Note: This document represents the 2nd part of the DSR 5.X/6.X Installation Process. Prior to executing this document, make sure that the 1st part was fully executed.

DSR 5.X Installs: Use document 909-2282-001 as Part I
DSR 6.X Installs: Use document ES 4118-01 TKDSR as Part I
TABLE OF CONTENTS

1.0 INTRODUCTION .. 7
 1.1 Purpose and Scope .. 7
 1.2 References .. 7
 1.2.1 External .. 7
 1.2.2 Internal (Tekelec) ... 7
 1.3 Acronyms .. 8
 1.4 Terminology .. 8

2.0 GENERAL DESCRIPTION ... 10

3.0 INSTALL OVERVIEW .. 11
 3.1 Required Materials ... 11
 3.2 Installation Overview .. 11
 3.2.1 Installation Strategy .. 11
 3.2.2 SNMP Configuration ... 15
 3.2.3 Installation Procedures ... 15
 3.3 Optional Features ... 17

4.0 SOFTWARE INSTALLATION PROCEDURE .. 18
 4.1 Configure RMS TVOE Hosts ... 18
 4.2 Configure Blade TVOE Hosts .. 39
 4.3 Create Virtual Machines for Applications .. 46
 4.4 Install Application Software on Servers .. 55
 4.5 Application Configuration ... 61
 4.6 Signaling Network Configuration ... 102
 4.7 Post-Install Activities ... 122

APPENDIX A. SAMPLE NETWORK ELEMENT AND HARDWARE PROFILES 123

APPENDIX B. CONFIGURING FOR EAGLE XG TVOEILO ACCESS 126

APPENDIX C. TVOE ILO ACCESS ... 128

APPENDIX D. TVOE ILO GUI ACCESS .. 131

APPENDIX E. CHANGING TVOE ILO ADDRESS .. 133

APPENDIX F. PM&C/NOAMP/SOAM CONSOLE ILO ACCESS 135

APPENDIX G. ACCESSING THE SUN NETRA RMS CONSOLE USING ORACLE ILOM 137

APPENDIX H. ACCESSING THE NOAMP GUI USING SSH TUNNELING WITH PUTTY 141

APPENDIX I. ACCESSING THE NOAMP GUI USING SSH TUNNELING WITH OPENSsh FOR WINDOWS .. 144

APPENDIX J. MANUAL TIMEZONE SETTING PROCEDURE .. 145

APPENDIX K. CONFIGURING A DSR SERVER FOR 2-TIER OAM 146

APPENDIX L. DISABLING ACCESS TO A DSR NODE .. 147
List of Figures

Figure 1. Example of an instruction that indicates the server to which it applies... 8
Figure 2. Initial Application Installation Path – Example shown .. 10
Figure 3 - DSR Installation - High Level Sequence ... 13
Figure 4: DSR Single Site Installation Procedure Map .. 14

List of Tables

Table 1. Acronyms .. 8
Table 2. Installation Overview .. 15
Table 3. List of Selected Time Zone Values .. 148

List of Procedures

Procedure 1. Continue TVOE Configuration on First RMS Server ... 18
Procedure 2. Configure TVOE on Additional RMS Server(s) ... 28
Procedure 3. Configure TVOE on Server Blades .. 39
Procedure 4. Load Application and TPD ISO onto PM&C Server ... 46
Procedure 5. Create NOAMP Guest VMs ... 49
Procedure 6. Create SOAMP Guest VMs ... 52
Procedure 7. IPM Blades and VMs .. 55
Procedure 8. Install the Application Software on Blades .. 58
Procedure 9. Configure the First NOAMP NE and Server ... 61
Procedure 10. Configure the NOAMP Server Group .. 65
Procedure 11. Configure the Second NOAMP Server ... 68
Procedure 12. Complete Configuring the NOAMP Server Group ... 70
Procedure 13. Install NetBackup Client (Optional) ... 72
Procedure 14. NO Configuration for DR Site (Optional) .. 72
Procedure 15. NO Pairing for DSR NO DR Site (Optional) ... 78
Procedure 16. Configure the SOAM NE ... 81
Procedure 17. Configure the SOAM Servers ... 81
Procedure 18. Configure the SOAM Server Group .. 85
Procedure 19. Post NOAMP & SOAM Setup Operations ... 87
Procedure 20. Configure the MP Blade Servers ... 90
Procedure 21. Configure Places and Assign MP Servers to Places (PDRA Installations ONLY) 96
Procedure 22. Configure the MP Server Group(s) and Profiles .. 97
Procedure 23. Configure the Signaling Networks ... 102
Procedure 24. Configure the Signaling Devices ... 104
Procedure 25. Configure DSCP Values for Outgoing Traffic (Optional) .. 110
Procedure 26. Configure the Signaling Network Routes .. 113
Procedure 27. Add VIP for Signaling Networks (Active/Standby Configurations ONLY) 116
Procedure 28. Configure SNMP Trap Receiver(s) (OPTIONAL) ... 117
Procedure 29: PDRA Resource Domain Configuration (PDRA Only) ... 119
Procedure 30. Activate Optional Features .. 122
Procedure 31. Configure ComAgent Connections ... 122
1.0 INTRODUCTION

1.1 Purpose and Scope

This document describes the application-related installation procedures for an HP C-class Diameter Signaling Router 5.X/6.X system.

This document assumes that platform-related configuration has already been done. Before executing this document, please ensure that all procedures [10] or [12] have already been performed successfully.

The audience for this document includes Tekelec customers as well as these groups: Software System, Product Verification, Documentation, and Customer Service including Software Operations and First Office Application.

1.2 References

1.2.1 External

[7] DSR 4.0 Full Address Based Resolution (FABR), 910-6578-001, Latest Revision, Tekelec, 2012
[10] Policy DRA Activation, WI006835, Latest Revision, Tekelec 2012
[12] DSR 6.0 Base Hardware and Software Installation, ES4118-01 TKDSR, Latest Revision, Oracle 2014
[13] IPFE Installation and Configuration, WI006931, latest version, Mahoney
[14] CPA Activation Feature Work Instruction, WI006780, latest version, Moore
[16] DSR Meta Administration Feature Activation, WI006761, latest version, Fisher
[17] DSR FABR Feature Activation, WI006771, latest version, Karmarkar
[19] DSR RBAR Feature Activation, WI006763, latest version, Fisher
[21] DSR 4.0 – Per connection ingress message control . WI006764
[22] SDS SW Installation and Configuration Guide, UG006385, Tekelec

1.2.2 Internal (Tekelec)

The following are references internal to Tekelec. They are provided here to capture the source material used to create this document. Internal references are only available to Tekelec personnel.

1.3 Acronyms

An alphabetized list of acronyms used in the document:

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOS</td>
<td>Basic Input Output System</td>
</tr>
<tr>
<td>CD</td>
<td>Compact Disk</td>
</tr>
<tr>
<td>DVD</td>
<td>Digital Versatile Disc</td>
</tr>
<tr>
<td>EBIPA</td>
<td>Enclosure Bay IP Addressing</td>
</tr>
<tr>
<td>FRU</td>
<td>Field Replaceable Unit</td>
</tr>
<tr>
<td>HP c-Class</td>
<td>HP blade server offering</td>
</tr>
<tr>
<td>iLO</td>
<td>Integrated Lights Out manager</td>
</tr>
<tr>
<td>IPM</td>
<td>Initial Product Manufacture – the process of installing TPD on a hardware platform</td>
</tr>
<tr>
<td>MSA</td>
<td>Modular Smart Array</td>
</tr>
<tr>
<td>NB</td>
<td>NetBackup</td>
</tr>
<tr>
<td>OA</td>
<td>HP Onboard Administrator</td>
</tr>
<tr>
<td>OS</td>
<td>Operating System (e.g. TPD)</td>
</tr>
<tr>
<td>RMS</td>
<td>Rack Mounted Server</td>
</tr>
<tr>
<td>PM&C</td>
<td>Platform Management & Configuration</td>
</tr>
<tr>
<td>SAN</td>
<td>Storage Area Network</td>
</tr>
<tr>
<td>SFTP</td>
<td>Secure File Transfer Protocol</td>
</tr>
<tr>
<td>SNMP</td>
<td>Simple Network Management Protocol</td>
</tr>
<tr>
<td>TPD</td>
<td>Tekelec Platform Distribution</td>
</tr>
<tr>
<td>TVOE</td>
<td>Tekelec Virtual Operating Environment</td>
</tr>
<tr>
<td>VM</td>
<td>Virtual Machine</td>
</tr>
<tr>
<td>VSP</td>
<td>Virtual Serial Port</td>
</tr>
</tbody>
</table>

1.4 Terminology

Multiple server types may be involved with the procedures in this manual. Therefore, most steps in the written procedures begin with the name or type of server to which the step applies. For example:

Each step has a checkbox for every command within the step that the technician should check to keep track of the progress of the procedure.

The title box describes the operations to be performed during that step.

Each command that the technician is to enter is in 10 point bold Courier font.

<table>
<thead>
<tr>
<th>5</th>
<th>ServerX: Connect to the console of the server</th>
<th>Establish a connection to the server using cu on the terminal server/console.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Establish a connection to the server using cu on the terminal server/console.</td>
<td></td>
</tr>
</tbody>
</table>
| | ```
| | cu -l /dev/ttyS7
| ``` |

Figure 1. Example of an instruction that indicates the server to which it applies
Management Server

HP ProLiant DL360/ DL380 or Sun Netra Rack Mount Seerver deployed to run TVOE and host a virtualized PM&C application. Can also host a virtualized NOAMP. It is also used to configure the Aggregation switches (via the PM&C) and to serve other configuration purposes.

PM&C Application

PM&C is an application that provides platform-level management functionality for HP G6 system, such as the capability to manage and provision platform components of the system so it can host applications.
2.0 GENERAL DESCRIPTION

This document defines the steps to execute the initial installation of the Diameter Signaling Router (DSR) 5.X/6.X application on new HP C-Class Hardware.

DSR 5.0 and DSR 6.0 installation paths are shown in the figures below. The general timeline for all processes to perform a software installation/configuration and upgrade is also included below.

This document covers initial installation of the DSR 5.x or DSR 6.X application on a HP c-Class System.

Figure 2. Initial Application Installation Path – Example shown
3.0 INSTALL OVERVIEW
This section provides a brief overview of the recommended method for installing the source release software that is installed and running on an HP c-Class system to the Target Release software. The basic install process and approximate time required is outlined in Table 2.

3.1 Required Materials

1. One (1) target release Application Media, or a target-release ISO
2. 5.X Installs - One (1) ISO of TPD release 6.5.0-80.25.0 64 bits, or later shipping baseline as per Tekelec ECO
3. 6.X Installs - One (1) ISO of TPD release 6.7.0-84.8.0 64 bits, or later shipping baseline as per Tekelec ECO

3.2 Installation Overview
This section describes the overall strategy to be employed for a single or multi-site DSR 5.X/6.X installation. It also lists the procedures required for installation with estimated times. Section 3.2.1 discusses the overall install strategy and includes an installation flow chart that can be used to determine exactly which procedures should be run for an installation. Section 3.2.2 lists the steps required to install a DSR 5.X/6.X system. These latter sections expand on the information from the matrix and provide a general timeline for the installation. DSR 6.X introduces some new features not in 5.X, however the application installation process is very similar with the few exceptions noted at certain places in the install procedure.

3.2.1 Installation Strategy
A successful installation of DSR requires careful planning and assessment of all configuration materials and installation variables. Once a site survey has been conducted with the customer, the installer should use this section to map out the exact procedure list that will executed at each site.

Figure 3 illustrates the overall process that each DSR installation will involve. In summary:

1. An overall installation requirement is decided upon. Among the data that should be collected:
 - The total number of sites
 - The number of servers at each site and their role(s)
 - Does DSR’s networking interface terminate on a Layer 2 or Layer 3 boundary?
 - Number of enclosures at each site -- if any at all.
 - Will NOAMPs use rack-mount servers or server blades?
 - (Per Site) Will MP’s be in N+0 configuration or in active/standby?
 - What timezone should be used across the entire collection of DSR sites?
 - Will SNMP traps be viewed at the NOAM, or will an external NMS be used? (Or both?)

2. A site survey (NAPD) is conducted with the customer to determine exact networking and site details. NOTE: XMI and IMI addresses are difficult to change once configured. It is very important that these addresses are well planned and not expected to change after a site is installed.

3. For each SOAM/MP/DR-NOAM only site (i.e. sites NOT containing the main NOAMP server), the installer will execute the procedures in document [11]/[12] to set up the PMAC, HP enclosures, and switches. Then, using the procedures in this document, all servers will be IPM-ed with the proper TPD and DSR application ISO image. (Figure 4 details the exact procedures that are to be executed for the 2nd part of this install) When this is complete, all non-NOAMP sites will be reachable through the network and ready for further installation when the primary NOAMP site is brought up.

4. The installer will then move to the “main” site that will contain the primary NOAMP. Again, [11]/[12] will be executed for this site. Then, moving on to the procedures in this document, Figure 4 is consulted to determine the procedure list. During this install, he will “bring up” the other sub-sites (if they exist) that were
configured in step 3. For single sites where the NOAMP/SOAM/MPs are all located together, then step 3 is skipped and the entire install is covered by this step.

5. Once the primary NOAMP site has been installed according to [11]/[12] and this document, then full DSR installation is complete.

Note: An alternative install strategy will swap steps 3 & 4. The main NOAMP site is installed *first*, then the sub-sites (DR-NOAM, SOAM/MP only) are installed and brought up on the NOAMP as they are configured. This approach is perfectly valid, but is not reflected in the flow-charts/diagrams shown here.
Start

Conduct Site Survey(s) & Gather Configuration Materials

Does This Install Involve Multiple Sites Under a Single NOAMP?

Yes

Execute Single Site Install for all SOAM & MP-only sites

No

Does This Install Have a Disaster Recovery NO?

Yes

Execute Single Site Install for “Main” NOAMP Site

No

Execute Single Site Install for DR NO Site

Full Installation Complete

Figure 3 - DSR Installation - High Level Sequence
Figure 4: DSR Single Site Installation Procedure Map
3.2.2 SNMP Configuration

The network-wide plan for SNMP configuration should be decided upon before DSR installation proceeds. This section provides some recommendations for these decisions.

SNMP traps can originate from the following entities in a DSR installation:

- DSR Application Servers (NOAMP, SOAM, MPs of all types)
- DSR Auxiliary Components (OA, Switches, TVOE hosts, PMAC)

DSR application servers can be configured to:

1. Send all their SNMP traps to the NOAMP via merging from their local SOAM. All traps will terminate at the NOAMP and be viewable from the NOAMP GUI (entire network) and the SOAM GUI (site specific). Traps are displayed on the GUI both as alarms and logged in trap history. **This is the default configuration option and no changes are required for this to take effect.**

2. Send all their SNMP traps to an external Network Management Station (NMS). The traps will be seen at the SOAM AND/OR NOAM as alarms AND they will be viewable at the configured NMS(s) as traps.

Application server SNMP configuration is done from the NOAMP GUI, near the end of DSR installation. See the procedure list for details.

DSR auxiliary components must have their SNMP trap destinations set explicitly. Trap destinations can be the NOAMP VIP, the SOAMP VIP, or an external (customer) NMS. The recommended configuration is as follows:

The following components:

- PMAC (TVOE)
- PMAC (App)
- OAs
- All Switch types (4948, 3020, 6120.6125G)
- TVOE for DSR Servers

Should have their SNMP trap destinations set to:

1. The local SOAM VIP
2. The customer NMS, if available

3.2.3 Installation Procedures

The following table illustrates the progression of the installation process by procedure with estimated times. The estimated times and the phases that must be completed may vary due to differences in typing ability and system configuration. The phases outlined in are to be executed in the order they are listed.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Phase</th>
<th>Elapsed Time (Minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procedure 1</td>
<td>Continue TVOE Configuration on First RMS Server</td>
<td>15</td>
</tr>
<tr>
<td>Procedure 2</td>
<td>Configure TVOE on Additional RMS Server(s)</td>
<td>20</td>
</tr>
<tr>
<td>Procedure 3</td>
<td>Configure TVOE on Server Blades</td>
<td>20</td>
</tr>
</tbody>
</table>
Table 2. Installation Overview

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Phase</th>
<th>Elapsed Time (Minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This Step</td>
<td>Cum.</td>
</tr>
<tr>
<td>Procedure 4</td>
<td>Load Application and TPD ISO onto PM&C Server</td>
<td>5</td>
</tr>
<tr>
<td>Procedure 5</td>
<td>Create NOAMP Guest VMs</td>
<td>5</td>
</tr>
<tr>
<td>Procedure 6</td>
<td>Create SOAMP Guest VMs</td>
<td>5</td>
</tr>
<tr>
<td>Procedure 7</td>
<td>IPM blades</td>
<td>20</td>
</tr>
<tr>
<td>Procedure 8</td>
<td>Install the application software on the blades</td>
<td>20</td>
</tr>
<tr>
<td>Procedure 9</td>
<td>Configure the First NO Server</td>
<td>25</td>
</tr>
<tr>
<td>Procedure 10</td>
<td>Configure the NO Server Group</td>
<td>15</td>
</tr>
<tr>
<td>Procedure 11</td>
<td>Configure the Second NO Server</td>
<td>15</td>
</tr>
<tr>
<td>Procedure 12</td>
<td>Complete Configuring the NOAMP Server Group</td>
<td>10</td>
</tr>
<tr>
<td>Procedure 13</td>
<td>Install NetBackup Client on NOAMP Servers (Optional)</td>
<td>10</td>
</tr>
<tr>
<td>Procedure 14</td>
<td>NO Configuration for DR Site (Optional)</td>
<td>10</td>
</tr>
<tr>
<td>Procedure 15</td>
<td>NO Pairing for DSR NO DR Site (Optional)</td>
<td>10</td>
</tr>
<tr>
<td>Procedure 16</td>
<td>Configure the SOAM NE</td>
<td>15</td>
</tr>
<tr>
<td>Procedure 17</td>
<td>Configure the SOAM Servers</td>
<td>10</td>
</tr>
<tr>
<td>Procedure 18</td>
<td>Configure the SOAM Server Group</td>
<td>10</td>
</tr>
<tr>
<td>Procedure 19</td>
<td>Post NOAM&SOAM Setup Opertaions</td>
<td>5</td>
</tr>
<tr>
<td>Procedure 20</td>
<td>Configure the MP Blade Servers</td>
<td>10</td>
</tr>
<tr>
<td>Procedure 21</td>
<td>Configure Places and Assign MP Servers to Places (PDRA Only)</td>
<td>10</td>
</tr>
<tr>
<td>Procedure 22</td>
<td>Configure the MP Server Groups</td>
<td>10</td>
</tr>
<tr>
<td>Procedure 23</td>
<td>Configure the Signaling Network</td>
<td>30</td>
</tr>
<tr>
<td>Procedure 24</td>
<td>Configure the Signaling Devices</td>
<td>10</td>
</tr>
<tr>
<td>Procedure 25 (Optional)</td>
<td>Configure DSCP Values for Outgoing Traffic</td>
<td>10</td>
</tr>
<tr>
<td>Procedure 26</td>
<td>Configure the Signaling Network Routes</td>
<td>15</td>
</tr>
<tr>
<td>Procedure 27</td>
<td>Add VIP for Signaling Networks</td>
<td>5</td>
</tr>
<tr>
<td>Procedure 28 (Optional)</td>
<td>Configure SNMP for Traps Receivers</td>
<td>5</td>
</tr>
<tr>
<td>Procedure 29</td>
<td>PDRA Resource Domain Configuration (PDRA Only)</td>
<td>15</td>
</tr>
<tr>
<td>Procedure 30 (Optional)</td>
<td>Activate Optional Features</td>
<td>15</td>
</tr>
<tr>
<td>Procedure 31 (Optional)</td>
<td>Configure ComAgent Connections</td>
<td>15</td>
</tr>
</tbody>
</table>
3.3 Optional Features

When DSR installation is complete, further configuration and/or installation steps will need to be taken for optional features that may be present in this deployment. Please refer to these documents for the post-DSR install configuration steps needed for their components.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Front End (IPFE)</td>
<td>IPFE Installation and Configuration, WI006931, latest version, Mahoney</td>
</tr>
<tr>
<td>Charging Proxy Application (CPA)</td>
<td>CPA Activation Feature Work Instruction, WI006780, latest version, Moore</td>
</tr>
<tr>
<td>Session Binding Repository (SBR)</td>
<td>CPA User Guide, 910-6635-001,Rev A (4.1)</td>
</tr>
<tr>
<td>Policy DRA (PDRA)</td>
<td>Policy DRA Activation, WI006835, Latest Revision, Tekelec 2012</td>
</tr>
<tr>
<td>Diameter Mediation</td>
<td>DSR Meta Administration Feature Activation, WI006761, latest version, Fisher</td>
</tr>
<tr>
<td>Full Address Based Resolution (FABR)</td>
<td>DSR FABR Feature Activation, WI006771, latest version, Karmarkar</td>
</tr>
<tr>
<td></td>
<td>FABR User Guide, 910-6634-001,Rev A (4.1.0)</td>
</tr>
<tr>
<td></td>
<td>FABR User Guide, 910-6634-001,Rev B (4.1.5)</td>
</tr>
<tr>
<td>Range Based Address Resolution (RBAR)</td>
<td>DSR RBAR Feature Activation, WI006763, latest version, Fisher</td>
</tr>
<tr>
<td></td>
<td>RBAR User Guide, 910-6633-001,Rev A</td>
</tr>
<tr>
<td>MAP-Diameter Interworking (MAP-IWF)</td>
<td>MAP-Diameter IWF Feature Activation, WI006965, latest version</td>
</tr>
</tbody>
</table>
4.0 SOFTWARE INSTALLATION PROCEDURE

As mentioned earlier, the hardware installation and network cabling should be done before executing the procedures in this document. It is assumed that at this point, the user has access to:

- ILO consoles of all server blades at all sites
- ssh access to the PMAC servers at all sites
- GUI access to PMAC servers at all sites
- A configuration station with a web browser, ssh client, and scp client.

NOTE: Prior to executing the procedures below, please review the DSR release notes, and be aware of any workaround that should be executed.

4.1 Configure RMS TVOE Hosts

Procedure 1. Continue TVOE Configuration on First RMS Server

<table>
<thead>
<tr>
<th>STEP #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This procedure will extend the TVOE networking configuration on the First RMS server in preparation for the installation of the NOAMP VM on that RMS.</td>
</tr>
<tr>
<td></td>
<td>NOTE: If a NOAMP VM will NOT be co-located with the PMAC VM on the First RMS (for instance, this server will only run PMAC, but there are 2 additional RMS which will not), then skip this procedure and continue with the next procedure.</td>
</tr>
<tr>
<td></td>
<td>Prerequisite: TVOE and PMAC (virtualized) have been installed on the First RMS Server as described in [11] / [12]</td>
</tr>
</tbody>
</table>

Check off (✓) each step as it is completed. Boxes have been provided for this purpose under each step number.

IF THIS PROCEDURE FAILS, CONTACT TEKELEC TECHNICAL SERVICES AND ASK FOR ASSISTANCE.
Procedure 1. Continue TVOE Configuration on First RMS Server

<table>
<thead>
<tr>
<th>NOAM&P Guest Interface Name</th>
<th>TVOE Bridge Name</th>
<th>TVOE Bridge Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>xmi</td>
<td>xmi</td>
<td>Interface Bond (e.g. bond0, bond1, etc)</td>
</tr>
<tr>
<td></td>
<td></td>
<td><TVOE_XMI_Bridge_Interface_Bond></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interface Name (e.g. bond0.3, bond1, bond0.100)</td>
</tr>
<tr>
<td></td>
<td></td>
<td><TVOE_XMI_Bridge_Interface></td>
</tr>
<tr>
<td>imi</td>
<td>imi</td>
<td>Interface Bond: (e.g. bond0, bond1, etc)</td>
</tr>
<tr>
<td></td>
<td></td>
<td><TVOE_IMI_Bridge_Interface_Bond></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interface Name: (e.g. bond0.4, bond1, bond0.100)</td>
</tr>
<tr>
<td></td>
<td></td>
<td><TVOE_IMI_Bridge_Interface></td>
</tr>
<tr>
<td>netbackup</td>
<td>netbackup</td>
<td>Interface Name (e.g. eth11, eth04, eth03, etc)</td>
</tr>
<tr>
<td></td>
<td></td>
<td><TVOE_NetBackup_Bridge_Interface></td>
</tr>
</tbody>
</table>

Determine Bridge names and interfaces for XMI and IMI, and Netbackup (if used) networks.

Determine the bridge names and physical bridge interfaces to be used on the TVOE server for the NOAMP XMI and IMI networks. Based on the site survey, you will need to determine if you are using vlan tagging or not, what bonds will be used, and also the actual Ethernet interfaces that will make up those bonds.

If the netbackup bridge and interface were not previously configured on this server when PMAC was installed, determine those values as well.

