
Service Architecture Leveraging Tuxedo (SALT)
Reference Guide
12c Release 2 (12.1.3)

April 2014

Oracle Service Architecture Leveraging Tuxedo (SALT) Reference Guide, 12c Release 2 (12.1.3)

Copyright © 2006, 2014 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use,
duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed
or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If
you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

This software or hardware and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect
to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

SALT Command Reference
GWWS(5) . 1-2

jsoncvt(1) . 1-4

tmscd(1) . 1-9

tmwsdlgen. 1-11

wsadmin . 1-13

wsdlcvt . 1-21

wsloadcf . 1-23

wsunloadcf . 1-25

SALT Web Service Definition File Reference
Overview. .A-1

SALT WSDF Format .A-2

XML Schema .A-5

SALT WSDF Examples .A-5

SALT WSDF Element Descriptions. .A-6

<Definition> .A-6

<WSBinding> .A-7

<Servicegroup> .A-8

<Service>. .A-8

<Input> .A-9

<Output> .A-10

<Fault> .A-10

<Msghandler> . A-11

<Policy> . A-11

<Property>. .A-12

<SOAP> .A-13

<AccessingPoints> .A-14
SALT Reference Guide i

<Endpoint> .A-14

<Realm> .A-15

SALT Deployment File Reference
Overview. B-1

SALT SALTDEPLOY Format . B-1

XML Schema . B-3

SALT SALTDEPLOY Example . B-3

SALT SALTDEPLOY Element Descriptions . B-4

<System>. B-13

SALT WS-AT Assertion Reference
Overview. C-1

Policy File Example . C-2

SALT WS-ReliableMessaging Policy Assertion Reference
Overview. .D-1

WS-RM Policy Assertion Format. .D-2

WS-RM Assertion File Example .D-2

WS-RM Assertion Element Description. .D-3

<wsrm:InactivityTimeout> .D-3

<wsrm:AcknowledgementInterval> .D-3

<wsrm:BaseRetransmissionInterval> .D-3

<wsrm:ExponentialBackoff>. .D-4

<beapolicy:Expires> .D-4

<beapolicy:QOS> .D-4

<wsrm:RMAssertion> .D-4
SALT Reference Guide ii

SALT WS-SecurityPolicy Assertion 1.2 Reference
Overview. E-1

SALT WSSP 1.2 Policy File Examples . E-2

WSSP 1.2 Policy File Sample . E-2

Wssp1.2-Wss1.0-X509.xml File Sample . E-3

SALT WSSP 1.2 Policy Templates . E-5

SALT WSSP1.2 Assertion Description . E-5

<sp:SignedParts>. E-6

<sp:UsernameToken> . E-6

<sp:X509Token> . E-6

<sp:AlgorithmSuite> . E-7

<sp:Layout>. E-7

<sp:TransportBinding >. E-8

<sp:AsymmetricBinding> . E-9

<sp:SupportingToken> . E-11

SALT WS-SecurityPolicy Assertion 1.0 Reference
Overview. F-1

SALT WSSP 1.0 Policy Assertion Format. F-2

SALT WSSP 1.0 Assertion File Example . F-3

SALT WSSP 1.0 Policy Templates . F-3

SALT WSSP 1.0 Assertion Element Description. F-4

<CanonicalizationAlgorithm>. F-4

<Claims> . F-5

<DigestAlgorithm> . F-5

<Identity> . F-5

<Integrity>. F-5

<MessageParts>. F-6
SALT Reference Guide iii

<SecurityToken> . F-6

<SignatureAlgorithm>. F-7

<SupportedTokens>. F-8

<Target>. F-8

<Transform> . F-8

<UsePassword> . F-9

Usage of MessageParts . F-9
SALT Reference Guide iv

SALT Command Reference
The SALT Command Reference describes system processes and commands delivered with the
SALT software.

Table 1 lists SALT commands and functions.

Table 1 SALT Commands and Functions

Name Description

GWWS(5) Web service gateway server.

jsoncvt(1) JSON object to service metadata converter.

tmscd(1) Command line utility used to activate and deactivate service
contract discovery.

tmwsdlgen WSDL document generator.

wsadmin SALT administration command interpreter.

wsdlcvt WSDL document converter.

wsloadcf Reads SALT Deployment file and other referenced
artifacts. Loads a binary SALTCONFIG file.

wsunloadcf Reads a binary SALTCONFIG file, creates a SALT
deployment file and other referenced files (WSDF files,
WS-Policy files).
SALT Reference Guide 1

GWWS(5)
Name

GWWS – Web service gateway server.

Synopsis
GWWS SRVGRP="identifier" SRVID=number [other_parms]
CLOPT="-A -- –i InstanceID [-a <scheme>://<host>:<port>]"

Description
The GWWS server is the Web service gateway for Tuxedo applications, the core component of
SALT. The GWWS gateway server provides communication with Web service programs via SOAP
1.1/1.2 protocols. The GWWS server has bi-directional (inbound/outbound) capability. It can
accept SOAP requests from Web service applications and passes Tuxedo native calls to Tuxedo
services (inbound). It also accepts Tuxedo ATMI requests and passes SOAP calls to Web service
applications (outbound). GWWS servers are used as Tuxedo system processes and are described in
the *SERVERS section of the UBBCONFIG file.

The CLOPT option is a string of command-line options passed to the GWWS server when it is booted.
The GWWS server accepts the following CLOPT options:

-i InstanceID

Specifies the GWWS instance unique ID. It is used to distinguish multiple GWWS instances
provided in the same Tuxedo domain. This value must be unique among multiple GWWS
items within the UBBCONFIG file.

Note: The InstanceID value must be pre-defined in the <WSGateway> section of the
SALT Deployment File.

-a <scheme>://<host>:<port>

Web administration is disabled by default. In order to enable admin capabilities, the
GWWS server must be configured in the UBBCONFIG file using the -a option as follows:
-a <scheme>://<host>:<port>.

Note: Use the following URL to access the Web Admin Console:
<scheme>://<host>:<port>/admin

<scheme>

Can be 'http' or 'https'. If using 'https', GWWS must be configured for SSL
capabilities by adding private-key and certificates in the same manner as securing
application Web Services with SSL.
2 SALT Reference Guide

../../../tuxedo/docs12cr2/rf5/rf5.html

GWWS(5)
<host>

The name or IP address of the admin URL listening endpoint.

<port>

The port value of the admin URL listening endpoint.

Environment Variables
The SALTCONFIG environment variable must be set before the GWWS server is booted.
Accesslog(5) can be enabled by setting environment variable TMENABLEALOG=y.

Note: Windows platforms: Add %TUXDIR%\bin\ssllibs to PATH.

Deprecation
The following SALT 1.1 GWWS parameter is deprecated in the current release.

-c Config_file

Specifies the SALT 1.1 configuration file.

Note: Starting with the SALT 2.0 release, the GWWS server loads the SALT configuration from
the binary SALTCONFIG file instead of the XML-based configuration file. The
configuration file is no longer a GWWS server input parameter. The SALTCONFIG file
must be generated using wsloadcf before booting GWWS servers.

Diagnostics
For inbound call, if an error occurs during SOAP message processing, the error is logged. The
error is also translated into appropriate SOAP fault and/or HTTP error status code and returned
to the Web service client.

For outbound call, if an error occurs during processing, the error is logged. The error is also
translated into appropriate Tuxedo system error code (tperrno) and returned to the Tuxedo
client.

Example(s)

Listing 1 GWWS Description in the UBBCONFIG File

*SERVERS

GWWS SRVGRP=GROUP1 SRVID=10

CLOPT="-A -- –i GW1"

GWWS SRVGRP=GROUP1 SRVID=11

CLOPT="-A -- –i GW2"
SALT Reference Guide 3

../../../tuxedo/docs12cr2/rf5/rf5.html

GWWS SRVGRP=GROUP2 SRVID=20

CLOPT="-A -- –i GW3"

See Also
UBBCONFIG(5)

tmwsdlgen

SALT Deployment File Reference

SALT Web Service Definition File Reference

jsoncvt(1)
Name

jsoncvt – JSON object to service metadata converter.

Synopsis
jsconcvt [-i input.json[input2.json …]] [-o output.json[output2.json …]]

-s servicename –m (POST / GET / PUT / DELETE) -a serviceaddress

Description
The jsconcvt command generates service metadata from JSON content, which can be used to
construct service interfaces for easier application development. The command also generates
fml32 tables and SALT deployment service definitions.

It is possible to mention more than 1 of each input and output payload samples by either
separating the file names with spaces and enclosing the list in double-quotes, or specifying “-i”
or “-o” multiple times.The corresponding definitions are concatenated in the metadata and
fml32. This is to accommodate services that may return or accept data in different formats.

Input and output are optional, although specifying neither is not accepted. It is possible to use the
same JSON sample file for both input and output by specifying the same file in the “-i” and
“-o”switches. The metadata and fml32 files are generated using the service name as the base
name. For example, a switch of “-s service1” generates files with names “service1.mif”
and “service1.fml32”.
4 SALT Reference Guide

../../../tuxedo/docs12cr2/rf5/rf5.html
../ref/wsdf.html
../ref/deploy.html
../ref/index.html

j soncv t (1)
Parameters/Options
-i

Sample input json content. -jsoncvt uses this to generate a metadata service structure for
the data received by this service.

-o

Sample output json content - jsoncvt uses this to generate a metadata service structure
for the data returned by this service.

-s

Name of the service generated. Specified in metadata and SALT deploy file.

-m

Method for the service. Can be one of the following: POST, GET, PUT, or DELETE.

-a

Address of the external service.

Diagnostics
Error, warning or information messages are output to standard output.

Environment Variables
The TUXDIR and LANG environment variables must be set correctly.

Examples
Given the following JSON examples.

Input/Output

Running the Command

Results

Input/Output
Input and output file examples are shown in Listing 2 and Listing 3.

Listing 2 Input

$ cat balance.json
{

"account":5563909,
SALT Reference Guide 5

"location":"US"
}

Listing 3 Output

$ cat result.json
{

"account":5563909,
"location":"US",
"accounts": [

{
"type":"savings",
"currency":"US Dollars",
"balance":35000.34

},
{

"type":"checking",
"currency":"US Dollars",
"balance":500.15

}
]

}

Running the Command
An example of running the comand is shown in Listing 4.

Listing 4 Running the command

$ jsoncvt -i balance.json -o result.json -s balance -m POST -a
http://bank.com:4434/online_banking
Files balance.mif, balance.fml32 and balance.dep generated.
Please add the generated service definition – balance.dep – to the SALT
deploy configuration file.
6 SALT Reference Guide

j soncv t (1)
Results
The end results are shown in Listing 5, Listing 6, and Listing 7.

Listing 5 MIF

service=balance
tuxservice=balance
export=y
servicetype=service
servicemode=webservice
inbuf=FML32
outbuf=FML32

param=account
access=in
type=long

param=location
access=in
type=string

param=account
access=out
type=long
param=location
access=out
type=string
param=accounts
access=out
type=fml32
(

param=type
access=out
type=string
SALT Reference Guide 7

param=currency
access=out
type=string

param=balance
access=out
type=double

Listing 6 fml32 Table

FML32 JSON Mapping Generated by jsoncvt

*base 30000 # Customize base number if necessary.

#name rel-number type flags comment

#---- ---------- ---- ----- -------

account 1 long - param

location 2 string - param

options 3 string - param

accounts 4 fml32 - structured parameter

type 5 string - param

currency 6 string - param

balance 7 long - param

Listing 7 SALT Deploy Definition

<service name=balance
content-type="JSON" output-buffer="FML32"
address="http://bank.com:4434/online_banking"/>
8 SALT Reference Guide

tmscd(1)
See Also
Creating the Oracle Tuxedo Service Metadata Repository
field_tables(5)

SALT Web Service Definition File Reference

tmscd(1)
Name

tmscd(1) – Activates and deactivates service contract discovery.

Synopsis
tmscd start|stop|status [-e] [-f <file>][id1 [id2 [...]]]

Description
The tmscd command line utility is used to activate and deactivate service contract discovery.

Parameters and Options
tmscd accepts following parameters and options:

start|stop|status

Required. Starts, stops, or displays service contract dictionary settings for specific
services, or all services if none are specified. A start or stop request for a service that
has already activated or deactivated contract discovery is ignored. Effective service
information is displayed when handling the requests.

Note: start|stop|status must occur after -e and -f , if either of those options are
specified.

[-e]

Specifies the service scope as a regular expression.

[-f <file>]

The service scope is defined in the given <file>. The file may contain sections to group
related definitions together. All entries for a section must be written together line-by-line.

Empty lines or lines starting with '#' are ignored. Lines starting with '*' are section lines.
Other lines are "id=content" definitions.

id1 id2 ...

