Oracle® Tuxedo
Programming an Oracle Tuxedo ATMI Application Using C

12c Release 2 (12.1.3)

April 2014

ORACLE

Oracle Tuxedo Programming an Oracle Tuxedo ATMI Application Using C, 12c Release 2 (12.1.3)
Copyright © 1996, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to usin writing.

If thisis software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software”
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use,
duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general usein avariety of information management applications. It is not developed
or intended for use in any inherently dangerous applications, including applications that may create arisk of persona injury. If
you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

This software or hardware and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect
to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damagesincurred due to your access to or use of third-party content, products, or services.

Contents

1. Introduction to Oracle Tuxedo Programming

Oracle Tuxedo Distributed Application Programming.
Communication Paradigms.ot e
Oracle Tuxedo ClENtS.o e e
Oracle TUXEAD SEIVErSo e

Basic Server Operationottt

SErVErS @S REQUESIEIS. . . .o ottt e
Oracle Tuxedo API: ATMI . ..o e

2. Managing Typed Buffers

Overview of Typed BUffers e 2-2
AllocatingaTyped Buffer ... i 2-8
Putting DatainaBuffer 2-12
ResizingaTyped Buffer 2-13
Checking for Buffer Type.t e 2-16
FreeingaTyped Buffer. 2-18
UsingaVIEW Typed Buffer ... o e 2-19
Setting Environment Variablesfor aVIEW Typed Buffer 2-20
Creating aView Description File.o 2-20
Executingthe VIEW Compilero e 2-24
UsingaRECORD Typed Buffer. e 2-26
Setting Environment Variables for aRECORD Typed Buffer. 2-26
Programming an Oracle Tuxedo ATMI Application Using C iii

CreatingaCopybook File. 2-26

Generating the RECORD DescriptionFile. oot 2-27
Usingan FML Typed Buffer 2-27
Setting Environment Variablesfor an FML Typed Buffer 2-27
CregtingaField TableFile i 2-28
Creatingan FML Header File. i 2-30
Using an XML Typed Buffer and the Apache XercesC++ Parser 2-31
About the XML Typed Buffer.t 2-31
About the Apache XercesC++Parser ..., 2-32
XML Parser Control 2-33

XML Parser Support for ICU 2-33

XML Parser Sample Application. 2-33
XercesSchemaSampleot 2-34
Converting XML Data To and From FML/FML32 Buffers. 2-34
Using On-Demand CONVErSION ovv i et e e 2-35

Using Automatic CoNVEISION.ttt e e e 2-36
Mapping XML To and From FML/FML32 Field Types. 2-39
Conversion Limitationst 2-43
Usingan MBSTRING Typed Buffer. ...t 2-45
Multibyte Character Encoding Control 2-47
Enabling MBSTRING to be Self-describingt 2-51
Implementation 2-51
Safe/Unsafe EncodingNames 2-51
Multibyte Character Support Limitations. 2-52
Multibyte Character Encoding Support for libiconv. 2-52
Customizing aBuffer. 2-54
Defining Your Own Buffer Types. 2-56
Coding Switch Element ROUtINESo 2-65

Programming an Oracle Tuxedo ATMI Application Using C

Adding aNew Buffer Typetotm typesw 2-66

Compiling and Linking Your New tm_typesw 2-67

Compiling and Linking Your New tm_typesw for a 16-bit Windows Platform . .
2-68

DataConNVEISION . . .o ettt et e e e e e e 2-69

3. Programming Environment

Updating the UBBCONFIG Configuration File.coon.. 31
Setting Environment Variables. 35
Includingthe Required Header Files 3-9
Starting and Stopping the Application 39
4. Writing Clients
Joining an ApPlICAioNt 4-1
Using Features of the TPINIT Typed Buffer it 4-4
Client NamiNgo 4-4
Unsolicited Notification Handling. o i 4-5
System ACCESSMOE. . . . oo 4-7
Resource Manager ASSOCIatioN. oottt 4-7
Client Authentication.t i 4-7
Leavingthe Applicationt 4-8
Building Clients 4-8
S AlSD. . o 4-10
Client Process EXamples. oot 4-10

5. Writing Servers

Oracle Tuxedo System main(). . . .« oo vttt 5-1
System-Supplied Server and SErviCes oot 5-3
System-Supplied Server: AUTHSVR()o 5-3

Programming an Oracle Tuxedo ATMI Application Using C

System-Supplied Services: tpsvrinit() Function., 5-4

Receiving Command-lineOptions. 5-4
Opening aResource Managert 5-6
System-Supplied Services: tpsvrdone() Function 5-7
Guidelinesfor Writing Servers.t e 5-8
DefiNiNg @SarVICE . . .o 5-9
Example: Checking the Buffer Type. 5-13
Example: Checking the Priority of the ServiceRequest. 5-14
Terminating aServiCe ROULINE.ttt 5-16
Sending Replies. . ..o 5-16
INvalidating DESCIIPLOrS . . . o vttt et e e e e e 5-23
Forwarding REQUESES.ot e 5-24
Advertising and UnadvertisSing Serviceso 5-28
AdVErtiSING SEIVICESttt 5-28
Unadvertising SerViCeSottt 5-29
Example: Dynamic Advertising and Unadvertising of aService............. 5-29
BUIlding SErvers. 5-30
SO AlSD Lt e 5-32
UsingaCH+ Compiler. 5-32
Declaring Service FUNCLIONS.o o o 5-32
Using Constructorsand Destructors.t 5-33

6. Writing Request/Response Clients and Servers

Overview of Request/Response Communication., 6-1
Sending SynchronOUS MESSAgES oo it e 6-2
Example: Using the Same Buffer for Request and Reply Messages 6-4
Example: Testing for Changein Sizeof Reply Buffer 6-5
Example: Sending a Synchronous Message with TPSIGRSTRT Set........... 6-6

vi Programming an Oracle Tuxedo ATMI Application Using C

Example: Sending a Synchronous Message with TPNOTRAN Set............ 6-7

Example: Sending a Synchronous Message with TPNOCHANGE Set 6-9
Sending ASyNChroNOUS MESSEgES. ot vttt e e et e 6-11
Sending an Asynchronous Request 6-11
Example: Sending an Asynchronous Message with TPNOTRAN | TPNOREPLY
6-13

Example: Sending AsynchronousRequests., 6-14
Gettingan AsynchronousReplyo 6-15
Setting and Getting Message Priorities.o 6-16
Setting aMessage Priority.o 6-16
GettingaMessage Priorityo 6-18

/. Writing Conversational Clients and Servers

Overview of Conversational Communicationcovviiinneeennn 7-1
Joining an Application i e 7-3
Establishing aConnectionttt 7-3
Sending and ReCEIVING MESSA0ES.ot i vt ettt ettt 7-5
SENAING MESSagES . .+« v v v ettt et e 7-5
RECEIVING MESSa0ES . . .t o ittt et e 7-7
EndingaConversationoui i e 7-8
Example: EndingaSimple Conversation, 7-9
Example: Ending aHierarchical Conversation. 7-10
Executing aDisorderly Disconnect. 7-11
Building Conversational Clientsand Servers. it 7-11
Understanding Conversational Communication Events. 7-12

8. Writing Event-based Clients and Servers

OVvErVIaW Of EVENES . ..ot e e 8-1
UNSOIICItEd EVENES. . . . ottt e e e e e 8-2

Programming an Oracle Tuxedo ATMI Application Using C vii

Brokered EVENtS oottt e 8-2

Notification ACHIONS.o 82
EventBroker Servers 8-3
System-defined EVents.ot 8-4
Programming Interface for the EventBroker............. 8-4
Defining the Unsolicited MessageHandlert 85
Sending Unsolicited MESSAgES. . . . oot 8-5
Broadcasting Messagesby Name. 8-6
Broadcasting Messages by Identifier i 8-7
Checking for Unsolicited MeSsages. oo it 8-8
SUbSCIbiNGtO EVENES. . . .o 8-8
Notification viaUnsolicitedMessaget 8-10
Notification via Service Call or ReliableQueue. 8-10
Unsubscribing from EVents 8-11
POSING BVENLS . . . oo 8-12
Example of Event Subscription 8-14

9. Writing Global Transactions

What IsaGlobal Transaction?. 9-1
Startingthe Transactiono 9-2
Suspending and Resuming a Transaction.ot 9-7
Suspending aTranSaction oottt 9-8
Resuming aTransactionottt e 9-8
Example: Suspending and Resuminga Transaction. 9-9
Terminatingthe Transaction e 9-10
Committing the Current Transaction.t 9-10
Prerequisites for a Transaction Commit. ou.t. 9-10
Two-phase Commit Protocol 9-11

viii Programming an Oracle Tuxedo ATMI Application Using C

Example: Committing a Transaction in Conversational Mode. 9-12
Example: Testing for Participant Errors, 9-14
Implicitly Defining aGlobal Transaction. i ... 9-15
Implicitly Defining a Transactionina ServiceRoutine 9-15
Defining Global Transactions for an XA-Compliant Server Group. 9-16
Testing Whether aTransactionHas Started 9-16
S AlSD. . o 9-18
10. Programming a Multithreaded and Multicontexted ATMI
Application
Support for Programming a Multithreaded/Multicontexted ATMI Application 10-2
Platform-specific Considerations for Multithreaded/M ulticontexted Applications10-2
Planning and Designing a Multithreaded/M ulticontexted ATMI Application. 10-3
What Are Multithreading and Multicontexting?. 10-3
What IsMultithreading?. e 10-3
What IsMulticontexting?.ot e e 10-5
Auditing a Multithreaded or Multicontexted Application. 10-7
Advantages and Disadvantages of a Multithreaded/M ulticontexted ATMI Application
10-7
Advantages of a Multithreaded/Multicontexted ATMI Application 10-7
Disadvantages of a Multithreaded/Multicontexted ATMI Application 10-8
How Multithreading and Multicontexting Work inaClient................. 10-9
Start-up Phase. 10-9
WOrk Phase. 10-11
Completion Phase. e 10-13

How Multithreading and Multicontexting Work in Server-Dispatched Threads an on
ATMIL SOV . oo 10-14

Programming an Oracle Tuxedo ATMI Application Using C ix

WOrK Phase 10-15
Completion Phase 10-17
How Multithreading and Multicontexting Work in Application-Created Threads of an
ATMI SaIVEr . . 10-18
Start-Up Phaseo 10-18
WOrK Phase 10-19
Completion Phase 10-19
S AISD . . 10-20
Design Considerations for a Multithreaded and Multicontexted ATMI Application . .
10-20
Environment Requirements.ovviie it 10-20
Design RequUIrements.t e 10-21
Interoperability Restrictions for Workstation Clients 10-23
Implementing a Multithreaded/ Multicontexted ATMI Application............. 10-24
Preliminary Guidelines for Programming a M ultithreaded/M ulticontexted ATMI
APPLICALiON. .. o 10-24
Prerequisites for a Multithreaded ATMI Application 10-25
General Multithreaded Programming Considerations. 10-25
Concurrency Considerationsove ittt 10-25
Writing Code to Enable Multicontextinginan ATMI Client 10-27
Context Attributeso 10-27
Setting Up Multicontexting at Initialization 10-28
Implementing Security for a Multicontexted ATMI Client. 10-29
Synchronizing Threads Before an ATMI Client Termination 10-29
Switching Contexts oo 10-30
Handling Unsolicited Messages.o v 10-33

Programming an Oracle Tuxedo ATMI Application Using C

Coding Rules for Transactions in a Multithreaded/M ulticontexted ATMI

Application 10-33
Writing Code to Enable Server-Dispatched Multicontexting and Multithreading
Threadsinan ATMI Server 10-34
Context Attributes 10-34
Coding Rules for Server-Dispatched Threads in Multicontexted ATMI Server . .
10-34
Initializing and Terminating ATMI Serversand Server Threads. 10-35
S8 A0, et 10-36
Writing Code to Enable Multicontexting in Application-Created Threads of an ATMI
SO VY . ot 10-36
Creating Threads e 10-36
Associating Application ThreadswithaContext. 10-36
Associating Application Threads with an Existing Server-Dispatched Context . .
10-37
Sample Code for Associating Application Thread with an Existing
Server-Dispatched Context in a Multicontexted Server 10-37
Associating Application Threads with Application-Created Context 10-39
Sample Code for Associating Application Thread with Application-created server
Contextin aMulticontexted Server ..., 10-40
Writing aMultithreaded ATMI Client.o 10-41
Coding Rules for aMultithreaded ATMI Client 10-42
Initializing an ATMI Client to Multiple Contexts 10-43
Context State Changesfor an ATMI Client Thread 10-43
Getting Repliesin a Multithreaded Environment. 10-45
Using Environment Variables in a Multithreaded and/or Multicontexted
Environment 10-46

Using Per-context Functions and Data Structures in a Multithreaded ATMI Client. . .
10-48

Programming an Oracle Tuxedo ATMI Application Using C Xi

Using Per-process Functions and Data Structures in a Multithreaded ATMI Client . .

10-50
Using Per-thread Functions and Data Structuresin a Multithreaded ATMI Client10-51
Sample Code for aMultithreaded ATMI Client 10-51
Writing aMultithreaded ATMI Servero 10-54
Compiling Code for a Multithreaded/Multicontexted ATMI Application 10-54
Testing a Multithreaded/Multicontexted ATMI Application. 10-55
Testing Recommendations for a Multithreaded/M ulticontexted ATMI Application . .
10-55
Troubleshooting a Multithreaded/Multicontexted ATMI Application 10-55
Improper Use of the TPMULTICONTEXTS Flag to tpinit()........... 10-55
Callsto tpinit() Without TPMULTICONTEXTS.ovveeneeen .. 10-55
Insufficient Thread Stack Size. o i 10-56
Error Handling for a Multithreaded/Multicontexted ATMI Application 10-56

11. Managing Errors

SV M ErTOrS. . ottt 11-1
ADOIE EFTOrS . . ot 11-4
Oracle Tuxedo SYStEM ETOrS oottt 11-4
Call DesCriptor BITOrs . ..ot 11-5
Limit ErTOrS. oot e 11-5
INvalid DesCriptor EXTOrS.t 11-5
Conversational BIrors. 11-7
Duplicate ObJECE EFTOrottt 11-8
General Communication Call Errors 11-9
TPESVCFAIL and TPESVCERREITOrS oot ie e 11-9
TPEBLOCK and TPGOTSIG EIOrS . .. oottt 11-9
Invalid Argument Errors 11-11

Xii Programming an Oracle Tuxedo ATMI Application Using C

MIB EITOr . .o e e 11-12

NOENtrY Errors. . ..o 11-13
Operating SyStem Errors.o 11-15
PermissiON BrTOrso 11-16
Protocol Brrorso 11-17
QUEUING EITOr . . oo 11-18
Release Compatibility Error. 11-19
Resource Manager Errors. 11-20
TIMEOUL EFTOrS . . oottt e e e 11-21
TranSaCtion EXTOrS. . . . oot e e e 11-22
Typed BUffer EITOrSt e 11-23
APPHCAION ENTOrS. . . ottt e e 11-23
Handling ErrOrs.o 11-23
Transaction CoNSIdErations.ottt 11-28
Communication Btiquette. 11-29
TranSaCtion ErTOrS. . . .ottt e e e e 11-31

Non-fatal TransaCtion Errors. e 11-31

Fatal TransaCtion Errors 11-32

Heuristic DECISION ETOrSo ottt e 11-33
Transaction TIMEOULS oottt e e e i 11-34

Effect on the tpcommit() Function i 11-34

Effectonthe TPNOTRANHag 11-34
tpreturn() and tpforward() Functions o 11-35
tpterm() FUNCLION. . . .o 11-36
ReSOUrCEMaNagErS.ot 11-37
Sample Transaction SCEeNAroS oo v it e 11-38

Called Servicein Same TransactionasCaller........................... 11-38

Called Servicein Different Transaction with AUTOTRAN Set............. 11-38

Programming an Oracle Tuxedo ATMI Application Using C Xiii

Xiv

Called Service That Starts a New Explicit Transaction 11-39

Oracle TUXEDO System-supplied Subroutines 11-41
Central EVENTLOGottt e e e e 11-41
LogName 11-42
Log Entry Format 11-42
Writingtothe Event Log. oo 11-43
Debugging Application ProCeSSES oo it 11-44
Debugging Application Processes on UNIX Platforms 11-44
Debugging Application Processes on Windows 2003 Platforms 11-45
Comprehensive Exampleo 11-46

Programming an Oracle Tuxedo ATMI Application Using C

Introduction to Oracle Tuxedo
Programming

Thistopic includes the following sections:
e Oracle Tuxedo Distributed Application Programming
e Communication Paradigms
e Oracle Tuxedo Clients

Oracle Tuxedo Servers

e Oracle Tuxedo API: ATMI

Oracle Tuxedo Distributed Application Programming

A distributed application consists of a set of software modules that reside on multiple hardware
systems, and that communicate with one another to accomplish the tasks required of the
application. For example, as shown in Figure 1-1, a distributed application for aremote online
banking system includes software modules that run on a bank customer’ s home computer, and a
computer system at the bank on which all bank account records are maintained.

Programming an Oracle Tuxedo ATMI Application Using C 1-1

Figure 1-1 Distributed Application Example - Online Banking System

Custamer Sequas! Chesk Account Balance o &

4
Syatem Mesponse: § 20,76

Customer's Bank's Computer on Which
Home Compuler Account Records A Siomed

The task of checking an account balance, for example, can be performed simply by logging on
and selecting an option from amenu. Behind the scenes, thelocal software module communicates
with the remote software module using specia application programming interface (API)
functions.

The Oracle Tuxedo distributed application programming environment providesthe API functions
necessary to enable secure, reliable communication between the distributed software modul es.
This APl isreferred to as the Application-to-Transaction Monitor Interface (ATMI).

The ATMI enables you to:

e Send and receive messages between clients and servers, possibly across a network of
heterogeneous machines

e Establish and use client naming and security features
e Define and manage transactions in which data may be stored in several locations

e Genericaly open and close a resource manager such as a Database Management System
(DBMS)

e Manage the flow of service requests and the availability of serversto process them

Communication Paradigms

Table 1-1 describesthe Oracle Tuxedo ATMI communication paradigms available to application
developers.

1-2 Programming an Oracle Tuxedo ATMI Application Using C

Communication Paradigms

Table 1-1 Communication Paradigms

Paradigm

Description

Request/response
communication

Reguest/response communi cation enables one software module
to send arequest to a second software module and wait for a
response. Can be synchronous (processing waits until the
requester receives the response) or asynchronous (processing
continues while the requester waits for the response).

Thismodeis also referred to as client/server interaction. The
first software module assumes the role of the client; the second,
of the server.

Refer to “Writing Request/Response Clients and Servers’ on
page 6-1 for more information on this paradigm.

Conversational
communication

Conversational communication is similar to request/response
communication, except that multiple requests and/or responses
need to take place before the “ conversation” isterminated. With
conversational communication, both the client and the server
maintain state information until the conversation is
disconnected. The application protocol that you are using
governs how messages are communicated between the client
and server.

Conversational communication is commonly used to buffer
portions of alengthy response from a server to aclient.

Refer to “Writing Conversational Clients and Servers’ on
page 7-1 for more information on this paradigm.

Programming an Oracle Tuxedo ATMI Application Using C 1-3

Table 1-1 Communication Paradigms

Paradigm Description

Application queue-based Application queue-based communication supports deferred or

communication time-independent communication, enabling a client and server
to communicate using an application queue. The Oracle
Tuxedo/Q facility allows messages to be queued to persistent
storage (disk) or to non-persistent storage (memory) for later
processing or retrieval.

For example, application queue-based communication is useful
for enqueuing requests when a system goes offline for
maintenance, or for buffering communicationsif the client and
server systems are operating at different speeds.

Refer to Using the ATMI /Q Component for moreinformation on

the /Q facility.
Event-based Event-based communication allows aclient or server to notify a
communication client when a specific situation (event) occurs.

Events are reported in one of two ways:

* Unsolicited events are unexpected situations that are
reported by clients and/or servers directly to clients.

» Brokered events are unexpected situations or predictable
occurrenceswith unpredictable timeframesthat are reported
by serversto clientsindirectly, through an “anonymous
broker” program that receives and distributes messages.

Event-based communication is based on the Oracle Tuxedo
EventBroker facility.

Refer to “Writing Event-based Clientsand Servers’ on page 8-1
for more information on this paradigm.

Oracle Tuxedo Clients

1-4

An Oracle Tuxedo ATMI client is a software module that collects a user request and forwards it
to aserver that offers the requested service. Almost any software module can become an Oracle
Tuxedo client by calling the ATMI client initialization routine and “joining” the Oracle Tuxedo

application. The client can then allocate message buffers and exchange information with the
server.

Programming an Oracle Tuxedo ATMI Application Using C

Oracle Tuxedo Clients

Theclient callsthe ATMI termination routine to “leave” the application and notify the Oracle
Tuxedo system that it (the client) no longer needs to be tracked. Consequently, Oracle Tuxedo
application resources are made available for other operations.

The operation of a basic client process can be summarized by the pseudo-code shown in the
following listing.

Listing 1-1 Pseudo-code for a Request/Response Client

main()

allocate a TPINIT buffer
place initial client identification in buffer
enroll as a client of the BEA Tuxedo application
allocate buffer
do while true {

place user input in buffer

send service request

receive reply

pass reply to the user }

leave application

Most of the actions described in the above listing are implemented with ATMI functions.
Others—placing the user input in a buffer and passing the reply to the user—are implemented
with C language functions.

During the “allocate buffer” phase, the client program allocates a memory area, called atyped
buffer, from the Oracle Tuxedo run-time system. A typed buffer is simply amemory buffer with
an associated format, for example, a C structure.

An ATMI client may send and receive any number of service requests before leaving the
application. The client may send these requests as a series of request/response callsor, if itis
important to carry state information from one call to the next, by establishing a connection to a
conversational server. In both cases, thelogicinthe client programissimilar, but different ATMI
functions are required for these two approaches.

Programming an Oracle Tuxedo ATMI Application Using C 1-5

Before you can execute an ATMI client, you must run the buildclient command to compileit
and link it with the Oracle Tuxedo ATMI and required libraries. Refer to “Writing Clients’ on
page 4-1 for information on the buildclient command.

Oracle Tuxedo Servers

1-6

An Oracle Tuxedo ATMI server is aprocess that provides one or more servicesto aclient. A
serviceisaspecific businesstask that aclient may need to perform. Serversreceiverequestsfrom
clients and dispatch them to the appropriate service subroutines.

Basic Server Operation

To build server processes, applications combine their service subroutineswith amain () process
provided by the Oracle Tuxedo system. This system-supplied main () isaset of predefined
functions. It performs server initialization and termination and all ocates buffers that can be used
to receive and dispatch incoming requeststo serviceroutines. All of thisprocessing istransparent
to the application.

Figure 1-2 summarizes, in pseudo-code, the interaction between a server and a service
subroutine.

Programming an Oracle Tuxedo ATMI Application Using C

Oracle Tuxedo Servers

Figure 1-2 Pseudo-code for a Request/Response Server and a Service Subroutine

Provided by the BEA Tuxedo System

|r START PROGRAM I
| enroll as a server in the BEA Tuxedo application |
| advertise services |
| perform until end
| check message queue for service request |
| dequeus request |
|
' |
! |

dispatch request to senvice subrouting
receive control back from subroutine <
end perform

¥ e e ¥ S et ¥ st s e st ¥ st e s s s e s s e) e s e e § e

| SERVICE SUBROUTINE # }
: receive control from server }
I }

process request
return control to server

After initialization, an ATMI server allocates a buffer, waits until arequest messageisdelivered
to its message queue, degueues the request, and dispatches it to a service subroutine for
processing. If areply isrequired, the reply is considered part of request processing.

The conversational paradigm is somewhat different from request/response, asillustrated by the
pseudo-code in Figure 1-3.

Programming an Oracle Tuxedo ATMI Application Using C 1-1

Figure 1-3 Pseudo-code for a Conversational Service Subroutine

SERVER 4

CONVERSATIOMNAL SERVICE SUBRCU TIN E-4—

Ecaiwe contml from s2ner

perform while true
Eceiwe data form conwereationzal client
pmocess Equest
==rd dak © conersational client

end perorm

eturn contml to s=ner.

The Oracle Tuxedo system-suppliedmain () process containsthe code needed to enroll aprocess
asan ATMI server, advertise services, allocate buffers, and dequeue requests. ATMI functions
areused in service subroutinesthat processrequests. When you are ready to compileand test your
service subroutines, you must link edit them with the server main () and generate an executable
server. To do so, run the buildserver command.

Servers as Requesters

If aclient requests several services, or severa iterations of the same service, a subset of the
services might be transferred to another server for execution. In this case, the server assumesthe
role of aclient, or requester. Both clients and servers can be requesters; a client, however, can
only be arequester. This coding model is easily accomplished using the Oracle Tuxedo ATMI
functions.

Note: A request/response server can also forward arequest to another server. In this case, the
server does not assume therole of client (requester) because the reply is expected by the
original client, not by the server forwarding the request.

Oracle Tuxedo API: ATMI

1-8

In addition to the C code that expresses the logic of your application, you must use the
Application-to-Transaction Monitor Interface (ATMI), the interface between your application
and the Oracle Tuxedo system. The ATMI functions are C language functions that resemble
operating system calls. They implement communication among application modules running

Programming an Oracle Tuxedo ATMI Application Using C

Oracle Tuxedo API: ATMI

under the control of the Oracle Tuxedo system transaction monitor, including all the associated
resources you need.

The ATMI isareasonably compact set of functions used to open and close resources, begin and
end transactions, allocate and free buffers, and support communication between clients and
servers. Table 1-2 summarizes the ATMI functions. Each function is described in the Oracle
Tuxedo ATMI C Function Reference.

Table 1-2 Using the ATMI Function

For a Task Use This G Function . .. To... For More Information,
Related to .. . Referto...
Buffer management tpalloc () Create a message buffer “Managing Typed Buffers”
on page 2-1
tprealloc () Resize a message buffer
tptypes () Get a message type and
subtype

tpfree () Free a message buffer

Client membership tpchkauth () Check whether “Writing Clients’ on

authenticationisrequired page4-1

tpinit () Join an application
tpterm() Leave an application
Multiple application tpgetctxt (3c) Retrieve an identifier for “Programming a
context management the current thread's context Multithreaded and
Multicontexted ATMI
tpsetctxt (3c¢) Set the current thread's Application” on page 10-1
context in amulticontexted
process

Programming an Oracle Tuxedo ATMI Application Using C 1-9

../rf3c/rf3c.html
../rf3c/rf3c.html

Tahle 1-2 Using the ATMI Function

For a Task Use This C Function . .. To... For More Information,
Related to . . . Referto...
Service entry and tpsvrinit() Initialize a server e “Writing Servers’ on
return page 5-1
tpsvrdone () Terminate a server “ .
e “Programming a
tpsvrthrinit () Initialize an individual Multithreaded and
server thread M uItl_ con_texted ATMI
Application” on
tpsvrthrdone () Termination code for an page 10-1
individual server thread
tpreturn () End a service function
tpforward () Forward a request
Dynamic tpadvertise () Advertise a service name “Writing Servers’ on
advertisement page 5-1
tpunadvertise () Unadvertise a service name
Message priority tpgprio () Get the priority of thelast ~ “Writing Servers’ on
request page 5-1
tpsprio () Set the priority of the next
request
Request/response tpcall() Initiate a synchronous e “Writing Servers’ on
communications reguest/response to a page 5-1
service + “Writing
" Request/Response
tpacall () Irnltlljitﬂean asynchronous Clientsand Servers’ on
& page 6-1
tpgetrply () Receive an asynchronous
response
tpcancel () Cancel an asynchronous

request

1-10 Programming an Oracle Tuxedo ATMI Application Using C

Tahle 1-2 Using the ATMI Function

Oracle Tuxedo API: ATMI

For a Task Use This C Function . . . To... For More Information,
Related to. .. Referto...
Conversational tpconnect () Beginaconversationwitha “Writing Conversational
communication service Clientsand Servers’ on
page 7-1
tpdiscon () Abnormally terminate a
conversation
tpsend () Send amessageina
conversation
tprecv () Receive amessagein a
conversation
Reliable queuing tpenqueue (3c) Enqueue amessage to a Using the ATMI /Q
message queue Component
tpdequeue (3¢) Dequeue amessage from a
message queue
Event-based tpnotify () Send an unsolicited “Writing Event-based
communications message to a client Clients and Servers’ on
page 8-1
tpbroadcast () Send messages to several
clients
tpsetunsol () Set unsolicited message
call-back
tpchkunsol () Check the arrival of
unsolicited messages
tppost () Post an event message
tpsubscribe () Subscribe to event
messages
tpunsubscribe () Unsubscribe to event

messages

Programming an Oracle Tuxedo ATMI Application Using C 1-1

../rf3c/rf3c.html
../rf3c/rf3c.html

Tahle 1-2 Using the ATMI Function

For a Task Use This C Function . . . To... For More Information,
Related to. .. Referto...
Transaction tpbegin () Begin atransaction “Writing Global
management Transactions’ on page 9-1
tpcommit () Commit the current
transaction
tpabort () Roll back the current
transaction
tpgetlev () Check whether in
transaction mode
tpsuspend () Suspend the current
transaction
tpresume () Resume a transaction
Resource tpopen (3c) Open a resource manager Setting Up an Oracle
management Tuxedo Application

tpclose(3c)

Close a resource manager

Blocking time
management

tpgblktime (3¢)

Get blocktime value

tpsblktime (3c)

Set blocktime valuein
seconds or milliseconds

Oracle Tuxedo ATMI C
Function Reference

1-12 Programming an Oracle Tuxedo ATMI Application Using C

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

Tahle 1-2 Using the ATMI Function

Oracle Tuxedo API: ATMI

For a Task Use This C Function . .. To... For More Information,
Related to. .. Referto...
Security tpkey_open (3¢) Open akey handle for Using Security in CORBA

digital signature
generation, message
encryption, or message
decryption

tpkey_getinfo (3c)

Get information associated
with akey handle

tpkey_setinfo (3c)

Set optional attributes
associated with akey
handle

tpkey_close(3c)

Close apreviously opened
handle

tpsign(3c) Mark atyped message
buffer for generation of a
digital signature

tpseal (3c) Mark atyped message

buffer for generation of an
encryption envelope

tpenvelope (3c)

Accessthedigital signature

and recipient information
associated with atyped
message buffer

tpexport (3c)

Convert atyped message
buffer into an exportable,

machine-independent
(externalized) string
representation

tpimport (3c)

Convert an externalized
string representation back

into atyped message buffer

Applications

Programming an Oracle Tuxedo ATMI Application Using C 1-13

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

1-14 Programming an Oracle Tuxedo ATMI Application Using C

Managing Typed Buffers

Thistopic includes the following sections:

Overview of Typed Buffers
Allocating a Typed Buffer

Putting Datain a Buffer

Resizing a Typed Buffer

Checking for Buffer Type

Freeing a Typed Buffer

Using aVIEW Typed Buffer

Using a RECORD Typed Buffer
Using an FML Typed Buffer

Using an XML Typed Buffer and the Apache Xerces C++ Parser
Using an MBSTRING Typed Buffer

Customizing a Buffer

Programming an Oracle Tuxedo ATMI Application Using C

2-1

Overview of Typed Buffers

2-2

Before a message can be sent from one process to another, a buffer must be allocated for the
message data. Oracle Tuxedo ATMI clients use typed buffersto send messagesto ATMI servers.
A typed buffer isamemory areawith a category (type) and optionally a subcategory (subtype)
associated with it. Typed buffers make up one of the fundamental features of the distributed
programming environment supported by the Oracle Tuxedo system.

Why typed? In a distributed environment, an application may be installed on heterogeneous
systems that communicate across multiple networks using different protocols. Different types of
buffersrequire different routinesto initialize, send and receive messages, and encode and decode
data. Each buffer is designated as a specific type so that the appropriate routines can be called
automatically without programmer intervention.

Table 2-1 lists the typed buffers supported by the Oracle Tuxedo system and indicates whether
or not:

e The buffer is self-describing; in other words, the buffer data type and length can be
determined simply by (a) knowing the type and subtype, and (b) looking at the data.

e The buffer requires a subtype.
e The system supports data-dependent routing for the typed buffer.

e The system supports encoding and decoding for the typed buffer.

If any routing functions are required, the application programmer must provide them as part of
the application.

Programming an Oracle Tuxedo ATMI Application Using C

Table 2-1 Typed Buffers

Overview of Typed Buffers

Typed Buffer

Description

Self- Subtype Data- Encoding/
Describing Dependent Decoding
Routing

CARRAY

Undefined array of characters, any
of which canbe NULL. Thistyped
buffer is used to handle the data
opaguely, as the Oracle Tuxedo
system does not interpret the
semantics of the array. Because a
CARRAY isnot self-describing,
the length must always be provided
during transmission. Encoding and
decoding are not supported for
messages sent between machines
because the bytes are not
interpreted by the system.

No No No No

FML (Field
Manipulation
Language)

Proprietary Oracle Tuxedo system
type of self-describing buffer in
which each datafield carriesits
own identifier, an occurrence
number, and possibly alength
indicator. Because all data
manipulation is done via FML
function calls rather than native C
statements, the FML buffer offers
data-independence and greater
flexibility at the expense of some
processing overhead.

The FML buffer uses 16 bits for

field identifiers and lengths of
fields.

For more information about the
FML buffer, see“Using an FML
Typed Buffer” on page 2-27.

Yes No Yes Yes

Programming an Oracle Tuxedo ATMI Application Using C 2-3

Table 2-1 Typed Buffers (Continued)

Typed Buffer

Description

Self-
Describing

Subtype

Data-
Dependent
Routing

Encoding/
Decoding

FML32

Equivalent to FML but uses 32 bits
for field identifiers and lengths of
fields, which allows for larger and
more fields and, consequently,
larger overall buffers.

For more information about the
FML32 buffer, see“Using an FML
Typed Buffer” on page 2-27.

Yes

No

Yes

Yes

STRING

Array of characters that terminates
withaNULL character. The
STRING buffer is self-describing,
so the Oracle Tuxedo system can
convert data automatically when
dataisexchanged by machineswith
different character sets.

Yes

No

No

No

VIEW

C structure defined by the
application. VIEW typesmust have
subtypes that designate individual
data structures. A view description
file, in which the fields and types
that appear in the data structure are
defined, must be available to client
and server processesthat use adata
structure described in a VIEW
typed buffer. Encoding and
decoding are performed
automatically if the buffer is passed
between machines of different

types.
VIEW does not support mbstring
type buffers.

For more information about the
VIEW buffer, see “Using a VIEW
Typed Buffer” on page 2-19.

No

Yes

Yes

Yes

2-4 Programming an Oracle Tuxedo ATMI Application Using C

Overview of Typed Buffers

Table 2-1 Typed Buffers (Continued)

Typed Buffer Description Self- Subtype Data- Encoding/
Describing Dependent Decoding
Routing
VIEW32 Equivalent to VIEW but uses 32 No Yes Yes Yes

bits for length and count fields,
which alows for larger and more
fields and, consequently, larger
overall buffers.

VIEW32 supports mbstring type
buffers and treat mbstring datain
the same manner as carray.

For more information about the
VIEW32 buffer, see“Using a
VIEW Typed Buffer” on page 2-19.

X_C_TYPE Equivaent to VIEW. No Yes Yes Yes

X_COMMON Equivalent to VIEW, but used for ~ No Yes Yes Yes
compatibility between COBOL and
C programs. Field types should be
limited to short, long, and string.

Programming an Oracle Tuxedo ATMI Application Using C 2-5

Table 2-1 Typed Buffers (Continued)

Typed Buffer Description Self-

Describing

Subtype

Data-
Dependent
Routing

Encoding/
Decoding

XML An XML document that consistsof: No

e Text, intheform of asegquence
of encoded characters

e A description of the logical
structure of the document and
information about that structure

The routing of an XML document
can be based on element content, or
on element type and an attribute
value. The XML parser, such asthe
Apache Xerces C++ Version 2.5
parser availablein Oracle Tuxedo
9.X, determines the character
encoding being used; if the
encoding differs from the native
character sets (US-ASCII or
EBCDIC) used in the Oracle
Tuxedo configuration files
(UBBCONFIG(5) and

DMCONFIG (5)), the element and
attribute names are converted to
US-ASCII or EBCDIC.

For more information about the
XML buffer and the Xerces C++
parser, see “Using an XML Typed
Buffer and the Apache Xerces C++
Parser” on page 2-31.

No

Yes

No

X_OCTET Equivalent to CARRAY . No

No

No

No

2-6 Programming an Oracle Tuxedo ATMI Application Using C

../rf5/rf5.html
../rf5/rf5.html

Overview of Typed Buffers

Table 2-1 Typed Buffers (Continued)

Typed Buffer Description Self- Subtype Data- Encoding/
Describing Dependent Decoding
Routing
MBSTRING Character array for multibyte No No No No

characters—available in Oracle
Tuxedo 8.1. For more information
about the MBSTRING buffer, see
“Using an MBSTRING Typed
Buffer” on page 2-45.

RECORD COBOL copybook record defined No Yes No Yes
by application. RECORD types
must have subtypes that designate
record structure. A record
description file, in which the fields
and types that appear in the record
structure are defined, must be
available to client and server
processesthat usearecord structure
described in aRECORD typed
buffer. For more information about
the RECORD buffer, seeUsing a
RECORD Typed Buffer.

All buffer types are defined in afile caled tmtypesw. c inthe sTuxpIrR/11b directory. Only
buffer typesdefined in tmtypesw. c are known to your client and server programs. Y ou can edit
the tmtypesw. c fileto add or remove buffer types. In addition, you can use the BUFTYPE
parameter (in UBBCONFIG) to restrict the types and subtypes that can be processed by a given
service.

The tmtypesw. c fileis used to build a shared object or dynamic link library. Thisobject is
dynamically loaded by both Oracle Tuxedo administrative servers, and application clients and
servers.

See Also
e “Using aVIEW Typed Buffer” on page 2-19
e “Using an FML Typed Buffer” on page 2-27

Programming an Oracle Tuxedo ATMI Application Using C 2-1

e “Using an XML Typed Buffer and the Apache Xerces C++ Parser” on page 2-31
e “Using an MBSTRING Typed Buffer” on page 2-45

e tuxtypes (5) in Oracle Tuxedo File Formats, Data Descriptions, MIBs, and System
Processes Reference

e UBBCONFIG (5) in Oracle Tuxedo File Formats, Data Descriptions, MIBs, and System
Processes Reference

Allocating a Typed Buffer

2-8

Initially, no buffers are associated with a client process. Before a message can be sent, aclient
process must allocate a buffer of a supported type to carry amessage. A typed buffer isallocated
using the tpacall (3c) function, asfollows:

char*

tpalloc (char *type, char *subtype, long size)

Table 2-2 describes the arguments to the tpalloc () function.

Table 2-2 tpalloc() Function Arguments

Argument Description

type Pointer to avalid typed buffer.

Programming an Oracle Tuxedo ATMI Application Using C

../rf5/rf5.html
../rf5/rf5.html
../rf3c/rf3c.html

Allocating a Typed Buffer

Table 2-2 tpalloc() Function Arguments

Argument Description

subtype Pointer to the name of a subtype being specified (in the view description
file) for aviEw, VIEW32, X_COMMON, Of RECORD typed buffer.

In the cases where a subtype isnot relevant, assign the NULL value to
this argument.

size Size of the buffer.

The Oracle Tuxedo system automatically associates a default buffer size
with all typed buffers except CARRAY, X_OCTET, and XML, which require
that you specify asize, so that the end of the buffer can be identified.

For all typed buffersother than CARRAY, X_OCTET, and XML, if you specify
avalue of zero, the Oracle Tuxedo system uses the default associated with
that typed buffer. If you specify asize, the Oracle Tuxedo system assigns
thelarger of the following two values: the specified size or the default size
associated with that typed buffer.

The default size for al typed buffers other than STRING, CARRAY,
X_OCTET, and XML is 1024 bytes. The default size for STRING typed
buffersis 512 bytes. Thereis no default value for CARRAY, X_OCTET, and
xML; for these typed buffers you must specify a size value greater than
zero. If you do not specify asize, the argument defaultsto 0. As aresult,
the tpalloc () function returnsaNULL pointer and sets tperrno to
TPEINVAL.

Thevriew, vIEW32, X_C_TYPE, and x_common typed buffers require the subtype argument, as
shown in Listing 2-1.

Listing 2-1 Allocating a VIEW Typed Buffer

struct aud *audv; /* pointer to aud view structure */

audv = (struct aud *) tpalloc("VIEW", "aud", sizeof (struct aud));

Programming an Oracle Tuxedo ATMI Application Using C 2-9

Listing 2-2 shows how to allocate an FML typed buffer. Note that avalue of NULL is assigned
to the subtype argument.

Listing 2-2 Allocating an FML Typed Buffer

FBFR *fbfr; /* pointer to an FML buffer structure */

fbfr = (FBFR *)tpalloc("FML", NULL, Fneeded(f, v))

Listing 2-3 shows how to allocate a carray typed buffer, which requiresthat a s i ze value be
specified.

Listing 2-3 Allocating a CARRAY Typed Buffer

char *cptr;

long casize;

casize = 1024;
cptr = tpalloc ("CARRAY", NULL, casize);

Upon success, the tpalloc () function returns apointer of type char. For types other than
STRING and CARRAY, you should cast the pointer to the proper C structure or FML pointer.

If the tpalloc () function encountersan error, it returnsthe NULL pointer. The following list
provides examples of error conditions:

e Failureto specify a size value for acarray, X_OCTET, or xML typed buffer
o Failureto specify a type (Or subtype in the case of vIEW)
e Specifying a type that is not known to the system

e Failureto join the application before attempting allocation

2-10 Programming an Oracle Tuxedo ATMI Application Using C

Allocating a Typed Buffer

For acomplete list of error codes and explanations of them, refer to tpaliloc (3¢) inthe Oracle
Tuxedo ATMI C Function Reference.

Listing 2-4 shows how to allocate a sTrRING typed buffer. In this example, the associated default
sizeis used asthe value of the size argument to tpalloc ().

Listing 2-4 Allocating a STRING Buffer

char *cptr;

cptr = tpalloc("STRING", NULL, 0);

Listing 2-5 shows how to allocate a RECORD typed buffer. In this example, the sizeisretrieved
from Frneeded (). RECORD typed buffers requires the subtype argument.

Listing 2-5 Allocating a RECORD Buffer

struct RECORD *rec; /* pointer to an RECORD buffer structure */

rec = (struct RECORD *)tpalloc ("RECORD", "CUSTOMER", Frneeded("CUSTOMER")) ;

See Also

e “Putting Datain a Buffer” on page 2-12
e “Resizing a Typed Buffer” on page 2-13
e tpalloc(3c) inOracle Tuxedo ATMI C Function Reference

e Programming An Oracle Tuxedo ATMI Application Using FML

Programming an Oracle Tuxedo ATMI Application Using C 2-11

../rf3c/rf3c.html
../rf3c/rf3c.html
../fml/index.html

Putting Data in a Buffer

2-12

Once you have allocated a buffer, you can put datain it.

In Listing 2-6, avIew typed buffer called aud is created with three members (fields). The three
members are b_id, the branch identifier taken from the command line (if provided); balance,
used to return the requested balance; and ermsg, used to return a message to the status line for
the user. When audi t isused to request a specific branch balance, the value of theb_ida member
is set to the branch identifier to which the request is being sent, and the balance and ermsg
members are set to zero and the NULL string, respectively.

Listing 2-6 Putting Data in a Message Buffer - Example 1

audv = (struct aud *)tpalloc("VIEW", "aud", sizeof(struct aud));

/* Prepare aud structure */

audv->b_id = g _branchid;

audv->balance = 0.0;

(void) strecpy (audv->ermsg, "");

When audit isused to query the total bank balance, the total balance at each site is obtained by
acall totheBaL server. Torun aquery on each site, arepresentative branch identifier is specified.
Representative branch identifiers are stored in an array named sitelist[]1. Hence, the aud
structure is set up as shown in Listing 2-7.

Listing 2-7 Placing Data in a Message Buffer - Example 2

/* Prepare aud structure */

audv->b_id = sitelist[i];/* routing done on this field */

audv->balance = 0.0;

Programming an Oracle Tuxedo ATMI Application Using C

Resizing a Typed Buffer

(void) strcpy (audv->ermsg, "");

The process of putting datainto a sTrinG buffer isillustrated in the listing titled “Resizing a
Buffer” on page 2-14.

See Also
e “Allocating a Typed Buffer” on page 2-8
e “Resizing a Typed Buffer” on page 2-13

e tpalloc (3c) in Oracle Tuxedo ATMI C Function Reference

Resizing a Typed Buffer

Y ou can change the size of a buffer allocated with tpalloc () by using the tprealloc (3c)
function asfollows:

char*

tprealloc (char *ptr, long size)

Table 2-3 describes the arguments to the tprealloc () function.

Table 2-3 tprealloc() Function Arguments

Argument Description

ptr Pointer to the buffer that isto be resized. This pointer must have
been allocated originally by acall to tpalloc (). If it wasnot,
the call failsand tperrno (5) isset to TPEINVAL to signify
that invalid arguments have been passed to the function.

size Long integer specifying the new size of the buffer.

The pointer returned by tprealloc () pointsto abuffer of the same type asthe original buffer.
Y ou must use the returned pointer to reference the resized buffer because the location of the

buffer may have changed.

Programming an Oracle Tuxedo ATMI Application Using C 2-13

../rf5/rf5.html
../rf3c/rf3c.html
../rf3c/rf3c.html

2-14

When you call the tprealloc () function to increase the size of the buffer, the Oracle Tuxedo
system makes new space available to the buffer. When you call the tprealloc () functionto
make a buffer smaller, the system does not actually resize the buffer; instead, it rendersthe space
beyond the specified size unusable. The actual content of the typed buffer remains unchanged. If
you want to free up unused space, it is recommended that you copy the datainto a buffer of the
desired size and then free the larger buffer.

On error, the tprealloc () function returnsthe NULL pointer and sets tperrno to an
appropriate value. Refer to tpalloc (3c) in Oracle Tuxedo ATMI C Function Reference for
information on error codes.

WARNING: Ifthetprealloc () functionreturnsthe NULL pointer, the contents of the buffer
passed to it may have been altered and may be no longer valid.

Listing 2-8 shows how to reallocate space for a sTrRING buffer.

Listing 2-8 Resizing a Buffer

#include <stdio.h>

#include “atmi.h”

char instr[100]; /* string to capture stdin input strings */
long sllen, s2len; /* string 1 and string 2 lengths */
char *slptr, *s2ptr; /* string 1 and string 2 pointers */
main ()
{
(void)gets (instr) ; /* get line from stdin */
sllen = (long)strlen(instr)+1; /* determine its length */

join application

if ((slptr = tpalloc(“STRING”, NULL, sllen)) == NULL) {
fprintf (stderr, “tpalloc failed for echo of: %s\n”, instr);
leave application

exit (1) ;

Programming an Oracle Tuxedo ATMI Application Using C

../rf3c/rf3c.html

Resizing a Typed Buffer

(void) strcpy (slptr, instr);

make communication call with buffer pointed to by slptr

(void)gets (instr) ; /* get another line from stdin */
s2len = (long)strlen(instr)+1l; /* determine its length */
if ((s2ptr = tprealloc(slptr, s2len)) == NULL) {

fprintf (stderr, “tprealloc failed for echo of: %s\n”, instr);
free slptr's buffer
leave application
exit (1) ;
}
(void) strcpy (s2ptr, instr);

make communication call with buffer pointed to by s2ptr

Listing 2-9 (an expanded version of the previous example) shows how to check for occurrences
of al possible error codes.

Listing 2-9 Error Checking for tprealloc()

if ((s2ptr=tprealloc(slptr, s2len)) == NULL)
switch (tperrno) {
case TPEINVAL:
fprintf (stderr, "given invalid arguments\n") ;
fprintf (stderr, "will do tpalloc instead\n");
tpfree(slptr) ;
if ((s2ptr=tpalloc("STRING", NULL, s2len)) == NULL) {
fprintf (stderr, "tpalloc failed for echo of: %s\n", instr);
leave application

exit(1l);

Programming an Oracle Tuxedo ATMI Application Using C 2-15

}
break;
case TPEPROTO:
fprintf (stderr, "tried to tprealloc before tpinit;\n");
fprintf (stderr, "program error; contact product support\n");
leave application
exit (1) ;
case TPESYSTEM:
fprintf (stderr,
"BEA Tuxedo error occurred; consult today's userlog file\n");
leave application
exit (1) ;
case TPEOS:
fprintf (stderr, "Operating System error %d occurred\n",Uunixerr) ;
leave application
exit (1) ;
default:
fprintf (stderr,
"Exrror from tpalloc: %s\n", tpstrerror (tperrno));

break;

See Also

e “Allocating a Typed Buffer” on page 2-8
e “Putting Datain a Buffer” on page 2-12

e tprealloc(3c) in Oracle Tuxedo ATMI C Function Reference

Checking for Buffer Type

The tptypes (3c) function returns the type and subtype (if one exists) of a buffer. The
tptypes () function signature is asfollows:

2-16 Programming an Oracle Tuxedo ATMI Application Using C

../rf3c/rf3c.html
../rf3c/rf3c.html

Checking for Buffer Type

long
tptypes (char *ptr, char *type, char *subtype)

Table 2-4 describes the arguments to the tptypes () function.

Table 2-4 tptypes() Function Arguments

Argument Description

ptr Pointer to a data buffer. This pointer must have been originally alocated by a call to
tpalloc () ortprealloc (),itmay notbeNULL, andit must becast asacharacter
type; otherwise, the tptypes () function reports an invalid argument error.

type Pointer to the type of the data buffer. type is of character type.

subtype Pointer to the subtype of the data buffer, if one exists. subtype is of character type.
For al types other than VIEW, VIEW32, RECORD, X_C_TYPE, and X_COMMON, upon
return the subtype parameter pointsto a character array containing the NULL string.

Note: For RECORD typed buffer, the maximum length of record name (subtype)
is 32 bytes. If the length of record nameis greater than 16, tptypes () will
populate thefirst 16 bytes of subtype, but RECORD * pointer will point to the
beginning of full-length record name.

Upon success, the tptypes () function returns the length of the buffer in the form of along
integer.

Intheevent of an error, tptypes () returnsavalueof -1 and sets tperrno (5) tothe appropriate
error code. For alist of these error codes, refer to the “Introduction to the C Language
Application-to-Transaction Monitor Interface” and tpalloc (3c) intheOracle Tuxedo ATMI C
Function Reference.

Y ou can usethe sizevaluereturned by tptypes () upon successto determine whether the default
buffer sizeislarge enough to hold your data, as shown in Listing 2-10.

Listing 2-10 Getting Buffer Size

iptr = (FBFR *)tpalloc("FML", NULL, O0);
ilen = tptypes(iptr, NULL, NULL);

Programming an Oracle Tuxedo ATMI Application Using C 2-11

../rf5/rf5.html
../rf3c/rf3c.html
../rf3c/rf3c.html

if (ilen < mydatasize)

iptr=tprealloc (iptr, mydatasize);

See Also
e “Allocating a Typed Buffer” on page 2-8

e tptypes (3c) in Oracle Tuxedo ATMI C Function Reference

Freeing a Typed Buffer

2-18

The tpfree (3c) function frees abuffer allocated by tpalioc () or reallocated by
tprealloc (). Thetpfree () function signatureis as follows:

void

tpfree(char *ptr)

The tpfree () function takes only one argument, ptr, which is described in Listing 2-5.

Table 2-5 tpfree() Function Argument

Argument Description

ptr Pointer to a data buffer. This pointer must have been allocated
originally by acall to tpalloc () or tprealloc (), it may
not be NULL, and it must be cast asacharacter type; otherwise,
the function returns without freeing anything or reporting an
error condition.

When freeing an rML32 buffer using tpfree (), the routine recursively frees al embedded
buffersto prevent memory leaks. In order to preserve the embedded buffers, you should assign
the associated pointer to NULL beforeissuing the tpfree () routine. When ptr isNULL, no
action occurs.

Listing 2-11 shows how to usethe tpfree () function to free a buffer.

Programming an Oracle Tuxedo ATMI Application Using C

../rf3c/rf3c.html
../rf3c/rf3c.html

Using a VIEW Typed Buffer

Listing 2-11 Freeing a Buffer

struct aud *audv; /* pointer to aud view structure */

audv = (struct aud *)tpalloc("VIEW", "aud", sizeof(struct aud));

tpfree((char *)audv) ;

See Also

e “Allocating a Typed Buffer” on page 2-8
e “Resizing a Typed Buffer” on page 2-13

e tpfree(3c) in Oracle Tuxedo ATMI C Function Reference

Using a VIEW Typed Buffer

There are two kinds of view typed buffers. Thefirst, FML view, isaC structure generated from
an rML buffer. The second is simply an independent C structure.

The reason for converting Fur buffersinto C structures and back again (and the purpose of the
FML VIEW typed buffers) isthat while rvi buffers provide data-independence and convenience,
they incur processing overhead because they must be manipulated using Fmr. function calls. C
structures, while not providing flexibility, offer the performance required for lengthy
manipulations of buffer data. If you need to perform a significant amount of data manipulation,
you can improve performance by transferring fielded buffer datato C structures, operating on the
data using normal C functions, and then converting the data back to the FML buffer for storage
or message transmission.

For moreinformation on the rvL typed buffer and ruw file conversion, refer to the Oracle Tuxedo
ATMI FML Function Reference.

To use view typed buffers, you must perform the following steps:
e Set the appropriate environment variables.

e Describe each structure in view description files.

Programming an Oracle Tuxedo ATMI Application Using C 2-19

../rf3c/rf3c.html

2-20

e Compilethe view description files using viewc, the Oracle Tuxedo view compiler. Specify
the resulting header filein the #include statement for your application program.

Setting Environment Variables for a VIEW Typed Buffer

To use aVIEW typed buffer in an application, you must set the following environment variables
shown in Table 2-6.

Table 2-6 Environment Variables for a VIEW Typed Buffer

Environment Variable Description

FIELDTBLS Or Comma-separated list of field table filenames for FML or FML32 typed
FIELDTBLS32 buffers. Required only for FML VIEW types.

FLDTBLDIR Or Colon-separated list of directoriesto search for thefield tablefiles for FML
FLDTBLDIR32 and FML32 typed buffers. For Microsoft Windows, use a

semicolon-separated list. Required only for FML VIEW types.

VIEWFILES Of Comma-separated list of allowable filenames for VIEW or VIEW32
VIEWFILES32 description files.

VIEWDIR Of Colon-separated list of directoriesto search for view or vIEW32 files. For
VIEWDIR32 Microsoft Windows, use a semicolon-separated list.

Creating a View Description File

To use avIew typed buffer, you must define the C record in aview description file. The view
description fileincludes, aview for each entry, aview that describesthe characteristic C structure
mapping and the potential Fv1, conversion pattern. The name of the view correspondsto the name
of the C language structure.

The following format is used for each structure in the view description file:

$ /* View structure */
VIEW viewname
type cname fbhname count flag size null

Table 2-7 describes the fields that must be specified in the view description file for each C
structure.

Programming an Oracle Tuxedo ATMI Application Using C

Using a VIEW Typed Buffer

Table 2-7 View Description File Fields

Field Description

type Datatype of thefield. Can be set to short, long, £loat, double, char,
string, Or carray.
Note: mbstring data type is supported by the view32 typed buffer only .

cname Name of the field asit appearsin the C structure.

fbname If you will be using the FML-to-VIEW or VIEW-to-FML conversion functions, this
field must be included to indicate the corresponding FML name. Thisfield name
must also appear in the FML field table file. Thisfield is not required for
FML-independent VIEWS.

count Number of timesfield occurs.

flag Specifies any of the following optional flag settings:

» p—change the interpretation of the NULL value

e s—one-way mapping from fielded buffer to structure

e F—one-way mapping from structure to fielded buffer

e N—zero-way mapping

e C—generate additional field for associated count member (ACM)

e L—hold number of bytestransferred for STRING, CARRAY, and MBSTRING

Note: Theview32 command automatically adds the L option flag for
MBSTRING typed buffers

Programming an Oracle Tuxedo ATMI Application Using C 2-21

Tahle 2-7 View Description File Fields (Continued)

Field Description

size For STRING and CARRAY buffer types, specifies the maximum length of the
value. Thisfield isignored for al other buffer types.

null User-specified NULL value, or minus sign (-) to indicate the default value for a

field. NULL values are used in vIEW typed buffersto indicate empty C structure
members.

Thedefault NULL valuefor all numeric typesis0 (0.0 for dec_t). For character
types, the default NULL valueis‘\0’. For STRING, CARRAY, and MBSTRING
types, the default NULL vaueis* .

Constants used, by convention, as escape characters can also be used to specify a
NULL value. The view compiler recognizes the following escape constants:
\ddd (whered isan octal digit), \0, \n, \t, \v, \r, \ £, \\, \ ", and \”.

Y ou may enclose STRING, CARRAY, MBSTRING, and char NULL valuesin
double or single quotes. The view compiler does not accept unescaped quotes
within a user-specified NULL value.

Y ou can also specify the keyword NONE in the NULL field of aview member
description, which means that there isno NULL vaue for the member. The
maximum size of default values for string and character array membersis 2660
characters. For more information, see Oracle Tuxedo ATMI FML Function
Reference.

Y ou can include a comment line by prefixing it with the # or $ character. Lines prefixed by a$
sign areincluded in the .k file.

Listing 2-12 is an excerpt from an example view description file based on an rur, buffer. In this
case, the fbname field must be specified and match that which appearsin the corresponding field
table file. Note that the carrava field includes an occurrence count of 2 and setsthe ¢ flag to
indicate that an additional count element should be created. In addition, the . flag is set to
establish alength element that indicates the number of characters with which the application
populates the carravi field.

