Oracle® Tuxedo
ATMI C Function Reference

12c Release 2 (12.1.3)

April 2014

ORACLE

Oracle Tuxedo ATMI C Function Reference, 12c Release 2 (12.1.3)
Copyright © 1996, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to usin writing.

If thisis software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software”
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use,
duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general usein avariety of information management applications. It is not developed
or intended for use in any inherently dangerous applications, including applications that may create arisk of persona injury. If
you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

This software or hardware and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect
to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damagesincurred due to your access to or use of third-party content, products, or services.

Contents

Introduction to the C Language Application-to-Transaction Monitor Interface 8
AEM setblockinghook(3c) 44
AEOaddtypesw(3c) 45
AEPisblocked(3c) 48
AEWsetunsol (3c) 49
buffer(3c) 50
catgets(3c) 60
catopen, catclose(3c) 61
decimal(3c) 63
getURL EntityCacheDir(3c) 66
getURL EntityCaching(3c) 66
gp_mktime(3c) 67
nl_langinfo(3c) 70
rpc_sm_allocate, rpc_ss allocate(3c) 71
rpc_sm_client_free, rpc_ss client_free(3c) 73
rpc_sm_disable allocate, rpc_ss disable allocate(3c) 74
rpc_sm_enable_allocate, rpc_ss enable allocate(3c) 75
rpc_sm_free, rpc_ss free(3c) 76
rpc_sm_set client_alloc free, rpc_ss set client_aloc_free(3c) 77
rpc_sm_swap_client_alloc _free, rpc_ss swap _client_alloc_free(3c) 78
setlocale(3c) 80
setURL EntityCacheDir(3c) 81

ATMI C Function Reference

setURL EntityCaching(3c) 82
strerror(3c) 82
strftime(3c) 83
tpabort(3c) 86
tpacall(3c) 88
tpadmcall(3c) 91
tpadvertise(3c) 94
tpalloc(3c) 96
tpappthrinit(3c) 97
tpappthrterm(3c) 99
tpatz(3c) 101
tpbegin(3c) 102
tpbroadcast(3c) 104
tpcall(3c) 106
tpcancel (3c) 111
tpchkauth(3c) 112
tpchkunsol (3c) 113
tpclose(3c) 115
tpcommit(3c) 116
tpconnect(3c) 119
tpconvert(3c) 122
tpconvmb(3c) 124
tperyptpw(3c) 125
tpdequeue(3c) 126
tpdiscon(3c) 135
tpenqueue(3c) 137
tpenvel ope(3c) 148

ATMI C Function Reference

tperrordetail (3c) 151
tpexport(3c) 155
tpfmlI32toxml(3c) 157
tpfmltoxml(3c) 158
tpforward(3c) 160
tpfree(3c) 162
tpgblktime(3c) 164
tpgetadmkey(3c) 165
tpgetcallinfo(3c) 166
tpgetctxt(3c) 173
tpgetlev(3c) 174
tpgetmbenc(3c) 176
tpgetrepos(3c) 177
tpgetrply(3c) 179
tpgprio(3c) 183
tpimport(3c) 184
tpinit(3c) 186
tpkey_close(3c) 195
tpkey_getinfo(3c) 196
tpkey_open(3c) 199
tpkey_setinfo(3c) 201
tpnotify(3c) 203
tpopen(3c) 205
tppost(3c) 206
tprealloc(3c) 210
tprecv(3c) 211
tpresume(3c) 216

ATMI C Function Reference

tpreturn(3c) 218
tprmclose(3c) 222
tprmend(3c) 223
tprmopen(3c) 224
tprmstart(3c) 225
tpshblktime(3c) 227
tpscmt(3c) 230
tpseal (3c) 232
tpsend(3c) 233
tpservice(3c) 236
tpsetcallinfo(3c) 239
tpsetctxt(3c) 244
tpsetmbenc(3c) 245
tpsetrepos(3c) 246
tpsetunsol (3c) 249
tpsign(3c) 251
tpsprio(3c) 252
tpstrerror(3c) 253
tpstrerrordetail (3c) 254
tpsubscribe(3c) 256
tpsuspend(3c) 264
tpsvrdone(3c) 266
tpsvrinit(3c) 267
tpsvrthrdone(3c) 268
tpsvrthrinit(3c) 269
tpterm(3c) 270
tptypes(3c) 272