Indicates one or more services. If -e is specified, a regular expression is used to match the
service name. If -e is not specified, the service name is matched exactly.
SALT Reference Guide 9

http://docs.oracle.com/cd/E53645_01/tuxedo/docs12cr2/rf5/rf5.html
http://docs.oracle.com/cd/E53645_01/salt/docs12cr2/metarepo.html
http://docs.oracle.com/cd/E53645_01/salt/docs12cr2/ref/wsdf.html

Example(s)
Example 1 - start discovery for TOUPPER, TOLOWER:

tmscd start TOUPPER TOLOWER

Example 2 - start discovery for services started with TO and BR:

tmscd -e start TO.* BR.*

Example 3 - same request as example 1 but via file:

tmscd -f svcfile start id1 id2

Note: The first found definition is used if section is not provided:

Example 4 - same request as example 2 but via file:

tmscd -e -f svcfile start case4.svcs

Listing 8 shows content of the file named "svcfile".

Listing 8 svcfile Content

file: svcfile
*case3
id1 = TOUPPER
id2 = TOLOWER

*case4
svcs = TO.*|BR.*

Diagnostics
tmscd fails if TMMETADATA is not booted or booted using the -r (readonly) option without the -o
option.

See Also
TMMETADATA(5)

Configuring Service Contract Discovery in the SALT Configuration Guide

SALT Web Service Definition File Reference
10 SALT Reference Guide

../ref/wsdf.html
../../../tuxedo/docs12cr2/rf5/index.html

../config/config.html

tmwsd lgen
tmwsdlgen
Name

tmwsdlgen – WSDL document generator.

Synopsis
tmwsdlgen –c wsdf_file [-y] [-o wsdl_file] [-m {pack|raw|mtom}] [-t
{wls|axis}]

Description
tmwsdlgen generates a WSDL document file from a Tuxedo native Web Service Definition File
(WSDF). The generated WSDL document is WSDL 1.1 specification compliant, and represents
both the service contracts and policies. tmwsdlgen collects Tuxedo service contract information
throughout the Tuxedo Service Metadata Repository management (TMMETADATA)process.
tmwsdlgen works as a Tuxedo native client and requires the following:

the TUXCONFIG environment variable must be set correctly

the relevant Tuxedo application using TMMETADATA must be booted prior to executing
tmwsdlgen.

WARNING: The given WSDF must be a Tuxedo native WSDF. Do not use a wsdlcvt
converted non-native WSDF file as input.

tmwsdlgen accepts the following parameters:

-c wsdf_file

Mandatory. Used to specify the SALT WSDF local path.

tmwsdlgen accepts the following optional parameters:

-o wsdl_file

Used to specify the output WSDL document file path. If the option is not present, the
default file, tuxedo.wsdl, is created in the current directory. If the specified WSDL
document file already exists, then a prompt displays to confirm to overwriting the existing
file.

-y

Overwrites the existing WSDL document file without prompting.

-m

Used to specify the WSDL data mapping policy for certain Tuxedo typed buffers.
Currently, it applies to the Tuxedo CARRAY buffer type. If raw mode is specified,
SALT Reference Guide 11

../admin/intro.html#wp1034616

CARRAY is represented to the MIME attachment. If pack mode is specified,
xsd:base64Binary is used to represent CARRAY. The default value is pack mode.

Note: raw mode cannot be used for .Net clients. The .Net Framework does not support
MIME attachments.

If mtom is specified, CARRAY is mapped to the MTOM SOAP message.

-t

This option takes effect only when the -m option is specified in raw mode. It accepts two
options, wls or axis:

wls indicates tmwsdlgen generates the WSDL document file in compliance with
WebLogic 9.x. The default is wls.

axis indicates the WSDL document file format can be recognized by the Apache
Axis toolkit.

Deprecation
The following SALT 1.1 tmwsdlgen parameters are deprecated in the current release.

-c Config_file

Mandatory. Used to specify the SALT Configuration File path.

Note: In the current SALT release, the SALT 1.1 configuration file is specified as the
tmwsdlgen input using the following optional parameters:

-s

Used to specify the encoding style used for Web service SOAP messages. Specifies rpc
for RPC/encoded style and doc for Doc/literal encoded style. If this option is not present
or the specified value is invalid, Doc is the default style.

-v

Used to specify the SOAP protocol version that the WSDL file supports. Specify 1.1 for
SOAP 1.1 protocol and 1.2 for SOAP 1.2 protocol. If this option is not present or the
specified value is invalid, SOAP 1.1 is used as the default.

Note: In the current SALT release, the SOAP version and message style attribute are
specified in the SALT WSDF.

Diagnostics
If a syntax error is detected in the given WSDF, an “ERROR” or “FATAL” message indicating
that problem is printed to the standard error, and no WSDL file is generated and tmwsdlgen exits
with exit code 1.

A “WARN” message is printed to the console if:
12 SALT Reference Guide

wsadmin
1. WSDF content may result in a potential run-time risk, or

2. default values are used because they are not specified in the WSDF. “WARN” messages do
not interrupt tmwsdlgen execution.

Upon successful completion, tmwsdlgen exits with exit code 0.

Example(s)
The following command generates a WSDL document file, Salt.wsdl, from the specified
SALT WSDF, tux.wsdf.

tmwsdlgen –c tux.wsdf –o Salt.wsdl

The following command generates a default WSDL document file with SOAP w/Attachment
capability from the specified SALT WSDF, app_wsdf.xml.

tmwsdlgen –c app_wsdf.xml –m raw

SEE ALSO
GWWS(5)

wsdlcvt

SALT Web Service Definition File Reference

wsadmin
Name

wsadmin – SALT administration command interpreter.

Synopsis
wsadmin [-v]

Description
wsadmin uses specific commands to monitor and administrate active GWWS processes in the
specified Tuxedo domain. The TUXCONFIG environment variable is used to determine the location
where the Tuxedo configuration file is loaded. wsadmin is used in the same manner as
tmadmin(1) or dmadmin(1).

wsadmin accepts below optional parameter:
SALT Reference Guide 13

../ref/wsdf.html

-v

Causes wsadmin to display the SALT version number, SALT Patch Level and license
information. wsadmin exits after print out.

wsadmin Commands
Commands may be entered using either their full name or their abbreviation (as given in
parentheses), followed by any appropriate arguments. Arguments appearing in brackets [], are
optional; arguments in braces, {}, indicate a selection from mutually exclusive options.

Note: Command line options that are not in brackets do not need to appear in the command line
if the corresponding default has been set via the default command.

wsadmin supports the following commands:

reload (reload) -i gwws_instance_id

Reload configuration for the specified GWWS gateway instance. The configuration file
may have previously been modified using wsloadcf, this command is used to make the
changes active.

configstats(cstat) -i gwws_instance_id

Displays the current configuration status for the specified GWWS process. The -i
parameter must be specified.

default(d) [-i gwws_instance_id]

Sets the corresponding argument to the default GWWS Instance ID. The defaults can be
changed by specifying * as an argument. If the default command is entered without
arguments, the current defaults are printed.

echo(e) [{off | on}]

Repeats input command lines when set to on. If no option is given, the current setting is
toggled, and the new setting is printed. The initial setting is off.

forgettrans (ft) -i gateway_instance_id [-c Coord_context]

Forgets one or all heuristic log records for the named GWWS instance. If the transaction
identifier tran_id or coord_context coordination context is specified, only the
heuristic log record for that transaction is forgotten. The coordination context
(coord_context) can be obtained from the printtrans command or from the ULOG
file.

help (h) [command]

Prints help messages. If command is specified, the abbreviation, arguments, and
description for that command are printed.

Omitting all arguments causes the syntax of all commands to be displayed.
14 SALT Reference Guide

wsadmin
gwstats(gws) -i gwws_instance_id [-s serviceName]

Displays global level run time statistics information for the specified GWWS processes
including fail, success, pending number for both inbound and outbound call, average
processing time, active thread number, etc. If -s serviceName specified, the service-level
information is displayed.

-i is mandatory. -s is optional.

paginate(page) [{off | on}]

Paginates output. If no option is given, the current setting is toggled, and the new setting
is printed. The initial setting is on, unless either standard input or standard output is a
non-tty device. Pagination may be turned on only when both standard input and standard
output are tty devices.

The default paging command is indigenous to the native operating system environment.
In a UNIX operating system environment, for example, the default paging command is pg.
The shell environment variable PAGER may be used to override the default command
used for paging output.

printtrans (pt) -i gateway_instance_id

Prints transaction information for the named GWWS instance. The output for each
transaction record contains the following colon-delimited string fields:

process ID:GWWS instance id:service name:local GTRID:remote

coordination context ID:record type:timestamp.

quit (q)

Terminates the session.

saml create [-p password]

"saml create" is used to create a key file with the name "saml_key_meta" in the current
working directory.

-p password
"saml create" command will use this as password to protect the key file. This tool
will prompt user to enter password if this option is not given as part of command
line argument.
The password option must be given whether to create the key file or in other
operation to update the key file. The "password" is an administrative password for
this key file. All the operations targeted at a key file must given the same password
when the key file was first created.

Example(s):
Here is an example to create a key metadata file protected by password
"password".
SALT Reference Guide 15

saml create -p password

saml add {-g -s shared_secret |-i -n issuer_name [-l issuer_local_id]{[-c]
[-s shared_secret]}} [-p password]

"saml add" can be used to add an entry to an existing GWWS key file. The key file must
have the name "saml_key_meta" in the current working directory. Either one of the "-g"
and "-i" option must be given.

-g

Add an entry for GWWS to the key file. If the GWWS record already exists then
this operation will fail. When "-g" option is given then "-n", "-l" and "-c" options
are not allowed, if anyone of them is given the operation will fail.

-i

Add an entry for trusted SAML issuer. When this option is specified then "-n"
option for SAML issuer name must also be specified.

-n

The trusted SAML issuer name as it appears in the "issuer" subelement or attribute
of a SAML assertion.

-l

The local reference id of the trusted issuer. It is a short-hand name for easier
reference.

-s

The shared secret. It is the symmetric key used by issuer to sign the assertion.

-c

This indicate that the public key certificate for trusted SAML issuer is installed. If
this is not specified in the command line then GWWS will not be able to use public
key to verify the signature if such signing is done if binary security token is not
attached to the SOAP message.

-p

The password for accessing the key file. This is not optional and must be the same
password given when this key file is created. This tool will prompt user to enter
password if it is not given as part of command line argument.

Example(s):
Here is an example to add a GWWS record to a key file that is protected by
password "password".
saml add -g -s mysecret -p password

The following is an example to add a trusted issuer record to a key file that is
protected by password "password". The trusted issuer is configured with both
public key certificate and a shared secret.
16 SALT Reference Guide

wsadmin
tSaml add -i -n saml.abc.com -l abc -s accessabc -c -p password

If the add operation target is trusted issuer and "-l" option is not given then the operation
will use issuer name as local reference name by default. Also in this case either "-c" or "-s"
must be given; if both are given then both information will be stored in the key file as part
of trusted issuer record.

Both "-n" and "-l" option must be unique in the key file this means that no other trusted
issuer has the same issuer name or local reference name. If a record with the same issuer
name or same local reference exists then the operation will fail.

saml modify {-g -s shared_secret |-i {[-n issuer_name][-l
issuer_local_id]}{[-c][-s shared_secret]} [-p password]

"saml modify" can be used to modify an entry to an existing GWWS key file; the entry
can be either GWWS entry or trusted issuer entry. The key file must have the name
"saml_key_meta" in the current working directory. Either one of the "-g" and "-i" option
must be given.

-g

Modify the GWWS entry in the key file. If the GWWS record does not exists then
this operation will fail. When "-g" option is given then "-n", "-l" and "-c" options
are not allowed, if anyone of them if given the operation will fail.

-i

Modify the trusted SAML issuer entry in the key file. When this option is specified
then either "-n" or "-l" option for the issuer name must also be specified. If both
"-n" and "-l" options are specified and there is no record matches both search
criteria then the operation will fail.

-n

The trusted SAML issuer name as it appears in the "issuer" subelement or attribute
of a SAML assertion.

-l

The local reference id of the trusted issuer. It is a short-hand name for easier
reference.

-s

The shared secret. It is the symmetric key used by issuer to sign the assertion.

-c

This indicate that the public key certificate for trusted SAML issuer is installed. If
this is not specified in the command line then GWWS will not be able to use public
key to verify the signature if such signing is done if the binary security token is not
attached to the SOAP message.
SALT Reference Guide 17

-p

The password for accessing the key file. This is not optional and must be the same
password given when this key file is created. This tool will prompt user to enter
the password if this option is not given as part of command line argument.

Example(s):
Here is an example to add a shared secret to the GWWS record in the key file that
is protected by password "password".
saml modify -g -s mysecret -p password

The following is an example to add or modify a shared secret to a trusted issuer
record in the key file that is protected by password "password".
saml modify -i -l abc -s accessabc -p password

The following is an example to remove a shared secret from a trusted issuer in the
key file that is protected by password "password".
saml modify -i -l abc -s -p password

If the modify operation target is trusted issuer then only one of the "-n" and "-l" options is
needed because both issuer name and local reference must be unique in the key file. If both
"-n" and "-l" options are given then the record must match both; if no record matches both
criteria then the operation will fail. If issuer is the target, i.e. "-i" option is given, and "-c"
is not given then it will remove the certificate information from the record. If issuer is the
target and "-c" is given then it will add the certificate information if it is not in the record
originally.