Listing 2-12 View Description File for FML VIEW

$ /* View structure */

2-22

VIEW MYVIEW

cname fbname count flag size null
floatl FLOAT1 1 . - 0.0

Programming an Oracle Tuxedo ATMI Application Using C

Using a VIEW Typed Buffer

double doublel DOUBLE1 1 - - 0.0
long longl LONG1 1 - - 0
short shortl SHORT1 1 - - 0
int intl INT1 1 - - 0
dec_t decl DEC1 1 - 9,16 0
char charl CHAR1 1 - - '\O"
string stringl STRING1 1 - 20 "\0"'
carray carrayl CARRAY1 2 CL 20 '\0"'
bool booll BOOL1 1 - - 0
signedchar signedcharl SIGNEDCHAR1 1 - - 0
unsignedchar unsignedcharl UNSIGNEDCHAR1 1 - - 0
wchar_t wchar_tl WCHAR_T1 1 - - 0
unsignedint unsignedintl UNSIGNEDINT1 1 - - 0
unsignedlong unsignedlongl UNSIGNEDLONG1 1 - - 0
longlong longlongl LONGLONG1 1 - - 0
unsignedlonglong unsignedlonglongl UNSIGNEDLONGLONG1 1 - - 0
longdouble longdoublel LONGDOUBLE1 1 - - 0
struct structl STRUCT1 1 - - 0
END

Listing 2-13 illustrates the same view description file for an independent vEew.

Listing 2-13 View Description File for an Independent View

$ /* View data structure */
VIEW MYVIEW

#type cname fbname count flag size null
float floatl - 1 - - -
double doublel - 1 - - -
long longl - 1 - - -
short shortl - 1 - - -
int intl - 1 - - -
dec_t decl - 1 - 9,16 -
char charl - 1 - - -
string stringl - 1 - 20 -
carray carrayl - 2 CL 20 -
bool booll

signedchar signedcharl

unsignedchar unsignedcharl

wchar_t wchar_t1l

Programming an Oracle Tuxedo ATMI Application Using C 2-23

unsignedint unsignedintl

unsignedlong unsignedlongl
longlong longlongl
unsignedlonglong unsignedlonglongl
longdouble longdoublel
struct structl

END

Notethat the format issimilar to the Fmr.-dependent view, except that the fbname and nu11 fields
are not relevant and are ignored by the viewc compiler. Y ou must include avalue (for example,
adash) as aplaceholder in these fields.

Executing the VIEW Compiler

To compile avIew typed buffer, run the viewc command, specifying the name of the view
description file as an argument. To specify an independent view, use the -n option. You can
optionally specify adirectory in which the resulting output file should be written. By default, the
output file is written to the current directory.

For example, for an Fur-dependent view, the compiler isinvoked as follows:

viewc myview.v

Note: To compileaview32 typed buffer, run the viewc32 command.
For an independent vIew, use the -n option on the command line, as follows:

viewc -n myview.v
The output of the viewc command includes:
e Oneor more COBOL cory files; for example, MyvIEW. cbl
o Header file containing a structure definition that may be used by application programs

e Binary version of the source description file; for example, myview.v

Note: On case-insensitive platforms (for example, Microsoft Windows), the extension used
for the names of such filesis~; for example, myview.vv.

Listing 2-14 provides an example of the header file created by viewc.

2-24 Programming an Oracle Tuxedo ATMI Application Using C

Using a VIEW Typed Buffer

Listing 2-14 Header File Created Using the VIEW Compiler

struct MYVIEW {
float floatl;
double doublel;
long longl;
short shortl;
int intl;

dec_t decl;

char charl;

char stringl([20];

unsigned short L_carrayl[2]; /* length array of carrayl */
short C_carrayl; /* count of carrayl */
char carrayl[2][20];

bool booll

signedchar signedcharl

unsignedchar unsignedcharl

wchar_t wchar_tl

unsignedint unsignedintl

unsignedlong unsignedlongl

longlong longlongl

unsignedlonglong unsignedlonglongl

longdouble longdoublel

struct structl

The same header fileis created for FML-dependent and independent VIEWS.

In order to use avIew typed buffer in client programs or service subroutines, you must specify
the header filein the application #include statements.

See Also

e “Using an FML Typed Buffer” on page 2-27
e “Using an XML Typed Buffer and the Apache Xerces C++ Parser” on page 2-31
e “Using an MBSTRING Typed Buffer” on page 2-45

Programming an Oracle Tuxedo ATMI Application Using C 2-25

e viewc, viewc32 (1) in Oracle Tuxedo Command Reference

Using a RECORD Typed Buffer

To use RECORD typed buffers, you must perform the following steps:
e Set the appropriate environment variables.
e Describe each field in copybook files.

e Compile the copybook files using cpy2record, the copybook to RECORD tool. Specify the
RECORD name for your application program.

Setting Environment Variables for a RECORD Typed Buffer

To use arRECORD typed buffer in an application, you must set the following environment
variables.

Table 2-8 Environment Variables for a RECORD Typed Buffer

Environment Variable Description
RECORDFILES Comma-separated list of allowable filenames for RECORD files.
RECORDDIR Colon-separated list of directoriesto search for RECORD files. For

Microsoft Windows, use a semicolon-separated list.

Creating a Copybook File

To use arecorD typed buffer, you must define the record in a COBOL copybook file. The
copybook fileincludesarecorp for each entry. The name of theREcorD correspondsto the name
of the COBOL language field. For more information about COBOL copybook, please see
COBOL language reference.

Below is an excerpt from an example COBOL copybook file.

$ /* copybook record */

01 CUSTOMER .
02 NAME PIC X(10).
02 BALANCE PIC S9(9) COMP-5.

2-26 Programming an Oracle Tuxedo ATMI Application Using C

../rfcm/rfcmd.html
../rfcm/rfcmd.html

Using an FML Typed Buffer

02 ADDRESS PIC X(80).

Generating the RECORD Description File

To generate RECORD description file, run cpy2record command, specifying the name of the
copybook file asan argument. Y ou can optionally specify a directory in which the resulting
output file should be written. By default, the output file is written to the current directory.

For example, the tool isinvoked as follows:
cpy2record abc.cbl

The output of the cpy2record command isthe binary version of the Recorp description file, for
example, abc . R.

See Also
e Programming An Oracle Tuxedo ATMI Application Using FML

e cpy2record in Oracle Tuxedo Command Reference

Using an FML Typed Buffer

To use FML typed buffers, you must perform the following steps:
e Set the appropriate environment variables.
e Describe the potentia fieldsin an FML field table.

e Create an FML header file and specify the header file in a #inc1lude statement in the
application.

ruL functions are used to manipul ate typed buffers, including those that convert fielded buffers
to C structures and vice versa. By using these functions, you can access and update data values
without having to know how datais structured and stored. For more information on Fur
functions, see Oracle Tuxedo ATMI FML Function Reference.

Setting Environment Variables for an FML Typed Buffer

To use an FML typed buffer in an application program, you must set the following environment
variables shown in Table 2-9.

Programming an Oracle Tuxedo ATMI Application Using C 2-21

../rfcm/rfcmd.html#wp2078938
../fml/index.html

Table 2-9 FML Typed Buffer Environment Variables

Environment Variable

Description

FIELDTBLS Or
FIELDTBLS32

Commarseparated list of field tablefilenamesfor FML or FML32
typed buffers, respectively.

FLDTBLDIR Or
FLDTBLDIR32

Colon-separated list of directoriesto search for the field table
filesfor FML and FML3 2, respectively. For Microsoft Windows,
use a semicolon-separated list.

Creating a Field Table File

Field table files are always required when rur buffers and/or Fur.-dependent views are used. A
field table file maps the logical name of afield in an Fur buffer to astring that uniquely identifies

thefield.

The following format is used for the description of each field in the v field table;

$ /* FML structure */

*base value

name number type flags comments

Table 2-10 describes the fields that must be specified in the vt field tablefile for each ruvr field.

Table 2-10 Field Table File Fields

Field

Description

*base value

Specifiesabase for offsetting subsequent field numbers, providing an easy way to
group and renumber sets of related fields. The *base option allowsfield numbers
to bereused. For a16-hit buffer, the base plus the relevant number must be greater
than or equal to 100 and less than 8191. Thisfield is optional.

Note: The Oracle Tuxedo system reserves field numbers 1-100 and 6000-7000
for internal use. Field numbers 101-8191 are available for
application-defined fields with FML; field numbers 101-33, 554, and 431,

for FML32.
name Identifier for the field. The value must be a string of up to 256 characters,
consisting of aphanumeric and underscore characters only.
2-28 Programming an Oracle Tuxedo ATMI Application Using C

Using an FML Typed Buffer

Table 2-10 Field Tahle File Fields (Continued)

Field

Description

rel-number

Relative numeric value of the field. Thisvalue is added to the current base, if
specified, to calculate the field number.

type Typeof thefield. Thisvalue can beany of thefollowing: char, string, short,
long, float, double, OF carray.

flag Reserved for future use. A dash (-) should be included as a placehol der.

comment Optiona comment.

All fields are optional, and may be included more than once.

Listing 2-15 illustrates a field table file that may be used with the Fvr-dependent view example.

Listing 2-15 Field Table File for FML VIEW

name number type flags comments
FLOAT1 110 float - -
DOUBLE1 111 double - -
LONG1 112 long - -
SHORT1 113 short - -
INT1 114 long - -
DEC1 115 string - -
CHAR1 116 char - -
STRING1 117 string - -
CARRAY1 118 carray - -
BOOL1
SIGNEDCHAR1
UNSIGNEDCHARI1
WCHAR_T1
UNSIGNEDINT1
UNSIGNEDLONGL1
LONGLONG1
UNSIGNEDLONGLONG1
LONGDOUBLE1
STRUCT1

Programming an Oracle Tuxedo ATMI Application Using C 2-29

Creating an FML Header File

In order to use an ru1 typed buffer in client programs or service subroutines, you must create an
FML header file and specify it in the application #include statements.

To createan FuL header filefrom afield tablefile, usethemk £1ahdr (1) command. For example,
to create afile called myview. £1ds . h, enter the following command:

mkfldhdr myview.flds
For Fu1.32 typed buffers, use the mk f1dhdr32 command.

Listing 2-16 shows themyview. f1ds.h header file that is created by the mk £1ahdr command.

Listing 2-16 myview.flds.h Header File

/* fname fldid */

/o mmees mme s */

#define FLOATI1 ((FLDID)24686) /* number: 110 type: float */
#define DOUBLE1l ((FLDID)32879) /* number: 111 type: double */
#define LONG1 ((FLDID)8304) /* number: 112 type: long */
#define SHORT1 ((FLDID)113) /* number: 113 type: short */
#define INT1 ((FLDID)8306) /* number: 114 type: long */
#define DEC1 ((FLDID)41075) /* number: 115 type: string */
#define CHARL ((FLDID)16500) /* number: 116 type: char */
#define STRING1 ((FLDID)41077) /* number: 117 type: string */
#define CARRAY1 ((FLDID)49270) /* number: 118 type: carray */

#define BOOL1

#define SIGNEDCHAR1L
#define UNSIGNEDCHARL
#define WCHAR_T1

#define UNSIGNEDINT1
#define UNSIGNEDLONG1
#define LONGLONG1
#define UNSIGNEDLONGLONGL
#define LONGDOUBLE1
#define STRUCT1

2-30 Programming an Oracle Tuxedo ATMI Application Using C

Using an XML Typed Buffer and the Apache Xerces C++ Parser

Specify the new header filein the #include Statement of your application. Once the header file
isincluded, you can refer to fields by their symbolic names.

See Also

e “Using aVIEW Typed Buffer” on page 2-19
e “Using an XML Typed Buffer and the Apache Xerces C++ Parser” on page 2-31
e “Using an MBSTRING Typed Buffer” on page 2-45

e mkfldhdr, mkfldhdr32 (1) in Oracle Tuxedo Command Reference

Using an XML Typed Buffer and the Apache Xerces C++
Parser

As XML continuesto gain acceptance as a data standard, Oracle Tuxedo customers are
increasingly using XML typed buffersin their applications. To assist customersin this effort,
Oracle hasintegrated the Apache Xerces C++ Version 2.5 parser into the Oracle Tuxedo software
distribution.

This section introduces the following topics:
e About the XML Typed Buffer
e About the Apache Xerces C++ Parser

e Converting XML Data To and From FML/FML 32 Buffers

About the XML Typed Buffer

XML buffers enable Oracle Tuxedo applications to use XML for exchanging data within and
between applications. Oracle Tuxedo applications can send and receive simple XML buffers, and
route those buffers to the appropriate servers. All logic for dealing with XML documents,
including parsing, resides in the application.

An XML document consists of:
e A sequence of characters that encode the text of a document

e A description of thelogical structure of the document and information about that structure

Programming an Oracle Tuxedo ATMI Application Using C 2-31

../rfcm/rfcmd.html
../rfcm/rfcmd.html

2-32

The programming model for the xmr, buffer typeissimilar to that for the carray buffer type: you
must specify the length of the buffer with the tpalioc () function. The maximum supported size
of an XML document is4 GB.

Formatting and filtering for Events processing (which are supported when a STRING buffer type
is used) are not supported for the XML buffer type. Therefore, the _tmfilter and _tmformat
function pointersin the buffer type switch for XML buffers are set to NULL.

The XML parser in the Oracle Tuxedo system performs the following functions:
e Autodetection of character encodings
o Character code conversion
o Detection of element content and attribute values

e Datatype conversion

Data-dependent routing is supported for XML buffers. The routing of an XML document can be
based on element content, or on element type and an attribute value. The XML parser determines
the character encoding being used; if the encoding differs from the native character sets
(US-ASCII or EBCDIC) used in the Oracle Tuxedo configuration files (uBBconFIG and
DMCONFIG), the element and attribute names are converted to US-ASCII or EBCDIC.

Attributes configured for routing must be included in an XML document. If an attribute is
configured as arouting criteriabut it is not included in the XML document, routing processing
fails.

The content of an element and the value of an attribute must conform to the syntax and semantics
required for arouting field value. The user must also specify the type of the routing field value.
XML supportsonly character data. If arange field isnumeric, the content or value of that field is
converted to a numeric value during routing processing.

About the Apache Xerces C++ Parser

The Xerces-C++ 2.5.0 parser, written in aportable subset of C++, comeswith ashared library for
parsing, generating, manipulating, and validating XML documents. It complieswiththe XML 1.0
recommendation and associated standardsDOM 1.0, DOM 2.0. SAX 1.0, SAX 2.0, Namespaces,
and W3C’'s XML Schemarecommendation version 1.0.

Because the Xerces-C++ 1.7 parser did not cache the Document Type Definition (DTD) and
XML Schema files when validation was required, or cache external entity filesused in DTD,
Oracle Tuxedo 8.1 improved the performance of the Xerces-C++ 1.7 parser by adding an option

Programming an Oracle Tuxedo ATMI Application Using C

Using an XML Typed Buffer and the Apache Xerces C++ Parser

to cacheexternal DTD, Schema, and entity filesthat might otherwise beretrieved repeatedly over
the Web. Continued support for this modification is available with Tuxedo 9.x and Xerces C++
2.5.0.

XML Parser Control

There are two ways to turn on/off caching for the Xerces-C++ parser:

e Administratively by using two environment variables named URLENTITYCACHING and
URLENTITYCACHEDIR

e Programmatically by using four ATMI functions that specify particular Xerces parser class
methods:
- getURLEntityCaching ()
- setURLEntityCaching ()
— getURLEntityCacheDir ()

— setURLEntityCacheDir ()

Note: These four methods are Oracle Tuxedo enhancementsto the Apache Xerces-C++ parser.
They are used exclusively in conjunction with the following two Xerces objects:

® XercesDOMParser

® SAXParser

XML Parser Support for ICU

The International Components for Unicode (ICU) 3.0 library, a C/C++ library that supports over
200 different coded character sets (encoding forms) on awide variety of platforms, isincluded
with the Oracle Tuxedo distribution. The Xerces-C++ 2.5.0 parser is built with the ICU 3.0
library.

XML Parser Sample Application

A sample application for using the Xerces-C++ parser ATMI functionsis provided in the Oracle
Tuxedo user documentation. Among other things, the sample demonstrates how to write a
wrapper for the Xerces-C++ parser so that Tuxedo clients and servers written in C can call the
Xerces-C++ ATMI functions.

Programming an Oracle Tuxedo ATMI Application Using C 2-33

2-34

Xerces Schema Sample

A sample application for using XML schemas with the Xerces parser is provided in the Oracle
Tuxedo documentation. See Tutorial for xmlfmlapp: A Full C XML/FML32 Conversion
Application in Tutorials for Developing Oracle Tuxedo ATMI Applications

See Also

getURLEntityCacheDir (3c), setURLEntityCacheDir (3c), getURLEntityCaching(3c),
setURLEntityCaching (3c), Xerces APl parser on-line documentation.

Converting XML Data To and From FML/FML32 Buffers

Asan input/output format, XML datais gaining broader usein modern application development.
Most Tuxedo customers, in contrast, have large investments in existing defined services that
make use of Tuxedo FML/FML 32 buffers as the preferred data transport.

Oracle Tuxedo addresses this issue by adding functionality that allows for data conversion of
XML to and from FML/FML 32 buffers. This conversion can be initiated one of two ways:

e On-demand conversion

For programmers, on-demand conversion of XML datato and from FML/FML 32 buffers
features four new ATMI functions for manual conversion. For more information, see
“Using On-Demand Conversion.”

e Automatic conversion

For application administrators, automatic conversion of XML to and from FML/FML32
buffers features a new BUFTYPECONV parameter in the servIcEs section of the uBBcoNFIG
configuration file initiates conversion when the server is booted. For more information, see
“Using Automatic Conversion.”

Regardless of the method used for conversion, the FML/FML32 field types are mapped to XML
in a particular manner. For information on conversion mapping, see “Mapping XML To and
From FML/FML32 Field Types.”

Note: XML to and from FML/FML 32 conversion uses third-party libraries (for example,
libticudata.so) that may be substantial in size.

Increasing the size of shared libraries may cause running Tuxedo application processes
(that directly or indirectly depend on those libraries) to consume increased amounts of
memory which, in turn, can impact performance.

Programming an Oracle Tuxedo ATMI Application Using C

../tutor/tutxmlfmlapp.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

Using an XML Typed Buffer and the Apache Xerces C++ Parser

XML to and from FML/FML 32 conversion should not be used by a Tuxedo system
process.

For other known issues or limitations regarding conversion between XML and
FML/FML 32 buffers using the Xerces parser, see “Conversion Limitations.”

Using On-Demand Conversion

On-demand conversion gives you the option to manually execute conversion of XML datato
FML/FML32 buffers or conversion of FML/FML32 buffersto XML.

The following four ATMI functions provide on-demand conversion:
e tpxmltofml () - converts XML to FML
e tpfmltoxml () - converts FML to XML
e tpxmltofml32 () - converts XML to FML32

e tpfml32toxml () - converts FML32 to XML

For a detailed description of these functions and their arguments, see “Oracle Tuxedo ATMI C
Function Reference.”

Initiating On-Demand Conversion

For on-demand conversion of XML datato and from FML/FML 32 buffers, perform thefollowing
steps:

e Set the appropriate environment variables
e Determine the conversion ATMI function you want to use

e Usethe rtag argument to specify the input/output XML root tag for the buffer type
conversion in the function call (optional)

e Set the f1ag argument to select Xerces parser options (optional)

On-Demand Conversion and Xerces Parser XML Validation

If you are using the ATMI functions to initiate conversion of XML to and from FML/FML32
buffers, parser validation is determined one of two ways.

e Accepting the default parser validation settings

e Specifying validation options through the flag argument in the ATMI functions

Programming an Oracle Tuxedo ATMI Application Using C 2-35

For adetailed description of the ATMI functions and their Xerces parser flag arguments, see
“Oracle Tuxedo ATMI C Function Reference.”

Using Automatic Conversion

Automatic conversion starts and endswith XML. That is, XML buffers are input, converted and
processed to FML/FML 32 buffers, and finally reconverted back to XML.

To initiate conversion between XML and FML/FML 32 buffers you must specify the
BUFTYPECONV parameter inthe services section of theussconr1c file. This parameter accepts
only one of two value options; XML.2FML OF XML2FML32.

When you boot a server with this parameter, the input buffer is converted from an XML buffer
to an FML/FML32 buffer viaclient tpcall (), tpacall (), tpconnect (), Of tpsend () before
being delivered to the service. When tpreturn () or tpsend () iscalled, an FML/FML 32 buffer
is converted to XML beforeit is returned.

Services using the BurTYPECONV parameter allow clients or other services to send and receive
XML buffers without changing how the existing service handles FML/FML 32 buffers.

Note: Keepin mind the following regarding BUFTYPECONV parameter use;

e When a service uses the BurTYPECONV parameter, all output FML/FML 32 buffers
are converted to XML. Creating a new service name using the BUFTYPECONV
parameter allows you to output XML and keep the original service name to output
FML/FML 32 buffers.

e Automatic XML to FML/FML 32 buffers conversion only takes action on input
XML data. All other input buffers are not converted even if specifiedin
BUFTYPECONW.

e XML, FML, and FML32 input/output service datais converted only if the service
actsas aserver. In other words, if a client or other service makes arequest to the
service using the BUFTYPECONV parameter.

e |f aservice using the BUFTYPECONV parameter acts as a client, conversion does not
take place. For example, a service with the BUFTYPECONV parameter using
tpcall () onanother service.

e In /0 messaging mode, TMQFORWARD USES tpcall () to cal aservice. If the called
service uses the BUFTYPECONV parameter, automatic conversion will take place.

During automatic conversion, the input XML root element name cannot be saved, so the output
XML root tag uses the default root tag <FML Type="FML"> Of <FML Type="FML32">.

2-36 Programming an Oracle Tuxedo ATMI Application Using C

Using an XML Typed Buffer and the Apache Xerces C++ Parser

Initiating Automatic Conversion

For automatic conversion of XML datato and from FML/FML 32 buffers, perform the following
steps:

e Add the BUFTYPECONV parameter specifying either xML2FML OF XML2FML32, asS appropriate.

e Use TpxPARSFILE environment variable to control Xerces parser attributes and settings
(optional).

e Usetmloadcf -y tocompileandloadthe ussconFic file.

e Use tmboot -y to boot the server

Automatic Conversion and Xerces Parser XML Validation

The Xerces parser uses default attribute settings to control XML validation during automatic
conversion. However, Tuxedo supports 14 specific Xerces DOM Parser class attributes that
provide some automatic conversion customizing flexibility.

If you are using the automatic conversion method, parser validation is determined one of two
ways:
e Accepting the default parser validation settings

e Specifying validation options through the TpxpPaARSFILE environment variable

The TpxPARSFILE environment variable designates the fully qualified path to atext file
that contains the X ercesDOM Parser class attribute settings you want to modify.

Each attribute in the text file is written on a separate line in the following format:
<parser attribute>=<setting>

The <parser attribute> can beany or all of the 14 parser attributesin the following
table, where (D) denotes the default setting.

Note: For adetailed description of these attributes, see Xerces parser 2.5.0 documentation.

Parser Attribute Setting

CacheGrammarFromParse Trueor False (D)
DoNameSpaces Trueor False (D)
DoSchema Trueor False (D)

Programming an Oracle Tuxedo ATMI Application Using C 2-31

2-38

Parser Attribute

Setting

External Schemal ocation

Fully qualified pathto £ile_name.xsd

ExitOnFirstFatal Error

Trueor False (D)

Includel gnorableWhiteSpace Trueor False (D)
LoadGrammar Fully qualified name of validating file
NoNamespaceSchemal ocation Fully qualified pathto file_name.xsd

StandardUri Conformant

Trueor False (D)

UseCachedGrammarlnParse

Trueor False (D)

UseScanner

WF, DG, SG, or |G (D)

ValidationConstraintFatal

Trueor False (D)

ValidationScheme

Val_Never, Val_Always, or Va_Auto (D)

ValidationSchemalull Checking

Trueor False (D)

Listing 2-17 isa sampleinput plain text file for the TpxpPARSFILE environment variable.

Listing 2-17 Sample Input for TXPARSFILE Environment Variahle

CacheGrammarFromParse=True
DoNameSpaces=True
DoSchema=True

ExternalSchemaLocation= http://www.xml.org/sch.xsd

ExitOnFirstFatalError=c:\xml\example.xsd
IncludeIgnorableWhiteSpace=True
LoadGrammar=

NoNamespaceSchemal.ocation=
StandardUriConformant=True
UseCachedGrammarInParse=True
UseScanner=WwF
ValidationConstraintFatal=True
ValidationScheme=Val_Auto
ValidationSchemaFullChecking=True

Programming an Oracle Tuxedo ATMI Application Using C

Using an XML Typed Buffer and the Apache Xerces C++ Parser

Mapping XML To and From FML/FML32 Field Types

The relationship between the XML format and the FML/FML 32 fieldsis one in which the XML
element names are the same asthe FML/FML 32 field names, and the XML values areinterpreted
using the corresponding field type.

The opening and closing tag uses the name of the field. Attributes are optionally provided for
FLD_FML32, FLD_MBSTRING and FLD_vIEw32. Field names and attributes are case sensitive.

Thefield value is read as a string and converted to the following field type:

<FIELDNAME Attribute="Attribute Value"> FIELDVALUE </FIELDNAME>

FML/FML32 field types are mapped to XML buffer types as follows:

Field Type Conversion Mapping Example
SHORT The FLD_SHORT, FLD_LONG, FML : AMOUNT=10.00
LONG FLD_CHAR, FLD_FLOAT, XML : <AMOUNT>10.00</AMOUNT>
CHAR FLD_DOUBLE, and FLD_STRING fields
FLOAT are simple conversions to and from the
DOUBLE XML string values.
STRING Formatting of type values will follow the
style, where possible, that has been used in
Ftypcvt ().
CARRAY During FLD_CARRAY field conversion, FML: BEA=TUXEDO

the XML byte stream valueis
converted from two al phanumeric
charactersin XML to onebytevaluein
Tuxedo. That is, each XML pair of

characters represents a hex byte value.

XML :<BEA>54555845444F</BEA>

Programming an Oracle Tuxedo ATMI Application Using C 2-39

Field Type Conversion Mapping Example

PTR During conversion to XML, the Example 1 - XML Conversion:
rFLD_PTR fieldname pointstooneof the _ ¢, ingptr

following valid Tuxedo buffer types: BUFTYPE="STRING”>teststringptr
STRING, MBSTRING, CARRAY, FML, </stringptr>

FML32, and vIiEw32 and ignores any

invalid buffer types. When the buffer ~ Example 2 - FML 32 Conversion:

content is converted to XML, the <fml32ptr
BUFTYPE attributeisincluded in the BUFTYPE="FML32"><id>2323</id>
buffer type tag (see example 1). </fml32ptr>

During conversion to FML 32, the
BUFTYPE attribute must beincluded in
the buffer type tag. The only valid
values are Tuxedo buffer types:
STRING, MBSTRING, CARRAY, FML,
FML32, and VIEW32. If the BUFTYPE
attribute is not specified or an invalid
valueisused, the element isignored in
FML32.

2-40 Programming an Oracle Tuxedo ATMI Application Using C

Using an XML Typed Buffer and the Apache Xerces C++ Parser

Field Type

Conversion Mapping

Example

FML32

The rLp_rML32 fidldnameis
supported with the opening and
closing tags based upon the FML field
name. This XML document includes
multiple descriptions of
<fieldname>value</fieldname>
for each field contained in the buffer.

Embedded FML32 isalowed so
hierarchal XML descriptions are
permitted.

Note: Anoptiona attribute,
Tpmbenc, can be used to
specify the encoding for the
entire MBSTRING field of
FML32 buffersduring XML to
FML32 conversion

The first example below includes an
encoding attribute and the second
example isan FML 32 definition for a
BANK field containing an embedded
FML32 field named ID.

Example 1:

<ACCT
Tpmbenc="EUC"><NM>Smith</NM><T
RAN>OPEN</TRAN></ACCT>

Example 2:
<BANK><BID>001</BID><ID><NM>J0O
nes</NM><AC>001</AC></ID>
</BANK>

Programming an Oracle Tuxedo ATMI Application Using C 2-11

Field Type

Conversion Mapping

Example

VIEW32

TherLD_vIEW32 fieldnameissupported,
and therefore, the FLD_INT and
FLD_DECIMAL fields are also recognized.
FLD_INT istreated like FLD_LONG.

The start and end tag is based on the
FLD_VIEW32 field name. It will takea
Vname attribute for specifying the view

nameto use. This XML document includes

multiple descriptions of

<fbname> value </fbname>

where £bname is the buffer name of the
view member field.

<CURR Vname="Myview">
<FB1>001</FB1><FB1>002</FB1><F
B2>7.50</FB2><FB3>Y</FB3>
</CURR>

2-42

Programming an Oracle Tuxedo ATMI Application Using C

Using an XML Typed Buffer and the Apache Xerces C++ Parser

Field Type

Conversion Mapping

Example

MBSTRING

The FLD_MBSTRING field conversion
uses the Encoding attribute and the field
datato describe the FML32 field. This
conversion issimilar to Fmbpack32
usage. Please note the following
conditions:

1

If the Encoding attribute is present
and the valueis specified, the data
values are used to create the
FLD_MBSTRING vaue.

If the Encoding attribute is not
present and Tpmbenc has been set for
the full FML32 buffer, then the
FLD_MBSTRING adoptsthe Tpmbenc
value.

If the Encoding attribute is not
present and Tpmbenc isnot specified,
then an attempt is made to get the
process environment TPMBENC (all
caps) and use that encoding as the
FLD_MBSTRING vauein place of the
attribute definition.

If al three of the previous conditions
are not met, Tuxedo ignores those
elements and no conversion takes
place.

Dataistreated in the same manner asa
FLD_CARRAY field.

<MBIN
Encoding="SJIS">C7E8D9CAB3</MB
IN>

Conversion Limitations

The following limitations exist for conversion of XML data to and from FML/FML32 buffers
using the Xerces 2.5.0 parser delivered with Tuxedo.

e XML documents are treated as a constrained XML message set, and not as aflexible XML
grammar. This constraint is based upon the definitions specified in the FML/FML 32 header

file.

Programming an Oracle Tuxedo ATMI Application Using C 2-43

e Digitaly signed XML, FML or FML 32 buffers fail signature checking when using
automatic conversion. The tpenvelope () function for digital signatures can only be used
during on-demand conversion.

e Parsing limitations are those inherited from the Xerces library.
e The Xerces parser does not support output XML DTD/Schema validation.

e Conversion between XML and FML/FML 32 buffers does not necessarily create the exact
same XML document as which you started. Tuxedo FML/FML 32 buffers group equivalent
field types within a buffer and bases output order on that grouping; therefore, specific
element ordering based on input XML islost. The Xerces parser cannot track FML/FML 32
field input order, or control FML/FML32 field output order.

Please note the following:
— All input format structureislost during XML conversion.

— You can input a partial listing of view32 membersto XML, However, when XML is
converted to FML 32, the FML32 output will include al view32 members defined in
the view definition file.

e During automatic conversion, input XML root tag names are not saved and the default
output root tag <FMI, Type="FML"> Of <FML Type="FML32"> iSused.

See Also

e “Tutorial for xmlstockapp, a C and C++ XML Parser Application” in Tutorials for
Developing Oracle Tuxedo ATMI Applications

® tpfml32toxml (3¢c), tpfmltoxml (3¢c), tpxmltofml32(3c), and tpxmltofml (3¢c) in
Oracle Tuxedo ATMI C Function Reference

e tuxenv (5)and UBBCONFIG (5)in Oracle Tuxedo File Formats, Data Descriptions, MIBs,
and System Processes Reference

e “Using aVIEW Typed Buffer” on page 2-19
e “Using an FML Typed Buffer” on page 2-27
e “Using an MBSTRING Typed Buffer” on page 2-45

2-44 Programming an Oracle Tuxedo ATMI Application Using C

../interm/atmitutr.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf5/rf5.html
../rf5/rf5.html

Using an MBSTRING Typed Buffer

Using an MBSTRING Typed Buffer

To support the multibyte coded character sets required by Chinese, Japanese, Korean, and other
Asian Pacific languages, Oracle Tuxedo includes the MBSTRING typed buffer for transport of
multibyte character user data. Chinese, Japanese, Korean, and other Asian Pacific languages use
coded character sets that use more than one byte to represent a character.

Using the MBSTRING typed buffer and the multibyte character encoding feature, the Oracle
Tuxedo system can convert user data from one encoding representation to another encoding
representation when an MBSTRING buffer (or an r.o_mBsTRING field in an FML 32 buffer) is
transmitted between processes. Figure 2-1 shows through example how encoding conversion
works.

Programming an Oracle Tuxedo ATMI Application Using C 2-45

2-46

Figure 2-1 Encoding Conversion Using MBSTRING Buffers—Example

TPMBENC
TPMBACONV

SJIS TPMBENC
Y TPMBACONV

EUCJP

Tuxedo
Server Machine

Workstation

ws O\
Client /-

WS ' App
Handler Server

SJIS . EUCJP SJIS . EUCJIP

' Reply Request !
Encoding Conversion Encoding Conversion

Client Request

|

Japanese SJIS-encoded data Length ... SJIS MBSTRING

L MBSTRING Data I MBSTRING Header ———

Server Reply

-
MBSTRING EUCJP | | Length ... Japanese EUCJP-encoded data
L MBSTRING Header I MBSTRING Data ——————!

Asindicated in the example, the MBSTRING typed buffer is capable of carrying information
identifying the code-set character encoding, or simply encoding, of its user data. In the example,
the client-request MBSTRING buffer holds Japanese user data represented by the Shift-JIS
(SJ1S) encoding, whilethe server-reply MBSTRING buffer holds Japanese user data represented
by the Extended UNIX Code (EUC) encoding. The multibyte character encoding feature reads
environment variables TevBENC and TPMBACONV to determine the source encoding, the target
encoding, and the state (on or off) of automatic encoding conversion.

Programming an Oracle Tuxedo ATMI Application Using C

Using an MBSTRING Typed Buffer

The encoding conversion capability enables the underlying Tuxedo system software to convert
the encoding representation of an incoming message to an encoding representation supported by
the machine on which the receiving process is running. The conversion is neither a conversion
between character code sets nor atrand ation between languages, but rather a conversion between
different character encodings for the same language.

Multibyte Character Encoding Control

There are two ways of controlling character encoding conversions:
o Administratively by using environment variables TpMBENC and TPMBACONV

e Programmatically by using ATMI functions

The following two flowcharts demonstrate how the environment variables and ATMI are used
during the allocating, sending, receiving, and converting of an MBSTRING buffer.

Programming an Oracle Tuxedo ATMI Application Using C 2-41

2-48

Figure 2-2 Allocating and Sending an MBSTRING Buffer

Application client process
calls tpalloc () to get an
MBSTRING buffer.

v

Tuxedo system allocates
memory for buffer.

l

Tuxedo system calls internal
function (similar to
tuxgetmbenc ()) to get
code-set encoding name
defined in environment
variable TPMBENC.

Is

TPMBENC No

set

Tuxedo system returns error
message to client process
and logs error message in
local ULOG.

y

Tuxedo system adds code-
set encoding name to buffer.

Tuxedo system frees
memory allocated for buffer.

v

Client process puts multibyte
data in MBSTRING buffer
and calls tpsend (),
tpcall(), ... to send buffer.

v

Tuxedo system sends buffer.

End

Programming an Oracle Tuxedo ATMI Application Using C

Using an MBSTRING Typed Buffer

Figure 2-3 Receiving and Converting an MBSTRING Buffer (Sheet 1 of 2)

(Start)

A 4

Tuxedo system, acting on
behalf of application server
process, receives
MBSTRING buffer destined
for server process.

!

Tuxedo system calls internal
function (similar to
tuxgetmbaconv ()) to get
value defined in environment
variable TPMBACONV.

Tuxedo system delivers
multibyte data in MBSTRING
buffer to server process

as is (no encoding
conversion).

Is
TPMBACONV
set

Tuxedo system calls internal
function (similar to
tuxgetmbenc ()) to get
code-set encoding name
defined in environment
variable TPMBENC.

Tuxedo system returns error
message to sending process
and logs error message

in local ULOG.

Is
TPMBENC
set

v
> To
Sheet 2

To
Sheet 2

Programming an Oracle Tuxedo ATMI Application Using C 2-49

Figure 2-3 Receiving and Converting an MBSTRING Buffer (Sheet 2 of 2)

From
Sheet 1

Tuxedo system calls internal
function (similar to
tpgetmbenc ()) to get
code-set encoding name

in MBSTRING buffer.

A

Tuxedo system compares
code-set encoding name
in MBSTRING buffer to
code-set encoding name
defined in TPMBENC.

Are
encoding names
the same
?

No (different)

Tuxedo system delivers
multibyte data in MBSTRING
buffer to server process

as is (no encoding
conversion).

Tuxedo system calls
_mbsconv () to convert
multibyte data in MBSTRING
buffer from source encoding
(encoding name in
MBSTRING buffer) to target
encoding (encoding name
defined in TPMBENC) and
delivers converted data to
server process.

End

2-50 Programming an Oracle Tuxedo ATMI Application Using C

From
Sheet 1

Using an MBSTRING Typed Buffer

Enabling MBSTRING to be Self-describing

MBSTRING can be self-describing if sendlen is set to zero. Some Tuxedo buffers provide a
capability for the buffer to determineits own length if the user does not provideit. This
self-describing behavior istriggered when an application setsthe sendlen argument of aTuxedo
function call (for example, tpcall ()) to zero.

Implementation
This self-describing behavior is implemented by adding the following:

e _nbspresend () function to the MmBsTRING typeswitch function list

e A protectivefile, $TUXDIR/udataobj/sendlen0_unsafe_tpmbenc, containing the names
of the codeset encoding names which are considered unsafe to use with the feature.

The _mbspresend () addition requires any user who customizes Tuxedo buffers to rebuild their
applications.

Safe/Unsafe Encoding Names

Theidea of safe or unsafe encoding names specified by TemMBENC comes from whether or not the
multibyte character data for these encodings can contain embedded NULLSs. Because the
_mbspresend () function uses strien () to determine the length of the data, an embedded
NULL causes the length to be incorrectly set and the wrong number of data bytes are sent.

The default list in sendlen0_unsafe_tpmbenc hasthe multibyte Unicode encoding names (in
uppercase and lowercase, for convenience) which can contain embedded NULLSs. Y ou should
modify thislist as application administration or performance is considered.

o If thefile exists but is empty, then Tuxedo assumes all encoding names are safe for
MBSTRING Self-describing attempts.

o If thefile does not exist, then Tuxedo assumes that all encoding hames are unsafe to use
for MBsTRING self-describing attempts (tperrno will be TPEINVAL).

o |f thefile exists and contains a list of names, then Tuxedo reads this file once (at
_mbsinit ()) and storesthelist internaly. Duringmbsinit (), the TPMBENC nameis
compared to the stored list and the buffer is set as safe or unsafe to use. When
_mbspresend () iscaled (sendlen argument is set to zero) and the buffer is marked safe,
then the length is set internally by Tuxedo.

Programming an Oracle Tuxedo ATMI Application Using C 2-51

Multibyte Character Support Limitations

The following limitations exist for the multibyte character support in Oracle Tuxedo:
¢ UBBCONFIG and DM CONFIG parameters should not use non-ASCII characters.
e Thefield data on Data Dependent Routing should not use non-ASCII characters.
e The multibyte character feature is not supported in Oracle Jolt.

e The multibyte character feature is not supported in Oracle WebL ogic Tuxedo Connector
(WTC) Release 8.x and earlier.

e The multibyte character feature is not supported in Tuxedo VIEW buffer types.

e There are no COBOL APIs equivalent to the Tuxedo APIs supporting MBsTRING and
FLD_MBSTRING

Multibyte Character Encoding Support for libiconv

libiconv, an encoding conversion library that provides support for many coded character sets
and encodings, isincluded with the Oracle Tuxedo 8.1 or later software distribution. The
multibyte character encoding feature uses the character conversion functionsin thislibrary to
convert from any of the supported character encodingsto any other supported character encoding,
through Unicode conversion.

libiconv provides support for the following encodings:
e European languages
— ASCII, 1SO-8859-{ 1,2,3,4,5,7,9,10,13,14,15,16} ,
KOI8-R, KOI8-U, KOI8-RU,
CP{1250,1251,1252,1253,1254,1257} , CP{ 850,866} ,

Mac{ Roman,Central Europe,| celand,Croatian,Romania},
Mac{ Cyrillic,Ukraine,Greek, Turkish},
Macintosh

e Semitic languages
— 1S0-8859-{ 6,8}, CP{1255,1256} , CP862, Mac{ Hebrew,Arabic}

e Japanese

2-52 Programming an Oracle Tuxedo ATMI Application Using C

Using an MBSTRING Typed Buffer

— EUC-JR, SHIFT-JIS, CP932, |SO-2022-JP, | SO-2022-JP-2, 1SO-2022-JP-1

Chinese

— EUC-CN, HZ, GBK, GB18030, EUC-TW, BIG5, CP950, BIG5-HK SCS,
— 1S0-2022-CN, 1S0O-2022-CN-EXT

e Korean

— EUC-KR, CP949, |S0O-2022-KR
e Armenian

— ARMSCII-8

Georgian

, JOHAB

— Georgian-Academy, Georgian-PS

e Thai

— T1S-620, CP874, MacThai
e Laotian

— MuleLao-1, CP1133

e Viethamese

— VISCII, TCVN, CP1258
e Platform specifics

— HP-ROMANS, NEXTSTEP
e Full Unicode
UTF-8
UCS-2, UCS-2BE, UCS-2LE
UCS4, UCS4BE, UCS4LE
UTF-16, UTF-16BE, UTF-16LE
UTF-32, UTF-32BE, UTF-32LE
UTF-7
— JAVA

Programming an Oracle Tuxedo ATMI Application Using C

2-53

e Full Unicode, interms of "uint16_t' or "uint32_t' (with machine-dependent endianness and
alignment)

— UCS-2-INTERNAL, UCS-4-INTERNAL

e Locale dependent, in terms of “char' or “wchar_t' (with machine-dependent endianness and
alignment, and with OS and local e dependent semantics)

— char, wchar_t

See Also

For more information about multibyte character encoding, see the following documents:

® buffer (3c), tpmbconv (3c), tpgetmbenc (3¢), tpsetmbenc (3¢), tuxgetmbenc (3c),
and tuxsetmbenc (3¢) , tuxgetmbaconv (3c), and tuxsetmbaconv (3c) in Oracle
Tuxedo ATMI C Function Reference

e tuxenv(5), tuxtypes (5), and typesw (5) in Oracle Tuxedo File Formats, Data
Descriptions, MIBs, and System Processes Reference

e Programming an Oracle Tuxedo ATMI Application Using FML
e Oracle Tuxedo ATMI FML Function Reference

Customizing a Buffer

2-54

Y ou may find that the buffer types supplied by the Oracle Tuxedo system do not meet your needs.
For example, perhaps your application uses a data structure that is not flat, but has pointersto
other data structures, such as a parse tree for an SQL database query. To accommodate unique
application requirements, the Oracle Tuxedo system supports customized buffers.

To customize a buffer, you need to identify the following characteristics shown in Table 2-11.

Programming an Oracle Tuxedo ATMI Application Using C

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html
../interm/atmiprog.html#fml
../rf3fml/rf3fml.html

Customizing a Buffer

Table 2-11 Custom Buffer Type Characteristics

Characteristic

Description

Buffer type

Name of the buffer type, specified by a string of up to eight characters.

Buffer subtype

Name of the buffer subtype, specified by a string of up to 16 characters. The
system uses a subtype to identify different processing requirements for buffers of
agiven type. When thewildcard character (*) is specified asthe subtype value, al
buffers of agiven type can be processed using the same generic routine. Any
buffers for which a subtype is defined must appear before thewildcard in thelist,
in order to be processed correctly.

Default size

Minimum size of the associated buffer type that can be allocated or reallocated.
For buffer types that have a value greater than zero and that are sized
appropriately, you can specify abuffer size of zero when allocating or reallocating
abuffer to use this default size.

Table 2-12 defines the list of routines that you may need to specify for each buffer type. If a
particular routine is not applicable, you can simply provide aNULL pointer; the Oracle Tuxedo
system uses default processing, as necessary.

Table 2-12 Custom Buffer Type Routines

Routine

Description

Buffer initialization

Initializes a newly allocated typed buffer.

Buffer reinitialization

Reinitializes atyped buffer. Thisroutine is called after a buffer has been
reallocated (that is, assigned anew size).

Buffer uninitialization

Uninitializes a typed buffer. Thisroutineis called just before atyped buffer is
freed.

Buffer presend Prepares the typed buffer for sending. Thisroutineis called before atyped buffer
is sent as a message to another client or server. It returns the length of the datato
be transmitted.

Buffer postsend Returns the typed buffer to its original state. Thisroutineis called after the

message is sent.

Buffer postreceive

Prepares the typed buffer once it has been received by the application. It returns
the length of the application data.

Programming an Oracle Tuxedo ATMI Application Using C 2-55

Tahle 2-12 Custom Buffer Type Routines

Routine Description

Encode/decode Performsall the encoding and decoding necessary for the buffer type. A request to

encode or decode is passed to the routine, along with input and output buffers and
lengths. The format used for encoding is determined by the application and, as
with the other routines, it may be dependent on the buffer type.

Routing Specifies the routing information. This routine is called with atyped buffer, the

length of the data for that buffer, alogical routing name configured by an
administrator, and atarget service. Based on thisinformation, the application must
select the server group to which the message should be sent or indicate that the
message is not needed.

Filter Specifiesfilter information. Thisroutineis called to eval uate an expression against

atyped buffer and to return amatch if it finds one. If the typed buffer isvIew or
FML, the FML Boolean expressions are used. Thisroutineis used by the
EventBroker to evaluate matches for events.

Format Specifies a printable string for a typed buffer.

2-56

Defining Your Own Buffer Types

The application programmer isresponsible for the code that mani pulates buffers, which allocates
and frees space, and sends and receives messages. For applications in which the default buffer
types do not meet the needs of the application, other buffer types can be defined, and new routines
can be written and then incorporated into the buffer type switch.

To define other buffer types, complete the following steps:
1. Code any switch element routines that may be required.
2. Add your new types and the names of your buffer management modulesto tm_typesw.

3. Build anew shared object or aDLL. The shared object or DLL must contain your updated
buffer type switch and associated functions.

4. Install your new shared object or DLL sothat all servers, clients, and executables provided by
the Oracle Tuxedo system are loaded dynamically at run time.

If your application isusing static libraries and you are providing a customized buffer type switch,
then you must build a custom server to link in your new type switch. For details, see buildwsh
(1), TmQUEUE (5), or TMQFORWARD (5).

Programming an Oracle Tuxedo ATMI Application Using C

Customizing a Buffer

Therest of the sections in this topic address the steps listed in the preceding procedure to define
anew buffer typein ashared-object or DLL environment. First, however, let’slook at the buffer
switch that is delivered with the Oracle Tuxedo system software. Listing 2-18 shows the switch
delivered with the system.

Listing 2-18 Default Buffer Type Switch

#include <stdio.h>

#include <tmtypes.h>

/*

* Initialization of the buffer type switch.

*/

struct tmtype_sw_t tm_typesw[] = {

{
"CARRAY", /* type */
R /* subtype */
0 /* dfltsize */
NULL, /* initbuf */
NULL, /* reinitbuf */
NULL, /* uninitbuf */
NULL, /* presend */
NULL, /* postsend */
NULL, /* postrecv */
NULL, /* encdec */
NULL, /* route */
NULL, /* filter */
NULL, /* format */
NULL, /* presend2 */
NULL /* multibyte code-set encoding conversion */

I

{
"STRING", /* type */
nEn, /* subtype */
512, /* dfltsize */
NULL, /* initbuf */

Programming an Oracle Tuxedo ATMI Application Using C

2-57

NULL, /* reinitbuf */

NULL, /* uninitbuf */
_strpresend, /* presend */
NULL, /* postsend */
NULL, /* postrecv */
_strencdec, /* encdec */
NULL, /* route */
_sfilter, /* filter */
_sformat, /* format */
NULL, /* presend2 */
NULL /* multibyte code-set encoding conversion */

},

{
"FML", /* type */
mEn /* subtype */
1024, /* dfltsize */
_finit, /* initbuf */
_freinit, /* reinitbuf */
_funinit, /* uninitbuf */
_fpresend, /* presend */
_fpostsend, /* postsend */
_fpostrecv, /* postrecv */
_fencdec, /* encdec */
_froute, /* route */
_ffilter, /* filter */
_fformat, /* format */
NULL, /* presend2 */
NULL /* multibyte code-set encoding conversion */

I

{
"VIEW", /* type */
A /* subtype */
1024, /* dfltsize */
_vinit, /* initbuf */
_vreinit, /* reinitbuf */

2-58 Programming an Oracle Tuxedo ATMI Application Using C

Customizing a Buffer

NULL, /* uninitbuf */

_vpresend, /* presend */

NULL, /* postsend */

NULL, /* postrecv */

_vencdec, /* encdec */

_vroute, /* route */

_vfilter, /* filter */

_vformat, /* format */

NULL, /* presend2 */

NULL /* multibyte code-set encoding conversion */
/* XATMI - identical to CARRAY */

"X_OCTET", /* type */
mEn, /* subtype */

0 /* dfltsize */

/* XATMI - identical to VIEW */
{'X','_",'c','_",'T, 'Y, 'P','E"}, /* type */
nEn /* subtype */

1024, /* dfltsize */

_vinit, /* initbuf */

_vreinit, /* reinitbuf */

NULL, /* uninitbuf */

_vpresend, /* presend */

NULL, /* postsend */

NULL, /* postrecv */

_vencdec, /* encdec */

_vroute, /* route */

_vfilter, /* filter */

_vformat, /* format */

NULL, /* presend2 */

NULL /* multibyte code-set encoding conversion */

Programming an Oracle Tuxedo ATMI Application Using C

2-59

/* XATMI - identical to VIEW */

{x,'_",'¢c",'o",'™M™','™','0', 'N"}, /* type */
nEn /* subtype */
1024, /* dfltsize */
_vinit, /* initbuf */
_vreinit, /* reinitbuf */
NULL, /* uninitbuf */
_vpresend, /* presend */
NULL, /* postsend */
NULL, /* postrecv */
_vencdec, /* encdec */
_vroute, /* route */
_vfilter, /* filter */
_vformat, /* format */
NULL, /* presend2 */
NULL /* multibyte code-set encoding conversion */

Y,

{
"FML32", /* type */
nEn /* subtype */
1024, /* dfltsize */
_finit32, /* initbuf */
_freinit32, /* reinitbuf */
_funinit32, /* uninitbuf */
_fpresend32, /* presend */
_fpostsend32, /* postsend */
_fpostrecv32, /* postrecv */
_fencdec32, /* encdec */
_froute32, /* route */
_ffilter32, /* filter */
_fformat32, /* format */
_fpresend232, /* presend2 */
_fmbconv32 /* multibyte code-set encoding conversion */

},

{

2-60 Programming an Oracle Tuxedo ATMI Application Using C

"VIEW32",
[

1024,
_vinit32,
_vreinit32,
NULL,
_vpresend32,
NULL,

NULL,
_vencdec32,
_vroute32,
_vfilter32,
_vformat32,
NULL,

_vmbconv32,

"XML",
mxw
0,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
_Xroute,
NULL,
NULL,
NULL,
NULL

"MBSTRING",

/*
/%
/%
/%
s+
s+
s+
s+
s+
s+
/*
/*
/*
/*

Customizing a Buffer

type */
subtype */
dfltsize */
initbuf */
reinitbuf */
uninitbuf */
presend */
postsend */
postrecv */
encdec */
route */
filter */
format */

presend2 */

/* multibyte code-set encoding conversion */

/*
/*
s+
s+
/*
/*
/*
/*
/*
/*
/%
/%
/%
/%
/%

type */
subtype */
dfltsize */
initbuf */
reinitbuf */
uninitbuf */
presend */
postsend */
postrecv */
encdec */
route */
filter */
format */
presend2 */

multibyte code-set encoding conversion */

/* type */

Programming an Oracle Tuxedo ATMI Application Using C

2-61

mk /* subtype */

0, /* dfltsize */
_mbsinit, /* initbuf */

NULL, /* reinitbuf */
NULL, /* uninitbuf */

_mbspresend, /* presend */

NULL, /* postsend */
NULL, /* postrecv */
NULL, /* encdec */
NULL, /* route */
NULL, /* filter */
NULL, /* format */
NULL, /* presend2 */
_mbsconv /* multibyte code-set encoding conversion */
},
{

"RECORD", /* type */

mkm /* subtype */

1024, /* dfltsize */

_rinit, /* initbuf */

_rreinit, /* reinitbuf */

_runinit, /* uninitbuf */

_rpresend, /* presend */

NULL, /* postsend */

NULL, /* postrecv */

_rencdec, /* encdec */

NULL, /* route */

NULL, /* filter */

NULL, /* format */

NULL /* presend2 */

2-62 Programming an Oracle Tuxedo ATMI Application Using C

Customizing a Buffer

b,

}

}i

struct tmtype_sw_t _TM_FAR *
_TMDLLENTRY

_tmtypeswaddr (void)

{
return (tm_typesw) ;

For a better understanding of the preceding listing, consider the declaration of the buffer type

structure that is shown in Listing 2-19.

Listing 2-19 Buffer Type Structure

/'k

* The following definitions are in S$TUXDIR/include/tmtypes.h

*/

#define TMTYPELEN ED_TYPELEN

#define TMSTYPELEN ED_STYPELEN

struct tmtype_sw_t {
char type[TMTYPELEN] ; /* type of buffer */
char subtype[TMSTYPELEN]; /* subtype of buffer */
long dfltsize; /* default size of buffer */
/* buffer initialization function pointer */
int (_TMDLLENTRY *initbuf) _ ((char _TM_FAR *, long));
/* buffer reinitialization function pointer */
int (_TMDLLENTRY *reinitbuf) _ ((char _TM_FAR *, long));
/* buffer un-initialization function pointer */
int (_TMDLLENTRY *uninitbuf) _ ((char _TM_FAR *, long));
/* pre-send buffer manipulation func pointer */
long (_TMDLLENTRY *presend) ((char _TM_FAR *, long, long));
/* post-send buffer manipulation func pointer */
void (_TMDLLENTRY *postsend) ((char _TM_FAR *, long, long));
/* post-receive buffer manipulation func pointer*/
long (_TMDLLENTRY *postrecv) ((char _TM_FAR *, long, long));

Programming an Oracle Tuxedo ATMI Application Using C

2-63

/* XDR encode/decode function pointer */
long (_TMDLLENTRY *encdec) _ ((int, char _TM_FAR *, long, char _TM_FAR *,

long));

}i
/*
*

*

/* routing function pointer */
int (_TMDLLENTRY *route) ((char _TM_FAR *, char _TM_FAR *, char _TM_FAR *,
long, char _TM_FAR *));
/* buffer filtering function pointer */
int (_TMDLLENTRY *filter) ((char _TM_FAR *, long, char _TM_FAR *, long));
/* buffer formatting function pointer */
int (_TMDLLENTRY *format) _ ((char _TM_FAR *, long, char _TM_FAR *,
char _TM_FAR *, long));
/* process buffer before sending, possibly generating copy */
long (_TMDLLENTRY *presend2) _ ((char _TM_FAR *, long,
long, char _TM_FAR *, long, long _TM_FAR *));
/* Multibyte code-set encoding conversion function pointer*/
long (_TMDLLENTRY *mbconv) _ ((char _TM_FAR *, long,
char _TM_FAR *, char _TM_FAR *, long, long _TM _FAR *));

/* this space reserved for future expansion */
void (_TMDLLENTRY *reserved[8]) ((void)) ;

application types switch pointer
always use this pointer when accessing the table

*/
extern struct tmtype_sw_t *tm_typeswp;

2-64

Thelisting for the default buffer type switch shows the initialization of the buffer type switch.
The nine default buffer types are shown, followed by afield for naming a subtype. Except for the
vIew (and equivaently x_c_tvype and x_common) type, subtypeisNULL. The subtypefor view
isgiven as " *", which means that the default view type puts no constraints on subtypes; all
subtypes of type view are processed in the same manner.

The next field gives the default (minimum) size of the buffer. For the carray (and equivalently
x_ocTET) typethisis given as 0, which means that the routine that uses a carray buffer type
must tpalloc () enough space for the expected cARRAY.

For the other types, the Oracle Tuxedo system allocates (withatpalloc () call) the space shown
inthedafltsize field of theentry (unlessthesizeargument of tpalloc () specifiesalarger size).

The remaining eight fields of entriesin the buffer type switch contain the names of switch
element routines. These routines are described in the buf fer (3¢) pagein the Oracle Tuxedo C

Programming an Oracle Tuxedo ATMI Application Using C

Customizing a Buffer

Function Reference. The name of aroutine provides a clue to the purpose of the routine. For

example, _fpresend onthe FML typeisapointer to aroutine that manipulates the buffer before
sending it. If no presend manipulationisneeded, aNULL pointer may be specified. NULL means
no special handling is required; the default action should be taken. Seebuffer (3c) for details.

Itisparticularly important that you notice the NULL entry at the end of the switch. Any changes
that are made must always leave the NULL entry at the end of the array.

Coding Switch Element Routines

Presumably an application that is defining new buffer typesis doing so because of a special
processing need. For example, let’ s assume the application has arecurring need to compress data
before sending a buffer to the next process. The application could write a presend routine. The
declaration for the presend routine is shown in Listing 2-20.

Listing 2-20 Semantics of the Presend Switch Element

long
presend (ptr, dlen, mdlen)

char *ptr;

long dlen, mdlen;

e ptrisapointer to the application data buffer.
e dlen isthelength of the data as passed into the routine.

e mdlen isthe size of the buffer in which the data resides.

The data compression that takes place within your presend routine is the responsibility of the
system programmer for your application.

On completion the routine should return the new, hopefully shorter length of the datato be sent
(in the same buffer), or a-1 to indicate failure.

The name given to your version of the presend routine can be any identifier accepted by the C
compiler. For example, suppose we name it _mypresend.

Programming an Oracle Tuxedo ATMI Application Using C 2-65

If you use our _mypresend compression routine, you will probably also need a corresponding
_mypostrecv routine to decompress the data at the receiving end. Follow the template shown in
the buf fer(3c) entry in the Oracle Tuxedo C Function Reference.

Adding a New Buffer Type to tm_typesw

After the new switch element routines have been written and successfully compiled, the new
buffer type must be added to the buffer type switch. To do thistask, we recommend making a
copy of $TUXDIR/1ib/tmtypesw.c (the source code for the default buffer type switch). Give
your copy anamewith a . ¢ suffix, such asmytypesw. c. Add the new type to your copy. The
name of the type can be up to 8 charactersin length. Subtype can be null (") or astring of up to
16 characters. Enter the names of your new switch element routines in the appropriate locations,
including the extern declarations. Listing 2-21 provides an example.

