
Packaging and Delivering Software With
the Image Packaging System in Oracle®

Solaris 11.3

Part No: E54820
July 2017

Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3

Part No: E54820

Copyright © 2012, 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except
as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform,
publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous
applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are
not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement
between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Référence: E54820

Copyright © 2012, 2017, Oracle et/ou ses affiliés. Tous droits réservés.

Ce logiciel et la documentation qui l'accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des restrictions d'utilisation et
de divulgation. Sauf stipulation expresse de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, accorder de licence, transmettre,
distribuer, exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est interdit de procéder à toute
ingénierie inverse du logiciel, de le désassembler ou de le décompiler, excepté à des fins d'interopérabilité avec des logiciels tiers ou tel que prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu'elles soient exemptes d'erreurs et vous
invite, le cas échéant, à lui en faire part par écrit.

Si ce logiciel, ou la documentation qui l'accompagne, est livré sous licence au Gouvernement des Etats-Unis, ou à quiconque qui aurait souscrit la licence de ce logiciel pour le
compte du Gouvernement des Etats-Unis, la notice suivante s'applique :

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d'applications de gestion des informations. Ce logiciel ou matériel n'est pas conçu ni n'est destiné à être
utilisé dans des applications à risque, notamment dans des applications pouvant causer un risque de dommages corporels. Si vous utilisez ce logiciel ou ce matériel dans le cadre
d'applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures nécessaires à son utilisation dans
des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés par l'utilisation de ce logiciel ou matériel pour des
applications dangereuses.

Oracle et Java sont des marques déposées d'Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre à des marques appartenant à d'autres propriétaires
qu'Oracle.

Intel et Intel Xeon sont des marques ou des marques déposées d'Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques
déposées de SPARC International, Inc. AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d'Advanced Micro Devices. UNIX est une
marque déposée de The Open Group.

Ce logiciel ou matériel et la documentation qui l'accompagne peuvent fournir des informations ou des liens donnant accès à des contenus, des produits et des services émanant de
tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou services émanant de tiers, sauf mention contraire stipulée
dans un contrat entre vous et Oracle. En aucun cas, Oracle Corporation et ses affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des
dommages causés par l'accès à des contenus, produits ou services tiers, ou à leur utilisation, sauf mention contraire stipulée dans un contrat entre vous et Oracle.

Accès aux services de support Oracle

Les clients Oracle qui ont souscrit un contrat de support ont accès au support électronique via My Oracle Support. Pour plus d'informations, visitez le site http://www.oracle.com/
pls/topic/lookup?ctx=acc&id=info ou le site http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs si vous êtes malentendant.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Contents

Using This Documentation .. 11

1 IPS Design Goals, Concepts, and Terminology ...  13
IPS Design Goals ..  13
Software Self-Assembly ...  15

Tools for Software Self-Assembly ..  16
Examples of Software Self-Assembly in Oracle Solaris ................................  17

IPS Package Lifecycle .. 19
IPS Terminology and Components ...  20

Installable Image ...  21
Package Identifier: FMRI .. 21
Package Content: Actions ...  24
Package Repository ...  40

2 Packaging Software With IPS .. 41
Designing a Package ..  41
Creating and Publishing a Package ...  42

Generate a Package Manifest ...  43
Add Necessary Metadata to the Generated Manifest ..................................... 44
Evaluate Dependencies ...  47
Add Any Facets or Actuators That Are Needed ..  49
Verify the Package ... 51
Publish the Package ...  52
Sign the Package ...  53
Test the Package ...  53
Deliver the Package ...  55

Converting SVR4 Packages To IPS Packages ...  58
Generate an IPS Package Manifest from a SVR4 Package .............................  58

5

Contents

Verify the Converted Package ..  61
Other Package Conversion Considerations ...  62

3 Installing, Removing, and Updating Software Packages ...............................  63
How Package Changes Are Performed ..  63

Check Input for Errors ...  64
Determine the System End State ..  64
Run Basic Checks ...  64
Run the Solver ..  64
Optimize the Solver Results ..  65
Evaluate Actions ...  65
Download Content ...  66
Execute Actions ..  66
Process Actuators ..  67
Update Boot Archive ...  67

4 Specifying Package Dependencies ...  69
Dependency Types ...  69

require Dependency ...  69
require-any Dependency ...  70
optional Dependency ..  70
conditional Dependency ...  71
group Dependency ... 71
group-any Dependency ..  72
origin Dependency ...  73
incorporate Dependency ...  74
parent Dependency ...  75
exclude Dependency ...  75

Constraints and Freezing ..  76
Constraining Installable Package Versions ..  76
Freezing Installable Package Versions ...  77
Enabling Administrators to Relax Constraints on Installable Package
Versions ...  77

5 Allowing Variations ...  79
Mutually Exclusive Software Components ...  79

6 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

Contents

Optional Software Components ..  81

6 Modifying Package Manifests Programmatically ...  83
Transform Rules ..  83
Include Rules .. 84
Transform Order ...  85
Packaged Transforms ...  85

7 Automating System Change as Part of Package Installation ......................... 87
Specifying System Changes on Package Actions ...  87
Delivering an SMF Service ...  89
Delivering a Service that Runs Once ..  89
Assembling a Custom File from Fragment Files ..  93

8 Advanced Topics For Package Updating ..  97
Avoiding Conflicting Package Content ..  97
Modifying Package Content ..  98
Renaming, Merging, and Splitting Packages ...  99

Renaming a Single Package ..  99
Merging Two Packages ...  100
Splitting a Package ..  100

Obsoleting Packages ... 100
Preserving Packaged Editable Files that Migrate .. 101
Preserving Unpackaged Files ...  102

Moving Unpackaged Files on Directory Removal ......................................  102
Packaging the Directory Separately ...  103

Sharing Content Across Boot Environments ...  106
Existing Shared Content in Oracle Solaris ..  106
Delivering Content to a Shared Area ...  106

Delivering a File That Is Also Delivered by Another Package ..............................  113
Delivering Multiple Implementations of an Application ......................................  115

Attributes of Mediated Links ...  116
Specifying Mediated Links ..  117
Best Practices for Mediated Links ..  120

Packaging for System Migration and System Cloning ... 120

7

Contents

9 Signing IPS Packages ...  123
Signature Actions ..  123
Signing Packages ...  124
Using a Custom Certificate Authority Certificate ...  125

▼ How to Use a Custom Certificate Authority Certificate ..........................  125
Troubleshooting Signed Packages ...  127

Configure Image and Publisher Properties ..  127
Chain Certificate Not Found ..  129
Authorized Certificate Not Found ...  129
Untrusted Self-Signed Certificate ..  130
Signature Value Does Not Match Expected Value ......................................  130
Unknown Critical Extension ..  131
Unknown Extension Value ..  131
Unauthorized Use of Certificate ...  131
Unexpected Hash Value ..  132
Revoked Certificate ..  132

10 Handling Non-Global Zones ... 133
Packaging Considerations for Non-Global Zones ...  133

Does the Package Cross the Global, Non-Global Zone Boundary? .................  133
How Much of a Package Should Be Installed in a Non-Global Zone? ............. 134

Troubleshooting Package Installations in Non-Global Zones ................................  135
Packages that Have Parent Dependencies on Themselves ............................  135
Packages that Do Not Have Parent Dependencies on Themselves ..................  135

11 Modifying Published Packages ..  137
Republishing Packages ...  137
Changing Package Metadata ..  138
Changing Package Publisher ..  138

A Classifying Packages ..  141
Assigning Classifications ..  141
Classification Values ..  141

B How IPS Is Used To Package the Oracle Solaris OS ...................................  145
Oracle Solaris Package Versioning ..  145

8 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

Contents

Oracle Solaris Constraint Packages ...  147
Relaxing Dependency Constraints ...  147
Oracle Solaris Group Packages ..  148
Attributes and Tags ..  148

Informational Attributes ..  148
Oracle Solaris Attributes ...  149
Organization-Specific Attributes ...  149
Oracle Solaris Tags ..  150
Oracle Solaris Revert Tags ..  150

9

10 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

Using This Documentation

■ Overview – Describes how to use the Oracle Solaris Image Packaging System (IPS) feature
to create software packages for the Oracle Solaris 11 operating system (OS)

■ Audience – Software developers who want to create packages that can be installed on the
Oracle Solaris 11 OS and maintained using IPS, and developers and system administrators
who want to better understand IPS and how the Oracle Solaris OS is packaged using IPS

■ Required knowledge – Experience with IPS and with the Oracle Solaris Service
Management Facility (SMF) feature

Product Documentation Library

Documentation and resources for this product and related products are available at http://www.
oracle.com/pls/topic/lookup?ctx=E53394-01.

Feedback

Provide feedback about this documentation at http://www.oracle.com/goto/docfeedback.

Using This Documentation 11

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01
http://www.oracle.com/goto/docfeedback

12 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

 1 ♦ ♦ ♦ C H A P T E R 1

IPS Design Goals, Concepts, and Terminology

This guide explains how to create packages that can be installed on the Oracle Solaris 11 OS
and maintained using IPS, and how the Oracle Solaris OS is packaged using IPS.

This chapter discusses the following topics:

■ IPS design concepts, to help you understand and use the more advanced features of IPS
■ Software self-assembly: the ability of installed software to build itself into a working

configuration
■ Phases of the IPS package lifecycle
■ Concepts such as installable image, package publisher, and package actions

IPS Design Goals

IPS is designed to eliminate some long-standing issues with previous software distribution,
installation, and maintenance mechanisms that have caused significant problems for Oracle
Solaris customers, developers, maintainers, and ISVs.

Principle IPS design goals include:

Minimize downtime.

Minimize planned downtime by making software update possible while systems are in
production.
Minimize unplanned downtime by supporting quick reboot to known working software
configurations.

Automate installation and update.

Automate, as much as possible, the installation of new software and updates to existing
software.

Chapter 1 • IPS Design Goals, Concepts, and Terminology 13

IPS Design Goals

Reduce media requirement.

Resolve the difficulties with ever-increasing software size and limited distribution media
space.

Verify correct software installation.

Ensure that it is possible to determine whether a package is correctly installed as defined by
the author (publisher) of the package. Such a check should not be spoofable.

Enable easy virtualization.

Incorporate mechanisms to allow for the easy virtualization of Oracle Solaris at a variety of
levels, in particular using zones.

Simplify upgrade.

Reduce the effort required to generate patches or upgrades for existing systems.

Enable easy package creation.

Enable other software publishers (ISVs and end-users themselves) to easily create and
publish packages for Oracle Solaris.

These goals led to the following ideas:

Create boot environments as needed.

Leverage ZFS snapshot and clone facilities to dynamically create boot environments on an
as-needed basis.
■ Since Oracle Solaris 11 requires ZFS as the root file system, zone file systems need to

be on ZFS as well.
■ Users can create as many boot environments as desired.
■ IPS can automatically create boot environments on an as-needed basis, either for

backup purposes prior to modifying the running system, or for installation of a new
version of the OS.

Unify installation, patch, and update.

Eliminate duplicated mechanisms and code used to install, patch, and update.
This idea results in several significant changes to the way Oracle Solaris is maintained,
including the following important examples:
■ All OS software updates and patching are done directly with IPS.
■ Any time a new package is installed, it is already exactly at the correct version.

Minimize opportunities to install incorrectly.

The requirement for unspoofable verification of package installation has the following
consequences:

14 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

Software Self-Assembly

■ If a package needs to support installation in multiple ways, those ways must be
specified by the developer so that the verification process can take this into account.

■ Scripting is inherently unverifiable since the packaging system cannot determine
the intent of the script writer. This, along with other issues discussed later, led to the
elimination of scripting during packaging operations.

■ A package cannot have any mechanism to edit its own manifest, since verification is
then impossible.

■ If the administrator wants to install a package in a manner incompatible with the
original publisher's definition, the packaging system should enable the administrator
to easily republish the package he wants to alter so that the scope of his changes is
clear, not lost across upgrades, and can be verified in the same manner as the original
package.

Provide software repositories.

The need to avoid size restrictions led to a software repository model, accessed using
several different methods. Different repository sources can be composited to provide
a complete set of packages, and repositories can be distributed as a single file. In this
manner, no single media is ever required to contain all the available software. To support
disconnected or firewalled operations, tools are provided to copy and merge repositories.

Include metadata as part of the software package.

The desire to enable multiple (possibly competing) software publishers led to the decision
to store all the packaging metadata in the packages themselves: No master database exists
for information such as all packages and dependencies. A catalog of available packages
from a software publisher is part of the repository for performance reasons, but the catalog
can also be regenerated from the data contained in the packages.

Software Self-Assembly

Given the goals and ideas described above, IPS introduces the general concept of software
self-assembly: Any collection of installed software on a system should be able to build itself
into a working configuration when that system is booted, by the time the packaging operation
completes, or at software runtime.

Software self-assembly eliminates the need for install-time scripting in IPS. The software is
responsible for its own configuration, rather than relying on the packaging system to perform
that configuration on behalf of the software. Software self-assembly also enables the packaging
system to safely operate on alternate images, such as boot environments that are not currently
booted, or offline zone roots. In addition, since the self-assembly is performed only on the
running image, the package developer does not need to cope with cross-version or cross-
architecture runtime contexts.

Chapter 1 • IPS Design Goals, Concepts, and Terminology 15

Software Self-Assembly

Some operating system image preparation must be done before boot, and IPS manages this
transparently. Image preparation includes updating boot blocks, preparing a boot archive
(ramdisk), and, on some architectures, managing the menu of boot choices.

Tools for Software Self-Assembly

The following IPS features and characteristics facilitate software self-assembly.

Atomic Software Objects

An action is the atomic unit of software delivery in IPS. Each action delivers a single software
object. That software object can be a file system object such as a file, directory, or link, or
a more complex software construct such as a user, group, or device driver. In the SVR4
packaging system, these more complex action types are handled by using class action scripts. In
IPS, no scripting is required.

Actions, grouped together into packages, can be installed, updated, and removed from both live
images and offline images. A live image is the image mounted at / of the active, running boot
environment of the current zone.

Actions are discussed in more detail in “Package Content: Actions” on page 24.

Configuration Composition

Rather than using scripting to update configuration files during packaging operations, IPS
encourages delivering fragments of configuration files. The fragments can be used in the
following ways:

■ The packaged application can be written to be aware of the file fragments. The application
can access the configuration file fragments directly when reading its configuration, or the
application can assemble the fragments into the complete configuration file before reading
the file.

■ An SMF service can reassemble the configuration file whenever fragments of the
configuration are installed, removed, or updated.

See “Assembling a Custom File from Fragment Files” on page 93 for an example of
creating a package that delivers a service that assembles configuration files.

16 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

Software Self-Assembly

Actuators and SMF Services

An actuator is a tag applied to any action delivered by the packaging system that causes a
system change when that action is installed, removed, or updated. These changes are typically
implemented as SMF services. See Chapter 7, “Automating System Change as Part of Package
Installation” for more information about actuators.

SMF services can configure software directly, or SMF services can construct configuration files
using data delivered in the SMF manifest or in files installed on the system.

SMF services have a rich syntax to express dependencies. Each service runs only when all of
its required dependencies have been satisfied. See Managing System Services in Oracle Solaris
11.3 for more information about SMF services.

Any service can add itself as a dependency on the svc:/milestone/self-assembly-complete:
default SMF milestone. Once the booting operating system has reached this milestone, all self-
assembly operations should be completed.

A special type of zone called an Immutable Zone is a zone that can be configured to have
restricted write access to portions of its file system. See the discussion of file-mac-profile
in the zonecfg(1M) man page. To complete self-assembly in this type of zone, boot the
zone read/write, as described in the -W and -w options of the zoneadm boot command in the
zoneadm(1M) man page. After the self-assembly-complete SMF milestone is online, the zone
is automatically booted to the required file-mac-profile setting.

Examples of Software Self-Assembly in Oracle
Solaris

The following examples describe packages that are delivered as part of Oracle Solaris.

Apache Web Server Configuration

The Oracle Solaris package for Apache Web Server, pkg:/web/server/apache-22, delivers an
httpd.conf file that contains the following Include directive referencing configuration files in
the /etc/apache2/2.2/conf.d directory:

Include /etc/apache2/2.2/conf.d/*.conf

To apply custom configuration, you can create one or more packages that deliver custom .conf
files to that conf.d directory and use a refresh_fmri actuator to automatically refresh the

Chapter 1 • IPS Design Goals, Concepts, and Terminology 17

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=SVSVF
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=SVSVF
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1Mzonecfg-1m
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1Mzoneadm-1m

Software Self-Assembly

Apache instance whenever a package that delivers a new .conf file is installed, updated, or
removed.

file etc/apache2/2.2/conf.d/custom.conf path=etc/apache2/2.2/conf.d/custom.conf \

 owner=root group=bin mode=0644 refresh_fmri=svc:/network/http:apache22

See “Add Any Facets or Actuators That Are Needed” on page 49 and Chapter 7,
“Automating System Change as Part of Package Installation” for information about how to use
the refresh_fmri actuator.

Refreshing the Apache service instance causes the web server to rebuild its configuration. To
verify this, use the following command to show the name of the method that runs when the
Apache service instance is refreshed:

$ svcprop -p refresh/exec http:apache22

/lib/svc/method/http-apache22\ refresh

A look at the method shows that refreshing the http:apache22 instance restarts the Apache
httpd daemon by invoking apachectl with the graceful command.

User Attributes Configuration

User attributes are configured in /etc/user_attr and in additional configuration files in /etc/
user_attr.d.

The /etc/user_attr configuration file is used to configure extended attributes for roles
and users on the system. In Oracle Solaris 11, the /etc/user_attr file is used for local
changes only. Complete configuration is read from the separate files delivered into the /etc/
user_attr.d directory. Multiple packages deliver fragments of the complete configuration. For
example, /etc/user_attr.d/core-os is delivered by the system/core-os package, and /etc/
user_attr.d/ikev2-daemon is delivered by the system/network/ike package.

No services are restarted or refreshed as a result of installing these configuration files. No
scripting is needed when these files are installed, uninstalled, or updated. The files in /etc/
user_attr.d are composed by the name service cache daemon, nscd. The behavior of the nscd
daemon is managed by the svc:/system/name-service/cache service.

$ svcs -p cache

STATE STIME FMRI

online 15:54:24 svc:/system/name-service/cache:default

 15:54:24 100698 nscd

The name service cache daemon provides configuration composition for most name service
requests in the same way as described for user_attr. See the nscd(1M) man page.

18 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

IPS Package Lifecycle

Security Configuration

The /etc/security/exec_attr.d/ directory stores security configuration files.

In earlier Oracle Solaris releases, an SMF service merged the files delivered in exec_attr.d
into a single database, /etc/security/exec_attr. In Oracle Solaris 11, functions in the
security attributes database library, libsecdb, read the fragments in exec_attr.d directly,
eliminating the need for a service to perform the merge.

Other directories in /etc/security that contain fragments of configuration, such as
auth_attr.d and prof_attr.d, are handled in a similar way.

IPS Package Lifecycle

This section provides high-level descriptions of each state in the IPS package lifecycle. For
best results, both package developers and system administrators should understand the various
phases of the package lifecycle.

Create Packages can be created by anyone. IPS does not impose any particular
software build system or directory hierarchy on package authors. For
details about package creation, see Chapter 2, “Packaging Software
With IPS”. Aspects of package creation are discussed throughout the
remaining chapters of this guide.

Publish Packages are published to an IPS repository, either to an HTTP location
or to the file system. A published package can also be converted to a
.p5p package archive file. To access software from an IPS repository,
the repository can be added to the system using the pkg set-publisher
command, or the repository can be accessed as a temporary source
by using the -g option with pkg commands. Examples of package
publication are shown in Chapter 2, “Packaging Software With IPS”.

Install Packages can be installed on a system, either from an IPS repository
accessed over http://, https://, or file:// URLs, or from a .p5p
package archive. Package installation is described in more detail in
Chapter 3, “Installing, Removing, and Updating Software Packages”.

Update Updated versions of packages might become available, either published
to an IPS repository, or delivered as a new .p5p package archive.
Installed packages can then be brought up to date, either individually, or
as part of an entire system update.

Chapter 1 • IPS Design Goals, Concepts, and Terminology 19

IPS Terminology and Components

Note that IPS does not use the same concept of “patching” that the
SVR4 packaging system did. All changes to IPS packaged software are
delivered by updated packages.
Package updates are performed in much the same way as package
installations, but the packaging system is optimized to install only the
changed portions delivered by an updated package. Package updating
is described in more detail in Chapter 3, “Installing, Removing, and
Updating Software Packages”.

Rename During the life of a package, you might want to rename the package.
A package might be renamed for organizational reasons or to refactor
packages. Examples of package refactoring include combining several
packages into a single package or breaking a single package into multiple
smaller packages.
IPS gracefully handles content that moves between packages. IPS
also allows old package names to persist on the system, automatically
installing the new packages when a user asks to install a renamed
package. Package renaming is described in more detail in “Renaming,
Merging, and Splitting Packages” on page 99.

Obsolete Eventually a package might reach the end of its life. A package publisher
might decide that a package will no longer be supported, and that it will
not have any more updates made available. IPS allows publishers to mark
such packages as obsolete.
Obsolete packages can no longer be used as a target for most
dependencies from other packages, and any packages upgraded to an
obsolete version are automatically removed from the system. Package
obsoletion is described in more detail in “Renaming, Merging, and
Splitting Packages” on page 99.

Remove Finally, a package can be removed from the system if no other packages
have dependencies on it. Package removal is described in more detail in
Chapter 3, “Installing, Removing, and Updating Software Packages”.

IPS Terminology and Components

This section defines IPS terms and describes IPS components.

20 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

IPS Terminology and Components

Installable Image
IPS is designed to install packages in an image. An image is a directory tree, and can be
mounted in a variety of locations as needed. An image is one of the following three types:

Full In a full image, all dependencies are resolved within the image itself, and
IPS maintains the dependencies in a consistent manner.

Zone Non-global zone images are linked to a full image (the parent global zone
image), but do not provide a complete system on their own. In a zone
image, IPS maintains the non-global zone consistent with its global zone
as defined by dependencies in the packages.

User User images contain only relocatable packages.

Images are created or cloned by installers, by the beadm and zonecfg commands, and by the pkg
command with options such as --be-name.

Package Identifier: FMRI
Each package is represented by a Fault Management Resource Identifier (FMRI). The full
FMRI for a package consists of the scheme, a publisher, the package name, and a version string
in the following format:

scheme://publisher/name@version

The scheme for every IPS package FMRI is pkg. In the following example package FMRI
for the suri storage library, solaris is the publisher, system/library/storage/suri is the
package name, and 0.5.11,5.11-0.175.3.0.0.19.0:20150329T164922Z is the version:

pkg://solaris/system/library/storage/suri@0.5.11,5.11-0.175.3.0.0.19.0:20150329T164922Z

FMRIs can be specified in abbreviated form if the resulting FMRI is still unique. The scheme,
publisher, and version can be omitted. Leading components can be omitted from the package
name.

■ When the FMRI starts with pkg:// or //, the first word following // must be the publisher
name, and no components can be omitted from the package name. When no components are
omitted from the package name, the package name is considered complete, or rooted.

■ When the FMRI starts with pkg:/ or /, the first word following the slash is the package
name, and no components can be omitted from the package name. No publisher name can
be present.

■ When the version is omitted, the package generally resolves to the latest version of the
package that can be installed.

Chapter 1 • IPS Design Goals, Concepts, and Terminology 21

IPS Terminology and Components

Package Publisher

A publisher is an entity that develops and constructs packages. A publisher name, or prefix,
identifies this source in a unique manner. Publisher names can include upper and lower case
letters, numbers, hyphens, and periods: the same characters as a valid host name. Internet
domain names or registered trademarks are good choices for publisher names, since these
provide natural namespace partitioning.

pkg clients combine all specified sources of packages for a given publisher when computing
packaging solutions.

Package Name

Package names are hierarchical with an arbitrary number of components separated by forward
slash (/) characters. Package name components must start with a letter or number, and can
include underscores (_), hyphens (-), periods (.), and plus signs (+). Package name components
are case sensitive.

Leading components of package names can be omitted if the package name that is used is
unique. For instance, /driver/network/ethernet/e1000g can be reduced to network/
ethernet/e1000g, ethernet/e1000g, or even simply e1000g. FMRIs can also be specified
using an asterisk (*) to match any portion of a package name. Thus /driver/*/e1000g and
/dri*00g both expand to /driver/network/ethernet/e1000g.

Package names should be chosen to reduce ambiguities as much as possible. Package names
form a single namespace across publishers. Packages with the same name and version but
different publishers are assumed to be interchangeable in terms of external dependencies and
interfaces. See “Avoiding Conflicting Package Content” on page 97 for a discussion of
package names and dependencies.

When a package name starts with pkg:/, /, pkg://publisher/, or //publisher/, the package
name is considered to be complete, or rooted. If the pkg client complains about ambiguous
package names, specify more components of the package name or specify the full, rooted name.

If an FMRI contains a publisher name, then the full, rooted package name must be specified.

Scripts should refer to packages by their full, rooted names, although the publisher can be
omitted.

Package Version

The package version has the following four parts:

22 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

IPS Terminology and Components

component_version,release-branch_version:time_stamp

The component version, release, and branch version can be arbitrarily long and must consist
of only integers and period characters (.). A sequence of more than one integer cannot begin
with a zero (0). See “Construct an Appropriate Package Version String” on page 46 for help
converting your product version to an IPS package version.

The time stamp has the following parts. The date and time must consist of only integers.

dateTtimeZ

The component version and release are separated by a comma (,). The release and branch
version are separated by a hyphen (-). The branch version and time stamp are separated by a
colon (:).

The following example package version is described below:

0.5.11,5.11-0.175.3.0.0.19.0:20150329T164922Z

Component version: 0.5.11

For components tightly bound to the operating system, the component version usually
includes the value of uname -r for that version of the operating system. For a component
with its own development lifecycle, the component version is a dotted release number, such
as 2.4.10.

Release: 5.11

The release, if present, must follow a comma (,). Oracle Solaris uses this sequence to
specify the release of the OS for which the package was compiled.

Branch version: 0.175.3.0.0.19.0

The branch version, if present, must follow a hyphen (-). The branch version provides
vendor-specific information. This sequence can contain a build number or provide some
other information. This value can be incremented when the packaging metadata is changed,
independently of the component. See “Oracle Solaris Package Versioning” on page 145
for a description of how the branch version fields are used in Oracle Solaris.

Time stamp: 20150329T164922Z

The time stamp, if present, must follow a colon (:). The time stamp is the time the package
was published in ISO-8601 basic format: YYYYMMDDTHHMMSSZ. The time stamp is
automatically updated when the package is published.

The package versions are ordered using left-to-right precedence: The number immediately after
the @ is the most significant part of the version space. The time stamp is the least significant part
of the version space.

Chapter 1 • IPS Design Goals, Concepts, and Terminology 23

IPS Terminology and Components

The pkg.human-version attribute can be used to provide a human-readable version string.
The value of the pkg.human-version attribute can be provided in addition to the package
version described above for the package FMRI but cannot replace the package FMRI
version. The human-readable version string is used only for display purposes. See “Set
Actions” on page 32 for more information.

By allowing arbitrary version lengths, IPS can accommodate a variety of different models for
supporting software. For example, a package author can use the build or branch versions and
assign one portion of the versioning scheme to security updates, another for paid versus unpaid
support updates, another for minor bug fixes, or whatever information is needed.

A version can also be the token latest, which specifies the latest version known.

Appendix B, “How IPS Is Used To Package the Oracle Solaris OS” describes how Oracle
Solaris implements versioning.

Package Content: Actions
Actions define the software that comprises a package; they define the data needed to create
this software component. Package contents are expressed in a package manifest file as a set of
actions.

Package manifests are largely created using programs. Package developers provide necessary
information about the object to be installed, and the manifest is completed using package
development tools as described in Chapter 2, “Packaging Software With IPS”.

Actions are expressed in the following form in package manifest files:

action_name attribute1=value1 attribute2=value2 ...

In the following example action, dir indicates this action specifies a directory. Attributes in the
form name=value describe properties of that directory:

dir path=a/b/c group=sys mode=0755 owner=root

Action metadata is freely extensible. Additional attributes can be added to actions as needed.
Attribute names cannot include spaces, quotation marks, or equals signs (=). Attribute values
can have all of those, although values with spaces must be enclosed in single or double
quotation marks. Single quotation marks need not be escaped inside a string enclosed in double
quotation marks, and double quotation marks need not be escaped inside a string enclosed in
single quotation marks. A quotation mark can be prefixed with a backslash character (\) to
prevent terminating the quoted string. Backslashes can be escaped with backslashes. Custom
attribute names should use a unique prefix to prevent accidental namespace overlap. See the
discussion of publisher names in “Package Publisher” on page 22.