ATMI C Function Reference

tpunadvertise(3c) 274
tpunsubscribe(3c) 275
tputrace(3c) 277
tpxmltofml32(3c) 282
tpxmltofml(3c) 285

TRY (3c) 288

tuxgetenv(3c) 296
tuxgetmbaconv(3c) 297
tuxgetmbenc(3c) 298
tuxputenv(3c) 299
tuxreadenv(3c) 300
tuxsetmbaconv(3c) 302
tuxsetmbenc(3c) 303
tuxthrputenv(3c) 304
tx_begin(3c) 305

tx_close(3c) 306
tx_commit(3c) 308
tx_info(3c) 310

tx_open(3c) 312
tx_rollback(3c) 313

tx_set commit_return(3c) 315
tx_set transaction_control(3c) 317
tx_set transaction_timeout(3c) 319
userlog(3c) 320

Usignal(3c) 323
Uunix_err(3c) 326

ATMI C Function Reference

ATMI C Function Reference

Section 3c - C Functions

Table 1 Oracle Tuxedo ATMI C Functions

Name Description

Introduction to the C Language Provides an introduction to the C language ATMI

Application-to-Transaction Monitor Interface

AEMsetblockinghook (3c) Establishes an application-specific blocking hook function

AEOaddtypesw (3c) Installs or replaces a user-defined buffer type at execution
time

AEPisblocked (3c) Determinesif ablocking call isin progress

AEWsetunsol (3c) Posts Windows message for Oracle Tuxedo ATMI
unsolicited event

buffer (3c) Semantics of elementsin tmtype_sw_t

catgets (3c) Reads a program message

catopen, catclose(3c) Opens/closes a message catalogue

decimal (3¢) Decimal conversion and arithmetic routines

getURLEntityCacheDir (3c) Gets the absol ute path to the location where the DTD,

Schemas, and Entity files are cached. It specifiesa particular
Xerces parser class method.

ATMI C Function Reference

Table 1 Oracle Tuxedo ATMI C Functions (Continued)

Name

Description

getURLEntityCaching (3c)

Gets the caching mechanism for the DTD, schemas, and
Entity files. It specifies a particular Xerces parser class
method.

gp_mktime (3c)

Converts a tm structure to a calendar time

nl_langinfo (3c)

Language information

rpc_sm_allocate,
rpc_ss_allocate(3c)

Allocates memory within the RPC stub

rpc_sm_client_free,
rpc_ss_client_free(3c)

Frees memory returned from a client stub

rpc_sm_disable_allocate,
rpc_ss_disable_allocate(3c)

Rel eases resources and allocated memory within the stub
memory management scheme

rpc_sm_enable_allocate,
rpc_ss_enable_allocate(3c)

Enables the stub memory management environment

rpc_sm_free, rpc_ss_free(3c)

Frees memory allocated by the rpc_sm_allocate() routine

rpc_sm_set_client_alloc_free,
rpc_ss_set_client_alloc_free(3c)

Setsthe memory allocation and freeing mechanisms used by
the client stubs

rpc_sm_swap_client_alloc_free,
rpc_ss_swap_client_alloc_free(3c)

Exchanges current memory allocation and freeing
mechanism used by client stubs with one supplied by client

setlocale(3c)

Modifies and queries a program’slocale

setURLEntityCacheDir (3c)

Sets the directory where the DTD, schemas, and Entity files
areto be cached. It specifies a particular Xerces parser class
method.

setURLEntityCaching (3c¢)

Turns caching on or off for DTD, schema, and Entity filesby
default. It specifies aparticular Xerces parser class method.

strerror (3c)

Gets error message string

strftime (3c)

Converts date and time to string

tpabort (3c)

Routine for aborting current transaction

tpacall (3¢c)

Routine for sending a service request

2 ATMI C Function Reference

Table 1 Oracle Tuxedo ATMI C Functions (Continued)

Name

Description

tpadmcall (3¢)

Administers unbooted application

tpadvertise (3c)

Routine for advertising a service name

tpalloc(3c)

Routine for allocating typed buffers

tpappthrinit (3c)

Routinefor creating and initializing anew Tuxedo context in
an application-created server thread

tpappthrterm(3c)

Routine for terminating Tuxedo application-created context
in aserver process

tpatz (3c)

Controls resource access

tpbegin(3c)

Routine for beginning atransaction

tpbroadcast (3¢c)

Routine to broadcast natification by name

tpcall (3c)

Routine for sending service request and awaiting its reply

tpcancel (3c)