Listing 2-21 Adding a New Type to the Buffer Switch

#include <stdio.h>
#include <tmtypes.h>

/* Customized the buffer type switch */

static struct tmtype_sw_t tm_typesw[] = {
{

"SOUND", /* type */

nr /* subtype */
50000, /* dfltsize */
snd_init, /* initbuf */
snd_init, /* reinitbuf */
NULL, /* uninitbuf */
snd_cmprs, /* presend */
snd_uncmprs, /* postsend */
snd_uncmprs /* postrecv */
},

{

"FML", /* type */

" /* subtype */
1024, /* dfltsize */
_finit, /* initbuf */
_freinit, /* reinitbuf */
_funinit, /* uninitbuf */
_fpresend, /* presend */
_fpostsend, /* postsend */
_fpostrecv, /* postrecv */
2-66 Programming an Oracle Tuxedo ATMI Application Using C

Customizing a Buffer

_fencdec, /* encdec */
_froute, /* route */
_ffilter, /* filter */
_fformat /* format */

I

{

}
i

In the previous listing, we added a new type: sounp. We a so removed the entries for view,
X_OCTET, X_COMMON, and x_c_TYPE, to demonstrate that you can remove any entriesthat are not
needed in the default switch. Note that the array still ends with the NULL entry.

An dternative to defining a new buffer typeisto redefine an existing type. Suppose, for the sake
of argument, that the data compression for which you defined the buffer type MyTypE was
performed on strings. Y ou could substitute your new switch element routines, _mypresend and
_mypostrecv, for thetwo _dfltblen routinesin type sTRING.

Compiling and Linking Your New tm_typesw
To simplify installation, the buffer type switch is stored in a shared object.

Note: On some platforms the term “shared library” is used instead of “shared object.” On the
Windows 2003 platform a“dynamiclink library” isused instead of a“ shared object.” For
the purposes of this discussion, however, the functionality implied by al three termsis
equivaent, so we use only one term.

This section describes how to make all Oracle Tuxedo processesin your application aware of the
modified buffer type switch. These processes include application servers and clients, aswell as
servers and utilities provided by the Oracle Tuxedo system.

1. Copy and modify $TUXDIR/1ib/tmtypesw.c, asdescribed in “Adding a New Buffer Type
totm_typesw” on page 2-66. If additional functions are required, store them in either
tmtypesw.c OF aseparate C sourcefile.

2. Compile tmtypesw.c with the flags required for shared objects.
3. Link together al object files to produce a shared object.

4. Copy libbuft.so.71 from the current directory to adirectory in which it will be visible to
applications, and processed before the default shared object supplied by the Oracle Tuxedo

Programming an Oracle Tuxedo ATMI Application Using C 2-67

system. We recommend using one of the following directories. $APPDIR, $TUXDIR/1ib, OF
$TUXDIR/bin (0N a Windows 2003 platform).

Different platforms assign different namesto the buffer type switch shared object, to conform to
operating system conventions.

Table 2-13 0S-specific Names for the Buffer Type Switch Shared Object

On This Platform . . . The Name of the Buffer Type Switch Shared Object Is . . .
UNIX System libbuft.so.71

(most SVR4)

HP-UX libbuft.sl

Sun OS libbuft.so.71

Windows (16-bit) wbuft.dll

Windows (32-bit) wbuft32.d11l

0S/2 (16-hit) obuft.dll

0S/2 (32-hit) obuft.dll

Please refer to the software devel opment documentation for your platform for instructions on
building a shared object library.

Asanalternative, itispossibleto statically link anew buffer type switchin every client and server
process, but doing so is more error-prone and not as efficient as building a shared object library.

Compiling and Linking Your New tm_typesw for a 16-bit Windows Platform

If you have modified tmtypesw.c on a Windows platform, as described in “ Compiling and
Linking Your New tm_typesw” on page 2-67, then you can use the commands shown in
Listing 2-22 to make the modified buffer type switch available to your application.

Listing 2-22 Sample Code in Microsoft Visual C++

CL -AL -I..\e\|sysinclu -I..\e\|include -Aw -G2swx -Zp -D_TM WIN
-D_TMDLL -0d -c TMTYPESW.C
LINK /CO /ALIGN:16 TMTYPESW.OBJ, WBUFT.DLL, NUL, WTUXWS /SE:250 /NOD

2-68 Programming an Oracle Tuxedo ATMI Application Using C

Customizing a Buffer

/NOE LIBW LDLLCEW, WBUFT.DEF
RC /30 /T /K WBUFT.DLL

Data Conversion

The purpose of the TypE parameter in the MacuINES section of the configuration fileisto group
together machines that have the same form of data representation (and use the same compiler) so
that data conversion is done on messages going between machines of different Tvpes. For the
default buffer types, data conversion between unlike machinesis transparent to the user (and to
the administrator and programmer, for that matter).

If your application defines new buffer types for messages that move between machines with
different data representation schemes, you must also write new encode/decode routines to be
incorporated into the buffer type switch. When writing your own data conversion routines, keep
the following guidelinesin mind:

e You should use the semantics of the _tmencdec routine shown on reference page
buffer (3c) in Oracle Tuxedo ATMI C Function Reference; that is, you should code your
routine so that it uses the same arguments and returns the same values on success or failure
asthe _tmencdec routine. When defining new buffer types, follow the procedure provided
in “Defining Your Own Buffer Types’ on page 2-56 for building servers with services that
will use your new buffer type.

The encode/decode routines are called only when the Oracle Tuxedo system determinesthat data
is being sent between two machines that are not of the same TyYPE.

Programming an Oracle Tuxedo ATMI Application Using C 2-69

../rf3c/rf3c.html

2-10 Programming an Oracle Tuxedo ATMI Application Using C

Programming Environment

Thistopic includes the following sections:

Updating the UBBCONFIG Configuration File

Setting Environment Variables

Including the Required Header Files

e Starting and Stopping the Application

Updating the UBBCONFIG Configuration File

The application administrator initially defines the configuration settings for an application in the
UBBCONFIG configuration file. To customize your programming environment, you may need to
create or update a configuration file.

If you need to create or update a configuration file, refer to the following guidelines:

e Copy and edit afilethat already exists. For example, the file ubbshm that comes with the
bankapp sample application can provide a good starting point.

e Minimize complexity. For test purposes, set up your application as a shared memory,
single-processor system. Use regular operating system files for your data.

e Make sure the TrckEY parameter in the configuration file does not conflict with any other
parameters being used at your installation. Check with your Oracle Tuxedo application
administrator, and refer to Setting Up an Oracle Tuxedo Application for more information.

Programming an Oracle Tuxedo ATMI Application Using C 3-1

e Set the uzp and gD parameters so that you are the owner of the configuration.

o Review the documentation. The configuration fileis described in usBconF1G (5) inthe
File Formats, Data Descriptions, MIBs, and System Processes Reference.

Table 3-1 summarizesthe urBconr1c configuration file parametersthat affect the programming
environment. Parameters are listed by functional category.

Table 3-1 Programming-related UBBCONFIG Parameters by Functional Category

Functional Parameter Section Description

Category

Global resource MAXSERVERS RESOURCES Specifies the maximum number of
limits serversin the configuration. When

setting this value, you need to
consider theMax valuesfor all
Servers.

MAXSERVICES RESOURCES Specifies the maximum total number
of servicesin the configuration.

Data-dependent BUFTYPE ROUTING List of types and subtypes of data
routing buffers for which the specified
routing entry isvalid.
Link-level MINENCRYPTBITS NETWORK Sets the minimum encryption level
encryption that a process accepts.
MAXENCRYPTBITS NETWORK Sets the maximum encryption level

that a process accepts.

3-2 Programming an Oracle Tuxedo ATMI Application Using C

../rf5/rf5.html

Updating the UBBCONFIG Configuration File

Table 3-1 Programming-related UBBCONFIG Parameters by Functional Category (Continued)

Functional Parameter Section Description
Category
Load balancing LDBAL RESOURCES Flag for specifying whether or not

load balancing is enabled. If enabled,
the Oracle Tuxedo system attemptsto
balance requests across the network.

NETLOAD MACHINES Numeric value that is added to the
load factor of servicesthat areremote
from the invoking client, providing a
biasfor choosing alocal server over a
remote server. Load balancing must
be enabled (that is, LDBAL must be
set to v).

LOAD SERVICES Relative load factor associated with a
service instance. The default is 50.

Security AUTHSVC RESOURCES Specifies the name of an application
authentication servicethat isinvoked
by the system for each client joining
the system.

SECURITY RESOURCES Specifies the type of application
security to be enforced.

Programming an Oracle Tuxedo ATMI Application Using C 3-3

Table 3-1 Programming-related UBBCONFIG Parameters by Functional Category (Continued)

Functional
Category

Parameter Section

Description

Conversational MAXCONV RESOURCES
communication

Sets the maximum number of
simultaneous conversations for a
single machine. Y ou can specify a
value between 0 and 32,767. The
default is 64 if any conversational
servers are defined in the SERVERS
section; otherwise, the default is 1.
The specified value can be overriden
for each machine in the MACHINES
section.

CONV SERVERS

Specifies whether or not
conversational communication is
supported. If this parameter isset toN
or unspecified, a tpconnect () call
to aservicefails.

MIN/MAX SERVERS

Specifies the minimum and
maximum number of occurrences of
the server to be started by

tmboot (1) . If not specified, MIN
defaultsto 1 and MAX defaultsto MIN.
Thesameparametersareavailablefor
use with request/response servers.
However, conversational servers are
automatically spawned as needed. So
if you set MIN=1 and MAX=10, for
example, tmboot starts one server
initially. Whenatpconnect () cal
is made to a service offered by that
server, the system starts a second
copy of aserver. Aseach copy is
called, anew oneis spawned, up to a
limit of 10.

3-4

Programming an Oracle Tuxedo ATMI Application Using C

../rfcm/rfcmd.html

Setting Environment Variables

Table 3-1 Programming-related UBBCONFIG Parameters by Functional Category (Continued)

Functional Parameter
Category

Section

Description

Transaction AUTOTRAN
management

SERVICES

Controls whether a serviceroutineis
placed in transaction mode. If you set
this parameter to v, atransaction in
the service subroutineis
automatically started whenever a
request message is received from
another process.

MAXTRANTIME

RESOURCES

Specifiesin seconds the
maximum timeout allowed for
transactions started in or received
by this Oracle Tuxedo application.

Multithreaded MAXDISPATCHTHREADS
servers

SERVERS

Specifies the maximum number of
concurrently dispatched threads that
each server process may spawn.

MINDISPATCHTHREADS

SERVERS

Specifies the number of server
dispatch threads started on initial
server boot.

The configuration fileisan operating system text file. To makeit usable by the system, you must
execute the tmloadcf (1) command to convert the fileto abinary file.

See Also

e Setting Up an Oracle Tuxedo Application

e UBBCONFIG (5) inthe File Formats, Data Descriptions, MIBs, and System Processes

Reference

Setting Environment Variables

Initialy, the application administrator sets the variables that define the environment in which
your application runs. These environment variables are set by assigning valuesto the ENVFILE
parameter in themMacHINES section of theuseconr1c file. (Refer to Setting Up an Oracle Tuxedo

Application for more information.)

Programming an Oracle Tuxedo ATMI Application Using C 3-5

../rf5/rf5.html
../rfcm/rfcmd.html

For the client and server routines in your application, you can update existing environment
variables or create new ones. Table 3-2 summarizes the most commonly used environment
variables. The variables are listed by functional category.

Table 3-2 Programming-related Environment Variables by Functional Category

Functional Category

Environment Variable

Defines the. ..

Used by...

Global TUXDIR Location of the Oracle Oracle Tuxedo application
Tuxedo system binary ~ programs.
files.

Configuration TUXCONFIG Location of the Oracle Oracle Tuxedo application
Tuxedo configuration programs.
file.

Compilation cc Command that invokes buildclient (1) and
the C compiler. Default buildserver (1) commands.
iscc.

CFLAGS Link edit flagsto be buildclient (1) and
passed to the C buildserver (1) commands.
compiler. Link edit
flags are optional.

Data compression TMCMPPRFM Level of compression Oracle Tuxedo application
(between 1 and 9). programs that perform data
compression.
Load balancing TMNETLOAD Numeric value that is Oracle Tuxedo application

added to the load value
for remote queues,
making the remote
gueues appear to have
more work than they
actually do. Asaresult,
evenifloadbalancingis
enabled, local requests
are sent to local queues
more often than to
remote queues.

programs that perform load
balancing.

3-6 Programming an Oracle Tuxedo ATMI Application Using C

../rfcm/rfcmd.html
../rfcm/rfcmd.html
../rfcm/rfcmd.html
../rfcm/rfcmd.html

Setting Environment Variables

Table 3-2 Programming-related Environment Variables by Functional Category (Continued)

Functional Category

Environment Variahle

Defines the. ..

Used by...

Buffer management

FIELDTBLS Or
FIELDTBLS32

Comma-separated list
of field table filenames
for FML and FML32
typed buffers,
respectively. Required
only for FML and
VIEW types.

FML and FML32 typed buffers
and FML VIEWs

FLDTBLDIR Or
FLDTBLDIR32

Colon-separated list of
directoriesto be
searched for thefield
table filesfor FML and
FML32, respectively.
For Windows 2003, a
semicolon-separated
listis used.

FML and FML32 typed buffers
and FML VIEWSs

VIEWFILES Or

Comma-separated list

VIEW and VIEW32 typed

VIEWFILES32 of allowablefilenames buffers

for VIEW and VIEW32

typed buffers,

respectively.
VIEWDIR Of Colon-separated list of ~ VIEW and VIEW32 typed
VIEWDIR32 directoriesto be buffers

searched for VIEW and
VIEW32 files,
respectively. For
Windows 2003, a
semicolon-separated
listisused.

Programming an Oracle Tuxedo ATMI Application Using C 3-7

Table 3-2 Programming-related Environment Variables by Functional Category (Continued)

Functional Category

Environment Variahle

Defines the. ..

Usedby...

Code-set encoding
conversion

TPMBENC

Code-set encoding
nameto beincluded in
an MBSTRING typed
buffer orinan
FLD_MBSTRING field
inan FML32 typed
buffer.

MBSTRING and FML32 typed
buffers

TPMBACONV

Non-Null or Null value
that determineswhether
the encoding of the
MBSTRING dataor the
FLD_MBSTRING field
datainan FML32typed
buffer is converted
when received by the
destination process.

MBSTRING and FML 32 typed
buffers

Cache external DTD,
Schema, and entity
files

URLENTITYCACHING

Flag to turn caching
on/off for externally
referenced files (DTD,
Schemas, and entity
reference.)

Oracle Tuxedo application
programs that parse XML files.

URLENTITYCACHEDIR

Absolute path of the
directory to storethe
cached files. If the
URLENTITYCACHING
flag isturned on and no
path is specified, the
current working
directory is used to
store the cached files
(provided appropriate
permissions are set.).

Oracle Tuxedo application
programs that parse XML files.

Automatic conversion
of XML to and from
FML/FML32

TPXARSFILE

Absolute path to afile
containing pairs of
XercesDOM Parser
class attributes and
settings.

Oracle Tuxedo application
programs that automatically
parse XML datato and from
FML/FML32 data.

3-8 Programming an Oracle Tuxedo ATMI Application Using C

Including the Required Header Files

If operating inaUNIX environment, add $TUXDIR/bin t0 your environment pATH to ensure that
your application can locate the executables for the Oracle Tuxedo system commands. For more
information on setting up the environment, see Setting Up an Oracle Tuxedo Application.

See Also

e Setting Up an Oracle Tuxedo Application

e “Setting Up Your Environment for FML and VIEWS” in Programming Oracle Tuxedo
ATMI Applications Using FML

Including the Required Header Files

Table 3-3 summarizes the header files that may need to be specified within the application
programs, using the #include Statement, in order to interface properly with the Oracle Tuxedo
system.

Table 3-3 Required Header Files

For... You must include . ..

All Oracle Tuxedo atmi . h header file supplied by the Oracle Tuxedo system
application programs

Application programs » Header file generated from the corresponding field table
with FML typed buffers files

e fml.h header file supplied by the Oracle Tuxedo system

Applicationprogramwith Header file generated from the corresponding view description
VIEW typed buffers files

Starting and Stopping the Application

To start the application, execute the tmboot (1) command. The command getsthe | PC resources
required by the application, and starts administrative processes and application servers.

To stop the application, execute the tmshutdown (1) command. The command stops the servers
and releases the | PC resources used by the application, except any that might be used by the
resource manager, such as a database.

Programming an Oracle Tuxedo ATMI Application Using C 3-9

../rfcm/rfcmd.html
../rfcm/rfcmd.html
../fml/fml03.html

See Also

e tmboot (1) and tmshutdown (1) in the Oracle Tuxedo Command Reference

3-10 Programming an Oracle Tuxedo ATMI Application Using C

../rfcm/rfcmd.html
../rfcm/rfcmd.html

Writing Clients

Thistopic includes the following sections:
e Joining an Application
e Using Features of the TPINIT Typed Buffer

Leaving the Application

Building Clients

Client Process Examples

Joining an Application
Before an ATMI client can perform any service request, it must join the Oracle Tuxedo ATMI
application, either explicitly orimplicitly. Oncethe client hasjoined the application, it caninitiate
requests and receive replies.
A client joins an application explicitly by calling the tpinit (3c) function with the following
signature:
int
tpinit (TPINIT *tpinfo)
A client joins an application implicitly by issuing a service request (or any ATMI function)
without first calling the tpinit () function. Inthiscase, the tpinit () functioniscalled by the
Oracle Tuxedo system on behalf of the client with the tpinfo argument set to NULL. The

Programming an Oracle Tuxedo ATMI Application Using C 4-1

../rf3c/rf3c.html

tpinfo argument pointsto atyped buffer with aTpInIT type and NULL subtype. The TpINIT
typed buffer is defined in the atmi . h header file and includes the following information:

char usrname[MAXTIDENT+2] ;
char cltname[MAXTIDENT+2];
char passwd[MAXTIDENT+2];
char grpname[MAXTIDENT+2];
long flags;

long datalen;

long data;

Table 4-1 summarizes the TpINIT data structure fields.

Table 4-1 TPINIT Data Structure Fields

Field Description

usrname Name representing the client; used for both broadcast
notification and administrative statistics retrieval. The client
assigns avalue to usrname during the call tothe tpinit ()
function. The valueisastring of up to MAXTIDENT characters
(which is defined as 30), and must be terminated by NULL.

cltname Client name with application-defined semantics: a 30-character
NULL-terminated string used for both broadcast notification
and administrative statistics retrieval. The client assignsavalue
to c1tname during the call to the tpinit () function. The
valueisastring of up to MAXTIDENT characters (whichis
defined as 30), and must be terminated by NULL.

Note: Thevalue sysclient isreserved for the c1tname
field.

passwd Application password in unencrypted format. Used for user
authentication. The value is astring of up to 30 characters.

grpname Associates client with resource manager group. If setto a
0-length string, the client is not associated with a resource
manager and isin the default client group. The value of
grpname must bethe NULL string (O-length string) for
Workstation clients. Refer to Using the ATMI Workstation
Component for more information on Workstation clients.

4-2 Programming an Oracle Tuxedo ATMI Application Using C

Joining an Application

Table 4-1 TPINIT Data Structure Fields

Field Description

flags Indicates both the client-specific notification mechanism and the
mode of system access. Controls both multicontext and
single-context modes. Refer to “Unsolicited Notification
Handling” on page 4-5 or tpinit () inthe Oracle Tuxedo
ATMI C Function Reference for more information on flags.

datalen Length of the application-specific data. The buffer type switch
entry for the TPINIT typed buffer setsthisfield based on the
total size passed in for the typed buffer. The size of the
application datais the total size lessthe size of the TPINIT
structureitself plusthe size of the data placeholder asdefinedin
the structure.

data Placeholder for variable length data that is forwarded to an
application-defined authentication service.

Beforeit can join the application, the client program must call tpalioc () toalocatetheTpINIT
buffer. Listing 4-1 shows how to allocate aTpINIT buffer that will be used to pass eight bytes of
application-specific data to the tpinit () function.

Listing 4-1 Allocating a TPINIT Typed Buffer

TPINIT *tpinfo;

if ((tpinfo = (TPINIT *)tpalloc("TPINIT", (char *)NULL,
TPINITNEED(8))) == (TPINIT *)NULL) {

Error Routine

Programming an Oracle Tuxedo ATMI Application Using C 4-3

Refer to tpinit () inthe Oracle Tuxedo ATMI C Function Reference for more information on
the TpINIT typed buffer.

See Also

e tpinit (3c) inthe Oracle Tuxedo ATMI C Function Reference

Using Features of the TPINIT Typed Buffer

The ATMI client must explicitly invokethe tpinit () functionin order to take advantage of the
following features of the TNt T typed buffer:

e Client Naming

e Unsolicited Notification Handling
e System Access Mode

e Resource Manager Association

e Client Authentication

Client Naming

When an ATMI client joins an application, the Oracle Tuxedo system assigns a unique client
identifier to it. Theidentifier is passed to each service called by the client. It can also be used for
unsolicited notification.

Y ou can also assign unique client and usernames of up to 30 characters each, by passing them to
the tpinit () function viathe tpinfo buffer argument. The Oracle Tuxedo system establishes
aunique identifier for each process by combining the client and usernames associated with it,
with the logical machine identifier (LMID) of the machine on which the processis running. Y ou
may choose a method for acquiring the values for these fields.

Note: If aprocess is executing outside the administrative domain of the application (that is, if
it is running on aworkstation connected to the administrative domain), the LMID of the
machine used by the Workstation client to access the application is assigned.

Once aunique identifier for aclient processis created:

e Client authentication can be implemented.

4-4 Programming an Oracle Tuxedo ATMI Application Using C

../rf3c/rf3c.html

Using Features of the TPINIT Typed Buffer

e Unsolicited messages can be sent to a specific client or to groups of clientsvia
tpnotify () and tpbroadcast ().

e Detailed statistical information can be gathered via tmadmin (1).

Refer to “Writing Event-based Clients and Servers’ on page 8-1 for information on sending and
receiving unsolicited messages, and the Oracle Tuxedo ATMI C Function Reference for more

information on tmadmin (1).

Figure 4-1 shows how names might be associated with clients accessing an application. In the
example, the application uses the c1tname field to indicate ajob function.

Figure 4-1 Client Naming

LMID: NODEL — LMID: WODEL
usmame: john N usmame: jane
cliname: teller o diname: teller
ol
z
) A
METWORK -
M . LMID: NODE2
3 W usrname: jane
o clthame: manager
D D
o B .
s 2
physical connections
--------- logical connections

Unsolicited Notification Handling

Unsolicited notification refersto any communication with an ATMI client that is not an expected
response to a service request (or an error code). For example, an administrator may broadcast a
message to indicate that the system will go down in five minutes.

A client can be notified of an unsolicited message in a number of ways. For example, some
operating systems might send asignal to the client and interrupt its current processing. By defaullt,
the Oracle Tuxedo system checks for unsolicited messages each time an ATMI function is
invoked. This approach, referred to as dip-in, is advantageous because it:

e |ssupported on all platforms

Programming an Oracle Tuxedo ATMI Application Using C 4-5

../rfcm/rfcmd.html
../rfcm/rfcmd.html

e Does not interrupt the current processing

Assometime may elapse between “dip-ins,” the application can call the tpchkunsol () function
to check for any waiting unsolicited messages. Refer to “Writing Event-based Clients and
Servers’ on page 8-1 for more information on the tpchkunsol () function.

When aclient joins an application using the tpinit () function, it can control how to handle
unsolicited notification messages by defining flags. For client notification, the possible valuesfor
flags are defined in Table 4-2.

Table 4-2 Client Notification Flags in a TPINIT Typed Buffer

Flag Description

TPU_SIG Select unsolicited notification by signals. Thisflag should be
used only with single-threaded, single-context applications. The
advantage of using this mode is immediate notification. The
disadvantagesinclude:

e Thecdling process must have the same UTD as the sending
process when you are running a native client. (Workstation
clients do not have this limitation.)

e TPU_SIGisnotavailableonall platforms(specificaly,itis
not available on MS-DOS workstations).

If you specify this flag but do not meet the system or
environmental requirements, theflag isset to TPU_DIP and the
event islogged.

TPU_DIP (default) Select unsolicited notification by dip-in. In this case, the client
can specify the name of the message handling function using the
tpsetunsol () function, and check for waiting unsolicited
messages using the tpchkunsol () function.

TPU_THREAD Select THREAD notification in a separate thread. Thisflagis
allowed only on platforms that support multithreading. 1
TPU_THREAD is specified on a platform that does not support
multithreading, it isconsidered aninvalid argument. Asaresullt,
an error isreturned and tperrno (5) iSset to TPEINVAL.

TPU_IGN Ignore unsolicited notification.

Refertotpinit (3c) inthe Oracle Tuxedo ATMI C Function Reference for moreinformation on
the reIntT typed buffer flags.

4-6 Programming an Oracle Tuxedo ATMI Application Using C

../rf3c/rf3c.html
../rf5/rf5.html

Using Features of the TPINIT Typed Buffer

System Access Mode

An application can access the Oracle Tuxedo system through either of two modes: protected or
fastpath. The ATMI client can request a mode when it joins an application using the tpinit ()
function. To specify amode, aclient passes one of the following valuesin the £1ags field of the
TPINIT buffer tothe tpinit () function.

Table 4-3 System Access Flags in a TPINIT Typed Buffer

Mode Description

Protected Allows ATMI calls within an application to access the Oracle Tuxedo system
internal tables via shared memory, but protects shared memory against access by
application code outside of the Oracle Tuxedo system libraries. Overridesthevalue
in UBBCONF IG, except when NO_OVERRIDE is specified. Refer to Setting Up an
Oracle Tuxedo Application for more information on UBBCONFIG.

Fastpath (default) Allows ATMI calls within application code access to Oracle Tuxedo system
internal s via shared memory. Does not protect shared memory against access by
application code outside of the Oracle Tuxedo system libraries. Overridesthevalue
of UBBCONFIG except when NO_OVERRIDE is specified. Refer to Setting Up an
Oracle Tuxedo Application for more information on UBBCONFIG.

Resource Manager Association

An application administrator can configure groups for servers associated with aresource
manager, including servers that provide administrative processes for coordinating transactions.
Refer to Setting Up an Oracle Tuxedo Application for information on defining groups.

When joining the application, a client can join a particular group by specifying the name of that
group in the grpname field of the TeInTT buffer.

Client Authentication

The Oracle Tuxedo system provides security at incremental levels, including operating system
security, application password, user authentication, optional access control lists, mandatory
access control lists, and link-level encryption. Refer to Setting Up an Oracle Tuxedo Application
for information on setting security levels.

The application password security level requires every client to provide an application password
when it joins the application. The administrator can set or change the application password and
must provideit to valid users.

Programming an Oracle Tuxedo ATMI Application Using C 4-1

If thislevel of security is used, Oracle Tuxedo system-supplied client programs, such asud (),
prompt for the application password. (Refer to Administering an Oracle Tuxedo Application at
Run Time for more information on ud, wud (1).) Inturn, application-specific client programs
must include code for obtaining the password from a user. The unencrypted password is placed
in the reInTT buffer and evaluated when the client calls tpinit () to join the application.

Note: The password should not be displayed on the screen.

Y ou can use the tpchkauth (3¢) function to determine;
e Whether the application requires any authentication

o If the application requires authentication, which of the following types of authentication is
needed:

— System authentication based on an application password

— Application authentication based on an application password and user-specific
information

Typically, aclient should call the tpchkauth () function before tpinit () to identify any
additional security information that must be provided during initialization.

Refer to Using Security in CORBA Applications for more information on security programming
techniques.

Leaving the Application

Once all service requests have been issued and replies received, the ATMI client can leave the
application using the tpterm(3c) function. The tpterm () function takes no arguments, and
returns an integer value that is equal to -1 on error.

Building Clients

4-8

To build an executable ATMI client, compile your application with the Oracle Tuxedo system
libraries and all other referenced files using the buildclient (1) command. Use the following
syntax for the buildclient command:

buildclient filename.c -o filename -f filenames -1 filenames

Table 4-4 describes the optionsto the buildclient command.

Programming an Oracle Tuxedo ATMI Application Using C

../rf3c/rf3c.html
../rf3c/rf3c.html
../rfcm/rfcmd.html
../rfcm/rfcmd.html
../rfcm/rfcmd.html

Table 4-4 buildclient Options

Building Clients

This Option or Argument .

Allows You to Specify . ..

filename.c

The C application to be compiled.

-o filename

The executable output file. The default name for the output fileisa. out.

-f filenames

A list of filesthat areto be link edited before the Oracle Tuxedo system libraries
arelink edited. Y ou can specify - £ more than once on the command line, and you
can include multiple filenames for each occurrence of -£. If you specify aC
programfile (file.c), itiscompiled beforeitislinked. Y ou can specify other
object files(£1ile.o) separately, or in groupsin an archivefile (file.a).

-1 filenames

A list of filesthat areto be link edited after the Oracle Tuxedo system librariesare
link edited. Y ou can specify -1 more than once on the command line, and you can
include multiple filenames for each occurrence of - 1. If you specify a C program
file(file.c),itiscompiled beforeitislinked. Y ou can specify other object files
(file.o) separately, or in groupsin an archivefile (file.a).

The resource manager has accessto libraries that should be link edited with the
executable server. The application administrator is responsible for predefining all
valid resource manager information in the $TUXDIR/updataobj/RM file using
thebuildtms (1) command. Only one resource manager can be specified. Refer
to Setting Up an Oracle Tuxedo Application for more information.

Notes. The Oracle Tuxedo libraries are linked in automatically; you do not need to specify any
Oracle Tuxedo libraries on the command line.

Link editing must be done by running the buildclient command.

The order in which you specify the library filesto be link edited is significant: it depends on the
order in which functions are called in the code, and which libraries contain references to those
functions.

By default, the buildclient command invokesthe UNIX cc command. Y ou can set thecc and
CFLAGS environment variables to specify an alternative compile command, and to set flags for
the compile and link-edit phases, respectively. For more information, refer to “ Setting
Environment Variables’ on page 3-5.

buildclient -C -o audit -f audit.o

Programming an Oracle Tuxedo ATMI Application Using C 4-9

The following example command line compiles a C program called audit . ¢ and generates an

executable file named audit.

buildclient -o audit -f audit.c

See Also

e “Building Servers’ on page 5-30

e buildclient (1) inthe Oracle Tuxedo Command Reference

Client Process Examples

Thefollowing pseudo-code in Listing 4-2 shows how atypical ATMI client process works from

the time at which it joins an application to the time at which it leaves the application.

Listing 4-2 Typical Client Process Paradigm

main ()
{
check level of security
call tpsetunsol() to name your handler for TPU_DIP
get usrname, cltname
prompt for application password
allocate a TPINIT buffer

place values into TPINIT buffer structure members

if (tpinit((TPINIT *) tpinfo) == -1)({

error routine;

allocate a message buffer

while user input exists {
place user input in the buffer
make a service call
receive the reply

check for unsolicited messages

4-10 Programming an Oracle Tuxedo ATMI Application Using C

../rfcm/rfcmd.html

Client Process Examples

}

free buffers

if (tpterm() == -1){

error routine;

Onerror, -1 isreturned and the application sets the external global variable, tperrno, toavalue
that indicates the nature of the error. tperrno is defined in the atmi . h header file and
documentedin tperrno (5) intheFile Formats, Data Descriptions, MIBs, and System Processes
Reference. Programmerstypically assign an error codeto thisglobal variablethat reflectsthetype
of error encountered. Thereis adiscussion of the values of tperrno in“System Errors’ on
page 11-1. See “Introduction to the C Language Application-to-Transaction Monitor Interface”
in the Oracle Tuxedo ATMI C Function Reference for a complete list of error codes that can be
returned for each of the ATMI functions.

Listing 4-3 illustrates how to usethe tpinit () and tpterm() functions. Thisexampleis
borrowed from, bankapp, the sample banking application that is provided with the Oracle
Tuxedo system.

Listing 4-3 Joining and Leaving an Application

#include <stdio.h> /* UNIX */

#include <string.h> /* UNIX */

#include <fml.h> /* BEA Tuxedo System */
#include <atmi.h> /* BEA Tuxedo System */
#include <Uunix.h> /* BEA Tuxedo System */
#include <userlog.h> /* BEA Tuxedo System */
#include "bank.h" /* BANKING #defines */
#include "aud.h" /* BANKING view defines */

main(argc, argv)

int argc;

Programming an Oracle Tuxedo ATMI Application Using C 4-1

../rf3c/rf3c.html
../rf5/rf5.html

char *argvl[];

if (strrchr(argv[0],'/') != NULL)
proc_name = strrchr (argv[0],'/')+1;
else

proc_name = argv/[0];

/* Join application */
if (tpinit((TPINIT *) NULL) == -1) {
(void)userlog("%s: failed to join application\n", proc_name) ;

exit(1l);

/* Leave application */
if (tpterm() == -1) {
(void)userlog("%s: failed to leave application\n", proc_name) ;

exit (1) ;

The previous example shows the client process attempting to join the application with acall to
tpinit (). If the process encounters an error (that is, if thereturn codeis-1), the process writes
a descriptive message to the central event log viaacall to userlog (), which takes arguments
similar totheprintf () C program statement. Refer to userlog (3c) inthe Oracle Tuxedo
ATMI C Function Reference for more information.

Similarly, when tpterm() iscalled, if an error is encountered, the process writes a descriptive
message to the central event log.

4-12 Programming an Oracle Tuxedo ATMI Application Using C

../rf3c/rf3c.html

Writing Servers

Thistopic includes the following sections:

e Oracle Tuxedo System main()

System-Supplied Server and Services

Guidelines for Writing Servers

Defining a Service

Example: Checking the Buffer Type

Example: Checking the Priority of the Service Request

Terminating a Service Routine

Advertising and Unadvertising Services

Building Servers

e Using a C++ Compiler

Oracle Tuxedo System main()

Tofacilitate the devel opment of ATMI servers, the Oracle Tuxedo system provides a predefined
main () routine for server load modules. When you execute the buildserver command, the
main () routineisautomatically included as part of the server.

Programming an Oracle Tuxedo ATMI Application Using C 5-1

Note: Themain () routinethat the system providesis a closed abstraction; you cannot modify
it.

In addition to joining and exiting from an application, the predefined main () routine

accomplishes the following tasks on behalf of the server.

e Executes the process ignoring any hangups (that is, it ignores the stcuup signal).

o |nitiates the cleanup process on receipt of the standard operating system software
termination signal (steTERM). The server is shut down and must be rebooted if needed

again.

e Attachesto shared memory for bulletin board services.
o Creates a message queue for the process.

e Advertisestheinitial servicesto be offered by the server. Theinitial services are either all
the services link edited with the predefined main (), or a subset specified by the Oracle
Tuxedo system administrator in the configuration file.

e Processes command-line arguments up to the double dash (--), which indicates the end of
system-recognized arguments.

e Callsthefunction tpsvrinit () to process any command-line arguments listed after the
double dash (--) and optionally to open the resource manager. These command-line
arguments are used for application-specific initialization.

e Until ordered to halt, checksits request queue for service request messages.

e When a service request message arrives on the request queue, main () performsthe
following tasks until ordered to halt:

— If the -r option is specified, records the starting time of the service request.
— Updates the bulletin board to indicate that the server is Busy.

— Allocates a buffer for the request message and dispatches the service; that is, calls the
service subroutine.

e When the service returns from processing itsinput, main () performsthe following tasks
until ordered to halt:

— If the -r option is specified, records the ending time of the service request.
— Updates statistics.

Programming an Oracle Tuxedo ATMI Application Using C

System-Supplied Server and Services

— Updates the bulletin board to indicate that the server is 1pLE; that is, that the server is
ready for work.

— Checksits queue for the next service request.

e When the server is required to halt, calls tpsvrdone () to perform any required shutdown
operations.

Asindicated above, themain () routine handles al of the details associated with joining and
exiting from an application, managing buffers and transactions, and handling communication.

Note: Because the system-supplied main () accomplishes the work of joining and leaving the
application, you should not include callsto the tpinit () or tpterm() functioninyour
code. If you do, the function encounters an error and returns TPEPROTO in tperrno. For
more information onthe tpinit () or tpterm() function, refer to “Writing Clients’ on

page 4-1.

System-Supplied Server and Services

Themain () routine provides one system-supplied ATMI server, AUTHSVR, and two subroutines,
tpsvrinit () and tpsvrdone (). The default versions of all three, which are described in the
following sections, can be modified to suit your application.

Notes. If you want to write your own versions of tpsvrinit () and tpsvrdone (), remember
that the default versions of these two routines call tx_open () and tx_close(),
respectively. If youwriteanew version of tpsvrinit () that calstpopen () rather than
tx_open (), you should also writeanew version of tpsvrdone () that callstpclose ().
In other words, both functionsin an open/close pair must belong to the same set.

I'n addition to the subroutines described in thistopic, the system providestwo subroutines
caled tpsvrthrinit (3c) and tpsvrthrdone (3c¢). For more information, refer to
“Programming a Multithreaded and Multicontexted ATMI Application” on page 10-1.

System-Supplied Server: AUTHSVR()

YoucanusetheauTHsVR (5) server to provideindividual client authentication for an application.
The tpinit () function calsthis server when the level of security for the application is
TPAPPAUTH.

The servicein auTHSVR looksin the data field of the TpIn1T buffer for auser password (not to
be confused with the application password specified in the passwd field of the rpInTT bUuffer).
By default, the system takes the string in data and searches for amatching string in the
/etc/passwd file.

Programming an Oracle Tuxedo ATMI Application Using C 5-3

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf5/rf5.html

5-4

When called by anative-siteclient, tpinit () forwardsthe data field asit isreceived. This
means that if the application requires the password to be encrypted, the client program must be
coded accordingly.

When called by a Workstation client, tpinit () encryptsthe data before sending it across the
network.

System-Supplied Services: tpsvrinit() Function

When a server is booted, the Oracle Tuxedo system main () callstpsvrinit (3¢) during its
initialization phase, before handling any service requests.

If an application does not provide a custom version of this function within the server, the system
uses the default function provided by main (), which opens the resource manager and logs an
entry in the central event log indicating that the server has successfully started. The central user
log is an automatically generated file to which processes can write messages by calling the
userlog (3c) function. Refer to “Managing Errors’ on page 11-1 for more information on the
central event log.

Youcanusethetpsvrinit () function for any initialization processes that might be required by
an application, such as the following:

e Receiving command-line options

e Opening a database

The following sections provide code samples showing how these initialization tasks are
performed through callsto tpsvrinit (). Although it is not illustrated in the following
exampl es, message exchanges can also be performed within this routine. However,
tpsvrinit () falsif it returns with asynchronous replies pending. In this case, the replies are
ignored by the Oracle Tuxedo system, and the server exits gracefully.

You can also usethe tpsvrinit () function to start and complete transactions, as described in
“Managing Errors’ on page 11-1.

Use the following signature to call the tpsvrinit () function:

int

tpsvrinit (int argc, char **argv)

Receiving Command-line Options

When a server is booted, itsfirst task isto read the server options specified in the configuration
file up to the point that it receives an EOF indication. To do so, the server callsthe getopt(3)

Programming an Oracle Tuxedo ATMI Application Using C

../rf3c/rf3c.html
../rf3c/rf3c.html

System-Supplied Server and Services

UNIX function. The presence of a double dash (--) on the command line causes the getopt ()
function to return an EOF. The getopt function places the argv index of the next argument to
be processed in the external variable optind. The predefined main () then calls tpsvrinit ().

Listing 5-1 shows how the tpsvrinit () function isused to receive command-line options.

Listing 5-1 Receiving Command-line Options in tpsvrinit()

tpsvrinit (argc, argv)
int argc;
char **argv;
{
int c¢;
extern char *optarg;

extern int optind;

while((c = getopt(argc, argv, "f:x:")) != EOF)
switch(c) {

Whenmain () calStpsvrinit (), it picksup any argumentsthat follow the doubledash (--) on
the command line. In the example above, options £ and x each takes an argument, as indicated by
the colon. optarg pointsto the beginning of the option argument. The switch statement logic is
omitted.

Programming an Oracle Tuxedo ATMI Application Using C 5-5

5-6

Opening a Resource Manager

The following example illustrates another common use of tpsvrinit (): Opening aresource
manager. The Oracle Tuxedo system provides functions to open a resource manager,

tpopen (3c) and tx_open (3c) . It aso provides the complementary functions, tpclose (3c)
and tx_close(3c). Applications that use these functions to open and close their resource
managers are portable in this respect. They work by accessing the resource manager
instance-specific information that is available in the configuration file.

Note: If writing amultithreaded server, you must usethe tpsvrthrinit () functionto opena
resource manager, as described in “Programming a Multithreaded and Multicontexted
ATMI Application” on page 10-1.

These function calls are optional and can be used in place of the resource manager specific calls
that are sometimes part of the Data Manipulation Language (DML) if the resource manager isa
database. Note the use of the userlog (3c) function to write to the central event log.

Note: To create aninitialization function that both receives command-line options and opens a
database, combine the following example shown in Listing 5-2 with the previous
example.

Listing 5-2 Opening a Resource Manager in tpsvrinit()

tpsvrinit ()

{

/* Open database */

if (tpopen() == -1) {
(void)userlog("tpsvrinit: failed to open database: ");
switch (tperrno) {
case TPESYSTEM:
(void)userlog("System error\n");
break;
case TPEOS:
(void)userlog("Unix error %d\n",Uunixerr) ;
break;
case TPEPROTO:

(void)userlog("Called in improper context\n");

Programming an Oracle Tuxedo ATMI Application Using C

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

System-Supplied Server and Services

break;
case TPERMERR:
(void)userlog ("RM failure\n");
break;
}
return(-1); /* causes the server to exit */
}

return(0) ;

To guard against errorsthat may occur during initialization, tpsvrinit () can becodedto allow
the server to exit gracefully before starting to process service requests.

System-Supplied Services: tpsvrdone() Function

The tpsvrdone () function cals tpclose () to close the resource manager, similarly to the way
tpsvrinit () calls tpopen () to openit.

Note: If writing amultithreaded server, you must use the tpsvrthrdone () command to open
aresource manager, as described in “Programming a Multithreaded and Multicontexted
ATMI Application” on page 10-1.

Use the following signature to call the tpsvrdone () function:;

void

tpsvrdone() /* Server termination routine */
The tpsvrdone () function requires no arguments.

If an application does not define a closing routine for tpsvrdone (), the Oracle Tuxedo system
calls the default routine supplied by main (). Thisroutine cals tx_close () and userlog () to
close the resource manager and write to the central event log, respectively. The message sent to
the log indicates that the server is about to exit.

tpsvrdone () iscalled after the server hasfinished processing service requests but beforeit exits.
Because the server is still part of the system, further communication and transactions can take
place within the routine, as long as certain rules are followed. These rules are covered in
“Managing Errors’ on page 11-1.

Programming an Oracle Tuxedo ATMI Application Using C 5-7

Listing 5-3illustrateshow to usethe tpsvrdone () function to close aresource manager and exit
gracefully.

Listing 5-3 Closing a Resource Manager with tpsvrdone()

void
tpsvrdone ()
{
/* Close the database */
if (tpclose() == -1)
(void)userlog ("tpsvrdone: failed to close database: ");
switch (tperrno) {
case TPESYSTEM:
(void)userlog ("BEA TUXEDO error\n") ;
break;
case TPEOS:
(void)userlog ("Unix error %d\n",Uunixerr) ;
break;
case TPEPROTO:
(void)userlog("Called in improper context\n");
break;
case TPERMERR:
(void)userlog ("RM failure\n");
break;
}
return;
}
return;

Guidelines for Writing Servers

Because the communication details are handled by the Oracle Tuxedo system main () routine,
you can concentrate on the application service logic rather than communication implementation.
For compatibility with the system-supplied main (), however, application services must adhere
to certain conventions. These conventions arereferred to, collectively, asthe service template for
coding serviceroutines. They are summarized in the following list. Refer tothe tpservice (3c)
reference page in the Oracle Tuxedo ATMI C Function Reference for more information on these
conventions.

5-8 Programming an Oracle Tuxedo ATMI Application Using C

../rf3c/rf3c.html

Defining a Service

e A request/response service can receive only one request at atime and can send only one

reply.

e When processing a request, a request/response service works only on that request. It can
accept another only after it has either sent areply to the requester or forwarded the request
to another service for additional processing.

e Service routines must terminate by calling either the tpreturn () or tpforward ()
function. These functions behave similarly to the C language return statement except that
after they finish executing, control returns to the Oracle Tuxedo system’smain () instead
of the calling function.

e When communicating with another server viatpacall (), theinitiating service must either
wait for all outstanding replies or invalidate them with tpcancel () before caling
tpreturn () OF tpforward ().

e Serviceroutines are invoked with one argument, svcinfo, which isapointer to a service
information structure (TPSVCINFO).

Defining a Service

Y ou must define every service routine as a function that receives one argument consisting of a
pointer to aTpsvcINFO structure. The TpsvcInNrFo structureisdefined inthe atmi . h header file
and includes the following information:

char
long
char
long

int

int
CLIENTID

name([32];
flags;
*data;
len;

cd;
appkey;
cltid;

Table 5-1 summarizes the TpsvcINFo data structure.

Programming an Oracle Tuxedo ATMI Application Using C 5-9

5-10

Table 5-1 TPSVCINFO Data Structure

Field

Description

name

Specifies, to the service routine, the name used by the requesting processto
invoke the service.

flags

Notifiesthe serviceif itisintransaction mode or if the caller is expecting a
reply. The various ways in which a service can be placed in transaction
mode are discussed in “Writing Global Transactions’ on page 9-1.

The TPTRAN flag indicates that the serviceisin transaction mode. When a
serviceisinvoked through acall to tpcall () or tpacall () withthe
flags parameter set to TPNOTRAN, the service cannot participate in the
current transaction. However, it is still possible for the service to be
executed in transaction mode. That is, even when the caller setsthe
TPNOTRAN communication flag, it is possible for TPTRAN to be set in
svcinfo->flags. For an example of such asituation, refer to “Writing
Global Transactions’ on page 9-1.

The f1ags member is set to TPNOREPLY if the serviceis called by
tpacall () with the TPNOREPLY communication flag set. If acalled
serviceis part of the same transaction as the calling process, it must return
areply tothecaler.

data

Pointer to a buffer that was previously allocated by tpalloc () withinthe
main (). Thisbuffer isused to receive request messages. However, it is
recommended that you also use this buffer to send back reply messages or
forward reguest messages.

len

Containsthelength of the request datathat isin the buffer referenced by the
data fied.

cd

For conversational communication, specifies the connection descriptor.

Programming an Oracle Tuxedo ATMI Application Using C

Defining a Service

Tahle 5-1 TPSVCINFO Data Structure

Field Description

appkey Reserved for use by the application. If application-specific authentication is
part of your design, the application-specific authentication server, which is
called when a client joins the application, should return a client
authentication key aswell asan indication of success or failure. The Oracle
Tuxedo system holds the appkey on behalf of the client and passes the
information to subsequent service requestsin thisfield. By the time the
appkey is passed to a service, the client has already been authenticated.
However, the appkey field can be used within aserviceto identify the user
invoking the service or some other parameters associated with the user.

If thisfield is not used, the system assignsit adefault value of -1.

cltid Structure of type CLIENTID used by the system to carry the identification
of the client. Y ou should not modify this structure.

When the data field in the TpsvcINFo structureis being accessed by a process, the following
buffer types must agree:

e Type of the request buffer passed by the calling process
e Type of the corresponding buffer code defined within the called service

e Type of the associated buffer type defined for the called service in the configuration file

Listing 5-4 illustrates atypical service definition. This codeis borrowed from the arar (account
balance) service routine that is part of the banking application provided with the Oracle Tuxedo
software. ABaL is part of the BaL server.

Listing 5-4 Typical Service Definition

#include <stdio.h> /* UNIX */

#include <atmi.h> /* BEA Tuxedo System */
#include <sglcode.h> /* BEA Tuxedo System */
#include "bank.flds.h" /* bankdb fields */
#include "aud.h" /* BANKING view defines */

EXEC SQL begin declare section;

static long branch_id; /* branch id */

Programming an Oracle Tuxedo ATMI Application Using C 5-11

5-12

stat
EXEC

/*

* Service to find sum of the account balances at a SITE

*/

void
#ifd
ABAL

#els

ABAL

TPSV
#end

ic float bal; /* balance */

SQL end declare section;

ef _ STDC_
(TPSVCINFO *transb)

e

(transb)

CINFO *transb;

if

struct aud *transv;

/* Set pointer to TPSVCINFO data buffer */

transv = (struct aud *)transb->data;

set the consistency level of the transaction

/* Get branch id from message, do query */

EXEC SQL declare acur cursor for
select SUM(BALANCE) from ACCOUNT;

EXEC SQL open acur; /* open */
EXEC SQL fetch acur into :bal; /* fetch */
if (SQLCODE != SQL_OK) { /* nothing found */

(void) strcpy (transv->ermsg, "abal failed in sgl aggregation") ;

EXEC SQL close acur;

tpreturn (TPFAIL, 0, transb->data, sizeof(struct aud),

}
EXEC SQL close acur;

Programming an Oracle Tuxedo ATMI Application Using C

/* view of decoded message */

0);

Defining a Service

transv->balance = bal;
tpreturn (TPSUCCESS, 0, transb->data, sizeof (struct aud), O0);

In the preceding example, the application alocates arequest buffer on the client side by acall to
tpalloc () withthe type parameter set to view and the subtype Set to aud. The ABAL service
isdefined as supporting the view typed buffer. The BurTyPE parameter is not specified for aBar,
and defaultsto ar.r.. The aBar service alocates a buffer of the type view and assigns the data
member of the TpsvcINFo structure that was passed to the aBar subroutine to the buffer pointer.
The aBaAL server retrieves the appropriate data buffer by accessing the corresponding data
member, asillustrated in the preceding example.

Note: After the buffer isretrieved, but before the first attempt is made to access the database,
the service must specify the consistency level of thetransaction. Refer to “Writing Global
Transactions’ on page 9-1 for more details on transaction consistency levels.

Example: Checking the Buffer Type

The code example in this section shows how a service can access the data buffer defined in the
TPSVCINFO Structure to determineitstype by using the tptypes () function. (This processis
described in “Checking for Buffer Type” on page 2-16.) The service a so checks the maximum
size of the buffer to determine whether or not to reallocate space for the buffer.

This exampleis derived from the aBar service that is part of the banking application provided
with the Oracle Tuxedo software. It shows how the service iswritten to accept arequest either as
an aud VIEW Or an ML buffer. If its attempt to determine the message type fails, the service
returns a string with an error message plus an appropriate return code; otherwise it executes the
segment of codethat isappropriate for the buffer type. For moreinformation onthe tpreturn ()
function, refer to “Terminating a Service Routine” on page 5-16.

Listing 5-5 Checking for Buffer Type

#define TMTYPERR 1 /* return code indicating tptypes failed */
#define INVALMTY 2 /* return code indicating invalid message type */

void
ABAL (transb)

Programming an Oracle Tuxedo ATMI Application Using C 5-13

TPSVCINFO *transb;

{
struct aud *transv; /* view message */
FBFR *transf; /* fielded buffer message */
int repc; /* tpgetrply return code */
char typ[TMTYPELEN+1l], subtyp[TMSTYPELEN+1l]; /* type, subtype of message */
char *retstr; /* return string if tptypes fails */

/* find out what type of buffer sent */

if (tptypes((char *)transb->data, typ, subtyp) == -1) {
retstr=tpalloc ("STRING", NULL, 100);
(void) sprintf (retstr,
"Message garbled; tptypes cannot tell what type message\n") ;
tpreturn (TPFAIL, TMTYPERR, retstr, 100, O0);

}

/* Determine method of processing service request based on type */

if (strcmp(typ, "FML") == 0) {
transf = (FBFR *)transb->data;

code to do abal service for fielded buffer ...

tpreturn succeeds and sends FML buffer in reply

}

else if (strcmp(typ, "VIEW") == 0 && strcmp(subtyp, "aud") == 0) {
transv = (struct aud *)transb->data;

code to do abal service for aud struct

tpreturn succeeds and sends aud view buffer in reply

}

else {
retstr=tpalloc ("STRING", NULL, 100);
(void) sprintf (retstr,
"Message garbled; is neither FML buffer nor aud view\n");
tpreturn (TPFAIL, INVALMTY, retstr, 100, O0);

Example: Checking the Priority of the Service Request

Note: Thetpgprio () and tpsprio () functions, used for getting and setting priorities,
respectively, are described in detail in “ Setting and Getting Message Priorities’ on
page 6-16.

The example codein this section shows how a service called PRINTER tests the priority level of

the request just received using the tpgprio () function. Then, based on the priority level, the

application routes the print job to the appropriate destination printer and pipes the contents of

pbuf—>data to that printer.

5-14 Programming an Oracle Tuxedo ATMI Application Using C

Defining a Service

The application queriespbuf—>flags to determine whether areply is expected. If so, it returns
the name of the destination printer to the client. For more information on the tpreturn ()
function, refer to “Terminating a Service Routine” on page 5-16.

Listing 5-6 Checking the Priority of a Received Request

#include <stdio.h>
#include "atmi.h"

char *roundrobin() ;

PRINTER (pbuf)

TPSVCINFO *pbuf; /* print buffer */

{

char prname[20], ocmd[30]; /* printer name, output command */
long rlen; /* return buffer length */

int prio; /* priority of request */

FILE *1lp_pipe; /* pipe file pointer */

prio=tpgprio();
if (prio <= 20)
(void) strcpy (prname, "bigjobs"); /* send low priority (verbose)
jobs to big comp. center
laser printer where operator
sorts output and puts it
in a bin */
else if (prio <= 60)
(void) strcpy (prname, roundrobin()); /* assign printer on a
rotating basis to one of
many local small laser printers
where output can be picked
up immediately; roundrobin() cycles
through list of printers */
else
(void) strcpy (prname, "hispeed") ;

/* assign job to high-speed laser
printer; reserved for those who
need verbose output on a daily,
frequent basis */

(void) sprintf (ocmd, "lp -d%s", prname) ; /* output 1lp(l) command */
lp_pipe = popen(ocmd, "w"); /* create pipe to command */
(void) fprintf (1lp_pipe, "%s", pbuf->data); /* print output there */
(void)pclose (lp_pipe) ; /* close pipe */

Programming an Oracle Tuxedo ATMI Application Using C 5-15

if ((pbuf->flags & TPNOREPLY))
tpreturn (TPSUCCESS, 0, NULL, 0, 0);
rlen = strlen(prname) + 1;
pbuf->data = tprealloc(pbuf->data, rlen); /* ensure enough space for name */
(void) strcpy (pbuf->data, prname) ;
tpreturn (TPSUCCESS, 0, pbuf->data, rlen, O0);

char *
roundrobin ()

{
static char *printers[] = {"printerl", "printer2", "printer3", "printerd"};
static int p = 0;

if (p > 3)
p=0;
return (printers[p++]) ;

}

Terminating a Service Routine

The tpreturn (3c), tpcancel (3¢), and tpforward (3c) functions specify that a service
routine has completed with one of the following actions:

e tpreturn () sendsareply to the calling client.
e tpcancel () cancelsthe current request.

e tpforward () forwards arequest to another service for further processing.

Sending Replies
The tpreturn (3c) function marks the end of the service routine and sends a message to the
requester. Use the following signature to call the tpreturn () function:

void

tpreturn (int rval, int rcode, char *data, long len, long flags)

Table 5-2 describes the arguments to the tpreturn () function.

5-16 Programming an Oracle Tuxedo ATMI Application Using C

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

Terminating a Service Routine

Table 5-2 tpreturn() Function Arguments

Argument Description

rval Indicates whether or not the service has completed successfully on an
application-level. Thevalueisaninteger that isrepresented by asymbolic
name. Valid settings include:

* TPSUCCESS—thecalling function succeeded. Thefunction storesthe
reply messageinthecaller’ shuffer. If thereisareply message, itisin
the caller’s buffer.

e TPFAIL (default)—the service terminated unsuccessfully. The
function reports an error message to the client process waiting for the
reply. Inthiscase, theclient’stpcall () or tpgetrply () function
call fails and the system setsthe tperrno (5) variableto
TPESVCFAIL to indicate an application-defined failure. If areply
message was expected, it isavailablein the caller’ s buffer.

e TPEXIT—the service terminated unsuccessfully. The function
reports an error message to the client process waiting for the reply,
and exits.

For adescription of the effect that the val ue of thisargument has on global

transactions, refer to “Writing Global Transactions’ on page 9-1.

rcode Returns an application-defined return code to the caller. The client can

access the value returned in rcode by querying the tpurcode (5)
global variable. The function returns this code regardless of success or
failure.

Programming an Oracle Tuxedo ATMI Application Using C 5-11

../rf5/rf5.html
../rf5/rf5.html

5-18

Table 5-2 tpreturn() Function Arguments

Argument

Description

data

Pointer to the reply message that is returned to the client process. The
message buffer must have been allocated previously by tpalloc ().

If you use the same buffer that was passed to the servicein the SVCINFO
structure, you need not be concerned with buffer allocation or disposition
because both are handled by the system-supplied main (). You cannot
free this buffer using the tpfree () command; any attempt to do so
quietly fails. Y ou can resizethe buffer usingthe tprealloc () function.

If you use another buffer (that is, abuffer other than the one passed to the
service routine) to return the message, it is your responsibility to alocate
it. The system freesthe buffer automatically when the application callsthe
tpreturn () function.

If no reply message needs to be returned, set this argument to the NULL
pointer.

Note: If noreply is expected by the client (that is, if TPNOREPLY was
set), the tpreturn () functionignoresthe data and 1en
arguments and returns control tomain ().

len

Length of the reply buffer. The application accesses the value of this
argument through the olen parameter of the tpcall () function or the
len parameter of the tpgetrply () function.

Acting as the client, the process can use this returned value to determine
whether the reply buffer has grown.

If areply is expected by the client and thereis no datain the reply buffer
(that is, if the data argument is set to the NULL pointer), the function
sends a reply with zero length, without modifying the client’ s buffer.

The systemignoresthevalue of thisargument if the da ta argument isnot
specified.

flag

Currently not used.

