Oracle® Tuxedo
Programming an Oracle Tuxedo ATMI Application Using FML

12c Release 2 (12.1.3)

April 2014

ORACLE

Oracle Tuxedo Programming an OracleTuxedo ATMI Application Using FML, 12c Release 2 (12.1.3)
Copyright © 1996, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to usin writing.

If thisis software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software”
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use,
duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general usein avariety of information management applications. It is not developed
or intended for use in any inherently dangerous applications, including applications that may create arisk of persona injury. If
you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

This software or hardware and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect
to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damagesincurred due to your access to or use of third-party content, products, or services.

Contents

1. Introduction to FML Programming

2. FML and VIEWS Features

Dividing Records into Fields: Data Structures Versus Fielded Buffers.
Using Structuresto Divide RecordsintoFields.
Using Fielded Buffersto Divide Recordsinto Fields

How Fielded Buffers Are Implemented with FML. oot

FML FEAIUIES . . . oo e e e e

Supported FIeld TYPeSo
Typeint iNVIEWS. . oo
Typedec tiNVIEWS ...

Field Name-to-ldentifier Mappingsot e e
RunTime: Field TableFiles. e
CompileTime: Header Files e

Fielded Buffer INdexeso e

Multiple Occurrence FieldsinaFielded Buffer

Boolean Expressionsand Fielded Buffers

Programming an Oracle Tuxedo ATMI Application Using FML

VIEWS FEaUNES. . . o oottt e e e e e e e 2-10

Multiple Occurrence Fieldsin VIEWS. oot 2-12
Error Handling for FML Functions 2-12
3. RECORD Features
RECORD FEAIUIES. v vt ettt ettt et ettt ettt et eeee 3-1
Setting up Your Environment for RECORDot 3-3
4. Setting Up Your Environment for FML and VIEWS
Environment Requirementsfor FML andVIEWS. 4-1
FML Directory StrUCIUNE oottt e e e e et e e 4-1
Environment VariablesUsedby FML andVIEWS. 4-2
VIEW32 Support for MBSTRINGo e 4-4

5. Defining and Using Fields

Preparingto Use FML and VIEWSo 51
Defining Fieldsfor FML and VIEWS e 51
Defining Field Namesand Identifiers ... i 5-2
Creating Fild Table Files o e 53
Field Table Example.o 5-4
Mapping Field Namesto Field IDSo o o 5-4
SEE AlSD . 55
Loading Fild Tables 55
S AlSD L 5-6
Converting Field TablestoHeader Files.o 5-6
Examples of Converting Field TablestoHeader Files. 5-7
EXample L .. 5-7
EXample 2 . 5-7
EXample 3 . 5-7

Programming an Oracle Tuxedo ATMI Application Using FML

Mapping Fieldsto C Structuresand COBOL Records., 5-8
What Isthe VIEWS Facility?.o e 5-8

Structure of VIEWS. . . oo 5-8
Creating Viewfiles 59
Creating View DesCriptionsottt e 5-9

Specifying flag Optionsin aView Description., 5-11

Using NULL Valuesin VIEWS. e 5-14
Compiling Viewfiles. 5-15
Using Header Files Compiled withviewc 5-16
Using COBOL COPY Files Created by the View Compiler 5-16
Displaying Viewfile Information After Compilation. 5-17

6. Field Manipulation Functions

ADBOUE ThiS SECHION . . . o . 6-2
FML and VIEWS: 16-bit and 32-bit Interfaces oot 6-2
Definitions of the FML Function Parameters. 6-3
Field Identifier Mapping FUNCLionNs e 6-4
Fldid. ..o 6-4
FName . . 6-5
FlaNO . .o 6-5
Flatype. . 6-5
O PE . o 6-6
Fkfldid 6-7
Buffer Allocation and Initialization 6-7
Felded. . ..o 6-8
Fneededo 6-9
Fvneeded o 6-10

Programming an Oracle Tuxedo ATMI Application Using FML v

vi

FalloC. . oo 6-10
e L 6-11
FSiZE0f . . o 6-12
FUNUSEd 6-13
FUSEO . . oo 6-13
Frealloco 6-13
Functionsfor Moving Fielded Buffers. 6-15
FNOVE . . 6-15
Y. .o 6-16
Field Accessand Modification Functions, 6-17
Fadd. ..o 6-17
FappENd. . o 6-19
FONg. . 6-20
M . 6-22
Fdel ..o 6-23
Fdelal 6-24
FdElEte. .o 6-24
FiiNd .o 6-25
Fiindlast.o 6-26
FRINOCC. . . .o 6-27
FOB . oot 6-28
FQetalloco 6-29
FOEtlast ..o 6-30
FNeXt . 6-31
UM . 6-32
FOCCU . . 6-33
RS . 6-33

Programming an Oracle Tuxedo ATMI Application Using FML

Buffer Update FUNCLIONS. 6-35
FCONCEL. 6-35
FOIN. 6-36
FOJOIN. 6-36
00 6-37
010 o0 6-38
Fupdate 6-38

VIEWS FUNCHIONS. . . oottt et et et 6-39
FUItOS. . oo 6-39
PVSIOf . 6-41
PVNUIL. 6-41
VSNt 6-42
VoDt . 6-42
Fusalinit. ... 6-43

RECORD FUNCLIONS ettt e e e e e et e e 6-43
Introduction to RECORD FUNCLIONS.o 6-44

Y MIOPSI S .« . v et et 6-44
DESCriPLION . . . ottt e 6-44
RECORD bUfferso e 6-44
Error Handling 6-44
RINIE(). oo 6-45
RetUrN ValUES oo 6-46
0 =1 P 6-47
BIrOrS . o 6-49
ROEE() .« o vt 6-49
BIrOrS . o 6-50
Frneeded()o 6-51

Programming an Oracle Tuxedo ATMI Application Using FML vii

viii

RetUrn ValUes.o 6-51

DataType and CONVESIONottt e et 6-52
ConVersion FUNCLIONS.ot 6-54
CRadd . ..o 6-55
CRCNg oo 6-56
(010 6-57
CRGEtalloC. . .ot 6-58
CHfiNd . . 6-58
CRfINAOCC . . oot 6-59
ConNVErtiNg SHNGS . .« v vttt e e 6-60
Y DO L. 6-61
ConversionRUIES o 6-62
Converting FLD_MBSTRINGFields 6-65
Fmbpack32 . .. 6-67
Fmbunpack32 6-68
tpCoNVEimMbE2 . . oo 6-68
PCONVVMDB2. . o 6-68
INdeXing FUNCLIONS.ot e e e e 6-68
FiOXUSE . .. 6-69
FindeX . .o 6-69
Fratrindex 6-69
FUNINDEX . . .o 6-70
Example of Sending a Fielded Buffer WithoutanIndex 6-70
INPUE/OULPUL FUNCEIONS o e e e e 6-71
Freadand Fwrite. oo 6-71
FChKSUM 6-72
Fprintand Ffprint 6-72
Fextread. 6-73

Programming an Oracle Tuxedo ATMI Application Using FML

Boolean Expressionsof Fielded Buffers o i 6-74

Definitions of Boolean EXPressions.o v i it 6-74
Field Names and TYPeS.o v e ettt e e e e 6-76
NS . o ot 6-76
CONSEANES . . . oot 6-76
How a Boolean Expression |s Converted for Evaluation. 6-77
Description of Boolean Primary EXpressions.ot 6-77
Description of Boolean EXpression Operatorsoovvvineinneenn... 6-78
Unary Operators Used in Boolean EXPressionsovvieennennn... 6-78
Multiplicative Operators Used in Boolean Expressions. 6-79
Additive Operators Used in Boolean EXpressionsovvn... 6-79
Equality and Match Operators Used in Boolean Expressions. 6-80
Relational OperatorsUsed in Boolean Expressionsovu... 6-80
Exclusive OR Operator Used in Boolean Expressions. 6-81
Logical AND Operator Used in Boolean Expressions 6-81
Logical OR Operator Used in Boolean EXpressions.coovovvunn. .. 6-81
Sample Boolean EXPreSSioNnS.o vttt e e 6-81
Bo0Iean FUNCLIONS oo e 6-82
Fboolcoand FvbooICO.o 6-82
Fboolpr and Fvboolpr 6-83
Fboolev and Ffloatev, Fvboolev and Fvfloatev. 6-84
VIEW Conversionto and from Target Format.o, 6-85
Fvstot, Fvftosand FCodeset.ot e 6-85
/. FML and VIEWS Examples
VIEWS EXampPIes. . . oo 7-1
SampleViewfile 7-1
SampleFieldTable 7-2

Programming an Oracle Tuxedo ATMI Application Using FML ix

Sample Header File Produced by mkfldhdr, 7-3
Sample COBOL COPY File. e 7-3
Sample VIEWS Programot e 7-4
Exampleof VIEWSinbankapp 7-7
SEE AlSD . 7-7
FML Examplesin bankappo 7-7
8. RECORD Examples
RECORD Example: COBOL Copybook File, 8-1
RECORD Example: RECORD Programscoiu it 8-2
S AlSD . .ttt 8-5

A. FML Error Messages

Programming an Oracle Tuxedo ATMI Application Using FML

CHAPTERo

Introduction to FML Programming

Thistopic includes the following sections:
e What IsSFML?
e How Does FML Fit into the Oracle Tuxedo System?
e Oracle Tuxedo Typed Buffers

e FML Terminology

What Is FML?

Field Manipulation Language, or FML, isaset of C language functions for defining and
manipulating storage structures called fielded buffers, which contain attribute-value pairsin
fields. The attribute is the field’ sidentifier, and the associated value represents the field’ s data
content.

Fielded buffers provide an excellent structure for communicating parameterized data between
cooperating processes, by providing named access to a set of related fields. Programs that need
to communicate with other processes can use the FML software to provide access to fields
without concerning themselves with the structures that contain them.

FML provides afacility caled VIEWS that allows you to map fielded buffersto C structures or
COBOL records, and vice-versa. The VIEWS facility lets you perform lengthy manipulations of
datain structures rather than in fielded buffers; applications run faster if datais transferred to
structures for manipulation. Thus the VIEWS facility allows the data independence of fielded
buffers to be combined with the efficiency and simplicity of classic record structures.

Programming an Oracle Tuxedo ATMI Application Using FML 1-1

FML also provides afacility called RECORD that alows you to map RECORD buffersto
COBOL records, and vice-versa. The RECORD facility lets you perform manipulations of data
in RECORD buffer.

Three interfaces are available for FML and the VIEWS facility:

e FML and VIEWS accommodate 16-bit field identifiers, field lengths, field occurrences,
and record lengths.

e FML32 and VIEW32 accommodate 32-bit field identifiers, field lengths, field occurrences,
and record lengths. The type definitions, header files, function names, and command names
used in thisinterface include a* 32" suffix.

e RECORD accommodates COBOL copybook record definitions, RECORD definition files,
RECORD buffer function names, and RECORD command names.

How Does FML Fit into the Oracle Tuxedo System?

Within the Oracle Tuxedo system, FML functions are used to manipulate fielded buffersin the
context of ATMI applications.

Dataentry programswritten for the core portion of the Oracle Tuxedo system use FML functions;
these programs use fielded buffers to forward user data entered at aterminal to other processes.
If you write ATMI applications that receive input in fielded buffers from data entry programs,
you will need to use FML functions.

Evenif you chooseto devel op your own applications programs for handling user input and output
or if programs are written to pass messages between processes, you may still decide to use FML
to deal with fielded buffers passed between these programs.

Oracle Tuxedo Typed Buffers

1-2

Typed buffersisafeature of the Oracle Tuxedo system that grew out of the FML ideaof afielded
buffer. Two of the standard buffer types delivered with the Oracle Tuxedo system are FML typed
buffersand VIEW typed buffers. One difference between the two is that Oracle Tuxedo VIEW
buffers can be totally unrelated to an FML fielded buffer.

In thistext we show how aVIEW isastructured version of an FML record. In other documents,
such as Programming an Oracle Tuxedo ATMI Application Using C, we present VIEW as one of
several available Oracle Tuxedo buffer types.

Programming an Oracle Tuxedo ATMI Application Using FML

FML Terminology

FML Terminology

Field I dentifier
A field identifier (f1aid) isatag for an individual dataitem inan FML record or fielded
buffer. Thefieldidentifier consists of the name of thefield (anumber) and the type of data
inthefield.

Fielded Buffer
A fielded buffer is a data structure in which each dataitem is accompanied by an
identifying tag (afield identifier) that includes the type of the data and afield number.

Field Types
FML fields and fielded buffers are typed. They can be any of the standard C language
types. short, long, float, double, and char. Thefollowing typesare a so supported:
string (aseries of characters ending with aNULL character), carray (acharacter
array), mbstring (@multibyte character array—available in Tuxedo release 8.1 or later),
ptr (apointer to abuffer), fm132 (an embedded FML 32 buffer), and view32 (an
embedded VIEW32 buffer). Thembstring, ptr, fm132, and view32 typesare supported
only for the FML32 interface. The corresponding typesin COBOL are coMp-5, COMP-1,
comp-2, and prc x with the following exceptions: currently, no corresponding typesin
COBOL exist for mbstring, ptr, fm132, and view32. A C packed decimal typeisalso
supported in VIEWS for integration with coBor, comp-3.

VIEWS
VIEWSisafacility of the Field Manipulation Language that allows the exchange of data
between fielded buffers and C structures or COBOL records, by specifying mappings of
fields to members of structures/records. If extensive manipulations of fielded buffer
information are to be done, transferring the data to structures will improve performance.
Information in afielded buffer can be extracted from the fieldsin the buffer and placed in
astructure using VIEWS functions, manipulated, and the updated values returned to the
buffer, again using VIEWS functions. VIEWS can a so be used independently of FML,
particularly in support of COBOL records.

RECORD
RECORD is afacility of the Field Manipulation Language that allows the exchange of
data between RECORD buffers and COBOL records. Information in a RECORD buffer
can be extracted from the items in the buffer and placed in the buffer using RECORD
functions, manipulated, and the updated values returned to the buffer, again using
RECORD functions. RECORD can aso be used independently of FML, particularly in
support of COBOL records.

Programming an Oracle Tuxedo ATMI Application Using FML 1-3

1-4

Programming an Oracle Tuxedo ATMI Application Using FML

FML and VIEWS Features

Thistopic includes the following sections:

Dividing Records into Fields: Data Structures Versus Fielded Buffers

How Fielded Buffers Are Implemented with FML

FML Features

VIEWS Features

e Error Handling for FML Functions

Dividing Records into Fields: Data Structures Versus
Fielded Buffers

Except under unusual conditions where a data record is a complete and indivisible entity, you
need to be able to break recordsinto fields to be able to use or change the information the record
contains. In an ATMI environment, records can be divided into fields through either of the
following:

e C language data structures or COBOL records
o Fielded buffers

Programming an Oracle Tuxedo ATMI Application Using FML 2-1

2-2

Using Structures to Divide Records into Fields

One common way of subdividing records iswith a structure that divides a contiguous area of
storage into fields. The fields are given names for identification; the kind of data carried in each
field is shown by a data type declaration.

For example, if adataitem in a C language program is to contain information about an
employee’ sidentification number, name, address, and gender, it could be set up with a structure
such as the following:

struct S {
long empid;
char name[20];
char addr[40];
char gender;
Y

Here the data type of the field named empid is declared to be along integer, name and addr are
declared to be character arrays of 20 and 40 charactersrespectively, and gender isdeclared to be
asingle character, presumably with arange of m or £.

If, in your C program, the variable p points to a structure of type struct s, the references
p—>empid, p—>name, p—>addr and p—>gender can be used to address the fields.

The COBOL COPY file for the same data structure would be as follows (the application would
supply the 01 line):

05 EMPID PIC S9(9) USAGE IS COMP-5.
05 NAME PIC X(20).
05 ADDR PIC X(40)
05 GENDER PIC X(01)
05 FILLER PIC X(03)

If, inyour COBOL program, the 01 lineis named MYRrEC, the referenceSEMPID IN MYREC, NAME
IN MYREC, ADDR IN MYREC, and GENDER IN MYREC can be used to access the fields.

Although this method of representing datais widely used and is often appropriate, it has two
major potential disadvantages:

e Any time the data structure is changed, all programs using the structure have to be
recompiled.

Programming an Oracle Tuxedo ATMI Application Using FML

How Fielded Buffers Are Implemented with FML

e The size of the structure and the offsets of the component fields are all fixed, which often
results in wasted space, since (a) not all fields always contain avalue, and (b) fields tend to
be sized to hold the largest likely entry.

Using Fielded Buffers to Divide Records into Fields
Fielded buffers provide an alternative method for subdividing arecord into fields.

A fielded buffer is a data structure that provides associative access to the fields of arecord; that
is, the name of afield isassociated with an identifier that includes the storage location aswell as
the data type of thefield.

The main advantage of the fielded buffer is dataindependence. Fields can be added to the buffer,
deleted from it, or changed in length without forcing programs that reference the fields to be
recompiled. To achieve this dataindependence, fields are:

o Referenced by an identifier rather than the fixed offset prescribed by record structures.

e Accessed only through function calls.

Fielded buffers can be used throughout the ATMI environment as the standard method of
representing data sent between cooperating processes.

How Fielded Buffers Are Implemented with FML

Fielded buffers are created, updated, accessed, input, and output via Field Manipulation
Language (FML). FML provides:

e A convenient and standard discipline for creating and manipulating fielded buffers.

e Dataindependence to programs that make use of fielded buffers.

FML isimplemented as alibrary of functions and macrosthat can be called from C programs. It
provides a separate set of functionsfor:

e Creating, updating, accessing, and manipulating fielded buffers.

e Converting datafrom one type to another upon input to (or output from) afielded buffer
structure.

e Transferring data between fielded buffers and C structures or COBOL records.

Thelast set of functions listed above constitutes the FML VIEWS software. VIEWS is a set of
functions that exchange data between FML fielded buffers and structuresin C or COBOL

Programming an Oracle Tuxedo ATMI Application Using FML 2-3

language application programs. When a program receives afielded buffer from another process,
the program has the choice of:

e Operating on the buffer data directly in the buffer using FML function calls (thisis not
availablein COBOL).

e Transferring the data from the fielded buffer to a structure using VIEWS functions, and
then operating on the data in the structure using normal C or COBOL statements.

If you need to perform lengthy manipulations on buffer data, the performance of your program
can beimproved by transferring fielded buffer datato structures or records, and operating on the
data using normal C or COBOL statements. Then you can put the data back into afielded buffer
(again using VIEWS functions), and send the buffer off to another process.

Before you can use VIEWS, you must set up your program such that it can recognize the format
of incoming fielded buffer data. Y ou can do this setup task by using a set of view descriptions
kept in acache on your system.

A view description is created and stored in a source viewfile. The view description mapsfields
in fielded buffers to membersin C structures or COBOL records. The source view descriptions
are compiled, and can then be used to map data transferred between fielded buffersand C
structures or COBOL recordsin a program.

By keeping view descriptions cached in a central file, you can increase the data independence of
your programs; you only need to change the view description(s) and recompile them to effect
changes in data format throughout an application that uses VIEWS.

FML Features

2-4

This topic includes the following sections:
e What IsaFielded Buffer?
e Supported Field Types
e Field Name-to-ldentifier Mappings
Fielded Buffer Indexes

Multiple Occurrence Fields in a Fielded Buffer

e Boolean Expressions and Fielded Buffers

Programming an Oracle Tuxedo ATMI Application Using FML

What Is a Fielded Buffer?

What Is a Fielded Buffer?

A fielded buffer is a data structure that provides associative access to the fields of arecord.

Each field in an FML fielded buffer islabeled with an integer that combines information about
the data type of the accompanying field with aunique identifying number. Thelabel is called the
field identifier, or f1aid. For variable-length items, the f1aid isfollowed by alength indicator.

A buffer can be represented as asequence of f1did/datapairs, with £1did/length/datatriplesfor
variable-length items, as shown in the following diagram.

Figure 2-1 Fielded Buffer

fldid | data | fldid

en | data | fldid | data

In the header file that isincluded (with #inc1ude) whenever FML functions are used (fm1.h or
fm132.h), field identifiers are defined (with typedef) asFLDID (or FLDID32 for FML32), field
value lengths as FL.DLEN (FLDLEN32 for FML32), and field occurrence numbers as Fr.oocc
(FLDOCC32 for FML32).

Supported Field Types

The supported field types are short, long, float, double, char, string, carray (Character
array), mbstring (multibyte character array—available in Tuxedo release 8.1 or later), ptr
(pointer to a buffer), fm132 (an embedded FML 32 buffer), and view32 (an embedded VIEW32
buffer). Thembstring, ptr, fm132, and view32 types are supported only for the FML 32
interface. These types are included as #define Statementsin fm1.h (Or fm132.h), ashownin
the following listing.

Listing 2-1 Definitions of FML Field Types in fml.h and fmI32.h

#define FLD_SHORT
#define FLD_LONG
#define FLD_CHAR
#define FLD_FLOAT
#define FLD_DOUBLE

/* short int */
/* long int */
/* character */

/* single-precision float */

W N PO

/* double-precision float */

Programming an Oracle Tuxedo ATMI Application Using FML 2-5

2-6

#define FLD_STRING 5 /* string - null terminated */

#define FLD_CARRAY 6 /* character array */

#define FLD_PTR 9 /* pointer to a buffer */
#define FLD_FML32 10 /* embedded FML32 buffer */
#define FLD_VIEW32 11 /* embedded VIEW32 buffer */
#define FLD_MBSTRING 12 /* multibyte character array */

FLD_STRING, FLD_CARRAY, and FLD_MBSTRING are al arrays, but differ in the following way:
e A FLD_STRING isavariable-length array of non-NULL characters terminated by aNULL.

e A FLD_CARRAY Of FLD_MBSTRING iSavariable-length array of bytes, any of which may be
NULL.

Functionsthat add or change afield have a FLDLEN argument that must befilled in when you are
dealing with FL.o_carray or FL.D_MBSTRING fields. The size of astring or carray islimited to
65,535 charactersin FML, and 2 billion bytes for FML32.

Itisnot agood ideato store unsigned data typesin fielded buffers. Y ou should either convert all
unsigned short data to long or cast the data into the proper unsigned data type whenever you
retrieve data from fielded buffers (using the FML conversion functions).

Most FML functions do not perform type checking; they expect that the value you update or
retrieve from afielded buffer matchesits native type. For example, if abuffer field is defined to
be arFLD_roNG, you should always pass the address of along value. The FML conversion
functions convert data from a user specified type to the native field type (and from the field type
to auser specified type) in addition to placing the datain (or retrieving the datafrom) the fielded
buffer.

The rrpo_ptr field type makesiit possible to embed pointersto application datain an FML32
buffer. Applications can add, change, access, and delete pointers to data buffers. The buffer
pointed to by arL.p_pTR field must be allocated using the tpalloc (3¢) call. TherLp_pTR field
typeis supported only in FML32.

TherLp_rML32 field type makesit possibleto storean entirerecord asasinglefieldinan FML32
buffer. Similarly, the rLo_view32 field type allows an entire C structure to be stored asasingle
field in an FML32 buffer. The FLp_rmp32 and FLD_vIiew32 field types are supported only in
FML32.

Programming an Oracle Tuxedo ATMI Application Using FML

../rf3c/rf3c.html

Field Name-to-ldentifier Mappings

Type int in VIEWS

In addition to the data types supported by most FML functions, VIEWS indirectly supportstype
int in source view descriptions. When the view description is compiled, the view compiler
automatically converts any int typesto either short or long types, depending on your machine.
For more information, see“VIEWS Features’ on page 2-10.

Type dec_t in VIEWS

VIEWS also supportsthe dec_t packed decimal typein source view descriptions. Thisdatatype
isuseful for transferring VIEW structuresto COBOL programs. In aC program using the dec_t
type, the field must beinitialized and accessed using the functions described in decimal (3c) in
the Oracle Tuxedo ATMI C Function Reference. Within the COBOL program, the field can be
accessed directly using a packed decimal (comp-3) definition. Because FML does not support a
dec_t field, thisfield isautomatically converted to the data type of the corresponding FML field
in the fielded buffer (for example, a string field) when converting from a VIEW to FML.

Field Name-to-ldentifier Mappings

In the Oracle Tuxedo system, fields are usually referred to by their field identifier (f1did), an
integer. (Refer to “Defining Field Names and Identifiers’ on page 5-2 for a detailed description
of field identifiers.) Thisallowsyou to referencefieldsin aprogram without using thefield name,
which may change.

Identifiers are assigned (mapped) to field names through one of the following:
o Field tablefiles (which are ordinary UNIX files)

e Clanguage header (#include) files

A typical application might use one, or both of the above methodsto map field identifiersto field
names.

In order for FML to accessthe datain fielded records, there must be some way for FML to access
the field name/identifier mappings. FML gets this information in one of two ways:

e At runtime, through UNIX field table files, and FML mapping functions

e At compile time, through C header files
Field name/identifier mapping is not available in COBOL.

Programming an Oracle Tuxedo ATMI Application Using FML 2-1

../rf3c/rf3c.html

2-8

Run Time: Field Table Files

Field name/identifier mappings can be made availableto FML programsat run timethrough field
tablefiles. It is the responsibility of the programmer to set two environment variables that tell
FML where the field name/identifier mapping table files are located.

The environment variable FLDTBLDIR contains alist of directories where field tables can be
found. The environment variable FTELDTBLS containsalist of thefilesinthetabledirectoriesthat
are to be used. For FML 32, the environment variable names are FLDTBLDIR32 and
FIELDTBLS32.

Within application programs, the FML function r1did () providesfor arun-timetransation of a
field nameto itsfield identifier. Fname () trandates afield identifier to its field name (see
F1did (3fml) and Fname (3fml)). (Thefunction namesfor FML32 are F1did32 and Fname32.)
Thefirst invocation of either function causes space in memory to be dynamically allocated for
the field tables and the tables to be loaded into the address space of the process. The space can be
recovered when the tables are no longer needed. (Refer to “Loading Field Tables” on page 5-5
for more information.)

This method should be used when field name/identifier mappings are likely to change throughout
thelife of the application. Thistopiciscovered in more detail in “Defining and Using Fields” on

page 5-1.

Compile Time: Header Files

Usemkfldhdr () (Or mkfldhdr32 ()) to make header files out of field table files. These header
filesareincluded (with #include) in C programs, and provide another way to map field names
tofield identifiers: at compiletime. For moreinformation onmkf1dhdr, mkfldhdr32 (1), refer
to Oracle Tuxedo Command Reference.

Using field header files, the C preprocessor converts al field name referencesto field identifiers
at compile time; thus, you do not need to usethe F1did () or Fname () functions asyou would
with the field table files described in the previous section.

If you always know the field names needed by your program, you can save some data space by
including your field table header files (with #inc1ude). The space saving allows your program
to get to the task at hand more quickly.

Because this method resolves mappings at compile time, however, it should not be used if the
field name/identifier mappingsin the application arelikely to change. For more information, see
“Defining and Using Fields’ on page 5-1.

Programming an Oracle Tuxedo ATMI Application Using FML

../rfcm/rfcmd.html
../rfcm/rfcmd.html

Fielded Buffer Indexes

Fielded Buffer Indexes

When afielded buffer has many fields, accessis expeditedin FML by the use of an internal index.
The user is normally unaware of the existence of thisindex.

Fielded buffer indexes do, however, take up space in memory and on disk. When you store a
fielded buffer on disk, or transmit afielded buffer between processes or between computers, you
can save disk space and/or transmittal time by first discarding the index.

TherFunindex () function enablesyou to discard theindex. When the fielded buffer isread from

disk (or received from a sending process), the index can be explicitly reconstructed with the
Findex () function.

Note that these space savings do not apply to memory. The Funindex () function does not
recover in-core memory used by the index of afielded buffer.

For moreinformation, refer to Funindex, Funindex32 (3fml) Of Findex, Findex32 (3fml)
in Oracle Tuxedo ATMI FML Function Reference.

Multiple Occurrence Fields in a Fielded Buffer

Any field in afielded buffer can occur more than once. Many FML functions take an argument
that specifies which occurrence of afield isto be retrieved or modified. If afield occurs more
than once, the first occurrence is numbered 0, and additional occurrences are numbered
sequentially. The set of all occurrences makes up alogical sequence, but no overhead is
associated with the occurrence number (that is, it is not stored in the fielded buffer).

