
Remote Administration Daemon
Developer's Guide

Part No: E54825
April 2020

Remote Administration Daemon Developer's Guide

Part No: E54825

Copyright © 2012, 2020, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except
as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform,
publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous
applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are
not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement
between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Référence: E54825

Copyright © 2012, 2020, Oracle et/ou ses affiliés. Tous droits réservés.

Ce logiciel et la documentation qui l'accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des restrictions d'utilisation et
de divulgation. Sauf stipulation expresse de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, accorder de licence, transmettre,
distribuer, exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est interdit de procéder à toute
ingénierie inverse du logiciel, de le désassembler ou de le décompiler, excepté à des fins d'interopérabilité avec des logiciels tiers ou tel que prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu'elles soient exemptes d'erreurs et vous
invite, le cas échéant, à lui en faire part par écrit.

Si ce logiciel, ou la documentation qui l'accompagne, est livré sous licence au Gouvernement des Etats-Unis, ou à quiconque qui aurait souscrit la licence de ce logiciel pour le
compte du Gouvernement des Etats-Unis, la notice suivante s'applique :

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d'applications de gestion des informations. Ce logiciel ou matériel n'est pas conçu ni n'est destiné à être
utilisé dans des applications à risque, notamment dans des applications pouvant causer un risque de dommages corporels. Si vous utilisez ce logiciel ou ce matériel dans le cadre
d'applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures nécessaires à son utilisation dans
des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés par l'utilisation de ce logiciel ou matériel pour des
applications dangereuses.

Oracle et Java sont des marques déposées d'Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre à des marques appartenant à d'autres propriétaires
qu'Oracle.

Intel et Intel Xeon sont des marques ou des marques déposées d'Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques
déposées de SPARC International, Inc. AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d'Advanced Micro Devices. UNIX est une
marque déposée de The Open Group.

Ce logiciel ou matériel et la documentation qui l'accompagne peuvent fournir des informations ou des liens donnant accès à des contenus, des produits et des services émanant de
tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou services émanant de tiers, sauf mention contraire stipulée
dans un contrat entre vous et Oracle. En aucun cas, Oracle Corporation et ses affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des
dommages causés par l'accès à des contenus, produits ou services tiers, ou à leur utilisation, sauf mention contraire stipulée dans un contrat entre vous et Oracle.

Accès aux services de support Oracle

Les clients Oracle qui ont souscrit un contrat de support ont accès au support électronique via My Oracle Support. Pour plus d'informations, visitez le site http://www.oracle.com/
pls/topic/lookup?ctx=acc&id=info ou le site http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs si vous êtes malentendant.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Contents

Using This Documentation .. 11

1 Introduction to the Remote Administration Daemon .....................................  13
Remote Administration Daemon ..  13
How RAD Works ..  14
Overview of RAD Features ...  16
Designing RAD Components ... 17

RAD APIs ...  17
RAD Interface ..  21

RAD Namespace ...  29
RAD Naming ...  29

Data Types Supported in RAD ..  30
RAD Base Types ... 30
RAD Derived Types ..  31
Optional Data in RAD ...  31

Tips for Using RAD Modules .. 31

2 Connecting to RAD ...  33
C Client Language Environment in RAD ...  33

Connecting to RAD in C ..  33
RAD Namespace in C ..  36
RAD Interface Components in C .. 41

Java Language Environment in RAD ..  49
Connecting to RAD in Java ..  49
RAD Namespace in Java ..  51
Interface Components for RAD in Java ...  56

Python Language Environment in RAD ... 61
Connecting to RAD in Python ...  62

5

Contents

RAD Namespace in Python ...  64
RAD Interface Components in Python ..  68
Connecting in Python to a RAD Instance by Using a URI .............................  73

3 Abstract Data Representation ...  75
ADR Interface Description Language ..  75

ADR Overview ...  75
Documentation Definitions ..  76
Version Element ..  78
Enumeration Definitions ...  78
Structure Definitions ..  79
Dictionary Definitions ..  80
Interface Definitions ..  81
ADR API Example ..  84

radadrgen IDL Processing Tool ... 85

4 Module Development ... 87
RAD APIs in C ..  87

Entry Points in C ..  87
Error Codes in C ...  88
Global Variables in C ...  89
RAD Module Registration in C .. 89
RAD Instance Management in C ..  90
RAD Container Interactions in C ...  90
RAD Logging in C ..  91
Using Threads in RAD in C ..  91
RAD Synchronization Functions in C ...  92
RAD Subprocess Functions in C ..  92
RAD Utility Functions in C ..  93
RAD Locale Functions in C ..  94
Transactional Processing in RAD Modules in C ..  94
Asynchronous Methods and Progress Reporting in RAD in C ........................  94

Exported Python Interfaces Used by RAD ...  95
rad.server Python Module ..  95
RADInstance Python Class ..  96
RADContainer Python Class ..  96

6 Remote Administration Daemon Developer's Guide • April 2020

Contents

RADException Python Class ..  97
RAD Namespaces .. 98

RAD Static Objects ...  98
RAD Module Dynamic Handlers .. 98

rad Module Linkage ..  99

5 REST APIs for RAD Clients ...  101
RESTful Interface and RAD ..  101
URI Specification for RAD Resources ... 103

URI for an Individual RAD Resource .. 104
URI for a RAD Resource Collection ...  104
Invoking RAD Interface Methods ...  104

REST Requests ...  105
REST Request Examples ..  106

REST Responses ...  108
HTTP Status Codes and REST ...  108
Error Responses to RAD Request ...  109

RAD Authentication ...  110
RAD Authenticating Local Clients ..  110
RAD Authenticating Remote Clients ...  112

REST API Reference ...  115

A zonemgr ADR Interface Description Language Example ...............................  119

Index ..  127

7

8 Remote Administration Daemon Developer's Guide • April 2020

Examples

EXAMPLE 1 C Language – Creating a RAD Local Connection ..................................  34
EXAMPLE 2 C Language – Creating a RAD Remote Connection Over TCP IPv4 on Port

7777 ..  35
EXAMPLE 3 C Language – Obtaining a Reference to a Singleton ...............................  37
EXAMPLE 4 C Language – Listing RAD Interface Instances .....................................  38
EXAMPLE 5 C Language – Obtaining a Remote Object Reference From a Name ...........  39
EXAMPLE 6 C Language – Using Glob Patterns ...  39
EXAMPLE 7 C Language – Using Glob Patterns With Wildcards ................................ 40
EXAMPLE 8 C Language – Using Regex Patterns ...  41
EXAMPLE 9 C Language – zonemgr ErrorCode Enumeration ....................................  42
EXAMPLE 10 C Language – zonemgr Property Struct Definition and Its Free Function .....  43
EXAMPLE 11 C Language – Working With RAD Object References ............................  45
EXAMPLE 12 C Language – Accessing a RAD Remote Property .................................  46
EXAMPLE 13 C Language – Subscribing to and Handling RAD Events ........................  47
EXAMPLE 14 C Language – Handling RAD Errors ...  48
EXAMPLE 15 Java Language – Creating a Local RAD Connection ..............................  49
EXAMPLE 16 Java Language – Creating Remote RAD Connection to a TCP Instance on

Port 7777 ...  50
EXAMPLE 17 Java Language – Obtaining Reference to a RAD Singleton ......................  52
EXAMPLE 18 Java Language – Listing RAD Interface Instances .................................. 53
EXAMPLE 19 Java Language – Obtaining a Remote Object Reference From a RAD

Name ...  54
EXAMPLE 20 Java Language – Using Glob Patterns in RAD ......................................  54
EXAMPLE 21 Java Language – Using Glob Patterns With Wildcards ............................  55
EXAMPLE 22 Java Language – Using Maps With Patterns ...  55
EXAMPLE 23 Java Language – Using Regex Patterns ..  56
EXAMPLE 24 Java Language – Using RAD Enumerations ...  57
EXAMPLE 25 Java Language – Using RAD Structs ... 58
EXAMPLE 26 Java Language – Invoking a RAD Remote Method ................................  59

9

Examples

EXAMPLE 27 Java Language – Accessing a RAD Remote Property .............................  59
EXAMPLE 28 Java Language – Subscribing to and Handling RAD Events .....................  60
EXAMPLE 29 Java Language – Handling RAD Errors ...  61
EXAMPLE 30 Python Language – Accessing Help for a Binding Module ......................  62
EXAMPLE 31 Python Language – Creating a RAD Local Connection ...........................  63
EXAMPLE 32 Python Language – Creating a RAD Remote Connection Over TLS ..........  63
EXAMPLE 33 Python Language – Obtaining a Reference to a RAD Singleton ................  65
EXAMPLE 34 Python Language – Listing RAD Interface Instances ..............................  66
EXAMPLE 35 Python Language – Obtaining a RAD Remote Object Reference ...............  66
EXAMPLE 36 Python Language – Using Glob Patterns in RAD ...................................  67
EXAMPLE 37 Python Language – Using Glob Patterns With Wildcards in RAD .............. 67
EXAMPLE 38 Python Language – Using Regex Patterns in RAD .................................  68
EXAMPLE 39 Python Language – Using RAD Enumerations ......................................  69
EXAMPLE 40 Python Language – Using RAD Structs ...  69
EXAMPLE 41 Python Language – Working With RAD Object References .....................  70
EXAMPLE 42 Python Language – Accessing a Remote RAD Property ..........................  71
EXAMPLE 43 Python Language – Subscribing to and Handling RAD Events .................  72
EXAMPLE 44 Python Language – Handling RAD Errors ..  72
EXAMPLE 45 Python Language – Connecting to a RAD Instance by Using a URI ...........  74
EXAMPLE 46 Skeleton API document ..  76
EXAMPLE 47 Enumeration Definition ...  79
EXAMPLE 48 struct Definition ..  80
EXAMPLE 49 Defining a Dictionary ...  80
EXAMPLE 50 Method Definition ...  82
EXAMPLE 51 Attribute Definition ..  82
EXAMPLE 52 Event Definition ..  83
EXAMPLE 53 Using the ADR API ...  84
EXAMPLE 54 Using RADException ..  97
EXAMPLE 55 RAD Module Initialization ..  99
EXAMPLE 56 Interacting With RAD by Using REST ... 101
EXAMPLE 57 Listing the anet Properties of a Zone in RAD .....................................  105
EXAMPLE 58 Creating a Resource by Using REST ...  106
EXAMPLE 59 Updating a Resource by Using REST ..  106
EXAMPLE 60 Querying a Resource by Using REST ..  107
EXAMPLE 61 Deleting a Resource by using REST ..  107

10 Remote Administration Daemon Developer's Guide • April 2020

Using This Documentation

■ Overview – Describes how to use the remote administration daemon to provide
programmatic access to the administration and configuration functionality of the Oracle
Solaris operating system

■ Audience – Developers who want to use RAD to create administrative interfaces or to use
interfaces published using RAD by others.

■ Required knowledge – Experience in developing Java or Python based application
interfaces.

Product Documentation Library

Documentation and resources for this product and related products are available at http://www.
oracle.com/pls/topic/lookup?ctx=E53394-01.

Feedback

Provide feedback about this documentation at http://www.oracle.com/goto/docfeedback.

Using This Documentation 11

http://www.oracle.com/pls/topic/lookup?ctx=E53394-01
http://www.oracle.com/pls/topic/lookup?ctx=E53394-01
http://www.oracle.com/goto/docfeedback

12 Remote Administration Daemon Developer's Guide • April 2020

 1 ♦ ♦ ♦ C H A P T E R 1

Introduction to the Remote Administration
Daemon

The Remote Administration Daemon, usually referred to by its acronym (RAD) or its command
name (rad), is a standard system service that offers secure, remote administrative access to an
Oracle Solaris system. This book helps developers develop client applications using RAD.

Remote Administration Daemon

RAD provides programmable interfaces that enable developers and administrators to configure
and manage Oracle Solaris system components. You can configure and manage system
components using C, Java, Python, and REpresentational State Transfer (REST) APIs. RAD
also enables developers to create custom interfaces using these APIs to manage the system
components.

RAD is designed to provide a remote administrative interface for operating system components
or subsystems. The remote interfaces support easy administration of a distributed systems.
However, RAD interfaces are not intended to build distributed systems. You can use RPC, RMI,
CORBA, MPI, and other technologies to build distributed applications.

A RAD interface defines how a client can interact with a system through a set of methods,
attributes, and events using a well-defined namespace.

Developers and administrators, who previously used $EDITOR can now use one the following
approaches to modify system components locally:

■ Using a command-line interface (CLI) or an interactive user interface (UI)
■ Using a browser or a remote client
■ Using a CLI, an interactive UI, and a browser or a client with an enterprise-scale

provisioning tool

All of these methods require programmable access to configuration.

Chapter 1 • Introduction to the Remote Administration Daemon 13

How RAD Works

RAD uses a client-server design to support different types of clients such as clients written
in different languages, clients running without privilege, and clients running remotely. In a
client-server design, RAD acts as a server that services remote procedure calls and clients act as
consumers.

By providing a procedure call interface, RAD enables non-privileged local consumers to
perform actions on behalf of their users that require elevated privilege, without resorting to a
CLI-based implementation. By establishing a stream protocol, RAD enables the consumers to
perform actions on any system or device over a range of secure transport options.

The rad protocol is efficient and easy to implement, which makes it simple to support all
administrative tasks provided by an interface. The protocol used by RAD is efficient and is easy
to implement.
RAD differs from remote procedure call (RPC) in the following ways:

■ Procedure calls in RAD are made against server objects in a browsable, structured
namespace. This process permits a more logical progression of program than central
allocation of program numbers.

■ Procedure calls can be asynchronous. Depending on the protocol in use, a client might have
multiple simultaneous outstanding requests.

■ You can inspect and modify the interfaces exported by the server objects. This inspection
facilitates interactive usage, debugging environments, and enables clients to use
dynamically-typed languages such as Python.

■ Using RAD interfaces, you can define properties and asynchronous event sources.

Note - The native RAD protocol supports asynchronous procedure calls after the client is
authenticated. The underlying implementation of other protocols, such as XML-RPC, might not
support asynchronous calls.

How RAD Works

In RAD architecture, the clients can be local or remote, and the clients interact with the RAD
modules to perform various administrative activities. For example, a client interacts with the
ZFS management RAD module to perform storage-related activities. These RAD clients can be
written in C, Java, or Python.

The following figure shows the architecture of RAD.

14 Remote Administration Daemon Developer's Guide • April 2020

How RAD Works

FIGURE 1 Architecture of RAD

Chapter 1 • Introduction to the Remote Administration Daemon 15

Overview of RAD Features

Overview of RAD Features

RAD provides the following main functionalities:

■ Essentials
■ Two SMF services: svc:/system/rad:local and svc:/system/rad:remote
■ Structured and browsable namespace.
■ Inspectable, typed, and versioned interfaces.
■ Asynchronous event sources.
■ XML-based interactive data language (IDL) abstract data representation (ADR) that

supports formal definitions of APIs. The IDL compiler radadrgen generates client
language bindings.

■ Security
■ Full PAM conversation support including use of pam_setcred(3PAM) to set the audit

context.
■ Authentication by using GSSAPI in deployments where Kerberos is configured.
■ Implicit authentication by using getpeerucred(3C) when possible.
■ Non-local network connectivity is not available by default. RAD is preconfigured to use

TLS.
■ Most operations are automatically delegated to lesser-privileged processes.
■ Defines two authorizations and two rights profiles to provide fine-grained separation of

powers for managing and configuring the RAD SMF services.
■ RAD authorizations

■ solaris.smf.manage.rad – Grants the authorization to enable, disable, or
restart the RAD SMF services.

■ solaris.smf.value.rad – Grants the authorization to change RAD SMF
property values.

■ RAD rights profiles
■ RAD Management – Includes the solaris.smf.manage.rad authorization.
■ RAD Configuration – Includes the solaris.smf.value.rad authorization.

■ Generates AUE_rad_login, AUE_logout, AUE_role_login, AUE_role_logout, and
AUE_passwd audit events.

■ Connectivity
■ Local access by using AF_UNIX sockets.
■ Remote access by using TCP sockets.
■ Secure remote access by using TLS sockets.

16 Remote Administration Daemon Developer's Guide • April 2020

Designing RAD Components

■ Captive execution with access through a pipe.
■ Connection points are completely configurable at the command line or by using SMF.

■ Client support
■ Java language binding provides access to all defined server interfaces.
■ Python language binding provides access to all defined server interfaces.
■ C language binding provides access to all defined server interfaces.

■ Extension
■ A public native C module interface supports addition of third-party content.
■ radadrgen can generate server-side type definitions and stubs from IDL input.
■ A native execution system can automatically run modules with authenticated user's

privilege and audit context, simplifying authentication and auditing.
■ Private module interfaces enable the defining of new transports.

Designing RAD Components

The components that are fundamental to RAD are interfaces, objects that implement those
interfaces, and the namespace in which those objects can be found and operated upon.

RAD APIs

The users of the RAD APIs belong to two categories. administrators and developers.
Accommodating both categories of consumers within one interface is difficult. Administrators
require task-based APIs which match directly onto well-understood and defined administrative
activities. Developers require detailed, operation-based interfaces which may be aggregated to
better support unusual or niche administrative activities.

For any given subsystem, you can view existing command-line utilities (CLIs) and libraries
(APIs) as expressions of the rad APIs. The CLIs represent the task-based administrative
interfaces and the APIs represent the operation-based developer interfaces. The goal in using
RAD is to provide interfaces that address the lowest-level objectives of the audience. If the
audience are administrators (task-based), this effort could translate to matching existing CLIs. If
the audience are developers, this effort could mean significantly less aggregation of the lower-
level APIs.

APIs are the primary deliverable of a RAD module. The API acts as the name root for all
components of the API, defining a namespace which identifies objects to client. APIs are

Chapter 1 • Introduction to the Remote Administration Daemon 17

Designing RAD Components

versioned and a single RAD instance is capable of offering multiple major versions of APIs to
different clients. RAD modules are a grouping of interfaces, events, methods, and properties
which enable a user to interact with a subsystem.

When exposing the elements of a subsystem consider carefully how existing functions can be
grouped together to form an interface. Imperative languages, such as C, tend to pass structures
as the first argument to functions, which provides a clear indicator as to how best to group
functions into APIs.

RAD API Versions

A version element is required for all APIs. See “RAD Interface Versioning” on page 27 for
more details about API versions.

RAD API Namespace and Restricted Names

An API defines a namespace in which all top-level elements are defined. Names of components
must be unique. Names must not begin with "_rad" because this string is reserved for toolchain
provided functionality.

Synchronous and Asynchronous Invocation in RAD

All method invocations in RAD are synchronous. Asynchronous behavior can be obtained by
requiring events to provide notifications. For more information, see “RAD Synchronization
Functions in C” on page 92.

Legacy Constraints for RAD APIs

Some CLIs contain processing capabilities that are not accessible from an existing API. Such
constraints must be considered in the RAD API design.

Do not duplicate the functionality in the new RAD interface, which would introduce
redundancy and significantly increase maintenance complexity. One particular area where RAD
interface developers need to be careful is to avoid duplication around parameter checking and
transformation. This duplication is likely to be a sign that existing CLI functionality should be
migrated to an API.

RAD modules must be written in C. Some subsystems, for example, those written in other
languages, have no mechanism for a C module to access API functionality. In these cases, RAD

18 Remote Administration Daemon Developer's Guide • April 2020

Designing RAD Components

module creators must access whatever functionality is available in the CLI or make a potentially
significant engineering effort to access the existing functionality, for example, rewriting existing
code in C, embedding a language interpreter in their C module, and the like.

RAD Client Library Support

RAD modules are designed to have a language agnostic interface. However, you might want to
provide additional language support through the delivery of a language-specific extension. You
should restrict the use of such extensions. Use them only to help improve the fit of an interface
into a language idiom.

RAD API Design Examples

Combining the tools described so far in this document to construct an API with a known design
can be a challenge. Several possible solutions for a particular problem are often available. The
examples in this section illustrate the best practices.

This is only an example. This means it does not reflect the user management modules that are in
Oracle Solaris.

RAD User Management Example

Object or interface granularity is subjective. For example, imagine an interface for managing a
user. The user has a few modifiable properties:

Note - This example does not reflect the user management modules in Oracle Solaris.

Object or interface granularity is subjective. For example, imagine an interface for managing a
user. The user has a few modifiable properties:

■ name property of type string
■ shell property of type string
■ admin property of type boolean

The interface for managing this user might consist solely of a set of attributes corresponding
to the above properties. Alternatively, it could consist of a single attribute that is a structure
containing fields that correspond to the properties, possibly more efficient if all properties are
usually read or written together. The object implementing this might be named as follows:

Chapter 1 • Introduction to the Remote Administration Daemon 19

Designing RAD Components

com.example.users:type=TheOnlyUser

If instead of managing a single user you need to manage multiple users, you have a couple of
choices. One option would be to modify the interface to use methods instead of attributes, and
to add a "user" argument to the methods, for example:

setUserAttributes(username, attributes) throws UserError

attributes getUserAttributes(username) throws UserError

This option is sufficient for a single user, as well as provides support to other global operations
such as adding a user, deleting a user, getting a list of users and so on. This option could use a
more appropriate name, for example:

com.example.users:type=UserManagement

However, suppose users have more properties and you want to perform more operations, such
as, sending them email, giving them a bonus and so on. As the server functionality grows, the
UserManagement's API becomes cluttered and the API will have code for both global and per-
user operations. The need to specify a user and the associated errors for each per-user operation
would start looking redundant.

username[] listUsers()

addUser(username, attributes)

giveRaise(username, dollars) throws UserError

fire(username) throws UserError

sendEmail(username, message) throws UserError

setUserAttributes(username, attributes) throws UserError

attributes getUserAttributes(username) throws UserError

A cleaner alternative would be to separate the global operations from the user-specific
operations and create two interfaces. The UserManagement object would use the global
operations interface:

username[] listUsers()

addUser(username, attributes)

A separate object for each user would implement the user-specific interface:

setAttributes(attributes)

attributes getAttributes()

giveRaise(dollars)

fire()

sendEmail(message)

Note - If fire operates more on the namespace than the user, it should be present in
UserManagement where it would need to take a username argument.

20 Remote Administration Daemon Developer's Guide • April 2020

Designing RAD Components

Finally, the different objects would be named such that the different objects could be easily
differentiated and be directly accessed by the client:

com.example.users:type=UserManagement

com.example.users:type=User,name=ONeill

com.example.users:type=User,name=Sheppard

...

This example also highlights a situation where you do not want the RAD server to enumerate
all objects when a client issues a LIST request. Pulling down a list of potentially thousands of
objects on every LIST call does not benefit the majority of clients.

RAD Interface

An interface defines how a RAD client can interact with an object. An object implements an
interface, providing a concrete behavior to be invoked when a client makes a request.

The primary purpose of RAD is to consistently expose the various pieces of the system for
administration. Not all subsystems are alike. However, each has a data and state model tuned
to the problems they are solving. Although there are major benefits to using a common model
across components when possible, uniformity comes with trade-offs. The increased inefficiency
and client complexity, and risk of decreased developer adoption, often warrant using an
interface designed for problem at hand.

An interface is a formal definition of how a client may interact with a RAD server object. An
interface may be shared amongst several objects, for example, when maintaining a degree of
uniformity is possible and useful, or may be implemented by only one. A RAD interface is
analogous to an interface or pure abstract class in an object oriented programming language. In
the case of rad, an interface consists of a name, the set of features a client may interact with,
optionally a set of derived types referenced by the features, and a version.
The features that are supported include the following:

■ Methods, which are procedure calls made in the context of a specific object
■ Properties, which are functionally equivalent to methods but differ semantically
■ Asynchronous event sources

RAD Interface Names

Each interface has a name. This name is used by the toolchain to construct identifier names
when generating code. When naming an API, interface, or object, module developers have

Chapter 1 • Introduction to the Remote Administration Daemon 21

Designing RAD Components

broad leeway to choose names that make sense for their modules. However, some conventions
can help avoid pitfalls that might arise when retrieving objects from the RAD server.