The primary function of a service routine isto process arequest and return areply to aclient

process. It is not necessary, however, for asingle service to do all the work required to perform
the requested function. A service can act as arequester and pass arequest call to another service

the same way a client issues the original request: through callsto tpcall () oOr tpacall().

Note: Thetpcall() and tpacall () functions are described in detail in “Writing
Request/Response Clients and Servers’ on page 6-1.

Programming an Oracle Tuxedo ATMI Application Using C

Terminating a Service Routine

When tpreturn () iscaled, control alwaysreturnstomain () . If aservice has sent requestswith
asynchronous replies, it must receive all expected replies or invalidate them with tpcancel ()
before returning control tomain () . Otherwise, the outstanding replies are automatically dropped
when they are received by the Oracle Tuxedo systemmain (), and an error is returned to the
caler.

If the client invokes the service with tpcall (), after asuccessful call to tpreturn (), thereply
message is available in the buffer referenced by *odata. If tpacall () isusedto send the
request, and tpreturn () returns successfully, the reply message is available in the
tpgetrply () buffer that isreferenced by *data.

If areply isexpected and tpreturn () encounterserrorswhile processing itsarguments, it sends
afailed messageto thecalling process. Thecaller detectsthe error by checking the value placed
in tperrno. In the case of failed messages, the system sets tperrno t0 TPESVCERR. This
situation takes precedence over the value of the tpurcode global variable. If thistype of error
occurs, no reply datais returned, and both the contents and length of the caller’s output buffer
remain unchanged.

If tpreturn () returns amessage in abuffer of an unknown type or abuffer that is not allowed
by the caller (that is, if the call is made with £1ags Set to TPNOCHANGE), the System returns
TPEOTYPE iN tperrno (5) . In thiscase, application success or failure cannot be determined, and
the contents and length of the output buffer remain unchanged.

The value returned in the tpurcode (5) global variableisnot relevant if the tpreturn ()
function isinvoked and a timeout occurs for the call waiting for the reply. This situation takes
precedence over al othersin determining the value that isreturned in tperrno (5). Inthiscase,
tperrno (5) iSset to TPETIME and the reply datais not sent, leaving the contents and length of
the caller’ sreply buffer unchanged. There aretwo types of timeoutsin the Oracle Tuxedo system:
blocking and transaction timeouts (discussed in “Writing Global Transactions’ on page 9-1).

The example code in this section shows the TRANSFER service that is part of the xFER server.
Basicaly, the TrRansFER service makes synchronous calls to the wITHDRAWAL and DEPOSTT
services. It allocates a separate buffer for the reply message since it must use the request buffer
for the calls to both the wrTuprAWAL and the pErPosIT Services. If the call to wiTHDRAWAL fails,
the service writes the message cannot withdraw on the status line of the form, frees the reply
buffer, and setsthe rva1 argument of the tpreturn () function to Teratr. If the call succeeds,
the debit balance is retrieved from the reply buffer.

Note: Inthefollowing example, the application moves the identifier for the “destination
account” (which isretrieved from the cr_id variable) to the zeroth occurrence of the
accounT_1D field in the transf fielded buffer. This move is necessary because this

Programming an Oracle Tuxedo ATMI Application Using C 5-19

../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html

occurrence of the field in an Fur buffer is used for data-dependent routing. Refer to
Setting Up an Oracle Tuxedo Application for more information.

A similar scenario isfollowed for the call to pEros1T. On success, the service frees the reply
buffer that was allocated in the service routine and sets the rvai argument to TPSUCCESS,
returning the pertinent account information to the status line.

Listing 5-7 tpreturn() Function

#include <stdio.h> /* UNIX */

#include <string.h> /* UNIX */

#include "fml.h" /* BEA Tuxedo System */
#include "atmi.h" /* BEA Tuxedo System */
#include "Usysflds.h" /* BEA Tuxedo System */
#include "userlog.h" /* BEA Tuxedo System */
#include "bank.h" /* BANKING #defines */

#include "bank.flds.h" /* bankdb fields */

/*

* Service to transfer an amount from a debit account to a credit
* account

*/

void
#ifdef _ STDC_
TRANSFER (TPSVCINFO *transb)

#else

TRANSFER (transb)
TPSVCINFO *transb;

#endif

{
FBFR *transf; /* fielded buffer of decoded message */
long db_id, cr_id; /* from/to account id’s */
float db_bal, cr_bal; /* from/to account balances */
float tamt; /* amount of the transfer */
FBFR *reqfb; /* fielded buffer for request message*/
int reglen; /* length of fielded buffer */
char t_amts[BALSTRI]; /* string for transfer amount */
char db_amts[BALSTR]; /* string for debit account balance */

]

char cr_amts[BALSTR]; /* string for credit account balance */

/* Set pointr to TPSVCINFO data buffer */

5-20 Programming an Oracle Tuxedo ATMI Application Using C

Terminating a Service Routine

transf = (FBFR *)transb->data;
/* Get debit (db_id) and credit (cr_id) account IDs */

/* must have valid debit account number */

if (((db_id = Fvall (transf, ACCOUNT_ID, 0)) < MINACCT) || (db_id > MAXACCT)) {
(void)Fchg (transf, STATLIN, 0,"Invalid debit account number", (FLDLEN)O) ;
tpreturn (TPFAIL, 0, transb->data, 0L, 0);

/* must have valid credit account number */

if ((cr_id = Fvall(transf, ACCOUNT_ID, 1)) < MINACCT || cr_id > MAXACCT) {
(void)Fchg (transf, STATLIN, 0,"Invalid credit account number", (FLDLEN)OQ)
tpreturn (TPFAIL, 0, transb->data, OL, O0);

7

/* get amount to be withdrawn */

if (Fget(transf, SAMOUNT, 0, t_amts, < 0) 0 || strcmp(t_amts,"") == 0) {
(void)Fchg(transf, STATLIN, 0, "Invalid amount", (FLDLEN)O) ;
tpreturn (TPFAIL, 0, transb->data, 0L, O0);

}

(void) sscanf (t_amts, "%f", tamt) ;

/* must have valid amount to transfer */
if (tamt = 0.0) {
(void)Fchg (transf, STATLIN, O,
"Transfer amount must be greater than $0.00", (FLDLEN)O) ;
tpreturn (TPFAIL, 0, transb->data, 0L, 0);
}

/* make withdraw request buffer */
if ((regfb = (FBFR *)tpalloc("FML",NULL, transb->len)) == (FBFR *)NULL) {
(void)userlog("tpalloc failed in transfer\n");
(void)Fchg (transf, STATLIN, O,
"unable to allocate request buffer", (FLDLEN)O);
tpreturn (TPFAIL, 0, transb->data, 0L, 0);
}
reglen = Fsizeof (reqfb) ;

/* put ID in request buffer */
(void) Fchg (regfb, ACCOUNT_ID, 0, (char *)&db_id, (FLDLEN)O) ;

/* put amount in request buffer */
(void) Fchg (regfb, SAMOUNT, 0, t_amts, (FLDLEN)O) ;

/* increase the priority of withdraw call */
if (tpsprio(PRIORITY, O0OL) == -1)

(void)userlog ("Unable to increase priority of withdraw\n");

if (tpcall ("WITHDRAWAL", (char *)reqgfb,0, (char **)&reqgfb,

Programming an Oracle Tuxedo ATMI Application Using C 5-21

(long *)®len, TPSIGRSTRT) == -1) {
(void)Fchg (transf, STATLIN, O,
"Cannot withdraw from debit account", (FLDLEN)O) ;
tpfree((char *)reqfb);
tpreturn (TPFAIL, 0,transb->data, 0L, 0);

/* get "debit" balance from return buffer */

(void) strecpy (db_amts, Fvals((FBFR *)regfb, SBALANCE, 0)) ;
void)sscanf (db_amts, "$f",db_bal) ;

if ((db_amts == NULL) || (db_bal < 0.0)) {
(void)Fchg (transf, STATLIN, O,
"illegal debit account balance", (FLDLEN)O);

tpfree((char *)reqgfb);
tpreturn (TPFAIL, 0, transb->data, 0L, O0);
}

/* put deposit account ID in request buffer */
(void)Fchg (reqgfb, ACCOUNT_ID, 0, (char *)&cr_id, (FLDLEN)O) ;

/* put transfer amount in request buffer */
(void)Fchg (reqgfb, SAMOUNT, 0, t_amts, (FLDLEN)O) ;

/* Up the priority of deposit call */
if (tpsprio(PRIORITY, OL) == -1)

(void)userlog ("Unable to increase priority of deposit\n");

/* Do a tpcall to deposit to second account */

if (tpcall ("DEPOSIT", (char *)reqfb, 0, (char **)&reqfb,
(long *)®len, TPSIGRSTRT) == -1) {
(void)Fchg (transf, STATLIN, O,
"Cannot deposit into credit account", (FLDLEN)O);

tpfree((char *)reqgfb);
tpreturn (TPFAIL, 0,transb->data, 0L, 0);
/* get "credit" balance from return buffer */

(void) strecpy (cr_amts, Fvals((FBFR *)regfb, SBALANCE,0)) ;
(void) sscanf (cr_amts, "%$f", &cr_bal) ;

if ((cr_amts == NULL) || (cr_bal 0.0)) {
(void)Fchg (transf, STATLIN, O,
"Illegal credit account balance", (FLDLEN)O) ;

tpreturn (TPFAIL, 0, transb->data, 0L, 0);

/* set buffer for successful return */
(void) Fchg (transf, FORMNAM, 0, "CTRANSFER", (FLDLEN)O) ;

5-22 Programming an Oracle Tuxedo ATMI Application Using C

(void) Fchg (transf, SAMOUNT, 0, Fvals(regfb, SAMOUNT,O0),
(void)Fchg (transf, STATLIN, 0, "", (FLDLEN)O);
(void)Fchg (transf, SBALANCE, 0, db_amts, (FLDLEN)O) ;
(void) Fchg (transf, SBALANCE, 1, cr_amts, (FLDLEN)O);

tpfree((char *)reqgfb);
tpreturn (TPSUCCESS, 0, transb->data,
}

0L, 0);

Terminating a Service Routine

(FLDLEN) 0) ;

Invalidating Descriptors

If aservicecaling tpgetrply () (described in detail in“Writing Request/Response Clients and
Servers’ on page 6-1) failswith TepeT1ME and decides to cancel the request, it can invalidate the
descriptor with acall to tpcancel (3c). If areply subsequently arrives, it is silently discarded.

Use the following signature to call the tpcancel () function:

void

tpcancel (int cd)

The ca (call descriptor) argument identifies the process you want to cancel.

tpcancel () cannot be used for transaction replies (that is, for replies to requests made without
the TenoTRAN flag set). Within atransaction, tpabort (3c¢) doesthe samejob of invalidating the

transaction call descriptor.

The following example shows how to invalidate a reply after timing out.

Listing 5-8 Invalidating a Reply After Timing Out

int cdl;

if ((cdl=tpacall (sname, (char *)audv,

TPNOTRAN)) == -1) {

}
if (tpgetrply (cdl,

Programming an Oracle Tuxedo ATMI Application Using C

(char **)&audv, &audrl, 0)

sizeof (struct aud),

5-23

../rf3c/rf3c.html
../rf3c/rf3c.html

5-24

if (tperrno == TPETIME) {
tpcancel (cdl) ;

}
tpreturn (TPSUCCESS, 0,NULL, 0L, O0);

Forwarding Requests

The tpforward (3c) function allowsaserviceto forward arequest to another service for further
processing.

Use the following signature to call the tpforward () function:;

void
tpforward(char *svc, char *data, long len, long flags)

Table 5-3 describes the arguments to the tpreturn () function.

Programming an Oracle Tuxedo ATMI Application Using C

../rf3c/rf3c.html

Terminating a Service Routine

Table 5-3 tpreturn () Function Arguments

Argument Description

sve Character pointer to the name of the service to which the request isto be
forwarded.

data Pointer to the reply message that is returned to the client process. The

message buffer must have been allocated previously by tpalloc ().

If you use the same buffer that was passed to the service in the SVCINFO
structure, you need not be concerned with buffer allocation or disposition
because both are handled by the system-supplied main (). You cannot
free this buffer using the tpfree () command; any attempt to do so
quietly fails. Y ou can resizethe buffer using the tprealloc () function.

If you use another buffer (that is, abuffer other than the one that is passed
to the service routine) to return the message, it is your responsibility to
alocateit. The system freesthe buffer automatically when the application
callsthe tpreturn () function.

If no reply message needs to be returned, set this argument to the NULL
pointer.

Note: If noreply is expected by the client (that is, if TPNOREPLY was
set), the tpreturn () functionignoresthe data and 1en
arguments and returns control tomain ().

len Length of the reply buffer. The application accesses the value of this
argument through the olen parameter of the tpcall () function or the
len parameter of the tpgetrply () function.

Acting as the client, the process can use this returned value to determine
whether the reply buffer has grown.

If areply is expected by the client and there is no datain the reply buffer
(that is, if the data argument is set to the NULL pointer), the function
sends a reply with zero length, without modifying the client’s buffer.

The systemignoresthevalue of thisargument if the da ta argument isnot
specified.

flag Currently not used.

The functionality of tpforward () differsfrom aservice cal: aservice that forwards a request
doesnot expect areply. Theresponsihility for providing thereply ispassed to the servicetowhich
the regquest has been forwarded. The latter service sends the reply to the process that originated

Programming an Oracle Tuxedo ATMI Application Using C 5-25

5-26

the request. It becomes the responsibility of the last server in the forward chain to send the reply
to the originating client by invoking tpreturn ().

Figure 5-1 shows one possible sequence of events when aregquest is forwarded from one service
to another. Hereaclient initiatesarequest usingthe tpca11 () function andthelast serviceinthe
chain (svc_c) provides areply using the tpreturn () function.

Figure 5-1 Forwarding a Request

tpcalli) tpforward|

CLIEWNT

Lpreturni) SV tpforwardl)

Service routines can forward requests at specified priorities in the same manner that client
processes send requests, by using the tpsprio () function.

When aprocesscalls tpforward (), the system-suppliedmain () regainscontrol, and the server
processis free to do more work.

Note: If aserver processis acting as aclient and areply is expected, the server is not allowed
to request services from itself. If the only available instance of the desired service is
offered by the server process making the request, the call fails, indicating that arecursive
call cannot be made. However, if a service routine sends a request (to itself) with the
TPNOREPLY communication flag set, or if it forwards the request, the call does not fail
because the service is not waiting for itself.

Cdling tpforward () can be used to indicate success up to that point in processing the request.
If no application errors have been detected, you can invoke tpforward (), otherwise, you can
cal tpreturn () with rval setto TPFAIL.

Programming an Oracle Tuxedo ATMI Application Using C

Terminating a Service Routine

Listing 5-9 is borrowed from the opEN_aAccT service routine which is part of the accT server.
This example illustrates how the service sends its data buffer to the perosIT Service by calling
tpforward (). The code shows how to test the sor.cope to determine whether the account
insertion is successful. If the new account is added successfully, the branch record is updated to
reflect the new account, and the data buffer is forwarded to the pEpos1T Service. On failure,
tpreturn () iscaledwith rva1 set to Tpra1L and the failureisreported on the statusline of the
form.

Listing 5-9 tpforward() Function

/* set pointer to TPSVCINFO data buffer */
transf = (FBFR *)transb->data;

/* Insert new account record into ACCOUNT*/

account_id = ++last_acct; /* get new account number */

tlr_bal = 0.0; /* temporary balance of 0 */

EXEC SQL insert into ACCOUNT (ACCOUNT_ID, BRANCH_ID, BALANCE,
ACCT_TYPE, LAST_NAME, FIRST NAME, MID_INIT, ADDRESS, PHONE) values

(:account_id, :branch_id, :tlr_bal, :acct_type, :last_name,
:first_name, :mid_init, :address, :phone);
if (SQLCODE != SQL_OK) { /* Failure to insert */
(void)Fchg (transf, STATLIN, O,
"Cannot update ACCOUNT", (FLDLEN)O) ;

tpreturn (TPFAIL, 0, transb->data, 0L, 0);
}

/* Update branch record with new LAST_ACCT */

EXEC SQL update BRANCH set LAST_ACCT = :last_acct where BRANCH_ID = :branch_id;
if (SQLCODE != SQL_OK) { /* Failure to update */
(void) Fchg (transf, STATLIN, O,
"Cannot update BRANCH", (FLDLEN)O) ;

tpreturn (TPFAIL, 0, transb->data, OL, 0);
}
/* up the priority of the deposit call */
if (tpsprio(PRIORITY, O0OL) == -1)
(void)userlog ("Unable to increase priority of deposit\n");

/* tpforward same buffer to deposit service to add initial balance */
tpforward ("DEPOSIT", transb->data, 0L, 0);

Programming an Oracle Tuxedo ATMI Application Using C 5-21

Advertising and Unadvertising Services

5-28

When a server is booted, it advertises the servicesit offers based on the values specified for the
cLopT parameter in the configuration file.

Note: The servicesthat a server may advertise are initialy defined when the buildserver
command is executed. The -s option allows a comma-separated list of servicesto be
specified. It also allowsyou to specify afunction with anamethat differsfrom that of the
advertised service that isto be called to process the service request. Refer to the
buildserver (1) inthe Oracle Tuxedo Command Reference for more information.

Thedefault specification callsfor the server to advertise all serviceswithwhichit wasbuilt. Refer
to the UBBCONFIG (5) Or servopts (5) reference pagein the File Formats, Data Descriptions,
MIBs, and System Processes Reference for more information.

Because an advertised service uses a service table entry in the bulletin board, and can therefore
be resource-expensive, an application may boot its serversin such away that only a subset of the
services offered are available. To limit the services availablein an application, define the cLopT
parameter, within the appropriate entry in the servERs section of the configuration file, to
includethe desired servicesin acomma-separated list following the -s option. The -s option also
allowsyou to specify afunction with aname other than that of the advertised service to be called
to process the request. Refer to the servopts (5) reference page in the File Formats, Data
Descriptions, MIBs, and System Processes Reference for more information.

An Oracle Tuxedo application administrator can use the advertise and unadvertise
commands of tmadmin (1) to control the services offered by servers. The tpadvertise () and
tpunadvertise () functionsenableyou to dynamically control the advertisement of aservicein
areguest/response or conversational server. The service to be advertised (or unadvertised) must
be available within the same server as the service making the request.

Advertising Services

Use the following signature to call the tpadvertise (3c) function:
int

tpadvertise (char *svcname, void *func)

Table 5-4 describes the arguments to the tpadvertise () function.

Programming an Oracle Tuxedo ATMI Application Using C

../rf3c/rf3c.html
../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html
../rfcm/rfcmd.html
../rfcm/rfcmd.html

Advertising and Unadvertising Services

Table 5-4 tpadvertise() Function Arguments

Argument Description

svcname Pointer to the name of the service to be advertised. The service name must
be a character string of up to 127 characters. Names longer than 127
characters are truncated. The NULL string isnot avalid value. If itis
specified, an error (TPEINVAL) results.

func Pointer to the address of an Oracle Tuxedo system function that is called
to perform aservice. Fregquently, this name is the same as the name of the
service. The NULL string is not avalid value. If it is specified, an error
results.

Unadvertising Services

The tpunadvertise (3c) function removes the name of a service from the service table of the
bulletin board so that the service is no longer advertised.

Use the following signature for the tpunadvertise () function:

tpunadvertise (char *svcname)

char *svcname;

The tpunadvertise () function contains one argument, which is described in Table 5-5.

Table 5-5 tpunadvertise() FunctionArguments

Argument Description

svcname Pointer to the name of the service to be advertised. The service name must
be a character string of up to 127 characters. Names longer than 127
characters are truncated. The NULL string isnot avalid value. If it is
specified, an error (TPEINVAL) results.

Example: Dynamic Advertising and Unadvertising of a
Service

Listing 5-10 showshow to usethe tpadvertise () function. Inthisexample, aserver caled TL.r
is programmed to offer only the service called T.r_1nTT When booted. After someinitialization,

Programming an Oracle Tuxedo ATMI Application Using C 5-29

../rf3c/rf3c.html

TLR_INIT advertisestwo services caled pEpos1T and wiTHDRAW. Both are performed by the
t1lr_funcs function, and both are built into the TR server.

After advertising pErPosIT and WITHDRAW, TLR_INIT Unadvertisesitself.

Listing 5-10 Dynamic Advertising and Unadvertising

extern void tlr_funcs()

if (tpadvertise ("DEPOSIT", (tlr_funcs) (TPSVCINFO *)) == -1)
check for errors;

if (tpadvertise ("WITHDRAW", (tlr_funcs) (TPSVCINFO *)) == -1)
check for errors;

if (tpunadvertise("TLR_INIT") == -1)
check for errors;

tpreturn (TPSUCCESS, 0, transb->data,OL, O0);

Building Servers

To build an executable ATMI server, compile your application service subroutines with the
Oracle Tuxedo system server adaptor and al other referenced files using the buildserver (1)
command.

Note: The Oracle Tuxedo server adaptor accepts messages, dispatches work, and manages
transactions (if transactions are enabled).

Use the following syntax for the buildserver command:

buildserver -o filename -f filenames -1 filenames -s -V

Table 5-6 describes the buildserver command-line options:

5-30 Programming an Oracle Tuxedo ATMI Application Using C

../rfcm/rfcmd.html

Building Servers

Table 5-6 buildserver Command-line Options

This Option . ..

Allows You to Specify the . . .

-o filename

Name of the executable output file. The default isa . out.

-f filenames

List of filesthat are link edited before the Oracle Tuxedo system
libraries. Y ou can specify the - £ option more than once, and
multiple filenames for each occurrence of - £. If you specify aC
program file (file.c), it iscompiled beforeitislinked. You can
specify other object files (£file. o) separately, or in groupsin an
archivefile (file.a).

-1 filenames

List of filesthat are link edited after the Oracle Tuxedo system
libraries. Y ou can specify the -1 option more than once, and
multiple filenames for each occurrence of -1. If you specify aC
program file (file.c), itiscompiled beforeitislinked. You can
specify other object files (£i1e. o) separately, or in groupsin an
archivefile (file.a).

-I filenames

List of resource manager accesslibrariesthat arelink edited with the
executable server. The application administrator is responsible for
predefining all valid resource manager information in the
$TUXDIR/updataobj/RM fileusingthebuildtms (1)
command. Y ou can specify only one resource manager. Refer to
Setting Up an Oracle Tuxedo Application for more information.

-S[service!] function

Name of service or services offered by the server and the name of
the function that performs each service. Y ou can specify the -s
option more than once, and multiple services for each occurrence of
-s. The server uses the specified service namesto advertise its
servicesto clients.

Typically, you should assign the same hame to both the service and
the function that performs that service. Alternatively, you can
specify any names. To assign names, use the following syntax:
service.function

Specifies that the server is coded in a thread-safe manner and may
be booted as multithreaded if specified as such in the configuration
file.

Programming an Oracle Tuxedo ATMI Application Using C 5-31

../rfcm/rfcmd.html

Notes. The Oracle Tuxedo libraries are linked in automatically. Y ou do not need to specify the
Oracle Tuxedo library names on the command line.

Link editing must be done by running the buildserver command.

The order in which you specify the library filesto be link edited is significant: it depends on the
order in which functions are called and which libraries contain references to those functions.

By default, the buildserver command invokes the UNIX cc command. Y ou can specify an
alternative compile command and set your own flags for the compile and link-edit phases,
however, by setting the cc and crFLacs environment variables, respectively. For more
information, refer to “ Setting Environment Variables’ on page 3-5.

The following command processes the acct . o application file and creates a server called acct
that contains two services: NEw_accT, which calls the opEn_accT function, and cLOSE_accT,
which calls afunction of the same name.

buildserver -o ACCT -f acct.o -s NEW_ACCT:0PEN_ACCT -s CLOSE_ACCT

See Also

e “Building Clients’ on page 4-8

e buildclient (1) inthe Oracle Tuxedo Command Reference

Using a C++ Compiler

5-32

There are basically two differences between using a C++ compiler and a C compiler to develop
application ATMI servers:

e Different declarations of the service function

e Different use of constructors and destructors

Declaring Service Functions

When declaring a service function for a C++ compiler, you must declareit to have “C” linkage
using extern “c~. Specify the function prototype as follows:

#ifdef _ cplusplus

extern "C"

#endif

MYSERVICE (TPSVCINFO *tpsvcinfo)

Programming an Oracle Tuxedo ATMI Application Using C

../rfcm/rfcmd.html

Using a C++ Compiler

By declaring the name of your service with “C” linkage, you ensure that the C++ compiler will
not modify the name. Many C++ compilers change the function nameto include type information
for the parameters and function return.

This declaration aso alows you to:

e Link both C and C++ service routinesinto a single server without indicating the type of
each routine.

e Use dynamic service advertisement, which requires accessing the symbol table of the
executable to find the function name.

Using Constructors and Destructors

C++ constructors are called to initialize class objects when those objects are created, and
destructors areinvoked when class objects are destroyed. For automatic (that is, local, non-static)
variables that contain constructors and destructors, the constructor is called when the variable
comesinto scopeand the destructor is called when the variable goes out of scope. However, when
you call the tpreturn () or tpforward () function, the compiler performs anon-local goto
(using 1ongjmp(3)) such that destructors for automatic variables are not called. To avoid this
problem, write the application so that you call tpreturn () or tpforward () from the service
routine directly (instead of from any functions that are called from the service routine). In
addition, one of the following should be true:

e The service routine should not have any automatic variables with destructors (they should
be declared and used in afunction called by the service routine).

e Automatic variables should be declared and used in a nested scope (contained within curly
brackets{}) in such away that the scope ends before calling the tpreturn () or
tpforward () function.

In other words, you should define the application so that there are no automatic variables with
destructorsin scope in the current function or on the stack when the tpreturn () or
tpforward () functionis called.

For proper handling of global and static variablesthat contain constructors and destructors, many
C++ compilersrequire that you compilemain () using the C++ compiler.

Note: Specia processing isincluded inthemain () routineto ensure that any constructors are
executed when the program starts and any destructors are executed when the program
exits.

Programming an Oracle Tuxedo ATMI Application Using C 5-33

5-34

Becausemain () isprovided by the Oracle Tuxedo system, you do not compileit directly. To
ensurethat thefileiscompiled using C++, you must usethe C++ compiler withthebuildserver
command. By default, the buildserver command invokes the UNIX cc command. Y ou can
specify that the buildserver command invoke the C++ compiler, instead, by setting the cc
environment variable to the full path name for the C++ compiler. Also, you can set flags for any
options that you want to include on the C++ command line by setting the crracs environment
variable. For more information, refer to “ Setting Environment Variables’ on page 3-5.

Programming an Oracle Tuxedo ATMI Application Using C

CHAPTERa

Writing Request/Response Clients and
Servers

Thistopic includes the following sections:
e Overview of Reguest/Response Communication
e Sending Synchronous Messages
e Sending Asynchronous M essages
e Setting and Getting Message Priorities

Overview of Request/Response Communication

In request/response communication mode, one software module sends a request to a second
software module and waits for aresponse. Because thefirst software module performstherol e of
the client, and the second, the role of the server, thismodeis also referred to as client/server
interaction. Many online banking tasks are programmed in request/response mode. For example,
arequest for an account balance is executed as followsin Figure 6-1:

1. A customer (the client) sendsarequest for an account balance to the Account Record Storage
System (the server).

2. The Account Record Storage System (the server) sends areply to the customer (the client),
specifying the dollar amount in the designated account.

Programming an Oracle Tuxedo ATMI Application Using C 6-1

Figure 6-1 Example of Request/Response Communication in Online Banking

Customer Fequast’ Check Account Balance & L

4
Systemn Mesporse; £ 26,746

Lo
Customer's Bank's Computer on Which
Home Computer Account Records Are Stoed

Once aclient process has joined an application, allocated a buffer, and placed arequest for input
into that buffer, it can then send the request message to a service subroutine for processing and

receive areply message.

Sending Synchronous Messages

6-2

The tpcall (3c) function sends arequest to a service subroutine and synchronously waits for a
reply. Use the following signature to call the tpca11 () function:

int
tpcall (char *svc, char *idata, long ilen, char **odata, long *olen, long

flags)

Table 6-1 describes the arguments to the tpca11 () function.

Table 6-1 tpcall() Function Arguments

Argument Description
sve Pointer to the name of the service offered by your application.
idata Pointer that contains the address of the data portion of the request. The

pointer must reference atyped buffer that was allocated by aprior call to
tpalloc (). Notethat the type (and optionally the subtype) of
idata must match the type (and optionally the subtype) expected by
the service routine. If the types do not match, the system sets tperrno
to TPEITYPE and the function call fails.

If the request requires no data, set idata tothe NULL pointer. This
setting means that the parameter can be ignored. If no datais being sent
with the request, you do not need to allocate a buffer for idata.

Programming an Oracle Tuxedo ATMI Application Using C

../rf3c/rf3c.html

Sending Synchronous Messages

Table 6-1 tpcall() Function Arguments

Argument Description

ilen Length of the request datain the buffer referenced by idata. If the
buffer is a self-defining type, that is, an FML, FML32, VIEW, VIEW32,
X_COMMON, X_C_TYPE, Or STRING buffer, you can set this argument to
zero to indicate that the argument should be ignored.

*odata Address of apointer to the output buffer that receivesthereply. Y ou must
allocate the output buffer using the tpalloc () function. If the reply
message contains no data, upon successful return from tpcall (), the
system sets * o1 en to zero, and the pointer and the contents of the output
buffer remain unchanged.

Y ou can use the same buffer for both the request and reply messages. If
you do, you must set * oda ta to the address of the pointer returned when
you alocate the input buffer. It isan error for this parameter to point to

NULL.

olen Pointer to the length of the reply data. It is an error for this parameter to
point to NULL.

flags Flag options. Y ou can OR a series of flags together. If you set thisvalue

to zero, the communication is conducted in the default manner. For alist
of valid flags and the defaults, refer to tpcall (3c) inthe Oracle
Tuxedo ATMI C Function Reference.

tpcall () walitsfor the expected reply.

Note: Cadlingthetpcall () functionislogicaly the same ascalling the tpaca11 () function
immediately followed by tpgetrply (), asdescribed in “ Sending Asynchronous
Messages’ on page 6-11.

Thereguest carriesthe priority set by the system for the specified service (svc) unlessadifferent

priority has been explicitly set by acall to the tpsprio () function (described in “ Setting and

Getting Message Priorities’ on page 6-16).

tpcall () returnsaninteger. On failure, the value of thisinteger is-1 and the value of

tperrno (5) iSset to avaluethat reflectsthetype of error that occurred. For information onvalid
error codes, refer to tpcall (3c) inthe Oracle Tuxedo ATMI C Function Reference.

Note: Communication calls may fail for avariety of reasons, many of which can be corrected
at the application level. Possible causes of failure include: application defined errors
(TPESVCFAIL), &TOrsin processing return arguments (TPESVCERR), typed buffer errors

Programming an Oracle Tuxedo ATMI Application Using C 6-3

../rf3c/rf3c.html
../rf5/rf5.html

6-4

(TPEITYPE, TPEOTYPE), timeout errors (TPETIME), and protocol errors (TPEPROTO),
among others. For a detailed discussion of errors, refer to “Managing Errors’ on
page 11-1. For acomplete list of possible errors, refer to tpcall (3¢) inthe Oracle
Tuxedo ATMI C Function Reference.

The Oracle Tuxedo system automatically adjusts a buffer used for receiving a message if the
received messageistoo large for theallocated buffer. Y ou should test for whether or not the reply
buffers have been resized.

To access the new size of the buffer, use the address returned in the * o1en parameter. To
determine whether areply buffer has changed in size, compare the size of the reply buffer before
thecall to tpcall () withthevalue of *olen after itsreturn. If *olenislarger than the original
size, the buffer has grown. If not, the buffer size has not changed.

Y ou should reference the output buffer by the value returned in odata after the call because the
output buffer may change for reasons other than an increase in buffer size. Y ou do not need to
verify the size of request buffers because the request datais not adjusted once it has been
allocated.

Note: If you use the same buffer for the request and reply message, and the pointer to the reply
buffer has changed because the system adjusted the size of the buffer, then the input
buffer pointer no longer references avalid address.

Example: Using the Same Buffer for Request and Reply
Messages

Listing 6-1 shows how the client program, audit . c, makes a synchronous call using the same
buffer for both the request and reply messages. In this case, using the same buffer is appropriate
because the * audv message buffer has been set up to accommodate both request and reply
information. The following actions are taken in this code:

1. Theservice queriestheb_id field, but does not overwriteit.

2. Theapplicationinitializesthebal and ermsg fieldsto zero and the NUL L string, respectively,
in preparation for the values to be returned by the service.

3. The sve_name and hdr_type Variables represent the service name and the balance type
requested, respectively. In this example, these variables represent account and teller,
respectively.

Programming an Oracle Tuxedo ATMI Application Using C

../rf3c/rf3c.html

Sending Synchronous Messages

Listing 6-1 Using the Same Buffer for Request and Reply Messages

/* Create buffer and set data pointer */

audv = (struct aud *)tpalloc("VIEW", "aud", sizeof(struct aud));

/* Prepare aud structure */

audv->b_id = g _branchid;
audv->balance = 0.0;

(void) strcpy (audv->ermsg, "");

/* Do tpcall */

if (tpcall(svc_name, (char *)audv,sizeof (struct aud),
(char **)&audv, (long *)&audrl,0)== -1){
(void) fprintf (stderr, "%s service failed\n %s: %s\n",
svc_name, svc_name, audv->ermsg) ;

retc = -1;

else
(void)printf ("Branch %1d %s balance is $%.2f\n",

audv->b_id, hdr_type, audv->balance) ;

Example: Testing for Change in Size of Reply Buffer

Listing 6-2 provides ageneric example of how an application test for achangein buffer size after
acall to tpcall (). Inthisexample, the input and output buffers must remain equal in size.

Listing 6-2 Testing for Change in Size of the Reply Buffer

char *svc, *idata, *odata;

long ilen, olen, bef_len, aft_len;

Programming an Oracle Tuxedo ATMI Application Using C 6-5

if (idata = tpalloc("STRING", NULL, 0) == NULL)

error

if (odata = tpalloc("STRING", NULL, 0) == NULL)

error

place string value into idata buffer

ilen = olen = strlen(idata)+1;

bef_len = olen;

if (tpcall(svec, idata, ilen, &odata, &olen, flags) == -1)
error

aft_len = olen;

if (aft_len > bef_len){ /* message buffer has grown */

if (idata = tprealloc(idata, olen) == NULL)

error

Example: Sending a Synchronous Message with TPSIGRSTRT
Set

Listing 6-3 is based on the TRANSFER Service, which is part of the xFER server process of
bankapp. (bankapp iSasample ATMI application delivered with the Oracle Tuxedo system.)
The TRANSFER Service assumes the role of aclient when it calls the wrTHDRAWAL and DEPOSIT
services. The application sets the communication flag to TpsIGRSTRT in these service callsto
give the transaction a better chance of committing. The TpsTGrsTRT flag specifies the action to
takeif thereisasignal interrupt. For more information on communication flags, refer to
tpcall (3c) inthe Oracle Tuxedo ATMI C Function Reference.

Programming an Oracle Tuxedo ATMI Application Using C

../rf3c/rf3c.html

Sending Synchronous Messages

Listing 6-3 Sending a Synchronous Message with TPSIGRSTRT Set

/* Do a tpcall to withdraw from first account */

if (tpcall ("WITHDRAWAL", (char *)reqfb,0, (char **)&reqfb,
(long *)®len, TPSIGRSTRT) == -1) {
(void) Fchg (transf, STATLIN, O,
"Cannot withdraw from debit account", (FLDLEN)O) ;

tpfree((char *)reqgfb);

/* Do a tpcall to deposit to second account */

if (tpcall ("DEPOSIT", (char *)regfb, 0, (char **)&reqgfb,
(long *)®len, TPSIGRSTRT) == -1) {
(void)Fchg (transf, STATLIN, O,
"Cannot deposit into credit account", (FLDLEN)O);
tpfree((char *)reqfb);

Example: Sending a Synchronous Message with TPNOTRAN
Set

Listing 6-4 illustrates acommunication call that suppressestransaction mode. Thecall ismadeto
aservice that is not affiliated with a resource manager; it would be an error to allow the service
to participate in the transaction. The application prints an accounts receivable report, accrcv,
generated from information obtained from a database named accounts.

The service routine REPORT interprets the specified parameters and sends the byte stream for the
completed report asareply. Theclient usestpcall () to send the byte stream to a service called
PRINTER, Which, inturn, sendsthe byte stream to a printer that is conveniently closeto the client.
Thereply is printed. Finally, the PRINTER service notifies the client that the hard copy is ready
to be picked up.

Note: The example “Sending an Asynchronous Message with TPNOREPLY | TPNOTRAN”
on page 6-13 shows a similar example using an asynchronous message call.

Programming an Oracle Tuxedo ATMI Application Using C 6-7

Listing 6-4 Sending a Synchronous Message with TPNOTRAN Set

#include <stdio.h>

#include "atmi.h"

main ()

{

char *rbuf; /* report buffer */

long rllen, r2len, r3len; /* buffer lengths of send, 1lst reply,
and 2nd reply buffers for report */

join application

if (rbuf = tpalloc("STRING", NULL, 0) == NULL) /* allocate space for report
*/

leave application and exit program
(void) strepy (rbuf,

"REPORT=accrcv DBNAME=accounts"); /* send parms of report */

rllen = strlen(rbuf)+1; /* length of request */

start transaction

if (tpcall ("REPORT", rbuf, rllen, &rbuf,
&r2len, 0) == -1) /* get report print stream */
error routine

if (tpcall ("PRINTER", rbuf, r2len, &rbuf,
&r3len, TPNOTRAN) == -1) /* send report to printer */
error routine

(void)printf ("Report sent to %s printer\n",
rbuf) ; /* indicate which printer */

terminate transaction
free buffer
leave application

}

6-8 Programming an Oracle Tuxedo ATMI Application Using C

Sending Synchronous Messages

Note: Inthepreceding example, theterm error routine indicatesthat thefollowingtasksare
performed: an error message is printed, the transaction is aborted, allocated buffers are
freed, the client leaves the application, and the program is exited.

Example: Sending a Synchronous Message with
TPNOCHANGE Set

Listing 6-5 shows how the TenocHANGE communication flag is used to enforce strong buffer type
checking by indicating that the reply message must be returned in the same type of buffer that
was originally allocated. This example refersto a service routine called REPORT. (The REPORT
serviceis also shown in “Example: Sending a Synchronous Message with TPNOTRAN Set” on

page 6-7.)
In this example, the client receivesthereply in aview typed buffer called rviewl and printsthe

eementsinprintf () statements. The strong type check flag, TenocHANGE, forces the reply to
be returned in a buffer of type view and of subtype rviewl.

A possible reason for this check isto guard against errors that may occur in the REPORT service
subroutine, resulting in the use of areply buffer of an incorrect type. Another reason isto prevent
changes that are not made consistently across all areas of dependency. For example, another
programmer may have changed the REPORT Service to standardize all repliesin another view
format without modifying the client processto reflect the change.

Listing 6-5 Sending a Synchronous Message with TPNOCHANGE Set

#include <stdio.h>
#include "atmi.h"

#include "rviewl.h"

main(argc, argv)
int argc;

char * argvl[];

{

char *rbuf; /* report buffer */

struct rviewl *rrbuf; /* report reply buffer */

long rlen, rrlen; /* buffer lengths of send and reply

buffers for report */

Programming an Oracle Tuxedo ATMI Application Using C 6-9

if (tpinit((TPINIT *) tpinfo) == -1)

fprintf (stderr, "%s: failed to join application\n", argv[0]);

if (rbuf = tpalloc ("STRING", NULL, 0) == NULL) { /* allocate space for report
*/

tpterm() ;

exit (1) ;

/* allocate space for return buffer */

if (rrbuf = (struct rviewl *)tpalloc("VIEW", "rviewl", sizeof (struct
rviewl)) \ == NULL{

tpfree(rbuf) ;

tpterm() ;

exit(1l);
}
(void) strcpy (rbuf, "REPORT=accrcv DBNAME=accounts FORMAT=rviewl") ;
rlen = strlen(rbuf)+1; /* length of request */

/* get report in rviewl struct */

if (tpcall ("REPORT", rbuf, rlen, (char **)&rrbuf, &rrlen, TPNOCHANGE) == -1)
{
fprintf (stderr, "accounts receivable report failed in service call\n");
if (tperrno == TPEOTYPE)
fprintf (stderr, "report returned has wrong view type\n");

tpfree (rbuf) ;

tpfree (rrbuf) ;

tpterm() ;

exit (1) ;
}
(void)printf ("Total accounts receivable %6d\n", rrbuf->total);
(void)printf ("Largest three outstanding %-20s %$6d\n", rrbuf->namel,
rrbuf->amtl) ;
(void)printf ("%-20s %6d\n", rrbuf->name2, rrbuf->amt2);
(void)printf ("%$-20s %6d\n", rrbuf->name3, rrbuf->amt3);
tpfree(rbuf) ;
tpfree (rrbuf) ;
tpterm() ;
}

6-10 Programming an Oracle Tuxedo ATMI Application Using C

Sending Asynchronous Messages

Sending Asynchronous Messages

This section explains how to:
e Send an asynchronous request using the tpacall () function

e Get an asynchronous reply using the tpgetrply () function

Thetype of asynchronous processing discussed in this section is sometimes referred to asfan-out
parallelism because it alows a client’ s requests to be distributed (or “fanned out™)
simultaneously to several servicesfor processing.

The other type of asynchronous processing supported by the Oracle Tuxedo system is pipeline
paralelism in which the tpforward () function is used to pass (or forward) a process from one
serviceto another. For adescription of the tpforward () function, refer to “Writing Servers’ on
page 5-1.

Sending an Asynchronous Request

The tpacall (3c¢) function sends arequest to a service and immediately returns. Use the
following signature to call the tpaca11 () function:

int
tpacall (char *svc, char *data, long len, long flags)

Table 6-2 describes the arguments to the tpaca11 () function.

Programming an Oracle Tuxedo ATMI Application Using C 6-11

../rf3c/rf3c.html

6-12

Table 6-2 tpacall() Function Arguments

Argument Description
sve Pointer to the name of the service offered by your application.
data Pointer that contains the address of the data portion of the request. The

pointer must reference atyped buffer that was alocated by aprior call to
tpalloc (). Notethat the type (and optionaly the subtype) of
idata must match the type (and optionally the subtype) expected by
the service routine. If the types do not match, the system sets tperrno
to TPEITYPE and the function call fails.

If therequest requiresno data, set da ta tothe NULL pointer. Thissetting
means that the parameter can be ignored. If no datais being sent with the
request, you do not need to allocate a buffer for data.

len Length of the request datain the buffer referenced by data. If the buffer
is aself-defining type, that is, an FML, FML32, VIEW, VIEW32,
X_COMMON, X_C_TYPE, Or STRING buffer, you can set this argument to
zero, indicating that the argument should be ignored.

flags Flag options. Y ou can list agroup of flags by using the logical orR
operator. If you set thisvalueto zero, the communication is conducted in
the default manner. For alist of valid flags and defaults, refer to
tpacall (3c) inthe Oracle Tuxedo ATMI C Function Reference.

Thetpacall () function sends arequest message to the service named in the svc parameter and
immediately returns from the call. Upon successful completion of the call, the tpacali ()
function returns an integer that serves as a descriptor used to access the correct reply for the
relevant request. While tpacall () isintransaction mode (as described in “Writing Global
Transactions’ on page 9-1) there may not be any outstanding replies when the transaction
commits; that is, within a given transaction, for each request for which areply is expected, a
corresponding reply must eventually be received.

If the value TPNOREPLY iS assigned to the f1ags parameter, the parameter signalsto tpacall ()
that areply is not expected. When thisflag is set, on success tpacall () returnsavalue of o as
the reply descriptor. If subsequently passed to the tpgetrply () function, this value becomes
invalid. Guidelines for using this flag value correctly when a processisin transaction mode are
discussed in “Writing Global Transactions’ on page 9-1.

On error, tpacall () returns -1 and sets tperrno (5) to avalue that reflects the nature of the
error. tpacall () returns many of the same error codes as tpcall (). The differences between

Programming an Oracle Tuxedo ATMI Application Using C

../rf3c/rf3c.html
../rf5/rf5.html

Sending Asynchronous Messages

the error codes for these functions are based on the fact that one call is synchronous and the other,
asynchronous. These errors are discussed at length in “Managing Errors’ on page 11-1.

Example: Sending an Asynchronous Message with TPNOTRAN | TPNOREPLY

Listing 6-6 showshow tpacall () usesthe TeNoTRAN and TPNOREPLY flags. Thiscodeissimilar
to the code in “Example: Sending a Synchronous Message with TPNOTRAN Set” on page 6-7.
In this case, however, areply is not expected from the PrRINTER service. By setting both
TPNOTRAN and TPNOREPLY flags, the client isindicating that no reply is expected and the
PRINTER Service will not participate in the current transaction. This situation is discussed more
fully in “Managing Errors’ on page 11-1.

Listing 6-6 Sending an Asynchronous Message with TPNOREPLY | TPNOTRAN

#include <stdio.h>

#include "atmi.h"

main ()

{

char *rbuf; /* report buffer */

long rlen, rrlen; /* buffer lengths of send, reply buffers for report */

join application

if (rbuf = tpalloc("STRING", NULL, 0) == NULL) /* allocate space for report
*/
error

(void) strcpy (rbuf, "REPORT=accrcv DBNAME=accounts");/* send parms of report
*/
rlen = strlen(rbuf)+1l; /* length of request */

start transaction
if (tpcall ("REPORT", rbuf, rlen, &rbuf, &rrlen, O0)
== -1) /* get report print stream */

error
if (tpacall ("PRINTER", rbuf, rrlen, TPNOTRAN|TPNOREPLY)

Programming an Oracle Tuxedo ATMI Application Using C 6-13

6-14

== -1) /* send report to printer */

error

commit transaction
free buffer

leave application
}

Example: Sending Asynchronous Requests

The following example shows a series of asynchronous calls that make up the total bank balance
guery. Because the banking application data is distributed among several database sites, an SQL
guery needsto be executed against each one. The application performs these queries by selecting
one branch identifier per database site, and calling the aBar. or TBAL service for each site. The
branch identifier is not used in the actual SQL query, but it enables the Oracle Tuxedo system to
route each request to the proper site. Inthefollowing code, the for loop invokes tpacall () once
for each site.

Listing 6-7 Sending Asynchronous Requests

audv->balance = 0.0;

(void) strcpy (audv->ermsg, "");
for (i=0; i<NSITE; i++) {
/* Prepare aud structure */
audv->b_id = sitelist[i]; /* routing done on this field */
/* Do tpacall */
if ((cd[i]l=tpacall (sname, (char *)audv, sizeof(struct aud), 0))
== -1) {

(void) fprintf (stderr,

"%S: %S service request failed for site rep %1d\n",

Programming an Oracle Tuxedo ATMI Application Using C

Sending Asynchronous Messages

pgmname, sname, sitelist[i]);
tpfree((char *)audv) ;

return(-1);

Getting an Asynchronous Reply

A reply to aservice call can bereceived asynchronously by calling the tpgetrply (3c) function.
The tpgetrply () function dequeues areply to arequest previously sent by tpacall ().

Use the following signature to call the tpgetrply () function:
int

tpgetrply (int *cd, char **data, long *len, long flags)

Table 6-3 describes the arguments to the tpgetrply () function.

Table 6-3 tpgetrply() Function Arguments

Argument Description
cd Pointer to the call descriptor returned by the tpacall () function.
*data Address of apointer to the output buffer that receivesthereply. Y ou must

allocate the output buffer using the tpalloc () function. If the reply
message contains no data, upon successful return from tpcall (), the
system sets *data to zero. The pointer and the contents of the output
buffer remain unchanged.

Y ou can use the same buffer for both the request and reply messages. If
you do, then you must set odata to the address of the pointer returned
when you allocated the input buffer. It is an error for this parameter to
point to NULL.

len Pointer to the length of the reply data. It is an error for this parameter to
point to NULL.

flags Flag options. You can list agroup of flags using the logical OR operator.
If you set this value to zero, the communication is conducted in the
default manner. For alist of valid flags and defaults, refer to
tpcall (3c)) inthe Oracle Tuxedo ATMI C Function Reference.

Programming an Oracle Tuxedo ATMI Application Using C 6-15

../rf3c/rf3c.html
../rf3c/rf3c.html

By default, the function waits for the arrival of the reply that correspondsto the value referenced
by the ca parameter. During this waiting interval, a blocking timeout may occur. A time-out
occurswhen tpgetrply () failsand tperrno (5) issetto TPETIME (Unlessthe £1ags parameter
iS set to TPNOTIME).

Setting and Getting Message Priorities

6-16

Two ATMI functions allow you to determine and set the priority of a message request:
tpsprio (3c) and tpgprio (3c). The priority affects how soon the request is dequeued by the
server; servers dequeue requests with the highest priorities first.

This section describes:
e Setting a Message Priority
e Getting a Message Priority

Setting a Message Priority
The tpsprio (3c) function enablesyou to set the priority of a message request.

The tpsprio () function affectsthe priority level of only onerequest: the next request to be sent
by tpcall () or tpacall (), or to beforwarded by a service subroutine.

Use the following signature to call the tpsprio () function:
int
tpsprio(int prio, long flags);

Table 6-4describes the arguments to the tpsprio () function.

Programming an Oracle Tuxedo ATMI Application Using C

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf5/rf5.html

Setting and Getting Message Priorities

Table 6-4 tpsprio() Function Arguments

Argument Description

prio Integer indicating a new priority value. The effect of thisargument is
controlled by the f1ags parameter. If f1agsissettoO, prio specifies
arelative value and the sign accompanying the value indicates whether
the current priority isincremented or decremented. Otherwise, the value
specified indicates an absolute value and prio must be set to avalue
between 0 and 100. If you do not specify avalue within this range, the
system sets the value to 50.

flags Flag indicating whether the value of prio istreated asarelative value
(O, the default) or an absolute value (TPABSOLUTE).

The following sample code is an excerpt from the TRaNSFER service. In this example, the
TRANSFER Service acts as a client by sending a synchronous request, via tpcall (), to the

WITHDRAWAL Sefvice. TRANSFER als0 invokes tpsprio () to increase the priority of its request

message to w1 THDRAWAL, and to prevent the request from being queued for the wrTHDRAWATL
service (and later the DEPOSIT Service) after waiting on the TRANSFER queUe.

Listing 6-8 Setting the Priority of a Request Message

/* increase the priority of withdraw call */
if (tpsprio(PRIORITY, O0OL) == -1)

(void)userlog ("Unable to increase priority of withdraw\n");

if (tpcall ("WITHDRAWAL", (char *)reqfb,0, (char **)&reqgfb, (long *)
\
®len, TPSIGRSTRT) == -1) {
(void)Fchg (transf, STATLIN, 0, "Cannot withdraw from debit account",
(FLDLEN) Q) ;
tpfree((char *)reqgfb);
tpreturn (TPFAIL, O, transb->data, OL, 0);

\

Programming an Oracle Tuxedo ATMI Application Using C 6-17

6-18

Getting a Message Priority

The tpgprio (3c) function enables you to get the priority of a message request.

Use the following signature to call the tpgprio () function:;

int

tpgprio();

A requester can call the tpgprio () function after invoking the tpcall () oOr tpacall ()
function to retrieve the priority of the request message. If arequester calls the function but no
request is sent, the function fails, returning -1 and setting tperrno (5) to TPENOENT. Upon

success, tpgprio () returnsan integer value in the range of 1 to 100 (where the highest priority
value is 100).

If apriority hasnot been explicitly set usingthe tpsprio () function, the system setsthe message
priority to that of the service routine that handles the request. Within an application, the priority
of the request-handling service is assigned a default value of 50 unless a system administrator
overrides this value.

The following example shows how to determine the priority of a message that was sent in an
asynchronous call.

Listing 6-9 Determining the Priority of a Request After It Is Sent

#include <stdio.h>

#include "atmi.h"

main ()

{

int cdl, cd2; /* call descriptors */

int prl, pr2; /* priorities to two calls */
char *bufl, *buf2; /* buffers */

long bufllen, buf2len; /* buffer lengths */

join application

if (bufl=tpalloc("FML", NULL, 0) == NULL)
error
if (buf2=tpalloc("FML", NULL, 0) == NULL)

Programming an Oracle Tuxedo ATMI Application Using C

../rf3c/rf3c.html
../rf5/rf5.html

Setting and Getting Message Priorities

error

populate FML buffers with send request

if ((cdl = tpacall("servicel", bufl, 0, 0)) == -1)
error

if ((prl = tpgprio()) == -1)
error

if ((cd2 = tpacall("service2", buf2, 0, 0)) == -1)
error

if ((pr2 = tpgprio()) == -1)\
error

if (prl >= pr2) { /* base the order of tpgetrplys on priority of calls */

if (tpgetrply (&cdl, &bufl, &bufllen, 0) == -1)
error
if (tpgetrply (&cd2, &buf2, &buf2len, 0) == -1)
error
}
else {
if (tpgetrply (&cd2, &buf2, &buf2len, 0) == -1)
error
if (tpgetrply(&cdl, &bufl, &bufllen, 0) == -1)
error

Programming an Oracle Tuxedo ATMI Application Using C 6-19

6-20 Programming an Oracle Tuxedo ATMI Application Using C

CHAPTERa

Writing Conversational Clients and
Servers

Thistopic includes the following sections:
e Overview of Conversational Communication

e Joining an Application

Establishing a Connection

Sending and Receiving Messages

Ending a Conversation

Building Conversational Clients and Servers

e Understanding Conversational Communication Events

Overview of Conversational Communication

Conversational communication is the Oracle Tuxedo system implementation of a human-like
paradigm for exchanging messages between ATMI clients and servers. In thisform of
communication, avirtual connection is maintained between the client (initiator) and server
(subordinate) and each side maintains information about the state of the conversation. The
connection remains active until an event occurs to terminate it.

During conversational communication, ahalf-duplex connection is established between the client
and server. A half-duplex connection allows messages to be sent in only one direction at any
given time. Control of the connection can be passed back and forth between the initiator and the

Programming an Oracle Tuxedo ATMI Application Using C 1-1

1-2

subordinate. The process that has control can send messages; the process that does not have
control can only receive messages.

To understand how conversational communication works in an Oracle Tuxedo ATMI
application, consider the following examplein Figure 7-1 from an online banking application. In
this example, abank customer requests checking account statements for the past two months.

Figure 7-1 Example of Conversational Communication in an Online Banking Application

'..

1. Customer Request Send slabtemenis &

for last 2months 13
4 2 System Resporse: Here's the first ui:lLulmn‘ltInnl.anuﬁm?h
A Custormer Requast: Yes, send more -
-+ 4. Systen Responge. Here's the statement for the second month Lo -
Customer Residence Account Records Storage System

located at the Bank Headguarters

1. The customer requests the checking account statements for the past two months.

2. TheAccount Records Storage System responds by sending thefirst month’s checking account
statement followed by amore prompt for accessing the remaining month’s statement.

3. The customer requests the second month'’s account statement by selecting the More prompt.

Note: TheAccount Records Storage System must maintain state information so it knowswhich
account statement to return when the customer selects the more prompt.

4. The Account Records Storage System sends the remaining month’s account statement.

As with request/response communication, the Oracle Tuxedo system passes data using typed
buffers. The buffer types must be recognized by the application. For more information on buffer
types, refer to “Overview of Typed Buffers’ on page 2-2.

Conversational clients and servers have the following characteristics:
e Thelogica connection between them remains active until terminated.
e Any number of messages can be transmitted across a connection between them.

e Both clients and servers use the tpsend () and tprecv () routinesto send and receive data
in conversations.

Conversational communication differs from reguest/response communication in the following
ways:

Programming an Oracle Tuxedo ATMI Application Using C

Joining an Application

e A conversational client initiates arequest for service using tpconnect () rather than
tpcall() Or tpacall().

e A conversationa client sends a service request to a conversational server.

e The configuration file reserves part of the conversational server for addressing
conversational services.

e Conversationa servers are prohibited from making callsusing tpforward ().

Joining an Application

A conversational client must join an application viaacall to tpinit () before attempting to
establish aconnection to a service. For more information, refer to “Writing Clients” on page 4-1.

Establishing a Connection

The tpconnect (3¢) function sets up a conversation:

Use the following signature to call the tpconnect () function.

int

tpconnect (char *name, char *data, long len, long flags)

Table 7-1 describes the arguments to the tpconnect () function.

Programming an Oracle Tuxedo ATMI Application Using C 1-3

../rf3c/rf3c.html

7-4

Table 7-1 tpconnect() Function Arguments

Argument

Description

name

Character pointer to a conversational service name. If you do not specify
name as a pointer to aconversational service, the call fails with avalue of
-1 and tperrno is Set to the error code TPENOENT.

data

Pointer to a data buffer. When establishing the connection, you can send
data simultaneously by setting the data argument to point to a buffer
previoudly alocated by tpalloc (). The type and subtype of the
buffer must be types recognized by the service being called. Y ou can set the
value of data to NULL to specify that no dataisto be sent.

The conversational service being called receivesthe data and 1en
pointers viathe TPSVCINFO data structure passed to it by main () when
the service isinvoked. (A request/response service receives the data and
len pointersin the same way.) For more information on the TPSVCINFO
data structure, refer to “Defining a Service” on page 5-9.

len

Length of the data buffer. If the buffer is self-defining (for example, an FML
buffer), you can set 1ento 0.

flag

Specifiesthe flag settings. For acompletelist of valid flag settings, refer to
tpconnect (3c¢) inthe Oracle Tuxedo ATMI C Function Reference.

The system notifies the called service through the flag members of the
TPSVCINFO structure.

The Oracle Tuxedo system returns a connection descriptor (cd) when aconnection is established

with tpconnect (). The cd isused to identify subsequent message transmissions with a

particular conversation. A client or conversational service can participate in more than one
conversation simultaneously. The maximum number of simultaneous conversationsis 64.

Inthe event of afailure, the tpconnect () function returnsavalue of -1 and sets tperrno tothe
appropriate error condition. For alist of possible error codes, refer to tpconnect (3c) inthe
Oracle Tuxedo ATMI C Function Reference.

Listing 7-1 shows how to use the tpconnect () function.

