Oracle® Tuxedo System and Applications Monitor Plus
Programming Guide

12c Release 2 (12.1.3)

June 2015

ORACLE



Oracle Tuxedo Systems and Applications Monitor Plus Programming Guide, 12¢ Release 2 (12.1.3)
Copyright © 2013, 2015, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use,
duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed
or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If
you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

This software or hardware and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect
to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.



Contents

Oracle Tuxedo JMX Interface

OVEIVIEW .« o ettt e e e e e e e e e e e e e e e e

ConfiGUIatioNS . . . ..ottt ettt e e e e e

Creating @ IMX CONNECHION. . .. vttt t ettt e e ettt ettt ees
Extended Call Path Monitoring

OVEIVIEW . o . vttt et e e e e e e e e e e e e e e e e e

Using tsambegin()/tsamend in Oracle Tuxedo Service . .................iviuiinn..

Developing Oracle TSAM Plus Agent Custom Plug-in
OVEIVIEW . o oottt et e e e e e e e e e e e e e e e e
Oracle TSAM Plus Agent Data Collection Framework. . ........... ... ... ... ... ...
Creating an Oracle TSAM Plus Agent Custom Plug-in ....... ... ... .. ... ... ... ..
OVEIVIBW. .« ottt e et e e e e e e e e e e e e e
Oracle Tuxedo Plug-in Framework Concepts. ... ........ ... ... ... ... ...
Interface ... .. ...
Implementation. . ... ... ..
Plug-in Register/Un-register/Modifications. .. ........... ... ... ......
Developing a Oracle TSAM Plus Agent Plug-in .. .......... ... .. ... ... ...
Create Plug-in Source Code. . ... ... oot
Buildthe Plug-in . . ... ... . 11
Registerthe Plug-in. ....... ... .. .. i 11
Enable Oracle TSAM Plus Monitoring . . ..........ovvninnninennnnen.. 12

Oracle TSAM Plus Programming Guide



Run a Call and Check the Standard Output.. .. .......................... 12

Oracle TSAM Plus Agent Plug-in Interface .......... ... ... ... ... ... ...... 14
Version and Interface Identifier .......... .. .. ... .. .. .. . ... 14
Function Table ... ... ... 16
Other Help Header Files. .......... ... i 17

Oracle TSAM Plus Agent Plug-in Implementation. .......................... 17
Define “perf mon 1" in the “e_perf mon.h” Function Table ............... 17
Define the Plug-in Information Variable ............ ... ... ... ... ... ... 18
Write the Plug-in Entry Routine . .. .......... ... ... ... ... 19
Writing Concrete Plug-in Implementations . ............ ... ... ... ...... 20

Call Path Monitoring Plug-in Routine. .. ............ ... ... ... .... 20
Service Monitoring Plug-inRoutine . . ............................. 27
System Server Monitoring Plug-in Routine ......................... 29
Transaction Monitoring Plug-in Routine. .. ......................... 30
Configure the Plug-in to Oracle Tuxedo .. ............ ... ... ... ..... 31
Oracle TSAM Plus Agent Plug-in Development/Deployment Notes . .. .......... 33

Oracle TSAM Plus Programming Guide



Oracle Tuxedo JMX Interface

This chapter contains the following sections:
e Overview
e Configurations

e Creating a JMX Connection

Overview

The IMXAgent embedded in tlisten supplies a list of JMX MBeans. Using the functions exported
by those MBeans, users can monitor and manage Oracle Tuxedo application by JMX invocation.
Following is an example of shutting down a Tuxedo Server by JMX Java client.

Listing 1-1 Shutting Down a Tuxedo Server hy JMX Java Client

// Client.java

import java.io.IOException;
import java.util.HashMap;
import java.util.Map;

import java.util.Set;

Oracle TSAM Plus Programming Guide 1-1



Oracle Tuxedo JMX Interface

import javax.management.MBeanServerConnection;
import javax.management.ObjectInstance;

import javax.management.ObjectName;

import javax.management.remote.JMXConnector;

import javax.management.remote.JMXConnectorFactory;

import javax.management.remote.JMXServiceURL;

import oracle.tuxedo.jmx.tux.exception.JMXPropertiesException;

import oracle.tuxedo.jmx.tux.utility.Encryption;

public class Client {

public static void main(String[] args) throws IOException,

JMXPropertiesException, Exception {

String host = "XXXXXX.oracle.com";
String port = "26999";
String username = "oracle";

// Tuxedo password and application password must be encrypted.
String password = Encryption.getInstance() .encrypt ("password") ;
// Tuxedo application password.

String appPassword =

Encryption.getInstance() .encrypt ("apppassword") ;

String[] credentials = new String[] { username, password, appPassword

Map<String, Object> env = new HashMap<String, Object>();

env.put ("jmx.remote.credentials", credentials);

1-2 Oracle TSAM Plus Programming Guide



Overview

// Create an RMI connector client and

// connect it to the RMI connector server;

JMXServiceURL url = new JMXServiceURL (String.format (
"service:jmx:rmi://%$s:%s/jndi/rmi://%s:%s/server", host, port,

host, port));

JMXConnector jmxc = JMXConnectorFactory.connect (url, env);
MBeanServerConnection mbsc = jmxc.getMBeanServerConnection (null);
// Get AdminBean by the MBean name

Set<?> mbeans = mbsc.queryMBeans (new ObjectName (

"DefaultIMXDomain: type=adminBean"), null);
ObjectInstance objectInstance = (ObjectInstance) mbeans.iterator ()
.next () ;

ObjectName objectName = objectInstance.getObjectName () ;
// The parameter value list for shutdownServer methond.

Object[] params = { "/testarea/oracle/test/tuxconfig", "APPGRP", 102, 0,
null };

// The parameter type list for shutdown Server method.

String[] signature = { String.class.getName(),

String.class.getName (),

Integer.class.getName (), Integer.class.getName(),
String.class.getName () };

Object result = mbsc.invoke (objectName, "shutdownServer", params,
signature) ;

System.out.print (result) ;

Oracle TSAM Plus Programming Guide 1-3



Oracle Tuxedo JMX Interface

Run the following command to compile the java file:

javac -classpath $TUXDIR/jmx/tmjmx_exceptions.jar:$TUXDIR/jmx/

tmjmx_tux.jar Client.java

A Client.class is generated. Use the following command to run this client:

java -classpath

STUXDIR/jmx/tmjmx_exceptions.jar:$TUXDIR/jmx/tmjmx_tux.jar:. Client
The output result is as follows:

Shutting down server processes

Server Id = 102 Group Id = APPGRP Machine = SITEl: shutdown
succeeded

1 process stopped.

For more information, see MBeans and JMX Operations.

Configurations

Following configurations must be done before invoking the JMX client:

e Start the tlisten and Tuxedo domain. For more information, refer to “Starting the tlisten
Process”, “Configuring the UBBCONFIG File", and "Loading UBBCONFIG and Booting
up Oracle Tuxedo" sections in Enterprise Manager for Oracle Tuxedo Getting Started
Guide.

e For the Tuxedo domain which security is not “NoNE”, add the Tuxedo user as tpsysadm.
Forexanqﬂe:tpusradd -g groupl -c tpsysadm userl

e Add $TUXDIR/udataobj/jmx/tmjmx_exceptions.jar to the client’s classpath when
running the client to invoke the JIMX Agent in tlisten.