 If the "-s" option is given and the existing record already contains shared secret then the
new shared secret will replace the old one. The "-s" option must be given with shared
secret value specified. When the "-s" option is given with shared secret and the existing
record does not have shared secret, then shared secret will be added to the record.

saml delete {-g|-i {-n issuer_name | -l issuer_local_id}} [-p password]

"saml delete" is used to delete an entry from an existing GWWS key file. The key file must
have the name "saml_key_meta" in the current working directory. The entry can be either
the GWWS entry or trusted issuer entry. Either "-g" or "-i" option must be given.

-g

Delete a GWWS entry from the key file. If the GWWS record does not exists then
no operation will be performed. When this option is given then "-n" and "-l"
options are not allowed.

-i

Delete a trusted SAML issuer entry from key file. When this option is specified
then either "-n" or "-l" option for SAML issuer name must also be specified.
18 SALT Reference Guide

wsadmin
-n

The trusted SAML issuer name as it appears in the "issuer" subelement or attribute
of a SAML assertion.

-l

The local reference id of the trusted issuer. It is a short-hand name for easier
reference.

-p

The password for accessing the key file. This is not optional and must be the same
password given when this key file is created. This tool will prompt user to enter
password if this option is not part of command line argument.

Example(s):
Here is an example to delete a GWWS record from a key file that is protected by
password "password".
saml delete -g -p password

The following is an example to delete a trusted issuer record from a key file that is
protected by password "password".
Saml add -i -l abc -p password

verbose (v) [{off | on}]

Produces output in verbose mode. If no option is given, the current setting is toggled, and
the new setting is printed. The initial setting is off.

! shellcommand

Escapes to the shell and executes shell command.

! !

Repeats previous shell command.

[text]

Specifies comments. Lines beginning with # are ignored.

<CR>

Repeats the last command.

Example(s)

1. The following command inspects run time statistics for both inbound and outbound service
on GW2:

wsadmin
> gws -i GW2
GWWS Instance : GW2

Inboud Statistics :
SALT Reference Guide 19

Request Response Succ : 3359
Request Response Fail : 0

Oneway Succ : 0
Oneway Fail : 0

Total Succ : 3359

Total Fail : 0

Avg. Processing Time : 192.746 (ms)

Outboud Statistics :

Request Response Succ : 4129
Request Response Fail : 0

Oneway Succ : 0
Oneway Fail : 0

Total Succ : 4129
Total Fail : 0

Avg. Processing Time : 546.497 (ms)

 Total request Pending : 36

Outbound request Pending : 0

 Active Thread Number : 141

2. The following command inspects run time statistics for the ToUpperWS service on GW1 and
gets output in verbose mode.

wsadmin
> > verbose
Verbose now on.
20 SALT Reference Guide

wsdlcv t
> gws -i GW1 -s ToUpperWS
GWWS Instance : GW1

Service : ToUpperWS

Outboud Statistics :

Oneway Succ : 0
Oneway Fail : 0

 Avg. Processing Time : 0.000 (ms)

See Also
GWWS(5)

SALT Administration Guide

wsdlcvt
Name

wsdlcvt – WSDL document converter.

Synopsis
wsdlcvt -i WSDL_URL -o output_basename [-f] [-m] [-v] [-y] [-w][-sh] [-sp]

Description
wsdlcvt is used to convert an existing WSDL 1.1 document to a Metadata Input File, FML32
mapping File and SALT Web Service Definition File (WSDF). It is a wrapper script for
wsdl2mif.xsl, wsdl2fml32*.xsl and wsdl2wsdf.xsl for Xalan. Apache Xalan 2.7 libraries
are bundled with SALT product.

JRE 1.5 or higher is required to run wsdlcvt.

Parameters
wsdlcvt accepts the following parameters:

-i

Specifies the URL of the input WSDL document. The URL can be a local file path or a
downloadable HTTP URL link.
SALT Reference Guide 21

../admin/index.html

-o

Specifies the output files basename. The following suffixes are appended after the
basename:

wsdlcvt accepts the following optional parameters:

-f

Forces generation of service metadata information necessary for the conversion of Oracle
Tuxedo fields into/from XML attributes (which is not done by default).

-y

Specifies that all the output destination files are overwritten without prompting if they
exist. If this parameter is not specified, a prompt message is output.

-m

Specifies that the “xsd:string” data type is mapped to an FML32 typed buffer Tuxedo
FLD_MBSTRING data type. If this parameter is not specified, Tuxedo FLD_STRING data
type is mapped by default.

-v

Specifies that wsdlcvt works in verbose mode. In particular, it shows context information
in the message and output context as FML32 field comments.

-w

If the given WSDL document is published using Microsoft .NET WCF, and it includes the
wsdl:import tag, this parameter is specified to ensure that it is correctly handled by
wsdlcvt.

-sh

Specifies the SOCKS proxy host name to use when a network connection needs to be
established (for instance to download the WSDL document from a remote host). This can
be a hostname or an IP address. If the proxy name is incorrect and a connection can not
be established, wsdlcvt will attempt to connect directly.

Table 2 wsdlcvt-Created File Suffixes

Suffix Output File

.mif Tuxedo Service Metadata Input File

.fml32 FML32 Field Table Definition File

.wsdf SALT Web Service Definition File

.xsd The WSDL Document embedded XML Schema File
22 SALT Reference Guide

ws loadcf
-sp

Specifies the SOCKS proxy host port number to use if necessary in conjunction with the
-sh option. The default value is 1080.

Environment Variable(s)
The TUXDIR and LANG environment variables must be set correctly.

The PATH environment variable must be set appropriately to execute “java”.

Diagnostics
Error, warning or information messages are output to standard output.

Example(s)
The following command converts the local WSDL file, sample.wsdl.

wsdlcvt -i sample.wsdl -o sample

The following command converts a WSDL document from a HTTP URL link. The
“xsd:string” data type is mapped to the Tuxedo FLD_MBSTRING field type.

wsdlcvt -i http://api.google.com/GoogleSearch.wsdl -o GSearch -m

See Also
Creating the Oracle Tuxedo Service Metadata Repository

field_tables(5)

SALT Web Service Definition File Reference

wsloadcf
Name

wsloadcf – Reads SALT Deployment file and other referenced artifacts. Loads a binary
SALTCONFIG file.

Synopsis
Usage 1: wsloadcf [-n][-y][-D loglevel] saltdeploy_file
Usage 2: wsloadcf [-n][-y][-D loglevel] -1 [-s rpc|doc]
[-v 1.1|1.2] salt_1.1_config
SALT Reference Guide 23

../admin/intro.html#wp1034616
../../../tuxedo/docs12cr2/rf5/index.html
../../../tuxedo/docs12cr2/ads/admrp.html
../ref/wsdf.html

Description
wsloadcf reads a SALT deployment file and other referenced files (WSDF files, WS-Policy
files), checks the syntax, and optionally loads a binary SALTCONFIG file. The SALTCONFIG
environment variable points to the SALTCONFIG file where the information should be stored. The
generated SALTCONFIG file is necessary to boot GWWS servers.

wsloadcf accepts the following optional parameters:

-n

Do validation only without generating the SALTCONFIG file.

-y

After checking the syntax, tmloadcf checks whether: (a) the file referenced by
SALTCONFIG exists; (b) it is a valid Oracle Tuxedo system file system; and (c) it contains
SALTCONFIG tables. If these conditions are not true, wsloadcf prompts you to indicate
whether you want the command to create and initialize SALTCONFIG.
Initialize SALTCONFIG file: path [y, q]?

Prompting is suppressed if the -y option is specified on the command line.

-D

Used to specify the configuration parsing log level.

For SALT 1.1 backward compatibility, wsloadcf can also read a SALT 1.1 configuration file.
Besides generating the SALTCONFIG binary file, wsloadcf also generates one SALT Web
Service Definition File (WSDF) and one SALT Deployment file according to the given SALT
1.1 configuration file.

-1

Turns on the SALT 1.1 compatible mode. To pass the SALT 1.1 configuration file to
wsloadcf, you must specify this flag first.

-v

Only takes effect when a SALT 1.1 configuration file is used. This option is used to
specify which SOAP version is applied to the generated WSDF file.

-s

Only takes effect when a SALT 1.1 configuration file is used. This option is used to
specify which SOAP message style is applied to the generated WSDF file.

Environment Variables
The SALTCONFIG environment variable must be set before executing wsloadcf.
24 SALT Reference Guide

wsun loadcf
Diagnostics
If a syntax error is detected in the given configuration files, an “ERROR” or “FATAL” message
indicating that problem is printed to the console, and no information is updated in the
SALTCONFIG file. wsloadcf exits with exit code 1.

A “WARN” message is printed to the console if: (1) configuration files may result in a potential
run-time risk or (2) default values are used because they are not specified in the configuration
files. “WARN” messages do not interrupt wsloadcf execution.

Upon successful completion, wsloadcf exits with exit code 0. If the SALTCONFIG file is updated,
a userlog message is generated.

See Also
SALT Web Service Definition File Reference

SALT Deployment File Reference

wsunloadcf
Name

wsunloadcf – Reads a binary SALTCONFIG file, creates a SALT deployment file and other
referenced files (WSDF files, WS-Policy files).

Synopsis
Usage: wsunloadcf

Description
wsunloadcf reads a binary SALTCONFIG file, creates a SALT deployment file and other
referenced files (WSDF files, WS-Policy files). The SALTCONFIG environment variable points to
the SALTCONFIG file where the information should be stored.

Environment Variables
The SALTCONFIG environment variable must be set before executing wsunloadcf.

See Also
SALT Web Service Definition File Reference

SALT Deployment File Reference
SALT Reference Guide 25

../ref/deploy.html
../ref/wsdf.html
../ref/deploy.html
../ref/wsdf.html

26 SALT Reference Guide

A P P E N D I X A
SALT Web Service Definition File
Reference
The following sections provide SALT Web Service Definition File (WSDF) reference
information:

Overview

SALT WSDF Format

XML Schema

SALT WSDF Examples

SALT WSDF Element Descriptions

Overview
The SALT Web Service Definition File (WSDF) is an XML-based file used to define SALT Web
service components (for example, Web Service Bindings, Web Service Operations, Web Service
Policies, and so on). WSDF is a SALT specific representation of the Web Service Definition
Language data model. There are two WSDF types:

Native WSDF (Tuxedo generated)

A native WSDF is composed manually. You must define a set of Tuxedo services and how
they are exposed as Web services in a native WSDF. The native WSDF is similar to the SALT
1.1 configuration file.

Note: A native WSDF is the input file used by the SALT WSDL generator (tmwsdlgen).
SALT Reference Guide A-1

Non-native WSDF (Externally generated)

A non-native WSDF is generated from an external WSDL file via the SALT WSDL
converter (wsdlcvt). In most cases, you do not need to change the generated WSDF
except for configuring advanced features.

 For more information, see tmwsdlgen and wsdlcvt in the SALT Command Reference.

SALT WSDF Format
Figure A-1 shows a graphical representation of the WSDF format.
A-2 SALT Reference Guide

SALT WSDF Fo rmat
Figure A-1 SALT Web Service Definition File Format
SALT Reference Guide A-3

<Definition>

<WSBinding> *

<Servicegroup>

<Policy> *

<Service> *

<Policy> *

<Input> ?

<Msghandler> ?

<Output> ?

<Msghandler> ?

<Fault> ?

<Msghandler> ?

<Property> *

<SOAP>

<AccessingPoints>

<Endpoint> *

* : Zero or more
+: One or more

No annotation: Exactly one

? : Zero or one

<Realm> ?
A-4 SALT Reference Guide

XML Schema
XML Schema
An XML Schema is associated with the WSDF. The XML Schema file that describes the WSDF
format is located in the following directory: $TUXDIR/udataobj/salt/wsdf.xsd.

SALT WSDF Examples
Listing A-1 and Listing A-2 show native and non-native WSDF examples.