Programming an Oracle Tuxedo ATMI Application Using C

../rf3c/rf3c.html
../rf3c/rf3c.html

Sending and Receiving Messages

Listing 7-1 Establishing a Conversational Connection

#include atmi.h

#define FAIL -1
int <dl; /* Connection Descriptor */
main ()
{
if ((cd = tpconnect (“AUDITC”,NULL, O, TPSENDONLY)) == -1) {

error routine

Sending and Receiving Messages

Once the Oracle Tuxedo system establishes a conversational connection, communication
between the initiator and subordinate is accomplished using send and receive calls. The process
with control of the connection can send messages using the tpsend (3¢) function; the process
without control can receive messages using the tprecv (3c) function.

Note: Initialy, the originator (that is, the client) decides which process has control using the
TPSENDONLY Or TPRECVONLY flag value of the tpconnect () call. TPSENDONLY specifies
that control isbeing retained by the originator; TPrRECVONLY, that control is being passed
to the called service.

Sending Messages

To send amessage, usethe tpsend (3¢) function with the following signature:
int
tpsend(int cd, char *data, long len, long flags, long *revent)

Table 7-2 describes the arguments to the tpsend () function.

Programming an Oracle Tuxedo ATMI Application Using C 1-5

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

1-6

Table 7-2 tpsend() Function Arguments

Argument

Description

cd

Specifies the connection descriptor returned by the tpconnect ()
function identifying the connection over which the datais sent.

data

Pointer to adata buffer. When establishing the connection, you can send
data simultaneously by setting the da ta argument to point to a buffer
previously allocated by tpalloc (). The type and subtype of the
buffer must be types recognized by the service being called. Y ou can set
the value of data to NULL to specify that no dataisto be sent.

The conversational service being called receivesthe data and 1en
pointersviathe TPSVCINFO datastructure passed toitby main () when
the serviceisinvoked. (A regquest/response server receivesthe data and
Ien pointersinthe sameway.) For moreinformation onthe TPSVCINFO
data structure, refer to “Defining a Service” on page 5-9.

len

Length of the data buffer. If the buffer is self-defining (for example, an
FML buffer), you can set 1ento 0. If you do not specify avaluefor data,
this argument isignored.

revent

Pointer to event value set when an error is encountered (that is, when
tperrno (5) issetto TPEEVENT). For alist of valid event values, refer
to tpsend (3c¢) inthe Oracle Tuxedo ATMI C Function Reference.

flag

Specifies the flag settings. For alist of valid flag settings, refer to
tpsend (3c) inthe Oracle Tuxedo ATMI C Function Reference.

Inthe event of afailure, the tpsend () functionreturnsavalue of -1 and sets tperrno (5) tothe
appropriate error condition. For alist of possible error codes, refer to tpsend (3¢) inthe Oracle

Tuxedo ATMI C Function Reference.

Y ou are not required to pass control each time you issue the tpsend () function. In some

applications, theprocessauthorized toissue tpsend () callscan executeasmany callsasrequired

by the current task before turning over control to the other process. In other applications,
however, the logic of the program may require the same process to maintain control of the
connection throughout the life of the conversation.

Listing 7-2 shows how to invoke the tpsend () function.

Programming an Oracle Tuxedo ATMI Application Using C

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf5/rf5.html
../rf5/rf5.html

Listing 7-2

Sending and Receiving Messages

Sending Data in Conversational Mode

if (tpsend(cd,line, 0, TPRECVONLY, revent) == -1) {

(void)userlog (“%s: tpsend failed tperrno %d4d”,

argv[0], tperrno) ;

(void) tpabort (0) ;
(void) tpterm() ;
exit (1) ;

Receiving Messages

To receive data sent over an open connection, use the tprecv (3c) function with the following

signature:

int

tprecv(int cd,

char **data, long *len, long flags, long *revent)

The following table describes the arguments to the tprecv () function.

Argument

Description

cd

Specifies the connection descriptor. If a subordinate program issues the
call, the cd argument should be set to the value specified in the
TPSVCINFO structure for the program. If the originator program issues
the call, the cd argument should be set to the value returned by the
tpconnect () function.

data

Pointer to a data buffer. The da ta argument must point to a buffer
previoudly alocated by tpalloc (). The type and subtype of the
buffer must be types recognized by the service being called. Thisvalue
cannot be NULL; if itis, thecall failsand tperrno (5) issetto
TPEINVAL.

The conversational service being called receivesthe data and 1en
pointersviathe TPSVCINFO datastructure passed to it by main () when
the serviceisinvoked. (A request/response servicereceivesthe data and
len pointersinthe sameway.) For moreinformation on the TPSVCINFO
data structure, refer to “Defining a Service” on page 5-9.

Programming an Oracle Tuxedo ATMI Application Using C 1-1

../rf3c/rf3c.html
../rf5/rf5.html

Argument Description

len Length of the data buffer. If the buffer is self-defining (for example, an
FML buffer), you can set 1en to 0. Thisvalue cannot be NULL; if itis,
the call failsand tperrno (5) isset to TPEINVAL.

revent Pointer to event value set when an error is encountered (that is, when
tperrno isset to TPEEVENT). Refer to tprecv (3c) inthe Oracle
Tuxedo ATMI C Function Reference for alist of valid event values.

flag Specifies the flag settings. Refer to tprecv (3¢) inthe Oracle Tuxedo
ATMI C Function Reference for alist of valid flags.

Upon success, the *data argument points to the data received and 1en contains the size of the
buffer. If 1en isgreater than the total size of the buffer before the call to tprecv (), the buffer
size has changed and 1en indicatesthe new size. A value of O for the 1en argument indicates that
no data was received.

Listing 7-3 shows how to usethe tprecv () function.

Listing 7-3 Receiving Data in Conversation

if (tprecv(cd,line, len, TPNOCHANGE, revent) != -1) {
(void)userlog (“%s: tprecv failed tperrno %d revent %14”,
argv[0], tperrno, revent) ;
(void) tpabort (0) ;
(void) tpterm() ;
exit (1) ;

Ending a Conversation

A connection can be taken down gracefully and a conversation ended normally through:

e A successful call to tpreturn () in asimple conversation.

o A series of successful callsto tpreturn () in acomplex conversation based on a hierarchy
of connections.

1-8 Programming an Oracle Tuxedo ATMI Application Using C

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf5/rf5.html

Ending a Conversation

e Global transactions, as described in “Writing Global Transactions’ on page 9-1.

Note: The tpreturn () function isdescribed in detail in “Writing Request/Response Clients
and Servers’ on page 6-1.

The following sections describe two scenarios for gracefully terminating conversations that do
not include global transactionsin which the tpreturn () function is used.

The first example shows how to terminate a simple conversation between two components. The
second example illustrates a more complex scenario, with ahierarchical set of conversations.

If you end a conversation with connections still open, the system returns an error. In this case,
either tpcommit () oOr tpreturn () failsin adisorderly manner.

Example: Ending a Simple Conversation
Figure 7-2 shows a simple conversation between A and B that terminates gracefully.

Figure 7-2 Simple Conversation Terminated Gracefully

A EVENTS
svel(tpaveinfo)
itongnally aRECONLY connection®f

cdl=tpeonnect(swel", TPSENDONLY),

tpeend(cdl,data., TPRECVONLY), LLbv pCNDRONLY|

tprecv(tp aveinfo - od, &Ehuffer, . Lrevent):

i*ch dto a SENDONLY tion*f
tprecwicdl, d&buffer, &revent); TPEV SvosUuco Changecio a ronnechon

tpretum(TPSUCCESS buffer,),

The program flow is as follows:

1. A setsup the connection by calling tpconnect () with the TpsEnDONLY flag set, indicating
that process B is on the receiving end of the conversation.

2. A turnscontrol of the connection over to B by calling tpsend () with the TPrECVONLY flag
set, resulting in the generation of a TPEV_SENDONLY event.

3. Thenext call by B to tprecv () returnsavalue of -1, sets tperrno (5) to TPEEVENT, and
returns TPEV_SENDONLY iNn the revent argument, indicating that control has passed to B.

4. Bcalstpreturn () with rval settoTrsuccess. Thiscall generatesaTrev_svcsucc event
for A and gracefully brings down the connection.

Programming an Oracle Tuxedo ATMI Application Using C 1-9

../rf5/rf5.html

5. A cdlstprecv (), learns of the event, and recognizes that the conversation has been
terminated. Data can be received on thiscall to tprecv () even if theevent isset to
TPEV_SVCFATIL.

Note: Inthisexample, A can be either aclient or a server, but B must be a server.
Example: Ending a Hierarchical Conversation

Figure 7-3 shows a hierarchical conversation that terminates gracefully.

Figure 7-3 Connection Hierarchy

EVENTS EVENTS

A B c

:dl=tpconnect("svcB",. . TPRECVONLY); . .
P (2 sveBtpaveinfn) svcCitpsveintn)

cdl=tpconnect"sveC", TPSENDONLUY],
tpsend(cdl, dats, TPRECWVONLY),

TPEV_SENDONLY

tprecwitpeveinfo=cd, . &revent),
tpreturn TPSUCCES S, buffer, 3,
TPEV_SWIsUCC

tprecw(cd, &huffer, . &revent),
tpreturn(TPEUCCESS buffer,),
TPEV_ZMCEUCC

precvicd, &huffer, | Erevent),

In the preceding example, service B isamember of aconversation that hasinitiated aconnection
to asecond servicecalled C. In other words, there are two active connections; A-to-B and B-to-C.
If Bisincontrol of both connections, acall to tpreturn () hasthefollowing effect: the call fails,
aTPEV_SVCERR event is posted on all open connections, and the connections are closed in a
disorderly manner.

In order to terminate both connections normally, an application must execute the following
sequence:

1-10 Programming an Oracle Tuxedo ATMI Application Using C

Building Conversational Clients and Servers

1. Bcdlstpsend() withthe TprECVONLY flag set on the connection to C, transferring control
of the B-to-C connection to C.

2. Ccdlstpreturn() with rval setto TPSUCCESS, TPFATL, OF TPEXIT, as appropriate.

3. Bcanthencall tpreturn (), posting an event (either TPEV_svcsucc or TPEV_SVCFATL) for
A.

Note: Itislegal for aconversational service to make request/response callsif it needsto do so
to communicate with another service. Therefore, inthe preceding example, thecallsfrom
B to C may be executed using tpcall () Of tpacall () instead of tpconnect ().
Conversational services are not permitted to make callsto tpforward ().

Executing a Disorderly Disconnect

The only way in which adisorderly disconnect can be executed is through a call to the
tpdiscon (3c) function (which is equivalent to “pulling the plug” on a connection). This
function can be called only by the initiator of a conversation (that is, the client).

Note: Thisisnot the preferred method for bringing down a conversation. To bring down an
application gracefully, the subordinate (the server) should call the tpreturn () function.

Use the following signature to call the tpdiscon () function:
int
tpdiscon (int cd)

The cd argument specifies the connection descriptor returned by the tpconnect () function
when the connection is established.

The tpdiscon () function generatesaTrrv_bp1scontmm event for the service at the other end of
the connection, rendering the cq invaid. If atransaction isin progress, the system abortsit and
data may belost.

If tpdiscon () iscalled from aservicethat was not the originator of the connection identified by
cd, the function fails with an error code of TPEBADDESC.

For alist and descriptions of all event and error codes, refer to tpdiscon (3c) inthe Oracle
Tuxedo ATMI C Function Reference.

Building Conversational Clients and Servers

Use the following commands to build conversational clients and servers:

e buildclient () asdescribedin “Building Clients’ on page 4-8

Programming an Oracle Tuxedo ATMI Application Using C 1-11

../rf3c/rf3c.html
../rf3c/rf3c.html

e buildserver () asdescribed in “Building Servers’ on page 5-30

For conversational and request/response services, you cannot:
e Build both in the same server

e Assign the same name to both

Understanding Conversational Communication Events

The Oracle Tuxedo system recognizes five events in conversational communication. All five
events can be posted for tprecv () ; three can be posted for tpsend ().

Table 7-3 lists the events, the functions for which they are returned, and a detailed description of
each.

Table 7-3 Conversational Communication Events

Event Received By Description

TPEV_SENDONLY tprecv() Control of the connection has been passed; this process
can now call tpsend ().

TPEV_DISCONIMM tpsend (), The connection has been torn down and no further
tprecv(), communication is possible. The tpdiscon () function
tpreturn () posts this event in the originator of the connection, and

sendsit to all open connectionswhen tpreturn () is
called, as long as connections to subordinate services
remain open. Connections are closed in adisorderly
fashion. If atransaction exists, it is aborted.

TPEV_SVCERR tpsend () Received by the originator of the connection, usually
indicating that the subordinate program issued a
tpreturn () without having control of the connection.

tprecv() Received by the originator of the connection, indicating
that the subordinate programissued atpreturn () with
TPSUCCESS or TPFAIL and avalid data buffer, but an
error occurred that prevented the call from completing.

1-12 Programming an Oracle Tuxedo ATMI Application Using C

Understanding Conversational Communication Events

Tahle 7-3 Conversational Communication Events

Event Received By Description

TPEV_SVCFAIL tpsend () Received by the originator of the connection, indicating
that the subordinate program issued a tpreturn ()
without having control of the connection, and
tpreturn () wascaled with TPFAIL or TPEXIT and
no data.

tprecv() Received by the originator of the connection, indicating
that the subordinate service finished unsuccessfully
(tpreturn () wascaled with TPFAIL or TPEXIT).

TPEV_SVCSUCC tprecv() Received by the originator of the connection, indicating
that the subordinate service finished successfully; that is,
it caled tpreturn () with TPSUCCESS.

Programming an Oracle Tuxedo ATMI Application Using C 1-13

1-14 Programming an Oracle Tuxedo ATMI Application Using C

CHAPTERa

Writing Event-based Clients and
Servers

Thistopic includes the following sections:

e Overview of Events

Defining the Unsolicited Message Handler

Sending Unsolicited Messages

Checking for Unsolicited M essages

Subscribing to Events

Unsubscribing from Events

Posting Events

e Example of Event Subscription

Overview of Events

Event-based communication provides a method for an Oracle Tuxedo system processto be
notified when a specific situation (event) occurs.

The Oracle Tuxedo system supports two types of event-based communication:
e Unsolicited events

e Brokered events

Programming an Oracle Tuxedo ATMI Application Using C 8-1

8-2

Unsolicited Events

Unsolicited events are messages used to communicate with client programs that are not waiting
for and/or expecting a message.

Brokered Events

Brokered events enable a client and a server to communicate transparently with one another via
an “anonymous’ broker that receives and distributes messages. Such brokering is another
client/server communication paradigm that is fundamental to the Oracle Tuxedo system.

The EventBroker isan Oracle Tuxedo subsystem that receives and filters event posting messages,
and distributes them to subscribers. A poster is an Oracle Tuxedo system process that detects
when a specific event has occurred and reports (posts) it to the EventBroker. A subscriber isan
Oracle Tuxedo system process with a standing request to be notified whenever a specific event
has been posted.

The Oracle Tuxedo system does not impose afixed ratio of service requestersto service
providers; an arbitrary number of posters can post a message buffer for an arbitrary number of
subscribers. The posters simply post events, without knowing which processes receive the
information or how the information is handled. Subscribers are notified of specified events,
without knowing who posted the information. In this way, the EventBroker provides complete
location transparency.

Typically, EventBroker applications are designed to handle exception events. An application
designer must decide which events in the application constitute exception events and need to be
monitored. In a banking application, for example, it might be useful to post an event whenever
an unusually large amount of money iswithdrawn, but it would not be particularly useful to post
an event for every withdrawal transaction. In addition, not all users would need to subscribe to
that event; perhaps only the branch manager would need to be notified.

Notification Actions

The EventBroker may be configured such that whenever an event is posted, the EventBroker
invokes one or more notification actionsfor clientsand/or serversthat have subscribed. Table 8-1
lists the types of notification actions that the EventBroker can take.

Programming an Oracle Tuxedo ATMI Application Using C

Overview of Events

Tahle 8-1 EventBroker Notification Actions

Notification Action Description

Unsolicited notification Clients may receive event notification messagesin their unsolicited

message message handling routine, just asif they were sent by the tpnotify ()
function.

Service call Servers may receive event notification messages as input to service

routines, just asif they were sent by the tpacall () function.

Reliable queue Event notification messages may be stored in an Oracle Tuxedo system
reliable queue, using the tpenqueue (3¢) function. Event notification
buffers are stored until requests for buffer contents areissued. An Oracle
Tuxedo system client or server process may call the tpdequeue (3¢)
function to retrieve these notification buffers, or alternately
TMQFORWARD (5) may be configured to automatically dispatch an Oracle
Tuxedo system service routine that retrieves a notification buffer.

For more information on /Q, see Using the ATMI /Q Component.

In addition, the application administrator may create an EvENT_MIB (5) entry (by using the
Oracle Tuxedo administrative API) that performs the following natification actions:

e Invokes a system command

o Writes amessage to the system’slog file on disk
Note: Only the Oracle Tuxedo application administrator isallowed to create an EVENT_MIB (5)
entry.

For information on the EVENT_MIB (5), refer to the File Formats, Data Descriptions, MIBs, and
System Processes Reference.

EventBroker Servers

TMUSREVT iS the Oracle Tuxedo system-supplied server that acts as an EventBroker for user
events. TMUSREVT Processes event report message buffers, and then filters and distributes them.
The Oracle Tuxedo application administrator must boot one or more of these serversto activate
event brokering.

TMsYSEVT iSthe Oracle Tuxedo system-supplied server that acts as an EventBroker for
system-defined events. TMsysEvT and TMUSREVT are Similar, but separate servers are provided to
alow the application administrator the ability to have different replication strategies for

Programming an Oracle Tuxedo ATMI Application Using C 8-3

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html

8-4

processing notifications of these two types of events. Refer to Setting Up an Oracle Tuxedo
Application for additional information.

System-defined Events

The Oracle Tuxedo system itself detects and posts certain predefined events related to system
warnings and failures. These tasks are performed by the EventBroker. For example,
system-defined events include configuration changes, state changes, connection failures, and
machine partitioning. For acomplete list of system-defined events detected by the EventBroker,
See EVENTS (5) in the File Formats, Data Descriptions, MIBs, and System Processes Reference.

System-defined events are defined in advance by the Oracle Tuxedo system code and do not
require posting. The name of a system-defined event, unlike that of an application-defined event,

alwaysbeginswith adot (“.”). Names of application-defined events may not begin with aleading
dot.

Clients and servers can subscribe to system-defined events. These events, however, should be
used mainly by application administrators, not by every client in the application.

When incorporating the EventBroker into your application, remember that it is not intended to
provide a mechanism for high-volume distribution to many subscribers. Do not attempt to post
an event for every activity that occurs, and do not expect all clients and serversto subscribe. If
you overload the EventBroker, system performance may be adversely affected and notifications
may be dropped. To minimize the possibility of overload, the application administrator should
carefully tune the operating system IPC resources, as explained in Installing the Oracle Tuxedo
System.

Programming Interface for the EventBroker

EventBroker programming interfacesare availablefor al Oracle Tuxedo system server and client
processes, including Workstation, in both C and COBOL.

The programmer’sjob is to code the following sequence:
1. A client or server posts a buffer to an application-defined event name.

2. The posted buffer istransmitted to any number of processesthat have subscribed to the event.

Subscribers may be notified in avariety of ways (as discussed in “Notification Actions’), and
events may be filtered. Notification and filtering are configured through the programming
interface, as well as through the Oracle Tuxedo system administrative API.

Programming an Oracle Tuxedo ATMI Application Using C

../rf5/rf5.html

Defining the Unsolicited Message Handler

Defining the Unsolicited Message Handler

To define the unsolicited message handler function, use the tpsetunsol (3¢) function with the
following signature:

int
tpsetunsol (*myfunc)

If you are running on Windows-based operating systems you must declare unsolicited message
handler functions as:

void _TMDLLENTRY CustomerUnsolFunc (char *data, long len, long flags)

The _tMpLLENTRY macro is required for Windows-based operating systems to obtain the proper
calling conventions between the Tuxedo libraries and your code.

On Unix systems, the _TMDLLENTRY Macro is not required because it expands to the null string.

Table 8-2 describes the single argument that can be passed to the tpsetunsol () function.

Table 8-2 tpsetunsol() Function Argument

Argument Description

myfunc Pointer to afunction that conforms to the prototype of a call-back
function. In order to conform, the function must accept the following
three parameters:

* data—pointsto the typed buffer that contains the unsolicited
message

* len—Iength of the buffer

e flags—currently not used

When aclient receives an unsolicited notification, the system dispatches the call-back function
with the message. To minimizetask disruption, you should code the unsolicited message handler
function to perform only minimal processing tasks, so it can return quickly to the waiting process.

Sending Unsolicited Messages

The Oracle Tuxedo system allows unsolicited messages to be sent to client processes without
disturbing the processing of request/response calls or conversational communications.

Unsolicited messages can be sent to client processes by name, using tpbroadcast (3c), Or by
anidentifier received with apreviously processed message, using tpnotify (3c). Messages sent

Programming an Oracle Tuxedo ATMI Application Using C 8-5

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

via tpbroadcast () can originate either in a service or in another client. Messages sent via
tpnotify () can originate only in aservice.

Broadcasting Messages by Name

The tpbroadcast (3¢) function allows a message to be sent to registered clients of the
application. It can be called by a service or another client. Registered clients are those that have
successfully made acall to tpinit () and have not yet made acall to tpterm().

Use the following signature to call the tpbroadcast () function:

int

tpbroadcast (char *1Imid, char *usrname, char *cltname, char *data, long len, long

flags)

Table 8-3 describes the arguments to the tpbroadcast () function.

Table 8-3 tpbroadcast() Function Arguments

Argument Description

Imid Pointer to the logical machineidentifier for the client. A value of NULL acts
as awildcard, so that a message can be directed to groups of clients.

usrname Pointer to the username of the client process, if one exists. A value of NULL
acts as awildcard, so that a message can be directed to groups of clients.

cltname Pointer to the client name of the client process, if one exists. A value of
NULL acts asawildcard, so that a message can be directed to groups of
clients.

data Pointer to the content of a message.

len Size of the message buffer. If data pointsto aself-defining buffer type, for
example, FML, then Ien can be set to 0.

flags Flag options. Refer to tpbroadcast (3¢) inthe Oracle Tuxedo ATMI C

Function Reference for information on available flags.

Listing 8-1illustratesacall to tpbroadcast () for which al clientsare targeted. The message to
be sent is contained in a sTRING buffer.

8-6 Programming an Oracle Tuxedo ATMI Application Using C

../rf3c/rf3c.html
../rf3c/rf3c.html

Sending Unsolicited Messages

Listing 8-1 Using tpbroadcast()

char *strbuf;

if ((strbuf = tpalloc("STRING", NULL, 0)) == NULL) {
error routine

}

(void) strcpy(strbuf, "hello, world");

if (tpbroadcast (NULL, NULL, NULL, strbuf, 0, TPSIGRSTRT) == -1)

error routine

Broadcasting Messages hy Identifier

The tpnotify (3c) functionis used to broadcast a message using an identifier received with a
previously processed message. It can be called only from a service.

Use the following signature to call the tpnotify () function:
int

tpnotify (CLIENTID *clientid, char *data, long len, long flags)

Table 8-4 describes the arguments to the tpnotify () function.

Table 8-4 tpnotify() Function Arguments

Argument Description

clientid Pointer to aCLIENTID structurethat is saved from the TPSVCINFO structurethat
accompanied the request to this service.

data Pointer to the content of the message.

len Size of the message buffer. If data pointsto a self-defining buffer type, for
example, FML, then Ien can be set to 0.

flags Flag options. Refer to tpnotify (3c) inthe Oracle Tuxedo ATMI C Function
Reference for information on available flags.

Programming an Oracle Tuxedo ATMI Application Using C 8-7

../rf3c/rf3c.html
../rf3c/rf3c.html

Checking for Unsolicited Messages

To check for unsolicited messages while running the client in “dip-in” notification mode, use the
tpchkunsol (3c) function with the following signature:

int

tpchkunsol ()

The function takes no arguments.

If any messages are pending, the system invokes the unsolicited message handling function that
was specified using tpsetunsol (). Upon completion, the function returns either the number of
unsolicited messages that were processed or -1 on error.

If you issue this function when the client is running in sTenar-based, thread-based notification
mode, or isignoring unsolicited messages, the function has no impact and returnsimmediately.

Subscribing to Events

The tpsubscribe (3¢) function enables an Oracle Tuxedo system ATMI client or server to
subscribe to an event.

A subscriber can be notified through an unsolicited notification message, aservicecall, areliable
gueue, or other notification methods configured by the application administrator. (For
information about configuring aternative notification methods, refer to Setting Up an Oracle
Tuxedo Application.)

Use the following signature to call the tpsubscribe () function:

long handle
tpsubscribe (char *eventexpr, char *filter, TPEVCTL *ctl, long flags)

8-8

Table 8-5 describes the arguments to the tpsubscribe () function.

Programming an Oracle Tuxedo ATMI Application Using C

../rf3c/rf3c.html
../rf3c/rf3c.html

Subscribing to Events

Table 8-5 tpsubscribe() Function Arguments

Argument

Description

eventexpr

Pointer to a set of one or more events to which a process can subscribe. Consists
of aNULL-terminated string of up to 255 characters containing aregular
expression. Regular expressionsare of theform specifiedin tpsubscribe (3¢),
as described in the Oracle Tuxedo ATMI C Function Reference). For example, if
eventexpris set to:

e "\\..*"—thecallerissubscribing to al system-defined events.

e "\\.SysServer.*"—thecallerissubscribing to all system-defined events
related to servers.

e "[A-7z].*"—thecalerissubscribing to all user events starting with any
uppercase letter between A and Z.

e ".*(ERR|err) .*"—thecalerissubscribing to all user eventswith names
that contain either err or ERR, such asthe account_error and
ERROR_STATE events, respectively.

filter

Pointer to a string containing a Boolean filter rule that must be evaluated
successfully beforethe EventBroker poststhe event. Upon receiving an event to be
posted, the EventBroker appliesthefilter rule, if one exists, to the posted event’s
data. If the data passes the filter rule, the EventBroker invokes the notification
method specified; otherwise, the EventBroker ignoresthe notification method. The
caller can subscribe to the same event multiple times with different filter rules.

By using the event-filtering capability, subscribers can discriminate among the
events about which they are notified. For example, a poster can post an event for
withdrawals greater than $10,000, but a subscriber may want to specify a higher
threshold for being notified, such as $50,000. Or, a subscriber may want to be
notified of large withdrawals made by specific customers.

Filter rules are specific to the typed buffers to which they are applied. For more

information on filter rules, refer to tpsubscribe (3¢) inthe Oracle Tuxedo
ATMI C Function Reference.

Programming an Oracle Tuxedo ATMI Application Using C 8-9

../rf3c/rf3c.html
../rf3c/rf3c.html

8-10

Table 8-5 tpsubscribe() Function Arguments

Argument Description
ctl Pointer to aflag for controlling how a subscriber is notified of an event. Valid
values include:

e NULL—sends unsolicited messages. Refer to “Notification via Unsolicited
Message” on page 8-10 for more information.

* Pointer to avalid TPEVCTL structure—sends information based on the
TPEVCTL structure. Refer to“ Notification viaService Call or Reliable Queue’
on page 8-10 for more information.

flags Flag options. For more information on available flag options, refer to
tpsubscribe (3¢) inthe Oracle Tuxedo ATMI C Function Reference.

Y ou can subscribe to both system- and application-defined events using the tpsubscribe ()
function.

For purposes of subscriptions (and for Mt updates), service routines executed in an Oracle
Tuxedo system server process are considered to be trusted code.

Notification via Unsolicited Message

If a subscriber isan Oracle Tuxedo system client process and ct1 isNULL, when the event to
which the client has subscribed is posted, the EventBroker sends an unsolicited message to the
subscriber as follows. When an event name is posted that eval uates successfully against
eventexpr, the EventBroker tests the posted data against the associated filter rule. If the data
passes the filter rule (or if there is no filter rule for the event), then the subscriber receives an
unsolicited notification along with any data posted with the event.

In order to receive unsolicited notifications, the client must register an unsolicited message
handling routine using the tpsetunsol () function.

ATMI clients receiving event notification via unsolicited messages should remove their
subscriptions from the EventBroker list of active subscriptions before exiting. Thisis done using
the tpunsubscribe () function.

Notification via Service Call or Reliable Queue

Event notification via service call enables you to program actions that can be taken in response
to specific conditionsin your application without human intervention. Event notification via

Programming an Oracle Tuxedo ATMI Application Using C

../rf3c/rf3c.html

Unsubscribing from Events

reliable queue ensures that event datais not lost. It also provides the subscriber the flexibility of
retrieving the event data at any time.

If the subscriber (either aclient or a server process) wants event notifications sent to service
routines or to stable-storage queues, then the ct1 parameter of tpsubscribe () must point to a
valid TPEVCTL Structure.

The TrEVCTL Structure contains the following elements:

long flags;
char namell[127];
char name2[1271];
TPQCTL gctl;

Table 8-6 summarizes the TpEvCTL typed buffer data structure.

Tahle 8-6 TPEVCTL Typed Buffer Format

Field Description

flags Flag options. For more information on flags, refer to
tpsubscribe (3c) inthe Oracle Tuxedo ATMI C Function
Reference.

namel Character string of 127 characters or fewer.

name2 Character string of 127 characters or fewer.

gctl TPQCTL structure. For more information, refer to
tpsubscribe (3c¢) inthe Oracle Tuxedo ATMI C Function
Reference.

Unsubscribing from Events

The tpunsubscribe (3c) function enables an Oracle Tuxedo system ATMI client or server to
unsubscribe from an event.

Use the following signature to call the tpunsubscribe () function:
int
tpunsubscribe (long subscription, long flags)

Table 8-7 describes the arguments to the tpunsubscribe () function.

Programming an Oracle Tuxedo ATMI Application Using C 8-11

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

Table 8-7 tpunsubscribe() Function Arguments

Argument Description

subscription Subscription handle returned by acall to tpsubscribe ().

flags Flag options. For more information on available flag options, refer to
tpunsubscribe (3c¢) inthe Oracle Tuxedo ATMI C Function
Reference.

Posting Events

The tppost (3c) function enables an Oracle Tuxedo ATMI client or server to post an event.
Use the following signature to call the tppost () function:

tppost (char *eventname, char *data, long len, long flags)

Table 8-8 describes the arguments to the tppost () function.

Table 8-8 tppost() Function Arguments

Argument Description

eventname Pointer to an event name containing up to 31 characters plus NULL. The first
character cannot be adot (“."”) because the dot is reserved as thefirst character in
names of Oracle Tuxedo system-defined events. When defining event names, keep
in mind that subscribers can use wildcard capabilitiesto subscribeto multiple events
with asingle function call. Using the same prefix for a category of related event
names can be helpful.

data Pointer to a buffer previously alocated using the tpalloc () function.

len Size of data buffer that should be posted with the event. If data points to a buffer
of atypethat does not require alength to be specified (for example, an FML fielded
buffer) or if you setitto NULL, the Ien argument isignored and the event is posted
with no data.

flags Flag options. For moreinformation on available flag options, refer to tppost (3¢)
in the Oracle Tuxedo ATMI C Function Reference.

Listing 8-2 illustrates an event posting taken from the Oracle Tuxedo system sample application
bankapp. Thisexampleis part of the wrTHDRAWAL Service. One of the functions of the

8-12 Programming an Oracle Tuxedo ATMI Application Using C

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

Posting Events

WITHDRAWAL Service is checking for withdrawals greater than $10,000 and posting an event
caled BANK_TLR_WITHDRAWAL.

Listing 8-2 Posting an Event with tppost()

/* Event logic related */
static float evt_thresh = 10000.00 ; /* default for event threshold */
static char emsg[200] ; /* used by event posting logic */

/* Post a BANK_TLR_WITHDRAWAL event ? */
if (amt < evt_thresh) {

/* no event to post */

tpreturn (TPSUCCESS, 0, transb->data , 0L, 0);
}

/* prepare to post the event */

if ((Fchg (transf, EVENT_NAME, 0, "BANK_TLR_WITHDRAWAL", (FLDLEN)OQ) == -1) ||
(Fchg (transf, EVENT TIME, 0, gettime(), (FLDLEN)O0) == -1) ||
(Fchg (transf, AMOUNT, 0, (char *)&amt, (FLDLEN)O) == -1)) {
(void) sprintf (emsg, "Fchg failed for event fields: %s",
Fstrerror (Ferror)) ;
}
/* post the event */
else if (tppost ("BANK_TLR_WITHDRAWAL", /* event name */
(char *)transf, /* data */
0L, /* len */
TPNOTRAN | TPSIGRSTRT) == -1) {
/* If event broker is not reachable, ignore the error */
if (tperrno != TPENOENT)
(void) sprintf (emsg, "tppost failed: %s", tpstrerror (tperrno));

This example simply posts the event to the EventBroker to indicate a noteworthy occurrencein
the application. Subscription to the event by interested clients, who can then take action as
required, is done independently.

Programming an Oracle Tuxedo ATMI Application Using C 8-13

Example of Event Subscription

The following example illustrates a portion of a bankapp application server that subscribes to
BANK_TLR_.* events, which includes the BANK_TLR_WITHDRAWAL event shown in the previous
example, as well as any other event names beginning with sank_tr.r_. When a matching event
is posted, the application notifies the subscriber viaa call to a service named waTcHDOG.

Listing 8-3 Subscribing to an Event with tpsubscribe()

/* Event Subscription handles */
static long sub_ev_largeamt = 0L ;

/* Preset default for option 'w' - watchdog threshold */
(void) strcpy (amt_expr, "AMOUNT > 10000.00")

/'k
* Subscribe to the events generated
* when a "large" amount is transacted.
*/
evctl.flags = TPEVSERVICE ;
(void) strcpy (evctl.namel, "WATCHDOG")
/* Subscribe */
sub_ev_largeamt = tpsubscribe ("BANK_TLR_.*",amt_expr, &evctl, TPSIGRSTRT) ;
if (sub_ev_largeamt == -1L) {
(void)userlog ("ERROR: tpsubscribe for event BANK_TLR_.* failed: %s",
tpstrerror (tperrno)) ;
return -1 ;

{

/* Unsubscribe to the subscribed events */

if (tpunsubscribe (sub_ev_largeamt, TPSIGRSTRT) == -1)
(void)userlog ("ERROR: tpunsubscribe to event BANK_TLR_.* failed: %s",
tpstrerror (tperrno)) ;
return ;

8-14 Programming an Oracle Tuxedo ATMI Application Using C

Example of Event Subscription

/'k

* Service called when a BANK_TLR_.* event is posted.
*/

void

#if defined(__STDC__) || defined(__cplusplus)

WATCHDOG (TPSVCINFO *transb)

#else

WATCHDOG (transb)

TPSVCINFO *transb;

#endif

{

FBFR *transf; /* fielded buffer of decoded message */
/* Set pointr to TPSVCINFO data buffer */

transf = (FBFR *)transb->data;

/* Print the log entry to stdout */

(void) fprintf (stdout, "%20s|%28s|%81d|%10.2f\n",
Fvals (transf, EVENT NAME, O0),

Fvals (transf, EVENT_TIME, 0),

Fvall (transf, ACCOUNT_ID, O0),

*((float *)CFfind (transf, AMOUNT, 0, NULL, FLD_FLOAT)));
/* No data should be returned by the event subscriber's svc routine */
tpreturn (TPSUCCESS, 0,NULL, 0L, 0);

}

Programming an Oracle Tuxedo ATMI Application Using C 8-15

8-16 Programming an Oracle Tuxedo ATMI Application Using C

Writing Global Transactions

Thistopic includes the following sections:

e What Isa Global Transaction?

Starting the Transaction

Suspending and Resuming a Transaction

Terminating the Transaction

Implicitly Defining a Global Transaction

Defining Global Transactions for an XA-Compliant Server Group

Testing Whether a Transaction Has Started

What Is a Global Transaction?

A global transaction is a mechanism that allows a set of programming tasks, potentialy using
more than one resource manager and potentially executing on multiple servers, to be treated as
onelogical unit.

Once aprocessisin transaction mode, any service requests made to servers may be processed on
behalf of the current transaction. The servicesthat are called and join the transaction are referred
to astransaction participants. The value returned by a participant may affect the outcome of the
transaction.

Programming an Oracle Tuxedo ATMI Application Using C 9-1

A global transaction may be composed of several local transactions, each accessing the same
resource manager. The resource manager is responsible for performing concurrency control and
atomicity of updates. A given local transaction may be either successful or unsuccessful in
completing its access; it cannot be partially successful.

A maximum of 16 server groups can participate in a single transaction.

The Oracle Tuxedo system manages a global transaction in conjunction with the participating
resource managers and treats it as a specific sequence of operationsthat is characterized by
atomicity, consistency, isolation, and durability. In other words, aglobal transaction is alogical
unit of work in which:

e All portions either succeed or have no effect.

e Operations are performed that correctly transform resources from one consistent state to
another.

e Intermediate results are not accessible to other transactions, although some processesin a
transaction may access the data associated with another process.

e Once a seguence is complete, its results cannot be altered by any kind of failure.

The Oracle Tuxedo system tracks the status of each global transaction and determines whether it
should be committed or rolled back.

Note: If atransaction includes callsto tpcall (), tpacall (), Or tpconnect () for which the
flags parameter is explicitly set to TPNOTRAN, the operations performed by the called
service do not become part of that transaction. In this case, the calling process does not
invitethe called serviceto be a participant in the current transaction. Asaresult, services
performed by the called process are not affected by the outcome of the current
transaction. If TenoTRAN isset for acall that is directed to aservicein an XA-compliant
server group, the call may be executed outside of transaction mode or in a separate
transaction, depending on how the service is configured and coded. For more
information, refer to “Implicitly Defining a Global Transaction” on page 9-15.

Starting the Transaction

9-2

To start aglobal transaction, use the tpbegin (3¢) function with the following signature:
int
tpbegin (unsigned long timeout, long flags)

Table 9-1 describes the arguments to the tpbegin () function

Programming an Oracle Tuxedo ATMI Application Using C

../rf3c/rf3c.html

Starting the Transaction

Table 9-1 tpbegin() Function Arguments

Field

Description

timeout

Specifies the amount of time, in seconds, a transaction can execute before
timing out. Y ou can set this value to the maximum number of seconds allowed
by the system, by specifying avaue of 0. In other words, you can set
timeout to the maximum value for an unsigned Long as defined by the
system.

The use of 0 or an unrealistically large value for the t imeout parameter
delays system detection and reporting of errors. The system usesthe t imeout
parameter to ensure that responses to service requests are sent within a
reasonabletime, and to terminate transactions that encounter problems such as
network failures before executing a commit.

For atransaction in which a person is waiting for aresponse, you should set
this parameter to asmall value: if possible, less than 30 seconds.

In aproduction system, you should set t imeout to avalue large enough to
accommodate expected delays due to system load and database contention. A
small multiple of the expected average response time is often an appropriate
choice.

Note: Thevalue assigned to the timeout parameter should be consistent
with that of the SCANUNIT parameter set by the Oracle Tuxedo
application administrator in the configuration file. The SCANUNIT
parameter specifies the frequency with which the system checks, or
scans, for timed-out transactions and blocked callsin service requests.
The value of this parameter represents the interval of time between
these periodic scans, referred to as the scanning unit.

Y ou should set the t imeout parameter to avaluethat is greater than
thescanning unit. If you set the t imeou t parameter toavalue smaller
than the scanning unit, there will be adiscrepancy between thetimeat
which atransaction times out and the time at which thistimeout is
discovered by the system. The default value for SCANUNIT is 10
seconds. Y ou may need to discuss the setting of the timeout
parameter with your application administrator to make sure the value
you assign to the t imeout parameter is compatible with the values
assigned to your system parameters.

flags

Currently undefined; must be set to 0.

Programming an Oracle Tuxedo ATMI Application Using C

9-3

Any process may call tpbegin () unlessthe processisalready in transaction mode or is waiting
for outstanding replies. If tpbegin () iscalledintransaction mode, the call failsdueto aprotocol
error and tperrno (5) iSset to TpEPROTO. If the processis in transaction mode, the transaction
is unaffected by the failure.

Listing 9-1 provides ahigh-level view of how aglobal transaction is defined.

Listing 9-1 Defining a Global Transaction - High-level View

if (tpbegin(timeout, flags) == -1)
error routine

program statements

if (tpcommit (flags) ==

error routine

Listing 9-2 provides a more detailed view of how to define atransaction. This exampleis
excerpted from audit. c, aclient program included in bankapp, the sample banking application
delivered with the Oracle Tuxedo system.

Listing 9-2 Defining a Global Transaction - Detailed View

#include <stdio.h> /*
#include <string.h> /*
#include <atmi.h> /*
#include <Uunix.h> /*
#include <userlog.h> /*
#include "bank.h" /*
#include "aud.h" /*
#define INVI 0 /*
#define ACCT 1 /*

#define TELL 2 /*
static
static
static
static

int sum_bal _ ((char *,
long sitelist[NSITE] =
char pgmname [STATLEN] ;

9-4

char result_str [STATLEN] ;

UNIX */

UNIX */

BEA Tuxedo System */
BEA Tuxedo System */
BEA Tuxedo System */
BANKING #defines */
BANKING view defines */

account inquiry */
account inquiry */
teller inquiry */

char *));

SITEREP; /* list of machines to audit */
/* program name = argv[0] */

/* string to hold results of query */

Programming an Oracle Tuxedo ATMI Application Using C

../rf5/rf5.html

Starting the Transaction

main (argc, argv)
int argc;
char *argvl[];

{
int aud_type=INVI; /* audit type -- invalid unless specified */
int clarg; /* command line arg index from optind */
int c; /* Option character */
int cflgs=0; /* Commit flags, currently unused */
int aflgs=0; /* Abort flags, currently unused */
int nbl=0; /* count of branch list entries */
char svc_name [NAMELEN] ; /* service name */
char hdr_type [NAMELEN] ; /* heading to appear on output */
int retc; /* return value of sum_bal() */
struct aud *audv; /* pointer to audit buf struct */
int audrl=0; /* audit return length */
long g branchid; /* branch_id to query */

/* Get Command Line Options and Set Variables */

/* Join application */

if (tpinit((TPINIT *) NULL) == -1) {
(void)userlog("%s: failed to join application\n", pgmname) ;
exit (1) ;

}

/* Start global transaction */

if (tpbegin (30, 0) == -1) {
(void)userlog("%s: failed to begin transaction\n", pgmname) ;
(void) tpterm() ;
exit (1) ;

}

if (nbl == 0) { /* no branch id specified so do a global sum */
retc = sum_bal (svc_name, hdr_type); /* sum_bal routine not shown */

} else {
/* Create buffer and set data pointer */
if ((audv = (struct aud *)tpalloc("VIEW", "aud", sizeof (struct aud)))
== (struct aud *)NULL) {
(void)userlog("audit: unable to allocate space for VIEW\n");
exit (1) ;
}

/* Prepare aud structure */

Programming an Oracle Tuxedo ATMI Application Using C 9-5

audv->b_id = g branchid;
audv->balance = 0.0;
audv->ermsg[0] = '\0';

/* Do tpcall */

if (tpcall (svc_name, (char *)audv, sizeof (struct aud),
(char **)audv, (long *)audrl,0) == -1){
(void) fprintf (stderr, "%s service failed\n%s: %s\n",
svc_name, svc_name, audv->ermsg) ;

retc = -1;
}else {
(void) sprintf (result_str, "Branch %1d %s balance is $%.2f\n",
audv->b_id, hdr_type, audv->balance) ;
}

tpfree((char *)audv) ;

}

/* Commit global transaction */

if (retc < 0) /* sum_bal failed so abort */
(void) tpabort(aflgs);
else {
if (tpcommit (cflgs) == -1) {
(void)userlog("%s: failed to commit transaction\n", pgmname) ;
(void) tpterm() ;
exit (1) ;
}
/*print out results only when transaction has committed successfully*/
(void)printf ("%s",result_str);
}

/* Leave application */

if (tpterm() == -1) {
(void)userlog("%s: failed to leave application\n", pgmname) ;
exit (1) ;

If atransaction times out, acall to tpcommit () causesthe transaction to be aborted. Asaresult,
tpcommit () failsand sets tperrno (5) tO TPEABORT.

9-6 Programming an Oracle Tuxedo ATMI Application Using C

../rf5/rf5.html

Suspending and Resuming a Transaction

Listing 9-3 shows how to test for a transaction timeout. Note that the value of timeout isset to
30 seconds.

Listing 9-3 Testing for Transaction Timeout

if (tpbegin (30, 0) == -1) {
(void)userlog("%s: failed to begin transaction\n", argvI[0]);
tpterm() ;
exit (1) ;

communication calls

if (tperrno == TPETIME) {
if (tpabort (0) == -1) {
check for errors;
}
else if (tpcommit(0) == -1){

check for errors;

Note: When aprocessisin transaction mode and makes a communication call with f1ags set
to TPNOTRAN, it prohibits the called service from becoming a participant in the current
transaction. Whether the service request succeeds or fails has no impact on the outcome
of the transaction. The transaction can still timeout while waiting for areply that is due
from aservice, whether it is part of the transaction or not. Refer to “Managing Errors’ on
page 11-1 for more information on the effects of the TpNoTRAN flag.

Suspending and Resuming a Transaction

At times, it may be desirableto temporarily remove a process from anincompl ete transaction and
alow it to initiate a different transaction by calling tpbegin () Or tpresume (). For example,
suppose a server wantsto log a request to the database central event log, but does not want the
logging activity to be rolled back if the transaction aborts.

Programming an Oracle Tuxedo ATMI Application Using C 9-7

9-8

The Oracle Tuxedo system provides two functions that allow aclient or server to suspend and
resume a transaction in such situations: tpsuspend (3c) and tpresume (3c) . Using these
functions, a process can:

1. Temporarily suspend the current transaction by calling tpsuspend ().

2. Start aseparate transaction. (In the preceding example, the server writes an entry to the event
log.)

3. Commit the transaction started in step 2.

4. Resumethe original transaction by calling tpresume ().

Suspending a Transaction

Usethe tpsuspend (3¢) function to suspend the current transaction. Use the following signature
to call the tpsuspend () function:

int
tpsuspend (TPTRANID *t_id,long flags)

Table 9-2 describes the arguments to the tpsuspend () function.

Table 9-2 tpsuspend() Function Arguments

Field Description
*t_id Pointer to the transaction identifier.
flags Currently not used. Reserved for future use.

Y ou cannot suspend a transaction with outstanding asynchronous events. When atransaction is
suspended, all modifications previously performed are preserved in a pending state until the
transaction is committed, aborted, or timed out.

Resuming a Transaction

To resume the current transaction, usethe tpresume (3¢) function with the following signature.
int

tpresume (TPTRANID *t_id,long flags)

Table 9-3 describes the arguments to the tpresume () function:

Programming an Oracle Tuxedo ATMI Application Using C

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

Suspending and Resuming a Transaction

Table 9-3 tpresume() Function Arguments

Field Description
*t_id Pointer to the transaction identifier.
flags Currently not used. Reserved for future use.

It is possible to resume atransaction from a process other than the one that suspended it, subject
to certain restrictions. For alist of theserestrictions, refer to tpsuspend (3¢) and tpresume (3¢)
in the Oracle Tuxedo ATMI C Function Reference.

Example: Suspending and Resuming a Transaction

Listing 9-4 shows how to suspend one transaction, start and commit a second transaction, and
resume the initial transaction. For the sake of simplicity, error checking code has been omitted.

Listing 9-4 Suspending and Resuming a Transaction

DEBIT (SVCINFO *s)

{
TPTRANID t;
tpsuspend (&t, TPNOFLAGS); /* suspend invoking transaction*/

tpbegin (30, TPNOFLAGS); /* begin separate transaction */

Perform work in the separate transaction.

tpcommit (TPNOFLAGS) ; /* commit separate transaction */
tpresume (&t , TPNOFLAGS) ; /* resume invoking transaction*/
tpreturn(. . .);

Programming an Oracle Tuxedo ATMI Application Using C 9-9

../rf3c/rf3c.html
../rf3c/rf3c.html

Terminating the Transaction

9-10

To end aglobal transaction, call tpcommit (3c) to commit the current transaction, or
tpabort (3c) to abort the transaction and roll back all operations.

Note: If tpcall (), tpacall(), Of tpconnect () iscalled by aprocess that has explicitly set
the f1ags argument to TPNOTRAN, the operations performed by the called service do not
become part of the current transaction. In other words, when you call the tpabort ()
function, the operations performed by these services are not rolled back.

Committing the Current Transaction

The tpcommit (3¢) function commits the current transaction. When tpcommit () returns
successfully, all changesto resources as aresult of the current transaction become permanent.

Use the following signature to call the tpcommit () function:
int
tpcommit (long flags)

Althoughthe f1ags argument isnot used currently, you must set it to zero to ensure compatibility
with future releases.

Prerequisites for a Transaction Commit
For tpcommit () to succeed, the following conditions must be true;

e The calling process must be the same one that initiated the transaction with a call to
tpbegin ().

e The calling process must have no transactional replies (calls made without the TPNOTRAN
flag) outstanding.

e The transaction must not be in arollback-only state and must not be timed out.

If the first condition isfalse, the call failsand tperrno (5) isset to TPEPROTO, indicating a
protocol error. If the second or third condition isfalse, the call fails and tperrno () issetto
TPEABORT, indicating that the transaction has been rolled back. If tpcommit () iscalled by the
initiator with outstanding transaction replies, the transaction is aborted and those reply
descriptors associated with the transaction becomeinvalid. If a participant calls tpcommit () or
tpabort (), the transaction is unaffected.

A transaction is placed in arollback-only state if any service call returns TpFATL or indicates a
serviceerror. If tpcommit () iscaled for arollback-only transaction, the function cancels the

Programming an Oracle Tuxedo ATMI Application Using C

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf5/rf5.html

Terminating the Transaction

transaction, returns -1, and sets tperrno (5) t0 TPEABORT. The results are the same if
tpcommit () iscalled for atransaction that has already timed out: tpcommit () returns-1 and
SetStperrno () t0 TPEABORT. Refer to“Managing Errors’ on page 11-1 for moreinformation on
transaction errors.

Two-phase Commit Protocol

When the tpcommit () function iscalled, it initiates the two-phase commit protocol. This
protocol, as the name suggests, consists of two steps:

1. Each participating resource manager indicates a readiness to commit.

2. Theinitiator of the transaction gives permission to commit to each participating resource
manager.

The commit sequence begins when the transaction initiator callsthe tpcommit () function. The
Oracle Tuxedo TM S server processin the designated coordinator group contactsthe TMSin each
participant group that isto perform thefirst phase of the commit protocol. The TM Sin each group
then instructs the resource manager (RM) in that group to commit using the XA protocol that is
defined for communications between the Transaction Managers and RMs. The RM writes, to
stable storage, the states of the transaction before and after the commit sequence, and indicates
success or failureto the TMS. The TMS then passes the response back to the coordinating TMS.

When the coordinating TM S has received a successindication from all groups, it logs a statement
to the effect that atransaction is being committed and sends second-phase commit notifications
to al participant groups. The RM in each group then finalizes the transaction updates.

If the coordinator TMSis natified of afirst-phase commit failure from any group, or if it failsto
receive areply from any group, it sends arollback notification to each RM and the RM s back out
all transaction updates. tpcommit () then fails and sets tperrno (5) t0 TPEABORT.

Selecting Criteria for a Successful Commit
When more than one group is involved in a transaction, you can specify which of two criteria
must be met for tpcommit () to return successfully:

e When all participants have indicated areadiness to commit (that is, when all participants
have reported that phase 1 of the two-phase commit has been logged as complete and the
coordinating TM S has written its decision to commit to stable storage)

e When all participants have finished phase 2 of the two-phase commit

To specify one of these prerequisites, set the cuTRET parameter in the RESOURCES section of the
configuration file to one of the following values:

Programming an Oracle Tuxedo ATMI Application Using C 9-11

../rf5/rf5.html
../rf5/rf5.html

9-12

e LOGGED—tO0 require completion of phase 1

e COMPLETE—tO require completion of phase 2
By default, cMTRET iS Set t0 COMPLETE.

If you later want to override the setting in the configuration file, you can do so by calling the
tpscmt () functionwithits £1ags argument set to either Tp_cMT_1.OGGED O TP_CMT_COMPLETE.

Trade-offs Between Possible Commit Criteria

In most cases, when all participantsin aglobal transaction have logged successful completion of
phase 1, they do not fail to complete phase 2. By setting cuTRET t0 LoGGED, you alow aslightly
faster return of callsto tpcommit (), but you run the slight risk that a participant may
heuristically complete its part of the transaction in away that is not consistent with the commit
decision.

Whether it isprudent to accept therisk dependsto alarge extent on the nature of your application.
If your application demands complete accuracy (for example, if you are running afinancial
application), you should probably wait until al participantsfully complete the two-phase commit
process before returning. If your application is more time-sensitive, you may prefer to have the
application execute faster at the expense of accuracy.

Aborting the Current Transaction

Use the tpabort (3c) function to indicate an abnormal condition and explicitly abort a
transaction. Thisfunctioninvalidatesthe call descriptors of any outstanding transactional replies.
None of the changes produced by the transaction are applied to the resource. Use the following
signature to call the tpabort () function:

int
tpabort (long flags)

Althoughthe f1ags argument isnot used currently, you must set it to zero to ensure compatibility
with future rel eases.

Example: Committing a Transaction in Conversational Mode

Figure 9-1 illustrates a conversational connection hierarchy that includes a global transaction.

Programming an Oracle Tuxedo ATMI Application Using C

../rf3c/rf3c.html

Figure 9-1 Connection Hierarchy in Transaction Mode

EVENTS

Terminating the Transaction

EVENTS

A

:d= tpbegin(30, 0);
wdl=tpeonnect(svcB", TPRECVONLYY,

TPEV_3[

B

sveBtpaveinfn)

cdl=tpconnect"sveC", TPSENDONLUY],

tpsend(cdl, dats, TPRECWVONLY),

TPEV_SE

H

C

svcCitpsveintn)

DONLY

TFEV &Y

I

tprecwitpeveinfo=cd, . &revent),
tpreturn TPSUCCES S, buffer, 3,
sUcec

tprecw(cd, &huffer, . &revent),
tpreturn(TPEUCCESS buffer,),
CEUCC

precvicd, &huffer, | Erevent),

The connection hierarchy is created through the following process:

1. A client (process A) initiates a connection in transaction mode by calling tpbegin () and

tpconnect ().

2. Theclient calls subsidiary services, which are executed.

3. Aseach subordinate service completes, it sends areply indicating success or failure
(TPEV_sVCSUCC OF TPEV_SVCFAIL, respectively) back up through the hierarchy to the
process that initiated the transaction. In this example the process that initiated the transaction
isthe client (process A). When a subordinate service has completed sending replies (that is,
when no more replies are outstanding), it must call tpreturn ().

successfully.

The client (process A) determines whether all subordinate services have returned

— If so, the client commits the changes made by those services, by calling tpcommit (),
and completes the transaction.

Programming an Oracle Tuxedo ATMI Application Using C

9-13

— If not, the client calls tpabort (), sinceit knows that tpcommit () could not be
successful.

Example: Testing for Participant Errors

In Listing 9-5, a client makes a synchronous call to the fictitious REporT service (line 18). Then
the code checks for participant failures by testing for errorsthat can be returned on a
communication call (lines 19-34).

Listing 9-5 Testing for Participant Success or Failure

001 #include <stdio.h>

002 #include "atmi.h"

003

004 main ()

005 {

006 char *sbuf, *rbuf;

007 long slen, rlen;

008 if (tpinit((TPINIT *) NULL) == -1)

009 error message, exit program;

010 if (tpbegin (30, 0) == -1)

011 error message, tpterm, exit program;

012 if ((sbuf=tpalloc("STRING", NULL, 100)) == NULL)

013 error message, tpabort, tpterm, exit program;

014 if ((rbuf=tpalloc ("STRING", NULL, 2000)) == NULL)

015 error message, tpfree sbuf, tpabort, tpterm, exit program;
016 (void) strcpy (sbuf, "REPORT=accrcv DBNAME=accounts");

017 slen=strlen (sbuf) ;

018 if (tpcall ("REPORT", sbuf, slen, &rbuf, &rlen, 0) == -1) {

019 switch(tperrno) {

020 case TPESVCERR:

021 fprintf (stderr,

022 "REPORT service's tpreturn encountered problems\n");
023 break;

024 case TPESVCFAIL:

025 fprintf (stderr,

026 "REPORT service TPFAILED with return code of %$d\n", tpurcode);
027 break;

028 case TPEOTYPE:

029 fprintf (stderr,

030 "REPORT service's reply is not of any known data type\n");
031 break;

032 default:

033 fprintf (stderr,

034 "REPORT service failed with error %d\n", tperrno);

9-14 Programming an Oracle Tuxedo ATMI Application Using C

035
036
037
038
039
040
041
042
043
044
045
046
047
048

Implicitly Defining a Global Transaction

break;
}
if (tpabort(0) == -1){
check for errors;
}
}
else
if (tpcommit (0) == -1)
fprintf (stderr, "Transaction failed at commit time\n");
tpfree (rbuf) ;
tpfree (sbuf) ;
tpterm() ;
exit (0);
}

Implicitly Defining a Global Transaction

An application can start aglobal transaction in either of two ways:
o Explicitly, by calling ATMI functions, as described in “ Starting the Transaction” on
page 9-2.
o Implicitly, from within a service routine
This section describes the second method.

Implicitly Defining a Transaction in a Service Routine

You can implicitly place a service routine in transaction mode by setting the system parameter
AUTOTRAN in the configuration file. If you set AuToTRAN tO v, the system automatically startsa
transaction in the service subroutine when arequest is received from another process.

When implicitly defining a transaction, observe the following rules:

o |If aprocess requests a service from another process when the calling processisnot in
transaction mode and the AuToTRAN System parameter is set to start atransaction, the
system initiates a transaction.

e |f aprocessthat isaready in transaction mode requests a service from another process, the
system’sfirst response is to determine whether or not the caller hasits f1ags parameter set
t0O TPNOTRAN.

Programming an Oracle Tuxedo ATMI Application Using C 9-15

If the f1ags argument is not set to TPNOTRAN, then the system places the called processin
transaction mode through the “rule of propagation.” The system does not check the
AUTOTRAN parameter.

If the f1ags argument is set to TPNOTRAN, the services performed by the called process are
not included in the current transaction (that is, the propagation rule is suppressed). The
system checks the AUTOTRAN parameter.