Creating a JMX Connection

Use the following JMX Service URL to create a JMX connection:

service:jmx:rmi:///jndi/rmi://rmihost:rmiport/server

1-4 Oracle TSAM Plus Programming Guide


../ref/jmxapi.html
../getstarted/index.html
../getstarted/index.html

Creating a JMX Connection

The rmihost and rmiport are the host and port configured in tlisten by the -3 option. After
configuring this option, a JMX Agent runs in a JVM started in the tlisten process by JNI

technology.

The "jmx.remote.credentials" must be a String array which is parsed in the following order.

Order

Tuxedo Authentication and
Authorization Data

Comments

User Name

Optional. Required when the Tuxedo security or IMX
security is enabled; otherwise leave it blank. If the
Tuxedo security is enabled, it is the Tuxedo username;
If IMX security is enabled, it is the JMX user name
added by jmxaaacfg.

Password

Optional. Required if the Tuxedo security or IMX
security is enabled; otherwise leave it blank. If the
password is not null, it must be encrypted using the
oracle.tuxedo.jmx.tux.utility.Encrypti
on.encrypt () method in
STUXDIR/jmx/tmjmx_tux.jar

Application Password

Optional. Required if the Tuxedo security is enabled,
otherwise leave it blank. If the application password is
not null, it must be encrypted using the
oracle.tuxedo.jmx.tux.utility.Encrypti
on.encrypt () method in
STUXDIR/jmx/tmjmx_tux.jar

DOMAINID

Optional. Required in the case of multiple domains
within one tlisten.

IPCKEY

Optional. Required in the case of multiple domains
within one tlisten.

TUXCONFIG

Optional. Required after the tlisten restarts.

NONTUXAUTH

Optional. Add "NONTUXAUTH" in the list of
"jmx.remote.credentials" , the Tuxedo authentication is
not taken place when connecting JMX server. In this
case, the invocation of the JMX operations which
requires Tuxedo authentication will fail.

Following is an example of creating JMX connector.

Oracle TSAM Plus Programming Guide 1-5



Oracle Tuxedo JMX Interface

Listing 1-2 Creating JMX Connector

String[] credentials = new String[] { username, password, appPassword };
Map<String, Object> env = new HashMap<String, Object>();

env.put ("jmx.remote.credentials", credentials);

// Create an RMI connector client and

// connect it to the RMI connector server;

JMXServiceURL url = new JMXServiceURL (String.format (
"service:jmx:rmi://%s:%s/jndi/rmi://%s:%s/server", host, port,

host, port));

JMXConnector jmxc = JMXConnectorFactory.connect (url, env);

1-6 Oracle TSAM Plus Programming Guide



CHAPTERa

Extended Call Path Monitoring

This chapter contains the following sections:
e Overview

e Using tsambegin()/tsamend() in Oracle Tuxedo Service

Overview

Extended call path monitoring enables you to set customized call path segments in Tuxedo
service calls using the API tsambegin () and tsamend ().

To enable extended call path monitoring, in the Oracle TSAM Plus console, select Enable
Extended Monitoring in the call path tab of the Policy page. For more information, see Call Path
Tab in Oracle TSAM Plus User Guide.

Using tsambegin()/tsamend() in Oracle Tuxedo Service

The following is an example that defines tsambegin () and tsamend () in the file toupper:

Listing 2-1 Defining tsambegin() and tsamend()

#include <tsam_ext.h>
void

TOUPPER (TPSVCINFO *rgst)

Oracle TSAM Plus Programming Guide 2-1


../userguide/tsamconhelp.html

long seq;
int db_rtn;
char * begin_props[] = { "sgl=update..."};

char * end_props[1];

seq = tsambegin("DB", "Update", 1, begin_props, O0L);

userlog ("seg=%1d", seq);

if(seq >= 0){

char str_dbrtn[100];

sprintf (str_dbrtn, "Dababase Return=%d", db_rtn);
end_props[0] = str_dbrtn;

tsamend (seq, sizeof (end_props)/sizeof (end_props([0]), end_props,
0L) ;

Run the following command to build the file toupper.c:

buildserver -s TOUPPER -o toupper -f toupper.c -f ${TUXDIR}/lib/tsam_ext.o

For more information about tsambegin ()and tsamend (), see Call Path Monitoring APIs in
Oracle TSAM Plus Reference Guide.

2-2 Oracle TSAM Plus Programming Guide


../ref/tsamref.html

CHAPTERa

Developing Oracle TSAM Plus Agent
Custom Plug-in

This chapter contains the following sections:
e Overview
e Oracle TSAM Plus Agent Data Collection Framework

e Creating an Oracle TSAM Plus Agent Custom Plug-in

Overview

The Oracle TSAM Plus Agent includes three major layered modules:

e Oracle TSAM Plus framework

The Oracle TSAM Plus framework is responsible for Tuxedo system data collection. The
collection behavior is controlled by the monitoring types and policies. The gathered
metrics are passed to the plug-in using an open interface.

e Plug-in data receiver

The Oracle TSAM Plus Agent ships with a default plug-in. The default plug-in sends
metrics to shared memory pool created by the Local Monitor Server (LMS).

e LMS (local monitor server)
The LMS synchronizes data with the Oracle TSAM Plus Manager.

The Oracle TSAM Plus Agent and Oracle TSAM Plus Manager provide a complete solution for
data collection, aggregation, storage and presentation. To support various requirements for

Oracle TSAM Plus Programming Guide 3-1



monitoring data usage, the Oracle TSAM Plus Agent plug-interface is based on an open
architecture so that you can write customized plug-ins to interpret the performance metrics data.
The custom plug-ins can work with the Oracle TSAM Plus Agent default plug-in or
independently. The custom plug-ins are typically used for:

e Integration with third party management software
e Developing in-house application monitoring suites

e Audit-based application data

Oracle TSAM Plus Agent Data Collection Framework

3-2

The Oracle TSAM Plus Agent framework collects the performance metrics when Oracle TSAM
Plus is enabled. The framework covers the major performance sensitive areas in Tuxedo
applications, that is call path stages, services, transactions and system servers. Oracle TSAM Plus
Agent uses Oracle Tuxedo FML32 typed buffers to contain the metrics collected so that each
metric is defined as a built-in FML32 field. The monitoring points depend on the monitoring
types and only apply to Oracle Tuxedo ATMI applications. Table 3-1 lists the call path
monitoring points.

Table 3-1 Call Path Monitoring Points

Stage Supported Tuxedo Process Types

Before request  Native Client, Application Server, GWTDOMAN, BRIDGE,
message sentto  JSH/WSH, and GWWS
IPC queue

After request Application Server, GWTDOMAIN and GWWS
message got
from IPC queue

Before reply Application Server, GWTDOMAIN, BRIDGE and GWWS
message sent to
IPC queue

After reply Native Client,Application Server, GWTDOMAIN
message got
from IPC queue

Oracle TSAM Plus Programming Guide



Table 3-1 Call Path Monitoring Points

Before request GWTDOMAIN, JSH/WSH, and GWWS
message sent to
network

After request GWTDOMAIN and BRIDGE
message got
from network

Before reply GWTDOMAIN and BRIDGE
message sent to
network

After reply GWTDOMAIN and BRIDGE
message got
from network

Table 3-2 lists the service monitoring points.