If another occurrence of afield isadded, it isadded at the end of the set and isreferred to as the
next highest occurrence. When an occurrence other than the highest is deleted, all higher
occurrences of thefield are shifted down by one (for example, occurrence 6 becomes occurrence
5, 5 becomes 4, and so on).

Boolean Expressions and Fielded Buffers

The next action taken by an application program is frequently determined by the value of one or
more fieldsin afielded buffer received (by the application) from another source, such asauser’s
terminal or adatabase record. FML provides several functionsthat create bool ean expressionson
fielded buffers or VIEWs and determine whether a given buffer or VIEW meets the criteria
specified by the expression.

Programming an Oracle Tuxedo ATMI Application Using FML 2-9

../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html

Onceyou create a Boolean expression, it is compiled into an evaluation tree. The evaluation tree
is then used to determine whether a fielded buffer or VIEW matches the specified Boolean
conditions.

For instance, a program may read a data record into afielded buffer (Buffer A), and apply a
Boolean expression to the buffer. If Buffer A meets the conditions specified by the Boolean
expression, then an FML function is used to update another buffer, Buffer B, with data from
Buffer A.

VIEWS Features

2-10

The VIEWS facility is particularly useful when aprogram does alot of processing on thedatain
afielded buffer, either after the program has received the buffer or before the program sends the
buffer to another program.

Under such conditions, you may improve processing efficiency by using VIEWS functions to
transfer fielded buffer data from the buffer to a C structure before you manipulate it. Processing
efficiency isimproved because C functions require less processing time than FML functions for
manipulating fields in a buffer. When you finish processing the data in the C structure, you can
transfer that data back to the fielded buffer before sending it to another program.

The VIEWS facility has the following features:

e You can create source view descriptions that specify C structure-to-fielded buffer
mappings or COBOL record-to-fielded buffer mappings, and make possible the transfer of
data between structures and buffers.

e Theviewc Or viewc32 view compiler isused to generate object view descriptions
(stored in binary files) that are interpreted by your application programs at run time. The
compiler also generates header files that can be used in C programs to define the structures
used in view descriptions, and optionally generates COPY filesthat can be used in
COBOL programs to define the records used in the view descriptions. For more
information about these view compilers, see viewc, viewc32 (1) in Oracle Tuxedo
Command Reference.

e A view disassembler is provided to translate object view descriptions into readable form
(that is, back into source view descriptions). The output of the disassembler can be re-input
to the view compiler.

e Datatransfers from C structures or COBOL records to fielded buffers can be donein any
one of four modes; FUPDATE, FJOIN, FOJOIN, OF FCONCAT. These modes are similar to the
ones supported by the following FML functions: Fupdate, Fupdate32 (3fml),

Programming an Oracle Tuxedo ATMI Application Using FML

../rfcm/rfcmd.html
../rfcm/rfcmd.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html

VIEWS Features

Fjoin, Fjoin32(3fml), Fojoin, Fojoin32 (3fml), and
Fconcat, Fconcat32(3fml).

e At run time object view descriptions are read into a viewfile cache on demand, and remain
there until the cache is full. When the cache is full and an object view description that is
not in the cache is needed, the least recently accessed object view description is removed
from the cache to make room for the new one.

o All types supported by FML can be used in view descriptions with the exception of
FLD_PTR and FLD_FML32. |n addition, nested views are supported. For more information,
see Using an VIEW Type Buffer in Programming an Oracle Tuxedo ATMI Application
Using C.

e When transferring data between fielded buffers and structures, the source datais
automatically converted to the type of the destination data; for instance, if astring field is
mapped to an integer member, the string is converted to an integer using Ftypcvt ()
automatically. For more information, refer to Ftypcvt, Ftypcvt32(3fml) inOracle
Tuxedo ATMI FML Function Reference.

e Multiplefield occurrences are supported.
o User-specified and default NULL valuesin view descriptions are supported.

e Functions are available for compiling and evaluating Boolean expressions against
application datain a VIEW.

A source viewfile is an ordinary text file that contains one or more source view descriptions.
Source viewfiles are used asinput to aview compiler—viewc 0Or viewc32—which compilesthe
source view descriptions and stores them in object viewfiles. For more information on the view
compiler, refer toviewc, viewc32 (1) in Oracle Tuxedo Command Reference.

The view compiler also creates C header files for object viewfiles. These header files can be
included in application programs to define the structures used in object view descriptions.

Theview compiler optionally createsCOBOL COPY filesfor object viewfiles. These COPY files
can beincluded in COPY programsto define the record formats used in object view descriptions.

NULL valuesare used to indicate empty membersin astructure, and can be specified by the user
for each structure member in aviewfile. If the user does not specify aNULL valuefor amember,
default NULL values are used.

Note that a structure member containing the NULL value for that member is not transferred
during a structure-to-fielded buffer transfer.

Programming an Oracle Tuxedo ATMI Application Using FML 2-11

../rfcm/rfcmd.html
../rfcm/rfcmd.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../pgc/index.html

It isalso possible to inhibit the transfer of data between a C or COBOL structure member and a
field in afielded buffer, even though a mapping exists between them. Thisis specified in the
source viewfile.

The FML VIEWSfunctionsareFvstof (), Fvftos (), Fvnull (), Fvopt (), Fvselinit (), and
Fvsinit (). For COBOL, the VIEWS facility provides two procedures: FvsTor and FVFTOS.
Upon calling any view function, the named object viewfile, if found, isloaded into the viewfile
cache automatically. Each file specified in the environment variable viEwrILES is searched in
order (see “Setting Up Y our Environment for FML and VIEWS” on page 4-1). Thefirst object
viewfile with the specified name is loaded. Subsequent object viewfiles with the same name, if
any, areignored. For more information on the FML VIEWS functions, refer to Oracle Tuxedo
ATMI FML Function Reference.

Note that arrays of structures, pointers, unions, and typedefs are not supported in VIEWS.

Multiple Occurrence Fields in VIEWS

Because VIEWS is concerned with moving fields between fielded buffers and C structures or
COBOL records, it must deal with the possibility of multiple occurrence fields in the buffer.

To store multiple occurrences of afield in a structure, amember is declared asan array in C or
with the OCCURS clause in COBOL; each occurrence of afield occupies one element of the
array. The size of the array reflects the maximum number of field occurrences in the buffer.

When transferring data from fielded buffersto C structures or COBOL records, if the number of
elementsinthereceiving array isgreater than the number of occurrencesin thefielded buffer, the
extra elements are assigned the (default or user-specified) NULL value. If the number of
occurrencesinthe buffer isgreater than the number of elementsin thearray, the extraoccurrences
in the buffer are ignored.

When dataistransferred from C structures or COBOL recordsto fielded buffers, array members
with the value equal to the (default or user-specified) NULL values are ignored.

Error Handling for FML Functions

When an FML function detects an error, one of the following valuesiis returned:
e NULL isreturned for functions that return a pointer.
e BADFLDID isreturned for functionsthat return aFLDID.

e -1 isreturned for all others.

2-12 Programming an Oracle Tuxedo ATMI Application Using FML

Error Handling for FML Functions

All FML function call returns should be checked against the appropriate value above to detect
errors.

In al error cases, the external integer Ferror is set to the error number as defined in £ml . h.
Ferror32 is set to the error number for FML32 as defined in £m132.h.

TheF_error () (Or F_error32()) function is provided to produce a message on the standard
error output. It takes one parameter, a string. It printsthe argument string, appended with acolon
and ablank, and then printsan error message, followed by anewline character. The error message
displayed is the one defined for the error number currently in Ferror, which is set when errors
occur.

To be of most use, the argument string to the F_error () (or F_error32 ()) function should
include the name of the program that incurred the error. Refer to ¥_error, F_error32(3fml)
in Oracle Tuxedo ATMI FML Function Reference.

Fstrerror, Fstrerror32(3fml) can be used to retrievethetext of an error message from a
message catal 0g; it returns a pointer that can be used as an argument to userlog (3c), Or to

F_error () OF F_error32 ().

For adescription of the error codes produced by an FML function, see the entry for that function
in Oracle Tuxedo ATMI FML Function Reference.

Programming an Oracle Tuxedo ATMI Application Using FML 2-13

../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3c/rf3c.html

2-14 Programming an Oracle Tuxedo ATMI Application Using FML

RECORD Features

Thistopic includes the following sections:
e RECORD Features

e Setting up Your Environment for RECORD

RECORD Features

The RECORD facility is particularly useful when the datais transferred between COBOL
language and C language. Under such condition, RECORD buffer type can be used in C
language, and copybook is used in COBOL language.

The RECORD fecility has the following features:

e The cpy2record tool is used to generate record descriptions (stored in binary format) that
are interpreted by your application programs at run time. For more information, see
cpy2record in Oracle Tuxedo Command Reference.

e At run time, record descriptions are read into a record file cache on demand and remain
there until the cache is full. When the cache is full and arecord description that isnot in
the cache is needed, the least recently accessed record description is removed from the
cache to make room for the new one.

e When transferring data between RECORD buffers and COBOL records, the source datais
automatically converted to the type of the destination data. For instance, a string field may
be converted between EBCDIC and ASCII formats.

Programming an Oracle Tuxedo ATMI Application Using FML 3-1

../rfcm/rfcmd.html#wp2078938

3-2

A sourcerecord fileisan ordinary text file that contains one or more source record descriptions,
and often the existing COBOL copybook fileis used. Source record files are used as input to
cpy2record, Which generates the record description files.

Following table lists cpy2record supported clausesin COBOL copybook file.

Table 3-1 cpy2record Supported Clauses in COBOL Copyhook File

Supported Clause Description

OCCURS OCCURS specifiestables whose elements can be referred to by indexing or
subscripting. Fixed-length tables are supported; the following phrases are
not supported: ASCENDING KEY and DESCENDING KEY phrases,
INDEXED BY phrase, and OCCURS DEPENDING ON phrases

(variable-length tables).

PICTURE PICTURE specifiesthe general characteristics and editing requirements of
an elementary item. The supported symbolsin PICTURE clause are a, B,
E,G,N,P,S,V,X%%,9,0,/,,, .,+ ~, *,C,andD.

SIGN SIGN specifies the position and mode of representation of the operational

sign for the signed numeric item to which it applies.

USAGE USAGE specifies the format in which datais represented in storage. The
supported phrases are: BINARY, COMP, COMP-1, COMP-2, COMP-3,
COMP-4, COMP-5, COMPUTATIONAL, COMPUTATIONAL-1,
COMPUTATIONAL-2, COMPUTATIONAL-3, COMPUTATIONAL-4,
COMPUTATIONAL-5, DISPLAY, DISPLAY-1, NATIONAL, and
PACKED-DECIMAL. Unsupported phrases are: NATIVE, INDEX,
POINTER, PROCEDURE-POINTER, FUNCTION-POINTER, and OBJECT
REFERENCE.

Note: Thefollowing clausesin COBOL copybook fileare not supported by cpy2record: BLANK WHEN
ZERO, EXTERNAL, GLOBAL, JUSTIFIED, GROUP-USAGE, REDEFINES, RENAMES,
SYNCHRONIZED, and VALUE.

The RECORD functions are Rinit(), Rget(), Rset(), and Frneeded(). Upon calling any record
function, the named record description file, if found, isloaded into the record file cache
automatically. Each file specified in the environment variable RECORDFILES iSSearched in order.
Thefirst record description file with the specified name isloaded. Subsequent record description
fileswith the same name, if any, are ignored. For more information, see RECORD Functionsin
Programming An Oracle Tuxedo ATMI Application Using FML.

Programming an Oracle Tuxedo ATMI Application Using FML

Setting up Your Environment for RECORD

Setting up Your Environment for RECORD

The following variables are used throughout FML to access record files:

e RECORDFILES - thisvariable should contain a comma-separated list of record description
filesfor the application. Files given as full path names are used as is; files listed as relative
path names are searched for through the list of directories specified by RECORDDIR
variable. If RECORDFILES IS not set, the single file name record.r is used (RECORDDIR
still applies; see below).

e RECORDDIR - thisvariable specifies a colon-separated list of directories to be used to find
record files with relative filenames. Its usage is similar to the paTa environment variable.
If RECORDDIR isnot set or isNULL, then its value is taken to be the current directory.

Programming an Oracle Tuxedo ATMI Application Using FML 3-3

34 Programming an Oracle Tuxedo ATMI Application Using FML

CHAPTERo

Setting Up Your Environment for FML
and VIEWS

Thistopic includes the following sections:
e Environment Requirements for FML and VIEWS
e FML Directory Structure
e Environment Variables Used by FML and VIEWS

Environment Requirements for FML and VIEWS

Beforeyou can beginto work with FML fielded buffers, or to usethe VIEWSfunctionsthat move
fields between structures and fielded buffers, you must set up your environment to accommodate
these methods by setting the necessary environment variables. This section providesinstructions
for doing so.

FML Directory Structure

The FML software delivered with the Oracle Tuxedo system resides in a subtree of thelocal file
system. Several FML modules depend on the subtree structure described here. We assume that
you have set the Tuxp1r environment variable to the full path name of the directory in which the
Oracle Tuxedo ATMI Server isinstalled.

The Oracle Tuxedo installation directory contains the following subdirectories;

e include—contains header files needed by writers of C application code.

Programming an Oracle Tuxedo ATMI Application Using FML 4-1

e cobinclude—contains COPY files needed by writers of COBOL application code. (This
directory is named cobinc1u for operating systems with an 8.3 file name limitation.)

e bin—contains the executable commands of FML.

e 1ib—contains subroutine packages of FML. When compiling a program that uses FM L
functions, you should include $TUXDIR/1ib/1ibfml . suffix and
$TUXDIR/1ib/1ibgp.suffix onthe C compiler command line to resolve external
references. 1ibfml32. suffix containsthe FML32 and VIEW32 functions. (The suffix is
.a for POSIX operating systems without shared objects, .so.release for use of shared
objects, . 11ib for Windows; it is part of the Oracle Tuxedo system DLL for platforms that
use dynamic link libraries.)

C applicationsin which FML isused must include the following header filesin the order shown:

#include <stdio.h>
#include “fml.h”

Thefile fm1.h or fm132.h contains definitions for structures, symbolic constants, and macros
used by the FML software.

Environment Variables Used by FML and VIEWS

42

Severa environment variables are used by FML and VIEWS.

e Thefollowing variableis used in FML to search for system-supplied files:

— TuxpIR—this variable should be set to the topmost node of the installed Oracle Tuxedo
system software including FML.

e Thefollowing variables are used throughout FML to access field table files:

— FIELDTBLS—this variable should contain a comma-separated list of field table files for
the application. Files given as full path names are used as is; fileslisted as relative path
names are searched for through the list of directories specified by the FLDTBLDIR
variable. FIELDTBLS32 isused for FuL32. If FIELDTBLS iShot set, then the singlefile
name £1d. tbl isused. (FLDTBLDIR Still applies; see below.)

— rFLDTBLDIR—thiS variable specifies a colon-separated list of directories to be used to
find field table files with relative filenames. Its usageis similar to the paTH
environment variable. If FLDTBLDIR isnot set or isNULL, then its value is taken to be
the current directory. FLDTBLDIR32 is used for FML32.

For details, see “Defining and Using Fields’ on page 5-1.

Programming an Oracle Tuxedo ATMI Application Using FML

Environment Variables Used by FML and VIEWS

e VIEWS functions use the same environment variables used by FML (namely, FLDTBLDIR
and rFIELDTBLS) plus two other environment variables:

— vIEWFILES—this variable should contain a comma-separated list of object viewfilesfor
the application. Files given as full path names are used as s, fileslisted asrelative path
names are searched for through the list of directories specified by the viewpIr variable
(see thefollowing list item). viEWFILES32 isused for viEw32.

— viewpir—this variable specifies a colon-separated list of directories to be used to find
view object files with relative filenames. It is set and used in the same way that the
PATH environment variable is set and used. If vIEwDIR ishot set or isNULL, then its
value is assumed to be the current directory. vIEWDIR32 isused for vIiEwW32.

e Thefollowing variables are used in FML32 to support the FLp_MBSTRING field type:

— TPMBENC—this variable specifies the code-set encoding name that the application
server or client running Oracle Tuxedo 8.1 or later includes for an FLD_MBSTRING field
in an FML 32 typed buffer. When an application server or client process allocates and
sends an FML 32 buffer containing arLp_mMBsSTRING field, the code-set encoding name
defined in TPMBENC is automatically used by Fmbpack32 () if its enc argument is not
defined and its f1ag argument is not set to FBUFENC.

When the application server or client process receives an FML 32 buffer that includes
an rLDp_MBSTRING field, and assuming another environment variable named
TPMBACONV iS Set, the code-set encoding name defined in TpMBENC iS automatically
compared to the code-set encoding name included for the rFLp_MBsTRING field in the
received buffer; if the names are not the same, the FLp_mBsTRING field datais
automatically converted to the encoding defined in TrMBENC before being delivered to
the server or client process.

TPMBENC has no default value. For an application server or client using FLD_MBSTRING
fields, TeMBENC must be defined for automatic conversion to work.

Note: TpmBENC isused in asimilar way for MBSTRING typed buffers.

— TrMBAcCONV—this variable specifies whether the application server or client running
Oracle Tuxedo 8.1 or later automatically converts the r.o_mBsTRING field datain a
received FML 32 buffer to the encoding defined in TemMBENC. By default, the automatic
conversion isturned off, meaning that the FLp_mBsTrRING field datais delivered to the
destination server or client process asis—no encoding conversion. Setting TPMBACONV
to any non-NULL value, say v (yes), turns on the automatic conversion.

Note: TpmBaconv isusedin asimilar way for MBSTRING typed buffers.
For details, see “Converting FLD_MBSTRING Fields” on page 6-65.

Programming an Oracle Tuxedo ATMI Application Using FML 4-3

VIEW32 Support for MBSTRING

Starting with Tuxedo 9.0, VIEW32 supports MBSTRING typed buffers which correspond
to the rLp_mBsTRING field typein FML32.

Fmbpack32 (3fml) prepares an MBSTRING field in aVIEW32 buffer for encoding and

Fmbunpack32 (3 fml) extractsit. TPMBENC and TPMBACONV environment variables are al'so
used in VIEW32.

4-4 Programming an Oracle Tuxedo ATMI Application Using FML

Defining and Using Fields

Thistopic includes the following sections:
e Preparing to Use FML and VIEWS
e Defining Fields for FML and VIEWS
e Mapping Fieldsto C Structures and COBOL Records

Preparing to Use FML and VIEWS

Beforeyou can beginto work with FML fielded buffers, or to usethe VIEWSfunctionsthat move
fields between structures and fielded buffers, you must:

e Definefields.

o Make field definitions available to application programs (through field table files and
mapping functions at run time, or through C header files at compile time).

e Compile source view descriptionsinto object view descriptions, and generate
corresponding C header filesand COBOL COPY files.

These tasks and related activities are described here.

Defining Fields for FML and VIEWS

This topic includes the following sections:

e Defining Field Names and I dentifiers

Programming an Oracle Tuxedo ATMI Application Using FML 5-1

e Creating Field Table Files

e Mapping Field Namesto Field IDs

e Loading Field Tables

e Converting Field Tablesto Header Files

Defining Field Names and Identifiers

5-2

A fieldidentifier (fieldid) isdefined (with typedef) asarLpiD (FLDID32 for FML32), andis
composed of two parts. afield type and afield number. The number uniquely identifiesthefield.

A field number must fall in one of the following ranges:
e For FML: between 1 and 8191, inclusive

e For FML32: between 1 and 33,554,431, inclusive

Field number 0 and the corresponding field identifier O are reserved to indicate a bad field
identifier (eaprLDID). When FML is used with other software that also uses fields, additional
restrictions may be imposed on field numbers.

The Oracle Tuxedo system conforms to the following conventions for field numbers.

FML Field Numbers FML32 Field Numbers

Reserved Available Reserved Available

1-100 101-8191 1-3,999, 4,000-5,999,
6,000-10,000, 10,001-30,000,000

30,000,001-33,554,431

Applications should avoid using the reserved field numbers, although the Oracle Tuxedo system
does not strictly enforce applications from using them.

The mappings between field identifiers and field names are contained in either field tablefiles or
field header files. If you are using field table files you must convert field name referencesin C
programs with the mapping functions described later in this section. Field header files allow the
C preprocessor (cpp(1) in UNIX reference manuals) to resolve name-to-field |D mappings when
aprogram is compiled.

Programming an Oracle Tuxedo ATMI Application Using FML

Creating Field Table Files

The functions and programs that access field tables use the environment variables FL.DTBLDIR
and FIELDTBLS to specify the source directories and field tablefiles, respectively, that are to be
used. (FLDTBLDIR32 and FIELDTBLS32 are used for the same purposewith FML32.) Y ou should
set these environment variables as described in “ Setting Up Y our Environment for FML and
VIEWS’ on page 4-1.

The use of multiple field tables allows you to establish separate directories and/or files for
separate groups of fields. Note that field names and field numbers should be unique across all
field tables, since such tables are capable of being converted into C header files, and field
numbers that occur more than once may cause unpredictable results.

Creating Field Table Files

Field table files are created using a standard text editor, such as vi. They have the following
format:

e Blank lines and lines beginning with # are ignored.

e Lines beginning with adollar sign ($) are ignored by the mapping functions but are passed
through (without the $) to header files generated by mkf1andr. (Refer to
mkfldhdr, mkfldhdr32 (1) in Oracle Tuxedo Command Reference.) The ability to have
linesignored by the mapping functionsis useful, for example, when an application passes
C comments, what strings, and so on, to the generated C header file.

Note: In COBOL applications, however, such lines are not passed through to the COBOL
copy files.

e Lines beginning with the string *base contain a base for offsetting subsequent field
numbers. This optional feature provides an easy way to group and renumber sets of related
fields.

e All other lines should have the form:
name rel-number type flag comment

where:

— name isthe identifier for the field. It should not exceed the C preprocessor identifier
restrictions (that is, it should contain only alphanumeric characters and the underscore
character). Internally, the name is truncated to 30 characters, so names must be unique
within the first 30 characters.

— rel-number iSthe relative numeric value of the field. It is added to the current basg, if
*base IS specified, to obtain the field number of the field.

Programming an Oracle Tuxedo ATMI Application Using FML 5-3

../rfcm/rfcmd.html
../rfcm/rfcmd.html

— type isthetype of thefield. It is specified as one of the following: short, long,
float, double, char, string, carray, mbstring, ptr, fml132, Of view32.

— The f1ag field isreserved for future use; use adash (-) in thisfield.
— comment isan optional field that can be used for clarifying information.
Note that these entries must be separated by white space (blanks or tabs).

Field Table Example

Thefollowing is an example field table in which the base shifts from 500 to 700. The first field
in each group will be numbered 501 and 701, respectively.

Listing 5-1 System Field Table File

following are fields for EMPLOYEE service
employee ID fields are based at 500

*base 500

#name rel-number type flags comment
#____ __________ - -
EMPNAME 1 string - emp name
EMPID 2 long - emp id
EMPJOB 3 char - job type
SRVCDAY 4 carray - service date
*base 700

all address fields are now relative to 700

EMPADDR 1 string - street address
EMPCITY 2 string - city
EMPSTATE 3 string - state

EMPZIP 4 long - zip code

Mapping Field Names to Field IDs

Run-time mapping isdone by ther1did () and Fname () functions, which consult the set of field
table files specified by the F.oTBLDIR and FIELDTBLS environment variables. (If FML32 is
being used, the F1did32 () and Fname32 () functions reference the FLpTBLDIR32 and
FIELDTBLS32 environment variables.)

F1did mapsits argument, afield name, to a fieldid, as shown in the following code:

5-4 Programming an Oracle Tuxedo ATMI Application Using FML

Loading Field Tables

char *name;
extern FLDID F1ldid();
FLDID id;

id = Fldid(name) ;

Fname does the reverse trandation by mapping its argument, a fieldid, to afield name, as
shown in the following code:

extern char *Fname();

name = Fname (id) ;

| dentifier-to-name mapping is rarely used; it israre that one has afield identifier and wantsto
know the corresponding name. One situation in which thefield identifier-to-field name mapping
can be used isin abuffer print routine designed to display, in an intelligible form, the contents of
afielded buffer.

See Also

e Fldid, F1ldid32 (3fml) in Oracle Tuxedo ATMI FML Function Reference

® Fname, Fname32 (3fml) in Oracle Tuxedo ATMI FML Function Reference

Loading Field Tables

Upon thefirst call, F1did () loadsthe field table files and performs the required search.
Thereafter, the files are kept loaded. F1did () returnsthefield identifier corresponding to its
argument on success, and returns BADFLDID on failure, with Ferror set to FBADNAME. (If FML32
isbeing used, Ferror32 iSset, instead.)

To recover the data space used by thefield tablesloaded by rF1aida (), you may unload all of the
filesby calling the Fnmid_unload () function.

Thefunction Fname () actsinafashionsimilartor1did (), butit providesamapping from afield
identifier to afield name. It usesthe same environment variable schemefor determining the field
tables to beloaded, but constructs a separate set of mapping tables. On success, Fname () returns
apointer to a character string containing the name corresponding to the £1did argument. On
failure, Fname () returns NULL.

Note: The pointer isvalid only as long as the table remains |oaded.

Programming an Oracle Tuxedo ATMI Application Using FML 5-5

../rf3fml/rf3fml.html
../rf3fml/rf3fml.html

Aswithridid (), failureincludeseither theinability to find or open afield table (rrToPEN), bad
field table syntax (FFTsynTaAX), Or ano-hit condition within thefield tables (FBaDFLD). Thetable
space used by the mapping tables created by Fname () may be recovered by acall to the
Fidnm_unload() function.

Both mapping functions and other FML functionsthat use run-time mapping require FIELDTBLS
and FLDTBLDIR to be set properly. Otherwise, defaults are used. (For the default values of these
environment variables, see “ Setting Up Y our Environment for FML and VIEWS’ on page 4-1.)

See Also

e Fldid, F1ldid32 (3fml) in Oracle Tuxedo ATMI FML Function Reference

e Fnmid_unload, Fnmid_unload32(3fml) in Oracle Tuxedo ATMI FML Function
Reference

e Fname, Fname32 (3fml) in Oracle Tuxedo ATMI FML Function Reference

e Fidnm unload, Fidnm_unload32 (3fml) in Oracle Tuxedo ATMI FML Function
Reference

Converting Field Tables to Header Files

5-6

Themkf1dandr (or mkfl1dhdr32) command converts afield table, as described earlier, into a
header file suitable for processing by the C compiler. Each line of the generated header fileis of
the following form:

#define fname fieldid

where fname isthe name of thefield, and fie1didisitsfield-ID. Thefield-1D hasboth thefield
type and field number encoded in it. The field number is an absolute number, that is, base plus
rel-number. Theresulting fileis suitable for inclusion in a C program.

It is not necessary to use the header fileif the run-time mapping functions are used as described
in “Mapping Fields to C Structures and COBOL Records’ on page 5-8.

The advantage of compile-time mapping of namesto identifiersis speed and a decrease of data
space requirements. The disadvantage is that changes made to field name/identifier mappings
after, for instance, a service routine has been compiled, are not propagated to the service routine.
(Under such circumstances, the service routine uses the mappings it has already compiled.)

mkfldhdr trandates each field table specified in the FIELDTBLS environment variable to a
corresponding header file, the name of which isformed by adding a . h suffix to the field table

Programming an Oracle Tuxedo ATMI Application Using FML

../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html

Converting Field Tables to Header Files

name. Theresulting files are created, by default, in the current directory. If you want your header
filesto be created in another directory, you may specify that directory with the -4 option on the
mk £ 1dhdr command line. For moreinformation, refer tomkf1dhdr, mkfldhdr32 (1) inOracle

Tuxedo Command Reference.

Examples of Converting Field Tables to Header Files

Examples 1 and 2 show how to set your environment variables and run the mkf1dhdr (1)

command so that three field table files—s {FLDTBLDIR} /maskftbl, ¢ {FLDTBLDIR} /DBftbl,

and $ {FLDTBLDIR} /miscftbl—are processed, and three include files—maskftbl . h,

DBftbl.h andmiscftbl.h—aregenerated in the current directory. For moreinformation, refer

tomkfldhdr, mkfldhdr32 (1) in Oracle Tuxedo Command Reference.

Example 1

FLDTBLDIR=/project/fldtbls
FIELDTBLS=maskftbl,DBftbl,miscftbl
export FLDTBLDIR FIELDTBLS
mkfldhdr

Example 2

FLDTBLDIR32=/project/fldtbls
FIELDTBLS32=maskftbl,DBftbl,miscftbl
export FLDTBLDIR32 FIELDTBLS32
mkfldhdr32

Example 3

Example 3 isthe same as Example 1 with one exception: the output files—mask£ftbl.h,

DBftbl.h and miscftbl . h—are generated in the directory indicated by $ {FLDTBLDIR}.