— If auToTrAN IS Set to N (or if it is not set), the system does not place the called process
in transaction mode.

— If auTOoTRAN IS Set to v, the system places the called processin transaction mode, but
treatsit as a new transaction.

Note: Because a service can be placed in transaction mode automatically, it is possible for a
servicewith the renoTRAN flag set to call servicesthat havethe AauToTRAN parameter set.
If such a service requests another service, the f1ags member of the service information
structure returns TeTRAN When queried. For example, if the call is made with the
communication £1ags member set to TPNOTRAN | TPNOREPLY, and the service
automatically starts atransaction when caled, the f1ags member of the information
structure is set t0 TPTRAN | TPNOREPLY.

Defining Global Transactions for an XA-Compliant Server
Group

Generally, the application programmer writes a service that is part of an XA-compliant server
group to perform some operation via the group’s resource manager. In the normal case, the
service expectsto perform all operations within atransaction. If, on the other hand, the serviceis
called with the communication £1ags Set to TPNOTRAN, you may receive unexpected resultswhen
executing database operations.

In order to avoid unexpected behavior, design the application so that servicesin groups associated
with XA-compliant resource managers are always called in transaction mode or are always
defined inthe configuration filewith auToTraN set to v. Y ou should al so test the transaction level
in the service code early.

Testing Whether a Transaction Has Started

When a process in transaction mode requests a service from another process, the latter process
becomes part of the transaction, unless specifically instructed not to join it.

9-16 Programming an Oracle Tuxedo ATMI Application Using C

001

002
003

004
005

006
007

008

Testing Whether a Transaction Has Started

It isimportant to know whether or not a processisin transaction mode in order to avoid and
interpret certain error conditions. For example, it is an error for a process already in transaction
mode to call tpbegin (). When tpbegin () iscaled by such aprocess, it fails and sets
tperrno (5) t0 TPEPROTO to indicate that it was invoked while the caller was aready
participating in atransaction. The transaction is not affected.

Y ou can design a service subroutine so that it tests whether it isin transaction mode before
invoking tpbegin (). You can test the transaction level by either of the following methods:

e Querying the f1ags field of the service information structure that is passed to the service
routine. The service isin transaction mode if the value is set to TPTRAN.

e Calling the tpgetlev(3c) function.
Use the following signature to call the tpgetlev () function:
int
tpgetlev () /* Get current transaction level */
The tpgetlev () function requires no arguments. It returns 0 if the caller is not in atransaction,
and lifitis.
Listing 9-6 isavariation of the oPEN_accT service that shows how to test for transaction level
using the tpgetlev () function (line 12). If the processis not already in transaction mode, the
application starts atransaction (line 14). If tpbegin () fails, amessage is returned to the status

line (line 16) and the rcode argument of tpreturn () iSSet to acodethat can beretrieved in the
global variable tpurcode (5) (lines1 and 17).

Listing 9-6 Testing Transaction Level

#define BEGFAIL 3 /* tpurcode setting for return if tpbegin fails */

void
OPEN_ACCT (transb)

TPSVCINFO *transb;

{

. other declarations ...

FBFR *transf; /* fielded buffer of decoded message */

int dotran; /* checks whether service tpbegin/tpcommit/tpaborts */

/* set pointer to TPSVCINFO data buffer */

Programming an Oracle Tuxedo ATMI Application Using C 9-17

../rf3c/rf3c.html
../rf5/rf5.html
../rf5/rf5.html

009
010

011
012
013
014
015
016
017
018
019

9-18

transf = (FBFR *)transb->data;

/* Test if transaction exists; initiate if no, check if yes */

dotran = 0;
if (tpgetlev() == 0) {
dotran = 1;
if (tpbegin(30, 0) == -1) {

Fchg(transf, STATLIN, O,
"Attempt to tpbegin within service routine failed\n");
tpreturn (TPFAIL, BEGFAIL, transb->data, 0, 0);

If the AuTOTRAN parameter is set to v, you do not need to call the tpbegin (), and tpcommit ()
or tpabort () transaction functions explicitly. Asaresult, you can avoid the overhead of testing
for transaction level. In addition, you can set the TrRaNTIME parameter to specify the time-out
interval: the amount of time that may elapse after atransaction for a service begins, and before it
isrolled back if not completed.

For example, suppose you are revising the orEN_accT service shown in the preceding code
listing. Currently, opEn_accT defines the transaction explicitly and then tests for its existence
(seelines7 and 10-19). To reducethe overhead introduced by thesetasks, you can eliminate them
from the code. Therefore, you need to require that whenever open_accT iscalled, itiscaledin
transaction mode. To specify this requirement, enable the AuToTRAN and TRANTIME System
parametersin the configuration file.

See Also

e Description of the auToTrAN configuration parameter in the section “Implicitly Defining a
Global Transaction” on page 9-15 in Setting Up an Oracle Tuxedo Application.

e TRANTIME configuration parameter in Setting Up an Oracle Tuxedo Application.

e Using Tuxedo with Oracle Real Application Clusters (RAC) in Setting Up an Oracle
Tuxedo Application.

Programming an Oracle Tuxedo ATMI Application Using C

../ads/adorac.html

cHAPTERﬂ

Programming a Multithreaded and
Multicontexted ATMI Application

Thistopic includes the following sections:

Support for Programming a Multithreaded/M ulticontexted ATMI Application

Planning and Designing a Multithreaded/M ulticontexted ATMI Application

Implementing a Multithreaded/ Multicontexted ATMI Application

Testing a Multithreaded/Multicontexted ATMI Application

Programming an Oracle Tuxedo ATMI Application Using C 10-1

Support for Programming a
Multithreaded/Multicontexted ATMI Application

The Oracle Tuxedo system only supports:
e Kernel-level threads packages (user-level threads packages are not supported)

e Multithreaded applications written in C (multithreaded COBOL applications are not
supported)

e Multicontexted applications written in either C or COBOL

If your operating system supports POSIX threads functions as well as other types of threads
functions, we recommend using the POSIX threads functions, which make your code easier to
port to other platforms later.

To find out whether your platform supports a kernel-level threads package, C functions, or
POSIX functions, see the data sheet for your operating system in “Oracle Tuxedo 11g Release 1
(11.1.1.3.0) Platform Data Sheets’ in Installing the Oracle Tuxedo System.

Platform-specific Considerations for
Multithreaded/Multicontexted Applications

Many platforms have idiosyncratic requirements for multithreaded and multicontexted
applications. “ Oracle Tuxedo 11g Release 1 (11.1.1.3.0) Platform Data Sheets’ in Installing the
Oracle Tuxedo System lists these platform-specific requirements. To find out what is needed on
your platform, check the appropriate data sheet.

See Also

e “What Are Multithreading and Multicontexting?’ on page 10-3

e “Advantages and Disadvantages of a Multithreaded/Multicontexted ATMI Application” on
page 10-7

e “How Multithreading and Multicontexting Work in a Client” on page 10-9

e “How Multithreading and Multicontexting Work in Server-Dispatched Threads an on
ATMI Server” on page 10-14

e “How Multithreading and Multicontexting Work in Application-Created Threads of an
ATMI Server” on page 10-18

10-2 Programming an Oracle Tuxedo ATMI Application Using C

../install/inspds.html
../install/inspds.html

Planning and Designing a Multithreaded/Multicontexted ATMI Application

Planning and Designing a Multithreaded/Multicontexted
ATMI Application

This topic includes the following sections:
e What Are Multithreading and Multicontexting?
e Auditing aMultithreaded or Multicontexted Application

e Advantages and Disadvantages of a Multithreaded/M ulticontexted ATMI Application

How Multithreading and Multicontexting Work in a Client

How Multithreading and Multicontexting Work in Server-Dispatched Threads an on ATMI
Server

How Multithreading and Multicontexting Work in Application-Created Threads of an
ATMI Server

e Design Considerations for a Multithreaded and Multicontexted ATMI Application

What Are Multithreading and Multicontexting?

The Oracle Tuxedo system allows you to use a single process to perform multiple tasks
simultaneously. The programming techniques for implementing this sort of process usage are
multithreading and multicontexting. This topic provides basic information about these
techniques:

e What Is Multithreading?

e What Is Multicontexting?

What Is Multithreading?

Multithreading is the inclusion of more than one unit of execution in asingle process. In a
multithreaded application, multiple simultaneous calls can be made from the same process. For
example, an individual processis not limited to one outstanding tpcall ().

In aserver, multithreading requires multicontexting except when application-created threads are
used in asingled-context server. The only way to create a multithreaded, single-context
application is to use application-created threads.

The Oracle Tuxedo system supports multithreaded applications written in C. It does not support
multithreaded COBOL applications.

Programming an Oracle Tuxedo ATMI Application Using C 10-3

Figure 10-1 shows how a multithreaded client can issue calls to three servers simultaneously.

Figure 10-1 Sample Multithreaded Process

SERVER A SERVER B

CLIENT PROCESS

SERVER C

In a multithreaded application, multiple service-dispatched threads are available in the
same server, which means that fewer servers need to be started for that application.

Figure 10-2 shows how a server process can dispatch multiple threads to different clients
simultaneously.

10-4 Programming an Oracle Tuxedo ATMI Application Using C

Planning and Designing a Multithreaded/Multicontexted ATMI Application

Figure 10-2 Multiple Service Threads Dispatched in One Server Process

THREAD 1

SERVER
THREAD 2 PROCESS
THREAD 3

What Is Multicontexting?

A context is an association to adomain. Multicontexting isthe ability of asingle processto have
one of the following:

o More than one connection within adomain

e Connections to more than one domain

Multicontexting can be used in both clients and servers. When used in servers, multicontexting
implies the use of multithreading, as well.

Programming an Oracle Tuxedo ATMI Application Using C 10-5

For amore completelist of the characteristics of a context, see“ Context Attributes’ in one of the
following sections:

e “Writing Code to Enable Multicontexting in an ATMI Client” on page 10-27

e “Writing Code to Enable Server-Dispatched Multicontexting and Multithreading Threadsin
an ATMI Server” on page 10-34

The Oracle Tuxedo system supports multicontexted applications written in either C or COBOL.
Multithreaded applications, however, are supported only in C.

Figure 10-3 shows how a multicontexted client process works within a domain. Each arrow
represents an outstanding call to a server.

Figure 10-3 Multicontexted Process in Two Domains

CLIENT PROCESS

Context 3 Orai:_le quedo Application B

— —

10-6 Programming an Oracle Tuxedo ATMI Application Using C

Planning and Designing a Multithreaded/Multicontexted ATMI Application

Auditing a Multithreaded or Multicontexted Application

Each context is counted as one user. For example:

e |If aprocess has two contexts associated with Application A and one with Application B,
the Oracle Tuxedo system counts atotal of three users (two in Application A and onein
Application B).

o |If aprocess has multiple threads accessing one application within the same context, the
system counts only one user.

See Also

e “Advantages and Disadvantages of a Multithreaded/Multicontexted ATMI Application” on
page 10-7

e “How Multithreading and Multicontexting Work in a Client” on page 10-9

e “How Multithreading and Multicontexting Work in Server-Dispatched Threads an on
ATMI Server” on page 10-14

e “How Multithreading and Multicontexting Work in Application-Created Threads of an
ATMI Server” on page 10-18

Advantages and Disadvantages of a
Multithreaded/Multicontexted ATMI Application

Multithreading and multicontexting are powerful tools for enhancing the performance of Oracle
Tuxedo applications—given the appropriate circumstances. Before embarking on a plan to use
these techniques, however, it isimportant to understand potential benefits and pitfalls.

Advantages of a Multithreaded/Multicontexted ATMI Application
Multithreaded and multicontexted ATMI applications offer the following advantages:
e Improved performance and concurrency

For certain applications, performance and concurrency can be improved by using
multithreading and multicontexting together. In other applications, performance can be
unaffected or even degraded by using multithreading and multicontexting together. How
performance is affected depends on your application.

e Simplified coding of remote procedure calls and conversations

Programming an Oracle Tuxedo ATMI Application Using C 10-7

10-8

In some applicationsit is easier to code different remote procedure calls and conversations
in separate threads than to manage them from the same thread.

e Simultaneous access to multiple applications

Your Oracle Tuxedo clients can be connected to more than one application at atime.

e Reduced number of required servers

Because one server can dispatch multiple service threads, the number of serversto start for
your application is reduced. This capability for multiple dispatched threads is especially
useful for conversational servers, which otherwise must be dedicated to one client for the
entire duration of a conversation.

For applicationsin which client threads are created by the Microsoft Internet Information Server
API or the Netscape Enterprise Server interface (that is, the NSAPI), the use of multiple threads
isessentia if you want to obtain thefull benefits afforded by thesetools. Thismay betrue of other
tools, aswell.

Disadvantages of a Multithreaded/Multicontexted ATMI Application
Multithreaded and multicontexted ATMI applications present the following disadvantages:
o Difficulty of writing code

Multithreaded and multicontexted applications are not easy to write. Only experienced
programmers should undertake coding for these types of applications.

e Difficulty of debugging

It is much harder to replicate an error in a multithreaded or multicontexted application than
itisto do so in asingle-threaded, single-contexted application. Asaresult, it is more
difficult, in the former case, to identify and verify root causes when errors occur.

o Difficulty of managing concurrency

The task of managing concurrency among threads is difficult and has the potential to
introduce new problems into an application.

e Difficulty of testing

Testing a multithreaded application is more difficult than testing a single-threaded
application because defects are often timing-related and more difficult to reproduce.

e Difficulty of porting existing code

Programming an Oracle Tuxedo ATMI Application Using C

Planning and Designing a Multithreaded/Multicontexted ATMI Application

Existing code often requires significant re-architecting to take advantage of multithreading
and multicontexting. Programmers need to:

— Remove dtatic variables
— Replace any function calls that are not thread-safe
— Replace any other code that is not thread-safe

Because the completed port must be tested and retested, the work required to port a
multithreaded and/or multicontexted application is substantial.

See Also
e “What Are Multithreading and Multicontexting?’ on page 10-3
e “How Multithreading and Multicontexting Work in a Client” on page 10-9

e “How Multithreading and Multicontexting Work in Server-Dispatched Threads an on
ATMI Server” on page 10-14

e “How Multithreading and Multicontexting Work in Application-Created Threads of an
ATMI Server” on page 10-18

e “Design Considerations for a Multithreaded and Multicontexted ATMI Application” on
page 10-20

How Multithreading and Multicontexting Work in a Client

When a multithreaded and multicontexted application is active, the life cycle of aclient can be
described in three phases:

e Start-up Phase
e Work Phase
e Completion Phase
Start-up Phase
In the start-up phase the following events occur:
e Some client threads join one or more Oracle Tuxedo applications by calling tpinit ().

e Other client threads share the contexts created by the first set of threads by calling
tpsetctxt (3c).

Programming an Oracle Tuxedo ATMI Application Using C 10-9

../rf3c/rf3c.html

10-10

e Some client threads join multiple contexts.

e Some client threads switch to an existing context.

Note: There may also be threads that work independently of the Oracle Tuxedo system. We do
not consider such threads in this documentation.

Client Threads Join Multiple Contexts

A client in an Oracle Tuxedo multicontexted application can have more than one application
association as long as the following rules are observed:

e All associations must be made to the same installation of the Oracle Tuxedo system.

e All application associations must be made from the same type of client. In other words,
one of the following must be true:

— All application associations must be made from native clients only.
— All application associations must be made from Workstation clients only.

Tojoin multiple contexts, clientscall thetpinit () functionwith the remur.TICcONTEXTS flag set
inthe f1ags element of the TpINFO datatype.

When tpinit () iscaled with the TeMuLTICONTEXTS flag set, a new application association is
created and is designated the current association for the thread. The Oracle Tuxedo domain to
which the new association is made is determined by the value of the Tuxconrzc or
WSENVFILE/WSNADDR environment variable.

Client Threads Switch to an Existing Context

Many ATMI functions operate on a per-context basis. (For acomplete list, see “Using
Per-context Functions and Data Structuresin a Multithreaded ATMI Client” on page 10-48.) In
such cases, the target context must be the current context. Although clients can join more than
one context, at any time, in any thread, only one context can be the current context.

Astask priorities shift within an application, requiring interactions with one Oracle Tuxedo
domain rather than another, it is sometimes advantageous to reassign a thread from one context
to another.

In such situations, one client threads calls tpgetctxt (3c) and passesthe handlethat isreturned
(the value of which is the current context) to a second client thread. The second thread then
associates itself with the current context by calling tpsetctxt (3¢) and specifying the handleit
received from tpgetctxt (3c) viathefirst thread.

Programming an Oracle Tuxedo ATMI Application Using C

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

Planning and Designing a Multithreaded/Multicontexted ATMI Application

Once the second thread is associated with the desired context, it is available to perform tasks
executed by ATMI functions that operate on a per-context basis. For details, see“Using
Per-context Functions and Data Structures in a Multithreaded ATMI Client” on page 10-48.

Work Phase

In this phase each thread performs atask. The following isalist of sample tasks:
e A thread issues arequest for a service.
e A thread getsthe reply to a service request.
e A thread initiates and/or participatesin a conversation.

e A thread begins, commits, or rolls back atransaction.

Service Requests

A thread sends arequest to a server by calling either tpcal1 () for a synchronous request or
tpacall () for an asynchronous request. If the request is sent with tpcal1 (), thenthereply is
received without further action by any thread.

Replies to Service Requests

If an asynchronous request for a service has been sent with tpacali (), athread in the same
context (which may or may not be the same thread that sent the request) getsthe reply by calling
tpgetrply ().

Transactions

If one thread starts a transaction, then all threads that share the context of that thread also share
the transaction.

Many threads in a context may work on atransaction, but only one thread may commit or abort
it. Thethread that commits or abortsthe transaction can be any thread working on the transaction;
it is not necessarily the same thread that started the transaction. Threaded applications are
responsiblefor providing appropriate synchronization so that the normal rules of transactions are
followed. (For example, there can be no outstanding RPC calls or conversations when a
transaction is committed, and no stray callsare allowed after atransaction has been committed or
aborted.) A process may be part of at most one transaction for each of its application associations.

If onethread of an application calstpcommit () concurrently with an RPC or conversational call
in another thread of the application, the system actsasif the callswereissued in some serial order.
An application context may temporarily suspend work on atransaction by calling tpsuspend ()

Programming an Oracle Tuxedo ATMI Application Using C 10-11

10-12

and then start another transaction subject to the samerestrictionsthat exist for single-threaded and
single-context programs.

Unsolicited Messages

For each context in a multithreaded or multicontexted application, you may choose one of three
methods for handling unsolicited messages.

A context may ... By setting . . .
Ignore unsolicited messages TPU_IGN
Use dip-in notification TPU_DIP
Use dedicated thread notification. TPU_THREAD

(available only for C applications)

The following caveats apply:
e SIGNAL-based notification is not allowed in multithreaded or multicontexted processes.

o |If your application runs on a platform that supports multicontexting but not multithreading,
then you cannot use the Tpu_THREAD unsolicited notification method. Asaresult, you
cannot receive immediate notification of events.

If receiving immediate notification of eventsisimportant to your application, then you
should carefully consider whether to use a multicontexted approach on this platform.

e Dedicated thread notification is available only:
— For applications written in C

— On multithreaded platforms supported by the Oracle Tuxedo system

When dedicated thread notification is chosen, the system dedicates a separate thread to receive
unsolicited messages and dispatch the unsolicited message handler. Only one copy of the
unsolicited message handler can run at any onetime in a given context.

If tpinit () iscalled onaplatform for whichthe Oracle Tuxedo system does not support threads,
with parametersindicating that Tru_taREAD Notification is being requested on a platform that
does not support threads, tpinit () returns -1 and sets tperrno to TPEINVAL. If the
UBBCONFIG (5) default NoTTFY Option is set to THREAD but threads are not available on a
particular machine, the default behavior for that machineisdowngradedto prpin. Thedifference
between these two behaviors alows an administrator to specify a default for all machinesin a

Programming an Oracle Tuxedo ATMI Application Using C

../rf5/rf5.html

Planning and Designing a Multithreaded/Multicontexted ATMI Application

mixed configuration—a configuration that includes some machines that support threads and
some that do not—nbut it does not allow a client to explicitly request a behavior that is not
available on its machine.

If tpsetunsol () iscalled from athread that is not associated with a context, a per-process
default unsolicited message handler for all new tpinit () contexts created is established. A
specific context may change the unsolicited message handler for that context by calling
tpsetunsol () again when the context is active. The per-process default unsolicited message
handler may be changed by again calling tpsetunsol () inathread not currently associated with
acontext.

If aprocess has multiple associations with the same application, then each association is assigned
adifferent cLIENTID SO that it ispossibleto send an unsolicited message to a specific application
association. If a process has multiple associations with the same application, then any
tpbroadcast () iSsent separately to each of the application associations that meet the broadcast
criteria. When performing a dip-in check for receiving unsolicited messages, an application
checks for only those messages sent to the current application association.

In addition to the ATMI functions permitted in unsolicited message handlers, it is permissible to
call tpgetctxt (3c) within an unsolicited message handler. This functionality allows an
unsolicited message handler to create another thread to perform any more substantial ATMI work
required within the same context.

Userlog Maintains Thread-specific Information
For each thread in each application, userlog (3c) recordsthefollowing identifying information:

process_ID.thread ID.context_ID

Placeholders are printed in the thread_1p and context_1D fields of entries for non-threaded
platforms and single-contexted applications.

Therv_wm1B (5) supportsthisfunctionality inthe ta_tureaDID and Ta_conTeXTID fieldsinthe
T_ULOG class.

Completion Phase

In this phase, when the client processis about to exit, on behalf of the current context and all
associated threads, a thread ends its application association by calling tpterm (). Like other
ATMI functions, tpterm() operates on the current context. It affects all threads for which the
context is set to the terminated context, and terminates any commonality of context among these
threads.

Programming an Oracle Tuxedo ATMI Application Using C 10-13

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf5/rf5.html

10-14

A well-designed application normally waitsfor all work inaparticular context to complete before
it cals tpterm (). Besurethat all threads are synchronized before your application calls
tpterm().

See Also

e “What Are Multithreading and Multicontexting?’ on page 10-3

e “Design Considerations for a Multithreaded and Multicontexted ATMI Application” on
page 10-20

e “Writing Code to Enable Multicontexting in an ATMI Client” on page 10-27
e “Writing a Multithreaded ATMI Client” on page 10-41
e “Synchronizing Threads Before an ATMI Client Termination” on page 10-29

How Multithreading and Multicontexting Work in
Server-Dispatched Threads an on ATMI Server

The eventsthat occur in an ATMI server when amultithreaded and multicontexted applicationis
active can be described in three phases:

e Start-up Phase
e Work Phase
e Completion Phase

Start-up Phase

What happens during the start-up phase depends on the value of the MINDISPATCHTHREADS and
MAXDISPATCHTHREADS parameters in the configuration file.

Programming an Oracle Tuxedo ATMI Application Using C

Planning and Designing a Multithreaded/Multicontexted ATMI Application

If the value of And the value of Then...

MINDISPATCHTHREADS MAXDISPATCHTHREADS

is. .. is...

0 >1 1. The Oracle Tuxedo system creates a thread
dispatcher.

2. Thedispatcher calls tpsvrinit () tojointhe

application.

>0 >1 1. The Oracle Tuxedo system creates a thread
dispatcher.

2. Thedispatcher calls tpsvrinit () tojointhe
application.

3. TheOracle Tuxedo system creates additional
threads for handling service requests, and a
context for each new thread.

4. Each new system-created thread calls
tpsvrthrinit (3c¢) tojoin the application.

Work Phase

In this phase, the following activities occur:

e Multiple client requests to one server are handled concurrently in multiple contexts. The
system allocates a separate thread for each request.

o If necessary, additional threads (up to the number indicated by MAXDISPATCHTHREADS) are
created.

e The system keeps statistics on server threads.

How Server-Dispatched Threads Are Used

In responseto clients’ requestsfor aservice, the server dispatcher creates multiple threads (up to
a configurable maximum) in one server that can be assigned to various client requests
concurrently. A server cannot call tpinit ().

Each dispatched thread is associated with a separate context. This feature is useful in both
conversational and RPC servers. Itisespecially useful for conversational serverswhich otherwise
sit idle, waiting for the client side of a conversation while other conversational connections are
waiting for service.

Programming an Oracle Tuxedo ATMI Application Using C 10-15

../rf3c/rf3c.html

10-16

This functionality is controlled by the following parameters in the servERs section of the
UBBCONFIG (5) fileand the Tm_MIB(5).

UBBCONFIG Parameter MIB Parameter Default

MINDISPATCHTHREADS TA_MINDISPATCHTHREADS 0

MAXDISPATCHTHREADS TA_MAXDISPATCHTHREADS 1

THREADSTACKSIZE TA_THREADSTACKSIZE 0 (representing the
OS default)

e Each dispatched thread is created with the stack size specified by THREADSTACKSTZE (OF
TA_THREADSTACKSIZE). If this parameter is not specified or has avalue of O, the operating
system default is used. On afew operating systems on which the default is too small to be
used by the Oracle Tuxedo system, alarger default is used.

o |f the value of this parameter is not specified or is 0, or if the operating system does not
support setting a THREADSTACKSIZE, then the operating system default is used.

e MINDISPATCHTHREADS (Of TA_MINDISPATCHTHREADS) mMust beless than or equal to
MAXDISPATCHTHREADS (Of TA_MAXDISPATCHTHREADS).

e |f MAXDISPATCHTHREADS (OF TA_MAXDISPATCHTHREADS) iS 1, then the dispatcher thread
and the service function thread are the same thread.

e |f MAXDISPATCHTHREADS (OF TA_MAXDISPATCHTHREADS) IS greater than 1, any separate
thread used for dispatching other threads does not count toward the limit of dispatched
threads.

e Initially, the system boots MINDISPATCHTHREADS (OF TA_MINDISPATCHTHREADS) SEfver
threads.

e The system never boots more than MAXDTSPATCHTHREADS (Of TA_MAXDISPATCHTHREADS)
server threads.

Bulletin Board Liaison Verifies Sanity of System Processes

The Bulletin Board Liaison (BBL) periodically checks servers. If aserver istaking too long to
execute aparticular service request, the BBL killsthat server. (If specified, the BBL then restarts
the server.) If the BBL kills a multicontexted server, the other service calls that are currently
being executed are also terminated as aresult of the process being killed.

Programming an Oracle Tuxedo ATMI Application Using C

../rf5/rf5.html
../rf5/rf5.html

Planning and Designing a Multithreaded/Multicontexted ATMI Application

The BBL also sends a message to any process or thread that has been waiting longer than its
timeout value to receive a message. The blocking message receive call then returns an error
indicating atimeout.

System Keeps Statistics on Server Threads

For each server, the Oracle Tuxedo system maintains statistics for the following information:
o Maximum number of server-dispatched threads allowed
o Number of server-dispatched threads currently in use (TA_CURDISPATCHTHREADS)

o High-water mark of concurrent server-dispatched threads since the server was booted
(TA_HWDISPATCHTHREADS)

e Number of server-dispatched threads historically started (Ta_NUMDI SPATCHTHREADS)

Userlog Maintains Thread-specific Information
For each thread in each application, userlog (3c) recordsthefollowing identifying information:

process_ID.thread ID.context_ID

Placeholders are printed in the thread_1p and context_1D fields of entries for non-threaded
platforms and single-contexted applications.

Therv_wm1B (5) supportsthisfunctionality inthe Ta_rureaDpID and Ta_conTeXTID fieldsinthe
T_ULOG class.

Completion Phase

When the application is shut down, tpsvrthrdone (3c) and tpsvrdone (3c) arecaled to
perform any termination processing that is necessary, such as closing a resource manager.

See Also

e “What Are Multithreading and Multicontexting?’ on page 10-3

e “Design Considerations for a Multithreaded and Multicontexted ATMI Application” on
page 10-20

e “Writing Code to Enable Server-Dispatched Multicontexting and Multithreading Threadsin
an ATMI Server” on page 10-34

e “Writing a Multithreaded ATMI Server” on page 10-54

Programming an Oracle Tuxedo ATMI Application Using C 10-17

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf5/rf5.html

10-18

How Multithreading and Multicontexting Work in
Application-Created Threads of an ATMI Server

Using your operating system functions, you may create additional threads within a Tuxedo
application server. Initially, application-created server threads are not associated with any
Tuxedo context. Application-created threads may:

e Operate independently of the Tuxedo system.

e Operate in the context created by tpappthrinit (3c). (Thisfeatureisavailable from
Tuxedo 11g Release 1 (11.1.1.3.0)).

e Operate in the same context as an existing server-dispatched thread and work on behalf of
server-dispatched contexts.

In this situation, the application-created server thread may call tpsetctxt (3c) (and pass
it avaluereturned by a previous call to tpgetctxt (3c) within a server-dispatched thread)
to associate itself with that server-dispatched context.

When an application-created server thread associated with a server-dispatched context has
finished itswork, it must call tpsetctxt (3¢) to set to TeNULLCONTEXT before the
originally dispatched thread calls tpreturn().

e An application-created thread cannot call tpreturn () or tpforward().

An application-created server thread may create a separate Tuxedo context and associate itself
with this context using tpappthrinit (3c). Thelife cycle of a Tuxedo context created by
tpappthrinit (3c) when an application-created server thread isactive can be described inthree
phases:

o Start-Up Phase
o Work Phase

e Completion Phase

Start-Up Phase

An application-created server thread creates a Tuxedo context and associates itself with this
context by calling tpappthrinit (3c). Thecontext created by tpappthrinit (3c) connectsto
the domain that the application server isin.

Programming an Oracle Tuxedo ATMI Application Using C

Planning and Designing a Multithreaded/Multicontexted ATMI Application

If necessary, after successfully calling tpappthrinit (3c), the application-created thread
within an ATMI server may call tpgetctxt (3c¢) and pass the handle that is returned (the value
of which isthe current context) to a second application thread within the same process.

Work Phase
Each application-created server thread performs the following tasks:

e An application-created thread issues arequest for a service.
e An application-created thread gets the reply to service request.
e An application-created thread initiates and/or participates in a conversation.

e An application-created thread begins, commits, or rolls back a transaction.

Thesetasks performed in an application-created server thread share the same characteristicsasin
aclient program. For more information, see How Multithreading and Multicontexting Work in a
Client.

Notes: An application-created server thread cannot call either tpreturn () Or tpforward ().

Application-created server thread may send, but cannot receive unsolicited messages.

Userlog Maintains Thread-specific Information
For each application-created thread in an ATMI server, userlog(3c) recordsthe following
identifying information: process_ID.thread_ID.context_ID.

Thetv_wm1B (5) supportsthisfunctionality inthe Ta_tureaDID and Ta_conTeEXTID fieldsinthe
T_ULOG class.

Completion Phase
When an application-created server thread has finished its work, the thread calls
tpappthrterm(3c) to terminate the current context.

tpappthrterm(3c) affectsall application-created server threads that are currently working on
the same context. Avoid calling tpappthrterm(3c) wWhile other application threads are still
working on the terminated context.

A well-designed application normally waitsfor all work in aparticular context to complete before
it cals tpappthrterm(3c). Be surethat al application threads are synchronized before your
application thread calls tpappthrterm(3c).

Programming an Oracle Tuxedo ATMI Application Using C 10-19

10-20

See Also

How Multithreading and Multicontexting Work in a Client

Design Considerations for a Multithreaded and Multicontexted ATMI Application

Writing Code to Enable Multicontexting in Application-Created Threads of an ATMI Server

Writing Code to Enable Server-Dispatched Multicontexting and Multithreading Threadsin an
ATMI Server

Writing a Multithreaded ATMI Client

Design Considerations for a Multithreaded and
Multicontexted ATMI Application

Multithreaded and multicontexted ATMI applications are appropriate for some Oracle Tuxedo
domains, but not all. To decide whether to create such applications, you should consider the
following:

e Environment Requirements
e Design Requirements

e Interoperability Restrictions for Workstation Clients

Environment Requirements

When considering the devel opment of multithreaded and/or multicontexted applications,
examine the following aspects of your development and run-time environments;

e Do you have an experienced team of programmers capable of writing and debugging
multithreaded and multicontexted programs that successfully manage concurrency and
synchronization?

e Arethe multithreading features of the Oracle Tuxedo system supported on the platform on
which you are developing your application? These features are supported only on platforms
with an OS-provided threads package, providing an appropriate level of functionality.

e Do the resource managers (RMs) used by your servers support multithreading? If so,
consider the following issues, aswell:

— Do you need to set any parameters required by your RM to enable multithreaded access
by your servers? For example, if you use an Oracle database with a multithreaded
application, you must set the THREADS=true parameter as part of the oPENINFO string

Programming an Oracle Tuxedo ATMI Application Using C

Planning and Designing a Multithreaded/Multicontexted ATMI Application

passed to Oracle. By doing so, you make it possible for individual threads to operate as
separate Oracle associations.

— Doesyour RM support a mixed mode of operation? A mixed-mode operation isaform
of access such that multiple threads in a process can map to one RM association while
other threads in the same process simultaneously map to different RM associations.
Within one process, for example, Threads A and B map to RM Association X, while
Thread C mapsto RM Association Y.

Not all RMs support mixed-maode operation. Some require al threadsin agiven
process to map to the same RM association. If you are designing an application that
will make use of transactional RM access within application-created threads, make sure
your RM supports mixed-mode operation.

Design Requirements

When designing a multithreaded and/or multicontexted application, you should consider the
following design questions:

e |sthe Task of Your Application Suitable for Multithreading and/or Multicontexting?
e How Many Applications and Connections Do You Want?

e What Synchronization | ssues Need to Be Addressed?

e Will You Need to Port Your Application?

e Which Threads Model Is Best for You?

Is the Task of Your Application Suitable for Multithreading and/or Multicontexting?
The following table provides alist of questionsto help you decide whether your application
would beimproved if it were multithreaded and/or multicontexted. Thislist is not
comprehensive; your individual requirements will determine other factors that should be
considered.

For additional suggestions, we recommend that you consult a multithreaded and/or
multicontexted programming publication.

Programming an Oracle Tuxedo ATMI Application Using C 10-21

If the answer to this question . . .

Is YES, then you might consider using . . .

Does your client need to connect to more than one application
without using the Domains feature?

Multicontexting.

Does your client perform the role of a multiplexer within your
application? For example, have you designated one machine in your
application the “surrogate” for 100 other machines?

Multicontexting.

Does your client use multicontexting?

Multithreading. By allocating one thread
per context, you can simplify your code.

Does your client perform two or more tasks that can be executed
independently for along time such that the performance gains from
concurrent execution outweigh the costs and complexities of threads
synchronization?

Multithreading.

Do you want one server to process multiple concurrent requests?

Multithreading. Assign avalue greater
than 1 to MAXDI SPATCHTHREADS. This
value enables multiple clients, each in its
own thread, for the server.

Do you want to perform ATMI calls in application-created server
thread?

Multithreading.

Application-created server thread creates
a separate Tuxedo context and associates
itself with the context by calling

tpappthrinit(3c) (Thisfeatureisavailable
from Tuxedo 11g Release 1 (11.1.1.3.0))

If your client or server had multiple threads, would it be necessary to
synchronize them after each thread had performed only alittle work?

Not using multithreading.

How Many Applications and Connections Do You Want?

Decide how many applications you want to access and the number of connections you want to

make.

o |If you want connections to more than one application, then we recommend one of the

following:
— A single-threaded, multicontexted application
— A multithreaded, multicontexted application

10-22 Programming an Oracle Tuxedo ATMI Application Using C

Planning and Designing a Multithreaded/Multicontexted ATMI Application

e |f you want more than one connection to an application, then we recommend a
multithreaded, multicontexted application.

o |If you want only one connection to one application, then we recommend one of the
following:

— Multithreaded, single-contexted clients
— Single-threaded, single-contexted clients

In both cases, multithreaded, multicontexted servers may be used.

What Synchronization Issues Need to Be Addressed?

Thisissueis an important one during the design phase. It is, however, beyond the scope of this
documentation. Please refer to a publication about multithreaded and/or multicontexted
programming.

Will You Need to Port Your Application?

If you may need to port your application in the future, you should keep in mind that different
operating systems have different sets of functions. If you think you may want to port your
application after completing the initial version of it on one platform, remember to consider the
amount of staff time that will be needed to revise the code with a different set of functions.

Which Threads Model Is Best for You?

Various models for multithreaded programs are now being used, including the following:
e Boss/worker model
e Siblings model
o Workflow model

We do not discuss threads models in this documentation. We recommend that you research all
available modelsand consider your design requirements carefully when choosing aprogramming
model for your application.

Interoperability Restrictions for Workstation Clients

Interoperability between release 7.1 Workstation clients and applications based on pre-7.1
releases of the Oracle Tuxedo system is supported in any of the following situations:

e Theclient is neither multithreaded nor multicontexted.

Programming an Oracle Tuxedo ATMI Application Using C 10-23

e The client is multicontexted.

e Theclient is multithreaded and each thread isin a different context.

An Oracle Tuxedo Release 7.1 Workstation client with multiplethreadsin asingle context cannot
interoperate with a pre-7.1 release of the Oracle Tuxedo system.

See Also

e “Advantages and Disadvantages of a Multithreaded/Multicontexted ATMI Application” on
page 10-7

e “Preliminary Guidelines for Programming a Multithreaded/M ulticontexted ATMI
Application” on page 10-24

Implementing a Multithreaded/ Multicontexted ATMI
Application

e “Preliminary Guidelines for Programming a Multithreaded/M ulticontexted ATMI
Application” on page 10-24

e “Writing Code to Enable Multicontexting in an ATMI Client” on page 10-27

e “Writing Code to Enable Server-Dispatched Multicontexting and Multithreading Threadsin
an ATMI Server” on page 10-34

e “Writing Code to Enable Multicontexting in Application-Created Threads of an ATMI
Server” on page 10-36

e “Writing a Multithreaded ATMI Client” on page 10-41
e “Writing a Multithreaded ATMI Server” on page 10-54
e “Compiling Code for a Multithreaded/Multicontexted ATMI Application” on page 10-54

Preliminary Guidelines for Programming a
Multithreaded/Multicontexted ATMI Application

Before you start coding, make sure you have fulfilled or thought about the following:
e “Prerequisites for aMultithreaded ATMI Application” on page 10-25
e “Genera Multithreaded Programming Considerations’ on page 10-25

10-24 Programming an Oracle Tuxedo ATMI Application Using C

Implementing a Multithreaded/ Multicontexted ATMI Application

e “Concurrency Considerations’ on page 10-25

Prerequisites for a Multithreaded ATMI Application

Make sure your environment meets the following prerequisites before starting your devel opment
project.

e Your operating system must provide a suitable threads package supported by the Oracle
Tuxedo system.

The Oracle Tuxedo system does not supply tools for creating threads, but it supports
various threads packages provided by different operating systems. To create and
synchronize threads, you must use the functions native to your operating system. To find
out which, if any, threads packages are supported by your operating system, see “Oracle
Tuxedo 11g Release 1 (11.1.1.3.0) Platform Data Sheets” in Installing the Oracle Tuxedo
System.

e If you are using multithreaded servers, the resource managers used by those servers must
support threads.

General Multithreaded Programming Considerations
Only experienced programmers should write multithreaded programs. In particul ar, programmers
should aready be familiar with basic design issues specific to this task, such as:

e The need for concurrency control among multiple threads

e The need to avoid the use of static variables in most instances

e Potential problemsthat may arise from the use of signalsin multithreaded programs

These are just afew of the issues, too numerous to list here, with which we assume any
programmer undertaking the writing of a multithreaded program isalready familiar. Theseissues
are discussed in many commercially available books on the subject of multithreaded
programming.

Concurrency Considerations

Multithreading enables different threads of an application to perform concurrent operations on
the same conversation. We do not recommend this approach, but the Oracle Tuxedo system does
not forbid it. If different threads perform concurrent operations on the same conversation, the
system acts asif the concurrent calls were issued in some arbitrary order.

Programming an Oracle Tuxedo ATMI Application Using C 10-25

../install/inspds.html
../install/inspds.html

10-26

When programming with multiple threads, you must manage the concurrency among them by
using mutexes or other concurrency-control functions. Here are three examples of the need for
concurrency control:

e When multithreaded threads are operating on the same context, the programmer must

ensure that functions are being executed in the required seria order. For example, all RPC
calls and conversations must be invoked before tpcommit () can be called. If tpcommit ()
is caled from athread other than the thread from which all these RPC or conversational
calls are made, some concurrency control is probably required in the application.

Similarly, it is permissibleto call tpacall () inonethread and tpgetrply () in another,
but the application must either:

— Ensurethat tpacall () iscaled before tpgetrply (), Or

— Manage the consequences if tpacall () isnot called before tpgetrply ()

Multiple threads may operate on the same conversation but application programmers must
realize that if different threadsissue tpsend () a approximately the same time, the system
acts as though these tpsend () calls have been issued in an arbitrary order.

For most applications, the best strategy isto code all the operations for one conversation in
one thread. The second best strategy is to serialize these operations using concurrency
control.

Programming an Oracle Tuxedo ATMI Application Using C

Implementing a Multithreaded/ Multicontexted ATMI Application

See Also

e “Design Considerations for a Multithreaded and Multicontexted ATMI Application” on
page 10-20

e “Writing Code to Enable Multicontexting in an ATMI Client” on page 10-27

e “Writing Code to Enable Server-Dispatched Multicontexting and Multithreading Threadsin
an ATMI Server” on page 10-34

e “Writing Code to Enable Multicontexting in Application-Created Threads of an ATMI
Server” on page 10-36

e “Writing a Multithreaded ATMI Client” on page 10-41
e “Writing a Multithreaded ATMI Server” on page 10-54

Writing Code to Enable Multicontexting in an ATMI Client

This section contains the following topics:
e Context Attributes
e Setting Up Multicontexting at Initialization
e Implementing Security for a Multicontexted ATMI Client
e Synchronizing Threads Before an ATMI Client Termination
e Switching Contexts
e Coding Rulesfor Server-Dispatched Threads in Multicontexted ATMI Server

e Initializing and Terminating ATMI| Servers and Server Threads

If your application uses transactions, you should also keep in mind the consequences of
multicontexting for transactions. For more information, see “Coding Rulesfor Transactionsin a
Multithreaded/Multicontexted ATMI Application” on page 10-33.

Note: Theinstructions and sample code provided in this section refer to the C library functions
provided by the Oracle Tuxedo system. Equivalent COBOL library functions are also
available; for details, see the Oracle Tuxedo COBOL Function Reference.

Context Attributes

When writing your code, keep in mind the following considerations about contexts:

Programming an Oracle Tuxedo ATMI Application Using C 10-27

o |f an application-created server thread which is currently associated with a
server-disptached context exits without changing context before the original dispatched
thread exits, then tpreturn () or tpforward () fails. The execution of athread exit does
not automatically trigger acall to tpsetctxt (3¢) to change the context to
TPNULLCONTEXT.

e For all contextsin a process, the same buffer type switch must be used.

e Aswith any other type of data structure, a multithreaded application must properly make
use of Oracle Tuxedo buffers, that is, buffers should not be used concurrently in two calls
when one of the following may be true:

— Both calls may use the buffer
— Both calls may free the buffer

— One call may use the buffer and one call may free the buffer

e If youcal tpinit () morethan once, either to join multiple applications or to make
multiple connections to a single application, keep in mind that on each tpinit () you must
accommodate whatever security mechanisms have been established.

Setting Up Multicontexting at Initialization

When aclientisready to join an application, specify tpinit () withthe reMuLTICONTEXTS flag
set, asshown in Listing 10-1.

Listing 10-1 Sample Code for a Client Joining a Multicontexted Application

#include <stdio.h>

#include <atmi.h>
TPINIT * tpinitbuf;
main ()

{

tpinitbuf = tpalloc (“TPINIT”, NULL, TPINITNEED(O)) ;

tpinitbuf->flags = TPMULTICONTEXTS;

10-28 Programming an Oracle Tuxedo ATMI Application Using C

../rf3c/rf3c.html

Implementing a Multithreaded/ Multicontexted ATMI Application

if (tpinit (tpinitbuf) == -1) {

ERROR_PROCESSING_CODE

A new application association is created and assigned to the Oracle Tuxedo domain specified in
the TUXCONFIG Or WSENVFILE/WSNADDR environment variable.

Note: Inany oneprocess, either al callsto tpinit () mustincludethe reMur.TICONTEXTS flag
or elseno call to tpinit () may includethisflag. The only exception to thisruleisthat
if al of aclient’ sapplication associations are terminated by successful callsto tpterm(),
then the processis restored to a state in which the inclusion of the TPMULTICONTEXTS
flag in the next call to tpinit () isoptional.

Implementing Security for a Multicontexted ATMI Client

Each application association in the same process requires a separate security validation. The
nature of that validation depends on the type of security mechanisms used in your application. In
an Oracle Tuxedo application you might, for example, use a system-level password or an
application password.

Asthe programmer of a multicontexted application, you are responsible for identifying the type
of security used in your application and implementing it for each application association in a
process.

Synchronizing Threads Before an ATMI Client Termination

When you are ready to disconnect a client from an application, invoke tpterm () . Keepinmind,
however, that in a multicontexted application tpterm () destroys the current context. All the
threads operating on that context are affected. Asthe application programmer, you must carefully
coordinate the use of multiple threads to make sure that tpterm() isnot called unexpectedly.

It isimportant to avoid calling tpterm () on acontext while other threads are till working on
that context. If such acall to tpterm() ismade, the Oracle Tuxedo system places the other
threads that had been associated with that context in a special invalid context state. When in the

Programming an Oracle Tuxedo ATMI Application Using C 10-29

10-30

invalid context state, most ATMI functions are disallowed. A thread may exit from theinvalid
context state by calling tpsetctxt (3c) Or tpterm(). Most well designed applications never
have to deal with the invalid context state.

Note: The Oracle Tuxedo system does not support multithreading in COBOL applications.

Switching Contexts

Thefollowing isasummary of the coding steps that might be made by aclient that calls services
from two contexts.

Set the TuxconFIG environment variable to the value required by firstapp.
Join thefirst application by calling tpinit () with the reMmuLTICONTEXTS flag set.

Obtain ahandle to the current context by calling tpgetctxt (3c).

A w NP

Switch the value of the TuxconrF1c environment variable to the value required by the
secondapp context, by calling tuxputenv ().

o

Join the second application by calling tpinit () with the rpMurTICONTEXTS flag set.
6. Get ahandleto the current context by calling tpgetctxt (3c).

7. Beginning with the £irstapp context, start toggling between contexts by calling
tpsetctxt (3c).

8. Cdl firstapp services.

9. Switchtheclient tothe secondapp context (by calling tpsetctxt (3¢)) and cal secondapp
services.

10. Switch the client to the firstapp context (by calling tpsetctxt (3c)) and cal firstapp
Services.

11. Terminate the firstapp context by calling tpterm().

12. Switchtheclient to the secondapp context (by calling tpsetctxt (3¢)) and call secondapp
services.

13. Terminate the secondapp context by caling tpterm().

The following sample code provides an example of these steps.

Note: Inorder to simplify the sample, error checking code is not included.

Programming an Oracle Tuxedo ATMI Application Using C

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

Implementing a Multithreaded/ Multicontexted ATMI Application

Listing 10-2 Sample Code for Switching Contexts in a Client

#include <stdio.h>
#include "atmi.h"/* Oracle Tuxedo header file */

#if defined(__STDC__) || defined(__cplusplus)
main (int argc, char *argvl[])

#else

main(argc, argv)

int argc;

char *argvl[];

#endif

{

TPINIT * tpinitbuf;
TPCONTEXT_T firstapp_contextID, secondapp_contextID;
/* Assume that TUXCONFIG is initially set to /home/firstapp/TUXCONFIG*/
/*
* Attach to the Oracle Tuxedo system in multicontext mode.
*/
tpinitbuf=tpalloc (*TPINIT”, NULL, TPINITNEED(O0));
tpinitbuf->flags = TPMULTICONTEXTS;

if (tpinit((TPINIT *) tpinitbuf) == -1) {
(void) fprintf (stderr, "Tpinit failed\n");
exit (1) ;

}

/*

* Obtain a handle to the current context.

*/

tpgetctxt (&firstapp_contextID, O0);

/*
* Use tuxputenv to change the value of TUXCONFIG,
* so we now tpinit to another application.
*/
tuxputenv ("TUXCONFIG=/home/second_app/TUXCONFIG") ;

/*

* tpinit to secondapp.

*/

if (tpinit ((TPINIT *) tpinitbuf) == -1) {
(void) fprintf (stderr, "Tpinit failed\n");
exit (1) ;

}

/'k

Programming an Oracle Tuxedo ATMI Application Using C 10-31

* Get a handle to the context of secondapp.
x/
tpgetctxt (&secondapp_contextID, 0);

/*

* Now you can alternate between the two contexts

* using tpsetctxt and the handles you obtained from
* tpgetctxt. You begin with firstapp.

*/

tpsetctxt (firstapp_contextID, 0);

/*

* You call services offered by firstapp and then switch
* to secondapp.
*/

tpsetctxt (secondapp_contextID, O0);

/*

* You call services offered by secondapp.
* Then you switch back to firstapp.
*/

tpsetctxt (firstapp_contextID, 0);

/*
* You call services offered by firstapp. When you have
* finished, you terminate the context for firstapp.

*/

tpterm() ;

/*
* Then you switch back to secondapp.

*/

tpsetctxt (secondapp_contextID, 0);
/*
* You call services offered by secondapp. When you have
finished, you terminate the context for secondapp and
end your program.
*/

tpterm() ;

return(0) ;

10-32 Programming an Oracle Tuxedo ATMI Application Using C

Implementing a Multithreaded/ Multicontexted ATMI Application

Handling Unsolicited Messages

For each context in which you want to handle unsolicited messages, you must set up an
unsolicited message handler or use the process handler default if you have set one up.

If tpsetunsol () iscalled from athread that is not associated with a context, a per-process
default unsolicited message handler for al new tpinit () contexts created is established. A
specific context may change the unsolicited message handler for that context by calling
tpsetunsol () again when the context is active. The per-process default unsolicited message
handler may be changed by again calling tpsetunsol () inathread not currently associated with
a context.

Set up the handler in the same way you set one up for a single-threaded or single-contexted
application. See tpsetunsol () for details.

You can use tpgetctxt (3¢) inan unsolicited message handler if you want to identify the
context in which you are currently working.

Coding Rules for Transactions in a Multithreaded/Multicontexted ATMI
Application

The following consequences of using transactions should be kept in mind while you are writing
your application:

e You can have only one transaction in any one context.
e You can have adifferent transaction for each context.

o All the threads associated with a given context at a given time share the same transaction
state (if any) of that context.

e You must synchronize your threads so al conversations and RPC calls are complete before
you call tpcommit ().

e You can call tpcommit () from only one thread in any particular transaction.

See Also

e “How Multithreading and Multicontexting Work in a Client” on page 10-9
e “Writing a Multithreaded ATMI Client” on page 10-41

Programming an Oracle Tuxedo ATMI Application Using C 10-33

../rf3c/rf3c.html

Writing Code to Enable Server-Dispatched Multicontexting
and Multithreading Threads in an ATMI Server

This topic includes the following sections:
e Context Attributes
e Coding Rulesfor Server-Dispatched Threadsin Multicontexted ATMI Server
e |nitializing and Terminating ATMI Servers and Server Threads

Note: Theinstructions and sample code provided in this section refer to the C library functions
provided by the Oracle Tuxedo system. (See the Oracle Tuxedo C Function Reference
for details.) Equivalent COBOL routinesare not available because multithreading (which
isrequired to create a multicontexted server) is not supported for COBOL applications.

Context Attributes

When writing your code, keep in mind the following considerations about contexts:

o |If an application-created server thread which is currently associated with a
server-dispatched context exits without changing context before the original dispatched
thread exits, then tpreturn () or tpforward () fals. The execution of athread exit does
not automatically trigger acall to tpsetctxt (3c) to change the context to
TPNULLCONTEXT.

e For all contextsin a process, the same buffer type switch must be used.

e Aswith any other type of data structure, a multithreaded application must properly make
use of Oracle Tuxedo buffers, that is, buffers should not be used concurrently in two calls
when one of the following may be true:

— Both calls may use the buffer.
— Both calls may free the buffer.

— One call may use the buffer and one call may free the buffer.

Coding Rules for Server-Dispatched Threads in Multicontexted ATMI Server
Keep in mind the following rules for coding multicontexted servers:

e The Oracle Tuxedo dispatcher on the server may dispatch the same service and/or different
services multiple times, creating a different dispatch context for each service dispatched.

10-34 Programming an Oracle Tuxedo ATMI Application Using C

../rf3c/rf3c.html

Implementing a Multithreaded/ Multicontexted ATMI Application

A server is prohibited from calling tpinit () . If aserver processcals tpinit (),
tpinit () returns -1 and sets tperrno (5) t0 TPEPROTO.

Only a server-dispatched thread may call tpreturn () Or tpforward().

A server cannot execute a tpreturn () Of tpforward () if any application-created thread
is <till associated with any application context. Therefore, before a server-dispatched thread
cals tpreturn (), each application-created thread associated with that context must call
tpsetctxt (3c) with the context set to either TpNULLCONTEXT Or another valid context.

If thisruleisviolated, then tpreturn () oOr tpforward () writes amessage to the user log,
indicates TPESVCERR to the caller, and returns control to the main server dispatch loop. The
threads that had been in the context where the invalid tpreturn () was done are placed in
aninvalid context.

If there are outstanding ATMI calls, RPC calls, or conversations when tpreturn () or
tpforward () iscaled, tpreturn () Or tpforward () Writes amessage to the user log,
indicates TPESVCERR to the caler, and returns control to the main server dispatch loop.

A server-dispatched thread may not call tpsetctxt (3c).

Unlike single-contexted servers, it is permissible for a multicontexted server thread to call
aservice that is offered only by that same server process.

Initializing and Terminating ATMI Servers and Server Threads

To

initialize and terminate your servers and server threads, you can use the default functions

provided by the Oracle Tuxedo system.

Tahle 10-1 Default Functions for Initialization and Termination

To... Use the default function
Initialize aserver tpsvrinit (3c)
Initialize a server thread tpsvrthrinit(3c)
Terminate a server tpsvrdone (3c)
Terminate a server thread tpsvrthrdone (3c¢)

Programming an Oracle Tuxedo ATMI Application Using C 10-35

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf5/rf5.html
../rf3c/rf3c.html

10-36

See Also

“How Multithreading and Multicontexting Work in Server-Dispatched Threads an on ATMI
Server” on page 10-14

Writing Code to Enable Multicontexting in
Application-Created Threads of an ATMI Server

This topic includes the following sections:
e Creating Threads
e Associating Application Threads with a Context
e Associating Application Threads with an Existing Server-Dispatched Context

e Sample Code for Associating Application Thread with an Existing Server-Dispatched
Context in a Multicontexted Server

e Associating Application Threads with Application-Created Context

e Sample Code for Associating Application Thread with Application-created server Context
in a Multicontexted Server

Creating Threads

Y ou can create additional threads within a Tuxedo application server by using OS threads
functions. These new application threads may operate independently of the Tuxedo system, or
they may operatein the same context asone of the server-dispatched threads. A pplication-created
server threads may also operate in separate context created via tpappthrinit (3c).

Associating Application Threads with a Context

Initially, application-created server threads are not associated with any Tuxedo context. If called
before being initialized, however, most ATMI functions perform an implicit tpinit (). Such
callsintroduce problems because servers are prohibited from calling tpinit (). (If aserver
process calls tpinit (), tpinit () returns -1 and sets tperrno (5) tO TPEPROTO.)

Therefore, an application-created server thread must associate itself with avalid context before
calling any ATMI functions. An application-created server thread may:

e Associate itself with an existing server-dispatched context

Programming an Oracle Tuxedo ATMI Application Using C

Implementing a Multithreaded/ Multicontexted ATMI Application

e Associate itself with a separated context created via tpappthrinit (3c) (Thisfeatureis
available from Tuxedo 11g Release 1 (11.1.1.3.0))

Associating Application Threads with an Existing Server-Dispatched Context

To associate an application-created server thread with an existing server-dispatched context, you
must write code that implements the following procedures.

1. server-dispatched-thread_a getsahandle to the current context by caling
tpgetctxt (3c).

2. server-dispatched-thread_a passesthe handlereturned by tpgetctxt (3c) to
Application_thread_B.

3. Application_thread B associatesitself with the current context by calling
tpsetctxt (3c) specifying the handle received from server-dispatched-thread_A.

Note: Application-created server threads cannot call tpreturn() and/or tpforward().
Before the original server-dispatched thread calls tpreturn () or tpforward(), al
application-created server threads that have been in that context must switch to
TPNULLCONTEXT Or another valid context.

If thisruleis not observed, then tpforward () or tpreturn () failsand indicates a
service error to caller.

Sample Code for Associating Application Thread with an Existing
Server-Dispatched Context in a Multicontexted Server

For those applications that need to create an application thread in a server, Listing 10-3 shows a
multicontexted server example where a service creates another thread to help performitswork in
the same server-dispatched context. Operating system (OS) threads functions differ from one OS
to another. In this sample POSIX and ATMI functions are used.

Note: Inorder to simplify the example, error checking codeis not included. Also, an example
of amulticontexted server using only threads dispatched by the Oracle Tuxedo systemis
not included because such aserver iscoded in exactly the sameway asasingle-contexted
server, as long as thread-safe programming practices are used.

Listing 10-3 Code Sample for Application-Created Server Thread Working in Server-Dispatched Context

#include <pthread.h>

#include <atmi.h>

Programming an Oracle Tuxedo ATMI Application Using C 10-37

void *withdrawalthread(void *);

struct sdata {
TPCONTEXT_T ctxt;
TPSVCINFO *svcinfoptr;
i

void
TRANSFER (TPSVCINFO *svcinfo)
{
struct sdata transferdata;

pthread_t withdrawalthreadid;

tpgetctxt (&transferdata.ctxt, 0);
transferdata.svcinfoptr = svcinfo;
pthread_create(&withdrawalthreadid, NULL,

withdrawalthread, &transferdata);
tpcall ("DEPOSIT", ...);
pthread_join (withdrawalthreadid, NULL) ;
tpreturn (TPSUCCESS, ...);

void *

withdrawalthread (void *arg)

{
tpsetctxt (arg->ctxt, 0);
tpopen () ;
tpcall ("WITHDRAWAL", ...);
tpclose() ;
tpsetctxt (TPNULLCONTEXT, O0);
return (NULL) ;

10-38 Programming an Oracle Tuxedo ATMI Application Using C

Implementing a Multithreaded/ Multicontexted ATMI Application

Associating Application Threads with Application-Created Context

An application-created thread within an ATMI server can create a separate Tuxedo context and
associate itself with this context by calling tpappthrinit (3c).