Tahle 3-2 Service Monitoring Points

Stage Supported Tuxedo Process Types

After request Application Server, GWTDOMAIN and GWWS
from IPC queue

Before reply Application Server, GWTDOMAIN and GWWS
message sent to
IPC queue

Table 3-3 lists the system server monitoring points.

Tahle 3-3 System Server Monitoring Points

Stage Supported Tuxedo Process Types

Main Loop' GWTDOMAIN, BRIDGE and GWWS

1. The metrics are collected internally and this point is to pass the data to plug-in

Table 3-4 lists the transaction monitoring points.

Oracle TSAM Plus Programming Guide

3-3



Table 3-4 Transaction Monitoring Points

Stage Supported Tuxedo Process Types

After the Native Client, Application Server, TMS, GWTDOMAIN,WSH, JSH,
transaction TMQFORWARD

routine

executed

Creating an Oracle TSAM Plus Agent Custom Plug-in

This section contains the following topics:
e Overview
e Developing a Oracle TSAM Plus Agent Plug-in

Oracle TSAM Plus Agent Plug-in Interface

e Oracle TSAM Plus Agent Plug-in Implementation

e Oracle TSAM Plus Agent Plug-in Development/Deployment Notes

Overview

Oracle Tuxedo has a built-in plug-in framework that facilitates additional functionality. For
example, the Oracle Tuxedo security mechanism is constructed on the plug-in framework. Oracle
Tuxedo defines an interface set as a contract between a service provider and end user. The term
“service” here is used as a general term; not an Oracle Tuxedo ATMI service. Oracle TSAM Plus
Agent also use the Oracle Tuxedo plug-in framework to attach different data receivers.

Oracle Tuxedo Plug-in Framework Concepts

The following section highlights Oracle Tuxedo plug-in framework key concepts.

Interface

An Interface is the contract format between the plug-in implementation and the plug-in caller. An
interface requires the following attributes:

o Interface ID

3-4 Oracle TSAM Plus Programming Guide



The interface ID is the name of the interface that is uniquely identified in the Oracle
Tuxedo plug-in framework and uses the following format:

<interface id> ::= <component name>[/<sub-component/name>]/<interface

name>
The Oracle TSAM Plus Agent plug-in uses the following format:
engine/performance/monitoring

e Version

An interface has two versions, the major version number and minor version number.

e Data Structure and Function Declaration

The data structure defines the concrete information conveyed between plug-in caller and

implementation.The function declaration defines the routines must be implemented by
plug-in.

Implementation

A plug-in is a dynamic library written in C code. The library implements the methods specified

by the interface. The Oracle Tuxedo plug-in framework supports multiple implementations
(interceptors) for one interface.

Oracle Tuxedo supports two types of interceptors: Fan-out interceptors and Stack interceptors.

The Oracle TSAM Plus Agent uses the Fan-out interceptors. Figure 3-1 displays the Oracle

TSAM Plus Agent plug-in architecture.

Oracle TSAM Plus Programming Guide

3-5



Figure 3-1 Oracle TSAM Plus Agent Plug-in Architecture

TUXEDD
INFRASTRUCTURE

TSAM PLUS AGENT
PLUG-IN A
(FAN OUT)
PLUG-IN 1 PLUG-IN 2 - . PLUG-IN n

When the Oracle Tuxedo infrastructure invokes plug-in A method X, plug-in A invokes method
X of the intercepting plug-ins in the order specified by the InterceptionSeq attribute as
follows:

o Plug-in method X is invoked

Plug-in 1 method X is returned

Plug-in 2 method X is invoked

Plug-in 2 method X is returned
e Plug-in n method X is invoked

e Plug-in n method X of is returned

All plug-ins involved in the interceptor implement the same interface. Multiple occurrences of
the same plug-in are not allowed in an interception sequence.

Oracle TSAM Plus Agent provides the Fan-out plug-in which allows you to write/create an
interceptor plug-in.

3-6 Oracle TSAM Plus Programming Guide



Plug-in Register/Un-register/Modifications

Once the plug-in written it must be registered in the Oracle Tuxedo registry so that the functional
components will locate the plug-in and invoke the appropriate methods. Oracle Tuxedo provides
three commands specifically for plug-in use:

® epifreg: registers a plug-in
® cpifunreg: un-registers a plug-in

® cpifregedt: edits a plug-in

Developing a Oracle TSAM Plus Agent Plug-in

Oracle TSAM Plus Agent plug-in invocation begins at the monitoring points. The Oracle TSAM
Plus Agent collects and computes the metrics, and composes the arguments passed to the plug-in.
The Oracle TSAM Plus Agent Fan-out plug-in invokes the interceptor plug-in according to the
registration sequence.

A simple Oracle TSAM Plus custom plug-in development example is provided as a guideline.
The system environment is Solaris on Sparc. The functionality is basic and just prints out the
metrics buffers. This plug-in works together with the Oracle TSAM Plus Agent default plug-in.

1. Create Plug-in Source Code

2. Build the Plug-in

3. Register the Plug-in

4. Enable Oracle TSAM Plus Monitoring

5. Run a Call and Check the Standard Output.

Create Plug-in Source Code
Listing 3-1 displays an example of the Oracle TSAM Plus plug-in customplugin.c.

Listing 3-1 Oracle TSAM Plus Agent customplugin.c Plug-in Source Code Example

#include <e_pif.h>
#include <tpadm.h>
#include <fml32.h>

#include <e_perf_mon.h>

Oracle TSAM Plus Programming Guide 3-7



static TM32I _TMDLLENTRY print_app (
perf_mon_1 *,
FBFR32 **,
MONITORCTL *,
TM32U) ;

static TM32I _TMDLLENTRY print_svc(
perf_mon_1 *,
FBFR32 **,
MONITORCTL *,
T™™32U) ;

static TM32I _TMDLLENTRY print_sys(
perf_mon_1 *,
FBFR32 **,
MONITORCTL *,
TM32U) ;

static TM32I _TMDLLENTRY print_tran (
perf_mon_1 *,
FBFR32 **,
MONITORCTL *,
TM32U) ;

static TM32I _TMDLLENTRY plugin_destroy (
_TCADEF,
const struct _e_pif_ instance_handles *,
T™™32U) ;

static TM32I _TMDLLENTRY plugin_copy (_TCADEF,
void *,
const struct _e pif_ interception_data *,
struct _e_pif_ instance_handles *,
T™M32U) ;

static const perf_mon_1 Vtblperfapp_ 1 = {
print_app,

3-8 Oracle TSAM Plus Programming Guide



}i

static

}i

print_svc,
print_sys,

print_tran,

const _e_pif_plugin_info perf_mon_1_info = {
{1, 01}, /* interface major version */
{1, 01}, /* implementation */

"abc/tuxedo/tsam", /* implementation id */
ED_PERF_MON_INTF_ID,/* interface id */