RAD Object Names

The domain portion of RAD object names follows a reverse-dotted naming convention that
prevents collisions in rad's flat object namespace. This convention typically resembles a Java
package naming scheme:

com.oracle.solaris.rad.zonemgr

com.oracle.solaris.rad.usermgr

org.opensolaris.os.rad.ips

...

To distinguish a rad API from a native API designed and implemented for a specific language,
include a "rad." component in the API name.

With the goal of storing objects with names consumers would expect, APIs, and the domains of
the objects defined within them, should share the same name. This practice makes the mapping
between the two easily identifiable by both the module consumer and module developer.

With the same goal of simplicity, identifying an interface object is made easier by adhering to a
"type=interface" convention within the object name.

Applying both conventions, a typical API will look like the following example.

 <api xmlns="http://xmlns.oracle.com/radadr"

 name="com.oracle.solaris.rad.zonemgr">

 <version major="1" minor="0"/>

 <interface name="ZoneInfo"> <!-- Information about the current zone -->

 <property name="name" access="ro" type="integer"/>

 ...

 </interface>

</api>

Within the module, the API appears as follows:

int

_rad_init(void)

 {

 ...

22 Remote Administration Daemon Developer's Guide • April 2020

Designing RAD Components

 adr_name _t *zname = adr_name_vcreate(MOD_DOMAIN, 1, "type", "ZoneInfo");

 conerr_t cerr = rad_cont_insert_singleton(&rad_container, zname,

 &interface_ZoneInfo_svr);

 adr_name_rele(zname);

 if (cerr != CE_OK) {

 rad_log(RL_ERROR, "failed to insert module in container");

 return(-1);

 }

 return (0);

}

On the consumer side (Python), the API appears as follows:

import rad.connect as radcon

import rad.bindings.com.oracle.solaris.rad.zonemgr as zonemgr

Create a connection and retrieve the ZoneInfo object

with radcon.connect_unix() as rc:

 zinfo = rc.get_object(zonemgr.ZoneInfo())

 print zinfo.name

RAD Case Strategies

In an effort to normalize the appearance of like items across development boundaries, and to
minimize the awkwardness in generated language-specific interfaces, several case strategies
have been informally adopted.

Module

The base of the API or domain name. For a module that describes an interface domain.
prefix.base.adr, module spec files should be named base.adr, and the resulting shared
library mod_base.so.
Examples:

/usr/lib/rad/interfaces/zonemgr/version/1/zonemgr.adr

/usr/lib/rad/module/mod_zonemgr.so

API

Reverse-dotted domain, all lowercase.
Examples:

com.oracle.solaris.rad.usermgr

Chapter 1 • Introduction to the Remote Administration Daemon 23

Designing RAD Components

com.oracle.solaris.rad.zonemgr

Interface, struct, union, enum

Non-qualified, camel case, starting with uppercase.
Examples:

Time

NameService

LDAPConfig

ErrorCode

Enum value and fallback

Non-qualified, uppercase, underscores.
Examples:

CHAR

INVALID_TOKEN

REQUIRE_ALL

Interface property and method, struct field, event

Non-qualified, camel case, starting with lowercase.
Examples:

count

addHostName

deleteUser

RAD Feature Types

The common similarity between the three RAD feature types – methods, attributes, and events
– is that they are named. The names of all three feature types exist in the same interface
namespace and must therefore be unique. For example, you cannot have both a method and
an attribute that is called foo. This exclusion avoids the majority of conflicts that could arise
when trying to naturally map these interface features to a client environment. As in the API
namespace, features must not begin with "_rad" because this string is reserved for use by the
RAD toolchain.

Note - Enforcing a common namespace for interface features is not always enough. Some
language environments place additional constraints on naming. For instance, a Java client will
see an interface with synthetic methods of the form getfunction_name, setfunction_name, or
isfunction_name for accessing attribute function_name that must coexist with other method
names. Explicitly defining methods with those names might cause a conflict.

24 Remote Administration Daemon Developer's Guide • April 2020

Designing RAD Components

RAD Methods

A method is a procedure call made in the context of the object it is called on. In addition to a
name, a method may define a return type, can define zero or more arguments, and may declare
that it returns an error, optionally with an error return type.

If a method does not define a return type, it returns no value. It is effectively of type void. If a
method defines a return type and that type is permitted to be nullable, the return value may be
defined to be nullable.

Each method argument has a name and a type. If any argument's type is permitted to be
nullable, that argument might be defined to be nullable.

If a method does not declare that it returns an error, it theoretically cannot fail. However,
because the connection to RAD could be broken either due to a network problem or a
catastrophic failure in RAD itself, all method calls can fail with an I/O error. If a method
declares that it returns an error but does not specify a type, the method may fail due to API-
specific reasons. Clients will be able to distinguish this failure type from I/O failures.

Finally, if a method also defines an error return type, data of that type may be provided to the
client in the case where the API-specific failure occurs. Error payloads are implicitly optional,
and must therefore be of a type that is permitted to be nullable.

Note - Method names cannot be overloaded.

The following are the guidelines for methods:

■ Methods provide mechanisms for examining and modifying administrative state.
■ Consider grouping together existing native APIs into aggregated RAD functions which

enable higher order operations to be exposed.
■ Follow established good practice for RPC style development. RAD is primarily for remote

administration, and avoiding excessive network load is good practice.

RAD Property Attributes

A RAD attribute is metaphorically a property of the object. Attributes have the following
characteristics:

■ A name
■ A type
■ A definition as read-only, read-write, or write-only

Chapter 1 • Introduction to the Remote Administration Daemon 25

Designing RAD Components

■ A method may declare that accessing the attribute returns an error, optionally with an a error
return type

Reading a read-only or read-write attribute returns the value of that attribute. Writing a write-
only or read-write attribute sets the value of that attribute. Reading a write-only attribute
or writing a read-only attribute is invalid. Clients may treat attempts to write to a read-only
attribute as a write to an attribute that does not exist. Likewise, attempts to read from a write-
only attribute may be treated as an attempt to read from an attribute that does not exist.

If an attribute's type is permitted to be nullable, its value may be defined to be nullable.

An attribute may optionally declare that it returns an error, with the same semantics as declaring
(or not declaring) an error for a method. Unlike a method, an attribute may have different error
declarations for reading the attribute and writing the attribute.

Attribute names may not be overloaded. Defining a read-only attribute and a write-only
attribute with the same name is not valid.

Given methods, attributes are arguably a superfluous interface feature. Writing an attribute
of type X can be implemented with a method that takes one argument of type X and returns
nothing, and reading an attribute of type X can be implemented with a method that takes no
arguments and returns a value of type X. Attributes are included because they have slightly
different semantics.
In particular, an explicit attribute mechanism has the following characteristics:

■ Enforces symmetric access for reading and writing read-write attributes.
■ Can be easily and automatically translated to a form natural to the client language-

environment.
■ Communicates more about the nature of the interaction. Reading an attribute ideally should

not affect system state. The value written to a read-write attribute should be the value
returned on subsequent reads unless an intervening change to the system effectively writes a
new value.

RAD Events

A RAD event is an asynchronous notification generated by RAD and consumed by clients.
A client might subscribe to events by name to register interest in them. The subscription is
performed on an object which implements an interface. In addition to a name, each event has a
type.
Events have the following characteristics:

■ Sequential
■ Volatile

26 Remote Administration Daemon Developer's Guide • April 2020

Designing RAD Components

■ Guaranteed

A client can rely on sequential delivery of events from a server as long as the connection to the
server is maintained. If the connection fails, then events will be lost. On reconnection, a client
must resubscribe to resume the flow of events.

Once a client has subscribed to an event, event notifications will be received until the client
unsubscribes from the event. On receipt of a subscribed event, a client receives a payload of the
defined type.
The following are the guidelines for events:

■ The module is responsible for providing a sequence number. Monotonically increasing
sequence numbers are recommended for use, since these will be of most potential use to any
clients.

■ Consider providing mechanisms for allowing a client to throttle event generation.
■ Carefully design event payloads to minimize network load.
■ Do not try to replicate the functionality of network monitoring protocols such as SNMP.

RAD Commitment Levels

To solve the problem of different features being intended for different consumers, RAD
defines two commitment levels: private and committed. All API components: derived types,
interfaces and the various interface sub-components (method, attribute, and event) define their
commitment levels independently.

Commitment levels provide hints to API consumers about the anticipated use and expected
stability of a feature. A feature with a commitment of committed can be used reliably. The
private features, are likely to be subject to change and represent implementation details not
intended for public consumption.

RAD Interface Versioning

RAD interfaces are versioned for the following reasons:

■ APIs change over time.
■ A change to an API might be incompatible with existing consumers.
■ A change might be compatible with existing consumers but new consumers might not be

able to use the API that was in place before the change occurred.
■ Some features represent committed interfaces whose compatibility is paramount, but others

are private interfaces that are changed only in lockstep with the software that uses them.

Chapter 1 • Introduction to the Remote Administration Daemon 27

Designing RAD Components

RAD Version Numbering

RAD uses a major.minor versioning scheme. When a compatible change to an interface is
made, its minor version number is incremented. When an incompatible change is made, its
major version number is incremented and its minor version number is reset to 0.

In other words, an implementation of an interface that claims to be version X.Y (where X is the
major version and Y is the minor version) must support any client expecting version X.Z, where
Z <= Y.
The following interface changes are considered compatible:

■ Adding a new event
■ Adding a new method
■ Adding a new attribute
■ Expanding the access supported by an attribute, for example, from read-only to read-write
■ A change from nullable to non-nullable for a method return value or readable property, that

is, decreasing the range of a feature
■ A change from non-nullable to nullable for a method argument or writable property, that is,

increasing the domain of a feature

The following interface changes are considered incompatible:

■ Removing an event
■ Removing a method
■ Removing an attribute
■ Changing the type of an attribute, method, or event
■ Changing a type definition referenced by an attribute, method, or event
■ Decreasing the access supported by an attribute, for example, from read-write to read-only
■ Adding or removing method arguments
■ A change from non-nullable to nullable for a method return value or readable property, that

is, increasing the range of a feature
■ A change from nullable to non-nullable for a method argument or writable property, that is,

decreasing the domain of a feature

Note - An interface is more than just a set of methods, attributes, and events. Associated with
those features are well-defined behaviors. If those behaviors change, even if the structure of the
interface remains the same, a change to the version number might be required.

A RAD client can access version information from a client binding. The mechanism for
accessing the information depends on the client language like C, Java, and Python. For
example, in Python, the rad.client module contains the rad_get_version() function, which
may be used to get the version of an API.

28 Remote Administration Daemon Developer's Guide • April 2020

RAD Namespace

RAD Namespace

The namespace acts as RAD's gatekeeper, associating a name with each object, dispatching
requests to the proper object, and providing meta-operations that enable the client make queries
about what objects are available and what interfaces they implement.

A RAD server may provide access to several objects that in turn expose a variety of different
components of the system or even third-party software. A client merely knowing that interfaces
exist, or even that a specific interface exists, is not sufficient. A simple, special-purpose
client needs some way to identify the object implementing the correct interface with the
correct behavior, and an adaptive or general-purpose client needs some way to determine what
functionality the RAD server has made available to it.

RAD organizes the server objects it exposes in a namespace. Much like files in a file system,
objects in the RAD namespace have names that enable clients to identify them, can be acted
upon or inspected using that name, and can be discovered by browsing the namespace.
Depending on the point of view, the namespace either is the place one goes to find objects or
the intermediary that sits between the client and the objects it accesses. Either way, it is central
to interactions between a client and the RAD server.

RAD Naming

Unlike a file system, which is a hierarchical arrangement of simple filenames, RAD adopts
the model used by JMX and maintains a flat namespace of structured names. An object's name
consists of a mandatory reverse-dotted domain combined with a non-empty set of key-value
pairs.

RAD Name Equality

Two names are considered equal if they have the same domain and the same set of keys, and
each key has been assigned the same value.

RAD Searching Patterns

Some situations call for referring to groups of objects. In these situations, a glob style pattern,
or a regex style pattern should be used. For more information, see “Sophisticated RAD Searches
in C” on page 39.

Chapter 1 • Introduction to the Remote Administration Daemon 29

Data Types Supported in RAD

Data Types Supported in RAD

All data returned, submitted to, or obtained from RAD APIs adheres to a strong typing system
similar to that defined by XDR. For more information about XDR, see XDR: External Data
Representation Standard (https://www.rfc-editor.org/info/rfc4506). This makes it
simpler to define interfaces that have precise semantics, and makes server extensions (which
are written in C) easier to develop. Of course, the rigidity of the typing exposed to an API's
consumer is primarily a function of the client language and implementation.

RAD Base Types

RAD supports the following base types:

boolean A boolean value (true or false).

integer A 32-bit signed integer value.

uinteger A 32-bit unsigned integer value.

long A 64-bit signed integer value.

ulong A 64-bit unsigned integer value.

float A 32-bit floating-point value.

double A 64-bit floating-point value.

string A UTF-8 string.

opaque Raw binary data.

secret An 8-bit clean "character" array. The encoding is defined by the interface
using the type. Client/server implementations may take additional steps,
for example, zeroing buffers after use, to protect the contents of secret
data.

time An absolute UTC time value.

name The name of an object in the RAD namespace.

30 Remote Administration Daemon Developer's Guide • April 2020

https://www.rfc-editor.org/info/rfc4506
https://www.rfc-editor.org/info/rfc4506

Tips for Using RAD Modules

reference A reference to an object.

RAD Derived Types

In addition to the base types, RAD supports the following derived types:

■ An enumeration is a set of user-defined tokens. Like C enumerations, RAD enumerations
may have specific integer values associated with them. Unlike C enumerations, RAD
enumerations and integers are not interchangeable. Among other things, this aspect
means that an enumeration data value may not take on values outside those defined by the
enumeration, which precludes the common but questionable practice of using enumerated
types for bitfield values.

■ An array is an ordered list of data items of a fixed type. Arrays do not have a predefined
size.

■ A structure is a record consisting of a fixed set of typed, uniquely named fields. A field's
type may be a base type or derived type, or even another structure type.

Derived types offer almost unlimited flexibility. However, one important constraint imposed on
derived types is that recursive type references are prohibited. Thus, complex self-referencing
data types, for example, linked lists or trees, must be communicated after being mapped into
simpler forms.

Optional Data in RAD

In some situations, data might be declared as nullable. Nullable data can take on a "non-value",
for example, NULL in C, None in Python, or null in Java. Conversely, non-nullable data cannot
be NULL. Only data of type opaque, string, secret, array, or structure might be declared
nullable. Additionally, only structure fields and certain API types can be nullable. Specifically,
array data cannot be nullable because the array type is actually more like a list than an array.

Tips for Using RAD Modules

■ Man pages for each of the RAD modules are available in section 3RAD. For example, to
view the man page of the com.oracle.solaris.rad.kstat module, type man -s 3RAD
kstat.

Chapter 1 • Introduction to the Remote Administration Daemon 31

Tips for Using RAD Modules

■ Some operations, such as adding a new user, require additional privileges. You must ensure
that the user has the appropriate rights profiles to execute the operation.

■ By default, RAD log messages are available in the /var/svc/log/system-rad:local.log
file. To enable logging of debug messages, type the following commands:

svccfg -s rad setprop config/debug=true

 # svcadm refresh rad:local

 # svcadm refresh rad:local-http

 # svcadm restart rad:local

 # svcadm restart rad:local-http

32 Remote Administration Daemon Developer's Guide • April 2020

 2 ♦ ♦ ♦ C H A P T E R 2

Connecting to RAD

RAD provides support for three client language environments: C, Java, and Python.
This chapter contains code snippets that illustrate how to connect, authenticate and search and
interact with RAD objects.

■ “C Client Language Environment in RAD” on page 33
■ “Java Language Environment in RAD” on page 49
■ “Python Language Environment in RAD” on page 61

C Client Language Environment in RAD

The public interfaces that are not specific to RAD modules, are exported in the /usr/lib/
libradclient.so library and are defined in the following headers:

■ /usr/include/rad/radclient.h – The client function and datatype definitions
■ /usr/include/rad/radclient_basetypes.h – Helper routines for managing the built-in

RAD types

The list of #include statements at the beginning of each example shows the headers that are
required for that specific functionality.

Note - Many of these examples are based on Appendix A, “zonemgr ADR Interface Description
Language Example”.

Connecting to RAD in C

The RAD instances can establish connections using the rc_connect_*() set of functions. You
can obtain connections for various transports such as TLS, TCP, and local UNIX socket. Each

Chapter 2 • Connecting to RAD 33

C Client Language Environment in RAD

function returns a rc_conn_t reference. This reference acts as a handle for interactions with
RAD over its connection. Every connect function has two common arguments: a boolean to
specify whether the connection must be multithreaded and a locale to use for the connection.
As a best practice, set the boolean value as TRUE. When locale is NULL, the locale of the local
client is used.

To close the connection, you must call the rc_disconnect() function with the connection
handle.

Connecting to a Local RAD Instance in C

You can connect to a local instance using the rc_connect_unix() function. An implicit
authentication is performed against your user ID and most RAD tasks that you request with this
connection are performed with the privileges available to your user account.

The rc_connect_unix() function takes the following arguments:

■ A string, path of the UNIX socket
■ A boolean, to determine if the connection must be multithreaded
■ A string, locale for the connection

If the value of socket path is NULL, the default RAD UNIX socket path is used. As a best
practice, run the connection in multithreaded mode. If the value of locale is NULL, the locale of
the local client system is used.

EXAMPLE 1 C Language – Creating a RAD Local Connection

#include <rad/radclient.h>

rc_conn_t conn = rc_connect_unix(NULL, B_TRUE, NULL);

// do something with conn

Connecting to a Remote Instance and Authenticating in RAD

When connecting to a remote instance, no implicit authentication is performed. The connection
is not established until you authenticate. You can authenticate a connection to a remote instance
using rc_pam_login() function. The client application must use #include <rad/client/1/
pam_login.h> header and links to the pluggable authentication module (PAM) C binding
library, /usr/lib/rad/client/c/libpam_client.so.

34 Remote Administration Daemon Developer's Guide • April 2020

C Client Language Environment in RAD

Authentication is non-interactive, and a username and a password must be provided. Optionally,
a handle to the PAM authentication object can be returned, if a reference is provided as the
second argument to the rc_pam_login() function.

EXAMPLE 2 C Language – Creating a RAD Remote Connection Over TCP IPv4 on Port 7777

#include <rad/radclient.h>

#include <rad/client/1/pam_login.h>

rc_instance_t *pam_inst;

rc_conn_t conn = rc_connect_tcp("host1",7777, B_TRUE, NULL);

if (conn !=NULL) {

 rc_err_t status = rc_pam_login(conn, &pam_inst, "user", "password");

 if (status == RCE_OK){

 printf("Connected and authenticated!\n");

 }

}

Connecting to a RAD Instance by Using a URI in C

You can use a uniform resource identifier (URI) to connect to a local or remote RAD
instance. For more information, see “Connecting in Python to a RAD Instance by Using a
URI” on page 73.
The following functions are supported in C:

■ rc_uri_t *rc_alloc_uri(const char *src, rc_scheme_t schemes)

■ rc_credentials_t *rc_alloc_pam_credentials(const char *pass)

■ rc_credentials_t *rc_alloc_gss_credentials(const char *pass)

■ void rc_free_credentials(rc_credentials_t *cred)

■ rc_credentials_class_t rc_uri_get_cred_class(rc_uri_t *uri)

■ rc_uri_t *rc_alloc_uri(const char *src, rc_scheme_t schemes)

■ rc_conn_t * rc_connect_uri(const char *uri, rc_credentials_t *cred)

■ void rc_uri_set_cred_class(rc_uri_t *uri, rc_credentials_class_t class)

■ rc_scheme_t rc_uri_get_schemes(rc_uri_t *uri)

■ int rc_uri_get_port(rc_uri_t *uri)

■ const char *rc_uri_get_host(rc_uri_t *uri)

■ rc_scheme_t rc_uri_get_scheme(rc_uri_t *uri)

■ const char *rc_uri_scheme_tostr(rc_scheme_t scheme)

■ const char *rc_uri_get_src(rc_uri_t *uri)

Chapter 2 • Connecting to RAD 35

C Client Language Environment in RAD

■ const char *rc_uri_get_user(rc_uri_t *uri)

■ const char *rc_uri_get_path(rc_uri_t *uri)

■ void rc_free_uri(rc_uri_t *uri)

You can use the rc_uri_t structure to connect to a RAD instance. rc_uri_t is the main
structure with which you interact.

You can allocate a rc_uri_t structure with the rc_alloc_uri() function. This function returns
NULL on failure or a pointer to a valid rc_uri_t structure. For example, if you require PAM
authentication for a remote connection, you must allocate a rc_credentials_t structure using
one of the alloc() credential functions. This allocation depends on the authentication type.
RAD supports two types of authentication, PAM and generic security service (GSS).

You can connect to RAD by using the rc_connect_uri() function. This returns a rc_conn_t()
function that can be used to establish the connection by using rc_connect_unix(),
rc_connect_tcp(), or other functions. You can use the other informative functions to interact
with the allocated structure to obtain useful information. The various rc_free_uri() functions
can clean the memory after you finish using the structures.

RAD Namespace in C

Most RAD objects that are represented in the abstract data representation (ADR) document
as interfaces are named and can be found by searching the RAD namespace. The key point
to note is that to access a RAD object, you need a proxy, which is used to search the RAD
namespace. This capability is provided by an interface proxy class, which is defined in
each interface's binding module. The key point to note is that to access a RAD object,
you should use the list and lookup functions provided by a module's client binding library
(<module>_<interface>__rad_list(), <module>_<interface>__rad_lookup(). These
functions also provide the option to do either strict or relaxed versioning.

The proxy automatically provides the base name and version details by using functions for
interface instances and is structured as follows:

<domain name>:type=<interface name>[,optional additional key value pairs]

The <domain name> and the <interface name> are automatically derived from the ADR IDL
definition and are stored in the module binding.

Certain interfaces return or accept object references directly to or from clients and these
objects might not be named. If the objects do not have a name, they are anonymous. Such
objects cannot be looked up in the RAD namespace and the interface itself will provide access
mechanisms that make it simple to interact with the anonymous objects.

36 Remote Administration Daemon Developer's Guide • April 2020

C Client Language Environment in RAD

Creating a Name for a RAD Object in C

You can create a name for a zonemgr Zone instance as follows:

adr_glob_vcreate("com.oracle.solaris.rad.zonemgr", 2, "type",

 "Zone", "name", "zone-1");

Searching for RAD Objects in C

Client binding of a module provides a search function for each interface defined in the form:
module_interface__rad_list(). You can provide a pattern (glob or regex) to narrow the
search within the objects of an interface type.

In addition, the libradclient library provides a function, rc_list(), where the caller provides
the entire name or pattern, and version to search the objects.

Obtaining a Reference to a RAD Singleton in C

A module developer creates a singleton to represent an interface and this interface can be
accessed easily. For example, the zonemgr module defines a singleton interface, ZoneInfo.
It contains information about the zone that contains the RAD instance with which you are
communicating.

EXAMPLE 3 C Language – Obtaining a Reference to a Singleton

#include <rad/radclient.h>

#include<rad/client/1/zonemgr.h>

rc_instance_t *inst;

rc_err_t status;

char *name;

rc_conn_t *conn = rc_connect_unix(NULL, B_TRUE, NULL);

if (conn !=NULL) {

 status = zonemgr_ZoneInfo__rad_lookup(conn, B_TRUE, &inst, 0);

 if(status == RCE_OK) {

 status =zonemgr_ZoneInfo_get_name(inst, &name);

 if (status ==RCE_OK)

 printf("Zone name: %s\n", name);

 }

Chapter 2 • Connecting to RAD 37

C Client Language Environment in RAD

}

In the preceding example, you have connected to a local RAD instance, and have obtained
a remote object reference directly using the lookup function provided by the zonemgr
binding. After you have the remote reference, you can access the properties with the
module_interface__get_<property>() function.

Listing RAD Instances of an Interface in C

An interface can contain multiple RAD instances. For example, the zonemgr module defines a
Zone interface and there is an instance for each zone on the system. A module provides a list
function for each of its interfaces in the form, module_interface__rad_list().