Context Attributes

e The context created via tpappthrinit (3c) isindependent from any server-dispatched
context. It connects to the domain that the application server isin.

e The context created via tpappthrinit (3c) must be terminated by calling
tpappthrterm(3c) after the application-created server thread has finished its work on
that context.

e Depending on the type of security mechanism used in your application, user authentication
information can be associated with the context when invoking tpappthrinit (3c). Each
application association of an application-created context requires a separate security
validation.

Code Rules for Application-Created Thread of an ATMI Server in Application-Created
Context

e Only Tuxedo server process can call tpappthrinit ()/tpappthrterm().

The server must be built with -t option when executing buildserver command.
e Itisnot allowed to call tpappthrinit ()/tpappthrterm() inaclient program.
e |tisnot alowedto cal tpappthrinit ()/tpappthrterm() in aserver-dispatched thread.

e Itisnot allowed to call tpappthrterm() in an application-created thread which is
currently associated with a server-dispatched context.

e |t should be avoided calling tpappthrterm() on an application-created context while
other application threads are till working on that context.

e Handles and call descriptors are portable within the same context in the same process, but
not between contexts or processes. Handles and call descriptors can be used only in the
application context in which they are originally assigned.

e Once a conversation has been started, any thread in the same context within the same
process can work on that conversation.

Programming an Oracle Tuxedo ATMI Application Using C 10-39

e Any application thread operating in the same context within the same server process can
invoke tpgetrply () toreceive aresponse to an earlier call to tpacall (), regardless of
whether or not that application thread originaly called tpacall ().

e A transaction can be committed or aborted by only one application thread in the same
context within the same process, which may or may not be the same application thread that
started it.

e tpbegin () cannot beissued for a context that is aready in transaction mode.

o |f the application server isin agroup that is configured with XA transaction, tpopen ()
must be invoked before performing any transaction activities, such as tpbegin () and SQL
operations. When transaction operations are finished, tpclose () should be called.

e Application-created server thread may send, but cannot receive unsolicited messages.

Sample Code for Associating Application Thread with Application-created
server Context in a Multicontexted Server

For those applications with aneed to create an application thread in aserver, Listing 10-4 shows
amulticontexted server example where a service creates another thread, and this

application-created server thread operatesin a separated context. Operating system (OS) threads
functions differ from one OS to another. In this example, POSIX and ATMI functions are used.

Note: Inorder to simplify the example, error checking code is not included.

Listing 10-4 Code Sample for Application-Created Server Thread Working in Application-Created Context

#include <pthread.h>

#include <atmi.h>

void *withdrawalthread(void *);

void
TRANSFER (TPSVCINFO *svcinfo)
{
pthread_t withdrawalthreadid;

pthread_create(&withdrawalthreadid, NULL,
withdrawalthread, ..);

tpcall ("DEPOSIT", ...);

10-40 Programming an Oracle Tuxedo ATMI Application Using C

Implementing a Multithreaded/ Multicontexted ATMI Application

pthread_join (withdrawalthreadid, NULL) ;
tpreturn (TPSUCCESS, ...);

void *

withdrawalthread (void *arg)

{
tpappthrinit (NULL) ;
tpopen () ;
tpcall ("WITHDRAWAL", ...);
tpclose() ;
tpappthrterm() ;
return (NULL) ;

See Also

How Multithreading and Multicontexting Work in Application-Created Threads of an ATMI
Server

How Multithreading and Multicontexting Work in Server-Dispatched Threads an on ATMI
Server

Writing a Multithreaded ATMI Client

This topic includes the following sections:
e Coding Rulesfor a Multithreaded ATMI Client

e |nitializing an ATMI Client to Multiple Contexts

Getting Replies in a Multithreaded Environment

Using Environment Variablesin a Multithreaded and/or Multicontexted Environment

Using Per-context Functions and Data Structures in a Multithreaded ATMI Client
Using Per-process Functions and Data Structures in a Multithreaded ATMI Client

Using Per-thread Functions and Data Structures in a Multithreaded ATMI Client

Programming an Oracle Tuxedo ATMI Application Using C 10-41

10-42

e Sample Code for a Multithreaded ATMI Client
Note: The Oracle Tuxedo system does not support multithreaded COBOL applications.

Coding Rules for a Multithreaded ATMI Client
Keep in mind the following rules for coding multithreaded clients:

e Once a conversation has been started, any thread in the same process can work on that

conversation. Handles and call descriptors are portable within the same context in the same
process, but not between contexts or processes. Handles and call descriptors can be used
only in the application context in which they are originally assigned.

e Any thread operating in the same context within the same process can invoke

tpgetrply () tOreceive aresponseto an earlier cal to tpacall (), regardless of whether
or not that thread originaly called tpacall ().

e A transaction can be committed or aborted by only one thread, which may or may not be

the same thread that started it.

All RPC callsand all conversations must be completed before an attempt is made to
commit the transaction. If an application calls tpcommit () while RPC callsor
conversations are outstanding, tpcommit () aborts the transaction, returns -1, and sets
tperrno (5) tO TPEABORT.

Functions such as tpcall (), tpacall (), tpgetrply (), tpconnect (), tpsend (),
tprecv (), and tpdiscon () should not be called in transaction mode unless you are sure
that the transaction is not already committing or aborting.

Two tpbegin () calls cannot be made simultaneously for the same context.
tpbegin () cannot beissued for a context that is aready in transaction mode.

If you are using aclient and you want to connect to more than one domain, you must
manually change the value of TuxconF1c or wsNADDR before calling tpinit (). You must
synchronize the setting of the environment variable and the tpinit () cal if multiple
threads may be performing such an action. All application associations in a client must
obey the following rules:

— All associations must be made to the same release of the Oracle Tuxedo system.

— Either every application association in a particular client must be made as a native
client, or every application association must be made as a Workstation client.

e To join an application, a multithreaded Workstation client must always call tpinit () with

the remurTICONTEXTS flag set, even if the client is running in single-context mode.

Programming an Oracle Tuxedo ATMI Application Using C

../rf5/rf5.html

Implementing a Multithreaded/ Multicontexted ATMI Application

Initializing an ATMI Client to Multiple Contexts

To have aclient join more than one context, issue acall to the tpinit () function with the
TPMULTICONTEXTS flag set in the f1ags element of the TpINIT data structure.

In any one process, either al callsto tpinit () must include the TeMuLTICONTEXTS flag or no
call to tpinit () may includethisflag. The only exception to thisruleisthat if al of aclient’'s
application associations are terminated by successful callsto tpterm (), then the processis
restored to a state in which the inclusion of the reMurTICONTEXTS flag in the next call to
tpinit () isoptional.

When tpinit () isinvoked with the TeMurTICONTEXTS flag set, a new application association
iscreated and isdesignated the current association. The Oracle Tuxedo domain to which the new
association is made is determined by the value of the TUXCONFIG Of WSENVFILE/WSNADDR
environment variable.

When aclient thread successfully executes tpinit () without the TeMuLTICONTEXTS flag, all
threadsin the client are placed in the single-context state (TPSINGLECONTEXT).

Onfailure, tpinit () leavesthe calling thread initsoriginal context (that is, in the context state
in which it was operating before the call to tpinit ()).

Donot call tpterm() fromagiven context if any of the threadsin that context are still working.
See the table labeled “Multicontext State Transitions’ on page 10-44 for a description of the
context states that result from calling tpterm () under these and other circumstances.

Context State Changes for an ATMI Client Thread

In amulticontext application, calls to various functions result in context state changes for the
calling thread and any other threads that are active in the same context as the calling process.
Figure 10-4 illustrates the context state changes that result from callsto tpinit (),

tpsetctxt (3c), and tpterm(). (The tpgetctxt (3¢) function does not produce any context
state changes.)

Programming an Oracle Tuxedo ATMI Application Using C 10-43

../rf3c/rf3c.html
../rf3c/rf3c.html

Figure 10-4 Multicontext State Transitions

tpinit () without TPMULTICONTEXTS tpinit () with TPMULTICONTEXTS
or or
implicit tpinit () invoked by ATMI function tpsetctxt () to avalid context

////Egi::m(

tpterm()
or
tpsetctxt ()

tpterm()
or
tpsetctxt ()

tpterm()

(see Note)
tpinit () without

TPMULTICONTEXTS

INVALID
CONTEXT

tpsetctxt ()

Note: When tpterm() iscaled by athread running in the multicontext state
(reMuLTICONTEXTS), the calling thread is placed in the null context state
(revuLLconTEXT). All other threads associated with the terminated context are switched
to theinvalid context state (TPINVALIDCONTEXT).

Thefollowing table lists al possible context state changes produced by caling tpinit (),
tpsetctxt(3c),andtpterm(L

10-44 Programming an Oracle Tuxedo ATMI Application Using C

../rf3c/rf3c.html

Table 10-2 Context State Changes for a Client Thread

Implementing a Multithreaded/ Multicontexted ATMI Application

When this function is
executed . ..

Then a thread in this context state resultsin. ..

Null Context Single Context Multicontext Invalid Context
tpinit () without Single context Single context Error Error
TPMULTICONTEXTS
tpinit () with Multicontext Error Multicontext Error
TPMULTICONTEXTS
tpsetctxt (3c) to Null Error Null Null
TPNULLCONTEXT
tpsetctxt (3c) to Error Single context Error Error
context O
tpsetctxt (3c) to Multicontext Error Multicontext Multicontext
context >0
Implicit tpinit () Single context N/A N/A Error
tpterm() inthis Null Null Null Null
thread
tpterm() ina N/A Null Invalid N/A

different thread of this
context

Getting Replies in a Multithreaded Environment

tpgetrply () receivesresponses only to requests made via tpacall (). Requests made with
tpcall () are separate and cannot be retrieved with tpgetrply () regardiess of the

multithreading or multicontexting level.

tpgetrply () operatesin only one context, which isthe context in which it is called. Therefore,
whenyou call tpgetrply () withthetrgETANY flag, only handles generated in the same context
are considered. Similarly, a handle generated in one context may not be used in another context,

but the handle may be used in any thread operating within the same context.

When tpgetrply () iscalled in amultithreaded environment, the following restrictions apply:

Programming an Oracle Tuxedo ATMI Application Using C 10-45

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

10-46

e If athread calls tpgetrply () for aspecific handle while another thread in the same

context is already waiting in tpgetrply () for the same handle, tpgetrply () returns -1
and sets tperrno t0 TPEPROTO.

e If athread calls tpgetrply () for aspecific handle while another thread in the same

context isalready waiting in tpgetrply () with the TegETANY flag, the call returns -1 and
Sets tperrno (5) tO TPEPROTO.

The same behavior occurs if athread calls tpgetrply () with the TegETANY flag while
another thread in the same context is already waiting in tpgetrply () for aspecific
handle. These restrictions protect a thread that iswaiting on a specific handle from having
its reply taken by athread waiting on any handle.

e At any given time, only onethread in aparticular context can wait in tpgetrply () with

the receETANY flag set. If a second thread in the same context invokes tpgetrply () with
the receTANY flag while asimilar call is outstanding, this second call returns -1 and sets
tperrno (5) t0O TPEPROTO.

Using Environment Variables in a Multithreaded and/or Multicontexted
Environment

When an Oracle Tuxedo application is run in an environment that is multicontexted and/or
multithreaded, the following considerations apply to the use of environment variables:

e A processinitially inheritsits environment from the operating system environment. On
platforms that support environment variables, such variables make up a per-process entity.
Therefore, applications that depend on per-context environment settings should use the
tuxgetenv (3c) function instead of an OS function.

Note: Theenvironment isinitially empty for those operating systems that do not recognize
an operating system environment.

e Many environment variables are read by the Oracle Tuxedo system only once per process
or once per context and then cached within the Oracle Tuxedo system. Changes to such
variables once cached in the process have no effect.

Programming an Oracle Tuxedo ATMI Application Using C

../rf3c/rf3c.html
../rf5/rf5.html
../rf5/rf5.html

Implementing a Multithreaded/ Multicontexted ATMI Application

Caching is doneona...

For environment variables such as. ..

Per-context basis

TUXCONFIG

FIELDTBLS and FIELDTBLS32

FLDTBLDIR and FLDTBLDIR32

ULOGPFX

VIEWDIR and VIEWDIR32

VIEWFILES and VIEWFILES32

WSNADDR

WSDEVICE

WSENV

Per-process basis

TMTRACE

TUXDIR

ULOGDEBUG

e The tuxputenv (3c) function affects the environment for the entire process.

e When you call the tuxreadenv (3c) function, it reads afile containing environment
variables and adds them to the environment for the entire process.

e The tuxgetenv (3c) function returns the current value of the requested environment
variable in the current context. Initially, al contexts have the same environment, but the
use of environment files specific to a particular context can cause different contexts to have
different environment settings.

e If aclient intendsto initialize to more than one domain, the client must change the value of
the TUXCONFIG, WSNADDR, OF WSENVFILE environment variable to the proper value before
each call to tpinit (). If such an application is multithreaded, a mutex or other
application-defined concurrency control will probably be needed to ensure that:

— The appropriate environment variable is reset.

— Thecal to tpinit () ismade without the environment variable being reset by any

other thread.

Programming an Oracle Tuxedo ATMI Application Using C 10-47

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

e When aclient initializes to the system, the wsenvrILE and/or machine environment fileis
read and affects the environment in that context only. The previous environment for the
process as awhole remains for that context to the extent that it is not overridden within the
environment file(s).

Using Per-context Functions and Data Structures in a
Multithreaded ATMI Client

The following ATMI functions affect only the application contextsin which they are called:
® tpabort ()
® tpacall()
® tpadmcall (3c)
® tpbegin()
® tpbroadcast ()
® tpcall()
® tpcancel ()
® tpchkauth()
® tpchkunsol ()
® tpclose(3c)
® tpcommit ()
® tpconnect ()
e tpdequeue (3c)
® tpdiscon/()
® tpenqgueue (3c)
® tpforward()
® tpgetlev ()
® tpgetrply ()
® tpinit ()
® tpnotify ()
® tpopen(3c)

® tppost ()

10-48 Programming an Oracle Tuxedo ATMI Application Using C

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

Implementing a Multithreaded/ Multicontexted ATMI Application

tprecv ()

tpresume ()

tpreturn ()

tpscmt (3¢)

tpsend ()

tpservice(3c)

tpsetunsol ()

tpsubscribe ()

tpsuspend ()

tpterm()

tpunsubscribe ()

tx_begin(3c)

tx_close(3c)

tx_commit (3c¢)

tx_info(3c)

tx_open(3c)

tx_rollback (3c)
tx_set_commit_return(3c)
tx_set_ transaction_control (3c)
tX_set_transaction_timeout (3c)

userlog(3c)

Note: For tpbroadcast (), the broadcast message is identified as having come from a

particular application association. For tpnotify (3c), the notification isidentified as
having come from aparticular application association. See* Using Per-process Functions
and Data Structuresin a Multithreaded Client” for notes about tpinit ().

If tpsetunsol () iscalled from athread that is not associated with a context, a
per-process default unsolicited message handler for all new tpinit () contexts created
isestablished. A specific context may change the unsolicited message handler for that
context by calling tpsetunsol () again when the context is active. The per-process
default unsolicited message handler may be changed by again calling tpsetunsol () in
athread not currently associated with a context.

Programming an Oracle Tuxedo ATMI Application Using C 10-49

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

10-50

The cLIENTID, client name, username, transaction 1D, and the contents of the TpsvcINFO
data structure may differ from context to context within the same process.

Asynchronous call handles and connection descriptors are valid in the contexts in which
they are created. The unsolicited notification type is specific per-context. Although
signal-based notification may not be used with multiple contexts, each context may choose
one of three options:

— Ignoring unsolicited messages
— Using dip-in notification

— Using dedicated thread notification

Using Per-process Functions and Data Structures in a
Multithreaded ATMI Client

The following Oracle Tuxedo functions affect the entire process in which they are called:

tpadvertise ()

tpalloc()

tpconvert (3c)—therequested structure is converted, although it is probably relevant to only a
subset of the process.

tpfree ()

tpinit () —to the extent that the per-process TPMULTICONTEXTS mode or single-context modeis
established. See also “Using Per-context Functions and Data Structuresin a Multithreaded ATMI
Client” on page 10-48.

tprealloc ()

tpsvrdone ()

tpsvrinit ()

tptypes ()

tpunadvertise ()

tuxgetenv (3c)—if the OS environment is per-process.
tuxputenv (3c¢)—if the OS environment is per-process.
tuxreadenv (3c)—if the OS environment is per-process.

Usignal (3c¢)

Programming an Oracle Tuxedo ATMI Application Using C

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

Implementing a Multithreaded/ Multicontexted ATMI Application

The determination of single-context mode, multicontext mode, or uninitialized mode affects an
entire process. The buffer type switch, the view cache, and environment variable values are al'so
per-process functions.

Using Per-thread Functions and Data Structures in a
Multithreaded ATMI Client

Only the calling thread is affected by the following:
® CATCH

® tperrordetail (3c)

® tpgetctxt (3c)

® tpgprio()

® tpsetctxt(3c)

® tpspriol()

® tpstrerror (3c)

® tpstrerrordetail (3c)

® TRY (3c)

® Uunix_err(3c)

The Ferror, Ferror32(5), tperrno(5), tpurcode(5), and Uunix_err variables are
specific to each thread.

Theidentity of the current context is specific to each thread.

Sample Code for a Multithreaded ATMI Client

Listing 10-5 shows a multithreaded client using ATMI calls. Threads functions differ from one
operating system to another. In this example, POSIX functions are used.

Note: Inorder to simplify this example, error checking code has not been included.

Listing 10-5 Sample Code for a Multithreaded Client

#include <stdio.h>
#include <pthread.h>
#include <atmi.h>

Programming an Oracle Tuxedo ATMI Application Using C 10-51

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html

TPINIT * tpinitbuf;
int timeout=60;
pthread_t withdrawalthreadid, stockthreadid;

TPCONTEXT_T ctxt;

void *

stackthread (void *);

void * withdrawalthread(void *);

main ()

{

void *

10-52

tpinitbuf = tpalloc (TPINIT, NULL, TPINITNEED (0));

/*
* This code will perform a transfer, using separate threads for the
* withdrawal and deposit. It will also get the current

* price of Oracle stock from a separate application, and calculate how
* many shares the transferred amount can buy.
*/

tpinitbuf->flags = TPMULTICONTEXTS;

/* Fill in the rest of tpinitbuf. */
tpinit (tpinitbuf) ;

tpgetctxt (&ctxt, 0);

tpbegin (timeout, O0);

pthread_create (&withdrawalthreadid, NULL, withdrawalthread, NULL) ;
tpcall ("DEPOSIT", ...);

/* Wait for the withdrawal thread to complete. */
pthread_join (withdrawalthreadid, NULL) ;

tpcommit (0) ;
tpterm() ;

/* Wait for the stock thread to complete. */
pthread_join(stockthreadid, NULL) ;

/* Print the results. */
printf ("$%9.2f has been transferred \

from your savings account to your checking account.\n", ...);

printf ("At the current Oracle stock price of $%8.3f, \
you could purchase %d shares.\n", ...);

exit (0);

Programming an Oracle Tuxedo ATMI Application Using C

Implementing a Multithreaded/ Multicontexted ATMI Application

stockthread(void *arg)

{

/* The other threads have now called tpinit(), so resetting TUXCONFIG can
* no longer adversely affect them.
*/

tuxputenv ("TUXCONFIG=/home/users/xyz/stockconf") ;

tpinitbuf->flags = TPMULTICONTEXTS;

/* Fill in the rest of tpinitbuf. */

tpinit (tpinitbuf) ;

tpcall ("GETSTOCKPRICE", ...);

/* Save the stock price in a variable that can also be accessed in main(). */
tpterm() ;

return (NULL) ;

void *

withdrawalthread(void *arg)

{
/* Create a separate thread to get stock prices from a different
* application.
*/

pthread_create (&stockthreadid, NULL, stockthread, NULL) ;
tpsetctxt (ctxt, 0);

tpcall ("WITHDRAWAL", ...);

return (NULL) ;

See Also

e “How Multithreading and Multicontexting Work in a Client” on page 10-9

e “Preliminary Guidelines for Programming a Multithreaded/M ulticontexted ATMI
Application” on page 10-24

e “Writing Code to Enable Multicontexting in an ATMI Client” on page 10-27

Programming an Oracle Tuxedo ATMI Application Using C 10-53

10-54

Writing a Multithreaded ATMI Server

Multithreaded servers are almost always multicontexted, as well. For information about writing
amultithreaded server, see “Writing Code to Enable Server-Dispatched Multicontexting and
Multithreading Threadsin an ATMI Server” on page 10-34.

Compiling Code for a Multithreaded/Multicontexted ATMI
Application

The programs provided by the Oracle Tuxedo system for compiling or building executables, such
aSbuildserver (1) andbuildclient (1), automatically include any required compiler flags.
If you use these tools, then you do not need to set any flags at compile time.

If, however, you compile your . c filesinto . o files before doing afinal compilation, you may
need to set platform-specific compiler flags. Such flags must be set consistently for al code
linked into a single process.

If you are creating amultithreaded server, you must runthebuildserver (1) command with the
-t option. This option is mandatory for multithreaded servers; if you do not specify it at build
time and later try to boot the new server with a configuration file in which the value of
MAXDISPATCHTHREADS iS greater than 1, awarning message is recorded in the user log and the
server reverts to single-threaded operation.

To identify any operating system-specific compiler parameters that are required when you
compile . c filesinto . o filesin amultithreaded environment, run buildclient (1) Or
buildserver (1) with the -v option set on atest file.

See Also

e “Writing Code to Enable Multicontexting in an ATMI Client” on page 10-27

e “Writing Code to Enable Server-Dispatched Multicontexting and Multithreading Threadsin
an ATMI Server” on page 10-34

e “Writing Code to Enable Multicontexting in Application-Created Threads of an ATMI
Server” on page 10-36

e “Writing a Multithreaded ATMI Client” on page 10-41

Programming an Oracle Tuxedo ATMI Application Using C

../rfcm/rfcmd.html
../rfcm/rfcmd.html
../rfcm/rfcmd.html
../rfcm/rfcmd.html
../rfcm/rfcmd.html
../rfcm/rfcmd.html

Testing a Multithreaded/Multicontexted ATMI Application

Testing a Multithreaded/Multicontexted ATMI Application

This topic includes the following sections:
e Testing Recommendations for a Multithreaded/M ulticontexted ATMI Application
e Troubleshooting a Multithreaded/M ulticontexted ATMI Application
e Error Handling for a Multithreaded/Multicontexted ATMI Application

Testing Recommendations for a
Multithreaded/Multicontexted ATMI Application

We recommend following these recommendations during testing of your multithreaded and/or
multicontexted code:

e Use amultiprocessor.
e Use amultithreaded debugger (if your operating system vendor offers one).

e Run stress tests to introduce a variety of timing conditions.

Troubleshooting a Multithreaded/Multicontexted ATMI
Application

When you need to investigate possible causes of errors, we recommend that you start by checking
whether and how the reMurTIcONTEXTS flag has been set. Errors are frequently introduced by
failuresto set thisflag or to set it properly.

Improper Use of the TPMULTICONTEXTS Flag to tpinit()

If aprocess includes the TevuL.TICcONTEXTS flag in a state for which thisflag is not allowed (or
Omits TPMULTICONTEXTS in astate that requiresit), then tpinit () returns-1 and sets tperrno
to TPEPROTO.

Calls to tpinit() Without TPMULTICONTEXTS

When tpinit () isinvoked without TPMULTICONTEXTS, it behaves asit doeswhen caled in a
single-contexted application. When tpinit () has been invoked once, subsequent tpinit ()

calls without the TevuLTICONTEXTS flag succeed without further action. Thisistrue even if the
value of the TuxCcoNFIG Or wSNADDR environment variable in the application has been changed.
Calling tpinit () without the TpvurTICONTEXTS flag set isnot alowed in multicontext mode.

Programming an Oracle Tuxedo ATMI Application Using C 10-55

10-56

If aclient has not joined an application and tpinit () iscaled implicitly (asaresult of acal to
another function that calls tpinit ()), then the Oracle Tuxedo system interprets the action as a
call to tpinit () without the rpMuLTICONTEXTS flag for purposes of determining which flags
may be used in subsequent callsto tpinit ().

For most ATMI functions, if afunctionisinvoked by athread that isnot associated with acontext
in a process aready operating in multicontext mode, the ATMI function fails with
tperrno (5) =TPEPROTO.

Insufficient Thread Stack Size

On certain operating systems, the operating system default thread stack sizeisinsufficient for use
with the Oracle Tuxedo system. Compag Tru64 UNIX and UnixWare are two operating systems
for which thisis known to be the case. If the default thread stack size parameter is used,
applications on these platforms dump core when a function with substantial stack usage
requirementsis called by any thread other than the main thread. Often the corefilethat is created
does not give any obvious clues to the fact that an insufficient stack size is the cause of the
problem.

When the Oracle Tuxedo system is creating threads on its own, such as server-dispatched threads
or aclient unsolicited message thread, it can adjust the default stack size parameter on these
platforms to a sufficient value. However, when an application is creating threads on its own, the
application must specify asufficient stack size. At aminimum, avalue of 512K should be used
for any thread that will access the Oracle Tuxedo system.

On Compag Tru64 UNIX and other systemson which POSI X threadsare used, athread stack size
isspecified by invoking pthread_attr_setstacksize() before calling pthread_create().
On UnixWare, the thread stack sizeis specified as an argument to thr_create (). Consult your
operating system documentation for further information on this subject.

Error Handling for a Multithreaded/Multicontexted ATMI
Application

Errorsarereported in the user log. For each error, whether in single-context mode or multicontext
mode, the following information is recorded:

process_ID.thread ID.context_ID

See Also

e “How Multithreading and Multicontexting Work in a Client” on page 10-9

Programming an Oracle Tuxedo ATMI Application Using C

../rf5/rf5.html

Testing a Multithreaded/Multicontexted ATMI Application

e “How Multithreading and Multicontexting Work in Server-Dispatched Threads an on
ATMI Server” on page 10-14

e “How Multithreading and Multicontexting Work in Application-Created Threads of an
ATMI Server” on page 10-18

e “Preliminary Guidelines for Programming a Multithreaded/M ulticontexted ATMI
Application” on page 10-24

Programming an Oracle Tuxedo ATMI Application Using C 10-57

10-58 Programming an Oracle Tuxedo ATMI Application Using C

Managing Errors

Thistopic includes the following sections:

e System Errors

Application Errors

Handling Errors

e Transaction Considerations

Central Event Log

Debugging Application Processes

Comprehensive Example

System Errors

The Oracle Tuxedo system usesthe tperrno (5) variable to supply information to a process
when afunction fails. All ATMI functionsthat normally return an integer or pointer return -1 or
NULL, respectively, on error and set tperrno () to avalue that describes the nature of the error.
When afunction does not return to its caller, asin the case of tpreturn() Or tpforward(),
which are used to terminate a service routine, the only way the system can communicate success
or failure isthrough the variable tperrno () in the requester.

The tperrordetail (3c) and tpstrerrordetail (3c) functions can be used to obtain
additional detail about an error in the most recent Oracle Tuxedo system call on the current
thread. tperrordetail () returnsan integer (with an associated symbolic name) which is then

Programming an Oracle Tuxedo ATMI Application Using C 111

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf5/rf5.html

used as an argument to tpstrerrordetail () tO retrieve a pointer to a string that contains the
error message. The pointer can then be used as an argument to userlog (3c) Of fprintf (). For
alist of the symbolic namesthat can be returned, refer to tperrordetail (3c) inthe Oracle
Tuxedo ATMI C Function Reference.

tpurcode (5) isused to communicate user-defined conditions only. The system setsthe value of
tpurcode to the value of the rcode argument of tpreturn (). The system sets tpurcode,
regardless of the value of the rva1 argument of tpreturn (), unlessan error is encountered by
tpreturn () Or atransaction timeout occurs.

The codesreturned in tperrno (5) represent categoriesof errors, which arelisted in Table 11-1.

Table 11-1 tperrno Error Categories

Error Category

tperrno Values

Abort TPEABORT?

Oracle Tuxedo system! TPESYSTEM

Call descriptor TPELIMIT and TPEBADDESC
Conversational TPEVENT

Duplicate operation TPEMATCH

General communication

TPESVCFAIL, TPESVCERR,
TPEBLOCK, and TPGOTSIG

Heuristic decision

TPEHAZARD? and TPEHEURISTIC?

Invalid argument® TPEINVAL

MIB TPEMIB

No entry TPENOENT
Operating system® TPEOS
Permission TPEPERM
Protocol TPEPROTO
Queueing TPEDIAGNOSTIC

Programming an Oracle Tuxedo ATMI Application Using C

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf5/rf5.html
../rf5/rf5.html

Table 11-1 tperrno Error Categories

Error Category

tperrno Values

Release compatibility TPERELEASE

Resource manager TPERMERR

Timeout TPETIME

Transaction TPETRAN>

Typed buffer mismatch TPEITYPE and TPEOTYPE

1. Applicableto all ATMI functionsfor which failureisreported by the

valuereturned in tperrno (5).

2. Refer to “Fatal Transaction Errors’ on page11-32 for more

information on this error category.

System Errors

Asfootnote 1 shows, four categories of errorsare reported by tperrno (5) and are applicableto
all ATMI functions. The remaining categories are used only for specific ATMI functions.The
following sections describe some error categories in detail.

Programming an Oracle Tuxedo ATMI Application Using C 1-3

../rf5/rf5.html
../rf5/rf5.html

Abort Errors

For information on the errorsthat lead to abort, refer to “ Fatal Transaction Errors’ on page 11-32.

Oracle Tuxedo System Errors

11-4

Oracle Tuxedo system errorsindicate problems at the system level, rather than at the application
level. When Oracle Tuxedo system errors occur, the system writes messages explaining the exact
nature of the errors to the central event log, and returns TPESYSTEM in tperrno (5) . FOr more
information, refer to the “ Central Event Log” on page 11-41. Because these errors occur in the
system, rather than in the application, you may need to consult the system administrator to correct
them.

Programming an Oracle Tuxedo ATMI Application Using C

../rf5/rf5.html

Call Descriptor Errors

Call Descriptor Errors

Call descriptor errors occur as aresult of exceeding the maximum limit of call descriptors or
referencing an invalid value. Asynchronous and conversational calls return Tper.IM1IT When the
maximum number of outstanding call descriptors has been exceeded. TPEBADDESC iS returned
when an invalid call descriptor valueis specified for an operation.

Call descriptor errors occur only during asynchronous calls or conversational calls. (Call
descriptorsare not used for synchronous calls.) Asynchronous calls depend on call descriptorsto
associate replies with the corresponding requests. Conversational send and receive functions
depend on call descriptorsto identify the connection; the call that initiates the connection depends
on the availability of a call descriptor.

Troubleshooting of call descriptor errors can be done by checking for specific errors at the
application level.

Limit Errors

The system alows up to 50 outstanding call descriptors (replies) per context (or Oracle Tuxedo
application association). Thislimit is enforced by the system; it cannot be redefined by your
application.

Thelimit for call descriptors for simultaneous conversational connectionsis more flexible than
the limit for replies. The application administrator defines the limit in the configuration file.
When the application is not running, the administrator can modify the maxconv parameter in the
RESOURCES section of the configuration file. When the application is running, the administrator
can modify the macuINES section dynamically. Refer to tmconfig, wtmconfig(1) inthe
Oracle Tuxedo Command Reference for more information.

Invalid Descriptor Errors

A call descriptor can become invalid and, if referenced, cause an error to be returned to
tperrno (5) in either of two situations:

e A call descriptor is used to retrieve a message, which may be afailed message
(TPEBADDESC).

e An attempt is made to reuse a stale call descriptor (TPEBADDESC).
A call descriptor might become stale, for example, in the following circumstances:

Programming an Oracle Tuxedo ATMI Application Using C 11-5

../rf5/rf5.html
../rfcm/rfcmd.html
../rfcm/rfcmd.html

e When the application calls tpabort () Or tpcommit () and transaction replies (sent
without the TpnoTRAN flag) remain to be retrieved.

e A transaction times out. When the timeout is reported by a call to tpgetrply (), No
message is retrieved using the specified descriptor and the descriptor becomes stale.

11-6 Programming an Oracle Tuxedo ATMI Application Using C

Conversational Errors

Conversational Errors

When an unknown descriptor is specified for conversational services, the tpsend (), tprecv (),
and tpdiscon () functions return TPEBADDESC.

When tpsend () and tprecv () fail with aTPEEVENT error after a conversational connection is
established, an event has occurred. Data may or may not be sent by tpsend (), depending on the
event. The system returns TPEEVENT in the revent parameter passed to the function call and the
course of action is dictated by the particular event.

For a complete description of conversational events, refer to “ Understanding Conversational
Communication Events’ on page 7-12.

Programming an Oracle Tuxedo ATMI Application Using C 1-1

Duplicate Object Error

The TpEMATCH error code isreturned in tperrno (5) when an attempt is made to perform an
operation that resultsin aduplicate object. The following tablelists the functions that may return
the TpEMATCH error code and the associated cause.

Function Cause

tpadvertise The svcname specified is aready advertised for the server but
with afunction other than func. Although the function fails,
svcname remains advertised with its current function (that is,
func does not replace the current function name).

tpresume The tranid pointsto atransaction identifier that another
process has already resumed. In this case, the caller’ s state with
respect to the transaction is not changed.

tpsubscribe The specified subscription information has already been listed
with the EventBroker.

For more information on these functions, refer to the Oracle Tuxedo ATMI C Function Reference

11-8 Programming an Oracle Tuxedo ATMI Application Using C

../rf5/rf5.html

General Communication Call Errors

General Communication Call Errors

General communication call errors can occur during any communication calls, regardless of
whether those calls are synchronous or asynchronous. Any of the following errors may be
returned in tperrno (5): TPESVCFAIL, TPESVCERR, TPEBLOCK, Of TPGOTSIG.

TPESVCFAIL and TPESVCERR Errors

If the reply portion of acommunication failsasaresult of acal to tpcall () oOr tpgetrply (),
the system returns TPESVCERR Of TPSEVCFAIL tO tperrno (5). The system determinesthe error
by the arguments that are passed to tpreturn () and the processing that is performed by this
function.

If tpreturn () encounters an error in processing or handling arguments, the system returns an
error to the original requester and sets tperrno (5) t0 TPESVCERR. Thereceiver determines that
an error has occurred by checking the value of tperrno (). The system does not send the data
from the tpreturn () function, and if the failure occurred on tpgetrply (), it renders the call
descriptor invalid.

If tpreturn () does not encounter the TPESVCERR error, then the value returned in rvai
determines the success or failure of the call. If the application specifies Tpra1L inthe rval
parameter, the system returns TPESVCFAIL in tperrno (5) and sends the data message to the
caler. If rval isset to TPsUCCESS, the system returns successfully to the caller, tperrno () is
not set, and the caller receives the data.

TPEBLOCK and TPGOTSIG Errors

The TPEBLOCK and TPGOTSIG error codes may be returned at the request or the reply end of a
message and, as aresult, can be returned for all communication calls.

The system returns TpEBLOCK When ablocking condition existsand the process sending arequest
(synchronously or asynchronously) indicates, by setting its £1ags parameter to TPPNOBLOCK, that
it does not want to wait on a blocking condition. A blocking condition can exist when a request
isbeing sent if, for example, al the system queues are full.

When tpcall () indicates ano blocking condition, only the sending part of the communication
isaffected. If acall successfully sends areguest, the system does not return TPEBLOCK, regardless
of any blocking situation that may exist while the call waits for the reply.

Programming an Oracle Tuxedo ATMI Application Using C 11-9

../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html

11-10

The system returns TPEBLOCK for tpgetrply () when acall ismade with fiags set to
TPNOBLOCK and a blocking condition is encountered while tpgetrply () isawaiting the reply.
This may occur, for example, if amessageis not currently available.

The TpcoTsIc error indicates an interruption of asystem call by asignal; this situation is not
actually an error condition. If the f1ags parameter for the communication functionsis set to
TPSIGRSTRT, the calls do not fail and the system does not return the Tecorszc error codein
tperrno(5).

Programming an Oracle Tuxedo ATMI Application Using C

../rf5/rf5.html

Invalid Argument Errors

Invalid Argument Errors

Invalid argument errorsindicate that an invalid argument was passed to afunction. Any ATMI
function that takes arguments can fail if you pass it arguments that are invalid. In the case of a
function that returns to the caller, the function fails and causes tperrno (5) to be set to
TPEINVAL. Inthe case of tpreturn () O tpforward (), the system sets tperrno () to
TPESVCERR for either the tpcall () or tpgetrply () function that initiated the request and is
waiting for results to be returned.

Y ou can correct an invalid argument error at the application level by ensuring that you pass only
valid arguments to functions.

Programming an Oracle Tuxedo ATMI Application Using C 1-1

../rf5/rf5.html

MIB Error

The tpadmcall (3c) function returns TPEMIB in tperrno (5) in the event an administrative
request fails. outbuf isupdated and returned to the caller with FM L 32 fieldsindicating the cause
of the error. For more information on the cause of the error, refer tomzs (5) and T™™_MIB(5) in
File Formats, Data Descriptions, MIBs, and System Processes Reference.

11-12 Programming an Oracle Tuxedo ATMI Application Using C

../rf3c/rf3c.html
../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html

No Entry Errors

No Entry Errors

No entry errorsresult from alack of entriesin the system tables or the data structure used to
identify buffer types. The meaning of the no entry type error, TPENOENT, depends on the function
that isreturningit. Table 11-2 liststhefunctionsthat return thiserror and describes various causes

of error.

Table 11-2 No Entry Errors

Function

Cause

tpalloc ()

The system does not know about the type of buffer requested. For a
buffer type and/or subtype to be known, there must be an entry for it
in atype switch data structure that is defined in the Oracle Tuxedo
system libraries. Refer to tuxtypes (5) and typesw (5) inthe
File Formats, Data Descriptions, MIBs, and System Processes
Reference for more information.

On an application level, ensure that you have referenced a known
type; otherwise, check with the system administrator.

tpinit ()

The calling process cannot join the application because thereis no
space |eft in the bulletin board to make an entry for it. Check with
the system administrator.

tpcall ()
tpacall ()

The calling process references a service called that is not known to
the system since there isno entry for it in the bulletin board. On an
application level, ensure that you have referenced the service
correctly; otherwise, check with the system administrator.

tpconnect ()

The system cannot connect to the specified name becausethe service
named does not exist or it is not a conversational service.

tpgprio ()

The calling process seeks arequest priority when no request has
been made. Thisis an application-level error.

tpunadvertise ()

The system cannot unadvertise the service name because the name
is not currently advertised by the calling process.

Programming an Oracle Tuxedo ATMI Application Using C

1-13

../rf5/rf5.html
../rf5/rf5.html

11-14

Table 11-2 No Entry Errors

Function

Cause

tpenqueue (3¢)
tpdequeue (3¢)

The system cannot access the queue space because the associated
TMQUEUE (5) server isnot available. Refer to the File Formats,
Data Descriptions, MIBs, and System Processes Reference for more
information.

tppost ()
tpsubscribe ()
tpunsubscribe ()

The system cannot access the Oracle Tuxedo system Event Broker.
Refer to “Writing Event-based Clients and Servers’ on page 8-1 for
more information.

Programming an Oracle Tuxedo ATMI Application Using C

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf5/rf5.html

Operating System Errors

Operating System Errors

Operating system errors indicate that an operating system call has failed. The system returns
TPEOS iN tperrno (5). On UNIX systems, the system returns a numeric value identifying the
failed system call in the global variable tunixerr. To resolve operating system errors, you may
need to consult your system administrator.

Programming an Oracle Tuxedo ATMI Application Using C 11-15

../rf5/rf5.html

Permission Errors

If acalling process does not have the correct permissions to join the application, the tpinit ()
call fails, returning TPEPERM iN tperrno (5) . Permissionsare set in the configuration file, outside
of the application. If you encounter this error, check with the application administrator to make
sure the necessary permissions are set in the configuration file.

11-16 Programming an Oracle Tuxedo ATMI Application Using C

../rf5/rf5.html

Protocol Errors

Protocol Errors

Protocol errors occur when an ATMI function isinvoked, either in the wrong order or using an
incorrect process. For example, a client may try to begin communicating with a server before

joining the application. Or tpcommit () may be called by atransaction participant instead of the
initiator.

Y ou can correct aprotocol error at the application level by enforcing therules of order and proper
usage of ATMI calls.

To determine the cause of aprotocol error, answer the following questions:

e Isthe call being made in the correct order?

e Isthe call being made by the correct process?

Protocol errorsreturn the TeEPrROTO ValuE N tperrno (5).

Refer to “Introduction to the C Application-Transaction Monitor Interface” in the Oracle Tuxedo
ATMI C Function Reference for more information.

Programming an Oracle Tuxedo ATMI Application Using C 1-17

../rf5/rf5.html

Queuing Error

The tpenqueue (3¢) OF tpdequeue (3¢) function retUrNSTPEDIAGNOSTIC iNtperrno (5) if the
engueuing or dequeuing on a specified queue fails. The reason for failure can be determined by
the diagnostic returned viathe ct 1 buffer. For alist of valid ct1 flags, refer to tpenqueue (3¢)

or tpdequeue (3c) inthe Oracle Tuxedo ATMI C Function Reference

11-18 Programming an Oracle Tuxedo ATMI Application Using C

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf5/rf5.html

Release Compatibility Error

Release Compatibility Error

The Oracle Tuxedo system returns TPERELEASE iN tperrno (5) if acompatibility issue exists
between multiple releases of an Oracle Tuxedo system participating in an application domain.

For example, the TPERELEASE error may be returned if the Tpack flag is set when issuing the
tpnotify (3c) function (indicating that the caller blocks until an acknowledgment message is
received from the target client), but the target client is using an earlier release of the Oracle
Tuxedo system that does not support the Tpack acknowledgement protocol.

Programming an Oracle Tuxedo ATMI Application Using C 11-19

../rf3c/rf3c.html
../rf5/rf5.html

Resource Manager Errors

11-20

Resource manager errors can occur with callsto tpopen (3¢) and tpclose (3c), in which case
the system returns the value of TPERMERR in tperrno (5). Thiserror codeisreturned for
tpopen () When the resource manager failsto open correctly. Similarly, this error code is
returned for tpclose () when the resource manager failsto close correctly. To maintain
portability, the Oracle Tuxedo system does not return amore detailed explanation of thistype of
failure. To determine the exact nature of aresource manager error, you must interrogate the
resource manager.

Programming an Oracle Tuxedo ATMI Application Using C

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf5/rf5.html

Timeout Errors

Timeout Errors

The Oracle Tuxedo system supports timeout errorsto establish alimit on the amount of time that
the application waitsfor aservice request or transaction. The Oracle Tuxedo system supportstwo
types of configurable timeout mechanisms: blocking and transaction.

A blocking timeout specifies the maximum amount of time that an application waits for areply
to aservice request. The application administrator defines the blocking timeout for the system in
the configuration file.

A transaction timeout defines the duration of a transaction, which may involve several service
requests. To define the transaction timeout for an application, pass the t imeout argument to
tpbegin().

The system may return timeout errors on communication callsfor either blocking or transaction
timeouts, and on tpcommit () for transaction timeouts only. In each case, if aprocessisin
transaction mode and the system returns TeETTME On afailed call, atransaction timeout has
occurred.

By default, if aprocessisnot in transaction mode, the system performs blocking timeouts. When
you set the f1ags parameter of acommunication call to TenoT1ME, the flag setting appliesto
blocking timeouts only. If aprocessisin transaction mode, blocking timeouts are not performed
and the reNoTIME flag setting is not relevant.

If aprocessisnot in transaction mode and ablocking timeout occurs on an asynchronous call, the
communication call that blocked fails, but the call descriptor is still valid and may be used on a
reissued call. Other communication is not affected.

When atransaction timeout occurs, the call descriptor to an asynchronous transaction reply
(specified without the renoTRAN flag) becomes stale and may no longer be referenced.

TPETIME indicates a blocking timeout on acommunication call if the call was not madein
transaction mode or if the f1ags parameter was not set to TPNOBLOCK.

Note: If you set the TenoBLOCK flag, ablocking timeout cannot occur because the call returns
immediately if a blocking condition exists.

For additional information on handling timeout errors, refer to “ Transaction Considerations’ on
page 11-28.

Programming an Oracle Tuxedo ATMI Application Using C 1-21

Transaction Errors

For information on transactions and the non-fatal and fatal errors that can occur, refer to
“Transaction Considerations’ on page 11-28.

11-22 Programming an Oracle Tuxedo ATMI Application Using C

Typed Buffer Errors

Typed Buffer Errors

Typed buffer errors are returned when requests or replies to processes are sent in buffers of an
unknown type. The tpcall (), tpacall (), and tpconnect () functionsreturn TPEITYPE When
arequest data buffer is sent to a service that does not recognize the type of the buffer.

Processes recognize buffer types that are identified in both the configuration file and the Oracle
Tuxedo system librariesthat arelinked into the process. Theselibrariesdefineandinitializeadata
structure that identifies the typed buffersthat the process recognizes. Y ou can tailor the library to
each process, or an application can supply its own copy of afilethat definesthe buffer types. An
application can set up the buffer type data structure (referred to as a buffer type switch) on a
process-specific basis. For more information, see tuxtypes (5)and typesw (5) intheFile
Formats, Data Descriptions, MIBs, and System Processes Reference.

The tpcall (), tpgetrply (), tpdequeue (3¢), and tprecv () functions return TPEOTYPE
when areply messageis sent in abuffer that is not recognized or not allowed by the caler. Inthe
latter case, the buffer typeisincluded in the type switch, but the type returned does not match the
typethat wasallocated to receive thereply and achangein buffer typeisnot allowed by thecaller.
The caller indicates this preference by setting £1ags to TPNOCHANGE. In this case, strong type
checking is enforced; the system returns TPEOTYPE When it is violated. By default, weak type
checking is used. In this case, a buffer type other than the type originally allocated may be
returned, aslong asthat typeisrecognized by the caller. The rulesfor sending replies are that the
reply buffer must be recognized by the caller and, if strong type checking has been indicated, you
must observeit.

Application Errors

Within an application, you can pass information about user-defined errorsto calling programs
using the rcode argument of tpreturn (). Also, the system sets the value of tpurcode to the
value of the rcode argument of tpreturn (). For more information about tpreturn (3c) or
tpurcode (5), refer to the Oracle Tuxedo ATMI C Function Reference and the File Formats,
Data Descriptions, MIBs, and System Processes Reference, respectively.

Handling Errors

Y our application logic should test for error conditions for the calls that have return values, and
take appropriate action when an error occurs. Specifically, you should:

e Test to determine whether a -1 or NuLL value has been returned (depending on the function
call).

Programming an Oracle Tuxedo ATMI Application Using C 11-23

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html

e Invoke code that contains a switch statement that tests for specific values of tperrno (5)
and performs the appropriate application logic.

The ATMI supports three functions, tpstrerrordetail (3¢), tpstrerror (3c), and
Fstrerror, Fstrerror32(3fml),forretrievingthetext of anerror messagefrom the message
catalogsfor the Oracle Tuxedo system and FML. The functionsreturn pointersto the appropriate
error messages. Y our program can use a pointer to direct the referenced text to userlog (3c) or
to another destination. For details, refer to tpstrerrordetail (3¢) and tpstrerror (3c) in
the Oracle Tuxedo ATMI C Function Reference, and Fstrerror, Fstrerror32(3fml) inthe
Oracle Tuxedo ATMI FML Function Reference.

Listing 11-1 shows atypical method of handling errors. The atmicall () functionin this
example represents ageneric ATMI call. Note the code after the switch statement (line 21): it
shows how tpurcode can be used to interpret an application-defined return code.

Listing 11-1 Handling Errors

001 #include <stdio.h>
002 #include "atmi.h"

003

004 main ()

005

006 {

007 int rtnval;

008

009 if (tpinit ((TPINIT *) NULL) == -1)
010 error message, exit program;
011 if (tpbegin (30, 0) == -1)

012 error message, tpterm, exit program;
013

014 allocate any buffers,

015 make atmi calls

016 check return value
017

018 rtnval = atmicall();
019

020 if (rtnval == -1) {
021 switch (tperrno) {

11-24 Programming an Oracle Tuxedo ATMI Application Using C

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf5/rf5.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html

Handling Errors

022 case TPEINVAL:

023 fprintf (stderr, "Invalid arguments were given to atmicall\n");
024 fprintf (stderr, "e.g., service name was null or flags wrong\n") ;
025 break;

026 case

027 fprintf (stderr, ". . .");

028 break;

029

030 Include all error cases described in the atmicall (3) reference 031
page.
032 Other return codes are not possible, so there should be no 033 default

within the switch statement.

034

035 if (tpabort(0) == -1) {

036 char *p;

037 fprintf (stderr, "abort was attempted but failed\n");
038 P = tpstrerror (tperrno) ;

039 userlog("%$s", p);

040 }

041 }

042 else

043 if (tpcommit(0) == -1)

044 fprintf (stderr, "REPORT program failed at commit time\n");
045

046 The following code fragment shows how an application-specific

047 return code can be examined.

048

049

050

051 ret = tpcall("servicename", (char*)sendbuf, 0, (char **)&rcvbuf,

&rcvlen, \

052 (long)0);

053

054

055

056 (void) fprintf (stdout, "Returned tpurcode is: %d\n", tpurcode) ;
057

058

Programming an Oracle Tuxedo ATMI Application Using C 11-25

11-26

059
060
061
062

free all buffers
tpterm() ;
exit(0);

}

Thevaluesof tperrno (5) provide detailsabout the nature of each problem and suggest thelevel
at which it can be corrected. If your application defines alist of error conditions specific to your
processing, the same can be said for the values of tpurcode.

Listing 11-2 shows how to usethe tpstrerrordetail (3¢) function to obtain additional detail
when an error is encountered.

Listing 11-2 Handling Errors Using tpstrerrordetail()

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022

#include <stdio.h>

#include <string.h>

#include <atmi.h>/* BEA Tuxedo Header File */
#define LOOP_ITER 100

#if defined(__STDC__) || defined(__cplusplus)

main(int argc, char *argvl[])

#else

main(argc, argv)

int argc;
char *argvl[];
#endif
{
char *sendbuf, *rcvbuf;
long sendlen, rcvlen;
int ret;
int 1i;
if(argec !'= 2) {
(void) fprintf (stderr, "Usage: simpcl string\n");
exit (1) ;
}
/* Attach to BEA Tuxedo System as a Client Process */
if (tpinit((TPINIT *) NULL) == -1) {

Programming an Oracle Tuxedo ATMI Application Using C

../rf3c/rf3c.html
../rf5/rf5.html

Handling Errors

023 (void) fprintf(stderr, "Tpinit failed\n");

024 exit(1);

025 }

026 sendlen = strlen(argv[1l]);

027

028 /* Allocate STRING buffers for the request and the reply */

029

030 if ((sendbuf = (char *) tpalloc("STRING", NULL, sendlen+1)) == NULL) {
031 (void) fprintf (stderr, "Error allocating send buffer\n");
032 tpterm() ;

033 exit(1l);

034 }

035

036 if ((rcvbuf = (char *) tpalloc("STRING", NULL, sendlen+l)) == NULL) {
037 (void) fprintf (stderr, "Error allocating receive buffer\n");
038 tpfree (sendbuf) ;

039 tpterm() ;

040 exit(1l);

041 }

042

043 for(i1i=0; i1<LOOP_ITER; i++) {

044 (void) strcpy (sendbuf, argvI[l]);

045

046 /* Request the service TOUPPER, waiting for a reply */

047 ret = tpcall ("TOUPPER", (char *)sendbuf, 0, (char **)&rcvbuf,
&rcvlen, (long)O0);

048

049 if(ret == -1) {

050 (void) fprintf (stderr, "Can't send request to service
TOUPPER\n") ;

051 (void) fprintf(stderr, "Tperrno = %d, %s\n", tperrno,

tpstrerror (tperrno)) ;

052

053 ret = tperrordetail(0);

054 if(ret == -1) {

055 (void) fprintf(stderr, "tperrodetail() failed!\n");
056 (void) fprintf (stderr, "Tperrno = %d, %s\n", tperrno,

tpstrerror (tperrno)) ;

Programming an Oracle Tuxedo ATMI Application Using C 1-27

057 }

058 else if (ret != 0) {

059 (void) fprintf(stderr, "errordetail:%s\n",
060 tpstrerrordetail (ret, 0));
061 }

062 tpfree (sendbuf) ;

063 tpfree (rcvbuf) ;

064 tpterm() ;

065 exit(1l);

066 }

067 (void) fprintf (stdout, "Returned string is: %s\n", rcvbuf);
068 }

069

070 /* Free Buffers & Detach from System/T */

071 tpfree(sendbuf) ;

072 tpfree(rcvbuf) ;

073 tpterm() ;

074 return(0) ;

Transaction Considerations

The following sections describe how various programming features work when used in
transaction mode. The first section provides rules of basic communication etiquette that should
be observed in code written for transaction mode.

11-28 Programming an Oracle Tuxedo ATMI Application Using C

Communication Etiquette

Communication Etiquette

When writing code to be run in transaction mode, you must observe the following rules of basic
communication etiquette:

Processes that are participants in the same transaction must require replies for all requests.
To include arequest that requires no reply, set the f1ags parameter of tpacall () to
TPNOTRAN O TPNOREPLY.

A service must retrieve all asynchronous transaction replies before calling tpreturn () or
tpforward (). Thisrule must be observed regardless of whether the code isrunning in
transaction mode.

Theinitiator must retrieve al asynchronous transaction replies (made without the
TPNOTRAN flag) before calling tpcommit ().

Replies must be retrieved for asynchronous calls that expect replies from non-participants
of the transaction, that is, replies to requests made with tpacal1 () in which the
transaction, but not the reply, is suppressed.

If atransaction has not timed out but is marked “abort-only,” any further communication
should be performed with the TpNoTRAN flag set so that the results of the communication
are preserved after the transaction isrolled back.

If atransaction has timed out:

— The descriptor for the timed-out call becomes stale and any further reference to it
returns TPEBADDESC.

— Further callsto tpgetrply () OF tprecv () for any outstanding descriptors return a
global state of transaction timeout; the system sets tperrno (5) t0 TPETIME.

— Asynchronous calls can be made with the f1ags parameter of tpacall () setto
TPNOREPLY, TPNOBLOCK, O TPNOTRAN.

Once atransaction has been marked “abort-only” for reasons other than timeout, acall to
tpgetrply () returns whatever value represents the local state of the call; that is, it returns
either success or an error code that reflects the local condition.

Once a descriptor is used with tpgetrply () toretrieve areply, or with tpsend () or
tprecv () toreport an error condition, it becomesinvalid and any further reference to it
returns TPEBADDESC. Thisruleis always observed, regardless of whether the codeis
running in transaction mode.

Programming an Oracle Tuxedo ATMI Application Using C 11-29

../rf5/rf5.html

e Once atransaction is aborted, all outstanding transaction call descriptors (made without the
TPNOTRAN flag) become stale, and any further references to them return TPEBADDESC.

11-30 Programming an Oracle Tuxedo ATMI Application Using C

Transaction Errors

Transaction Errors

The following sections describe transaction-related errors.

Non-fatal Transaction Errors

When transaction errors occur, the system returnSTPETRAN iN tperrno (5) . The precise meaning
of such an error, however, depends on the function that is returning it. Table 11-3 lists the
functions that return transaction errors and describes possible causes of them.

Table 11-3 Transaction Errors

Function Cause

tpbegin () Usually caused by atransient system error that occur during an attempt to start
the transaction. The problem may clear up with arepeated call.

tpcancel () The function was called for atransaction reply after a request was made
without the TPNOTRAN flag.

tpresume () The Oracle Tuxedo system is unable to resume a global transaction because
thecaller iscurrently participating in work outside the global transaction with
one or more resource managers. All such work must be completed before the
global transaction can be resumed. The caller’ s state with respect to the local
transaction is unchanged.

tpconnect (), A call was made in transaction mode to a service that does not support
tppost (), transactions. Some services belong to server groups that access a database
tpcall(),and management system (DBMS) that, in turn, support transactions. Other
tpacall () services, however, do not belong to such groups. In addition, some services

that support transactions may require interoperation with software that does
not. For example, a service that prints aform may work with a printer that
does not support transactions. Services that do not support transactions may
not function as participants in a transaction.

The grouping of servicesinto servers and server groups is an administrative
task. In order to determine which services support transactions, check with
your application administrator.

Y ou can correct transaction-level errors at the application level by enabling
the TPNOTRAN flag or by accessing the service for which an error was
returned outside of the transaction.

Programming an Oracle Tuxedo ATMI Application Using C 11-31

../rf5/rf5.html

11-32

Fatal Transaction Errors

When afatal transaction error occurs, the application should explicitly abort the transaction by
having the initiator call tpabort (). Therefore, it isimportant to understand the errors that are
fatal to transactions. Three conditions cause a transaction to fail:

e Theinitiator or a participant in the transaction causesit to be marked “abort-only” for one
of the following reasons:

— tpreturn () encountersan error while processing its arguments; tperrno (5) iSset to
TPESVCERR.

— The rval argument to tpreturn () was Set t0 TPFAIL; tperrno (5) iSSet to
TPESVCFATIL.

— The type or subtype of the reply buffer is not known or not allowed by the caller and,
as aresult, success or failure cannot be determined; tperrno (5) iSSet to TPEOTYPE.

e Thetransaction times out; tperrno (5) iSSet t0 TPETIME.

e tpcommit () iscalled by aparticipant rather than by the originator of atransaction;
tperrno (5) IS Set t0 TPEPROTO.

The only protocol error that is fatal to transactionsis calling tpcommit () from the wrong
participant in atransaction. Thiserror can be corrected in the application during the devel opment
phase.

If tpcommit () iscalled after an initiator/participant failure or transaction timeout, the result is
an implicit abort error. Then, because the commit failed, the transaction should be aborted.