4, /* virtual table size */

"ABC, Inc.",/* vendor */

"Custom Plug-in for Oracle TSAM", /* product name */
"1.0", /* vendor version */
EF_PIF_SINGLETON, /* m_flags */

plugin_destroy,

plugin_copy

int _TMDLLENTRY

plugin_entry (_TCADEF, const char *pIId,

return

}

const char *pImplId,

const struct _e_pif_ iversion *version,

const struct _e_pif data *pData,

const struct _e_pif_ interception_data *pInterceptionData,
struct _e_pif_ instance_handles *pI,

T™™M32U flags)

const char * const * regData = pData->regdata;

char *logfile = NULL;

pI->pVtbl = (void *) &Vtblperfapp_ 1;

pI->pPluginInfo = (_e_pif_plugin_info *) &perf _mon_1_info;
pI->pPrivData = NULL;

(EE_SUCCESS) ;

Oracle TSAM Plus Programming Guide

3-9



3-10

static TM32I _TMDLLENTRY
plugin_destroy (_TCADEF, const struct _e_pif_ instance_handles *pIhandles,
TM32U flags)

return (EE_SUCCESS) ;

static TM32I _TMDLLENTRY

plugin_copy (_TCADEF, void *iP,
const struct _e_pif_ interception_data *pInterceptionData,
struct _e_pif_instance_handles *pIhandles,
TM32U flags)

return (EE_SUCCESS) ;
}
static TM32I _TMDLLENTRY print_app (perf_mon_1 * ip,FBFR32 **buf, MONITORCTL
* monctl, TM32U flags)
{
Fprint32 (*buf) ;

return(0) ;

static TM32I _TMDLLENTRY print_svc (perf_mon_1 * ip,FBFR32 **buf, MONITORCTL
* monctl, TM32U flags)
{

Fprint32 (*buf) ;

return(0) ;

static TM32I _TMDLLENTRY print_sys (perf_mon_1 * ip,FBFR32 **buf, MONITORCTL
* monctl, TM32U flags)
{

Fprint32 (*buf) ;

return(0) ;
}
static TM32I _TMDLLENTRY print_tran(perf_mon_1 * ip,FBFR32 **buf,
MONITORCTL * monctl, TM32U flags)

Oracle TSAM Plus Programming Guide



Fprint32 (*buf) ;

return(0) ;

Build the Plug-in

cc -c customplugin.c -ISTUXDIR/include

cc -G -KPIC -0 customplugin.so -LSTUXDIR/lib -1fml customplugin.o

Register the Plug-in

To register the plug-in, do the following steps:
1. Shutdown your Oracle Tuxedo application by “tmshutdown”
2. Compose a shell script named “reg.sh”

3. Run the script

sh ./reg.sh

4. Boot your Oracle Tuxedo applications by "tmboot"

Listing 3-2 displays an example of the reg. sh shell script

Listing 3-2 reg.h Shell Script

#!/bin/sh

epifreg -r -p abc/tuxedo/tsam -i engine/performance/monitoring \
-0 SYSTEM -v 1.0 \

-f $APPDIR/customplugin.so -e plugin_entry

epifregedt -s -k "SYSTEM/impl/bea/performance/monfan" \

-a InterceptionSeg=bea/performance/monshm \

-a InterceptionSeg=abc/tuxedo/tsam \

Oracle TSAM Plus Programming Guide

31



Enable Oracle TSAM Plus Monitoring

Enable Oracle TSAM Plus Monitoring by defining the proper monitoring policy through Oracle
TSAM Plus console

For more information, see Oracle TSAM Plus Users Guide.

Run a Call and Check the Standard Output.

You will find the metrics collected printed out.

Listing 3-3 displays the metrics print out.

Listing 3-3 Metrics Print Out Example

TA_MONDEPTH 1
TA_MONSTATUS 1
TA_MONPROCTYPE 2
TA_PID 2459

TA_SRVID 10
TA_MONLOGTIMESEC 1259292914
TA_MONLOGTIMEUSEC 26411
TA_MONFIELDSMAP1 -1
TA_MONFIELDSMAP2 -1

TA_MONMSGSIZE 24
TA_MONMSGQUEUED 0

TA_MONLASTTIMESEC 1259292914
TA_MONLASTTIMEUSEC 26411
TA_MONSTARTTIMESEC 1259292914
TA_MONSTARTTIMEUSEC 10500
TA_MONELAPSETIME 15
TA_DOMAINID dom2:bjso0ll6:66536
TA_GROUPNAME ATMIGRP1

TA_LMID L1

TA_MONTYPE APP

TA_MONCORRID dom2:bjsoll6:66536 L1 tuxclient 2478 1 1 1259292909
TA_MONMSGTYPE  ARQ

TA_MONSTAGE Q2ME

3-12 Oracle TSAM Plus Programming Guide


../userguide/tsamconhelp.html

TA_MONSVCNAME  I_TOUPPER
TA_MONHOSTSVC  I_TOUPPER
TA_MONSVCSEQ INITIATOR-I_TOUPPER-11659-0
TA_MONPSVCSEQ  INITIATOR

TA_MONQID 1879048194-00010.00010

TA_MONPROCNAME tux_atmi_svr

TA_MONDEPTH
TA_MONSTATUS
TA_MONPROCTYPE 2
TA_PID 2459
TA_SRVID 10

TA_MONLOGTIMESEC 1259292914
TA_MONLOGTIMEUSEC 29368
TA_MONFIELDSMAP1 -1
TA_MONFIELDSMAP2 -1
TA_MONMSGSIZE 100
TA_MONLASTTIMESEC 1259292914
TA_MONLASTTIMEUSEC 29368
TA_MONSTARTTIMESEC 1259292914
TA_MONSTARTTIMEUSEC 10500
TA_MONERRNO 0

TA_MONURCODE 1

TA_MONELAPSETIME 18
TA_DOMAINID dom2:bjso0ll6:66536
TA_GROUPNAME ATMIGRP1

TA_LMID L1

TA_MONTYPE APP

TA_MONCORRID dom2:bjsoll6:66536 L1 tuxclient 2478 1 1 1259292909

TA_MONMSGTYPE  ARP
TA_MONSTAGE ME20Q

TA_MONSVCNAME  I_TOUPPER
TA_MONHOSTSVC  I_TOUPPER
TA_MONSVCSEQ INITIATOR-I_TOUPPER-11659-0
TA_MONPSVCSEQ  INITIATOR

TA_MONPROCNAME tux_atmi_svr

Oracle TSAM Plus Programming Guide

3-13



Oracle TSAM Plus Agent Plug-in Interface

All Oracle TSAM Plus Plug-in interface contents are defined in the
$TUXDIR/include/e_perf_mon.h file. When you build a Oracle TSAM Plus Plug-in, this file
must be included in your plug-in source code.

The $TUXDIR/include/e_perf_mon.h file definitions are as follows:

e Version and Interface Identifier

e Function Table

Version and Interface Identifier

Listing 3-4 provides a version and identifier example.

Listing 3-4 Version and Interface Identifier

#define ED_PERF_MON_MAJOR_VERSION 1

#define ED_PERF_MON_MINOR_VERSION 0

/* Interfaces defined in this module */

#define ED_PERF_MON_INTF_ID "engine/performance/monitoring"

Value Definitions and Data Structure

Listing 3-5 displays the Oracle TSAM Plus framework and plug-in core data structure.

