Oracle® Tuxedo
Using Oracle Jolt with Oracle WebLogic Server
12c Release 2 (12.1.3)

April 2014

ORACLE

Oracle Tuxedo Using Oracle Jolt with Oracle WebL ogic Server, 12c Release 2 (12.1.3)
Copyright © 1996, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to usin writing.

If thisis software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software”
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use,
duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general usein avariety of information management applications. It is not developed
or intended for use in any inherently dangerous applications, including applications that may create arisk of persona injury. If
you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

This software or hardware and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect
to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damagesincurred due to your access to or use of third-party content, products, or services.

Contents

1. Introduction to Oracle Jolt for Oracle WebLogic Server

WebLOgIC Server Startup.o e
Connecting to aWebL ogic Server fromacClient Browser
How a Serviet Connectsto TUXEAOo v e
What HappensiftheRequest Fails i
Respondingtothe Client Browser. . ..o
Disconnecting fromtheJolt Server i
Usingthe Example Packages e e

2. Configuring Jolt for WebLogic Server
Configuring Jolt for TUXEOot
Configuring Jolt for WebLogiC Server
Jolt Startup Classand ConnectionPool
Jolt Shutdown Class.o
Displaying Jolt in the WebLogic AdministrationConsole.
Resetting the Jolt Connection Pool o
Command-lineMethod
Administration Console Method i

Using Oracle Jolt with Oracle WebLogic Server

iv

3. Implementing Jolt for WebLogic

ImportingPackages
ConfiguringaSessionPool
UsingaServlet SessonPool
CalingaTuxedo Servicecoivinaen...
SendingaServlietDataSet
Adding ParameterstotheDataset.
Accessing a Tuxedo Service Through Jolt.
Converting Java Data Typesto Tuxedo Data Types
Receiving ResultsfromaService

Using the Result.getValug() Method.

Using the ServletResult.getStringValue() Method

UsingaTransaction,
Handling Exceptions.ot

A. Class Hierarchy

Oracle Jolt Class Hierarchy for the Oracle WebL ogic Server AP

B. Simple Servlet Example

Example Components and Prerequisites
UsingtheExample............ ...,
Step 1. Perform Preparatory Steps
Step 2. Start the WebLogic Server

Step 3. Configure the Servlet in WebL ogic Server

Step 4. Stop and Restart the WebL ogic Server
Step 5. Compilethe Servlet.
Step 6. Display the simpapp.html Form
Step 7. Post the FORM Data from the Browser

Using Oracle Jolt with Oracle WebLogic Server

Step 8. Processthe Requestot
Step 9. Returnthe ResultstotheClient. o i

C. Servlet with Enterprise JavaBean Example
About the Servlet with JavaBean Example. i
Preparing to Use the Servlet with JavaBean Example
SetUp Your Environment oo
Buildthe Example.o
Run the Servlet with JavaBeanExample i i

Using Oracle Jolt with Oracle WebLogic Server

vi Using Oracle Jolt with Oracle WebLogic Server

CHAPTERo

Introduction to Oracle Jolt for Oracle
WebLogic Server

With Oracle Jolt for Oracle WebL ogic Server, you can enable Oracle Tuxedo services for the
Web, using the Oracle WebL ogic Server as the front-end HTTP and application server.

Oracle Jolt is a Java-based client API that manages requests to Oracle Tuxedo servicesviaa Jolt
Service Listener (JSL) running on the Tuxedo server. The Jolt API is embedded within the
WebLogic API, and is accessible from a servlet or any other Oracle WebL ogic application.

Because Oracle Jolt for Oracle WebL ogic Server isan extension to the Jolt Javaclasslibrary, the
Jolt Javaclient classlibrary can be usedin HTTP servletsrunningin the WebL ogic Server. Oracle
Jolt for Oracle WebL ogic Server also uses Java HTTP servlets to provide an interface between
HTML browser clients and Oracle Tuxedo services.

Hereafter, Oracle Tuxedo isreferred to as Tuxedo, Oracle Jolt is referred to as Jolt, and Oracle
WebL ogic isreferred to as WebL ogic for readability.

This topic includes the following sections:
o Key Features
e How Jolt for WebL ogic Works

e Using the Example Packages

Key Features

Key features of the Oracle Jolt for Oracle WebL ogic Server architecture include:

Using Oracle Jolt with Oracle WebLogic Server 1-1

e Enabling the use of Java HTTP servlets to provide adynamic HTML front-end for Tuxedo
applications

e Providing session pooling to use Tuxedo resources efficiently
e Supporting transactions

e |ntegrating session pool management into the WebL ogic Console

Note: Jolt for WebL ogic does not provide access to asynchronous Tuxedo event notifications.

How Jolt for WebLogic Works

1-2

This section describesthe major components used for communicationin Jolt, and how Oracle Jolt
for Oracle WebL ogic Server works, including:

o How the connection isinitialized when the server is started

e The flow of information through:
— An end-user Web browser
— The WebL ogic Server

— The Tuxedo transaction processing system

Relationship Between Jolt for WebLogic and Tuxedo

Using Oracle Jolt for Oracle WebL ogic Server, you can access your underlying Tuxedo system
from the Web. This access allows you to write Web-enabled applications that can interact with
other systems and databases in your Tuxedo domain.

The system described here is accessed through a standard Web browser. This Web browser is
served by the WebL ogic Server, which uses a customized Java HTTP servlet to handle the
interactive HTTP requests of the browser. (AnHTTP servletisaJavaclassthat handlesan HTTP
request and delivers an HTTP response.) The custom HTTP servlet uses the Jolt for WebL ogic
API to talk to a Jolt Server that can be on a remote machine or behind a security firewall.

The Jolt Server lives within the Tuxedo domain and determines which Tuxedo services are
accessible to each client. The Jolt Server invokes the requested Tuxedo service and sends any
results back to the WebL ogic Server. Y ou can then compile the results into a servlet-generated
Web page, and send them to the browser. In doing so, you create a highly accessible and user
friendly interface to Tuxedo services from anywhere on the Internet or intranet.

Using Oracle Jolt with Oracle WebLogic Server

How Jolt for WebLogic Works

Essential Components of the Jolt Architecture

The fundamental object types that maintain the communi cations connection from the WebL ogic
JavaHTTP servlet to the Jolt Server and from the Jolt Server to Tuxedo, are as follows:
® Session
A session object represents a physical connection with the Tuxedo system.
® SessionPool

A session pool contains one or more sessions. The sessions in the session pool are reused
for efficiency. Your WebL ogic servlet uses sessions to invoke services in Tuxedo through
the methods of a session pool. Session pools are initialized by the WebL ogic server at
startup and configured by attributesin the config.xm1 file.

Note: For Oracle WebL ogic Server 6.0 or later, the xml-based config.xml configuration
file has replaced the weblogic.properties file. For more information about the
config.xml file, refer to the Oracle WebLogic Server Administration Guide.

® SessionPoolManager

Use the session pool manager to get areference to a session pool and to create, administer,
and remove session pools. The session pool manager is created just before the WebL ogic
Server initializes the first session pool.

Figure 1-1 shows the architecture for Oracle Jolt for Oracle WebL ogic Server.

Using Oracle Jolt with Oracle WebLogic Server 1-3

1-4

Figure 1-1 Oracle Jolt for Oracle WebLogic Server Architecture

L_Well Logic Senveu

WebLogic
Console
RDEBMS

SRS § o5

Session = :Zg: @ BEA

. pool (— & |8 TUXEDO

{ : e manager : H i @ domain
S I
>

WebLogic Server Startup

The WebL ogic standards-based, pure-Java application server assembles, deploys, and manages
distributed Java applications. It supports distributed component services and enterprise database
access, including Enterprise JavaBeans, Remote Method Invocation (RMI), distributed
JavaBeans, and Java Database Connect (JDBC).

The WebL ogic Server's Administration Server is populated with JavaBean-like objects Sun
Microsystem’ s JavaM anagement Extension (JM X) standard. These objects provide management
access to domain resources.