Listing A-1 Native WSDF (Composed Manually)

<Definition name="bankapp"
 xmlns=http://www.bea.com/Tuxedo/WSDF/2007 >
 <WSBinding id="bankapp_binding" >
 <Servicegroup id="bankapp">
 <Policy location="/home/user/rm.xml" />
 <Service name="inquiry" />
 <Service name="deposit" />
 </Servicegroup>
 <SOAP>
 <AccessingPoints>
 <Endpoint id="HTTP1" address="http://myhost:7001" />
 <Endpoint id="HTTPS1" address="https://myhost:7002/bankapp" />
 </AccessingPoints>
 </SOAP>
 </ WSBinding >
</Definition>

Listing A-2 Non-Native WSDF (Generated from an External WSDL Document)

<Definition name="myWebservice"
 wsdlNamespace="http://www.example.org/myWebservice"
 xmlns=http://www.bea.com/Tuxedo/WSDF/2007 >
 <WSBinding id="A_binding">
 <Servicegroup id="portType">
 <Service name="operation_1" soapAction="op1" />
SALT Reference Guide A-5

 <Service name="operation_2" soapAction="op2" />
 </Servicegroup>
 <SOAP version="1.1" style="rpc" use="encoded">
 <AccessingPoints>
 <Endpoint id="example_http_port"
 address="http://www.example.org/abc" />
 <Endpoint id="example_https_port"
 address="https://www.example.org/abcssl" />
 </AccessingPoints>
 </SOAP>
 </WSBinding>
 <WSBinding id="B_binding">
 <Servicegroup id="portType">
 <Service name="operation_3" soapAction="op3" />
 <Service name="operation_4" soapAction="op4" />
 </Servicegroup>
 <SOAP version="1.2">
 <AccessingPoints>
 <Endpoint id="another_http_port"
 address="http://www.example.org/def" />
 </AccessingPoints>
 </SOAP>
 </WSBinding>
</Definition>

SALT WSDF Element Descriptions
WSDF format elements and their attributes are listed and described in the following section.

<Definition>
The WSDF file root element.
A-6 SALT Reference Guide

SALT WSDF E lement Desc r ip t i ons
<WSBinding>
Defines concrete protocol binding information. Zero or more WSBinding objects can be specified
in one WSDF file.

Native WSDF: you can set SOAP version, encoding style, several endpoints for Web Service
Client connection through sub element <SOAP> and a set of Tuxedo services to be exposed for
invocation through sub element <Servicegroup>.

Non-native WSDF: each SOAP binding object (i.e., wsdl:binding object with soap:binding
extension) in the external WSDL document is translated into one WSBinding object.

Table A-1 <Definition> Attributes

Attribute Description Required

name The WSDF name. This attribute value may contain a maximum of 30
characters (excluding the terminating NULL character).

Native WSDF: you must manually provide a distinct application
name.

Non-native WSDF: this value is the same as the WSDL converter
(wsdlcvt) command line input parameter “output_basename.

Yes

wsdlNamespace The corresponding WSDL document target namespace for the
WSDF.

Native WSDF: you can optionally specify a distinct URI string so
that the generated WSDL can use this as the target namespace. If not
specified, the default WSDL target namespace is as follows:
"urn:<wsdf_name>.wsdl". For example, if the WSDF name is
“simpapp”, then the default WSDL target namespace is
“urn:simpapp.wsdl”.

Non-native WSDF: the value is the WSDL target namespace of the
external WSDL document.

No
SALT Reference Guide A-7

<Servicegroup>
Defines a Servicegroup object for one WSBinding object. Each WSBinding object must have
exactly one Servicegroup. The Servicegroup object is used to encapsulate a set of Tuxedo
services.

<Service>
Specifies a service for the WSBinding object.

Native WSDF: each service is a Tuxedo service.

Non-native WSDF: each service represents a converted Tuxedo service from a wsdl:operation
object defined in the external WSDL document.

Table A-2 <WSBinding> Attributes

Attribute Description Required

id Identifies the WSBinding object. The value must be unique within the
WSDF. This attribute value may contain a maximum of 78 characters
(excluding the terminating NULL character).

Native WSDF: the value is specified by customers and is used as the
wsdl:binding name in the generated WSDL document.

Non-native WSDF: the value is the wsdl:binding name defined in
the external WSDL document.

Yes

Table A-3 <Servicegroup> Attributes

Attribute Description Required

id Specifies the service group id. This attribute value may contain a
maximum of 78 characters (excluding the terminating NULL
character).

Native WSDF: the value is specified by customers and is used as the
wsdl:portType name in the generated WSDL document.

Non-native WSDF: the value is the wsdl:portType name
defined in the external WSDL document.

Yes
A-8 SALT Reference Guide

SALT WSDF E lement Desc r ip t i ons
<Input>
Specifies Input message attributes for a particular service. This element is optional.

Table A-4 <Service> Attributes

Attribute Description Required

name Specifies the service name. This attribute value may contain a
maximum of 255 characters (excluding the terminating NULL
character).

Native WSDF: the service name value is used as the
wsdl:operation name in the generated WSDL document.

Non-native WSDF: the service name is equal to the
wsdl:operation name defined in the external WSDL document.

Yes

tuxedoRef An optional attribute used to reference the service definition in the
Tuxedo Service Metadata Repository.

If not specified, attribute "name" value is used as the reference
value.

No

soapAction Specifies the service soapAction attribute. This is a non-native
WSDF attribute. It is used to save the soapAction setting for each
wsdl:operation defined in the external WSDL document.

Note: Do not specify this attribute for a native WSDF.

No

namespace Specifies service namespace attribute.

For non-native WSDF, it is used to save the namespace setting for
each wsdl:operation defined in the external WSDL document.

For native WSDF, all elements in SOAP message response use this
namespace unless "paramschema" is specified for the matched
parameter.

No
SALT Reference Guide A-9

<Output>
Specifies Output message attributes for a particular service. This element is optional.

<Fault>
Specifies Fault message attributes for a particular service. This element is optional.

Table A-5 <Input> Attributes

Attribute Description Required

name Specifies the service input message name attribute. This is a
non-native WSDF attribute. It is used is used to save the name for the
input wsdl:message defined in the external WSDL document.

Note: Do not specify this attribute for a native WSDF.

No

wsaAction Specifies the service input message wsaAction attribute. This is a
non-native WSDF attribute. It is used is used to save the wsaAction
attribute of the input wsdl:message defined in the external
WSDL document.

Note: Do not specify this attribute for a native WSDF.

No

Table A-6 <Output> Attributes

Attribute Description Required

name Specifies the service output message name attribute. This is a
non-native WSDF attribute. It is used to save the name for the output
wsdl:message defined in the external WSDL document.

Note: Do not specify this attribute for a native WSDF.

No

wsaAction Specifies the service output message name attribute. This is a
non-native WSDF attribute. It is used to save the wsaAction attribute
of the output wsdl:message defined in the external WSDL
document.

Note: Do not specify this attribute for a native WSDF.

No
A-10 SALT Reference Guide

SALT WSDF E lement Desc r ip t i ons
<Msghandler>
Specifies a customized message conversion handler. Optional for <Input>, <Output> and/or
<Fault> elements of any service. The value of this element is the handler name, which may
contain a maximum of 30 characters (excluding the terminating NULL character).

The GWWS server looks for the message conversion handler from all known message conversion
plug-in shared libraries using the handler name.The message conversion handler allows you to
develop customized Tuxedo buffer and SOAP message payload transformation functions to
replace the default GWWS message conversions.

For more information, see “Programming Message Conversion Plug-ins in the SALT
Programming Web Services.

<Policy>
References one Web Service Policy file applied to one of the following two levels:

<Servicegroup> level

<Service> level

At most, 10 Web Service policies can be referenced for each object.

Table A-7 <Fault> Attributes

Attribute Description Required

name Specifies the service fault message name attribute. This is a
non-native WSDF attribute. It is used to save the name for the fault
wsdl:message defined in the external WSDL document.

Note: Do not specify this attribute for a native WSDF.

No

wsaAction Specifies the service fault message wsaAction attribute. This is a
non-native WSDF attribute. It is used to save the wsaAction attribute
of the fault wsdl:message defined in the external WSDL
document.

Note: Do not specify this attribute for a native WSDF.

No
SALT Reference Guide A-11

../prog/plugin.html#wp1043350

<Property>
Specifies SALT specific properties for each service object.

Table A-8 <Policy> Attributes

Attribute Description Required

location Specifies the local file path for the referenced WS-Policy file. This
attribute value may contain a maximum of 256 characters (excluding the
terminating NULL character).

Specifically, SALT pre-defines WS-Policy template files for typical
WS-* scenarios. These files can be found under the
$TUXDIR/udataobj/salt/policy directory. You can reference
these template files using the string format
“salt:<template_file_name>”.

For example, if you want to reference SALT WS-SecurityPolicy 1.0
template file “wssp1.0-signbody.xml”, you should define the
following XML snippet in the WSDF file:

<Policy location=”salt:wssp1.0-signbody.xml” />

Yes

use Specifies if the WS-Policy file is applied to the input message, output
message, fault message, or the combination of the three. If multiple
messages are set, use a space as the delimiter.

For example, if you want to configure a WS-Policy file “mypolicy.xml”
to be applied to “input” and “output” messages, you should define the
following XML snippet in the WSDF file:

<Policy location=”mypolicy.xml” use=”input output”/>

SALT limits the applicable messages for each supported WS-Policy
assertion.

For more information, see the following sections:
• “Configuring Advanced Web Service Messaging Features” in the

SALT Configuration Guide

• “Configuring Message-Level Web Service Security” in the SALT
Configuration Guide

• SALT WS-ReliableMessaging Policy Assertion Reference
• SALT WS-SecurityPolicy Assertion 1.2 Reference
• SALT WS-SecurityPolicy Assertion 1.0 Reference

No
A-12 SALT Reference Guide

../config/index.html
../config/index.html

SALT WSDF E lement Desc r ip t i ons
The following table lists all properties that can be specified for each service object.

<SOAP>
Specifies SOAP protocol information for the WSBinding object. SOAP version, message style
accessing endpoints are specified in this element.

Table A-9 <Property> Attributes

Attribute Description Required

name Specifies the property name. Table A-10 lists all the GWWS
server properties.

Yes

value Specifies the property value. Yes

Table A-10 <Property> Name List

Property Description Values

async_timeout Outbound service: Specifies a time setting to
wait for SOAP response.

Inbound service: No behavior impact.

(0-32767] (sec)

Default: 60 secs.

disableWSAddressing Outbound service: Disables explicit Web Service
Addressing requests with this property.

Inbound service: No behavior impact.

{True|False}

Default: False

Table A-11 <SOAP> Attributes

Attribute Description Required

version Specifies SOAP version for this WSBinding object. The valid values
are “1.1” and “1.2”. If not specified, "1.1" is used.

No
SALT Reference Guide A-13

Note: In the current SALT release, only “rpc/encoded” and “document/literal” are
supported.

<AccessingPoints>
Specifies the endpoint list for the WSBinding object. Each sub element <Endpoint> represents
one particular endpoint.

There is no attribute for this element.

<Endpoint>
Specifies each accessing endpoint for the WSBinding object.

style Specifies SOAP message style for this WSBinding object. The valid
values are “rpc” and “document”. If not specified, "document"
is used.

No

use Specifies SOAP message encoding style for this WSBinding object.
The valid values are “encoded” and “literal”.

If not specified explicitly, this value is automatically selected
according to “style” value. If “style” is “rpc”, then
“encoded” is used; if “style” is “document”, then “literal”
is used.

No

Table A-12 <Endpoint> Attributes

Attribute Description Required

id Specifies a unique endpoint id value within the WSBinding object.
This attribute value may contain a maximum of 78 characters
(excluding the terminating NULL character).

Yes

address Specifies the endpoint address. The address value must use the
following format:

"http(s)://<host>:<port>/<context_path>"

Note: Two endpoints cannot be specified with exact the same
address URL value.

Yes

Table A-11 <SOAP> Attributes

Attribute Description Required
A-14 SALT Reference Guide

SALT WSDF E lement Desc r ip t i ons
<Realm>
Specifies the HTTP Realm attribute of an HTTP and/or HTTP/S endpoint. If this element is
configured for one endpoint, the GWWS tries to incorporate HTTP basic authentication
information in the request messages when issuing outbound calls through this endpoint.

For more information, see “Configuring Transport Level Security” in the SALT Configuration
Guide.

Note: This element only works for non-native (external) WSDF files.
SALT Reference Guide A-15

../config/index.html

A-16 SALT Reference Guide

A P P E N D I X B
SALT Deployment File Reference
The following sections provide SALT Deployment File reference information:

Overview

SALT SALTDEPLOY Format

XML Schema

Overview
The SALT Deployment File (SALTDEPLOY) is an XML-based file used to define SALT GWWS
server deployment information on a per Tuxedo machine basis. SALTDEPLOY does the following:

lists all necessary Web Service Definition Files (WSDF)

specifies how many GWWS servers are deployed on a Tuxedo machine

associates inbound and outbound Web Service access endpoints for each GWWS server.

SALTDEPLOY also provides a system section to configure global resources (for example
certificates, plug-in load libraries, and so on).

SALT SALTDEPLOY Format
Figure B-1 shows a graphical representation of the SALT SALTDEPLOY file format.
SALT Reference Guide B-1

Figure B-1 SALT Deployment File Format
B-2 SALT Reference Guide

XML Schema
XML Schema
An XML Schema is associated with a SALT SALTDEPLOY file. The XML Schema file that
describes the SALT SALTDEPLOY file format is located in the following directory:
$TUXDIR/udataobj/salt/saltdep.xsd.