Listing 3-5 Core Data Structure

typedef struct {

unsigned char fieldsmap [MAXMAPSIZE] ;

char monitoring_policy[MAXPOLICYLEN]; /* monitor policy */

char corr_id[MAXCORRIDLEN]; /* plug-in supplied correlation ID */
int ulen;

void * udata;

long mon_flag;

}  MONITORCTL;

3-14 Oracle TSAM Plus Programming Guide



Table 3-5 lists the MONITORCTL members.

Table 3-5 MONITORCTL Members

Members Description

monitoring_policy Internal use only

corr_id It is used to bring the corralling ID from plug-in to TSAM Plus framework

ulen The data length of the application buffer.

udata The application buffer. It is a typed buffer and only available for call path
monitoring and service monitoring. tptypes(5) can be used to check the type
and subtype.

mon_flag The flag set both by TSAM Plus framework and plug-in to indicate the

requirement and changes.

Table 3-6 lists the MONITORCTL array size definitions. Table 3-7 lists the mon_flag Values.

Table 3-6 MONITORCTL Array Size Definitions

Array Size Description

/* Size of #define MAXMAPSIZE 128
fieldsmap*/

/* Size of #define MAXPOLICYLEN 128
monitoring pol

icy */

/* Size of #define MAXCORRIDLEN 256

corr_id*/

Table 3-7 mon_flag Values

Members Description

#define
PI_CORRID_REQU
IRED 0x00000001

PI_CORRID_REQUIRED is set by TSAM Plus framework when a call path
monitoring is started. It means the plug-in must supply a correlation ID to the
framework by the corr_id member of MONITORCTL.

Oracle TSAM Plus Programming Guide 3-15



Function Tahle

Listing 3-6 defines the plug-in implementation method function table.

Listing 3-6 Plug-in Implementation Method Function Table

typedef struct perf_mon_1_Vtbl {

TM32I (_TMDLLENTRY *_ec_perf mon_app) _ ((
struct perf_mon_1_Vtbl * ip,
FBFR32 **buf,
MONITORCTL *mon_ctl,
TM32U flags

)) i

TM32I (_TMDLLENTRY *_ec_perf_mon_svc) _ ((
struct perf_mon_1_Vtbl * ip,
FBFR32 **buf,
MONITORCTL *mon_ctl,
TM32U flags

)) i

TM32I (_TMDLLENTRY *_ec_perf_mon_sys) _ ((
struct perf_mon_1_Vtbl * ip,
FBFR32 **buf,
MONITORCTL *mon_ctl,
TM32U flags

)) i

TM32I (_TMDLLENTRY *_ec_perf mon_tran) _ ((
struct perf_mon_1_Vtbl * ip,
FBFR32 **buf,
MONITORCTL *mon_ctl,
TM32U flags

)) i

} perf_mon_1, *perf_mon_1_ptr;

13

_ec_perf_mon_app” is for call path
‘_ec_perf_mon_sys” is for system

Each method corresponds to a monitoring type. ‘

monitoring, “_ec_perf_mon_svc” is for service monitoring, ‘

3-16 Oracle TSAM Plus Programming Guide



server monitoring and “_ec_perf_mon_tran” is for transaction monitoring. Each method will be
invoked at the corresponding monitoring type’s monitoring points.The method arguments are:

® struct perf mon_1_Vtbl *ip: the virtual table pointer e.

Note: Not required for custom plug-ins.
® FBFR32 **buf: the address of the metrics buffer in FML32 type.
® MONITORCTL *mon_ctl: the control structure.

® TM32U flags: the bit flag in a 32-byte, unsigned integer.

Other Help Header Files

® STUXDIR/include/e_pif.h

The Oracle Tuxedo general plug-in definition file. It must be included in the plug-in source
code.

® STUXDIR/include/tpadm.h

It is the Oracle Tuxedo built-in FML32 fields definition files. All performance metrics are
defined as FML32 fields and some performance metrics are defined in this file

® STUXDIR/include/monflds.h

The TSAM built-in FML32 fields definition files. All performance
metrics are defined in this file beside the tpadm.h

® STUXDIR/include/fml32.h

The metrics collected are stored in an Oracle Tuxedo FML32 buffer. To access these items,
FML32 routines must be used; fm132.h must be included.

Oracle TSAM Plus Agent Plug-in Implementation

Oracle TSAM Plus Agent plug-in implementation requires the following steps:
1. Define “perf mon_1” in the “e_perf mon.h” Function Table

2. Define the Plug-in Information Variable

3. Write the Plug-in Entry Routine

Define “perf_mon_1" in the “e_perf_mon.h” Function Table

Listing 3-7 shows a perf_mon_1 defined in the e_perf_mon.h function table example.

Oracle TSAM Plus Programming Guide 3-17



Listing 3-7 Define a "perf_mon_1" defined in "e_perf_mon.h" Function Table

static const perf_mon_1 Vtblperfapp_ 1 = {
print_app,
print_svc,
print_sys,

print_tran,

Define the Plug-in Information Variable

Listing 3-8 shows how to define the plug-in information variable.

Listing 3-8 Define the Plug-in Information Variable

static const _e_pif plugin_info perf _mon_1_info = {
{1, 01}, /* interface version */
{1, 0}, /* implementation version */
"abc/tuxedo/tsam", /* implementation id */
ED_PERF_MON_INTF_ID, /* interface id */
4, /* virtual table size */
"ABC, Inc.", /* vendor */
"Custom Plug-in for Oracle TSAM", /* product name */
"1.0", /* vendor version */
EF_PIF_SINGLETON, /* m_flags */
plugin_destroy,
plugin_copy

EERNT3

The changeable members are “implementation version”, “implementation id”, “vendor”,
“product name”, “vendor version”. Other items must be kept with same with the sample.

>

plugin_destroy and plugin_copy are the general Oracle Tuxedo plug-in routines for destroy
and copy. For a Oracle TSAM Plus Plug-in, you can write two empty functions as shown in
Listing 3-9.

3-18 Oracle TSAM Plus Programming Guide



Listing 3-9 plugin_destroy and plugin_copy

static TM32I _TMDLLENTRY

plugin_destroy (_TCADEF, const struct _e_pif_instance_handles *pIhandles,

TM32U flags)
{
return (EE_SUCCESS) ;
}
static TM32I _TMDLLENTRY
plugin_copy (_TCADEF, void *iP,
const struct _e_pif_ interception_data *pInterceptionData,

struct _e_pif_instance_handles *pIhandles, TM32U flags)

return (EE_SUCCESS) ;

Write the Plug-in Entry Routine

Each plug-in must have an “entry” routine and specified in plug-in registration process. In this

routine, the virtual function table and plug-in information structure must be supplied to the
plug-in instance handler.

Listing 3-10 shows a plug-in routine example.

Listing 3-10 Plug-in Entry Routine

int _TMDLLENTRY
plugin_entry (_TCADEF, const char *pIId,
const char *pImplId,
const struct _e_pif_ iversion *version,
const struct _e_pif data *pData,
const struct _e pif_ interception_data *pInterceptionData,
struct _e_pif_instance_handles *pI,
T™™M32U flags)

{

const char * const * regData = pData->regdata;

Oracle TSAM Plus Programming Guide



3-20

char *logfile = NULL;
pI->pVtbl = (void *) &Vtblperfapp_ 1;
pI->pPluginInfo = (_e_pif_plugin_info *) &perf_mon_1_info;
pI->pPrivData = NULL;
return (EE_SUCCESS) ;

Note: It is recommends that you t to use the fixed process shown in the sample. The “entry”
routine is called only once to instantiate the plug-in.