24 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

IPS Terminology and Components

Actions can have multiple attributes. Some attributes can be named multiple times with
different values for a single action. Multiple attributes with the same name are treated as
unordered lists.

Actions with many attributes can create long lines in a manifest file. Such lines can be wrapped
by terminating each incomplete line with a backslash character. Note that this continuation
character must occur between attribute/value pairs. Neither attributes nor their values nor the
combination can be split.

Some attributes cause additional operations to be executed outside of the packaging context.
See Chapter 7, “Automating System Change as Part of Package Installation” for more
information.

Most actions have a key attribute. The key attribute is the attribute that makes this action unique
from all other actions in the image. For file system objects, the key attribute is the path for that
object.

Actions that are installed to a path must not deliver content to any of the following paths:

■ /system/volatile

■ /tmp

■ /var/pkg

■ /var/share

■ /var/tmp

The following sections describe each IPS action type and the attributes that define these actions.
The action types are detailed in the pkg(5) man page, and are repeated here for reference. Each
section contains an example action as it would appear in a package manifest during package
creation. Other attributes might be automatically added to the action during publication.

File Actions

The file action is by far the most common action. A file action represents an ordinary file.
The file action references a payload, and has the following four standard attributes:

path The file system path where the file is installed. This is the key attribute of
a file action. The value of the path attribute is relative to the root of the
image. Do not include the leading /.

mode The access permissions of the file. The value of the mode attribute is
simple permissions in numeric form, not ACLs.

Chapter 1 • IPS Design Goals, Concepts, and Terminology 25

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN5pkg-5

IPS Terminology and Components

owner The name of the user that owns the file.

group The name of the group that owns the file.

The payload attribute is positional: The payload attribute is the first word after the action name
and usually has no attribute name. If in a manifest that has not yet been published, the value
of the payload attribute is the full path to the payload file, less the leading slash character (/).
If the payload value includes an equal symbol (=), use hash= in front of the payload attribute
value. If both positional and hash payload attributes are used in the same action, the values
must be identical.

The following example is a file action that you might see output by the pkgsend generate
command as shown in “Generate a Package Manifest” on page 43:

file opt/mysoftware path=opt/mysoftware group=bin mode=0644 owner=root

The following example shows how to specify a path that includes an equal symbol:

file hash=opt/my=software path=opt/my=software group=root mode=0644 owner=root

In a published manifest, the value of the payload attribute is a hash of the file contents, which is
used by the package system. See the pkgsend(1) man page for more information.

The preserve and overlay attributes affect whether and how a file action is installed.

preserve

Specifies when and how files are preserved during package operations.

When a package is initially installed, if a file delivered by the package has a preserve
attribute defined with any value except abandon or install-only and file already exists
in the image, the existing file is stored in /var/pkg/lost+found and the packaged file is
installed.

When a package is initially installed, if a file delivered by the package has a preserve
attribute defined and the file does not already exist in the image, whether that file is
installed depends on the value of the preserve attribute:
■ If the value of preserve is abandon or legacy, the packaged file is not installed.
■ If the value of preserve is not abandon or legacy, the packaged file is installed.

When a package is downgraded, if a file delivered by the downgraded version of the
package has a preserve attribute defined with any value except abandon or install-
only and all of the following conditions are true, the file that currently exists in the image
is renamed with the extension .update, and the file from the downgraded package is
installed.
■ The file exists in the image.

26 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pkgsend-1

IPS Terminology and Components

■ The content of the file delivered by the downgraded version of the package is different
from the content of the file delivered by the currently installed version of the package.

■ The content of the file delivered by the downgraded version of the package is different
from the content of the file that exists in the image.

If any of the above conditions is not true, the file is treated the same as if the package is
being upgraded, rather than downgraded.

When a package is upgraded, if a file action delivered by the upgraded version of the
package has a preserve attribute defined with any value and the file action is the same
as the file action delivered by the currently installed version of the package, the file is
not installed, and the file that exists in the image is not modified. Any modifications made
since the previous version was installed are preserved.

When a package is upgraded, if a file action delivered by the upgraded version of the
package has a preserve attribute defined and the file action is new or is different from the
file action delivered by the currently installed version of the package, the upgrade is done
in the following way:
■ If the file delivered by the upgraded version of the package has a preserve value of

abandon or install-only in the upgraded package, the new file is not installed and the
existing file is not modified.

■ If the file does not exist in the image, the new file is installed.
■ If the file delivered by the upgraded version of the package exists in the image, did not

exist in the currently installed version of the package, and was not renamed or moved
by using the original_name attribute, then the existing file is stored in /var/pkg/lost
+found and the file delivered by the upgraded version of the package is installed. See
the original_name attribute description below.

■ If the file delivered by the upgraded version of the package exists in the image and
has different content from the file delivered by the currently installed version of the
package, the upgrade is done according to the value of the preserve attribute:
■ If the file delivered by the upgraded version of the package has a preserve value of

renameold, the existing file is renamed with the extension .old, and the new file is
installed with updated permissions and timestamp (if present). See the timestamp
attribute description below.

■ If the file delivered by the upgraded version of the package has a preserve value of
renamenew, the new file is installed with the extension .new and the existing file is
not modified.

■ If the file delivered by the upgraded version of the package has a preserve value of
true, the new file is not installed, but the permissions and timestamp (if present) are
reset on the existing file.

■ If the file delivered by the upgraded version of the package exists in the image, has the
same content as the file delivered by the currently installed version of the package, and

Chapter 1 • IPS Design Goals, Concepts, and Terminology 27

IPS Terminology and Components

has a preserve value of either renameold or renamenew, the existing file is replaced
by the file delivered by the upgraded version of the package, including replacing
permissions and timestamp (if present).

■ If the file delivered by the upgraded version of the package exists in the image, has
a preserve value of legacy in the upgraded package, and has a different preserve
value in the currently installed version of the package, the existing file is renamed
with the extension .legacy, and the new file is installed with updated permissions and
timestamp (if present).

■ If the file delivered by the upgraded version of the package exists in the image and has
a preserve value of legacy in both the upgraded package and the currently installed
version of the package, the permissions and timestamp (if present) are reset on the
existing file.

When a package is uninstalled, if a file action delivered by the currently installed version
of the package has a preserve value of abandon or install-only and the file exists in the
image, the file is not removed.

overlay

Specifies whether the action allows other packages to deliver a file at the same location
or whether it delivers a file intended to overlay another file. This functionality is intended
for use with configuration files that do not participate in any self-assembly and that can be
safely overwritten.

If overlay is not specified, multiple packages cannot deliver files to the same location.

The overlay attribute can have one of the following values:

allow One other package is allowed to deliver a file to the same location.
This value has no effect unless the preserve attribute is also set.

true The file delivered by the action overwrites any other action that has
specified allow.

Changes to the installed file are preserved based on the value of the preserve attribute of
the overlaying file. On removal, the contents of the file are preserved if the action being
overlaid is still installed, regardless of whether the preserve attribute was specified. Only
one action can overlay another action, and the mode, owner, and group attributes must
match.

The following attributes are recognized for ELF files:

elfarch The architecture of the ELF file. This value is the output of uname -p on
the architecture for which the file is built.

elfbits This value is 32 or 64.

28 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

IPS Terminology and Components

elfhash This value is the hash of the ELF sections in the file that are mapped into
memory when the binary is loaded. These are the only sections necessary
to consider when determining whether the executable behavior of two
binaries will differ.

The following additional attributes are recognized for file actions:

original_name

This attribute is used to handle editable files moving from package to package, from
place to place, or both. The value of this attribute is the name of the originating package,
followed by a colon, followed by the original path to the file. Any file being deleted is
recorded either with its package and path, or with the value of the original_name attribute
if specified. Any editable file being installed that has the original_name attribute set uses
the file of that name if it is deleted as part of the same packaging operation.
Once this attribute is set, do not change its value, even if the package or file are repeatedly
renamed. Keeping the same value permits upgrade to occur from all previous versions.

release-note

This attribute is used to indicate that this file contains release note text. The value of this
attribute is a package FMRI. If the FMRI specifies a package name that is present in the
original image and a version that is newer than the version of the package in the original
image, this file will be part of the release notes. A special FMRI of feature/pkg/self
refers to the containing package. If the version of feature/pkg/self is 0, this file will only
be part of the release notes on initial installation.

revert-tag

This attribute is used to tag editable files that should be reverted as a set. The value of
the revert-tag attribute is a tagname. Multiple revert-tag attributes can be specified
for a single file action. The file reverts to its manifest-defined state when pkg revert is
invoked with any of those tags specified. See “Reverting Tagged Files and Directories”
in Adding and Updating Software in Oracle Solaris 11.3 and the pkg(1) man page for
information about the pkg revert command. Certain tags cause files to revert during
system migration and system cloning. See “Packaging for System Migration and System
Cloning” on page 120 and “Oracle Solaris Revert Tags” on page 150 for descriptions
of these revert tags.

The revert-tag attribute can also be specified at the directory level. See “Directory
Actions” below.

sysattr

This attribute is used to specify any system attributes that should be set for this file. The
value of the sysattr attribute can be a comma-separated list of verbose system attributes or
a string sequence of compact system attribute options, as shown in the following examples.

Chapter 1 • IPS Design Goals, Concepts, and Terminology 29

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=AUOSSgnzse
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=AUOSSgnzse
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pkg-1

IPS Terminology and Components

Supported system attributes are explained in the chmod(1) man page. System attributes
specified in the manifest are set additionally to system attributes that might have been set
by other subsystems of the operating system.

file path=opt/secret_file sysattr=hidden,sensitive

file path=opt/secret_file sysattr=HT

timestamp

This attribute is used to set the access and modification time on the file. The timestamp
attribute value must be expressed in UTC in ISO-8601 format, omitting the colons and
hyphens.

The timestamp attribute is essential when packaging .pyc or .pyo files for Python. The
related .py file for the .pyc or .pyo files must be marked with the timestamp embedded
within those files, as shown in the following example:

file path=usr/lib/python2.6/vendor-packages/pkg/__init__.pyc ...

file path=usr/lib/python2.6/vendor-packages/pkg/__init__.py \

 timestamp=20150331T111615Z ...

The following attributes for file actions are automatically generated by the system and should
not be specified by package developers: hash, chash, pkg.size, pkg.csize, and pkg.content-
hash.

An example file action is:

file path=usr/bin/pkg owner=root group=bin mode=0755

Directory Actions

The dir action is like the file action in that it represents a file system object. The dir action
represents a directory instead of an ordinary file. The dir action has the same path, mode,
owner, and group attributes that the file action has, and path is the key attribute. The dir
action also accepts the revert-tag attribute, but the value of the attribute is different for file
and dir actions.

Directories are reference counted in IPS. When the last package that either explicitly or
implicitly references a directory no longer does so, that directory is removed. If that directory
contains unpackaged file system objects, those items are moved into $IMAGE_META/lost+found.
The value of $IMAGE_META is typically /var/pkg.

revert-tag

This attribute is used to identify unpackaged files that should be removed as a set. See
“File Actions” above for a description of how to specify this attribute for file actions. For

30 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

IPS Terminology and Components

directories, the value of the revert-tag attribute is tagname=pattern. Multiple revert-
tag attributes can be specified for a single dir action. When pkg revert is invoked with a
matching tagname, any unpackaged files or directories under this dir directory that match
pattern (using shell globbing characters) are removed. See “Reverting Tagged Files and
Directories” in Adding and Updating Software in Oracle Solaris 11.3 and the pkg(1) man
page for information about the pkg revert command.

salvage-from

This attribute can be used to move unpackaged contents into a new directory. The value
of this attribute is the name of a directory of salvaged items. A directory with a salvage-
from attribute inherits on creation any contents of the directory named in the value of the
salvage-from attribute.

During installation, pkg checks that all instances of a given directory action on the system have
the same owner, group, and mode attribute values. The dir action is not installed if conflicting
values are found on the system or in other packages to be installed in the same operation.

An example of a dir action is:

dir path=usr/share/lib owner=root group=sys mode=0755

Link Actions

The link action represents a symbolic link. The link action has the following standard
attributes:

path The file system path where the symbolic link is installed. This is the key
attribute for a link action.

target The target of the symbolic link. The file system object to which the link
resolves.

The link action also takes the following attributes that allow for multiple versions or
implementations of a given piece of software to be installed on the system at the same time:
mediator, mediator-version, mediator-implementation, and mediator-priority. Such
links are mediated, and allow administrators to easily toggle which links point to which
version or implementation as desired. These mediated link attributes are discussed in detail
in “Delivering Multiple Implementations of an Application” on page 115. Mediations are
also discussed in “Specifying a Default Application Implementation” in Adding and Updating
Software in Oracle Solaris 11.3.

An example of a link action is:

Chapter 1 • IPS Design Goals, Concepts, and Terminology 31

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=AUOSSgnzse
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=AUOSSgnzse
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pkg-1
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=AUOSSgmagn
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=AUOSSgmagn

IPS Terminology and Components

link path=usr/lib/libpython2.6.so target=libpython2.6.so.1.0

Hardlink Actions

The hardlink action represents a hard link. It has the same path and target attributes as the
link action, and path is also its key attribute.

An example of a hardlink action is:

hardlink path=opt/myapplication/hardlink target=foo

Set Actions

The set action represents a package-level attribute, or metadata, such as the package
description.

The following attributes are recognized:

name The name of the attribute.

value The value given to the attribute.

The set action can deliver any metadata the package author chooses. The following attribute
names have specific meaning to the packaging system:

info.classification

One or more tokens that a pkg client can use to classify the package. The value should have
a scheme (such as org.opensolaris.category.2008 or org.acm.class.1998) and the
actual classification (such as Applications/Games), separated by a colon (:). A set of info.
classification values is provided in Appendix A, “Classifying Packages”.

pkg.description

A detailed description of the contents and functionality of the package, typically a
paragraph or so in length. This value should describe why someone might want to install
this package.

pkg.fmri

The name and version of the containing package. See “Package Version” on page 22.

pkg.human-version

The version scheme used by IPS is strict. See “Package Version” on page 22. A more
flexible version can be provided as the value of the pkg.human-version attribute. The

32 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

IPS Terminology and Components

value is displayed by IPS tools such as pkg info, pkg contents, and pkg search. The
pkg.human-version value is not used as a basis for version comparison and cannot be used
in place of the pkg.fmri version.

pkg.obsolete

When true, the package is marked obsolete. An obsolete package can have no actions
other than more set actions, and must not be marked renamed. Package obsoletion is
covered in “Obsoleting Packages” on page 100.

pkg.renamed

When true, the package has been renamed. The package must include one or more depend
actions as well, which point to the package versions to which this package has been
renamed. A package cannot be marked both renamed and obsolete, but otherwise can have
any number of set actions. Package renaming is covered in “Renaming, Merging, and
Splitting Packages” on page 99.

pkg.summary

A brief synopsis of the description. This value is shown at the end of each line of pkg list
-s output, as well as in one line of the output of pkg info. This value should be no longer
than 60 characters. This value should describe what the package is, and should not repeat
the name or version of the package.

Some additional informational attributes, as well as some used by Oracle Solaris are described
in Appendix B, “How IPS Is Used To Package the Oracle Solaris OS”.

An example of a set action is:

set name=pkg.summary value="Image Packaging System"

Driver Actions

The driver action represents a device driver. The driver action does not reference a payload.
The driver files themselves must be installed as file actions. The following attributes are
recognized. See the add_drv(1M) man page for more information about these attribute values.

name The name of the driver. This is usually, but not always, the file name of
the driver binary. This is the key attribute of the driver action.

alias An alias for the driver. A given driver can have more than one alias
attribute. No special quoting rules are necessary.

class A driver class. A given driver can have more than one class attribute.

Chapter 1 • IPS Design Goals, Concepts, and Terminology 33

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1Madd-drv-1m

IPS Terminology and Components

perms The file system permissions for the device nodes of the driver.

clone_perms The file system permissions for the minor nodes of the clone driver for
this driver.

policy Additional security policy for the device. A given driver can have more
than one policy attribute, but no minor device specification can be
present in more than one attribute.

privs Privileges used by the driver. A given driver can have more than one
privs attribute.

devlink An entry in /etc/devlink.tab. The value is the exact line to go into the
file, with tabs denoted by \t. See the devlinks(1M) man page for more
information. A given driver can have more than one devlink attribute.

An example of a driver action is:

driver name=vgatext \

 alias=pciclass,000100 \

 alias=pciclass,030000 \

 alias=pciclass,030001 \

 alias=pnpPNP,900 variant.arch=i386 variant.opensolaris.zone=global

Depend Actions

The depend action represents an inter-package dependency. A package can depend on
another package because the first package requires functionality in the second package for
the functionality in the first package to work or to install. Dependencies can be optional. If a
dependency is not satisfied at the time of installation, the packaging system attempts to install
or update the dependent package to a sufficiently new version, subject to other constraints.
Dependencies are covered in more detail in Chapter 4, “Specifying Package Dependencies”.

The following attributes are recognized:

fmri

The FMRI representing the target of the dependency. This is the key attribute of the depend
action. The FMRI value must not include the publisher. The package name is assumed to be
rooted, even if it does not begin with a forward slash (/). Dependencies of type require-
any can have multiple fmri attributes. A version is optional on the fmri value, though for
some types of dependencies, an FMRI with no version has no meaning.

The FMRI value cannot use asterisks (*), and cannot use the latest token for a version.

34 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1Mdevlinks-1m

IPS Terminology and Components

type

The type of the dependency.

require

The target package is required and must have a version equal to or greater than the
version specified in the fmri attribute. If the version is not specified, any version
satisfies the dependency. A package cannot be installed if any of its require
dependencies cannot be satisfied.

optional

The dependency target, if present, must be at the specified version level or greater.

exclude

The containing package cannot be installed if the dependency target is present at the
specified version level or greater. If no version is specified, the target package cannot
be installed concurrently with the package specifying the dependency.

incorporate

The dependency is optional, but the version of the target package is constrained. See
Chapter 4, “Specifying Package Dependencies” for a discussion of constraints and
freezing.

require-any

Any one of multiple target packages as specified by multiple fmri attributes can satisfy
the dependency, following the same rules as the require dependency type.

conditional

The dependency target is required only if the package defined by the predicate
attribute is present on the system.

origin

Prior to installation of this package, the dependency target must, if present, be at the
specified value or greater on the image to be modified. If the value of the root-image
attribute is true, the target must be present on the image rooted at / in order to install
this package. If the value of the root-image attribute is true and the value of the fmri
attribute starts with pkg:/feature/firmware/, the remainder of the fmri value is
treated as a command in /usr/lib/fwenum that evaluates the firmware dependency.

group

The dependency target is required unless the package is on the image avoid list.
Note that obsolete packages silently satisfy the group dependency. See the avoid
subcommand in the pkg(1) man page for information about the image avoid list.

Chapter 1 • IPS Design Goals, Concepts, and Terminology 35

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pkg-1

IPS Terminology and Components

group-any

Any one of multiple target packages as specified by multiple fmri attributes can satisfy
the dependency. The same rules apply to a group-any dependency that apply to a
group dependency with the exception that non-obsolete package stems are preferred
over obsolete package stems.

parent

The dependency is ignored if the image is not a child image, such as a zone. If the
image is a child image, then the dependency target must be present in the parent
image. The version matching for a parent dependency is the same as that used for
incorporate dependencies.

predicate

The FMRI that represents the predicate for conditional dependencies.

root-image

Has an effect only for origin dependencies as mentioned above.

An example of a depend action is:

depend fmri=crypto/ca-certificates type=require

License Actions

The license action represents a license or other informational file associated with the package
contents. A package can deliver licenses, disclaimers, or other guidance to the package installer
through the license action.

The payload of the license action is delivered into the image metadata directory related to
the package, and should only contain human-readable text data. The license action payload
should not contain HTML or any other form of markup. Through attributes, license actions
can indicate to pkg clients that the related payload must be displayed or accepted. The method
of display or acceptance is at the discretion of pkg clients.

The following attributes are recognized:

license

Provides a meaningful description for the license to assist users in determining the contents
without reading the license text itself. This is the key attribute of the license action.
Some example values include:
■ ABC Co. Copyright Notice

36 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

IPS Terminology and Components

■ ABC Co. Custom License
■ Common Development and Distribution License 1.0 (CDDL)
■ GNU General Public License 2.0 (GPL)
■ GNU General Public License 2.0 (GPL) Only
■ MIT License
■ Mozilla Public License 1.1 (MPL)
■ Simplified BSD License

Wherever possible, including the version of the license in the description is recommended
as shown above. The license value must be unique within a package.

must-accept

When true, this license must be accepted by a user before the related package can be
installed or updated. Omission of this attribute is equivalent to false. The method of
acceptance (interactive or configuration-based, for example) is at the discretion of pkg
clients. For package updates, this attribute is ignored if the license action or payload has not
changed.

must-display

When true, the payload of the license action must be displayed by pkg clients during
packaging operations. Omission of this attribute is equivalent to false. This attribute
should not be used for copyright notices. This attribute should only be used for licenses
or other material that must be displayed during operations. The method of display is at the
discretion of pkg clients. For package updates, this attribute is ignored if the license action
or payload has not changed.

An example of a license action is:

license license="Apache v2.0"

Legacy Actions

The legacy action represents package data used by the legacy SVR4 packaging system.
The attributes associated with the legacy action are added into the databases of the legacy
SVR4 packaging system so that the tools querying those databases can operate as if the legacy
package were actually installed. In particular, specifying the legacy action should cause the
package named by the pkg attribute to satisfy SVR4 dependencies.

The following attributes are recognized. See the pkginfo(4) man page for description of the
associated parameters.

category The value for the CATEGORY parameter. The default value is system.

Chapter 1 • IPS Design Goals, Concepts, and Terminology 37

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN4pkginfo-4

IPS Terminology and Components

desc The value for the DESC parameter.

hotline The value for the HOTLINE parameter.

name The value for the NAME parameter. The default value is none provided.

pkg The abbreviation for the package being installed. The default value is
the name from the FMRI of the package. This is the key attribute of the
legacy action.

vendor The value for the VENDOR parameter.

version The value for the VERSION parameter. The default value is the version
from the FMRI of the package.

An example of a legacy action is:

legacy pkg=SUNWcsu arch=i386 category=system \

 desc="core software for a specific instruction-set architecture" \

 hotline="Please contact your local service provider" \

 name="Core Solaris, (Usr)" vendor="Oracle Corporation" \

 version=11.11,REV=2009.11.11 variant.arch=i386

Signature Actions

Signature actions are used as part of the support for package signing in IPS. Signature actions
are covered in detail in Chapter 9, “Signing IPS Packages”.

User Actions

The user action defines a UNIX user as specified in the /etc/passwd, /etc/shadow, /etc/
group, and /etc/ftpd/ftpusers files. Information from user actions is added to the
appropriate files.

The user action is intended to define a user for a daemon or other software to use. Do not use
the user action to define administrative or interactive accounts.

The following attributes are recognized:

username The unique name of the user.

password The encrypted password of the user. The default value is *LK*.

38 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

IPS Terminology and Components

uid The unique numeric ID of the user. The default value is the first free
value under 100.

group The name of the user's primary group. This name must be found in /etc/
group.

gcos-field The real name of the user, as represented in the GECOS field in /etc/
passwd. The default value is the value of the username attribute.

home-dir The user's home directory. This directory must be in the system image
directories and not under another mount point such as /home. The default
value is /.

login-shell The user's default shell. The default value is empty.

group-list Secondary groups to which the user belongs. See the group(4) man page.

ftpuser Can be set to true or false. The default value of true indicates that the
user is permitted to login via FTP. See the ftpusers(4) man page.

lastchg The number of days between January 1, 1970, and the date that the
password was last modified. The default value is empty.

min The minimum number of days required between password changes. This
field must be set to 0 or above to enable password aging. The default
value is empty.

max The maximum number of days the password is valid. The default value is
empty. See the shadow(4) man page.

warn The number of days before password expires that the user is warned.

inactive The number of days of inactivity allowed for the user. This is counted on
a per-system basis. The information about the last login is taken from the
lastlog file of the system.

expire An absolute date expressed as the number of days since the UNIX
Epoch (January 1, 1970). When this number is reached, the login can no
longer be used. For example, an expire value of 13514 specifies a login
expiration of January 1, 2007.

flag Set to empty.

A example of a user action is:

Chapter 1 • IPS Design Goals, Concepts, and Terminology 39

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN4group-4
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN4ftpusers-4
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN4shadow-4

IPS Terminology and Components

user ftpuser=false gcos-field="AI User" group=aiuser uid=61 username=aiuser

Group Actions

The group action defines a UNIX group as specified in the group(4) file. No support is
provided for group passwords. Groups defined with the group action initially have no user list.
Users can be added with the user action.

The following attributes are recognized:

groupname The value for the name of the group.

gid The unique numeric ID of the group. The default value is the first free
group under 100.

An example of a group action is:

group gid=61 groupname=aiuser

Package Repository

A software repository contains packages for one or more publishers. Repositories can be
configured for access in a variety of different ways: HTTP, HTTPS, file (on local storage or via
NFS or SMB), and as a self-contained package archive file, usually with the .p5p extension.

Package archives allow for convenient distribution of IPS packages. See “Deliver as a Package
Archive File” on page 57 for more information.

A repository accessed via HTTP or HTTPS is managed by a pkg/server SMF service and pkg.
depotd process or possibly by a pkg/depot SMF service. The pkg/depot service is delivered
by the package/pkg/depot package. For file repositories, the repository software runs as part of
the accessing pkg client.

See “Publish the Package” on page 52 and “Deliver the Package” on page 55 for
examples. See Copying and Creating Package Repositories in Oracle Solaris 11.3 for more
information about creating, accessing, updating, and configuring IPS package repositories.

40 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN4group-4
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=CCOSP

 2 ♦ ♦ ♦ C H A P T E R 2

Packaging Software With IPS

This chapter gets you started constructing your own packages, including:

■ Designing, creating, and publishing a new package
■ Converting a SVR4 package to an IPS package

Designing a Package
Many of the criteria for good package development described in this section require you to
make trade-offs. Satisfying all requirements equally is often difficult. The following criteria are
presented in order of importance. However, this sequence is meant to serve as a flexible guide
depending on your circumstances. Although each of these criteria is important, it is up to you to
optimize these requirements to produce a good set of packages.

Select a package name.

Oracle Solaris uses a hierarchical naming strategy for IPS packages. Wherever possible,
design your package names to fit into the same scheme. Try to keep the last part of your
package name unique so that users can specify a short package name to commands such as
pkg install.

Optimize for client-server configurations.

Consider the various patterns of software use (client and server) when laying out
packages. Good package design divides the affected files to optimize installation of each
configuration type. For example, for a network protocol implementation, the package user
should be able to install the client without necessarily installing the server. If client and
server share implementation components, create a base package that contains the shared
bits.

Package by functional boundaries.

Packages should be self-contained and distinctly identified with a set of functionality. For
example, a package that contains ZFS should contain all ZFS utilities and be limited to
only ZFS binaries.

Chapter 2 • Packaging Software With IPS 41

Creating and Publishing a Package

Packages should be organized from a user's point of view into functional units.

Package along license or royalty boundaries.

Put code that requires royalty payments due to contractual agreements or that has distinct
software license terms in a dedicated package or group of packages. Do not disperse the
code into more packages than necessary.

Avoid or manage overlap between packages.

Packages that overlap cannot be installed at the same time. An example of packages that
overlap are packages that deliver different content to the same file system location. Since
this error might not be caught until the user attempts to install the package, overlapping
packages can provide a poor user experience. The pkglint(1) tool can help to detect this
error during the package authoring process.

If the package content must differ, declare an exclude dependency so that IPS does not
allow these packages to be installed together.

Correctly size packages.

A package represents a single unit of software, and is either installed or not installed. (See
the discussion of facets in “Optional Software Components” on page 81 to understand
how a package can deliver optional software components.) Packages that are always
installed together should be combined. Since IPS downloads only changed files on update,
even large packages update quickly if change is limited.

Do not deliver content to any of the following paths:

■ /system/volatile

■ /tmp

■ /var/pkg

■ /var/share

■ /var/tmp

Creating and Publishing a Package
Packaging software with IPS is usually straightforward due to the amount of automation that is
provided. Automation avoids repetitive tedium, which seems to be the principal cause of most
packaging bugs.

Publication in IPS consists of the following steps:

1. Generate a package manifest.
2. Add necessary metadata to the generated manifest.

42 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pkglint-1

Creating and Publishing a Package

3. Evaluate dependencies.
4. Add any facets or actuators that are needed.
5. Verify the package.
6. Publish the package.
7. Test the package.

Generate a Package Manifest
The easiest way to get started is to organize the component files into the same directory
structure that you want on the installed system.