SALT SALTDEPLOY Example

SALT SALTDEPLOY Element Descriptions

<Deployment>

SALT SALTDEPLOY Example
Listing B-1 shows a sample SALT SALTDEPLOY File.

Listing B-1 SALT SALTDEPLOY File Example

<Deployment xmlns="http://www.bea.com/Tuxedo/SALTDEPLOY/2007">

 <WSDF>

 <Import location="/home/myapp/bankapp.wsdf" />

 <Import location="/home/myapp/amazon.wsdf" />

 </WSDF>

 <WSGateway>

 <GWInstance id="GW1">

 <Inbound>

 <Binding ref="bankapp:bankapp_binding">

 <Endpoint use="http1"/>

 <Endpoint use="https1" />

 </Binding>

 </Inbound>

 <Outbound>

 <Binding ref="amazon:default_binding"/>
SALT Reference Guide B-3

 </Outbound>

 <Properties>

 <Property

 name="socksAddrList"

 value="proxy.server.com,10.123.10.10:1080"/>

 </Properties>

 </GWInstance>

 </WSGateway>

 <System>

 <Certificate>

 <PrivateKey>/home/user/cert.pem</PrivateKey>

 </Certificate>

 <Plugin>

 <Interface library="/home/user/mydatahandler.so" />

 </Plugin>

 </System>

</Deployment>

SALT SALTDEPLOY Element Descriptions
SALTDEPLOYF format elements and their attributes are listed and described in the following
section.

<Deployment>
The SALTDEPLOY file root element.

There is no attribute for this element.

Three sections must be defined within the <Deployment> element:

<WSDF> elements
B-4 SALT Reference Guide

XML Schema
<WSGateway> element

<System> element.

There can be only one <Deployment> element defined in a SALTDEPLOY file.

<WSDF>
Top element that encapsulates all imported WSDF files.

There is no attribute for this element.

<Import>
Specifies the WSDF to be imported in the SALTDEPLOY file. Multiple WSDF can be imported at the
same time. Each WSDF file can only be imported once. Multiple WSDF with the same WSDF name
cannot be imported in the same SALTDEPLOY file.

<WSGateway>
Top element that encapsulates all GWWS instance definitions.

There is no attribute for this element.

<GWInstance>
Specifies a single GWWS instance.

Table B-1 <Import> Attributes

Attribute Description Required

location Specifies the WSDF local file path. Yes

Table B-2 <GWInstance> Attributes

Attribute Description Required

id Specifies the GWWS identifier. This attribute value may contain
a maximum of 12 characters (excluding the terminating NULL
character). The identifier value must be unique within the
SALTDEPLOY file.

Yes
SALT Reference Guide B-5

<Inbound>
Specifies inbound WSBinding objects for the GWWS server. Each inbound WSBinding object is
specified using the <Binding> sub element.

There is no attribute for this element.

<HTTP>
Specifies a list of services accessible in REST mode. All Oracle Tuxedo service names specified
in this element are callable using HTTP or REST mechanisms. Any URL specifying a service not
present on this list results in a 404 error for the caller. Any URL specifying a service present on
this list (for which an Oracle Tuxedo service is not advertised), results in a 451 error for the caller.

There is no attribute for this element.

<Network>
This element contains two attributes specifying http or https (for SSL), HTTP/REST listening
endpoints.Only one <Network> element is allowed per GWWS instance.The http and https
elements are optional, but at least one must be specified.The http and https attributes are
constructed as follows:

<host>: The name or IP address of the HTTP/REST listening endpoint.

<port>: The port value of the HTTP/REST listening endpoint.

All HTTP/REST requests are performed by the same <host>:<port> combination (i.e., it is not
possible to use more than one such combination per gateway, per protocol (http and https).

Table B-3 <Network> Attributes

Attribute Description Required

http HTTP host and port listening endpoint for REST requests.
Format is a string containing a <host>:<port> pair
corresponding to:

<host> = name or IP address of the HTTP/REST listening
endpoint.

<port> = port value of the HTTP/REST listening endpoint.

No*

https SSL HTTP host and port listening endpoint specification.

Same format as http attribute.

No*
B-6 SALT Reference Guide

XML Schema
* While not required, the <Network> element must contain either an http or https
attribute.

<Service>
Specifies a single service callable using HTTP/REST mechanisms. The actual Oracle Tuxedo
service called is further qualified by an HTTP method as specified using the <Method> element.

<Method>
Specifies the HTTP method mapping to Oracle Tuxedo services. This is designed to model
CRUD methods (Create, Read, Update, Delete).

Table B-4 <Service> Attributes

Attribute Description Required

name Name of Tuxedo service being advertised.

Note: This is not the actual Oracle Tuxedo service configured
using the <Method> element.

Yes

method HTTP method to be employed in the corresponding call: 'GET',
'DELETE', 'POST' or 'PUT'.

outputbuff
er

Tuxedo buffer type/optionally subtype used for response
message conversion. Values will be the same as all existing
Tuxedo buffer types. For VIEW/VIEW32 buffer types, the
notion of subtype will be conveyed by using the notation:
{VIEW|VIEW32}/<Subtype>, for example:
'VIEW32/customer'.

address URL of HTTP service being accessed. Supported schemes are
'http' and 'https'.

content-ty
pe

'JSON' for JSON mapping, and 'XML' for XML mapping. This
is optional and only valid for
VIEW/VIEW32/X_C_TYPE/X_COMMON and FML/FML32
type buffers.
SALT Reference Guide B-7

<Outbound>
Specifies outbound WSBinding objects for the GWWS server. Each outbound WSBinding object is
specified using the <Binding> sub element.

There is no attribute for this element.

<Binding>
Specifies a concrete WSBinding object as either an inbound or outbound binding, depending on
the parent element.

Table B-5 <Service> Attributes

Attribute Description Required

name Method identifier, among GET, PUT, POST or DELETE. Any
other value results in a configuration error.

Yes

service Name of the Oracle Tuxedo service being mapped. Yes

inputbuffer Oracle Tuxedo buffer type/optionally subtype used for
input conversion. Values are the same as all existing Oracle
Tuxedo buffer types. For VIEW/VIEW32 buffer types, the
notion of subtype is conveyed by using the notation:
{VIEW|VIEW32}/<Subtype>, for example:
VIEW32/customer.

Yes

reposservice Reference to a metadata repository entry. This is used to
associate interface data with an HTTP/REST service and
method. One use is for the configuration tool to generate
automatic test code based on service metadata (interface).

No

Table B-6 <Binding> Attributes

Attribute Description Required

ref Specifies a concrete WSBinding object using the following
Qualified Name format:

“<WSDF_name>:<WSBinding_id>”

Yes
B-8 SALT Reference Guide

XML Schema
Note: Please note the following maximum WSBinding object limitations for each GWWS
server:

Each GWWS server may reference at most 64 inbound WSBinding objects.

Each GWWS server may reference at most 128 outbound WSBinding objects.

For TCP/IP addresses, one of the following formats is used as shown in Table B-7.

For more information, see TMUSEIPV6 in the TUXENV(5) environment variable listing found in
the Tuxedo 10g R3 Reference Guide, Section 5 - File Formats, Data Descriptions, MIBs, and
System Processes Reference.

<Endpoint>
Specifies a single WSBinding objects endpoint reference.

If the referenced endpoint is specified as an inbound endpoint, the GWWS server creates the
corresponding HTTP and/or HTTPS listen endpoint. At least one inbound endpoint must be
specified for one inbound WSBinding object.

If the referenced endpoint is specified as an outbound endpoint, the GWWS server creates HTTP
and/or HTTPS connections per SOAP requests for the outbound WSBinding object.

If an outbound endpoint is not specified for the outbound WSBinding object, the first 10
endpoints (at most) are auto-selected.

The referenced endpoint must already be defined in the WSDF.

Table B-7 Ipv4 and IPv6 Address Formats

IPv4 IPv6

//IP:port //[IPv6 address]:port

//hostname:port_number //hostname:port_number

//#.#.#.#:port_number Hex format is not
supported

Table B-8 <Endpoint> Attributes

Attribute Description Required

use The referenced endpoint id defined in the WSDF. Yes
SALT Reference Guide B-9

Note: Please note the following maximum endpoints limitations for each GWWS server:

Each GWWS server may create at most 128 inbound endpoints in all inbound
WSBinding objects to accept SOAP requests.

Each GWWS server may create connectivity with at most 256 outbound endpoints
in all outbound WSBinding objects.

<WSAddressing>
Specifies if Web Service Addressing is enabled for the outbound WSBinding object.

If this element is present, by default all SOAP messages are sent out with a Web Service
Addressing message header.

The <WSAddressing> sub element <Endpoint> must be specified for the listen endpoint address
if this element is present.

<Endpoint>
Specifies the WS-Addressing listen endpoint address for the referenced outbound WSBinding
object.

Table B-9 <WSAddressing> Attributes

Attribute Description Required

version Select WS-Addressing on-the-wire version to use 200408 for
the "submission" version, and 200508 for version 1.

If not defined, version defaults to 200408

No

Table B-10 <Endpoint> Attributes

Attribute Description Required

address Specifies the WS-Addressing listen endpoint address.

The address value must be in the following format:

"http(s)://<host>:<port>/<context_path>"

The GWWS server creates listen endpoints and usage for
receiving WS-Addressing SOAP response messages.

Yes
B-10 SALT Reference Guide

XML Schema
<TLogDevice>
One attribute "location" describes the location of the Transaction file. This is required if WS-TX
transaction support is required.

<TLogName>
 One attribute "id" describes the name of the transaction log inside a Transaction file. This is
required if WS-TX transaction support is required.

<WSATEndpoint>
 One attribute "address" describes the WS-AT protocol end point.

<MaxTran>
One attribute "value" describes the maximum number of concurrent WS-TX transactions
allowed. This is bounded by Oracle Tuxedo MAXGTT.

<Properties>
Top element that encapsulates all GWWS server property settings using the <Property> sub
element.

<Property>
Specifies one GWWS property.

Table B-11 <Properties> Attributes

Attribute Description Required

socksAddrL
ist

If necessary, endpoints can be grouped by GWInstance to
achieve separation between proxy-using endpoints and
non-proxy-using ones.

Value: String type containing a list of proxy server URLs.

For example: proxy.server1.com,10.123.1.1:1080.

Yes
SALT Reference Guide B-11

Table B-12 <Property> Attributes

Attribute Description Required

name Specifies the property name. Table B-13 lists all the GWWS
server properties.

Yes

value Specifies the property value. Yes

Table B-13 GWWS <Property> List

Property Description Values

max_content_length Enables the GWWS server to deny the HTTP
requests when the content length is larger than
the property setting. If not specified, the GWWS
server does not check for it. The string value can
be one of the following three formats:
1. Integer number in bytes. No suffix means the

unit is bytes.
2. Float number in kilobytes. The suffix must

be ‘K’. For instance, 10.4K, 40K, etc.
3. Float number in megabytes. The suffix must

be ‘M’. For instance, 100M, 20.6M, etc.

The equivalent
byte size value
must be in [1
byte, 1G
byte] range.

thread_pool_size Specifies the maximum thread pool size for the
GWWS server.

Note: This value defines the maximum
possible threads that may be spawned in
the GWWS server. When the GWWS server
is running, the actual spawned threads
may be less than this value.

The valid value is
in [1, 1024].

Default value: 16

timeout Specifies the network time-out value, in seconds. The valid value is
in [1, 65535].

Default value:
300
B-12 SALT Reference Guide

XML Schema
<System>
Specifies global settings, including certificate information, plug-in interfaces.

<Certificate>
Specifies global certificate information using sub elements <PrivateKey>, <VerifyClient>,
<TrustedCert> and <CertPath>.

There is no attribute for this element.

Note: GWWS converts certificate to wallet when SEC_PRINCIPAL_PASSWORD is set. If only
X509 certicates are used under HTTP, then there is no conversion.

<PrivateKey>
When using an Oracle wallet, specifes the location of a directory that contains an Oracle Wallet.

max_backlog Specifies the backlog listen socket value. It
controls the maximum queue length of pending
connections by operating system.

Note: Generally no tuning is needed for this
value.

The valid value is
[1-255].

Default value: 16

enableMultiEncoding Toggles on/off multiple encoding message
support for the GWWS server. If multiple
encoding support property is turned off, only
UTF-8 HTTP / SOAP messages can be accepted
by the GWWS server.

The valid values
are “true”,
“false”.

Default value:
false

enableSOAPValidation Toggles on/off XML Schema validation for
inbound SOAP request messages if the
corresponding Tuxedo input buffer is associated
with a customized XML Schema.

The valid values
are “true”,
“false”.

Default value:
false

Table B-13 GWWS <Property> List

Property Description Values
SALT Reference Guide B-13

Notes: SALT does not have the concept of a security principal name like Oracle Tuxedo does,
so the Wallet is located in the specified directory and not in a subdirectory.