The Administration Server contains both configuration MBeans and run-time MBeans.
Configuration MBeans provide both SET (write) and GET (read) access to configuration
attributes. Run-time M Beans provide a snapshot of information about domain resources, such as
current HTTP sessions or the load on a JDBC session pool. When a particular resource in the

Using Oracle Jolt with Oracle WebLogic Server

How Jolt for WebLogic Works

domain (such asaJolt connection pool) isinstantiated, an MBean is created to collect information
about that resource.

Note: For more information about configuration and run-time MBeans, refer to the Oracle
WebLogic Server Administration Guide.

The WebL ogic Server is configured to initialize the session pools at startup through the
config.xml file. A special startup class, PoolManagerstartUp, iSinvoked by the WebL ogic
Server with a number of parameters. This class functions as follows:

e Creates asession pool manager if one does not already exist
e Creates a session pool according to the given parameters

e Adds the new session pool to the pool manager

Note: Start the Jolt servers before attempting to create a session pool; otherwise the startup
classes will fail, and they will not attempt to commit again.

The number of session pools created depends on the number of JoltConnectionPools that are
configured inthe config.xmi file.

Connecting to a WebLogic Server from a Client Browser

In addition to its other Java services, the WebL ogic Server isafully functional HTTP server that
supports Java HTTP servlets. In general, each servliet must be registered with avirtual namein
the config.xml file.

A servlet may beinvoked directly, that is, may actually present HTML to the browser, or may be
invoked indirectly from an HTML form when the user submits the form. When the WebL ogic
Server receives arequest containing the registered virtual name of a servlet, it invokes the
appropriate servlet's service () method. For more information on HTTP servlets, refer to the
Programming WebLogic HTTP Serviets guide.

The HTTP servlet's service () method (which invokes either the servlet's dopost () or

doGet () method, depending on the context) isinvoked and passes an HttpServletRequest
object containing the HTTP data sent from the browser. In the example packages described in
“Using the Example Packages’ on page 1-7, the client's query dataisused in atransaction call to
Tuxedo, and the response is built into the new HTML page.

Using Oracle Jolt with Oracle WebLogic Server 1-5

1-6

How a Servlet Connects to Tuxedo

A servlet obtains areference to the session pool manager that was created and initialized by the
WebL ogic Server when it started. The pool manager is used to retrieve the session pool that was
configured inthe config.xml file. This session pool references the appropriate Jolt Server in a
Tuxedo domain. A servlet uses the session pool to invoke a specific Tuxedo service.

Tuxedo services are described and exported (declared accessible) on the Jolt Server in the Jolt
Repository. In the Jolt Repository, the service’s expected input and output parameter types are
declared. A servlet must supply the expected input parameters; Oracle Jolt for Oracle WebL ogic
Server uses speciaized servletSessionPool objectsthat can accept their input directly from
an HttpServletRequest Object. The output isreturned in a servietResult Object.

What Happens if the Request Fails

The session pool distributes the requests equally among the sessions in the pooal. It selects the
least busy session to call the Tuxedo service. If the selected session isterminated before the
Tuxedo service is called, the session pool redirects the service call to a different session, then
establishes a new session to replace the disconnected one. The session pool uses around-robin
algorithm to select and establish a connection to aprimary Jolt Server. If no primary Jolt Servers
responds, the session pool connectsto afailover server.

If no sessions are available from a session pool, or the session pool is suspended, then a
SessionPoolException ISthrown.

Multiple requests can be grouped into a single transaction. When a transaction fails, a
TransactionException isthrown. Thisexception should be caught by the servlet and handled
appropriately. (Usually, the servlet performs arollback.)

Responding to the Client Browser

Provided the service call was successful, the following events occur:
e Thedesired results are extracted from the servietResult oObject.

e The results are processed by the servlet and incorporated into an HTML page for
presentation to the user's browser. The HTML page can be built in one of two ways:

— With WebL ogic's easy-to-use Java Server Pages (JSP) service that lets you embed Java
in astandard HTML page.

— Using amore sophisticated programmatic approach with WebL ogic htmlKona.

Using Oracle Jolt with Oracle WebLogic Server

Using the Example Packages

e The WebL ogic Server returns the HTML page to the client viathe Ht tpServletResponse
object.

Disconnecting from the Jolt Server

The WebL ogic Server is also configured to shut down the existing session pool connections to
Tuxedo through the config.xm1 file.

Register the class Poo1ManagershutDown SO that the Jolt session pool is cleaned up properly
when the WebL ogic Server shuts down. Poo1ManagershutDown dOes not require an attributein
the config.xmil file.

Using the Example Packages

Two example packages are included with Oracle Jolt for Oracle WebL ogic Server. These
packages are described in Appendix B, “Simple Serviet Example,” and Appendix C, “ Servlet
with Enterprise JavaBean Example.” They demonstrate how Jolt is used in WebL ogic servletsto
access Tuxedo services. You can build, run, and inspect these examples to help you decide how
to use WebL ogic to extend Tuxedo servicesto the Internet.

e Simple Servlet Example

A FORM-based HTML front end that submits a string to an HTTP servlet. The servlet in
turn sends this string to a Tuxedo service. The returned datais compiled into a
dynamically-generated HTML file, and sent back to the client browser.

e Servlet with Enterprise JavaBean Example

The Enterprise JavaBean (EJBean) example package contains the classes and other files
necessary to set up and run an EJBean stateful session to a Tuxedo Server that is using Jolt.

Using Oracle Jolt with Oracle WebLogic Server 1-7

1-8 Using Oracle Jolt with Oracle WebLogic Server

CHAPTERa

Configuring Jolt for WebLogic Server

Configuring a Jolt Session Pool connection between Tuxedo and WebL ogic Server requirestwo
procedures:

e Configuring Jolt for Tuxedo
e Configuring Jolt for WebL ogic Server

Configuring Jolt for Tuxedo

Refer to the Using Oracle Jolt for instructions on setting up a Jolt Service Listener (JSL) within
Tuxedo. In Using Oracle Jolt, it is assumed that JSL services have already been configured
within the Tuxedo domain. The guide only describes how to establish a session pool connection
to these services from WebL ogic Server.

Configuring Jolt for WebLogic Server

Thissection describes how to set up an Oracle Jolt connection pool between the WebL ogic Server
and the JSL in the Tuxedo domain. Y our WebL ogic Server must have access to the host running
the JSL.

Jolt Startup Class and Connection Pool

Y ou must instruct WebL ogic Server to invoke the Poo1Managerstartup class whenever the
WebL ogic Server is started or restarted. This invocation establishes the pool connection to
Tuxedo from the config.xml file, as shown in the following example.

Using Oracle Jolt with Oracle WebLogic Server 2-1

2-2

Note: For WebLogic Server 6.0 or later, Jolt startup classes and connection pool attributes are
configured viathe configuration MBeans in the Administration Console. For more
information about configuration and run-time M Beans, refer to the Oracle WebLogic
Server Administration Guide.

<StartupClass
ClassName="bea.jolt.pool.servlet.weblogic.PoolManagerStartUp"
FailureIsFatal="false"
Name="MyStartup Class"
Targets="myserver"
/>
<JoltConnectionPool
ApplicationPassword="tuxedo"
MaximumPoolSize="5"
MinimumPoolSize="3"
Name="MyJolt Connection Pool"
PrimaryAddresses="//TUXSERVER:6309"
RecvTimeout="300"
SecurityContextEnabled="true"
Targets="myserver"
UserName="joltuser"
UserPassword="jolttest"
UserRole="clt"
/>

The startup class in the preceeding example instructs WebL ogic Server to invoke the
PoolManagerStartUp class when the WebL ogic Server starts. The JoltConnectionPool
specifiesinitialization arguments that are passed to the Poo1ManagerstartUp class. If you do
not want the sessionPool to try to reestablish the connection in case any of the JSL isforced to
shutdown, set the VM property jolt.sessionPoolKeepalive=false When starting up the
Weblogic Server.