If the system returns TPESVCERR, TPESVCFAIL, TPEOTYPE, OF TPETIME for any communication
call, thetransaction should be aborted explicitly with acall to tpabort (). Y ou heed not wait for
outstanding call descriptors before explicitly aborting the transaction. However, because these
descriptors are considered stale after the call is aborted, any attempt to access them after the
transaction is terminated returns TPEBADDESC.

In the case of TPESVCERR, TPESVCFAIL, and TPEOTYPE, communication calls continue to be
allowed as long as the transaction has not timed out. When these errors are returned, the
transaction ismarked abort-only. To preserve the results of any further work, you should call any
communication functions with the f1ags parameter set to TpNOTRAN. By setting this flag, you
ensure that the work performed for the transaction marked “ abort-only” will not be rolled back
when the transaction is aborted.

When a transaction timeout occurs, communication can continue, but communication requests
cannot:

Programming an Oracle Tuxedo ATMI Application Using C

../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html

Transaction Errors

e Requirereplies
e Block

e Be performed on behalf of the caller’s transaction

Therefore, to make asynchronous calls, you must set the f1ags parameter to TPNOREPLY,
TPNOBLOCK, O TPNOTRAN.

Heuristic Decision Errors

The tpcommit () function may return TPEHAZARD OF TPEHEURISTIC, depending on how
TP_COMMIT_CONTROL iS Set.

If you set TP_coMMIT_CONTROL tO TP_CMT_LOGGED, the application obtains control before the
second phase of atwo-phase commit is performed. In this case, the application may not be aware
of aheuristic decision that occurs during the second phase.

TPEHAZARD Of TPEHEURISTIC can be returned in a one-phase commit, however, if asingle
resource manager isinvolved in the transaction and it returns a heuristic decision or a hazard
indication during a one-phase commit.

If you set TP_CcoMMIT_CONTROL tO TP_CMT_COMPLETE, then the system returns TPEHEURISTIC
if any resource manager reports a heuristic decision, and TPEHAZARD if any resource manager
reportsahazard. TeEHAZARD Specifiesthat aparticipant failed during the second phase of commit
(or during a one-phase commit) and that it is not known whether a transaction completed
successfully.

Programming an Oracle Tuxedo ATMI Application Using C 11-33

Transaction Timeouts

11-34

Asdescribed in “ Transaction Errors’ on page 11-31, two types of timeouts can occur in an Oracle
Tuxedo application: blocking and transaction. The following sections describe how various
programming features are affected by transaction timeouts. Refer to “ Transaction Errors’ on
page 11-31 for more information on timeouts.

Effect on the tpcommit() Function

What isthe state of atransactionif atimeout occursafter acall to tpcommit () ?1f thetransaction
timed out and the system knows that it was aborted, the system reports these events by setting
tperrno (5) to TPEABORT. If the status of the transaction is unknown, the system sets the error
code to TPETIME.

When the state of atransaction isin doubt, you must query the resource manager. First, verify
whether or not any of the changes that were part of the transaction were applied. Then you can
determine whether the transaction was committed or aborted.

Effect on the TPNOTRAN Flag

When a process is in transaction mode and makes a communication call with f1ags set to
TPNOTRAN, it prohibits the called service from becoming a participant in the current transaction.
Whether the service request succeeds or fails has no impact on the outcome of the transaction.
The transaction can still timeout while waiting for areply that isdue from aservice, whether it is
part of the transaction or not.

For additional information on using the TenoTRAN flag, refer to “tpreturn() and tpforward()
Functions” on page 11-35.

Programming an Oracle Tuxedo ATMI Application Using C

../rf5/rf5.html

tpreturn() and tpforward() Functions

tpreturn() and tpforward() Functions

If you call a process while running in transaction mode, tpreturn () and tpforward () place
the service portion of the transaction in a state that allowsiit to be either committed or aborted
when the transaction completes. Y ou can call a service several times on behalf of the same
transaction. The system does not fully commit or abort the transaction until the initiator of the
transaction calls tpcommit () OF tpabort ().

Neither tpreturn () nor tpforward () should be called until all outstanding descriptorsfor the
communication calls made within the service have been retrieved. If you call tpreturn () with
outstanding descriptors for which rvai is set to TPsuccess, the system encounters a protocol
error and returns TPESVCERR to the process waiting on tpgetrply (). If the processisin
transaction mode, the system marksthe caller as “abort-only.” Even if the initiator of the
transaction calls tpcommit (), the system implicitly aborts the transaction. If you call
tpreturn () with outstanding descriptors for which rva1 is set to Tpra1L, the system returns
TPESVCFAIL t0 the process waiting on tpgetrply (). The effect on the transaction is the same.

Whenyou call tpreturn () whilerunning in transaction mode, thisfunction can affect the result
of the transaction by the processing errors that it encounters or that are retrieved from the value
placed in rva1 by the application.

You can use tpforward () toindicate that success has been achieved up to aparticular point in
the processing of arequest. If no application errors have been detected, the system invokes
tpforward () ; otherwise, the system invokes tpreturn () with Tera1rL. If you call
tpforward () improperly, the system considers the call a processing error and returns afailed
message to the requester.

Programming an Oracle Tuxedo ATMI Application Using C 11-35

tpterm() Function

Usethe tpterm() function to remove aclient context from an application.

If the client context isin transaction mode, the call failswith TpEPROTO returned in tperrno (5),
and the client context remains part of the application and in transaction mode.

When the call is successful, the client context is alowed no further communication or
participation in transactions because the current thread of execution is no longer part of the
application.

11-36 Programming an Oracle Tuxedo ATMI Application Using C

../rf5/rf5.html

Resource Managers

Resource Managers

When you use an ATMI function to define transactions, the Oracle Tuxedo system executes an
internal call to passany global transaction information to each resource manager participating in
the transaction. When you call tpcommit () OF tpabort (), for example, the system makes
internal callsto direct each resource manager to commit or abort the work it did on behalf of the
caler’s global transaction.

When aglobal transaction has been initiated, either explicitly or implicitly, you should not make
explicit callsto the resource manager’ s transaction functions in your application code. Failureto
follow this transaction rule causes indeterminate results. Y ou can use the tpgetlev () function
to determine whether a processis already in a global transaction before calling the resource
manager’ s transaction function.

Some resource managers allow programmers to configure certain parameters (such as the
transaction consistency level) by specifying options available in the interface to the resource
managers themselves. Such options are made available in two forms:

e Resource manager-specific function calls that can be used by programmers of distributed
applications to configure options.

e Hard-coded options incorporated in the transaction interface supplied by the provider of the
resource manager.

Consult the documentation for your resource managers for additional information.

The method of setting options varies for each resource manager. In the Oracle Tuxedo System
SQL resource manager, for example, the set transaction statement is used to negotiate
specific options (consistency level and access mode) for a transaction that has aready been
started by the Oracle Tuxedo system.

Programming an Oracle Tuxedo ATMI Application Using C 11-37

Sample Transaction Scenarios

The following sections provide some considerations for the following transaction scenarios:
e Called Service in Same Transaction as Caller
e Called Servicein Different Transaction with AUTOTRAN Set
e Called Service That Starts a New Explicit Transaction

Called Service in Same Transaction as Caller

When acaller in transaction mode calls another service to participate in the current transaction,
the following facts apply:

e tpreturn() and tpforward (), when caled by the participating service, place that
service's portion of the transaction in a state from which it can be either aborted or
committed by the initiator.

e The success or failure of the called process affects the current transaction. If any fatal
transaction errors are encountered by the participant, the current transaction is marked
“abort-only.”

e Whether or not the tasks performed by a successful participant are applied depends on the
fate of the transaction. In other words, if the transaction is aborted, the work of all
participantsis reversed.

e The teNorREPLY flag cannot be used when calling another service to participate in the
current transaction.

Called Service in Different Transaction with AUTOTRAN Set

If you issue acommunication call with the renoTraN flag set and the called serviceis configured
such that atransaction automatically starts when the service is called, the system places both the
calling and called processes in transaction mode, but the two constitute different transactions. In
this situation, the following facts apply:

e tpreturn() playstheinitiator’s transaction role: it terminates the transaction in the
service in which the transaction was automatically started. Alternatively, if the transaction
isautomatically started in a service that terminates with tpforward (), the tpreturn ()
call issued in the last service in the forward chain plays the initiator’s transaction role: it
terminates the transaction. (For an example, refer to the figure called “ Transaction Roles of
tpforward() and tpreturn() with AUTOTRAN” on page 11-39.)

11-38 Programming an Oracle Tuxedo ATMI Application Using C

Sample Transaction Scenarios

e Becauseit isin transaction mode, tpreturn () isvulnerableto the failure of any
participant in the transaction, as well asto transaction timeouts. In this scenario, the system
ismore likely to return a failed message.

e The state of the caller’s transaction is not affected by any failed messages or application
failures returned to the caller.

e The caller’s own transaction may timeout as the caller waits for areply.

e If noreply is expected, the caller’s transaction cannot be affected in any way by the
communication call.

Figure 11-1 Transaction Roles of tpforward() and tpreturn() with AUTOTRAN

Transaction A Transzaction B
tpcalli) tprorwardl)
CLIENT - 4 SWVC B
with TPHOTEAN -
AUTOTEAN
Beginz B
tpreturnll | tprorwardi]

Tertminates B

Called Service That Starts a New Explicit Transaction

If acommunication call is made with TpnoTrRAN, and the called serviceis not automatically
placed in transaction mode by a configuration option, the service can define multiple transactions
using explicit callsto tpbegin (), tpcommit (), and tpabort () . Asaresult, thetransaction can
be completed before acall isissued to tpreturn ().

In this situation, the following facts apply:

e tpreturn () playsno transaction role; that is, therole of tpreturn () isawaysthe same,
regardless of whether transactions are explicitly defined in the service routine.

e tpreturn() Canreturn any vauein rval, regardless of the outcome of the transaction.

Programming an Oracle Tuxedo ATMI Application Using C 11-39

11-40

e Typically, the system returns processing errors, buffer type errors, or application failure,
and follows the normal rulesfor TPESVCFAIL, TPEITYPE/TPEOTYPE, and TPESVCERR.

e The state of the caller’s transaction is not affected by any failed messages or application
failures returned to the caller.

e Thecaller isvulnerable to the possibility that its own transaction may time out as it waits
for itsreply.

e If noreply is expected, the caller’s transaction cannot be affected in any way by the
communication call.

Programming an Oracle Tuxedo ATMI Application Using C

Oracle TUXEDO System-supplied Subroutines

Oracle TUXEDO System-supplied Subroutines

The Oracle Tuxedo system-supplied subroutines, tpsvrinit (), tpsvrdone ()
tpsvrthrinit (3c), and tpsvrthrdone (3¢), must follow certain rules when used in
transactions.

Note: tpsvrthrinit(3c) and tpsvrthrdone (3c) can be specified for multithreaded
applicationsonly. tpsvrinit () and tpsvrdone () can be specified for both threaded
and non-threaded applications.

The Oracle Tuxedo system server calls tpsvrinit () Of tpsvrthrinit (3c) during
initialization. Specifically, tpsvrinit () Of tpsvrthrinit (3c) iscalled after the calling
process becomes a server but before it starts handling service requests. If tpsvrinit () or
tpsvrthrinit (3c) performsany asynchronous communication, al replies must be retrieved
before the function returns; otherwise, the system ignoresall pending replies and the server exits.
If tpsvrinit () Of tpsvrthrinit (3c) definesany transactions, they must be completed with
all asynchronous replies retrieved before the function returns; otherwise, the system aborts the
transaction and ignores all outstanding replies. In this case, the server exits gracefully.

The Oracle Tuxedo system server abstraction calls tpsvrdone () OF tpsvrthrdone (3c) after it
finishes processing service requests but before it exits. At this point, the server’s services are no
longer advertised, but the server has not yet left the application. If tpsvrdone () or
tpsvrthrdone (3c) initiates communication, it must retrieve all outstanding replies before it
returns; otherwise, pending replies areignored by the system and the server exits. If atransaction
is started within tpsvrdone () Of tpsvrthrdone (3c), it must be completed with all replies
retrieved; otherwise, the system aborts the transaction and ignoresthereplies. In this case, too,
the server exits.

Central Event Log

The central event log is arecord of significant eventsin your Oracle Tuxedo application.
M essages about these events are sent to the log by your application clients and services viathe
userlog (3c) function.

Any analysis of the central event log must be provided by the application. Y ou should establish
strict guidelines for the events that are to be recorded in the userlog (3c) . Application
debugging can be simplified by eliminating trivial messages.

For information on configuring the central event log on the Windows 2003 platform, refer to
Using Oralce Tuxedo ATMI on Windows.

Programming an Oracle Tuxedo ATMI Application Using C 1-41

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

11-42

Log Name

The application administrator defines (in the configuration file) the absolute pathname that is
used as the prefix of the name of the userilog (3c) error message file on each machine. The
userlog (3c) function creates a date—in the form mmddyy, representing the month, day, and
year—and adds this date to the pathname prefix, forming the full filename of the central event
log. A new fileis created daily. Thus, if a process sends messages to the central event log on
succeeding days, the messages are written into different files.

Log Entry Format
Entriesin the log consist of the following components:
e Tag consisting of:
— Time of day (hhmmss)

— Machine name (for example, the name returned by the uname(1) command on a UNIX
system)

— Name, process ID, and thread ID (which is 0 on platforms that do not support threads)
of the thread calling userlog(3c)

— Context ID of the thread calling userlog (3c)
o Message text
The text of each message is preceded by the catalog name and number of that message.

e Optional argumentsin print £(3S) format

For example, suppose that a security program executes the following call at 4:22:14pmon a
UNIX machine called machi1 (as returned by the uname command):

userlog ("Unknown User ’‘%s’ \n", usrnm);

Theresulting log entry appears as follows:

162214 .machl!security.23451: Unknown User ’abc’

In this example, the process ID for security is 23451, and the variable usrnm contains the value
abc.

If the preceding message was generated by the Oracle Tuxedo system (rather than by the
application), it might appear asfollows:

162214 .machl!security.23451: LIBSEC_CAT: 999: Unknown User ’abc’

Programming an Oracle Tuxedo ATMI Application Using C

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

Central Event Log

In this case, the message catalog name is.I1BsSEC_cAT and the message number is 999.

If the message is sent to the central event log while the processis in transaction mode, other
components are added to the tag in the user log entry. These components consist of the literal
string gtrid followed by three long hexadecimal integers. The integers uniquely identify the
global transaction and make up what is referred to as the global transaction identifier, that is, the
gtrid. Thisidentifier isused mainly for administrative purposes, but it also appearsin the tag
that prefixesthe messagesin the central event log. If the system writes the message to the central
event log in transaction mode, the resulting log entry appears as follows:

162214 .machl!security.23451: gtrid x2 x24elb803 x239:
Unknown User ‘abc’

Writing to the Event Log

To write a message to the event log, you must perform the following steps:

e Assign the error message you wish to write to the log to avariable of type char * and use
the variable name as the argument to the call.

e Specify theliteral text of the message within double quotes, as the argument to the
userlog(3c) cal, asshown in the following example:

/* Open the database to be accessed by the transactions.*/

if (tpopen() == -1) {
userlog ("tpsvrinit: Cannot open database %s, tpstrerror (tperrno)");

return(-1);

In this example, the message is sent to the central event log if tpopen (3c) returns -1.

Theuserlog(3c) signatureissimilar to that of the UNIX System print £(3S) function. The
format portion of both functions can contain literal strings and/or conversion specificationsfor a
variable number of arguments.

Programming an Oracle Tuxedo ATMI Application Using C 11-43

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

Debugging Application Processes

11-44

Although you can use userlog (3c) statements to debug application software, it is sometimes
necessary to use a debugger command for more complex problem solving.

The following sections describe how to debug an application on UNIX and Windows 2003
platforms.

Debugging Application Processes on UNIX Platforms

The standard UNIX system debugging command is dbx(1). For complete information about this
tool, refer to dbx(1) in aUNIX system reference manual. If you use the -g option to compile
client processes, you can debug those processes using the procedures described on the dox(1)
reference page.

To run the dabx command, enter the following:

dbx client

To execute a client process:
1. Set any desired breakpointsin the code.
2. Enter the abx command.

3. Atthedox prompt (*), type the run subcommand (r) and any options you want to passto the
client program’smain ().

The task of debugging server programs is more complicated. Normally a server is started using
the tmboot command, which starts the server on the correct machine with the correct options.
When using dbx, it isnecessary to run aserver directly rather than through the tmboot command.
To run aserver directly, enter the r (short for run) subcommand after the prompt displayed by
the abx command.

The Oracle Tuxedo tmboot (1) command passes undocumented command-line optionsto the
server's predefined main (). To run aserver directly, you must pass these options, manually, to
the r subcommand. To find out which options need to be specified, run tmboot with the -n and
-d 1 options. The -n option instructs tmboot NOt to execute aboot; -d 1 instructsit to display
level 1 debugging statements. By default, the -a 1 option returnsinformation about all processes.
If you want information about only one process, you can specify your request accordingly with
additional options. For more information, refer to the Oracle Tuxedo Command Reference.

The output of tmboot -n -a 1 includesalist of the command-line options passed by tmboot
to the server'smain (), as shown in the following example:

Programming an Oracle Tuxedo ATMI Application Using C

../rf3c/rf3c.html
../rfcm/rfcmd.html

Debugging Application Processes

exec server -g 1 -i 1 -u sfmax -U /tuxdir/appdir/ULOG -m 0 -A

Onceyou havethelist of required command-line options, you are ready to run the server program
directly, with the r subcommand of abx(1). The following command line is an example:

*r -g 1 -1 1 -u sfmax -U /tuxdir/appdir/ULOG -m 0 -A

Y ou may not use dbx(1) to run aserver that isalready running as part of the configuration. If you
try to do so, the server exits gracefully, indicating a duplicate server in the central event log.

Debugging Application Processes on Windows 2003

Platforms

On aWindows 2003 platform, agraphical debugger is provided as part of the Microsoft Visual
C++ environment. For complete information about this tool, refer to the Microsoft Visual C++
reference manual .

To invoke the Microsoft Visual C++ debugger, enter the start command as follows:

start msdev -p process_ID

Note: For versions of the Microsoft Visual C++ debugger that are earlier than 5.0, enter the
start command asfollows:

start msdev -p process_id

To invoke the debugger and automatically enter a process, specify the process name and
arguments on the start command line, as follows:

start msdev filename argument

For example, to invoke the debugger and enter the simpc1 . exe process with the
ConvertThisString argument, enter the following command:

start msdev simpcl.exe ConvertThisString

When a user-mode exception occurs, you are prompted to invoke the default system debugger to
examine the location of the program failure and the state of the registers, stacks, and so on. By

default, br. watson isused in the Windows 2003 environment uses as the default debugger for
user-mode exception failures, while the kernel debugger isused in the Win32 SDK environment.

To modify the default debugger used by the Windows 2003 system for user-mode exception
failures, perform the following steps:

1. Runregedit Of regedt32.

Programming an Oracle Tuxedo ATMI Application Using C 11-45

2. Within the HKEY_LOCAL_MACHINE Subtree, navigate to
\SOFTWARE\Microsoft\Windows\CurrentVersion\AeDebug

3. Double-click on the pebugger key to advance into the registry string editor.

4. Modify the existing string to specify the debugger of your choice.

For example, to request the debugger supplied with the Microsoft Visual C++ environment,
enter the following command:

msdev.exe -p %1d -e %1d

Note: For versions of the Microsoft Visual C++ debugger that are earlier than 5.0, enter the
following command:

msvc.exe -p %$1d -e %1d

Comprehensive Example

11-46

Transaction integrity, message communication, and resource access are the major requirements
of an Online-Transaction-Processing (OLTP) application.

This section provides a code sample that illustrates the ATMI transaction, buffer management,
and communication routines operating together with SQL statements that access aresource
manager. The example is borrowed from the accT server that is part of the Oracle Tuxedo
banking application (bankapp) and illustratesthe cL.ose_accT service.

The example showshow theset transaction Statement (line49) isused to set the consistency
level and access mode of thetransaction beforethefirst SQL statement that accessesthe database.
(When read/write access is specified, the consistency level defaults to high consistency.) The
SQL query determines the amount to be withdrawn in order to close the account based on the
value of the accounTt_1D (lines 50-58).

tpalloc () alocates abuffer for the request message to the wITHDRAWAL Service, and the
accouNT_1D and the amount to be withdrawn are placed in the buffer (lines 62-74). Next, a
request is sent to the wITHDRAWAL Serviceviaatpcall () cal (line79). An SQL delete
statement then updates the database by removing the account in question (line 86).

If all issuccessful, the buffer allocated in the service is freed (line 98) and the TpsvcinrFo data
buffer that was sent to the service is updated to indicate the successful completion of the
transaction (line 99). Then, if the service was the initiator, the transaction is automatically
committed. tpreturn () returns Tpsuccess, along with the updated buffer, to the client process
that requested the closing of the account. Finally, the successful completion of the requested
service isreported on the status line of the form.

Programming an Oracle Tuxedo ATMI Application Using C

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023

024
025
026

027
028

029
030

Comprehensive Example

After each function call, success or failure is determined. If afailure occurs, the buffer allocated
inthe serviceisfreed, any transaction begun in the service is aborted, and the Tpsvcinro buffer
is updated to show the cause of failure (lines 80-83). Finally, tpreturn () returns TpraIL and
the message in the updated buffer is reported on the status line of the form.

Note: When specifying the consistency level of aglobal transaction in a service routine, take
careto definethelevel in the same way for all service routinesthat may participatein the
same transaction.

Listing 11-3 ACCT Server

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

<stdio.h>
<string.h>
<fml.h>
<atmi.h>
<Usysflds.h>
<sglcode.h>
<userlog.h>
"bank.h"
"bank.flds.h"
"event.flds.h"

/* UNIX */

/* UNIX */

/* BEA Tuxedo System */
/* BEA Tuxedo System */
/* BEA Tuxedo System */
/* BEA Tuxedo System */
/* BEA Tuxedo System */
/* BANKING #defines */
/* bankdb fields */

/* event fields */

EXEC SQL begin declare section;

static
static
static
static
static
static
static
static
static

long
long

float bal,

char
char
char
char
char
long

account_id;
branch_id;

acct_type;
last_name[20],
mid_init;
address[60];
phone[14];
last_acct;

tlr_bal;

/* account id */

/* branch id */

/* BALANCE */

/* account type*/
first_name[20]; /* last name, first name */

/* middle initial */

/* address x/

/* telephone */

/* last account branch gave */

EXEC SQL end declare section;

static FBFR *reqfb;
static long reqglen;
static char amts[BALSTR];

code for OPEN_ACCT service

/*

/* fielded buffer for request message */
/* length of request buffer */
/* string representation of float */

* Service to close an account

*/

Programming an Oracle Tuxedo ATMI Application Using C 11-47

031 void
032 #ifdef _ STDC___
033 LOSE_ACCT (TPSVCINFO *transb)

034 #else
035 CLOSE_ACCT (transb)

036 TPSVCINFO *transb;
037 #endif

038 {

039 FBFR *transf; /* fielded buffer of decoded message */
040 /* set pointer to TPSVCINFO data buffer */

041 transf = (FBFR *)transb->data;

042 /* must have valid account number */

043 if (((account_id = Fvall(transf, ACCOUNT ID, 0)) < MINACCT) ||

044 (account_id > MAXACCT)) {

045 (void)Fchg (transf, STATLIN, 0, "Invalid account number", (FLDLEN)O);
046 tpreturn (TPFAIL, 0, transb->data, 0L, 0);

047 }

048 /* Set transaction level */

049 EXEC SQL set transaction read write;

050 /* Retrieve AMOUNT to be deleted */

051 EXEC SQL declare ccur cursor for

052 select BALANCE from ACCOUNT where ACCOUNT_ID = :account_id;

053 EXEC SQL open ccur;

054 EXEC SQL fetch ccur into :bal;

055 if (SQLCODE != SQL_OK) { /* nothing found */

056 (void) Fchg (transf, STATLIN, 0, getstr("account",SQLCODE), (FLDLEN)O);
057 EXEC SQL close ccur;

058 tpreturn (TPFAIL, 0, transb->data, 0L, 0);

059 }

060 /* Do final withdrawal */

061 /* make withdraw request buffer */

062 if ((regfb = (FBFR *)tpalloc("FML",NULL, transb->len)) == (FBFR *)NULL) {
063 (void)userlog("tpalloc failed in close_acct\n");

064 (void)Fchg(transf, STATLIN, O,

065 "Unable to allocate request buffer", (FLDLEN)O) ;

066 tpreturn (TPFAIL, 0, transb->data, 0L, 0);

067 }

068 reglen = Fsizeof (reqgfb) ;

069 (void)Finit (regfb, reglen) ;

11-48 Programming an Oracle Tuxedo ATMI Application Using C

070
071

072
073
074

075
076
077

078
079
080
081
082
083
084

085

086
087
088
089
090
091
092
093

094
095
096
097
098
099
100

Comprehensive Example

/* put ID in request buffer */
(void)Fchg (regfb, ACCOUNT_ID, 0, (char *)&account_id, (FLDLEN)O) ;

/* put amount into request buffer */
(void) sprintf (amts, "%.2f",bal) ;
(void)Fchg (regfb, SAMOUNT, 0,amts, (FLDLEN)O) ;

/* increase the priority of this withdraw */
if (tpsprio(PRIORITY, 0L) == -1)

(void)userlog ("Unable to increase priority of withdraw") ;

/* tpcall to withdraw service to remove remaining balance */

if (tpcall ("WITHDRAWAL", (char *)regfb, 0L, (char **)&reqgfb,
(long *)®len, TPSIGRSTRT) == -1) {
(void)Fchg(transf, STATLIN, 0, "Cannot make withdrawal", (FLDLEN)O) ;

tpfree((char *)reqfb);
tpreturn (TPFAIL, O0,transb->data, 0L, 0);

/* Delete account record */

EXEC SQL delete from ACCOUNT where current of ccur;

if (SQLCODE != SQL_OK) { /* Failure to delete */
(void)Fchg(transf, STATLIN, 0, "Cannot close account", (FLDLEN)O);
EXEC SQL close ccur;
tpfree((char *)reqfb);
tpreturn (TPFAIL, 0, transb->data, 0L, 0);

}

EXEC SQL close ccur;

/* prepare buffer for successful return */

(void)Fchg (transf, SBALANCE, 0, Fvals(regfb, SAMOUNT,0), (FLDLEN)O);
(void)Fchg (transf, FORMNAM, 0, "CCLOSE", (FLDLEN)O);
(void)Fchg (transf, STATLIN, 0, " ", (FLDLEN)O);

tpfree((char *)reqgfb);
tpreturn (TPSUCCESS, 0, transb->data, 0L, 0);

Programming an Oracle Tuxedo ATMI Application Using C 11-49

11-50 Programming an Oracle Tuxedo ATMI Application Using C

	Oracle® Tuxedo
	12c Release 2 (12.1.3)

	Oracle Tuxedo Programming an Oracle Tuxedo ATMI Application Using C, 12c Release 2 (12.1.3)
	Contents
	Introduction to Oracle Tuxedo Programming
	Oracle Tuxedo Distributed Application Programming
	Figure 1-1 Distributed Application Example - Online Banking System

	Communication Paradigms
	Table 1-1 Communication Paradigms

	Oracle Tuxedo Clients
	Listing 1-1 Pseudo-code for a Request/Response Client

	Oracle Tuxedo Servers
	Basic Server Operation
	Figure 1-2 Pseudo-code for a Request/Response Server and a Service Subroutine
	Figure 1-3 Pseudo-code for a Conversational Service Subroutine

	Servers as Requesters

	Oracle Tuxedo API: ATMI
	Table 1-2 Using the ATMI Function
	Managing Typed Buffers

	Overview of Typed Buffers
	Table 2-1 Typed Buffers
	See Also

	Allocating a Typed Buffer
	Table 2-2 tpalloc() Function Arguments
	Listing 2-1 Allocating a VIEW Typed Buffer
	Listing 2-2 Allocating an FML Typed Buffer
	Listing 2-3 Allocating a CARRAY Typed Buffer
	Listing 2-4 Allocating a STRING Buffer
	Listing 2-5 Allocating a RECORD Buffer
	See Also

	Putting Data in a Buffer
	Listing 2-6 Putting Data in a Message Buffer - Example 1
	Listing 2-7 Placing Data in a Message Buffer - Example 2
	See Also

	Resizing a Typed Buffer
	Table 2-3 tprealloc() Function Arguments
	Listing 2-8 Resizing a Buffer
	Listing 2-9 Error Checking for tprealloc()
	See Also

	Checking for Buffer Type
	Table 2-4 tptypes() Function Arguments
	Listing 2-10 Getting Buffer Size
	See Also

	Freeing a Typed Buffer
	Table 2-5 tpfree() Function Argument
	Listing 2-11 Freeing a Buffer
	See Also

	Using a VIEW Typed Buffer
	Setting Environment Variables for a VIEW Typed Buffer
	Table 2-6 Environment Variables for a VIEW Typed Buffer

	Creating a View Description File
	Table 2-7 View Description File Fields
	Listing 2-12 View Description File for FML VIEW
	Listing 2-13 View Description File for an Independent View

	Executing the VIEW Compiler
	Listing 2-14 Header File Created Using the VIEW Compiler

	See Also

	Using a RECORD Typed Buffer
	Setting Environment Variables for a RECORD Typed Buffer
	Table 2-8 Environment Variables for a RECORD Typed Buffer

	Creating a Copybook File
	Generating the RECORD Description File
	See Also

	Using an FML Typed Buffer
	Setting Environment Variables for an FML Typed Buffer
	Table 2-9 FML Typed Buffer Environment Variables

	Creating a Field Table File
	Table 2-10 Field Table File Fields
	Listing 2-15 Field Table File for FML VIEW

	Creating an FML Header File
	Listing 2-16 myview.flds.h Header File
	/* fname fldid */ /* ----- ----- */ #define FLOAT1 ((FLDID)24686) /* number: 110 type: float */ #define DOUBLE1 ((FLDID)32879) /* number: 111 type: double */ #define LONG1 ((FLDID)8304) /* number: 112 type: long */ #define SHORT1 ((FLDID)113) /* numb...

	See Also

	Using an XML Typed Buffer and the Apache Xerces C++ Parser
	About the XML Typed Buffer
	About the Apache Xerces C++ Parser
	XML Parser Control
	XML Parser Support for ICU
	XML Parser Sample Application
	Xerces Schema Sample

	See Also
	Converting XML Data To and From FML/FML32 Buffers
	Using On-Demand Conversion
	Initiating On-Demand Conversion
	On-Demand Conversion and Xerces Parser XML Validation

	Using Automatic Conversion
	Initiating Automatic Conversion
	Automatic Conversion and Xerces Parser XML Validation
	Listing 2-17 Sample Input for TXPARSFILE Environment Variable

	Mapping XML To and From FML/FML32 Field Types
	Conversion Limitations

	See Also

	Using an MBSTRING Typed Buffer
	Figure 2-1 Encoding Conversion Using MBSTRING Buffers—Example
	Multibyte Character Encoding Control
	Figure 2-2 Allocating and Sending an MBSTRING Buffer
	Figure 2-3 Receiving and Converting an MBSTRING Buffer (Sheet 1 of 2)
	Figure 2-3 Receiving and Converting an MBSTRING Buffer (Sheet 2 of 2)

	Enabling MBSTRING to be Self-describing
	Implementation
	Safe/Unsafe Encoding Names

	Multibyte Character Support Limitations
	Multibyte Character Encoding Support for libiconv
	See Also

	Customizing a Buffer
	Table 2-11 Custom Buffer Type Characteristics
	Table 2-12 Custom Buffer Type Routines
	Defining Your Own Buffer Types
	1. Code any switch element routines that may be required.
	2. Add your new types and the names of your buffer management modules to tm_typesw.
	3. Build a new shared object or a DLL. The shared object or DLL must contain your updated buffer type switch and associated functions.
	4. Install your new shared object or DLL so that all servers, clients, and executables provided by the Oracle Tuxedo system are loaded dynamically at run time.
	Listing 2-18 Default Buffer Type Switch
	Listing 2-19 Buffer Type Structure
	/* * The following definitions are in $TUXDIR/include/tmtypes.h */ #define TMTYPELEN ED_TYPELEN #define TMSTYPELEN ED_STYPELEN struct tmtype_sw_t { char type[TMTYPELEN]; /* type of buffer */ char subtype[TMSTYPELEN]; /* subtype of buffer */ long d...
	Coding Switch Element Routines
	Listing 2-20 Semantics of the Presend Switch Element

	Adding a New Buffer Type to tm_typesw
	Listing 2-21 Adding a New Type to the Buffer Switch
	#include <stdio.h> #include <tmtypes.h> /* Customized the buffer type switch */ static struct tmtype_sw_t tm_typesw[] = { { "SOUND", /* type */ “", /* subtype */ 50000, /* dfltsize */ snd_init, /* initbuf */ snd_init, /* reinitbuf */ NULL, /* unini...

	Compiling and Linking Your New tm_typesw
	1. Copy and modify $TUXDIR/lib/tmtypesw.c, as described in “Adding a New Buffer Type to tm_typesw” on page 2-66. If additional functions are required, store them in either tmtypesw.c or a separate C source file.
	2. Compile tmtypesw.c with the flags required for shared objects.
	3. Link together all object files to produce a shared object.
	4. Copy libbuft.so.71 from the current directory to a directory in which it will be visible to applications, and processed before the default shared object supplied by the Oracle Tuxedo system. We recommend using one of the following directories: $AP...
	Table 2-13 OS-specific Names for the Buffer Type Switch Shared Object

	Compiling and Linking Your New tm_typesw for a 16-bit Windows Platform
	Listing 2-22 Sample Code in Microsoft Visual C++
	CL -AL -I..\e\|sysinclu -I..\e\|include -Aw -G2swx -Zp -D_TM_WIN -D_TMDLL -Od -c TMTYPESW.C LINK /CO /ALIGN:16 TMTYPESW.OBJ, WBUFT.DLL, NUL, WTUXWS /SE:250 /NOD /NOE LIBW LDLLCEW, WBUFT.DEF RC /30 /T /K WBUFT.DLL

	Data Conversion
	Programming Environment

	Updating the UBBCONFIG Configuration File
	Table 3-1 Programming-related UBBCONFIG Parameters by Functional Category
	See Also

	Setting Environment Variables
	Table 3-2 Programming-related Environment Variables by Functional Category
	See Also

	Including the Required Header Files
	Table 3-3 Required Header Files

	Starting and Stopping the Application
	See Also
	Writing Clients

	Joining an Application
	Table 4-1 TPINIT Data Structure Fields
	Listing 4-1 Allocating a TPINIT Typed Buffer
	See Also

	Using Features of the TPINIT Typed Buffer
	Client Naming
	Figure 4-1 Client Naming

	Unsolicited Notification Handling
	Table 4-2 Client Notification Flags in a TPINIT Typed Buffer

	System Access Mode
	Table 4-3 System Access Flags in a TPINIT Typed Buffer

	Resource Manager Association
	Client Authentication

	Leaving the Application
	Building Clients
	Table 4-4 buildclient Options
	Notes: The Oracle Tuxedo libraries are linked in automatically; you do not need to specify any Oracle Tuxedo libraries on the command line.
	See Also

	Client Process Examples
	Listing 4-2 Typical Client Process Paradigm
	Listing 4-3 Joining and Leaving an Application
	Writing Servers

	Oracle Tuxedo System main()
	System-Supplied Server and Services
	Notes: If you want to write your own versions of tpsvrinit() and tpsvrdone(), remember that the default versions of these two routines call tx_open() and tx_close(), respectively. If you write a new version of tpsvrinit() that calls tpopen() rather t...
	System-Supplied Server: AUTHSVR()
	System-Supplied Services: tpsvrinit() Function
	Receiving Command-line Options
	Listing 5-1 Receiving Command-line Options in tpsvrinit()

	Opening a Resource Manager
	Listing 5-2 Opening a Resource Manager in tpsvrinit()

	System-Supplied Services: tpsvrdone() Function
	Listing 5-3 Closing a Resource Manager with tpsvrdone()
	void tpsvrdone() { /* Close the database */ if(tpclose() == -1) (void)userlog("tpsvrdone: failed to close database: "); switch (tperrno) { case TPESYSTEM: (void)userlog("BEA TUXEDO error\n"); break; case TPEOS: (void)userlog...

	Guidelines for Writing Servers
	Defining a Service
	Table 5-1 TPSVCINFO Data Structure
	Listing 5-4 Typical Service Definition
	Example: Checking the Buffer Type
	Listing 5-5 Checking for Buffer Type
	#define TMTYPERR 1 /* return code indicating tptypes failed */ #define INVALMTY 2 /* return code indicating invalid message type */ void ABAL(transb) TPSVCINFO *transb; { struct aud *transv; /* view message */ FBFR *transf; /* fielded buffer messa...

	Example: Checking the Priority of the Service Request
	Listing 5-6 Checking the Priority of a Received Request
	#include <stdio.h> #include "atmi.h" char *roundrobin(); PRINTER(pbuf) TPSVCINFO *pbuf; /* print buffer */ { char prname[20], ocmd[30]; /* printer name, output command */ long rlen; /* return buffer length */ int prio; /* priority of request */ FILE ...

	Terminating a Service Routine
	Sending Replies
	Table 5-2 tpreturn() Function Arguments
	Listing 5-7 tpreturn() Function
	#include <stdio.h> /* UNIX */ #include <string.h> /* UNIX */ #include "fml.h" /* BEA Tuxedo System */ #include "atmi.h" /* BEA Tuxedo System */ #include "Usysflds.h" /* BEA Tuxedo System */ #include "userlog.h" /* BEA Tuxedo System */ #include "bank....

	Invalidating Descriptors
	Listing 5-8 Invalidating a Reply After Timing Out

	Forwarding Requests
	Table 5-3 tpreturn() Function Arguments
	Figure 5-1 Forwarding a Request
	Listing 5-9 tpforward() Function
	... /* set pointer to TPSVCINFO data buffer */ transf = (FBFR *)transb->data; ... /* Insert new account record into ACCOUNT*/ account_id = ++last_acct; /* get new account number */ tlr_bal = 0.0; /* temporary balance of 0 */ EXEC SQL insert into ACCO...

	Advertising and Unadvertising Services
	Advertising Services
	Table 5-4 tpadvertise() Function Arguments

	Unadvertising Services
	Table 5-5 tpunadvertise() FunctionArguments

	Example: Dynamic Advertising and Unadvertising of a Service
	Listing 5-10 Dynamic Advertising and Unadvertising

	Building Servers
	Table 5-6 buildserver Command-line Options
	Notes: The Oracle Tuxedo libraries are linked in automatically. You do not need to specify the Oracle Tuxedo library names on the command line.
	See Also

	Using a C++ Compiler
	Declaring Service Functions
	Using Constructors and Destructors
	Writing Request/Response Clients and Servers

	Overview of Request/Response Communication
	1. A customer (the client) sends a request for an account balance to the Account Record Storage System (the server).
	2. The Account Record Storage System (the server) sends a reply to the customer (the client), specifying the dollar amount in the designated account.
	Figure 6-1 Example of Request/Response Communication in Online Banking

	Sending Synchronous Messages
	Table 6-1 tpcall() Function Arguments
	Example: Using the Same Buffer for Request and Reply Messages
	1. The service queries the b_id field, but does not overwrite it.
	2. The application initializes the bal and ermsg fields to zero and the NULL string, respectively, in preparation for the values to be returned by the service.
	3. The svc_name and hdr_type variables represent the service name and the balance type requested, respectively. In this example, these variables represent account and teller, respectively.
	Listing 6-1 Using the Same Buffer for Request and Reply Messages

	Example: Testing for Change in Size of Reply Buffer
	Listing 6-2 Testing for Change in Size of the Reply Buffer

	Example: Sending a Synchronous Message with TPSIGRSTRT Set
	Listing 6-3 Sending a Synchronous Message with TPSIGRSTRT Set

	Example: Sending a Synchronous Message with TPNOTRAN Set
	Listing 6-4 Sending a Synchronous Message with TPNOTRAN Set

	Example: Sending a Synchronous Message with TPNOCHANGE Set
	Listing 6-5 Sending a Synchronous Message with TPNOCHANGE Set

	Sending Asynchronous Messages
	Sending an Asynchronous Request
	Table 6-2 tpacall() Function Arguments
	Example: Sending an Asynchronous Message with TPNOTRAN | TPNOREPLY
	Listing 6-6 Sending an Asynchronous Message with TPNOREPLY | TPNOTRAN

	Example: Sending Asynchronous Requests
	Listing 6-7 Sending Asynchronous Requests

	Getting an Asynchronous Reply
	Table 6-3 tpgetrply() Function Arguments

	Setting and Getting Message Priorities
	Setting a Message Priority
	Table 6-4 tpsprio() Function Arguments
	Listing 6-8 Setting the Priority of a Request Message

	Getting a Message Priority
	Listing 6-9 Determining the Priority of a Request After It Is Sent
	Writing Conversational Clients and Servers

	Overview of Conversational Communication
	Figure 7-1 Example of Conversational Communication in an Online Banking Application
	1. The customer requests the checking account statements for the past two months.
	2. The Account Records Storage System responds by sending the first month’s checking account statement followed by a More prompt for accessing the remaining month’s statement.
	3. The customer requests the second month’s account statement by selecting the More prompt.
	4. The Account Records Storage System sends the remaining month’s account statement.

	Joining an Application
	Establishing a Connection
	Table 7-1 tpconnect() Function Arguments
	Listing 7-1 Establishing a Conversational Connection

	Sending and Receiving Messages
	Sending Messages
	Table 7-2 tpsend() Function Arguments
	Listing 7-2 Sending Data in Conversational Mode

	Receiving Messages
	Listing 7-3 Receiving Data in Conversation

	Ending a Conversation
	Example: Ending a Simple Conversation
	Figure 7-2 Simple Conversation Terminated Gracefully
	1. A sets up the connection by calling tpconnect() with the TPSENDONLY flag set, indicating that process B is on the receiving end of the conversation.
	2. A turns control of the connection over to B by calling tpsend() with the TPRECVONLY flag set, resulting in the generation of a TPEV_SENDONLY event.
	3. The next call by B to tprecv() returns a value of -1, sets tperrno(5) to TPEEVENT, and returns TPEV_SENDONLY in the revent argument, indicating that control has passed to B.
	4. B calls tpreturn() with rval set to TPSUCCESS. This call generates a TPEV_SVCSUCC event for A and gracefully brings down the connection.
	5. A calls tprecv(), learns of the event, and recognizes that the conversation has been terminated. Data can be received on this call to tprecv() even if the event is set to TPEV_SVCFAIL.

	Example: Ending a Hierarchical Conversation
	Figure 7-3 Connection Hierarchy
	1. B calls tpsend() with the TPRECVONLY flag set on the connection to C, transferring control of the B-to-C connection to C.
	2. C calls tpreturn() with rval set to TPSUCCESS, TPFAIL, or TPEXIT, as appropriate.
	3. B can then call tpreturn(), posting an event (either TPEV_SVCSUCC or TPEV_SVCFAIL) for A.

	Executing a Disorderly Disconnect

	Building Conversational Clients and Servers
	Understanding Conversational Communication Events
	Table 7-3 Conversational Communication Events
	Writing Event-based Clients and Servers

	Overview of Events
	Unsolicited Events
	Brokered Events
	Notification Actions
	Table 8-1 EventBroker Notification Actions

	EventBroker Servers
	System-defined Events
	Programming Interface for the EventBroker
	1. A client or server posts a buffer to an application-defined event name.
	2. The posted buffer is transmitted to any number of processes that have subscribed to the event.

	Defining the Unsolicited Message Handler
	Table 8-2 tpsetunsol() Function Argument

	Sending Unsolicited Messages
	Broadcasting Messages by Name
	int tpbroadcast(char *lmid, char *usrname, char *cltname, char *data, long len, long flags)
	Table 8-3 tpbroadcast() Function Arguments
	Listing 8-1 Using tpbroadcast()

	Broadcasting Messages by Identifier
	Table 8-4 tpnotify() Function Arguments

	Checking for Unsolicited Messages
	Subscribing to Events
	long handle tpsubscribe (char *eventexpr, char *filter, TPEVCTL *ctl, long flags)
	Table 8-5 tpsubscribe() Function Arguments

	Notification via Unsolicited Message
	Notification via Service Call or Reliable Queue
	Table 8-6 TPEVCTL Typed Buffer Format

	Unsubscribing from Events
	Table 8-7 tpunsubscribe() Function Arguments

	Posting Events
	Table 8-8 tppost() Function Arguments
	Listing 8-2 Posting an Event with tppost()
	. . . /* Event logic related */ static float evt_thresh = 10000.00 ; /* default for event threshold */ static char emsg[200] ; /* used by event posting logic */ . . . /* Post a BANK_TLR_WITHDRAWAL event ? */ if (amt < evt_thresh) { /* no event t...

	Example of Event Subscription
	Listing 8-3 Subscribing to an Event with tpsubscribe()
	. . . /* Event Subscription handles */ static long sub_ev_largeamt = 0L ; . . . /* Preset default for option 'w' - watchdog threshold */ (void)strcpy (amt_expr, "AMOUNT > 10000.00") ; . . . /* * Subscribe to the events generated * when a "large" amou...
	Writing Global Transactions

	What Is a Global Transaction?
	Starting the Transaction
	Table 9-1 tpbegin() Function Arguments
	Listing 9-1 Defining a Global Transaction - High-level View
	Listing 9-2 Defining a Global Transaction - Detailed View
	#include <stdio.h> /* UNIX */ #include <string.h> /* UNIX */ #include <atmi.h> /* BEA Tuxedo System */ #include <Uunix.h> /* BEA Tuxedo System */ #include <userlog.h> /* BEA Tuxedo System */ #include "bank.h" /* BANKING #defines */ #include "aud.h" /...
	Listing 9-3 Testing for Transaction Timeout

	Suspending and Resuming a Transaction
	1. Temporarily suspend the current transaction by calling tpsuspend().
	2. Start a separate transaction. (In the preceding example, the server writes an entry to the event log.)
	3. Commit the transaction started in step 2.
	4. Resume the original transaction by calling tpresume().
	Suspending a Transaction
	Table 9-2 tpsuspend() Function Arguments

	Resuming a Transaction
	Table 9-3 tpresume() Function Arguments

	Example: Suspending and Resuming a Transaction
	Listing 9-4 Suspending and Resuming a Transaction

	Terminating the Transaction
	Committing the Current Transaction
	Prerequisites for a Transaction Commit
	Two-phase Commit Protocol
	1. Each participating resource manager indicates a readiness to commit.
	2. The initiator of the transaction gives permission to commit to each participating resource manager.
	Selecting Criteria for a Successful Commit
	Trade-offs Between Possible Commit Criteria

	Aborting the Current Transaction
	Example: Committing a Transaction in Conversational Mode
	Figure 9-1 Connection Hierarchy in Transaction Mode
	1. A client (process A) initiates a connection in transaction mode by calling tpbegin() and tpconnect().
	2. The client calls subsidiary services, which are executed.
	3. As each subordinate service completes, it sends a reply indicating success or failure (TPEV_SVCSUCC or TPEV_SVCFAIL, respectively) back up through the hierarchy to the process that initiated the transaction. In this example the process that initia...
	4. The client (process A) determines whether all subordinate services have returned successfully.

	Example: Testing for Participant Errors
	Listing 9-5 Testing for Participant Success or Failure
	001 #include <stdio.h> 002 #include "atmi.h" 003 004 main() 005 { 006 char *sbuf, *rbuf; 007 long slen, rlen; 008 if (tpinit((TPINIT *) NULL) == -1) 009 error message, exit program; 010 if (tpbegin(30, 0) == -1) 011 error message, tpterm, exit progra...

	Implicitly Defining a Global Transaction
	Implicitly Defining a Transaction in a Service Routine

	Defining Global Transactions for an XA-Compliant Server Group
	Testing Whether a Transaction Has Started
	Listing 9-6 Testing Transaction Level
	001 #define BEGFAIL 3 /* tpurcode setting for return if tpbegin fails */ 002 void 003 OPEN_ACCT(transb) 004 TPSVCINFO *transb; 005 { ... other declarations ... 006 FBFR *transf; /* fielded buffer of decoded message */ 007 int dotran; /* checks whethe...
	See Also
	Programming a Multithreaded and Multicontexted ATMI Application

	Support for Programming a Multithreaded/Multicontexted ATMI Application
	Platform-specific Considerations for Multithreaded/Multicontexted Applications
	See Also

	Planning and Designing a Multithreaded/Multicontexted ATMI Application
	What Are Multithreading and Multicontexting?
	What Is Multithreading?
	Figure 10-1 Sample Multithreaded Process
	Figure 10-2 Multiple Service Threads Dispatched in One Server Process

	What Is Multicontexting?
	Figure 10-3 Multicontexted Process in Two Domains

	Auditing a Multithreaded or Multicontexted Application
	See Also
	Advantages and Disadvantages of a Multithreaded/Multicontexted ATMI Application
	Advantages of a Multithreaded/Multicontexted ATMI Application
	Disadvantages of a Multithreaded/Multicontexted ATMI Application

	See Also
	How Multithreading and Multicontexting Work in a Client
	Start-up Phase
	Client Threads Join Multiple Contexts
	Client Threads Switch to an Existing Context

	Work Phase
	Service Requests
	Replies to Service Requests
	Transactions
	Unsolicited Messages
	Userlog Maintains Thread-specific Information

	Completion Phase

	See Also
	How Multithreading and Multicontexting Work in Server-Dispatched Threads an on ATMI Server
	Start-up Phase
	Work Phase
	How Server-Dispatched Threads Are Used
	Bulletin Board Liaison Verifies Sanity of System Processes
	System Keeps Statistics on Server Threads
	Userlog Maintains Thread-specific Information

	Completion Phase

	See Also
	How Multithreading and Multicontexting Work in Application-Created Threads of an ATMI Server
	Start-Up Phase
	Work Phase
	Notes: An application-created server thread cannot call either tpreturn() or tpforward().
	Userlog Maintains Thread-specific Information

	Completion Phase

	See Also
	Design Considerations for a Multithreaded and Multicontexted ATMI Application
	Environment Requirements
	Design Requirements
	Is the Task of Your Application Suitable for Multithreading and/or Multicontexting?
	How Many Applications and Connections Do You Want?
	What Synchronization Issues Need to Be Addressed?
	Will You Need to Port Your Application?
	Which Threads Model Is Best for You?

	Interoperability Restrictions for Workstation Clients

	See Also

	Implementing a Multithreaded/ Multicontexted ATMI Application
	Preliminary Guidelines for Programming a Multithreaded/Multicontexted ATMI Application
	Prerequisites for a Multithreaded ATMI Application
	General Multithreaded Programming Considerations
	Concurrency Considerations

	See Also
	Writing Code to Enable Multicontexting in an ATMI Client
	Context Attributes
	Setting Up Multicontexting at Initialization
	Listing 10-1 Sample Code for a Client Joining a Multicontexted Application

	Implementing Security for a Multicontexted ATMI Client
	Synchronizing Threads Before an ATMI Client Termination
	Switching Contexts
	1. Set the TUXCONFIG environment variable to the value required by firstapp.
	2. Join the first application by calling tpinit() with the TPMULTICONTEXTS flag set.
	3. Obtain a handle to the current context by calling tpgetctxt(3c).
	4. Switch the value of the TUXCONFIG environment variable to the value required by the secondapp context, by calling tuxputenv().
	5. Join the second application by calling tpinit() with the TPMULTICONTEXTS flag set.
	6. Get a handle to the current context by calling tpgetctxt(3c).
	7. Beginning with the firstapp context, start toggling between contexts by calling tpsetctxt(3c).
	8. Call firstapp services.
	9. Switch the client to the secondapp context (by calling tpsetctxt(3c)) and call secondapp services.
	10. Switch the client to the firstapp context (by calling tpsetctxt(3c)) and call firstapp services.
	11. Terminate the firstapp context by calling tpterm().
	12. Switch the client to the secondapp context (by calling tpsetctxt(3c)) and call secondapp services.
	13. Terminate the secondapp context by calling tpterm().
	Listing 10-2 Sample Code for Switching Contexts in a Client
	#include <stdio.h> #include "atmi.h" /* Oracle Tuxedo header file */ #if defined(__STDC__) || defined(__cplusplus) main(int argc, char *argv[]) #else main(argc, argv) int argc; char *argv[]; #endif { TPINIT * tpinitbuf; TPCONTEXT_T firstapp_co...

	Handling Unsolicited Messages
	Coding Rules for Transactions in a Multithreaded/Multicontexted ATMI Application

	See Also
	Writing Code to Enable Server-Dispatched Multicontexting and Multithreading Threads in an ATMI Server
	Context Attributes
	Coding Rules for Server-Dispatched Threads in Multicontexted ATMI Server
	Initializing and Terminating ATMI Servers and Server Threads
	Table 10-1 Default Functions for Initialization and Termination

	See Also
	Writing Code to Enable Multicontexting in Application-Created Threads of an ATMI Server
	Creating Threads
	Associating Application Threads with a Context
	Associating Application Threads with an Existing Server-Dispatched Context
	1. Server-dispatched-thread_A gets a handle to the current context by calling tpgetctxt(3c).
	2. Server-dispatched-thread_A passes the handle returned by tpgetctxt(3c) to Application_thread_B.
	3. Application_thread_B associates itself with the current context by calling tpsetctxt(3c) specifying the handle received from Server-dispatched-thread_A.

	Sample Code for Associating Application Thread with an Existing Server-Dispatched Context in a Multicontexted Server
	Listing 10-3 Code Sample for Application-Created Server Thread Working in Server-Dispatched Context

	Associating Application Threads with Application-Created Context
	Context Attributes
	Code Rules for Application-Created Thread of an ATMI Server in Application-Created Context

	Sample Code for Associating Application Thread with Application-created server Context in a Multicontexted Server
	Listing 10-4 Code Sample for Application-Created Server Thread Working in Application-Created Context

	See Also
	Writing a Multithreaded ATMI Client
	Coding Rules for a Multithreaded ATMI Client
	Initializing an ATMI Client to Multiple Contexts
	Context State Changes for an ATMI Client Thread
	Figure 10-4 Multicontext State Transitions
	Table 10-2 Context State Changes for a Client Thread

	Getting Replies in a Multithreaded Environment
	Using Environment Variables in a Multithreaded and/or Multicontexted Environment

	Using Per-context Functions and Data Structures in a Multithreaded ATMI Client
	Using Per-process Functions and Data Structures in a Multithreaded ATMI Client
	Using Per-thread Functions and Data Structures in a Multithreaded ATMI Client
	Sample Code for a Multithreaded ATMI Client
	Listing 10-5 Sample Code for a Multithreaded Client
	#include <stdio.h> #include <pthread.h> #include <atmi.h> TPINIT * tpinitbuf; int timeout=60; pthread_t withdrawalthreadid, stockthreadid; TPCONTEXT_T ctxt; void * stackthread(void *); void * withdrawalthread(void *); main() { tpinitbuf = tpal...
	pthread_create(&stockthreadid, NULL, stockthread, NULL); tpsetctxt(ctxt, 0); tpcall("WITHDRAWAL", ...); return(NULL); }

	See Also
	Writing a Multithreaded ATMI Server
	Compiling Code for a Multithreaded/Multicontexted ATMI Application
	See Also

	Testing a Multithreaded/Multicontexted ATMI Application
	Testing Recommendations for a Multithreaded/Multicontexted ATMI Application
	Troubleshooting a Multithreaded/Multicontexted ATMI Application
	Improper Use of the TPMULTICONTEXTS Flag to tpinit()
	Calls to tpinit() Without TPMULTICONTEXTS
	Insufficient Thread Stack Size

	Error Handling for a Multithreaded/Multicontexted ATMI Application
	See Also
	Managing Errors

	System Errors
	Table 11-1 tperrno Error Categories

	Abort Errors
	Oracle Tuxedo System Errors
	Call Descriptor Errors
	Limit Errors
	Invalid Descriptor Errors

	Conversational Errors
	Duplicate Object Error
	General Communication Call Errors
	TPESVCFAIL and TPESVCERR Errors
	TPEBLOCK and TPGOTSIG Errors

	Invalid Argument Errors
	MIB Error
	No Entry Errors
	Table 11-2 No Entry Errors

	Operating System Errors
	Permission Errors
	Protocol Errors
	Queuing Error
	Release Compatibility Error
	Resource Manager Errors
	Timeout Errors
	Transaction Errors
	Typed Buffer Errors
	Application Errors
	Handling Errors
	Listing 11-1 Handling Errors
	Listing 11-2 Handling Errors Using tpstrerrordetail()

	Transaction Considerations
	Communication Etiquette
	Transaction Errors
	Non-fatal Transaction Errors
	Table 11-3 Transaction Errors

	Fatal Transaction Errors
	Heuristic Decision Errors

	Transaction Timeouts
	Effect on the tpcommit() Function
	Effect on the TPNOTRAN Flag

	tpreturn() and tpforward() Functions
	tpterm() Function
	Resource Managers
	Sample Transaction Scenarios
	Called Service in Same Transaction as Caller
	Called Service in Different Transaction with AUTOTRAN Set
	Figure 11-1 Transaction Roles of tpforward() and tpreturn() with AUTOTRAN

	Called Service That Starts a New Explicit Transaction

	Oracle TUXEDO System-supplied Subroutines
	Central Event Log
	Log Name
	Log Entry Format
	Writing to the Event Log

	Debugging Application Processes
	Debugging Application Processes on UNIX Platforms
	1. Set any desired breakpoints in the code.
	2. Enter the dbx command.
	3. At the dbx prompt (*), type the run subcommand (r) and any options you want to pass to the client program’s main().

	Debugging Application Processes on Windows 2003 Platforms
	1. Run regedit or regedt32.
	2. Within the HKEY_LOCAL_MACHINE subtree, navigate to \SOFTWARE\Microsoft\Windows\CurrentVersion\AeDebug
	3. Double-click on the Debugger key to advance into the registry string editor.
	4. Modify the existing string to specify the debugger of your choice.

	Comprehensive Example
	Listing 11-3 ACCT Server
	001 #include <stdio.h> /* UNIX */ 002 #include <string.h> /* UNIX */ 003 #include <fml.h> /* BEA Tuxedo System */ 004 #include <atmi.h> /* BEA Tuxedo System */ 005 #include <Usysflds.h> /* BEA Tuxedo System */ 006 #include <sqlcode.h> /* BEA Tuxedo S...