Routine for canceling a call descriptor for outstanding reply

tpchkauth (3¢)

Routine for checking if authentication required to join an
application

tpchkunsol (3c¢)

Routine for checking for unsolicited message

tpclose(3c)

Routine for closing a resource manager

tpcommit (3c)

Routine for committing current transaction

tpconnect (3¢)

Routine for establishing a conversational service connection

tpconvert (3c)

Converts structures to/from string representations

tpconvmb (3¢)

Convertsencoding of charactersin aninput buffer to anamed
target encoding

tpcryptpw (3c)

Encrypts application password in administrative request

tpdequeue (3¢)

Routine to dequeue a message from a queue

tpdiscon (3c)

Routine for taking down a conversational service connection

ATMI C Function Reference

Table 1 Oracle Tuxedo ATMI C Functions (Continued)

Name

Description

tpenqueue (3¢)

Routine to enqueue a message

tpenvelope (3c)

Accesses the digital signature and encryption information
associated with atyped message buffer

tperrordetail (3c)

Gets additional detail about an error generated from the last
Oracle Tuxedo ATMI system call

tpexport (3c)

Converts a typed message buffer into an exportable,
machine-independent string representation, that includes
digita signatures and encryption seals

tpfml32toxml (3¢)

Converts FML 32 buffer datato XML buffer data

tpfmltoxml (3c)

Converts FML buffer datato XML buffer data

tpforward(3c)

Routine for forwarding a service request to another service
routine

tpfree(3c)

Routine for freeing atyped buffer

tpgblktime (3c¢)

Routine for returning a previously set, per second or
millisecond nontransactional blocktime value

tpgetadmkey (3¢)

Gets administrative authentication key

tpgetcallinfo (3c)

Routine for retrieving call path message monitoring
attributes

tpgetctxt (3¢)

Retrieves a context identifier for the current application
association

tpgetlev(3c)

Routine for checking if atransaction isin progress

tpgetmbenc (3¢)

Gets the code-set encoding name from a typed buffer

tpgetrepos (3c)

Routine for retrieving service and parameter information
from a Tuxedo repository file.

tpgetrply (3c)

Routine for getting areply from a previous request

tpgprio(3c)

Routine for getting a service request priority

ATMI C Function Reference

Table 1 Oracle Tuxedo ATMI C Functions (Continued)

Name

Description

tpimport (3c)

Converts an exported representation back into atyped
message buffer

tpinit (3c)

Joins an application

tpkey_close (3c)

Closes a previously opened key handle

tpkey_getinfo (3c)

Gets information associated with a key handle

tpkey_open (3c)

Opensakey handlefor digital signature generation, message
encryption, or message decryption

tpkey_setinfo (3c)

Sets optional attribute parameters associated with a key
handle

tpnotify (3c)

Routine for sending notification by client identifier

tpopen (3c)

Routine for opening a resource manager

tppost (3¢c)

Posts an event

tprealloc (3c)

Routine to change the size of atyped buffer

tprecv(3c)

Routine for receiving a message in a conversational
connection

tpresume (3c¢)

Resumes a global transaction

tpreturn(3c)

Routine for returning from a service routine

tprmclose (3c)

Routines for close a specified RM configured in amultiple
RMs server group.

tprmend (3c)

Routines for end current work performed on behalf of a
transaction branch in a specified RM.

tprmopen (3c)

Routines for open a specified RM configured ina*RMS
section which is associated with a multiple RMs server

group.

tprmstart (3c¢)

Routines for start work on behalf of atransaction branch of
specified RM inaMRM server

ATMI C Function Reference

Table 1 Oracle Tuxedo ATMI C Functions (Continued)

Name

Description

tpsblktime (3c)

Routine for setting nontransactional blocktime values, in
seconds or milliseconds, for the next service call or for all
service calls used per context

tpscmt (3¢) Routine for setting when tpcommit () should return
tpseal (3c) Marks a typed message buffer for encryption
tpsend (3c) Routinefor sending amessagein aconversational connection

tpservice(3c)

Template for service routines

tpsetcallinfo (3c)

Routine for adding out-of-band information to a Tuxedo
request

tpsetctxt (3¢)

Sets a context identifier for the current application
association

tpsetmbenc (3c)

Sets the code-set encoding name for atyped buffer

tpsetrepos (3c)

Adds, edits, or deletes service and parameter information
from a Tuxedo Service Metadata repository file

tpsetunsol (3c¢)