FLDTBLDIR=/project/fldtbls
FIELDTBLS=maskftbl,DBftbl,miscftbl
export FLDTBLDIR FIELDTBLS
mkfldhdr -d${FLDTBLDIR}

mkfldhdr -ds{FLDTBLDIR}

Programming an Oracle Tuxedo ATMI Application Using FML

9-1

../rfcm/rfcmd.html
../rfcm/rfcmd.html
../rfcm/rfcmd.html
../rfcm/rfcmd.html

Overriding Environment Variables to Run mkfldhdr

Y ou may override the environment variables (or avoid setting them) when using mk f1andr by
specifying, on the command line, the names of the field tables to be converted.

This method does not apply to run-time mapping functions, however. When run-time mapping
functions are being used, FLDTBLDIR iS assumed to be the current directory and FIELDTBLS iS
assumed to be the list of parameters that the user specified on the command line. For example,
the command:

mkfldhdr myfields

convertsthefield table file called myfields to afield header file called myfields.h, and puts
the new file in the current directory.

For more information, refer to mkf1dhdr, mkfldhdr32 (1) in Oracle Tuxedo Command
Reference.

Mapping Fields to C Structures and COBOL Records

This topic includes the following sections:

e What Isthe VIEWS Facility?

Creating Viewfiles

Creating View Descriptions

Compiling Viewfiles

e Using Header Files Compiled with viewc

Using COBOL COPY Files Created by the View Compiler

Displaying Viewfile Information After Compilation

What Is the VIEWS Facility?

5-8

FML VIEWS is amechanism that enables the exchange of data between fielded buffersand C
structures or COBOL records. Thisfacility is provided because it is usually more efficient to
perform lengthy manipulationson C structureswith C functionsthan on fiel ded bufferswith FML
functions. VIEWS also providesaway for aCOBOL program to send and receive messages with
a C program that handles FML fielded records.

Programming an Oracle Tuxedo ATMI Application Using FML

../rfcm/rfcmd.html
../rfcm/rfcmd.html

Creating Viewfiles

This section explains how to use VIEWS to provide fielded buffer/structure mappings.

Structure of VIEWS

The following diagram shows the various components of VIEWS and how they relate to one
another.

Figure 5-1 Components of the VIEWS Facility

viewfile.v
contained in
input to
view
description(s) viewc
input to
produces produces
viewdis viewfile.V viewfile.h
structured COBO_'—
record COPY file
description
Creating Viewfiles

Source viewfiles are standard text files (created through any standard text editor, such asvi) that
contain one or more source view descriptions (the actua field-to-structure mappings).

The view compiler produces (among other things) object viewfiles containing the compiled
object view descriptions. These object viewfiles can be used, in turn, asinput to the view
disassembler (viewdis Of viewdis32), which translates the object view descriptions back into
their source format (for verification or editing). For more information, refer to

viewdis, viewdis32 (1) in Oracle Tuxedo Command Reference.

Y ou can create and edit source view descriptions, and edit the output of viewdis. Y ou cannot
read compiled view descriptions (which are in binary format) directly.

Besides view descriptions, viewfiles may contain comment lines, beginning with # or s. Blank
lines and lines beginning with # are ignored by the view compiler, while lines beginning with $
are passed by the view compiler to any header files generated. This convention lets you pass C
comments, what strings, and so on, to C header files produced by the view compiler.

Programming an Oracle Tuxedo ATMI Application Using FML 5-9

../rfcm/rfcmd.html
../rfcm/rfcmd.html

Note: This convention is not observed for COBOL; lines beginning with ¢ are not passed

through to the COBOL copy files.

Creating View Descriptions

Each source view description in a source viewfile consists of three parts:

e A line beginning with the keyword view (never with a32 suffix), followed by the name of
the view description. This name may be composed of alphanumeric characters, including
an underscore. Although viewc accepts names of up to 33 characters, the practical limitin
most cases is 16 characters, since thisis the maximum length for a subtype accepted by

tpalloc(3c).
e A list of member descriptions.

e A line beginning with the keyword enp.

Thefirst line of each view description must begin with the keyword vzew, followed by the name
of theview description. A member description (or mapping entry) isalinewith information about
amember in the C structure or COBOL record. A line with the keyword exp must bethelast line

in aview description.

The following listing shows the general structure of a source view description.

Listing 5-2 Source View Description

VIEW vname

type cname fbname count flag
$ - _____ .

END

size null

In the previous listing:

5-10 Programming an Oracle Tuxedo ATMI Application Using FML

../rf3c/rf3c.html

Creating View Descriptions

e vname iSthe name of the view description, and should be avalid C identifier name, since it
is also used as the name of a C structure. Underscores are mapped automatically to dashes
in the COBOL COPY file.

e type isthetype of the member, and is specified as one of the following: int, short,
long, char, float, double, string, carray, Of dec_t. If the value of typeis“-", the
default—the value of fbname—is used.

e cname istheidentifier for the structure member, and should be avalid C identifier name,
sinceit isthe name of a C structure member. Internally, the cname is truncated to 30
characters, so cnames must be unique within the first 30 characters. Underscores are
mapped automatically to dashesin the COBOL COPY file.

e fbname iSthe name of the field in the fielded buffer. This name must appear in afield table
file

e count isthe number of elementsto be allocated (that is, the maximum number of
occurrences to be stored for this member). The value of count must be less than or equal
to 65,535 for FML, and less than or equal to 2,147,483,647 for FML32.

e flagiSacomma-separated list of optionsor “-" (which means that no options are set). For
details, see “ Specifying flag Optionsin a View Description” on page 5-11.

e sizeisthesize of the member if thetypeisstring, carray, Or dec_t. For other types,
“-" should be specified; the view compiler computes the size.

— For string Or carray, the value of size must be lessthan or equal to 65,535 for FML
and less than or equal to 2,147,483,647 for FML32.

— For the dec_t type, the value of size must be two numbers separated by a comma.
The first number represents the number of bytesin the decimal value; it must be greater
than 0 and less than 10. The second number represents the number of decimal placesto
the right of the decimal point; it must be greater than 0 and less than twice the number
of bytes minus one.

e null isthe user-specified NULL value or “-” to indicate the default NULL value for that
field. For details, see“Using NULL Valuesin VIEWS’ on page 5-14.

Specifying flag Options in a View Description

The following options can be specified as the £1ag element of a member description in aview
description.

Programming an Oracle Tuxedo ATMI Application Using FML 5-11

This option requests the generation of a structure member called the associated count
member (ACM), in addition to the structure member described in the member description.

When datais being transferred from afielded buffer to a structure, each ACM in the
structure is set to the number of occurrences transferred to the associated structure member.

— A vaueof 0inan ACM indicates that no fields were transferred to the associated
structure member

— A positive value indicates the number of fields actually transferred to the structure
member array.

— A negative value indicates that there were more fields in the buffer than could be
transferred to the structure member array. (The absolute value of the ACM equals the
number of fields not transferred to the structure).

During atransfer of datafrom a structure member array to afielded buffer, the ACM is
used to indicate the number of array elements that should be transferred. For example, if
the ACM of amember isset to N, thefirst N non-NULL fields are transferred to the
fielded buffer. If N is greater than the dimension of the array, it defaults to the dimension
of the array. In either event, after the transfer takes place, the ACM is set to the actual
number of array members transferred to the fielded buffer.

Thetype of an ACM in the C header file is declared to be short for FML and 1ong for
FML32, and its name is generated as c_cname, Where cname isthe cname entry for which
the ACM is declared. For example, an ACM for amember named parts isdeclared as
follows:

short C_parts;

For aCOBOL COPY file, the name is generated as c- cname and the type is declared as
follows:

— For FML: PIC S9(4) USAGE COMP-5

— For FML32: pIC S9(9) USAGE COMP-5

Note: Itispossible for the generated ACM name to conflict with structure members with
names that begin with ac_ prefix. Such conflicts are reported by the view compiler,
and are considered fatal errors by the compiler. For example, the name c_parts for
a structure member conflicts with the name of an ACM generated for the member

parts.

5-12 Programming an Oracle Tuxedo ATMI Application Using FML

Creating View Descriptions

Specifies one-way mapping from structure or record to fielded buffer. The mapping of a
member with this option is effective only when transferring data from structures to fielded
buffers. This option isignored if the -n command-line option is specified.

Thisoption is used only for member descriptions of type carray Or string to indicate the
number of bytes transferred for these possibly variable length fields. If acarray or
string field isalways used as a fixed length data item, then this option provides no
benefit.

The 1. option generates an associated length member (ALM) for a structure member of type
carray Of string. When transferring data from afielded buffer to a structure, the ALM is
set to the length of the corresponding transferred fields. If the length of afield in the
fielded buffer exceeds the space allocated in the mapped structure member, only the
allocated number of bytesistransferred. The corresponding ALM is set to the size of the
fielded buffer item. Therefore, if the ALM is greater than the dimension of the structure
member array, the fielded buffer information is truncated on transfer.

When datais being transferred from a structure member to afield in afielded buffer, the
ALM isused to indicate the number of bytes to transfer to the fielded buffer, if itisa
carray typefield. For strings, the ALM isignored on transfer, but is set afterwards to
the number of bytestransferred. Note that because carray field may be of zero length, an
ALM of Oindicates that a zero-length field should be transferred to the fielded buffer,
unless the value in the associated structure member isthe NULL value.

An ALM isdefined in the C header file as an unsigned short for FML and an unsigned
long for FML 32, and has a generated name of 1._cname, Where cname is the name of the
structure for which the ALM is declared.

If the number of occurrences of the member for which the ALM isdeclared is 1 (or
defaultsto 1), then the ALM isdeclared as:

unsigned short L_cname;
whereas if the number of occurrencesis greater than 1, say N, the ALM isdeclared as:
unsigned short L_cname[N];

and isreferred to asan ALM Array. In this case, each element in the ALM array refersto a
corresponding occurrence of the structure member (or field). For the COBOL COPY file,
thetypeisdeclaredtoberic 9(4) usace comp-5 for FML and pIC 9(9) USAGE
comp-5 for FML32, and its name is generated as L.- cname. The COBOL occurs clauseis
used to define multiple occurrences if the member occurs multiple times.

Programming an Oracle Tuxedo ATMI Application Using FML 5-13

5-14

Note: It ispossiblefor the generated ALM name to conflict with structure members with
names that begin with an 1._ prefix. Such conflicts are reported by the view compiler,
and are considered fatal errors by the compiler. For example, the name1._parts for
astructure member conflicts with the name of an ALM generated for the member

parts.

Specifies zero-way mapping; no fielded buffer is mapped to the structure. This option can
be used to allocate fillersin C structures or COBOL records. It isignored if the -n
command-line option is specified.

This option can be used to affect what VIEWS interpretsasaNULL vauefor string and
carray type structure members. If this option is not used, a structure member isNULL if
itsvalue is equal to the user-specified NULL value (without considering any trailing
NULL characters).

If this option is set, however, amember is NULL if itsvalueis equa to the user-specified
NULL value with the last character propagated to full length (without considering any
trailing NULL character).

A member whose valueis NULL is not transferred to the destination buffer when datais
transferred from the C structure or COBOL record to the fielded buffer. For example, a
structure member TEST is of type carray [25] and a user-specified NULL value “abcde”
is established for it. If the p option is not set, TEsT isconsidered NULL if thefirst five
charactersare a, b, ¢, 4, and e, respectively. If the p option is set, TEsT isSNULL if thefirst
four charactersare a, b, ¢, and g, respectively, and the rest of the carray containsthe
character “e” (that is, 21 9).

Thisoption isignored if the -n command-line option is specified.

Specifies one-way mapping from fielded buffer to structure or record. The mapping of a
member with this option is effective only when transferring data from fielded buffersto
structures. This option isignored if the -n command line option is specified.

Using NULL Values in VIEWS

NULL values are used in VIEWS to indicate empty C structure or COBOL record members.
Default NULL values are provided; you may aso define your own.

The default NULL value for al numeric typesiso (0.0 for dec_t); for char types, itis“\0";

and for string and carray types, itis* “.

Programming an Oracle Tuxedo ATMI Application Using FML

Compiling Viewfiles

Escape convention constants can also be used to specify aNULL value. The view compiler
recognizes the following escape constants: \ddd (where d isan octal digit), \0, \n, \t, \v, \b,
\r, V£, \\, \/, and \".

String, carray, and char NULL values may beenclosedin double or single quotes. Unescaped
quotes within a user-defined NULL value are not accepted by the view compiler.

Alternatively, an element is NULL if its value isthe same asthe NULL value for that element,
except in the following cases:

e If the p option is set for the structure member, and the structure member isof string or
carray type; see the preceding section for details on the » option flag.

e If amember isof type string, its value must be the same string as the NULL value.

o If amember is of type carray and the NULL valueis of length N, then thefirst N
charactersin the carray must be the same asthe NULL value.

Y ou can also specify the keyword “nonEe” inthe NULL field of aview member description,
which means thereisno NULL vaue for the member.

The maximum size of default valuesfor string and character array (carray) membersis 2660
characters.

Note: Notethat for string members, which usually end witha®\0”,a “\0” isnot required as
the last character of a user-defined NULL value.

Compiling Viewfiles

viewc isaview compiler program for FML and viewc32 isused for FML32. It takes a source
viewfile and produces an object viewfile, which isinterpreted at run time to effect the actual
mapping of data. At runtime, aC compiler must be availablefor viewc. The command linelooks
like the following:

viewc [-n] [-d viewdir] [-C] viewfile [viewfile . . . 1]

where viewfile iSthe name of asource viewfile containing source view descriptions. Y ou may
specify one or more viewfiles onthe command line.

If the -c option is specified, then one COBOL COPY fileis created for each VIEW defined in
the viewfile. These copy files are created in the current directory.

The -n option can be used when compiling a view description file for a C structure or COBOL
record that does not map to an rur buffer.

Programming an Oracle Tuxedo ATMI Application Using FML 5-15

By default, all viewsin viewfile are compiled and two or more files are created: an object
viewfile (suffixed with “.v"), and a header file (suffixed with “.n") for each viewfile. For an
illustration of the VIEWS components, see the diagram titled “ Components of the VIEWS
Facility” on page 5-9.

The name of the object viewfileisviewfilewv. It is created in the current directory. The -a option
can be used to specify an aternate directory. Header files are created in the current directory.

Note: For those operating systems that are not case-sensitive, such as Windows, the object
viewfileisgiven a . vv suffix.

For more information, refer to viewc, viewc32 (1) in Oracle Tuxedo Command Reference.

Using Header Files Compiled with viewc

Y ou can use header files created by the view compiler (viewc) in any C application programsto
declare a C structure described by views. For example, the following view description:

VIEW test

#TYPE CNAME FBNAME COUNT FLAG SIZE NULL
int empid EMPID 1 - - -1
float salary EMPPAY 1 - - 0
long phone EMPPHONE 4 - - 0
string name EMPNAME 1 - 32 "NO NAME"
END

produces a C header file that looks like this:

struct test {

long empid; /* null=-1 */

float salary; /* null=0.000000 */

long phone[4]; /* null=0 */

char name [32] ; /* null="NO NAME" */

i

For more information, refer to viewc, viewc32 (1) in Oracle Tuxedo Command Reference.

Using COBOL COPY Files Created by the View Compiler

COBOL CORPY filescreated by the view compiler with the -c option can be used in any COBOL
application programsto declare COBOL records described by views. For example, the COBOL
COPY filefor the previous view description looks like the following in the file TEST . cb1:

5-16 Programming an Oracle Tuxedo ATMI Application Using FML

../rfcm/rfcmd.html
../rfcm/rfcmd.html
../rfcm/rfcmd.html
../rfcm/rfcmd.html

Displaying Viewfile Information After Compilation

* VIEWFILE: "test.v"

* VIEWNAME: "test"

05 EMPID PIC S9(9) USAGE IS COMP-5.
05 SALARY USAGE IS COMP-1.

05 PHONE OCCURS 4 TIMES PIC S9(9) USAGE IS COMP-5.
05 NAME PIC X(32).

Note that the COPY filenameisautomatically converted to uppercase by the view compiler. The
COPY fileisincluded in aCOBOL program as follows:

01 MYREC COPY TEST.

For amore complete description of the output in the resulting COPY files, see Programming an
Oracle Tuxedo ATMI Application Using COBOL.

Displaying Viewfile Information After Compilation

Theview disassembler, viewdis, disassembles an object viewfile produced by the view compiler
and displays view information in source viewfile format. In addition, it displays the offsets of
structure members in the associated structure.

Theability to view theinformation in thistype of format isuseful for verifying that an object view
description is correct.

To run the view disassembler, enter the following command:
viewdis objviewfile .

By default, objviewfile inthe current directory isdisassembled. If thisfileis not found in the
current directory, an error message is displayed. Y ou can specify one or more view object files
on the command line.

The output of viewdis lookssimilar to the original source view description. It can be edited and
re-input to viewc. The order of thelinesin the output of viewdis may bedifferent from the order
of thelinesin the original source view description, but thisdifferenceisirrelevant in determining
whether the object fileis correct.

For more information, refer to viewdis, viewdis32 (1) in Oracle Tuxedo Command
Reference.

Programming an Oracle Tuxedo ATMI Application Using FML 5-17

../rfcm/rfcmd.html

5-18 Programming an Oracle Tuxedo ATMI Application Using FML

CHAPTERa

Field Manipulation Functions

Thistopic includes the following sections:
e About This Section
e FML and VIEWS: 16-bit and 32-bit Interfaces
o Definitions of the FML Function Parameters
e Field Identifier Mapping Functions
o Buffer Allocation and Initialization
e Functions for Moving Fielded Buffers
o Field Access and Modification Functions
o Buffer Update Functions
e VIEWS Functions
¢ RECORD Functions
e Conversion Functions
e Converting Strings
e Converting FLD_MBSTRING Fields
e Indexing Functions

e |nput/Output Functions

Programming an Oracle Tuxedo ATMI Application Using FML 6-1

e Boolean Expressions of Fielded Buffers
e Boolean Functions

e VIEW Conversion to and from Target Format

About This Section

This section describes all FML and VIEWS functions except the run-time mapping functions
described in “Defining and Using Fields’ on page 5-1.

FML functions are not directly available for COBOL programs. A procedure called FINTIT iS
available to initialize arecord for receiving FML data, and the FvsTor and FvrTOS procedures
are available to convert a COBOL record into an FML buffer, and vice-versa. For detailed
descriptions of these procedures, see Programming an Oracle Tuxedo ATMI Application Using
COBOL. The COBOL interface is not described further here.

FML and VIEWS: 16-bit and 32-hit Interfaces

6-2

There are two variants of FML. The origina FML interface is based on 16-bit values for the
length of fields and containsinformation identifying fields (hence FML16). FML16 islimited to
8191 unique fields, individual field lengths of up to 64K bytes, and atotal fielded buffer size of
64K. The definitions, types, and function prototypes for thisinterface arein £fm1 . h which must
be included in an application program using the FML 16 interface; and functionslivein -1 fm1.

A second interface, FML 32, uses 32-hit values for the field lengths and identifiers. It allows for
about 30 million fields, and field and buffer lengths of about 2 billion bytes. The definitions,
types, and function prototypes for FML32 arein £fm132.h; functionsresidein -1fm132. All
definitions, types, and function namesfor FML 32 have a*“ 32" suffix (for example, MAXFBLEN32,
FBFR32, FLDID32, FLDLEN32, F_OVHD32, Fchg32, and error code Ferror32). Also the
environment variables are suffixed with “ 32" (for example, FLDTBLDIR32, FIELDTBLS32,
VIEWFILES32, and viEwpIr32). For FML32, afielded buffer pointer is of type “FBFR32 *”, @
field length has the type r1.DLEN3 2, and the number of occurrences of afield has the type
FLDOcc32. The default required alignment for FML 32 buffersis 4-byte alignment.

FML 16 applicationsthat are written correctly can easily be changed to use the FML 32 interface.
All variablesused in the callsto the FML functions must use the proper typedefs (FLDID, FLDLEN,
and FLoocc). Any call to tpalloc (3c) for an FML typed buffer should use the FMLTYPE
definition instead of “FML". The application source code can be changed to use the 32-bit
functions simply by changing the include of £m1.n toinclusion of fm132.h followed by

Programming an Oracle Tuxedo ATMI Application Using FML

../rf3c/rf3c.html

Definitions of the FML Function Parameters

fml11632.h. The fm11632.h contains macros that convert all of the 16-bit type definitions to
32-bit type definitions, and 16-bit functions and macros to 32-bit functions and macros.

Functions are also provided to convert an FML 32 fielded buffer into an FML 16 fielded buffer,
and vice-versa

#include “fml.h”

#include “fml32.h”

int

F32tol6 (FBFR *dest, FBFR32 *src)

int

Fl6to32 (FBFR32 *dest, FBFR *src)

F32tolé converts a32-bit FML buffer to a 16-bit FML buffer. It doesthis by converting the
buffer on afield-by-field basis and then creating the index for the fielded buffer. A field is
converted by generating aFLDID from aFLDID32, and copying thefield value (and field length
for string and carray fields).

dest and src are pointersto the destination and source fielded buffers, respectively. The source
buffer is not changed.

These functions can fail for lack of space; they can be re-issued after enough additional space to
compl ete the operation has been allocated. r16to32 converts a 16-bit FML buffer to a 32-bit
FML buffer. It livesin the £m132 library or shared object and setSFerror32 On error. F32tol6
livesinthe £m1 library or shared object and sets Ferror on error. Note that both £m1.h and
fm132.h must be included to use these functions; fm11632.h may not be included in the same
file

Thefield types for embedded buffers (FLo_pTR, FLD_FML32, and FLD_VIEW32) are supported
only for FML32. Buffers containing FL.D_PTR, FLD_FML32, FLD_MBSTRING, Of FLD_VIEW32
fields cause F32to16 to fail with an FBADFLD error. Thereis no impact when r16to32 iscalled
for these functions.

Note: For the remainder of this section, we describe only the 16-bit functions, without
specifying the equivalent FML32 and VIEW32 functions.

Definitions of the FML Function Parameters

To simplify the specification of parameters for FML functions, a convention has been adopted
for the sequence of those parameters. FML parameters appear in the following sequence.

1. For functions that require a pointer to afielded buffer (rBFR), this parameter isfirst. If a
function takes two-fielded buffer pointers (such as the transfer functions), the destination

Programming an Oracle Tuxedo ATMI Application Using FML 6-3

buffer comesfirst, followed by the source buffer. A fielded buffer pointer must point to an
areathat is aligned on a short boundary (or an error isreturned with Ferror set to
FALIGNERR) and the areamust be afielded buffer (or an error isreturned with Ferror set to
FNOTFLD).

. For I/O functions, a pointer to a stream follows the fielded buffer pointer.

. For functionsthat need one, afield identifier (type FLDID) appears next (inthe case of Fnext,

itisapointer to afield identifier).

. For functions that need a field occurrence (type rL.Docc), this parameter comes next. (For

Fnext, it iSapointer to an occurrence number.)

. Infunctionsinwhich afield valueis passed to or from the function, a pointer to the beginning

of thefield valueis given next. (It is defined as a character pointer but may be cast from any
other pointer type.)

. When afield valueis passed to afunction that contains acharacter array (carray, mbstring)

field, you must specify its length as the next parameter (type FLDLEN). For functions that
retrieve afield value, a pointer to the length of the retrieval buffer must be passed to the
function and this length parameter is set to the length of the value retrieved.

. A few functionsrequire specia parameters and differ from the preceding conventions. These

specia parameters appear after the above parameters. They are discussed in the descriptions
of individual functions.

. Thefollowing NULL values are defined for the various field types:

— 0 for short and 1long

0.0 for float and double

\0 for string (1 bytein length)

A zero-length string for carray Of mbstring

Field Identifier Mapping Functions

6-4

Severa functions allow a programmer to query field tables or field identifiers for information
about fields during program execution.

Fldid

Fldid returnsthe field identifier for agiven valid field name and |oads the field name/field ID
mapping tables from the field table files, if they do not already exist.

Programming an Oracle Tuxedo ATMI Application Using FML

Field Identifier Mapping Functions

FLDID

Fldid (char *name)
Here name isavalid field name.

The space used by the mapping tablesin memory can be freed using the
Fnmid_unload, Fnmid_unload32 (3fml) function. Notethat thesetablesare separatefromthe
tables loaded and used by the Fname function.

For moreinformation, refer tor1aid, rFi1dia32 (3fml) inOracle Tuxedo ATMI FML Function
Reference.

Fname

Fname returnsthe field name for agiven valid field identifier and loads the field ID/name
mapping tables from the field tablefiles, if they do not already exist.

char *
Fname (FLDID fieldid)

Here rieldidisavalid field identifier.

The space used by the mapping tables in memory can be freed using the

Fnmid_unload, Fnmid_unload32 (3fml) function. Notethat thesetablesare separatefromthe
tables loaded and used by the F1did function. (Refer to the Oracle Tuxedo ATMI FML Function
Reference for more information.)

For moreinformation, refer to Fname, Fname32 (3fml) in Oracle Tuxedo ATMI FML Function
Reference.

Fldno

Fldno extracts the field number from a given field identifier.

FLDOCC
Fldno (FLDID fieldid)

Here rieldidisavalid field identifier.

For moreinformation, refer to F1dno, Fldno32 (3fml) inOracle Tuxedo ATMI FML Function
Reference.

Fidtype

Fldtype extractsthe field type (an integer, as defined in £m1 . 1) from agiven field identifier.

Programming an Oracle Tuxedo ATMI Application Using FML 6-5

../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html

int
Fldtype (FLDID fieldid)

Here rieldidisavalid field identifier.

The following table shows the possible values returned by F1dtype and their meanings.

Tahle 6-1 Field Types Returned by Fldtype

Return Value Meaning Field Type Name in fml.h/ fmi32.h
0 Short integer FLD_SHORT

1 Long integer FLD_LONG

2 Character FLD_CHAR

3 Single-precision float FLD_FLOAT

4 Double-precision float FLD_DOUBLE

5 Null-terminated string FLD_STRING

6 Character array FLD_CARRAY

9 Pointer FLD_PTR

10 Embedded FML 32 buffer FLD_FML32

11 Embedded VIEW32 buffer ~ FLD_VIEW32

12 Multibyte character array FLD_MBSTRING

For more information, refer to F1dtype, Fldtype32 (3fml) in Oracle Tuxedo ATMI FML

Function Reference.

Ftype

Ftype returns a pointer to a string containing the name of the type of afield given afield

identifier.
char *
Ftype (FLDID fieldid)

Programming an Oracle Tuxedo ATMI Application Using FML

../rf3fml/rf3fml.html
../rf3fml/rf3fml.html

Buffer Allocation and Initialization

Here rieldidisavaidfield identifier. For example, the following code returns a pointer to one
of the following strings: short, long, char, float, double, string, carray, mbstring,
FLD_PTR, FLD_FML32, Of FLD_VIEW32.

char *typename

typename = Ftype(fieldid);

For moreinformation, refer to Ftype, Ftype32 (3fml) inOracle Tuxedo ATMI FML Function
Reference.

Fmkfldid

As part of an application generator, or to reconstruct afield identifier, it might be useful to make
afield identifier from atype specification and an availablefield number. Fmkf1did providesthis
functionality.

FLDID
Fmkfldid (int type, FLDID num)

Here:
e typeisavalidtype. (Specificaly, it isan integer; see“Fldtype”’ on page 6-5 for details.)

e numisafield number. (It should be an unused field number to avoid confusion with
existing fields.)

For more information, refer to Fmkf1did, Fmkfldid32 (3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Buffer Allocation and Initialization

The functions described in this section are provided for writing stand-alone FML programs. If
you are using the Oracle Tuxedo ATMI functions, keep in mind that for tasks such as allocating
and freeing message buffers, you must call ATMI functions such as tpalloc (3c),

tprealloc (3c), and tpfree (3c¢), instead of FML functions such as

Falloc, Falloc32(3fml), Frealloc, Frealloc32(3fm1),anderee, Ffree32(3fml).