Fill in the appropriate values in the table below:
Procedure 1. Continue TVOE Configuration on First RMS Server

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Description</th>
</tr>
</thead>
</table>
| 2 | **First RMS Server:** Login and Become SuperUser
Log in to the TVOE prompt of the first RMS server as the admusr user (the one running the PMAC). Use either the iLO facility, or the TVOE’s IP address on the management network.
Become the super user by using the command:
```bash  
$ sudo su  
```
You should see the prompt change to the hash mark:
```
# |
| 3 | **First RMS Server:** Configure XMI Bridge Interface Bond  
Verify the xmi bridge interface bond by running the following command:  
**Note:** The output below is for illustrative purposes only. The example output below shows the control bridge configured.  
```bash  
netadm query --device=<TVOE_XMI_Bridge_Bond>
Protocol: none
On Boot: yes
Persistent: yes
Bonded Mode: active-backup
Enslaving: eth01 eth02
```
If the bond has already been configured you will see output similar to what you see above. If this is so, **skip to the next step.** Otherwise, continue with this step.  
Create bonding interface and associate subordinate interfaces with bond:  
```bash  
netadm add --device=<TVOE_XMI_Bridge_Bond>
--onboot=yes --type=Bonding --mode=active-backup --miimon=100
Interface <TVOE_XMI_Bridge_Bond> added
netadm set --device=<TVOE_XMI_Bridge_Bond_Ethernet1> --type=Ethernet
--master=<TVOE_XMI_Bridge_Bond> --slave=yes --onboot=yes
Interface <TVOE_XMI_Bridge_Bond_Ethernet1> updated
netadm set --device=<TVOE_XMI_Bridge_Bond_Ethernet2> --type=Ethernet
--master=<TVOE_XMI_Bridge_Bond> --slave=yes --onboot=yes
Interface <TVOE_XMI_Bridge_Bond_Ethernet2> updated
syscheckadm net ipbond --set --var=DEVICES --val=<TVOE_XMI_Bridge_Bond>,[bond0,bond1, ... ,bondN]
Note: All other existing bonds should be included in the 'val=' statement. E.g. if TVOE XMI_Bridge_Bond = bond1, val=bond0,bond1
syscheckadm net ipbond --enable |
<table>
<thead>
<tr>
<th>Procedure</th>
<th>First RMS Server:</th>
<th>Description</th>
</tr>
</thead>
</table>
| 4 | Create XMI Bridge Interface, If needed. (Only for VLAN tagging interfaces) | If you are using VLAN tagging for the XMI bridge interface, then you must create the VLAN interface first. Execute the following command:
`# netAdm add --device=<TVOE_XMI_Bridge_Interface> --onboot=yes`
Interface `<TVOE_XMI_Bridge_Interface>` created. |
| 5 | Create XMI Bridge | Now, create the XMI bridge:
`# netAdm add --type=Bridge --name=xmi --onboot=yes --bridgeInterfaces=<TVOE_XMI_Bridge_Interface>`
Interface `<TVOE_XMI_Bridge_Interface>` updated.
Bridge xmi created. |
| 6 | Configure IMI Bridge Interface Bond | Verify the IMI bridge interface bond by running the following command:
Note: The output below is for illustrative purposes only. The example output below shows the control bridge configured.
`# netAdm query --device=<TVOE IMI_Bridge_Bond>`
Protocol: none
On Boot: yes
Persistent: yes
Bonded Mode: active-backup
Enslaving: eth01 eth02
If the bond has already been configured, you will see output similar to what you see above. If this is so, **skip to the next step**. Otherwise, continue with this step.
Create bonding interface and associate subordinate interfaces with bond:
`# netAdm add --device=<TVOE IMI_Bridge_Bond> --onboot=yes --type=Bonding --mode=active-backup --miimon=100`
Interface `<TVOE IMI_Bridge_Bond>` added
`# netAdm set --device=<TVOE IMI_Bridge_Bond_Ethernet1> --onboot=yes --type=Ethernet`
`# netAdm set --device=<TVOE IMI_Bridge_Bond_Ethernet2> --onboot=yes --type=Ethernet`
Execute the following 2 commands ONLY IF `<TVOE_XMI_Bridge_Bond>` is different from `<TVOE IMI_Bridge_Bond>`:
`# syscheckAdm net ipbond --set --var=DEVICES --val=<TVOE_XMI_Bridge_Bond>,<TVOE IMI_Bridge_Bond>,[other bonds...]]`
`# syscheckAdm net ipbond --enable` |
Procedure 1. Continue TVOE Configuration on First RMS Server

<table>
<thead>
<tr>
<th>Step</th>
<th>Task</th>
<th>Description</th>
</tr>
</thead>
</table>
| 7 | First RMS Server: Create IMI Bridge Interface, If needed. (Only for VLAN tagging interfaces) | If you are using VLAN tagging for the IMI bridge interface, then you must create the VLAN interface first. Execute the following command:
```
# netAdm add --device=<TVOE_IMI_Bridge_Interface> --onboot=yes  
Interface <TVOE_IMI_Bridge_Interface> created.
``` |
| 8 | First RMS Server: Create IMI Bridge | Now, create the XMI bridge:
```
# netAdm add --type=Bridge --name=imi --onboot=yes  
--bridgeInterfaces=<TVOE_IMI_Bridge_Interface>
```  
Interface <TVOE_IMI_Bridge_Interface> updated.
Bridge imi created. |
| 9 | First RMS Server: Verify bridge creation status | Verify that the XMI and IMI bridges have been created successfully (Example output for illustrative purposes only):
```
# brctl show
```

<table>
<thead>
<tr>
<th>bridge name</th>
<th>bridge id</th>
<th>STP enabled</th>
<th>interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>control</td>
<td>8000.002128a1a5a8</td>
<td>no</td>
<td>bond0, vnet0, vnet12, vnet15, vnet2, vnet7</td>
</tr>
<tr>
<td>imi</td>
<td>8000.002128a1a5a8</td>
<td>no</td>
<td>bond0.541, vnet10, vnet14, vnet17, vnet5, vnet7</td>
</tr>
<tr>
<td>management</td>
<td>8000.002128a1a5a8</td>
<td>no</td>
<td>bond0.637, vnet1, vnet10, vnet11</td>
</tr>
<tr>
<td>xml</td>
<td>8000.002128a1a5a8</td>
<td>no</td>
<td>bond0.638, vnet13</td>
</tr>
</tbody>
</table>

- Verify that "imi" and "xmi" are listed under the bridge name column.
- Verify that <TVOE_XMI_Bridge_Interface> is listed under the interfaces column for xmi.
- Verify that <TVOE_IMI_Bridge_Interface> is listed under the interfaces column for imi.
- Verify that the <TVOE_Mgmt_Bridge_Interface> is listed under the interface column for <TVOE_Mgmt_Bridge> (NOTE: For this server, <TVOE_Mgmt_Bridge> was created in part #1 of the install procedure -- documents [11] or [12] depending on your DSR version.)
Procedure 1. Continue TVOE Configuration on First RMS Server

<table>
<thead>
<tr>
<th></th>
<th>RMS Server iLO: Set Hostname</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>NOTE: If hostname for the RMS server is already set, then you can skip this step.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td># su - platcfg</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Use arrow keys to move between options</td>
</tr>
<tr>
<td></td>
<td>Navigate to Server Configuration->Hostname->Edit and enter a new hostname for your server.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hostname: <code>dsrTVOE-blade11</code></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Press OK and select and continue to press Exit until you are at the platcfg main menu again.</td>
</tr>
</tbody>
</table>
| | **NOTE**: Although the new hostname has been properly configured and committed at this point, it will not appear on your command prompt unless you log out and log back in again.
Procedure 1. Continue TVOE Configuration on First RMS Server

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>RMS Server iLO: Configure SNMP</td>
</tr>
</tbody>
</table>

From the platcfg main menu, navigate to **Network Configuration -> SNMP Configuration -> NMS Configuration**

Press **Edit**.
Choose **Add a New NMS Server**

Enter the following NMS servers, pressing **OK** after each one and then selecting the **Add NMS** option again:

1. Enter the Hostname/IP of the Customer NMS Server, for port enter 162, and for Community String enter the community string provided in the customer NAPD Document.
2. Enter the IP of the NOAM VIP, for port enter 162, and for Community String enter the community string provided in the customer NAPD Document

Press **Exit**.
Select Yes when prompted to restart the Alarm Routing Service.

Once Done, press **Exit** to quit to the platcfg main menu.
Procedure 1. Continue TVOE Configuration on First RMS Server

12 RMS Server iLO: Configure NTP

Navigate to Network Configuration

Navigate to Configuration->NTP
Click Edit

Edit Time Servers

- ntpserver1: Enter customer provided NTP server #1 IP address.
- ntpserver2: Enter customer provided NTP server #2 IP address.
- ntpserver3: Enter customer provided NTP server #3 IP address.

Press OK
Press Exit to return to the platcfg menu.
Procedure 1. Continue TVOE Configuration on First RMS Server

13 RMS Server iLO: Configure Time Zone

su - platcfg

Navigate to Server Configuration -> Time Zone

If the timezone displayed matches the timezone you desire, then you can continue to hit Exit until you are out of the platcfg program. If you want a different timezone, then proceed with this instruction.

Click Edit

Select the desired time zone from the list and press Enter

Select NO for the question, “Set hardware clock to GMT?”

Continue pressing Exit until you are out of the platcfg program.
Procedure 1. Continue TVOE Configuration on First RMS Server

<table>
<thead>
<tr>
<th>Step</th>
<th>Task Description</th>
</tr>
</thead>
</table>
| 14 | **First RMS Server:** Create Netbackup bridge (Optional)
Perform the following command if you will have a dedicated Netbackup interface within your NOAMP guests (and if the Netbackup bridge was NOT configured when setting up the PMAC earlier)
```bash  
# netAdm add --type=Bridge --name=<TVOE_NetBackup_Bridge>  
--onboot=yes --MTU=<NetBackup_MTU_size>  
--bridgeInterfaces=<TVOE_NetBackup_Bridge_Interface>  
``` |  
| 15 | **First RMS Server and Customer provided Backup Server:** Backup TVOE files
This step backs up the TVOE files to a customer provided backup server.
If NetBackup is being used, then this step should be skipped. Select ‘Exit’ to exit out of platecfg.
If NetBackup isn’t used, execute the following:
1. Select the following menu options sequentially:
 Maintenance ➤ Backup and Restore ➤ Backup Platform (CD/DVD).
The 'Backup TekServer Menu' page will now be shown.
2. Build the backup ISO image by selecting:
 Build ISO file only
 Note: Creating the ISO image may happen so quickly that this screen may only appear for an instant.
 After the ISO is created, platecfg will return to the Backup TekServer Menu. The ISO has now been created and is located in the /var/TKLC/bkp/ directory. An example filename of a backup file that was created is: "hostname1307466752-plat-app-201104171705.iso"
3. Exit out of platecfg by selecting ‘Exit’.
4. Login to the customer server and copy backup image to the customer server where it can be safely stored. If the customer system is a Linux system, please execute the following command to copy the backup image to the customer system.
```bash  
# scp tvoexfer@<TVOE IP Address>:backup/* /path/to/destination/  
```  
5. When prompted, enter the tvoexfer user password and press **Enter**.
 An example of the output looks like:
```bash  
# scp tvoexfer@<TVOE IP Address>:backup/* /path/to/destination/  
tvoexfer@10.24.34.73's password:  
hostname1301859532-plat-app-301104171705.iso 100% 134MB 26.9MB/s 00:05  
```  
If the Customer System is a Windows system please refer to reference [4] *Platform 6.x Configuration Procedure Reference, Appendix A Using WinSCP to copy the backup image to the customer system.*
The TVOE backup file has now been successfully placed on the Customer System. |
Procedure 2. Configure TVOE on Additional RMS Server(s)

<table>
<thead>
<tr>
<th>STE P #</th>
<th>Description</th>
</tr>
</thead>
</table>
| 2 | This procedure will configure TVOE networking on RMS Servers other than the first one which has already been installed and is running PMAC.

NOTE: You will repeat this procedure for each additional RMS you wish to configure TVOE for.

Prerequisite: RMS Server has been IPM’ed with TVOE OS as described in [11]

Check off (✓) each step as it is completed. Boxes have been provided for this purpose under each step number.

IF THIS PROCEDURE FAILS, CONTACT TEKELEC TECHNICAL SERVICES AND ASK FOR ASSISTANCE.
Procedure 2. Configure TVOE on Additional RMS Server(s)

1. **Determine Bridge names and interfaces for XMI and IMI, and Netbackup (if used) networks.**

 Determine the bridge names and physical bridge interfaces to be used on the TVOE server for the Management, XMI and IMI networks. Based on the site survey, you will need to determine if you are using vlan tagging or not, what bonds will be used, and also the actual Ethernet interfaces that will make up those bonds.

 Fill in the appropriate values in the table below:

<table>
<thead>
<tr>
<th>NOAM&P Guest Interface Name</th>
<th>TVOE Bridge Name</th>
<th>TVOE Bridge Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>xmi</td>
<td>xmi</td>
<td>Interface Bond: (e.g. - bond0, bond1, etc)</td>
</tr>
<tr>
<td></td>
<td></td>
<td><TVOE_XMI_Bridge_Interface_Bond></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interface Name: (e.g. - bond0.3, bond1, bond0.100):</td>
</tr>
<tr>
<td></td>
<td></td>
<td><TVOE_XMI_Bridge_Interface></td>
</tr>
<tr>
<td>imi</td>
<td>imi</td>
<td>Interface Bond: (e.g. - bond0, bond1, etc)</td>
</tr>
<tr>
<td></td>
<td></td>
<td><TVOE_IMI_Bridge_Interface_Bond></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interface Name: (e.g. - bond0.4, bond1, bond0.100):</td>
</tr>
<tr>
<td></td>
<td></td>
<td><TVOE_IMI_Bridge_Interface></td>
</tr>
<tr>
<td>netbackup</td>
<td>netbackup</td>
<td>Interface Name: (e.g. - eth11, eth04, eth03, etc)</td>
</tr>
<tr>
<td></td>
<td></td>
<td><TVOE_NetBackup_Bridge_Interface></td>
</tr>
<tr>
<td>management</td>
<td>management</td>
<td>Interface Name: (e.g. bond0.2, bond0.37, etc)</td>
</tr>
<tr>
<td></td>
<td></td>
<td><TVOE_Management_Bridge_Interface></td>
</tr>
</tbody>
</table>
Procedure 2. Configure TVOE on Additional RMS Server(s)

<table>
<thead>
<tr>
<th>Step</th>
<th>RMS Server iLO:</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Login as admusr</td>
<td>Log in to the TVOE prompt of the RMS Server as admusr using the iLO facility. Become the super user by using the command: $ <code>sudo su</code> You should see the prompt change to the hash mark: #</td>
</tr>
</tbody>
</table>
| 3 | Modify control bridge if using tagged control interface (Optional) | If you are using VLAN tagging for your control interface, you must reconfigure the default control bridge configuration. Otherwise, skip this step and proceed to the next step.

  ```
  # netAdm set --type=Bridge --name=control --delBridgeInt=bond0
  Bridge control updated.
  
  # netAdm add --device=bond0.<control_VLAN_ID> --onboot=yes
  Interface bond0.X added
  
  # netAdm set --type=Bridge --name=control --addBridgeInt=bond0.<control_VLAN_ID>
  Bridge control updated.
  ``` |
Procedure 2. Configure TVOE on Additional RMS Server(s)

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
</table>
| 4 | **RMS Server iLO:** Configure XMI Bridge Interface Bond
Verify the xmi bridge interface bond by running the following command:
Note: The output below is for illustrative purposes only. The example output below shows the control bridge configured.

```bash  
# netAdm query --device=<TVOE_XMI_Bridge_Bond>  
Protocol: none  
On Boot: yes  
Persistent: yes  
Bonded Mode: active-backup  
Enslaving: eth01 eth02  
```

If the bond has already been configured, you will see output similar to what you see above. If this is so, **skip to the next step.** Otherwise, continue with this step.

Create bonding interface and associate subordinate interfaces with bond:

```bash  
# netAdm add --device=<TVOE_XMI_Bridge_Bond> --onboot=yes --type=Bonding --mode=active-backup --miimon=100  
Interface <TVOE_XMI_Bridge_Bond> added  

# netAdm set --device=<TVOE_XMI_Bridge_Bond_Ethernet1> --type=Ethernet --master=<TVOE_XMI_Bridge_Bond> --slave=yes --onboot=yes  
Interface <TVOE_XMI_Bridge_Bond_Ethernet1> updated  

# netAdm set --device=<TVOE_XMI_Bridge_Bond_Ethernet2> --type=Ethernet --master=<TVOE_XMI_Bridge_Bond> --slave=yes --onboot=yes  
Interface <TVOE_XMI_Bridge_Bond_Ethernet2> updated  
```

| 5 | **RMS Server iLO:** Create XMI Bridge Interface, If needed. (Only for VLAN tagging interfaces)
If you are using VLAN tagging for the XMI bridge interface, then you must create the VLAN interface first. Execute the following command:

```bash  
# netAdm add --device=<TVOE_XMI_Bridge_Interface> --onboot=yes  
Interface <TVOE_XMI_Bridge_Interface> created.  
```

| 6 | **RMS Server iLO:** Create XMI Bridge
Now, create the XMI bridge:

```bash  
# netAdm add --type=Bridge --name=xmi --onboot=yes --bridgeInterfaces=<TVOE_XMI_Bridge_Interface>  
Interface <TVOE_XMI_Bridge_Interface> updated.  
Bridge xmi created.  
```
Procedure 2. Configure TVOE on Additional RMS Server(s)

<table>
<thead>
<tr>
<th>Step</th>
<th>RMS Server iLO:</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
</table>
| 7 | Configure IMI Bridge Interface Bond | Verify the imi bridge interface bond by running the following command: | **Note:** The output below is for illustrative purposes only. The example output below shows the control bridge configured.

```bash
# netAdm query --device=<TVOE_IMI_Bridge_Bond>
```

Protocol: dhcp
On Boot: yes
Persistent: yes
Bonded Mode: active-backup
Enslaving: eth01 eth02

If the bond has already been configured you will see output similar to what you see above. If this is so, **skip to the next step.** Otherwise, continue with this step.

Create bonding interface and associate subordinate interfaces with bond:

```bash
# netAdm add --device=<TVOE_IMI_Bridge_Bond> --onboot=yes --type=Bonding --mode=active-backup --miimon=100
Interface <TVOE_IMI_Bridge_Bond> added
```

```bash
# netAdm set --device=<TVOE_IMI_Bridge_Bond_Ethernet1> --type=Ethernet --master=<TVOE_IMI_Bridge_Bond> --slave=yes --onboot=yes
Interface <TVOE_IMI_Bridge_Bond_Ethernet1> updated
```

```bash
# netAdm set --device=<TVOE_IMI_Bridge_Bond_Ethernet2> --type=Ethernet --master=<TVOE_IMI_Bridge_Bond> --slave=yes --onboot=yes
Interface <TVOE_IMI_Bridge_Bond_Ethernet2> updated
```

8 | RMS Server iLO: Create IMI Bridge Interface, If needed. (Only for VLAN tagging interfaces) | If you are using VLAN tagging for the IMI bridge interface, then you must create the VLAN interface first. Execute the following command: | **# netAdm add --device=<TVOE_IMI_Bridge_Interface> --onboot=yes**

Interface <TVOE_IMI_Bridge_Interface> created.

7 | RMS Server iLO: Create IMI Bridge | | **# netAdm add --type=Bridge --name=imi--onboot=yes --bridgeInterfaces=<TVOE_IMI_Bridge_Interface>**

Interface <TVOE_IMI_Bridge_Interface> updated. Bridge imi created.
RS server iLO:
Create management bridge and assign TVOE Management IP and default route.

8

Note: The output below is for illustrative purposes only. The site information for this system will determine the network interfaces, (network devices, bonds, and bond enslaved devices), to configure.

If `<TVOE_Management_Bridge_Interface>` or the bond it is based on (if using tagged interface) has not yet been created, then execute the next 3 commands. Otherwise, skip to the “EXAMPLE…” section:

```
# netAdm add --device=<TVOE_Management_Bridge_Interface_Bond> --onboot=yes --type=Bonding --mode=active-backup --miimon=100
Interface <TVOE_Management_Bridge_Interface> added
```

```
# netAdm set --device=<mgmt_ethernet_interface1> --type=Ethernet --master=<TVOE_Management_Bridge_Interface_Bond> --slave=yes --onboot=yes
Interface <mgmt_ethernet_interface1> updated
```

```
# netAdm set --device=<mgmt_ethernet_interface2> --type=Ethernet --master=<TVOE_Management_Bridge_Interface_Bond> --slave=yes --onboot=yes
Interface <mgmt_ethernet_interface2> updated
```

EXAMPLE 1: Create Management bridge using untagged interfaces (`<TVOE_Management_Bridge>`),
```
# netAdm add --type=Bridge --name=management --bootproto=none --onboot=yes
--address=<TVOE_RMSX_Mgmt_IP_Address> --netmask=<TVOE_RMS_Mgmt_Netmask>
--bridgeInterfaces=<TVOE_Management_Bridge_Interface>
```

EXAMPLE 2: Create Management bridge using tagged interfaces
```
# netAdm add --device=<TVOE_Management_Bridge_Interface>
# netAdm add --type=Bridge --name=management
--address=<TVOE_RMSX_Mgmt_IP_Address> --netmask=<TVOE_RMS_Mgmt_Netmask> --onboot=yes
--bridgeInterfaces=<TVOE_Management_Bridge_Interface>
```

Create default route (execute regardless of which example is chosen):
```
# netAdm add --route=default --gateway=<mgmt_gateway_address> --device=management
Route to management created.
```
Procedure 2. Configure TVOE on Additional RMS Server(s)

<table>
<thead>
<tr>
<th>Step</th>
<th>Task</th>
</tr>
</thead>
</table>
| 9 | **RMS Server iLO:** Verify bridge creation status
Verify that the XMI, IMI, and Management bridges have been created successfully (Example output for illustrative purposes only):
```
brctl show
```
| | ![Bridge Status](image) |
| | • Verify that "imi" and "xmi" are listed under the bridge name column.
• Verify that `<TVOE_XMI_Bridge_Interface>` is listed under the interfaces column for xmi.
• Verify that `<TVOE_IMI_Bridge_Interface>` is listed under the interfaces column for imi.
• Verify that the `<TVOE_Mgmt_Bridge_Interface>` is listed under the interface column for `<TVOE_Mgmt_Bridge_Name>` |
| 10 | **RMS Server iLO:** Create Netbackup bridge (Optional)
Perform the following command if you will have a dedicated Netbackup interface within your NOAMP guests (and if the Netbackup bridge was NOT configured when setting up the PMAC earlier)
```
netAdm add --type=Bridge --name=<TVOE_NetBackup_Bridge> --onboot=yes --MTU=<NetBackup_MTU_size> --bridgeInterfaces=<TVOE_NetBackup_Bridge_INTERFACE>``` |

Procedure 2. Configure TVOE on Additional RMS Server(s)

1. **RMS Server iLO:**
 - Set Hostname

   ```
   # su - platcfg
   ```

 Navigate to *Server Configuration*->*Hostname*-> *Edit* and enter a new hostname for your server.

 Press **OK** and select and continue to press **Exit** until you are at the platcfg main menu again.

 Continue To Press Exit until you are back at the platcfg main menu

 NOTE: Although the new hostname has been properly configured and committed at this point, it will not appear on your command prompt unless you log out and log back in again.
Procedure 2. Configure TVOE on Additional RMS Server(s)

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>RMS Server iLO: Configure SNMP</td>
</tr>
</tbody>
</table>

From the platcfg main menu, navigate to **Network Configuration -> SNMP Configuration -> NMS Configuration**

Press **Edit**.

Choose **Add a New NMS Server**

Enter the following NMS servers, pressing **OK** after each one and then selecting the **Add NMS** option again:

1. Enter the Hostname/IP of the Customer NMS Server, for port enter 162, and for Community String enter the community string provided in the customer NAPD Document.
2. Enter the IP of the NOAM VIP, for port enter 162, and for Community String enter the community string provided in the customer NAPD Document

Press **Exit**.

Select Yes when prompted to restart the Alarm Routing Service.

Once Done, press **Exit** to quit to the platcfg main menu.
Procedure 2. Configure TVOE on Additional RMS Server(s)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>RMS Server iLO: Configure NTP</td>
<td>Navigate to Network Configuration</td>
</tr>
</tbody>
</table>

Navigate to **Configuration -> NTP**

Click **Edit**