Two ways to do this are:

■ If the software you want to package is already in a tarball, unpack the tarball into a
subdirectory. For many open source software packages that use the autoconf utility, setting
the DESTDIR environment variable to point to the desired prototype area accomplishes this.
The autoconf utility is available in the pkg:/developer/build/autoconf package.

■ Use the install target in a Makefile.

Suppose your software consists of a binary, a library, and a man page, and you want to install
this software in a directory under /opt named mysoftware. Create a directory in your build area
under which your software appears in this layout. In the following example, this directory is
named proto:

proto/opt/mysoftware/lib/mylib.so.1

proto/opt/mysoftware/bin/mycmd

proto/opt/mysoftware/man/man1/mycmd.1

Use the pkgsend generate command to generate a manifest for this proto area. Pipe the output
package manifest through pkgfmt to make the manifest more readable. See the pkgsend(1) and
pkgfmt(1) man pages for more information.

In the following example, the proto directory is in the current working directory:

$ pkgsend generate proto | pkgfmt > mypkg.p5m.1

The output mypkg.p5m.1 file contains the following lines:

dir path=opt owner=root group=bin mode=0755

dir path=opt/mysoftware owner=root group=bin mode=0755

dir path=opt/mysoftware/bin owner=root group=bin mode=0755

file opt/mysoftware/bin/mycmd path=opt/mysoftware/bin/mycmd owner=root \

 group=bin mode=0644

dir path=opt/mysoftware/lib owner=root group=bin mode=0755

file opt/mysoftware/lib/mylib.so.1 path=opt/mysoftware/lib/mylib.so.1 \

Chapter 2 • Packaging Software With IPS 43

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pkgsend-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pkgfmt-1

Creating and Publishing a Package

 owner=root group=bin mode=0644

dir path=opt/mysoftware/man owner=root group=bin mode=0755

dir path=opt/mysoftware/man/man1 owner=root group=bin mode=0755

file opt/mysoftware/man/man1/mycmd.1 path=opt/mysoftware/man/man1/mycmd.1 \

 owner=root group=bin mode=0644

The path of the files to be packaged appears twice in the file action:

■ The first word after the word file describes the location of the file in the proto area.
■ The path in the path= attribute specifies the location where the file is to be installed.

This double entry enables you to modify the installation location without modifying the proto
area. This capability can save significant time, for example if you repackage software that was
designed for installation on a different operating system.

Notice that pkgsend generate has applied default values for directory owners and groups. In
the case of /opt, the defaults are not correct. Delete that directory because it is delivered by
other packages already on the system, and pkg(1) will not install the package if the attributes
of /opt conflict with those already on the system. “Add Necessary Metadata to the Generated
Manifest” on page 44 below shows a programmatic way to delete the unwanted directory.

If a file name contains an equal symbol (=), double quotation mark ("), or space character,
pkgsend generates a hash attribute in the manifest, as shown in the following example:

$ mkdir -p proto/opt

$ touch proto/opt/my\ file1

$ touch proto/opt/"my file2"

$ touch proto/opt/my=file3

$ touch proto/opt/'my"file4'

$ pkgsend generate proto

dir group=bin mode=0755 owner=root path=opt

file group=bin hash=opt/my=file3 mode=0644 owner=root path=opt/my=file3

file group=bin hash="opt/my file2" mode=0644 owner=root path="opt/my file2"

file group=bin hash='opt/my"file4' mode=0644 owner=root path='opt/my"file4'

file group=bin hash="opt/my file1" mode=0644 owner=root path="opt/my file1"

When the package is published (see “Publish the Package” on page 52), the value
of the hash attribute becomes the SHA-1 hash of the file contents, as noted in “File
Actions” on page 25.

Add Necessary Metadata to the Generated
Manifest
A package should define the following metadata. See “Set Actions” on page 32 for more
information about these values and how to set these values.

44 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pkg-1

Creating and Publishing a Package

pkg.fmri

The name and version of the package as described in “Package Name” on page 22
and “Package Version” on page 22. See “Avoiding Conflicting Package
Content” on page 97 for a discussion of package names and dependencies. The
publisher name is added automatically when the package is published, as shown in
“Publish the Package” on page 52. See “Construct an Appropriate Package Version
String” on page 46 for additional help setting your package version. See “Oracle
Solaris Package Versioning” on page 145 for a description of versioning in Oracle
Solaris.

pkg.description

A description of the contents of the package.

pkg.summary

A one-line synopsis of the description.

variant.arch

Each architecture for which this package is suitable. If the entire package can be installed
on any architecture, variant.arch can be omitted. Producing packages that have different
components for different architectures is discussed in Chapter 5, “Allowing Variations”.

info.classification

A grouping scheme used by the packagemanager(1) GUI. The supported values are shown
in Appendix A, “Classifying Packages”. The example in this section specifies an arbitrary
classification.

This example also adds a link action to /usr/share/man/index.d that points to the man
directory under mysoftware. This link is discussed further in “Add Any Facets or Actuators
That Are Needed” on page 49.

Rather than modifying the generated manifest directly, use pkgmogrify(1) to edit the generated
manifest. See Chapter 6, “Modifying Package Manifests Programmatically” for a full
description of using pkgmogrify to modify package manifests.

Create the following pkgmogrify input file to specify the changes to be made to the manifest.
Name this file mypkg.mog. In this example, a macro is used to define the architecture, and
regular expression matching is used to delete the /opt directory from the manifest.

set name=pkg.fmri value=mypkg@1.0,5.11-0

set name=pkg.summary value="This is an example package"

set name=pkg.description value="This is a full description of \

all the interesting attributes of this example package."

set name=variant.arch value=$(ARCH)

set name=info.classification \

Chapter 2 • Packaging Software With IPS 45

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1packagemanager-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pkgmogrify-1

Creating and Publishing a Package

 value=org.opensolaris.category.2008:Applications/Accessories

link path=usr/share/man/index.d/mysoftware target=/opt/mysoftware/man

<transform dir path=opt$->drop>

Run pkgmogrify on the mypkg.p5m.1 manifest with the mypkg.mog changes:

$ pkgmogrify -DARCH=`uname -p` mypkg.p5m.1 mypkg.mog | pkgfmt > mypkg.p5m.2

The output mypkg.p5m.2 file has the following content. The dir action for path=opt has been
removed, and the metadata and link contents from mypkg.mog have been added to the original
mypkg.p5m.1 contents.

set name=pkg.fmri value=mypkg@1.0,5.11-0

set name=pkg.summary value="This is an example package"

set name=pkg.description \

 value="This is a full description of all the interesting attributes of this

example package."

set name=info.classification \

 value=org.opensolaris.category.2008:Applications/Accessories

set name=variant.arch value=i386

dir path=opt/mysoftware owner=root group=bin mode=0755

dir path=opt/mysoftware/bin owner=root group=bin mode=0755

file opt/mysoftware/bin/mycmd path=opt/mysoftware/bin/mycmd owner=root \

 group=bin mode=0644

dir path=opt/mysoftware/lib owner=root group=bin mode=0755

file opt/mysoftware/lib/mylib.so.1 path=opt/mysoftware/lib/mylib.so.1 \

 owner=root group=bin mode=0644

dir path=opt/mysoftware/man owner=root group=bin mode=0755

dir path=opt/mysoftware/man/man1 owner=root group=bin mode=0755

file opt/mysoftware/man/man1/mycmd.1 path=opt/mysoftware/man/man1/mycmd.1 \

 owner=root group=bin mode=0644

link path=usr/share/man/index.d/mysoftware target=/opt/mysoftware/man

Construct an Appropriate Package Version String

The component version, release, and branch version (see “Package Version” on page 22) of an
IPS package version string have the following constraints:

■ All content must be only periods or integers. If your product version contains other
characters, such as alphabetic characters, select a version for the IPS package that conveys
the same meaning using only integers and periods. For example, if your product version is
P17-u4-r3, then 17.4.3 might work for the package version.

■ A sequence of more than one integer cannot begin with a zero. This format enables sorting
by package version. For example, version 1.20 sorts newer than version 1.0.2, but 1.02 is
invalid. If your product version 17.03 indicates the third test release of version 17 of the
product, and the final released product will be version 17.0, then you could use package

46 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

Creating and Publishing a Package

versions such as 16.99.3, 16.99.4, and so on for the test releases. Version 17.0 will be seen
as newer than 16.99 versions, whereas 17.0 would not be newer than 17.0.3.

You can use the pkg.human-version attribute to provide your actual product version string as
shown in the following example:

set name=pkg.human-version value="P17-u4-r3"

The value of the pkg.human-version attribute can be provided in addition to the package
version in the package FMRI but cannot replace the package FMRI version. The pkg.human-
version version string is used only for display purposes. See “Set Actions” on page 32 for
more information.

Evaluate Dependencies

Use the pkgdepend(1) command to automatically generate dependencies for the package. The
generated depend actions are defined in “Depend Actions” on page 34 and discussed further in
Chapter 4, “Specifying Package Dependencies”.

Dependency generation is composed of two separate steps:

1. Dependency generation. Determine the files on which the software depends. Use the
pkgdepend generate command.

2. Dependency resolution. Determine the packages that contain those files on which the
software depends. Use the pkgdepend resolve command.

Generate Package Dependencies

Tip - Use pkgdepend to generate dependencies, rather than declaring depend actions manually.
Manual dependencies can become incorrect or unnecessary as the package contents change
over time. For example, when a file that an application depends on gets moved to a different
package, any manually declared dependencies on the previous package would then be incorrect
for that dependency.

Some manually declared dependencies might be necessary if pkgdepend is unable to determine
dependencies completely. In such a case, you should add explanatory comments to the manifest.

In the following command, the -m option causes pkgdepend to include the entire manifest in its
output. The -d option passes the proto directory to the command.

$ pkgdepend generate -md proto mypkg.p5m.2 | pkgfmt > mypkg.p5m.3

Chapter 2 • Packaging Software With IPS 47

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pkgdepend-1

Creating and Publishing a Package

The output mypkg.p5m.3 file has the following content. The pkgdepend utility added notations
about a dependency on libc.so.1 by both mylib.so.1 and mycmd. The internal dependency
between mycmd and mylib.so.1 is silently omitted.

set name=pkg.fmri value=mypkg@1.0,5.11-0

set name=pkg.summary value="This is an example package"

set name=pkg.description \

 value="This is a full description of all the interesting attributes of this

example package."

set name=info.classification \

 value=org.opensolaris.category.2008:Applications/Accessories

set name=variant.arch value=i386

dir path=opt/mysoftware owner=root group=bin mode=0755

dir path=opt/mysoftware/bin owner=root group=bin mode=0755

file opt/mysoftware/bin/mycmd path=opt/mysoftware/bin/mycmd owner=root \

 group=bin mode=0644

dir path=opt/mysoftware/lib owner=root group=bin mode=0755

file opt/mysoftware/lib/mylib.so.1 path=opt/mysoftware/lib/mylib.so.1 \

 owner=root group=bin mode=0644

dir path=opt/mysoftware/man owner=root group=bin mode=0755

dir path=opt/mysoftware/man/man1 owner=root group=bin mode=0755

file opt/mysoftware/man/man1/mycmd.1 path=opt/mysoftware/man/man1/mycmd.1 \

 owner=root group=bin mode=0644

link path=usr/share/man/index.d/mysoftware target=/opt/mysoftware/man

depend fmri=__TBD pkg.debug.depend.file=libc.so.1 \

 pkg.debug.depend.reason=opt/mysoftware/bin/mycmd \

 pkg.debug.depend.type=elf type=require pkg.debug.depend.path=lib \

 pkg.debug.depend.path=opt/mysoftware/lib pkg.debug.depend.path=usr/lib

depend fmri=__TBD pkg.debug.depend.file=libc.so.1 \

 pkg.debug.depend.reason=opt/mysoftware/lib/mylib.so.1 \

 pkg.debug.depend.type=elf type=require pkg.debug.depend.path=lib \

 pkg.debug.depend.path=usr/lib

Resolve Package Dependencies

To resolve dependencies, pkgdepend examines the packages currently installed in the image
used for building the software. By default, pkgdepend puts its output in mypkg.p5m.3.res. This
step takes a while to run since it loads a large amount of information about the system on which
it is running. The pkgdepend utility can resolve many packages at once if you want to amortize
this time over all packages. Running pkgdepend on one package at a time is not time efficient.

$ pkgdepend resolve -m mypkg.p5m.3

When this completes, the output mypkg.p5m.3.res file contains the following content. The
pkgdepend utility has converted the notation about the file dependency on libc.so.1 to a
package dependency on pkg:/system/library, which delivers that file.

48 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

Creating and Publishing a Package

set name=pkg.fmri value=mypkg@1.0,5.11-0

set name=pkg.summary value="This is an example package"

set name=pkg.description \

 value="This is a full description of all the interesting attributes of this

example package."

set name=info.classification \

 value=org.opensolaris.category.2008:Applications/Accessories

set name=variant.arch value=i386

dir path=opt/mysoftware owner=root group=bin mode=0755

dir path=opt/mysoftware/bin owner=root group=bin mode=0755

file opt/mysoftware/bin/mycmd path=opt/mysoftware/bin/mycmd owner=root \

 group=bin mode=0644

dir path=opt/mysoftware/lib owner=root group=bin mode=0755

file opt/mysoftware/lib/mylib.so.1 path=opt/mysoftware/lib/mylib.so.1 \

 owner=root group=bin mode=0644

dir path=opt/mysoftware/man owner=root group=bin mode=0755

dir path=opt/mysoftware/man/man1 owner=root group=bin mode=0755

file opt/mysoftware/man/man1/mycmd.1 path=opt/mysoftware/man/man1/mycmd.1 \

 owner=root group=bin mode=0644

link path=usr/share/man/index.d/mysoftware target=/opt/mysoftware/man

depend fmri=pkg:/system/library@0.5.11-0.175.2.0.0.18.0 type=require

Add Any Facets or Actuators That Are Needed

A facet denotes an action that is not required but can be optionally installed. An actuator
specifies system changes that must occur when the associated action is installed, updated, or
removed. Facets are discussed in more detail in Chapter 5, “Allowing Variations”, and actuators
are discussed in more detail in Chapter 7, “Automating System Change as Part of Package
Installation”.

This example package delivers a man page in /opt/mysoftware/man/man1. This section shows
how to add a facet tag to indicate that man pages are optional. The user could choose to install
all of the package except the man page. (If the user sets the facet property doc.man=false
as described in “Controlling Installation of Optional Components” in Adding and Updating
Software in Oracle Solaris 11.3, no actions tagged with facet.doc.man=true are installed from
any package.)

To include the man page in the index, the svc:/application/man-index:default SMF
service must be restarted when the package is installed. This section shows how to add the
restart_fmri actuator to perform that task. The man-index service looks in /usr/share/
man/index.d for symbolic links to directories that contain man pages, adding the target of
each link to the list of directories it scans. To include the man page in the index, this example
package includes a link from /usr/share/man/index.d/mysoftware to /opt/mysoftware/
man. Including this link and this actuator is a good example of the self-assembly discussed in

Chapter 2 • Packaging Software With IPS 49

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=AUOSSglmke
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=AUOSSglmke

Creating and Publishing a Package

“Software Self-Assembly” on page 15 and used throughout the packaging of the Oracle Solaris
OS.

A set of pkgmogrify transforms that you can use are available in /usr/share/pkg/transforms.
These transforms are used to package the Oracle Solaris OS, and are discussed in more detail in
Chapter 6, “Modifying Package Manifests Programmatically”.

The file /usr/share/pkg/transforms/documentation contains transforms similar to the
transforms needed in this example to set the man page facet and restart the man-index service.
Since this example delivers the man page to /opt, the documentation transforms must be
modified as shown below. These modified transforms include the regular expression opt/.
+/man(/.+)? which matches all paths beneath opt that contain a man subdirectory. Save the
following modified transforms to /tmp/doc-transform:

<transform dir file link hardlink path=opt/.+/man(/.+)? -> \

 default facet.doc.man true>

<transform file path=opt/.+/man(/.+)? -> \

 add restart_fmri svc:/application/man-index:default>

Use the following command to apply these transforms to the manifest:

$ pkgmogrify mypkg.p5m.3.res /tmp/doc-transform | pkgfmt > mypkg.p5m.4.res

The input mypkg.p5m.3.res manifest contains the following three man-page-related actions:

dir path=opt/mysoftware/man owner=root group=bin mode=0755

dir path=opt/mysoftware/man/man1 owner=root group=bin mode=0755

file opt/mysoftware/man/man1/mycmd.1 path=opt/mysoftware/man/man1/mycmd.1 \

 owner=root group=bin mode=0644

After the transforms are applied, the output mypkg.p5m.4.res manifest contains the following
modified actions:

dir path=opt/mysoftware/man owner=root group=bin mode=0755 facet.doc.man=true

dir path=opt/mysoftware/man/man1 owner=root group=bin mode=0755 \

 facet.doc.man=true

file opt/mysoftware/man/man1/mycmd.1 path=opt/mysoftware/man/man1/mycmd.1 \

 owner=root group=bin mode=0644 \

 restart_fmri=svc:/application/man-index:default facet.doc.man=true

Tip - For efficiency, these transforms could have been added when metadata was originally
added, before evaluating dependencies.

50 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

Creating and Publishing a Package

Verify the Package

The last step before publication is to run pkglint(1) on the manifest to find errors that can be
identified before publication and testing. Some of the errors that pkglint can find would also
be found either at publication time or when a user attempts to install the package, but of course
you want to identify errors as early as possible in the package authoring process.

Examples of errors that pkglint reports include:

■ Delivering files already owned by another package.
■ Difference in metadata for shared, reference-counted actions such as directories.

An example of this error is discussed at the end of “Generate a Package
Manifest” on page 43.

Use the pkglint -L command to show the full list of checks that pkglint performs. Detailed
information about how to enable, disable, and bypass particular checks is given in the
pkglint(1) man page. The man page also details how to extend pkglint to run additional
checks.

You can run pkglint in one of the following modes:

■ Directly on the package manifest. This mode is usually sufficient to quickly check the
validity of your manifests.

■ On the package manifest, also referencing a package repository. Use this mode at least once
before publication to a repository.

By referencing a repository, pkglint can perform additional checks to ensure that the
package interacts well with other packages in that repository.

The following output shows problems with the example manifest:

$ pkglint mypkg.p5m.4.res

Lint engine setup...

Starting lint run...

WARNING pkglint.action005.1 obsolete dependency check skipped: unable

to find dependency pkg:/system/library@0.5.11-0.175.2.0.0.18.0 for

pkg:/mypkg@1.0,5.11-0

This warning is acceptable for this example. The pkglint.action005.1 warning says that
pkglint could not find a package called pkg:/system/library@0.5.11-0.175.2.0.0.18.0, on
which this example package depends. The dependency package is in a package repository and
could not be found since pkglint was called with only the manifest file as an argument.

In the following command, the -r option references a repository that contains the dependency
package. The -c option specifies a local directory used for caching package metadata from the
lint and reference repositories:

Chapter 2 • Packaging Software With IPS 51

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pkglint-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pkglint-1

Creating and Publishing a Package

$ pkglint -c ./solaris-reference -r http://pkg.oracle.com/solaris/release mypkg.p5m.4.

res

Publish the Package

Publish your package to a local file-based repository. This repository is for developing and
testing this new package. If you create a repository for general use, you should include
additional steps such as creating a separate file system for the repository. For information about
creating package repositories for general use, see Copying and Creating Package Repositories
in Oracle Solaris 11.3.

To test the package with non-global zones, the repository location must be accessible through
the system repository. Use the pkg publisher or pkg list command inside a non-global zone
to confirm that the package is accessible.

Use the pkgrepo(1) command to create a repository on your system:

$ pkgrepo create my-repository

$ ls my-repository

pkg5.repository

Set the default publisher for this repository. The default publisher is the value of the
publisher/prefix property of the repository.

$ pkgrepo -s my-repository set publisher/prefix=mypublisher

Use the pkgsend publish command to publish the new package. If multiple pkgsend publish
processes might be publishing to the same -s repository simultaneously, specifying the --no-
catalog option is recommended because updates to publisher catalogs must be performed
serially. Publication performance might be significantly reduced if the --no-catalog option is
not used when multiple processes are simultaneously publishing packages. After publication
is complete, the new packages can be added to the respective publisher catalogs by using the
pkgrepo refresh command.

$ pkgsend -s my-repository publish -d proto mypkg.p5m.4.res

pkg://mypublisher/mypkg@1.0,5.11-0:20130720T005452Z

PUBLISHED

Notice that the repository default publisher has been applied to the package FMRI.

Verify that the new repository permissions, content, and signatures are correct:

$ pkgrepo verify -s my-repository

52 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=CCOSP
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=CCOSP
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pkgrepo-1

Creating and Publishing a Package

You can use the pkgrepo and pkg list commands to examine the repository:

$ pkgrepo info -s my-repository

PUBLISHER PACKAGES STATUS UPDATED

mypublisher 1 online 2013-07-20T00:54:52.758591Z

$ pkgrepo list -s my-repository

PUBLISHER NAME O VERSION

mypublisher mypkg 1.0,5.11-0:20130720T005452Z

$ pkg list -afv -g my-repository

FMRI IFO

pkg://mypublisher/mypkg@1.0,5.11-0:20130720T005452Z ---

A value in the O column of pkgrepo list indicates whether the package is obsolete (o) or
renamed (r).

Publishing the new package directly to an HTTP repository is not recommended since
no authorization or authentication checks are performed on the incoming package when
publishing over HTTP. Instead of publishing the package to an HTTP repository, deliver
the already-published package to an HTTP repository as described in “Deliver to a Package
Repository” on page 56. Publishing to HTTP repositories can be convenient on secure
networks or when testing the same package across several systems when NFS or SMB access to
the file repository is not possible. If you publish directly to an HTTP repository, that repository
must be hosted on a system with a read/write instance of the svc:/application/pkg/server
service (the value of the pkg/readonly property is false).

Sign the Package

If you want to sign your package, do that now, and then test the package and deliver the
package to the general use repository or package archive.

The following command signs the package using the hash value of the package manifest. You
can also specify your own signature key and certificate. See Chapter 9, “Signing IPS Packages”
for more information. Notice that the time stamp of the package is not changed.

$ pkgsign -s my-repository -a sha256 '*'

Signed pkg://mypublisher/mypkg@1.0,5.11-0:20130720T005452Z

Test the Package

The final step in package development is to install the package to test whether the published
package has been packaged properly.

Chapter 2 • Packaging Software With IPS 53

Creating and Publishing a Package

To test installation without requiring root privilege, assign the test user the Software Installation
profile. Use the -P option of the usermod command to assign the test user the Software
Installation profile.

Note - If this image has child images (non-global zones) installed, you cannot use the -g option
with the pkg install command to test installation of this package. You must configure the
mypublisher publisher in the image.

The following pkg set-publisher command adds all publishers in the my-repository
repository to the list of publishers configured in this image:

$ pkg publisher

PUBLISHER TYPE STATUS P LOCATION

solaris origin online F http://pkg.oracle.com/solaris/release/

$ pkg set-publisher -p my-repository

pkg set-publisher:

 Added publisher(s): mypublisher

$ pkg publisher

PUBLISHER TYPE STATUS P LOCATION

solaris origin online F http://pkg.oracle.com/solaris/release/

mypublisher origin online F file:///home/username/my-repository/

Use the -nv options with the pkg install command to see what the install command will
do without making any changes to the image. The following command actually installs the
package:

$ pkg install mypkg

 Packages to install: 1

 Create boot environment: No

Create backup boot environment: No

 Services to change: 1

DOWNLOAD PKGS FILES XFER (MB) SPEED

Completed 1/1 3/3 0.0/0.0 787k/s

PHASE ITEMS

Installing new actions 16/16

Updating package state database Done

Updating image state Done

Creating fast lookup database Done

Reading search index Done

Updating search index 1/1

Examine the software that was delivered on the system:

$ find /opt/mysoftware

54 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

Creating and Publishing a Package

/opt/mysoftware

/opt/mysoftware/bin

/opt/mysoftware/bin/mycmd

/opt/mysoftware/lib

/opt/mysoftware/lib/mylib.so.1

/opt/mysoftware/man

/opt/mysoftware/man/man1

/opt/mysoftware/man/man1/mycmd.1

/opt/mysoftware/man/man-index

/opt/mysoftware/man/man-index/term.dic

/opt/mysoftware/man/man-index/term.req

/opt/mysoftware/man/man-index/term.pos

/opt/mysoftware/man/man-index/term.exp

/opt/mysoftware/man/man-index/term.doc

/opt/mysoftware/man/man-index/.index-cache

/opt/mysoftware/man/man-index/term.idx

In addition to the binaries and man page, the system has also generated the man page indexes as
a result of the actuator restarting the man-index service.

The pkg info command shows the metadata that was added to the package:

$ pkg info mypkg

 Name: mypkg

 Summary: This is an example package

 Description: This is a full description of all the interesting attributes of

 this example package.

 Category: Applications/Accessories

 State: Installed

 Publisher: mypublisher

 Version: 1.0

 Build Release: 5.11

 Branch: 0

Packaging Date: July 20, 2013 00:54:52 AM

 Size: 12.95 kB

 FMRI: pkg://mypublisher/mypkg@1.0,5.11-0:20130720T005452Z

The pkg search command returns hits when querying for files that are delivered by mypkg:

$ pkg search -l mycmd

INDEX ACTION VALUE PACKAGE

basename file opt/mysoftware/bin/mycmd pkg:/mypkg@1.0-0

Deliver the Package

IPS provides three different ways to deliver a package so that users can install the package:

Chapter 2 • Packaging Software With IPS 55

Creating and Publishing a Package

Local file-based repository

Users access this repository over the local network. The publisher origin is the path to the
repository, such as /net/host1/export/ipsrepo.

Remote HTTP-based repository

Users access this repository over HTTP or HTTPS. The publisher origin is an address such
as http://pkg.example.com/.

Package archive

A package archive is a standalone file. The publisher origin is the path to the archive file,
such as /net/host1/export/ipsarchive.p5p.

In each of these cases, the package was already published using the pkgsend publish
command as described in “Publish the Package” on page 52. Use the pkgrecv command
to retrieve the package to an existing repository or package archive for general use. See the
pkgrecv(1) man page for more information. See Copying and Creating Package Repositories
in Oracle Solaris 11.3 for information about how to create and maintain a repository for general
use.

Deliver to a Package Repository

The following example shows how to deliver the new package from the test repository to a local
file repository that has been set up for general use. The get and send sizes are zero because the
package in this example is small.

$ pkgrecv -s my-repository -d /net/host1/export/ipsrepo mypkg

Processing packages for publisher mypublisher ...

Retrieving and evaluating 1 package(s)...

PROCESS ITEMS GET (MB) SEND (MB)

Completed 1/1 0.0/0.0 0.0/0.0

Verify the presence of the package in the new repository:

$ pkgrepo info -s /net/host1/export/ipsrepo

PUBLISHER PACKAGES STATUS UPDATED

solaris 4455 online 2013-07-09T23:41:24.312974Z

mypublisher 1 online 2013-07-22T20:57:36.951042Z

$ pkgrepo list -p mypublisher -s /net/host1/export/ipsrepo

PUBLISHER NAME O VERSION

mypublisher mypkg 1.0,5.11-0:20130720T005452Z

Use the same pkgrecv command to deliver the package to an HTTP or HTTPS repository.
In this case, specify the value of the pkg/inst_root property of the appropriate pkg/

56 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pkgrecv-1
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=CCOSP
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=CCOSP

Creating and Publishing a Package

server service instance as the -d argument. This repository is served to users by the svc:/
application/pkg/server service, which runs pkg.depotd. See the pkg.depotd(1M) man page
for more information.

If this image has no child images (non-global zones), users can use the -g option to install
the new package, as shown in the following command. The -g option adds the mypublisher
publisher to the list of publishers configured in this image.

$ pkg install -g /net/host1/export/ipsrepo mypkg

If this image does have child images, users must configure the mypublisher publisher in the
image, as shown in the following command.

$ pkg set-publisher -p /net/host1/export/ipsrepo

Deliver as a Package Archive File

A package archive is a standalone file that contains publisher information and one or more
packages provided by that publisher. Delivering packages as a package archive is convenient for
users who cannot access your package repositories. Package archives can be easily downloaded
from a web site, copied to a USB key, or burned to a DVD.

The pkgrecv command can add packages to package archives from package repositories or add
packages to package repositories from package archives. When adding packages to a package
repository from a package archive, note that a package archive does not contain repository
configuration such as a default publisher prefix. Most pkgrepo subcommands do not work with
package archives. The pkgrepo list command works with package archives.

The following command creates a package archive of the mypkg package. Because this archive
does not yet exist, you must specify the -a option. By convention, package archives have the
file extension .p5p.