EXAMPLE 4 C Language – Listing RAD Interface Instances

#include<rad/radclient.h>

#include<rad/radclient_basetypes.h>

#include<rad/client/1/zonemgr.h>

rc_err_t status;

adr_name_t **name_list;

int name_count;

rc_conn_t *conn = rc_connect_unix(NULL, B_TRUE, NULL);

if (conn !=NULL) {

 status = zonemgr_Zone__rad_list(conn, B_TRUE, NS_GLOB, &name_list,

 &name_count, 0);

 if(status == RCE_OK) {

 for (int i =0; i < name_count; i++) {

 char*name =adr_name_tostr(name_list[i]);

 printf("%s\n", name);

 }

 name_array_free(name_list, name_count);

 }

 }

Obtaining a Remote Object Reference From a Name in C

The list function returns a name, in the form of a adr_name_t reference. Once you retrieve a
name, you can obtain a remote object reference as shown in the following example.

38 Remote Administration Daemon Developer's Guide • April 2020

C Client Language Environment in RAD

EXAMPLE 5 C Language – Obtaining a Remote Object Reference From a Name

#include <rad/radclient.h>

#include <rad/radclient_basetypes.h>

#include<rad/client/1/zonemgr.h>

rc_err_t status;

adr_name_t **name_list;

rc_instance_t *zone_inst;

int name_count;

rc_conn_t *conn = rc_connect_unix(NULL, B_TRUE, NULL);

if (conn != NULL) {

 status = zonemgr_Zone__rad_list(conn, B_TRUE, NS_GLOB, &name_list,

 &name_count, 0);

 if (status == RCE_OK) {

 status = rc_lookup(conn, name_list[0],

 NULL, B_TRUE, &zone_inst);

 if (status == RCE_OK) {

 char *name;

 status = zonemgr_Zone_get_name(zone_inst, &name);

 if (status == RCE_OK)

 printf("Zone name: %s\n",

 name);

 free(name);

 }

 name_array_free(name_list, name_count);

 }

}

Sophisticated RAD Searches in C

You can search for a zone by its name or ID, or search for a set of zones by pattern matching.
Use the list function to restrict the results. For example, if zones are identified by name, you can
search for a zone named test-0 by using glob patterns as follows.

EXAMPLE 6 C Language – Using Glob Patterns

#include <rad/radclient.h>

#include <rad/radclient_basetypes.h>

#include <rad/client/1/zonemgr.h>

rc_err_t status;

adr_name_t **name_list;

int name_count;

Chapter 2 • Connecting to RAD 39

C Client Language Environment in RAD

rc_conn_t *conn = rc_connect_unix(NULL, B_TRUE, NULL);

if (conn != NULL) {

 status = zonemgr_Zone__rad_list(conn, B_TRUE, NS_GLOB, B_TRUE, &name_list,

 &name_count, 1, "name", "test-0");

 if (status == RCE_OK) {

 for (int i = 0; i < name_count; i++) {

 const char *name = adr_name_tostr(name_list[i]);

 printf("%s\n", name);

 }

 name_array_free(name_list, name_count);

 }

}

Glob Pattern Searching in RAD in C

You can use a glob pattern to find zones with wildcard pattern matching. Keys or values in the
pattern may contain an asterisk, *, for wildcard pattern matching. For example, you can search
all the zones with a name that begins with test as follows.

EXAMPLE 7 C Language – Using Glob Patterns With Wildcards

#include <rad/radclient.h>

#include <rad/radclient_basetypes.h>

#include <rad/client/1/zonemgr.h>

rc_err_t status;

adr_name_t **name_list;

int name_count;

rc_conn_t *conn = rc_connect_unix(NULL, B_TRUE, NULL);

if (conn != NULL) {

 status = zonemgr_Zone__rad_list(conn, B_TRUE, NS_GLOB, &name_list,

 &name_count, 1, "name", "test*");

 if (status == RCE_OK) {

 for (int i = 0; i < name_count; i++) {

 const char *name = adr_name_tostr(name_list[i]);

 printf("%s\n", name);

 }

 name_array_free(name_list, name_count);

 }

}

40 Remote Administration Daemon Developer's Guide • April 2020

C Client Language Environment in RAD

Regex Pattern Searching in RAD in C

You can also use the extended regular expression (ERE) search capabilities of RAD to search
for a zone. For example, you can find only zones with the name test-0 or test-1 as follows.

EXAMPLE 8 C Language – Using Regex Patterns

#include <rad/radclient.h>

#include <rad/radclient_basetypes.h>

#include <rad/client/1/zonemgr.h>

rc_err_t status;

adr_name_t **name_list;

int name_count;

rc_conn_t *conn = rc_connect_unix(NULL, B_TRUE, NULL);

if (conn != NULL) {

 status = zonemgr_Zone__rad_list(conn, B_TRUE, NS_REGEX,

 &name_list, &name_count, 1, "name", "test-0|test-1");

 if (status == RCE_OK) {

 for (int i = 0; i < name_count; i++) {

 const char *name = adr_name_tostr(name_list[i]);

 printf("%s\n", name);

 }

 name_array_free(name_list, name_count);

 }

}

The key and the value must be valid EREs as determined by the connected RAD instance. The
expression is compiled and executed on the server.

RAD Interface Components in C

The module developer defines an API in an ADR IDL document. It contains one or more of the
following components, each of which performs a task:

■ Enumerations
■ Values

■ Structures
■ Fields

■ Dictionary

Chapter 2 • Connecting to RAD 41

C Client Language Environment in RAD

■ Interfaces
■ Properties
■ Methods
■ Events

These components are all defined in an ADR Interface Description Language document. The
radadrgen utility is used to process the document to generate language specific components
which facilitate client/server interactions within RAD. For more information about the role
of ADR and RAD, see Chapter 3, “Abstract Data Representation”. Brief descriptions of each
component follows.

The radadrgen utility is used to process the document to generate language specific
components, which facilitates client-server interaction within RAD. For more information
about the role of ADR and RAD, see Chapter 3, “Abstract Data Representation”. The following
sections describe each component.

RAD Enumerations in C

Enumerations provide a restricted range of choices for a property, an interface method
parameter, a result, or an error.

Using RAD Enumeration Types in C

Enumerated types are defined in the binding header with the type prepended with the module
name. The values of the enumerated types are prepended to follow the C coding standard
naming conventions.

EXAMPLE 9 C Language – zonemgr ErrorCode Enumeration

typedef enum zonemgr_ErrorCode {

 ZEC_NONE =0,

 ZEC_FRAMEWORK_ERROR = 1,

 ZEC_SNAPSHOT_ERROR = 2,

 ZEC_COMMAND_ERROR = 3,

 ZEC_RESOURCE_ALREADY_EXISTS = 4,

 ZEC_RESOURCE_NOT_FOUND = 5,

 ZEC_RESOURCE_TOO_MANY = 6,

 ZEC_RESOURCE_UNKNOWN = 7,

 ZEC_ALREADY_EDITING = 8,

 ZEC_PROPERTY_UNKNOWN = 9,

42 Remote Administration Daemon Developer's Guide • April 2020

C Client Language Environment in RAD

 ZEC_NOT_EDITING = 10,

 ZEC_SYSTEM_ERROR = 11,

 ZEC_INVALID_ARGUMENT = 12,

 ZEC_INVALID_ZONE_STATE = 13,

}zonemgr_ErrorCode_t;

RAD Structures in C

Structures (Structs) are used to define new types and are composed from existing built-in types
and other user defined types. Structs are simple forms of interfaces with no methods or events.
They are not included in the RAD namespace.

Using RAD Struct Types in C

The zonemgr module defines a property struct, which represents an individual zone
configuration property. The structure has the following members, name, type, value,
listValue, and complexValue. Like enumerations, structures are defined in the binding header
and follow similar naming conventions.

To free a structure, free functions module_structure_free() are provided by the binding to
ensure proper cleanup of any memory held in the nested data.

EXAMPLE 10 C Language – zonemgr Property Struct Definition and Its Free Function

typedef enum zonemgr_PropertyValueType {

 ZPVT_PROP_SIMPLE = 0,

 ZPVT_PROP_LIST = 1,

 ZPVT_PROP_COMPLEX = 2,

} zonemgr_PropertyValueType_t;

typedef struct zonemgr_Property {

 char * zp_name;

 char * zp_value;

 zonemgr_PropertyValueType_t zp_type;

 char * * zp_listvalue;

 int zp_listvalue_count;

 char * * zp_complexvalue;

 int zp_complexvalue_count;

} zonemgr_Property_t;

void zonemgr_Property_free(zonemgr_Property_t *);

Chapter 2 • Connecting to RAD 43

C Client Language Environment in RAD

Dictionary Support in C for RAD

C does not support dictionary data types natively. To support dictionary in types and functions,
you must enable the dictionary functionality for each dictionary type as part of a module's C
binding. You can create, free, and query a dictionary for its size. The supported operations on
a dictionary include getting, putting, and removing an element. The functions _keys() and
_values() return an array of all keys and values, respectively. The _map() function is called
with a pointer to a function that is invoked with each key-value pair.

The C binding dictionary is a wrapper around the libadr library. The libadr library functions
that are supported for dictionary are similar to the functions supported by C. The functions are
in the native C type instead of the libadr (adr_data_t()) type.

The following is an example of a generated type and API of a dictionary where the key type is
integer and the value type is string. In this example, <module> is the name of the module.

typedef struct <module>__rad_dict_integer_string

 <module>__rad_dict_integer_string_t;

<module>__rad_dict_integer_string_t *

 <module>__rad_dict_integer_string_create(

 const rc_instance_t *inst);

void <module>__rad_dict_integer_string_free(

 <module>__rad_dict_integer_string_t *dict);

rc_err_t <module>__rad_dict_integer_string_contains(

 <module>__rad_dict_integer_string_t *dict, int key);

unsigned int <module>__rad_dict_integer_string_size(

 <module>__rad_dict_integer_string_t *dict);

rc_err_t <module>__rad_dict_integer_string_remove(

 <module>__rad_dict_integer_string_t *dict, int key,

 char **value);

rc_err_t <module>__rad_dict_integer_string_get(

 <module>__rad_dict_integer_string_t *dict, int key,

 char **value);

rc_err_t <module>__rad_dict_integer_string_put(

 <module>__rad_dict_integer_string_t *dict, int key,

 const char *value, char **old_value);

int *<module>__rad_dict_integer_string_keys(

 <module>__rad_dict_integer_string_t *dict);

char **<module>__rad_dict_integer_string_values(

 <module>__rad_dict_integer_string_t *dict);

int <module>__rad_dict_integer_string_map(

 <module>__rad_dict_integer_string_t *dict,

int (*func)(int, const char *, void *), void *arg);

44 Remote Administration Daemon Developer's Guide • April 2020

C Client Language Environment in RAD

The generated type can be used like any other type in RAD. A sample C client binding
definition is as follows:

rc_err_t <module>_<interface>_set_DictProp(rc_instance_t *,

 <module>__rad_dict_integer_string_t *);

Note - The dictionary type and associated functions are thread-safe.

RAD Interfaces in C

Interfaces, also known as objects, are the entities which populate the RAD namespace. They
must have a name. An interface is composed of events, properties, and methods.

Obtaining a RAD Object Reference in C

See the “RAD Namespace in C” on page 36 section.

Working With RAD Object References in C

Once you have an object reference, you can use this object reference to interact with RAD
directly. All attributes and methods defined in IDL are accessible by invoking calling functions
in the generated client binding.

The following example shows how to work with the object references. In this example, you get
a reference to a zone and then boot the zone.

EXAMPLE 11 C Language – Working With RAD Object References

#include <rad/radclient.h>

#include <rad/radclient_basetypes.h>

#include <rad/client/1/zonemgr.h>

rc_err_t status;

rc_instance_t *zone_inst;

zonemgr_Result_t *result;

zonemgr_Result_t *error;

rc_conn_t *conn = rc_connect_unix(NULL, B_TRUE, NULL);

if (conn != NULL) {

 status = zonemgr_Zone__rad_lookup(conn, B_TRUE, &zone_inst, 1, "name", "test-0");

Chapter 2 • Connecting to RAD 45

C Client Language Environment in RAD

 if (status == RCE_OK) {

 status = zonemgr_Zone_boot(zone_inst, NULL, 0, &result, &error);

 rc_instance_rele(zone_inst);

 }

}

Accessing a Remote Property in RAD in C

This example shows how to access a remote property.

EXAMPLE 12 C Language – Accessing a RAD Remote Property

#include <rad/radclient.h>

#include <rad/radclient_basetypes.h>

#include <rad/client/1/zonemgr.h>

rc_err_t status;

rc_instance_t *zone_inst;

char *name;

zonemgr_Property_t *result;

zonemgr_Result_t *error;

int result_count;

rc_conn_t *conn = rc_connect_unix(NULL, B_TRUE, NULL);

if (conn != NULL) {

 status = zonemgr_Zone__rad_lookup(conn, B_TRUE, &zone_inst, 1, "name", "test-

0");

 if (status == RCE_OK) {

 zonemgr_Resource_t global = { .zr_type = "global"};

 status = zonemgr_Zone_getResourceProperties(zone_inst, &global, NULL, 0,

 &result, &result_count, &error);

 if (status == RCE_OK) {

 for (int i = 0; i < result_count; i++){

 if (result[i].zp_value != NULL && result[i].zp_value[0] !=

 '\0')

 printf("%s=%s\n", result[i].zp_name, result[i].

zp_value);

 }

 zonemgr_Property_array_free(result, result_count);

 }

 rc_instance_rele(zone_inst);

 }

}

In this example, you have accessed the list of global resource properties of the Zone and printed
the name and value of every property that has a value.

46 Remote Administration Daemon Developer's Guide • April 2020

C Client Language Environment in RAD

RAD Event Handling in C

The following example shows how to subscribe to and handle events. The ZoneManager
instance defines a StateChange event that clients can subscribe to information about the
changes in the runtime state of a zone.

EXAMPLE 13 C Language – Subscribing to and Handling RAD Events

#include <unistd.h>

#include <time.h>

#include <rad/radclient.h>

#include <rad/radclient_basetypes.h>

#include <rad/client/1/zonemgr.h>

void stateChange_handler(rc_instance_t *inst, zonemgr_StateChange_t *payload, struct

 timespec timestamp, void *arg)

{

 printf("event: zone state change\n");

 printf("payload:\n zone: %s\n old state: %s\n new state: %s\n",

 payload->zsc_zone, payload->zsc_oldstate, payload->zsc_newstate);

 zonemgr_StateChange_free(payload);

}

rc_err_t status;

rc_instance_t *zm_inst;

int result_count;

rc_conn_t *conn = rc_connect_unix(NULL, B_TRUE, NULL);

if (conn != NULL) {

 status = zonemgr_ZoneManager__rad_lookup(conn, B_TRUE, &zm_inst, 0);

 if (status == RCE_OK) {

 status = zonemgr_ZoneManager_subscribe_stateChange(zm_inst,

 stateChange_handler, NULL);

 if (status == RCE_OK)

 printf("Successfully subscribed to statechange event!\n");

 rc_instance_rele(zm_inst);

 }

 }

 for (;;)

 sleep(1);

In this example, you have subscribed to a single event by passing a handler and a handle for the
ZoneManager object. The handler is invoked asynchronously by the framework with various
event details and user data. In this example, the user data is NULL.

Chapter 2 • Connecting to RAD 47

C Client Language Environment in RAD

RAD Error Handling in C

The list of possible errors are defined by the rc_err_t() enumeration. RAD delivers a
variety of errors, but the error which requires additional handling is rc_err_t(), value
RCE_SERVER_OBJECT. The following example shows how it can be used.

EXAMPLE 14 C Language – Handling RAD Errors

#include <rad/radclient.h>

#include <rad/radclient_basetypes.h>

#include <rad/client/1/zonemgr.h>

rc_err_t status;

rc_instance_t *zone_inst;

zonemgr_Result_t *result;

zonemgr_Result_t *error;

rc_conn_t *conn = rc_connect_unix(NULL, B_TRUE, NULL);

if (conn != NULL) {

 status = zonemgr_Zone__rad_lookup(conn, B_TRUE, &zone_inst, 1, "name", "test-0");

 if (status == RCE_OK) {

 status = zonemgr_Zone_boot(zone_inst, NULL, 0, &result, &error);

 if (status == RCE_SERVER_OBJECT) {

 printf("Error Code %d\n", error->zr_code);

 if (error->zr_stdout != NULL)

 printf("stdout: %s\n", error->zr_stdout);

 if (error->zr_stderr != NULL)

 printf("stderr: %s\n", error->zr_stderr);

 zonemgr_Result_free(error);

 }

 rc_instance_rele(zone_inst);

 }

}

Note - You might get a payload with rc_err_t, value RCE_SERVER_OBJECT. This means that the
server is sending additional information about the error. This payload is only present if your
interface method or property has defined an error element, where the payload is the content
of that error. If the interface method or property defines no error element for the interface
method or property, no payload exists and no error reference argument exists for the get or set
functions.

48 Remote Administration Daemon Developer's Guide • April 2020

Java Language Environment in RAD

Java Language Environment in RAD

The public Java interfaces are exported in the following packages:

■ com.oracle.solaris.rad.client – The client implementation of the RAD protocol and
associated functionality

■ com.oracle.solaris.rad.connect – The classes for connecting to a RAD instance

Note - Most of the examples are based on the zonemgr interface. To better understand these
examples, see Appendix A, “zonemgr ADR Interface Description Language Example” for this
module to assist in your understanding of the examples.

Connecting to RAD in Java

RAD instances can communicate through the Connection class. Various factory interfaces are
available to get different types of connections to a RAD instance. Each mechanism returns a
connection instance that provides a standard interface to interact with RAD. The connection can
be closed with the close() method.

Connecting to a RAD Local Instance in Java

You can connect to a local instance by using the Connection.connectUnix() class. An implicit
authentication is performed against your user ID and most RAD tasks you request with this
connection are performed with the privileges available to your user account.

EXAMPLE 15 Java Language – Creating a Local RAD Connection

import com.oracle.solaris.rad.connect.Connection;

Connection con = Connection.connectUnix();

Connecting to a Remote RAD Instance and Authenticating in
Java

When connecting to a remote instance, no implicit authentication is performed. The connection
is not established until you authenticate. The com.oracle.solaris.rad.client package

Chapter 2 • Connecting to RAD 49

Java Language Environment in RAD

provides a utility class (RadPamHandler) which can be used to perform a PAM login. If you
provide a locale, username and password, authentication is non-interactive. If locale is null,
then C is used.

Here is an example for Remote Connection to a TCP instance on port 7777.

EXAMPLE 16 Java Language – Creating Remote RAD Connection to a TCP Instance on Port 7777

import com.oracle.solaris.rad.client.RadPamHandler;

import com.oracle.solaris.rad.connect.Connection;

Connection con = Connection.connectTCP("host1", 7777);

System.out.println("Connected: " + con.toString());

RadPamHandler hdl = new RadPamHandler(con);

hdl.login("C", "user", "password"); // First argument is locale

con.close();

Connecting to a RAD Instance by Using a URI in Java

You can use a URI to connect to a local or remote RAD instance. You can use the class
URIconnection in Java for connecting using a URI. For more information, see “Connecting in
Python to a RAD Instance by Using a URI” on page 73.

The following constructors are supported.

public URIConnection(String src) throws IOException {

 this(src, DEFAULT_SCHEMES);

}

public URIConnection(String src, Set<String> schemes)

 throws IOException {

}

public URIConnection(String src, Set<String> schemes,

 Set<String> certfiles) throws IOException {

}

Use the different constructors depending on how much control you need over the connection.

For methods, the following functions are supported for adding or removing certificates for TLS
connections, and connecting and processing PAM information.

public void addCertFile(String certfile) {

}

50 Remote Administration Daemon Developer's Guide • April 2020

Java Language Environment in RAD

public void rmCertFile(String certfile) {

}

public Connection connect(Credentials cred) throws IOException {

}

public void processPAMAuth(PAMCredentials cred, Connection con) throws IOException {

}

The following utility functions are supported for providing information about a RAD instance:

■ public String getAuth()

■ public String getCredClass()

■ public void setCredClass(String klass) throws IOException

■ public String getHost()

■ public String getPath()

■ public int getPort()

■ public String getSrc()

■ public String getScheme()

■ public Set<String> getSchemes()

■ public String getUser()

You can use the class PAMCredentials to create a set of PAM credentials for authentication.
The supported constructor is public PAMCredentials(String pass).

RAD Namespace in Java

Most RAD objects that are represented in the ADR document as <interfaces>. You can search
RAD objects by searching the RAD namespace. To access a RAD object, you need a proxy,
which is used to search the RAD namespace. An interface proxy class enables you to use a
proxy to search the RAD namespace. The interface proxy is defined in the binding module of
each interface.

The proxy provides the base name and the version details for the interface instances and is
structured as follows:

<domain name>:type=<interface name>[,optional additional key value pairs]

The <domain name> and the <interface name> are automatically derived from the ADR IDL
definition and are stored in the module binding.

Certain interfaces return or accept object references directly to or from clients. These objects
might not be named. Objects that are not named are anonymous. Anonymous objects cannot be

Chapter 2 • Connecting to RAD 51

Java Language Environment in RAD

looked up in the RAD namespace, but the interface provides access methods that make it simple
to interact with them.

Creating a Name for a RAD Object in Java

The names are changed to be represented by a domain string and a Map <String, String> for the
key or value pairs. The ADRName constructors are expanded to include:

ADRName(String domain, Map<String, String> kvpairs)

ADRName(String domain, Map<String, String> kvpairs,

 ProxyInterface proxy, Version version)

Searching for RAD Objects in Java

Using the Connection class, you can list the objects by name and obtain a remote object
reference.

RAD Singletons in Java

A module developer creates a singleton to represent an interface. This interface can be accessed
easily. For example, the zonemgr module defines a singleton interface, ZoneInfo. It contains
information about the zone that contains the RAD instance with which you are communicating.

In Java, you need to compile the code with the language binding in the CLASSPATH. RAD Java
Language bindings are in the system/management/rad/client/rad-java package.

The JAR files for the various bindings are installed in /usr/lib/rad/java. Each major
interface version is accessible in a JAR file which is named after the source ADR document
and it's major version number. For example, to access major version 1 of the zonemgr API,
use /usr/lib/rad/java/zonemgr_1.jar. Symbolic links are provided as an indication of the
default version a client should use.

EXAMPLE 17 Java Language – Obtaining Reference to a RAD Singleton

import com.oracle.solaris.rad.connect.Connection;

import com.oracle.solaris.rad.zonemgr.ZoneInfo;

Connection con = Connection.connectUnix();

52 Remote Administration Daemon Developer's Guide • April 2020

Java Language Environment in RAD

System.out.println("Connected: " + con.toString());

ZoneInfo zi = con.getObject(new ZoneInfo());

System.out.println("ZoneInfo: " + zi.getname());

In this example, you have performed the following:

■ Imported ZoneInfo and Connection from the zonemgr binding and the rad.connect
package

■ Connected to the local RAD instance
■ Obtained a remote object reference directly by using a proxy instance

After you have the remote reference, you can access the properties and the methods directly. In
the RAD Java implementation, all properties are accessed using the getter or setter syntax.
Thus, you invoke getname() to access the name property.

Listing RAD Interface Instances in Java

An interface can contain multiple RAD instances. For example, the zonemgr module defines
a Zone interface and there is an instance for each zone on the system. The Connection class
provides the list_objects() method to list the interface instances as shown in the following
example.

EXAMPLE 18 Java Language – Listing RAD Interface Instances

import com.oracle.solaris.rad.client.ADRName;

import com.oracle.solaris.rad.connect.Connection;

import com.oracle.solaris.rad.zonemgr.Zone;

Connection con = Connection.connectUnix();

System.out.println("Connected: " + con.toString());

for (ADRName name: con.listObjects(new Zone())) {

 System.out.println("ADR Name: " + name.toString());

}

Remote Object References and RAD Names in Java

A list of names (ADRName is the class name) are returned by the list_objects() method from
the Connection class. After you have a name, you can obtain a remote object reference easily as
shown in the following example.