Using Oracle Jolt with Oracle WebLogic Server

Configuring Jolt for WebLogic Server

Jolt Connection Pool Attributes
The Jolt connection pool attributes are defined as follows:

Application
Password

MininumPoolSize

MaximumPoolSize

Name

PrimaryAdresses

Failover
Addresses

RecvTimeout

(Optional) Tuxedo application password. Thisisrequired only if the
Tuxedo authentication level iSUSER_AUTH Of APP_PW.

(Required) Specifiestheinitial session pool size when the session
pool is created.

(Required) Specifies the maximum session pool size. Each session
within a pool can handle up to 50 outstanding requests at any one
time.

(Optional) Defines a name for this session pool that should be
unique from the names of other session pools. Thisis an optional
argument, but it isrecommended that you use it to avoid ambiguity.
The SessionPoolManager alows only one session pool to
remain unnamed. Y ou can access this unnamed session pool from
your application by supplying nul1l in place of the poolname
string argument to the get SessionPool () method.

Note: We strongly recommend that you name every session pool.

(Required) Definesalist of the addresses of the primary Jolt Server
Listeners (JSLs) on the Tuxedo system. These are defined in the
format:

//hostname:port
where hostname is the name of the server wherethe JSL is
running, and port isthe port on which the JSL is configured to
listen for requests. Y ou can specify multiple addressesin a
semicolon-separated (;) list.

Note: You must specify at least one primary JSL
hostname : port address.

(Optional) Y ou can specify alist of failover Jolt Server Listenersin
the sameformat used for appaddr1ist above. Jolt attemptsto use
these failover JSL(s) if the primary JSLs listed abovefail. These
JSL s need not reside on the same host as the primary JSLs.

(Required) Specifies the amount of time the client should wait to
receive aresponse before timing out.

Using Oracle Jolt with Oracle WebLogic Server 2-3

SecurityContext (Optional) Enables or disables the security context for this

Enabled connection pool. This option should be enabled if you want to
implement authentication propagation between WebL ogic Server
and Jolt. If identity propagation is desired, then the Jolt Service
Handler (JSH) must be started with the -a option. If this option is
not set, but SecurityContext is enabled, the JSH will not accept this
request. If the SecurityContext attribute is enabled, then the Jolt
client will pass the username of the caller to the JSH.

If the JSH gets a message with the caller’ sidentity, it calls
impersonate_user () togettheappkey for theuser. JSH caches
the appkey, so the next time the caller makes a request, the appkey
isretrieved from the cache and the request is forwarded to the
service. A cacheis maintained by each JSH, which meansthat there
will be a cache maintained for al the session pools connected to the

same JSH.
Targets (Required) Specifies the target servers for the connection pool.
UserName (Optional) Tuxedo user name. Thisisrequired only if the Tuxedo

authentication level iISUSER_AUTH.

UserPassword (Optional) Tuxedo user password. Thisisrequired only if the
Tuxedo authentication level iSUSER_AUTH.

UserRole (Optional) Tuxedo user role. Thisisrequired only if the Tuxedo
authentication level iISUSER_AUTH Or APP_PW.

It is recommended that you configure one Jolt session pool for each application running on the
WebL ogic Server.

Jolt Shutdown Class

To configure WebL ogic Server to disconnect the Jolt session pools from Tuxedo when it shuts
down, add the following lines to the WebL ogic Server config.xmi file:

<ShutdownClass
ClassName="bea.jolt.pool.servlet.weblogic.PoolManager ShutDown.”
/>

The shutdown classinstructs WebL ogic Server to invokethe Poo1Managershut Down classwhen
the WebL ogic Server shuts down.

2-4 Using Oracle Jolt with Oracle WebLogic Server

Displaying Jolt in the WebLogic Administration Console

Displaying Jolt in the WebLogic Administration Console

If you are connecting to aWebL ogic Server that has Jolt correctly installed and configured, when

you start the Administration Console you will see a configuration M Bean for the Jolt connection
pool displayed in the Administration Console, as shown in Figure 2-1.

Figure 2-1 WebLogic Server Console with Jolt Connection Pool

Change Centes @ ances B econd 1o

Wiew changes nd restarts Aol
Cortign Settngs for demopoitpos
choegr o

iy,

Wekome, weblog Corvecied to: jot_dosan il

Conflguration Targets Monkorng Rotes

Gemerdl Mifess Lew S0

ot thes e 1 cefire e e o g st of thes St et

1] M Posl e

T] Sevurity Contrst Fnabind

For each Jolt connection pool thereisan individual mMBean that displaysthe pool name, maximum
connections, pool state, and statistics about the connection status.

Note: For more information about MBeans, refer to the Oracle WebL ogic Server
Administration Guide.

Resetting the Jolt Connection Pool

Y ou can reset the Jolt connection pool without having to restart WebL ogic Server. The
resetConnectionPool () method callsthe sessionPoolManager.stopSessionPool ()

Using Oracle Jolt with Oracle WebLogic Server 2-5

2-6

method to shut down all the connections in the pool. It then calls the
SessionPoolManager.createSessionPool () method to restart the connection pool.

Command-line Method

The resetConnectionPool method can beinvoked from the Administration Console
command-line interface by using the following command:

java weblogic.Admin -url t3://localhost:7001 -username system -password
gumbyl1234 -invoke -mbean

mydomain:Name=myserver.jolt.demojoltpool, Type=JoltConnectionPoolRuntime, Lo
cation=myserver -method resetConnectionPool

Administration Console Method

The Jolt connection pool can also be reset from the GUI console by using the following method:
In the Administration Console, expand Interoperability and select Jolt Connection Pools.
On the Jolt Connection Pools page, click the name of a connection pool.

Select the Monitoring tab.

A wopdp R

Click Pool Reset.

Using Oracle Jolt with Oracle WebLogic Server

ORACLE' WebLogic Server Administration Cansole 12¢

Change Center @ Home LogOut Preferences [Recard Help

View changes and restarts Hote =Suteary oF Jot Correction Pacls =demojoltpocl

C u bled. Future ing
chinges il automatically be activated as you
oy, add o delet ems in s domain, Corfiquration | Targets | Monitoring | otes

Domain Structure

IFthis Jol cormection pocl i curenly active, o can s His page to v runtme satiticsFor the conmettion poc o b reset ks comnection tothe Jok servers,

Resetting the Jolt Connection Pool

Welcome, weblogic ‘Car\r\ected to: jolt_domain_swliu

ot domain_xvla
Envroment
[eyt Customize ths table
Sarices
[sty s Jolt Cannection Poals
= Interoperahity
Wi FoolFesst Showing 1 ta 1 of 1 Previaus | Nt
ke !
Disgrostcs ‘F‘PnnlNama® ‘Sarvar ‘Ma(hina ‘Max[apa(ity |Pnnl§tata ‘Saturily[nntaxtPrnpagatinn ‘Enm\a(tinns ‘
‘I’ ‘demo]a\tpao\ ‘Admmsarvev ‘ |Actwe ‘Fa\se ‘5 ‘
FPool Reset Showing 1 to 1 of 1 Previous | Next
How doL. El

+ Mortor Jok connetton pacls

o Reset Jok connections

System Status 8

Heakh of Rurving Servers

Faled (1)
[Critical (0)

Overloaded (1)
[Warning (1)

Using Oracle Jolt with Oracle WebLogic Server 2-1

2-8 Using Oracle Jolt with Oracle WebLogic Server

CHAPTERa

Implementing Jolt for WebLogic

Setting up Jolt to connect to Tuxedo from your WebL ogic application or servlet requires the
following steps:

e Importing Packages

Configuring a Session Pool

Using a Servlet Session Pool

Accessing a Tuxedo Service Through Jolt
e Converting Java Data Types to Tuxedo Data Types
e Receiving Results from a Service

e Using a Transaction

See page B-1 for asimple example that establishes a connection and accesses a Tuxedo service
froman HTTP servlet.