```
<table>
<thead>
<tr>
<th>Edit Time Servers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ntpserver1: 10.250.32.10</td>
</tr>
<tr>
<td>ntpserver2: 10.250.33.11</td>
</tr>
<tr>
<td>ntpserver3: 10.250.44.22</td>
</tr>
<tr>
<td>ntppeerA:</td>
</tr>
<tr>
<td>ntppeerB:</td>
</tr>
</tbody>
</table>
```

- ntpserver1: Enter customer provided NTP server #1 IP address.
- ntpserver2: Enter customer provided NTP server #2 IP address.
- ntpserver3: Enter customer provided NTP server #3 IP address.

Press **OK**

Continue to press Exit until you are out of the platcfg menu.
Procedure 2. Configure TVOE on Additional RMS Server(s)

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
</table>
| 14 | RMS Server iLO:
Configure Time Zone |

Software Install Procedure

1. `# su - platcfg`

Navigate to **Server Configuration -> Time Zone**

![Platform Configuration Utility 3.04 (C) 2003 - 2014 Telleo](image)

If the timezone displayed matches the timezone you desire, then you can continue to hit **Exit** until you are out of the platcfg program. If you want a different timezone, then proceed with this instruction.

2. Click **Edit**

![Platform Configuration Utility 3.04 (C) 2003 - 2014 Telleo](image)

Select the desired time zone from the list and press **Enter**

Select **NO** for the question, “Set hardware clock to GMT?”

Continue pressing **Exit** until you are out of the platcfg program.
4.2 Configure Blade TVOE Hosts

Procedure 3. Configure TVOE on Server Blades

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 PMAC Server:</td>
<td>Exchange SSH keys between PMAC and TVOE server. Use the PMAC GUI to determine the Control Network IP address of TVOE server. From the PMAC GUI, navigate to Main Menu → Software → Software Inventory. Note the IP address TVOE server. From a terminal window connection on the PMAC, login as the admusr user. Exchange SSH keys between the PMAC and the TVOE server using the keyexchange utility, using the Control network IP address for the TVOE blade server. When prompted for the password, enter the password for the TVOE server. $ keyexchange admusr@<TVOE blade Control Net IP addr></td>
</tr>
</tbody>
</table>
| 2 TVOE Server: | Login as admusr on the TVOE server using the ILO facility. Become the super user by using the command: $ sudo su You should see the prompt change to the hash mark: # Execute the following commands: # scp admusr@<Management_Server Control_IP_addr>:/usr/TKLC/smac/etc/TVOE* /root/ # chmod 777 /root/TVOE* (If no TVOE configuration scripts are found here, then please re-execute section 4.2.2, Step #10 of [11]/[12].)
Procedure 3. Configure TVOE on Server Blades

<table>
<thead>
<tr>
<th>Step</th>
<th>TVOE Server: Run Configuration Script Based on Server Blade NIC Configuration</th>
<th>Next, you will execute ONLY ONE of the following commands. Read carefully to determine which command you should run.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td>If your TVOE server blade DOES have mezzanine cards AND you will be running OAM/XMI traffic on a separate physical network, execute the following command:</td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>/root/TVOEcfg.sh --xmivlan=<XMI_VLAN_ID> --imivlan=<IMI_VLAN_ID> mezz</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If your TVOE server blade DOES NOT have mezzanine cards AND/OR you will NOT be running OAM/XMI traffic over a separate physical network, execute the following command:</td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>/root/TVOEcfg.sh --xmivlan=<XMI_VLAN_ID> --imivlan=<IMI_VLAN_ID></code></td>
</tr>
<tr>
<td></td>
<td>In both cases: XMI_VLAN_ID is the VLAN ID for the XMI network in this installation, and IMI_VLAN_ID is the VLAN ID for the IMI network in this installation. For deployments with aggregation switches, the IMI and XMI VLAN IDs will be the values of the “INTERNAL-IMI” and “INTERNAL-XMI” vlan ids, respectively. For layer-2 only deployments, the IMI and XMI vlan ids will be obtained from the customer.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Upon executing the proper version of the TVOEcfg.sh script, you should see an output similar to the following (example shows output without the “mezz” parameter):</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The prompt will return.</td>
</tr>
<tr>
<td></td>
<td>NOTE: If for any reason, you ran the wrong version of the TVOEcfg.sh command, you can execute: <code>/root/TVOEclean.sh</code> to reset the networking configuration so you can repeat this step.</td>
<td></td>
</tr>
</tbody>
</table>
Procedure 3. Configure TVOE on Server Blades

<table>
<thead>
<tr>
<th></th>
<th>TVOE Server:</th>
<th>Configure IP address on the XMI network:</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Configure XMI IP and Default Route</td>
<td># netAdm set --type=Bridge --name=xmi --address=<TVOE_XMI_IP_ADDRESS> --netmask=<XMI_NETMASK></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interface xmi was updated.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Restart network services:</td>
</tr>
<tr>
<td></td>
<td></td>
<td># service network restart</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[wait for the prompt to return]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Set the default route:</td>
</tr>
<tr>
<td></td>
<td></td>
<td># netAdm add --route=default --device=xmi --gateway=<XMI_NETWORK_GATEWAY></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Route to xmi added.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If this installation does not require NetBackup to use a dedicated ethernet interface, then skip the next step and proceed to step 6.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>TVOE Server:</th>
<th>In these examples, <interface> should be replaced with the actual ethernet interface that will be used as the dedicated NetBackup port. For instance, “eth01”, or “eth22”.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Configure NetBackup Dedicated Interface and Bridge</td>
<td>Unbond Ethernet Interface:</td>
</tr>
<tr>
<td></td>
<td></td>
<td># netAdm set --device=<interface> --slave=no --onboot=yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[OPTIONAL] If this installation is using jumbo frames, set the ethernet interface MTU to the desired jumbo frame size:</td>
</tr>
<tr>
<td></td>
<td></td>
<td># netAdm set --device=<interface> --MTU=<NetBackup_MTU_size></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Create NetBackup VM Bridge Interface:</td>
</tr>
<tr>
<td></td>
<td></td>
<td># netAdm add --type=Bridge --name=netbackup --bridgeInterfaces=<interface> --onboot=yes</td>
</tr>
</tbody>
</table>
Procedure 3. Configure TVOE on Server Blades

TVOE Server: Set Hostname

<table>
<thead>
<tr>
<th>6</th>
<th>TVOE Server: Set Hostname</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td># su - platcfg</td>
</tr>
</tbody>
</table>

Navigate to **Server Configuration->Hostname-> Edit** and enter a new hostname for your server.

Press **OK** and select and continue to press **Exit** until you are at the platcfg main menu again.

Continue To Press **Exit** until you are back at the platcfg main menu

NOTE: Although the new hostname has been properly configured and committed at this point, it will not appear on your command prompt unless you log out and log back in again.
Procedure 3. Configure TVOE on Server Blades

<table>
<thead>
<tr>
<th></th>
<th>TVOE server: Configure SNMP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>From the platcfg main menu, navigate to Network Configuration -> SNMP Configuration -> NMS Configuration</td>
</tr>
<tr>
<td></td>
<td>Press Edit.</td>
</tr>
<tr>
<td></td>
<td>Choose Add a New NMS Server</td>
</tr>
</tbody>
</table>

Enter the following NMS servers, pressing **OK** after each one and then selecting the **Add NMS** option again:

1. Enter the Hostname/IP of the Customer NMS Server, for port enter 162, and for Community String enter the community string provided in the customer NAPD Document.
2. Enter the IP of the SOAM VIP, for port enter 162, and for Community String enter the community string provided in the customer NAPD Document

Press **Exit**. Select **Yes** when prompted to restart the Alarm Routing Service. Once Done, press **Exit** to quit to the platcfg main menu.
Procedure 3. Configure TVOE on Server Blades

| 8 | TVOE server: Configure NTP | Navigate to Network Configuration |

Navigate to Configuration -> NTP

Click Edit

- ntpserver1: Enter customer provided NTP server #1 IP address.
- ntpserver2: Enter customer provided NTP server #2 IP address.
- ntpserver3: Enter customer provided NTP server #3 IP address.

Press OK

Continue to press Exit until you are out of the platcfg menu.
Procedure 3. Configure TVOE on Server Blades

9 RMS Server iLO:
Configure Time Zone

- su - platcfg

Navigate to Server Configuration->Time Zone

If the timezone displayed matches the timezone you desire, then you can continue to hit Exit until you are out of the platcfg program. If you want a different timezone, then proceed with this instruction.

- Click Edit

Select the desired time zone from the list and press Enter

Select NO for the question, "Set hardware clock to GMT?"

Continue pressing Exit until you are out of the platcfg program.

10 TVOE server:
Repeat Procedure for other TVOE blades.

Configuration of this TVOE server blade is complete. Repeat this procedure from the beginning for other TVOE hosts that need to be configured.
4.3 Create Virtual Machines for Applications

Procedure 4. Load Application and TPD ISO onto PM&C Server

<table>
<thead>
<tr>
<th>STEP</th>
<th>TVOE Host: Load Application ISO</th>
<th>PM&C GUI: Login</th>
</tr>
</thead>
</table>
| 1 | Add the Application ISO image to the PM&C, this can be done in one of three ways: | Open web browser and enter: \[http://<pmac_management_network_ip>\]
Login as pmacadmin user. |
| | 1. Insert the Application CD required by the application into the removable media drive. | |
| | 2. Attach the USB device containing the ISO image to a USB port. | |
| | 3. Copy the Application ISO file to the PM&C server into the “/var/TKLC/smac/image/isoimages/home/smacftpusr/” directory as pmacftpusr user: | |
| | - `cd` into the directory where your ISO image is located on the TVOE Host (not on the PM&C server) | |
| | Using sftp, connect to the PM&C server | |
| | - `# sftp pmacftpusr@<pmac_management_network_ip>` | |
| | - `# put <image>.iso` | |
| | After the image transfer is 100% complete, close the connection | |
| | - `# quit` | |

Needed material:

- Application Media

Check off (✓) each step as it is completed. Boxes have been provided for this purpose under each step number.

IF THIS PROCEDURE FAILS, CONTACT TEKELEC TECHNICAL SERVICES AND ASK FOR ASSISTANCE.
Procedure 4. Load Application and TPD ISO onto PM&C Server

If in Step 1 the ISO image was transferred directly to the PM&C guest via sftp, skip the rest of this step and continue with step 4. If the image is on a CD or USB device, continue with this step.

In the PM&C GUI, navigate to **Main Menu ➤ VM Management**. In the "VM Entities" list, select the PM&C guest. On the resulting "View VM Guest" page, select the "Media" tab.

Under the Media tab, find the ISO image in the "Available Media" list, and click its "Attach" button. After a pause, the image will appear in the "Attached Media" list.
Procedure 4. Load Application and TPD ISO onto PM&C Server

<table>
<thead>
<tr>
<th>Step</th>
<th>PM&C GUI:</th>
<th>Task Description</th>
</tr>
</thead>
</table>
| 4 | **Load Application image** | Navigate to `Main Menu -> Software -> Manage Software Images`
Press **Add Image** button. Use the drop down to select the image.
If the image was supplied on a CD or a USB drive, it will appear as a virtual device ("device://..."). These devices are assigned in numerical order as CD and USB images become available on the Management Server. The first virtual device is reserved for internal use by TVOE and PM&C; therefore, the iso image of interest is normally present on the second device, "device://dev/sr1". If one or more CD or USB-based images were already present on the Management Server before you started this procedure, choose a correspondingly higher device number.
If in Step 1 the image was transferred to PM&C via sftp it will appear in the list as a local file "/var/TKLCL/...".

Select the appropriate path and Press **Add New Image** button.
You may check the progress using the **Task Monitoring** link. Observe the green bar indicating success.
Once the green bar is displayed, remove the TVOE 2.0 Media from the optical drive of the management server. |
| 5 | **Load TPD ISO** | If the TPD ISO hasn’t been loaded onto the pmac already, repeat steps 1 through 4 to load it using the TPD media or ISO. |
Procedure 5. Create NOAMP Guest VMs

Prerequisite: TVOE has been installed and configured on the target blade server or RMS

Check off (✓) each step as it is completed. Boxes have been provided for this purpose under each step number.

IF THIS PROCEDURE FAILS, CONTACT TEKELEC TECHNICAL SERVICES AND ASK FOR ASSISTANCE.

<table>
<thead>
<tr>
<th>STEP #</th>
<th>PM&C GUI: Login</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1 | PM&C GUI: Login | Open web browser and enter: `http://<pmac_management_network_ip>`
Login as pmacadmin user. |
| 2 | PM&C GUI: Navigate to VM Management of the Target Server Blade | Navigate to **Main Menu -> VM Management**
Select the TVOE server blade or rack mounted server from the “VM Entities” listing on the left side of the screen. The selected server’s guest machine configuration will then be displayed in the remaining area of the window.
Click **Create Guest** |
Procedure 5. Create NOAMP Guest VMs

From the “ISO/Profile” drop-down box, select the entry that matches depending on the hardware that your NOAMP VM TVOE server is running on and your preference for NetBackup interfaces:

| NOAM VM TVOE Hardware Type(s) | Dedicated Netbackup Interface? | Choose Profile (<Application ISO NAME>)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HP DL360 RMS , HP BL460 Gen 6 Blade</td>
<td>No</td>
<td>DSR_NOAMP</td>
</tr>
<tr>
<td>HP DL360 RMS , HP BL460 Gen 6 Blade</td>
<td>Yes</td>
<td>DSR_NOAMP_NBD</td>
</tr>
<tr>
<td>HP DL380 Gen 8 RMS, HP BL460 Gen 8 Blade, Sun Netra RMS</td>
<td>No</td>
<td>DSR_NOAMP_LARGE</td>
</tr>
<tr>
<td>HP DL380 Gen 8 RMS, HP BL460 Gen 8 Blade, Sun Netra RMS</td>
<td>Yes</td>
<td>DSR_NOAMP_LARGE_NBD</td>
</tr>
</tbody>
</table>

(NOTE: Application_ISO_NAME is the name of the DSR Application ISO to be installed on this NOAMP)

Press Select Profile.

Values from the profile should now populate the VM configuration screen. Disk Size, Number of CPUs, Memory, and NICs should all change from their default values to the profile values.

You can edit the name, if you wish. For instance: “DSRNOAMP-A,” or DSRNOAMP-B”. (This will not become the ultimate hostname. It is just an internal tag for the VM host manager.)

Press Create
Procedure 5. Create NOAMP Guest VMs

<table>
<thead>
<tr>
<th>Step</th>
<th>PM&C GUI:</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Wait for Guest Creation to Complete</td>
</tr>
</tbody>
</table>

Navigate to **Main Menu > Task Monitoring** to monitor the progress of the guest creation task. A separate task will appear for each guest creation that you have launched.

Wait or refresh the screen until you see that the guest creation task has completed successfully.

<table>
<thead>
<tr>
<th>ID</th>
<th>Task</th>
<th>Target</th>
<th>Status</th>
<th>Running Time</th>
<th>Start Time</th>
<th>Progress</th>
</tr>
</thead>
<tbody>
<tr>
<td>0239</td>
<td>Virtual Machine Create</td>
<td>Esc3001 Bay 51E</td>
<td>Guest DSR_NOAMP</td>
<td>690:94</td>
<td>2011-11-29 20:36:11</td>
<td>100%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step</th>
<th>PM&C GUI:</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Verify Guest Machine is Running</td>
</tr>
</tbody>
</table>

Navigate to **Main Menu -> VM Management**

Select the TVOE server blade on which the guest machine was just created.

Look at the list of guests present on the blade and verify that you see a guest that matches the name you configured and that its status is “Running”.

![Guests Table]

VM Creation for this guest is complete. Repeat from Step 2 for any remaining NOAMP VMs (for instance, the standby NOAMP) that must be created.
Procedure 6. Create SOAMP Guest VMs

This procedure will provide the steps needed to create a DSR SOAMP virtual machine (refered to as a “guest”) on a TVOE server blade. It must be repeated for every SOAMP server you wish to install.

Prerequisite: TVOE has been installed and configured on the target blade server

Check off (✓) each step as it is completed. Boxes have been provided for this purpose under each step number. IF THIS PROCEDURE FAILS, CONTACT TEKELEC TECHNICAL SERVICES AND ASK FOR ASSISTANCE.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PM&C GUI: Login</td>
</tr>
<tr>
<td>2</td>
<td>PM&C GUI: Navigate to VM Management of the Target Server Blade</td>
</tr>
</tbody>
</table>

Click **Create Guest**
Procedure 6. Create SOAMP Guest VMs

3. PM&C GUI: Configure VM Guest Parameters

Press **Import Profile**

![Image of PM&C GUI](image)

From the “ISO/Profile” drop-down box, select the entry that matches depending on the hardware that your SOAM VM TVOE server is running on and your preference for NetBackup interfaces:

<table>
<thead>
<tr>
<th>SOAM VM TVOE Hardware Type(s)</th>
<th>Dedicated Netbackup Interface?</th>
<th>Choose Profile (Application ISO NAME)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP BL460 Gen 8 Blade, HP BL460 Gen 6 Blade</td>
<td>No</td>
<td>DSR_SOAM</td>
</tr>
<tr>
<td>HP BL460 Gen 8 Blade, HP BL460 Gen 6 Blade</td>
<td>Yes</td>
<td>DSR_SOAM_NBD</td>
</tr>
</tbody>
</table>

(NO-T: Application_ISO_NAME is the name of the DSR Application ISO to be installed on this NOAMP)

Press **Select Profile**.

Values from the profile should now populate the VM configuration screen. Disk Size, Number of CPUs, Memory, and NICs: should all change from their default values to the profile values.

You can edit the name, if you wish. For instance: “DSR_SOAM_A,” or DSR_SOAM_B”. (*This will not become the ultimate hostname. It is just an internal tag for the VM host manager.*)

Press **Create**
Procedure 6. Create SOAMP Guest VMs

4. **PM&C GUI: Wait for Guest Creation to Complete**

Navigate to **Main Menu > Task Monitoring** to monitor the progress of the guest creation task. A separate task will appear for each guest creation that you have launched.

Wait or refresh the screen until you see that the guest creation task has completed successfully.

<table>
<thead>
<tr>
<th>ID</th>
<th>Task</th>
<th>Target</th>
<th>Status</th>
<th>Running Time</th>
<th>Start Time</th>
<th>Progress</th>
</tr>
</thead>
<tbody>
<tr>
<td>579</td>
<td>VirtualAction Create</td>
<td>Esc-9001 Bay-1F</td>
<td>Guest completed</td>
<td>6:30:04</td>
<td>2011-11-29</td>
<td>100%</td>
</tr>
</tbody>
</table>

5. **PM&C GUI: Verify Guest Machine is Running**

Navigate to **Main Menu –> VM Management**

Select the TVOE server blade on which the guest machine was just created.

Look at the list of guests present on the blade and verify that you see a guest that matches the name you configured and that its status is “Running”.

```
Guests

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>USR_NOAMP</td>
<td>Running</td>
</tr>
</tbody>
</table>
```

VM Creation for this guest is complete. Repeat from Step 2 for any remaining SOAMP VMs (for instance, the standby SOAMP) that must be created.
4.4 Install Application Software on Servers

Procedure 7. IPM Blades and VMs

<table>
<thead>
<tr>
<th>Step #</th>
<th>Description</th>
<th>Instructions</th>
</tr>
</thead>
</table>
| 1 | TVOE Host: Load Application ISO | Add the TPD ISO image to the PM&C, this can be done in one of three ways:
1. Insert the TPD CD required by the application into the removable media drive.
2. Attach the USB device containing the ISO image to a USB port.
3. Copy the TPD iso file to the management server into the “/var/TKLC/smac/image/isoimages/home/smactftpusr/” directory as pmacftpusr user:

 cd into the directory where your ISO image is located on the **TVOE Host** (not on the PM&C server)

 Using sftp, connect to the PM&C management server

   ```  
   # sftp pmacftpusr@<pmac_management_network_ip>  
   # put <image>.iso  
   # quit  
   ```  

 After the image transfer is 100% complete, close the connection
| 2 | PM&C GUI: Login | Open web browser and enter: http://<pmac_management_network_ip>
Login as pmacadmin user. |

Prerequisite: Enclosures containing the blade servers targeted for IPM that have been configured.

Prerequisite: TVOE has been installed and configured on Blade servers that will host DSR NOAMP VMs.

Prerequisite: DSR NOAMP and SOAM Guest VMs have been created successfully.

Needed material:
- TPD Media (64-bits)

Check off (✓) each step as it is completed. Boxes have been provided for this purpose under each step number.

IF THIS PROCEDURE FAILS, CONTACT TEKELEC TECHNICAL SERVICES AND ASK FOR ASSISTANCE.
Procedure 7. IPM Blades and VMs

3. PM&C GUI:
 Attach the software Image to the PM&C Guest

 If in Step 1 the ISO image was transferred directly to the PM&C guest via sftp, skip the rest of this step and continue with step 4. If the image is on a CD or USB device, continue with this step.

 In the PM&C GUI, navigate to Main Menu ➤ VM Management. In the "VM Entities" list, select the PM&C guest. On the resulting "View VM Guest" page, select the "Media" tab.

 Under the Media tab, find the ISO image in the "Available Media" list, and click its "Attach" button. After a pause, the image will appear in the "Attached Media" list.

 ![View VM Guest](image)
Procedure 7. IPM Blades and VMs

4. **PM&C GUI: Select Servers for OS install**

Navigate to **Software -> Software Inventory**.

Select the servers you want to IPM. If you want to install the same OS image to more than one server, you may select multiple servers by clicking multiple rows individually. Selected rows will be highlighted in green.

Note: VM’s will have the text “Guest: <VM_GUEST_NAME>” underneath the physical blade or RMS that hosts them.

<table>
<thead>
<tr>
<th>Ident</th>
<th>IP Address</th>
<th>Hostname</th>
<th>Plat Name</th>
<th>Plat Version</th>
<th>App Name</th>
<th>App Version</th>
<th>Design Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enc 10101 Bay 1E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enc 10101 Bay 2E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enc 10101 Bay 7E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enc 10101 Bay 13E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enc 10101 Bay 15E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Click on **Install OS**

![Install OS button](image)

5. **PM&C GUI: Initiate OS Install**

The left side of this screen shows the servers to be affected by this OS installation. From the list of available bootable images on the right side of the screen, select one OS image to install to all of the selected servers.

Click on **Start Install**, a confirmation window will pop up, click on **Ok** to proceed with the install.

![Start Install button](image)
Procedure 7. IPM Blades and VMs

<table>
<thead>
<tr>
<th>6</th>
<th>PM&C GUI: Monitor OS Install</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Navigate to Main Menu > Task Monitoring to monitor the progress of the OS Installation background task. A separate task will appear for each blade affected.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ID</th>
<th>Task</th>
<th>Target</th>
<th>Status</th>
<th>Running Time</th>
<th>Start Time</th>
<th>Progress</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Install OS</td>
<td>Enc30101 Bay15E</td>
<td>Boot install image</td>
<td>00:01</td>
<td>2014-09-20 11:12:02</td>
<td>59%</td>
</tr>
<tr>
<td>13</td>
<td>Install OS</td>
<td>Enc30101 Bay16</td>
<td>Boot install image</td>
<td>00:02</td>
<td>2014-09-20 11:12:02</td>
<td>59%</td>
</tr>
<tr>
<td>12</td>
<td>Install OS</td>
<td>Enc30101 Bay17</td>
<td>Boot install image</td>
<td>00:01</td>
<td>2014-09-20 11:12:02</td>
<td>59%</td>
</tr>
<tr>
<td>11</td>
<td>Install OS</td>
<td>Enc30101 Bay18</td>
<td>Boot install image</td>
<td>00:01</td>
<td>2014-09-20 11:12:02</td>
<td>59%</td>
</tr>
<tr>
<td>10</td>
<td>Install OS</td>
<td>Enc30101 Bay19</td>
<td>Boot install image</td>
<td>00:02</td>
<td>2014-09-20 11:12:02</td>
<td>59%</td>
</tr>
<tr>
<td>9</td>
<td>Add Image</td>
<td>Done TP0 install 5.0.0.72.20.0 - CentOS5.5.6-x86_64</td>
<td>00:09</td>
<td>2014-09-20 11:01:50</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

When the installation is complete, the task will change to green and the Progress bar will indicate "100%".

Procedure 8. Install the Application Software on Blades

<table>
<thead>
<tr>
<th>1</th>
<th>PM&C GUI: Login</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Open web browser and enter: http://<pmac_management_network_ip></td>
</tr>
<tr>
<td></td>
<td>Login as pmacadmin user.</td>
</tr>
</tbody>
</table>
Procedure 8. Install the Application Software on Blades

2 PM&C GUI: Select Servers for Application install

Navigate to Software -> Software Inventory.

Select the servers on which the application is to be installed. If you want to install the same application image to more than one server, you may select multiple servers by clicking multiple rows individually. Selected rows will be highlighted in green.

Note: VM's will have the text “Guest: <VM_GUEST_NAME>” underneath the physical blade that hosts them.

<table>
<thead>
<tr>
<th>Entity</th>
<th>IP Address</th>
<th>Hostname</th>
<th>Plat Name</th>
<th>Plat Version</th>
<th>App Name</th>
<th>App Version</th>
<th>Design Fut</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enc1011 Bay 1F</td>
<td>192.168.1.1247</td>
<td>hosthama110543473</td>
<td>TFD</td>
<td>5.9-72-260</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enc1011 Bay 2F</td>
<td>192.168.1.1248</td>
<td>hosthama110543574</td>
<td>TFD</td>
<td>5.9-72-260</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enc1011 Bay 7F</td>
<td>192.168.1.1250</td>
<td>hosthama110543105</td>
<td>TFD</td>
<td>5.9-72-260</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enc1011 Bay 9F</td>
<td>192.168.1.1249</td>
<td>hosthama1105432951</td>
<td>TFD</td>
<td>5.9-72-260</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enc1011 Bay 15F</td>
<td>192.168.1.1251</td>
<td>hosthama1105432058</td>
<td>TFD</td>
<td>5.9-72-260</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enc1011 Bay 15F</td>
<td>192.168.1.1211</td>
<td>pmac-nsvin-1</td>
<td>TFD (D66)</td>
<td>5.9-72-260</td>
<td>PMAC</td>
<td>D66</td>
<td></td>
</tr>
</tbody>
</table>

Click on Upgrade

Install OS Upgrade Refresh

3 PM&C GUI: Initiate Application Install

The left side of this screen shows the servers to be affected by this OS installation. From the list of available bootable images on the right side of the screen, select one OS image to install to all of the selected servers.

Click on Start Upgrade, a confirmation window will pop up, click on Ok to proceed with the install.

Start Upgrade
Procedure 8. Install the Application Software on Blades

<table>
<thead>
<tr>
<th>Step</th>
<th>Task Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>PM&C GUI: Monitor the installation status</td>
<td>Navigate to Main Menu > Task Monitoring to monitor the progress of the Application Installation. A separate task will appear for each blade affected.</td>
</tr>
<tr>
<td>5</td>
<td>PM&C GUI: Accept Upgrade</td>
<td>Navigate to Software > Software Inventory to accept the software installation. Select all the servers on which the application has been installed in the previous steps and click on Accept Upgrade as shown below.</td>
</tr>
</tbody>
</table>

Note that on some RMS and Blade servers, the GUI may not provide the option to accept/reject upgrade. So first verify in task monitoring that the upgrade is not in progress, then manually accept or reject the upgrade by ssh'ing into the server and execute:

1. To accept: /var/TKLC/backout/accept
2. To reject: /var/TKLC/backout/reject

When the installation is complete, the task will change to green and the Progress bar will indicate “100%”. Note that once the upgrade has been accepted, the App version will change from “Pending Acc/Rej” to the version number of the application.
4.5 Application Configuration

Procedure 9. Configure the First NOAMP NE and Server

<table>
<thead>
<tr>
<th>STEP</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Save the NOAMP Network Data to an XML file</td>
</tr>
<tr>
<td></td>
<td>Using a text editor, create a NOAMP Network Element file that describes the networking of the target install environment of your first NOAMP server.</td>
</tr>
<tr>
<td></td>
<td>Select an appropriate file name and save the file to a known location on your computer.</td>
</tr>
<tr>
<td></td>
<td>A suggested filename format is “Appname_NEname_NetworkElement.XML”, so for example an DSR2 NOAMP network element XML file would have a filename “DSR2_NOAMP_NetworkElement.xml”.</td>
</tr>
<tr>
<td></td>
<td>Alternatively, you can update the sample DSR 5.X/6.X Network Element file be found on the management server at: <code>/usr/TKLC/smac/etc/SAMPLE-NetworkElement.xml</code></td>
</tr>
<tr>
<td></td>
<td>A sample XML file can also be found in Appendix A. Note that the following limitations apply when specifying a Network Element name: “A 1-32-character string. Valid characters are alphanumeric and underscore. Must contain at least one alpha and must not start with a digit”.</td>
</tr>
<tr>
<td>2</td>
<td>Exchange SSH keys between PMAC and first NOAMP server</td>
</tr>
<tr>
<td></td>
<td>Use the PMAC GUI to determine the Control Network IP address of the blade server that is to be the first NOAMP server. From the PMAC GUI, navigate to Main Menu → Software →Software Inventory.</td>
</tr>
<tr>
<td></td>
<td>Note the IP address for the first NOAMP server.</td>
</tr>
<tr>
<td></td>
<td>Login to the PMAC terminal as the admusr .</td>
</tr>
<tr>
<td></td>
<td>From a terminal window connection on the PMAC as the admusr user, exchange SSH keys for admusr between the PMAC and the 1st NOAMP blade server using the keyexchange utility, using the Control network IP address for the NOAMP blade server. When prompted for the password, enter the password for the admusr user of the NOAMP server.</td>
</tr>
<tr>
<td></td>
<td><code>keyexchange admusr@<NOAMP blade Control Net IP addr></code></td>
</tr>
<tr>
<td>3</td>
<td>Connect a Web Browser to the NOAMP GUI</td>
</tr>
<tr>
<td></td>
<td>Plug a laptop ethernet cable onto an unused, unconfigured port on the 4948 switch (if available in your installation) or use SSH Tunneling through the PMAC to connect the laptop to the NOAMP server blade. If you are using tunneling, then you can skip the rest of this step and instead complete the instructions in 4.7 Appendix G. (for using Putty) or 4.7 Appendix I (for using OpenSSH). Openssh is recommended if you are using a Windows 7 PC.</td>
</tr>
<tr>
<td></td>
<td>From the PMAC, enable the switch port that the laptop is plugged into.</td>
</tr>
<tr>
<td></td>
<td>Enable that laptop Ethernet port to acquire a DHCP address and then access the NOAMP-“A” GUI via its control IP address.</td>
</tr>
<tr>
<td>4</td>
<td>NOAMP GUI: Login</td>
</tr>
<tr>
<td></td>
<td>Login to the NOAMP GUI as the guiadmin user.</td>
</tr>
</tbody>
</table>
Procedure 9. Configure the First NOAMP NE and Server

5. Create the NOAMP Network Element using the XML File

Navigate to **Main Menu->Configuration->Network Elements**

Select the “Browse” button, and enter the pathname of the NOAMP network XML file.

Select the “Upload File” button to upload the XML file and configure the NOAMP Network Element.

Once the data has been uploaded, you should see a folder appear with the name of your network element. Click on this folder and you will get a drop-down which describes the individual networks that are now configured:

<table>
<thead>
<tr>
<th>Network Element</th>
<th>Network Name</th>
<th>Network Address</th>
<th>Netmask</th>
<th>VLAN ID</th>
<th>Gateway IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO_08008085</td>
<td>INTERNAL/IMI</td>
<td>10.240.10.92</td>
<td>255.255.255.254</td>
<td></td>
<td>10.240.10.35</td>
</tr>
<tr>
<td></td>
<td>INTERNAL/XMI</td>
<td>10.240.10.0</td>
<td>255.255.255.254</td>
<td></td>
<td>10.240.10.3</td>
</tr>
</tbody>
</table>

6. Map Services to Networks

Navigate to **Main Menu → Configuration → Services.**

Select the “Edit” button and set the Services as shown in the table below:

<table>
<thead>
<tr>
<th>Name</th>
<th>Intra-NE Network</th>
<th>Inter-NE Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>OAM</td>
<td><IMI Network></td>
<td><XMI Network></td>
</tr>
<tr>
<td>Replication</td>
<td><IMI Network></td>
<td><XMI Network></td>
</tr>
<tr>
<td>Signaling</td>
<td>Unspecified</td>
<td>Unspecified</td>
</tr>
<tr>
<td>HA_Secondary</td>
<td>Unspecified</td>
<td>Unspecified</td>
</tr>
<tr>
<td>HA_MP_Secondary</td>
<td>Unspecified</td>
<td>Unspecified</td>
</tr>
<tr>
<td>Replication_MP</td>
<td><IMI Network></td>
<td>Unspecified</td>
</tr>
<tr>
<td>ComAgent</td>
<td><IMI Network></td>
<td>Unspecified</td>
</tr>
</tbody>
</table>

For example, if your IMI network is named "IMI" and your XMI network is named "XMI", then your services should config should look like the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>Intra-NE Network</th>
<th>Inter-NE Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>OAM</td>
<td>IMI</td>
<td>XMI</td>
</tr>
<tr>
<td>Replication</td>
<td>IMI</td>
<td>XMI</td>
</tr>
<tr>
<td>Signaling</td>
<td>Unspecified</td>
<td>Unspecified</td>
</tr>
<tr>
<td>HA_Secondary</td>
<td>Unspecified</td>
<td>Unspecified</td>
</tr>
<tr>
<td>HA_MP_Secondary</td>
<td>Unspecified</td>
<td>Unspecified</td>
</tr>
<tr>
<td>Replication_MP</td>
<td>IMI</td>
<td>Unspecified</td>
</tr>
<tr>
<td>ComAgent</td>
<td>IMI</td>
<td>Unspecified</td>
</tr>
</tbody>
</table>

Select the “Ok” button to apply the Service-to-Network selections.
Procedure 9. Configure the First NOAMP NE and Server

Insert the 1st NOAMP server

Navigate to **Main Menu → Configuration → Servers.**

Select the “Insert” button to insert the new NOAMP server into servers table (the first or “A” server).

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hostname</td>
<td>ND-Server1</td>
<td>Unique name for the server. [End string. Valid characters are alphabetic with an alphanumeric and end.]</td>
</tr>
<tr>
<td>Role</td>
<td>NETWORK OAM&P</td>
<td>Select the function of the server.</td>
</tr>
<tr>
<td>System ID</td>
<td>NO-Server1</td>
<td>System ID for the NOAMP or SON 84-character string. Valid value is ND-Server1.</td>
</tr>
<tr>
<td>Hardware Profile</td>
<td>DSR TVOE Guest</td>
<td>Hardware profile of the server.</td>
</tr>
<tr>
<td>Network Element Name</td>
<td>NOAMMEMORYTEST</td>
<td>Select the network element.</td>
</tr>
<tr>
<td>Location</td>
<td></td>
<td>Location description [Enter a value in any test string.]</td>
</tr>
</tbody>
</table>

Fill in the fields as follows:

- **Hostname**: <Hostname>
- **Role**: NETWORK OAM&P
- **System ID**: <Site System ID>
- **Hardware Profile**: DSR TVOE Guest
- **Network Element Name**: [Choose NE from Drop Down Box]

The network interface fields will now become available with selection choices based on the chosen hardware profile and network element.

Fill in the server IP addresses for the XMI network. Select "xmi" for the interface. **Leave the "VLAN" checkbox unchecked.**

Fill in the server IP addresses for the IMI network. Select "imi" for the interface. **Leave the "VLAN" checkbox unchecked.**

Next, add the following NTP servers:

<table>
<thead>
<tr>
<th>NTP Server</th>
<th>Preferred?</th>
</tr>
</thead>
<tbody>
<tr>
<td><NO1-TVOE-XMI/Platmgmt-IP-Address></td>
<td>Yes</td>
</tr>
</tbody>
</table>

Select the “Ok” button when you have completed entering all the server data.

Export the Initial Configuration

Navigate to **Main Menu → Configuration → Servers.**

From the GUI screen, select the NOAMP server and then select “Export” action button to generate the initial configuration data for that server.
Procedure 9. Configure the First NOAMP NE and Server

<table>
<thead>
<tr>
<th>Step</th>
<th>Task</th>
<th>Instructions</th>
</tr>
</thead>
</table>
| 9 | Copy Configuration File to 1st NOAMP Server | Obtain a terminal window to the 1st NOAMP server, logging in as the admusr user. (see 4.7 Appendix F for instructions on how to access the NOAMP from iLO) Become the super user by using the command:

```
$ sudo su
```

You should see the prompt change to the hash mark:

```
#
```

Copy the configuration file created in the previous step from the /var/TKLC/db/filemgmt directory on the 1st NOAMP to the /var/tmp directory. The configuration file will have a filename like TKLCCConfigData.<hostname>.sh. The following is an example:

```
# cp /var/TKLC/db/filemgmt/TKLCCConfigData.blade01.sh /var/tmp/TKLCCConfigData.sh
```

<table>
<thead>
<tr>
<th>10</th>
<th>Wait for Configuration to Complete</th>
<th>The automatic configuration daemon will look for the file named “TKLCCConfigData.sh” in the /var/tmp directory, implement the configuration in the file, and then prompt the user to reboot the server. Wait to be prompted to reboot the server, but DO NOT reboot the server, it will be rebooted later on in this procedure. NOTE: Ignore the warning about removing the USB key, since no USB key is present.</th>
</tr>
</thead>
</table>
| 11 | Configure Time Zone | From the command line prompt, execute `set_ini_tz.pl`. This will set the system time zone. The following command example uses the America/New_York time zone. Replace as appropriate with the time zone you have selected for this installation. For UTC, use “Etc/UTC”, for a full list of valid timezones, see 4.7 Appendix L.

```
# /usr/TKLC/appworks/bin/set_ini_tz.pl "Etc/UTC" >/dev/null 2>&1
```

| 12 | Reboot the Server | # init 6 |
Procedure 9. Configure the First NOAMP NE and Server

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
</table>
| 13 (Optional) | **Configure Networking for Dedicated NetBackup Interface**
| | NOTE: You will only execute this step if your NO is using a dedicated Ethernet interface for NetBackup.
| | From a root login session (login as admusr, then become superuser) on the first NO, execute the following commands:
| | `# netAdm set --device=netbackup --type=Ethernet --onboot=yes --address=<NO1_NetBackup_IP> --netmask=<NetBackup_NetMask>`

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
</table>
| 14 | **1st NO Server: Verify Server Health**
| | Execute the following command as super-user on the 1st NO server and make sure that no errors are returned:
| | `# syscheck`
| | Running modules in class hardware... OK
| | Running modules in class disk... OK
| | Running modules in class net... OK
| | Running modules in class system... OK
| | Running modules in class proc... OK
| | LOG LOCATION: /var/TKLC/log/syscheck/fail_log |

Procedure 10. Configure the NOAMP Server Group

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
</table>
| This procedure will provide the steps to configure the NOAMP server group.
| | Check off (✓) each step as it is completed. Boxes have been provided for this purpose under each step number.
| | IF THIS PROCEDURE FAILS, CONTACT TEKELEC TECHNICAL SERVICES AND ASK FOR ASSISTANCE.
| 1 | **NOAMP GUI: Login**
| | Establish a GUI session on the first NOAMP server by using the XMI IP address of the first NOAMP server. Open the web browser and enter a URL of:
| | `http://<first noamp XMI IP address>`
| | Login as the guiadmin user. If prompted by a security warming, select “Continue to this Website” to proceed. |
Procedure 10. Configure the NOAMP Server Group

| 2 | Enter NOAMP Server Group Data | Using the GUI session on the first NOAMP server, go to the GUI Main Menu→Configuration→Server Groups, select **Insert** and fill the following fields:

- Server Group Name \(\rightarrow [\text{Enter Server Group Name}]\)
- Level \(\rightarrow A\)
- Parent: **None**
- Function: **DSR (Active/Standby Pair)**
- WAN Replication Connection Count: **Use Default Value**

Select “OK” when all fields are filled in.

| 3 | Edit the NOAMP Server Group | From the GUI Main Menu→Configuration→Server Groups, select the new server group, and then select “Edit”. Select the Network Element that represents the NOAMP.

In the portion of the screen that lists the servers for the server group, find the NOAMP server being configured. Click the “Include in SG” checkbox. Leave other boxes blank.

Press **OK**
Procedure 10. Configure the NOAMP Server Group

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Verify NOAMP blade server role</td>
<td>From terminal window to the iLO of the first NOAMP blade server, execute the <code>ha.mystate</code> command to verify that the “DbReplication” and VIP item under the “resourceId” column has a value of “Active” under the “role” column. You might have to wait a few minutes for it to become in that state. Press Ctrl+C to exit. Example:</td>
</tr>
<tr>
<td></td>
<td>Restart 1st NOAMP blade server</td>
<td>From the NOAMP GUI, select the Main menu→Status & Manage→Server menu. Select the first NOAMP server. Select the Restart button. Answer OK to the confirmation popup. Wait for restart to complete.</td>
</tr>
</tbody>
</table>
Procedure 11. Configure the Second NOAMP Server

<table>
<thead>
<tr>
<th>STEP</th>
<th>Action</th>
<th>Details</th>
</tr>
</thead>
</table>
| 1 | Exchange SSH keys between PMAC and second NOAMP server | Use the PMAC GUI to determine the Control Network IP address of the blade server that is to be the second NOAMP server. From the PMAC GUI, navigate to \textit{Main Menu \rightarrow Software \rightarrow Software Inventory}. Note the IP address for the second NOAMP server, usually the second blade in the first enclosure.

Login to the PMAC terminal as the \textit{admusr}.

From a terminal window connection on the PMAC as the \textit{admusr} user, exchange SSH keys for \textit{admusr} between the PMAC and the 2nd NOAMP blade server using the keyexchange utility, using the Control network IP address for the NOAMP blade server. When prompted for the password, enter the password for the \textit{admusr} user of the NOAMP server.

\texttt{keyexchange admusr@<2ndNOAMP blade Control Net IP addr>}

Note: if keyexchange fails, edit “/home/admusr/.ssh/known_hosts” and remove blank lines, and retry the keyexchange commands. |
| 2 | NOAMP GUI: Login | If not already done, establish a GUI session on the first NOAMP server by using the XMI IP address of the first NOAMP server. Open the web browser and enter a URL of: http://<first noamp XMI IP address>

Login as the guiadmin user. |
| 3 | Insert the 2nd NOAMP server | Navigate to \textit{Main Menu \rightarrow Configuration \rightarrow Servers}.

Click on \textbf{Insert} to insert the new second NOAMP server into servers table ("B" server).

This server role should be the “NETWORK OAM&P”.

Select the Network Element Name (should be the same used when configuring the first NOAMP).

Choose "DSR TVOE Guest" for the hardware profile.

Fill in the server IP addresses for the XMI network. Select "xmi" for the interface. Leave the "VLAN" checkbox unchecked.

Fill in the server IP addresses for the IMI network. Select "imi" for the interface. Leave the "VLAN" checkbox unchecked.

Next, add the following NTP servers:

<table>
<thead>
<tr>
<th>NTP Server</th>
<th>Preferred?</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{<NO2-TVOE-XMI/PlatMgmt-IP-Address>}</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Select the \textbf{Ok} button when you have completed entering the server data. |
Procedure 11. Configure the Second NOAMP Server

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Export the initial configuration
From the GUI screen, select the second server and then select Export action button to generate the initial configuration data for that server.</td>
</tr>
<tr>
<td>5</td>
<td>Copy Configuration File to 2nd NOAMP Server
Obtain a terminal session to the 1st NOAMP as the admusr user.
Use the awpushcfg utility to copy the configuration file created in the previous step from the <code>/var/TKLC/db/filemgmt</code> directory on the 1st NOAMP to the 2nd NOAMP blade server, using the Control network IP address for the 2nd NOAMP blade server. The configuration file will have a filename like <code>TKLCConfigData.<hostname>.sh</code>.
$ awpushcfg
The <code>awpushcfg</code> utility is interactive, so the user will be prompted for the IP address of the local PMAC server. Use the local control network address from the PMAC.
- the blade inventory will be presented,
- prompted for the Control network IP address for the target server (In this case, the standby NOAMP server).
- prompted for the hostname of the target server
- Note: If prompted for a username, please use admusr</td>
</tr>
</tbody>
</table>
| 6 | **Set the timezone and Reboot the Server**
Obtain a terminal window connection on the 2nd NOAMP iLO from the OA. Login as the **admusr** user.
(Use the procedure in 4.7Appendix F).
Become the super user by using the command:
$ sudo su
You should see the prompt change to the hash mark:
```
#
```
<br>The automatic configuration daemon will look for the file named “TKLCConfigData.sh” in the `/var/tmp` directory, implement the configuration in the file, and then prompt the user to reboot the server.<br>Verify `awpushcfg` was called by checking the following file<br>`$ cat /var/TKLC/appw/logs/Process/install.log`<br>Set the timezone using the following command. The following command example uses the America/New_York time zone. Replace as appropriate with the time zone you have selected for this installation. For UTC, use “Etc/UTC”, for a full list of valid timezones, see 4.7Appendix L.<br>`#/usr/TKLC/appworks/bin/set_ini_tz.pl "Etc/UTC"`<br>`>/dev/null 2>&1`<br>Now Reboot the Server:<br>$ sudo init 6<br>Wait for the server to reboot
### Procedure 11. Configure the Second NOAMP Server

| 7 | (Optional) Configure Networking for Dedicated NetBackup Interface | NOTE: You will only execute this step if your NO is using a dedicated Ethernet interface for NetBackup.  
As the super user on the 2nd NO, execute the following commands:  

```bash  
netAdm set --device=netbackup --type=Ethernet --onboot=yes --address=<NO2_NetBackup_IP> --netmask=<NetBackup_NetMask>

```

| 8 | 2nd NO Server: Verify Server Health | Execute the following command as super-user on the 2nd NO server and make sure that no errors are returned:  

```bash  
syscheck
Running modules in class hardware... OK
Running modules in class disk... OK
Running modules in class net... OK
Running modules in class system... OK
Running modules in class proc... OK
LOG LOCATION: /var/TKLC/log/syscheck/fail_log
```  

### Procedure 12. Complete Configuring the NOAMP Server Group

| STEP # | This procedure will provide the steps to finish configuring the NOAMP Server Group.  
Check off (✓) each step as it is completed. Boxes have been provided for this purpose under each step number.  
IF THIS PROCEDURE FAILS, CONTACT TEKELEC TECHNICAL SERVICES AND ASK FOR ASSISTANCE. |
## Procedure 12. Complete Configuring the NOAMP Server Group

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Edit the NOAMP Server Group Data</td>
<td>From the GUI session on the first NOAMP server, go to the GUI Main Menu-&gt;Configuration-&gt;Server Groups. Select the NOAMP Server group and click on Edit and add the second NOAMP server to the Server Group by clicking the “Include in SG” checkbox for the second NOAMP server. Click Apply.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>RMSNO_900060102</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Server</strong></td>
</tr>
<tr>
<td></td>
<td>RSMNOA</td>
<td>Checkmark</td>
</tr>
<tr>
<td></td>
<td>RSMNOB</td>
<td>Checkmark</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Add a NOAMP VIP by click on Add. Fill in the VIP Address and press Ok as shown below.</td>
</tr>
<tr>
<td>2</td>
<td>Wait for Replication</td>
<td>After replication, which will initially take up to 5 minutes, the HA status should be active (Main menu-&gt;Status &amp; Manage-&gt;HA). Note: This may take up to 5 minutes while the NOAMP servers figure out master/slave relationship. Log out of GUI from the first NOAMP XMI address.</td>
</tr>
<tr>
<td>3</td>
<td>Establish GUI Session on the NOAMP VIP</td>
<td>Establish a GUI session on the NOAMP by using the XMI VIP address. Login as user “guiadmin”.</td>
</tr>
<tr>
<td>4</td>
<td>Wait for Remote Database Alarm to Clear</td>
<td>Wait for the alarm “Remote Database re-initialization in progress” to be cleared before proceeding. (Main menu-&gt;Alarms &amp; Events-&gt;View Active)</td>
</tr>
<tr>
<td>5</td>
<td>Verify HA Role for 2nd NOAMP server</td>
<td>In the Main menu-&gt;Status &amp; Manage-&gt;HA menu, verify that the “Max Allowed HA Role” for the 2nd NOAMP server is “Active”. If it is not, press the Edit button and in the resulting screen, change the 2nd NOAMPs server’s “Max Allowed HA Role” to “Active” using the dropdown box.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Hostname</strong></td>
</tr>
<tr>
<td></td>
<td>HPC6NO</td>
<td></td>
</tr>
</tbody>
</table>

Press **OK**.
**Procedure 12. Complete Configuring the NOAMP Server Group**

<table>
<thead>
<tr>
<th>Step</th>
<th>Task</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Restart 2nd NOAMP blade server</td>
<td>In the Main menu-&gt;Status &amp; Manage-&gt;Server menu, select the second NOAMP server. Select the “Restart” button. Answer OK to the confirmation popup. Wait approximately 3-5 minutes before proceeding to allow the system to stabilize indicated by having the “Appl State” as “Enabled”.</td>
</tr>
<tr>
<td>7</td>
<td>SDS can now be installed (Optional)</td>
<td>If this deployment contains SDS, SDS can now be installed. Refer to document referenced in [21].</td>
</tr>
</tbody>
</table>

**Procedure 13. Install NetBackup Client (Optional)**

<table>
<thead>
<tr>
<th>Step #</th>
<th>Task</th>
<th>Instructions</th>
</tr>
</thead>
</table>
|        | This procedure will download and install NetBackup Client software on the server.       | Location of the bpstart_notify and bpend_notify scripts is required for the execution of this procedure. For Appworks based applications the scripts are located as follows:  
/usr/TKLC/appworks/sbin/bpstart_notify  
/usr/TKLC/appworks/sbin/bpend_notify  
Check off (✓) each step as it is completed. Boxes have been provided for this purpose under each step number.  
IF THIS PROCEDURE FAILS, CONTACT TEKELEC TECHNICAL SERVICES AND ASK FOR ASSISTANCE. |
|        | Install Netbackup Client Software                                                      | If a customer has a way of transferring and installing the netbackup client without the aid of TPD tools (push configuration) then use Appendix L.2 Netbackup Client Install with nbAutoInstall. **This is not common. If the answer to the previous question is not known** then use Appendix L.1 Netbackup Client Install with platcfg. |

<table>
<thead>
<tr>
<th>Step #</th>
<th>Task</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Install Netbackup Client Software</td>
<td>Choose the same method used in step 1 to install NetBackup on the 2nd NO.</td>
</tr>
</tbody>
</table>

**Procedure 14. NO Configuration for DR Site (Optional)**

<table>
<thead>
<tr>
<th>Step #</th>
<th>Task</th>
<th>Instructions</th>
</tr>
</thead>
</table>
|        | This procedure will provide the steps to configure the First DR NOAMP blade server.    | Check off (✓) each step as it is completed. Boxes have been provided for this purpose under each step number.  
**Prerequisite:** Application software already installed.  
**Needed material:**  
- DR Site installed with its PM&C Configured  
- DSR NO DR Site Network Element File  
IF THIS PROCEDURE FAILS, CONTACT TEKELEC TECHNICAL SERVICES AND ASK FOR ASSISTANCE. |
| 1      | Primary NOAMP VIP GUI : Login                                                        | Using a web browser, navigate to the XMI Virtual IP Address (VIP) of the Primary NO Site.  
Login using the guiadmin user. |
## Procedure 14. NO Configuration for DR Site (Optional)

<table>
<thead>
<tr>
<th></th>
<th><strong>Primary NOAMP VIP GUI:</strong> Insert Network Element for DR Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Refer to appendix A for a sample network element xml file.</td>
</tr>
<tr>
<td></td>
<td>Using the GUI menu, Navigate to <strong>Configuration -&gt; Network Elements</strong> as shown below.</td>
</tr>
<tr>
<td></td>
<td><img src="image" alt="Network Elements Screen" /></td>
</tr>
<tr>
<td></td>
<td>The “Network Elements” screen will display, select the “Browse” dialogue button (scroll to bottom left corner of screen).</td>
</tr>
</tbody>
</table>

To create a new Network Element, upload a valid configuration file:

**Browse**  
**Upload File**

<table>
<thead>
<tr>
<th>Insert</th>
<th>Edit</th>
<th>Delete</th>
<th>Lock/Unlock</th>
<th>Report</th>
<th>Export</th>
</tr>
</thead>
</table>

A dialogue will pop up, browse to the location of the DSR DR NO Site Element XML File and click the “Open” button.

Then click “**Upload File**” as shown below:

To create a new Network Element, upload a valid configuration file:

**E:\DR_NO_DEV_ne.xml**  
**Browse**  
**Upload File**

<table>
<thead>
<tr>
<th>Insert</th>
<th>Edit</th>
<th>Delete</th>
<th>Lock/Unlock</th>
<th>Report</th>
<th>Export</th>
</tr>
</thead>
</table>

If the values in the .xml file pass validation rules, the user will receive a banner information message showing that the data has been successfully validated and committed to the DB.
### Procedure 14. NO Configuration for DR Site (Optional)

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td><strong>Primary NOAMP VIP GUI: Insert Servers</strong></td>
</tr>
</tbody>
</table>

Using the GUI menu, navigate to **Configuration -> Servers**.

Click the **Insert** button (bottom left corner of screen). An **"Adding a new server"** screen will be displayed as shown below.

![Adding a new server](image)

Fill in the following values:
- **Host Name**: Name of **DSR DR NO Server A**
- **Role**: Select the **NETWORK OAM&P**
- **System ID**: Enter value for **Site System ID**
- **Hardware Profile**: Select **DSR TVOE Guest**
- **Network element Name**: Select the network element name for the **DSR DR Site** (the one inserted in step 2 above).
- **Location**: Fill in the server geographical location (optional).

The network interface fields will now become available with selection choices based on the chosen hardware profile and network element.

![Network interfaces](image)

Fill in the server IP addresses for the XMI network. Select "xmi" for the interface. **Leave the "VLAN" checkbox unchecked.**

Fill in the server IP addresses for the IMI network. Select "imi" for the interface. **Leave the "VLAN" checkbox unchecked.**

Next, add the following NTP servers:

<table>
<thead>
<tr>
<th>NTP Server</th>
<th>Preferred?</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;DR-NOI-TVOE-XMI/Platmgmt-IP-Address&gt;</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Select the “Ok” button when you have completed entering the server data.
### Procedure 14. NO Configuration for DR Site (Optional)

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Primary NOAMP VIP GUI: Export the Initial Configuration</td>
<td>Navigate to <strong>Main Menu -&gt; Configuration -&gt; Servers</strong>&lt;br&gt;From the GUI screen, select the DR NO server added in the previous step and click the “Export” button to generate the initial configuration data for that server.&lt;br&gt;The user will receive a banner information message as shown below.</td>
</tr>
<tr>
<td>5</td>
<td>Exchange SSH keys between PMAC and first DR-NOAMP server</td>
<td>Use the DR-NOAM site PMAC GUI to determine the Control Network IP address of the blade server that is to be the first DR NOAMP server. From the PMAC GUI, navigate to <strong>Main Menu -&gt; Software -&gt; Software Inventory</strong>.&lt;br&gt;Note the IP address for the first DR NOAMP server.&lt;br&gt;Login to the DR NOAM site PMAC terminal as the <strong>admusr</strong>.&lt;br&gt;From a terminal window connection on the PMAC as the <strong>admusr</strong> user, exchange SSH keys for <strong>admusr</strong> between the PMAC and the 1st DR NOAMP blade server using the keyexchange utility, using the Control network IP address for the DR-NOAMP blade server. When prompted for the password, enter the password for the <strong>admusr</strong> user of the DR NOAMP server.&lt;br&gt;$ keyexchange admusr@&lt;DR_NOAMP blade Control Net IP addr&gt;</td>
</tr>
<tr>
<td>6</td>
<td>Exchange SSH keys between NOAMP and PMAC at the DR site</td>
<td>From a terminal window connection on the NOAMP VIP as the <strong>admusr</strong>, exchange SSH keys for <strong>admusr</strong> between the NOAMP and the DR NO’s PMAC using the keyexchange utility.&lt;br&gt;When prompted for the password, enter the appropriate password for <strong>admusr</strong> on the PMAC server.&lt;br&gt;$ keyexchange admusr@&lt;DR_NO_SITE_PMAC_Management_IP&gt;</td>
</tr>
</tbody>
</table>
Procedure 14. NO Configuration for DR Site (Optional)

7 Copy Configuration File to 1st DR NO Server

SSH to the NOAMP VIP as admusr and use the awpushcfg utility to copy the configuration file created in the previous step from the /var/TKLC/db/filemgmt directory on the Primary Active to the first DR NOAMP server, using the Control network IP address for the first DR NOAMP server. The configuration file will have a filename like TKLCConfigData.<hostname>.sh.

$ awpushcfg

The awpushcfg utility is interactive, so the user will be
- prompted for the IP address of the PMAC server (make sure you enter the Management IP address of the PM&C on the DR Site),
- the blade inventory will be presented,
- prompted for the Control network IP address for the target server (in this case, the first DR NOAMP server).
- prompted for the hostname of the target server,
- Note: If prompted for a username, please use admusr

8 DR NO Server A: Verify awpushcfg was successful

- Access the TVOE machine hosting the DR NO Server A using the iLO Connection and log in as root.
- Access the DR NO Server A VM console by running the following commands

  # virsh list --all
  Id Name        State
  --------------------------
  6 vm-pmac      running
  7 DSR-NO       running

  The connect to DR NO Server A VM using the following command, and login as root.

  # virsh console DSR-NO

  Connected to domain vm-DSR-NO
  Escape character is ^] <Press ENTER key>
  CentOS release 6.2 (Final)
  Kernel 2.6.32-220.7.1.el6prere16.0.0_80.13.0.x86_64 on an x86_64
  DSR-NO login: root
  Password:
  Last login: Fri May 25 16:39:04 on ttyS4

  - Verify awpushcfg was called by checking the following file

  # cat /var/TKLC/appw/logs/Process/install.log
### Procedure 14. NO Configuration for DR Site (Optional)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>VM: Wait for Configuration to Complete</td>
<td>The automatic configuration daemon will look for the file named “TKLCConfigData.sh” in the /var/tmp directory, implement the configuration in the file, and then prompt the user to reboot the server. Wait to be prompted to reboot the server, but <strong>DO NOT</strong> reboot the server, it will be rebooted later on in this procedure. <strong>NOTE:</strong> Ignore the warning about removing the USB key, since no USB key is present.</td>
</tr>
<tr>
<td>10</td>
<td>VM: Configuration Time Zone</td>
<td>Continuing from the command line prompt, execute <code>set_ini_tz.pl</code>. This will set the system time zone. The following command example uses the America/New_York time zone. Replace as appropriate with the time zone you have selected for this installation. For UTC, use “Etc/UTC”, for a full list of valid timezones, see 4.7 Appendix L.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><code># /usr/TKLC/appworks/bin/set_ini_tz.pl &quot;Etc/UTC&quot;</code></td>
</tr>
<tr>
<td>11</td>
<td>VM: Reboot the VM</td>
<td>Reboot the server using the following command: <code># init 6</code> Then wait for the server to reboot (takes between 5 and 10 minutes)</td>
</tr>
<tr>
<td>12</td>
<td>VM: Configure Networking for Dedicated NetBackup Interface (Optional)</td>
<td><strong>NOTE:</strong> You will only execute this step if your NO is using a dedicated Ethernet interface for NetBackup. From a super user session on the first DR NO, execute the following commands:</td>
</tr>
<tr>
<td></td>
<td></td>
<td><code># netAdm set --device=netbackup --type=Ethernet --onboot=yes --address=&lt;NO1_NetBackup_IP&gt; --netmask=&lt;NetBackup_NetMask&gt;</code></td>
</tr>
</tbody>
</table>
Procedure 14. NO Configuration for DR Site (Optional)

13

☐ DR NO Server A VM: Verify Server Health

Execute the following command as super-user and make sure that no errors are returned:

```
syscheck
Running modules in class hardware... OK
Running modules in class disk... OK
Running modules in class net... OK
Running modules in class system... OK
Running modules in class proc... OK
LOG LOCATION: /var/TKLC/log/syscheck/fail_log
```

☐ Repeat for DR NO Server B

Repeat Steps 3 through 12 to configure DR NO Server B. When inserting the 2nd server, change the NTP server address to the following:

<table>
<thead>
<tr>
<th>NTP Server</th>
<th>Preferred?</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;DR-NO2-TVOE-XMI/Platmgmt-IP-Address&gt;</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Procedure 15. NO Pairing for DSR NO DR Site (Optional)

STEP #

This procedure will provide the steps to configure the First DR NOAMP blade server.

Check off (✓) each step as it is completed. Boxes have been provided for this purpose under each step number.

Prerequisite: Procedure 36. NO Installation for DR Site complete

IF THIS PROCEDURE FAILS, CONTACT TEKELEC TECHNICAL SERVICES AND ASK FOR ASSISTANCE.

1

☐ Primary NOAMP VIP GUI: Login

Using a web browser, navigate to the XMI Virtual IP Address (VIP) of the Primary NO Site.

Login using the guiadmin user.

2

☐ Primary NOAMP GUI: Navigate to Server Group

Using the GUI menu, Navigate to Configuration -> Server Groups as shown below
### Procedure 15. NO Pairing for DSR NO DR Site (Optional)

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td><strong>Primary NOAMP GUI: Insert Server Group</strong>&lt;br&gt;The <strong>Server Groups</strong> screen will display, click on <strong>Insert</strong> to add a new Server Group.&lt;br&gt;Fill in the following values:&lt;br&gt;- <strong>Server Group Name</strong>: Enter Server Group Name of <strong>DSR DR NO Site</strong>&lt;br&gt;- <strong>Level</strong>: Select <strong>A</strong>&lt;br&gt;- <strong>Parent</strong>: Select <strong>None</strong>&lt;br&gt;- <strong>Function</strong>: Select <strong>DSR Active/Standby Pair</strong>&lt;br&gt;- <strong>WAN Replication Connection Count</strong>: Use <strong>Default Value</strong>&lt;br&gt;Then press <strong>&quot;Apply&quot;</strong>, make sure the validation is successful.</td>
</tr>
<tr>
<td>4</td>
<td><strong>Primary NOAMP GUI: Update Server Group</strong>&lt;br&gt;Select the <strong>Server Group</strong> that was created in the previous step, and click on <strong>&quot;Edit&quot;</strong>.&lt;br&gt;The user will be presented with the <strong>&quot;Server Groups [Edit]&quot;</strong> screen&lt;br&gt;Check the checkbox labeled <strong>&quot;Include in SG&quot;</strong> for the “A” and “B” DR Servers as shown below and click on <strong>“Apply”</strong>.</td>
</tr>
<tr>
<td>5</td>
<td><strong>Primary NOAMP GUI: Add VIP</strong>&lt;br&gt;Click the <strong>&quot;Add&quot;</strong> dialogue button for the VIP Address and enter an IP Address for the VIP as shown below&lt;br&gt;The VIP Address is <strong>10.250.55.163</strong>&lt;br&gt;Then click the <strong>&quot;Apply&quot;</strong> dialogue button. Verify that the banner information message states <strong>&quot;Data committed&quot;</strong>.</td>
</tr>
<tr>
<td>6</td>
<td><strong>Wait for Remote Database Alarm to Clear</strong>&lt;br&gt;Wait for the alarm &quot;Remote Database re-initialization in progress&quot; to be cleared before proceeding. (Main menu-&gt;Alarms &amp; Events-&gt;View Active)</td>
</tr>
<tr>
<td>7</td>
<td><strong>Primary NOAMP GUI: Wait for 5 minutes</strong>&lt;br&gt;Now that the server(s) have been paired within a Server Group they must establish their proper roles for High Availability (HA). It may take several minutes for this process to be completed.&lt;br&gt;Allow a minimum of <strong>5 minutes</strong> before continuing to the next Step.</td>
</tr>
</tbody>
</table>
Procedure 15. NO Pairing for DSR NO DR Site (Optional)

8  Primary NOAMP GUI: Verify/Change HA Status

Using the GUI main menu, Navigate to Status & Manage -> HA

Verify that the “Max Allowed HA Role” for DR NO Servers A and B shows “Active”.

If the “Max Allowed HA Role” is set to standby for Server A or Server B, then click on “Edit” and set the “Max Allowed HA Role” to be “Active” for both DR Servers then press “OK”.

You will be returned to the previous screen, verify that the “Max Allowed HA Role” for DR NO Servers A and B now shows “Active”.

9  Primary NOAMP GUI: Verify Server Status

Using the GUI main menu, Navigate to Status & Manage -> Server

The “A” and “B” DR NO servers should now appear in the right panel. Verify that the “DB” status shows “Norm” and the “Proc” status shows “Man” for both servers before proceeding to the next Step.

<table>
<thead>
<tr>
<th>DB</th>
<th>HA</th>
<th>Proc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norm</td>
<td>Err</td>
<td>Man</td>
</tr>
<tr>
<td>Norm</td>
<td>Err</td>
<td>Man</td>
</tr>
</tbody>
</table>

10 Primary NOAMP GUI: Restart Application on DR NO A

Using the mouse, select DR NO Server A. The line entry should now be highlighted in GREEN.

Click the “Restart” button from the bottom left corner of the screen.

Click the “OK” button on the confirmation dialogue box.

The user should be presented with a confirmation message (in the banner area) for DR NO Server A stating: “Successfully restarted application”.

11 Primary NOAMP GUI: Verify Application State on DR NO Server A

Using the GUI main menu, Navigate to Status & Manage -> Server

Verify that the “Appl State” now shows “Enabled” and that the “Alm, Repl, Coll, DB, HA & Proc” status columns all show “Norm” for DR NO Server A before proceeding to the next Step.

<table>
<thead>
<tr>
<th>Appl State</th>
<th>Alm</th>
<th>Repl</th>
<th>Coll</th>
<th>DB</th>
<th>HA</th>
<th>Proc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enabled</td>
<td>Err</td>
<td>Norm</td>
<td>Norm</td>
<td>Norm</td>
<td>Norm</td>
<td>Norm</td>
</tr>
</tbody>
</table>

NOTE: If user chooses to refresh the Server status screen in advance of the default setting (15-30 sec.). This may be done by simply reselecting the “Status & Manage -> Server” option from the Main menu on the left.

12 Primary NOAMP GUI: Restart the application on DR NO Server B

Repeat Steps 8 – 10, but this time selecting DR NO Server B instead of A
### Procedure 16. Configure the SOAM NE

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Establish GUI Session on the NOAMP VIP</td>
</tr>
<tr>
<td></td>
<td>If needed, establish a GUI session on the NOAMP by using the OAM VIP address. Login as user &quot;guiadmin&quot;.</td>
</tr>
<tr>
<td>2</td>
<td>Create the SOAM Network Element using an XML File</td>
</tr>
<tr>
<td></td>
<td>Make sure to have an SOAM Network Element XML file available on the PC that is running the web browser. The SOAM Network Element XML file is similar to what was created and used in Procedure 9, but defines the SOAM “Network Element”.</td>
</tr>
<tr>
<td></td>
<td>Refer to Appendix A for a sample Network Element xml file (and instructions on what NTP server to choose)</td>
</tr>
<tr>
<td></td>
<td>Navigate to <strong>Main Menu-</strong>&gt;<strong>Configuration-&gt;Network Elements</strong></td>
</tr>
<tr>
<td></td>
<td>Select the “Browse” button, and enter the path and name of the SOAM network XML file.</td>
</tr>
<tr>
<td></td>
<td>Select the “Upload File” button to upload the XML file and configure the SOAM Network Element.</td>
</tr>
</tbody>
</table>

### Procedure 17. Configure the SOAM Servers

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Exchange SSH keys between SOAM site’s local PMAC and the SOAM server</td>
</tr>
<tr>
<td></td>
<td>Use the SOAM site's PMAC GUI to determine the Control Network IP address of the server that is to be the SOAM server. From that site’s PMAC GUI, navigate to <strong>Main Menu → Software→Software Inventory</strong>. Note the IP address for the SOAM server.</td>
</tr>
<tr>
<td></td>
<td>Login to the SOAM site’s PMAC terminal as the <strong>admusr</strong>.</td>
</tr>
<tr>
<td></td>
<td>From a terminal window connection on the <strong>SOAM site’s PMAC</strong> as the <strong>admusr</strong> user, exchange SSH keys for <strong>admusr</strong> between the PMAC and the SOAM server using the keyexchange utility, using the Control network IP address for the SOAM server.</td>
</tr>
<tr>
<td></td>
<td>When prompted for the password, enter the password for the <strong>admusrt</strong> user SOAM server.</td>
</tr>
<tr>
<td></td>
<td><code>keyexchange admusr@&lt;SOAM blade Control Net IP addr&gt;</code></td>
</tr>
</tbody>
</table>
### Procedure 17. Configure the SOAM Servers

<table>
<thead>
<tr>
<th>Step</th>
<th>Task</th>
<th>Notes</th>
</tr>
</thead>
</table>
| 2 | Exchange SSH keys between NOAMP and PMAC at the SOAM site (If necessary) | **NOTE:** If this SOAM shares the same PMAC as the NOAM, then you can skip this step.  
From a terminal window connection on the **NOAMP VIP**, as the admusr, exchange SSH keys for admusr between the NOAMP and the PMAC for this SOAM site using the keyexchange utility.  
When prompted for the password, enter the admusr password for the PMAC server.  
$ \texttt{keyexchange admusr@<SOAM\_SITE\_PMAC\_Management\_IP>} $  
Repeat this step for the standby NOAM Server |
| 3 | Establish GUI Session on the NOAMP VIP | If needed, establish a GUI session on the NOAMP by using the OAM VIP address.  
Login as user “guiadmin”. |
Procedure 17. Configure the SOAM Servers

4. Insert the SOAM “A” server

Navigate to **Main Menu->Configuration->Servers**

Select the “Insert” button to insert the new SOAM “A” server into servers table.

Fill in the fields as follows:

- **Hostname:** <Hostname>
- **Role:** SYSTEM OAM
- **System ID:** <Site System ID>
- **Hardware Profile:** DSR TVOE Guest
- **Network Element Name:** [Choose NE from Drop Down Box]

The network interface fields will now become available with selection choices based on the chosen hardware profile and network element

Fill in the server IP addresses for the XMI network. Select "xmi" for the interface. Leave the "VLAN" checkbox unchecked.

Fill in the server IP addresses for the IMI network. Select "imi" for the interface. Leave the "VLAN" checkbox unchecked.

Next, add the following NTP servers:

<table>
<thead>
<tr>
<th>NTP Server</th>
<th>Preferred?</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOI-TVOE-XMI-IP-Address</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Select the “Ok” button when you have completed entering the server data.

5. Export the initial configuration

From the GUI screen, select the desired server and then select “Export” action button to generate the initial configuration data for that server.
## Procedure 17. Configure the SOAM Servers

<table>
<thead>
<tr>
<th>Step</th>
<th>Task</th>
<th>Details</th>
</tr>
</thead>
</table>
| 6    | Copy Configuration File to SOAM “A” server | From a terminal window connection on the Active NOAMP as the `admusr`, use the `awpushcfg` utility to copy the configuration file created in the previous step from the `/var/TKLC/db/filemgmt` directory on the 1st NOAMP to the SOAM server. Using the Control network IP address for the SOAM server. The configuration file will have a filename like `TKLCConfigData.<hostname>.sh`. Verify that the server is in the “ProvideSvc” role and the availability is “Available”, then proceed with...

```bash
$ awpushcfg
```

The `awpushcfg` utility is interactive, so the user will be prompted for:
- the management IP address of the PMAC server at the site where the target blade is located.
- the hostname of the target server.
- the Control network IP address for the target server (in this case, the SOAM server).
- (Note: If you are prompted for a username, use `admusr`)

Use the SOAM IP address from step 1.

The configuration success message can also be found in the `/var/log/messages` file.

| 7    | Wait for the reboot prompt and boot the Configured Server | Obtain a terminal window connection on the SOAM “A” server console as the `admusr`.

Become the super user by using the command:

```bash
$ sudo su
```

You should see the prompt change to the hash mark:

```
#
```

The automatic configuration daemon will look for the file named “TKLCConfigData.sh” in the `/var/tmp` directory, implement the configuration in the file, and then prompt the user to reboot the server.

Wait to be prompted to reboot the server.

**NOTE**: Ignore the warning about removing the USB key, since no USB key is present. Use “init 6” in the terminal window to reboot the server as shown below.

Verify `awpushcfg` was called by checking the following file

```bash
cat /var/TKLC/appw/logs/Process/install.log
```

Set the timezone using the following command. The following command example uses the America/New_York time zone. Replace as appropriate with the time zone you have selected for this installation. For UTC, use “Etc/UTC”, for a full list of valid timezones, see 4.7 Appendix L.

```bash
/usr/TKLC/appworks/bin/set_ini_tz.pl "Etc/UTC" >/dev/null 2>&1
```

Now reboot the server using the following command:

```bash
init 6
```
Procedure 17. Configure the SOAM Servers

8 □ SOAM Server: Verify Server Health

After the system reboots, login again as admusr and become the superuser.

Execute the following command as super-user on the server and make sure that no errors are returned:

```
syscheck
Running modules in class hardware... OK
Running modules in class disk... OK
Running modules in class net... OK
Running modules in class system... OK
Running modules in class proc... OK
LOG LOCATION: /var/TKLC/log/syscheck/fail_log
```

9 □ Insert and Configure the SOAM “B” server

Repeat this procedure to insert and configure the SOAM “B” server, with the exception of the NTP server, which should be configured as so:

<table>
<thead>
<tr>
<th>NTP Server</th>
<th>Preferred?</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;SO2-TVOE-XMI-IP-Address&gt;</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Instead of data for the “A” Server, insert the network data for the “B” server, transfer the TKLCConfigData file to the “B” server, and reboot the “B” server when prompted at a terminal window. Make sure to set the timezone as well.

10 □ (OPTIONAL) Insert and Configure the SOAM Spare Server

If your site has SOs in Active/Standby/Spare configuration such as PDRA, then repeat this procedure to insert and configure the SOAM spare server for this site.

Instead of data for the “A” Server, insert the network data for the spare server, use a preferred NTP server of SO-SPARE-XMI-IP-Address, transfer the TKLCConfigData file to the spare server, and reboot the spare server when prompted at a terminal window. Make sure to set the timezone as well.

11 □ (OPTIONAL) Install Netbackup Client Software on SOAMs

If you are using Netbackup at this site, then execute Procedure 13 again to install the Netbackup Client on all SOAM servers.

Procedure 18. Configure the SOAM Server Group

This procedure will provide the steps to configure the SOAM Server Group

Check off (✓) each step as it is completed. Boxes have been provided for this purpose under each step number.

IF THIS PROCEDURE FAILS, CONTACT TEKELEC TECHNICAL SERVICES AND ASK FOR ASSISTANCE.
Procedure 18. Configure the SOAM Server Group

1. Enter SOAM Server Group Data

   After a approximately 5 minutes for the SOAM “B” server to reboot, from the GUI session on the NOAMP VIP address, go to the GUI Main Menu->Configuration->Server Groups, select Insert and add the SOAM Server Group name along with the values for the following fields:
   - Name → [Enter Server Group Name]
   - Level → B
   - Parent → [Select the NOAMP Server Group]
   - Function: DSR (Active/Standby Pair)
   - WAN Replication Connection Count: Use Default Value

   Select “OK” when all fields are filled.

2. Edit the SOAM Server Group and add VIP

   From the GUI Main Menu->Configuration->Server Groups, select the new SOAM server group, and then select “Edit”.

<table>
<thead>
<tr>
<th>SO_900060102</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server</td>
</tr>
<tr>
<td>RMSSOA</td>
</tr>
<tr>
<td>RMSSOB</td>
</tr>
</tbody>
</table>

   Select the SOAM Server group and click on Edit.

   Add both SOAM servers to the Server Group by clicking the “Include in SG” checkbox.
   If you are adding a SOAM spare server to this server group, then click the “Include in SG” checkbox next to the spare server and also check the “Preferred Spare” checkbox.

   | Server | SG Inclusion | Preferred HA Role |
   |----------------|
   | HUBTONES-SO1 | Include in SG | Preferred Spare |

   Click Apply.

   Add a SOAM VIP by click on Add. Fill in the VIP Address and press Ok as shown below:

   VIP Address
   [Add]
   [Remove]
   [Ok] [Apply] [Cancel]

3. Wait for Replication

   After replication, which will initially take up to 5 minutes, the server status should be active (Main menu->Status & Manage->Replication). Note: This may take up to 5 minutes while the servers figure out master/slave relationship.
   Look for the alarm "Remote Database re-initialization in progress" to be cleared before proceeding. (Main menu->Alarms->View Active)
 Procedure 18. Configure the SOAM Server Group

4 Verify HA Role for 2nd SOAMP server
   In the Main menu->Status & Manage->HA menu, verify that the “Max Allowed HA Role” for the 2nd SOAMP server is “Active”.

   If it is not, press the Edit button and in the resulting screen, change the 2nd NOAMPs server’s “Max Allowed HA Role” to “Active” using the dropdown box.

   Hostname | Max Allowed HA Role
   HPC8NO | Active

   Press OK.

5 Restart 1st SOAM server
   From the NOAMP GUI, select the Main menu->Status & Manage->Server menu. Select the “A” SOAM server. Select the “Restart” button. Answer OK to the confirmation popup. Wait for restart to complete.

6 Restart 2nd SOAM server
   Continuing in the Main menu->Status & Manage->Server menu, now select the “B” SOAM server. Select the “Restart” button. Answer OK to the confirmation popup.

7 Restart Spare SOAM server if Present
   Continuing in the Main menu->Status & Manage->Server menu, now select the Spare SOAM server. Select the “Restart” button. Answer OK to the confirmation popup.

 Procedure 19. Post NOAMP & SOAM Setup Operations

STEP # This procedure details other operations that should happen once the NOAMP and all SOAM sites have been configured.

Check off (✓) each step as it is completed. Boxes have been provided for this purpose under each step number.

IF THIS PROCEDURE FAILS, CONTACT TEKELEC TECHNICAL SERVICES AND ASK FOR ASSISTANCE.

1 (PDRA Only) Activate PDRA Feature
   If you are installing PDRA, execute Procedure 4 of [10] to activate PDRA. NOTE: If not all SOAM sites are ready at this point, then you should repeat activation for each *new* SOAM site that comes online.
Procedure 19. Post NOAMP & SOAM Setup Operations

2. *(PDRA Only), Optional
   Define PSBR DB Replication Network

   (* NOTE: Execute this step only if you are defining a separate, dedicated network for PSBR Replication.)

   Navigate to **Main Menu -> Configuration -> Network**

   Click on **Insert** in the lower left corner.

   You will see the following screen, depending on your software version:

   **DSR 5.X:**
   
   **Insert Network**

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Name</td>
<td>XSNI</td>
<td>The name of this VLAN (Default: n/a, Range: AlphaNumeric, lengths up to 21 chars, starting with a letter)</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>5</td>
<td>This VLAN ID to use for this VLAN (Default: n/a, Range: 1-4094)</td>
</tr>
<tr>
<td>Network Address</td>
<td>10.240.71.128</td>
<td>The network address of this VLAN (Default: n/a, Range: 2048 IPv4 or IPv6 format)</td>
</tr>
<tr>
<td>Netmask</td>
<td>255.255.255.192</td>
<td>Subnetting to apply to servers within this VLAN (Default: n/a, Range: Valid Netmask for the network in point format (IPv4) or dotted decimal (IPv6) format)</td>
</tr>
</tbody>
</table>

   **DSR 6.X**

   **Insert Network**

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Name</td>
<td>XSNI</td>
<td>The name of this network (Default: n/a, Range: Alpha Numeric)</td>
</tr>
<tr>
<td>Network Element</td>
<td>Unassigned</td>
<td>The network element this network is a part of if not specified</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>5</td>
<td>The VLAN ID to use for this network (Default: n/a)</td>
</tr>
<tr>
<td>Network Address</td>
<td>10.71.88.0</td>
<td>The network address of this network (Default: n/a, Range: Valid Network in dotted decimal IPv4 format)</td>
</tr>
<tr>
<td>Netmask</td>
<td>255.255.255.0</td>
<td>Subnetting to apply to servers within this network (Default: n/a, Range: Valid Netmask in dotted decimal IPv4 format)</td>
</tr>
<tr>
<td>Router IP</td>
<td>10.71.88.3</td>
<td>The IP address of a router on this network. This is a default route on servers with interfaces on this network. If custom monitored.</td>
</tr>
<tr>
<td>Default Network</td>
<td>Yes</td>
<td>A selection indicating whether this network is routable</td>
</tr>
<tr>
<td>Routable</td>
<td>Yes</td>
<td>Whether or not this network is routable outside its network</td>
</tr>
</tbody>
</table>

   Enter the **Network Name**, **VLAN ID**, **Network Address**, **Netmask**, and **Router IP** *(6.X only)* that matches the PSBR DB Replication network

   (note: Even if the network does not use VLAN Tagging, you should enter the correct VLAN ID here as indicated by the NAPD)

   **DSR 6.X** only fields:

   - **IMPORTANT:** Leave the **Network Element** field as **Unassigned**.
   - Select **No** for **Default Network**
   - Select **Yes** for **Routable**.

   Press **Ok**, if you are finished adding signaling networks  -OR- Press **Apply** to save this signaling network and repeat this step to enter additional signaling networks.
Procedure 19. Post NOAMP & SOAM Setup Operations

Log Into Active NO GUI.

Navigate to **Main Menu → Configuration → Services**.

Select the “Edit” button and set the Services as shown in the table below:

<table>
<thead>
<tr>
<th>Name</th>
<th>Intra-NE Network</th>
<th>Inter-NE Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replication_MP</td>
<td>&lt;IMI Network&gt;</td>
<td>&lt;PSBR DB Replication Network&gt;*</td>
</tr>
<tr>
<td>ComAgent</td>
<td>&lt;IMI Network&gt;</td>
<td>&lt;PSBR DB Replication Network&gt;*</td>
</tr>
</tbody>
</table>

(*) It is recommended that dual-path HA heartbeats be enabled in support of geo-diverse PSBRs. This requires participating servers to be attached to at least two routable networks.

Select the “Ok” button to apply the Service-to-Network selections.
### Procedure 20. Configure the MP Blade Servers

<table>
<thead>
<tr>
<th>STEP #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This procedure will provide the steps to configure an MP Blade Server. Check off (✓) each step as it is completed. Boxes have been provided for this purpose under each step number. If this procedure fails, contact Tekelec Technical Services and ask for assistance.</td>
</tr>
<tr>
<td>1</td>
<td>Exchange SSH keys between MP site’s local PMAC and the MP server</td>
</tr>
<tr>
<td></td>
<td>Use the MP site’s PMAC GUI to determine the Control Network IP address of the blade server that is to be an MP server. From the MP site’s PMAC GUI, navigate to Main Menu → Software → Software Inventory. Note the IP address for an MP server. Login to the MP site’s PMAC terminal as the admusr. From a terminal window connection on the MP site’s PMAC as the admusr, exchange SSH keys for admusr between the PMAC and the MP blade server using the keyexchange utility, using the Control network IP address for the MP blade server. When prompted for the password, enter the password for the admusr user of the MP server. Key $ keyexchange admusr@&lt;MP blade Control Net IP addr&gt;</td>
</tr>
<tr>
<td>2</td>
<td>Establish GUI Session on the NOAMP VIP</td>
</tr>
<tr>
<td></td>
<td>If needed, establish a GUI session on the NOAMP by using the XMI VIP address. Login as user “guiadmin”.</td>
</tr>
</tbody>
</table>
Procedure 20. Configure the MP Blade Servers

3. Insert the MP server - Part 1

Navigate to Main Menu->Configuration->Servers

Select the “Insert” button to insert the new MP server into servers table. Fill out the following values:

Hostname:  <Hostname of the MP>
Role: MP
Network Element: [Choose Network Element]

Hardware Profile: Select the profile that matches your MP physical hardware and enclosure networking environment.
Note that you must go through the process of identifying the enclosure switches, mezzanine cards and Ethernet interfaces of the network prior and blade(s) used before selecting the profile.

<table>
<thead>
<tr>
<th>Profile Name</th>
<th>Blade Size</th>
<th>Multiple Pairs of Enc. Switches?</th>
<th>Bonded Signaling Interfaces?</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL460 HP c-Class Blade</td>
<td>Half</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>BL620 HP c-Class Blade</td>
<td>Full</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>L2D3 BL460 HP c-Class Blade</td>
<td>Half</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>L2D3 BL620 HP c-Class Blade</td>
<td>Full</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>L2D3 BL620 HP c-Class blade (Unbonded Sig)</td>
<td>Full</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>DSR TVOE Guest (Virtual)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

NOTE: If none of the above profiles properly describe your MP server blade, then you will have to create your own in a text editor (See 4.7 Appendix A) and copy it into the /var/TKLC/appworks/profiles/ directory of the active NOAMP server, the standby NOAMP server, and both the DR NOAM servers (if applicable). Then come back and repeat this step.

Location: <enter an optional location description>

The interface configuration form will now appear.

For the XMI network, enter the MP's XMI IP address. Select the correct bond or interface. If your XMI network uses VLAN tagging, then select the VLAN checkbox. If your XMI network does NOT use VLAN tagging, then do NOT select the vlan checkbox.

For the IMI network, enter the MP's IMI IP address. Select the proper bond or interface, and select the VLAN checkbox.
**Procedure 20. Configure the MP Blade Servers**

4. **Insert the MP server - Part 2**

   - Next, add the following NTP servers:

<table>
<thead>
<tr>
<th>NTP Server</th>
<th>Preferred?</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;SO1-TVOE-XMI-IP-Address&gt;</td>
<td>Yes</td>
</tr>
<tr>
<td>&lt;SO2-TVOE-XMI-IP-Address&gt;</td>
<td>No</td>
</tr>
<tr>
<td>&lt;Site-PM&amp;C-TVOE-Server-Mgmt-IP-Address&gt;</td>
<td>No</td>
</tr>
</tbody>
</table>

   Select “OK” when all fields are filled in to finish MP server insertion.

5. **Export the initial configuration**

   From the GUI screen, select the server that was just inserted and then select “Export” action button to generate the initial configuration data for that server.

6. **Log onto the MP iLO**

   Obtain a terminal window connection on the MP server iLO from the OA.

7. **Copy Configuration File to MP server**

   From a terminal window connection on the active NOAMP as the admusr, use the awpushcfg utility to copy the configuration file created in the previous step from the /var/TKL/C/db/filemgmt directory on the active NOAMP to the MP blade server, using the Control network IP address for the MP blade server. The configuration file will have a filename like TKLCConfigData.<hostname>.sh.

   $ awpushcfg

   The awpushcfg utility is interactive, so the user will be
   - prompted for the management IP address of the PMAC server at the site where the target blade is located,
   - the blade inventory will be presented,
   - prompted for the Control network IP address for the target server (in this case, the MP server),
   - prompted for the hostname of the target server,
   - Note: If prompted for a username, please use admusr

   The automatic configuration daemon will look for the file named “TKLCConfigData.sh” in the /var/tmp directory, implement the configuration in the file, and then prompt the user to reboot the server.
### Procedure 20. Configure the MP Blade Servers

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>From the MP server iLO terminal login as <strong>admusr</strong>.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Become the super user by using the command:</td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>sudo su</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td>You should see the prompt change to the hash mark:</td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>#</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wait for the message to reboot the server.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verify awpushcfg was called by checking the following file</td>
</tr>
<tr>
<td></td>
<td></td>
<td><code># cat /var/TKLC/appw/logs/Process/install.log</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Set the timezone using the following command. The following command example uses the America/New_York time zone. Replace as appropriate with the time zone you have selected for this installation. For UTC, use “Etc/UTC”, for a full list of valid time zones, see 4.7 Appendix L.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>#/usr/TKLC/appworks/bin/set_ini_tz.pl &quot;Etc/UTC&quot; &gt;/dev/null 2&gt;&amp;1</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Use “init 6” in the terminal window to reboot the server.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><code># init 6</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Proceed to the next step once the Server finished rebooting, The server is done rebooting once the login prompt is displayed.</td>
</tr>
</tbody>
</table>

		After the reboot, login as admusr again and become the superuser.
		Execute the following command as super-user on the server and make sure that no errors are returned:
		`# syscheck`
		Running modules in class hardware... OK
		Running modules in class disk... OK
		Running modules in class net... OK
		Running modules in class system... OK
		Running modules in class proc... OK
		LOG LOCATION: /var/TKLC/log/syscheck/fail_log
10 (OPTIONAL) Delete Auto-Configured Default Route on MP and Replace it with a Network Route via the XMI Network

**NOTE: THIS STEP IS OPTIONAL AND SHOULD ONLY BE EXECUTED IF YOU PLAN TO CONFIGURE A DEFAULT ROUTE ON YOUR MP THAT USES A SIGNALING (XSI) NETWORK INSTEAD OF THE XMI NETWORK. (Not executing this step will mean that a default route will not be configurable on this MP and you will have to create separate network routes for each signaling network destination.)

Using the iLO facility, log into the MP as the admusr user. (Alternatively, you can log into the site’s PMAC then SSH to the MP’s control address.)

Become the super user by using the command:

```
$ sudo su
```

Determine `<XMI_Gateway_IP>` from your SO site network element info. Gather `<NO_XMI_Network_Address>,<NO_XMI_Network_Netmask>`;
`<DR_NO_XMI_Network_Address>,<DR_NO_XMI_Network_Netmask>` from your NO and DR NO site network element info. You can either consult the XML files you imported earlier, or go to the NO GUI and view these values from the Main Menu > Configuration > Network Elements screen.

**Note:** If your NO XMI network is exactly the same as your MP XMI network, then you should skip this command and only configure the DR NO route.

**[MP console]** Create network routes to the NO’s XMI(OAM) network:

```
netadm add --route=net --address=<NO_XMI_Network_Address> --netmask=<NO_XMI_Network_Netmask> --gateway=<XMI_Gateway_IP> --device=<MP_XMI_Interface>
```

Route to `<MP_XMI_Interface>` added.

**[MP console]** Create network routes to the DR NO’s XMI(OAM) network:

```
netadm add --route=net --address=<DR_NO_XMI_Network_Address> --netmask=<DR_NO_XMI_Network_Netmask> --gateway=<XMI_Gateway_IP> --device=<MP_XMI_Interface>
```

Route to `<MP_XMI_Interface>` added.

(Optional) **[MP console]** If Sending SNMP traps from individual servers, create host routes to customer SNMP trap destinations on the XMI network:

```
netadm add --route=host --address=<Customer_NMS_IP> --gateway=<XMI_Gateway_IP> --device=<MP_XMI_Interface>
```

Route to `<MP_XMI_Interface>` added.

(Repeat for any existing customer NMS stations)

Delete the existing default route:

```
netadm delete --route=default --gateway=<MP_XMI_Gateway_IP> --device=<MP_XMI_Interface>
```

Route to `<MP_XMI_Interface>` removed.
## Procedure 20. Configure the MP Blade Servers

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>(OPTIONAL, Continued from Previous Step) Delete Auto-Configured Default Route on MP and Replace it with a Network Route via the XMI Network</td>
</tr>
<tr>
<td></td>
<td>[MP Console] Ping active NO XMI IP address to verify connectivity:</td>
</tr>
<tr>
<td></td>
<td><code># ping &lt;ACTIVE_NO_XMI_IP_Address&gt;</code></td>
</tr>
<tr>
<td></td>
<td>PING 10.240.108.6 (10.240.108.6) 56(84) bytes of data.</td>
</tr>
<tr>
<td></td>
<td>64 bytes from 10.240.108.6: icmp_seq=1 ttl=64 time=0.342 ms</td>
</tr>
<tr>
<td></td>
<td>64 bytes from 10.240.108.6: icmp_seq=2 ttl=64 time=0.247 ms</td>
</tr>
<tr>
<td></td>
<td>(Optional) [MP Console] Ping Customer NMS Station(s):</td>
</tr>
<tr>
<td></td>
<td><code># ping &lt;Customer_NMS_IP&gt;</code></td>
</tr>
<tr>
<td></td>
<td>PING 172.4.116.8 (172.4.116.8) 56(84) bytes of data.</td>
</tr>
<tr>
<td></td>
<td>64 bytes from 172.4.116.8: icmp_seq=1 ttl=64 time=0.342 ms</td>
</tr>
<tr>
<td></td>
<td>64 bytes from 172.4.116.8: icmp_seq=2 ttl=64 time=0.247 ms</td>
</tr>
<tr>
<td></td>
<td>If you do not get a response, then verify your network configuration. If you continue to get failures then halt the installation and contact Oracle customer support.</td>
</tr>
<tr>
<td>12</td>
<td>Repeat for remaining MP at all sites</td>
</tr>
<tr>
<td></td>
<td>Repeat this entire procedure for all remaining MP blades at all sites.</td>
</tr>
</tbody>
</table>
### Procedure 21. Configure Places and Assign MP Servers to Places (PDRA Installations ONLY)

<table>
<thead>
<tr>
<th>STEP #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>1</strong></td>
<td><strong>(PDRA Only)</strong> &lt;br&gt;NOAMP VIP: &lt;br&gt;Configure Places  &lt;br&gt;Establish a GUI session on the NOAMP by using the XMI VIP address. Login as user “guiadmin”. &lt;br&gt;Navigate to <strong>Main Menu -&gt; Configuration -&gt; Places</strong> Screen.  &lt;br&gt;Inserting a new Place  &lt;br&gt;Place Name: Choose the site NAME  &lt;br&gt;Parent: Choose “NONE”  &lt;br&gt;Place Type: Choose “Site”  &lt;br&gt;Repeat this step for all Places you wish to define.</td>
</tr>
<tr>
<td><strong>2</strong></td>
<td><strong>(PDRA Only)</strong> &lt;br&gt;NOAMP VIP: &lt;br&gt;Configure Place Associations  &lt;br&gt;Click on <strong>Insert</strong> in the lower left corner and enter the information to create the place association for mated pairs, click Ok.  &lt;br&gt;Place Association Name: <strong>Enter Association Name</strong>  &lt;br&gt;Place Association Type: <strong>Policy DRA Mated Sites</strong>  &lt;br&gt;Places: Click on the list of Places you wish to define under this Place Association.  &lt;br&gt;Repeat this step for all place associations you wish to define.</td>
</tr>
</tbody>
</table>
Procedure 21. Configure Places and Assign MP Servers to Places (PDRA Installations ONLY)

<table>
<thead>
<tr>
<th>Step</th>
<th>(PDRA Only) NOAMP VIP: Assign MP Servers To Places</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>For each place you have defined, choose the set of MP servers that will be assigned to those places.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Check all the check boxes for PDRA and pSBR servers that will be assigned to this place.</td>
</tr>
<tr>
<td></td>
<td>Repeat this step for all other PDRA or pSBR servers you wish to assign to places.</td>
</tr>
</tbody>
</table>

Procedure 22. Configure the MP Server Group(s) and Profiles

<table>
<thead>
<tr>
<th>Step</th>
<th>This procedure will provide the steps to configure MP Server Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Check off (✓) each step as it is completed. Boxes have been provided for this purpose under each step number.</td>
</tr>
<tr>
<td></td>
<td>IF THIS PROCEDURE FAILS, CONTACT TEKELEC TECHNICAL SERVICES AND ASK FOR ASSISTANCE.</td>
</tr>
</tbody>
</table>
Procedure 22. Configure the MP Server Group(s) and Profiles

<table>
<thead>
<tr>
<th>Step</th>
<th>Task</th>
<th>Details</th>
</tr>
</thead>
</table>
| 1. | Enter MP Server Group Data | From the GUI session on the NOAMP VIP address, go to the GUI Main Menu→Configuration→Server Groups, select Insert and fill out the following fields:  
Server Group Name: [Server Group Name]  
Level: C  
Parent: [Select the SOAMP Server Group That is Parent To this MP]  
Function: Select the Proper Function for this MP Server Group: |
| | | ![Table](https://via.placeholder.com/75/555/555) | | |
| | | **Server Group Function** | **MPs Will Run** | **Redundancy Model** |
| | | DSR (multi-active cluster) | Diameter Relay and Application Services | Multiple MPs active Per SG |
| | | DSR (active-standby pair) | Diameter Relay and Application Services | 1 Active MP and 1 Standby MP / Per SG |
| | | Session Binding Repository | Session Binding Repository Function | 1 Active MP and 1 Standby MP / Per SG |
| | | IP Load Balancer | IPFE application | 1 Active MP Per SG |
| | | Policy SBR | Policy Session and/or Policy Binding Function | 1 Active MP Per SG |
| | | SS7-IWF | MAP IWF Application | 1 Active MP Per SG |
| | WAN Replication Connection Count: |  
- For non-Policy SBR Server Groups: Use Default Value.  
- For Policy SBR Server Groups: 8.  
Select OK when all fields are filled in. |
| 2. | Repeat For Additional Server Groups | Repeat Step 1 for any remaining MP server groups you wish to create. For instance, if you are installing IPFE, you will need to create an IP Load Balancer server group. If you are installing the CPA, you will need a Session Binding Repository server group. For PDRA, you will need at least one Policy SBR server group. |
Procedure 22. Configure the MP Server Group(s) and Profiles

3  Edit the MP Server Groups to include MP blades.

   From the GUI Main Menu->Configuration->Server Groups, select a server group that you just created and then select Edit.

Select the Network Element that represents the MP server group you wish to edit.

Click the “Include in SG” box for every MP server that you wish to include in this server group. Leave other checkboxes blank.

<table>
<thead>
<tr>
<th>Server Group</th>
<th>SG Inclusion</th>
<th>Preferred HA Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP-1</td>
<td>Include in SG</td>
<td></td>
</tr>
<tr>
<td>MP-2</td>
<td>Include in SG</td>
<td></td>
</tr>
</tbody>
</table>

Select Ok.

Repeat for any remaining MP server groups until all MPs have been assigned to a server group.

4  Wait for Replication to complete on all MP blades

   Browse to Main menu->Status&Manage->Server.

Identify all the MP servers in the Server Name column. Now, wait for the corresponding DB and Reporting Status columns of those MPs to say “Norm”. This may take up to 5 or 10 minutes.

<table>
<thead>
<tr>
<th>Server Name</th>
<th>Appl State</th>
<th>Alm</th>
<th>DB</th>
<th>Reporting Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPC6-N0</td>
<td>Enabled</td>
<td>Norm</td>
<td>Norm</td>
<td>Norm</td>
</tr>
<tr>
<td>HPC6-SG</td>
<td>Enabled</td>
<td>Warn</td>
<td>Norm</td>
<td>Norm</td>
</tr>
<tr>
<td>HPC6-MP2</td>
<td>Enabled</td>
<td>Warn</td>
<td>Norm</td>
<td>Norm</td>
</tr>
<tr>
<td>HPC6-MP1</td>
<td>Enabled</td>
<td>Warn</td>
<td>Norm</td>
<td>Norm</td>
</tr>
</tbody>
</table>

5  Wait for Remote Database Alarm to Clear

   Wait for the alarm "10200: Remote Database re-initialization in progress" to be cleared. (Main menu->Alarms & Events->Active Alarms)

This should happen shortly after you have verified the “Norm” DB status in the previous step.
Procedure 22. Configure the MP Server Group(s) and Profiles

1. Log onto the GUI of the active SOAM server.
2. From the SO GUI, select MainMenu->Diameter->Configuration->DA-MPs->Profiles Assignments

Refer to the DA-MP section. (If the site has both DSR and MAP-IWF server groups, you will see both a DA-MP section and an SS7-MP section)

For each MP, select the proper profile assignment based on the MP’s hardware type and the function it will serve:

<table>
<thead>
<tr>
<th>Profile Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G6:Relay</td>
<td>G6 DA-MP half height blade running relay application</td>
</tr>
<tr>
<td>G6:Database</td>
<td>G6 DA-MP half height blade running a database application (e.g. FABR, RBAR)</td>
</tr>
<tr>
<td>G6:Session</td>
<td>G6 DA-MP half height blade running a session application (e.g. CPA, PDRA)</td>
</tr>
<tr>
<td>G8:Relay</td>
<td>G8 DA-MP half height blade running the relay application</td>
</tr>
<tr>
<td>G8:Database</td>
<td>G8 DA-MP half height blade running a database application (e.g. FABR, RBAR)</td>
</tr>
<tr>
<td>G8:Session</td>
<td>G8 DA-MP half height blade running a session application (e.g. CPA, PDRA)</td>
</tr>
<tr>
<td>G7:Relay</td>
<td>G7 DA-MP Full height blade running the relay application</td>
</tr>
<tr>
<td>G7:Database</td>
<td>G7 DA-MP Full height blade running a database application (e.g. FABR, RBAR)</td>
</tr>
<tr>
<td>G7:Session</td>
<td>G7 DA-MP Full height blade running a session application (e.g. CPA, PDRA)</td>
</tr>
</tbody>
</table>

Note: If the DA-MPs at this site are configured for Active/Standby then there will be a single selection box visible that assigns profiles for all MPs.

When finished, press the Assign button.
Procedure 22. Configure the MP Server Group(s) and Profiles

7  Assign Profiles to SS7-MPs from SOAM GUI

Log onto the GUI of the active SOAM server.

From the SO GUI, select MainMenu->Diameter->Configuration->DA-MPs->Profiles Assignments

Refer to the SS7-MP section. (If the site has both DSR and MAP-IWF server groups, you will see both a DA-MP section and an SS7-MP section)

For each SS7 MP, select the proper profile assignment based on the SS7 MP’s hardware type and the function it will serve:

<table>
<thead>
<tr>
<th>Profile Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G8:MD-IWF</td>
<td>HP BL460 Gen8 Running MAP-IWF functions</td>
</tr>
</tbody>
</table>

When finished, press the Assign button

8  Update DpiOption table from the active SOAM

Log on to the active SOAM console as admusr via the XMI address or iLO.

Execute the following command (advise cut and paste to prevent errors):

```
$ sudo iset -fvalue="50" DpiOption where "name='MpEngIngressMpsPercentile'"

=== changed 1 records ===
```

9  Restart MP blade servers

From the NOAMP GUI, select the Main menu->Status & Manage->Server menu

For each MP server:

- Select the MP server.
- Select the Restart button.
- Answer OK to the confirmation popup. Wait for the message which tells you that the restart was successful.

PDRA INSTALLATIONS: You may continue to see alarms related to ComAgent until you complete PDRA installation by finishing Procedure 29.
## 4.6 Signaling Network Configuration

**Procedure 23. Configure the Signaling Networks**

<table>
<thead>
<tr>
<th>STEP</th>
<th>Description</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Establish GUI Session on the NOAMP VIP</td>
<td>Establish a GUI session on the NOAMP by using the XMI VIP address. Login as user “guiadmin”.</td>
</tr>
<tr>
<td>2.</td>
<td>NOAMP VIP: Navigate to Signaling Network Configuration Screen</td>
<td>Navigate to <strong>Main Menu --&gt; Configuration --&gt; Network</strong>&lt;br&gt;Click on <strong>Insert</strong> in the lower left corner.</td>
</tr>
</tbody>
</table>
Procedure 23. Configure the Signaling Networks

You will see the following screen, depending on your software version:

**DSR 5.X:**

**Insert Network**

**Field**	**Value**	**Description**
Network Name | XSI1 | The name of this VLAN. (Default = N/A, Range = Alpha numeric string up to 20 chars, starting with letter)
VLAN ID | 5 | The VLAN ID to use for this VLAN. (Default = network-dependent, Range 4-4094, VLAN ID-assigned for Management, MME, and MTC)
Network Address | 10.242.71.128 | The network address of this VLAN. (Default = N/A, Range = valid network address in dotted decimal IPv4 or colon hex IPv6 format)
Netmask | 255.255.255.192 | Subnetting to apply to servers within this VLAN. (Default = N/A, Range = valid netmask for the network in prefix length (IPv4) or dotted decimal (IPv6) format)

**DSR 6.X:**

**Insert Network**

**Field**	**Value**	**Description**
Network Name | XSI1 | The name of this VLAN. (Default = N/A, Range = Alpha numeric string up to 20 chars, starting with letter)
Network Element | - Unassigned - | The network element this network is a part of if not specified
VLAN ID | 5 | The VLAN ID to use for this network. (Default = N/A, Range 4-4094, VLAN ID-assigned for Management, MME, and MTC)
Network Address | 10.71.88.0 | The network address of this network. (Default = N/A, Range = valid network address in IPv4 or colon hex IPv6 format)
Netmask | 255.255.255.0 | Subnetting to apply to servers within this network. (Default = N/A, Range = valid netmask for the network in prefix length (IPv4) or dotted decimal (IPv6) format)
Router IP | 10.71.88.3 | The IP address of a router on this network. If this is a default route on servers with interfaces on this network, it will automatically be learned.
Default Network | Yes | A selection indicating whether this network contains a default route
Routable | Yes | Whether or not this network is routable outside its network. If routable, all network elements may be present in all networks.

Enter the **Network Name**, **VLAN ID**, **Network Address**, **Netmask**, and **Router IP** (6.X only) that matches the Signaling network.

(note: Even if the network does not use VLAN Tagging, you should enter the correct VLAN ID here as indicated by the NAPD)

**DSR 6.X** only fields:

- **IMPORTANT:** Leave the **Network Element** field as **Unassigned**.
- Select **No** for **Default Network**
- Select **Yes** for **Routable**.

Press **Ok**, if you are finished adding signaling networks. **-OR-**

Press **Apply** to save this signaling network and repeat this step to enter additional signaling networks.
Procedure 24. Configure the Signaling Devices

This procedure will provide the steps to configure the Signaling Devices.

Note: The site specific HW configuration will affect which steps need to be executed.

<table>
<thead>
<tr>
<th>Possible Execution Scenarios</th>
<th>Questions:</th>
<th>How many pairs of switches are in the enclosure?</th>
<th>Will the MP use a bonded interface?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>Single</td>
<td>N/A</td>
<td>Yes</td>
</tr>
<tr>
<td>Multiple</td>
<td>Multiple</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Check off (✓) each step as it is completed. Boxes have been provided for this purpose under each step number.

IF THIS PROCEDURE FAILS, CONTACT TEKELEC TECHNICAL SERVICES AND ASK FOR ASSISTANCE.

1. **NOTE:** You will only execute this step if you are using unbonded, non-VLAN tagged ethernet interfaces for signaling traffic.

**NOTE:** If this MP will be an IPFE server, then ensure `ipfeNetUpdate.sh` from [13] has been executed before proceeding with this step.

- Login as root to the NOAMP VIP console.

- Navigate to **Main Menu --> Configuration --> Network --> Devices**

- You should see several tabs each representing a blade in the system. Click on the tab representing the first MP Blade.

- You should see a list of network devices installed on the MP.

- Select all ethernet devices that will be used as unbonded signaling interfaces *and* have “Discovered” as their Configuration Status. Next, press the **Take Ownership** button.

- After a brief moment, the selected devices should now show a Configuration Status of “Configured”.