$ pkgrecv -s my-repository -a -d myarchive.p5p mypkg

Retrieving packages for publisher mypublisher ...

Retrieving and evaluating 1 package(s)...

DOWNLOAD PKGS FILES XFER (MB) SPEED

Completed 1/1 3/3 0.0/0.0 782k/s

ARCHIVE FILES STORE (MB)

myarchive.p5p 14/14 0.0/0.0

If this image has no child images (non-global zones), users can use the -g option to install
the new package, as shown in the following command. The -g option adds the mypublisher
publisher to the list of publishers configured in this image.

Chapter 2 • Packaging Software With IPS 57

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1Mpkg.depotd-1m

Converting SVR4 Packages To IPS Packages

$ pkg install -g myarchive.p5p mypkg

If this image does have child images, users must configure the mypublisher publisher in the
image, as shown in the following command.

$ pkg set-publisher -p myarchive.p5p

Package archives can be set as sources of local publishers in non-global zones.

Using Package Repositories and Archives

Use the pkgrepo command to list the newest available packages from a repository or archive:

$ pkgrepo list -s my-repository '*@latest'

PUBLISHER NAME O VERSION

mypublisher mypkg 1.0,5.11-0:20130720T005452Z

$ pkgrepo list -s myarchive.p5p '*@latest'

PUBLISHER NAME O VERSION

mypublisher mypkg 1.0,5.11-0:20130720T005452Z

This output can be useful for constructing scripts to create archives with the latest versions of
all packages from a given repository.

Converting SVR4 Packages To IPS Packages

This section shows an example of converting a SVR4 package to an IPS package and highlights
areas that might need special attention.

To convert a SVR4 package to an IPS package, follow the same steps described in above in this
chapter for packaging any software in IPS. Most of these steps are the same for conversion from
SVR4 to IPS packages and are not explained again in this section. This section describes the
steps that are different when converting a package rather than creating a new package.

Generate an IPS Package Manifest from a SVR4
Package

The source argument of the pkgsend generate command can be a SVR4 package. See the
pkgsend(1) man page for a complete list of supported sources. When source is a SVR4 package,
pkgsend generate uses the pkgmap(4) file in that SVR4 package, rather than the directory
inside the package that contains the files delivered.

58 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pkgsend-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN4pkgmap-4

Converting SVR4 Packages To IPS Packages

While scanning the prototype file, the pkgsend utility also looks for entries that could cause
problems when converting the package to IPS. The pkgsend utility reports those problems and
prints the generated manifest.

The example SVR4 package used in this section has the following pkginfo(4) file:

VENDOR=My Software Inc.

HOTLINE=Please contact your local service provider

PKG=MSFTmypkg

ARCH=i386

DESC=A sample SVR4 package of My Sample Package

CATEGORY=system

NAME=My Sample Package

BASEDIR=/

VERSION=11.11,REV=2011.10.17.14.08

CLASSES=none manpage

PSTAMP=linn20111017132525

MSFT_DATA=Some extra package metadata

The example SVR4 package used in this section has the following corresponding prototype(4)
file:

i pkginfo

i copyright

i postinstall

d none opt 0755 root bin

d none opt/mysoftware 0755 root bin

d none opt/mysoftware/lib 0755 root bin

f none opt/mysoftware/lib/mylib.so.1 0644 root bin

d none opt/mysoftware/bin 0755 root bin

f none opt/mysoftware/bin/mycmd 0755 root bin

d none opt/mysoftware/man 0755 root bin

d none opt/mysoftware/man/man1 0755 root bin

f none opt/mysoftware/man/man1/mycmd.1 0644 root bin

Running the pkgsend generate command on the SVR4 package built using these files
generates the following IPS manifest:

$ pkgsend generate ./MSFTmypkg | pkgfmt

pkgsend generate: ERROR: script present in MSFTmypkg: postinstall

set name=pkg.summary value="My Sample Package"

set name=pkg.description value="A sample SVR4 package of My Sample Package"

set name=pkg.send.convert.msft-data value="Some extra package metadata"

dir path=opt owner=root group=bin mode=0755

dir path=opt/mysoftware owner=root group=bin mode=0755

dir path=opt/mysoftware/bin owner=root group=bin mode=0755

file reloc/opt/mysoftware/bin/mycmd path=opt/mysoftware/bin/mycmd owner=root \

Chapter 2 • Packaging Software With IPS 59

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN4pkginfo-4
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN4prototype-4

Converting SVR4 Packages To IPS Packages

 group=bin mode=0755

dir path=opt/mysoftware/lib owner=root group=bin mode=0755

file reloc/opt/mysoftware/lib/mylib.so.1 path=opt/mysoftware/lib/mylib.so.1 \

 owner=root group=bin mode=0644

dir path=opt/mysoftware/man owner=root group=bin mode=0755

dir path=opt/mysoftware/man/man1 owner=root group=bin mode=0755

file reloc/opt/mysoftware/man/man1/mycmd.1 \

 path=opt/mysoftware/man/man1/mycmd.1 owner=root group=bin mode=0644

legacy pkg=MSFTmypkg arch=i386 category=system \

 desc="A sample SVR4 package of My Sample Package" \

 hotline="Please contact your local service provider" \

 name="My Sample Package" vendor="My Software Inc." \

 version=11.11,REV=2011.10.17.14.08

license install/copyright license=MSFTmypkg.copyright

Note the following points regarding the pkgsend generate output:

■ The pkg.summary and pkg.description attributes were automatically created from data in
the pkginfo file.

■ A set action was generated from the extra parameter in the pkginfo file. This set action is
set beneath the pkg.send.convert.* namespace. Use pkgmogrify(1) transforms to convert
such attributes to more appropriate attribute names.

■ A legacy action was generated from data in the pkginfo file.
■ A license action was generated that points to the copyright file used in the SVR4 package.
■ An error message was emitted regarding a scripting operation that cannot be converted.

The following check shows the error message and the non-zero return code from pkgsend
generate:

$ pkgsend generate MSFTmypkg > /dev/null

pkgsend generate: ERROR: script present in MSFTmypkg: postinstall

$ echo $?

1

The SVR4 package is using a postinstall script that cannot be converted directly to an IPS
equivalent. The script must be manually inspected.

The postinstall script in the package has the following content:

#!/usr/bin/sh

catman -M /opt/mysoftware/man

You can achieve the same results as this script by using a restart_fmri actuator that points to
an existing SMF service, svc:/application/man-index:default, as described in “Add Any
Facets or Actuators That Are Needed” on page 49. See Chapter 7, “Automating System
Change as Part of Package Installation” for a thorough discussion of actuators.

60 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pkgmogrify-1

Converting SVR4 Packages To IPS Packages

The pkgsend generate command also checks for the presence of class-action scripts and
produces error messages that indicate which scripts should be examined.

In any conversion of a SVR4 package to an IPS package, the needed functionality probably
can be implemented by using an existing action type or SMF service. See “Package Content:
Actions” on page 24 for details about available action types. See Chapter 7, “Automating
System Change as Part of Package Installation” for information about SMF and package
actions.

Adding package metadata and resolving dependencies are done in the same way as described
in “Creating and Publishing a Package” on page 42 and therefore are not discussed in this
section. The next package creation step that might present unique issues for converted packages
is the verification step.

Verify the Converted Package

A common source of errors when converting SVR4 packages is mismatched attributes between
directories delivered in the SVR4 package and the same directories delivered by IPS packages.

In the SVR4 package in this example, the directory action for /opt in the sample manifest has
different attributes than the attributes defined for this directory by the system packages.

The “Directory Actions” on page 30 section stated that all reference-counted actions must have
the same attributes. When trying to install the version of mypkg that has been generated so far,
the following error occurs:

$ pkg install mypkg

Creating Plan /

pkg install: The requested change to the system attempts to install multiple actions

for dir 'opt' with conflicting attributes:

 1 package delivers 'dir group=bin mode=0755 owner=root path=opt':

 pkg://mypublisher/mypkg@1.0,5.11-0:20111017T020042Z

 1 package delivers 'dir group=sys mode=0755 owner=root path=opt':

 pkg://solaris/system/core-os@0.5.11,5.11-0.175.3.13.0.3.0:20160926T221733Z

These packages may not be installed together. Any non-conflicting set may

be, or the packages must be corrected before they can be installed.

To catch the error before publishing the package, rather than at install time, use the pkglint(1)
command with a reference repository, as shown in the following example:

$ pkglint -c ./cache -r file:///scratch/solaris-repo ./mypkg.mf.res

Lint engine setup...

Chapter 2 • Packaging Software With IPS 61

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pkglint-1

Converting SVR4 Packages To IPS Packages

PHASE ITEMS

4 4292/4292

Starting lint run...

ERROR pkglint.dupaction007 path opt is reference-counted but has different

 attributes across 5

duplicates: group: bin -> mypkg group: sys -> developer/build/onbld system/core-os

 system/ldoms/ldomsmanager

Notice the error message about path opt having different attributes in different packages.

The extra ldomsmanager package that pkglint reports is in the reference package repository,
but is not installed on the test system. The ldomsmanager package is not listed in the error
reported previously by pkg install because that package is not installed.

Other Package Conversion Considerations

While it is possible to install SVR4 packages directly on an Oracle Solaris 11 system, you
should create IPS packages instead. Installing SVR4 packages is an interim solution.

Apart from the legacy action described in “Legacy Actions” on page 37, no links exist between
the two packaging systems, and SVR4 and IPS packages do not reference package metadata
from each other.

IPS has commands such as pkg verify that can determine whether packaged content has been
installed correctly. However, errors can result if another packaging system legitimately installs
packages or runs install scripts that modify directories or files installed by IPS packages.

The IPS pkg fix and pkg revert commands can overwrite files delivered by SVR4 packages
as well as by IPS packages, potentially causing the packaged applications to malfunction.

Commands such as pkg install, which normally check for duplicate actions and common
attributes on reference-counted actions, might fail to detect potential errors when files from a
different packaging system conflict.

With these potential errors in mind, and given the comprehensive package development tool
chain in IPS, developing IPS packages instead of SVR4 packages is recommended for Oracle
Solaris 11.

62 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

 3 ♦ ♦ ♦ C H A P T E R 3

Installing, Removing, and Updating Software
Packages

This chapter describes how the IPS pkg client works internally when installing, updating, and
removing the software installed in an image.

Understanding how pkg performs these operations is important for understanding the various
errors that can occur and for more quickly resolving package dependency problems.

How Package Changes Are Performed

The following steps are executed when pkg is invoked to modify the software installed in the
image:

■ Check the input for errors
■ Determine the system end-state
■ Run basic checks
■ Run the solver
■ Optimize the solver results
■ Evaluate actions
■ Download content
■ Execute actions
■ Process actuators

When executing these steps in the global zone, pkg can also operate on any non-global zones on
the system. For example, pkg ensures that dependencies are correct between the global zone and
non-global zones, and downloads content and executes actions as needed for non-global zones.
Chapter 10, “Handling Non-Global Zones” discusses zones in detail.

Chapter 3 • Installing, Removing, and Updating Software Packages 63

How Package Changes Are Performed

Check Input for Errors
Basic error checking is performed on the options presented on the command line.

Determine the System End State
A description of the desired end state of the system is constructed. In the case of updating all
packages in the image, the desired end state might be something like “all the packages currently
installed, or newer versions of them.” In the case of package removal, the desired end state is
“all the packages currently installed without this one.”

IPS attempts to determine what the user intends this end state to look like. In some cases, IPS
might determine an end state that is not what the user intended, even though that end state does
match what the user requested.

When troubleshooting, it is best to be as specific as possible. The following command is not
specific:

$ pkg update

If this command fails with a message such as “No updates available for this image,” then you
might want to try a more specific command such as the following command:

$ pkg update "*@latest"

This command defines the end state more precisely, and can produce more directed error
messages.

Run Basic Checks
The desired end state of the system is reviewed to make sure that a solution is possible. During
this basic review, pkg checks that a plausible version exists of all dependencies, and that desired
packages do not exclude each other.

If an obvious error exists, then pkg prints an appropriate error message and exits.

Run the Solver
The solver forms the core of the computation engine used by pkg(5) to determine the packages
that can be installed, updated, or removed, given the constraints in the image and constraints
introduced by any new packages for installation.

64 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN5pkg-5

How Package Changes Are Performed

This problem is an example of a Boolean satisfiability problem, and can be solved by a SAT
solver.

The various possible choices for all the packages are assigned Boolean variables, and all the
dependencies between those packages, any required packages, and so on, are cast as Boolean
expressions in conjunctive normal form.

The set of expressions generated is passed to MiniSAT. If MiniSAT cannot find any solution,
the error handling code attempts to walk the set of installed packages and the attempted
operation and print the reasons that each possible choice was eliminated.

If the currently installed set of packages meets the requirements but no other set does, pkg
reports that there is nothing to do.

As mentioned previously, the error message generation and specificity is determined by the
inputs to pkg. Being as specific as possible in commands issued to pkg produces the most useful
error messages.

If MiniSAT finds a possible solution, the optimization phase begins.

Optimize the Solver Results

The optimization phase is necessary because there is no way to describe some solutions as more
desirable than others to a SAT solver. Instead, once a solution is found, IPS adds constraints to
the problem to separate less desirable choices, and to separate the current solution as well. IPS
then repeatedly invokes MiniSAT and repeats the above operation until no more solutions are
found. The last successful solution is taken as the best one.

The difficulty of finding a solution is proportional to the number of possible solutions. Being
more specific about the desired result produces solutions more quickly.

Once the set of package FMRIs that best satisfy the posed problem is found, the evaluation
phase begins.

Evaluate Actions

In the evaluation phase, IPS compares the packages currently installed on the system with the
end state, and compares package manifests of old and new packages to determine three lists:

■ Actions that are being removed.
■ Actions that are being added.

Chapter 3 • Installing, Removing, and Updating Software Packages 65

http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
http://minisat.se

How Package Changes Are Performed

■ Actions that are being updated.

The action lists are then updated in the following ways:

■ Directory and link actions are reference counted, and mediated link processing is done.
■ Hard links are marked for repair if their target file is updated. This is done because updating

a target of a hard link in a manner that is safe for currently executing processes breaks the
hard links.

■ Editable files moving between packages are correctly handled so that any user edits are not
lost.

■ Action lists are sorted so that removals, additions, and updates occur in the correct order.

All currently installed packages are then cross-checked to make sure that no packages conflict.
Example conflicts include two packages that deliver a file to the same location, or two packages
that deliver the same directory with different directory attributes.

If conflicts exist, the conflicts are reported and pkg exits with an error message.

Finally, the action lists are scanned to determine whether any SMF services need to be restarted
if this operation is performed, whether this change can be applied to a running system, whether
the boot archive needs to be rebuilt, and whether the amount of space required is available.

Download Content

If pkg is running without the -n flag, processing continues to the download phase.

For each action that requires content, IPS downloads any required files by hash and caches
them. This step can take some time if the amount of content to be retrieved is large.

Once downloading is complete, if the change is to be applied to a live system (the image is
rooted at /), and a reboot is required, the running system is cloned and the target image is
switched to the clone.

Execute Actions

Executing actions involves actually performing the install or remove methods specific to each
action type on the image.

Execution begins with all the removal actions being executed. If any unexpected content is
found in directories being removed from the system, that content is placed in /var/pkg/lost
+found.

66 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

How Package Changes Are Performed

Execution then proceeds to install and update actions. Note that all the actions have been
blended across all packages. Thus all the changes in a single package operation are applied
to the system at once rather than package by package. This permits packages to depend
on each other and exchange content safely. For details on how files are updated, see “File
Actions” on page 25.

Process Actuators

If the changes are being applied to a live system, any pending actuators are executed at this
point. These are typically SMF service restarts and refreshes. Once these are launched, IPS
updates the local search indexes. Actuators are discussed in detail in Chapter 7, “Automating
System Change as Part of Package Installation”.

Update Boot Archive

If necessary, the boot archive is updated.

Chapter 3 • Installing, Removing, and Updating Software Packages 67

68 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

 4 ♦ ♦ ♦ C H A P T E R 4

Specifying Package Dependencies

Dependencies define how packages are related. This chapter describes:

■ Types of package dependencies. Dependency types were introduced in “Depend
Actions” on page 34. This chapter provides more detail.

■ How each dependency type can be used to control software installation. How to use
dependencies and freezing to construct working software systems.

Dependency Types

In IPS, a package cannot be installed unless all package dependencies are satisfied. IPS allows
packages to be mutually dependent (to have circular dependencies). IPS also allows packages to
have different kinds of dependencies on the same package at the same time.

Each section in this chapter contains an example depend action as it would appear in a manifest
during package creation. Note that dependency specifications do not include the publisher
name. See “Avoiding Conflicting Package Content” on page 97 for a discussion of possible
conflicts.

require Dependency

The most basic type of dependency is the require dependency. These dependencies are
typically used to express functional dependencies such as libraries, or interpreters such as
Python or Perl.

If a package pkg-a@1.0 contains a require dependency on package pkg-b@2, then if pkg-a@1.0
is installed, the pkg-b package at version 2 or higher must also be installed. This acceptance
of higher versioned packages reflects the implicit expectation of binary compatibility in newer
versions of existing packages.

Chapter 4 • Specifying Package Dependencies 69

Dependency Types

If any version of the package named in the depend action is acceptable, you can omit the
version portion of the specified FMRI.

An example require dependency is:

depend fmri=pkg:/system/library type=require

require-any Dependency

The require-any dependency is used if any one of multiple target packages as specified by
multiple fmri attributes can satisfy the dependency. IPS chooses one of the packages to install if
the dependency is not already satisfied.

For example, you could use a require-any dependency to ensure that at least one version of
Perl is installed on the system. The versioning is handled in the same manner as for the require
dependency.

The order in which packages are listed in a require-any dependency has no effect on which
package will be selected to satisfy the dependency. For example, the first package listed is not
preferred over any other. The exception is that a package that is already installed and that will
not be removed by some other part of the pkg operation is preferred over any package that is not
already installed.

An example require-any dependency is:

depend type=require-any fmri=pkg:/editor/gnu-emacs/gnu-emacs-gtk \

 fmri=pkg:/editor/gnu-emacs/gnu-emacs-no-x11 \

 fmri=pkg:/editor/gnu-emacs/gnu-emacs-x11

optional Dependency

The optional dependency specifies that if the given package is installed, it must be at the given
version or greater.

This type of dependency is typically used to handle cases where packages transfer content. In
this case, each version of the package post-transfer would contain an optional dependency
on the post-transfer version of the other package, so that it would be impossible to install
incompatible versions of the two packages. Omitting the version on an optional dependency
makes the dependency meaningless, but is permitted.

An example optional dependency is:

70 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

Dependency Types

depend fmri=pkg:/x11/server/xorg@1.9.99 type=optional

conditional Dependency

The conditional dependency has a predicate attribute and an fmri attribute. If the package
specified in the value of the predicate attribute is present on the system at the specified
or greater version, the conditional dependency is treated as a require dependency on the
package in the fmri attribute. If the package specified in the predicate attribute is not present
on the system or is present at a lower version, the conditional dependency is ignored.

The conditional dependency is most often used to install optional extensions to a package if
the requisite base packages are present on the system.

For example, an editor package that has both X11 and terminal versions might place the X11
version in a separate package, and include a conditional dependency on the X11 version from
the text version with the existence of the requisite X client library package as the predicate.

In the following example conditional dependency, package version numbers are not needed
because the named packages are already sufficiently version constrained:

depend fmri=library/python/pycurl-27 predicate=runtime/python-27 type=conditional

group Dependency

The group dependency is used to construct groups of packages.

The group dependency ignores the version specified. Any version of the named package
satisfies this dependency.

The named package is required unless the package has been the object of one of the following
operations:

■ The package has been placed on the avoid list. See the pkg(1) man page for information
about the avoid list.

■ No packages that match the fmri value are known.
■ The package has been rejected with pkg install --reject.
■ The package has been uninstalled with pkg uninstall.

These three options enable administrators to deselect packages that are the subject of a group
dependency. If any of these three options has been used, IPS will not reinstall the package

Chapter 4 • Specifying Package Dependencies 71

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pkg-1

Dependency Types

during an update unless the package was subsequently required by another dependency. If the
new dependency is removed by another subsequent operation, then the package is uninstalled
again.

Obsolete packages silently satisfy the group dependency, effectively ignoring the dependency.

A good example of how to use these dependencies is to construct packages containing group
dependencies on packages that are needed for typical uses of a system. Some examples
might be solaris-large-server, solaris-desktop, or developer-gnu. “Oracle Solaris
Group Packages” on page 148 shows a set of Oracle Solaris packages that deliver group
dependencies.

Installing group packages provides confidence that over subsequent updates to newer versions
of the OS, the appropriate packages will be added to the system.

An example group dependency is:

depend fmri=package/pkg type=group

group-any Dependency

The group-any dependency is used if any one of multiple target packages as specified by
multiple fmri attributes can satisfy the dependency. IPS chooses one of the packages to install
if the dependency is not already satisfied. The same rules apply to a group-any dependency that
apply to a group dependency with the exception that non-obsolete package stems are preferred
over obsolete package stems.

The order in which packages are listed in a group-any dependency has no effect on which
package will be selected to satisfy the dependency. For example, the first package listed is not
preferred over any other. The following selection preferences exist:

■ A package that is already installed and that will not be removed by some other part of the
pkg operation is preferred over any package that is not already installed.

■ If some of the target packages are avoided, another target will be used to satisfy the
dependency. If all target packages are avoided, the dependency is ignored.

■ If some of the target packages are obsolete, another target will be used to satisfy the
dependency. If all target packages are obsolete, the dependency is ignored.

An example group dependency is:

depend type=group-any \

 fmri=runtime/python-26 \

72 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

Dependency Types

 fmri=runtime/python-27

origin Dependency

The origin dependency exists to resolve upgrade issues that require intermediate transitions.
The default behavior is to specify the minimum version of a package (if installed) that must
be present on the image being updated. If the value of the root-image attribute is true, the
package must be present on the image rooted at / in order to install this package.

For example, a typical use might be a database package version 5 that supports upgrade from
version 3 or greater, but not earlier versions. In this case, version 5 would have an origin
dependency on itself at version 3. Thus, if version 5 was being freshly installed, installation
would proceed. However, if version 1 of the package was installed, the package could not be
upgraded directly to version 5. In this case, pkg update database-package would not select
version 5 but instead would select version 3 as the latest possible version to which to upgrade.

If the value of the root-image attribute is true, the dependency target must be at the specified
version or greater if it is present in the running system, rather than on the image being updated.
This form of the origin dependency is generally used for operating system issues such as
dependencies on boot block installers.

An example origin dependency is:

depend fmri=pkg:/database/mydb@3.0 type=origin

Device Driver with Manually Maintained Firmware

Device drivers should manage their own firmware: Firmware should be delivered in the driver
package and should be updated when the administrator uses the pkg update command to
update the driver. See “Firmware Compatibility” in Writing Device Drivers for Oracle Solaris
11.2 for driver design information. Drivers also should continue to function with downrev
firmware, even if some new features might not be supported.

A few drivers require manual intervention to update the device firmware, separate from running
pkg update to update the driver. A few of these drivers with manually maintained firmware are
not compatible with all older versions of the firmware and have a minimum version requirement
for the firmware. The origin dependency can be used to prevent installation of a driver that is
not compatible with the currently installed firmware, which can prevent a system upgrade that
results in a system that is not fully functioning.

The origin dependency can be used to specify the minimum version of the device firmware
that is compatible with the version of the driver that is being delivered. If the value of the root-

Chapter 4 • Specifying Package Dependencies 73

http://www.oracle.com/pls/topic/lookup?ctx=E36784-01&id=DRIVERgnezx
http://www.oracle.com/pls/topic/lookup?ctx=E36784-01&id=DRIVERgnezx

Dependency Types

image attribute is true and the value of the fmri attribute starts with pkg:/feature/firmware/,
the remainder of the fmri value is treated as a command in /usr/lib/fwenum that evaluates the
firmware dependency. When an administrator attempts to update a package that specifies this
type of dependency and the firmware enumerator determines that the firmware dependency is
not satisfied, an error message is displayed and the update is not performed: the system is not
changed. The error message shows the firmware version that is required for devices managed
by this driver. Once the firmware has been updated, the administrator can attempt the pkg
update again.

The following is an example of an origin dependency with a minimum firmware version
requirement:

depend fmri=pkg:/feature/firmware/mpt_sas minimum-version=1.0.0.0 \

root-image=true type=origin variant.opensolaris.zone=global

The pkg client invokes the firmware enumerator as shown in the following example:

/usr/lib/fwenum/mpt_sas minimum-version=1.0.0.0

The following sample message from the pkg client tells the administrator that two devices that
are managed by the mpt_sas driver have firmware whose version does not satisfy the minimum
requirement. The message also states that minimum required firmware version.

There are 2 instances of downrev firmware for the mpt_sas devices present on this

 system;

upgrade each to version 1.0.0.0 or greater to permit installation of this version of

 Solaris.

If a driver supports the same device from multiple vendors, the dependency can specify a
vendor attribute in addition to the minimum-version attribute.

incorporate Dependency

The incorporate dependency specifies that if the given package is installed, it must be at
the given version, to the given version accuracy. For example, if the dependent FMRI has a
version of 1.4.3, then no version less than 1.4.3 or greater than or equal to 1.4.4 satisfies the
dependency. Version 1.4.3.7 does satisfy this example dependency.

The common way to use incorporate dependencies is to put many of them in the same
package to define a surface in the package version space that is compatible. Packages that
contain such sets of incorporate dependencies are often called constraint packages. Constraint
packages are typically used to define sets of software packages that are built together and are
not separately versioned. The incorporate dependency is heavily used in Oracle Solaris to
ensure that compatible versions of software are installed together.

74 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

Dependency Types

An example incorporate dependency is:

depend type=incorporate \

 fmri=pkg:/driver/network/ethernet/e1000g@0.5.11,5.11-0.175.0.0.0.2.1

parent Dependency

The parent dependency is used for zones or other child images. In this case, the dependency
is only checked in the child image, and specifies a package and version that must be present
in the parent image or global zone. The version specified must match to the level of precision
specified.

For example, if the parent dependency is on A@2.1, then any version of A beginning with 2.1
matches. This dependency is often used to require that packages are kept in sync between non-
global zones and the global zone. As a shortcut, the special package name feature/package/
dependency/self is used as a synonym for the exact version of the package that contains this
dependency.

The parent dependency is used to keep key operating system components, such as libc.so.1,
installed in the non-global zone synchronized with the kernel installed in the global zone. The
parent dependency is also discussed in Chapter 10, “Handling Non-Global Zones”.

An example parent dependency is:

depend type=parent fmri=feature/package/dependency/self \

 variant.opensolaris.zone=nonglobal

exclude Dependency

The package that contains the exclude dependency cannot be installed if the dependent package
is installed in the image at the specified version level or greater.

If the version is omitted from the FMRI of an exclude dependency, then no version of the
excluded package can be installed concurrently with the package specifying the dependency.

The exclude dependency is seldom used. These constraints can be frustrating to administrators,
and should be avoided where possible.

An example exclude dependency is:

depend fmri=pkg:/x11/server/xorg@1.10.99 type=exclude

Chapter 4 • Specifying Package Dependencies 75

Constraints and Freezing

Constraints and Freezing

By carefully using the dependency types described above, you can constrain how your packages
are allowed to be upgraded.

■ The incorporate dependency enables you to define a supported software surface that
updates together.

■ Freezing enables an administrator to keep the surface or other software at a particular
version.

■ Version lock facets enable an administrator to disable version constraints on some
components of a surface.

Constraining Installable Package Versions

Typically, you want a set of packages installed on a system to be supported and upgraded
together: Either all packages in the set are updated, or none of the packages in the set is
updated. To treat packages as a set in this way, use the incorporate dependency.

“Installing a Custom Constraint Package” in Adding and Updating Software in Oracle Solaris
11.3 shows an example of creating a custom package to constrain the version of the pkg:/
entire constraint package that can be installed. The remainder of this section is a more general
discussion of constraint packages.

The following three partial package manifests show the relationship between the pkg-a and
pkg-b packages and the myincorp constraint package.

The following excerpt is from the pkg-a package manifest:

set name=pkg.fmri value=pkg-a@1.0

dir path=opt/tool-a owner=root group=bin mode=0755

depend fmri=myincorp type=require

The following excerpt is from the pkg-b package manifest:

set name=pkg.fmri value=pkg-b@1.0

dir path=opt/tool-b owner=root group=bin mode=0755

depend fmri=myincorp type=require

The following excerpt is from the myincorp package manifest:

set name=pkg.fmri value=myincorp@1.0

depend fmri=pkg-a@1.0 type=incorporate

depend fmri=pkg-b@1.0 type=incorporate

76 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=AUOSScustinc
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=AUOSScustinc

Constraints and Freezing

The pkg-a and pkg-b packages both have a require dependency on the myincorp constraint
package. The myincorp package has incorporate dependencies that constrain the pkg-a and
pkg-b packages in the following ways:

■ The pkg-a and pkg-b packages can be upgraded to at most version 1.0: to the level of
granularity defined by the version number specified in the dependency.