Importing Packages

The Jolt Java class packages are automatically installed when you install Jolt for WebL ogic
Server. To use Oracle Jolt for Oracle WebL ogic Server, import thefollowing class packages that
were installed with Jolt into your servlet:

bea.jolt.pool.*

bea.jolt.pool.servlet.*

Using Oracle Jolt with Oracle WebLogic Server 3-1

There are other classes you must import into any servlet; for more information on writing Java
servlets, read the Programming WebLogic HTTP Serviets guide.

Configuring a Session Pool

3-2

Y ou can access session poolsthrough the sessionPoolManager class. WeblL ogic Server usesa
variation of the session pool called aservlet session pool. The servlet session pool provides extra
functionality that is convenient for useinside an HTTP servlet.

When you configure a servlet session pool through the WebL ogic Administration Console, the
following information is added to the config.xml configuration file:

<StartupClass
ClassName="bea.jolt.pool.servlet.weblogic.PoolManagerStartUp"
FailureIsFatal="false"
Name="MyStartup Class"
Targets="myserver"
/>
<JoltConnectionPool
ApplicationPassword="tuxedo"
MaximumPoolSize="5"
MinimumPoolSize="3"
Name="MyJolt Connection Pool"
PrimaryAddresses="//TUXSERVER:6309"
RecvTimeout="300"
SecurityContextEnabled="true"
Targets="myserver"
UserName="joltuser"
UserPassword="jolttest"
UserRole="clt"
/>
When WebL ogic is started (or restarted), it invokes the Poo1ManagerstartUp classand its
associated startupargs. On thefirst invocation, the PoolManagerStartUp class creates a
ServletSessionPoolManager object, which contains every ServletSessionPool
configured in the config.xml configuration file.

Subsequent calls add another servietsessionpPool to the same
ServletSessionPoolManager. YOU must add an entry for each session pool, using a unique
virtual name binding for each, as shown in the preceding example. The WebL ogic Server creates
anew servletSessionPool asdefinedinthe config.xmi file.

Using Oracle Jolt with Oracle WebLogic Server

Using a Servlet Session Pool

For additional information about property settingsand alist of definitions, see“ Jolt Startup Class
and Connection Pool” on page 2-1.

Accessing a Servlet Session Pool

OnceaWebL ogic Server is configured to set up aJolt session pool on startup, you can accessand
use the Jolt session pool from your Java application or serviet. As described earlier, in the
WebL ogic Server all servietsessionPool oObjects are managed by the same

ServletSessionPoolManager.
ServletSessionPoolManager poolMgr = (ServletSessionPoolManager)
SessionPoolManager.poolmanager;

The WebLogic Server usesa servletSessionPoolManager Classthat isderived from

SessionPoolManager. The ServletSessionPoolManager Manages ServlietSessionPool

objects, which offer additional HTTP servlet methods.

SessionPoolManager provides several methods for managing the administration of a session
pooal. In the following example, the sessionPoolManager isused to retrieve the sessionpool
that has been named jo1tpoolname:

SessionPool sPool = poolMgr.getSessionPool ("joltpoolname") ;

However, because the WebL ogic Server uses the subclass servietsessionPoolManager, the
above example actualy returnsa servietSessionPool object in the guise of asessionPool.

Y ou must cast the sessionPool t0aservletSessionPool, asin thefollowing code example:
ServletSessionPool ssPool =
(ServletSessionPool) poolMgr.getSessionPool ("joltpoolname") ;

Because WebL ogic Server creates and configures the servletSessionPoolManager, it iS
likely that thisisthe only method you will use. Other sessionPoolManager methods allow you
to create, suspend, stop, or shut down individual or all the session poolsit manages. We
recommend that you leave these administrative operations to the WebL ogic Server by
configuring and managing your session pools using the WebLogic config.xml configuration
file

Using a Servlet Session Pool

The reference to the named servletsessionPool from the pool manager represents a pool of
sessions (or connections) to the Jolt Server in Tuxedo. The size of this pool and the Tuxedo

Using Oracle Jolt with Oracle WebLogic Server 3-3

3-4

system to which it connects are abstracted from the application code and are defined in the
WebLogic config.xml configuration file. When you initiate arequest, the sessionPool USES
the least-busy connection available.

Calling a Tuxedo Service

A Jolt request usually consists of asingle call to a Tuxedo service using the ca11 () method of
the sessionPool. You supply the name of the Tuxedo service and a set of parameters to the
call () method, and it returns a set of results from the Tuxedo service. It is possible to make
multiple calls within a single transaction, which allows a servlet to comply with transactional
demands of a Tuxedo application or preserve integrity between databases. This transaction is
described in more detail in “Using a Transaction” on page 3-9.

Sending a ServletDataSet

The servletSessionPool provides overloaded call () methodsfor useinsidean HTTP
servlet. These methods accept their input parametersin terms of an HttpServletRequest
object, and therefore can conveniently be passed the sament tpservietRequest object that was
passed into your HTTP servlet'sdopost () Or doGet () methods. However, in thisinstance, you
must ensure that the names of the HTTP posted name=value pairs correspond to those expected
by the Tuxedo service. The ordering is not important, because the datais ultimately converted
into a Java Hashtable. Other non-related data in the Ht tpservletrRequest Will not disrupt the
Tuxedo service.

A Tuxedo service isinvoked from within an HTTP servlet with the following method:
ssPool.call ("serviceName", request);

where sspool isareferenceto aservletSessionPool, "serviceName" isthe name of the
Tuxedo serviceyou wishto call, and the request argument istheHt t pservietRequest Object
associated with the servlet.

TheservletsessionPool.call () methodinternaly convertstherttpservietRequest into
aservletDataSet, Which can be submitted to aregular sessionPool.

Adding Parameters to the Dataset

Y ou may wish to add extra data to the parameter set before calling the Tuxedo service. For
example, you may need to add a parameter representing the date and time of the request. You
would not expect to receive this parameter from the rorm datain the Ht tpServletRequest.

Using Oracle Jolt with Oracle WebLogic Server

Accessing a Tuxedo Service Through Jolt

Instead, add it in the servlet, then submit the augmented data set to the Tuxedo service. The
following example illustrates this procedure:

// Create a new dataset

ServletDataSet dataset = new ServletDataSet();

// Import the HttpServletRequest into the dataset.
dataset.importRequest (request) ;

// Insert an extra parameter into the dataset.
dataset.setValue ("REQUEST_TIME", (new Date()).toString());
// Send the dataset to the named service.
ssPool.call("service_name", dataset, null);

Thiscode example demonstratesthe manual conversion of theut tpservletRequest objectinto
aservletDataSet Object. In thisnew format you can add extra parameters using the
setvalue () method. The new valueisassociated with akey, represented by a string. Next, the
call () method that isinherited from the sessionPool isinvoked. This method acceptsthe
ServletDataSet Class, but requires an extra argument for use with transactions. Supply null
for thislast parameter, indicating that you are not using atransaction to group multiple session
calls. See*Using a Transaction” on page 3-8 for more details.

Accessing a Tuxedo Service Through Jolt

To access an existing Tuxedo service through Jolt, you must define and export the servicein the
Jolt Repository. For details, refer to the Using Oracle Jolt sections “Using the Jolt Repository
Editor” and “Bulk Loading Oracle Jolt Services.” The Jolt service definition defines the
parameters that are expected by the Tuxedo application service.

Converting Java Data Types to Tuxedo Data Types

Thefollowing table is a mapping between Java types and Tuxedo parameter types required by a
Tuxedo service. Use the appropriate Javatypes for the value of the bataset or
ServletDataSet. If you specify any parameter asa Java string, it istrandated automatically
to the appropriate type according to the service definition in the Jolt Repository.

Thisfeature isalso used to convert al datainside an Ht tpservletRequest oObject, because all
parameters associated with the request are represented in string format. Otherwise, use the type

Using Oracle Jolt with Oracle WebLogic Server 3-5

specified in the table below. Providing the correct data type may improve efficiency because no
lookup is required to convert from a string.

