations

	Exercising a Capability Family
	Development Evolution with Capabilities

	Chapter 9 • Building Objects to Optimize System Performance
	Analyzing Files With elfdump
	Underlying System
	Lazy Loading of Dynamic Dependencies
	Position-Independent Code
	-K pic and -K PIC Options

	Removing Unused Material
	Removing Unused Sections
	Removing Unused Files
	Removing Unused Dependencies

	Maximizing Shareability
	Move Read-Only Data to Text
	Collapse Multiply-Defined Data
	Use Automatic Variables
	Allocate Buffers Dynamically

	Minimizing Paging Activity
	Relocations
	Symbol Lookup
	When Relocations are Performed
	Combined Relocation Sections
	Copy Relocations

	Using the -B symbolic Option
	Profiling Shared Objects

	Chapter 10 • Mapfiles in the Link-Editor
	Mapfile Structure and Syntax
	Mapfile Version
	Conditional Input
	Directive Syntax
	MATCH and MATCHREF Expressions
	Example: Redirecting Sections

	Mapfile Directives
	CAPABILITY Directive
	HW Attribute
	HW_1 / HW_2 Attributes
	MACHINE Attribute
	PLATFORM Attribute
	SF Attribute
	SF_1 Attribute

	DEPEND_VERSIONS Directive
	ALLOW Attribute
	REQUIRE Attribute

	FILTER Directive
	FILTEE Attribute
	TYPE Attribute

	HDR_NOALLOC Directive
	PHDR_ADD_NULL Directive
	LOAD, NOTE, NULL, and RESERVE_SEGMENT Directives
	ALIGN Attribute (LOAD)
	ASSIGN_SECTION Attribute (LOAD, NOTE, NULL)
	DISABLE Attribute (LOAD, NOTE, NULL)
	FLAGS Attribute (LOAD)
	IS_ORDER Attribute (LOAD, NOTE, NULL)
	MAX_SIZE Attribute (LOAD)
	NOHDR Attribute (LOAD)
	OS_ORDER Attribute (LOAD, NOTE, NULL)
	PADDR Attribute (LOAD, RESERVE)
	ROUND Attribute (LOAD)
	SIZE Attribute (RESERVE)
	SIZE_SYMBOL Attribute (LOAD, RESERVE)
	VADDR (LOAD, RESERVE)

	SEGMENT_ORDER Directive
	STACK Directive
	STUB_OBJECT Directive
	SYMBOL_SCOPE and SYMBOL_VERSION Directives
	ASSERT Attribute
	AUXILIARY Attribute
	FILTER Attribute
	FLAGS Attribute
	SIZE Attribute
	TYPE Attribute
	VALUE Attribute

	Predefined Segments
	Mapping Examples
	Example: Section to Segment Assignment
	Example: Predefined Section Modification

	Link-Editor Internals: Section and Segment Processing
	Section To Segment Assignment
	Mapfile Directives for Predefined Segments and Entrance Criteria

	Chapter 11 • Interfaces and Versioning
	Interface Compatibility
	Internal Versioning
	Creating a Version Definition
	Creating a Weak Version Definition
	Defining Unrelated Interfaces

	Binding to a Version Definition
	Verifying Versions in Additional Objects

	Specifying a Version Binding
	Binding to Additional Version Definitions
	Redefining an Interface
	Binding to a Weak Version

	Version Stability
	Relocatable Objects

	External Versioning
	Coordination of Versioned Filenames
	Multiple External Versioned Files in the Same Process

	Chapter 12 • Establishing Dependencies with Dynamic String Tokens
	Capability Specific Shared Objects
	Reducing Capability Filtee Searches

	Instruction Set Specific Shared Objects
	Reducing Instruction Set Filtee Searches

	System Specific Shared Objects
	Locating Associated Dependencies
	Dependencies Between Unbundled Products
	Security in Coded Processes

	Chapter 13 • Extensibility Mechanisms
	Link-Editor Support Interface
	Invoking the Support Interface
	32-Bit Environments and 64-Bit Environments