■ If the pkg-a and pkg-b packages are installed, they must be at least at version 1.0 or greater.

The incorporate dependency on version 1.0 allows version 1.0.1 or 1.0.2.1, for example, but
does not allow version 1.1, 2.0, or 0.9, for example. When an updated constraint package is
installed that specifies incorporate dependencies at a higher version, the pkg-a and pkg-b
packages are allowed to update to those higher versions.

Because pkg-a and pkg-b both have require dependencies on the myincorp package, the
constraint package is installed if either pkg-a or pkg-b is installed.

Freezing Installable Package Versions

The previous section discussed constraints applied during the package authoring process by
modifying the package manifests. The administrator can also apply constraints to the system at
runtime.

Using the pkg freeze command, the administrator can prevent a given package from being
changed from either its current installed version, including time stamp, or a version specified on
the command line. This capability is effectively the same as an incorporate dependency.

See Adding and Updating Software in Oracle Solaris 11.3 and the pkg(1) man page for more
information about the freeze command.

To apply more complex dependencies to an image, create and install a package that includes
those dependencies.

Enabling Administrators to Relax Constraints on
Installable Package Versions

An administrator might want to disable a dependency version constraint. You can provide
version-lock facet tags to enable administrators to disable those tagged incorporate
dependencies. The administrator can use the pkg change-facet command to set the value of
the corresponding facet image property to false. For general information about facet tags, see
Chapter 5, “Allowing Variations”.

Chapter 4 • Specifying Package Dependencies 77

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=AUOSS

Constraints and Freezing

Continuing the previous example, perhaps pkg-b can function independently of pkg-a, but you
want pkg-a to remain within the series of versions defined by the incorporate dependency
in the constraint package. The myincorp package manifest could contain the following lines,
including a version-lock facet tag on the pkg-b dependency. By convention, version-lock
facet tags are named facet.version-lock.package-name, where package-name is the name
specified in the fmri of that depend action, without the version.

set name=pkg.fmri value=myincorp@1.0

depend fmri=pkg-a@1.0 type=incorporate

depend fmri=pkg-b@1.0 type=incorporate facet.version-lock.pkg-b=true

By default, this constraint package includes the depend action on the pkg-b package,
constraining pkg-b to version 1.0. The following command relaxes this constraint:

$ pkg change-facet version-lock.pkg-b=false

After successful execution of this command, the pkg-b package is free from the version
constraints and can be upgraded to a higher version if necessary.

The following example specifies that this constraint package requires the java-8-
incorporation package to be installed, and requires it at version 1.8.0.92.14-0. However, the
specified facet.version-lock facet enables an administrator to attempt to install a different
version.

depend fmri=consolidation/java-8/java-8-incorporation type=require

depend facet.version-lock.consolidation/java-8/java-8-incorporation=true \

 fmri=consolidation/java-8/java-8-incorporation@1.8.0.92.14-0 type=incorporate

Perhaps a higher version of the java-8-incorporation package would also work with this
constraint package. The administrator can use the pkg change-facet command to set the
version-lock.consolidation/java-8/java-8-incorporation facet property to false and
then try to update the java-8-incorporation package separately from updating the constraint
package.

78 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

 5 ♦ ♦ ♦ C H A P T E R 5

Allowing Variations

This chapter explains how to provide different installation options to the end user. Installation
of mutually exclusive components is controlled by variants, and installation of optional
components is controlled by facets.

Both variants and facets are comprised of the following two components:

■ Tags set on actions in a package manifest
■ A property set on the image

“Controlling Installation of Optional Components” in Adding and Updating Software in Oracle
Solaris 11.3 explains how variants and facets affect installation and how administrators can
change the values of variant and facet properties in the image.

Mutually Exclusive Software Components

Variants appear in the following two places in a package:

■ A set action names the variant and defines the values that apply to this package.
■ Any action that can only be installed for a subset of the variant values named in the set

action has a tag that specifies the name of the variant and the value on which this action is
installed.

One example of a mutually exclusive component is system architecture. Actions can contain
multiple tags for different variant names. For example, a package might include both debug and
nondebug binaries for both SPARC and x86.

A variant has two parts: its name, and the list of possible values. The pkg variant -v
command displays all possible variant values that can be set for installed packages:

$ pkg variant -v

VARIANT VALUE

Chapter 5 • Allowing Variations 79

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=AUOSSglmke
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=AUOSSglmke

Mutually Exclusive Software Components

arch i386

arch sparc

debug.osnet false

debug.osnet true

opensolaris.zone global

opensolaris.zone nonglobal

IPS supports multiple architectures in a single package by specifying different variant tag values
on actions for different architectures. Variant tags are applied to any actions that differ between
architectures. Components that are delivered on both SPARC and x86 receive no variant tag.
For example, a package that delivers the symbolic link /var/ld/64 might include the following
definitions:

set name=variant.arch value=sparc value=i386

dir group=bin mode=0755 owner=root path=var/ld

dir group=bin mode=0755 owner=root path=var/ld/amd64 variant.arch=i386

dir group=bin mode=0755 owner=root path=var/ld/sparcv9 variant.arch=sparc

link path=var/ld/32 target=.

link path=var/ld/64 target=sparcv9 variant.arch=sparc

link path=var/ld/64 target=amd64 variant.arch=i386

Another mutually exclusive component is global or non-global zones. Kernel components
usually are not included in non-global zones. To prevent kernel components from being
installed in a non-global zone, apply the opensolaris.zone variant tag to each of those actions
with the value set to global.

Use pkgmogrify rules to apply variant tags in the manifest during publication. Using the
pkgmogrify command is described in detail in Chapter 6, “Modifying Package Manifests
Programmatically”. Then use pkgmerge to merge packages from SPARC and x86 builds. The
pkgmerge command merges across multiple different variants at the same time if needed. See
the pkgmogrify(1) and pkgmerge(1) man pages for more information.

Unknown variant property values are false in the image by default. Therefore, if you want to
introduce a new variant tag name, the values of that variant can only be true or false. Set the
variant tag on the action to true, and inform administrators to use the pkg change-variant
command to change the value of the variant property in the image to true to install that action.

Variants whose names start with variant.debug. are false in the image by default. You can
provide debug versions of components and tag those components with custom variant.debug.
variant tags.

Note - Variants are set per image. Select a variant name that is unique at the appropriate
resolution for that piece of software.

80 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pkgmogrify-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pkgmerge-1

Optional Software Components

Optional Software Components

Some portions of your software that belong with the main body might be optional, and some
users might not want to install them. Examples include localization files for different locales,
man pages and other documentation, and header files needed only by developers or DTrace
users.

Traditionally, optional content has been delivered in separate packages. Administrators installed
optional content by installing these optional packages. One problem with this solution is that
the administrator must discover optional packages to install by examining lists of available
packages.

IPS uses facets to deliver optional package content. Facets are similar to variants: Each facet
has a name and a value, and actions can contain multiple tags for different facet names.

■ In the image, the default value for all facet properties that start with facet.debug. or
facet.optional. is false. The default value for all other facet properties is true.

■ On a packaged action, the value of a facet tag can be specified as either true or all.

Actions that have a facet tag with a value of all are installed only if every facet on that
action that has a value of all has a value of true in the image.

Actions that have a facet tag with a value of true are installed if any facet on that action that
has a value of true has a value of true in the image.

Use the pkgmogrify command to add facet tags to your package manifests, using regular
expressions to match different types of files. Using the pkgmogrify command is described in
detail in Chapter 6, “Modifying Package Manifests Programmatically”.

To produce a list of facets that are available for you to set on your packaged actions, use the pkg
facet -a command to display the values of all facets that are explicitly set in the image and all
facets that are set in installed packages.

If you introduce a new facet in your software, whether that action will be installed depends on
what name you choose for the facet as well as what other facets are set on that action. If your
new facet is the only facet set on the action, the action will be installed as follows:

■ If you name the facet facet.debug.mysoftware or facet.optional.mycomponent, the
action will be installed only if the user sets the value of the facet image property to true.

■ If you choose any other name for your new facet, the action will be installed unless the user
sets the value of the facet image property to false.

In addition to specifying optional components, you can use facet.version-lock. facet tags to
specify dependency version restrictions as described in “Constraints and Freezing” on page 76.

Chapter 5 • Allowing Variations 81

82 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

 6 ♦ ♦ ♦ C H A P T E R 6

Modifying Package Manifests Programmatically

This chapter explains how package manifests can be programmatically edited to automatically
annotate and check the manifests.

Chapter 2, “Packaging Software With IPS” covers all the techniques that are necessary to
publish a package. This chapter provides additional information that can help you perform the
following tasks:

■ Publish a large package
■ Publish a large number of packages
■ Republish packages over a period of time

Your package might contain many actions that need to be tagged with variants or facets as
discussed in Chapter 5, “Allowing Variations”, or that need to be tagged with service restarts as
discussed in Chapter 7, “Automating System Change as Part of Package Installation”. Rather
than edit package manifests manually or write a script or program to do this work, use the IPS
pkgmogrify utility to transform the package manifests quickly, accurately, and repeatably.

The pkgmogrify utility applies two types of rules:

■ Transform rules modify actions.
■ Include rules cause other files to be processed.

The pkgmogrify utility reads these rules from a file and applies them to the specified package
manifest.

Transform Rules

This section shows an example transform rule and describes the parts of all transform rules.

In Oracle Solaris, files delivering in a subdirectory named kernel are treated as kernel modules
and are tagged as requiring a reboot. The following tag is applied to actions whose path
attribute value includes kernel:

Chapter 6 • Modifying Package Manifests Programmatically 83

Include Rules

reboot-needed=true

To apply this tag, the following rule is specified in the pkgmogrify rule file:

<transform file path=.*kernel/.+ -> default reboot-needed true>

delimiters The rule is enclosed with < and >. The portion of the rule to the left of the
-> is the selection section or matching section. The portion to the right of
the -> is the execution section of the operation.

transform The type of the rule.

file Apply this rule only to file actions. This is called the selection section
of the rule.

path=.*kernel/.+ Transform only file actions with a path attribute that matches the
regular expression path=.*kernel/.+. This is called the matching
section of the rule.

default Add the attribute and value that follow default to any matching action
that does not already have a value set for that attribute.

reboot-needed The attribute being set.

true The value of the attribute being set.

The selection or matching section of a transform rule can restrict by action type and by action
attribute value. See the pkgmogrify man page for detail about how these matching rules work.
Typical uses are for selecting actions that deliver to specified areas of the file system. For
example, in the following rule, operation could be used to ensure that usr/bin and everything
delivered inside usr/bin defaults to the correct user or group.

<transform file dir link hardlink path=usr/bin.* -> operation>

The pkgmogrify(1) man page describes the many operations that pkgmogrify can perform to
add, remove, set, and edit action attributes as well as add and remove entire actions.

Include Rules
Include rules enable transforms to be spread across multiple files and subsets reused by
different manifests. Suppose you need to deliver two packages: A and B. Both packages should
have their source-url set to the same URL, but only package B should have its files in /etc set
to be group=sys.

84 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pkgmogrify-1

Transform Order

The manifest for package A should specify an include rule that pulls in the file with the source-
url transform. The manifest for package B should specify an include rule that pulls in the file
containing the file group setting transform. Finally, an include rule that pulls in the file with
the source-url transform should be added either to either package B or to the file with the
transform that sets the group.

Transform Order
Transforms are applied in the order in which they are encountered in a file. The ordering can be
used to simplify the matching portions of transforms.

Suppose all files delivered in /foo should have a default group of sys, except those files
delivered in /foo/bar, which should have a default group of bin.

You could write a complex regular expression that matches all paths that begin with /foo
except for paths that begin with /foo/bar. Using the ordering of transforms makes this
matching much simpler.

When ordering default transforms, always go from most specific to most general. Otherwise the
latter rules will never be used.

For this example, use the following two rules:

<transform file path=foo/bar/.* -> default group bin>

<transform file path=foo/.* -> default group sys>

Using transforms to add an action using the matching described above would be difficult since
you would need to find a pattern that matched each package delivered once and only once. The
pkgmogrify tool creates synthetic actions to help with this issue. As pkgmogrify processes
manifests, for each manifest that sets the pkg.fmri attribute, a synthetic pkg action is created by
pkgmogrify. You can match against the pkg action as if it were actually in the manifest.

For example, suppose you wanted to add to every package an action containing the web site
example.com, where the source code for the delivered software can be found. The following
transform accomplishes that:

<transform pkg -> emit set info.source-url=http://example.com>

Packaged Transforms
As a convenience to developers, a set of the transforms that were used when packaging the
Oracle Solaris OS are available in the following files in /usr/share/pkg/transforms:

Chapter 6 • Modifying Package Manifests Programmatically 85

Packaged Transforms

developer Sets facet.devel on *.h header files delivered to /usr/.*/include,
archive and lint libraries, pkg-config(1) data files, and autoconf(1)
macros.

documentation Sets a variety of facet.doc.* facets on documentation files.

locale Sets a variety of facet.locale.* facets on files that are locale-specific.

smf-manifests Adds a restart_fmri actuator that points to the svc:/system/
manifest-import:default on any packaged SMF manifests so that the
system will import that manifest after the package is installed.

86 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

 7 ♦ ♦ ♦ C H A P T E R 7

Automating System Change as Part of Package
Installation

This chapter explains how to use the Service Management Facility (SMF) to automatically
handle any necessary system changes that should occur as a result of package installation. See
Managing System Services in Oracle Solaris 11.3 for more information about SMF services.

This chapter describes:

■ How to use service actuators on a package action
■ How to deliver an SMF service in an IPS package
■ How to deliver a first boot service in an IPS package
■ How to deliver an SMF service that assembles multiple files into one file, such as a

configuration file, on package installation

Specifying System Changes on Package Actions

First determine which actions should cause a change to the system when they are installed,
updated, or removed. For example, some system changes are needed to implement the software
self-assembly concept described in “Software Self-Assembly” on page 15.

For each of those package actions, determine which existing SMF service provides the
necessary system change. Alternatively, write a new service that provides the needed
functionality and ensure that service is delivered to the system as described in “Delivering an
SMF Service” on page 89.

When you have determined the set of actions that should cause a change to the system when
they are installed, tag those actions in the package manifest to cause that system change to
occur. The value of a tag that causes system change to occur is called an actuator.

The following actuator tags can be added to any action in a manifest:

Chapter 7 • Automating System Change as Part of Package Installation 87

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=SVSVF

Specifying System Changes on Package Actions

reboot-needed

This actuator takes the value true or false. This actuator declares that update or removal
of the tagged action must be performed in a new boot environment if the package system
is operating on a live image. Creation of a new boot environment is controlled by the be-
policy image property. See the “Image Properties” section in the pkg(1) man page for
more information about the be-policy property.

SMF Actuators

These actuators are related to SMF services.
SMF actuators take a single service FMRI as a value, possibly including globbing
characters to match multiple FMRIs. If the same service FMRI is tagged by multiple
actions, possibly across multiple packages being operated on, IPS only triggers that
actuator once.
The following list of SMF actuators describes the effect on the service FMRI that is
the value of each named actuator. In these descriptions, “uninstalling the package” also
includes moving the file action that delivers the service to a different package.

disable_fmri

Disable (svcadm disable) the specified service prior to uninstalling the package.

refresh_fmri

Refresh (svcadm refresh) the specified service after installing, updating, or
uninstalling the package.

restart_fmri

Restart (svcadm restart) the specified service after installing, updating, or
uninstalling the package.

suspend_fmri

Temporarily disable (svcadm disable -t) the specified service prior to installing the
package, and then enable (svcadm enable) the service after installing the package.

These SMF actuators are not executed in the following cases:
■ When operating on an alternate root (pkg -R /path/to/BE).
■ When recursing from the global zone (pkg subcommand -r).

88 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

Delivering an SMF Service

Delivering an SMF Service

To deliver a new SMF service, create a package that delivers the SMF manifest file and method
script. On the manifest file action, include the following actuator to restart the manifest import
service to re-read all service manifests on the system.

restart_fmri=svc:/system/manifest-import:default

This actuator ensures that when the manifest is added, updated, or removed, the manifest-
import service is restarted, causing the service delivered by that SMF manifest to be added,
updated, or removed.

The following example shows a complete file action with a restart_fmri attribute:

file lib/svc/manifest/network/network-ipmgmt.xml \

 path=lib/svc/manifest/network/network-ipmgmt.xml \

 group=sys mode=0444 owner=root \

 restart_fmri=svc:/system/manifest-import:default

If the package is added to a live system, this action is performed once all packages have been
added to the system during that packaging operation. If the package is added to an alternate
boot environment, this action is performed during the first boot of that boot environment.

If the environment where the package is installed has immutable non-global zones, a reboot is
required to install new directories in the immutable zone. Immutable zones boot as far as the
svc:/milestone/self-assembly-complete:default milestone in read/write mode, before
rebooting read-only. “Delivering a Service that Runs Once” on page 89 shows how to make
your service a dependency of the self-assembly-complete milestone service.

Delivering a Service that Runs Once

This section shows an example of a package that delivers an SMF service that performs a one-
time configuration.

The following package manifest delivers the run-once service:

set name=pkg.fmri value=myapp-run-once@1.0

set name=pkg.summary value="Deliver a service that runs once"

set name=pkg.description \

 value="This example package delivers a service that runs once. The service

is marked with a flag so that it will not run again."

set name=org.opensolaris.smf.fmri value=svc:/site/myapplication-run-once \

 value=svc:/site/myapplication-run-once:default

Chapter 7 • Automating System Change as Part of Package Installation 89

Delivering a Service that Runs Once

set name=variant.arch value=i386

file lib/svc/manifest/site/myapplication-run-once.xml \

 path=lib/svc/manifest/site/myapplication-run-once.xml owner=root group=sys \

mode=0444 restart_fmri=svc:/system/manifest-import:default

file lib/svc/method/myapplication-run-once.sh \

 path=lib/svc/method/myapplication-run-once.sh owner=root group=bin \

 mode=0755

depend fmri=pkg:/shell/ksh93@93.21.0.20110208,5.11-0.175.3.0.0.19.0 type=require

depend fmri=pkg:/system/core-os@0.5.11,5.11-0.175.3.0.0.19.0 type=require

The following script does the configuration work of the service. This method script uses a
property, config/ran, that has been set in the service to ensure that the script runs only once.
The property is set to one value in the service manifest and to another value in the method
script. The comment in the exit call will be displayed by the svcs command.

#!/bin/sh

Load SMF shell support definitions

. /lib/svc/share/smf_include.sh

If nothing to do, exit with temporary disable.

ran=$(/usr/bin/svcprop -p config/ran $SMF_FMRI)

if ["$ran" == "true"] ; then

 smf_method_exit $SMF_EXIT_TEMP_DISABLE done "service ran"

fi

Do the configuration work.

Record that this run-once service has done its work.

svccfg -s $SMF_FMRI setprop config/ran = true

svccfg -s $SMF_FMRI refresh

smf_method_exit $SMF_EXIT_TEMP_DISABLE done "service ran"

The following listing shows the SMF service manifest for this example. Some features of this
manifest are described following the listing.

<?xml version="1.0" ?>

<!DOCTYPE service_bundle SYSTEM '/usr/share/lib/xml/dtd/service_bundle.dtd.1'>

<service_bundle type="manifest" name="myapplication-run-once">

<service

 name='site/myapplication-run-once'

 type='service'

 version='1'>

 <dependency

 name='fs-local'

 grouping='require_all'

 restart_on='none'

90 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

Delivering a Service that Runs Once

 type='service'>

 <service_fmri value='svc:/system/filesystem/local:default' />

 </dependency>

 <dependent

 name='myapplication-run-once-complete'

 grouping='optional_all'

 restart_on='none'>

 <service_fmri value='svc:/milestone/self-assembly-complete' />

 </dependent>

 <instance enabled='true' name='default'>

 <exec_method

 type='method'

 name='start'

 exec='/lib/svc/method/myapplication-run-once.sh'

 timeout_seconds='60'/>

 <exec_method

 type='method'

 name='stop'

 exec=':true'

 timeout_seconds='0'/>

 <property_group name='startd' type='framework'>

 <propval name='duration' type='astring' value='transient' />

 </property_group>

 <property_group name='config' type='application'>

 <propval name='ran' type='boolean' value='false' />

 </property_group>

 </instance>

 <template>

 <common_name>

 <loctext xml:lang='C'>

 Run-once service

 </loctext>

 </common_name>

 <description>

 <loctext xml:lang='C'>

 This service checks and sets a property so that it runs

 only once. This service is a dependency of the

 self-assembly-complete milestone.

 </loctext>

 </description>

 </template>

</service>

</service_bundle>

■ In the dependent element, this service adds itself as a dependency to the self-assembly-
complete system milestone.

■ This service has a startd/duration property set to transient so that svc.startd(1M)
does not track processes for this service.

Chapter 7 • Automating System Change as Part of Package Installation 91

Delivering a Service that Runs Once

■ This service has a config/ran property set to false. The service method sets this property
to true so that the service will run only one time.

■ This service has timeout_seconds set to 60 for the start method. If timeout_seconds is
set to 0, SMF will wait indefinitely for the method script to exit.

Be sure to include a comment in the method script exit and a service name and description in
the service template data to help users understand why this service runs only one time.

Make sure the service manifest is valid:

$ svccfg validate proto/lib/svc/manifest/site/myapplication-run-once.xml

Publish your package as described in “Publish the Package” on page 52.

Run pkg verify before and after installing the package. Compare the output of each run to
ensure that the script does not attempt to modify any files that are not marked as editable.

After you install the package, check the following output:

■ Use the svcs command to show the state of the service. Different options of the svcs
command show additional information. The log file (-L) shows that the service method ran.
Comments and service description explain why the service is disabled.

$ svcs myapplication-run-once

STATE STIME FMRI

disabled 16:10:26 svc:/site/myapplication-run-once:default

$ svcs -x myapplication-run-once

svc:/site/myapplication-run-once:default (Run-once service)

 State: disabled since March 30, 2015 04:10:26 PM PDT

Reason: Temporarily disabled by an administrator.

 See: http://support.oracle.com/msg/SMF-8000-1S

 See: /var/svc/log/site-myapplication-run-once:default.log

Impact: This service is not running.

$ svcs -l myapplication-run-once

fmri svc:/site/myapplication-run-once:default

name Run-once service

enabled false (temporary)

state disabled

next_state none

state_time March 30, 2015 04:10:26 PM PDT

logfile /var/svc/log/site-myapplication-run-once:default.log

restarter svc:/system/svc/restarter:default

manifest /lib/svc/manifest/site/myapplication-run-once.xml

dependency require_all/none svc:/system/filesystem/local:default (online)

$ svcs -xL myapplication-run-once

svc:/site/myapplication-run-once:default (Run-once service)

92 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

Assembling a Custom File from Fragment Files

 State: disabled since March 30, 2015 04:10:26 PM PDT

Reason: Temporarily disabled by an administrator.

 See: http://support.oracle.com/msg/SMF-8000-1S

 See: /var/svc/log/site-myapplication-run-once:default.log

Impact: This service is not running.

 Log:

[2015 Mar 30 16:10:22 Enabled.]

[2015 Mar 30 16:10:22 Rereading configuration.]

[2015 Mar 30 16:10:25 Executing start method ("/lib/svc/method/myapplication-run-

once.sh").]

[2015 Mar 30 16:10:26 Method "start" exited with status 101.]

[2015 Mar 30 16:10:26 "start" method requested temporary disable: "service ran"]

 Use: 'svcs -Lv svc:/site/myapplication-run-once:default' to view the complete log.

■ Use the -d option of the svcs command to show that the myapplication-run-once service
is a dependency of the self-assembly-complete service.

$ svcs -d svc:/milestone/self-assembly-complete:default | grep once

disabled 16:37:20 svc:/site/myapplication-run-once:default

■ Check the value of the property that is being used as a flag to prevent the service from
running again.

$ svcprop -p config/ran myapplication-run-once

true

The following svccfg command shows that the value of the property was set to false in the
service manifest and then later was reset to true.

$ svccfg -s myapplication-run-once:default listprop -l all config/ran

config/ran boolean admin true

config/ran boolean manifest false

If you enable the service, you see that the “Rereading configuration” line is absent from the log
file, and the service exited without re-doing the configuration work.

Assembling a Custom File from Fragment Files

This section shows how to use an IPS package to deliver multiple files and deliver an SMF
service that assembles these multiple files into one file.

The following package manifest delivers the self-assembly service. The isvapp-self-
assembly service assembles the files inc1, inc2, and inc3 in the /opt/isvapp/config.d
directory into the single /opt/isvapp/isvconf file.

Chapter 7 • Automating System Change as Part of Package Installation 93

Assembling a Custom File from Fragment Files

set name=pkg.fmri value=isvappcfg@1.0

set name=pkg.summary value="Deliver isvapp config files and assembly service"

set name=pkg.description \

 value="This example package delivers a directory with fragment configuration

 files and a service to assemble them."

set name=org.opensolaris.smf.fmri value=svc:/site/isvapp-self-assembly \

 value=svc:/site/isvapp-self-assembly:default

set name=variant.arch value=i386

file lib/svc/manifest/site/isvapp-self-assembly.xml \

 path=lib/svc/manifest/site/isvapp-self-assembly.xml owner=root group=sys \

 mode=0444 restart_fmri=svc:/system/manifest-import:default

file lib/svc/method/isvapp-self-assembly.sh \

 path=lib/svc/method/isvapp-self-assembly.sh owner=root group=bin \

 mode=0755

dir path=opt/isvapp owner=root group=bin mode=0755

dir path=opt/isvapp/config.d owner=root group=bin mode=0755

file opt/isvapp/config.d/inc1 path=opt/isvapp/config.d/inc1 owner=root \

 group=bin mode=0644

file opt/isvapp/config.d/inc2 path=opt/isvapp/config.d/inc2 owner=root \

 group=bin mode=0644

file opt/isvapp/config.d/inc3 path=opt/isvapp/config.d/inc3 owner=root \

 group=bin mode=0644

file opt/isvapp/isvconf path=opt/isvapp/isvconf owner=root group=bin mode=0644

depend fmri=pkg:/shell/ksh93@93.21.0.20110208,5.11-0.175.3.0.0.19.0 type=require

depend fmri=pkg:/system/core-os@0.5.11,5.11-0.175.3.0.0.19.0 type=require

If you want to allow other packages to deliver configuration files with these same names, add
overlay and preserve attributes to the files. See “Delivering a File That Is Also Delivered by
Another Package” on page 113 for an example.

To reassemble the configuration file when new fragments of the configuration are installed,
removed, or updated, add restart_fmri or refresh_fmri actuators to the configuration files.
See “Apache Web Server Configuration” on page 17 for an example.

The following script does the configuration assembly for the service. The comment in the exit
call will be displayed by the svcs command.

#!/bin/sh

Load SMF shell support definitions

. /lib/svc/share/smf_include.sh

If files exist in /opt/isvapp/config.d,

and if /opt/isvapp/isvconf exists,

merge all into /opt/isvapp/isvconf

After this script runs, the service does not need to remain online.

smf_method_exit $SMF_EXIT_TEMP_DISABLE done "/opt/isvapp/isvconf assembled"

94 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

Assembling a Custom File from Fragment Files

The following listing shows the SMF service manifest for this example. This manifest was
created by using the svcbundle command and specifies the default dependency on the multi-
user milestone service. You might want to change this dependency section as shown in
“Delivering a Service that Runs Once” on page 89.

<?xml version="1.0" ?>

<!DOCTYPE service_bundle

 SYSTEM '/usr/share/lib/xml/dtd/service_bundle.dtd.1'>

<!--

 Manifest created by svcbundle (2015-Mar-30 13:22:37-0700)

-->

<service_bundle type="manifest" name="site/isvapp-self-assembly">

 <service version="1" type="service" name="site/isvapp-self-assembly">

 <!--

 The following dependency keeps us from starting until the

 multi-user milestone is reached.

 -->

 <dependency restart_on="none" type="service"

 name="multi_user_dependency" grouping="require_all">

 <service_fmri value="svc:/milestone/multi-user"/>

 </dependency>

 <exec_method timeout_seconds="60" type="method" name="start"

 exec="/lib/svc/method/isvapp-self-assembly.sh"/>

 <!--

 The exec attribute below can be changed to a command that SMF

 should execute to stop the service. See smf_method(5) for more

 details.