To configure server identity certificates (SALT deploy configuration file <PrivateKey>
element), it is required that the root certificate authority be present in the SSL
configuration file. Proper configuration is:

root CA certificate

intermediate certificate(s) (if any)

server certificate

server private key

in PEM format.

When using the legacy security credentials format, specifies the PEM format private key file. The
key file path is specified as the text value for this element. The server certificate is also stored in
this private key file. The value of this element may contain a maximum of 256 characters
(excluding the terminating NULL character).

With either security credential format, the password for the Oracle Wallet or the GWWS private
key file is specifed in the TUXCONFIG file using the
SEC_PRINCIPAL_PASSVAR="environment_variable_name" parameter. The TUXCONFIG file
must also set the SEC_PRINCIPAL_NAME="any_non-null_string(not_used)" parameter so
that SEC_PRINCIPAL_PASSVAR will be properly processed in the configuration file.

This element is mandatory if the parent <Certificate> element is configured.

<VerifyClient>
Specifies if Web service clients are required to send a certificate via HTTP over SSL connections.
The valid element values are "true" and "false".

This element is optional. If not specified, the default value is "false".

<TrustedCert>
Specifies the file name of the trusted PEM format certificate files. The value of this element may
contain a maximum of 256 characters (excluding the terminating NULL character).

This element is optional.
B-14 SALT Reference Guide

XML Schema
<CertPath>
Specifies the local directory where the trusted certificates are located. The value of this element
may contain a maximum of 256 characters (excluding the terminating NULL character).

This element is optional.

Note: If <VerifyClient> is set to “true”, or if WS-Addressing is used with SSL, trusted
certificates must be stored in the directory setting with this element.

<Plugin>
Specifies the global plug-in load library information. Each <Interface> sub element specifies
one plug-in library to be loaded.

There is no attribute for this element.

<Interface>
Specifies one particular plug-in interface or a plug-in library for all plug-in interfaces inside the
library.

Note: For more information about how to develop a SALT plug-in interface, see “Using SALT
Plug-ins” in the SALT Programming Web Services.

Table B-14 <Interface> Attributes

Attribute Description Required

library Mandatory. Specifies a local shared library file path. This
attribute value may contain a maximum of 256 characters
(excluding the terminating NULL character).

Yes

params Optional. Specifies a particular string value that is passed to the
library when initialized by the GWWS server at boot time. This
attribute value may contain a maximum of 256 characters
(excluding the terminating NULL character).

No
SALT Reference Guide B-15

../prog/plugin.html
../prog/plugin.html

B-16 SALT Reference Guide

A P P E N D I X C
SALT WS-AT Assertion Reference
The following sections provide SALT WS-AT Assertion reference information:

Overview

Policy File Example

Overview
WS-AT defines a policy assertion that allows requests to indicate whether an operation call must
or may be made as part of an Atomic Transaction. For the configuration impact of Atomic
Transaction policy assertions, see the "Configuration Changes" chapter.

Depending on the direction of the calls and meaning of the policy assertion setting, the runtime
inbound/outbound transaction behavior is as follows:

Inbound Transactions

For inbound transactions, there are no particular runtime behavior changes. The client
consuming the WSDL accepts transactions based on the configured value. Runtime
behavior is normal.

Outbound Transactions

– If an ATAssertion element without "Optional=true" is configured for a service, the
call has to be made in a transaction. If no corresponding XA transaction exists at the
time, the WS-TX transaction is initiated (but not associated with any Oracle Tuxedo
XA transactions). If an XA transaction exists, there is no change in behavior.
SALT Reference Guide C-1

SALT WS-AT Asser t ion Re fe rence
– If an ATAssertion element with "Optional=true" is configured for a service, an
outbound transaction context is requested only if a corresponding Oracle Tuxedo XA
transaction exists in the context of the call.

– If no ATAssertion element is configured for a service, the corresponding service call
is made outside of any transaction. When a call is made to an external Web Service in
the context of an Oracle Tuxedo XA transaction, the Web Service call does not
propagate the transaction. This allows excluding certain Web Service calls from a
global transaction, and represents the default for most existing Web Services calls that
do not support WS-TX.

Policy File Example
The existing policy file mechanism includes the addition of WS-AT policy elements.WS-AT
defines the ATAssertion element, with an Optional attribute, as follows:
/wsat:ATAssertion/@wsp:Optional="true"

Listing C-1 shows an example policy.xml file with an ATAssertion element.

Listing C-1 policy.xml File with an ATAssertion Element

<?xml version="1.0"?>

<wsp:Policy wsp:Name="TransactionalServicePolicy"

 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

 xmlns:wsat="http://docs.oasis-open.org/ws-tx/wsat/2006/06">

 <wsat:ATAssertion wsp:Optional="true"/>

</wsp:Policy>
C-2 SALT Reference Guide

A P P E N D I X D
SALT WS-ReliableMessaging Policy
Assertion Reference
The following sections provide SALT WS-ReliableMessaging (WS-RM) Policy Assertion
reference information:

Overview

WS-RM Policy Assertion Format

WS-RM Assertion File Example

WS-RM Assertion Element Description

Overview
SALT provides support for WS-ReliableMessaging (WS-ReliableMessaging 1.0, Feb., 2005
specification), which allows two Web Service applications running on different GWWS
instances to communicate reliably in the event of software component, system, or networks
failure.

A WS-Policy file containing WS-ReliableMessaging Policy Assertion is used to configure the
reliable messaging capabilities of a GWWS server on a destination endpoint. SALT supports the
WS-ReliableMessaging Policy Assertion specification to ensure the interoperability with Oracle
WebLogic 9.x / 10.

For more information, see “Configuring Advanced Web Service Messaging Features in the
SALT Configuration Guide.
SALT Reference Guide D-1

../config/config.html#wp1055943

SALT WS-Re l iab leMessaging Po l i c y Asse r t i on Refe rence
WS-RM Policy Assertion Format
Figure D-1 shows a graphical representation of the WS-ReliableMessaging Policy Assertion
format in a WS-Policy file.

Figure D-1 WS-ReliableMessaging Policy Assertion Format

WS-RM Assertion File Example
Listing D-1 shows a sample WS-Policy file that contains WS-RM policy assertion.

Listing D-1 Sample WS-ReliableMessaging Policy Assertion File

<?xml version="1.0"?>
<wsp:Policy wsp:Name="ReliableSomeServicePolicy"
 xmlns:wsrm="http://schemas.xmlsoap.org/ws/2005/02/rm"
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:beapolicy="http://www.bea.com/wsrm/policy">
 <wsrm:RMAssertion>

wsp:Policy

<wsrm:RMAssertion> ?

<wsrm:InactivityTimeout> ?

* : Zero or more
+: One or more

No annotation: Exactly one

? : Zero or one

<wsrm:AcknowledgementInterval> ?

<wsrm:BaseRetransmissionInterval> ?

<wsrm:ExponentialBackoff> ?

<beapolicy:Expires> ?

<beapolicy:QOS> ?
D-2 SALT Reference Guide

WS-RM Asser t i on E lement Descr ip t ion
 <wsrm:InactivityTimeout Milliseconds="600000" />
 <wsrm:BaseRetransmissionInterval Milliseconds="500"/>
 <wsrm:ExponentialBackoff />
 <wsrm:AcknowledgementInterval Milliseconds="2000" />
 <beapolicy:Expires Expires="P1D" />
 <beapolicy:QOS QOS="ExactlyOnce InOrder" />
 </wsrm:RMAssertion>
</wsp:Policy>

WS-RM Assertion Element Description
All RM assertions are optional, and if not specified, the default value are used. The following
definitions describe the RM assertion options.

<wsrm:InactivityTimeout>
Specifies the number of milliseconds, specified with the Milliseconds attribute, which defines an
inactivity interval. After time has elapsed, if the destination endpoint has not received a message
from the source endpoint, the destination endpoint may terminate current sequence due to
inactivity. The source endpoint can also use this parameter.

Sequences never time out by default.

<wsrm:AcknowledgementInterval>
Specifies the maximum interval, in milliseconds, in which the destination endpoint must transmit
a stand-alone acknowledgement.

This element is optional. If this element is not specified, There is no time limit by default.

<wsrm:BaseRetransmissionInterval>
Specifies the interval, in milliseconds, that the source endpoint waits after transmitting a message
and before it retransmits the message if it receives no acknowledgment for that message. This
value will apply to the GWWS server when it sends a response in an outbound sequence.

The default value is 20000 milliseconds.
SALT Reference Guide D-3

SALT WS-Re l iab leMessaging Po l i c y Asse r t i on Refe rence
<wsrm:ExponentialBackoff>
Specifies that the retransmission interval is adjusted using the exponential back off algorithm.
This value applies to the GWWS server when it sends a response in an outbound sequence.

<beapolicy:Expires>
Specifies the amount of time after which the reliable Web service expires and does not accept any
new sequence messages.

This element has a single attribute, Expires, whose data type is an XML Schema duration type.
For example, if you want to set the expiration time to one day, use the following:

< beapolicy:Expires Expires="P1D" />

The default value is never expire.

<beapolicy:QOS>
Specifies the delivery assurance. SALT supports the following assurances:

AtMostOnce - Messages are delivered at most once, without duplication. There is
possibility that some messages may not be delivered.

AtLeastOnce - Every message is delivered at least once. There is possibility that some
messages are delivered more than once.

ExactlyOnce - Each message is delivered exactly once, without duplication.

InOrder - Messages are delivered in the order that they were sent. This delivery assurance
can be combined with one of the preceding three assurances.

The default value is "ExactlyOnce InOrder".

<wsrm:RMAssertion>
Main WS-RM assertion that groups all the other assertions under a single element.

The presence of this assertion in a WS-Policy file indicates that the corresponding Web Service
application must be invoked reliably.
D-4 SALT Reference Guide

A P P E N D I X E
SALT WS-SecurityPolicy Assertion 1.2
Reference
The following sections provide SALT WSSP1.2 reference information:

Overview

SALT WSSP 1.2 Policy File Examples

SALT WSSP 1.2 Policy Templates

SALT WSSP1.2 Assertion Description

Overview
SALT implements part of WS-Security protocol version 1.1 for inbound services. Authentication
with UsernameToken and X509v3Token are supported. To describe how the authentication is
carried out, WS-SecurityPolicy is used in WSDL definition.

In order to communicate with Oracle WebLogic Release 10 via WS-Security 1.1, SALT
implements the counterparts of WS-SecurityPolicy (WSSP) 1.2 supported by WebLogic 10. But
the supported WSSP 1.2 assertions are limited as follows:

Protection Assertions

– Integrity Assertion

• <sp:SignedParts> Assertion (Limited support)

Token Assertions:

– <sp:UsernameToken> Assertion (Limited support)
SALT Reference Guide E-1

SALT WS-Secur i t yPo l i c y Asser t ion 1 .2 Re fe rence
– <sp:X509Token> Assertion (Limited support)

Security Binding Assertions:

– AsysmmetricBinding Assertion (Limited support)

– <sp:TransportBinding > Assertion (Limited support)

Supporting Tokens Assertions:

– SupportingTokens Assertion (Limited support)

For more details about limitations of WS-SecurityPolicy 1.2 assertions, please refer to Oracle
SALT WSSP1.2 Assertion Description.

For more information about WSSP 1.2 assertions supported by WebLogic 10, please refer to
“Oracle Web Services Security Policy Assertion Reference in the Oracle WebLogic Web Services
Documentation.

In this document, XML namespace prefix “sp” stands for namespace URI
“http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512”.

SALT WSSP 1.2 Policy File Examples
WSSP 1.2 Policy File Sample

Wssp1.2-Wss1.0-X509.xml File Sample

WSSP 1.2 Policy File Sample
Listing E-1 Username token authentication with WSSP 1.2 assertions.

Listing E-1 WSSP 1.2 Policy File Sample

<!-Binding Policy -->
<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512">
 <sp:TransportBinding>
 <wsp:Policy>
 <sp:TransportToken>
 <wsp:Policy>
E-2 SALT Reference Guide

http://docs.oracle.com/middleware/1212/wls/WSREF/sec_assert.htm#g1077013

SALT WSSP 1 .2 Po l i c y F i l e Examples
 <sp:HttpToken/>
 </wsp:Policy>
 </sp:TransportToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Lax/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 </wsp:Policy>
 </sp:TransportBinding>
 <sp:SupportingTokens>
 <wsp:Policy>
 <sp:UsernameToken
 sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypol

icy/200512/IncludeToken/AlwaysToRecipient">
 <wsp:Policy>
 <sp:WssUsernameToken10/>
 </wsp:Policy>
 </sp:UsernameToken>
 </wsp:Policy>
 </sp:SupportingTokens>
</wsp:Policy>

Wssp1.2-Wss1.0-X509.xml File Sample

Listing E-2

<?xml version="1.0"?>

<wsp:Policy
SALT Reference Guide E-3

SALT WS-Secur i t yPo l i c y Asser t ion 1 .2 Re fe rence
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512"

 >

 <sp:AsymmetricBinding>

 <wsp:Policy>

 <sp:InitiatorToken>

 <wsp:Policy>

 <sp:X509Token

sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512

/IncludeToken/AlwaysToRecipient">

 <wsp:Policy>

 <sp:WssX509V3Token10/>

 </wsp:Policy>

 </sp:X509Token>

 </wsp:Policy>

 </sp:InitiatorToken>

 <sp:Layout>

 <wsp:Policy>

 <sp:Lax/>

 </wsp:Policy>

 </sp:Layout>

 <sp:OnlySignEntireHeadersAndBody/>

 </wsp:Policy>

 </sp:AsymmetricBinding>

 <sp:SignedParts>

 <sp:Body/>

 </sp:SignedPart>
E-4 SALT Reference Guide

SALT WSSP 1 .2 Po l i cy Templa tes
</wsp:Policy>

SALT WSSP 1.2 Policy Templates
SALT provides a number of WS-SecurityPolicy 1.2 template files you can use for most typical
Web Service applications. These policy files are located in directory
TUXDIR/udataobj/salt/policy.