Most FML functions require a pointer to afielded buffer as an argument. The typedef FBFR iS
available for declaring such pointers, as shown in the following example:

FBFR *fbfr;

Programming an Oracle Tuxedo ATMI Application Using FML 6-7

../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

6-8

In this section, the variable £b£r refersto a pointer to afielded buffer. Never attempt to declare
fielded buffers themselves; declare only pointersto fielded buffers.

When a server receives arequest that contains an FML buffer, it allocates space for that FML
buffer and for any embedded views or buffersreferenced by rL.o_pTr fields. A pointer to the new
FML buffer ispassed to the user-written code. Oncethe server processing iscomplete, all buffers
allocated when the message was received must be destroyed. The Oracle Tuxedo system checks
the FML buffer and all subsidiary buffers, and deletes any buffers to which it finds references.
As aprogrammer writing server code, you should be aware of the following situations:

e If you add, change, or update aview or pointer field so that it references a buffer alocated
by the server, the newly alocated buffer is deleted during the cleanup triggered when the
tpreturn(3c) Of tpforward (3c) functioniscaled.

e If you change, update, or delete afield so that a buffer is no longer referenced by the FML
buffer, the user-written code must free that buffer explicitly, using the tpfree (3c)
function. If the buffer is not explicitly freed, the server process |leaks memory.

e |n some cases, the user-written code can allocate and return another buffer, rather than
simply call tpreturn (3c). If thisisdone, the FML buffer passed to tpreturn () isfreed,
but any buffers referenced by FLD_PTR Or FLD_vIEW32 fields are not freed.

The functions used to reserve space for fielded buffers are explained in the following text, but
first we describe a function that can be used to determine whether a given buffer is, in fact, a
fielded buffer.

Fielded

Fielded (Or Fielded32) isused to test whether the specified buffer isfielded.
int
Fielded (FBFR *fbfr)

Fielded32 isused with 32-bit FML.

Fielded returnstrue (1) if the buffer isfielded. It returnsfalse (0) if the buffer is not fielded but
does not set Ferror.

For more information, refer to Fielded, Fielded32 (3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Programming an Oracle Tuxedo ATMI Application Using FML

../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

Buffer Allocation and Initialization

Fneeded

The amount of memory to allocate for afielded buffer depends on the maximum number of fields
the buffer will contain and the total amount of space needed for al the field values. The function
Fneeded can be used to determine the amount of space (in bytes) needed for afielded buffer; it
takes the number of fields and the space needed for all field values (in bytes) as arguments.

long
Fneeded (FLDOCC F, FLDLEN V)

Here:
e risthe number of fields.

e visthe space, in bytes, for field values.

The space needed for field valuesis computed by estimating the amount of spacethat isrequired
by each field value if stored in standard structures (for example, a long isstored asa long and
needs four bytes). For variablelength fiel ds, estimate the average amount of space needed for the
field. The space calculated by Fneeded includes a fixed overhead for each field; it adds that to
the space needed for the field values.

Once you obtain the estimate of space from Fneeded, you can allocate the desired number of
bytes using ma110c(3) and set up a pointer to the allocated memory space. For example, the
following code allocates space for afielded buffer large enough to contain 25 fields and 300 bytes
of values.

#define NF 25
#define NV 300

extern char *malloc;

if ((fbfr = (FBFR *)malloc (Fneeded (NF, NV))) == NULL)

F_error ("pgm_name") ; /* no space to allocate buffer */

However, thisallocated memory spaceisnot yet afielded buffer. Finit must beusedtoinitialize
it.

For more information, refer to Fneeded, Fneeded32 (3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Programming an Oracle Tuxedo ATMI Application Using FML 6-9

../rf3fml/rf3fml.html
../rf3fml/rf3fml.html

6-10

Fvneeded

The Fvneeded function determines the amount of space (in bytes) needed for aview buffer. The
function takes a pointer to the name of the view as an argument.

long
Fvneeded (char *subtype)

The Fvneeded function returns the size of the view in number of bytes.

For more information, refer to Fvneeded, Fvneeded32 (3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Finit

The Finit function initializes an allocated memory space as afielded buffer.
int

Finit (FBFR *fbfr, FLDLEN buflen)

Here:
e fbfrisapointer to an uninitialized fielded buffer.

e puflen isthelength of the buffer, in bytes.

A call to Finit toinitialize the memory space allocated in the previous example looks like the
following code:

Finit (fbfr, Fneeded (NF, NV));

Now fbfr pointsto aninitialized, empty fielded buffer. Up to Fneeded (NF, Nv) bytesminusa
small amount (r_ovap as defined in £m1 . 1) are available in the buffer to hold fields.

Note: Thenumbersusedinthemal1oc(3) call (asdescribed inthe previoussection) and Finit
call must be the same.

For moreinformation, refer toFinit, Finit32(3fml) inOracle Tuxedo ATMI FML Function
Reference.

Falloc

Callsto Fneeded, malloc(3) and Finit may bereplaced by asingle call to Falloc, which
alocates the desired amount of space and initializes the buffer.

Programming an Oracle Tuxedo ATMI Application Using FML

../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html

Buffer Allocation and Initialization

FBFR *
Falloc (FLDOCC F, FLDLEN V)

Here:

e Fisthe number of fields.

e visthe spacefor field values, in bytes.

A call toralloc that providesthe samefunctionality created by thecallsto Fneeded, malloc (),
and rinit described in the previous three sections, must be written as follows:

extern FBFR *Falloc;

if ((fbfr = Falloc(NF, NV)) == NULL)

F_error (“pgm_name”) ; /* couldn't allocate buffer */

Storage allocated withFalloc (OF Fneeded, malloc(3), and Finit) should befreed with Ffree.
(SeeFfree, Ffree32(3fml) inthe Oracle Tuxedo ATMI FML Function Reference.)

For more information, refer to Falloc, Falloc32 (3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Ffree

Ffree isused to free memory space alocated as afielded buffer. Ffree32 does not free the
memory area referenced by a pointer in arLp_ptR field.

int
Ffree (FBFR *fbfr)
Here fofr isapointer to afielded buffer. Consider the following example:

#include <fml.h>

if (Ffree(fbfr) < 0)

F_error ("pgm_name") ; /* not fielded buffer */

Ffreeispreferableto free(3), becauserfree invalidatesafielded buffer, whereas free(3) does
not. Itisnecessary to invalidate fielded buffers becausemal1oc(3) re-uses memory that has been
freed without clearing it. Thus, if free(3) isused, malloc can return apiece of memory that
lookslike avalid fielded buffer, but is not.

Programming an Oracle Tuxedo ATMI Application Using FML 6-11

../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html

6-12

Space for afielded buffer may also be reserved directly. The buffer must begin on ashort
boundary. Y ou must allocate at least 7_ovup bytes (defined in £ml . h) for the buffer; if you do
not, Finit returnsan error.

The following code is anal ogous to the preceding example but Fneeded cannot be used to size
the static buffer because it is not a macro:

/* the first line aligns the buffer */
static short buffer[500/sizeof (short)];
FBFR *fbfr=(FBFR *)buffer;

Finit (fbfr, 500);
Be careful not to enter code such as the following:

FBFR badfbfr;

Finit (&badfbfr, Fneeded(NF, NV)) ;

This code iswrong: the structure for FBFR is not defined in the user header files. Asaresult, a
compilation error will be produced.

For moreinformation, refer to Ffree, Ffree32 (3fml) inOracle Tuxedo ATMI FML Function
Reference.

Fsizeof
Fsizeof returnsthe size of afielded buffer in bytes.

long
Fsizeof (FBFR *fbfr)

Here fbfr isapointer to afielded buffer. In the following code, for example, Fsizeof returns
the same number that Fneeded returned when the fielded buffer was originally allocated:

long bytes;

bytes = Fsizeof (fbfr);

For more information, refer to Fsizeof, Fsizeof32 (3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Programming an Oracle Tuxedo ATMI Application Using FML

../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html

Buffer Allocation and Initialization

Funused

Funused May be used to determine how much spaceisavailablein afielded buffer for additional
data.

long
Funused (FBFR *fbfr)

Here fofr isapointer to afielded buffer. Consider the following example:

long unused;

unused = Funused (fbfr);

Note that Funused does not indicate the location, in the buffer, of the unused bytes; only the
number of unused bytesis specified.

For more information, refer to Funused, Funused32 (3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Fused

Fused may be used to determine how much spaceis used in afielded buffer for data and
overhead.

long
Fused (FBFR *fbfr)

Here fofr isapointer to afielded buffer. Consider the following example:

long used;

used = Fused(fbfr);

Note that Fused does not indicate the location, in the buffer, of the used bytes; only the number
of used bytesis specified.

For moreinformation, refer to Fused, Fused32 (3fml) in Oracle Tuxedo ATMI FML Function
Reference.

Frealloc

This function enables you to change the size of a buffer for which you have allocated space by
calling Falioc.

Programming an Oracle Tuxedo ATMI Application Using FML 6-13

../rf3fml/rf3fml.html
../rf3fml/rf3fml.html

6-14

If you have allocated spacewith tpalloc (3c), youmust cal tprealloc (3c) toreallocate that
space. Being able to resize the buffer can be useful if, for example, a buffer runs out of space

while anew field value is being added. Simply by calling Frealloc you canincrease the size of
the buffer. In other situations you may want to call Frealloc to decrease the size of the buffer.

FBFR *
Frealloc (FBFR *fbfr, FLDOCC nf, FLDLEN nv)

Here:
e frbfrisapointer to afielded buffer.
e nrf isthe new number of fieldsor 0.

e nvisthe new space for field values, in bytes.
Consider the following example:

FBFR *newfbfr;

if ((newfbfr = Frealloc(fbfr, NF+5, NV+300)) == NULL)

F_error (“pgm_name”) ; /* couldn't re-allocate space */
else
fbfr = newfbfr; /* assign new pointer to old */

In this case, the application needed to remember the number of fields and the number of value
space bytes previously alocated. Note that the argumentsto Frealioc (aswith its counterpart
realloc(3)) are absolute values, not increments. This example does not work if it is necessary
to re-allocate space several times.

The following example shows a second way of incrementing the allocated space:

/* define the increment size when buffer out of space */
#define INCR 400
FBFR *newfbfr;

if ((newfbfr = Frealloc (fbfr, 0, Fsizeof (fbfr)+INCR)) == NULL)

F_error (“pgm_name”) ; /* couldn't re-allocate space */
else
fbfr = newfbfr; /* assign new pointer to old */

Y ou do not need to know the number of fields or the value space size with which the buffer was
last initialized. Thus, the easiest way to increase the size isto use the current size plus the
increment as the value space. The previous example can be executed as many times as needed

Programming an Oracle Tuxedo ATMI Application Using FML

../rf3c/rf3c.html
../rf3c/rf3c.html

Functions for Moving Fielded Buffers

without remembering past executions or values. Y ou do not need to call Finit after calling

Frealloc.

If theamount of additional spacerequested inthecall to Freallociscontiguoustotheold buffer,
newfbfr and £bfr in the previous examples are the same. However, defensive programming
dictates that you should declare newfbfr asasafeguard in case either anew value or NULL is
returned. If Frealloc fails, do not use fbfr again.

Note: The buffer size can be decreased only to the number of bytes currently being used in the
buffer.

For more information, refer to Frealloc, Frealloc32 (3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Functions for Moving Fielded Buffers

The only restriction on the location of fielded buffersis that they must be aligned on a short
boundary. Otherwise, fielded buffers are position-independent and may be moved around freely
in memory.

Fmove

If src pointsto afielded buffer and dest pointsto an area of storage big enough to hold it, then
the following code might be used to move the fielded buffer:

FBFR *src;

char *dest;

memcpy (dest, src, Fsizeof (src));

The function memcpy, one of the C run-time memory management functions, moves the number
of bytesindicated by its third argument from the area pointed to by its second argument to the
area pointed to by itsfirst argument.

While memcpy may be used to copy afielded buffer, the destination copy of the buffer looks just
like the source copy. In particular, for example, the destination copy has the same number of
unused bytes as the source buffer.

Fmove acts like memcpy, but does not need an explicit length (which is computed).
int

Fmove (char *dest, FBFR *src)

Here:

Programming an Oracle Tuxedo ATMI Application Using FML 6-15

../rf3fml/rf3fml.html
../rf3fml/rf3fml.html

6-16

e dest isapointer to the destination buffer.

e srcisapointer to the source fielded buffer.

Inthefollowing code, for example, Fmove checksthat the source buffer isindeed afielded buffer,
but does not modify the source buffer in any way.

FBFR *src;

char *dest;

if (Fmove (dest,src) < 0)

F_error ("pgm_name") ;

The destination buffer need not be afielded buffer (that is, it need not have been allocated using
Falloc), but it must be aligned on a short boundary (4-byte alignment for FML32). Thus,
Fmove provides an aternative to Fcpy when you want to copy afielded buffer to anon-fielded
buffer. Fmove does not, however, check to make sure there is enough room in the destination
buffer to receive the source buffer.

For values of type FL.D_PTR, Fmove32 transfers the buffer pointer. The application programmer
must manage the reall ocation and freeing of buffers when the associated pointer is moved. The
buffer pointed to by arr.p_pTR field must be allocated using the tpalioc (3¢c) call.

For moreinformation, refer to Fmove, Fmove32 (3fml) in Oracle Tuxedo ATMI FML Function
Reference.

Fcpy

Fepy iS used to overwrite one fielded buffer with another.
int
Fcpy (FBFR *dest, FBFR *src)

Here:
e dest isapointer to the destination fielded buffer.

e srcisapointer to the source fielded buffer.

Fcpy preserves the overal buffer length of the overwritten fielded buffer and thereforeis useful
for expanding or reducing the size of afielded buffer. Consider the following example:

FBFR *src, *dest;

Programming an Oracle Tuxedo ATMI Application Using FML

../rf3fml/rf3fml.html
../rf3c/rf3c.html

Field Access and Modification Functions

if (Fcpy(dest, src) < 0)

F_error (“pgm_name”) ;

Unlike Fmove, Where dest could point to an uninitialized area, Fcpy expects dest to point to an
initialized fielded buffer (allocated using Falloc). Fepy also verifiesthat dest isbig enough to
accommodate the data from the source buffer.

Note: You cannot reduce the size of afielded buffer below the amount of space needed for
currently held data.

Aswith Fmove, the source buffer is not modified by Fcpy.

For values of type FL.D_PTR, Fcpy32 copiesthe buffer pointer. The application programmer must
manage the reallocation and freeing of buffers when the associated pointer is copied. The buffer
pointed to by arLp_pTR field must be allocated using the tpaliloc (3c) call.

For more information, refer to Fepy, Fepy32 (3fml) in Oracle Tuxedo ATMI FML Function
Reference.

Field Access and Modification Functions

This section discusses how to update and access fielded buffers using the field types of the fields
without doing any conversions. For alist of thefunctionsthat allow you to convert datafrom one
type to another upon transfer to or from afielded buffer, see “ Conversion Functions’ on

page 6-54.

Fadd

The Fadd function adds a new field value to the fielded buffer.
int
Fadd (FBFR *fbfr, FLDID fieldid, char *value, FLDLEN Ien)
Here:
e fbhfrisapointer to afielded buffer.

e rieldidisafieldidentifier.

e valueisapointer to anew value. Itstypeis shown as char*, but when it is used, itstype
must be the same type as the value to be added (see below).

e lenisthelength of thevaueif itstypeis FL.D_CARRAY OF FL.D_MBSTRING.

Programming an Oracle Tuxedo ATMI Application Using FML 6-17

../rf3fml/rf3fml.html
../rf3c/rf3c.html

6-18

If no occurrence of thefield existsin the buffer, then thefield isadded. If one or more occurrences
of thefield already exist, then the value is added as a new occurrence of thefield, and isassigned
an occurrence number 1 greater than the current highest occurrence. (To add a specific
occurrence, Fchg must be used.)

Fadd, like all other functions that take or return afield value, expects a pointer to afield value,
never the value itself.

If the field type is such that the field length isfixed (short, 1ong, char, float, OF double) OF
can be determined (string), thefield length need not be given (it isignored). If thefield typeis
acharacter array (FLD_CARRAY Of FLD_MBSTRING), the length must be specified; the length is
defined astype rLDLEN. Thefollowing code, for example, getsthefield identifier for the desired
field and adds the field value to the buffer.

FLDID fieldid, F1ldid;
FBFR *fbfr;

fieldid = Fldid("fieldname") ;
if (Fadd (fbfr, fieldid, "new value", (FLDLEN)9) < 0)

F_error ("pgm_name") ;

Itisassumed (by default) that the native type of thefield isacharacter array so that the length of
the value must be passed to the function. If the value being added is not acharacter array, thetype
of value must reflect the type of the value to which it points. The following code, for example,
adds along field value.

long 1lval;

lval = 123456789;
if (Fadd (fbfr, fieldid, &lval, (FLDLEN)O) < 0)

F_error ("pgm_name") ;

For character array fields, null fields may beindicated by alength of 0. For string fields, the null
string may be stored sincethe NUL L terminating byteisactually stored as part of thefield value:
astring consisting of only the NULL terminating byte is considered to have alength of 1. For all
other types (fixed length types), you may choose some special value that isinterpreted by the
application asaNULL, but the size of the valueistaken from itsfield type (for example, alength
of 4 for along), regardless of what valueis actually passed. Passing aNULL value address
resultsin an error (FEINVAL).

Programming an Oracle Tuxedo ATMI Application Using FML

Field Access and Modification Functions

For pointer fields, Fada32 storesthe pointer value. The buffer pointed to by arz.p_ptr field must
beallocated usingthetpalioc (3c) call. For embedded FML 32 buffers, radds 2 storestheentire
FLD_rML32 field value, except for the index.

For embedded VIEW32 buffers, Fadd3 2 storesapointer to astructure of type rFvIEWFLD, wWhich
contains vflags (aflagsfield, currently unused and set to 0), vname (@ character array containing
the view name), and data (apointer to the view data stored as a C structure). The application
provides the vname and data to Fadd32. The FvIEWFLD Structure is asfollows:

typedef struct {

TM32U vflags; /* flags - currently unused */

char vname [FVIEWNAMESIZE+1l]; /* name of view */

char *data; /* pointer to view structure */
} FVIEWFLD;

For more information, refer to Fadd, Fadd32 (3fml) in Oracle Tuxedo ATMI FML Function
Reference.

Fappend

The rappend function appends a new field value to the fielded buffer.

int

Fappend (FBFR *fbfr, FLDID fieldid, char *value, FLDLEN Ien)

Here:
e rbrrisapointer to afielded buffer.
e rieldidisafieldidentifier.

e valueisapointer to anew value. Itstypeisshown aschar *, but when itisused, its
type must be the same type as the value to be appended (see below).

e lenisthelength of thevalueif itstypeisS FLD_CARRAY Of FLD_MBSTRING.

Fappend appends a new occurrence of thefield fie1did with avaluelocated at value to the
fielded buffer and puts the buffer into append mode. Append mode provides optimized buffer
construction for large buffers constructed of many rows of acommon set of fields.

A buffer that isin append mode is restricted as to what operations may be performed on the
buffer. Only callstothefollowing FML routines are allowed in append mode: Fappend, Findex,
Funindex, Ffree, Fused, Funused and Fsizeof. Callsto Findex Or Funindex end append
mode.

Programming an Oracle Tuxedo ATMI Application Using FML 6-19

../rf3fml/rf3fml.html
../rf3c/rf3c.html

6-20

Thefollowing example showsthe construction, using Fappend, of a500-row buffer with 5 fields
per row:

for (i=0; i 500 ;i++) {

if ((Fappend(fbfr, LONGFLD1l, &lvall[i], (FLDLEN)O) < 0) ||

(Fappend (fbfr, LONGFLD2, &lval2[i], (FLDLEN)O) < 0) ||
(Fappend (fbfr, STRFLD1, &strl[i], (FLDLEN)O0) < 0) |
(Fappend (fbfr, STRFLD2, &str2[i], (FLDLEN)O0) < 0) |
))

(Fappend (fbfr, LONGFLD3, &lval3[i], (FLDLEN)O0) < 0

0 |

0 |

) |
F_error ("pgm_name") ;

break;

}
Findex (fbfr, 0);

Fappend, likeall other functionsthat take or return afield value, expectsapointer to afield value,
never the value itself.

If the field typeis such that the field length isfixed (short, long, char, float, OF double) Of
can be determined (string), thefield length need not be given (it isignored). If the field typeis
acharacter array (FLD_CARRAY O FLD_MBSTRING), the length must be specified; the length is
defined as type FLDLEN.

Itisassumed (by default) that the native type of thefield isacharacter array so that the length of
the value must be passed to the function. If the value being appended is not a character array, the
type of value must reflect the type of the value it pointsto.

For character array fields, null fields may be indicated by alength of 0. For string fields, the null
string may be stored sincethe NULL terminating byteisactually stored as part of the field value:
astring consisting of only the NULL terminating byte is considered to have alength of 1. For all
other types (fixed-length types), you may choose some special value that is interpreted by the
application asaNULL, but the size of the value is taken from its field type (for example, the
length of 4for along), regardlessof what valueisactually passed. PassingaNULL valueaddress
resultsin an error (FEINVAL).

For more information, refer to Fappend, Fappend32 (3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Fchg

Fchg changes the value of afield in the buffer.

Programming an Oracle Tuxedo ATMI Application Using FML

../rf3fml/rf3fml.html

Field Access and Modification Functions

int

Fchg (FBFR *fbfr, FLDID fieldid, FLDOCC oc, char *value, FLDLEN len)

Here:

e fbhfrisapointer to afielded buffer.
e rieldidisafieldidentifier.
e oc isthe occurrence number of the field.

e valueisapointer to anew value. Itstypeis shown as char *, but whenitisused, its
type must be the same type as the value to be added (see “Fadd” on page 6-17).

e Ienisthelength of thevaueif itstypeis FLD_CARRAY Of FL.D_MBSTRING.
For example, the following code changes afield of type carray to anew value stored in value:

FBFR *fbfr;
FLDID fieldid;
FLDOCC oc;
FLDLEN len;

char value[50];

strcpy (value, "new value");
flen = strlen(value);
if (Fchg (fbfr, fieldid, oc, value, len) < 0)

F_error ("pgm_name") ;

If ocis-1, thenthefield value is added as anew occurrence to the buffer. If oc isO or greater and
the field isfound, then the field value is modified to the new value specified. If oc isO or greater
and the field is not found, then NULL occurrences are added to the buffer until the value can be
added as the specified occurrence. For example, changing field occurrence 3 for afield that does
not exist on a buffer causes three NULL occurrences to be added (occurrences 0, 1 and 2),
followed by occurrence 3 with the specified field value. Null values consist of the NULL string
“\0" (1 bytein length) for string and character values, o for long and short fields, 0. o for float
and double values, and a zero-length string for a character array.

The new or modified valueis contained in value. If it isacharacter array (FLD_CARRAY Of
FLD_MBSTRING), itslengthisgivenin 1en (1en isignored for other field types). If the value
pointer isNULL and the field is found, then the field is deleted. If the field occurrence to be
deleted is not found, it is considered an error (FNOTPRES).

Programming an Oracle Tuxedo ATMI Application Using FML 6-21

6-22

For pointer fields, Fchg32 storesthe pointer value. The buffer pointed to by arr.p_ptr field must
beallocated usingthetpalioc (3c) call. For embedded FML 32 buffers, Fchg32 storestheentire
FLD_FrML32 field value, except the index.

For embedded VIEW32 buffers, Fchg32 stores apointer to astructure of type FvIEWFLD, which
containsvflags (aflagsfield, currently unused and set to 0), vname (acharacter array containing
the view name), and data (apointer to the view data stored as a C structure). The application
provides the vname and data to Fchg32. The FvIEWFLD Structure is as follows:

typedef struct {

TM32U vflags; /* flags - currently unused */

char vname [FVIEWNAMESIZE+1l]; /* name of view */

char *data; /* pointer to view structure */
} FVIEWFLD;

The buffer must have enough room to contain the modified or added field value, or an error is
returned (FNOSPACE).

For more information, refer to Fchg, Fchg32 (3fml) in Oracle Tuxedo ATMI FML Function
Reference.

Fcmp

Femp compares the field identifiers and field values of two fielded buffers.
int

Fcmp (FBFR *fbfrl, FBFR *fbfr2)

Here fbfri and fbfr2 are pointers to fielded buffers.

The function returnsao if the buffers are identical; it returnsa -1 on any of the following
conditions:

e Thefieldid of a fbfri field islessthan the field ID of the corresponding field of
fbfr2.

e Thevalueof a rbrri1 field isless than the value of the corresponding field of fofr2.

e rbfriisshorter than fofr2.
The following criteria are used to determine whether pointers and embedded buffers are equal:

e For pointer fields, two pointer fields are considered equal if the pointer values (addresses)
are equal.

Programming an Oracle Tuxedo ATMI Application Using FML

../rf3fml/rf3fml.html
../rf3c/rf3c.html

Field Access and Modification Functions

e For embedded FML 32 buffers, two fields are considered equal if al field occurrences and
values are equal.

e For embedded VIEW32 buffers, two fields are considered equal if the view names are the
same, and if al structure member occurrences and values are equal.

Femp returns a1 if the opposite of any of these conditionsistrue. For example, Femp returns 1 if
thefield ID of a rbfrr2 field isless than the field ID of the corresponding field of £bfr1.

For more information, refer to Femp, Femp32 (3fml) in Oracle Tuxedo ATMI FML Function
Reference.

Fdel

The rde1 function deletes the specified field occurrence.
int
Fdel (FBFR *fbfr, FLDID fieldid, FLDOCC oc)

Here:
e frbfrisapointer to afielded buffer.
e rieldidisafieldidentifier.

e oc isthe occurrence number.
For example, thefollowing code del etesthefirst occurrence of the field indicated by the specified
field identifier:

FLDOCC occurrence;

occurrence=0;
if (Fdel (fbfr, fieldid, occurrence) < 0)

F_error ("pgm_name") ;
If the specified field does not exist, the function returns -1 and Ferror iS set t0 FNOTPRES.

For pointer fields, rde132 deletesthe F.o_pTr field occurrence without changing the referenced
buffer or freeing the pointer. The data buffer is treated as an opague pointer.

For more information, refer to Fdel, Fdel32 (3fml) in Oracle Tuxedo ATMI FML Function
Reference.

Programming an Oracle Tuxedo ATMI Application Using FML 6-23

../rf3fml/rf3fml.html
../rf3fml/rf3fml.html

6-24

Fdelall

Fdelall deletesall occurrences of the specified field from the buffer.
int
Fdelall (FBFR *fbfr, FLDID fieldid)

Here:
e rbfrisapointer to afielded buffer.

e rieldidisafieldidentifier.
Consider the following example:

if (Fdelall (fbfr, fieldid) < 0)

F_error ("pgm_name") ; /* field not present */
If thefield is not found, the function returns -1 and Ferror iS Set t0 FNOTPRES.

For pointer fields, Fae1a1132 deletesthe r.o_pTR field occurrence without changing the
referenced buffer or freeing the pointer. The data buffer istreated as an opague pointer.

For more information, refer to Fdelall, Fdelall32 (3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Fdelete

Fdelete deletesall occurrences of all fields listed in the array of field identifiers, fieldid(].
int
Fdelete (FBFR *fbfr, FLDID *fieldid)

Here:
e rbrrisapointer to afielded buffer.

e rieldidisapointer tothelist of field identifiersto be deleted.

The update is done directly to the fielded buffer. The array of field identifiers does not need to be
in any specific order, but the last entry in the array must be field identifier O (BADFLDID).
Consider the following example:

#include "fldtbl.h"
FBFR *dest;
FLDID fieldid[20];

Programming an Oracle Tuxedo ATMI Application Using FML

../rf3fml/rf3fml.html

Field Access and Modification Functions

fieldid[0] = A; /* field id for field A */
fieldid[1l] = D; /* field id for field D */
fieldid[2] = BADFLDID; /* sentinel value */

if (Fdelete(dest, fieldid) < 0)

F_error ("pgm_name") ;

If the destination buffer hasfields A, B, C, and D, this example results in a buffer that contains
only occurrences of fields B and C.

Fdelete providesamoreefficient way of deleting several fieldsfrom abuffer than using several
Fdelall cals.

For pointer fields, rFdelete deletesthe rL.o_pTR field occurrence without changing the
referenced buffer or freeing the pointer. The data buffer is treated as an opague pointer.

For more information, refer to Fdelete, Fdelete32 (3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Ffind

Ffind finds the value of the specified field occurrence in the buffer.

char *
Ffind (FBFR *fbfr, FLDID fieldid, FLDOCC oc, FLDLEN *Ien)

Here:
e rbrrisapointer to afielded buffer.
e rieldidisafieldidentifier.
e oc isthe occurrence number.

e Ienisthelength of the value found.