Writing Concrete Plug-in Implementations

The implementation function table is registered to Oracle Tuxedo in the “entry” routine. Then
following chapters will focus on how to write TSAM Plus plug-in based on the corresponding
monitoring types.

WARNING: Do not make Oracle Tuxedo ATMI calls (except for FML32 operations,
tpalloc/tprealloc/tpfreeandtptypes)inthe[ﬂuan.HInayremﬂt
un-expected behavior as Oracle Tuxedo context may be compromised.

Call Path Monitoring Plug-in Routine

The call path monitoring plug-in routine are invoked at the monitoring points. For more
information, see “Oracle TSAM Plus Agent Data Collection Framework™ on page 2-1.

A Basic Implementation

In this example, the routine prints out the passed FML32 buffer:

static TM32I _TMDLLENTRY print_app (perf_mon_1 * ip,FBFR32 **buf, MONITORCTL
* monctl, TM32U flags)

{
Fprint32 (*buf) ;
return(0) ;

}
Understanding Current Monitoring Points

Call path monitoring is the most comprehensive Oracle Tuxedo application interceptor. It
provides a variety of metrics for recording and analysis.

Oracle TSAM Plus Programming Guide



e Determine the monitoring stage

The monitoring stage itself is a metric with the FML32 field name TA_ MONSTAGE.

Table 3-8 lists TA._ MONSTAGE values.

Table 3-8 TA_MONSTAGE Values

Value Description

STMO A new call path monitoring is initiated. This is the first record for the
current monitored call path.

ME2Q Before a message is sent to the IPC. It could be a request message or
reply message.

For the monitoring “initiator”, “STMO” replaces “ME2Q” stage since
they are at the same point.

Q2ME Before a message is received from the IPC. It could be a request or
reply message

ME2NET Before a message sent to the network. It only applies to
GWTDOMAIN. It could be a request message or reply message.

NET2ME After a message is received from the network. It only applies to
GWTDOMAIN. It could be a request message or reply message.

Listing 3-11 displays a judge monitoring stage example.

Listing 3-11 Judge Monitoring Stage

char *stage;
FLDLEN32 len;
stage = Ffind32 (*obuf, TA_MONSTAGE,O0,&len) ;

if (stage != NULL ) {
if (strcmp(stage, ”STMO”) == 0 ) {
/* oL *)
telse if (strcmp(stage, "Q2ME” == 0 ) {
/* oL *)

/* other processment */

Oracle TSAM Plus Programming Guide

3-21



For “STRING” field type, we recommend to use “Ffind32” routine to get a more fast process.

e Determine the message type

For an application message transmitted in the Oracle Tuxedo system, it has two choice,
request message or reply message. The field TA. MONMSGTYPE indicates the message
type.

Table 3-9 lists the TA MONMSGTYPE values.

Table 3-9 TA_MONMSGTYPE Values

Value Description
ARQ Request Message
ARP Reply Message

e Determine current process location

The monitoring points always are located in processes of Oracle Tuxedo applications. So
understand current process is important. Oracle TSAM Plus framework uses the fields
TA_DOMAINID, TA_PID, TA_LMID,TA_ MONPROCNAME,TA_GROUPNAME and
TA_SRVID (as defined in Table 3-10) to tell the process location.

Table 3-10 Current Process Location Fields

Format Description

TA_DOMAINID The domain identifier. Its format is: domainid:

mastername:ipckey.

* domainid is the DOMAINID configured in UBBCONFIG. If it is
not set, TUXDOM is used.

* Mastername is the master machine name.
» Ipckey is the key in UBBCONFIG

TA_PID Process ID

3-22 Oracle TSAM Plus Programming Guide



Tahle 3-10 Current Process Location Fields

TA_LMID Logic machine ID

TA_MONPROCNAME Process name.

TA_GROUPNAME Oracle Tuxedo server group name

TA_SRVID Oracle Tuxedo server ID.

Note: Not all metrics available for certain processes. For example, for client processes,

TA_SRVID is not available.

Check Commonly Used Metrics

After get the necessary information on the monitoring stage, message type and process location,
the next step is to check the common used metrics also carried in the FML32 buffer. The metrics

will be available depending on the conditions mentioned previously.

Table 3-11 lists the commonly used metrics.

Table 3-11 Commonly Used Metrics

Field Name Type Description Stage
TA_MONCORRID string The correlation ID of this monitored call path All
TA_MONMSGSIZE long The message size of current message Alll
TA_MONMSGQUEUED long How many message queued on the server request  Request
IPC queue Message
Q2ME
TA_MONSTARTTIMESEC long The second part of timestamp when this call path ~ All
monitoring is initiated. It is the number of seconds
since epoch.
TA_MONSTARTTIMEUSEC long The microsecond part of the startup timestamp. It~ All

is always with TA. MONSTARTUTIMESEC to
provide a more fine-grained time measurement.

Oracle TSAM Plus Programming Guide 3-23



Table 3-11 Commonly Used Metrics

TA_MONLASTTIMESEC long

The second part of timestamp when the monitored
message entering/leaving a transport. It is the
number of seconds since epoch. A transport is the
way carrying message, such as IPC queue and
network. A typical usage is,

*  When a request is fetched from IPC queue,
the TA_LASTTIMESEC indicates the
timestamp when the request message was put
into queue.

*  When a request is fetched from network, the
TA_LASTTIMESEC indicates the timestamp
when the peer process sent the message to
network.

All

TA MONLASTTIMEUSEC long

The microsecond part of the last time timestamp.
It is always with TA_ MONLASTTIMESEC to
provide a more fin-grained time measurement.

All

TA_MONLGTRID string

The GTRID of current monitoring points if the
call path involved in transaction.

Monitorin
g points
involved
transactio
n

TA_MONCLTADDR string

The remote client address. If the monitoring is
started from an Oracle Tuxedo workstation client,
WSH, JSH or GWWS, TSAM Plus framework
will attach the client ip address and port number to
call path information propagation. The format is
//ip address:port.

All

TA_MONDEPTH short

The call path depth. A hop from one service to

another is deemed the depth increased one. The
start value at the initiator is 0.The detail can be
referred at TSAM Plus User Guide.

All

TA_MONERRNO long

The error number set by Oracle Tuxedo
infrastructure.

Reply
Message

TA MONURCODE long

The urcode of tpreturn.