```
eth02 eth000000.000000.000000.000000 0000 0000 0000 0000 0000 0000 0000 0000
eth01 eth000000.000000.000000.000000 0000 0000 0000 0000 0000 0000 0000 0000
bond0 bond0
bond0 bond0 bond0 bond0 bond0 bond0 bond0 bond0 bond0 bond0 bond0 bond0
bond0 bond0 bond0 bond0 bond0 bond0 bond0 bond0 bond0 bond0 bond0 bond0
bond0 bond0 bond0 bond0 bond0 bond0 bond0 bond0 bond0 bond0 bond0 bond0
```

Check off (✓) each step as it is completed. Boxes have been provided for this purpose under each step number.

IF THIS PROCEDURE FAILS, CONTACT TEKELEC TECHNICAL SERVICES AND ASK FOR ASSISTANCE.
Procedure 24. Configure the Signaling Devices

Navigate to **Main Menu -> Configuration -> Network -> Devices**

You should see several tabs each representing a blade in the system. Click on the tab representing the first MP Blade.

Main Menu: Configuration -> Network -> Devices

<table>
<thead>
<tr>
<th>Device Name</th>
<th>Device Type</th>
<th>Device Options</th>
<th>IP Inter</th>
</tr>
</thead>
<tbody>
<tr>
<td>bond0</td>
<td>Bonding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bond0.3</td>
<td>Vlan</td>
<td>onboot = yes</td>
<td>10.242</td>
</tr>
<tr>
<td>bond0.4</td>
<td>Vlan</td>
<td>onboot = yes</td>
<td>10.242</td>
</tr>
<tr>
<td>eth01</td>
<td>Ethernet</td>
<td>onboot = yes</td>
<td></td>
</tr>
</tbody>
</table>

Refer to the following table to determine which steps to execute next based on the number of enclosure switch pairs and whether Bonded Interfaces are used:

<table>
<thead>
<tr>
<th>Nb of Enclosure Switch Pairs</th>
<th>Bonded Interface</th>
<th>Steps to Execute</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N/A</td>
<td>3 and 6</td>
</tr>
<tr>
<td>2 or 3</td>
<td>Yes</td>
<td>4 and 6</td>
</tr>
<tr>
<td>2 or 3</td>
<td>No</td>
<td>5 and 6</td>
</tr>
</tbody>
</table>

NOAMP VIP: Configure the Signaling Interfaces of the first MP

Navigate to **Main Menu -> Configuration -> Network -> Devices**

You should see several tabs each representing a blade in the system. Click on the tab representing the first MP Blade.

Main Menu: Configuration -> Network -> Devices

<table>
<thead>
<tr>
<th>Device Name</th>
<th>Device Type</th>
<th>Device Options</th>
<th>IP Inter</th>
</tr>
</thead>
<tbody>
<tr>
<td>bond0</td>
<td>Bonding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bond0.3</td>
<td>Vlan</td>
<td>onboot = yes</td>
<td>10.242</td>
</tr>
<tr>
<td>bond0.4</td>
<td>Vlan</td>
<td>onboot = yes</td>
<td>10.242</td>
</tr>
<tr>
<td>eth01</td>
<td>Ethernet</td>
<td>onboot = yes</td>
<td></td>
</tr>
</tbody>
</table>

Refer to the following table to determine which steps to execute next based on the number of enclosure switch pairs and whether Bonded Interfaces are used:

<table>
<thead>
<tr>
<th>Nb of Enclosure Switch Pairs</th>
<th>Bonded Interface</th>
<th>Steps to Execute</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N/A</td>
<td>3 and 6</td>
</tr>
<tr>
<td>2 or 3</td>
<td>Yes</td>
<td>4 and 6</td>
</tr>
<tr>
<td>2 or 3</td>
<td>No</td>
<td>5 and 6</td>
</tr>
</tbody>
</table>
Procedure 24. Configure the Signaling Devices

3. NOAMP VIP: Configure the Signaling Interfaces of the MP (1 pair of enclosure switches)

Click on **Insert**. The following screen should be displayed. Verify that the blade name on the top corresponds to the MP.

**Insert Device on blade09**

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Type</td>
<td>Ethernet</td>
<td>Select the device type. (Default = VLAN)</td>
</tr>
<tr>
<td>Monitoring</td>
<td>VLAN</td>
<td>Choose a monitoring style to use with a bonded device. Disabled for non-bonded devices. (Default = N/A)</td>
</tr>
<tr>
<td>Start On Boot</td>
<td>Enable</td>
<td>Start the device, and also start on boot. (Default = enabled)</td>
</tr>
<tr>
<td>Boot Protocol</td>
<td>None</td>
<td>Select the boot protocol. (Default = None; Range = [None, DHCP])</td>
</tr>
<tr>
<td>Base Device</td>
<td>bond0</td>
<td>Select the base device(s). VLAN and Alias device require a single base device and bond devices require two base devices. (Default = None)</td>
</tr>
<tr>
<td></td>
<td>bond0, bond0, bond0</td>
<td></td>
</tr>
</tbody>
</table>

For **Device Type**, select **VLAN**.

For **Start on Boot**, verify that the checkbox is selected.

For **Boot Protocol**, verify that it is set to **None**.

For **Base Device**, select **bond0**.

Now click on the **IP Interfaces** tab as shown below.

**Insert Device on blade09**

Now click on **Add Row**, the following will be displayed:

**IP Address List:**

Select the first Signaling Network from the drop down menu.

If configuring an IPv4, then enter the IPv4 address.

If configuring an IPv6 address and IPv6 auto-configuration is enabled on your signaling network, and the MPs are in active/standby configuration, then there’s no need to enter an IP address, it will be assigned automatically.

If configuring an IPv6 address and IPv6 auto-configured is disabled, or the MPs are in multi-active mode:

- If an IPv4 already exists, click on “Add Row” and enter the IPv6 address.
- If an IPv4 doesn’t exist, simply enter the IPv6 address.

Click on **Ok** at the bottom of the screen.

To add additional Signaling Interfaces, click on **Insert** again and repeat this step, otherwise continue with the next step.

Skip the next 2 steps and continue to step 6.
Procedure 24. Configure the Signaling Devices

4 NOAMP VIP: Configure the Signaling Interfaces of the MP (multiple pairs of enclosure switches with bonded interfaces)

Click on Insert. The following screen should be displayed. Verify that the blade name on the top corresponds to the MP.

For Device Type, select Bonding.
For Device Monitoring, select MII.
For Start on Boot, verify that the checkbox is selected.
For Boot Protocol, verify that it is set to None
For Base Device, select the ports that correspond to the signaling enclosure switches. (e.g. if the signaling switches are in Slots 3 and 4, you would select eth11 and eth12)

Click on Ok at the bottom of the screen.

Next click Insert again. The same screen as above with appear, select the following:

For Device Type, select VLAN.
For Start on Boot, verify that the checkbox is selected.
For Boot Protocol, verify that it is set to None
For Base Device, select bond1.

Now Click on the IP Interfaces tab as shown below.

Now Click on Add Row, the following will be displayed

Select the first Signaling Network from the drop down menu.
Enter the IP address that corresponds to the IPv4 or IPv6 interface.
**Procedure 24. Configure the Signaling Devices**

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Click on <strong>Ok</strong> at the bottom of the screen.</strong></td>
<td></td>
</tr>
<tr>
<td><strong>To add additional Signaling Interfaces, click on Insert again and repeat this step, otherwise continue with the next step.</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Skip the next step and continue to step 5</strong></td>
<td></td>
</tr>
</tbody>
</table>

**NOAMP VIP:** Configure the Signaling Interfaces of the MP (multiple pairs of enclosure switches without bonded interfaces)

Select the appropriate ethernet interface and click on **Edit**.

The following screen should be displayed. Verify that the blade name on the top corresponds to the MP.
### Procedure 24. Configure the Signaling Devices

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
</table>
| 24   | Configure the Signaling Devices For “Start on Boot”, verify that the checkbox is selected. For “Boot Protocol”, verify that “None” is selected. Now, click on the **IP Interfaces** tab as shown below.  

**Insert Device on blade09**

[Image of IP Interfaces tab]

Now, click on **Add Row**, the following will be displayed:

[Image of IP Address List]

Select the first Signaling Network from the drop down menu. Enter the IP address that corresponds to the IPv4 or IPv6 interface. Click on **Ok** at the bottom of the screen.

Now, repeat this step to configure the second signaling interface (eth22). Skip the next step and continue to step 6. |

6 | NOAMP VIP:  
Configure the Interfaces of the other MPs.  
Repeat this procedure to configure the signaling devices of all other MPs. |
Procedure 25. Configure DSCP Values for Outgoing Traffic (Optional)

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1    | Establish GUI Session on the NOAMP VIP  
      | Establish a GUI session on the NOAMP by using the XMI VIP address. Login as user “guiadmin”. |
Procedure 25. Configure DSCP Values for Outgoing Traffic (Optional)

<table>
<thead>
<tr>
<th>2</th>
<th>NOAMP VIP:</th>
<th>Option 1: Configure Interface DSCP</th>
</tr>
</thead>
</table>

Note: The values displayed in the screenshots are for demonstration purposes only. The exact DSCP values for your site will vary.

Navigate to **Main Menu -> Configuration -> DSCP -> Interface DSCP**

Select the server you wish to configure from the list of servers on the 2nd line. (You can view all servers with "Entire Network" selected; or limit yourself to a particular server group by clicking on that server group name's tab).

Click **Insert**

**Main Menu: Configuration -> DSCP -> Interface DSCP**

Select the network interface from the drop down box, then enter the DSCP value you wish to have applied to packets leaving this interface.

**Main Menu: [Insertdscpbyintf]**

**Insert DSCP by Interface on FZTEST-MP1**

Click **OK** if there are no more interfaces on this server to configure, or **Apply** to finish this interface and continue on with more interfaces by selecting them from the drop down and entering their DSCP values.
### Procedure 25. Configure DSCP Values for Outgoing Traffic (Optional)

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
</table>
| 3    | **NOAMP VIP:** Option 2: Configure Port DSCP  

Note: The values displayed in the screenshots are for demonstration purposes only. The exact DSCP values for your site will vary.  

Navigate to **Main Menu -> Configuration -> DSCP -> Port DSCP**

Select the server you wish to configure from the list of servers on the 2nd line. (You can view all servers with “Entire Network” selected; or limit yourself to a particular server group by clicking on that server group name's tab).

Click **Insert**

**Main Menu: Configuration -> DSCP -> Port DSCP**

Enter the source port, DSCP value, and select the transport protocol.

Click **OK** if there are no more port DSCPs on this server to configure, or **Apply** to finish this port entry and continue entering more port DSCP mappings.

| 4    | **Repeat for additional servers.**  

Repeat Step 2-3 for all remaining servers. |
### Procedure 26. Configure the Signaling Network Routes

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Establish GUI Session on the NOAMP VIP</td>
</tr>
<tr>
<td>2</td>
<td>NOAMP VIP: Navigate to Routes Configuration Screen</td>
</tr>
<tr>
<td>3</td>
<td>NOAMP VIP: Add Route</td>
</tr>
</tbody>
</table>

This procedure will provide the steps to configure Signaling Network Routes on MP-type servers (DA-MP, IPFE, SS7-MP, etc).

Check off (✓) each step as it is completed. Boxes have been provided for this purpose under each step number.

If this procedure fails, contact Tekelec Technical Services and ask for assistance.

1. Establish GUI Session on the NOAMP VIP
   - Establish a GUI session on the NOAMP by using the XMI VIP address. Login as user “guiadmin”.

2. NOAMP VIP: Navigate to Routes Configuration Screen
   - Navigate to **Main Menu -> Configuration -> Network -> Routes**
   - Select the first MP Server you see listed on the first row of tabs as shown, then click the “Entire Server Group” link. Initially, no routes should be displayed.

3. NOAMP VIP: Add Route
   - Click on **Insert** at the bottom of the screen to add additional routes.
Procedure 26. Configure the Signaling Network Routes

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 NOAMP VIP: (Optional) Add Default Route for MPs Going Through Signaling Network Gateway</td>
<td>***OPTIONAL - Only execute this step if you performed Procedure 20, Step #10 -- which removed the XMI gateway default route on MPs *** If your MP servers no longer have a default route, then you can now insert a default route here which uses one of the signaling network gateways. For <strong>Route Type</strong> Select Default, for <strong>Device</strong> select the signaling device that is directly attached to the network where the XSI default gateway resides. For <strong>Gateway IP</strong> enter the XSI gateway you wish to use for default signaling network access. Press <strong>Ok</strong>.</td>
</tr>
</tbody>
</table>
Procedure 26. Configure the Signaling Network Routes

| 5 | NOAMP VIP: Add Network Routes for Diameter Peers |

Use this step to add IP and/or IPv6 routes to diameter peer destination networks. The goal here is to ensure that diameter traffic uses the gateway(s) on the signaling networks.

For **Route Type** Select **Net**, for **Device** select the appropriate signaling interface that will be used to connect to that network, For **Destination** enter the Network ID of Network to which the peer node is connected to. For **Netmask** enter the corresponding Netmask. For **Gateway IP** enter the Int-XSI switch VIP of the chosen Network for L3 deployments (either of int-XSI-1 or of int-XSI2), or the IP of the customer gateway for L2 deployments.

If you have more routes to enter, Press **Apply** to save the current route entry and repeat this step to enter more routes.

If you are finished entering routes, Press **OK** to save the latest route and leave this screen.

If **aggregation switches are used**, routes should be configured on the aggregation switches so that the destination networks configured in this step are reachable. This can be done by running the following netconfig commands from the site’s local PMAC (examples shown -- actual values will vary):

**Add Routes (IPv4 & IPv6):**

```bash
$ sudo netConfig --device=switch1A addRoute network=10.10.10.0 mask=255.255.255.0 nexthop=10.250.76.81
```

```bash
$ sudo netConfig --device=switch1A addRoute network6=2001::/64 nexthop=fd0f::1
```

**Delete Routes (IPv4 & IPv6):**

```bash
$ sudo netConfig --device=switch1A deleteRoute network=10.10.10.0 mask=255.255.255.0 nexthop=10.250.76.81
```

```bash
$ sudo netConfig --device=switch1A deleteRoute network6=2001::/64 nexthop=fd0f::1
```

After the routes are added via netconfig, a netconfig backup should be taken so that the new routes are retained in the backup.
### Procedure 26. Configure the Signaling Network Routes

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Repeat steps 2-5 for all other MP server groups. The routes entered in this procedure should now be configured on <em>all</em> MPs in the server group for the first MP you selected. If you have additional MP server groups, repeat from 2, but this time, select an MP from the next MP server group. Continue until you have covered all MP server groups.</td>
</tr>
</tbody>
</table>

### Procedure 27. Add VIP for Signaling Networks (Active/Standby Configurations ONLY)

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1    | **Edit the MP Server Group and add VIPs (ONLY FOR 1+1)**  

This procedure will provide the steps to configure the VIPs for the signaling networks on the MPs. Check off (✓) each step as it is completed. Boxes have been provided for this purpose under each step number.  

IF THIS PROCEDURE FAILS, CONTACT TEKELEC TECHNICAL SERVICES AND ASK FOR ASSISTANCE.  

**IF YOUR MPS ARE IN A DSR MULTI-ACTIVE CLUSTER SERVER GROUP (N+0), THEN SKIP THIS STEP**

From the GUI Main Menu->Configuration->Server Groups, select the MP server group, and then select **Edit**.

Click on **Add** to add the VIP for XSI1  
Enter the VIP of int-XSI-1 and click on **Apply**.  
Click on **Add** again to add the VIP for XSI2  
Enter the VIP of int-XSI-2 and click on **Apply**.  
If more Signaling networks exist, add their corresponding VIP addresses. Finally Click on **Ok**.

<table>
<thead>
<tr>
<th>VIP Address</th>
<th>Add</th>
<th>Remove</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Ok, Apply, Cancel**
**Procedure 28. Configure SNMP Trap Receiver(s) (OPTIONAL)**

This procedure will provide the steps to configure forwarding of SNMP Traps from each individual server.

Check off (☑) each step as it is completed. Boxes have been provided for this purpose under each step number.

**IF THIS PROCEDURE FAILS, CONTACT TEKELEC TECHNICAL SERVICES AND ASK FOR ASSISTANCE.**

<table>
<thead>
<tr>
<th>STEP #</th>
<th>NOAMP VIP: Configure System-Wide SNMP Trap Receiver(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Using a web browser, log onto the NOAMP VIP and navigate to <strong>Main Menu</strong> -&gt; <strong>Administration</strong> -&gt; <strong>SNMP</strong>, as shown below</td>
</tr>
</tbody>
</table>

![Connected using INTERNALXMI URL](image_url)

Verify that “Traps Enabled” is checked:

```
<table>
<thead>
<tr>
<th>Traps Enabled</th>
<th>Enabled</th>
</tr>
</thead>
</table>
```

Fill in the IP address or hostname of the Network Management Station (NMS) you wish to forward traps to. This IP should be reachable from the NOAMP’s “XMI” network.

Continue to fill in additional secondary, tertiary, etc., manager IPs in the corresponding slots if desired.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manager 1</td>
<td>10.10.55.68</td>
</tr>
</tbody>
</table>

Enter the SNMP community name:

```
SNMPv2c Community Name
```

```
snmppublic
```

Leave all other fields at their default values.

Press **OK**
Procedure 28. Configure SNMP Trap Receiver(s) (OPTIONAL)

NOAMP VIP: Enable Traps from Individual Servers (OPTIONAL)

NOTE: By default snmp traps from MPs are aggregated and then displayed at the active NOAMP. If instead, you wish for every server to send its own traps directly to the NMS, then execute this procedure.

This procedure requires that all servers, including MPs, have an XMI interface on which the customer SNMP Target server (NMS) is reachable.

---------------------

Using a web browser, log onto the NOAMP VIP and navigate to Main Menu -> Administration -> SNMP, as shown below

Make sure the checkbox next to “Enabled” is checked, if not, check it as shown below

Then click on Apply and verify that the data is committed.
### Procedure 29: PDRA Resource Domain Configuration (PDRA Only)

This procedure configures the Resource Domain. **It should be executed for PDRA Installations ONLY.** Check off (✓) each step as it is completed. Boxes have been provided for this purpose under each step number.

**ASSUMPTION:** POLICY DRA FEATURE IS ALREADY ACTIVATED USING WI006835.

<table>
<thead>
<tr>
<th>STEP #</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1 | **Establish GUI Session on the NOAMP VIP**  
Establish a GUI session on the NOAMP by using the XMI VIP address. Login as user “guiadmin”. |
| 2 | **NOAMP VIP: Navigate to Resource Domain Screen**  
Navigate to **Main Menu -> Configuration -> Resource Domains** Screen. |
| 4 | **NOAMP VIP: Add Binding Resource Domain**  
Click on **Insert** in the lower left corner.  
You will see a screen similar to:

![Inserting a new Resource Domain](image)

Enter the Binding Resource Domain Name, select “Policy Binding” as the Resource Domain Profile and select the Server Groups associated with the Resource Domain and Press **Ok**. |
5. **NOAMP VIP: Add Policy DRA Resource Domain**

   Click on **Insert** in the lower left corner.

   You will see a screen similar to:

   ![Screen Shot](image)

   **Inserting a new Resource Domain**

   Enter the Resource Domain Name, select “Policy DRA” as the Resource Domain Profile and select the Server Groups associated with the Resource Domain and **Press Ok**.

   **NOTE:**

   For Mated Pair DSR, create only one PDRA Resource Domain and add the DA-MP Server Groups from both sites into this PDRA Resource Domain.

   For non-mated pair DSRs and standalone DSR: Create a PDRA Resource Domain per Site.

6. **NOAMP VIP: Add Session Resource Domain**

   Click on **Insert** in the lower left corner.

   You will see a screen similar to:

   ![Screen Shot](image)

   **Inserting a new Resource Domain**

   Enter the Session Resource Domain Name, select “Policy Session” as the Resource Domain Profile and select the Server Groups associated with the Resource Domain and **Press Ok**.
<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>NOAMP VIP: Add other Session Resource Domains</td>
<td>Repeat Step 6 for all other Session Resource Domains that are to be added.</td>
</tr>
</tbody>
</table>
| 8    | NOAMP VIP: Restart PDRA MP servers | From the NOAMP GUI, select the **Main menu->Status & Manage->Server menu**  
*For each PDRA MP server:*  
- Select the MP server.  
- Select the **Restart** button.  
- Answer **OK** to the confirmation popup. Wait for the message which tells you that the restart was successful. |
4.7 Post-Install Activities

Procedure 30. Activate Optional Features

<table>
<thead>
<tr>
<th>STEP #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This procedure will provide instruction on how to install DSR optional components once regular</td>
</tr>
<tr>
<td></td>
<td>installation is complete.</td>
</tr>
<tr>
<td></td>
<td><strong>Prerequisite:</strong> All previous DSR installation steps have been completed.</td>
</tr>
<tr>
<td></td>
<td>Check off (✓) each step as it is completed. Boxes have been provided for this purpose under each</td>
</tr>
<tr>
<td></td>
<td>step number.</td>
</tr>
<tr>
<td></td>
<td>IF THIS PROCEDURE FAILS, CONTACT TEKELEC TECHNICAL SERVICES AND ASK FOR ASSISTANCE.</td>
</tr>
</tbody>
</table>

Refer to Activation Guides for Optional Features

Refer to 3.3 Optional Features for a list of feature activation documents whose procedures are to be executed at this moment.

Procedure 31. Configure ComAgent Connections

<table>
<thead>
<tr>
<th>STEP #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This procedure will provide instruction on how to configure ComAgent connections on DSR for</td>
</tr>
<tr>
<td></td>
<td>use in the FABR application.</td>
</tr>
<tr>
<td></td>
<td><strong>Prerequisite:</strong> FABR application is activated.</td>
</tr>
<tr>
<td></td>
<td>Check off (✓) each step as it is completed. Boxes have been provided for this purpose under each</td>
</tr>
<tr>
<td></td>
<td>step number.</td>
</tr>
<tr>
<td></td>
<td>IF THIS PROCEDURE FAILS, CONTACT TEKELEC TECHNICAL SERVICES AND ASK FOR ASSISTANCE.</td>
</tr>
</tbody>
</table>

Configure ComAgent

Refer to [5] for the steps required to configure ComAgent.
Appendix A. SAMPLE NETWORK ELEMENT AND HARDWARE PROFILES

In order to enter all the network information for a network element into an Appworks-based system, a specially formatted XML file needs to be filled out with the required network information. The network information is needed to configure both the NOAMP and any SOAM Network Elements.

It is expected that the maintainer/creator of this file has networking knowledge of this product and the customer site at which it is being installed. This network element XML file is used for DSR deployments using Cisco 4948 switches and HP c-Class blade servers. The following is an example of a Network Element XML file.

The SOAM Network Element XML file needs to have same network names for the networks as the NOAMP Network Element XML file has. It is easy to accidentally create different network names for NOAMP and SOAM Network Element, and then the mapping of services to networks will not be possible.

Example Network Element XML file:

```xml
<?xml version="1.0"?>
<networkelement>
 <name>NE</name>
 <networks>
 <network>
 <name>INTERNALXMI</name>
 <vlanId>3</vlanId>
 <ip>10.2.0.0</ip>
 <mask>255.255.255.0</mask>
 <gateway>10.2.0.1</gateway>
 <isDefault>true</isDefault>
 </network>
 <network>
 <name>INTERNALIMI</name>
 <vlanId>4</vlanId>
 <ip>10.3.0.0</ip>
 <mask>255.255.255.0</mask>
 <gateway>10.3.0.1</gateway>
 <isDefault>false</isDefault>
 </network>
 </networks>
</networkelement>
```

The server hardware information is needed to configure the Ethernet interfaces on the servers. This server hardware profile data XML file is used for Appworks deployments using HP c-Class blade servers and HP c-Class rack-mount servers. It is supplied to the NOAMP server so that the information can be pulled in by Appworks and presented to the user in the GUI during server configuration. The following is an example of a Server Hardware Profile XML file.
Example Server Hardware Profile XML file – HP c-Class blade:

```xml
<profile>
 <serverType>HP c-Class Blade</serverType>
 <available>
 <device>bond0</device>
 </available>
 <devices>
 <device>
 <name>bond0</name>
 <type>BONDING</type>
 <createBond>true</createBond>
 <slaves>
 <slave>eth01</slave>
 <slave>eth02</slave>
 </slaves>
 <option>
 <monitoring>mii</monitoring>
 <primary>eth03</primary>
 <interval>100</interval>
 <upstream_delay>200</upstream_delay>
 <downstream_delay>200</downstream_delay>
 </option>
 </device>
 </devices>
</profile>
```

Example Server Hardware Profile XML file – HP c-Class rack-mount server:

```xml
<profile>
 <serverType>HP Rack Mount</serverType>
 <available>
 <device>bond0</device>
 <device>bond1</device>
 </available>
 <devices>
 <device>
 <name>bond0</name>
 <type>BONDING</type>
 <createBond>true</createBond>
 <slaves>
 <slave>eth01</slave>
 <slave>eth03</slave>
 </slaves>
 <option>
 <monitoring>mii</monitoring>
 <primary>eth01</primary>
 <interval>100</interval>
 <upstream_delay>200</upstream_delay>
 <downstream_delay>200</downstream_delay>
 </option>
 </device>
 <device>
 <name>bond1</name>
 <type>BONDING</type>
 <createBond>true</createBond>
 <slaves>
 <slave>eth11</slave>
 <slave>eth12</slave>
 </slaves>
 <option>
 <monitoring>mii</monitoring>
 <primary>eth13</primary>
 <interval>100</interval>
 <upstream_delay>200</upstream_delay>
 <downstream_delay>200</downstream_delay>
 </option>
 </device>
 </devices>
</profile>
```
Example Server Hardware Profile XML file – Virtual Guest on TVOE:

```xml
<profile>
 <serverType>TVOE Guest</serverType>
 <available>
 <device>eth0</device>
 <device>eth1</device>
 <device>eth2</device>
 <device>eth3</device>
 <device>eth4</device>
 </available>
 <devices>
 <device>
 <name>eth0</name>
 <type>ETHERNET</type>
 </device>
 <device>
 <name>eth1</name>
 <type>ETHERNET</type>
 </device>
 <device>
 <name>eth2</name>
 <type>ETHERNET</type>
 </device>
 <device>
 <name>eth3</name>
 <type>ETHERNET</type>
 </device>
 <device>
 <name>eth4</name>
 <type>ETHERNET</type>
 </device>
 </devices>
</profile>
```
## Appendix B. CONFIGURING FOR EAGLE XG TVOEiLO ACCESS

This procedure contains the steps to connect a laptop to the TVOEiLO via a directly cabled Ethernet connection. Check off (✓) each step as it is completed. Boxes have been provided for this purpose under each step number.

### Procedure B.1 Connecting to the EAGLE XG TVOE iLO

<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Windows XP</th>
<th>Windows Vista</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Access the laptop network interface card’s TCP/IP “Properties” screen.</td>
<td><img src="image1.png" alt="Windows XP Screen" /></td>
<td><img src="image2.png" alt="Windows Vista Screen" /></td>
</tr>
</tbody>
</table>

**NOTE:** For this step follow the instruction specific to the laptop’s OS (XP or Vista).

- Go to Control Panel.
- Double-click on Network Connections.
- Right-click the wired Ethernet Interface icon and select “Properties”.
- Select “Internet Protocol (TCP/IP)” and select “Properties”.
- Go to Control Panel.
- Double-click on Network and Sharing Center.
- Select Manage Network Connections (left menu).
- Right-click the wired Ethernet Interface icon and select “Properties”.
- Select “Internet Protocol Version 4 (TCP/IPv4)”.
Procedure B.1 Connecting to the EAGLE XG TVOE iLO

2.

1) Clock “use the following IP address”, set the IP address to “192.168.100.10 0”, the Subnet mask to “255.255.255.0” and the Default gateway to “192.168.100.1”, click “OK”.

2) Click “Close” from the network interface card’s main “Properties” screen.

3. Connect the laptop’s Ethernet port directly to the TVOE iLO port using a standard Cat-5 cross-over cable.

Connect the laptop’s Ethernet port to the PM&C iLO port.
## Appendix C. TVOE ILO ACCESS

This procedure contains the steps to access the TVOE iLO. Check off (√) each step as it is completed. Boxes have been provided for this purpose under each step number.

### Procedure C.1 Accessing the TVOE iLO

<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Launch a terminal emulator, e.g. Putty, Secure CRT. Navigate to File=&gt;$ Connect Click on the &quot;New Session&quot; icon. Note: This example demonstrates Secure CRT.</td>
<td><img src="image" alt="Procedure C.1 Accessing the TVOE iLO" /></td>
</tr>
</tbody>
</table>
### Procedure C.1 Accessing the TVOE iLO

2. Enter `TVOE iLO` for 'Name' and `192.168.100.5` (manufacturing default) or customer IP set during installation for 'Hostname'. Enter `root` for Username. Click OK.

**NOTE 1** See Appendix B to configure your system network to access the EAGLE XG.

3. Navigate `FILE => Connect` to open the Connect window. Highlight the session you created and click Connect.
### Procedure C.1 Accessing the TVOE iLO

**4.** Login to the TVOE iLO using the appropriate password.

**Enter Secure Shell Password**

root@10.240.240.15 requires a password. Please enter a password now.

- **Username:** root
- **Password:**
- [ ] Save password

**5.** The TVOE iLO is displayed.

![PMBC iLO - SecureCRT](image)

User: root logged-in to ILO05E019N008 (192.168.100.5)

ilo 2 Advanced 1.82 at 13:44:57 Mar 31 2010

Server Name: pmac
Server Power: On

</>hiLO>

---

**THIS PROCEDURE HAS BEEN COMPLETED**
## Appendix D. TVOE ILO GUI ACCESS

This procedure contains the steps to access the TVOE iLO GUI. Check off (✓) each step as it is completed. Boxes have been provided for this purpose under each step number.

### Procedure D.1 Accessing the TVOE iLO GUI

<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Launch Internet Explorer and “Go To” 192.168.100.5 (manufacturing default) or customer IP set during installation.</td>
<td><img src="192.168.100.5/" alt="Image" /></td>
</tr>
<tr>
<td>2.</td>
<td>Internet Explorer may display a warning message regarding the Security Certificate.</td>
<td>![Image](Certificate Error: Navigation Blocked)</td>
</tr>
<tr>
<td>3.</td>
<td>Select the option to “Continue to the website (not recommended)”</td>
<td>![Image](We recommend that you close this webpage and do not continue to this website)</td>
</tr>
</tbody>
</table>

---

DSR 5.X/6.X Installation - Part 2/2: Software Installation and Configuration

Software Install Procedure

E52510-01, July 2014

Version 1.0

131 of 161
4. Log in as user "root".

5. The TVOE iLO Home page is displayed.

6. Click on Launch to start the pmac iLO CLI

THIS PROCEDURE HAS BEEN COMPLETED
Appendix E. **CHANGING TVOE ILO ADDRESS**

This procedure will set the IP address of the TVOE iLO to the customers network so that it can be accessed by Tekelec support.

**Procedure E.1 Accessing the TVOE iLO GUI**

<table>
<thead>
<tr>
<th>Step</th>
<th>Instruction</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Connect to the TVOE iLO GUI using the instructions in Appendix D</td>
<td><img src="image1.png" alt="Image" /></td>
</tr>
<tr>
<td>2.</td>
<td>Click the &quot;Administration&quot; tab. Under &quot;Settings&quot; in the left column click on &quot;Network&quot;.</td>
<td><img src="image2.png" alt="Image" /></td>
</tr>
</tbody>
</table>

NOTE: The Lights-Out subsystem must be restarted before any changes you make on this screen take effect. Pressing the Apply button above terminates your browser connection and restarts integrated Lights-Out 2. You must wait at least 30 seconds before attempting to reestablish a connection.
### Software Install Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Instruction</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>Change the IP Address, Subnet Mask and Gateway IP Address to the values supplied in the IP Site Survey for the TVOE iLO. Hit Apply. <strong>NOTE:</strong> You will lose access after you hit the Apply button.</td>
<td><img src="image" alt="Image showing network settings" /></td>
</tr>
<tr>
<td>4.</td>
<td>Using the instructions found in Appendix B, reset the PC's network connection replacing the Subnet Mask and Gateway with those just used for the TVOE iLO. Use an appropriate IP address for this subnet. Call Customer Support if needed.</td>
<td><img src="image" alt="Image showing Internet Protocol (TCP/IP) Properties" /></td>
</tr>
<tr>
<td>5.</td>
<td>Connect to the TVOE iLO GUI using the instructions in Appendix D. <strong>Note:</strong> Use the IP address entered in Step 3 and not the 192.168.100.5.</td>
<td><img src="image" alt="Image showing system status" /></td>
</tr>
</tbody>
</table>

**THIS PROCEDURE HAS BEEN COMPLETED**
Appendix F. **PM&C/NOAMP/SOAM CONSOLE ILO ACCESS**  
This procedure describes how to log into the PM&C/NOAMP/SOAMP console from ILO.

<table>
<thead>
<tr>
<th>Step</th>
<th>Instruction</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Log in as <strong>root</strong> on the <strong>TVOE</strong> server hosting the NOAMP using either ILO or SSH to the TVOE server’s XMI address.</td>
<td><img src="image1" alt="Login as root" /></td>
</tr>
</tbody>
</table>
| 2.   | Find the NOAMP’s current VM number. | On the TVOE host, execute:  

```
virsh list
```

This will produce a listing of currently running virtual machines.