Chapter 2 • Connecting to RAD 53

Java Language Environment in RAD

EXAMPLE 19 Java Language – Obtaining a Remote Object Reference From a RAD Name

import com.oracle.solaris.rad.client.ADRName;

import com.oracle.solaris.rad.connect.Connection;

import com.oracle.solaris.rad.zonemgr.Zone;

Connection con = Connection.connectUnix();

System.out.println("Connected: " + con.toString());

for (ADRName name: con.listObjects(new Zone())) {

 Zone zone = con.getObject(name);

 System.out.println("Name: " + zone.getname());

}

Sophisticated RAD Searches in Java

You can search for a zone by its name or ID or a set of zones by pattern matching. You can
extend the definition of a name provided by a proxy. For example, if zones are uniquely
identified by a key name, then you can find a zone with name test-0 as shown in the following
example. This example uses glob patterns to find a zone.

EXAMPLE 20 Java Language – Using Glob Patterns in RAD

import com.oracle.solaris.rad.client.ADRName;

import com.oracle.solaris.rad.client.ADRGlobPattern;

import com.oracle.solaris.rad.connect.Connection;

import com.oracle.solaris.rad.zonemgr.Zone;

Connection con = Connection.connectUnix();

System.out.println("Connected: " + con.toString());

String keys[] = { "name" };

String values[] = { "test-0" };

ADRGlobPattern pat = new ADRGlobPattern(keys, values);

for (ADRName name: con.listObjects(new Zone(), pat)) {

 System.out.println("ADR Name: " + name.toString());

}

In this example, the ADRGlobPattern class (imported from the com.oracle.solaris.
rad.client package) is used to refine the search. The list_objects() method from the
Connection class is used, but the search is refined by extending the name definition. The
ADRGlobPattern class takes an array of keys and an array of values and extends the name used
in the search.

54 Remote Administration Daemon Developer's Guide • April 2020

Java Language Environment in RAD

Glob Pattern Searching in RAD in Java

You can use a glob pattern to find zones with wildcard pattern matching. Keys or Values in the
pattern may contain *, which is interpreted as wildcard pattern matching. For example, you can
find all zones with a name which begins with test as follows.

EXAMPLE 21 Java Language – Using Glob Patterns With Wildcards

import com.oracle.solaris.rad.client.ADRName;

import com.oracle.solaris.rad.client.ADRGlobPattern;

import com.oracle.solaris.rad.connect.Connection;

import com.oracle.solaris.rad.zonemgr.Zone;

Connection con = Connection.connectUnix();

System.out.println("Connected: " + con.toString());

String keys[] = { "name" };

String values[] = { "test*" };

ADRGlobPattern pat = new ADRGlobPattern(keys, values);

for (ADRName name: con.listObjects(new Zone(), pat)) {

 System.out.println("ADR Name: " + name.toString());

}

Using Maps When Pattern Searching in RAD in Java

It can be simpler to use Map rather than arrays of keys and values. This example uses a map of
keys and values rather than arrays of keys and values.

EXAMPLE 22 Java Language – Using Maps With Patterns

import com.oracle.solaris.rad.client.ADRName;

import com.oracle.solaris.rad.client.ADRGlobPattern;

import com.oracle.solaris.rad.connect.Connection;

import com.oracle.solaris.rad.zonemgr.Zone;

Connection con = Connection.connectUnix();

System.out.println("Connected: " + con.toString());

Map<String, String> kvpairs = new HashMap<String, String>();

kvpairs.put("name", "test*");

ADRGlobPattern pat = new ADRGlobPattern(kvpairs);

for (ADRName name: con.listObjects(new Zone(), pat)) {

 System.out.println("ADR Name: " + name.toString());

Chapter 2 • Connecting to RAD 55

Java Language Environment in RAD

}

Regex Pattern Searching in RAD in Java

You can also use RAD's ERE search capabilities to search a zone. For example, you can find
only zones with the name test-0 or test-1 as shown in the following example.

EXAMPLE 23 Java Language – Using Regex Patterns

import com.oracle.solaris.rad.client.ADRName;

import com.oracle.solaris.rad.client.ADRRegexPattern;

import com.oracle.solaris.rad.connect.Connection;

import com.oracle.solaris.rad.zonemgr.Zone;

Connection con = Connection.connectUnix();

System.out.println("Connected: " + con.toString());

String keys[] = { "name" };

String values[] = { "test-0|test-1" };

ADRRegexPattern pat = new ADRRegexPattern(keys, values);

for (ADRName name: con.listObjects(new Zone(), pat)) {

 System.out.println("ADR Name: " + name.toString());

}

The key and the value must be valid ERE as determined by the instance of RAD to that you are
connected. The expression is compiled and executed on the server.

Interface Components for RAD in Java

An API is defined by a module developer. It contains one or more of the following components,
each of which performs a task:

■ Enumerations
■ Values

■ Structures
■ Fields

■ Dictionary
■ Interfaces

■ Properties
■ Methods

56 Remote Administration Daemon Developer's Guide • April 2020

Java Language Environment in RAD

■ Events

These components are defined in an ADR IDL document. The radadrgen utility is used to
process the document to generate language specific components which facilitates client-server
interactions within RAD. For more information about the role of ADR and RAD, see Chapter 3,
“Abstract Data Representation”. Brief descriptions of each component follows.

RAD Property Enumerations in Java

Enumerations provide a restricted range of choices for a property, an interface method
parameter, result, or error.

Using RAD Enumeration Types in Java

To access an enumerated type, import the generated class and interact with the enumeration.

EXAMPLE 24 Java Language – Using RAD Enumerations

import com.oracle.solaris.rad.zonemgr.ErrorCode;

System.out.println(ErrorCode.NONE);

System.out.println(ErrorCode.COMMAND_ERROR);

RAD Structs in Java

Structs are used to define new types and are composed from existing built-in types and other
user defined types. Structs are simple forms of interfaces with no methods or events. They are
not included in the RAD namespace.

Using RAD Struct Types in Java

The zonemgr module defines a Property struct, which represents an individual zone
configuration property. The structure has the following members name, type, value, listValue,
and complexValue. Like enumerations, structs can be interacted directly once the binding is
imported.

Chapter 2 • Connecting to RAD 57

Java Language Environment in RAD

EXAMPLE 25 Java Language – Using RAD Structs

import com.oracle.solaris.rad.zonemgr.Property;

Property prop = new Property();

prop.setName("my name");

prop.setValue("a value");

System.out.println(prop.getName());

System.out.println(prop.getValue());

Dictionary Support for RAD in Java

To support the dictionary type, Java client uses the java.util.Map<K,V> interface. For more
information about dictionary, see “Dictionary Definitions” on page 80.

The following example shows how to read and write a property defined in Example 49,
“Defining a Dictionary,” on page 80.

//reading a property value

Map<Integer, String> property = o.getDictProp();

//writing a property value

Map<Integer, String> property = new HashMap<Integer, String>();

....

o.setDictProp(property);

RAD Interfaces in Java

Interfaces, also known as objects, are the entities, which populate the RAD namespace. They
must have a name. An interface is composed of events, properties, and methods.

Obtaining a RAD Object Reference in Java

For more information, see “RAD Namespace in Java” on page 51.

Working With RAD Object References in Java

Once you have an object reference, you can use this object reference to interact with RAD
directly. All attributes and methods defined in the IDL are accessible directly as attributes and

58 Remote Administration Daemon Developer's Guide • April 2020

Java Language Environment in RAD

methods of the Java objects that are returned by the getObject() function. The attributes are
accessed using the automatically generated getter or setter. For example, if the property is
name, you would use getname or setname(<value>). In this example, you get a reference to a
zone and then boot the zone.

EXAMPLE 26 Java Language – Invoking a RAD Remote Method

import com.oracle.solaris.rad.client.ADRName;

import com.oracle.solaris.rad.client.ADRGlobPattern;

import com.oracle.solaris.rad.connect.Connection;

import com.oracle.solaris.rad.zonemgr.Zone;

Connection con = Connection.connectUnix();

System.out.println("Connected: " + con.toString());

String keys[] = { "name" };

String values[] = { "test-0" };

ADRGlobPattern pat = new ADRGlobPattern(keys, values);

for (ADRName name: con.listObjects(new Zone(), pat)) {

 Zone z = (Zone) con.getObject(name);

 z.boot(null);

}

In this example, you have connected to the RAD instance, created a search for a specific object,
retrieved a reference to the object, and invoked a remote method on the object.

RAD Remote Property Example in Java

Accessing a remote property is similar to using a remote method.

EXAMPLE 27 Java Language – Accessing a RAD Remote Property

import com.oracle.solaris.rad.client.ADRName;

import com.oracle.solaris.rad.client.ADRGlobPattern;

import com.oracle.solaris.rad.connect.Connection;

import com.oracle.solaris.rad.zonemgr.*;

Connection con = Connection.connectUnix();

System.out.println("Connected: " + con.toString());

String keys[] = { "name" };

String values[] = { "test-0" };

ADRGlobPattern pat = new ADRGlobPattern(keys, values);

for (ADRName name: con.listObjects(new Zone(), pat)) {

 Zone z = (Zone) con.getObject(name);

Chapter 2 • Connecting to RAD 59

Java Language Environment in RAD

 Resource filter = new Resource("global", null, null);

 List<Property> props = z.getResourceProperties(filter, null);

 System.out.println("Properties:");

 for (Property prop: props) {

 System.out.printf("\t%s = %s\n",prop.getName(), prop.getValue());

 }

}

In this example, you have accessed the list of global resource properties of the Zone and printed
the name and value of every Property.

RAD Event Handling

This example shows how to subscribe and handle events. The ZoneManager instance defines a
stateChange event, which clients can subscribe for information about changes in the runtime
state of a zone.

EXAMPLE 28 Java Language – Subscribing to and Handling RAD Events

import com.oracle.solaris.rad.client.ADRName;

import com.oracle.solaris.rad.client.RadEvent;

import com.oracle.solaris.rad.client.RadEventHandler;

import com.oracle.solaris.rad.connect.Connection;

import com.oracle.solaris.rad.zonemgr.*;

ZoneManager zmgr = con.getObject(new ZoneManager());

 con.subscribe(zmgr, "statechange", new StateChangeHandler());

 Thread.currentThread().sleep(100000000);

class StateChangeHandler extends RadEventHandler {

 public void handleEvent(RadEvent event, Object payload) {

 StateChange obj = (StateChange) payload;

 System.out.printf("Event: %s", event.toString());

 System.out.printf("\tcode: %s\n", obj.getZone());

 System.out.printf("\told: %s\n", obj.getOldstate());

 System.out.printf("\tnew: %s\n", obj.getNewstate());

 }

}

To handle an event, implement the RadEventInterface class. The com.oracle.solaris.rad.
client package provides a default implementation (RadEventHandler) with limited functions.
This class can be extended to provide additional event handling logic as in the example above.

60 Remote Administration Daemon Developer's Guide • April 2020

Python Language Environment in RAD

In this example, you have subscribed to a single event by passing a handler and a reference to
the ZoneManager object. The handler is invoked asynchronously by the framework with various
event details and provided the user data.

Java Error Handling in RAD

Java provides a exception handling mechanism and RAD errors are propagated using
this method. RAD delivers a variety of errors, but the error that requires handling is
RadObjectException. The following example shows how to handle RAD errors.

EXAMPLE 29 Java Language – Handling RAD Errors

<imports..>

Connection con = Connection.connectUnix();

 for (ADRName name: con.listObjects(new Zone())) {

 Zone zone = con.getObject(name);

 try {

 zone.boot(null);

 }catch (RadObjectException oe) {

 Result res = (Result) oe.getPayload();

 System.out.println(res.getCode());

 if (res.getStdout() != null)

 System.out.println(res.getStdout());

 if (res.getStderr() != null)

 System.out.println(res.getStderr());

 }

}

Note - With RadException exceptions, you might get a payload. This payload is only present
if your interface method or property has defined an error element, where the payload is the
content of that error. If the interface method or property defines no error element for the
interface method or property, then no payload exists and error has a value of null.

Python Language Environment in RAD

The public interfaces are exported in the following three modules:

■ rad.auth – Useful functions or classes for performing authentication

Chapter 2 • Connecting to RAD 61

Python Language Environment in RAD

■ rad.client – The client implementation of the RAD protocol and associated useful
functionality

■ rad.connect – Useful functions or classes for connecting to a RAD instance

Note - Most of the examples are based on the zonemgr interface. To understand the examples
for this module better, see Appendix A, “zonemgr ADR Interface Description Language
Example”.

Alternatively, you can import the module and examine the module help.

EXAMPLE 30 Python Language – Accessing Help for a Binding Module

user@host1:/var/tmp# python

Python 2.6.8 (unknown, Feb 5 2013, 00:27:10) [C] on sunos5

Type "help", "copyright", "credits" or "license" for more information.

>>> import rad.bindings.com.oracle.solaris.rad.zonemgr_1 as zonemgr

>>> help(zonemgr)

Connecting to RAD in Python

The RAD instances can communicate through the RADConnection class. There are various
mechanism to get different types of connections to RAD. Each mechanism returns a
RADConnection instance, which provides a standard interface to interact with RAD.

The preferred method for managing a connection is to use the with keyword. The connection
uses the system resources and this ensures that the resource is closed correctly when the object
goes out of scope. If the system resources are not used, the system resources can be reclaimed
explicitly with the close() method.

Note - If you print the RADConnection object, it displays the state of the connection and lets you
know if the connection is closed.

Connecting to a Local RAD Instance in Python

You can connect to a local instance using the radcon.connect_unix() function. An implicit
authentication is performed against your user ID and most RAD tasks you request with this
connection are performed with the privileges available to your user account.

62 Remote Administration Daemon Developer's Guide • April 2020

Python Language Environment in RAD

EXAMPLE 31 Python Language – Creating a RAD Local Connection

>>> import rad.connect as radcon

>>> with radcon.connect_unix() as rc:

Connecting to a RAD Remote Instance and Authenticating in
Python

When connecting to a remote instance, no implicit authentication is performed. The connection
is not established until you authenticate. The rad.auth module provides a utility class
(RadAuth), which may be used to perform a PAM login. If you provide a username and
password, authentication is non-interactive. If you do not provide username and password, you
will receive a console prompt for the missing information.

EXAMPLE 32 Python Language – Creating a RAD Remote Connection Over TLS

>>> import rad.connect as radcon

>>> import rad.auth as rada

>>> rc=radcon.connect_tls("host1")

>>> # Illustrate examining RadConnection state.

>>> print rc

<open RadConnection >

>>> auth = rada.RadAuth(rc)

>>> auth.pam_login("garypen", "xxxpasswordxxx")

>>> <now authenticated and can use this connection>

>>> rc.close()

>>> print rc

<closed RadConnection>

>>>

Connecting to a RAD Instance by Using a URI in Python

You can use a URI to connect to a local or remote RAD instance. You can use the class
RadURI() to connect to a RAD instance. The methods or functions are not required in Python
because you can read the attributes of the RAD instances that you create instead of using
defined methods. For more information, see “Connecting in Python to a RAD Instance by
Using a URI” on page 73.

The following constructor is supported.

Chapter 2 • Connecting to RAD 63

Python Language Environment in RAD

def __init__(self, src, schemes = RAD_SCHEMES):

src String, which is the URI of a RAD instance

schemes List of strings that specify the schemes to be recognized

The following method is supported:

def connect(self, cred = None):

cred Credentials that are required for authentication

You can use PAMCredentials class to create PAM credentials for PAM authentication or you
can use def get_pam_cred(passw) function, which returns a PAMCredentials object for use in
the RadURI.connect() method.

RAD Namespace in Python

Most RAD objects that are represented in the ADR document as <interfaces>. You can find
RAD objects by searching the RAD namespace. To access a RAD object, you need a proxy,
which is used to search the RAD namespace. An interface proxy class enables you to use a
proxy to search the RAD namespace. The interface proxy is defined in the binding module of
each interface.

The proxy provides the base name and version details for interface instances and is structured as
follows:

<domain name>:type=<interface name>[,optional additional key value pairs]

The <domain name> and the <interface name> are automatically derived from the ADR IDL
definition and are stored in the module binding.

Certain interfaces return or accept object references directly to or from clients. These objects
might not be named. Objects that are not named are anonymous. Anonymous objects cannot be
looked up in the RAD namespace, but the interface provides access methods that make it simple
to interact with them.

Creating a Name for a RAD Object in Python

The RAD object names are structured, consisting of a domain and one or more key-value pairs.

For example, you can create a name for a zonemgr zone instance as follows:

64 Remote Administration Daemon Developer's Guide • April 2020

Python Language Environment in RAD

>>> ADRName("com.oracle.solaris.rad.zonemgr", { "type": "Zone",

 "name" : "radtest-zone", "id" : "1" })

When you create a name, you can handle key-value pairs. This removes any issues in
processing names where values contain special characters (for example, commas (,), and equal
signs (=).

Searching for RAD Objects in Python

The RADConnection class provides mechanisms for listing objects by name and for obtaining a
remote object reference.

RAD Singletons in Python

A module developer creates a singleton to represent an interface. This interface can be accessed
easily. For example, the zonemgr module defines a singleton interface, ZoneInfo. It contains
information about the zone that contains the RAD instance with which you are communicating.

EXAMPLE 33 Python Language – Obtaining a Reference to a RAD Singleton

>>> import rad.bindings.com.oracle.solaris.rad.zonemgr as zonemgr

>>> import rad.connect as radcon

>>> with radcon.connect_unix() as rc:

... zi = rc.get_object(zonemgr.ZoneInfo())

... print zi.name

...

global

>>>

In this example, you have imported the RAD bindings and the rad.connect module, and
connected to the local RAD instance. After connecting to the local RAD instance, obtain a
remote object reference directly by using a proxy instance. After you have the remote reference,
you can access properties and methods directly as you would with any Python object.

Listing RAD Instances of an Interface in Python

An interface can contain multiple RAD instances. For example, the zonemgr module defines a
Zone interface and there is an instance for each zone on the system. The RADConnection class

Chapter 2 • Connecting to RAD 65

Python Language Environment in RAD

provides the list_objects() method to list the interface instances as shown in the following
example.

EXAMPLE 34 Python Language – Listing RAD Interface Instances

>>> import rad.bindings.com.oracle.solaris.rad.zonemgr as zonemgr

>>> import rad.connect as radcon

>>> with radcon.connect_unix() as rc:

... zonelist = rc.list_objects(zonemgr.Zone())

... print zonelist

...

[Name: com.oracle.solaris.rad.zonemgr:type=Zone,name=test-0,id=-1 Version: (1.0), Name:

com.oracle.solaris.rad.zonemgr:type=Zone,name=test-1,id=-1 Version: (1.0), Name:

com.oracle.solaris.rad.zonemgr:type=Zone,name=NOT-TEST,id=-1 Version: (1.0)]

>>>

Obtaining a RAD Remote Object Reference From a Name in
Python

Names (ADRName is the class name) are returned by the RADConnection list_objects method.
Once you have a name, you can obtain a remote object reference easily.

EXAMPLE 35 Python Language – Obtaining a RAD Remote Object Reference

>>> import rad.bindings.com.oracle.solaris.rad.zonemgr as zonemgr

>>> import rad.connect as radcon

>>> with radcon.connect_unix() as rc:

... zonelist = rc.list_objects(zonemgr.Zone())

... zone = rc.get_object(zonelist[0])

... print zone.name

...

test-0

>>>

Sophisticated RAD Searches in Python

You can search for a zone by its name or ID or a set of zones by pattern matching. You can
extend the basic definition of a name provided by a proxy. For example, if zones are uniquely

66 Remote Administration Daemon Developer's Guide • April 2020

Python Language Environment in RAD

identified by the key name, then you can find a zone with the name test-0 as shown in the
following example. The example uses glob patterns to find a zone.

EXAMPLE 36 Python Language – Using Glob Patterns in RAD

>>> import rad.bindings.com.oracle.solaris.rad.zonemgr as zonemgr

>>> import rad.client as radc

>>> import rad.connect as radcon

>>> with radcon.connect_unix() as rc:

... zonelist = rc.list_objects(zonemgr.Zone(), radc.ADRGlobPattern({"name" : "test-0"}))

... print zonelist

...

[Name: com.oracle.solaris.rad.zonemgr:type=Zone,name=test-0,id=-1 Version: (1.0)]

>>>

In this example, the ADRGlobPattern class (imported from the rad.client module) is used to
refine the search. The list_objects() method from the RADConnection class is used, but the
search is refined by extending the name definition. The ADRGlobPattern class takes a key:value
dictionary and extends the name used for the search.

Glob Pattern Searching in RAD in Python

You can use a glob pattern to find zones with wildcard pattern matching. Keys and values in
the pattern may contain an asterisk (*), which is interpreted as wildcard pattern matching. The
following example shows how to find all zones with a name which begins with test.

EXAMPLE 37 Python Language – Using Glob Patterns With Wildcards in RAD

>>> import rad.bindings.com.oracle.solaris.rad.zonemgr as zonemgr

>>> import rad.client as radc

>>> import rad.connect as radcon

>>> with radcon.connect_unix() as rc:

... zonelist = rc.list_objects(zonemgr.Zone(), radc.ADRGlobPattern({"name" : "test*"}))

... print zonelist

...

[Name: com.oracle.solaris.rad.zonemgr:type=Zone,name=test-0,id=-1 Version: (1.0), Name:

com.oracle.solaris.rad.zonemgr:type=Zone,name=test-1,id=-1 Version: (1.0)]

>>>

Chapter 2 • Connecting to RAD 67

Python Language Environment in RAD

Regex Pattern Searching in RAD in Python

You can also use ERE search capabilities of RAD. The following example shows how to find
only zones with name test-0 or test-1.

EXAMPLE 38 Python Language – Using Regex Patterns in RAD

>>> import rad.bindings.com.oracle.solaris.rad.zonemgr as zonemgr

>>> import rad.client as radc

>>> import rad.connect as radcon

>>> with radcon.connect_unix() as rc:

... zonelist = rc.list_objects(zonemgr.Zone(), radc.ADRRegexPattern({"name" : "test-0|

test-1"}))

... print zonelist...

[Name: com.oracle.solaris.rad.zonemgr:type=Zone,name=test-0,id=-1 Version: (1.0), Name:

com.oracle.solaris.rad.zonemgr:type=Zone,name=test-1,id=-1 Version: (1.0)]

>>>

The key and the value must be valid EREs as determined by the instance of RAD to which you
are connected. The expression is compiled and executed on the server.

RAD Interface Components in Python

An API is defined by a module developer. It contains one or more of the following components,
each of which performs a task:

■ Enumerations
■ Values

■ Structures
■ Fields

■ Dictionary
■ Interfaces

■ Properties
■ Methods
■ Events

These components are defined in an ADR IDL document. The radadrgen utility is used to
process the document to generate language specific components which facilitate client-server
interactions within RAD. For more information about the role of ADR and RAD, see Chapter 3,
“Abstract Data Representation”. Brief descriptions of each component follows.

68 Remote Administration Daemon Developer's Guide • April 2020

Python Language Environment in RAD

RAD Enumerations in Python

Enumerations are primarily used to offer a restricted range of choices for a property, an
interface method parameter, result, or error.

Using RAD Enumeration Types in Python

To access an enumerated type, import the binding and interact with the enumeration.

EXAMPLE 39 Python Language – Using RAD Enumerations

>>> import rad.bindings.com.oracle.solaris.rad.zonemgr as zonemgr

>>> print zonemgr.ErrorCode.NONE

NONE

>>> print zonemgr.ErrorCode.COMMAND_ERROR

COMMAND_ERROR

>>>

RAD Structure Types in Python

Structures, or "structs", are used to define new types and are composed from existing built-in
types and other user defined types. Structs are simple form of interfaces with no methods or
events. They are not included in the RAD namespace.

Using RAD Structs in Python

The zonemgr module defines a Property struct which represents an individual zone
configuration property. The structure has the following members: name, type, value, value,
listValue, and complexValue. Like enumerations, structures can be interacted with directly
once the binding is imported.