 -->

 <exec_method timeout_seconds="60" type="method" name="stop"

 exec=":true"/>

 <!--

 The exec attribute below can be changed to a command that SMF

 should execute when the service is refreshed. Services are

 typically refreshed when their properties are changed in the

 SMF repository. See smf_method(5) for more details. It is

 common to retain the value of :true which means that SMF will

 take no action when the service is refreshed. Alternatively,

 you may wish to provide a method to reread the SMF repository

 and act on any configuration changes.

 -->

 <exec_method timeout_seconds="60" type="method" name="refresh"

 exec=":true"/>

 <property_group type="framework" name="startd">

 <propval type="astring" name="duration" value="transient"/>

 </property_group>

 <instance enabled="true" name="default"/>

 <template>

 <common_name>

Chapter 7 • Automating System Change as Part of Package Installation 95

Assembling a Custom File from Fragment Files

 <loctext xml:lang="C">

 ISV app self-assembly

 </loctext>

 </common_name>

 <description>

 <loctext xml:lang="C">

 Assembly of configuration fragment files for ISV app.

 </loctext>

 </description>

 </template>

 </service>

</service_bundle>

Use the svccfg validate command to make sure the service manifest is valid.

After you publish and install the package, the svcs command shows that the isvapp-self-
assembly service is temporarily disabled, and the log file contains the method exit comment
that the file assembly is complete.

In contrast to the example shown in “Delivering a Service that Runs Once” on page 89,
when you enable the isvapp-self-assembly service, the service start script runs again before
the service is again disabled.

96 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

 8 ♦ ♦ ♦ C H A P T E R 8

Advanced Topics For Package Updating

This chapter discusses the following topics:

■ Avoiding conflicting package content
■ Modifying package content
■ Renaming, merging, and splitting packages
■ Obsoleting packages
■ Preserving files that move or that are not packaged
■ Sharing information across boot environments
■ Delivering multiple implementations of an application

Avoiding Conflicting Package Content

In general, packages should not deliver multiple actions with the same path. The following
actions are the only exceptions:

■ Directories, links, and hardlinks that have identical attribute values
■ Mediated links and hardlinks

For the best user experience, avoid installation and update errors by using the pkglint utility to
check for conflicts. See “Verify the Package” on page 51 and the pkglint(1) man page for more
information about pkglint.

When a single package must deliver different versions of the same content to the same path,
use a variant to allow the administrator to choose between the different versions of content to
install. See “Mutually Exclusive Software Components” on page 79 and the pkg(7) man page
for more information.

When multiple packages (not two versions of the same package) must deliver different versions
of the same content to the same path, use a mediated link to enable the administrator to choose

Chapter 8 • Advanced Topics For Package Updating 97

Modifying Package Content

between different versions of that content. Conflicting content must be installed in different
parent directories, and a link created in the target location that points to each version of
the content. The administrator can switch between different content by using the pkg set-
mediator command to change the target of the link. See “Delivering Multiple Implementations
of an Application” on page 115 for a description of how to mediate conflicting package
content.

Note - Mediation is only allowed when both packages deliver an action of the same type, and
only for link and hardlink actions. In addition, both packages must implement the content
mediation. If one package delivers /opt/tool as a link and another package delivers /opt/tool
as a link but without the mediation, a conflict will still be present and users will receive error
messages and may be unable to install both packages.

If two different packages deliver some of the same content but only one of the packages should
be installed, make sure the packages have different names. If publisher example.com delivers
some of the same content as publisher solaris, the end user might be able to avoid conflicts by
specifying the full package name, including publisher, in the installation command. However,
problems could still arise with dependencies. The fmri attribute of a depend action specifies
the full package name except for the publisher. The following dependency matches both pkg://
solaris/cat/subcat/tool and pkg://example.com/cat/subcat/tool:

depend fmri=pkg:/cat/subcat/tool type=require

To differentiate these dependencies to install the correct package, change the package name.
The following suggestions change the package name but still keep the name tool:

pkg://example.com/cat/subcat/example.com/tool

pkg://example.com/cat/subcat/example.com,tool

pkg://example.com/cat/subcat/vendor/example.com/tool

Modifying Package Content

Package manifests represent the complete content of the package.

■ If you remove a file or other action from a package manifest, that action is removed from
the image when the package is updated by using the pkg command.

■ If you rename a file or other action in a package manifest, the new action is installed in the
image and the old action is removed from the image when the package is updated by using
the pkg command. Review “Avoiding Conflicting Package Content” on page 97 before
you rename actions.

98 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

Renaming, Merging, and Splitting Packages

Renaming, Merging, and Splitting Packages

The desired organization of a software component can change because of mistakes in the
original packages, changes in the product or its usage over time, or changes in the surrounding
software environment. Sometimes just the name of a package needs to change. When planning
such changes, consider the user who is performing an upgrade, to ensure that unintended side
effects do not occur.

Three types of package reorganization are discussed in this section, in order of increasingly
complex considerations for pkg update:

1. Renaming single packages
2. Merging two packages
3. Splitting a package

Renaming a Single Package

Renaming a single package is straightforward. IPS provides a mechanism to indicate that a
package has been renamed.

To rename a package, publish a new version of the existing package with no content and with
the following two actions:

■ A set action in the following form:

set name=pkg.renamed value=true

■ A require dependency on the new package.

depend fmri=pkg:/newpkgname@version type=require

A renamed package cannot deliver content other than depend or set actions.

The new package must ensure that it cannot be installed at the same time as the original
package before the rename. If both packages are covered by the same incorporate dependency,
this restriction is automatic. If not, the new package must contain an optional dependency
on the old package at the renamed version. This ensures that the solver will not select both
packages, which would fail conflict checking.

A user who installs this renamed package automatically receives the new named package, since
it is a dependency of the old version. If a renamed package is not depended upon by any other
packages, it is automatically removed from the system. The presence of older software can

Chapter 8 • Advanced Topics For Package Updating 99

Obsoleting Packages

cause a number of renamed packages to be shown as installed. When that older software is
removed, the renamed packages are automatically removed as well.

Packages can be renamed multiple times without issue, though this is not recommended since it
can be confusing to users.

Merging Two Packages
Merging packages is straightforward as well. The following two cases are examples of merging
packages:

■ One package absorbs another package at the renamed version.

Suppose package A@2 must absorb package B@3. To do this, rename package B to package
A@2. Remember to include an optional dependency in A@2 on B@3, unless both packages are
incorporated so that they update together as described above. A user upgrading B to B@3 now
gets A installed since A has absorbed B.

■ Two packages are renamed to the same new package name.
In this case, rename both packages to the name of the new merged package, including
two optional dependencies on the old packages in the new one if they are not otherwise
constrained.

Splitting a Package
When you split a package, rename each resulting new package as described in “Renaming a
Single Package” on page 99. If one of the resulting new packages is not renamed, the pre-
split and post-split versions of that package are not compatible and might violate dependency
logic when the end user tries to update the package.

Rename the original package, and include require dependencies on all new packages that
resulted from the split. This ensures that any package that had a dependency on the original
package will get all the new pieces.

Some components of the split package can be absorbed into existing packages as a merge. See
“How to Enable Your Application to Use a Shared Area” on page 107.

Obsoleting Packages
Package obsoletion is the mechanism by which packages are emptied of contents and removed
from the system.

100 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

Preserving Packaged Editable Files that Migrate

A package is made obsolete by publishing a new version with no content and with the following
set action. An obsoleted package cannot deliver content other than set actions.

set name=pkg.obsolete value=true

If the package being obsoleted was previously renamed, you must also obsolete those renamed
packages and remove their rename dependencies. A package cannot be marked both renamed
and obsolete. In the renamed package, change pkg.renamed to pkg.obsolete and remove the
depend action that specifies the package to which this package was renamed. See “Renaming a
Single Package” on page 99 for a reminder of what was done to rename the package.

An obsoleted package does not satisfy require dependencies. Update fails if an installed
package has a require dependency on a package that is obsoleted in the update, unless the
update also provides a newer version of the dependent package that no longer contains the
require dependency on the obsolete package.

An obsolete package can be made non-obsolete by publishing a newer version that is not
marked obsolete. If a user performs an update when an obsolete package is installed, the
obsolete package is removed from the system. If a user performs an update before the package
was obsolete and does not update again until after a newer, non-obsolete version of the package
is published, the update installs that newer version.

Preserving Packaged Editable Files that Migrate
Packaged editable files might need to move between packages or change location in the
installed file system.

■ Migrating editable files between packages.
IPS attempts to migrate editable files that move between packages if the file name and
file path have not changed. Renaming a package is an example of moving files between
packages.

■ Migrating editable files in the file system.

If the file path changes, ensure the original_name attribute is assigned to preserve the
user’s customizations of the file.

If the file action in the package that originally delivered this file does not contain the
original_name attribute, add that attribute in the updated package. Set the value of the
attribute to the name of the originating package, followed by a colon and the original path to
the file without a leading /.

Once the original_name attribute is present on an editable file, do not change the attribute
value. This value acts as a unique identifier for all moves going forward so that the user’s
content is properly preserved regardless of the number of versions skipped on an update.

Chapter 8 • Advanced Topics For Package Updating 101

Preserving Unpackaged Files

Preserving Unpackaged Files

By default, unpackaged content is automatically salvaged to /var/pkg/lost+found when the
containing directory is no longer referenced by any installed package. This section shows how
to implement the following alternatives:

■ Move the unpackaged content to a new packaged location
■ Keep the unpackaged content where it is, even though all packaged content is uninstalled

from that area

Moving Unpackaged Files on Directory Removal
This example shows how to use IPS to salvage unpackaged content to another packaged
directory.

In this example, the package myapp@1.0 installs the directory /opt/myapp/logfiles. The myapp
application writes log files to that directory.

The myapp@2.0 package delivers the /opt/myapp/history directory and does not deliver
the /opt/myapp/logfiles directory. Users who update their installed myapp@1.0 package to
myapp@2.0 will no longer have an /opt/myapp/logfiles directory. These users will see a
message at the end of their pkg update output telling them that content from /opt/myapp/
logfiles has been saved in /var/pkg/lost+found/opt/myapp/logfiles.

To use IPS to move the file content from /opt/myapp/logfiles to /opt/myapp/history at the
time the myapp package is updated, use the salvage-from attribute on the /opt/myapp/history
directory. Your pkgmogrify input file needs the following entry:

<transform dir path=opt/myapp/history -> \

 add salvage-from /opt/myapp/logfiles>

After you run pkgmogrify, your package manifest action for this directory will look like the
following:

dir path=opt/myapp/history owner=root group=bin mode=0755 \

 salvage-from=/opt/myapp/logfiles

After a user runs pkg update myapp, the /opt/myapp/logfiles directory is gone, the new
/opt/myapp/history directory is installed, and the file content from /opt/myapp/logfiles is
in /opt/myapp/history.

See “How to Migrate Unshared Content to a Shared Area” on page 111 shows another
example that uses the salvage-from attribute.

102 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

How to Preserve a Directory After Content Uninstall

Packaging the Directory Separately

To keep the unpackaged content where it is, even though all packaged content is uninstalled
from that directory, package and install the directory separately. The directory remains installed
as long as the package that installed the directory remains installed, even if all other packaged
content is uninstalled from that directory.

For example, if you perform the following steps, and if no other installed IPS package delivers
content to dir, the content of the dir directory is salvaged to /var/pkg/lost+found, including
the application that was not delivered by IPS:

1. Install an application that is not delivered as an IPS package into dir.
2. Install an IPS package that installs content into dir.
3. Uninstall the IPS package that installs content into dir.

To maintain the unpackaged software you installed in dir, package the dir directory in its own
IPS package.

Create an IPS package that delivers the directory or directory structure that you want. Install
that package. That directory structure remains in place until you uninstall that package.
Uninstalling a different package that delivers content to that directory will not remove the
directory.

You should not create a package that delivers a directory that IPS already delivers. If an update
would install the directory with different ownership, permissions, or other attributes, the update
might not succeed. See the pkgmogrify step in the following procedure.

How to Preserve a Directory After Content Uninstall

1. Create the directory structure you want to deliver.
This example shows /usr/local. You can easily expand this to include /usr/local/bin or
different directory structures that are not delivered by IPS packages.

$ mkdir -p usrlocal/usr/local

2. Create the initial package manifest.

$ pkgsend generate usrlocal | pkgfmt > usrlocal.p5m.1

$ cat usrlocal.p5m.1

dir path=usr owner=root group=bin mode=0755

dir path=usr/local owner=root group=bin mode=0755

3. Exclude directories already delivered by IPS.

Chapter 8 • Advanced Topics For Package Updating 103

How to Preserve a Directory After Content Uninstall

Create a pkgmogrify input file to add metadata and to exclude delivering /usr since that
directory is already delivered by Oracle Solaris. You might also want to add transforms to
change directory ownership or permissions from the default.

$ cat usrlocal.mog

set name=pkg.fmri value=pkg://site/usrlocal@1.0

set name=pkg.summary value="Create the /usr/local directory."

set name=pkg.description value="This package installs the /usr/local \

directory so that /usr/local remains available for unpackaged files."

set name=variant.arch value=$(ARCH)

<transform dir path=usr$->drop>

4. Apply the changes to the initial manifest.

$ pkgmogrify -DARCH=`uname -p` usrlocal.p5m.1 usrlocal.mog | \

pkgfmt > usrlocal.p5m.2

$ cat usrlocal.p5m.2

set name=pkg.fmri value=pkg://site/usrlocal@1.0

set name=pkg.summary value="Create the /usr/local directory."

set name=pkg.description \

 value="This package installs the /usr/local directory so that /usr/local

remains available for unpackaged files."

set name=variant.arch value=i386

dir path=usr/local owner=root group=bin mode=0755

5. Check your work.

$ pkglint usrlocal.p5m.2

Lint engine setup...

Starting lint run...

$

6. Publish the package to your repository.
In this example, the default publisher for the yourlocalrepo repository has already been set to
site.

$ pkgsend -s yourlocalrepo publish -d usrlocal usrlocal.p5m.2

pkg://site/usrlocal@1.0,5.11:20140303T180555Z

PUBLISHED

7. Make sure you can see the new package that you want to install.

$ pkg refresh site

$ pkg list -a usrlocal

NAME (PUBLISHER) VERSION IFO

usrlocal (site) 1.0 ---

104 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

How to Preserve a Directory After Content Uninstall

8. Install the package.

$ pkg install -v usrlocal

 Packages to install: 1

 Estimated space available: 20.66 GB

Estimated space to be consumed: 454.42 MB

 Create boot environment: No

Create backup boot environment: No

 Rebuild boot archive: No

Changed packages:

site

 usrlocal

 None -> 1.0,5.11:20140303T180555Z

PHASE ITEMS

Installing new actions 5/5

Updating package state database Done

Updating package cache 0/0

Updating image state Done

Creating fast lookup database Done

Reading search index Done

Updating search index 1/1

9. Make sure the package is installed.

$ pkg list usrlocal

NAME (PUBLISHER) VERSION IFO

usrlocal (site) 1.0 i--

$ pkg info usrlocal

 Name: usrlocal

 Summary: Create the /usr/local directory.

 Description: This package installs the /usr/local directory so that

 /usr/local remains available for unpackaged files.

 State: Installed

 Publisher: site

 Version: 1.0

 Build Release: 5.11

 Branch: None

Packaging Date: March 3, 2014 06:05:55 PM

 Size: 0.00 B

 FMRI: pkg://site/usrlocal@1.0,5.11:20140303T180555Z

$ ls -ld /usr/local

drwxr-xr-x 2 root bin 2 Mar 3 10:17 /usr/local/

Chapter 8 • Advanced Topics For Package Updating 105

Sharing Content Across Boot Environments

Sharing Content Across Boot Environments
IPS package content can only be installed into file systems that are part of a BE. For example,
on a default Oracle Solaris 11 installation, only datasets under rpool/ROOT/BEname/ are
supported for package operations. Using IPS to directly deliver content that is outside any BE
can result in a system that is no longer able to boot or clone older BEs.

Some content is shared across BEs, as described in “Existing Shared Content in Oracle
Solaris” on page 106.

To deliver packaged content to a shared area, use a link as described in “Delivering Content to a
Shared Area” on page 106.

Existing Shared Content in Oracle Solaris
Some files must be shared across BEs to preserve normal system operation in an environment
with multiple BEs. The following directories are already shared across BEs by IPS:

/var/audit

/var/cores

/var/crash

/var/mail

Within each BE, these directories are symbolic links to the following shared directories:

/var/share/audit

/var/share/cores

/var/share/crash

/var/share/mail

These shared directories are in the VARSHARE dataset, which is a shared dataset mounted at
/var/share.

Other data that needs to be shared across BEs can be handled similarly.

Delivering Content to a Shared Area
To share data across BEs, use a shared dataset and a symbolic link from a directory structure
inside the BE pointing into that shared dataset. An IPS package delivers a symbolic link inside
the BE. The same package or another package delivers an SMF service that creates and mounts
the shared dataset. The link from the BE where the package is installed into the new shared
dataset is similar to the links to /var/share shown in “Existing Shared Content in Oracle

106 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

How to Enable Your Application to Use a Shared Area

Solaris” on page 106. Applications running in the BE write to and read from the shared area
via the link.

Best practice is to create one dataset where many applications running in different BEs can
share content. Creating a separate dataset for each directory of data that you want to share
results in creating many datasets in each non-global zone, and creating many datasets per zone
is not desirable. For example, you could create an OPTSHARE dataset mounted at /opt/share.
Different applications could share data in different directories under /opt/share.

While you could use a separate package and service to create the shared dataset, note that such
a package could be installed from a different BE. The shared dataset might be available even
though the package and service that created the dataset are not installed in the current BE.
The service delivered by the application package shown in these examples checks whether the
dataset already exists and creates the dataset if it does not already exist.

How to Enable Your Application to Use a Shared Area

This procedure shows how to provide a shared dataset and a link from the current BE into the
shared dataset to enable this application to share data with multiple applications in multiple
BEs. The application package delivers the following:

■ An SMF service that creates the shared dataset
■ A link in the current BE whose target is in the shared dataset

The package in this example only shows the actions needed to create and link to the shared
dataset. Other actions for the application, such as executables and configuration files, are
omitted for this example.

1. Create a package development area.
Create an area for your package development that contains the directories that you need in the
BE and a link to the shared area outside the BE.

a. Create the structure needed to deliver the service manifest and start method
that will create the shared dataset.

$ mkdir -p proto/lib/svc/manifest/site

$ mkdir -p proto/lib/svc/method

b. Deliver a link that applications can use to access the shared dataset.

$ mkdir -p proto/opt/myapp

$ ln -s ../../opt/share/myapp/logfiles proto/opt/myapp/logfiles

2. Create the service start method.

Chapter 8 • Advanced Topics For Package Updating 107

How to Enable Your Application to Use a Shared Area

In proto/lib/svc/method, create a script that performs the following tasks:

■ Create the dataset, rpool/OPTSHARE, that is shared across BEs. Creating the shared dataset
needs to be done only one time for each pool. All current and future BEs in the pool can
access that dataset. Check whether the dataset already exists before you create it.

■ Create the directory structure you want in the shared dataset, including the target of the link
in this example: /opt/share/myapp/logfiles.

This script is the start method of the service. In this example, the script is named myapp-share-
files.sh. You will need this file name when you create the service manifest in the next step.
The script needs the elements shown in the following prototype. Recall that by default, sh
is ksh93. The smf_include.sh file is needed for smf_method_exit. The third argument to
smf_method_exit will appear in the service log file and in output from the svcs command.

#!/bin/sh

Load SMF shell support definitions

. /lib/svc/share/smf_include.sh

Create rpool/OPTSHARE with mount point /opt/share if it does not already exist

Create /opt/share/myapp/logfiles if it does not already exist

After this script runs, the service does not need to remain online.

smf_method_exit $SMF_EXIT_TEMP_DISABLE done "shared area created"

3. Create the service manifest.
In proto/lib/svc/manifest/site, use the svcbundle command to create the service. In the
service-name, include the category site because this is an internal service. The value of
start-method is the name of the script that was created in the previous step.

$ svcbundle -s service-name=site/myapp-share-files \

-s start-method=/lib/svc/method/myapp-share-files.sh -o myapp-share-files.xml

Edit the resulting service manifest to add common_name and description information in the
template data area. You can also add documentation and other template data. You might also
want to change some of the default settings, such as the milestone dependency or the timeout
for the start method. By default, the instance that is created is named default and is enabled.
Make sure the service manifest is valid:

$ svccfg validate myapp-share-files.xml

4. Generate the initial package manifest.
Use the pkgsend generate command to create the initial package manifest from your package
development area.

108 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

How to Enable Your Application to Use a Shared Area

$ pkgsend generate proto | pkgfmt > share.p5m.1

$ cat share.p5m.1

dir path=lib owner=root group=bin mode=0755

dir path=lib/svc owner=root group=bin mode=0755

dir path=lib/svc/manifest owner=root group=bin mode=0755

dir path=lib/svc/manifest/site owner=root group=bin mode=0755

file lib/svc/manifest/site/myapp-share-files.xml \

 path=lib/svc/manifest/site/myapp-share-files.xml owner=root group=bin \

 mode=0644

dir path=lib/svc/method owner=root group=bin mode=0755

file lib/svc/method/myapp-share-files.sh \

 path=lib/svc/method/myapp-share-files.sh owner=root group=bin mode=0755

dir path=opt owner=root group=bin mode=0755

dir path=opt/myapp owner=root group=bin mode=0755

link path=opt/myapp/logfiles target=../../opt/share/myapp/logfiles

5. Add metadata and actuators.

a. Create the following pkgmogrify input file named share.mog.

■ Give the package a name, version, summary, and description.
■ Delete the opt, lib/svc/manifest/site, and lib/svc/method directory actions

because these directories are already delivered by other packages.
■ Change the group for the service manifest to sys to match other manifests in /lib/

svc/manifest.
■ Change the mode of the service manifest to 0444 and the mode of the service method

to 0555 to match other manifests and methods on the system.
■ Add actuators for the service manifest and method files to restart the manifest-import

service whenever those files are installed or updated.

set name=pkg.fmri value=myapp@2.0

set name=pkg.summary value="Deliver shared directory"

set name=pkg.description value="This example package delivers a directory \

and link that allows myapp content to be shared across BEs."

set name=variant.arch value=$(ARCH)

set name=info.classification \

 value=org.opensolaris.category.2008:Applications/Accessories

<transform dir path=opt$->drop>

<transform dir path=lib$->drop>

<transform dir path=lib/svc$->drop>

<transform dir path=lib/svc/manifest$->drop>

<transform dir path=lib/svc/manifest/site$->drop>

<transform dir path=lib/svc/method$->drop>

<transform file path=lib/svc/manifest/site/myapp-share-files.xml -> \

 edit group bin sys>

Chapter 8 • Advanced Topics For Package Updating 109

How to Enable Your Application to Use a Shared Area

<transform file path=lib/svc/manifest/site/myapp-share-files.xml -> \

 edit mode 0644 0444>

<transform file path=lib/svc/manifest/site/myapp-share-dir.xml -> \

 add restart_fmri svc:/system/manifest-import:default>

<transform file path=lib/svc/method/myapp-share-files.sh -> \

 edit mode 0755 0555>

<transform file path=lib/svc/method/myapp-share-dir.sh -> \

 add restart_fmri svc:/system/manifest-import:default>

b. Run pkgmogrify on the share.p5m.1 manifest with the share.mog changes.

$ pkgmogrify -DARCH=`uname -p` share.p5m.1 share.mog | pkgfmt > share.p5m.2

$ cat share.p5m.2

set name=pkg.fmri value=myapp@2.0

set name=pkg.summary value="Deliver shared directory"

set name=pkg.description \

 value="This example package delivers a directory and link that allows myapp

content to be shared across BEs."

set name=info.classification \

 value=org.opensolaris.category.2008:Applications/Accessories

set name=variant.arch value=i386

file lib/svc/manifest/site/myapp-share-files.xml \

 path=lib/svc/manifest/site/myapp-share-files.xml owner=root group=sys \

 mode=0444

file lib/svc/method/myapp-share-files.sh \

 path=lib/svc/method/myapp-share-files.sh owner=root group=bin mode=0755

dir path=opt/myapp owner=root group=bin mode=0555

link path=opt/myapp/logfiles target=../../opt/share/myapp/logfiles

6. Evaluate and resolve package dependencies.
Use the pkgdepend command to automatically generate and resolve dependencies for the
package. The output from resolving dependencies is automatically stored in a file with suffix
.res.

In this example, dependencies are generated for ksh93. Additional dependencies might be
generated, depending on what your start method does. Also, the service and service instance are
declared in org.opensolaris.smf.fmri.

$ pkgdepend generate -md proto share.p5m.2 | pkgfmt > share.p5m.3

$ pkgdepend resolve -m share.p5m.3

The following lines are added in the output share.p5m.3.res file:

set name=org.opensolaris.smf.fmri value=svc:/site/myapp-share-files \

 value=svc:/site/myapp-share-files:default

depend fmri=pkg:/shell/ksh93@93.21.0.20110208-0.175.2.0.0.37.1 type=require

110 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

How to Migrate Unshared Content to a Shared Area

depend fmri=pkg:/system/core-os@0.5.11-0.175.2.0.0.37.0 type=require

7. Verify the package.

$ pkglint share.p5m.3.res

8. Publish the package.

$ pkgsend -s site publish -d protosl share.p5m.3.res

pkg://site/myapp@2.0,5.11:20140417T000014Z

PUBLISHED

9. Test the package.
Install the package.

$ pkg install -g ./site myapp

Verify that the dataset and link exist.

$ zfs list rpool/OPTSHARE

NAME USED AVAIL REFER MOUNTPOINT

rpool/OPTSHARE 38.5K 24.8G 38.5K /opt/share

$ ls -l /opt/myapp

lrwxrwxrwx 1 root root 21 Apr 16 17:32 logfiles -> /opt/share/myapp/logfiles

Uninstall the package. The /opt/myapp/logfiles link should be gone, and the service manifest
and method script should be gone. The rpool/OPTSHARE dataset should still exist because that is
not packaged content: It was created by the service.

How to Migrate Unshared Content to a Shared Area

This procedure extends the previous procedure. In this example, some data that needs to be
shared already exists. The application package delivers a staging area and copies the data to be
shared to the staging area. The SMF service moves the data from the staging area to the shared
area.

■ In addition to the link, the package delivers a staging area in the BE to save any unpackaged
content that already exists in the directory that will be redefined to be a link.

■ In addition to creating the shared dataset, the SMF service moves any content that exists in
the staging area to the shared area.

1. Create a package development area.
Change all occurrences of logfiles to logs.

$ mkdir -p proto/lib/svc/manifest/site

Chapter 8 • Advanced Topics For Package Updating 111

How to Migrate Unshared Content to a Shared Area

$ mkdir -p proto/lib/svc/method

$ mkdir -p proto/opt/myapp

$ ln -s ../../opt/share/myapp/logs proto/opt/myapp/logs

In this example, the myapp@1.0 package installed /opt/myapp/logs as a directory and the
myapp application wrote content to this directory. When this new myapp@3.0 package installs
/opt/myapp/logs as a link, any content in the /opt/myapp/logs directory will be saved in
/var/pkg/lost+found. To instead save that content to the new shared area, deliver an area to
hold a copy of that content.

$ mkdir -p proto/opt/myapp/.migrate/logs

The service will move the content from this staging area in the BE to the shared area.

Content that the myapp@3.0 package writes to /opt/myapp/logs will go directly to the shared
area through the link, as in the previous example.

2. Create the service start method.
Add the following task to the proto/lib/svc/method/myapp-share-files.sh script that you
created in the previous procedure: Move content from the staging area to the shared area.

Do not use the service to remove the empty staging area. The staging area is packaged content
and should only be removed by uninstalling the package.

#!/bin/sh

Load SMF shell support definitions

. /lib/svc/share/smf_include.sh

Create rpool/OPTSHARE with mount point /opt/share if it does not already exist

Create /opt/share/myapp/logfiles if it does not already exist

Move any content from /opt/myapp/.migrate/logs to /opt/share/myapp/logs

After this script runs, the service does not need to remain online.

smf_method_exit $SMF_EXIT_TEMP_DISABLE done "myapp shared files moved"

3. Create the service manifest.

$ svcbundle -s service-name=site/myapp-share-files \

-s start-method=/lib/svc/method/myapp-share-files.sh -o myapp-share-files.xml

Use the svccfg validate command to make sure the service manifest is valid.