These template files can be referenced directly in the WSDF files with location value format:
salt:<template_file_name>

For example, if you want to configure signbody, you can specify the followings in your WSDF
file:
<Policy location=”salt:wssp1.2-signbody.xml” />

SALT WSSP1.2 Assertion Description
Below are all SALT supported WSSP 1.2 assertions and limitations for each one. Customers
should obey the limitation when writing their own customized WSSP 1.2 policy files. SALT does
not check any customized WSSP 1.2 policy file against the limitation rules. If something claimed
in the customized WSSP 1.2 policy file cannot be supported by SALT, web service client
program may result run time errors.

WS-SecurityPolicy 1.2 assertions not listed below are definitely not supported by SALT.

Table E-1 SALT WSSP 1.2 Policy Template Files

Policy File Description

wssp1.2-UsernameToken-pla
in-auth.xml

Username token with plain text password is sent in the request
for authentication.

wssp1.2-x509v3-auth.xml X509 V3 binary token (certificate) is sent in the request for
authentication. The request is optionally signed with some
message parts in the requests.

wssp1.2-signbody.xml The entire SOAP body is signed.
SALT Reference Guide E-5

SALT WS-Secur i t yPo l i c y Asser t ion 1 .2 Re fe rence
<sp:SignedParts>
Specifies the parts of a SOAP message to be digitally signed. SALT only supports the entire
SOAP body to be signed.

Limitations
Child element <sp:Body> is supported for configuring the entire SOAP body to be signed.

Child element <sp:Header> is not yet supported.

No nesting WSSP 1.2 assertion for this assertion.

<sp:UsernameToken>
Specifies username token to be included in the SOAP message. SALT only supports username
token with clear text password defined in WS-Security Username Token Profile 1.0.
<UsernameToken> assertion must be used as a nested assertion of Security Binding Assertions
and Supporting Token Assertions.

Limitations
Supported Nesting Assertions

– <sp:WssUsernameToken10>

Not yet supported Nesting Assertions

– <sp:WssUsernameToken11>

– <sp:NoPassword>

– <sp:HashPassword>

<sp:X509Token>
Specifies a binary security token carrying an X509 token to be included in the SOAP message.
<X509Token> assertion must be used as a nested assertion of Security Binding Assertions and
Supporting Token Assertions.

Limitations
Supported Nesting Assertions
E-6 SALT Reference Guide

SALT WSSP1.2 Asse r t ion Descr ip t ion
– <sp:WssX509V3Token10>

– <sp:WssX509V3Token11>

Non-Supported Nesting Assertions

– <sp:WssX509Pkcs7Token10>

– <sp:WssX509Pkcs7Token11>

– <sp:WssX509PkiPathV1Token10>

– <sp:WssX509PkiPathV1Token11>

– <sp:WssX509V1Token10>

– <sp:WssX509V1Token11>

<sp:AlgorithmSuite>
Specifies the algorithm suite to be used for performing cryptographic operations with security
tokens. <AlgorithmSuite> Assertion must be used as a nested assertion of Security Binding
Assertions.

Limitations
Supported Nesting Algorithm Suite

– <sp:Basic256>

Non-Supported Nesting Algorithm Suites

– All the other Algorithm Suite listed in the WS-Security Policy 1.2 specification.

<sp:Layout>
Specifies the layout rules when adding items to the security header. <Layout> Assertion must be
used as a nested assertion of Security Binding Assertions.

Limitations
Supported Nesting Layout rules

– <sp:Lax>

Non-Supported Nesting Layout rules
SALT Reference Guide E-7

SALT WS-Secur i t yPo l i c y Asser t ion 1 .2 Re fe rence
– <sp:Strict>

– <sp:LaxTimestampFirst>

– <sp:LaxTimestampLast>

<sp:TransportBinding >
Specifies the message protection and security correlation is provided using the means of the
transport. The <TransportBinding> token is used mainly for carrying isolated Username Token
in the SOAP message.

Limitations
Supported Nesting Assertions

– <sp:TransportToken>

– <sp:AlgorithmSuite>

– <sp:Layout>

– <sp:IncludeTimestamp>

Nesting Assertion <sp:TransportToken> only supports <sp:HttpToken>

Listing E-3 shows a SALT supported TransportToken Assertion example.

Listing E-3 Supported TransportToken Assertions

 <sp:TransportBinding>
 <wsp:Policy>
 <sp:TransportToken>
 <wsp:Policy>
 <sp:HttpToken />
 </wsp:Policy>
 </sp:TransportToken>
 <sp:Algorithm>
 <wsp:Policy>
 <sp:Basic256>
 </wsp:Policy>
 </sp:Algorithm>
E-8 SALT Reference Guide

SALT WSSP1.2 Asse r t ion Descr ip t ion
 </wsp:Policy>
 </sp:TransportBinding>

<sp:AsymmetricBinding>
Specifies the message protection is provided by means defined in WS-Security SOAP Message
Security, and the request and response message can use distinct keys for encryption and signature,
because of their different lifecycles. The <AsymmetricBinding> Assertion is used mainly for
carrying X.509 binary security token in the SOAP request messages for inbound calls.

Limitations
Supported Nesting Assertions

– <sp:InitiatorToken>

– <sp:RecipientToken>

– <sp:AlgorithmSuite>

– <sp:Layout>

– <sp:IncludeTimestamp>

– <sp:ProtectTokens>

– <sp:OnlySignEntireHeadersAndBody>

Non-supported Nesting Assertions

– <sp:InitiatorSignatureToken>

– <sp:InitiatorEncryptToken>

– <sp:RecipientSignatureToken>

– <sp:RecipientEncryptToken>

– <sp:EncryptBeforeSigning>

– <sp:EncryptSignature>

<sp:InitiatorToken> must be associated with <sp:X509Token> and the Token inclusion
type must be “AlwaysToRecipient“
SALT Reference Guide E-9

SALT WS-Secur i t yPo l i c y Asser t ion 1 .2 Re fe rence
<sp:RecipientToken> must be associated with <sp:X509Token> and the Token inclusion
type must be “Never”

Listing E-4 shows a SALT supported AsymmetricBinding assertion example. This assertion
indicates the X.509 V3 binary token that defined in WS-Security X.509 Token Profile 1.1
specification is used for digital signature for the SOAP request messages and the X.509 token is
always included in the SOAP message security header:

Listing E-4 Supported AsymmetricBinding Assertion

 <sp:AsymmetricBinding>
 <wsp:Policy>
 <sp:InitiatorToken>
 <wsp:Policy>
 <sp:X509Token

 sp:IncludeToken=”http://docs.oasis-open.org/ws-sx/ws-securit

ypolicy/200512/IncludeToken/AlwaysToRecipient”>
 <wsp:Policy>
 <sp:WssX509V3Token11 />
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:InitiatorToken>
 <sp:RecipientToken>
 <wsp:Policy>
 <sp:X509Token

 sp:IncludeToken=”http://docs.oasis-open.org/ws-sx/ws-securit

ypolicy/200512/IncludeToken/Never”>
 <wsp:Policy>
 <sp:WssX509V3Token11 />
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:RecipientToken>
 <sp:Algorithm>
 <wsp:Policy>
 <sp:Basic256>
 </wsp:Policy>
E-10 SALT Reference Guide

SALT WSSP1.2 Asse r t ion Descr ip t ion
 </sp:Algorithm>
 <sp:Layout>
 <wsp:Policy>
 <sp:Lax>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp />
 </wsp:Policy>
 </sp:AsymmetricBinding>

<sp:SupportingToken>
Specifies security tokens that are included in the security header and may optionally include
additional message parts to sign and/or encrypt. For SALT, <SupportingToken> Assertion is
used mainly to include Username Token in the security header when <sp:AsymmetricBinding>
Assertion is used.

Limitations
Supported Nesting Assertions

– <sp:UsernameToken>

– <sp:X509Token>

Not-non Supported Nesting Assertions

– <sp:SignedParts>

– <sp:SignedElements

– <sp:EncryptedParts>

– <sp:EncryptedElements>

All supported token assertions must be defined with Token inclusion type
“AlwaysToRecipient”.

Listing E-5 shows a SALT supported SupportingToken assertion example. This assertion
indicates the Username token is always included in SOAP request messages:
SALT Reference Guide E-11

SALT WS-Secur i t yPo l i c y Asser t ion 1 .2 Re fe rence
Listing E-5 Supported SupportingToken Assertion

 <sp:SupportingTokens>
 <wsp:Policy>
 <sp:UsernameToken

 sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypol

icy/200512/IncludeToken/AlwaysToRecipient">
 <wsp:Policy>
 <sp:WssUsernameToken10/>
 </wsp:Policy>
 </sp:UsernameToken>
 </wsp:Policy>
 </sp:SupportingTokens>
E-12 SALT Reference Guide

A P P E N D I X F
SALT WS-SecurityPolicy Assertion 1.0
Reference
The following sections provide SALT WS-SecurityPolicy (WSSP) 1.0 assertion reference
information:

Overview

SALT WSSP 1.0 Policy Assertion Format

SALT WSSP 1.0 Assertion File Example

SALT WSSP 1.0 Policy Templates

SALT WSSP 1.0 Assertion Element Description

Overview
SALT implements part of WS-Security protocol version 1.0 for inbound services. Authentication
with UsernameToken and X509v3Token are supported. WS-SecurityPolicy 1.0 assertions are
used in WSDL definition to describe how the authentication is carried out. The
WS-SecuirtyPolicy1.0 specification (2002) is supported in order to ensure the interoperability
with Oracle WebLogic 9.x.

Below are all SALT supported WS-SecurityPolicy 1.0 assertions:

SecurityToken Assertions:

– UsernameToken Assertion and X509Token Assertion

Integrity Assertion
SALT Reference Guide F-1

SALT WS-Secur i t yPo l i c y Asser t ion 1 .0 Re fe rence
Identity Assertion

There are some extension assertions used in WebLogic 9.x, SALT only implements a subset of
them. Integrity Assertion is only used when using X509v3 token for authentication. And the only
message part can be specified for signature is the whole SOAP Body.

SALT WSSP 1.0 Policy Assertion Format
Figure F-1 shows a graphical representation of the SALT supported WS-SecurityPolicy 1.0
Assertion format in a WS-Policy file.

Figure F-1 SALT Supported WS-SecurityPolicy 1.0 Assertion Format

<SecurityToken> +

<Integrity> ?

<SignatureAlgorithm>

<CanonicalizationAlgorithm>

<Target> +

<DigestAlgorithm>
<Transform> *
<MessageParts>

<wsp:Policy>
<Identity> ?

<SupportedTokens> ?

<SupportedTokens> ?

<Claims> ?

<UsePassword> ?

<SecurityToken> +

* : Zero or more
+: One or more

No annotation: Exactly one

? : Zero or one
F-2 SALT Reference Guide

SALT WSSP 1 .0 Asse r t i on F i l e Example
SALT WSSP 1.0 Assertion File Example
Listing F-1 demonstrates how to apply Username token authentication with WSSP 1.0
Assertions.