```
 [root@dsrTVOE-blade11 ~]# virsh list
 Id Name State

 4 DSR_NOAMP running
```

Find the VM name for your DSR NOAMP and note its ID number in the first column.

**NOTE:** If the VM state is not listed as “running” or you do not find a VM you configured for your NOAMP at all, then halt this procedure and contact Tekelec Customer Support.
### Step 3: Connect to console of the VM using the VM number obtained in Step 2.

<table>
<thead>
<tr>
<th>Step</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>Connect to console of the VM using the VM number obtained in Step 2.</td>
</tr>
</tbody>
</table>

On the TVOE host, execute:

```
virsh console <DSRNOAMP-VMID>
```

Where **DSRNOAMP-VMID** is the VM ID you obtained in Step 2:

```
Connected to domain DSR_NOAMP
Escape character is '^]'
CentOS release 5.6 (Final)
Kernel 2.6.18-238.19.1.el5prere15.0.0_72.22.0 on an x86_64
hostname1322840832 login:
```

You are now connected to the DSR NOAMPs console.

If you wish to return to the TVOE host, you can exit the session by pressing **CTRL + ]**.
Appendix G. **ACCESSING THE SUN NETRA RMS CONSOLE USING ORACLE ILOM**

This procedure explains how to reach the console of a Sun Netra rack mounted server using the Oracle Lights Out Manager (ILOM)

<table>
<thead>
<tr>
<th>Step</th>
<th>Instruction</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Log in to the ILOM web interface using your proper credentials.</td>
<td>Open your web browser to the ILOM web address.</td>
</tr>
</tbody>
</table>

Use the credentials you've been provided to log into the system. If this is a new system, then the default Oracle ILOM username/password may be used.
<table>
<thead>
<tr>
<th>Step</th>
<th>Instruction</th>
<th>Result</th>
</tr>
</thead>
</table>
| 2.   | Start Redirection| Navigate to **Remote Control->Redirection.** *

- **System Information**
  - Summary
  - Processors
  - Memory
  - Power
  - Cooling
  - Storage
- **Networking**
- **PCI Devices**
- **Firmware**
- **Open Problems (0)**
- **Remote Control**
  - **Redirection**
    - **KVM**
    - **Host Management**
    - **System Management**

Press **Launch Remote Console**
<table>
<thead>
<tr>
<th>Step</th>
<th>Instruction</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>Accept Java Application Download</td>
<td>You will be prompted to download and run a small Java application. Press <strong>OK</strong> to accept and run the download.</td>
</tr>
</tbody>
</table>

![Image of the opening JNLP generator window](image.png)
<table>
<thead>
<tr>
<th>Step</th>
<th>Instruction</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>Log into RMS console and proceed</td>
<td>You will now be presented with an RMS console window. Log in and proceed.</td>
</tr>
</tbody>
</table>

*****END OF PROCEDURE*****
### Appendix H. ACCESSING THE NOAMP GUI USING SSH TUNNELING WITH PUTTY

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Logon to PMAC Server using PuTTY</td>
</tr>
</tbody>
</table>

**NOTE**: This procedure assumes that the NOAMP server you wish to create a tunnel to has been IPM’ed with the DSR application ISO.

**NOTE**: This procedure assumes that you have exchanged SSH keys between the PMAC and the first NOAMP server.

**NOTE**: This procedure assumes that you have obtained the control network IP address for the first NOAMP server. You can get this from the PMAC GUI’s Software Inventory screen.

That variable will be referred to as NOAMP-Control-IP in these instructions.

**NOTE**: It is recommended that you only use this procedure if you are using Windows XP. There are known issues with putty and Windows 7 that may cause unpredictable results when viewing GUI screens through SSH tunnels.

Launch the PuTTY application from your station and open a session to the PMAC’s management address, logging in as “root”.
Create SSH Tunnel through the PMAC in PuTTY

Create SSH Tunnel through the PMAC in PuTTY

Click the icon in the upper left hand corner of the PuTTY window to bring down the main menu.

Select **Change Settings**

Select **Connections -> SSH -> Tunnels**

1. Verify that the **Local** and **Auto** radio buttons are selected. Leave other fields blank
2. In **Source Port**, enter **443**
3. In **Destination**, enter `<NOAMP-Control-IP>:443`
4. Click **Add**

You should now see a display similar to the following in the text box at the center of this dialog.

5. Click **Apply**
<table>
<thead>
<tr>
<th>Step</th>
<th>Task</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Use Local Web Browser to Connect to GUI</td>
<td>Using your web browser, navigate to the URL: <a href="https://localhost/">https://localhost/</a>. You should arrive at the login screen for the NOAMP GUI. Note that if using Windows 7 and a blank screen is displayed, enable “Compatibility Mode” in IE, or use a different browser (Firefox or Chrome).</td>
</tr>
</tbody>
</table>

This procedure is now complete.
### Appendix I. **ACCESSING THE NOAMP GUI USING SSH TUNNELING WITH OPENSSH FOR WINDOWS**

<table>
<thead>
<tr>
<th>Step</th>
<th>Task</th>
<th>Details</th>
</tr>
</thead>
</table>
| 1 | If Needed, Download and Install openssh for Windows | - Download openssh for Windows from [here](#)  
  - Extract the installer from the ZIP file, then run the installer.  
  openssh is now installed on your PC. |
| 2 | Create SSH Tunnel Through the PMAC | - Open up a Command Prompt shell  
  - Within the command shell, enter the following to create the SSH tunnel to the 1st NO, through the PMAC:  
  
  ```bash
 > ssh -L 443:<1st_NO_Control_IP_Address>:443
dest@<PMAC_Management_IP_Address>
  ```  
  (Answer “yes” if it asks if you want to continue connecting) |
| 3 | Use Local Web Browser to Connect to GUI | Using your web browser, navigate to the URL: `https://localhost/`  
  You should arrive at the login screen for the NOAMP GUI. |

NOTE: This procedure assumes that the NOAMP server you wish to create a tunnel to has been IPM'ed with the DSR application ISO.

NOTE: This procedure assumes that you have exchanged SSH keys between the PMAC and the first NOAMP server.

NOTE: This procedure assumes that you have obtained the control network IP address for the first NOAMP server. You can get this from the PMAC GUI’s `Software Inventory` screen. That variable will be referred to as `NOAMP-Control-IP` in these instructions.

NOTE: This is the recommended tunneling method if you are using Windows 7.
## Procedure 1 Timezone Setting

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Access Active NOAMP Console</td>
<td>Login as “root” to the Active NO-AMP console.</td>
</tr>
</tbody>
</table>
| 2 | Active NOAMP Console: Execute time zone configuration script and verify successful result | From the command line prompt, execute `set_ini_tz.pl`. This will set the system timezone. The following command example uses the America/New_York time zone. Replace as appropriate with the time zone you have selected for this installation. See Appendix L for a list of valid time zones.  

```
/usr/TKLC/appworks/bin/set_ini_tz.pl
"America/New_York" >/dev/null 2>&1
```
| 3 | Verify Success of Time Zone Script | # `echo $?`  
If this returns anything other than “0”, then halt this procedure and contact Tekelec Customer Support. |
### Appendix K. CONFIGURING A DSR SERVER FOR 2-TIER OAM

**This procedure configures a single server to operate in 2-tier OAM mode**

***WARNING: 2-TIER CONFIGURATION IS NOT SUPPORTED BY DSR 6.X***

Check off (✓) each step as it is completed. Boxes have been provided for this purpose under each step number.

Should this procedure fail, contact the Tekelec Customer Care Center and ask for assistance.

<table>
<thead>
<tr>
<th>Step #</th>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IPM the server with the proper TPD image.</td>
<td>Execute Procedure 4 (“IPM Blades and VMs”) of 909-2278-001 for the server. Use the TPD image that corresponds to the DSR release you are using. When done, only the TPD image will be installed on the server.</td>
</tr>
</tbody>
</table>
| 2      | Login to server using iLO or the control IP address as root and check for existence of 2-tier flag. | 1. Login as root to the server using either  
   - iLO facility  
   - OR- SSH to the server control IP address. You can get this IP from the PMAC’ GUI’s “Software Inventory” screen. You will then need to log into the PMAC as root and ssh into this IP address.  
   2. Execute the following command on the server:  
      ```sh
touch /usr/TKLC/DsrDataAsourced
      ```  
   (if the command is successful, there will be no output) |
| 3      | Proceed with normal install starting with the Application ISO IPM. | The server is now configured for 2-tier OAM. Proceed with installing the Application ISO (Procedure 5 of 909-2278-001) and further tasks. |
### Appendix L. DISABLING ACCESS TO A DSR NODE

<table>
<thead>
<tr>
<th>STEP</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1    | Log onto the PMAC  
Log in to the PMAC as the `admusr` user.  
Become the super user by using the command:  
```bash
$ sudo su
```
You should see the prompt change to the hash mark:
```bash
#
```
| 2    | Configure the first switch  
Log onto the first aggregation switch using your credentials, once logged in, go into enable mode using the following command:  
```bash
Switch> enable
Switch#
```
Once in enable mode, enter configuration mode and block the offending IP  
```bash
Switch# config t
(config)# access-list 99 deny host <IP Address of offending host>
```
Exit out of config mode by pressing Ctrl + Z  
```bash
(config)# Ctrl + Z
```
Now write the configuration to memory and exit the switch configuration  
```bash
Switch# copy run start
Switch# exit
```
| 3    | Configure the 2nd switch  
Repeat step 2 for the 2nd switch. |
Appendix M. **LIST OF FREQUENTLY USED TIME ZONES**

This table lists several valid timezone strings that can be used for the time zone setting in a CSV file, or as the time zone parameter when manually setting a DSR blade timezone. For an exhaustive list of **ALL** timezones, log onto the PMAC server console and view the text file: `/usr/share/zoneinfo/zone.tab`

Table 3. List of Selected Time Zone Values

<table>
<thead>
<tr>
<th>Time Zone Value</th>
<th>Description</th>
<th>Universal Time Code (UTC) Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>America/New_York</em></td>
<td>Eastern Time</td>
<td>UTC-05</td>
</tr>
<tr>
<td><em>America/Chicago</em></td>
<td>Central Time</td>
<td>UTC-06</td>
</tr>
<tr>
<td><em>America/Denver</em></td>
<td>Mountain Time</td>
<td>UTC-07</td>
</tr>
<tr>
<td><em>America/Phoenix</em></td>
<td>Mountain Standard Time - Arizona</td>
<td>UTC-07</td>
</tr>
<tr>
<td><em>America/Los_Angeles</em></td>
<td>Pacific Time</td>
<td>UTC-08</td>
</tr>
<tr>
<td><em>America/Anchorage</em></td>
<td>Alaska Time</td>
<td>UTC-09</td>
</tr>
<tr>
<td><em>Pacific/Honolulu</em></td>
<td>Hawaii</td>
<td>UTC-10</td>
</tr>
<tr>
<td><em>Africa/Johannesburg</em></td>
<td></td>
<td>UTC+02</td>
</tr>
<tr>
<td><em>America/Mexico_City</em></td>
<td>Central Time - most locations</td>
<td>UTC-06</td>
</tr>
<tr>
<td><em>Africa/Monrovia</em></td>
<td></td>
<td>UTC+00</td>
</tr>
<tr>
<td><em>Asia/Tokyo</em></td>
<td></td>
<td>UTC+09</td>
</tr>
<tr>
<td><em>America/Jamaica</em></td>
<td></td>
<td>UTC-05</td>
</tr>
<tr>
<td><em>Europe/Rome</em></td>
<td></td>
<td>UTC+01</td>
</tr>
<tr>
<td>Time Zone</td>
<td>Time Zone Details</td>
<td>UTC Offset</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Asia/Hong Kong</td>
<td></td>
<td>UTC+08</td>
</tr>
<tr>
<td>Pacific/Guam</td>
<td></td>
<td>UTC+10</td>
</tr>
<tr>
<td>Europe/Athens</td>
<td></td>
<td>UTC+02</td>
</tr>
<tr>
<td>Europe/London</td>
<td></td>
<td>UTC+00</td>
</tr>
<tr>
<td>Europe/Paris</td>
<td></td>
<td>UTC+01</td>
</tr>
<tr>
<td>Europe/Madrid</td>
<td>mainland</td>
<td>UTC+01</td>
</tr>
<tr>
<td>Africa/Cairo</td>
<td></td>
<td>UTC+02</td>
</tr>
<tr>
<td>Europe/Copenhagen</td>
<td></td>
<td>UTC+01</td>
</tr>
<tr>
<td>Europe/Berlin</td>
<td></td>
<td>UTC+01</td>
</tr>
<tr>
<td>Europe/Prague</td>
<td></td>
<td>UTC+01</td>
</tr>
<tr>
<td>America/Vancouver</td>
<td>Pacific Time - west British Columbia</td>
<td>UTC-08</td>
</tr>
<tr>
<td>America/Edmonton</td>
<td>Mountain Time - Alberta, east British</td>
<td>UTC-07</td>
</tr>
<tr>
<td></td>
<td>Columbia &amp; westSaskatchewan</td>
<td></td>
</tr>
<tr>
<td>America/Toronto</td>
<td>Eastern Time - Ontario - most locations</td>
<td>UTC-05</td>
</tr>
<tr>
<td>America/Montreal</td>
<td>Eastern Time - Quebec - most locations</td>
<td>UTC-05</td>
</tr>
<tr>
<td>America/Sao_Paulo</td>
<td>South &amp; Southeast Brazil</td>
<td>UTC-03</td>
</tr>
<tr>
<td>Europe/Brussels</td>
<td></td>
<td>UTC+01</td>
</tr>
<tr>
<td>Australia/Perth</td>
<td>Western Australia - most locations</td>
<td>UTC+08</td>
</tr>
<tr>
<td>Time Zone</td>
<td>Location</td>
<td>UTC Offset</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Australia/Sydney</td>
<td>New South Wales - most locations</td>
<td>UTC+10</td>
</tr>
<tr>
<td>Asia/Seoul</td>
<td></td>
<td>UTC+09</td>
</tr>
<tr>
<td>Africa/Lagos</td>
<td></td>
<td>UTC+01</td>
</tr>
<tr>
<td>Europe/Warsaw</td>
<td></td>
<td>UTC+01</td>
</tr>
<tr>
<td>America/Puerto_Rico</td>
<td></td>
<td>UTC-04</td>
</tr>
<tr>
<td>Europe/Moscow</td>
<td>Moscow+00 - west Russia</td>
<td>UTC+04</td>
</tr>
<tr>
<td>Asia/Manila</td>
<td></td>
<td>UTC+08</td>
</tr>
<tr>
<td>Atlantic/Reykjavik</td>
<td></td>
<td>UTC+00</td>
</tr>
<tr>
<td>Asia/Jerusalem</td>
<td></td>
<td>UTC+02</td>
</tr>
</tbody>
</table>
Appendix N. APPLICATION NETBACKUP CLIENT INSTALLATION PROCEDURES

NetBackup is a utility that allows for management of backups and recovery of remote systems. The NetBackup suite is for the purpose of supporting Disaster Recovery at the customer site. The following procedures provides instructions for installing and configuring the NetBackup client software on an application server in two different ways, first using platcfg and second using nbAutoInstall (push Configuration)

Please note that at the writing of this document, the supported versions of Netbackup in DSR are 7.1 and 7.5.

1) NETBACKUP CLIENT INSTALL USING PLATCFG

NOTE: Execute the following procedure to switch/migrate to having netBackup installed via platcfg instead of using NBAutoInstall (Push Configuration)

Prerequisites:
• Application server platform installation has been completed.
• Site survey has been performed to determine the network requirements for the application server, and interfaces have been configured.
• NetBackup server is available to copy, sftp, the appropriate NetBackup Client software to the application server.

Note: If a procedural STEP fails to execute successfully, STOP and contact the Customer Care Center.

1. Application server iLO: Login and launch the integrated remote console
   • SSH to the application Server (PM&C or NOAMP) as admusr using the management network for the PM&C or XMI network for the NOAMP.

2. Application server iLO: Configure NetBackup Client on application server
   $ sudo su - platcfg
   • Navigate to NetBackup Configuration

3. Application server iLO: Enable Push of NetBackup Client
- Navigate to NetBackup Configuration ➤ Enable Push of NetBackup Client

Select Yes to initialize the server and enable the NetBackup client software push.

4. Application server iLO: Verify NetBackup Client software push is enabled.
- Navigate to NetBackup Configuration ➤ Verify NetBackup Client Push

- Verify list entries indicate "OK" for NetBackup client software environment.
- Select "Exit" to return to NetBackup Configuration menu.

5. NetBackup server: Push appropriate NetBackup Client software to application server
Note: The NetBackup server is not an application asset. Access to the NetBackup server, and location path of the NetBackup Client software is under the control of the customer. Below are the steps that are required on the NetBackup server to push the NetBackup Client software to the application server. These example steps assume the NetBackup server is executing in a Linux environment.

Note: The backup server is supported by the customer, and the backup utility software provider. If this procedural STEP, executed at the backup utility server, fails to execute successfully, STOP and contact the Customer Care Center of the backup and restore utility software provider that is being used at this site.

- Log in to the NetBackup server using password provided by customer:
- Navigate to the appropriate NetBackup Client software path:
  Note: The input below is only used as an example. (7.5 in the path below refers to the NetBackup version. If installed a different version (e.g. 7.1), replace 7.5 with 7.1)
  ```bash
 cd /usr/openv/netbackup/client/Linux/7.5

 # ./sftp_to_client <application IP> netbackup
 Connecting to 192.168.176.31
 netbackup@192.168.176.31's password:

 Enter application server netbackup user password; the following NetBackup software output is expected, observe the sftp completed successfully:
  ```
  ```
 File '/usr/openv/netbackup/client/Linux/6.5/.sizes' not found.
 Couldn't rename file '/tmp/bp.6211/sizes' to '/tmp/bp.6211/.sizes': No such file or directory
 File '/usr/openv/NB-Java.tar.Z' not found.
 ./sftp_to_client: line 793: [: : integer expression expected
  ```
  sftp completed successfully.
  The root user on 192.168.176.31 must now execute the command "sh /tmp/bp.6211/client_config [-L]". The optional argument, “-L”, is used to avoid modification of the client's current bp.conf file.
  
  #
  
  Note: Although the command executed above instructs you to execute the client_config command, DO NOT execute that command, as it shall be executed by platcfg in the next step.

6. Application server ILO: Install NetBackup Client software on application server.
- Log into application server as admusr.
- Execute the command:
  ```bash
 $ sudo chmod 555 $(NETBACKUP_BIN)\client_config

 Where NETBACKUP_BIN is the temporary directory where the netbackup client install programs were copied in step 5. The directory should look similar to the following: "/tmp/bp.XXXX/"
  ```

- Navigate to NetBackup Configuration ➤ Install NetBackup Client
• Verify list entries indicate "OK" for NetBackup client software installation
• Select "Exit" to return to NetBackup Configuration menu

7. Application server iLO: Verify NetBackup Client software installation on the application server.
• Navigate to NetBackup Configuration ➤ Verify NetBackup Client Installation.
  
  ![NetBackup Client Installation](image)

  • Verify list entries indicate "OK" for NetBackup Client software installation.
  • Select "Exit" to return to NetBackup Configuration menu.

8. Application server iLO: Disable NetBackup Client software transfer to the application server.
• Navigate to NetBackup Configuration ➤ Remove File Transfer User
Select "Yes" to remove the NetBackup file transfer user from the application server

9. **Application server iLO:** Exit platform configuration utility (platcfg)

10. **Application server iLO:** Use platform configuration utility (platcfg) to modify hosts file with NetBackup server alias.

    **Note:** After the successful transfer and installation of the NetBackup client software the NetBackup servers hostname can be found in the NetBackup "/usr/openv/netbackup/bp.conf" file, identified by the "SERVER" configuration parameter. The NetBackup server hostname and IP address must be added to the application server's hosts file.

    - List NetBackup servers hostname:
      
      ```
 # cat /usr/openv/netbackup/bp.conf
 SERVER = nb70server
 CLIENT_NAME = pmacDev8
      ```

    - Use platform configuration utility (platcfg) to update application hosts file with NetBackup Server alias.
      
      ```
 # su - platcfg
      ```

    - Navigate to **Network Configuration ➤ Modify Hosts File**
Select **Edit**, the Host Action Menu will be displayed.

Select "**Add Host**", and enter the appropriate data.
11. **Application server iLO**: Create links to NetBackup client notify scripts on application server where NetBackup expects to find them.

   **Note**: Copy notify scripts from appropriate path on application server for given application.
   ```sh
 # ln -s <path>/bpstart_notify /usr/openv/netbackup/bin/bpstart_notify
 # ln -s <path>/bpend_notify /usr/openv/netbackup/bin/bpend_notify
   ```
   An example of `<path>` is `/usr/TKLC/appworks/sbin`

12. **Application server iLO**: NetBackup Client software installation complete.
2) NETBACKUP CLIENT INSTALL/UPGRADE WITH NBAUTOINSTALL

NOTE: Execute the following procedure to switch/migrate to having netBackup installed via NBAutoInstall (Push Configuration) instead of manual installation using platcfg

Executing this procedure will enable TPD to automatically detect when a Netbackup Client is installed and then complete TPD related tasks that are needed for effective Netbackup Client operation. With this procedure, the Netbackup Client install (pushing the client and performing the install) is the responsibility of the customer and is not covered in this procedure.

Note: If the customer does not have a way to push and install Netbackup Client, then use Netbackup Client Install/Upgrade with platcfg.

Note: It is required that this procedure is executed before the customer does the Netbackup Client install.

Prerequisites:
• Application server platform installation has been completed.
• Site survey has been performed to determine the network requirements for the application server, and interfaces have been configured.
• NetBackup server is available to copy, sftp, the appropriate NetBackup Client software to the application server.

1. Application server iLO: Login and launch the integrated remote console
   • SSH to the application Server (PM&C or NOAMP) as root using the management network for the PM&C or XMI network for the NOAMP.

2. Application server iLO: Enable nbAutoInstall
   
   # /usr/TKLC/plat/bin/nbAutoInstall --enable

3. Application server iLO: Create links to NetBackup client notify scripts on application server where NetBackup expects to find them.
   
   # mkdir -p /usr/openv/netbackup/bin/
   # ln -s <path>/bpstart_notify /usr/openv/netbackup/bin/bpstart_notify
   # ln -s <path>/bpend_notify /usr/openv/netbackup/bin/bpend_notify

   An example of <path> is /usr/TKLC/plat/sbin

4. Application server iLO: Verify NetBackup configuration file
   
   • Open /usr/openv/netbackup/bp.conf and make sure it points to the NetBackup Server using the following command:
     
     # vi /usr/openv/netbackup/bp.conf

   Verify that the highlighted Server name matches the NetBackup Server, and verify that the CLIENT_NAME matches the hostname or IP of the local client machine, if they do not, update them as necessary.

   SERVER = nb75server
   CLIENT_NAME = 10.240.10.185
   CONNECT_OPTIONS = localhost 1 0 2

   • Edit /etc/hosts using the following command and add the NetBackup server
     
     # vi /etc/hosts

     e.g.: 192.168.176.45 nb75server
The server will now periodically check to see if a new version of Netbackup Client has been installed and will perform necessary TPD configuration accordingly.

At any time, the customer may now push and install a new version of Netbackup Client.
Appendix O. CUSTOMER SIGN OFF

Sign-Off Record

*** Please review this entire document. ***
This is to certify that all steps required for the upgrade successfully completed without failure.

Sign your name, showing approval of this procedure, and fax this page and the above completed matrix to Tekelec, FAX # 919-460-3669.

Customer: Company Name:_______________________ Date: __________

Site: Location:______________________________

Customer:(Print)____________________________ Phone:_______________

Fax: ________________

Start Date: _________________ Completion Date: ________________

This procedure has been approved by the undersigned. Any deviations from this procedure must be approved by both Oracle and the customer representative. A copy of this page should be given to the customer for their records. The SWOPS supervisor will also maintain a signed copy of this completion for future reference.

Tekelec Signature: __________________________  Date: ______________________

Customer Signature: _________________________  Date: ______________________
Appendix P. MY ORACLE SUPPORT (MOS)

MOS (https://support.oracle.com) is your initial point of contact for all product support and training needs. A representative at Customer Access Support (CAS) can assist you with MOS registration.

Call the CAS main number at 1-800-223-1711 (toll-free in the US), or call the Oracle Support hotline for your local country from the list at http://www.oracle.com/us/support/contact/index.html.

When calling, there are multiple layers of menus selections. Make the selections in the sequence shown below on the Support telephone menu:
1. For the first set of menu options, select 2, "New Service Request". You will hear another set of menu options.
2. In this set of menu options, select 3, "Hardware, Networking and Solaris Operating System Support". A third set of menu options begins.
3. In the third set of options, select 2, "Non-technical issue". Then you will be connected to a live agent who can assist you with MOS registration and provide Support. Simply mention you are a Tekelec Customer new to MOS.