Sets the method for handling unsolicited messages

tpsign(3c)

Marks atyped message buffer for digital signature

tpsprio(3c)

Routine for setting service request priority

tpstrerror (3c)

Gets error message string for an Oracle Tuxedo ATMI
system error

tpstrerrordetail (3c)

Gets error detail message string for an Oracle Tuxedo ATMI
system

tpsubscribe (3¢)

Subscribes to an event

tpsuspend (3c)

Suspends a global transaction

tpsvrdone (3¢)

Terminates an Oracle Tuxedo ATMI system server

tpsvrinit (3c¢)

Initializes an Oracle Tuxedo ATMI system server

tpsvrthrdone (3c)

Terminates an Oracle Tuxedo ATMI server thread

6 ATMI C Function Reference

Table 1 Oracle Tuxedo ATMI C Functions (Continued)

Name

Description

tpsvrthrinit (3c)

Initializes an Oracle Tuxedo ATMI server thread

tpterm(3c)

Leaves an application

tptypes (3c)

Routine to determine information about a typed buffer

tpunadvertise (3c)

Routine for unadvertising a service name

tpunsubscribe (3c¢)

Unsubscribes to an event

tputrace (3c)

User-defined routine to provide trace information

tpxmltofml32 (3c)

Converts XML buffer datato FML32 buffer data

tpxmltofml (3¢c)

Converts XML buffer datato FML buffer data

TRY (3¢)

Exception-returning interface

tuxgetenv (3c)

Returns value for environment name

tuxgetmbaconv (3c)

Gets the value for environment variable TPMBACONV in the
process environment

tuxgetmbenc (3c)

Gets the code-set encoding name for environment variable
TPMBENC in the process environment

tuxputenv (3c)

Changes or adds value to environment

tuxreadenv (3c)

Adds variables to the environment from afile

tuxsetmbaconv (3c)

Sets the value for environment variable TPMBACONYV in the
process environment

tuxsetmbenc (3c¢)

Sets the code-set encoding name for environment variable
TPMBENC in the process environment

tuxthrputenv (3c))

Changes or adds an environment variable for the current
thread

tx_begin(3c)

Begins aglobal transaction

tx_close(3c)

Closes a set of resource managers

tx_commit (3c¢)

Commits aglobal transaction

ATMI C Function Reference

Table 1 Oracle Tuxedo ATMI C Functions (Continued)

Name

Description

tx_info(3c)

Returns global transaction information

tx_open(3c)

Opens a set of resource managers

tx_rollback(3c)

Rolls back a global transaction

tx_set_commit_return(3c)

Sets commit_return characteristic

tx_set_transaction_control (3c¢c)

Sets transaction_control characteristic

tx_set_transaction_timeout (3c)

Sets transaction_timeout characteristic

userlog(3c)

Writesamessageto the Oracle Tuxedo ATMI system central
event log

Usignal (3c¢)

Signal handling in an Oracle Tuxedo ATMI system
environment

Uunix_err (3c)

Prints UNIX system call error

Introduction to the C Language
Application-to-Transaction Monitor Interface

Description

The Application-to-Transaction Monitor Interface (ATMI) provides the interface between the
application and the transaction processing system. Thisinterfaceisknown asthe ATMI interface.
It provides function calls to open and close resources, manage transactions, manage typed
buffers, and invoke request/response and conversational service calls.

Communication Paradigms

The function calls described in the ATMI reference pages imply a particular model of
communication. This model is expressed in terms of how client and server processes can
communicate using request and reply messages.

There are two basic communication paradigms: request/response and conversational .
Request/response services are invoked by service requests along with their associated data.
Request/response services can receive exactly one request (upon entering the serviceroutine) and
send at most one reply (upon returning from the service routine). Conversational services, on the

8 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

other hand, are invoked by connection requests along with a means of referring to the open
connection (that is, a descriptor used in calling subsequent connection routines). Once the
connection has been established and the service routine invoked, either the connecting program
or the conversational service can send and receive data as defined by the application until the
connection is torn down.

Note that a process can initiate both request/response and conversational communication, but
cannot accept both request/response and conversational service requests. The following sections
describe the two communication paradigms in greater detail.

Note: Invarious partsof the Oracle Tuxedo documentation werefer to threads. When thisterm
isused in adiscussion of multithreaded applications, it is self-explanatory. In some
instances, however, the term is used in adiscussion of atopic that is relevant for both
single-threaded and multithreaded applications. In such cases, readers who are running
single-threaded applications may assume that the term thread refersto an entire process.