Reply
Message

3-24 Oracle TSAM Plus Programming Guide



Table 3-11 Commonly Used Metrics

TA_MONSVCNAME string The service name of current monitoring points All
involved. For request message, it is the target
service name and for reply message, it is the
service which returns the reply.
TA_MONHOSTSVC string The service name of current service routine Monitorin
g points in
a
applicatio
n server.
TA MONCALLFLAG long The call flags set in tpcall/tpacall Request
Message
ME2Q
STMO
TA_MONCALLMODE short The call type, 1 - tpacall, 2 - tpcall, 3 - tpforward  Request
Message
ME2Q
STMO
TA_MONQID string The request queue id of server which provides Request
current service. Its format is “physical queue key =~ Message
- Oracle Tuxedo logic queue name”. For example, Q2ME
14444547-00004.00018
TA_ MONLDOM string The local domain configuration. Its format is ME2NET
ldom:d01.na}1n1d. For example DOMI:FINANCE.  \gToME
The detail information of the “LDOM” and
“DOMAINID” can be referred Oracle Tuxedo
Manual of DMCONFIG.
TA_MONRDOM string The remote domain configuration. Its format is ME2NET
same with TA_MONLDOM but the valuesare for  \groME

remote domain.

Oracle TSAM Plus Programming Guide 3-25



Table 3-11 Commonly Used Metrics

TA_MONWSENDPOINT string The web service end point URL of GWWS. Reply
Message

ME2Q

TA _MONCPUTIME long CPU time used for service execution. Reply
Message

ME2Q

1. For some self-describe buffer types, such as STRING, the size might be zero.

Generate Call Path Correlation ID

The correlation ID must be given by the plug-in at the monitoring initiating stage, which is the
TA_MONSTAGE value is “sTM0”. The Oracle TSAM Plus framework sets PI_CORRID_REQUIRED
in the MONITORCTL mon_flag. If no correlation ID is given, an error is reported. The Oracle
TSAM Plus default plug-in provides the correlation ID also. Two scenarios need to consider,

o Working with the Oracle TSAM Plus default plug-in.

The custom plug-in can skip the correlation ID generation. If the custom plug-in wants to
overwrite the correlation ID generated by the Oracle TSAM Plus default plug-in, the
interceptor sequence of custom plug-in must come after the Oracle TSAM Plus default
plug-in.

o Working without The Oracle TSAM Plus default plug-in

If the Oracle TSAM Plus default plug-in is removed from the Oracle Tuxedo plug-in
framework, the custom plug-in must supply the correlation ID i. For example:

if (monctl->mon_flag & PI CORRID REQUIRED) {

strepy (monctl->corr_id, mygetid());

}

“mygetid()” is an assumed ID generation routine. The length of the new ID must not exceed the
size of corr_id of MONITORCTL.

To help ID generation, the custom plug-in can use a Oracle TSAM Plus framework service to get
a correlation ID. Listing 3-12 displays an ID generation example.

3-26 Oracle TSAM Plus Programming Guide



Listing 3-12 1D Generation Example

extern int _TMDLLENTRY tmmon_getcorrid(char *obuf, int len);

if (monctl->mon_flag & PI_CORRID_REQUIRED) {
char new_corrid[MAXCORRIDLEN] ;
if (tmmon_getcorrid(new_corrid, sizeof (new_corrid)) == 0 ) {

strpcy (monctl->corr_id,new_corrid) ;

Note: When using the Oracle TSAM Plus framework correlation ID generation routine,
libtsam must be linked with the plug-in.

Service Monitoring Plug-in Routine

Service monitoring is a straightforward procedure. The data collection points are before and after
the service routine invocation. The plug-in is invoked when a request is to be executed and a reply
to be sent back to client.

A Basic Implementation
In this example, the routine prints out the passed FML32 buffer:

static TM32I _TMDLLENTRY print_svc (perf_mon_1 * ip,FBFR32 **buf, MONITORCTL
* monctl, TM32U flags)

{
Fprint32 (*buf) ;

return(0) ;

Check Commonly Used Metrics

Table 3-12 lists the service monitoring plug-in routine metrics.

Oracle TSAM Plus Programming Guide 3-27



Table 3-12 Service Monitoring Plug-in Routine Metrics

Field Name Type  Description

TA_MONMSGWAITTIME long  The request message waiting time in server’s request IPC queue
before execution.

The unit is millisecond. The waiting time is computed in two
scenarios,

*  Oracle Tuxedo 12cR1 and later is the request sender

The waiting time is computed by considering the last time
stamp of transport to this service. The waiting time is
exact.

e Pre-Oracle Tuxedo 12cR1 release sender.

The waiting time is computed based on average queue
length and last service execution time and the dispatching
thread number. This is an approximate value. It only
applies to a server which provides similar services and the
execution time is steady.

TA_MONMSGSIZE long  The message size of reply message.

TA MONMSGQUEUED long  The number of messages queued on the server request IPC queue
currently.

TA_MONLASTTIMESEC long  The number of seconds since epoch when the service begin to execute

TA MONLASTTIMEUSEC long The microsecond seconds since time seconds since epoch. It is used
with TA_ MONLASTTIMESEC

TA_MONERRNO long  Oracle Tuxedo return error code, that is tperrno
TA_MONURCODE long  The urcode of tpreturn.
TA_MONEXECTIME long  The response time in millisecond of current service execution. It is

computed by the Oracle TSAM Plus framework. Plug-in can also get
the current time and the last time timestamp.

TA_MONCPUTIME long  How much CPU time is used of current service execution. It is in
milliseconds.

3-28 Oracle TSAM Plus Programming Guide



Tahle 3-12 Service Monitoring Plug-in Routine Metrics

TA_MONSVCNAME string The service name.

TA_MONLOCATION string  The process location of current process. It has same meaning in call
path monitoring.

System Server Monitoring Plug-in Routine

Oracle TSAM Plus supports several types of Oracle Tuxedo system servers monitoring:
GWTDOMAIN, BRIDGE, and GWWS. The monitoring focus on the throughput, outstanding
request number and message number queued on network. The plug-in is invoked periodically by
the Oracle TSAM Plus framework. The interval is specified by the monitoring policy. Data
collection occurs on the on-going server operations.

A Basic Implementation
In this example, the routine prints out the passed FML32 buffer:

static TM32I _TMDLLENTRY print_sys (perf_mon_1 * ip,FBFR32 **buf, MONITORCTL
* monctl, TM32U flags)

{
Fprint32 (*buf) ;
return(0) ;

}

Check Commonly Used Metrics

Table 3-13 lists the system server monitoring plug-in routine metrics.

Table 3-13 System Server Monitoring Plug-in Routine Metrics

Field Name Type  Description

TA_MONLINKNUM short  The number of network link connected to current server. If the value
is more than 1, then the following statistics data on network link are in
FML occurrences style. For example, TA MONLINKADDR[O0] is
belong to the first network link, TA_ MONLINKADDR([1] is belong
to the second network link etc.

TA_MONLINKSTATUS short  The status of the network link, three possible values, 1 - initialize
stage. 0 - connected and is ok. -1 connection lost.

Oracle TSAM Plus Programming Guide 3-29



Tahle 3-13 System Server Monitoring Plug-in Routine Metrics

TA_MONNUMPEND long  The number of messages queued on network buffer for this network
link. The buffer is for Oracle Tuxedo network layer instead of system
network stack.

This is a snapshot value reflecting the number situation when plug-in
is invoked.

TA_MONBYTESPEND long  The number of messages bytes queued on network buffer. It is related
with TA_ MONNUMPEND but computing the data volume

TA MONNUMWAITRPLY long The outstanding request number on this network link. That means how
many request message are waiting for reply. It only applies to
GWTDOMAIN. BRIDGE does not support this metric.