In the previous declaration the return value to F£ind is shown as a character pointer data type
(char* in C). The actual type of the pointer returned isthe same asthe type of the value to which
it points.

The following code provides an example of how this function is used:

#include "fldtbl.h"
FBFR *fbfr;
FLDLEN len;

char* Ffind, *value;

Programming an Oracle Tuxedo ATMI Application Using FML 6-25

../rf3fml/rf3fml.html

6-26

if ((value=Ffind(fbfr,ZIP,0, &len)) == NULL)

F_error ("pgm_name") ;

If thefield isfound, itslength isreturned in 1en (if 1en iSNULL, thelength is not returned), and
its location is returned as the value of the function. If the field is not found, NULL isreturned,
and Ferror iS Set t0 FNOTPRES.

Ffind isuseful for gaining “read-only” accessto afield. Thevaluereturned by rfinda should not
be used to modify the buffer. Field values should be modified only by the Fadd or Fchg function.
This function does not check for occurrences of the specified field in embedded buffers.

The value returned by rfind isvalid only so long as the buffer remains unmodified. The vaue
is guaranteed to be aligned on a short boundary but may not be aligned on along or double
boundary, even if the field is of that type. (See the conversion functions described later in this
document for aligned values.) On processors that require proper alignment of variables,
referencing the value when not aligned properly causes asystem error, as shown in the following
example:

long *11,12;
FLDLEN length;

char *Ffind;

if((1ll=(long *)Ffind(fbfr, ZIP, 0, &length)) == NULL)
F_error ("pgm_name") ;

else
12 = *11;

This code should be re-written as follows:

if((1ll==(long *)Ffind(fbfr, zIP, 0, &length)) == NULL)
F_error ("pgm_name") ;
else

memcpy (&12,11,sizeof (long)) ;

For moreinformation, refer to Ffind, Ffind32 (3fml) in Oracle Tuxedo ATMI FML Function
Reference.

Ffindlast

This function finds the last occurrence of afield in afielded buffer and returns a pointer to the
field, as well as the occurrence number and length of the field occurrence.

Programming an Oracle Tuxedo ATMI Application Using FML

../rf3fml/rf3fml.html

Field Access and Modification Functions

char *
Ffindlast (FBFR *fbfr, FLDID fieldid, FLDOCC *oc, FLDLEN *len)

Here:

e fbhfrisapointer to afielded buffer.
e rieldidisafieldidentifier.
e oc isapointer to the occurrence number of the last field occurrence found.

e lenisapointer to the length of the value found.

In the previous declaration the return value to Ffindlast iS shown as a character pointer data
type (char* in C). The actual type of the pointer returned is the same as the type of the value to
which it points.

Ffindlast actslike Ffind, except that you do not specify afield occurrence. Instead, both the
occurrence number and the value of the last field occurrence are returned. However, if you
specify NULL as the value of the occurrence when calling the function, the occurrence number
is not returned. This function does not check for occurrences of the specified field in embedded
buffers.

The value returned by rFfindlast isvalid only aslong as the buffer remains unchanged.

For moreinformation, refertorfindlast, Ffindlast32 (3fml) inOracleTuxedo ATMI FML
Function Reference.

Ffindocc

Ffindocc looks at occurrences of the specified field on the buffer and returns the occurrence
number of the first field occurrence that matches the user-specified field value.

FLDOCC
Ffindocc (FBFR *fbfr, FLDID fieldid, char *value, FLDLEN len;)

Here:
e rbrrisapointer to afielded buffer.
o rfieldidisafieldidentifier.

e valueisapointer to anew value. Itstypeis shown as char*, but when it is used, its type
must be the same type as the value to be added (see “Fadd” on page 6-17).

e lenisthelength of thevalueif itstypeisSFLD_CARRAY OF FLD_MBSTRING.

Programming an Oracle Tuxedo ATMI Application Using FML 6-27

../rf3fml/rf3fml.html

int

For example, the following code sets oc to the occurrence for the specified zip code:

#include "fldtbl.h"
FBFR *fbfr;
FLDOCC oc;

long zipvalue;

zipvalue = 123456;
if ((oc=Ffindocc (fbfr,ZIP, &zipvalue, 0)) < 0)

F_error ("pgm_name") ;

Regular expressions are supported for string fields. For example, the following code sets oc to
the occurrence of NaME that starts with “J':

#include "fldtbl.h"
FBFR *fbfr;
FLDOCC oc;

char *name;

name = "J.*"
if ((oc = Ffindocc (fbfr, NAME, name, 1)) < 0)

F_error ("pgm_name") ;

Note: To enable pattern matching on strings, the fourth argument to F£indocc must be
non-zero. If it is zero, asimple string compare is performed. If the field valueis not
found, -1 isreturned.

For upward compatibility, a circumflex () prefix and dollar sign () suffix areimplicitly added
to the regular expression. Thus the previous example is actually interpreted as“~ (7. +*) $". The
regular expression must match the entire string value in the field.

For more information, refer to Ffindocc, Ffindocc32 (3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Fget

Use rget to retrieve afield from afielded buffer when the value is to be modified.

Fget (FBFR *fbfr, FLDID fieldid, FLDOCC oc, char *loc, FLDLEN *maxlen)

6-28

Here:

e frbfrisapointer to afielded buffer.

Programming an Oracle Tuxedo ATMI Application Using FML

../rf3fml/rf3fml.html

Field Access and Modification Functions

fieldidisafieldidentifier.

oc is the occurrence number.

loc isapointer to abuffer to copy the field value into.

maxlen iSapointer to the length of the source buffer on calling the function, and a pointer
to the length of the field on return.

The caller provides Fget with a pointer to a private buffer, aswell as the length of the buffer. If
maxlen isspecified asNULL, then it is assumed that the destination buffer is large enough to
accommodate the field value, and its length is not returned.

Fget returnsan error if the desired field is not in the buffer (FNOTPRES), Or if the destination
buffer istoo small (FNOsPACE). For example, thefollowing code getsthe zip code, assuming it is
stored as a character array or string:

FLDLEN len;
char value[100];

len=sizeof (value) ;
if (Fget (fbfr, zIP, 0, value, &len) < 0)

F_error ("pgm_name") ;

If the zip code is stored asa long, it can be retrieved by the following code:

FLDLEN len;

long value;

len = sizeof (value);
if (Fget (fbfr, zZIP, 0, value, &len) < 0)

F_error ("pgm_name") ;

For more information, refer to Fget, Fget32 (3fml) in Oracle Tuxedo ATMI FML Function
Reference.

Fgetalloc

Likerget, Fgetalloc findsand makesacopy of abuffer field, but it acquires spacefor thefield
viaacal tomalloc(3).

char *
Fgetalloc (FBFR *fbfr, FLDID fieldid, FLDOCC oc, FLDLEN *extralen)

Programming an Oracle Tuxedo ATMI Application Using FML 6-29

../rf3fml/rf3fml.html

Here:
e rbrrisapointer to afielded buffer.
o rieldidisafieldidentifier.
e oc isthe occurrence number.

e extralen iSapointer to the additional length to be acquired on calling the function, and a
pointer to the actual length acquired on return.
In the declaration above the return value to Fgetalloc iSshown asacharacter pointer datatype
(char* in C). Theactual type of the pointer returned isthe same as the type of the value to which
it points.
On success, Fgetalloc returnsavalid pointer to the copy of the properly aligned buffer field;

on error it returns NULL. If ma11oc(3) fals, Fgetalloc returnsan error and Ferror is Set to
FMALLOC.

The last parameter to Fgetalloc specifies an extraamount of space to be acquired if, for
instance, the value obtained is to be expanded before re-insertion into the fielded buffer. On
success, the length of the allocated buffer is returned in extralen. Consider the following
example:

FLDLEN extralen;

FBFR *fieldbfr

char *Fgetalloc;

extralen = 0;
if (fieldbfr = (FBFR *)Fgetalloc (fbfr, ZIP, 0, &extralen) == NULL)

F_error ("pgm_name") ;
It isthe responsibility of the caller to free space acquired by Fgetalloc.

For moreinformation, refertoFgetalloc, Fgetalloc32 (3fml) inOracleTuxedo ATMI FML
Function Reference.

Fgetlast

Fgetlast isused to retrieve the last occurrence of afield from afielded buffer when the value
isto be modified.

int
Fgetlast (FBFR *fbfr, FLDID fieldid, FLDOCC *oc, char *loc, FLDLEN *maxlen)

6-30 Programming an Oracle Tuxedo ATMI Application Using FML

../rf3fml/rf3fml.html

Field Access and Modification Functions

Here:
e rbrrisapointer to afielded buffer.
o rieldidisafieldidentifier.
e oc isapointer to the occurrence number of the last field occurrence.
e loc isapointer to abuffer to copy the field value into.

e maxlen iSapointer to the length of the source buffer on calling the function, and a pointer
to the length of the field on return.

Thecaller providesrgetlast withapointer to aprivate buffer, aswell asthelength of the buffer.
Fgetlast actslike Fget, except that you do not specify afield occurrence. Instead, both the
occurrence number and the value of the last field occurrence are returned. However, if you
specify NULL for occ on calling the function, the occurrence number is not returned.

For more information, refer to Fgetlast, Fgetlast32(3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Fnext

Fnext findsthe next field in the buffer after the specified field occurrence.

int
Fnext (FBFR *fbfr, FLDID *fieldid, FLDOCC *oc, char *value, FLDLEN *len)

Here:
e rbrrisapointer to afielded buffer.
e rfieldidisapointer to afield identifier.
e oc isapointer to the occurrence number.
e valueisapointer of the same type as the value contained in the next field.

e Ilenisapointer to the length of *vaiue.

A fieldidof rIrRsTFLDID should be specified to get thefirst field in abuffer; thefield identifier
and occurrence number of thefirst field occurrence are returned in the corresponding parameters.
If thefield isnot NULL, itsvalue is copied into the memory location addressed by the value
pointer.

The 1len parameter isused to determine whether value hasenough space all ocated to contain the
field value. If the amount of spaceisinsufficient, Ferror is set to FNOsPACE. The length of the

Programming an Oracle Tuxedo ATMI Application Using FML 6-31

../rf3fml/rf3fml.html

6-32

valueisreturned inthe 1en parameter. If the value of thefield isnon-null, then the 1en parameter
is also assumed to contain the length of the currently allocated space for value.

When thefield to beretrieved is an embedded VIEW32 buffer, the vaiue parameter pointsto an
FVIEWFLD Structure. The Fnext function populates the vname and data fields in the structure.
The FvIEWFLD Structureis as follows:

typedef struct {

TM32U vflags; /* flags - currently unused */

char vname [FVIEWNAMESIZE+1l]; /* name of view */

char *data; /* pointer to view structure */
} FVIEWFLD;

If thefield valueisNULL, then the value and length parameters are not changed.

If no more fields are found, Fnext returns o (end of buffer) and fieldid, occurrence, and
value areleft unchanged.

If the value parameter isnot NULL, the length parameter is also assumed to be non-NULL.
The following example reads all field occurrences in the buffer:

FLDID fieldid;
FLDOCC occurrence;
char *value[1l00];

FLDLEN len;

for (£ieldid=FIRSTFLDID, len=sizeof (value) ;
Fnext (fbfr, &fieldid, &occurrence,value, &len) > 0;
len=sizeof (value)) {
/* code for each field occurrence */

}

For moreinformation, refer to Fnext, Fnext32 (3fml) inOracle Tuxedo ATMI FML Function
Reference.

Fnum
Fnum returns the number of fields contained in the specified buffer, or -1 on error.

FLDOCC
Fnum (FBFR *fbfr)

Programming an Oracle Tuxedo ATMI Application Using FML

../rf3fml/rf3fml.html

Field Access and Modification Functions

Here fbfrisapointer to afielded buffer. The following code, for example, prints the number of
fieldsin the specified buffer:

if ((cnt=Fnum(fbfr)) < 0)
F_error ("pgm_name") ;
else
fprintf (stdout, "%d fields in buffer\n",cnt);

Each rrp_rMmr.32 and Fr.o_view32 field is counted asasingle field, regardless of the number of
fieldsit contains.

For more information, refer to Fnum, Fnum32 (3fml) in Oracle Tuxedo ATMI FML Function
Reference.

Foccur

Foccur returns the number of occurrences for the specified field in the buffer:

FLDOCC
Foccur (FBFR *fbfr, FLDID fieldid)

Here:

e fbhfrisapointer to afielded buffer.
e rieldidisafieldidentifier.
Occurrences of afield within an embedded FML 32 buffer are not counted.

Zeroisreturned if thefield does not occur in the buffer and -1 isreturned on error. For example,
the following code prints the number of occurrences of the field zzp in the specified buffer:

FLDOCC cnt;

if ((cnt=Foccur (fbfr,ZIP)) < 0)
F_error ("pgm_name") ;
else

fprintf (stdout, "Field ZIP occurs %d times in buffer\n",cnt);

For more information, refer to Foccur, Foccur32 (3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Fpres

Fpres returnstrue (1) if the specified field occurrence exists. Otherwise, it returns false (0).

Programming an Oracle Tuxedo ATMI Application Using FML 6-33

../rf3fml/rf3fml.html
../rf3fml/rf3fml.html

6-34

int
Fpres (FBFR *fbfr, FLDID fieldid, FLDOCC oc)

Here:
e fhfrisapointer to afielded buffer.
e rfieldidisafieldidentifier.

e oc isthe occurrence number.

For example, thefollowing codereturnstrueif thefield z1p existsin thefielded buffer referenced
by fofr:

Fpres (fbfr,zIP,0)
Fpres does not check for occurrences of the specified field within an embedded buffer.

For moreinformation, refer to Fpres, Fpres32 (3fml) inOracle Tuxedo ATMI FML Function
Reference.

Fvals and Fvall

Fvals Workslike rfind for string values but guarantees that a pointer to avalueis returned.
Fvall workslike Ffind for 1ong and short values, but returns the actual value of thefield asa
long, instead of as a pointer to the value.

char*
Fvals (FBFR *fbfr,FLDID fieldid,FLDOCC oc)

char*
Fvall (FBFR *fbfr,FLDID fieldid,FLDOCC oc)

In both functions:
e fbhfrisapointer to afielded buffer.
e rieldidisafieldidentifier.

e oc isthe occurrence number.

For Fvals, if the specified field occurrence is not found, the NULL string, \o, isreturned. This
function is useful for passing the value of afield to another function without checking the return
value. Thisfunction isvalid only for fields of type string; the NULL string is automatically
returned for other field types (that is, no conversion is done).

Programming an Oracle Tuxedo ATMI Application Using FML

../rf3fml/rf3fml.html

Buffer Update Functions

For rvali, if the specified field occurrenceisnot found, then O isreturned. Thisfunctionisuseful
for passing the value of afield to another function without checking the return value. This
functionisvalid only for fieldsof type 1ong and short; Oisautomatically returned for other field
types (that is, no conversion is done).

For more information, refer to Fvals, Fvals32(3fml) and Fvall, Fvall32(3fml) in
Oracle Tuxedo ATMI FML Function Reference.

Buffer Update Functions

Thefunctionslisted in this section access and update entire fielded buffers, rather than individual
fieldsin the buffers. These functions use, at most, three parameters:

e dest isapointer to adestination fielded buffer.
e srcisapointer to asource fielded buffer.

e rieldidisafieldidentifier or an array of field identifiers.

Fconcat

Fconcat addsfields from the source buffer to the fields that already exist in the destination
buffer.

int
Fconcat (FBFR *dest, FBFR *src)

Occurrencesin the destination buffer are maintained (that is, they are retained and not modified)
and new occurrences from the source buffer are added with greater occurrence numbersthan any
existing occurrences for each field. The fields are maintained in field identifier order.

Consider the following example:

FBFR *src, *dest;

if (Fconcat (dest,src) < 0)

F_error ("pgm_name") ;

If dest hasfields A, B, and two occurrences of C, and src hasfields A, C, and D, the resulting
dest hastwo occurrences of field A (destination field A and sourcefield A), field B, three
occurrences of field C (two from dest and the third from src), and field D.

This operation failsif there is not enough space for the new fields (FNoSPACE); in this case, the
destination buffer remains unchanged.

Programming an Oracle Tuxedo ATMI Application Using FML 6-35

../rf3fml/rf3fml.html
../rf3fml/rf3fml.html

6-36

For more information, refer to Fconcat, Fconcat32 (3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Fjoin

Fjoin isused tojoin two fielded buffers based on matching field | D/occurrence.

int

Fjoin (FBFR *dest, FBFR *src)

For fields that match on field I D/occurrence, the field value is updated in the destination buffer
with the value from the source buffer. Fieldsin the destination buffer that have no corresponding
field ID/occurrence in the source buffer are deleted. Fieldsin the source buffer that have no

corresponding field ID/occurrence in the destination buffer are not added to the destination
buffer. Thus

if (Fjoin(dest,src) < 0)

F_error ("pgm_name") ;

Using theinput buffersin the previous exampleresultsin adestination buffer that has sourcefield
value A and source field value C. This function may fail dueto lack of spaceif the new values
are larger than the old (FNOSPACE); in this case, the destination buffer will have been modified.
However, if this happens, the destination buffer may be reallocated using Frealiloc and the
Fjoin function repeated (even if the destination buffer has been partialy updated, repeating the
function gives the correct results).

If joining buffersresultsin theremoval of apointer field (FLD_PTR), the memory areareferenced
by the pointer is not modified or freed.

For moreinformation, refer to Fjoin, Fjoin32 (3fml) in Oracle Tuxedo ATMI FML Function
Reference.

Fojoin

Fojoin issimilar to Fjoin, but it does not delete fields from the destination buffer that have no
corresponding field I D/occurrence in the source buffer.

int

Fojoin (FBFR *dest, FBFR *src)

Note that fields in the source buffer for which there are no corresponding field 1D/occurrence
pairsin the destination buffer are not added to the destination buffer. Consider the following
example:

Programming an Oracle Tuxedo ATMI Application Using FML

../rf3fml/rf3fml.html
../rf3fml/rf3fml.html

Buffer Update Functions

if (Fojoin(dest,src) < 0)

F_error ("pgm_name") ;

Using the input buffers from the previous example, dest contains the source field value A, the
destination field value B, the source field value C, and the second destination field value C. As
with Fjoin, thisfunction can fail for lack of space (FnosPacE) and can be reissued again after
more space has been allocated to compl ete the operation.

If joining buffersresultsin theremoval of apointer field (FL.D_pTR), the memory areareferenced
by the pointer is not modified or freed.

For more information, refer to Fojoin, Fojoin32 (3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Fproj

Fproj isused to update a buffer in place so that only the desired fields are kept. (The result, in
other words, is a projection on specified fields.) If updating buffers resultsin the removal of a
pointer field (FL.D_pTR), the memory areareferenced by the pointer is not modified or freed.
int

Fproj (FBFR *fbfr, FLDID *fieldid)

These fields are specified in an array of field identifiers passed to the function. The updateis
performed directly in the fielded buffer. Consider the following example:

#include "fldtbl.h"
FBFR *fbfr;
FLDID fieldid[20];

fieldid[0] = A; /* field id for field A */
fieldid[1l] = D; /* field id for field D */
fieldid[2] = BADFLDID; /* sentinel value */
if (Fproj (fbfr, fieldid) < 0)

F_error ("pgm_name") ;

If the buffer hasfields A, B, C, and D, the example results in a buffer that contains only
occurrences of fields A and D. Note that the entriesin the array of field identifiers do not need to
be in any specific order, but the last value in the array of field identifiers must be field identifier
0 (BADFLDID).

For moreinformation, refer to Fproj, Fproj32(3fml) inOracle Tuxedo ATMI FML Function
Reference.

Programming an Oracle Tuxedo ATMI Application Using FML 6-37

../rf3fml/rf3fml.html
../rf3fml/rf3fml.html

6-38

Fprojcpy

Fprojcpy iIssSimilar to Fproj but the desired fields are placed in adestination buffer. If updating
buffers results in the removal of a pointer field (rL.D_pTR), the memory area referenced by the
pointer is not modified or freed.

int

Fprojcpy (FBFR *dest, FBFR *src, FLDID *fieldid)

Any fieldsin the destination buffer are first del eted and the results of the projection on the source
buffer are copied into the destination buffer. Using the above example, the following code places
the results of the projection in the destination buffer:

if (Fprojcpy (dest, src, fieldid) < 0)

F_error ("pgm_name") ;

The entriesin the array of field identifiers may be rearranged; if the entries are not in numeric
order, thefield identifier array is sorted.

For more information, refer to Fprojcpy, Fprojcpy32 (3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Fupdate

Fupdate updates the destination buffer with the field values in the source buffer.

int

Fupdate (FBFR *dest, FBFR *src)

For fields that match on field | D/occurrence, the field value is updated in the destination buffer
with the value in the source buffer (like Fjoin). Fields on the destination buffer that have no
corresponding field on the source buffer are left untouched (like Fojoin). Fields on the source

buffer that have no corresponding field on the destination buffer are added to the destination
buffer (like Fconcat). Consider the following example:

if (Fupdate (dest,src) < 0)

F_error ("pgm_name") ;

If the src buffer hasfields A, C, and D, and the dest buffer hasfields A, B, and two occurrences
of C, the updated destination buffer contains: the sourcefield value A, the destination field value
B, the source field value C, the second destination field value C, and the source field value D.

Programming an Oracle Tuxedo ATMI Application Using FML

../rf3fml/rf3fml.html

VIEWS Functions

For pointers, Fupdate32 storesthe pointer value. The buffer pointed to by arr.p_pTr field must
be allocated using the tpalloc (3c) cal. For embedded FML32 buffers, Fupdate32 storesthe
entire rFLp_rML32 field value, except the index.

For embedded VIEW32 buffers, Fupdate32 stores a pointer to a structure of type FVIEWFLD,
which contains vflags (aflagsfield, currently unused and set to 0), vname (acharacter array
containing the view name), and data (apointer to the view data stored as a C structure). The
application provides the vname and data t0 Fupdate32. The FvIEWFLD Structureis as follows:

typedef struct {

TM32U vflags; /* flags - currently unused */

char vname [FVIEWNAMESIZE+1l]; /* name of view */

char *data; /* pointer to view structure */
} FVIEWFLD;

For more information, refer to Fupdate, Fupdate32 (3fml) in Oracle Tuxedo ATMI FML
Function Reference.

VIEWS Functions
Fvftos

This function transfers data from a fielded buffer to a C structure using a specified view
description.

int

Fvftos (FBFR *fbfr, char *cstruct, char *view)
Here:

e rbrrisapointer to afielded buffer.

e cstruct isapointer to astructure.

e view iSapointer to aview name string.

If the named view is not found, Fvftos returns -1, and Ferror iS Set t0 FBADVIEW.

When datais being transferred from afielded buffer to a C structure, the following rules apply:
o |f afield in the fielded buffer is not mapped to a C structure member, the field isignored.
o If afieldisnot in the fielded buffer, but appears in the view description and is mapped to a

structure member, the corresponding null value is copied into the member.

Programming an Oracle Tuxedo ATMI Application Using FML 6-39

../rf3fml/rf3fml.html
../rf3c/rf3c.html

6-40

o |f afield in the fielded buffer contains data of type string Or carray, Characters are
copied into the structure up to the size of the mapped structure member (that is, source
values that are too long are truncated). If the source value is shorter than the mapped
structure member, the remainder of the member value is padded with null (0) characters.

String values are aways terminated with a null character (even if this means truncating the

value).

o |If the number of occurrences of afield in the buffer is equal to the number of mapped
structure members, then the fielded datais copied into the C structure.

o |If the number of occurrences of afield in the buffer is greater than the number of mapped
structure members, then the fielded dataisignored.

o |f the number of occurrences of afield in the buffer isless than the number of mapped
structure members, then the extra members are assigned the corresponding null value.

For example, the following code puts string1 into cust.action[0] and abc into
cust.bug[0]. All other membersin the cust structure should contain null values.

#include <stdio.h>
#include "fml.h"
#include "custdb.flds.h"
#include "custdb.h"
struct custdb cust;

FBFR *fbfr;

fbfr = Falloc(800,1000) ;

Fvinit((char *)&cust, "custdb"); /* initialize cust */
str = "stringl";

Fadd (fbfr,ACTION, str, (FLDLEN) 8) ;

str = "abc";

Fadd (fbfr, BUG_CURS, str, (FLDLEN)4) ;

Fvftos (fbfr, (char *)&cust, "custdb") ;

View custdp is defined in “VIEWS Examples’ on page 7-1.

For more information, refer to Fvftos, Fvitos32 (3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Programming an Oracle Tuxedo ATMI Application Using FML

../rf3fml/rf3fml.html

VIEWS Functions

Fvstof

This function transfers data from a C structure to afielded buffer using a specified view
description.

int

Fvstof (FBFR *fbfr, char *cstruct, int mode, char *view)
Here:

e fbhfrisapointer to afielded buffer.

e cstruct isapointer to astructure.

e mode is one of the following: FUPDATE, FJOIN, FOJOIN, OF FCONCAT.

e viewiSapointer to aview name string.

The transfer process obeys the rules listed under the FML function corresponding to the mode
parameter: Fupdate, Fjoin, Fojoin, Of Fconcat.

If the named view is not found, Fvstof returns -1, and Ferror iS Set t0 FBADVIEW.

Note: Null values are not transferred from a structure member to afielded buffer. That is,
during a structure-to-field transfer, if a structure member contains the (default or
user-specified) null value defined for that member, the member isignored.

For more information, refer to Fvftos, Fvftos32 (3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Fvnull

Fvnull isused to determine whether an occurrence in a C structure contains the null value for
that field.

int

Fvnull (char *cstruct, char *cname, FLDOCC oc, char *view)
Here:

e cstruct isapointer to a structure.

e cname iSapointer to the name of a structure member.

e ocistheindex to a particular element.

e viewiSapointer to aview name string.

Programming an Oracle Tuxedo ATMI Application Using FML 6-41

../rf3fml/rf3fml.html

Fvnull returns.
e 1 if anoccurrenceisnull
e 0 if an occurrenceis not null

e -1 if an error occurred

For more information, refer to Fvnull, Fvnull32 (3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Fvsinit
Thisfunction initializes all elementsin a C structure to their appropriate null value.
int

Fvsinit (char *cstruct, char *view)
Here:
e cstruct isapointer to a structure.

e viewiSapointer to aview name string.

For more information, refer to Fvsinit, Fvsinit32 (3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Fvopt
This function allows users to change flag options at run time.
int
Fvopt (char *cname, int option, char *view)
Here:
e cname iSthe name of a structure member.
e option isone of the options listed bel ow.
e viewiSapointer to aview name string.

The following list describes possible values for the option parameter.

F_FTOS
Allows one-way mapping from fielded buffersto C structures. Similar to the s option in
view descriptions.

6-42 Programming an Oracle Tuxedo ATMI Application Using FML

../rf3fml/rf3fml.html
../rf3fml/rf3fml.html

RECORD Functions

F_STOF
Allows one-way mapping from C structures to fielded buffers. Similar to the F option in
view descriptions.

F_BOTH
Allows two-way mapping between C structures and fielded buffers.

F_OFF
Turns off mapping of the specified member. Similar to the n option in view descriptions.

Note that changesto view descriptions are not permanent. They are guaranteed only until another
view description is accessed.

For moreinformation, refer to Fvopt, Fvopt32 (3fml) in Oracle Tuxedo ATMI FML Function
Reference.

Fvselinit

Thisfunctioninitializes an individual member of aC structureto its appropriate null value. It sets
the ACM of the element to O, if the ¢ flag isused in the view file; it setsthe ALMsto the length
of the associated null value, if the . flag isused in the view file.

int

Fvselinit (char *cstruct, char *cname, char *view)
Here:

e cstruct isapointer to a structure.

e cname iSapointer to the name of a structure member.

e viewiSapointer to aview name string.

For moreinformation, refertoFvselinit, Fvselinit32 (3fml) inOracleTuxedo ATMI FML
Function Reference.

RECORD Functions

This section describes all RECORD functions with the following topics. RECORD functions are
not directly available for COBOL programs.

e Introduction to RECORD Functions

e Rinit()

Programming an Oracle Tuxedo ATMI Application Using FML 6-43

../rf3fml/rf3fml.html
../rf3fml/rf3fml.html

6-44

* Rget()
o Rset()
o Frneeded()

e Data Type and Conversion

Introduction to RECORD Functions

Synopsis
#include <fml32.h>

Description

RECORD functions are used to define and manipul ate storage structures called RECORD buffer.
RECORD buffer provides access to COBOL copybook.