Listing F-1 WSSP 1.0 Policy File Sample

<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/WLS/security/policy"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssec

urity-utility-1.0.xsd">
 <wssp:Identity>
 <wssp:SupportedTokens>
 <wssp:SecurityToken

 TokenType="http://docs.oasis-open.org/wss/2004/01/oasis-200401

-wss-username-token-profile-1.0#UsernameToken">
 <wssp:Claims>
 <wssp:UsePassword>http://docs.oasis-open.org/wss/2004/01/oasis-2

00401-wss-username-token-profile-1.0#PasswordText</wssp:UsePassword>
 </wssp:Claims>
 </wssp:SecurityToken>
 </wssp:SupportedTokens>
 </wssp:Identity>
</wsp:Policy>

SALT WSSP 1.0 Policy Templates
SALT provides a number of WS-SecurityPolicy 1.0 template files you can use for most typical
Web Service applications. These policy files are located in directory
TUXDIR/udataobj/salt/policy.
SALT Reference Guide F-3

SALT WS-Secur i t yPo l i c y Asser t ion 1 .0 Re fe rence
These template files can be referenced directly in the WSDF files with location value format:
salt:<template_file_name>

For instance, if you want to configure signbody, you can specify the followings in your WSDF
file:
<Policy location=”salt:wssp1.0-signbody.xml” />

SALT WSSP 1.0 Assertion Element Description
SALT implements part of WebLogic 12.x / 10 WS-SecurityPolicy 1.0 assertions. For a complete
list of WSSP 1.0 assertions supported by WebLogic, see
http://docs.oracle.com/middleware/1212/wls/WSREF/sec_assert.htm#g1077013

<CanonicalizationAlgorithm>
Specifies the algorithm used to canonicalize the SOAP message elements that are digitally
signed.

Table F-1 SALT WSSP 1.0 Policy Template Files

Policy File Description

wssp1.0-UsernameToken-plain-auth.
xml

Username token with plain text password is sent in the request
for authentication.

wssp1.0-x509v3-auth.xml X509 V3 binary token (certificate) is sent in the request for
authentication. The request is optionally signed with some
message parts in the requests.

wssp1.0-signbody.xml The whole SOAP body is signed.

Table F-2 <CanonicalizationAlgorithm> Attribute

Attribute Description Required?

URI The algorithm used to canonicalize the SOAP message being
signed.

SALT supports only the following canonicalization algorithm:
http://www.w3.org/TR/xml-exc-c14n/

Yes
F-4 SALT Reference Guide

http://docs.oracle.com/middleware/1212/wls/WSREF/sec_assert.htm#g1077013
http://www.w3.org/TR/xml-exc-c14n/

SALT WSSP 1 .0 Asser t i on E lement Descr ip t ion
<Claims>
Specifies additional metadata information that is associated with a particular type of security
token. Depending on the type of security token, you must specify the following child elements:

For username tokens, you must specify a <UsePassword> child element to specify what
kind of the password will be used for in username authentication.

This element does not have any attributes.

<DigestAlgorithm>
Specifies the digest algorithm that is used when digitally signing the specified parts of a SOAP
message. Use the <MessageParts> sibling element to specify the parts of the SOAP message you
want to digitally sign.

<Identity>
Specifies the type of security tokens (username or X.509) that are supported for authentication.

This element has no attributes.

<Integrity>
Specifies that part or all of the SOAP message must be digitally signed, as well as the algorithms
and keys that are used to sign the SOAP message.

For example, a Web Service may require that the entire body of the SOAP message must be
digitally signed and only algorithms using SHA1 and an RSA key are accepted.

Table F-3 <DigestAlgorithm> Attributes

Attribute Description Required?

URI The digest algorithm that is used when digitally signing the
specified parts of a SOAP message.

SALT supports only the following digest algorithm:

http://www.w3.org/2000/09/xmldsig#sha1

Yes
SALT Reference Guide F-5

SALT WS-Secur i t yPo l i c y Asser t ion 1 .0 Re fe rence
<MessageParts>
Specifies the parts of the SOAP message that should be signed. SALT only supports certain
pre-defined message part function, wsp:Body(), i.e. the entire SOAP body to be digitally signed.

The MessageParts assertion is always a child of a <Target> assertion. The <Target> assertion can
be a child of an Integrity assertion (to specify how the SOAP message is digitally signed).

See “Usage of MessageParts” for more information about how to specify the parts of the SOAP
message that should be signed.

<SecurityToken>
Specifies the security token that is supported for authentication or digital signatures, depending
on the parent element.

If this element is defined in the <Identity> parent element, then is specifies that a client
application, when invoking the Web Service, must attach a security token to the SOAP request.

Table F-4 <Integrity> Attributes

Attribute Description Required?

SignToken Specifies whether the security token, specified using the
<SecurityToken> child element of <Integrity>, should also
be digitally signed, in addition to the specified parts of the SOAP
message.

The valid values for this attribute are true and false. The default
values is true.

No

Table F-5 <MessageParts> Attributes

Attribute Description Required?

Dialect Identifies the dialect used to identity the parts of the SOAP message
that should be signed.

SALT only supports the following value:
• http://schemas.xmlsoap.org/2002/12/wsse#part

Convenience dialect used to specify parts of SOAP message that
should be signed.

Yes
F-6 SALT Reference Guide

SALT WSSP 1 .0 Asser t i on E lement Descr ip t ion
For example, a Web Service might require that the client application present a Username token
for the Web Service to be able to access Tuxedo service. If this element is part of <Integrity>,
then it specifies the token used for digital signature.

The specific type of the security token is determined by the value of its TokenType attribute, as
well as its parent element.

<SignatureAlgorithm>
Specifies the cryptographic algorithm used to compute the digital signature.

Table F-6 <SecurityToken> Attributes

Attribute Description Required?

IncludeInMes
sage

Specifies whether to include the token in the SOAP message.

Valid values are true or false.

The default value of this attribute is true when used in the
<Integrity> assertion.

The value of this attribute is always true when used in the
<Identity> assertion, even if you explicitly set it to false.

No

TokenType Specifies the type of security token. Valid values are:
• http://docs.oasis-open.org/wss/2004/01/oasis-

200401-wss-x509-token-profile-1.0#X509v3 (To
specify a binary X.509 v3 token)

• http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-username-token-profile-1.0#Usern
ameToken (To specify a username token)

Yes
SALT Reference Guide F-7

SALT WS-Secur i t yPo l i c y Asser t ion 1 .0 Re fe rence
<SupportedTokens>
Specifies the list of supported security tokens that can be used for authentication, or digital
signatures, depending on the parent element.

This element has no attributes.

<Target>
Encapsulates information about which targets of a SOAP message are to be signed. When used
in <Integrity>, you can specify the <DigestAlgorithm>, <Transform>, and <MessageParts> child
elements.

Ideally, you can have one or more targets. But at most one target is enough for SALT, since SALT
only supports the entire SOAP body to be configured for digital signature.

This element has no attributes.

<Transform>
Specifies the URI of a transformation algorithm that is applied to the parts of the SOAP message
that are signed. Only can exist in a child element of the <Integrity> element.

You can specify zero or more transforms, which are executed in the order they appear in the
<Target> parent element.

Table F-7 <SignatureAlgorithm> Attributes

Attribute Description Required?

URI Specifies the cryptographic algorithm used to compute the
signature.

Note: Be sure that you specify an algorithm that is compatible
with the certificates you are using in your enterprise.

Valid values are:

http://www.w3.org/2000/09/xmldsig#rsa-sha1

http://www.w3.org/2000/09/xmldsig#dsa-sha1

Yes
F-8 SALT Reference Guide

SALT WSSP 1 .0 Asser t i on E lement Descr ip t ion
<UsePassword>
Specifies that whether the plaintext or the digest of the password appear in the SOAP messages. This
element is used only with username tokens. In SALT, it must be specified as plaintext.

Usage of MessageParts
When you use the <Integrity> assertion in your WS-Policy file, you are required to also use the
Target child assertion to specify the targets of the SOAP message to digitally sign. The <Target>
assertion in turn requires that you use the <MessageParts> child assertion to specify the actual

Table F-8 <Transform> Attributes

Attribute Description Required?

URI Specifies the URI of the transformation algorithm.

SALT only supports the following transformation algorithm:
• http://www.w3.org/2000/09/xmldsig#base64

(Base64 decoding transforms)

For detailed information about these transform algorithms, see
XML-Signature Syntax and Processing.

Yes

Table F-9 <UsePassword> Attributes

Attribute Description Required?

Type Specifies the type of password. SALT only supports cleartext
passwords, the value URI is:
• http://docs.oasis-open.org/wss/2004/01/oasi

s-200401-wss-username-token-profile-1.0#P
asswordText

Specifies that cleartext passwords should be used in the
SOAP messages.

Note: For backward compatibility reasons, the preceding URI
can also be specified with an initial "www." For
example:

– http://www.docs.oasis-open.org/wss/2004/
01/oasis-200401-wss-username-token-pro

file-1.0#PasswordText

Yes
SALT Reference Guide F-9

http://www.w3.org/TR/xmldsig-core/#sec-TransformAlg

SALT WS-Secur i t yPo l i c y Asser t ion 1 .0 Re fe rence
parts of the SOAP message that should be digitally signed. You can use the Dialect attribute of
<MessageParts> to specify the dialect used to identify the SOAP message parts. SALT Web
services security module supports only the following dialect:

Pre-Defined Message Part Selection Function

Be sure that you specify a message part that actually exists in the SOAP messages that result from
a client invoke of a message-secured Web Service. If the Web Services security module
encounters an inbound SOAP message that does not include a part that the WS-Policy file
indicates should be signed or encrypted, then the Web Services security module returns an error
and the invoke fails.

Pre-Defined Message Part Selection Function
This section shows SALT supported functions that are used with the
"http://schemas.xmlsoap.org/2002/12/wsse#part" dialect for selecting parts of a
message:

You can only specify the entire SOAP body to be signed. It is recommended that you use the
dialect that pre-defines the wsp:Body() function for this purpose.

Listing F-2 shows a wsp:Body() function example

Listing F-2 wsp:Body() Function

<wssp:MessageParts
 Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
 wsp:Body()
</wssp:MessageParts>

Table F-10 SALT Supported Message Part Selection Function

Function Description

wsp:Body() Specifies the entire SOAP message body to be selected as one part
F-10 SALT Reference Guide

	Service Architecture Leveraging Tuxedo (SALT)
	12c Release 2 (12.1.3)

	Oracle Service Architecture Leveraging Tuxedo (SALT) Reference Guide, 12c Release 2 (12.1.3)
	SALT Command Reference
	GWWS(5)
	jsoncvt(1)
	tmscd(1)
	tmwsdlgen
	wsadmin
	wsdlcvt
	wsloadcf
	wsunloadcf

	SALT Web Service Definition File Reference
	Overview
	SALT WSDF Format
	XML Schema
	SALT WSDF Examples
	SALT WSDF Element Descriptions
	<Definition>
	<WSBinding>
	<Servicegroup>
	<Service>
	<Input>
	<Output>
	<Fault>
	<Msghandler>
	<Policy>
	<Property>
	<SOAP>
	<AccessingPoints>
	<Endpoint>
	<Realm>

	SALT Deployment File Reference
	Overview
	SALT SALTDEPLOY Format
	XML Schema
	SALT SALTDEPLOY Example
	SALT SALTDEPLOY Element Descriptions
	<Deployment>
	<WSDF>
	<WSGateway>
	<GWInstance>
	<Inbound>
	<HTTP>
	<Network>
	<Service>
	<Method>
	<Outbound>
	<Binding>
	<Endpoint>
	<WSAddressing>
	<Endpoint>
	<TLogDevice>
	<TLogName>
	<WSATEndpoint>
	<MaxTran>
	<Properties>
	<Property>

	<System>
	<Certificate>
	<Plugin>

	SALT WS-AT Assertion Reference
	Overview
	Policy File Example

	SALT WS-ReliableMessaging Policy Assertion Reference
	Overview
	WS-RM Policy Assertion Format
	WS-RM Assertion File Example
	WS-RM Assertion Element Description
	<wsrm:InactivityTimeout>
	<wsrm:AcknowledgementInterval>
	<wsrm:BaseRetransmissionInterval>
	<wsrm:ExponentialBackoff>
	<beapolicy:Expires>
	<beapolicy:QOS>
	<wsrm:RMAssertion>

	SALT WS-SecurityPolicy Assertion 1.2 Reference
	Overview
	SALT WSSP 1.2 Policy File Examples
	WSSP 1.2 Policy File Sample
	Wssp1.2-Wss1.0-X509.xml File Sample

	SALT WSSP 1.2 Policy Templates
	SALT WSSP1.2 Assertion Description
	<sp:SignedParts>
	Limitations

	<sp:UsernameToken>
	Limitations

	<sp:X509Token>
	Limitations

	<sp:AlgorithmSuite>
	Limitations

	<sp:Layout>
	Limitations

	<sp:TransportBinding >
	Limitations

	<sp:AsymmetricBinding>
	Limitations

	<sp:SupportingToken>
	Limitations

	SALT WS-SecurityPolicy Assertion 1.0 Reference
	Overview
	SALT WSSP 1.0 Policy Assertion Format
	SALT WSSP 1.0 Assertion File Example
	SALT WSSP 1.0 Policy Templates
	SALT WSSP 1.0 Assertion Element Description
	<CanonicalizationAlgorithm>
	<Claims>
	<DigestAlgorithm>
	<Identity>
	<Integrity>
	<MessageParts>
	<SecurityToken>
	<SignatureAlgorithm>
	<SupportedTokens>
	<Target>
	<Transform>
	<UsePassword>
	Usage of MessageParts
	Pre-Defined Message Part Selection Function