EXAMPLE 40 Python Language – Using RAD Structs

>>> import rad.bindings.com.oracle.solaris.rad.zonemgr as zonemgr

>>> prop = zonemgr.Property("autoboot", "false")

>>> print prop

Chapter 2 • Connecting to RAD 69

Python Language Environment in RAD

Property(name = 'autoboot', value = 'false', type = None, listvalue = None, complexvalue

 = None)

>>> prop.name = "my name"

>>> prop.value = "a value"

>>> print prop.name

my name

>>> print prop.value

a value

>>>

Dictionary Support in Python for RAD

You can use the built-in dictionary type in Python. For example, the Python code to set the
sample dictionary property as defined in Example 49, “Defining a Dictionary,” on page 80
can be as follows:

object.DictProp = {1: 'value1', 2: 'value2'}

RAD Interfaces in Python

Interfaces, also known as objects, are the entities which populate the RAD namespace. They
must have a name. An interface is composed of events, properties, and methods.

Obtaining a RAD Object Reference in Python

See the “RAD Namespace in Python” on page 64 section.

Working With RAD Object References in Python

Once you have an object reference, you can use this object reference to interact with RAD
directly. All attributes and methods defined in the IDL are accessible directly as Python object
attributes that are returned by the get_object() function.

The following example gets a reference to a zone and then boots the zone.

EXAMPLE 41 Python Language – Working With RAD Object References

>>> import rad.bindings.com.oracle.solaris.rad.zonemgr as zonemgr

70 Remote Administration Daemon Developer's Guide • April 2020

Python Language Environment in RAD

>>> import rad.client as radc

>>> import rad.connect as radcon

>>> with radcon.connect_unix() as rc:

... patt = radc.ADRGlobPattern({"name" : "test-0"})

... zone = rc.get_object(zonemgr.Zone(), patt)

... print zone.name

... zone.boot(None)

>>>

In this example, you have connected to the RAD instance, created a search for a specific object,
retrieved a reference to the object, and accessed a remote property on it. No error handling
occurred.

Accessing a RAD Remote Property in Python

The following example shows how to access a remote property.

EXAMPLE 42 Python Language – Accessing a Remote RAD Property

>>> import rad.bindings.com.oracle.solaris.rad.zonemgr as zonemgr

>>> import rad.client as radc

>>> import rad.connect as radcon

>>> with radcon.connect_unix() as rc:

... name = rc.list_objects(zonemgr.Zone(), radc.ADRGlobPattern({"name" : "test-0"}))

... zone = rc.get_object(name[0])

... for prop in zone.getResourceProperties(zonemgr.Resource("global")):

... if prop.name == "brand":

... print "Zone: %s, brand: %s" % (zone.name, prop.value)

... break

...

Zone: test-0, brand: solaris

>>>

In this example, you have accessed the list of global resource properties of the Zone and
searched the list of properties for the brand property. When you find it, print the value of the
brand property and then terminate the loop.

RAD Event Handling in Python

This example shows how to subscribe to and handle events. The ZoneManager instance defines
a stateChange event, which clients can subscribe to for information about changes in the
runtime state of a zone.

Chapter 2 • Connecting to RAD 71

Python Language Environment in RAD

EXAMPLE 43 Python Language – Subscribing to and Handling RAD Events

import rad.connect as radcon

import rad.bindings.com.oracle.solaris.rad.zonemgr as zonemgr

import signal

def handler(event, payload, user):

 print "event: %s" % str(event)

 print "payload: %s" % str(payload)

 print "zone: %s" % str(payload.zone)

 print "old: %s" % str(payload.oldstate)

 print "new: %s" % str(payload.newstate)

with radcon.connect_unix() as rc:

 zm = rc.get_object(zonemgr.ZoneManager())

 rc.subscribe(zm, "stateChange", handler, zm)

 signal.pause()

In this example, you have subscribed to a single event by passing a handler and a reference to
the ZoneManager object. The handler is invoked asynchronously by the framework with various
event details and user data. The user data is an optional argument at subscription. If the user
data is not provided, the handler receives None as the user parameter.

Python Error Handling in RAD

Python provides a exception handling mechanism and propagates RAD errors by using this
mechanism. RAD delivers a variety of error codes that you can handle with rad.client.
ObjectError. The following example shows how to handle RAD errors.

EXAMPLE 44 Python Language – Handling RAD Errors

import rad.client as radc

import rad.conect as radcon

import rad.bindings.com.oracle.solaris.rad.zonemgr as zonemgr

import logging

import sys

logging.basicConfig(filename='/tmp/example.log', level=logging.DEBUG)

with radcon.connect_unix() as rc:

 patt = radc.ADRGlobPattern({"name" : "test-0"})

 test0 = rc.get_object(zonemgr.Zone(), patt)

 print test0.name

 try:

 test0.boot(None)

72 Remote Administration Daemon Developer's Guide • April 2020

Python Language Environment in RAD

 except radc.ObjectError as ex:

 error = ex.get_payload()

 if not error:

 sys.exit(1)

 if error.stdout is not None:

 logging.info(error.stdout)

 if error.stderr is not None:

 logging.info(error.stderr)

 sys.exit(1)

Note - With ObjectError exceptions, you might get a payload. This payload is present only
if your interface method or property has defined an error element, where the payload is the
content of that error. If no error element for the interface method (or property) is declared, then
no payload exists and error will have a value of None.

Connecting in Python to a RAD Instance by Using
a URI

You can use the standard URI format to connect to a RAD instance. The URI format is as
follows:

scheme://user?@host:port?auth=value

scheme (Mandatory) The supported schemes are unix, rad, rads, and ssh.

user (Optional) The user who is connecting to the remote RAD instance. If
you do not specify the user, the current user is assumed.

host (Mandatory) The system that contains the remote RAD instance.

port (Optional) The port number. The default port is 12302 (RAD IANA
port).

auth (Optional) The authentication method that is used to connect to the
remote RAD instance. The supported values are pam and gss. If you
do not specify the authentication, then pam is assumed. If you are using
SSH as the transport protocol, you must not specify the authentication
mechanism.

Chapter 2 • Connecting to RAD 73

Python Language Environment in RAD

EXAMPLE 45 Python Language – Connecting to a RAD Instance by Using a URI

The following example shows how to open a TCP connection as jdoe to the system abc at port
10000 with default authentication.

rad://jdoe@abc.example.com:10000

The following example shows how to open a TLS connection as hg to the system abc at the
default RAD port with gss authentication.

rads://hg@abc.example.com?auth=gss

The following example shows how to open an SSH connection as the current user to the system
abc at the default SSH port.

ssh://abc.example.com

The following example shows how to open a connection to a local RAD instance.

unix:///path

74 Remote Administration Daemon Developer's Guide • April 2020

 3 ♦ ♦ ♦ C H A P T E R 3

Abstract Data Representation

The data model used by RAD is known as the Abstract Data Representation (ADR). This
data model defines a formal IDL for describing types and interfaces supplies a toolchain for
operating on that IDL and provides libraries used by rad, its extension modules, and its clients.

ADR Interface Description Language

The APIs used by RAD are defined by using an XML-based IDL. The normative schema for
this language can be found in /usr/share/lib/xml/rng/radadr.rng.1. The namespace name
is http://xmlns.oracle.com/radadr.

ADR Overview

The top-level element in an ADR definition document is an api. The api element has one
mandatory attribute, name, which is used to name the output files. The element contains one
or more derived type or interface definitions. Because there is no requirement that an interface
must use derived types, it is not necessary to specify any derived types in an API document. To
enable consumers to use the data typing defined by ADR for non-interface purposes, there is
no requirement that an interface must be defined. However, note that either a derived type or an
interface must be defined.

Three derived types are available for definition and use by interfaces: a structured type that
can be defined with a struct element, an enumeration type that can be defined with an enum
element, and a dictionary type that can be defined with a dictionary element. Interfaces are
defined using interface elements. The derived types defined in an API document are available
for use by all interfaces defined in that document.

The following is an example of an API.

Chapter 3 • Abstract Data Representation 75

ADR Interface Description Language

EXAMPLE 46 Skeleton API document

<api xmlns="http://xmlns.oracle.com/radadr" name="com.oracle.solaris.rad.example"

 register="true">

 <version/>

 <struct>...</struct>

 <struct>...</struct>

 <enum>...</enum>

 <dictionary>...</dictionary>

 <interface>...</interface>

 <interface>...</interface>

</api>

The xmlns is required to indicate the type of the XML document. The name attribute is
identifying the name of the API, the namespace within which all subsidiary interfaces are to be
found. There are additional attributes to assist in the generation of server module code.

The register attribute is a boolean, which is optional and true by default. If true, then radadrgen
automatically generates a _rad_reg() function when generating server implementation code.
If false, the function is not generated and the module author will need to provide a _rad_reg()
function. This option is primarily provided for the creation of special types of modules, such
as protocol or transport modules, in general it does not need to be specified, since the default
generated function is enough for most purposes.

Documentation Definitions

The documentation elements allow you to document the RAD module APIs and are defined by
the schema specification in /usr/share/lib/xml/rng/radadr-doc.rng.1.

The two main documentation elements are:

<summary /> Container for inline elements.

<doc /> Container for block elements.

<summary /> Element

The <summary /> element is a mandatory element, which represents a short text synopsis of the
parent element. The <summary /> element can only text data annotated with the inline elements
<code />, <emphasis />, , and <link />. The output of a <summary /> element is
running text with possible typographic modifications and the available inline elements are as
follows:

76 Remote Administration Daemon Developer's Guide • April 2020

ADR Interface Description Language

<code /> Indicates small fragments of code.

<emphasis /> Emphasizes a phrase or word in italics.

 Emphasizes a phrase or word in bold.

<link /> Displays hypertext based on the following values for the hyperlink:

url An external URL.

interface, [method,

property, event]

An interface, method, property, or an event defined
within the ADR document.

enum, [value] An enum data type or an enum value defined within
the ADR document.

struct, [field] A struct data type or a struct field defined
within the ADR document.

Note - The text within the <link> element can be empty. If the value is empty, the text data is
auto-generated based on the value of the method attribute.

<doc /> Element

Use the <doc /> element to define larger blocks of content. The <doc /> element might contain
inline elements, block elements or text data. The <doc /> element is displayed as separate
blocks of data and the available block elements are:

<heading /> Defines a section heading.

<para /> Defines a paragraph.

<list /> Defines a list of items. Items in the list are defined by an <item />
element. The <list /> element takes an optional attribute that defines
the type of list to display using the ordered attribute for a numbered
list or unordered attribute for a bullet list. The default list type is an
unordered list.

<item /> Defines an item in a list. It might contain block or inline elements.

<example /> Displays a program listing. Available attributes are:

Chapter 3 • Abstract Data Representation 77

ADR Interface Description Language

language A mandatory attribute which defines the
programming language. It can have any one of c,
python, java, rest, or curl. The value must be in
lowercase.

caption An optional attribute, which provides a label for
the example.

numbered An optional attribute. Displays line numbers.
Default is to omit line numbers.

<verbatim /> Defines a block of text in which line breaks and whitespace are to be
preserved and displayed as is.

For more information about how to use the documentation definitions, see “ADR API
Example” on page 84.

Version Element

A version element is required for all APIs.

The initial version of an API must always be defined as follows:

<version major="1" minor="0"/>

This indicates that the module is starting at version 1.0.

Enumeration Definitions

The enum element has a single mandatory attribute, name. The name is used when referring
to the enumeration from other derived type or interface definitions. An enum contains one or
more value elements, one for each user-defined enumerated value. A value element has a
mandatory name attribute that gives the enumerated value a symbolic name. The symbolic name
is not used elsewhere in the API definition, only in the server and various client environments.
The symbolic name that is exposed in these environments are environment-dependent. An
environment offering an explicit interface to RAD must provide an interface that accepts the
exact string values defined by the value elements' name attributes.

Some language environments support associating scalar values with enumerated type values,
for example C. To provide richer support for these environments, ADR supports this concept

78 Remote Administration Daemon Developer's Guide • April 2020

ADR Interface Description Language

as well. By default, an enumerated value has an associated scalar value 1 greater than the
preceding enumerated value's associated scalar value. The first enumerated value is assigned
a scalar value of 0. Any enumerated value element may override this policy by defining a
value attribute with the desired value. A value attribute must not specify a scalar value already
assigned, implicitly or explicitly, to an earlier value in the enumeration and value elements
contain no other elements.

EXAMPLE 47 Enumeration Definition

<enum name="Colors">

<value name="RED" /> <!-- scalar value: 0 -->

<value name="ORANGE" /> <!-- scalar value: 1 -->

<value name="YELLOW" /> <!-- scalar value: 2 -->

<value name="GREEN" /> <!-- scalar value: 3 -->

<value name="BLUE" /> <!-- scalar value: 4 -->

<value name="VIOLET" value="6" /> <!-- indigo was EOLed -->

</enum>

Structure Definitions

Similar to the enum element, the struct element has a single mandatory attribute, name. The
name is used when referring to the structure from other derived type or interface definitions.
A struct contains one or more field elements, one for each field of the structure. A
field element has a mandatory name attribute that gives the field a symbolic name. The
symbolic name isn't used elsewhere in the API definition, only in the server and various client
environments. In addition to a name, each field must specify a type.

You can define the type of a field in multiple ways. If a field is a plain base type or a derived
type defined elsewhere in the API document, that type is defined with a type attribute. If a
field is an array of some type (base or derived), that type is defined with a nested list element.
The type of the array is defined in the same fashion as the type of the field: either with a type
attribute, or another nested list element.

A field's value might be declared nullable by setting the field element's nullable attribute to
true.

Note - The structure fields, methods return values, method arguments, attributes, error return
values, and events have types, and in the IDL, use identical mechanisms for defining those
types.

Chapter 3 • Abstract Data Representation 79

ADR Interface Description Language

EXAMPLE 48 struct Definition

<struct name="Name">

 <field name="familyName" type="string" />

 <field name="givenNames">

 <list type="string" />

 </field>

</struct>

<struct name="Person">

 <field name="name" typeref="Name" />

 <field name="title" type="string" nullable="true" />

 <field name="shoeSize" type="int" />

</struct>

Dictionary Definitions

You can use dictionaries to add a data structure in which the key-value pair mappings can be
stored and retrieved. The following example shows how to use the dictionary tag.

<dictionary>

 <key type="<key type>">

 <value type="<value type>">

</dictionary>

You can use the dictionary type similar to any other RAD type such as a field in a structure, a
method argument or a return value, a property, an error payload, or as an event payload.

EXAMPLE 49 Defining a Dictionary

This example shows how to define a dictionary with a key type of integer and value type of
string as a read-write property.

...

 <property name="DictProp" access="rw" >

 <dictionary>

 <key type="integer" />

 <value type="string" />

 </dictionary>

 </property>

...

80 Remote Administration Daemon Developer's Guide • April 2020

ADR Interface Description Language

Values can be of any type except for list and dictionary. The value can be a derived type or
a reference in which case you must use the "typeref" tag instead of the "type" tag. However,
the key must belong to any one of the following basic types:

■ boolean
■ integer
■ unsigned integer
■ long
■ unsigned long
■ float
■ double
■ time
■ string
■ name

Interface Definitions

An interface definition has a name, and one or more attributes, methods, or events. An
interface's name is defined with the interface element's mandatory name attribute. This name
is used when referring to the inherited interface from other interface definitions, as well as in
the server and various client environments. The other characteristics of an interface are defined
using child elements of the interface element.

ADR Methods

Each method in an interface is defined by a method element. The name of a method is defined
by this element's mandatory name attribute. The other properties of a method are defined by
child elements of the method.

If a method has a return value, it is defined using a single result element. The type of the
return value is specified in the same way the type is specified for a structure field. If no result
element is present, the method has no return value.

If a method can fail for an API-specific reason, it is defined using a single error element. The
type of an error is specified the same way the type is specified for a structure field. Unlike
a structure field, an error need not specify a type. Such a situation is indicated by an error
element with no attributes or child elements. If no error element is present, the method will
only fail if there is a connectivity problem between the client and the server.

Chapter 3 • Abstract Data Representation 81

ADR Interface Description Language

A method's arguments are defined, in order, with zero or more argument elements. Each
argument element has a mandatory name attribute. The type of an argument is specified in the
same way the type is specified for a structure field.

EXAMPLE 50 Method Definition

<struct name="Meal">...</struct>

<struct name="Ingredient">...</struct>

<method name="cook">

 <result typeref="Meal" />

 <error />

 <argument type="string" name="name" nullable="true" />

 <argument name="ingredients">

 <list typeref="Ingredient" />

 </argument>

</method>

ADR Interface Attributes

Each attribute in an interface is defined by a property element. The name of an attribute is
defined by this element's mandatory name attribute. The types of access permitted are defined
by the mandatory access attribute, which takes a value of ro, wo, or rw, corresponding to read-
only access, write-only access, or read-write access, respectively.

The type of an attribute is specified in the same way the type is specified for a structure field.

If access to an attribute can fail for an API-specific reason, it is defined using one or more
error elements. An error element in a property may specify a for attribute, which takes a
value of ro, wo, or rw, corresponding to the types of access the error return definition applies
to. An error element with no for attribute is equivalent to one with a for attribute set to the
access level defined on the property. Two error elements may not specify overlapping access
types. For example, on a read-write property it is invalid for one error to have no for attribute
(implying rw) and one to have a for attribute of wo they both specify an error for writing.

The type of an error is specified the same way the type is specified for a method. It is identical
to defining the type of a structure, with the exception that a type need not be defined.

EXAMPLE 51 Attribute Definition

<struct name="PrivilegeError">...</struct>

<property name="guestList" access="rw">

82 Remote Administration Daemon Developer's Guide • April 2020

ADR Interface Description Language

 <list type="string" />

 <error for="wo" typeref="PrivilegeError" />

 <!-- Reads cannot fail -->

</property>

ADR Interface Event Element

Each event in an interface is defined by a event element. The name of an event is defined by
this element's mandatory name attribute. The type of an event is specified in the same way the
type is specified for a structure field.

EXAMPLE 52 Event Definition

<struct name="TremorInfo">...</struct>

<event name="earthquakes" typeref="TremorInfo" />

Combining IDL Files

ADR include feature allows you to include an XML-based IDL file within the parent IDL file.
The following example shows how to include the fragment.xml file within the parent.adr file.

/*fragment.xml*/

<?xml version="1.0" encoding="UTF-8"?>

<fragment xmlns="http://xmlns.oracle.com/radadr">

<version major="1" minor="0"/>

 <para>

 Paragraph 1

 </para>

 <para>

 Paragraph 2

 </para>

</fragment>

/*parent.adr*/

 <?xml version="1.0" encoding="UTF-8"?>

 .

 .

 .

 .

<?include href="fragment.xml" major="1" minor="0"?>

The <?include ?> processing instruction has the following mandatory attributes:

Chapter 3 • Abstract Data Representation 83

ADR Interface Description Language

href Path to the included file.

major Expected major version of the included fragment.

minor Expected minor version of the included fragment

Version checking provides a warning in case of minor version mismatch and fail with an error
in case of major version mismatch.

Note - You cannot use the standard xi:include directive to include IDL files.

ADR API Example

EXAMPLE 53 Using the ADR API

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<api xmlns="http://xmlns.oracle.com/radadr" name="com.oracle.solaris.rad.example">

 <version major="1" minor="0"/>

 <struct name="StringInfo">

 <field type="integer" name="length" />

 <field name="substrings">

 <list type="string" />

 </field>

 </struct>

 <struct name="SqrtError">

 <field type="float" name="real" />

 <field type="float" name="imaginary" />

 </struct>

 <enum name="Mood">

 <value name="IRREVERENT" />

 <value name="MAUDLIN" />

 </enum>

 <struct name="MoodStatus">

 <field typeref="Mood" name="mood" />

 <field type="boolean" name="changed" />

 </struct>

 <interface name="GrabBag" stability="private">

84 Remote Administration Daemon Developer's Guide • April 2020

radadrgen IDL Processing Tool

 <method name="sqrt">

 <result type="integer" />

 <error typeref="SqrtError" />

 <argument type="integer" name="x" />

 </method>

 <method name="parseString">

 <result typeref="StringInfo" nullable="true" />

 <argument type="string" name="str" nullable="true" />

 </method>

 <property typeref="Mood" name="mood" access="rw">

 <error for="wo" />

 </property>

 <event typeref="MoodStatus" name="moodswings" />

 </interface>

</api>

radadrgen IDL Processing Tool

radadrgen is the ADR IDL processing tool that is used to generate API-specific language
bindings for the RAD server and various client environments. See the radadrgen(1) man page
for details about its options.

Chapter 3 • Abstract Data Representation 85

http://www.oracle.com/pls/topic/lookup?ctx=E86824-01&id=REFMAN1radadrgen-1

86 Remote Administration Daemon Developer's Guide • April 2020

 4 ♦ ♦ ♦ C H A P T E R 4

Module Development

RAD is modular in a variety of ways. Modules may deliver custom protocols, transports, or
API definitions and implementations. This section focuses on the custom API definitions and
implementations. Although an API can be constructed manually, using radadrgen to generate
the necessary type definitions is much simpler.

RAD APIs in C

This section describes the APIs that are available for C language.

Entry Points in C

All entry points take a pointer to the object instance and a pointer to the internal structure for
the method or attribute. The object instance pointer is essential for distinguishing different
objects that implement the same interface. The internal structure pointer is theoretically useful
for sharing the same implementation across multiple methods or attributes, but isn't used and
may be removed.

Additionally, all entry points return a conerr_t. If the access is successful, they should return
CE_OK.

If the access fails due to a system error or a module defined error, they should return the
respective error codes. For more information about the error codes, see “Error Codes in
C” on page 88.

If an expected error occurs and an error payload is defined, it may be set in *error. The caller
will unref the error object when it is done with it.

■ A method entry point has the type meth_invoke_f:

typedef conerr_t (meth_invoke_f)(rad_instance_t *inst, adr_method_t *meth,

Chapter 4 • Module Development 87

RAD APIs in C

 adr_data_t **result, adr_data_t **args, int count, adr_data_t **error);

args is an array of count arguments.

Upon successful return, *result should contain the return value of the method, if any.

The entry point for a method named METHOD in interface INTERFACE is named
interface_INTERFACE_invoke_METHOD.

■ An attribute read entry point has the type attr_read_f:

typedef conerr_t (attr_read_f)(rad_instance_t *inst, adr_attribute_t *attr,

adr_data_t **value, adr_data_t **error);

Upon successful return, *value should contain the value of the attribute, if any.

The read entry point for an attribute named ATTR in interface INTERFACE is named
interface_INTERFACE_read_ATTR.

■ An attribute write entry point has the type attr_write_f:

typedef conerr_t (attr_write_f)(rad_instance_t *inst, adr_attribute_t *attr,

 adr_data_t *newvalue, adr_data_t **error);

newvalue points to the new value. If the attribute is nullable, newvalue can be NULL.

The write entry point for an attribute named ATTR in interface INTERFACE is named
interface_INTERFACE_write_ATTR.

rad explicitly checks the types of all arguments passed to methods and all values written to
attributes. Stub implementations can assume that all data provided is of the correct type. Stub
implementations are responsible for returning valid data. Returning invalid data results in an
undefined behavior.

Error Codes in C

RAD distinguishes errors as system errors and module defined errors.

System Errors

If the access fails due to a system error, the entry points should return one of the following error
codes:

■ CE_SYSTEM - An operation fails due to a system error. This error code should not have
payload.

88 Remote Administration Daemon Developer's Guide • April 2020

RAD APIs in C

■ CE_NOTFOUND - The retrieve operation fails because the object does not exist. This error code
should not have payload.

■ CE_EXISTS - The create operation fails because the object already exists. This error code
should not have payload.

■ CE_PRIV - An operation fails due to insufficient privileges. This error code should not have
payload.

■ CE_NOMEM - An operation fails due to insufficient memory. This error code should not have
payload.

Module Defined Errors

If the access fails due to an expected error as described in the API definition, the entry points
should return CE_OBJECT. If an expected error occurs and an error payload is defined, it may be
set in *error.

Note - Do not use the CE_MISMATCH and the CE_ILLEGAL error codes. If there is any data type
mismatch error or an illegal access error, return the CE_OBJECT error code with a payload
describing the illegal arguments.