A RECORD description is created and stored in binary format using cpy2record from COBOL
copybook, and can then be used in C programs.

The RECORD description files are used at run time to manipulate the RECORD structures using
RECORDFILES and RECORDDIR environment variables. REcorpFILES should contain a
comma-separated list of record description filesfor the application. Filesgiven asfull pathnames
areused asis; fileslisted as relative path names are searched for through the list of directories
specified by RECORDDIR. RECORDDIR Specifies a colon-separated list of directoriesto find
RECORD description files with relative filenames.

RECORD huffers

A RECORD buffer pointer is of type RECORD *; tpalloc ("RECORD", subtype, size) returns
apointer of type RECORD *. The maximum length of record name (subtype) is 32 bytes; if the
length of record name is greater than 16, tptypes (char *ptr, char *type, char *subtype)
populates the first 16 bytes of subtype while Recorp * pointer points to the beginning of
full-length record name.

Error Handling

Most RECORD functions have one or more error returns. An error condition isindicated by an
otherwise impossible returned value. Thisisusually -1 on error. The error type is also made
available in the external integer Ferror32. Ferror32 isnot cleared on successful cals, so it
should be tested only after an error has been indicated.

Programming an Oracle Tuxedo ATMI Application Using FML

RECORD Functions

Ther_error32 () functionis provided to produce a message on the standard error output. It
takes one parameter (a string); it prints the argument string appended with a colon and a blank,
and then prints an error message followed by a newline character. The error message displayed
is the one defined for the error number currently in Ferror32, which is set when errors occur.

Fstrerror32 () can be used to retrieve from a message catal og to the text of an error message;
it returns a pointer that can be used as an argument to userlog.

The error codes that can be produced by a RECORD function are described on each RECORD
reference page.

Rinit()

Therinit () function initializes the allocated RECORD buffer.
int

Rinit (RECORD *rec, char *data, int len, int flags)

Below table describes the argumentsto rinit () function.

Table 6-2 Rinit() Function Arguments

Argument Description

rec Pointer to aRECORD buffer. The pointer must reference atyped buffer that isallocated
by aprior cal to tpalloc().

data Pointer that contains the address of the data portion of the request. If data isNULL,
rec will beinitialized to zero; if data isnot NULL and 1en isgreater than zero, data
of length 1en iscopied from datato rec'sdatasection; if data isnot NULL and Len
is zero, datais copied to rec's data section according to rec's size.

Programming an Oracle Tuxedo ATMI Application Using FML 6-45

6-46

Table 6-2 Rinit() Function Arguments

len

Length of the request datain the buffer referenced by data.

flags

Flag options (character set and endianness, float type). Zero or more flags can be
bitwise-or'din £1ags. Thefollowingisalist of valid f1ags:

TPENC_EBCDIC
Setting this flag indicates that the character encoding is EBCDIC
format in data.

TPENC_ASCII
Setting this flag indicates that the character encoding is ASCII format
indata.

TPENC_BIG_ENDIAN
Setting this flag indicates that the datais big-endian.

TPENC_LITTLE_ENDIAN
Setting this flag indicates that the datais little-endian.

TPENC_MAINFRAME_FLOAT
Setting thisflag indicates that the datais mainframe-float. If thisflagis
Set, TPENC_BIG_ENDIAN iS Set by system too.
If character set is not specified, default value (TPENC_aAsCcIT) is used;
if endiannessis not specified, endianness of running platform is used;
if float type is not set, default float type is |EEE float.

Return Values
This function returns -1 on error and sets Ferror32 to indicate the error condition.

Errors

[FALIGNERR]
Therec isNULL.

[FEINVAL]

Invalid arguments are given (for example, f1ags isinvalid).

[FNOTRECORD]
The buffer is not a RECORD buffer.

Programming an Oracle Tuxedo ATMI Application Using FML

RECORD Functions

[FNOSPACE]
The size of rec istoo small to store request data.

Rget()

Therget () function retrieves an item or whole record from a RECORD buffer; the source data
in RECORD is automatically converted to the type of the destination data.

int
Rget (RECORD *rec, char *name, char *data, int datatype, int *len, int flags)

Below table describes the argumentsto rget () function.

Table 6-3 Rget() Function Arguments

Argument Description

rec Pointer to aRECORD buffer. The pointer must reference atyped buffer that isallocated
by aprior call to tpalloc().

Programming an Oracle Tuxedo ATMI Application Using FML 6-47

Table 6-3 Rget() Function Arguments

name Name of the item to beretrieved. If name iSNULL or itslength is zero, whole record
isretrieved. Group name is not supported. The nameisfull qualified name. If theitem
isunder group, name should be groupname . i temname. For example:

01 RECORD-DATA.

10 iteml PIC X(5).
10 cntl PIC 9(03).
10 groupl.

15 namel PIC X(5).
15 constl PIC X(5).
10 item2 PIC X(10).
groupl .namel refersto namel of the groupl.

To refer to an element in atable, subscript must be used, and table name without
subscript can be used (subscript begins from 0). For example:

01 TABLE-DATA.

10 iteml PIC X(5).
10 cntl PIC 9(03).
10 tablel occurs 10 times.

15 namel PIC X(5).
15 constl PIC X(5).
10 item2 PIC X(10).

tablel[4] .namel referstonamel of the 5th element in tablel.

Note: Theindex of array must be decimal digit.

data Pointer to application data area.

datatype Datatype of the data. Please refer to Table 6-6 for the valid datatype list. When the
whole record is obtained, datatype isignored (it can be set to zero).

len Length of the application data area. It is used as both input and output parameter. For
input parameter, it indicates the length of data; for output parameter, it indicates the
length of retrieved data. If 1en iSNULL when the functioniscalled, it is assumed that
the data areafor theitem islarge enough to accommodate the item value, and itslength
is not returned.

flags flags indicatesthe dataformat. f1ags inRget () isthesameas flags in
Rinit (). Theformat is applied to whole record.

6-48 Programming an Oracle Tuxedo ATMI Application Using FML

RECORD Functions

A thread in amultithreaded application may issue acall to rget () While running in any context
state, including TPINVALIDCONTEXT.

Errors

[FALIGNERR]
The rec isnull.

[FEINVAL]
Invalid arguments are given (for example, aNULL data parameter is specified).

[FNOTRECORD]
The buffer is not aRECORD buffer.

[FNOTFOUND]
Cannot find specified name.

[FNOSPACE]
The size of the data area, as specified in Len, is not large enough to hold the field value.

[FTYPERR]
Aninvalid datatypeis specified.

[FRFOPEN]
While trying to find RECORD name, the program fails to find one of the files specified
by RECORDDIR O RECORDFILES.

[FRSYNTAX]
While trying to find RECORD name, one of the files specified by RECORDDIR or
RECORDFILES iS corrupted, or isnot a RECORD file.

Rset()

Therset () function sets an item or whole record to a RECORD buffer.
int
Rset (RECORD *rec, char *name, char *data, int datatype, int len, int flags)

Below table describes the argumentsto rset () function.

Programming an Oracle Tuxedo ATMI Application Using FML 6-49

Table 6-4 Rset() Function Arguments

Argument Description

rec Pointer to aRECORD buffer. The pointer must reference atyped buffer that isallocated
by aprior cal to tpalloc().

name Name of theitem or wholerecord to be set. If name iSNULL or itslengthiszero, whole
record is set.

data Pointer to application data area.

datatype Datatype of theitem. Please refer to Table 6-6 for thelist of valid datatype. When the
wholerecord is set, datatype isignored (can be set to zero).

len L ength of the application datain the buffer referenced by data. If thelength of the object
referenced by data can beinferred from itsdatatype (for example, if avalue of type
C_FLOAT isof length sizeof (£loat), the objects are C_SHORT, C_LONG,
C_CHAR, C_FLOAT, C_DOUBLE, C_INT, C_DECIMAL, C_UINT, C_ULONG,
C_LLONG, and C_USHORT), len isignored.

flags flags indicatesthe dataformat. flags inRset () isthesameas flags in
Rinit (). Theformat isapplied to whole record.

A thread in amultithreaded application may issueacall to rset () while running in any context
state, including TPINVALIDCONTEXT.

Errors

[FALIGNERR]
The rec isnull.

[FEINVAL]
Invalid arguments are given (for example, aNULL data parameter is specified, or datais
shorter than rec expects).

[FTYPERR]
Aninvalid datatypeis specified.

[FNOTRECORD]
The buffer isnot a RECORD buffer.

6-50 Programming an Oracle Tuxedo ATMI Application Using FML

RECORD Functions

[FNOTFOUND]
Cannot find specified name.

[FRFOPEN]
While trying to find RECORD name, the program fails to find one of the files specified
by RECORDDIR O RECORDFILES.

[FRSYNTAX]
While trying to find RECORD name, one of the files specified by RECORDDIR oOr
RECORDFILES iS corrupted, or is not aRECORD file.

Frneeded()

The Frneeded () function is used to determine the space that must be allocated for a RECORD
buffer.

int
Frneeded (char *rname)

The space needed for RECORD buffer is the same as the copybook record size. If you aready
know the record size, you can useitin tpalloc (); otherwise, you can use Frneeded () to get
the record size and, once you get it, you can allocate the desired RECORD buffer. Thefollowing
code is an example of allocating enough space for a RECORD buffer to contain the record.

struct RECORD *rec = (struct RECORD *)tpalloc("RECORD", "myrecord",

Frneeded ("myrecord")) ;

Below table describes the argumentsto Frneeded () function.

Table 6-5 Frneeded() Function Arguments

Argument Description

rname RECORD name

Return Values

On success, Frneeded () returns the space that must be allocated for a RECORD buffer. This
function returns -1 on error and sets Ferror32 to indicate the error condition.

Programming an Oracle Tuxedo ATMI Application Using FML 6-51

Errors

[FBADRECORD]
Cannot find or get record.

Data Type and Conversion

Thedatain RECORD buffer isalwaysin original format - COBOL internal representation. When
Rget () isused, dataisautomatically converted to the type of the destination datain C language;
when rset () isused, dataisautomatically converted from C language to COBOL internal
representation.

The following table lists the supported datatype in Rget () and/or Rset ().

Table 6-6 Datatype Mapping

Datatype C Language
C_SHORT short

C_LONG long (32bit)
C_CHAR char

C_FLOAT float

C_DOUBLE double

C_STRING string terminate with null
C_CARRAY char array

C_INT int

C_DECIMAL dec t

C_UINT unsigned int
C_ULONG unsigned long 32bit)
C_LLONG long (64bit)
C_USHORT unsigned short

The following table lists the datatype and conversion.

6-52 Programming an Oracle Tuxedo ATMI Application Using FML

Table 6-7 Datatype and Conversion

RECORD Functions

Datatype C Language COBOL Language Conversion
Any datatype short, int, long S9(1-4), S9(5-9), Convert between COBOL
or any other type S9(10-18)* gxternal decimal and C
integer
Any datatype unsigned short 9(1-4) , 9(5-9), 9(10-18) Convert between COBOL
unsigned int external decimal and C
i ' integer
unsigned long
or any other type
Any datatype Float COMP-1 Internal representation
or any other type conversion
Any datatype Double COMP-2 Internal representation
or any other type conversion
Any datatype Long S9(10) to S9(18), COMP Endian conversion if
or any other type or COMP-5 or binary necessary
Any datatype unsigned long 9(10) to 9(18), COMPor Endian conversion if
or any other type COMP-5 or binary necessary
Any datatype Int S9(5) to S9(9), COMPor Endian conversion if
or any other type COMP-5 or binary necessary
Any datatype unsigned int S9(5) to S9(9), COMP or Endian conversion if
or any other type COMP-5 or binary necessary
Any datatype Short S9(1) to S9(4), COMPor Endian conversion if
or any other type COMP-5 or binary necessary
Any datatype unsigned short 9(1) to 9(4), COMP or Endian conversion if
or any other type COMP-5 or binary necessary
Any datatype dec_t(m,n) S9(2*m-(n+1))VI(n), Convert COBOL interna

or any other type

COMP-3 or
PACKED-DECIMAL

decimal and C dec_t type

Programming an Oracle Tuxedo ATMI Application Using FML 6-53

Tahle 6-7 Datatype and Conversion

Any datatype String X(n), A(n) EBCDIC and ASCII®
Any datatype ~ Carray ** @binary=true No conversion?
X(n), A(n)
RECORD RECORD Different item uses
different rules,
e C_STRING, C_CHAR:
EBCDIC and ASCII
conversion
« Binary integer type®:
endian conversion
e Other type: No
conversion
Notes:

e 1Bi nary integer type includes c_SHORT, C_USHORT, C_INT, C_UINT, C_LONG,

C_ULONG.

o 2If target's sizeis greater than src's, the rest of target is set as 0; otherwise, the

src's content is truncated and copied to tgt.

o 31f externa variable'ssizeis greater than rec's, when rget () isinvoked, the rest
of external variable is set as 0; when rset () isinvoked, only rec->rsize's length of
external variableis copied to rec. If externa variabl€'s size isless than rec's, when
Rget () isinvoked, the length pointed by the argument len of rec is copied to
externa's; when rset () isinvoked, therest of rec'sissetas'' (if rec'sencis

ebcdic, it is 0x40).

o4 Only supports numeric fields, Zoned Decimal is not supported.

Conversion Functions

FML provides a set of routines that perform data conversion upon reading or writing a fielded

buffer.

6-54 Programming an Oracle Tuxedo ATMI Application Using FML

Conversion Functions

Generally, the functions behave like their non-conversion counterparts, except that they provide
conversion from a user type to the native field type when writing to a buffer, and from the native
type to a user type when reading from a buffer.

The native type of afield isthe type specified for it initsfield table entry and encoded initsfield
identifier. (The only exception to thisruleis crfindocc, which, although it is aread operation,
converts from the user-specified type to the native type before calling Ffindocc.) The function
names are the same as their non-conversion FML counterparts except that they includea“C”
prefix.

The following field types are not supported for conversion functions: pointers (FLD_PTR),
embedded FML 32 buffers (FLD_rML32), and embedded VIEW32 buffers (FLD_viEw32). If one
of these field types is encountered during the execution of an FML 32 conversion function,
Ferror iS Set t0 FEBADOP.

CFadd

The crada function adds a user-supplied item to a buffer creating a new field occurrence within
the buffer.

int
CFadd (FBFR *fbfr, FLDID fieldid, char *value, FLDLEN len, int type)

Here:
e frbfrisapointer to afielded buffer.
o rieldidisthefield identifier of thefield to be added.
e value iSapointer to the value to be added.
e lenisthelength of thevalueif itstypeiSFLD_CARRAY.

e type isthetype of the value.

Before the field addition, the dataitem is converted from a user-supplied type to the type
specified in the field table as the fielded buffer storage type of the field. If the source typeis
FLD_CARRAY (character array), the length argument should be set to the length of the array.
Consider the following example:

if (CFadd (fbfr,ZIP, "12345", (FLDLEN) O, FLD_STRING) < 0)

F_error ("pgm_name") ;

If the z1P (zip code) field were stored in a fielded buffer as along integer, the function would
convert “12345" to along integer representation, before adding it to the fielded buffer pointed to

Programming an Oracle Tuxedo ATMI Application Using FML 6-55

int

by fofr (note that the field value length is given as 0 since the function can determine it; the
length is needed only for type FLD_carray). The following code puts the same value into the
fielded buffer, but does so by presenting it asalong, instead of as a string:

long zipval;

zipval = 12345;
if (CFadd (fbfr,ZIP, &zipval, (FLDLEN)O,FLD_LONG) < 0)

F_error ("pgm_name") ;

Note that the value must first be put into a variable, since C does not permit the construct
&12345L . cradd returns 1 on success, and -1 on error, inwhich case Ferror isset appropriately.

For moreinformation, refer to cFadd, cFadd32 (3fml) inOracle Tuxedo ATMI FML Function
Reference.

CFchg

The function crchg acts like cradd, except that it changes the value of afield (after conversion
of the supplied value).

CFchg (FBFR *fbfr, FLDID fieldid, FLDOCC oc, char *value, FLDLEN len, int type)

6-56

Here:
e frbhfrisapointer to afielded buffer.
o rieldidisthefield identifier of the field to be changed.
e oc isthe occurrence number of the field to be changed.
e valueisapointer to the value to be added.
e Ienisthelength of thevalueif itstypeis FLD_CARRAY.

e typeisthetype of the value.

For example, the following code changes the first occurrence (occurrence 0) of field z1p to the
specified value, doing any needed conversion:

FLDOCC occurrence;

long zipval;

zipval = 12345;

Programming an Oracle Tuxedo ATMI Application Using FML

../rf3fml/rf3fml.html

Conversion Functions

occurrence = 0;
if (CFchg (fbfr, ZIP, occurrence, &zipval, (FLDLEN) 0, FLD_LONG) < 0)

F_error ("pgm_name") ;

If the specified occurrence is not found, then null occurrences are added to pad the buffer with
multiple occurrences until the value can be added as the specified occurrence.

For moreinformation, refer to cFchg, CFchg32 (3fml) in Oracle Tuxedo ATMI FML Function
Reference.

CFget

cFget isthe conversion analog of Fget. The differenceisthat it copies a converted value to the
user-supplied buffer.

int
CFget (FBFR *fbfr, FLDID fieldid, FLDOCC oc, char *buf, FLDLEN *len, int type)

Here:
e rbrrisapointer to afielded buffer.
e rieldidisthefield identifier of thefield to be retrieved.

oc isthe occurrence number of the field.

buf isapointer to the post-conversion buffer.

lenisthelength of thevalueif itstypeiSFLD_CARRAY.

e type isthetype of the value.

Using the previous example, the following code gets the value that was just stored in the buffer
(regardless of which format is being used) and converts it back to along integer:

FLDLEN len;

len=sizeof (zipval) ;
if (CFget (fbfr, ZIP, occurrence, &zipval, &len, FLD_LONG) < 0)

F_error ("pgm_name") ;
If thelength pointer isNULL, then the length of the value retrieved and converted is not returned.

For moreinformation, refer to cFget, CFget32 (3fml) inOracle Tuxedo ATMI FML Function
Reference.

Programming an Oracle Tuxedo ATMI Application Using FML 6-57

../rf3fml/rf3fml.html
../rf3fml/rf3fml.html

CFgetalloc

CFgetallocislikeFgetalloc;you areresponsiblefor freeing the space alocated withmalioc
for the returned (converted) value with free.

char *
CFgetalloc (FBFR *fbfr, FLDID fieldid, FLDOCC oc, int type, FLDLEN *extralen)

6-58

Here:
e frbfrisapointer to afielded buffer.
o rieldidisthefield identifier of thefield to be converted.
e oc isthe occurrence number of the field.
e type isthetypeto which the value is converted.

e extralen oOn caling the function is a pointer to the extra allocation amount; on return, it is
apointer to the size of the total allocated area.

In the declaration above, thereturn valueto crgetalloc isshown asacharacter pointer datatype
(char* in C). Theactual type of the pointer returned isthe same asthe type of the value to which
it points.

The previously stored value can be retrieved into space allocated automatically for you by the
following code:

char *value;

FLDLEN extra;

extra = 25;
if ((value=CFgetalloc (fbfr,zIP,0,FLD_LONG, &extra)) == NULL)

F_error ("pgm_name") ;

Thevalue extra inthe function call indicates that the function should allocate an extra 25 bytes
over the amount of space sufficient for the retrieved value. The total amount of space allocated is
returned in this variable.

For more information, refer to cFgetalloc, CFgetalloc32 (3fml) in Oracle Tuxedo ATMI
FML Function Reference.

CFfind

CFfind returns apointer to a converted value of the desired field.

Programming an Oracle Tuxedo ATMI Application Using FML

../rf3fml/rf3fml.html

Conversion Functions

char *
CFfind (FBFR *fbfr, FLDID fieldid, FLDOCC oc, FLDLEN len, int type)

Here:
e fbhfrisapointer to afielded buffer.
o rieldidisthefield identifier of thefield to be retrieved.

e oc isthe occurrence number of the field.

len isthe length of the post-conversion value.

e type isthetypeto which the valueis converted.

In the previous declaration the return value to cr£ind is shown as a character pointer datatype
(char* in C). The actual type of the pointer returned isthe same asthe type of the value to which
it points.

Like Ffind, this pointer should be considered “readonly.” For example, the following code
returns a pointer to a Long containing the value of the first occurrence of the zzp field:

char *CFfind;
FLDLEN len;
long *value;

ifi(éalue:(long *)CFfind (fbfr, ZIP, occurrence, &len, FLD_LONG)) == NULL)
F_error ("pgm_name") ;
If the length pointer is NULL, then the length of the value found is not returned. Unlike F£ind,
the value returned is guaranteed to be properly aligned for the corresponding user-specified type.

Note: The duration of the validity of the pointer returned by crfind is guaranteed only until
the next buffer operation, even if it is non-destructive, since the converted valueis
retained in asingle private buffer. Thisdiffers from the value returned by rfind, which
is guaranteed until the next modification of the buffer.

For more information, refer to cFfind, CcFfind32 (3fml) in Oracle Tuxedo ATMI FML
Function Reference.

CFfindocc

cFfindocc looks at occurrences of the specified field on the buffer and returns the occurrence
number of the first field occurrence that matches the user-specified field value after it has been
converted to the type of the field identifier.

Programming an Oracle Tuxedo ATMI Application Using FML 6-59

../rf3fml/rf3fml.html

FLDOCC
CFfindocc (FBFR *fbfr, FLDID fieldid, char *value, FLDLEN len, int type)

Here:

e fbhfrisapointer to afielded buffer.

e rieldidisthefield identifier of thefield to be retrieved.
e valueisapointer to the unconverted matching value.

e lenisthelength of the unconverted matching value.

e type isthetype of the unconverted matching value.

For example, thefollowing code convertsthe string to thetypeof fieldid z1p (possibly along)
and sets oc to the occurrence for the specified zip code:

#include "fldtbl.h"
FBFR *fbfr;
FLDOCC oc;

char zipvalue[20];

strecpy (zipvalue, "123456") ;
if ((oc=CFfindocc (fbfr, zIP, zipvalue, 0,FLD_STRING)) < 0)

F_error ("pgm_name") ;
If the field value is not found, -1 isreturned.

Note: Because cFfindocc converts the user-specified value to the native field type before
examining the field values, regular expressions work only when the user-specified type
and the native field type are both F.po_sTrRING. Thus, cFfindocc has no utility with
regular expressions.

For more information, refer to cF£ indocc, CFfindocc32 (3fml) in Oracle Tuxedo ATMI
FML Function Reference.

Converting Strings

The following set of functionsis provided to handle the case of conversion to and from a user
type of FLD_STRING:

® Fadds, Fadds32(3fml)

® Fchgs, Fchgs32(3fml)

6-60 Programming an Oracle Tuxedo ATMI Application Using FML

../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html

Converting Strings

® Ffinds, Ffinds32(3fml)
® Fgets, Fgets32(3fml)
® Fgetsa, Fgetsa32(3fml)

These functions call their non-string-function counterparts, providing a type of FLD_STRING,
and alen of 0. Notethat the duration of the validity of the pointer returned by r£inds isthe same
asthat described for crfind.

For descriptions of these functions, see Oracle Tuxedo ATMI FML Function Reference.

Ftypevt

The functions cradd, CFchg, CFget, CFgetalloc, and CFfind use the function Ftypcvt to
perform the appropriate data conversion. The Ftypcvt32 function fails for the FLp_pTR,
FLD_FML32, and FLD_vIEW32 field types. The synopsis of Ftypcvt usageis as follows (it does
not follow the parameter order conventions).

char *
Ftypcvt (FLDLEN *tolen, int totype, char *fromval, int fromtype, FLDLEN fromlen)

Here:
e tolenisapointer to the length of the converted value.
e totype isthetypeto which to convert.
e fromval isapointer to the value from which to convert.
e fromtype iSthetype from which to convert.

e fromlen iSthelength of the from valueif the from typeiSFLD_CARRAY.

Ftypcvt converts from the value * fromval, which hastype fromtype, and length fromlen if
fromtype iStype FLD_CARRAY (Otherwise fromlen iSinferred from fromtype), to avalue of
type totype. Ftypcvt returnsapointer to the converted value, and sets *tolen to the converted
length, upon success. Upon failure, Ftypcvt returnsNULL. Consider the following example, in
which the crchg function is used:

CFchg (fbfr, fieldid, oc,value, len, type)

FBFR *fbfr; /* fielded buffer */

FLDID fieldid; /* field to be changed */

FLDOCC oc; /* occurrence of field to be changed */
char *value; /* location of new value */

FLDLEN len; /* length of new value */

int type; /* type of new value */

Programming an Oracle Tuxedo ATMI Application Using FML 6-61

../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html

{

char *convloc; /* location of post-conversion value */
FLDLEN convlen; /* length of post-conversion value */
extern char *Ftypcvt;

/* convert value to fielded buffer type */

if ((convloc = Ftypcvt (&convlen, FLDTYPE (fieldid),value, type,len)) == NULL)

return(-1);

if (Fchg (fbfr, fieldid, oc, convloc, convlen) < 0)

return(-1);

return(l) ;

}

6-62

The user may call Ftypcvt directly to do field value conversion without adding or modifying a
fielded buffer.

For more information, refer to Ftypcevt, Ftypcevt32 (3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Conversion Rules

In the following list of conversion rules, o1dval represents a pointer to the dataitem being
converted, and newval, a pointer to the post-conversion value.

e When both types are identical, *newval isidentical to *oldval.

e When both types are numeric, that is, if they are 1ong, short, float, OF double, the
conversion is done by the C assignment operator, with proper type casting. For example, a
short isconverted to a f1oat through the following code:

*((float *)newval) = *((short *) oldval)

e When anumeric is being converted to a string, an appropriate sprintf isused. For
example, ashort isconverted to a string through the following code:

sprintf (newval, "$d", * ((short *)oldval))

e When astring is being converted to a numeric, the appropriate function (for example,
atof, atol) isused, with the result assigned to a typecasted receiving location, as shown
in the following example:

*((float *)newval) = atof (oldval)

e When atype char isbeing converted to any numeric type, or when anumeric typeis being
converted to achar, the char isconsidered to be a*“ shorter short.” For example, to
convert achar to a float, use the method shown in the following code:

Programming an Oracle Tuxedo ATMI Application Using FML

../rf3fml/rf3fml.html

Converting Strings

*((float *)newval) = *((char *)oldval)
To convert ashort to a char, use the method shown in the next example:

*((char *)newval) = *((short *)oldval)

e A char isconverted to astring by appending aNULL character. In thisregard, achar is
not a “shorter short.” If it were, assignment would be done by converting it to ashort,
and then converting the short to astring vViasprintf. Inthe same sense, astring is
converted to a char by assigning the first character of the string to the character.

e The carray typeisused to store an arbitrary sequence of bytes. In this senseg, it can
encode any user data type. Nevertheless, the following conversions are specified for
carray types:

— A carray isconverted to astring by appending the NULL byte to the carray. In this
sense, acarray can be used to store a string, lessthe overhead of the trailing NULL.
(This approach does not always save space, since fields are aligned on short boundaries
within afielded buffer.) A string isconverted to a carray by removing its
terminating NULL byte.

— When acarray isconverted to any numeric, it isfirst converted to a string, and the
string isthen converted to a numeric. Likewise, anumeric is converted to a carray,
by first being converted to a string, and then the string is converted to a carray.

— A carray isconverted to achar by assigning the first character of the array to the
char. Likewise, achar is converted to acarray by assigning it as thefirst byte of the
array, and setting the length of the array to 1.

Note that a carray of length 1 and a char have the following differences:

— A char hasonly the overhead of its associated fieldid, while acarray containsa
length code, in addition to the associated fieldid.

— A carray isconverted to anumeric by first becoming a string, and then undergoing
an atoi cal; achar becomes a numeric by typecasting. For example, achar with
value ASCII ‘1" (decimal 49) convertsto ashort of value 49; acarray of length 1,
with the single byte an ASCII ‘1’ convertsto ashort of value 1. Likewiseachar ‘&
(decimal 97) convertsto ashort of value 97; the carray ‘@ convertsto ashort of
value 0 (sinceatoi (“a”) produces a0 result).

e When converting to or from adec_t type, the associated conversion function as described
"1decimal(3)iSUSEd(_gp_deccvasc,_gp_deccvdbl,_gp_deccvflt,_gp_deccvint,
_gp_deccvlong,_gp_dectoasc,_gp_dectodbl,_gp_dectoflt,_gp_dectoint,and
_gp_dectolong).