This is a snapshot value.

TA_ MONACCNUM long  The accumulated message number for this network link between
current plug-in invocation and last plug-in invocation which
controlled by the “sysinterval” policy.

This is a throughput value reflecting the accumulated information
between an interval.

TA MONACCBYTES long  The accumulated message bytes. It is related TA_ MONACCNUM but
computing the data volume.

This is a throughput value.

TA MONLINKADDR string The link address, for GWTDOMALIN, it is the RDOM defined in
UBBCONFIG. For BRIDGE, it is the remote host name.

TA_MONINRPCFAIL long  The number of RPC failed requests for inbound of GWWS.

TA_MONOUTRPCFAIL long  The number of RPC failed request for outbound of GWWS.

TA_MONINBOUNDPEND long  The number of pending request waiting for reply for inbound of
GWWS.

TA_MONOUTBOUNDPEN long  The number of pending request waiting for reply for outbound of
D GWWS

Transaction Monitoring Plug-in Routine

Oracle TSAM Plus also traces critical routines invocation in XA transaction. The scope includes
tpbegin,tpcommit, tpabort,xa xxx calls and GWTDOMAINS transaction routines.

3-30 Oracle TSAM Plus Programming Guide



A Basic Implementation
In this example, the routine prints out the passed FML32 buffer:

static TM32I _TMDLLENTRY print_tran(perf_mon_1 * ip,FBFR32 **buf,
MONITORCTL * monctl, TM32U flags)

{
Fprint32 (*buf) ;
return(0) ;

}

Check Commonly Used Metrics

Listing 3-10 lists the commonly used transaction monitoring plug-in routine metrics.

Table 3-14 Transaction Monitoring Plug-in Routine Metrics

Field Name Type  Description

TA MONXANAME string The routine name of a XA transaction, such as “tpbegin”, “xa_commit” etc.

TA _MONXACODE long  The routine return code

TA_MONEXECTIME long  The routine execution time in millisecond.

TA_MONRMID long  The resource manager instance ID. It only applies to xa_xxx calls

TA_MONLGTRID string The global transaction ID of current transaction

TA MONRGTRID string The parent transaction’s GTRID. It only applies to GWTDOMAIN when it
is a network subordinator.

TA MONLOCATION string The process location of current process. It has same meaning in call path
monitoring.

Configure the Plug-in to Oracle Tuxedo

Note: The plug-in will run in Oracle Tuxedo infrastructure. It must be well tested before
configure to Oracle Tuxedo production environment.

Register to Oracle Tuxedo

Oracle Tuxedo uses the epi freg command to register the plug-ins to the Oracle Tuxedo registry
so that the infrastructure can invoke the plug-in at run time. Oracle TSAM Plus uses the Oracle
TSAM Plus framework to invoke the plug-in.

Oracle TSAM Plus Programming Guide 3-31



Listing 3-13 shows how the epifreg command is used to invoke a plug-in.

Listing 3-13 Using epifreg to Invoke a Plug-in

epifreg -r -p abc/tuxedo/tsam -i engine/performance/monitoring \

-0 SYSTEM -v 1.0 -f /test/abc/customplugin.so -e plugin_entry
epifregedt -s -k "SYSTEM/impl/bea/performance/monfan" \

-a InterceptionSeg=bea/performance/monshm \

-a InterceptionSeg=abc/tuxedo/tsam

In this, there are two steps required to register the custom plug-in Oracle Tuxedo.
1. Using “epifreg” to register the custom implementation to Oracle Tuxedo.

a. “-p” option specifies the implementation id and it must be consistent the value specified
in source code.

b. “-v” indicates the version number.
c. “-£” specifies the dynamic library path.
d. “-e” specifies the “entry” routine described in the “General Steps” section.

2. Using “epifregedt” to change the fan-out plug-in “InterceptionSeq” attribute.

Oracle TSAM Plus supports a Fan-out plug-in mechanism which means multiple plug-ins
can work together. Oracle TSAM Plus Agent provides the Fan-out plug-in and a default
interceptor plug-in. The custom plug-in is an additional interceptor plug-in.

The “-a InterceptionSeg=xxx" option tells the Fan-out plug-in invokes the interceptor
plug-in using the specified order. “xxx” is the implementation id. In this example, the
Oracle Tuxedo default interceptor plug-in implementation ID,
“bea/performance/monshm”, is invoked before the custom plug-in implementation ID
“abc/tuxedo/tsam’.

3. Ifyou have multiple custom plug-in developed, you need to register them first with “epifreg”,
then modify the invocation sequence with “epifregedt” with the proper
“InterceptionSeq” sequence.

3-32 Oracle TSAM Plus Programming Guide



Un-register from Oracle Tuxedo
“epifunreg” can be used to un-register a specified plug-in, for example,

epifunreg -p abc/tuxedo/tsam

After unregistering the custom plug-in, you must use “epifregedt” to modify the Fan-out
plug-in invocation again based on current available plug-ins. For example:

epifregedt -s -k "SYSTEM/impl/bea/performance/monfan" \

-a InterceptionSeg=bea/performance/monshm

Note: It is strongly recommended to register/unregister/modify the plug-in after shutting down
an Oracle Tuxedo application.

Oracle TSAM Plus Agent Plug-in Development/Deployment
Notes

e Do not use Oracle Tuxedo ATMI calls in the plug-in except for the FML32 operations
tpalloc/tprealloc/tpfree and tptypes. The monitoring points are embedded in the
Oracle Tuxedo communication framework. Embedded ATMI calls may compromise
current Oracle Tuxedo context.

e You cannot free FML32 buffers passed by the plug-in.

o [fthere is any information returned to the Oracle TSAM Plus framework, such as new
correlation ID, the latest plug-in changes take effect.

e Do not change the MONITORCTL udata. It is a read only interception of application
messages. Any modification will result un-expected behavior.

Oracle TSAM Plus Programming Guide 3-33



	Oracle® Tuxedo System and Applications Monitor Plus
	12c Release 2 (12.1.3)

	Oracle Tuxedo Systems and Applications Monitor Plus Programming Guide, 12c Release 2 (12.1.3)
	Overview
	Configurations
	Creating a JMX Connection
	Overview
	Using tsambegin()/tsamend() in Oracle Tuxedo Service
	Overview
	Oracle TSAM Plus Agent Data Collection Framework
	Creating an Oracle TSAM Plus Agent Custom Plug-in
	Overview
	Oracle Tuxedo Plug-in Framework Concepts

	Developing a Oracle TSAM Plus Agent Plug-in
	Create Plug-in Source Code
	Build the Plug-in
	Register the Plug-in
	Enable Oracle TSAM Plus Monitoring
	Run a Call and Check the Standard Output.

	Oracle TSAM Plus Agent Plug-in Interface
	Version and Interface Identifier
	Function Table
	Other Help Header Files

	Oracle TSAM Plus Agent Plug-in Implementation
	Define “perf_mon_1” in the “e_perf_mon.h” Function Table
	Define the Plug-in Information Variable
	Write the Plug-in Entry Routine
	Writing Concrete Plug-in Implementations

	Oracle TSAM Plus Agent Plug-in Development/Deployment Notes