4. Generate the initial package manifest.
The manifest is the same as the package manifest in the previous example with the following
modifications:

112 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

Delivering a File That Is Also Delivered by Another Package

■ All occurrences of logfiles are changed to logs.
■ The following two actions are added:

dir path=opt/myapp/.migrate owner=root group=bin mode=0755

dir path=opt/myapp/.migrate/logs owner=root group=bin mode=0755

5. Add metadata and actuators.
Add the following lines to your share.mog input file for pkgmogrify from the previous
example. The salvage-from attribute moves any unpackaged content in the /opt/myapp/logs
directory to the /opt/myapp/.migrate/logs directory. The service then moves the content from
/opt/myapp/.migrate/logs to /opt/share/myapp/logs.

<transform dir path=opt/myapp/.migrate/logfiles -> \

 add salvage-from /opt/myapp/logfiles>

Name this package myapp@3.0.

Run pkgmogrify as in the previous example.

6. Evaluate and resolve package dependencies.

7. Verify the package.

8. Publish the package.

9. Test the package.
Create /opt/myapp/logs as a regular directory and put some files in it.

Install the myapp@3.0 package. Verify that the existence of the dataset was correctly detected
and handled, the new link exists, the /opt/myapp/logs directory is empty, the /opt/
myapp/.migrate/logs directory exists and is empty, and the /opt/share/myapp/logs directory
exists and contains the content that was initially in the /opt/myapp/logs directory.

Delivering a File That Is Also Delivered by Another Package

You might want to use an IPS package to provide a customized version of a file that is already
delivered by another package. By default, only one IPS package can deliver a file to any
particular location. To use an IPS package to deliver a custom version of a file that is delivered
by another IPS package, make sure the following attributes are set on the file action:

■ The overlay=allow and preserve=true attributes are set on the file you want to replace.

Chapter 8 • Advanced Topics For Package Updating 113

Delivering a File That Is Also Delivered by Another Package

■ The overlay=true attribute and the preserve attribute with any value are set on the
replacement file.

See the descriptions of the overlay and preserve attributes in “File Actions” on page 25.

The version of the file with the overlay=true attribute replaces the version with the
overlay=allow attribute, and the version of the file with the overlay=allow attribute is saved
in /var/pkg/lost+found/.

For example, suppose you install a package named isvapp that has the following file action:

file opt/isvapp/isvconf path=opt/isvapp/isvconf owner=root group=bin mode=0644 \

 overlay=allow preserve=true

The package installs the following file:

-rw-r--r-- 1 root bin 11358 Apr 17 18:44 /opt/isvapp/isvconf

You want a site-specific version of this file on all of your systems. You create a package named
isvconf with the following file action to deliver the new version of the file:

file opt/isvapp/isvconf path=opt/isvapp/isvconf owner=root group=bin mode=0644 \

 overlay=true preserve=renameold

After isvconf is installed, the following files are on the system:

$ ls -l /opt/isvapp/isvconf

-rw-r--r-- 1 root bin 72157 Apr 17 18:47 /opt/isvapp/isvconf

$ ls -l /var/pkg/lost+found/opt/isvapp

total 24

-rw-r--r-- 1 root bin 11358 Apr 17 18:44 isvconf-20140417T184756Z

If you attempt to install another package, isvconf2 in this example, that would deliver a file
with the same path, the installation fails with the following explanation:

Creating Plan (Checking for conflicting actions): -

pkg install: The following packages all deliver file actions to opt/isvapp/isvconf:

 pkg://site/isvconf2@1.0,5.11:20140417T190405Z

 pkg://site/isvapp@1.0,5.11:20140417T182316Z

 pkg://site/isvconf@1.0,5.11:20140417T185420Z

These packages may not be installed together. Any non-conflicting set may

be, or the packages must be corrected before they can be installed.

You can deliver a new version of the file in an update of the package that delivered the first
replacement file. After isvconf@2.0 is installed, the following files are on the system:

$ ls -l /opt/isvapp/isvconf*

114 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

Delivering Multiple Implementations of an Application

-rw-r--r-- 1 root bin 64064 Apr 17 18:52 /opt/isvapp/isvconf

-rw-r--r-- 1 root bin 54365 Apr 17 18:47 /opt/isvapp/isvconf.old

$ ls -l /var/pkg/lost+found/opt/isvapp

total 24

-rw-r--r-- 1 root bin 11358 Apr 17 18:44 isvconf-20140417T184756Z

The existing file was saved in isvconf.old because both of the following two conditions exist:

■ The isvconf package specifies preserve=renameold.
■ The file was edited after isvconf@1.0 was installed and before isvconf@2.0 was installed.

The lost+found area has not changed and still contains the original file delivered by isvapp.

Delivering Multiple Implementations of an Application
You might want to deliver multiple implementations of a given application with the following
characteristics:

■ All implementations are available in the image.
■ One of the implementations is available from a common directory such as /usr/bin for

ease of discovery.
■ An administrator can easily change which implementation is available from the common

directory, without adding or removing any packages.

Oracle Solaris 11 delivers multiple implementations of several different applications, such as
Java and Python. To specify which implementation is available from a common directory such
as /usr/bin, and to enable an administrator to easily change that selection, use a mediated link.

A mediated link manages multiple implementations of an application in a single image. A
mediated link is a symbolic link with mediator attributes set (see “Attributes of Mediated
Links” on page 116). Software that is packaged with a link action that has mediator
attributes is a participant in a mediation. The mediation participant that is available from a
common directory such as /usr/bin is called the preferred version. The preferred version in a
mediation is determined in one of the following ways:

Specified in the package manifest

You can specify a version (mediator-version) or a versioned implementation (mediator-
implementation) for each participant in the mediation. You can specify an overriding
priority in case of conflicts (mediator-priority).

Selected by the system

If a participant in the mediation has a priority specified, the participant with the highest
value priority is selected as the preferred implementation.

Chapter 8 • Advanced Topics For Package Updating 115

Delivering Multiple Implementations of an Application

If no participant in the mediation has a priority specified, and a participant has a version
specified, the participant with the highest value version is selected as the preferred
implementation.
If no participant in the mediation has a priority or version specified, an arbitrary participant
is selected as the preferred implementation. If the mediator-implementation of the
selected participant includes a version string, the participant with the highest value version
string for that mediator-implementation is selected as the preferred implementation.

Specified by an administrator

An administrator can set the preferred implementation by using the pkg set-mediator
command. See “Specifying a Default Application Implementation” in Adding and
Updating Software in Oracle Solaris 11.3.

If only one instance of a particular mediation is installed in an image, then that instance is
automatically selected as the preferred implementation of that mediation. If the preferred
implementation is set by a system administrator after package installation, installing additional
participants in this same mediation does not change the preferred implementation set by the
administrator.

Attributes of Mediated Links

The following attributes can be set on link actions to control how mediated links are delivered:

mediator

Specifies the entry in the mediation namespace shared by all path names that participate in
a given mediation group. Examples include java, python, and ruby.

Every link that has a mediator attribute must also have either a mediator-version
attribute or a mediator-implementation attribute. All mediated links for a given
path name must specify the same mediator. However, not all mediator versions and
implementations need to provide a link at a given path. If a mediation participant does not
provide a link, then the link is removed when that participant is selected as the preferred
implementation.

mediator-version

Specifies the version of the interface described by the mediator attribute. This attribute
is required if mediator is specified and mediator-implementation is not specified. The
value of mediator-version is a dot-separated sequence of integers. For ease of use,
the value specified should match the version of the package that is delivering the link.
For example, the runtime/ruby-19 package should specify mediator-version=1.9.
Setting the version value appropriately helps administrators determine what software is

116 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=AUOSSgmagn
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=AUOSSgmagn

Delivering Multiple Implementations of an Application

participating in the mediation, which packages delivered that software, and which version
of the software is currently set as the preferred version. If no participant in the mediation
has a mediator-priority set, IPS selects the mediation participant with the highest value
mediator-version as the preferred implementation.

mediator-implementation

Specifies the implementation of the interface described by the mediator attribute. This
attribute is required if mediator is specified and mediator-version is not specified.
Implementation strings are not considered to be ordered. An implementation is arbitrarily
selected by IPS as the preferred implementation if no participant in the mediation has a
mediator-version or mediator-priority set.

The value of mediator-implementation can be a string of arbitrary length composed
of alphanumeric characters and spaces. If the implementation itself can be versioned,
then the version should be specified at the end of the string, after an at sign (@). The
version is a dot-separated sequence of integers. If multiple versions of an implementation
exist, the implementation with the highest version is selected. For example, a mediator-
implementation value of 4DB@12 would be selected over a mediator-implementation
value of 4DB@11.

mediator-priority

Specifies the priority of the interface described by the mediator attribute. Either a
mediator-version or a mediator-implementation must also be specified. For example,
if one participant in the mediation has a mediator-version value of 1.6 and another
participant has a mediator-version value of 1.7, the participant with the mediator-
version value of 1.6 can be specified as the preferred implementation by assigning a
mediator-priority attribute.

The mediator-priority attribute can have one of the following values:

vendor The link is preferred over those that do not have a mediator-
priority specified.

site The link is preferred over those that do not have a mediator-
priority specified and over those that have a mediator-priority
value of vendor.

Specifying Mediated Links

The following command shows the currently selected preferred implementations of Python,
Ruby, and Secure Shell:

Chapter 8 • Advanced Topics For Package Updating 117

Delivering Multiple Implementations of an Application

$ pkg mediator python ruby ssh

MEDIATOR VER. SRC. VERSION IMPL. SRC. IMPLEMENTATION

python vendor 2.6 vendor

ruby system 1.9 system

ssh vendor vendor sunssh

The following command shows all participants in each of these mediations:

$ pkg mediator -a python ruby ssh

MEDIATOR VER. SRC. VERSION IMPL. SRC. IMPLEMENTATION

python vendor 2.6 vendor

python system 2.7 system

ruby system 1.9 system

ruby system 1.8 system

ssh vendor vendor sunssh

The lower version was selected by the system as the preferred Python implementation because
it has a mediator-priority specified, as shown by the VER. SRC. and IMPL. SRC. and by the
following command:

$ pkg contents -Ho action.raw -t link -a path=usr/bin/python 'runtime/python*'

link mediator=python mediator-version=2.7 path=usr/bin/python pkg.linted.pkglint

.dupaction010.2=true target=python2.7

link mediator=python mediator-priority=vendor mediator-version=2.6 path=usr/bin/

python target=python2.6

If you specify mediator=python as the argument to the -a option, the output shows many more
links in the python mediation. Remember to include all necessary paths in the mediation.

$ pkg contents -Ho action.raw -t link -a mediator=python runtime/python-26

link mediator=python mediator-priority=vendor mediator-version=2.6 path=usr/bin/

2to3 target=2to3-2.6

link mediator=python mediator-priority=vendor mediator-version=2.6 path=usr/bin/

python target=python2.6

link mediator=python mediator-priority=vendor mediator-version=2.6 path=usr/bin/

pydoc target=pydoc-2.6

link mediator=python mediator-priority=vendor mediator-version=2.6 path=usr/bin/

idle target=idle-2.6

link mediator=python mediator-priority=vendor mediator-version=2.6 path=usr/bin/

python-config target=python2.6-config

link mediator=python mediator-priority=vendor mediator-version=2.6 path=usr/bin/

amd64/python target=python2.6 variant.arch=i386

link mediator=python mediator-priority=vendor mediator-version=2.6 path=usr/bin/

amd64/python-config target=python2.6-config variant.arch=i386

link facet.doc.man=all mediator=python mediator-priority=vendor mediator-version

=2.6 path=usr/share/man/man1/python.1 target=python2.6.1

The pkg.linted.pkglint.dupaction010.2=true attribute in the usr/bin/python mediated
link in the runtime/python-27 package indicates that the /usr/bin/python link is delivered

118 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

Delivering Multiple Implementations of an Application

by more than one package and is a valid mediated link. Mediated links are an exception to
the rule that an action can be delivered by only one package. The pkglint utility checks for
duplicate actions. Setting pkg.linted.check.id to true bypasses checks for check.id for that
action. See “Verify the Package” on page 51 and the pkglint(1) man page. Use the pkglint
-L command to show the full list of checks that pkglint performs. The description of the
pkglint.dupaction010 check is “Mediated links should be valid.”

The higher version was selected by the system as the preferred Ruby implementation.

$ pkg contents -Ho action.raw -t link -a path=usr/bin/ruby runtime/ruby-19

link mediator=ruby mediator-version=1.9 path=usr/bin/ruby pkg.linted.pkglint.dup

action010.2=true target=./ruby19

The ssh mediation has only one participant. If you anticipate delivering additional
implementations of an application, define the mediation in the original package so that the
original package will be a participant in the mediation when other implementations are
delivered. Otherwise, you will need to deliver an update to the original package, or users will
not be able to select the original implementation as the preferred implementation.

In addition to showing the link action, the following command shows the name of the package
where this action is defined.

$ pkg contents -o pkg.name,action.raw -t link -a path=usr/bin/ssh '*'

PKG.NAME ACTION.RAW

network/ssh link mediator=ssh mediator-implementation=sunssh mediator-priority=

vendor path=usr/bin/ssh target=../lib/sunssh/bin/ssh

A mediated link that specifies a mediator-implementation can also specify a mediator-
version, a mediator-priority, or both. If all participants in the mediation specify only a
mediator-implementation, the system selects the preferred implementation arbitrarily. If the
selected mediator-implementation is versioned, the highest version is selected, as shown by
the following commands:

$ pkg mediator -a myapp

MEDIATOR VER. SRC. VERSION IMPL. SRC. IMPLEMENTATION

myapp system system db@12

myapp system system db@11

myapp system system db

$ pkg mediator myapp

MEDIATOR VER. SRC. VERSION IMPL. SRC. IMPLEMENTATION

myapp system system db@12

If another implementation is added to the mediation, that implementation might be selected by
the system, as shown by the following commands:

$ pkg mediator -a myapp

MEDIATOR VER. SRC. VERSION IMPL. SRC. IMPLEMENTATION

Chapter 8 • Advanced Topics For Package Updating 119

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pkglint-1

Packaging for System Migration and System Cloning

myapp system system aa

myapp system system db@12

myapp system system db@11

myapp system system db

$ pkg mediator myapp

MEDIATOR VER. SRC. VERSION IMPL. SRC. IMPLEMENTATION

myapp system system aa

Best Practices for Mediated Links

Do not deliver the same path as a link in one package and a directory or file in another package.
In general, do not deliver the same path more than once. If you deliver the same link path
more than once, make sure each instance has a different target, and make sure each instance
participates in the same mediation.

Remember to include all necessary paths in the mediation. Libraries, configuration files, man
pages, and other file system objects might be different for each implementation.

If you anticipate delivering additional implementations of an application, define the mediation
in the original package so that the original package will be a participant in the mediation when
other implementations are delivered. Otherwise, you will need to deliver an update to the
original package, or users will not be able to select the original implementation as the preferred
implementation.

If other software has a dependency on software that participates in a mediation, and if any
version of that software satisfies the dependency, use a require-any dependency. See “Depend
Actions” on page 34 for information about require-any dependencies.

For ease of use, the value specified for mediator-version should match the version of the
package that is delivering the link. Setting the version value appropriately helps administrators
determine what software is participating in the mediation, which packages delivered that
software, and which version of the software is currently set as the preferred version.

Packaging for System Migration and System Cloning

Revert tags help ensure proper system operation across system migration and system cloning,
particularly for certain types of software such as device drivers.

The following examples show how to use revert tags. See also the description of the revert-
tag attribute for file and dir actions in “Package Content: Actions” on page 24 and “Oracle
Solaris Revert Tags” on page 150.

120 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

Packaging for System Migration and System Cloning

EXAMPLE 1 Clear a Device Driver’s Cache File During System Migration

The following action in a package manifest tags the file /etc/MYdev/cache with the system:
dev-init revert tag. Files with this tag revert to their manifest-defined content during system
migration and system cloning.

file path=etc/MYdev/cache revert-tag=system:dev-init owner=root group=sys mode=0644

EXAMPLE 2 Clear an Application’s Log Files During System Cloning

The following action in a package manifest tags all in the /var/MYapp/logs directory with the
system:dev-init revert tag. The =* after revert-tag=system:dev-init means tag all files
in this directory with the system:dev-init tag. All files in this directory will removed during
system migration and system cloning.

dir path=var/MYapp/logs revert-tag=system:dev-init=* owner=root group=sys mode=0755

Chapter 8 • Advanced Topics For Package Updating 121

122 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

 9 ♦ ♦ ♦ C H A P T E R 9

Signing IPS Packages

This chapter describes IPS package signing and how developers and quality assurance
organizations can sign either new packages or existing, already signed packages.

■ The ability to validate that the software installed on the system is actually as originally
specified by the publisher is an important feature of IPS. This ability to validate the installed
system is key for both the user and the support engineering staff.

■ In addition to validation, signatures can also be used to indicate approval by other
organizations or parties. For example, the internal QA organization could sign manifests
of packages once the packages are qualified for production use. Such approvals could be
required for installation.

■ Packages can be signed multiple times, to indicate approval at multiple levels. Signing a
package adds a signature action to the manifest but does not alter the package in any other
way. Signing a package does not remove or invalidate previous signatures.

■ Signature policies can be set for the image or for specific publishers. Policies include
ignoring signatures, verifying existing signatures, requiring signatures, and requiring
specific common names in the chain of trust.

Signature Actions

Signatures are represented as actions just as all other manifest content is represented as actions.
Since manifests contain all the package metadata (such as file permissions, ownership, and
content hashes), a signature action that validates that the manifest has not be altered since it
was published is an important part of system validation.

The signature actions form a tree that includes the delivered binaries such that complete
verification of the installed software is possible.

A signature action has the following form:

signature hash_of_certificate algorithm=signature_algorithm \

 value=signature_value \

Chapter 9 • Signing IPS Packages 123

Signing Packages

 chain="hashes_of_certificates_needed_to_validate_primary_certificate" \
 version=pkg_version_of_signature

The payload and chain attributes represent the packaging hash of the PEM (Privacy Enhanced
Mail) files, containing the x.509 certificates which can be retrieved from the originating
repository. The payload certificate is the certificate that verifies the value in value. The value is
the signed hash of the message text of the manifest, prepared as discussed below.

The other certificates presented need to form a certificate path that leads from the payload
certificate to the trust anchors.

Two types of signature algorithms are supported:

RSA The first type of signature algorithm is the RSA group of algorithms. An
example of an RSA signature algorithm is rsa-sha256. The string after
the hyphen (sha256 in this example) specifies the hash algorithm to use
to change the message text into a single value that the RSA algorithm can
use.

Hash only The second type of signature algorithm is compute the hash only. This
type of algorithm exists primarily for testing and process verification
purposes and presents the hash as the signature value. A signature
action of this type is indicated by the lack of a payload certificate hash.
This type of signature action is verified if the image is configured to
check signatures. However, its presence does not count as a signature
if signatures are required. The following example shows a hash-only
signature action:

signature algorithm=hash_algorithm value=hash \
 version=pkg_version_of_signature

Signing Packages

A manifest can have multiple independent signatures. Signatures can be added or removed
without invalidating other signatures that are present. This feature facilitates production
handoffs, with signatures used along the path to indicate completion along the way. Subsequent
steps can optionally remove previous signatures at any time. See the pkgsign(1) man page for
descriptions of options of the pkgsign command and examples of use.

Take the following two steps to sign a package. The second step can be performed as many
times as needed, adding multiple signatures.

1. Publish the package unsigned to a repository as shown in “Publish the Package” on page 52.

124 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

Using a Custom Certificate Authority Certificate

2. Use the pkgsign command to append a signature action to the manifest in the repository,
as shown in “Sign the Package” on page 53. Except for adding a signature action, the
package is unaltered, including its time stamp. Signing the package should be the last step
of the package development before the package is tested.

The pkgsign command enables someone other than the package publisher to add a signature
action to the package without invalidating the original publisher’s signature. Republishing a
package creates a new time stamp and invalidates the original signature. With the pkgsign
command, the QA department, for example, could sign all packages that are installed internally
to indicate that they have been approved for use without republishing the packages.

Note - Using the pkgsign command is the only way to add a signature to a signed package. If
you publish a package that already contains a signature, that signature is removed and a warning
is emitted.

Signature actions with variants are ignored. Therefore, performing a pkgmerge on a pair of
manifests invalidates any signatures that were previously applied.

Using a Custom Certificate Authority Certificate

A custom Certificate Authority (CA) certificate is used to sign other certificates. The system
determines whether a key and certificate are valid by verifying that the CA referenced on a
certificate has a corresponding CA certificate in /etc/certs/CA.

How to Use a Custom Certificate Authority
Certificate

1. Create your custom CA certificate.
See “Creating a Self-Signed Server Certificate Authority” in Copying and Creating Package
Repositories in Oracle Solaris 11.3 for a description of creating and testing your own CA
certificate.

2. Put the CA certificate in the directory specified by the trust-anchor-directory
property.
See “Configure Image and Publisher Properties” on page 127 for a description of the trust-
anchor-directory image property.

Chapter 9 • Signing IPS Packages 125

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=CCOSPcreateserverca
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=CCOSPcreateserverca

How to Use a Custom Certificate Authority Certificate

■ Put the CA certificates directly in the directory named by trust-anchor-directory. Do not
put the certificates in another subdirectory.

■ Do not put a CA certificate in the directory that is a duplicate of a certificate that is already
in the directory.

■ Do not put a file in the directory that is not a valid certificate file.

3. Refresh the ca-certificates service.

$ svcadm refresh svc:/system/ca-certificates:default

Verify that the service is online:

$ svcs ca-certificates

If the service is not in the online state, or if the CA does not appear in /etc/certs/ca-
certificates.crt, check the service log file:

$ svcs -xL ca-certificates

4. (Optional) Package the custom certificate and key.
Updating the certificate and key for multiple systems is easier if you package the certificate
and key files. If the certificates need to change, update the package, and then pkg update the
package on each system.

a. Add a refresh actuator to each certificate and key file that you deliver.

file group=sys mode=0644 owner=root path=etc/certs/CA/mycert.pem \
refresh_fmri=svc:/system/ca-certificates:default

The following pkgmogrify rule automates adding this refresh actuator:

<transform file path=etc/certs/CA/.*\.pem ->

 add refresh_fmri svc:/system/ca-certificates:default>

b. Do not deliver the /etc/certs/CA directory in your package.
The /etc, /etc/certs, and /etc/certs/CA directories are already delivered by the
system. See “Add Necessary Metadata to the Generated Manifest” on page 44 and “Verify
the Package” on page 51.

126 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

Troubleshooting Signed Packages

Troubleshooting Signed Packages

The pkgsign tool does not perform all possible checks for its inputs when signing packages.
Therefore, it is important to check signed packages to ensure that they can be properly installed
after being signed.

This section shows errors that can occur when attempting to install or update a signed package
and provides explanations of the errors and solutions to the problems.

A signed package can fail to install or update for reasons that are unique to signed packages.
For example, if the signature of a package fails to verify, or if the chain of trust cannot be
verified or anchored to a trusted certificate, the package fails to install.

Configure Image and Publisher Properties
The image and publisher properties described in this section influence the checks that are
performed on signed packages.

To configure image properties, use the set-property, add-property-value, remove-
property-value, and unset-property subcommands of the pkg command.

To specify signature policy and required names for a particular publisher, use the --set-
property, --add-property-value, --remove-property-value, and --unset-property
options of the set-publisher subcommand.

See “Configuring Package Signature Properties” in Adding and Updating Software in Oracle
Solaris 11.3 for examples.

Configure the following image properties to use signed packages:

signature-policy

The value of this property determines the checks that will be performed on manifests
when installing, updating, modifying, or verifying packages in the image. The final policy
applied to a package depends on the combination of image policy and publisher policy. The
combination will be at least as strict as the stricter of the two policies taken individually.
By default, the package client does not check whether certificates have been revoked.
To enable those checks, which might require the client to contact external web sites, set
the check-certificate-revocation image property to true. The following values are
allowed:

ignore

Ignore signatures for all manifests.

Chapter 9 • Signing IPS Packages 127

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=AUOSSgkkrw
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=AUOSSgkkrw

Troubleshooting Signed Packages

verify

Verify that all manifests with signatures are validly signed but do not require all
installed packages to be signed.
This is the default value.

require-signatures

Require that all newly installed packages have at least one valid signature. The pkg
fix and pkg verify commands also warn if an installed package does not have a valid
signature.

require-names

Follow the same requirements as require-signatures but also require that the strings
listed in the signature-required-names image property appear as a common name of
the certificates used to verify the chains of trust of the signatures.

signature-required-names

The value of this property is a list of names that must be seen as common names of
certificates while validating the signatures of a package.

trust-anchor-directory

The relative path name (relative to the root of the image) of the directory that contains the
trust anchors for the image. The default is etc/certs/CA.
If you create your own SSL Certificate Authority certificates, put those certificates in the
directory named by trust-anchor-directory and refresh the ca-certificates service as
described in “How to Use a Custom Certificate Authority Certificate” on page 125. Put
the CA certificates directly in the directory named by trust-anchor-directory; do not put
the certificates in another subdirectory.

Configure the following publisher properties to use signed packages from a particular publisher:

signature-policy

The function of this property is identical to the function of the signature-policy image
property except that this property applies only to packages from the specified publisher.

signature-required-names

The function of this property is identical to the function of the signature-required-
names image property except that this property applies only to packages from the specified
publisher.

128 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

Troubleshooting Signed Packages

Chain Certificate Not Found
The following error occurs when a certificate in the chain of trust is missing or otherwise
erroneous.

pkg install: The certificate which issued this certificate:

/C=US/ST=California/L=Menlo Park/O=pkg5/CN=cs1_ch1_ta3/emailAddress=cs1_ch1_ta3

could not be found. The issuer is:

/C=US/ST=California/L=Menlo Park/O=pkg5/CN=ch1_ta3/emailAddress=ch1_ta3

The package involved is: pkg://test/example_pkg@1.0,5.11-0:20110919T184152Z

In this example, there were three certificates in the chain of trust when the package was signed.
The chain of trust was rooted in the trust anchor, a certificate named ta3. The ta3 certificate
signed a chain certificate named ch1_ta3, and ch1_ta3 signed a code signing certificate named
cs1_ch1_ta3.

When the pkg command tried to install the package, it was able to locate the code signing
certificate, cs1_ch1_ta3, but could not locate the chain certificate, ch1_ta3, so the chain of
trust could not be established.

The most common cause of this problem is failing to provide the correct certificates to the -i
option of pkgsign.

Authorized Certificate Not Found
The following error is similar to the error shown in the previous example but the cause is
different.

pkg install: The certificate which issued this certificate:

/C=US/ST=California/L=Menlo Park/O=pkg5/CN=cs1_cs8_ch1_ta3/emailAddress=cs1_cs8_ch1_ta3

could not be found. The issuer is:

/C=US/ST=California/L=Menlo Park/O=pkg5/CN=cs8_ch1_ta3/emailAddress=cs8_ch1_ta3

The package involved is: pkg://test/example_pkg@1.0,5.11-0:20110919T201101Z

In this case, the package was signed using the cs1_cs8_ch1_ta3 certificate, which was signed
by the cs8_ch1_ta3 certificate.

The problem is that the cs8_ch1_ta3 certificate was not authorized to sign other certificates.
Specifically, the cs8_ch1_ta3 certificate had the basicConstraints extension set to CA:false
and marked critical.

When the pkg command verifies the chain of trust, it does not find a certificate that is allowed
to sign the cs1_cs8_ch1_ta3 certificate. Since the chain of trust cannot be verified from the leaf
to the root, the pkg command prevents the package from being installed.

Chapter 9 • Signing IPS Packages 129

Troubleshooting Signed Packages

Untrusted Self-Signed Certificate

The following error occurs when a chain of trust ends in a self-signed certificate that is not
trusted by the system.

pkg install: Chain was rooted in an untrusted self-signed certificate.

The package involved is:pkg://test/example_pkg@1.0,5.11-0:20110919T185335Z

When you create a chain of certificates using OpenSSL for testing, the root certificate is usually
self-signed, since there is little reason to have an outside company verify a certificate that is
only used for testing.

In a test situation, there are two solutions:

■ The first solution is to add the self-signed certificate that is the root of the chain of trust into
/etc/certs/CA and refresh the system/ca-certificates service. This mirrors the likely
situation customers will encounter where a production package is signed with a certificate
that is ultimately rooted in a certificate that is delivered with the operating system as a trust
anchor.

■ The second solution is to approve the self-signed certificate for the publisher that offers the
package for testing by using the --approve-ca-cert option with the pkg set-publisher
command.

Signature Value Does Not Match Expected Value

The following error occurs when the value on the signature action could not be verified using
the certificate that the action claims was paired with the key used to sign the package.

pkg install: A signature in pkg://test/example_pkg@1.0,5.11-0:20110919T195801Z

could not be verified for this reason:

The signature value did not match the expected value. Res: 0

The signature's hash is 0ce15c572961b7a0413b8390c90b7cac18ee9010

There are two possible causes for an error like this:

■ The first possible cause is that the package has been changed since it was signed. This is
unlikely but is possible if the package manifest has been hand edited since signing. Without
manual intervention, the package should not have changed since it was signed because
pkgsend strips existing signature actions during publication because the old signature is
invalid when the package gets a new time stamp.