	Support Interface Functions
	Support Interface Example

	Runtime Linker Auditing Interface
	Establishing a Namespace
	Creating an Audit Library
	Invoking the Auditing Interface
	Recording Local Auditors
	Recording Global Auditors
	Audit Interface Interactions
	Audit Interface Functions
	Audit Interface Control Flow
	Audit Interface Example
	Audit Interface Demonstrations
	Audit Interface Limitations
	Exercising Application Code
	Use of la_pltexit()
	Functions That Directly Inspect the Stack

	Runtime Linker Debugger Interface
	Interaction Between Controlling and Target Process
	Debugger Interface Agents
	Debugger Exported Interface
	Agent Manipulation Interfaces
	Error Handling
	Scanning Loadable Objects
	Event Notification
	Procedure Linkage Table Skipping
	Dynamic Object Padding

	Debugger Import Interface

	PART IV ELF Application Binary Interface
	Chapter 14 • Object File Format
	File Format
	Data Representation
	ELF Header
	ELF Identification
	Data Encoding
	Section Headers
	Extended Section Header

	Section Merging
	Section Compression
	GNU-Style Section Compression

	Special Sections
	Ancillary Section
	COMDAT Section
	Group Section
	Capabilities Section
	Hash Table Section
	Move Section
	Note Section
	Program Header Name Section
	Relocation Sections
	Relocation Calculations
	Relocation Entries
	Relocation Types
	Relocation Types

	Relocation Entries
	Relocation Types
	Relocation Types

	String Table Section
	Symbol Table Section
	Symbol Values
	Symbol Table Layout and Conventions
	Symbol Sort Sections
	Register Symbols

	Syminfo Table Section
	Versioning Sections
	Version Definition Section
	Version Dependency Section
	Version Symbol Section

	Chapter 15 • Program Loading and Dynamic Linking
	Program Header
	Base Address
	Segment Permissions
	Segment Contents

	Program Loading (Processor-Specific)
	Program Interpreter

	Runtime Linker
	Dynamic Section
	Global Offset Table (Processor-Specific)
	Procedure Linkage Table (Processor-Specific)
	Procedure Linkage Table
	Procedure Linkage Table
	Procedure Linkage Table
	Procedure Linkage Table

	Chapter 16 • Thread-Local Storage
	C/C++ Programming Interface
	Thread-Local Storage Section
	Runtime Allocation of Thread-Local Storage
	Program Startup
	Thread Creation
	Post-Startup Dynamic Loading
	Deferred Allocation of Thread-Local Storage Blocks

	Thread-Local Storage Access Models
	Thread-Local Variable Access
	General Dynamic (GD)
	Local Dynamic (LD)
	Initial Executable (IE)
	Initial Executable (IE)
	Local Executable (LE)

	Thread-Local Storage Relocation Types
	Thread-Local Variable Access
	General Dynamic (GD)
	Local Dynamic (LD)
	Initial Executable (IE)
	Local Executable (LE)

	Thread-Local Storage Relocation Types
	Thread-Local Variable Access
	General Dynamic (GD)
	Local Dynamic (LD)
	Initial Executable (IE)
	Local Executable (LE)

	Thread-Local Storage Relocation Types

	PART V Linker and Libraries Appendices
	Appendix A • Linker and Libraries Updates and New Features
	Oracle Solaris 11.3 Release
	Oracle Solaris 11.2 Release
	Oracle Solaris 11.1 Release
	Oracle Solaris 11
	Oracle Solaris 10 1/13 Release
	Oracle Solaris 10 8/11 Release
	Obsolete Feature

	Solaris 10 5/08 Release
	Solaris 10 8/07 Release
	Solaris 10 1/06 Release
	Solaris 10 Release

	Appendix B • System V Release 4 (Version 1) Mapfiles
	Mapfile Structure and Syntax
	Segment Declarations
	Mapping Directives
	Section-Within-Segment Ordering
	Size-Symbol Declarations
	File Control Directives

	Mapping Example
	Mapfile Option Defaults
	Internal Map Structure

	Index