Oracle Tuxedo Type Java Type
char Byte
short Short
long Integer
float Float

double Double
char* String
CARRAY bytef]
XML byte{]

A Tuxedo carray is specified in a Java string by describing each byte value as a two-digit
hexadecimal number. Y ou specify multiple bytes by concatenating these hexadecimal digit-pairs

together. For example, the string "Froa20" would represent the Tuxedo type cARRAY
{ 255, 10, 32 }.

Receiving Results from a Service

The servletSessionPool.call () method returnsaservletResult object that containsthe
results from the Tuxedo service. If the service cal fails, an exception is thrown. Y ou should
always attempt to catch exceptions and handle them appropriately. Refer to “ Appendix A, Oracle
Jolt Exceptions” in Using Oracle Jolt for details about the possible exceptions that can occur.

The following example retrieves a servletResult object using the
ServletSessionPool.call () methodinan HTTP servlet:

ServletResult sResult = ssPool.call("service_name", request);
where sspool iSaServletSessionPool, and request iSan HttpServletRequest.

The servletSessionPool.call () method returnsaresult object that you must cast asa

ServletResult oObject. The servlietResult oObject provides extra methodsfor retrieving data
as Java Strings.

3-6 Using Oracle Jolt with Oracle WebLogic Server

Receiving Results from a Service

Provided the call was successful, the individual parameters can be retrieved from the result or
ServletResult Object using various forms of the getvalue () method.

Using the Result.getValue() Method

The dataisretrieved from a servletResult by providing akey that correspondsto the
parameter names of the Tuxedo service, as defined in the Jolt Repository. Y ou supply the key to
the appropriate getvalue () method, which returns the corresponding value object.

Theresult.getvalue () method also expects a default value object; thisis returned if the key
lookup fails. Itisyour responsibility to cast the returned object to the appropriate type, asdefined
by the Tuxedo service. For example, thisline of code:

Integer answer = (Integer) resultSet.getValue("Age", null);

setstheinteger answer tothereturned valueinthe servietresult identified by thekey "ager,
or returnsnull if thiskey doesnot existinthe servietrResult. Refer tothetablein“ Converting
JavaData Typesto Tuxedo Data Types’ on page 3-5 for the Java equivalents of the Tuxedo types.

Itispossibleto have an array of valuesassociated with akey. Inthiscase, thesimplegetvalue ()
method returns the first element of an array in thisinstance. Use this method signature in that
case:

public Object getValue(String name, int index, Object defval)

to reference a particular indexed element in an array value.

Using the ServletResult.getStringValue() Method
ServletResult extends result, and provides the additional methods:
public String getStringValue (String name,

int index,

String defval)

public String getStringValue (String name,
String defval)

These methods behave like the getvalue () methods of the Result class, except that they
always return a Java string equival ent of the value object expected. The carray isconverted into

Using Oracle Jolt with Oracle WebLogic Server 3-7

astring of two digit hexadecimal byte values as described in “ Converting Java Data Types to
Tuxedo Data Types’ on page 3-5.

Using a Transaction

3-8

Y ou can use atransaction object to group multiple service callsinto an atomic action, maintaining
dataintegrity within your application logic. Y ou obtain atransaction from a session pool with the
method:

Transaction trans = ssPool.startTransaction (timeout) ;

where the transaction object trans holds the reference to the transaction, sspoo1 isthe
SessionPool or ServletSessionPool object, and the t imeout argument for the transaction is
specified in seconds.

Once a transaction obtains a session, that session cannot be used by other transactions until the
transaction is committed, aborted, or times out. The session may, however, still be used by single
requests that are not part of atransaction. If atransaction fails to obtain a session from the poal,
this method throws abea . jolt.pool.TransactionException. If the session pool is
suspended, the method throws abea . jolt.pool.SessionPoolException.

Each time your application usesthe ca11 () method, you should supply the transaction object as
the last parameter. For example:

ssPool.call ("svcName", request, trans);

Y ou can make multiple callsin the same transaction. The callswill not complete until you either
commit or roll back the transaction using the methods of the transaction object. The
trans.commit () mMethod completes the transaction. This method returns O if the commit was
successful, or throws a TransactionException if the transaction failed to commit.

If you need to abort the transaction, use the Transaction.rollback () method. This method
attempts to abort the transaction. It returns O if successful; otherwise it throws a

TransactionException.

Handling Exceptions

Errors or failures that may occur when Jolt initiates a Tuxedo service call are reported to your
application through Java exceptions. Alwaysenclosethecall () method withinatry / catch
block and attempt to deal with any exceptions appropriately. The ca11 () method can throw any
of the following exceptions for the following reasons:

® bea.jolt.pool.ApplicationException

Using Oracle Jolt with Oracle WebLogic Server

Using a Transaction

Thrown when an error occursin the logic of the Tuxedo service. For example, aclient
illegally attemptsto use awithdrawal service to withdraw more money from an account
than the current balance. The ApplicationException isthrown when the Tuxedo service
returns aTrEsvcrAIL. Application-specific information about the error can be included in
the Result object that was returned from the service invocation. You can access the
Result object through the ApplicationException.getResult () method.

Be sure to use the full package name of the bea.jolt.pool.ApplicationException,
because Jolt defines another exception whose full package nameis
bea.jolt.ApplicationException.

® bea.jolt.JoltException

A JoltException isthe super class of all the following exceptions. These exceptions all
signify that a system error has occurred that is not part of the application logic.
JoltException isdocumented in Appendix A, “Oracle Jolt Exceptions,” in the Using
Oracle Jolt.

® bea.jolt.pool.SessionPoolException

Thrown when an error occurs in the Jolt SessionPool. For example, this may occur if all
sessions are busy, or if the session pool is suspended.

® bea.jolt.ServiceException

Thrown when an error occurs related to invoking the Tuxedo service that contains the
application. For example, a service timeout, or a non-existent service is called.

® bea.jolt.TransactionException

Thrown when atransaction cannot be either started, committed, or aborted.

Using Oracle Jolt with Oracle WebLogic Server 3-9

3-10 Using Oracle Jolt with Oracle WebLogic Server

Class Hierarchy

Oracle Jolt Class Hierarchy for the Oracle WebLogic
Server API

The following listing shows the class hierarchy for the Oracle Jolt for Oracle WebL ogic Server
API. Refer to the appropriate Java documentation for details about each class and method.

Package-bea.jolt.pool
Package-bea.jolt.pool.servlet

Package-bea.jolt.pool.servlet.weblogic

Class java.lang.Object
Class bea.jolt.pool.Connection
Class java.util.Dictionary
Class java.util.Hashtable
(implements java.lang.Cloneable, java.io.Serializable)
Class bea.jolt.pool.DataSet
Class bea.jolt.pool.Result
Class bea.jolt.pool.servlet.ServletResult
Class bea.jolt.pool.servlet.ServletDataSet
Class bea.jolt.pool.SessionPoolManager
Class bea.jolt.pool.servlet.ServletSessionPoolManager
Class bea.jolt.pool.Factory
Class bea.jolt.pool.SessionPool
Class bea.jolt.pool.servlet.ServletSessionPool

Class java.lang.Throwable

Using Oracle Jolt with Oracle WebLogic Server A-1

A-2

(implements java.io.Serializable)
Class java.lang.Exception
Class java.lang.RuntimeException
Class bea.jolt.pool.ApplicationException
Class bea.jolt.pool.Transaction

Class bea.jolt.pool.UserInfo

Using Oracle Jolt with Oracle WebLogic Server

Simple Servlet Example

Thisexample demonstrates how to use Oracle Jolt to connect to Oracle Tuxedo from aWebL ogic
servlet. It usesthe WebL ogic Server to deliver an HTML FORM front end in a standard Web
browser.

Text entered by a user into the FORM is sent back to the WebL ogic Server viathe HTTP POST
method that is serviced by aregistered WebLogic HTTP Servlet, which calls a Tuxedo service
using Oracle Jolt. The text received by the servlet is sent to a Tuxedo service, whereit is
transposed to uppercase before being returned to the servlet. The formis compiled into a
dynamically-generated HTML page by the servlet, then sent back to the Web browser, where the
uppercase version of the original text is displayed.