■ The second, more likely cause is that the key and certificate used to the sign the package
were not a matched pair. If the certificate given to the -c option of pkgsign was not created

130 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

Troubleshooting Signed Packages

with the key given to the -k option of pkgsign, the package is signed, but its signature will
not be verified.

Unknown Critical Extension

The following error occurs when a certificate in the chain of trust uses a critical extension that
pkg does not understand.

pkg install: The certificate whose subject is

/C=US/ST=California/L=Menlo Park/O=pkg5/CN=cs2_ch1_ta3/emailAddress=cs2_ch1_ta3

could not be verified because it uses a critical extension that pkg5 cannot

handle yet. Extension name:issuerAltName

Extension value:<EMPTY>

Until pkg learns how to process that critical extension, the only solution is to regenerate the
certificate without the problematic critical extension.

Unknown Extension Value

The following error is similar to the previous error except that the problem is not with an
unfamiliar critical extension but with a value that pkg does not understand for an extension that
pkg does understand.

pkg install: The certificate whose subject is

/C=US/ST=California/L=Menlo Park/O=pkg5/CN=cs5_ch1_ta3/emailAddress=cs5_ch1_ta3

could not be verified because it has an extension with a value that pkg(7)

does not understand.

Extension name:keyUsage

Extension value:Encipher Only

In this case, pkg understands the keyUsage extension, but does not understand the value
Encipher Only. The error looks the same whether the extension in question is critical or not.

The solution, until pkg learns about the value in question, is to remove the value from the
extension, or remove the extension entirely.

Unauthorized Use of Certificate

The following error occurs when a certificate has been used for a purpose for which it was not
authorized.

Chapter 9 • Signing IPS Packages 131

Troubleshooting Signed Packages

pkg install: The certificate whose subject is

/C=US/ST=California/L=Menlo Park/O=pkg5/CN=ch1_ta3/emailAddress=ch1_ta3

could not be verified because it has been used inappropriately.

The way it is used means that the value for extension keyUsage must include

'DIGITAL SIGNATURE' but the value was 'Certificate Sign, CRL Sign'.

In this case, the certificate ch1_ta3 has been used to sign the package. The keyUsage extension
of the certificate means that the certificate is only valid to sign other certificates and CRLs
(Certificate Revocation Lists).

Unexpected Hash Value

The following error indicates that the certificate has been changed since it was last retrieved
from the publisher.

pkg install: Certificate

/tmp/ips.test.7149/0/image0/var/pkg/publisher/test/

certs/0ce15c572961b7a0413b8390c90b7cac18ee9010

has been modified on disk. Its hash value is not what was expected.

The certificate at the provided path is used to verify the package being installed, but the hash of
the contents on disk do not match what the signature action thought they should be.

The simple solution is to remove the certificate and allow pkg to download the certificate again.

Revoked Certificate

The following error indicates the certificate in question, which was in the chain of trust for the
package to be installed, was revoked by the issuer of the certificate.

pkg install: This certificate was revoked:

/C=US/ST=California/L=Menlo Park/O=pkg5/CN=cs1_ch1_ta4/emailAddress=cs1_ch1_ta4

for this reason: None

The package involved is: pkg://test/example_pkg@1.0,5.11-0:20110919T205539Z

132 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

 10 ♦ ♦ ♦ C H A P T E R 1 0

Handling Non-Global Zones

Developing packages that work consistently with zones usually involves little or no additional
work. This chapter describes:

■ How IPS handles zones
■ How to package software that delivers both global zone and non-global zone components

Packaging Considerations for Non-Global Zones

When considering zones and packaging, two questions need to be answered:

■ Does anything in my package have an interface that crosses the boundary between the
global zone and non-global zones?

■ How much of the package should be installed in the non-global zone?

Does the Package Cross the Global, Non-Global
Zone Boundary?

If pkgA delivers both kernel and userland functionality, and both sides of that interface must be
updated accordingly, then whenever pkgA is updated in a non-global zone, pkgA must also be
updated in any other zones where pkgA is installed.

To ensure this update is done correctly, use a parent dependency in pkgA. If a single package
delivers both sides of the interface, then a parent dependency on feature/package/
dependency/self ensures that the global zone and the non-global zones contain the same
version of the package, preventing version skew across the interface.

The parent dependency also ensures that if the package is in a non-global zone, then it is also
present in the global zone.

Chapter 10 • Handling Non-Global Zones 133

Packaging Considerations for Non-Global Zones

If the interface spans multiple packages, then the package that contains the non-global zone
side of the interface must contain a parent dependency on the package that delivers the
global zone side of the interface. The parent dependency is also discussed in “Dependency
Types” on page 69.

How Much of a Package Should Be Installed in a
Non-Global Zone?

If all of a package should be installed when the package is being installed in a non-global zone,
then nothing needs to be done to the package to enable it to function properly. For consumers
of the package, though, it can be reassuring to see that the package author properly considered
zone installation and decided that this package can function in a zone. For that reason, you
should explicitly state that the package functions in both global and non-global zones. To do
this, add the following action to the manifest:

set name=variant.opensolaris.zone value=global value=nonglobal

If no content in the package can be installed in a non-global zone (for example a package that
only delivers kernel modules or drivers), then the package should specify that it cannot be
installed in a non-global zone. To do this, add the following action to the manifest:

set name=variant.opensolaris.zone value=global

If some but not all of the content in the package can be installed in a non-global zone, then take
the following steps:

1. Use the following set action to state that the package can be installed in both global and
non-global zones:

set name=variant.opensolaris.zone value=global value=nonglobal

2. Identify the actions that are relevant only in the global zone or only in a non-global zone.
Assign the following attribute to actions that are relevant only in the global zone:

variant.opensolaris.zone=global

Assign the following attribute to actions that are relevant only in a non-global zone:

zone:variant.opensolaris.zone=nonglobal

If a package has a parent dependency or has pieces that are different in global and non-global
zones, test to ensure that the package works as expected in a non-global zone as well as in the
global zone.

134 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

Troubleshooting Package Installations in Non-Global Zones

If the package has a parent dependency on itself, then the global zone must configure the
repository that delivers the package as one of its origins. Install the package in the global zone
first, and then in the non-global zone for testing.

Troubleshooting Package Installations in Non-Global Zones

This section discusses problems that users might encounter when attempting to install a package
in a non-global zone.

Packages that Have Parent Dependencies on
Themselves

If you encounter a problem installing a package in a non-global zone, ensure that the following
services are online in the global zone:

svc:/application/pkg/zones-proxyd:default

svc:/application/pkg/system-repository:default

Ensure that the following service is online in the non-global zone:

svc:/application/pkg/zones-proxy-client:default

These three services provide publisher configuration to the non-global zone and a
communication channel that the non-global zone can use to make requests to the repositories
assigned to the system publishers served from the global zone.

You cannot update the package in the non-global zone, since it has a parent dependency on
itself. Initiate the update from the global zone; pkg updates the non-global zone along with the
global zone.

Once the package is installed in the non-global zone, test the functionality of the package.

Packages that Do Not Have Parent Dependencies
on Themselves

If the package does not have a parent dependency on itself, then you do not need to configure
the publisher in the global zone, and you should not install the package in the global zone.
Updating the package in the global zone will not update the package in the non-global zone. In

Chapter 10 • Handling Non-Global Zones 135

Troubleshooting Package Installations in Non-Global Zones

this case, updating the package in the global zone can cause unexpected results when testing the
older non-global zone package.

The simplest solution in this situation is to make the publisher available to the non-global zone,
and install and update the package from within the non-global zone.

If the zone cannot access the publisher's repositories, configuring the publisher in the global
zone enables the zones-proxy-client and system-repository services to proxy access to the
publisher for the non-global zone. Then install and update the package in the non-global zone.

136 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

 11 ♦ ♦ ♦ C H A P T E R 1 1

Modifying Published Packages

Occasionally, you might need to modify packages that you did not produce. For example,
you might need to override attributes, replace a portion of the package with an internal
implementation, or remove binaries that are not permitted on your systems.

This chapter describes how you can modify existing packages for local conditions.

This chapter discusses the following topics:

■ Republishing packages
■ Changing package metadata
■ Changing the package publisher

Republishing Packages

IPS enables you to easily republish an existing package with your modifications, even if you
did not originally publish the package. You can also republish new versions of the modified
package so that pkg update continues to work as users expect.

Use the following steps to modify and republish a package:

1. Use pkgrecv(1) to download the package to be republished in a raw format to a specified
directory. All of the files are named by their hash value, and the manifest is named
manifest. Remember to set any required proxy configuration in the http_proxy
environment variable.

2. Use pkgmogrify(1) to make the necessary modifications to the manifest. See “Add
Necessary Metadata to the Generated Manifest” on page 44 and Chapter 6, “Modifying
Package Manifests Programmatically”.
■ Remove any time stamp from the internal package FMRI to prevent confusion during

publication.
■ Remove any signature actions.

Chapter 11 • Modifying Published Packages 137

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pkgrecv-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pkgmogrify-1

Changing Package Metadata

3. Use pkglint(1) to verify the resulting package.
4. Use pkgsend(1) to republish the package. Republication strips the package of any signatures

that are present and ignores any time stamp specified by pkg.fmri. To prevent a warning
message, remove signature actions in the pkgmogrify step.
If you do not have permission to publish to the original source of the package, use
pkgrepo(1) to create a repository, and then use the following command to set the new
publisher ahead of the original publisher in the publisher search order:

$ pkg set-publisher --search-before=original_publisher new_publisher

5. If necessary, use pkgsign(1) to sign the package. To prevent client caching issues, sign
the package before you install the package, even for testing. See Chapter 9, “Signing IPS
Packages”.

Changing Package Metadata

In the following example, the original pkg.summary value is changed to be “IPS has lots of
features.” The package is downloaded using the --raw option of pkgrecv. By default, only
the newest version of the package is downloaded. The package is then republished to a new
repository.

$ mkdir republish; cd republish

$ pkgrecv -d . --raw -s http://pkg.oracle.com/solaris/release package/pkg

$ cd package* # The package name contains a '/' and is url-encoded.

$ cd *

$ cat > fix-pkg

Change the value of pkg.summary

<transform set name=pkg.summary -> edit value '.*' "IPS has lots of features">

Delete any signature actions

<transform signature -> drop>

Remove the time stamp from the fmri so that the new package gets a new time stamp

<transform set name=pkg.fmri -> edit value ":20.+" "">

^D

$ pkgmogrify manifest fix-pkg > new-manifest

$ pkgrepo create ./mypkg

$ pkgsend -s ./mypkg publish -d . new-manifest

Changing Package Publisher

Another common use case is to republish packages under a new publisher name. One case
when this is useful is to consolidate packages from multiple repositories into a single repository.

138 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pkglint-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pkgsend-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pkgrepo-1
http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pkgsign-1

Changing Package Publisher

For example, you might want to consolidate packages from repositories of several different
development teams into a single repository for integration testing.

To republish under a new publisher name, use the pkgrecv, pkgmogrify, pkgrepo, and pkgsend
steps shown in the previous example.

The following sample transform changes the publisher to mypublisher:

<transform set name=pkg.fmri -> edit value pkg://[^/]+/ pkg://mypublisher/>

You can use a simple shell script to iterate over all packages in the repository. Use the output
from pkgrecv --newest to process only the newest packages from the repository.

The following script saves the above transform in a file named change-pub.mog, and then
republishes from development-repo to a new repository new-repo, changing the package
publisher along the way:

#!/usr/bin/ksh93

pkgrepo create new-repo

pkgrepo -s new-repo set publisher/prefix=mypublisher

mkdir incoming

for package in $(pkgrecv -s ./development-repo --newest); do

 pkgrecv -s development-repo -d incoming --raw $package

done

for pdir in incoming/*/* ; do

 pkgmogrify $pdir/manifest change-pub.mog > $pdir/manifest.newpub

 pkgsend -s new-repo publish -d $pdir $pdir/manifest.newpub

done

This script could be modified to do tasks such as select only certain packages, make additional
changes to the versioning scheme of the packages, and show progress as it republishes each
package.

Chapter 11 • Modifying Published Packages 139

140 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

 A ♦ ♦ ♦ A P P E N D I X A

Classifying Packages

This appendix describes:

■ How to specify a classification for your package
■ Classification scheme definitions

Assigning Classifications
The Package Manager GUI uses the info.classification package attribute, with scheme
org.opensolaris.category.2008, to display packages by category. Users can also use the pkg
search command to display packages that have a given classification.

Use a set action to assign a classification to a package, as shown in the following example:

set name=info.classification \

 value="org.opensolaris.category.2008:System/Administration and Configuration"

The category and subcategory are separated by a forward slash character. Spaces in the attribute
value require quoting.

A package can have more than one classification, as shown in the following example:

set name=info.classification \

 value="org.opensolaris.category.2008:Meta Packages/Group Packages" \

 value="org.opensolaris.category.2008:Web Services/Application and Web Servers"

Classification Values
The following category and subcategory values are defined:

Meta Packages

Group Packages

Appendix A • Classifying Packages 141

Classification Values

Incorporations

Applications

Accessories
Configuration and Preferences
Games
Graphics and Imaging
Internet
Office
Panels and Applets
Plug-ins and Run-times
Sound and Video
System Utilities
Universal Access

Desktop (GNOME)

Documentation
File Managers
Libraries
Localizations
Scripts
Sessions
Theming
Trusted Extensions
Window Managers

Development

C
C++
Databases
Distribution Tools
Editors
Fortran
GNOME and GTK+
GNU
High Performance Computing
Java
Objective C
Other Languages
PHP
Perl
Python

142 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

Classification Values

Ruby
Source Code Management
Suites
System
X11

Drivers

Display
Media
Networking
Other Peripherals
Ports
Storage

System

Administration and Configuration
Core
Databases
Enterprise Management
File System
Fonts
Hardware
Internationalization
Libraries
Localizations
Media
Multimedia Libraries
Packaging
Printing
Security
Services
Shells
Software Management
Text Tools
Trusted
Virtualization
X11

Web Services

Application and Web Servers
Communications

Appendix A • Classifying Packages 143

144 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

 B ♦ ♦ ♦ A P P E N D I X B

How IPS Is Used To Package the Oracle Solaris
OS

This appendix describes:

■ Details of package FMRI version strings
■ How incorporate dependencies, facet.version-lock.* facets, group dependencies, and

action tags are used to define working package sets for the Oracle Solaris OS

Oracle Solaris Package Versioning

“Package Identifier: FMRI” on page 21 described the pkg.fmri attribute and the different parts
of the version field, including how the version field can be used to support different models of
software development. This section explains how the Oracle Solaris OS uses the version field,
and provides insight into the reasons that a fine-grained versioning scheme can be useful. In
your packages, you do not need to follow the same versioning scheme that the Oracle Solaris
OS uses.

The meaning of each part of the version string in the following sample package FMRI is given
below:

pkg://solaris/system/library/storage/suri@0.5.11,5.11-0.175.3.0.0.19.0:20150329T164922Z

0.5.11

Component version. For packages that are part of the Oracle Solaris OS, this is the OS
major.minor version. For other packages, this is the upstream version. For example, the
component version of the following Apache Web Server package is 2.2.29:

pkg:/web/server/apache-22@2.2.29,5.11-0.175.3.0.0.19.0:20150329T181125Z

5.11

Release. This is used to define the OS release that this package was built for. The release
should always be 5.11 for packages created for Oracle Solaris 11.

Appendix B • How IPS Is Used To Package the Oracle Solaris OS 145

Oracle Solaris Package Versioning

0.175.3.0.0.19.0

Branch version. Oracle Solaris packages show the following information in the branch
version portion of the version string of a package FMRI:

0.175 Major release number. The major or marketing development release
build number. In this example, 0.175 indicates Oracle Solaris 11.

3 Update release number. The update release number for this Oracle
Solaris release. The update value is 0 for the first customer shipment
of an Oracle Solaris release, 1 for the first update of that release, 2
for the second update of that release, and so forth. In this example, 3
indicates Oracle Solaris 11.3.

0 SRU number. The Support Repository Update (SRU) number for
this update release. SRUs are approximately monthly updates that
fix bugs, fix security issues, or provide support for new hardware.
SRUs do not include new features. The Oracle Support Repository is
available only to systems under a support contract.

0 Reserved. This field is not currently used for Oracle Solaris
packages.

19 Release or SRU build number. The build number of the SRU, or the
respin number for the major release.

0 Nightly build number. The build number for the individual nightly
builds.

If the package is an Interim Diagnostic Relief (IDR), then the branch version of the
package FMRI contains the following two additional fields. IDRs are package updates that
help diagnose customer issues or provide temporary relief for a problem until a formal
package update is issued. The following examples are for idr824, which has FMRI pkg://
solaris/idr824@4,5.11:20131114T034951Z and contains packages such as pkg:/system/
library@0.5.11-0.175.1.6.0.4.2.824.4:

824

Name of the IDR.

4

Version of the IDR.

20150329T164922Z

Time stamp. The time stamp is defined when the package is published.

146 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

Oracle Solaris Constraint Packages

Oracle Solaris Constraint Packages

Oracle Solaris is delivered as a set of packages, with subsets of packages constrained by
incorporate dependencies. See “Constraint Packages” in Adding and Updating Software in
Oracle Solaris 11.3 for more information about constraint packages.

Use the following command to list available constraint packages:

$ pkg list -as entire *incorporation

Constraint packages contain incorporate dependencies. See “incorporate
Dependency” on page 74 for more information.

The pkg:/entire package is a special constraint package that constrains other constraint
packages to the same build by including both require and incorporate dependencies on each
constraint package. In this way, the pkg:/entire package defines a software surface such that
core Oracle Solaris system packages are upgraded as a single group.

Relaxing Dependency Constraints

Some constraint packages use facet.version-lock.* facets to enable the administrator to
use the pkg change-facet command to relax the constraint for the specified packages. See
“Enabling Administrators to Relax Constraints on Installable Package Versions” on page 77 for
more information.

The following list shows examples of facet.version-lock.* definitions in the pkg:/entire
constraint package.

Caution - Unlocking facet versions in pkg:/entire can result in an unsupported system. Those
packages should only be unlocked on advice from Oracle support.

depend fmri=consolidation/desktop/gnome-incorporation type=require

depend facet.version-lock.consolidation/desktop/gnome-incorporation=true \

 fmri=consolidation/desktop/gnome-incorporation@0.5.11-0.175.3.10.0.4.0

 type=incorporate

depend fmri=consolidation/desktop/gnome-incorporation@0.5.11-0.175.3 type=incorporate

depend fmri=consolidation/ips/ips-incorporation type=require

depend facet.version-lock.consolidation/ips/ips-incorporation=true \

 fmri=consolidation/ips/ips-incorporation@0.5.11-0.175.3.13.0.3.0 type=incorporate

depend fmri=consolidation/ips/ips-incorporation@0.5.11-0.175.3 type=incorporate

depend fmri=consolidation/java-8/java-8-incorporation type=require

depend facet.version-lock.consolidation/java-8/java-8-incorporation=true \

Appendix B • How IPS Is Used To Package the Oracle Solaris OS 147

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=AUOSSincorporations
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=AUOSSincorporations

Oracle Solaris Group Packages

 fmri=consolidation/java-8/java-8-incorporation@1.8.0.102.14-0 type=incorporate

depend fmri=consolidation/java-8/java-8-incorporation@1.8.0 type=incorporate

Oracle Solaris Group Packages

Oracle Solaris defines several group packages, which contain group dependencies. These
group packages enable convenient installation of common sets of packages. See “group
Dependency” on page 71 and “Group Packages” in Adding and Updating Software in Oracle
Solaris 11.3 for more information.

Use the following command to list available group packages:

$ pkg list -as entire group*

Attributes and Tags

This section describes general attributes, Oracle Solaris action attributes, and Oracle Solaris
attribute tags.

Informational Attributes

The following attributes are not necessary for correct package installation, but having a shared
convention reduces confusion between publishers and users.

info.classification

See “Set Actions” on page 32 for information about the info.classification attribute.
See a list of classifications in Appendix A, “Classifying Packages”.

info.keyword

A list of additional terms that should cause this package to be returned by a search.

info.maintainer

A human readable string that describes the entity that provides the package. This string
should be the name, or name and email of an individual, or the name of an organization.

info.maintainer-url

A URL associated with the entity that provides the package.

148 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=AUOSSgrouppkgs
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01&id=AUOSSgrouppkgs

Attributes and Tags

info.upstream

A human readable string that describes the entity that creates the software. This string
should be the name, or name and email of an individual, or the name of an organization.

info.upstream-url

A URL associated with the entity that creates the software delivered in the package.

info.source-url

A URL to the source code bundle for the package, if appropriate.

info.repository-url

A URL to the source code repository for the package, if appropriate.

info.repository-changeset

A changeset ID for the version of the source code contained in info.repository-url.

Oracle Solaris Attributes

org.opensolaris.arc-caseid

One or more case identifiers (for example, PSARC/2008/190) associated with the ARC
case (Architecture Review Committee) or cases associated with the component delivered
by the package.

org.opensolaris.smf.fmri

One or more FMRIs that represent SMF services delivered by this package. These
attributes are automatically generated by pkgdepend for packages that contain SMF service
manifests. See the pkgdepend(1) man page.

Organization-Specific Attributes

To provide additional metadata for a package, use an organization-specific prefix on the
attribute name. Organizations can use this method to provide additional metadata for packages
developed in that organization or to amend the metadata of an existing package. To amend the
metadata of an existing package, you must have control over the repository where the package
is published. For example, a service organization might introduce an attribute named service.
example.com,support-level or com.example.service,support-level to describe a level of
support for a package and its contents.

Appendix B • How IPS Is Used To Package the Oracle Solaris OS 149

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1pkgdepend-1

Attributes and Tags

Oracle Solaris Tags

variant.opensolaris.zone

Specifies which actions in a package can be installed in a non-global zone, in the global
zone, or in either a non-global or the global zone. See Chapter 10, “Handling Non-Global
Zones” for more information.

Oracle Solaris Revert Tags

See the revert-tag attribute in “File Actions” on page 25 and “Directory Actions” on page 30
for a general description of the use of the revert-tag attribute to revert file system content to
its manifest-defined state.

Oracle Solaris reverts configuration and other state by using revert tags during various
administrative actions. Tag names that have the system: prefix are reserved for use by Oracle
Solaris. The system:clone and system:dev-init revert tags can also be used to package third
party software. Third party software cannot be packaged with any other revert tag that begins
with system:.

system:clone

Clears configuration and state that should not be propagated during system or zone cloning.
The system:clone tag is used during clone archive creation. For example, the /etc/svc/
profile/node and /etc/svc/profile/sysconfig directories are packaged with revert-
tag=system:clone=* because those directories contain configuration that is specific to that
system and should not be included in a clone archive.

system:dev-init

Clears device configuration that is unique to a specific system. The system:dev-init tag is
used during clone archive creation and during recovery archive creation.

See the archiveadm(1M) man page for more information about the use of the system:clone
and system:dev-init revert tags.

system:sysconfig-profile

Removes unpackaged content from the /etc/svc/profile/ directories when the
sysconfig unconfigure --remove-profiles command is used. See the sysconfig(1M)
man page for more information.

150 Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.3 • July 2017

	Packaging and Delivering Software With the Image Packaging System in Oracle® Solaris 11.3
	Contents
	Using This Documentation
	Product Documentation Library
	Feedback

	Chapter 1 • IPS Design Goals, Concepts, and Terminology
	IPS Design Goals
	Software Self-Assembly
	Tools for Software Self-Assembly
	Atomic Software Objects
	Configuration Composition
	Actuators and SMF Services

	Examples of Software Self-Assembly in Oracle Solaris
	Apache Web Server Configuration
	User Attributes Configuration
	Security Configuration

	IPS Package Lifecycle
	IPS Terminology and Components
	Installable Image
	Package Identifier: FMRI
	Package Publisher
	Package Name
	Package Version

	Package Content: Actions
	File Actions
	Directory Actions
	Link Actions
	Hardlink Actions
	Set Actions
	Driver Actions
	Depend Actions
	License Actions
	Legacy Actions
	Signature Actions
	User Actions
	Group Actions

	Package Repository

	Chapter 2 • Packaging Software With IPS
	Designing a Package
	Creating and Publishing a Package
	Generate a Package Manifest
	Add Necessary Metadata to the Generated Manifest
	Construct an Appropriate Package Version String

	Evaluate Dependencies
	Generate Package Dependencies
	Resolve Package Dependencies

	Add Any Facets or Actuators That Are Needed
	Verify the Package
	Publish the Package
	Sign the Package
	Test the Package
	Deliver the Package
	Deliver to a Package Repository
	Deliver as a Package Archive File
	Using Package Repositories and Archives

	Converting SVR4 Packages To IPS Packages
	Generate an IPS Package Manifest from a SVR4 Package
	Verify the Converted Package
	Other Package Conversion Considerations

	Chapter 3 • Installing, Removing, and Updating Software Packages
	How Package Changes Are Performed
	Check Input for Errors
	Determine the System End State
	Run Basic Checks
	Run the Solver
	Optimize the Solver Results
	Evaluate Actions
	Download Content
	Execute Actions
	Process Actuators
	Update Boot Archive

	Chapter 4 • Specifying Package Dependencies
	Dependency Types
	require Dependency
	require-any Dependency
	optional Dependency
	conditional Dependency
	group Dependency
	group-any Dependency
	origin Dependency
	Device Driver with Manually Maintained Firmware

	incorporate Dependency
	parent Dependency
	exclude Dependency

	Constraints and Freezing
	Constraining Installable Package Versions
	Freezing Installable Package Versions
	Enabling Administrators to Relax Constraints on Installable Package Versions

	Chapter 5 • Allowing Variations
	Mutually Exclusive Software Components
	Optional Software Components

	Chapter 6 • Modifying Package Manifests Programmatically
	Transform Rules
	Include Rules
	Transform Order
	Packaged Transforms

	Chapter 7 • Automating System Change as Part of Package Installation
	Specifying System Changes on Package Actions
	Delivering an SMF Service
	Delivering a Service that Runs Once
	Assembling a Custom File from Fragment Files

	Chapter 8 • Advanced Topics For Package Updating
	Avoiding Conflicting Package Content
	Modifying Package Content
	Renaming, Merging, and Splitting Packages
	Renaming a Single Package
	Merging Two Packages
	Splitting a Package

	Obsoleting Packages
	Preserving Packaged Editable Files that Migrate
	Preserving Unpackaged Files
	Moving Unpackaged Files on Directory Removal
	Packaging the Directory Separately
	How to Preserve a Directory After Content Uninstall

	Sharing Content Across Boot Environments
	Existing Shared Content in Oracle Solaris
	Delivering Content to a Shared Area
	How to Enable Your Application to Use a Shared Area
	How to Migrate Unshared Content to a Shared Area

	Delivering a File That Is Also Delivered by Another Package
	Delivering Multiple Implementations of an Application
	Attributes of Mediated Links
	Specifying Mediated Links
	Best Practices for Mediated Links

	Packaging for System Migration and System Cloning

	Chapter 9 • Signing IPS Packages
	Signature Actions
	Signing Packages
	Using a Custom Certificate Authority Certificate
	How to Use a Custom Certificate Authority Certificate

	Troubleshooting Signed Packages
	Configure Image and Publisher Properties
	Chain Certificate Not Found
	Authorized Certificate Not Found
	Untrusted Self-Signed Certificate
	Signature Value Does Not Match Expected Value
	Unknown Critical Extension
	Unknown Extension Value
	Unauthorized Use of Certificate
	Unexpected Hash Value
	Revoked Certificate

	Chapter 10 • Handling Non-Global Zones
	Packaging Considerations for Non-Global Zones
	Does the Package Cross the Global, Non-Global Zone Boundary?
	How Much of a Package Should Be Installed in a Non-Global Zone?

	Troubleshooting Package Installations in Non-Global Zones
	Packages that Have Parent Dependencies on Themselves
	Packages that Do Not Have Parent Dependencies on Themselves

	Chapter 11 • Modifying Published Packages
	Republishing Packages
	Changing Package Metadata
	Changing Package Publisher

	Appendix A • Classifying Packages
	Assigning Classifications
	Classification Values

	Appendix B • How IPS Is Used To Package the Oracle Solaris OS
	Oracle Solaris Package Versioning
	Oracle Solaris Constraint Packages
	Relaxing Dependency Constraints
	Oracle Solaris Group Packages
	Attributes and Tags
	Informational Attributes
	Oracle Solaris Attributes
	Organization-Specific Attributes
	Oracle Solaris Tags
	Oracle Solaris Revert Tags