Oracle Tuxedo ATMI System Request/

Response Paradigm for Client/Server
With regard to request/response communication, a client is defined as a process that can send
requests and receive replies. By definition, clients cannot receive requests nor send replies. A
client can send any number of requests, and can wait for the replies synchronously or receive
(some limited number of) the replies at its convenience. In certain cases, aclient can send a
request that has no reply. tpinit () and tpterm() allow aclient tojoin and leave an Oracle
Tuxedo ATMI system application.

A request/response server isaprocessthat can receive one (and only one) servicerequest at atime
and send at most one reply to that request. (If the server is multithreaded, however, it can receive
multiple requests at one time and issue multiple replies at one time.) While a server isworking
on aparticular request, it can act like a client by initiating request/response or conversational
requests and receiving their replies. In such a capacity, aserver is called arequester. Note that
both client and server processes can be requesters (in fact, aclient can be nothing but arequester).

A reguest/response server can forward a request to another request/response server. Here, the
server passes along the request it received to another server and does not expect areply. It isthe
responsibility of the last server in the chain to send the reply to the original requester. Use of the
forwarding routine ensures that the original requester ultimately receivesits reply.

Servers and service routines offer a structured approach to writing Oracle Tuxedo ATMI system
applications. In a server, the application writer can concentrate on the work performed by the
service rather than communications detail s such as receiving requests and sending replies.
Because many of the communication detailsare handled by Oracle Tuxedo ATMI system’ Smain,

ATMI C Function Reference 9

the application must adhere to certain conventions when writing a service routine. At thetime a
server finishesits service routine, it can send areply using tpreturn () or forward the request
using tpforward (). A serviceis not allowed to perform any other work nor isit allowed to
communicate with any other process after this point. Thus, a service performed by a server is
started when arequest is received and ended when either areply is sent or the request is
forwarded.

Concerning request and reply messages, thereis an inherent difference between thetwo: arequest
has no associated context beforeit issent, but areply does. For example, when sending arequest,
the caller must supply addressing information, whereas areply is always returned to the process
that originated the request, that is, addressing context is maintained for areply and the sender of
thereply can exert no control over itsdestination. The differences between the two message types
manifest themselves in the parameters and descriptions of the routines described in tpcall ().

When arequest messageissent, itissent at aparticular priority. The priority affectshow arequest
is dequeued: when a server dequeues requests, it dequeues the one with the highest priority. To
prevent starvation, the oldest request is dequeued every so often regardless of priority. By default,
areguest’ spriority is associated with the service name to which the request is being sent. Service
names can be given priorities at configuration time (see UBBCONFIG (5)). A default priority is
used if noneisdefined. In addition, the priority can be set at runtime using aroutine, tpsprio ().
By doing so, the caller can override the configuration or default priority when the messageis sent.

Oracle Tuxedo ATMI System Conversational Paradigm for Client/Server

10

With regard to conversational communication, aclient is defined as a process that can initiate a
conversation but cannot accept a connection request.

A conversational server isaprocess that can receive connection requests. Once the connection
has been established and the service routine invoked, either the connecting program or the
conversational service can send and receive data as defined by the application until the
connection istorn down. The conversation is half-duplex in nature such that one side of the
connection has control and can send data until it gives up control to the other side. Ina
single-threaded server, while the connection is established, the server is“reserved” such that no
other process can establish a connection with it. When a connection is established to a
multithreaded server, however, that server is not reserved for exclusive use by one process.
Instead, it can accept requests from multiple client threads.

As with aregquest/response server, the conversational server can act as a requester by initiating
other requests or connections with other servers. Unlike a request/response server, a
conversational server cannot forward arequest to another server. Thus, a conversational service

ATMI C Function Reference

../rf5/rf5.html

Introduction to the C Language Application-to-Transaction Monitor Interface

performed by aserver is started when arequest is received and ended when the final reply is sent
via tpreturn().

Once the connection is established, the connection descriptor implies any context needed
regarding addressing information for the participants. Messages can be sent and received as
needed by the application. Thereis no inherent difference between the request and reply
messages and no notion of priority of messages.