Global Variables in C

Variables Description

boolean_t rad_isproxy A flag to determine if code is executing in
the main or proxy rad daemon. Only special
system modules, which are integral to the
operation of RAD, may use this variable.

rad_container_t

*rad_container

The rad container that contains the object
instance.

RAD Module Registration in C

Function Description

int _rad_init(void *handle); A module must provide a _rad_init. This is
called by the RAD daemon when the module
is loaded and is a convenient point for module

Chapter 4 • Module Development 89

RAD APIs in C

Function Description
initialization including registration. Return
0 to indicate that the module successfully
initialized.

int rad_module_register(void *handle, int version,

 rad_modinfo_t *modinfo);
rad_module_register provides a handle,
which is the handle provided to the module in
the call to _rad_init. This handle is used by
the RAD daemon to maintain the private list of
loaded modules. The version indicates which
version of the rad module interface the module
is using. modinfo contains information used to
identify the module.

RAD Instance Management in C

Function Description

rad_instance_t *rad_instance_create(rad_object_type *type,

 void *data, void (*)(void *)freef);
rad_instance_create uses the supplied
parameters to create a new instance of an object
of type. data is the user data to store with the
instance and the freef function is a callback
which will be called with the user data when
the instance is removed. If the function fails,
it returns NULL. Otherwise, a valid instance
reference is returned.

void * rad_instance_getdata(rad_instance_t *instance); rad_instance_getdata returns the user data
(supplied in rad_instance_create) of the
RAD instance.

void rad_instance_notify (rad_instance_t *instance, const char

 *event, long sequence, adr_data_t *data);
rad_instance_notify generates an event
on the supplied instance. The sequence is
supplied in the event as the sequence number
and the payload of the event is provided in
data.

RAD Container Interactions in C

Function Description

conerr_t rad_cont_insert(rad_container_t *container, adr_name_t

 *name, rad_instance_t *instance);

conerr_t rad_cont_insert_singleton(rad_container_t *container,

 adr_name_t *name, rad_object_t *object);

Create a RAD instance, rad_instance_t,
using the supplied name and object and
then insert into container. If the operation
succeeds, CE_OK is returned.

void rad_cont_remove(rad_container_t *container, adr_name_t

 *name);
Remove the instance from the container.

90 Remote Administration Daemon Developer's Guide • April 2020

RAD APIs in C

Function Description

conerr_t rad_cont_register_dynamic(rad_container_t *container,

 adr_name_t *name, rad_modinfo_t *modinfo, rad_dyn_list_t listf,

 rad_dyn_lookup_t lookupf, void *arg);

conerr_t (*rad_dyn_list_t)(adr_pattern_t *pattern, adr_data_t

 **data, void *arg);

conerr_t (*rad_dyn_lookup_t)(adr_name_t **name, rad_instance_t

 **inst, void *arg);

Register a dynamic container instance
manager. The container defines the
container in which the instances will be
managed. The name defines the name
filter for which this instance manager
is responsible. A typical name would
define the type of the instance which
are managed. For example, zname =
adr_name_vcreate (MOD_DOMAIN, 1,

"type", "Zone") would be responsible
for managing all instances with a type of
"Zone". listf is a user-supplied function
which is invoked when objects with the
matching pattern are listed. lookupf is a
user-supplied function which is invoked
when objects with the matching name are
looked up. arg is stored and provided in
the callback to the user functions.

RAD Logging in C

Function Description

void rad_log(rad_logtype_t type,

const char * format, ...);
Log a message with type and format to the rad
log. If the type is a lower level than the rad
logging level, then the message is discarded.

void rad_log_alloc() Log a memory allocation failure with log level
RL_FATAL.

rad_logtype_t rad_get_loglevel() Return the logging level.

Using Threads in RAD in C

Function Description

void *rad_thread_arg(rad_thread_t *tp); Return the arg referenced by the thread
tp.

void rad_thread_ack(rad_thread_t *tp,

rad_moderr_t error);
This function is intended to be used from
a user function previously supplied as
an argument to rad_thread_create. It
should not be used in any other context.

Acknowledge the thread referenced by
tp. This process enables the controlling
thread, from which a new thread was

Chapter 4 • Module Development 91

RAD APIs in C

Function Description

created using rad_thread_create, to
make progress. The error is used to update
the return value from rad_thread_create
and is set to RM_OK for success.

rad_moderr_t rad_thread_create(rad_threadfp_t fp,

 void *arg);
Create a thread to run fp. This function
will not return until the user function (fp)
calls rad_thread_ack. arg is stored
and passed into fp as a member of the
rad_thread_t data. It can be accessed
using rad_thread_arg.

rad_moderr_t rad_thread_create_async(

rad_thread_asyncfp_t fp, void *arg);
Create a thread to run fp. arg is stored
and passed into fp.

RAD Synchronization Functions in C

Function Description

void rad_mutex_init(pthread_mutex_t *mutex); Initialize a mutex.abort() on failure.

void rad_mutex_enter(pthread_mutex_t *mutex); Lock a mutex. abort() on failure.

void rad_mutex_exit(pthread_mutex_t *mutex); Unlock a mutex. abort() on failure.

void rad_cond_init(pthread_cond_t *cond); Initialize a condition variable, cond.
abort(), on failure.

RAD Subprocess Functions in C

Function Description

exec_params_t *rad_exec_params_alloc Allocate a control structure for executing
a subprocess.

void rad_exec_params_free(exec_params_t *params); Free a subprocess control structure,
params.

void rad_exec_params_set_cwd(exec_params_t *params,

const char *cwd);
Set the current working directory, cwd, in
a subprocess control structure, params.

void rad_exec_params_set_env(exec_params_t *params,

const char **envp);
Set the environment, envp, in a
subprocess control structure, params.

void rad_exec_params_set_loglevel(

exec_params_t *params, rad_logtype_t loglevel);
Set the RAD log level, loglevel, in a
subprocess control structure, params.

int rad_exec_params_set_stdin(exec_params_t *params,

int fd);
Set the stdin file descriptor, fd, in a
subprocess control structure, params.

92 Remote Administration Daemon Developer's Guide • April 2020

RAD APIs in C

Function Description

int rad_exec_params_set_stdout(exec_params_t *params,

int fd);
Set the stdout file descriptor, fd, in a
subprocess control structure, params.

int rad_exec_params_set_stderr(exec_params_t *params,

int fd);
Set the stderr file descriptor, fd, in a
subprocess control structure, params.

int rad_forkexec(exec_params_t *params,

 const char **argv, exec_result_t *result);
Use the supplied subprocess control
structure, params, to fork and execute
(execv) the supplied args, argv. If
result is not NULL, it is updated with the
subprocess pid and file descriptor details.

int rad_forkexec_wait(exec_params_t *params,

 const char **argv, int *status);
Use the supplied subprocess control
structure, params, to fork and execute
(execv) the supplied args, argv. If status
is not NULL, it is updated with the exit
status of the subprocess. This function
will wait for the subprocess to terminate
before returning.

int rad_wait(exec_params_t *params,

 exec_result_t *result, int *status);
Use the supplied subprocess control
structure, params, to wait for a previous
invocation of rad_forkexe to complete.
If result is not NULL, it is updated with the
subprocess pid and file descriptor details.
If status is not NULL, it is updated with
the exit status of the subprocess. This
function will wait for the subprocess to
terminate before returning.

RAD Utility Functions in C

Function Description

void *rad_zalloc(size_t size); Return a pointer to a zero-allocated block
of size bytes.

char *rad_strndup(char *string, size_t length); Create and return a duplicate of string that
is of size, length bytes.

int rad_strccmp(const char * zstring, const char * cstring, size_t

 length);
Compare two strings, up to a maximum
size of length bytes.

int rad_openf(const char *format, int oflag, mode_tmode, ...); Open a file with access mode, oflag, and
mode, mode, whose path is specified by
calling sprintf() on format.

FILE *rad_fopenf(const char *format, const char *mode, ...); Open a file with mode, whose path is
specified by calling sprintf() on format.

Chapter 4 • Module Development 93

RAD APIs in C

RAD Locale Functions in C

Function Description

int rad_locale_parse(const char *locale,

 rad_locale_t **rad_locale);
Update rad_locale with locale details
based on locale. If locale is NULL, then
attempt to retrieve a locale based on the
locale of the RAD connection. Returns 0
on success.

void rad_locale_free(rad_locale_t *rad_locale); Free a locale, rad_locale, previously
obtained with rad_locale_parse.

Transactional Processing in RAD Modules in C

Transactional processing has no direct support within a module. If a transactional model is
desirable, the module creator must provide the required building blocks, start_transaction,
commit, rollback, and other related processes.

Asynchronous Methods and Progress Reporting
in RAD in C

Asynchronous methods and progress reporting is achieved using threads and events. The pattern
is to return a token from a synchronous method invocation which spawns a thread to do work
asynchronously. This worker thread is then responsible for providing notifications to interested
parties events.

For example, an interface has a method which returns a Task object. The method is called
installpkg and takes one argument, the name of the package to install.

Task installpkg(string pkgname);

The Task instance returned by the method, contains enough information to identify a task. Prior
to invoking installpkg, the client subscribes to a task-update event. The worker thread is
responsible for issuing events about the progress of the work. These events contain information
about the progress of the task.

In a minimal implementation, the worker thread would issue one event to notify the client that
the task was complete and what the outcome of the task was. A more complex implementation
would provide multiple events documenting progress and possibly also provide an additional
method that a client could invoke to interrogate the server for a progress report.

94 Remote Administration Daemon Developer's Guide • April 2020

Exported Python Interfaces Used by RAD

Exported Python Interfaces Used by RAD
This section describes the APIs that are available for Python language.

The exported Python interfaces are as follows:

■ rad.server – RAD Server module.
■ RADInstance – RAD instance base class. All the generated interfaces inherit from the

RADInstance class. Thus, the interfaces inherit a set of useful behaviours. All the inherited
attributes are prepended with _rad to both prevent name collisions and clearly indicate that
these attributes are protected.

■ RADContainer – Container base class. Represents a container into which the RAD instances
are inserted.

■ RADException – RAD exception base class. Represents an exception, which will be
propagated back to the client as a CE_OBJECT exception. If an invocation fails, the error is
declared in the ADR. See Example 54, “Using RADException,” on page 97.

The following functions must be provided by an implementation module:

■ rad_reg()

■ rad_init()

■ rad_fini()

rad.server Python Module
The following tables provide information about the server module functions and attributes.

TABLE 1 RAD Server Module Functions

Function Description

rad_log Provides log information.

_rad_locale_get() Provides the locale
information.

_rad_locale_free() Frees the locale.

_rad_locale_parse() Parses the locale.

TABLE 2 RAD Server Module Attributes

Attribute Description

rad_container Variable pointing to the
RAD container that the
module must be using.

Chapter 4 • Module Development 95

Exported Python Interfaces Used by RAD

Attribute Description

rad_log_lvl DEBUG, NOTE, WARN, ERROR,
CONFIG, FATAL, PANIC.

RADInstance Python Class

The following tables provide information about the methods and properties for the RAD
instance base class, RADInstance.

TABLE 3 RADInstance Methods

Method Description

_rad_notify(self, event, payload) Sends an event event with payload payload to subscribed
clients.

_rad_insert_singleton(cls, ctr)

_rad_hold(self)

_rad_release(self)

TABLE 4 RADInstance Properties

Property Description

_rad_name The RAD name of given instance.

_rad_user_data

RADContainer Python Class

The following table provides information about the methods for RADContainer.

TABLE 5 RADContainer Methods

Method Description

insert(self, inst) Adds instance into the container. This API is rarely
used directly and typically called by Subclass-of-
RADInstace.__init__(self, name, user, freef,
dynamic) when name is not None and dynamic == False.

insert_singleton(self, cls) Creates a new RADInstance subclass instance and insert
it to container under name name.

remove(self, inst) Removes instance inst from the container.

96 Remote Administration Daemon Developer's Guide • April 2020

Exported Python Interfaces Used by RAD

Method Description

supercede(self, inst)

register(self, listf, lookupf) Registers RADInstance subclass klass for dynamic listing
and looking up.

find_by_name(self, name)

find_by_id(self, id)

list(self, pat)

RADException Python Class

This section provides an example that shows how to use RADException.

EXAMPLE 54 Using RADException

The ADR type definition is as follows:

<struct name="pair" stability="private">

 <field name="first" type="integer"/>

 <field name="second" type="integer"/>

</struct>

The ADR method definition is as follows:

<method name="raiseError" stability="private">

 <doc>

 Raise an exception to test exception handling.

 </doc>

 <error typeref="pair"/>

</method>

In the method definition, you are specifying that an exception must be raised when the
initialization of the struct "pair" fails.

The implementation is as follows:

def raiseError(self):

 raise radser.RADException(snake_iface.pair(3, 6))

In this example, you are raising a RADException and providing a payload that matches the
definition in the ADR document.

Chapter 4 • Module Development 97

RAD Namespaces

The exceptions that occur as a consequence of "other" errors such as divide by zero are
propagated back to the client as a CE_SYSTEM error representing the general RAD failure code
for systemic failure.

RAD Namespaces

Objects in the RAD namespace can be managed either as a set of statically installed objects or
as a dynamic set of objects that are listed or created on demand.

RAD Static Objects

rad_modapi.h declares two interfaces for statically adding objects to a namespace.

rad_cont_insert() adds an object to the namespace. In turn, objects are created by calling
rad_instance_create() with a pointer to the interface the object implements, a pointer to
object-specific callback data and a pointer to a function to free the callback data. For example:

adr_name _t *uname = adr_name_vcreate("com.oracle.solaris.rad.user", 1, "type", "User");

rad_instance_t *inst = rad_instance_create(&interface_User_svr, kyle_data, NULL);

(void) rad_cont_insert(&rad_container, uname, inst);

adr_name_rele(uname);

rad_cont_insert_singleton() is a convenience routine that creates an object instance for the
specified interface with the specified name and adds it to the namespace. The callback data is
set to NULL.

adr_name _t *uname = adr_name_vcreate("com.oracle.solaris.rad.user", 1, "type", "User");

(void) rad_cont_insert_singleton(&rad_container, uname, &interface_User_svr);

adr_name_rele(uname);

RAD Module Dynamic Handlers

A module can register a dynamic handler for each interface that is implemented by the module.
This allows efficient searching within a module by limiting a listing to a matching subset of the
instances that the module is managing. Note that you can register a single dynamic handler for
a module's entire namespace. Additionally, when you register a dynamic handler, you need to
specify a lookup function pointer.

The following example shows the usage of dynamic handlers in the zones module.

98 Remote Administration Daemon Developer's Guide • April 2020

rad Module Linkage

cerr = rad_cont_register_dynamic(rad_container, aname,

 &modinfo, zone_listf, zone_lookupf, NULL);

rad Module Linkage

Modules are registered with the RAD daemon in the _rad_reg(). This is automatically
generated from the information contained within the IDL defining the module.

Each module is required to provide a function, _rad_init(), for initializing the module. This
function is called before any other function in the module. Similarly, the _rad_fini() in the
module is called by the RAD daemon just prior to unloading the module.

EXAMPLE 55 RAD Module Initialization

#include <rad/rad_modapi.h>

int

_rad_init(void)

{

 adr_name _t *uname = adr_name_vcreate("com.oracle.solaris.rad.user", 1, "type",

 "User");

 conerr_t cerr = rad_cont_insert_singleton(&rad_container, uname,

 &interface_User_svr);

 adr_name_rele(uname);

 if (cerr != CE_OK)

 {

 rad_log(RL_ERROR, "failed to insert module in container");

 return(-1);

 }

 return (0);

}

Chapter 4 • Module Development 99

100 Remote Administration Daemon Developer's Guide • April 2020

 5 ♦ ♦ ♦ C H A P T E R 5

REST APIs for RAD Clients

In addition to supporting RPC-based interfaces, RAD now supports REST (Representational
State Transfer), which facilitates integration with the web-based frameworks and the cloud.
You can invoke the RESTful RAD APIs to build client applications that need to access
administrative RAD interfaces.
This chapter covers the following topics about REST APIs for RAD clients.

■ “RESTful Interface and RAD” on page 101
■ “URI Specification for RAD Resources” on page 103
■ “REST Requests” on page 105
■ “REST Responses” on page 108
■ “RAD Authentication” on page 110
■ “REST API Reference” on page 115

RESTful Interface and RAD

The RESTful interface can be accessed by any HTTP client that supports UNIX domain
sockets. The rad:local-http RAD service instance that is enabled by default facilitates
communication with the HTTP clients.

Note - By design, connections over UNIX domain sockets are local only.

The following example provides a quick look at the interaction with RAD by using REST.

EXAMPLE 56 Interacting With RAD by Using REST

This example assumes that you have installed the pkg:/library/python/pycurl developer
package.

Chapter 5 • REST APIs for RAD Clients 101

RESTful Interface and RAD

1. Create a new authentication session.

curl -X POST -c cookie.txt -b cookie.txt \

 --header 'Content-Type:application/json'

 --data '{"username":"username","password":"password","scheme":"pam","timeout":-1,
 "preserve":true}' \

 localhost/api/com.oracle.solaris.rad.authentication/1.0/Session/ \

 --unix-socket /system/volatile/rad/radsocket-http

Note - Replace the username and password with values for any user on your system.

2. Request a list of all the zones running on your system.

curl -H 'Content-Type:application/json' -X GET \

 localhost/api/com.oracle.solaris.rad.zonemgr/1.0/Zone?_rad_detail \

 --unix-socket /system/volatile/rad/radsocket-http -b cookie.txt

If your system has zones, you will get a response similar to the following:

{

 "status": "success",

 "payload": [

 {

 "href": "api/com.oracle.solaris.rad.zonemgr/1.2/Zone/

testzone1",

 "Zone": {

 "auxstate": [],

 "brand": "solaris",

 "id": 1,

 "uuid": "b54e20c1-3ecb-407f-ad26-befed9221860",

 "name": "testzone1",

 "state": "running"

 }

 },

 {

 "href": "api/com.oracle.solaris.rad.zonemgr/1.2/Zone/

testzone2",

 "Zone": {

 "auxstate": [],

 "brand": "solaris",

 "id": 2,

 "uuid": "358b43ba-32f9-4f27-9efa-de15ae4100a6",

 "name": "testzone2",

102 Remote Administration Daemon Developer's Guide • April 2020

URI Specification for RAD Resources

 "state": "running"

 }

 }

]

}

URI Specification for RAD Resources

In a RESTful architecture, RAD objects are modeled as resources. A resource is an entity with
a type, associated data, relationships to other resources, and a set of methods that operate on it.
A URI is used to identify a resource. Resources can exist individually or as a collection. And a
collection can be nested within an individual resource.
The URI format to access RAD resources can include a variety of parameters, for example:

■ http://host:port/api/{namespace}/[{version}]/{collection}[?query-params]
■ http://host:port/api/{namespace}/[{version}]/{collection}/{coll-ID}[?query-params]
■ http://host:port/api/{namespace}/[{version}]/{collection}/{coll-ID}/{property}[?query-params]
■ http://host:port/api/{namespace}/[{version}]/{collection}/{coll-ID}/{sub-collection}[?query-

params]
■ http://host:port/api/{namespace}/[{version}]/{collection}/{coll-ID}/{sub-collection}/{sub-coll-ID}

[?query-params]
■ http://host:port/api/{namespace}/[{version}]/{collection}/{coll-ID}/{sub-collection}/{sub-coll-

 ID}/{property}[?query-params]
■ http://host:port/api/{namespace}/[{version}]/{collection}/{coll-ID}/{sub-collection}/{sub-coll-ID}/

{sub-collection}/{sub-coll-ID}/{sub-collection}......[?query-params]

The components in the URIs are as follows:

■ namespace – Name associated with a RAD module, generally the module API name or
domain name of the RAD module.

■ version – Optional version number that specifies the RAD module version.
■ collection – Collection resource.
■ coll-ID – Identifier or path to an individual resource within a collection that identifies a

specific RAD instance.
■ sub-collection – Collection nested within an individual resource. It is an interface property

of type struct, a list, a dictionary, or a reference.
■ sub-coll-ID – Identifier or path to an individual resource within a subcollection. It consists

of a struct field, a list index, a dictionary key, or a reference property.

Chapter 5 • REST APIs for RAD Clients 103

URI Specification for RAD Resources

■ property – An interface property within a specific individual resource.

Sample URI:

http://host:port/api/com.oracle.solaris.rad.zonemgr/1.2/Zone/testzone1?_rad_detail

All REST requests take the optional _rad_detail query parameter. If this query parameter
is set to true, you will get the full details of an object in the response. The default setting is
false.

In some cases, a server object does not have a name and the use of a standard URI to refer to
a RAD instance does not make sense. This situation might occur when a reference to a RAD
instance is returned as an error or as the result from a method. In this case, the server generates
a URI path that includes a _rad_reference field. For example, the following is a possible URI:

/api/com.oracle.solaris.rad.zonemgr/1.0/Zone/_rad_reference/1234

The URI is valid to use in the remainder of the session but is valid only for the lifetime of a
session.

URI for an Individual RAD Resource

Individual resources are identified by a URI that includes a comma-separated list of all primary
keys. For example, an individual zone object might be represented by the following URI:

/api/com.oracle.solaris.rad.zonemgr/1.0/Zone/testzone1

URI for a RAD Resource Collection

Collections are identified by a URI which includes the name of the collection. For example, a
zone collection object is represented by the following URI:

/api/com.oracle.solaris.rad.zonemgr/1.0/Zone

Invoking RAD Interface Methods

To invoke a method supported by an interface in a URI, include the method name and an
ordered list of arguments in the request. The response includes any results or errors returned by
the interface method.

104 Remote Administration Daemon Developer's Guide • April 2020

REST Requests

EXAMPLE 57 Listing the anet Properties of a Zone in RAD

The following example shows how to get the anet properties of a zone and the sample
response.

curl -H 'Content-Type:application/json' -X PUT \

 localhost/api/com.oracle.solaris.rad.zonemgr/1.0/Zone/testzone1/_rad_method/

getResourceProperties \

 --data '{"filter": {"type": "anet"}}' \

 --unix-socket /system/volatile/rad/radsocket-http \

 -b cookie.txt

Sample output:

{

 "status": "success",

 "payload": [

 {

 "name": "linkname",

 "value": "net0",

 "type": "PROP_SIMPLE",

 "listvalue": null,

 "complexvalue": null

 },

 {

 "name": "lower-link",

 "value": "auto",

 "type": "PROP_SIMPLE",

 "listvalue": null,

 "complexvalue": null

 },.....

....]}

In this example, the getResourceProperties method of the Zone interface is invoked. For
more information about the methods supported by the Zone interface, see the zonemgr(3RAD)
man page.

Note - When using the _rad_method parameter, the request should be of type PUT.

REST Requests

A REST request is associated with an HTTP operation and can use any of the following HTTP
operations based on the type of request:

■ GET – Retrieve a resource or a collection of resources

Chapter 5 • REST APIs for RAD Clients 105

REST Requests

■ POST – Create a new resource
■ PUT – Update a resource
■ DELETE – Delete a resource

Because REST for RAD supports only JSON as the content type, you must include one of the
following values in the HTTP header of a REST request:

■ Set the value of the Content-Type field to application/json.
■ Set the value of the Accept field to */* or application/json.

REST Request Examples

The following examples show how to use REST to create, read, update, and delete RAD
resources.

EXAMPLE 58 Creating a Resource by Using REST

This example shows how to create a ZFS file system named p2 in rpool/export/home/
testuser.

Sample request:

curl -H 'Content-Type:application/json' -X PUT \

 localhost/api/com.oracle.solaris.rad.zfsmgr/1.0/ZfsDataset/rpool/_rad_method/

create_filesystem \

 --unix-socket /system/volatile/rad/radsocket-http -b cookie.txt \

 --data '{"name":"rpool/export/home/testuser/p2"}'

Sample response:

{

 "status": "success",

 "payload": {

 "href": "/api/com.oracle.solaris.rad.zfsmgr/1.0/ZfsDataset/

_rad_reference/5889"

 }

}

EXAMPLE 59 Updating a Resource by Using REST

This example shows how to update the value of the maxbw property for the net0 interface.