This topic includes the following sections:
e Example Components and Prerequisites

e Using the Example

Example Components and Prerequisites

There are two parts to the s impapp example for Jolt for WebL ogic Server:

e The HTTP servlet that is shipped with the examples that are installed in the samples
directory where Oracle Tuxedo isinstalled.

e The Tuxedo service application that is shipped with the Tuxedo examples that are installed
with Oracle Tuxedo. The Tuxedo simpapp Server contains the TouppER service, which
converts a given string to uppercase.

Using Oracle Jolt with Oracle WebLogic Server B-1

The source code for the Jolt serviet simpapp exampleislocated in the
/samples/jolt/wls/servlet/ directory in the Tuxedo distribution.

The simpapp sample directory contains the following files:

File Name Description

SimpAppServlet.java Samplesource codethat issuesacall to Tuxedo and returnsan
HTML page with the results

simpapp.html HTML form for user input
simpapp.rep REP file for repository bulk loading
web . xml Configuration XML file for Web applications

A complete listing of the Tuxedo server-side source code of the simpapp application serviceis
located in $TUXDIR/samples/atmi/simpapp 0N UNIX systemsand in

$TUXDIR%\samples\atmi\simpapp on Windows 2003 systems (where TuxpIr isthe Tuxedo
home directory).

To run this example, you should be familiar with:
e The Oracle Tuxedo architecture and the s impapp application
e Oracle Jolt
e HTML
e Javalanguage and serviet API
e WebL ogic Server HTTP servlets

Using the Example

B-2

The simpapp exampleiseasy to follow. Just launch the s impapp . html page from the WebL ogic
Server. The simpapp . html page loadsan HTML form which contains atext field for entering
the string. Type in a string and click the Post button to submit the string as a post request. The
simpaAppservlet formatsthe string you typed for use with the Jolt for WebL ogic classlibraries,
and then dispatches the request to the Tuxedo TourpPER service, which transposes the string to
uppercase and returnsit for display in the browser.

Configuring the simpapp servlet example requires the following steps:

Using Oracle Jolt with Oracle WebLogic Server

Using the Example

e Step 1. Perform Preparatory Steps

e Step 2. Start the WebL ogic Server

e Step 3. Configure the Servlet in WebL ogic Server
e Step 4. Stop and Restart the WebL ogic Server

e Step 5. Compile the Servlet

e Step 6. Display the simpapp.html Form

e Step 7. Post the FORM Data from the Browser

e Step 8. Process the Request

e Step 9. Return the Results to the Client

Step 1. Perform Preparatory Steps

1. Check that you have a supported browser installed on your client machine;
— Netscape Communicator 4.7 or later
— Internet Explorer 5.0 or later

2. The client machine must have a network connection to the WebL ogic Server that is used to
connect to the Tuxedo environment.

3. Configure and boot Tuxedo and the simpapp example.

4. Follow the directionsin the Tuxedo user documentation to bring up the server-side simpapp
application. Make sure the TouPPER Serviceis available.

5. Set up the Jolt Server. Refer to the Using Oracle Jolt for information about how to configure
aJolt Server.

— Note the hostname and port number associated with your Jolt Server Listener (JSL).

— Usethe Jolt Repository BulkLoader file to ensure that the TouprrER service is defined
in the Jolt Repository.

The simpapp example directory has a s impapp . rep file that contains the TourpER
service definition. Your system administrator should use the Jolt Repository

BulkL oader to add this service definition to the existing Jolt Repository on the Tuxedo
server. The Jolt Repository BulkL oader package is supplied with the Jolt distribution
for Tuxedo. Refer to Using Oracle Jolt for details on how to install this.

Using Oracle Jolt with Oracle WebLogic Server B-3

B-4

On the Tuxedo server, the following code example uses the Jolt BulkL oader to add the
TOUPPER Service definition:

$ java bea.jolt.admin.jbld //host:port simpapp.rep

where host and port are the hostname and port number of your Jolt Server Listener
(JSL), and the simpapp . rep isthe BulkLoader file provided by Oracle Jolt, located in
one of the following locations:

$TUXDIR/samples/jolt/wls/servlet/ on UNIX

$TUXDIR%\samples\jolt\wls\servlet\ on Windows 2003

6. Confirm that you have properly set up your cLasspaTH during installation. The WebL ogic
Server classes library contains the three . jar filesthat you will need to run this example:

— Jjolt.jar
- joltjse.jar

— joltwls.jar.

Step 2. Start the WebLogic Server

If you are using aWindows 2003 system, you can start the WebL ogic Server from the Start menu.
Otherwise, use the startwebLogic script on the command line, in the root directory of the
WebL ogic Server distribution.

For moreinformation on starting the WebL ogic Server, see” Starting and Stopping the WebL ogic
Server” in the Oracle WebLogic Server Administration Guide.

Step 3. Configure the Servlet in WebLogic Server

Configuration of the Jolt connection pool and startup class MBeans for WebL ogic Server 6.0 or
later is done through Administration Console.

1. Copy the simpapp.html page into your WebL ogic document root directory.

By default, thisisthe \config\mydomain\applications\simpapp directory inyour
WebL ogic Server distribution. The HTTP server built into WebL ogic looks in this directory
for HTML pages and other MIME types.

2. Start the WebL ogic Server Administration Console by typing the following addressin your
browser:

http://hostname:listenport#/console

Using Oracle Jolt with Oracle WebLogic Server

Using the Example

. Open the Services folder in the left frame of the console, and then click the Jolt folder. The
Jolt Connection Pools table displays in the right frame showing all the Jolt connection pools
defined in the domain.

. Click the Create a New Jolt Connection Pool link. A tabbed dialog box displaysin the right
frame for configuring a new connection pool.

. On the General tab, complete the following information:

a Enter valuesin the Name, Minimum Pool Size, Maximum Pool Size, and the Recv
Timeout attribute fields.

b. Select the Security Context Enabled check box to enable security context (to propagate
the security information from the WebL ogic Server environment to the Tuxedo
environment).

c. Click Create to create a connection pool instance with the name that you specified in the
Name field. The new instance is added under the Jolt node in the | eft frame.

. Click the Config-Addresses and the Config-User tabs individually to change the attribute
fields or accept the default values as assigned, and then click Apply to save your changes.

. Click the Targets tab and select an available server where you want the Jolt connection pool
started.

. Under the Deployments folder in the |eft frame, click the Startup & Shutdown folder. The
Startup and Shutdown table displaysin the right frame showing all the startup classes defined
for your domain.

. Click the Create a New Startup Classlink. In the tabbed dialog box that displaysin the right
frame, configure a new startup class, as follows.

a. Enter valuesin the Name, Class Name, and Arguments attribute fields.

b. Select the Abort Startup on Failure check box to prevent starting the WebL ogic Server
whenever afailure occurs.

c. For the Class Name, enter the following name:
bea.jolt.pool.servlet.weblogic.PoolManagerStartUp
There are no arguments for this startup class.

d. Click Create to create a startup-class instance with the name that you specified in the
Name field. The new instance is added under the Startup & Shutdown folder in the left
frame.

Using Oracle Jolt with Oracle WebLogic Server B-5

10. Register the simpapp Servlet as a Web application, as follows:;

a. Open the Deployments folder in the left frame of the console, and then click the Web
Applicationsicon.

b. Onthelnstall or Update an Application dialog box, click the Install a New Web
Application link.

c. For Step 1, either accept the default a destination directory for the simpapp serviet or
select a different one.

d. For Step 2, enter the path to the simpapp Servlet (or use the Browse feature), and then
click the Upload button.

The simpapp servlet is registered as a Web application in WebL ogic and appears as an
icon under the Deployments\Web Applications folder.