The following table summarizes the conversion rules presented in this section.

Programming an Oracle Tuxedo ATMI Application Using FML 6-63

Table 6-8 Summary of Conversion Rules

src type dest type

- char short long float double string carray dec_t
char - cast cast cast cast st[0]=c array[0O]l=c d
short cast - cast cast cast sprintf sprintf d
long cast cast - cast cast sprintf sprintf d
float cast cast cast - cast sprintf sprintf d
double cast cast cast cast - sprintf sprintf d
string c=st[0] atoi atol atof atof - drop 0 d
carray c=array[0] atoi atol atof atof add 0 - d
dec_t d d d d d d d -

The following table defines the entries listed in the previous table.

6-64

Programming an Oracle Tuxedo ATMI Application Using FML

Converting FLD_MBSTRING Fields

Table 6-9 Meanings of Entries in the Summary of Conversion Rules

Entry Meaning

- src and dest are the same type; no conversion required
cast Conversion done using C assignment with type casting
sprintf Conversion done using sprint £ function

atoi Conversion done using atoi function

atof Conversion done using atof function

atol Conversion done using atol function

add 0 Conversion done by concatenating NULL byte

drop 0 Conversion done by dropping terminating NULL byte

c=array[0]

Character set to first byte of array

array|[0]=c

First byte of array is set to character

c=st[0] Character set to first byte of string
st[0]=c First byte of string setto c
d decimal(3c) conversion function

Converting FLD_MBSTRING Fields

Thefollowing set of functionsis provided to handle code-set encoding conversion of datain user
type of FLD_MBSTRING:

® Fmbpack32 (3fml)

® Fmbunpack32 (3fml)

® tpconvimb32 (3fml)

These functions prepare the encoding name and multibyte data information for an
FLD_MBSTRING field, extract the encoding name and multibyte data information from an
FLD_MBSTRING field, and convert the multibyte charactersin an rr.o_mBsTRING field to anamed
target encoding. The following figure shows through example how encoding conversion works.

Programming an Oracle Tuxedo ATMI Application Using FML 6-65

../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html

Figure 6-1 Encoding Conversion Using FML32 Buffers—Example

TPMBENC
TPMBACONV

SJIS TPMBENC
Y TPMBACONV

EUCJP

Tuxedo
Server Machine

Workstation

ws O\
Client /

/WS ' App
Handler Server

SJIS . EUCJP SJIS . EUCJIP

' Reply Request !
Encoding Conversion Encoding Conversion

Client Request

Japanese SJIS-encoded data SJIS Length ... FML32

L FLI:;_I.VII.38TRING I FML32 Header ————!
- Server Reply
FML32 Length ... [EUCJP Japanese EUCJP-encoded data

L ——— FML32 Header I FLD_MB.S'I:R.ING _—

Asindicated in the example, the FL.o_mBsTRING field is capable of carrying information
identifying the code-set character encoding, or simply encoding, of its user data. In the example,
the client-request FL.o_mMBSTRING field holds Japanese user data represented by the Shift-JIS
(S31S) encoding, while the server-reply FLp_MBSTRING field holds Japanese user data
represented by the Extended UNIX Code (EUC) encoding. The multibyte character encoding
feature reads environment variables TeMBENC and TPMBACONV to determine the source encoding,
the target encoding, and the state (on or off) of automatic encoding conversion.

6-66 Programming an Oracle Tuxedo ATMI Application Using FML

Converting FLD_MBSTRING Fields

As shown in the following figure, the FML 32 typed buffer, itself, is capable of carrying
information identifying the character encoding of its user data.

Figure 6-2 Using Global Encoding

Client Request

-
Japanese SJIS-encoded data Length ... SJIS FML32
e FL[;_I.\/II;STRING I FML32 Header ——
- Server Reply
FML32 EUCJP Length ... Japanese EUCJP-encoded data
L——— FML32 Header I FLD_MB.S'I:R.ING _—

For an FML 32 typed buffer holding many rL.o_msTRING fields, using global encodingisamore
efficient way to transport multibyte user data via FML 32 buffers than adding a character
encoding name to each FLp_MBSTRING field. Using the Fmbpack32 () function, application
developers can choose global encoding or individua encoding for each FL.o_mBsTRING field
created via Fmbpack32 () . Only one global encoding nameis allowed per FML32 buffer.

The encoding conversion capability enables the underlying Tuxedo system software to convert
the encoding representation of an incoming r.o_mBsTRING field to an encoding representation
supported by the machine on which the receiving processis running. The conversion is neither a
conversion between character code sets nor a tranglation between languages, but rather a
conversion between different character encodings for the same language.

Fmbpack32

This function prepares the encoding name and multibyte datainformation for an FLD_MBSTRING
field input to an FML 32 typed buffer. Fmbpack32 () isused before the FLp_MBSTRING field is
added to an FML 32 buffer viaFML32 APIs.

For more information about this function, refer to the Fmbpack32(3fml) function in Oracle
Tuxedo ATMI FML Function Reference.

Programming an Oracle Tuxedo ATMI Application Using FML 6-67

../rf3fml/rf3fml.html

Fmbunpack32

Thisfunction extractsthe encoding name and multibyte datainformation from an F.o_MBSTRING
field in an FML32 typed buffer. Fmbunpack32 () isused after the FL.o_mBsTRING field is
extracted from an FML 32 buffer viaFML32 APIs (F£find32 (), Fget32 (), ...).

For more information about this function, refer to the Fmbunpack32(3fml) function in Oracle
Tuxedo ATMI FML Function Reference.

tpconvfmh32

This function converts the multibyte charactersin an FLp_mBsTrRING field in an FML32 typed
buffer to anamed target encoding. Specifically, tpconvfmb32 () comparesthe source encoding
name specified for the FL.o_mBsTRING field with the target encoding name defined in
target_encoding; if the encoding names are different, tpconvfmb32 () convertsthe
FLD_MBSTRING field datato the target encoding.

For more information about this function, refer to the tpconvimb32 (3£fml) function in Oracle
Tuxedo ATMI FML Function Reference.

tpconvwvmh32

This function converts the multibyte charactersin an mesTrRING field in a VIEW32 typed buffer
to a named target encoding. Specificaly, tpconvvmb32 () compares the source encoding name
specified for themesTrING field with the target encoding name definedin target_encoding; if
the encoding names are different, tpconvvmb32 () convertsthemssTrING field datato the target
encoding.

For more information about this function, refer to the tpconvvmb32 (3£fml1) functionin Oracle
Tuxedo ATMI FML Function Reference.

Indexing Functions

6-68

When afielded buffer isinitialized by Finit or Falloc, anindex isautomatically set up. This
index is used to expedite fielded buffer accesses and istransparent to you. Asfields are added to
or deleted from the fielded buffer, the index is automatically updated.

However, when storing a fielded buffer on along-term storage device, or when transferring it
between cooperating processes, it may be desirable to save space by eliminating itsindex and
regenerating it upon receipt. The functions described in this section may be used to perform such
index manipulations.

Programming an Oracle Tuxedo ATMI Application Using FML

../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html

Indexing Functions

Fidxused
This function returns the amount of space used by the index of a buffer.

long
Fidxused (FBFR *fbfr)

Here fbfr isapointer to afielded buffer.

Y ou can use this function to determine the size of the index of a buffer, and whether significant
time or space can be saved by deleting the index.

For more information, refer to Fidxused, Fidxused32 (3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Findex

The function Findex may be used at any time to index an unindexed fielded buffer.
int

Findex (FBFR *fbfr. FLDOCC intvl)

Here:
e rbrrisapointer to afielded buffer.

e intvlistheindexinginterval.

The second argument to Findex specifies the indexing interval for the buffer. If 0 is specified,
the value rsTDxINT (defined in fml.1h) isused. The user may ensure that al fields are indexed
by specifying an interval of 1.

Note that more space may be made available in an existing buffer for user data by increasing the
indexing interval, and reindexing the buffer. This represents a space/time trade-off, however,
since reducing the number of index elements (by increasing theindex interval), means, in general,
that searches for fields will take longer. Most operations attempt to drop the entire index if they
run out of space before returning a* no space” error.

For more information, refer to Findex, Findex32 (3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Frstrindex

This function can be used instead of Findex for casesin which the fielded buffer has not been
altered since its index was removed.

Programming an Oracle Tuxedo ATMI Application Using FML 6-69

../rf3fml/rf3fml.html
../rf3fml/rf3fml.html

6-70

int
Frstrindex (FBFR *fbfr, FLDOCC numidx)

Here:
e fbhfrisapointer to afielded buffer.

e numidx iSthe value returned by the Funindex function.

For more information, refer to Frstrindex, Frstrindex32 (3fml) in Oracle Tuxedo ATMI
FML Function Reference.

Funindex

Funindex discardstheindex of afielded buffer and returnsthe number of index entriesthe buffer
had before the index was stripped.

FLDOCC
Funindex (FBFR *fbfr)

Here fofr isapointer to afielded buffer.

For more information, refer to Funindex, Funindex32 (3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Example of Sending a Fielded Buffer Without an Index

To transmit a fielded buffer without itsindex, complete a procedure such as the following:

1. Remove theindex:
save = Funindex (fbfr) ;

2. Get the number of bytesto send (that is, the number of significant bytes from the beginning
of the buffer):

num_to_send = Fused(fbfr);
3. Send the buffer without the index:

transmit (fbfr,num_to_send) ;
4. Restoretheindex to the buffer:

Frstrindex (fbfr, save) ;
Theindex may be regenerated on the receiving side by the following statement:

Findex (fbfr) ;

Programming an Oracle Tuxedo ATMI Application Using FML

../rf3fml/rf3fml.html
../rf3fml/rf3fml.html

Input/Output Functions

Note that the receiving process cannot call Frstrindex because it did not remove the index
itself, and the index was not sent with thefile.

Note: The spaceused in memory by theindex isnot freed by calling Funindex. The Funindex
function only saves space on disk or when sending a buffer to another process. Of course,
you are always free to send a fielded buffer and its index to another process and avoid
using these functions.

Input/Output Functions

Thefunctions described in this section support input and output of fielded buffersto standard I/O
or to file streams.

Fread and Fwrite

The I/O functions Fread and Fwrite work with the standard 1/O library:

int Fread(FBFR *fbfr, FILE *iop)
int Fwrite(FBFR *fbfr, FILE *iop)

The stream to which—or from which—I/O isdirected is determined by arF1LE pointer argument.
This argument must be set up using the normal standard 1/O library functions.

A fielded buffer may be written into a standard 1/0 stream with the function Fwrite, asfollows:

if (Fwrite(fbfr, iop) < 0)

F_error ("pgm_name") ;

A buffer written with Fwrite may be read with Fread, asfollows.

if (Fread (fbfr, iop) < 0)

F_error ("pgm_name") ;

Although the contents of the fielded buffer pointed to by fofr arereplaced by the fielded buffer
read in, the capacity of the fielded buffer (that is, the size of the buffer) remains unchanged.

Fwrite discardsthe buffer index, writing only as much of the fielded buffer as has been used (as
returned by Fused).

Fread restores theindex of abuffer by calling rindex. The buffer isindexed with the same
indexing interval with which it waswritten by Fwrite. Fread32 ignoresthe rL.p_ptr field type.

For more information, refer to Fread, Fread32 (3fml) and Fwrite, Fwrite32 (3fml) in
Oracle Tuxedo ATMI FML Function Reference.

Programming an Oracle Tuxedo ATMI Application Using FML 6-71

../rf3fml/rf3fml.html
../rf3fml/rf3fml.html

6-72

Fchksum
A checksum may be calculated for verifying I/O, as follows:

long chk;

chk = Fchksum(fbfr) ;

The user isresponsible for calling Fchksum, writing the checksum value out, along with the
fielded buffer, and checking it on input. Fwrite does not write the checksum automatically. For
pointer fields (FLD_pTR), the name of the pointer field in the checksum calculation (rather than
the pointer or the data referenced by the pointer) isincluded.

For more information, refer to Fchksum, Fchksum32 (3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Fprint and Ffprint

The rprint function prints a fielded buffer on the standard output in text format.
Fprint (FBFR *fbfr)

Here fbfr isapointer to afielded buffer.

Ffprint iSSimilar to Fprint, except that it sends text to a specified output stream, asin the
following line:

Ffprint (FBFR *fbfr, FILE *iop)

Here:
e rbrrisapointer to afielded buffer.

e iopisapointer of type FILE to the output stream.

Each of these print functions prints, for each field occurrence, the field name and thefield value,
separated by atab and followed by anew line. Fname is used to determine the field name. If the
field name cannot be determined, then the field identifier is printed. Non-printable charactersin
the field values for strings and character arrays are represented by a backslash followed by their
two-character hexadecimal value. Backslashes occurring in the text are escaped with an extra
backslash. A blank lineis printed following the output of the printed buffer.

For values of type FLD_PTR, Fprint32 printsthe field name or field identifier and the pointer
value in hexadecimal. Although this function prints pointer information, the Fextread32
function ignores the r.o_pTR field type. For values of type FL.D_FML32, Fprint32 recursively

Programming an Oracle Tuxedo ATMI Application Using FML

../rf3fml/rf3fml.html

Input/Output Functions

prints the FML 32 buffer, with leading tabs added for each level of nesting. For values of type
FLD_VIEW32, thisfunction printsthe VIEW32 field name and structure member name/value
pairs.

For more information, refer to Fprint, Fprint32 (3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Fextread

Fextread May be used to construct afielded buffer from its printed format, that is, from the
output of Fprint (hexadecimal values output by Fprint areinterpreted properly).

int
Fextread (FBFR *fbfr, FILE *iop)

Fextread accepts an optional flag preceding the field name/field identifier specification in the
output of Fprint, as shown in the following table.

Table 6-10 Fextread Flags
Flag Indicates

+ Field should be changed in the buffer

- Field should be deleted from the buffer

= One field should be assigned to another

Comment line; ignored

If no flag is specified, the default action isto radd the field to the buffer.

Field values may be extended across lines by beginning each overflow line with atab (whichis
later discarded). A single blank line signals the end of the buffer; successive blank linesyield a
null buffer. For embedded buffers F.o_rm1.32 and FLD_VIEW32, Fextread generates nested

FML32 buffers and VIEW32 fields, respectively. Fextread32 ignoresthe r.o_pTr field type.

If an error has occurred, -1 isreturned, and Ferror is set accordingly. If the end of thefileis
reached before ablank line, Ferror is set to FSYNTAX.

For more information, refer to Fextread, Fextread32 (3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Programming an Oracle Tuxedo ATMI Application Using FML 6-73

../rf3fml/rf3fml.html
../rf3fml/rf3fml.html

Boolean Expressions of Fielded Buffers

This topic includes the following sections:
e Definitions of Boolean Expressions
e Field Names and Types
e How aBoolean Expression Is Converted for Evaluation

e Description of Boolean Primary Expressions

This section describes the functions available for evaluating Boolean expressions in which the
“variables’ are the values of fieldsin afielded buffer or a VIEW. Functions described in this
section allow you to:

e Compile a Boolean expression into a compact form suitable for evaluation

e Evaluate a Boolean expression against afielded buffer or aVIEW, returning atrue or false
answer

e Print a compiled Boolean expression

A function is provided that compiles the expression into a compact form suitable for efficient
evaluation. A second function evaluates the compiled form against afielded buffer to produce a
true or false answer.

Definitions of Boolean Expressions

This section describes, in detail, the expressions accepted by the Boolean compilation function,
and explains how each expression is evaluated.

The following standard C language operators are not supported:
e Shift operators: << and >>

e Bitwise“or” and “and” operators. | | and & &

Conditional operator: ?
e Prefix and postfix incrementation and decrementation operators: ++ and --
e Address and indirection operators. & and *

e Assignment operator: =

6-74 Programming an Oracle Tuxedo ATMI Application Using FML

e Comma operator: ,

Definitions of Boolean Expressions

The following table shows the Backus-Naur Form definitions of the accepted Boolean

expressions.

Table 6-11 BNF Boolean Expression Definitions

Expression Definition

<boolean> <boolean> | | <logical and> | <logical and>
<logical and> <logical and> & & <xor expr> | <xor expr>
<xor expr> <xor expr> " <equality expr> | <equality expr>

<equality expr>

<equality expr> <eq op> <relational expr> | <relational expr>

<eq Op>

==|1= | %% | 1%

<relational expr>

<relational expr> <rel op> <additive expr> | <additive expr>

<rel op>

<|<=|>=]>|

<additive expr>

<additive expr> <add op> <multiplicative expr> | <multiplicative expr>

<add op>

+ -

<multiplicative expr>

<multiplicative expr> <mult op> <unary expr> | <unary expr>

<mult op> *11| %
<unary expr> <unary op> <primary expr> | <primary expr>
<unary op> - ~]!

<primary expr>

(<boolean>) | <unsigned constant> | <field ref>

<unsigned constant>

<unsigned number> | <string>

<unsigned number>

<unsigned float> | <unsigned int>

<string>

' <character> { <character>. . .} '

<field ref>

<field name> | <field name>[<field occurrence>]

<field occurrence>

<unsigned int> | <meta>

<meta>

?

Programming an Oracle Tuxedo ATMI Application Using FML 6-75

The following sections describe Boolean expressions in greater detail.

Field Names and Types

6-76

The only variables allowed in Boolean expressions are field references. There are several
restrictions on field names. Names are made up of |etters and digits; the first character must be a
letter. The underscore (_) counts as aletter; it is useful for improving the readability of long
variable names. Up to 30 characters are significant. There are no reserved words.

For afielded buffer evaluation, any field that isreferenced in a Boolean expression must exist in
afield table. Thisimpliesthat the FLDTBLDIR and FIELDTBLS environment variables are set, as
described in “ Setting Up Y our Environment for FML and VIEWS’ on page 4-1 before using the
Boolean compilation function. Thefield typesused in Booleansarethose allowed for FML fields:
short, long, float, double, char, string, and carray. Along with the field name, the field
typeiskept in the field table. Thus, the field type can aways be determined.

For aVIEW evaluation, any field that is referenced in a Boolean expression must exist asaC
structure element name, not the associated fielded buffer name, in the VIEW. Thisimplies that
the viEwpIr and VIEWFILES environment variables are set, as described in “ Setting Up Y our
Environment for FML and VIEWS’ on page 4-1 before using the Boolean compilation function.
The field types used in Booleans are those allowed for FML VIEWS: short, long, float,
double, char, string, carray, plus int and dec_t. Along with the field name, the field type
iskept in the view definition. Thus, the field type can always be determined.

Strings

A string isagroup of characters within single quotes. The ASCII code for a character may be
substituted for the character via an escape sequence. An escape sequence takes the form of a
backslash followed by exactly two hexadecimal digits. This convention differsfrom the C
language convention of using a hexadecimal escape sequencethat startswith \x.

Asan example, consider ‘hello’ and ‘hell\\6f'. They are equivalent strings because the
hexadecimal codeforan ‘o’ isé6f.

Octal escape sequences and escape sequences such as \n are not supported.

Constants

Numeric integer and floating point constants are accepted, asin C. (Octa and hexadecimal
constants are not recognized.) Integer constants are treated as 1ongs and floating point constants
are treated as doubles. (Decimal constants for the dec_t type are not supported.)

Programming an Oracle Tuxedo ATMI Application Using FML

How a Boolean Expression Is Converted for Evaluation

How a Boolean Expression Is Converted for Evaluation

To evaluate a Boolean expression, the Boolean compiler performs the following conversions:

e |t converts short and int valuesto longs.
e |t converts float and decimal valuesto doubles.
e |t converts charactersto strings.

e To compare a hon-quoted string within afield to a numeric, it converts the string to a
numeric value.

e To compare aconstant (that is, aquoted) string to a numeric, it converts the numeric to a
string, and does alexical comparison.

e To compare a long and adouble, it convertsthe 1ong to adouble.

Description of Boolean Primary Expressions

Boolean expressions are built from primary expressions, which can be any of the following:
e field name—afield name
e field name[constant]—afield name and a constant subscript
e field name[?]—afield nameandthe ‘>’ subscript
® constant—aconstant

® (expression)—an expression in parentheses

A field name or afield name followed by a subscript is a primary expression. The subscript
indi cateswhich occurrence of thefield isbeing referenced. The subscript may be either aninteger
constant, or » indicating any occurrence; the subscript cannot be an expression. If thefield name
is not subscripted, field occurrence 0 is assumed.

If afield name reference appears without an arithmetic, unary, equality, or relational operator,
then its value isthe long integer value 1 if the field exists and O if the field does not exist. This
may be used to test the existence of afield in the fielded buffer regardiess of field type. (Note that
thereisno * indirection operator.)

A constant isaprimary expression. ltstype may be 1ong, double, Of carray, asdiscussedinthe
conversion section.

Programming an Oracle Tuxedo ATMI Application Using FML 6-717

A parenthesized expression is a primary expression for which the type and value are identical to
those of the unadorned expression. Parentheses may be used to change the precedence of
operators, which is discussed in the next section.

Description of Boolean Expression Operators

The following table lists the Boolean expression operatorsin descending order of precedence.

Table 6-12 Boolean Expression Operators

Type Operators

Unary +, -1~
Multiplicative * 1, %

Additive +, -

Relational <,>, <=,>= ==, I=
Equality and matching ==, 1=, %%, !%
Exclusive OR A

Logical AND &&

Logica OR |

The operators classified asthe same operator type have equal precedence. Thefollowing sections
discuss each operator type in detail. Asin C, you can override the precedence of operators by
using parentheses.

Unary Operators Used in Boolean Expressions

The following unary operators are recognized:
e Unary plus operator: +
e Unary minus operator: -
e The one's complement operator: ~

e Logical not operator: !

6-78 Programming an Oracle Tuxedo ATMI Application Using FML

Description of Boolean Primary Expressions

Expressions in which unary operators are used group right-to-1eft:

+ expression
- expression
~ expression

| expression

The unary plus operator has no effect on the operand; it is recognized and ignored. The result of
the unary minus operator is the negative of its operand. The usual arithmetic conversions are
performed. Unsigned entities do not exist in FML and thus cause no problems with this operator.

The result of the logical negation operator is 1 if the value of its operand is 0, and O if the value
of its operand is non-zero. The type of the result is 1ong.

Theresult of the one's complement operator isthe one's complement of its operand. The type of
theresult is 1ong.

Multiplicative Operators Used in Boolean Expressions

The multiplicative operators—, /, and s—group left-to-right. The usual arithmetic conversions
are performed:

expression * expression
expression / expression

expression % expression

Thebinary * operator indicates multiplication. The * operator i s associative and expressionswith
several multiplications at the same level may be rearranged by the compiler.

Thebinary / operator indicatesdivision. When positive integers are divided, truncation istoward
0, but the form of truncation is machine-dependent if either operand is negative.

Thebinary ¢ operator yieldstheremainder from thedivision of thefirst expression by the second.
The usual arithmetic conversions are performed. The operands must not be £1oat Or double.

Additive Operators Used in Boolean Expressions

The additive operators + and - group left-to-right. The usual arithmetic conversions are
performed:

expression + expression

expression - expression

Programming an Oracle Tuxedo ATMI Application Using FML 6-79

Theresult of the + operator isthe sum of the operands. The + operator is associative and
expressions with several additions at the same level may be rearranged by the compiler. The
operands must not both be strings; if oneisastring, it isconverted to the arithmetic type of
the other.

The result of the - operator is the difference of the operands. The usual arithmetic conversions
are performed. The operands must not both be strings; if oneisastring, itisconverted to the
arithmetic type of the other.

Equality and Match Operators Used in Boolean Expressions

These operators group |eft-to-right:

expression == expression
expression != expression
expression %% expression
expression !% expression

The == (equal to) and the 1= (not equal to) operatorsyield O if the specified relation isfalse and
lif itistrue. Thetype of theresult is 1ong. The usual arithmetic conversions are performed.

The 9% operator takes, asits second expression, aregular expression against which it matchesits
first expression. The second expression (the regular expression) must be aquoted string. Thefirst
expression may be an FML field name or a quoted string. This operator yieldsa 1 if the first
expression is fully matched by the second expression (the regular expression). The operator
yieldsa0in all other cases.

The 1 operator isthe not regular expression match operator. It takes exactly the same operands
asthe g% operator, but yields exactly the opposite results. The relationship between ¢% and 1 is
analogous to the relationship between == and ! =.

The regular expressions allowed are described on the tpsubscribe (3¢) reference pagein the
Oracle Tuxedo ATMI C Function Reference.

Relational Operators Used in Boolean Expressions
These operators group |eft-to-right:

expression < expression
expression > expression
expression <= expression

expression >= expression

6-80 Programming an Oracle Tuxedo ATMI Application Using FML

../rf3c/rf3c.html

Description of Boolean Primary Expressions

The operators < (less than), > (greater than), <= (less than or equal to) and >= (greater than or
equal to) all yield O if the specified relationisfalse and 1 if it istrue. The type of the result is
long. The usual arithmetic conversions are performed.

Exclusive OR Operator Used in Boolean Expressions

The ~ operator groups left-to-right:

~

expression expression

It returns the bitwise exclusive OR function of the operands. Theresult is always a 1ong.

Logical AND Operator Used in Boolean Expressions

expression && expression

The s operator groups |eft-to-right. It returns 1 if both its operands are non-zero; otherwise, it

returns 0. The s& operator guarantees | eft-to-right evaluation. However, it is not guaranteed that
the second operand is not evaluated if thefirst operand is O; thisisdifferent from the C language.
The operands need not have the same type. The result is alwaysa 1ong.

Logical OR Operator Used in Boolean Expressions
The | | operator groups left-to-right:
expression || expression

Itreturns1 if either of its operandsisnon-zero; otherwise, it returnso. The | | operator guarantees
left-to-right evaluation. However, it is not guaranteed that the second operand is not evaluated if
the first operand is non-zero; thisis different from the C language. The operands need not have
the same type, and the result isalwaysa 1ong.

Sample Boolean Expressions

The following field table defines the fields used for the sample Boolean expressions:

EMPID 200 carray
SEX 201 char
AGE 202 short
DEPT 203 long
SALARY 204 float
NAME 205 string

Programming an Oracle Tuxedo ATMI Application Using FML 6-81

Boolean expressions always evaluate to either true or false. The following exampleistrueif both
of the following conditions are true:

e Field occurrence 2 of EmMP1D exists and begins with the characters “123.”

e The agefield (occurrence 0) appears and is less than 32.

"EMPID[2] %% '123.*' && AGE < 32"

This example uses a constant integer as a subscript to emp1D. In the following example, the »
subscript is used, instead:

"PETS[?] == 'dog'"

This expression istrue if pPETs exists and any occurrence of it contains the characters “dog”.

Boolean Functions

6-82

The following sections describe the various functions that take Boolean expressions as
arguments.

Fhoolco and Fvhooico

Fboolco compiles a Boolean expression for FML and returns a pointer to an evaluation tree:

char *

Fboolco (char *expression)

Here *expression isapointer to an expression to be compiled. Thisfunction failsif any of the
following field typesis used: FL.D_PTR, FLD_FML32, Of FL.D_VvIEW32. If one of these field types
is encountered, Ferror iS Set to FEBADOP.

Fvboolco compilesaBoolean expression for aVIEW and returns a pointer to an evaluation tree;

char *

Fvboolco (char *expression, char *viewname)

Here *expression isapointer to an expression to be compiled, and *viewname iSapointer to
the view name for which the fields are evaluated.

Spaceisalocated using ma11oc(3) to hold the evaluation tree. For example, the following code
compiles aBoolean expression that checks whether the FTrsTNaME field isin the buffer, whether
it beginswith*J and endswith ‘n’ (such as*“John” or “Joan”), and whether the sex field is equal
to‘M’.

Programming an Oracle Tuxedo ATMI Application Using FML

Boolean Functions

#include "<stdio.h>"
#include "fml.h"
extern char *Fboolco;

char *tree;

if ((tree=Fboolco ("FIRSTNAME %% 'J.*n' && SEX == 'M'")) == NULL)

F_error ("pgm_name") ;

The first and second characters of the tree array form the least significant byte and the most
significant byte, respectively, of an unsigned 16-bit quantity that givesthelength, in bytes, of the
entire array. Thisvalue is useful for copying or otherwise manipulating the array.