Sample request:

106 Remote Administration Daemon Developer's Guide • April 2020

REST Requests

curl -H 'Content-Type:application/json' -X PUT \

 localhost/api/com.oracle.solaris.rad.dlmgr/1.0/Datalink/net0/_rad_method/setProperty \

 --unix-socket /system/volatile/rad/radsocket-http \

 --data '{"properties":"maxbw=300","flags":1}' -b cookie.txt

Sample response:

{

 "status": "success",

 "payload": null

}

EXAMPLE 60 Querying a Resource by Using REST

This example shows how to get a list of all the ZFS file systems available in rpool.

Sample request:

curl -H 'Content-Type:application/json' -X PUT \

 localhost/api/com.oracle.solaris.rad.zfsmgr/1.0/ZfsDataset/rpool/_rad_method/

get_filesystems \

 --unix-socket /system/volatile/rad/radsocket-http -b cookie.txt \

 --data'{"recursive":true}'

Sample response:

{

 "status": "success",

 "payload": [

 "rpool/ROOT",

 "rpool/ROOT/solaris",

 "rpool/ROOT/solaris/var",

 "rpool/VARSHARE",

 "rpool/VARSHARE/zones",

 "rpool/VARSHARE/pkg",

 "rpool/VARSHARE/pkg/repositories",

 "rpool/export",

 "rpool/export/home",

 "rpool/export/home/testuser"

]

}

EXAMPLE 61 Deleting a Resource by using REST

This example shows how to delete a user named tuser4.

Sample request:

Chapter 5 • REST APIs for RAD Clients 107

REST Responses

curl -H 'Content-Type:application/json' -X PUT \

 localhost/api/com.oracle.solaris.rad.usermgr/1.0/UserMgr/_rad_method/deleteUser \

 --data '{"username":"tuser4"}' \

 --unix-socket /system/volatile/rad/radsocket-http -b cookie.txt

Sample response:

{

 "status": "success",

 "payload": null

}

REST Responses

All REST responses have the following basic JSON structure:

{

 "status": "success" ||

 "object-specific error" ||

 "not found error" ...

 "payload": null || <resource specific>

}

HTTP Status Codes and REST

Because REST requests are made over HTTP, the client receives HTTP status codes in a
response. Some of the common HTTP return codes and their corresponding meaning in the
context of RAD are as follows:

■ 200 OK – Request succeeded.
■ 201 Created – Request succeeded and a new resource is created.
■ 204 No Content – Request succeeded but the server did not return a message body.
■ 400 Bad Request – Request did not succeed, possibly because of a data-type mismatch or a

illegal access.
■ 401 Unauthorized – Insufficient privileges.
■ 404 Not found – Specified resource was not found.

108 Remote Administration Daemon Developer's Guide • April 2020

REST Responses

Error Responses to RAD Request

For non-fatal errors, the server responds with information about the issue. The basic JSON
structure of an error response is as follows:

{

 "status": text-of-the-RAD error,
 "payload": payload
}

In case of a HTTP 503 error, the value is defined and returned by the RAD module that is
mentioned in the request. For all other errors, the payload value has the following format:

{

 "Message": description-of-error,

 "HTTP Method": ("HEAD"|"GET"|"POST"|"PUT"|"DELETE"),

 "URI": full-URI-with-all-query-parameters,

 "RAD Operation": ("INVOKE"|"GETATTR"|"SETATTR"|"LOOKUP"|"LIST"|null),

 "Request payload": { Arguments provided by the client },

 "Method": name of a method for INVOKE operation,

 "Attribute": name of an attribute/property for GETATTR, SETATTR ops,

 "Pattern": URI translated to RAD list pattern for LIST operation,

 "Name": URI translated to RAD name for LOOKUP operation,

 "Object": { URI translated to RAD object (any operation but LIST)

 "Name": name of a module, also known as domain

 "Interface": name of the interface,

 },

 "Reference": RAD reference ID found in the special _rad_reference URIs,

 "Version": { Module version as found in the URI

 "Major": int,

 "Minor": int

 }

Chapter 5 • REST APIs for RAD Clients 109

RAD Authentication

 }

Information that is not provided in the request or could not be decoded from the request is
included in the response as a JSON null.

Some of the examples of possible error messages are as follows:

Decoding request body as JSON failed: too big integer near '18446744073709551615'

Invalid (array) argument 'arg'='[true,false,true,false]' - element [0]

 - integer out of bounds (-2147483648, 2147483647)

RAD Authentication

With RAD, all communications between client and server are encapsulated within a connection.
When a connection closes, all state associated with the connection is reclaimed by the RAD
daemon. However, because RESTful interactions that happen over HTTP are stateless, a client
must establish a connection and authenticate with each request.

Instead of having to re-authenticate for every request, RAD provides a token authentication
mechanism. When a client connects to RAD and successfully authenticates, RAD generates
a unique token for the client and then services the request. At the same time, RAD stores the
token and details about the client connection. On subsequent requests, if a token is supplied,
RAD uses the token to retrieve the previously authenticated connection, associates it with the
incoming request, and processes the request.
Because a token is generated when a client connects to RAD for the first time, the token is
absent from the request. Tokens have the following characteristics:

■ Tokens are a 256-bit opaque value constructed from a random number, which provides
security and minimizes the likelihood of collisions.

■ Tokens have a finite, configurable lifetime of up to a maximum of 24 hours. The default
lifetime is 1 hour. The lifetime is configured as part of the initial authentication request. The
expiry time of the token is reset or extended whenever an authenticated request is received.

■ If the token received in a request is invalid or has expired, an error is returned and the client
must re-authenticate.

■ If the RAD slave is killed or if RAD is terminated, all tokens and their corresponding
sessions are destroyed.

RAD Authenticating Local Clients
This section provides an example that shows how to authenticate a local client.

110 Remote Administration Daemon Developer's Guide • April 2020

RAD Authentication

curl -X POST -c cookie.txt -b cookie.txt \

 --header 'Content-Type:application/json' \

 --data '{"username":"username","password":"password","scheme":"pam","timeout":-1,
 "preserve":true}' \

 localhost/api/com.oracle.solaris.rad.authentication/1.0/Session/ \

 --unix-socket /system/volatile/rad/radsocket-http

The preceding command establishes a session and generates a token that is sent back to the
client in form of an HTTP cookie.

Set-Cookie: _rad_instance=26368; Path=/api; Max-Age=3600

Set-Cookie: _rad_token=9432a53c-8034-4729-8cac-fb713a56827b; Path=/api;Max-Age=3600

{

 "status": "success",

 "payload": {

 "href": "/api/com.oracle.solaris.rad.authentication/1.0/Session/

_rad_reference/2304"

 }

}

As the Set-Cookie implies, to resume a session, a client must present this cookie in the HTTP
header as part each future request. Because the Set-Cookie directive instructs the client to
include this cookie in future requests, the session resumes automatically. In this example,
invoking the curl command again with the same cookie.txt file and a new request would
result in RAD processing the new request as part of the initial session.

For subsequent requests, you would use the token as shown in the following example.

curl -v -X GET -c cookie.txt -b cookie.txt \

> localhost/api/com.oracle.solaris.rad.zonemgr/1.0/Zone?_rad_detail

The _rad_token cookie contains a string token that is the external representation of the session.
If the token needs to be directly accessed, you can obtain the string token by reading the
session's token property. This value may be used to later gain access to the session by writing
the token to the session's token property.

Only the owner of a session may delete and thus invalidate the session.

Note - A session token may be used across multiple connections, which allows an authenticated
client to make multiple concurrent requests.

Chapter 5 • REST APIs for RAD Clients 111

How to Create a Service Instance to Handle Requests from Remote Clients

RAD Authenticating Remote Clients
The default configuration for REST accepts connections only from a local system on a UNIX
socket. However, you can open a public port and provide secure transport over TLS for remote
RAD clients. This section provides information about the three general steps required:

1. Create a service instance to handle requests from remote clients.
2. Test the remote connection.
3. Set up a RAD connection.

How to Create a Service Instance to Handle Requests from
Remote Clients

1. Create a SMF service manifest by copying the /lib/svc/manifest/system/rad.xml
manifest and modifying it.
The following example shows a sample SMF manifest after modification.

cat rad-remote-http.xml

<?xml version="1.0" ?>

<!DOCTYPE service_bundle

 SYSTEM '/usr/share/lib/xml/dtd/service_bundle.dtd.1'>

<service_bundle type="manifest" name="site/rad">

 <service version="1" type="service" name="site/rad">

 <dependency restart_on="none" type="service"

 name="multi_user_dependency" grouping="require_all">

 <service_fmri value="svc:/milestone/multi-user"/>

 </dependency>

 <exec_method name='start' type='method' exec='/usr/lib/rad/rad -sp'

 timeout_seconds='0'/>

 <exec_method name='stop' type='method' exec=':kill' timeout_seconds='0'/>

 <instance name='remote-http' enabled='false' complete='true'>

 <property_group name='ssl_port' type='xport_tls'>

 <propval name='certificate' type='astring' value='/etc/rad/cert.pem'/>

 <propval name='generate' type='boolean' value='true'/>

 <propval name='localonly' type='boolean' value='false'/>

 <propval name='pam_service' type='astring' value='rad-tls'/>

 <propval name='port' type='integer' value='12303'/>

 <propval name='privatekey' type='astring' value='/etc/rad/key.pem'/>

 <propval name='proto' type='astring' value='rad_http'/>

 <propval name='value_authorization' type='astring' value='solaris.smf.value.

rad'/>

 </property_group>

112 Remote Administration Daemon Developer's Guide • April 2020

How to Test the Remote Connection in RAD

 <property_group name='config' type='application'>

 <property name='moduledir' type='astring'>

 <astring_list>

 <value_node value='/usr/lib/rad/transport'/>

 <value_node value='/usr/lib/rad/protocol'/>

 <value_node value='/usr/lib/rad/module'/>

 <value_node value='/usr/lib/rad/site-modules'/>

 </astring_list>

 </property>

 </property_group>

 </instance>

 <template>

 <common_name>

 <loctext xml:lang="C">Remote RAD HTTP</loctext>

 </common_name>

 <description>

 <loctext xml:lang="C">RAD connections over REST (HTTP)</loctext>

 </description>

 </template>

 </service>

</service_bundle>

Note the following items in the example manifest:

■ The port property defines the port number on which RAD accepts remote connection,
which in this example is set to 12303.

■ The proto property defines the protocol to use. In this example, it is set to HTTP as
indicated by rad-http.

2. Copy the manifest to the site-wide SMF manifest location at /lib/svc/manifest/
site.

cp rad-remote-http.xml

 /lib/svc/manifest/site

3. Restart the svc:/system/manifest-import:default service instance.

svcadm restart manifest-import

4. Enable the newly created rad:remote-http service instance.

svcadm enable rad:remote-http

How to Test the Remote Connection in RAD

Make the following request in a browser on a remote client.

Chapter 5 • REST APIs for RAD Clients 113

How to Set Up a RAD Connection

https://hostname:12303
The request returns a response similar to the following example:

{

 "status": "illegal access",

 "payload": {

 "Message": "Response content type 'text/html,application/xhtml+xml,

application/xml;q=0.9,*/*;q=0.8' requested

 yet only 'application/json' is supported by the origin server.",

 "HTTP Method": "GET",

 "URI": "/",

 "RAD Operation": null

 }

}

How to Set Up a RAD Connection

After you have created a service instance to handle remote requests, the next step is to
authenticate and establish a RAD connection from a client. To authenticate:

1. Save the user credentials a JSON file to authenticate.
For example:

cat body.json

{

 "username": "testuser",

 "password": "testpassword",

 "scheme": "pam",

 "preserve": true,

 "timeout": -1

}

2. Ensure that the RAD server's certificate will be trusted.
Perform this procedure once per client. Choose the steps for your certificate source.

■ RAD server is using a self-signed certificate.

a. Copy the certificate only from the server to the client.

RADserver # cp /etc/rad/RADserver.pem /net/RADclient/etc/certs/CA

Use a unique name, such as the RAD server name, as in RADserver.pem.

b. Restart the ca-certificates service on the client.

114 Remote Administration Daemon Developer's Guide • April 2020

REST API Reference

RADclient # svcadm restart ca-certificates

■ RAD server is using a CA certificate.

a. Ensure that the certificate for the issuing CA is in the /etc/certs/CA
directory on the client.

RADclient # ls /etc/certs/CA
...

Example-Security_EV_RootCA1.pem

Example-Security_RootCA2.pem

Example-Security_Root_CA.pem

...

b. If necessary, restart the ca-certificates service.

RADclient # svcadm restart ca-certificates

For example, you can now use the curl command on the client with a slightly different set
of options to make a TLS connection to the RAD server.

RADclient # curl -H "Content-type: application/json" -X POST \
 --data-binary @body.json \

 -v -c cookie.txt -b cookie.txt \

 https://RADserver.example.com:12303/api/com.oracle.rad.authentication/1.0/Session

REST API Reference

Although all RAD modules support REST, from a client perspective only some of the modules
will be accessed over REST. The tables in this section list some of the URIs for commonly-
accessed RAD modules along with sample requests.

TABLE 6 REST APIs for Authentication – com.oracle.solaris.rad.authentication

Resource URI
Description Sample Request

POST

 /api/com.oracle.solaris.

 rad.authentication/1.0/Session/

Authenticate a
RAD session.

curl -X POST -c cookie.txt -b cookie.txt '

 --header 'Content-Type:application/json'

 --data '{"username":"testuser","password":"testpassword",

 "scheme":"pam","timeout":-1, "preserve":true}'

 localhost/api/com.oracle.solaris.rad.authentication/1.0/

Session/

 --unix-socket /system/volatile/rad/radsocket-http

Chapter 5 • REST APIs for RAD Clients 115

REST API Reference

Resource URI
Description Sample Request

GET

 /api/com.oracle.solaris.

 rad.authentication/1.0/Session/{Session-

Id}?_rad_detail

Get the details
of a particular
session.

curl -X GET -c cookie.txt -b cookie.txt

 --header 'Content-Type:application/json' localhost/api/

com.oracle.solaris.rad.authentication/1.0/Session/2048?

_rad_detail

 --unix-socket /system/volatile/rad/radsocket-http

TABLE 7 REST APIs for Datalink Management – com.oracle.solaris.rad.dlmgr

Resource URI
Description Sample Request

GET

 /api/com.oracle.solaris.rad.dlmgr/1.0?

_rad_detail

List the details of
all the interfaces
available
for datalink
management.

curl -H 'Content-Type:application/json' -X GET

 localhost/api/com.oracle.solaris.rad.dlmgr/1.0?_rad_detail

 --unix-socket /system/volatile/rad/radsocket-http -b

 cookie.txt

PUT

 /api/com.oracle.solaris.rad.dlmgr/1.0/

Datalink/net0/_rad_method/getProperty

Get the details
of the priority
property from
net0.

curl -H 'Content-Type:application/json' -X PUT

 localhost/api/com.oracle.solaris.rad.dlmgr/1.0/Datalink/net0/

_rad_method/getProperty

 --unix-socket /system/volatile/rad/radsocket-http

 --data '{"properties":"priority"}' -b cookie.txt

TABLE 8 REST APIs for Kernel Statistics – com.oracle.solaris.rad.kstat

Resource URI
Description Sample Request

GET

 /api/com.oracle.solaris.rad.kstat/1.0?

_rad_detail

List the details for
all the interfaces
available for
kernel statistics.

curl -H 'Content-Type:application/json' -X GET

 localhost/api/com.oracle.solaris.rad.kstat/1.0?_rad_detail

 --unix-socket /system/volatile/rad/radsocket-http -b

 cookie.txt

GET

 /api/com.oracle.solaris.rad.kstat/1.0/

Kstat/misc,cpu_info0,cpu_info,{CPU number}?

_rad_detail

Get the
information for a
particular CPU on
a system.

curl -H 'Content-Type:application/json' -X GET

 localhost/api/com.oracle.solaris.rad.kstat/1.0/Kstat/

misc,cpu_info0,cpu_info,0?_rad_detail

 --unix-socket /system/volatile/rad/radsocket-http -b

 cookie.txt

GET

 /api/com.oracle.solaris.rad.kstat/1.0/

Kstat/misc,vm,cpu,{CPU number}?_rad_detail

Get the VM
statistics for a
particular CPU on
a system.

curl -H 'Content-Type:application/json' -X GET

 localhost/api/com.oracle.solaris.rad.kstat/1.0/Kstat/

misc,vm,cpu,0?_rad_detail

 --unix-socket /system/volatile/rad/radsocket-http -b

 cookie.txt

TABLE 9 REST APIs for SMF Management – com.oracle.solaris.rad.smf

Resource URI
Description Sample Request

GET

 /api/com.oracle.solaris.rad.smf/1.0?

_rad_detail

List the details of
all the interfaces
available for SMF
management.

curl -H 'Content-Type:application/json' -X GET

 localhost/api/com.oracle.solaris.rad.smf/1.0?_rad_detail

 --unix-socket /system/volatile/rad/radsocket-http -b

 cookie.txt

116 Remote Administration Daemon Developer's Guide • April 2020

REST API Reference

Resource URI
Description Sample Request

GET

 /api/com.oracle.solaris.rad.smf/1.0/

Instance/network%2Fhttp,apache22/state

Get the status
of the apache22
service.

curl -H 'Content-Type:application/json' -X GET

 localhost/api/com.oracle.solaris.rad.smf/1.0/Instance/network

%2Fhttp,apache22/state

 --unix-socket /system/volatile/rad/radsocket-http -b

 cookie.txt

PUT

 /api/com.oracle.solaris.rad.smf/1.0/

Instance/network%2Fhttp,apache22/

_rad_method/enable

Enable the
apache22 service.

curl -H 'Content-Type:application/json' -X PUT

 localhost/api/com.oracle.solaris.rad.smf/1.0/Instance/network

%2Fhttp,apache22/_rad_method/enable

 --unix-socket /system/volatile/rad/radsocket-http -b

 cookie.txt

 --data '{"temporary": true}'

PUT

 /api/com.oracle.solaris.rad.smf/1.0/

Instance/network%2Fhttp,apache22/

_rad_method/disable

Disable the
apache22 service.

curl -H 'Content-Type:application/json' -X PUT

 localhost/api/com.oracle.solaris.rad.smf/1.0/Instance/network

%2Fhttp,apache22/_rad_method/disable

 --unix-socket /system/volatile/rad/radsocket-http -b

 cookie.txt

 --data '{"temporary": true}'

TABLE 10 REST APIs User Management – com.oracle.solaris.rad.usermgr

Resource URI
Description Sample Request

PUT

 /api/com.oracle.solaris.rad.usermgr/1.0/

UserMgr/_rad_method/getUser

Get the
information of a
particular user on
the system.

curl -H 'Content-Type:application/json' -X PUT

 localhost/api/com.oracle.solaris.rad.usermgr/1.0/UserMgr/

_rad_method/getUser

 --data '{"username":"testuser"}' --unix-socket

 /system/volatile/rad/radsocket-http -b cookie.txt

GET

 /api/com.oracle.solaris.rad.usermgr/1.0/

UserMgr/shells?_rad_detail

Get the list of all
the shells on the
system.

curl -H 'Content-Type:application/json' -X GET

 localhost/api/com.oracle.solaris.rad.usermgr/1.0/UserMgr/

shells?_rad_detail

 --unix-socket /system/volatile/rad/radsocket-http -b

 cookie.txt

PUT

 /api/com.oracle.solaris.rad.usermgr/1.0/

UserMgr/_rad_method/addUser

Add a user. curl -H 'Content-Type:application/json' -X PUT

 localhost/api/com.oracle.solaris.rad.usermgr/1.0/UserMgr/

_rad_method/addUser

 --data '{"user":{"username":"tuser4", "userID": 9992,

 "groupID":

 10, "inactive": 0, "min": -1, "max": -1, "warn":

 -1},"password":"test123"}'

 --unix-socket /system/volatile/rad/radsocket-http -b

 cookie.txt

PUT

 localhost/api/com.oracle.solaris.rad.

usermgr/1.0/UserMgr/_rad_method/deleteUser

Delete a user. curl -H 'Content-Type:application/json' -X PUT

 localhost/api/com.oracle.solaris.rad.usermgr/1.0/UserMgr/

_rad_method/deleteUser

 --data '{"username":"tuser4"}'

 --unix-socket /system/volatile/rad/radsocket-http -b

 cookie.txt

Chapter 5 • REST APIs for RAD Clients 117

REST API Reference

TABLE 11 REST APIs for ZFS Management – com.oracle.solaris.rad.zfsmgr

Resource URI
Description Sample Request

GET

 /api/com.oracle.solaris.rad.zfsmgr/1.0?

_rad_detail

List the details of
all the interfaces
available for ZFS
management.

curl -H 'Content-Type:application/json' -X GET

 localhost/api/com.oracle.solaris.rad.zfsmgr/1.0?_rad_detail

 --unix-socket /system/volatile/rad/radsocket-http -b

 cookie.txt

PUT

 /api/com.oracle.solaris.rad.zfsmgr/1.0/

ZfsDataset/rpool/_rad_method/

get_filesystems

List all the ZFS
file systems in
rpool.

curl -H 'Content-Type:application/json' -X PUT

 localhost/api/com.oracle.solaris.rad.zfsmgr/1.0/ZfsDataset/

rpool/_rad_method/get_filesystems

 --unix-socket /system/volatile/rad/radsocket-http -b

 cookie.txt

 --data '{"recursive":true}'

PUT

 /api/com.oracle.solaris.rad.zfsmgr/1.0/

ZfsDataset/rpool/_rad_method/get_snapshots

List all the ZFS
snapshots.

curl -H 'Content-Type:application/json' -X PUT

 localhost/api/com.oracle.solaris.rad.zfsmgr/1.0/ZfsDataset/

rpool/_rad_method/get_snapshots

 --unix-socket /system/volatile/rad/radsocket-http -b

 cookie.txt

 --data '{"recursive":true}'

PUT

 /api/com.oracle.solaris.rad.zfsmgr/1.0/

ZfsUtil/_rad_method/valid_zfs_name

Check whether a
specified string
can be used as a
ZFS name.

curl -H 'Content-Type:application/json' -X PUT

 localhost/api/com.oracle.solaris.rad.zfsmgr/1.0/ZfsUtil/

_rad_method/valid_zfs_name

 --unix-socket /system/volatile/rad/radsocket-http -b

 cookie.txt

 --data '{"name":"test@test"}'

PUT

 localhost/api/com.oracle.solaris.rad.

zfsmgr/1.0/ZfsDataset/rpool/_rad_method/

create_filesystem

Create a ZFS file
system.

curl -H 'Content-Type:application/json' -X PUT

 localhost/api/com.oracle.solaris.rad.zfsmgr/1.0/ZfsDataset/

rpool/_rad_method/create_filesystem

 --unix-socket /system/volatile/rad/radsocket-http -b

 cookie.txt

 --data '{"name":"rpool/export/home/testuser/p2"}'

TABLE 12 REST APIs for Zone Management – com.oracle.solais.rad.zonemgr

Resource URI
Description Sample Request

GET

 /api/com.oracle.solaris.rad.zonemgr/1.2?

_rad_detail

List the details of
all the interfaces
available for Zone
management.

curl -H 'Content-Type:application/json' -X GET

 localhost/api/com.oracle.solaris.rad.zonemgr/1.2?_rad_detail

 --unix-socket /system/volatile/rad/radsocket-http -b

 cookie.txt

GET

 /api/com.oracle.solaris.rad.zonemgr/1.2/

Zone/{zone-name}?_rad_detail

Get the details of
a zone.

curl -H 'Content-Type:application/json' -X GET

 localhost/api/com.oracle.solaris.rad.zonemgr/1.2/Zone/

testzone1?_rad_detail

 --unix-socket /system/volatile/rad/radsocket-http -b

 cookie.txt

GET

 /api/com.oracle.solaris.rad.zonemgr/1.0/

ZoneInfo?_rad_detail

Get the details of
the zone for which
the interface is
executing.

curl H 'Content-Type:application/json' -X GET

 localhost/api/com.oracle.solaris.rad.zonemgr/1.0/ZoneInfo?