Step 4. Stop and Restart the WebLogic Server

In order to start the Jolt session pool, you must shut down the WebL ogic Server, and then restart
it. For more information on restarting the WebL ogic Server, see“ Starting and Stopping the
WebL ogic Server” in the Oracle WebLogic Server Administration Guide.

Step 5. Compile the Servlet

After restarting the WebL ogic Server, compile the simpappserviet file, asfollows:

1. Under your WebLogic \config\mydomain\applications\simpapp document root
directory, create a new weB-1INF directory.

2. Copy theweb.xm1 file from the Tuxedo installation directory
\samples\jolt\wls\servlet\ intothe new wes-InF directory.

3. Compilethe simpappserviet.java file asfollows:

javac -d $WL.HOME%\config\mydomain\applications\simpapp\WEB-INF\classes
SimpAppServlet.java

This step al so copies the necessary java classesinto aweB-INF\classes directory.

Step 6. Display the simpapp.html Form

1. Open your browser.

2. Enter the URL for the simpapp.html file. For example, the default URL is:

B-6 Using Oracle Jolt with Oracle WebLogic Server

Using the Example

http://localhost:port/simpapp/simpapp.html

where 1ocalhost isthe host name of the WebL ogic Server, and port isthe port at which
the WebL ogic Server islistening for login requests.

A page similar to the one shown in Figure B-1 is displayed:

Figure B-1 simpapp.html Example

dddenst I-E-' hitps Fiec ot TO0T A ol smpaps Bemd

] L

Jolt SimpApp Example

This examplas demonsirates how a Java Hitp'Sendat, in the Wablagic
Applicaton Server, sepaices a POST request from a in this biml file. The
simpapp sendel invokes a senice on the TUXEDO server that comvans the e
you enter hers into upper case. The rasultis posted back inside a sendat-
generatad htrl file

Type some ted here then click on the FPost’ button: [the queck brown fox

If you have problems displaying the form, be surethat the s impapp . htm1 fileisin the WebL ogic
document root.

Step 7. Post the FORM Data from the Browser

Enter some text into the text field on the HTML page and submit it by clicking the POST button.
Along with the text you entered, other parameters are submitted to the s impapp Servlet class
running in WebL ogic Server.

Thefollowing istherelevant section fromthe simpapp . htmi filethat describesthe HTML form:

<form name="simpapp" action="simpapp" method="post">
<input type="hidden" name="SVCNAME" value="TOUPPER">

<table bgcolor=#dddddd border=1>

<tr>

<td>Type some text here and click the Post button:
<input type="text" name="string">

</td></tr>

<tr>

<td align=center><input type="submit" value="Post!">
</td></tr>

Using Oracle Jolt with Oracle WebLogic Server B-7

B-8

</table>

</form>
ThisHTML form specifiestwo input fields: the text you enter and ahidden field. In thisexample,
the value of the hidden field actually specifies the name of the Tuxedo service to be invoked.
Although putting the name of the Tuxedo service within the HTML pageisflexible and efficient,
it is not recommended for production use for security reasons. In thisHTML page, you can
submit an HTTP request specifying a different service name as the hidden field.

Note: Tuxedo service names are case-sensitive.

When the WebL ogic Server receivesthe HTTP form request, it invokesthe dorost () method of
the simpapp Servlet and passes the form datainto an Ht tpServletRequest.

Step 8. Process the Request

Before the first request to the simpapp Servlet, WebL ogic initializes the servlet by caling its
init () method. The Jolt session pool is established in the following manner:

ServletSessionPoolManager b_mgr =
(ServletSessionPoolManager) . SessionPoolManager .poolmanager;

Next, the servlet’s dopost () method is executed. This method contains the code to get a
connection from the simpapp session pool that was created during the startup of the WebL ogic
Server. The following code snippet shows the code that is used to retrieve the s impapp session
pool.

// Get the "simpapp" session pool
ServletSessionPool session =

(ServletSessionPool) b_mgr.getSessionPool ("simpapp") ;

The Tuxedo service that will be called isidentified in a hidden field, which isretrievable from
the request object. Retrieve the service name parameter as follows:

String svenm[] = reqg.getParameterValues ("SVCNAME") ;

Y ou retrieve the value of the svenave field in astring array that containsasingle value; use only
thefirst element of the array. The value set for the svename hidden field in the form is TouppERr.
Thisisthe name of the Tuxedo service that the servlet invokes, which is passed to the ca11 ()
method as follows:

// Invoke a service and get the result.

result = session.call(svenm[0], req);

Using Oracle Jolt with Oracle WebLogic Server

Using the Example

The session oObject inthisexampleisaservletsessionPool that can accept the
HttpServletRequest object directly. Internally, it converts the datainto a Jolt DataSet object,
which contains the parameters for the TourPER Service.

Note: The ToUPPER Service expects a case-sensitive parameter called "sTrRING", SOt iS
essential for the text field within the HTML form to be labeled exactly the same, that is,
"sTRING". Note aso that the other datafields, such asthe svcvamr, are not relevant as
parameters but don't disrupt the Tuxedo service.

Theform parameter isused to actually namethe service, which you don't haveto passasaservice

parameter. It is passed automatically becauseit is aready contained in the
HttpServletRequest Object.

The TouPPER service convertsthetext in the "sTrRING" parameter to uppercase text and passes
it back to the servlet in aservietResult object that contains the results of an executed call, as
well as detail s about exceptionsif any are thrown during the service call.

Step 9. Return the Results to the Client

Thefinal step constructs and sendsan HTML page, which contains the results of the service call,
back to the client through the HttpResponse output stream. The uppercaseresult isretrieved from
the servletResult object us ng the result.getvalue () method.

Thefollowing is asimple example of passing this data back as HTML that the browser can
display:
out.println("<p><center>"+
result.getValue ("STRING", "")+

"</center><p><hr
width=80%>") ;

The output stream produces a page similar to the one shown in Figure B-2:

Figure B-2 Output Stream Results Example

Addvess [] hetp AMocabhost 7001 fsmpage

| Lef

This is the response from the SimpAppServliet:

The simpapp sevice was succassiully called, and responded with the output string

THE QUICK BROWN FOX

Using Oracle Jolt with Oracle WebLogic Server B-9

B-10 Using Oracle Jolt with Oracle WebLogic Server

APPENDIXG

Servlet with Enterprise JavaBean
Example

To use the Servlet with Enterprise JavaBean example, see the following sections:
e About the Servlet with JavaBean Example
e Preparing to Use the Servlet with JavaBean Example

e Run the Servlet with JavaBean Example

This Enterprise JavaBean (EJBean) example package contains the classes and other files
necessary to set up and run an EJBean stateful session to a Tuxedo Server using Jolt. The package
contents are as follows:

e Client application (client application documentation and source)

e Deployment
- DeploymentDescriptor.txt

- manifest

e Interfaces

Teller (remote interface documentation and source)

TellerHome (home interface documentation and source)

TellerResult (@pplication-specific utility documentation and source)

ProcessingErrorException (@pplication-specific exception documentation and
source)

Using Oracle Jolt with Oracle WebLogic Server C-1

— TransactionErrorException (application-specific exception documentation and
source)

e Server (EJBean)

— TellerBean (EJBean documentation and source)

About the Servlet with JavaBean Example

C-2

This example demonstrates an Enterprise JavaBean (EJBean), and provides an example of a
simple interface for accessing the Tuxedo Server. Y ou can find the source code for this example
inthe /samples/jolt/wls/ejb/bankapp directory includedinthe Oracle Tuxedo distribution.

Running this example before attempting to create your own EJBeans will show you the different
stepsinvolved. The exampleis a stateful session EJBean called TellerBean that contacts a
Tuxedo Server using Jolt for WebL ogic, and conducts transactions as follows:

e Contacts and calls a Tuxedo Server, and retrieves the returned results
e Usesasession EJBean

e Uses stateful persistence

e Uses application-defined exceptions and utilities

e Usesaclient browser application

The client browser application performs these steps:

1. Contactstheteller home ("TellerHome") through JNDI to find the EJBean.

2. Createsateller ("Terry").

3. Theapplication then performs aseries of transactionsfor the Teller that hasjust been created:
— Getsthe current balance for account 10000.
— Performs Transaction 1: Deposits $100 into the account, and displays the balance.
— Performs Transaction 2: Deposits $200 (more than the transaction limit of $300).