Because the evaluation tree produced by Fboolco isused by the Boolean functions described in
the following sections, it is not necessary to recompile the expression constantly.

Use the free(3) function to free the space all ocated to an evaluation tree when the Boolean
expression will no longer be used. Compiling many Boolean expressions without freeing the
evaluation tree when it is no longer needed may cause a program to run out of data space.

For more information, refer to Fboolco, Fboolco32, Fvboolco, Fvboolco32 (3fml) in
Oracle Tuxedo ATMI FML Function Reference.

Fhoolpr and Fvhoolpr

Fboolpr prints acompiled expression to the specified file stream. The expression isfully
parenthesized, asit was parsed (as indicated by the evaluation tree).

void
Fboolpr (char *tree, FILE *iop)

Here:
e *tree iSapointer to a Boolean tree previously compiled by Fboolco.

e *iop isapointer of type FILE to an output file stream.
Fvboolpr prints acompiled expression to the specified file stream.

void

Fvboolpr (char *tree, FILE *iop, char *viewname)

Here:

e *tree isapointer to a Boolean tree previously compiled by Fvboolco.

Programming an Oracle Tuxedo ATMI Application Using FML 6-83

../rf3fml/rf3fml.html

6-84

e *iop isapointer of type FILE to an output file stream.

e *viewname iSthe name of the view whose fields are used.
This function is useful for debugging.
Executing Fboolpr on the expression compiled above produces the following results:
(((FIRSTNAME[0]) %% ('J.*n')) && ((SEX[0]) == ('M')))

For more information, refer to Fboolpr, Fboolpr32, Fvboolpr, Fvboolpr32(3fml) in
Oracle Tuxedo ATMI FML Function Reference.

Fboolev and Ffloatev, Fvboolev and Fvfloatev
These functions evaluate afielded buffer against a Boolean expression.

int Fboolev (FBFR *fbfr,char *tree)
double Ffloatev(FBFR *fbfr,char *tree)

Here:
o rbrristhefielded buffer referenced by an evaluation tree produced by Fboolco.

e treeiSapointer to an evaluation tree that references the fielded buffer pointed to by fbfr.
The VIEW equivaents are as follows:
int
Fvboolev (FBFR *fbfr,char *tree,char *viewname)

double

Fvfloatev (FBFR *fbfr,char *tree,char *viewname)

Fboolev returnstrue (1) if the fielded buffer matches the Boolean conditions specified in the
evaluation tree. This function does not change either the fielded buffer or the evaluation tree.
Using the evaluation tree compiled above, the following code prints “ Buffer selected”:

#include <stdio.h>
#include "fml.h"
#include "fldtbl.h"
FBFR *fbfr;

Fchg (fbfr, FIRSTNAME, 0, "John", 0) ;

Fchg (fbfr,SEX,0, "M",0) ;
if (Fboolev (fbfr, tree) > 0)

Programming an Oracle Tuxedo ATMI Application Using FML

../rf3fml/rf3fml.html

VIEW Conversion to and from Target Format

fprintf (stderr, "Buffer selected\n");
else

fprintf (stderr, "Buffer not selected\n");

Ffloatev and Ffloatev32 are similar to Fboolev, but return the value of the expression asa
double. For example, the following code prints “6.6”:

#include <stdio.h>
#include "fml.h"
FBFR *fbfr;

main() {
char *Fboolco;
char *tree;
double Ffloatev;
if (tree=Fboolco("3.3+3.3")) {
printf ("%$1f",Ffloatev (fbfr, tree));

}
If Fboolevisusedinstead of Ffloatev in the previous example, alis printed.

For more information, refer to Fboolev, Fboolev32, Fvboolev, Fvboolev32 (3fml) and
Ffloatev, Ffloatev32, Fvfloatev, Fvfloatev32 (3fml) in Oracle Tuxedo ATMI FML
Function Reference.

VIEW Conversion to and from Target Format

A VIEW can be converted to and from atarget record format. The default target format isthat of
IBM System/370 COBOL records.

Fvstot, Fvftos and Fcodeset
The following functions convert targets:

long

Fvstot (char *cstruct, char *trecord, long treclen, char *viewname)

long

Fvttos (char *cstruct, char *trecord, char *viewname)

Programming an Oracle Tuxedo ATMI Application Using FML 6-85

../rf3fml/rf3fml.html
../rf3fml/rf3fml.html

6-86

int

Fcodeset (char *translation_table)

The Fvstot function transfers data from a C structure to a target record type. The Fvttos
function transfers data from atarget record to a C structure. trecord isapointer to the target
record. cstruct isapointer to aC structure. viewname iSapointer to the name of a compiled
view description. The viEwDIR and VIEWFILES environment variables are used to find the
directory and file containing the compiled view description.

To convert an FML buffer to atarget record, complete the following procedure.
1. Cal rvftos to convert the FML buffer to a C structure.

2. Cdl rvstot to convert to atarget record.
To convert atarget record to an FML buffer, complete the following procedure.

1. Call Fvttos to convert to a C structure.

2. Cdl rFvstof to convert the structure to an FML buffer.

The default target is that of IBM/370 COBOL records. The default data conversion is done as
shown in the following table.

Programming an Oracle Tuxedo ATMI Application Using FML

VIEW Conversion to and from Target Format

Tahle 6-13 Data Conversion from a Structure to a Record

Struct Record

float COMP-1

double COMP-2

long S9(9) CoMP

short S9(4) coMP

int S9(9) COMPoOrs9(4) COMP
dec_t(m, n) S9 (2*m-(n+1))V9 (n) COMP-3
ASCIl char EBCDIC char

ASCIl string EBCDIC string

carray Character array

No filler bytes are provided between fieldsin an IBM/370 record. The COBOL SYNC clause
should not be specified for any dataitems that are a part of the structure corresponding to the
view. Aninteger field is converted to either afour-byte or two-byteinteger, depending onthe size
of integers on the machine on which the conversion is done. A string field in the view must be
terminated with anull when converting to and from the IBM/370 format. The datain acarray
field is passed unchanged; no data tranglation is performed.

Packed decimals exist in the IBM/370 environment as two decimal digits packed into one byte
with the low-order half byte used to store the sign. The length of a packed decimal may be 1 to
16 bytes with storage available for 1 to 31 digits and a sign. Packed decimals are supported in C
structures using the dec_t field type. The dec_t field has a defined size consisting of two
numbers separated by acomma. The number to the left of the commaisthe total number of bytes
occupied by the decimal. The number to the right is the number of digitsto the right of the
decimal point. The following formulais used for conversion:

dec_t(m, n) <=> S9(2*m-(n+1))V9 (n)COMP-3

Decimal values may be converted to and from other data types (such as int, long, string,
double, and float) using the functions described in decimal (3c).

Seethervstof, Fvstof32(3fml) for adescription of the default character conversion of
ASCII to EBCDIC, and vice-versa.

Programming an Oracle Tuxedo ATMI Application Using FML 6-87

../rf3fml/rf3fml.html
../rf3c/rf3c.html

An aternate character trandation table can be used at run time by calling Fcodeset. The
translation_table must point to 512 bytes of binary data. Thefirst 256 bytes of data are
interpreted as the ASCII-to-EBCDIC trand ation table. The second 256 bytes of data are

interpreted asthe EBCDIC-to-ASCI| table. Any dataafter the 512th byteisignored. If the pointer
iSNULL, the default trandlation is used.

For moreinformation, refer to Fvstot, Fvttos (3fml) inOracle Tuxedo ATMI FML Function
Reference.

6-88 Programming an Oracle Tuxedo ATMI Application Using FML

../rf3fml/rf3fml.html

FML and VIEWS Examples

Thistopic includes the following sections:
e VIEWS Examples

e FML Examplesin bankapp

VIEWS Examples

The VIEWS examples provided in this section are unrelated to the example FML program that

appears later in this section.

Sample Viewfile

Listing 7-1 isasample of aviewfile containing a source view description, custdb.

Listing 7-1 Sample Viewfile

BEGINNING OF VIEWFILE

VIEW custdb

/* This is a comment */

/* This is another comment */

#TYPE CNAME FBNAME COUNT FLAG
carray bug BUG_CURS 4 -
long custid CUSTID 2 -
short super SUPER_NUM 1 -
long youid ID 1 -

"no bugs"

Programming an Oracle Tuxedo ATMI Application Using FML 1-1

float tape TAPE_SENT 1 - - -.001

char ch CHR 1 - - "o"
string action ACTION 4 - 20 "no action"
END

#END OF VIEWFILE

Sample Field Table

Listing 7-2 isasample of afield table needed to compile the view in the last section.

Listing 7-2 Sample Field Table

name number type flags comments
CUSTID 2048 long - -
VERSION_RUN 2055 string - -

ID 2056 long - -

CHR 2057 char - -
TAPE_SENT 2058 float - -
SUPER_NUM 2066 short - -
ACTION 2074 string - -
BUG_CURS 2085 carray - -

Sample Header File Produced by viewc

Listing 7-3 shows a header file produced by the view compiler. Assume that the viewfile in the
earlier section was used asinput to viewc.

Listing 7-3 Sample Header File Produced by viewc

struct custdb {

char bugl4]1[12]; /* null="no bugs" */
long custidl[2]; /* null=-1 */
short super; /* null=999 */
long youid; /* null=-1 */
float tape; /* null=-0.001000 */

1-2 Programming an Oracle Tuxedo ATMI Application Using FML

char
char
i

ch;

action[4]1[207;

/* null="0"

/* null="no action"

*/
*/

VIEWS Examples

Sample Header File Produced by mkfldhdr

Listing 7-4 shows aheader file produced from afield tablefile by mk f1anar. Assumethat afield
tablefile containing the definitions of thefields shown in the previous exampleswas used asinput
t0o mkf1dndr.

Listing 7-4 Sample Header File Produced by mkfldhdr(1)

/* custdb.flds.h as generated by mkfldhdr from

/*

/'k

#define
#define
#define
#define
#define
#define
#define
#define

fname
ACTION
BUG_CURS
CUSTID
SUPER_NUM
TAPE_SENT
VERSION_RUN
ID

CHR

fldid
FLDID)43034)
FLDID)51237)
FLDID)10240)
FLDID)2066)
FLDID)26634)
FLDID)43015)
FLDID)10248)
FLDID)18441)

/*
/*
/'k
/*
/*
/'k
/*
/*

number :
number :
number :
number :
number :
number :
number :
number :

a field table:

2074
2085
2048
2066
2058
2055
2056
2057

type:
type:
type:
type:
type:
type:
type:
type:

string
carray
long
short
float
string
long
char

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Sample COBOL COPY File

Listing 7-5 showsthe COBOL COPY file, custpi. cbl, produced by viewc with the -c option.

Listing 7-5 Sample COBOL COPY File

VIEWFILE:
VIEWNAME :

R
"custdb"

05 BUG OCCURS 4 TIMES
* NULL="no bugs"

05 CUSTID OCCURS 2 TIMES
* NULL=-1

05 SUPER

* NULL=999

Programming an Oracle Tuxedo ATMI Application Using FML

PIC X(12).

PIC S9(9)

PIC S9(4)

USAGE IS COMP-5.

USAGE IS COMP-5.

1-3

05 FILLER PIC X(02).

05 YOUID PIC S9(9) USAGE IS COMP-5.
* NULL=-1

05 TAPE USAGE IS COMP-1.
* NULL=-0.001000

05 CH PIC X(01).
* NULL='0"

05 ACTION OCCURS 4 TIMES PIC X(20).
* NULL="no action"

05 FILLER PIC X(03).

For asample COBOL program that includes a COBOL COPY file produced by viewc -c, see
Programming an Oracle Tuxedo ATMI Application Using COBOL.

Sample VIEWS Program

The following program in Listing 7-6 is an example of the use of VIEWS to map a structureto a
fielded buffer. The environment variables discussed in “ Setting Up Y our Environment for FML
and VIEWS’ on page 4-1 must be properly set for this program to work.

Information on compiling FML programs can be found on the compilation (5) reference page
in Oracle Tuxedo File Formats, Data Descriptions, MIBs, and System Processes Reference.

Listing 7-6 Sample VIEWS Program

/* sample VIEWS program */
#include stdio.h>
#include "fml.h"

#include "custdb.flds.h" /* field header file shown in */
/* “Sample Header File Produced by viewc” listing */
#include "custdb.h" /* C structure header file produced by */

/* viewc shown in “Sample Field Table” listing */
#define NF 800
#define NV 400
extern Ferror;
main ()
{
/* declare needed program variables and FML functions */
FBFR *fbfr,*Falloc();
void F_error();
char *str, *cstruct, buff[100];
struct custdb cust;

1-4 Programming an Oracle Tuxedo ATMI Application Using FML

../rf5/rf5.html

VIEWS Examples

/* allocate a fielded buffer */

if ((fbfr = Falloc(NF,NV)) == NULL) {
F_error ("sample.program") ;
exit (1) ;
}
/* initialize str pointer to point to buff */
/* copy string values into buff, and */

/* Fadd values into some of the fields in fbfr */

str = &buff;

strcpy (str, "13579") ;

if (Fadd(fbfr,ACTION, str, (FLDLEN)6) < 0)
F_error ("Fadd") ;

strcpy (str, "actll");

if (Fadd(fbfr,ACTION, str, (FLDLEN)6) < 0)
F_error ("Fadd") ;

strcpy (str, "This is a one test.");

if (Fadd(fbfr,BUG_CURS, str, (FLDLEN)19) < 0)
F_error ("Fadd") ;

strcpy (str, "This is a two test.");

if (Fadd(fbfr,BUG_CURS, str, (FLDLEN)19) < 0)
F_error ("Fadd") ;

strcpy (str, "This is a three test.");

if (Fadd(fbfr,BUG_CURS, str, (FLDLEN)21) < 0)
F_error ("Fadd") ;

/* Print out the current contents of the fbfr */
printf ("fielded buffer before:\n"); Fprint (fbfr);
/* Put values in the C structure */

cust.tape = 12345;

cust.super = 999;
cust.youid = 80;
cust.custid[0] = -1; cust.custid[1l] = 75;

str = cust.bug[0][0];

strncpy (str, "no bugsl12345",12);
str = cust.bug[1l][0];

strncpy (str, "yesbugs01234",12) ;
str = cust.bug[2][0];

strncpy (str, "no bugsights",12);
str = cust.bug[3][0];

strncpy (str, "no bugsysabc",12);
str = cust.action[0][0];

strcpy (str, "yesaction") ;

str = cust.action[1l][0];

Programming an Oracle Tuxedo ATMI Application Using FML 1-5

strcpy (str, "no action");
str = cust.action[2][0];
strcpy (str, "222action") ;
str = cust.action[3]1[0];
strcpy (str, "no action");
cust.ch = '0"';
cstruct = (char *)&cust;

7

/* Update the fbfr with the values in the C structure */
/* using the custdb view description. */

if (Fvstof (fbfr,cstruct, FUPDATE, "custdb") < 0) {
F_error ("custdb") ;
Ffree (fbfr) ;
exit (1) ;

/* Note that the following would transfer */

/* data from fbfr to cstruct */

/*

if (Fvftos(fbfr,cstruct, "custdb") < 0) {
F_error ("custdb") ;

Ffree (fbfr) ;

exit (1) ;
Y o*/
/* print out the values in the C structure and */
/* the values in the fbfr */
printf ("cstruct contains:\en");
printf ("action=:%s:\n",cust.action[0][0]);
printf ("action=:%s:\n",cust.action[1][0]);
printf ("action=:%s:\n",cust.action[2][0]);
printf ("action=:%s:\n",cust.action[3][0]);
printf ("custid=%1d\n",cust.custid[0]) ;
printf ("custid=%1d\n",cust.custid[1l]);

(
(
(
(
(
(
(
printf ("youid=%1d\n", cust.youid) ;
(
(
(
(
(
(
(

printf ("tape=%f\n", cust.tape) ;

printf ("super=%d\n", cust.super) ;

printf ("bug=:%.12s:\n",cust.bug([0] [0]) ;

printf ("bug=:%.12s:\n",cust.bug[1][0]);

printf ("bug=:%.12s:\n",cust.bug[2]11[01]) ;

printf ("bug=:%.12s:\en",cust.bug[3]1[0]);
printf ("ch=:%c:\n\n",cust.ch);

printf("fielded buffer after:\n");
Fprint (fbfr) ;
Ffree (fbfr) ;
exit(0);

1-6 Programming an Oracle Tuxedo ATMI Application Using FML

FML Examples in bankapp

Example of VIEWS in bankapp

bankapp iSasample application distributed with the Oracle Tuxedo system. It includestwo files
inwhich aVIEWS structure is used. The structure in the example is one that does not map to an
FML buffer, so FML functions are not used to get data into or out of the structure members.

$TUXDIR/apps/bankapp/audit.c isaclient program that uses command-line optionsto
determine how to set up a service request in aview typed buffer.

The codein the server $TUXDIR/apps/bankapp/BAL. ec accepts the service request and shows
the fields from aview buffer being used to formulate ESQL statements.

See Also

e viewc, viewc32 (1) in Oracle Tuxedo Command Reference

e mkfldhdr, mkfldhdr32 (1) in Oracle Tuxedo Command Reference

FML Examples in bankapp

bankapp is asample application distributed with the Oracle Tuxedo system. The servers

ACCT.ec
BTADD. ec
TLR.ecC

show FML functions being used to manipulate datain FML typed buffers that have been passed
to the servers from bankc1t, the bankapp client.

Note that in these serversthe ATMI functions tpalloc (3¢) and tprealloc (3c)—rather than
the FML functions Falloc, Falloc32(3fml) and Frealloc, Frealloc32 (3fml)—are
used to allocate message buffers.

Programming an Oracle Tuxedo ATMI Application Using FML 1-1

../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rfcm/rfcmd.html
../rfcm/rfcmd.html

1-8 Programming an Oracle Tuxedo ATMI Application Using FML

RECORD Examples

Thistopic includes the following sections:
e RECORD Example: COBOL Copybook File
e RECORD Example: RECORD Programs

RECORD Example: COBOL Copybook File

Listing 8-1 isasample of COBOL copybook.

Listing 8-1 Sample of COBOL Copyhook File

* customer.cpy

01 CUSTOMER.
05 name PIC X(10).
05 balance PIC S9(9) COMP-5.
05 address PIC X(80).

Use cpy2record customer. cpy t0 generate RECORD description file customer . R in binary
format. This RECORD description file is generated from COBOL copybook file through
cpy2record and used by application program at run time.

Programming an Oracle Tuxedo ATMI Application Using FML 8-1

RECORD Example: RECORD Programs

Listing 8-2 and Listing 8-3 are examples of using RECORD to map COBOL record to RECORD
buffer. The environment variables discussed in Setting up Y our Environment for RECORD must
be properly set.

Listing 8-2 Sample of RECORD Client Program

#include <stdio.h>
#include <atmi.h>

#include <fml32.h>

int main()
{
/* declare needed program variables */
struct RECORD *pRec;
int bal = 0;
int rtn;

long len;

/* attach to System/T as a client process */
if (tpinit ((TPINIT *) NULL) == -1) {
(void) fprintf (stderr, "Tpinit failed\n");

exit (1) ;

/* allocate memory to store the RECORD data buffer */
len = Frneeded("CUSTOMER") ;

pRec = (struct RECORD *)tpalloc ("RECORD", "CUSTOMER", len);

8-2 Programming an Oracle Tuxedo ATMI Application Using FML

RECORD Example: RECORD Programs

/* initialize buffer */

Rinit (pRec, NULL, 0, 0);

/* set the value in the RECORD */

Rset (pRec, "name", "Michael", C_STRING, 0, 0);

/* call service */

tpcall ("CUSTSVC", (char *)pRec, 0, (char **)&pRec, &len, (long)O0);

/* get item from reply */
rtn = Rget(pRec, "balance", &bal, C_INT, NULL, O0);

if(rtn < 0) {

userlog ("Rget failed. %d %s\n",Ferror32, Fstrerror32 (Ferror32));

}

userlog ("The balance is %d\n", bal);

return 0;

}

Listing 8-3 Sample of RECORD Server Program

#include <stdio.h>

#include <atmi.h>

void CUSTSVC (TPSVCINFO *rgst)

{

Programming an Oracle Tuxedo ATMI Application Using FML

8-3

/* declare needed program variables */
struct RECORD *pRec;

char name([20];

int balance = 12345;

int len = sizeof (name) ;

int rtn;

/* retrieve RECORD buffer */

pRec = (struct RECORD *)rgst->data;

/* get data from RECORD buffer */
rtn = Rget(pRec, "name", name, C_STRING, &len, 0);
if(rtn < 0) {
userlog ("Rget failed. %d %s\n",Ferror32, Fstrerror32(Ferror32));
}

userlog ("customer name: %s", name) ;

/* set data to RECORD buffer */
Rset (pRec, "balance", &balance, C_INT, 0, 0);
if(rtn < 0) {

userlog("Rset failed. %d %s\n",Ferror32, Fstrerror32(Ferror32));

tpreturn (TPSUCCESS, 0, (char *)pRec, 0L, O0);

}

8-4 Programming an Oracle Tuxedo ATMI Application Using FML

See Also

See Also

cpy2record in Oracle Tuxedo Command Reference.

Programming an Oracle Tuxedo ATMI Application Using FML 8-5

../rfcm/rfcmd.html#wp2078938

8-6 Programming an Oracle Tuxedo ATMI Application Using FML

FML Error Messages

The following table lists the error codes, numbers, and messages that you might seeif an error

occurs during the execution of an FML program.

Table A-1 FML Error Codes and Messages

Error Code # Error Message

FALIGN 1 Fielded buffer not aligned
FNOTFLD 2 Buffer not fielded

FNOSPACE 3 No spacein fielded buffer
FNOTPRES 4 Field not present

FBADFLD 5 Unknown field number or type
FTYPERR 6 Ilegal field type

FEUNIX 7 UNIX system call error
FBADNAME 8 Unknown field name
FMALLOC 9 malloc faled

FSYNTAX 10 Bad syntax in Boolean expression
FFTOPEN 11 Cannot find or open field table

Programming an Oracle Tuxedo ATMI Application Using FML

A-1

Tahle A-1 FML Error Codes and Messages (Continued)

Error Code # Error Message

FFTSYNTAX 12 Syntax error in field table
FEINVAL 13 Invalid argument to function
FBADTBL 14 Destructive concurrent access to field table
FBADVIEW 15 Cannot find or get view
FVFSYNTAX 16 Syntax error in viewfile
FVFOPEN 17 Cannot find or open viewfile
FBADACM 18 ACM contains negative value
FNOCNAME 19 cname not found

FEBADOP 20 Invalid field type
FNOTRECORD 21 Invalid record type
FRFSYNTAX 22 Syntax error in recordfile
FRFOPEN 23 Cannot find or open recordfile
FBADRECORD 24 Cannot find or get record

A-2 Programming an Oracle Tuxedo ATMI Application Using FML

	Oracle® Tuxedo
	12c Release 2 (12.1.3)

	Oracle Tuxedo Programming an OracleTuxedo ATMI Application Using FML, 12c Release 2 (12.1.3)
	Contents
	Introduction to FML Programming
	What Is FML?
	How Does FML Fit into the Oracle Tuxedo System?
	Oracle Tuxedo Typed Buffers
	FML Terminology

	FML and VIEWS Features
	Dividing Records into Fields: Data Structures Versus Fielded Buffers
	Using Structures to Divide Records into Fields
	Using Fielded Buffers to Divide Records into Fields

	How Fielded Buffers Are Implemented with FML
	FML Features
	What Is a Fielded Buffer?
	Supported Field Types
	Type int in VIEWS
	Type dec_t in VIEWS

	Field Name-to-Identifier Mappings
	Run Time: Field Table Files
	Compile Time: Header Files

	Fielded Buffer Indexes
	Multiple Occurrence Fields in a Fielded Buffer
	Boolean Expressions and Fielded Buffers
	VIEWS Features
	Multiple Occurrence Fields in VIEWS

	Error Handling for FML Functions

	RECORD Features
	RECORD Features
	Setting up Your Environment for RECORD

	Setting Up Your Environment for FML and VIEWS
	Environment Requirements for FML and VIEWS
	FML Directory Structure
	Environment Variables Used by FML and VIEWS
	VIEW32 Support for MBSTRING

	Defining and Using Fields
	Preparing to Use FML and VIEWS
	Defining Fields for FML and VIEWS
	Defining Field Names and Identifiers
	Creating Field Table Files
	Field Table Example

	Mapping Field Names to Field IDs
	See Also

	Loading Field Tables
	See Also

	Converting Field Tables to Header Files
	Examples of Converting Field Tables to Header Files
	Example 1
	Example 2
	Example 3

	Overriding Environment Variables to Run mkfldhdr

	Mapping Fields to C Structures and COBOL Records
	What Is the VIEWS Facility?
	Structure of VIEWS

	Creating Viewfiles
	Creating View Descriptions
	Specifying flag Options in a View Description
	Using NULL Values in VIEWS

	Compiling Viewfiles
	Using Header Files Compiled with viewc
	Using COBOL COPY Files Created by the View Compiler
	Displaying Viewfile Information After Compilation

	Field Manipulation Functions
	About This Section
	FML and VIEWS: 16-bit and 32-bit Interfaces
	Definitions of the FML Function Parameters
	Field Identifier Mapping Functions
	Fldid
	Fname
	Fldno
	Fldtype
	Ftype
	Fmkfldid

	Buffer Allocation and Initialization
	Fielded
	Fneeded
	Fvneeded
	Finit
	Falloc
	Ffree
	Fsizeof
	Funused
	Fused
	Frealloc

	Functions for Moving Fielded Buffers
	Fmove
	Fcpy

	Field Access and Modification Functions
	Fadd
	Fappend
	Fchg
	Fcmp
	Fdel
	Fdelall
	Fdelete
	Ffind
	Ffindlast
	Ffindocc
	Fget
	Fgetalloc
	Fgetlast
	Fnext
	Fnum
	Foccur
	Fpres
	Fvals and Fvall

	Buffer Update Functions
	Fconcat
	Fjoin
	Fojoin
	Fproj
	Fprojcpy
	Fupdate

	VIEWS Functions
	Fvftos
	Fvstof
	Fvnull
	Fvsinit
	Fvopt
	Fvselinit

	RECORD Functions
	Introduction to RECORD Functions
	Synopsis
	Description
	RECORD buffers
	Error Handling

	Rinit()
	Return Values

	Rget()
	Errors

	Rset()
	Errors

	Frneeded()
	Return Values

	Data Type and Conversion

	Conversion Functions
	CFadd
	CFchg
	CFget
	CFgetalloc
	CFfind
	CFfindocc

	Converting Strings
	Ftypcvt
	Conversion Rules

	Converting FLD_MBSTRING Fields
	Fmbpack32
	Fmbunpack32
	tpconvfmb32
	tpconvvmb32

	Indexing Functions
	Fidxused
	Findex
	Frstrindex
	Funindex
	Example of Sending a Fielded Buffer Without an Index

	Input/Output Functions
	Fread and Fwrite
	Fchksum
	Fprint and Ffprint
	Fextread

	Boolean Expressions of Fielded Buffers
	Definitions of Boolean Expressions
	Field Names and Types
	Strings
	Constants

	How a Boolean Expression Is Converted for Evaluation
	Description of Boolean Primary Expressions
	Description of Boolean Expression Operators
	Unary Operators Used in Boolean Expressions
	Multiplicative Operators Used in Boolean Expressions
	Additive Operators Used in Boolean Expressions
	Equality and Match Operators Used in Boolean Expressions
	Relational Operators Used in Boolean Expressions
	Exclusive OR Operator Used in Boolean Expressions
	Logical AND Operator Used in Boolean Expressions
	Logical OR Operator Used in Boolean Expressions
	Sample Boolean Expressions

	Boolean Functions
	Fboolco and Fvboolco
	Fboolpr and Fvboolpr
	Fboolev and Ffloatev, Fvboolev and Fvfloatev

	VIEW Conversion to and from Target Format
	Fvstot, Fvftos and Fcodeset

	FML and VIEWS Examples
	VIEWS Examples
	Sample Viewfile
	Sample Field Table
	Sample Header File Produced by viewc
	Sample Header File Produced by mkfldhdr
	Sample COBOL COPY File
	Sample VIEWS Program
	Example of VIEWS in bankapp
	See Also

	FML Examples in bankapp

	RECORD Examples
	RECORD Example: COBOL Copybook File
	RECORD Example: RECORD Programs
	See Also

	FML Error Messages