_rad_detail

 --unix-socket /system/volatile/rad/radsocket-http -b

 cookie.txt

118 Remote Administration Daemon Developer's Guide • April 2020

 A ♦ ♦ ♦ A P P E N D I X A

zonemgr ADR Interface Description Language
Example

The example in this appendix shows some APIs used in the zonemgr ADR Interface Description
Language. It does not reflect the actual full implementation of the zonemgr APIs in Oracle
Solaris.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<api xmlns="http://xmlns.oracle.com/radadr" name="com.oracle.solaris.rad.zonemgr">

 <version major="1" minor="0"/>

 <enum name="ErrorCode">

 <value name="NONE" value="0"/>

 <value name="FRAMEWORK_ERROR"/>

 <value name="SNAPSHOT_ERROR"/>

 <value name="COMMAND_ERROR"/>

 <value name="RESOURCE_ALREADY_EXISTS"/>

 <value name="RESOURCE_NOT_FOUND"/>

 <value name="RESOURCE_TOO_MANY"/>

 <value name="RESOURCE_UNKNOWN"/>

 <value name="ALREADY_EDITING"/>

 <value name="PROPERTY_UNKNOWN"/>

 <value name="NOT_EDITING"/>

 <value name="SYSTEM_ERROR"/>

 <value name="INVALID_ARGUMENT"/>

 <value name="INVALID_ZONE_STATE"/>

 </enum>

 <struct name="Result" stability="private">

 <field typeref="ErrorCode" name="code" nullable="true"/>

 <field type="string" name="str" nullable="true"/>

 <field type="string" name="stdout" nullable="true"/>

 <field type="string" name="stderr" nullable="true"/>

 </struct>

 <struct name="ConfigChange">

 <field type="string" name="zone"/>

 </struct>

 <struct name="StateChange">

Appendix A • zonemgr ADR Interface Description Language Example 119

 <field type="string" name="zone"/>

 <field type="string" name="oldstate"/>

 <field type="string" name="newstate"/>

 </struct>

 <enum name="PropertyValueType">

 <value name="PROP_SIMPLE"/>

 <value name="PROP_LIST"/>

 <value name="PROP_COMPLEX"/>

 </enum>

 <struct name="Property">

 <field name="name" type="string"/>

 <field name="value" type="string" nullable="true"/>

 <field name="type" typeref="PropertyValueType" nullable="true"/>

 <field name="listvalue" nullable="true">

 <list type="string"/>

 </field>

 <field name="complexvalue" nullable="true">

 <list type="string"/>

 </field>

 </struct>

 <struct name="Resource">

 <field type="string" name="type"/>

 <field name="properties" nullable="true">

 <list typeref="Property"/>

 </field>

 <field name="parent" type="string" nullable="true"/>

 </struct>

 <interface name="ZoneManager">

 <method name="create">

 <result typeref="Result"/>

 <error typeref="Result"/>

 <argument name="name" type="string"/>

 <argument name="path" type="string" nullable="true"/>

 <argument name="template" type="string" nullable="true"/>

 </method>

 <method name="delete">

 <result typeref="Result"/>

 <error typeref="Result"/>

 <argument name="name" type="string"/>

 </method>

 <method name="importConfig">

 <result typeref="Result"/>

 <error typeref="Result"/>

 <argument name="noexecute" type="boolean"/>

 <argument name="name" type="string"/>

 <argument name="configuration">

 <list type="string"/>

 </argument>

120 Remote Administration Daemon Developer's Guide • April 2020

 </method>

 <event typeref="StateChange" name="stateChange"/>

 </interface>

 <interface name="ZoneInfo">

 <property name="brand" access="ro" type="string"/>

 <property name="id" access="ro" type="integer"/>

 <property name="uuid" access="ro" type="string" nullable="true">

 <error typeref="Result"/>

 </property>

 <property name="name" access="ro" type="string"/>

 <property name="isGlobal" access="ro" type="boolean"/>

 </interface>

 <interface name="Zone">

 <name key="name" primary="true"/>

 <name key="id"/>

 <property name="auxstate" access="ro" nullable="true">

 <list type="string"/>

 <error typeref="Result"/>

 </property>

 <property name="brand" access="ro" type="string"/>

 <property name="id" access="ro" type="integer"/>

 <property name="uuid" access="ro" type="string" nullable="true">

 <error typeref="Result"/>

 </property>

 <property name="name" access="ro" type="string"/>

 <property name="state" access="ro" type="string"/>

 <method name="cancelConfig">

 <error typeref="Result"/>

 </method>

 <method name="exportConfig">

 <result type="string"/>

 <error typeref="Result"/>

 <argument name="includeEdits" type="boolean" nullable="true"/>

 <argument type="boolean" name="liveMode" nullable="true"/>

 </method>

 <method name="update">

 <error typeref="Result"/>

 <argument name="noexecute" type="boolean"/>

 <argument name="commands">

 <list type="string"/>

 </argument>

 </method>

 <method name="editConfig">

 <error typeref="Result"/>

 <argument type="boolean" name="liveMode" nullable="true"/>

 </method>

 <method name="commitConfig">

 <error typeref="Result"/>

Appendix A • zonemgr ADR Interface Description Language Example 121

 </method>

 <method name="configIsLive">

 <result type="boolean"/>

 </method>

 <method name="configIsStale">

 <result type="boolean"/>

 <error typeref="Result"/>

 </method>

 <method name="addResource">

 <error typeref="Result"/>

 <argument name="resource" typeref="Resource"/>

 <argument name="scope" typeref="Resource" nullable="true"/>

 </method>

 <method name="reloadConfig">

 <error typeref="Result"/>

 <argument type="boolean" name="liveMode" nullable="true"/>

 </method>

 <method name="removeResources">

 <error typeref="Result"/>

 <argument name="filter" typeref="Resource" nullable="false"/>

 <argument name="scope" typeref="Resource" nullable="true"/>

 </method>

 <method name="getResources">

 <result>

 <list typeref="Resource"/>

 </result>

 <error typeref="Result"/>

 <argument name="filter" typeref="Resource" nullable="true"/>

 <argument name="scope" typeref="Resource" nullable="true"/>

 </method>

 <method name="getResourceProperties">

 <result>

 <list typeref="Property"/>

 </result>

 <error typeref="Result"/>

 <argument name="filter" typeref="Resource" nullable="false"/>

 <argument name="properties" nullable="true">

 <list type="string"/>

 </argument>

 </method>

 <method name="setResourceProperties">

 <error typeref="Result"/>

 <argument name="filter" typeref="Resource" nullable="false"/>

 <argument name="properties" nullable="false">

 <list typeref="Property"/>

 </argument>

 </method>

 <method name="clearResourceProperties">

122 Remote Administration Daemon Developer's Guide • April 2020

 <error typeref="Result"/>

 <argument name="filter" typeref="Resource" nullable="false"/>

 <argument name="properties" nullable="false">

 <list type="string"/>

 </argument>

 </method>

 <method name="apply">

 <result typeref="Result"/>

 <error typeref="Result"/>

 <argument name="options" nullable="true">

 <list type="string"/>

 </argument>

 </method>

 <method name="attach">

 <result typeref="Result"/>

 <error typeref="Result"/>

 <argument name="options" nullable="true">

 <list type="string"/>

 </argument>

 </method>

 <method name="boot">

 <result typeref="Result"/>

 <error typeref="Result"/>

 <argument name="options" nullable="true">

 <list type="string"/>

 </argument>

 </method>

 <method name="clone">

 <result typeref="Result"/>

 <error typeref="Result"/>

 <argument name="options" nullable="true">

 <list type="string"/>

 </argument>

 </method>

 <method name="detach">

 <result typeref="Result"/>

 <error typeref="Result"/>

 <argument name="options" nullable="true">

 <list type="string"/>

 </argument>

 </method>

 <method name="halt">

 <result typeref="Result"/>

 <error typeref="Result"/>

 <argument name="options" nullable="true">

 <list type="string"/>

 </argument>

 </method>

Appendix A • zonemgr ADR Interface Description Language Example 123

 <method name="install">

 <result typeref="Result"/>

 <error typeref="Result"/>

 <argument name="options" nullable="true">

 <list type="string"/>

 </argument>

 </method>

 <method name="mark">

 <result typeref="Result"/>

 <error typeref="Result"/>

 <argument name="options" nullable="true">

 <list type="string"/>

 </argument>

 </method>

 <method name="move">

 <result typeref="Result"/>

 <error typeref="Result"/>

 <argument name="options" nullable="true">

 <list type="string"/>

 </argument>

 </method>

 <method name="rename">

 <result typeref="Result"/>

 <error typeref="Result"/>

 <argument name="options" nullable="true">

 <list type="string"/>

 </argument>

 </method>

 <method name="ready">

 <result typeref="Result"/>

 <error typeref="Result"/>

 <argument name="options" nullable="true">

 <list type="string"/>

 </argument>

 </method>

 <method name="reboot">

 <result typeref="Result"/>

 <error typeref="Result"/>

 <argument name="options" nullable="true">

 <list type="string"/>

 </argument>

 </method>

 <method name="savecore">

 <result typeref="Result"/>

 <error typeref="Result"/>

 <argument name="options" nullable="true">

 <list type="string"/>

 </argument>

124 Remote Administration Daemon Developer's Guide • April 2020

 </method>

 <method name="shutdown">

 <result typeref="Result"/>

 <error typeref="Result"/>

 <argument name="options" nullable="true">

 <list type="string"/>

 </argument>

 </method>

 <method name="suspend">

 <result typeref="Result"/>

 <error typeref="Result"/>

 <argument name="options" nullable="true">

 <list type="string"/>

 </argument>

 </method>

 <method name="uninstall">

 <result typeref="Result"/>

 <error typeref="Result"/>

 <argument name="options" nullable="true">

 <list type="string"/>

 </argument>

 </method>

 <method name="verify">

 <result typeref="Result"/>

 <error typeref="Result"/>

 <argument name="options" nullable="true">

 <list type="string"/>

 </argument>

 </method>

 <method name="getManager">

 <result typeref="ZoneManager"/>

 </method>

 <event typeref="ConfigChange" name="configChange"/>

 </interface>

</api>

Appendix A • zonemgr ADR Interface Description Language Example 125

126 Remote Administration Daemon Developer's Guide • April 2020

Index

A
APIs

C for RAD clients, 33
in RAD, 17
Java for RAD clients, 49
Python for RAD clients, 61
REST for RAD clients, 101
versioning, 18

array

derived data type, 31
attributes

overview, 25
authentication REST client URI, 115
authorizations, 16

B
base types

list of, 30

C
C language environment

listing RAD interface instances, 38
RAD client, 33
RAD enumerations, 42
RAD error handling, 48
RAD event handling, 47
RAD interface components, 41
RAD interfaces, 45
RAD namespace, 36
RAD remote object references, 38
RAD singletons, 37

RAD structures, 43
searching

using glob patterns, 40
using regex patterns, 41

client libraries, 33
clients

language support from RAD, 19
com.oracle.solaris.rad.authentication REST
client URI, 115
com.oracle.solaris.rad.client package, 49
com.oracle.solaris.rad.connect package, 49
com.oracle.solaris.rad.dlmgr REST client
URI, 116
com.oracle.solaris.rad.kstat REST client
URI, 116
com.oracle.solaris.rad.smf REST client URI, 116
com.oracle.solaris.rad.usermgr REST client
URI, 117
com.oracle.solaris.rad.zfsmgr REST client
URI, 118
com.oracle.solaris.rad.zonemgr REST client
URI, 118
commitment levels, 27
components

naming conventions, 23
connecting to

RAD in C, 33
RAD in Java, 49
RAD in Python, 62

consistency
RAD naming, 21

127

Index

D
data

optional, 31
data types

base types, 30
derived types, 31
strong typing, 30

derived types
list of, 31

designing
RAD components, 17
sample module, 19

dlmgr REST client URI, 116

E
error responses

requests in REST, to, 109
events

overview, 26

F
features

RAD naming, 24

G
glob pattern search

in C, 40
in Java, 55, 67
in Python, 67

glob wildcard search
in C, 40
in Java, 55
in Python, 67

H
HTTP status codes in REST, 108

I
interface

versioning, 27
web applications, for, 101

interfaces
in RAD, 21
naming conventions, 21
REST, 101

J
Java language environment

authenticating, 49
connecting to

RAD, 49
RAD instance using URI, 50
RAD remote instance, 49

dictionary support for RAD, 58
JAR file location, 52
naming and RAD, 24
naming RAD object, 52
RAD client, 49
RAD enumeration types, 57
RAD enumerations, 57
RAD error handling, 61
RAD event handling, 60
RAD interface components, 56
RAD interface instances, 53
RAD interfaces, 58
RAD names, 53
RAD namespace, 51
RAD object references, 58, 58
RAD property enumerations, 57
RAD remote object references, 53
RAD singletons, 52
RAD struct types, 57
RAD structs, 57
searching

for RAD objects, 52
using glob patterns, 55
using glob wildcards, 55
using regex patterns, 56

128 Remote Administration Daemon Developer's Guide • April 2020

Index

system/management/rad/client/rad-java

package, 52
java.util.Map<K,V>, 58

K
kstat REST client URI, 116

L
languages

interactiing with RAD, 24
letter case

RAD naming conventions, 23
libradclient library, 37
library/python/pycurl developer package, 101
listing interface instances

in C, 38
in Python, 65

M
methods

overview, 25
modules

tips for using RAD, 31

N
namespaces

C, 36
in RAD, 29
Java, 51
Python, 64

naming
components, 23
conventions, 21
interaction with other language environments, 24
letter case conventions, 23
objects, 22

RAD features, 24

O
object names

naming conventions, 22
optional data

nullable, 31
overview

RAD features, 16

P
packages

Java for RAD, 49
library/python/pycurl, 101
REST, 101

Python language environment
accessing remote RAD property, 71
connecting to

local RAD instance, 62
RAD, 62
RAD instance using URI, 63, 73

dictionary support for RAD, 70
listing RAD interface instances, 65
naming, 64
RAD client, 61
RAD enumeration types, 69
RAD enumerations, 69
RAD error handling, 72
RAD event handling, 71
RAD interface components, 68
RAD interfaces, 70
RAD namespace, 64
RAD object references, 70
RAD remote object references, 66
RAD singletons, 65
RAD structure types, 69
RAD structures, 69
searching

using glob patterns, 67
using glob wildcards, 67

129

Index

using regex patterns, 68

R
RAD

API version element, 18
APIs, 17
attributes, 25
authenticating in REST, 110
authorizations, 16
base types, 30
C language environment, 33
client language support, 19
commitment levels, 27
connecting to, 33
data types, 30
derived types, 31
design examples, 19
designing components, 17
enabling logging, 32
enumerations

in C, 42
in Java, 56
in Python, 68

error handling
in C, 48
in Java, 61
in Python, 72

event handling
in C, 47
in Java, 60
in Python, 71

events, 26
feature types, 24
glob pattern search, 40

in C, 40
in Java, 55
in Python, 67

header files, 33
interacting with Java, 24
interface components

in C, 41
in Java, 56

in Python, 68
interface instances

in Java, 58
interface version, 27
interfaces, 21

in C, 45
in Java, 58
in Python, 70
in REST, 101

Java language environment, 49
legacy constraints, 18
libradclient library, 33
listing interface instances

in C, 38
in Python, 65

man pages, 31
methods, 25
namespace, 29

in C, 36
in Java, 51
in Python, 64

naming conventions, 21, 24
object references

obtaining in C, 45
obtaining in Java, 58
obtaining in Python, 70

optional data, 31
overview, 16
Python language environment, 61
regex pattern searching

in C, 41
in Java, 56
in Python, 68

remote object references
obtaining in C, 38
obtaining in Java, 54
obtaining in Python, 66

request examples in REST, 106
requests in REST, 105
required privileges, 32
resource collection in REST, 104
resources in REST, 103
REST API reference, 115

130 Remote Administration Daemon Developer's Guide • April 2020

Index

REST language environment, 101
rights profiles, 16
searching

in C, 37, 39
in Java, 52
in Python, 66

singletons
in C, 37
in Java, 52
in Python, 65

sophisticated searches, 39
structures

in C, 43
in Java, 56
in Python, 68

tips for using, 31
version numbering, 28

rad.auth Python class, 61
rad.client Python class, 61
rad.connect Python class, 61
rad.server Python module, 95
rad:local-http SMF service, 101
RADContainer Python base class, 95
RADException Python base class, 95
RADInstance Python base class, 95
RadPamHandler, 49
RadURI() connection, 63
rc_connect_*(), 33
rc_connect_unix(), 34
rc_disconnect(), 34
rc_pam_login(), 34
regex pattern search

in C, 41
in Java, 56
in Python, 68

remote administration daemon See RAD
REST language environment

API reference, 115
authenticating, 110
authentication module, 115
datalink management module, 116
error responses to requests, 109

HTTP status codes, 108
kernel statistics module, 116
packages, 101
RAD clients, for, 101
RAD resource collection, 104
request examples, 106
requests, 105
SMF management module, 116
SMF services and, 101
URI specifications, 103
user management module, 117
ZFS management module, 118
zone management module, 118

RESTful See REST language environment
rights profiles, 16

S
searching in RAD

in C, 37
in Java, 52
in Python, 66

smf REST client URI, 116
SMF services

rad:local-http, 101
solaris.smf.manage.rad service, 16
solaris.smf.value.rad service, 16
sophisticated searches

in RAD using C, 39
in RAD using Java, 54
in RAD using Python, 66

structure

derived data type, 31
system/management/rad/client/rad-java

package, 52

U
URI specifications in REST, 103
usermgr REST client URI, 117
/usr/include/rad/client/c/2/auth_login.h, 33
/usr/include/rad/radclient.h header file, 33

131

Index

/usr/include/rad/radclient_basetypes.h header
file, 33
/usr/lib/rad/java JAR files, 52

V
version numbering

conditions, 28
versioning

RAD APIs, 18

Z
zfsmgr REST client URI, 118
zonemgr REST client URI, 118

132 Remote Administration Daemon Developer's Guide • April 2020

	Remote Administration Daemon Developer's Guide
	Contents
	Using This Documentation
	Product Documentation Library
	Feedback

	Chapter 1 • Introduction to the Remote Administration Daemon
	Remote Administration Daemon
	How RAD Works
	Overview of RAD Features
	Designing RAD Components
	RAD APIs
	RAD API Versions
	RAD API Namespace and Restricted Names
	Synchronous and Asynchronous Invocation in RAD
	Legacy Constraints for RAD APIs
	RAD Client Library Support
	RAD API Design Examples
	RAD User Management Example

	RAD Interface
	RAD Interface Names
	RAD Object Names
	RAD Case Strategies

	RAD Feature Types
	RAD Methods
	RAD Property Attributes
	RAD Events

	RAD Commitment Levels
	RAD Interface Versioning
	RAD Version Numbering

	RAD Namespace
	RAD Naming
	RAD Name Equality
	RAD Searching Patterns

	Data Types Supported in RAD
	RAD Base Types
	RAD Derived Types
	Optional Data in RAD

	Tips for Using RAD Modules

	Chapter 2 • Connecting to RAD
	C Client Language Environment in RAD
	Connecting to RAD in C
	Connecting to a Local RAD Instance in C
	Connecting to a Remote Instance and Authenticating in RAD
	Connecting to a RAD Instance by Using a URI in C

	RAD Namespace in C
	Creating a Name for a RAD Object in C
	Searching for RAD Objects in C
	Obtaining a Reference to a RAD Singleton in C
	Listing RAD Instances of an Interface in C
	Obtaining a Remote Object Reference From a Name in C
	Sophisticated RAD Searches in C
	Glob Pattern Searching in RAD in C
	Regex Pattern Searching in RAD in C

	RAD Interface Components in C
	RAD Enumerations in C
	Using RAD Enumeration Types in C

	RAD Structures in C
	Using RAD Struct Types in C

	Dictionary Support in C for RAD
	RAD Interfaces in C
	Obtaining a RAD Object Reference in C
	Working With RAD Object References in C
	Accessing a Remote Property in RAD in C
	RAD Event Handling in C
	RAD Error Handling in C

	Java Language Environment in RAD
	Connecting to RAD in Java
	Connecting to a RAD Local Instance in Java
	Connecting to a Remote RAD Instance and Authenticating in Java
	Connecting to a RAD Instance by Using a URI in Java

	RAD Namespace in Java
	Creating a Name for a RAD Object in Java
	Searching for RAD Objects in Java
	RAD Singletons in Java
	Listing RAD Interface Instances in Java
	Remote Object References and RAD Names in Java
	Sophisticated RAD Searches in Java
	Glob Pattern Searching in RAD in Java
	Using Maps When Pattern Searching in RAD in Java
	Regex Pattern Searching in RAD in Java

	Interface Components for RAD in Java
	RAD Property Enumerations in Java
	Using RAD Enumeration Types in Java

	RAD Structs in Java
	Using RAD Struct Types in Java

	Dictionary Support for RAD in Java
	RAD Interfaces in Java
	Obtaining a RAD Object Reference in Java
	Working With RAD Object References in Java
	RAD Remote Property Example in Java
	RAD Event Handling
	Java Error Handling in RAD

	Python Language Environment in RAD
	Connecting to RAD in Python
	Connecting to a Local RAD Instance in Python
	Connecting to a RAD Remote Instance and Authenticating in Python
	Connecting to a RAD Instance by Using a URI in Python

	RAD Namespace in Python
	Creating a Name for a RAD Object in Python
	Searching for RAD Objects in Python
	RAD Singletons in Python
	Listing RAD Instances of an Interface in Python
	Obtaining a RAD Remote Object Reference From a Name in Python
	Sophisticated RAD Searches in Python
	Glob Pattern Searching in RAD in Python
	Regex Pattern Searching in RAD in Python

	RAD Interface Components in Python
	RAD Enumerations in Python
	Using RAD Enumeration Types in Python

	RAD Structure Types in Python
	Using RAD Structs in Python

	Dictionary Support in Python for RAD
	RAD Interfaces in Python
	Obtaining a RAD Object Reference in Python
	Working With RAD Object References in Python
	Accessing a RAD Remote Property in Python
	RAD Event Handling in Python
	Python Error Handling in RAD

	Connecting in Python to a RAD Instance by Using a URI

	Chapter 3 • Abstract Data Representation
	ADR Interface Description Language
	ADR Overview
	Documentation Definitions
	<summary /> Element
	<doc /> Element

	Version Element
	Enumeration Definitions
	Structure Definitions
	Dictionary Definitions
	Interface Definitions
	ADR Methods
	ADR Interface Attributes
	ADR Interface Event Element
	Combining IDL Files

	ADR API Example

	radadrgen IDL Processing Tool

	Chapter 4 • Module Development
	RAD APIs in C
	Entry Points in C
	Error Codes in C
	System Errors
	Module Defined Errors

	Global Variables in C
	RAD Module Registration in C
	RAD Instance Management in C
	RAD Container Interactions in C
	RAD Logging in C
	Using Threads in RAD in C
	RAD Synchronization Functions in C
	RAD Subprocess Functions in C
	RAD Utility Functions in C
	RAD Locale Functions in C
	Transactional Processing in RAD Modules in C
	Asynchronous Methods and Progress Reporting in RAD in C

	Exported Python Interfaces Used by RAD
	rad.server Python Module
	RADInstance Python Class
	RADContainer Python Class
	RADException Python Class

	RAD Namespaces
	RAD Static Objects
	RAD Module Dynamic Handlers

	rad Module Linkage

	Chapter 5 • REST APIs for RAD Clients
	RESTful Interface and RAD
	URI Specification for RAD Resources
	URI for an Individual RAD Resource
	URI for a RAD Resource Collection
	Invoking RAD Interface Methods

	REST Requests
	REST Request Examples

	REST Responses
	HTTP Status Codes and REST
	Error Responses to RAD Request

	RAD Authentication
	RAD Authenticating Local Clients
	RAD Authenticating Remote Clients
	How to Create a Service Instance to Handle Requests from Remote Clients
	How to Test the Remote Connection in RAD
	How to Set Up a RAD Connection

	REST API Reference

	Appendix A • zonemgr ADR Interface Description Language Example
	Index