Note: InTransaction 1, asinglecall is made, and is automatically committed. In
Transaction 2, abegin () and commit () bracket two separate requests (adeposit and
awithdrawal).

— Attempts to withdraw $100 more than the balance of the account.

Using Oracle Jolt with Oracle WebLogic Server

Preparing to Use the Servlet with JavaBean Example

— Catches an ApplicationException, retrieves the status messages embedded in the
exception, and rolls back Transaction 2.

— Getsthe final balance for the account.
— Removestheteller.

You can see in Transaction 2 how the balance is successfully rolled back to what it was at
the end of Transaction 1.

Preparing to Use the Servlet with JavaBean Example

To get the most out of this example, first read through the source code filesto see what is
happening. Start with DeploymentDescriptor. txt to find the general structure of the EJBean
and which classes are used for the different objectsand interfaces, andthenlook at c1ient. java
to see how the application works.

The following sections provide details for using this example:
e Set Up Your Environment
e Build the Example

e Run the Servlet with JavaBean Example

Set Up Your Environment

You need to add a Jolt connection pool that connects to the public Tuxedo Server at Oracle, as
described in “ Step 3. Configure the Servlet in WebLogic Server,” in Appendix B, Smple Serviet
Example. When you're finished, the config.xml configuration file will contain the following
sections:

<StartupClass
ClassName="bea.jolt.pool.servlet.weblogic.PoolManagerStartUp"
FailureIsFatal="false"
Name="MyStartup Class"
Targets="myserver"
/>
<JoltConnectionPool
ApplicationPassword="tuxedo"
MaximumPoolSize="5"
MinimumPoolSize="3"

Name="MyJolt Connection Pool"

Using Oracle Jolt with Oracle WebLogic Server c-3

PrimaryAddresses="//TUXSERVER:6309"
RecvTimeout="300"
SecurityContextEnabled="true"
Targets="myserver"
UserName="joltuser"
UserPassword="jolttest"
UserRole="clt"

/>

<ShutdownClass
ClassName="bea.jolt.pool.servlet.weblogic.PoolManager
ShutDown. ”

/>

Build the Example

After configuring your WebL ogic Server development environment, you need to build the
example. Oracle Jolt provides separate build scripts for Windows 2003 and UNIX, as follows:

e Windows 2003: $TUXDIR%\samples\jolt\wls\ejb\bankapp\build.cmd

o UNIX: $TUXDIR/samples/jolt/wls/ejb/bankapp/build.sh
The scripts build individual examples, such as this entry for Windows 2003:
$ build
To build under Microsoft’s JDK for Java, use:
$ build -ms

The scripts will build the example and place the files in the following default WebL ogic Server
directories on a Windows 2003 system:

e Clientfilesin: d:\bea\wlserver6.1l\config\examples

e EJBeanin: d:\bea\wlserver6.l\config\mydomain\applications

Run the Servlet with JavaBean Example

When WebL ogic Server is started in the default \config\mydomain directory, the EJBean
example is automatically deployed in the \applications directory.

C-4 Using Oracle Jolt with Oracle WebLogic Server

Run the Servlet with JavaBean Example

1. Start the WebLogic Server in the \config\mydomain directory. You can check that the
EJBean has been deployed correctly either by checking the server command-line window, or
by opening the Console and examining EJB under Deployments. You should see
ejb.jolt.bankapp deployed and should be able to monitor its activity.

2. Open a separate command-line window, and then run the client by entering the following
command:

$ java examples.jolt.ejb.bankapp.Client

If you are not running the WebL ogic Server with its default settings, you will have to use
the following command line:

$ java examples.jolt.ejb.bankapp.Client "t3://WebLogicURL:Port"
where the following parameters are defined as follows:

— WebL ogicURL—the domain address of the WebL ogic Server

— Port—the port listening for connections (weblogic.system.ListenPort)

The following optional parameters are interpreted by the client in the order in which they
arelisted:

— url—unique resource location of Server, suchast3://localhost:7001
— user—username, default null

— password—user password, default null

3. IfyouarerunningtheClient example, you should get output that issimilar to thefollowing
from the client application:

4.Beginning jolt.bankapp.Client...

5.

6.Created teller Terry

7.

8.Getting current balance of Account 10000 for Erin
9.Balance: 27924.02

10.

11.Start Transaction 1 for Erin

12.

13. Depositing 100.0 for Erin
14. Balance: 28024.02

15.

16.End Transaction 1 for Erin
17.

18.Start Transaction 2 for Erin
19.

20. Depositing 200.0 for Erin

Using Oracle Jolt with Oracle WebLogic Server C-5

21. Balance: 28224.02

22.

23. Withdrawing 28324.02 for Erin

24. Transaction error:

25. examples.jolt.ejb.bankapp.TransactionErrorException: Teller error:
application

26. exception:
27 .Account Overdraft

28.

29. Rolling back transaction for Erin
30.

31.End Transaction 2 for Erin

32.

33.Getting final balance of Account 10000 for Erin
34 .Balance: 28024.02

35.

36.Removing teller Terry

37.

End jolt.bankapp.Client...

Note: Note how the final balance shows that Transaction 2 was rolled back to the balance
at the end of Transaction 1.

Y ou can read more about EJBs in the Programming WebLogic Enterprise JavaBeans guide. To
learn more about using Oracle Jolt, refer to the Using Oracle Jolt guide.

C-6 Using Oracle Jolt with Oracle WebLogic Server

	Oracle® Tuxedo
	12c Release 2 (12.1.3)

	Oracle Tuxedo Using Oracle Jolt with Oracle WebLogic Server, 12c Release 2 (12.1.3)
	Contents
	Introduction to Oracle Jolt for Oracle WebLogic Server
	Key Features
	How Jolt for WebLogic Works
	Relationship Between Jolt for WebLogic and Tuxedo
	Essential Components of the Jolt Architecture
	WebLogic Server Startup
	Connecting to a WebLogic Server from a Client Browser
	How a Servlet Connects to Tuxedo
	What Happens if the Request Fails
	Responding to the Client Browser
	Disconnecting from the Jolt Server

	Using the Example Packages

	Configuring Jolt for WebLogic Server
	Configuring Jolt for Tuxedo
	Configuring Jolt for WebLogic Server
	Jolt Startup Class and Connection Pool
	Jolt Shutdown Class

	Displaying Jolt in the WebLogic Administration Console
	Resetting the Jolt Connection Pool
	Command-line Method
	Administration Console Method

	Implementing Jolt for WebLogic
	Importing Packages
	Configuring a Session Pool
	Using a Servlet Session Pool
	Calling a Tuxedo Service
	Sending a ServletDataSet
	Adding Parameters to the Dataset

	Accessing a Tuxedo Service Through Jolt
	Converting Java Data Types to Tuxedo Data Types
	Receiving Results from a Service
	Using the Result.getValue() Method
	Using the ServletResult.getStringValue() Method

	Using a Transaction
	Handling Exceptions

	Class Hierarchy
	Oracle Jolt Class Hierarchy for the Oracle WebLogic Server API

	Simple Servlet Example
	Example Components and Prerequisites
	Using the Example
	Step 1. Perform Preparatory Steps
	Step 2. Start the WebLogic Server
	Step 3. Configure the Servlet in WebLogic Server
	Step 4. Stop and Restart the WebLogic Server
	Step 5. Compile the Servlet
	Step 6. Display the simpapp.html Form
	Step 7. Post the FORM Data from the Browser
	Step 8. Process the Request
	Step 9. Return the Results to the Client

	Servlet with Enterprise JavaBean Example
	About the Servlet with JavaBean Example
	Preparing to Use the Servlet with JavaBean Example
	Set Up Your Environment
	Build the Example

	Run the Servlet with JavaBean Example