Message Delivery

Sending and receiving messages, whether in conversation mode or reguest/response mode,
implies communi cation between two units of an application. The great majority of messages|ead
to areply or at least an acknowledgment, so that is an assurance that the message was received.
There are, however, certain messages (some originated by the system, others originated by an
application) where areply or acknowledgment is not expected. For exampl e, the system can send
an unsolicited message using tpnotify () without the Tpack () flag, or an application can send
amessage using tpacall () with the rpNorREPLY () flag. If the message queue of the receiving
program is full, the message is dropped.

If the sending and receiving side are on different machines, the communication takes place
between bridge processes that send and receive messages across a hetwork. This raises the
additional possibility of non-delivery dueto acircuit failure. Even when either of these conditions
leadsto the positing of an event or to aur.oc message, it isnot easy to associate the event or uL.oc
message with the non-arrival of a particular message.

Becausethe Oracle Tuxedo ATMI systemisdesigned to handlelarge volumes of messages across
broad networks, it is not programmed to detect and correct the small percentage of
failures-to-deliver described in the preceding paragraphs. For that reason, there can be no
guarantee that every message will be delivered.

Message Sequencing

In the conversational model, for messages being exchanged using tpsend () and tprecv (), a
seguence number is added to the message header and messages are received in the order in which
they are sent. If aserver or client gets a message out of order, the conversation is stopped, any
transaction in progressisrolled back, and message 1572 in LIBTUX, “Bad Conversational
Sequence Number,” islogged.

In the Request/Response model, messages are not sequenced by the system. If the application
logic implies a sequence, it is the responsibility of the application to monitor and control it. The
paralel message transmission made possible by the support of multiple network addresses for
bridge processesincreases the possihility that messageswill not bereceived in the order sent. An

ATMI C Function Reference "

application that is concerned about this may choose to specify a single network address for each
bridge process, add sequence numbers to their messages or require periodic acknowledgments.

Queued Message Model

The Oracle Tuxedo ATMI system queued message model allows for enqueuing arequest
message to stabl e storage for subsequent processing without waiting for its completion, and
optionally getting areply viaa queued response message. The ATMI functions that queue
messages and dequeue responses are tpenqueue () and tpdequeue (). They can be called from
any type of Oracle Tuxedo ATMI system application processes: client, server, or conversational .
Thefunctions tpenqueue () and tpdequeue () can aso beused for peer-to-peer communication
where neither the enqueuing application nor the dequeuing application are designated as server
or client.

The queued message facility is an XA-compliant resource manager. Persistent messages are
enqueued and dequeued within transactions to ensure one-time-only processing.

ATMI Transactions

12

The Oracle Tuxedo ATMI system supports two sets of mutually exclusive functionsfor defining
and managing transactions:. the Oracle Tuxedo system’ sATMI transaction demarcation functions
(the names of which include the prefix tp) and X/Open’s TX Interface functions (the names of
which include the prefix tx_). Because X/Open used ATMI’ stransaction demarcation functions
asthe basefor the TX Interface, the syntax and semantics of the TX Interface are quite similar to
those of the ATMI. This section is an overview of ATMI transaction concepts. The next section
introduces additional concepts about the TX Interface.

In the Oracle Tuxedo ATMI system, atransaction is used to define asingle logical unit of work
that either wholly succeeds or has no effect whatsoever. A transaction allowswork performedin
many processes, possibly at different sites, to be treated as an atomic unit of work. The initiator
of atransaction normally uses tpbegin () and either tpcommit () Or tpabort () to delineatethe
operations within atransaction.

The initiator may also suspend its work on the current transaction by issuing tpsuspend ().
Another process may take over the role of theinitiator of a suspended transaction by issuing
tpresume () . Asatransaction initiator, a process must call one of the following: tpsuspend (),
tpcommit (), OF tpabort (). Thus, one process can start a transaction that another may finish.

If aprocess calling aserviceisin transaction mode, then the called service routineis also placed
in transaction mode on behalf of the same transaction. Otherwise, whether the serviceisinvoked
in transaction mode or not depends on options specified for the service in the configuration file.
A servicethat is not invoked in transaction mode can define multiple transactions between the

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

timeitisinvoked and thetimeit ends. On the other hand, a service routineinvoked in transaction
mode can participate in only one transaction, and work on that transaction is completed upon
termination of the service routine. Note that a connection cannot be upgraded to transaction
mode: if tpbegin () iscalled whileaconversation exists, the conversation remains outside of the
transaction (asif tpconnect () had been called with the TeNnoTRAN () flag).

A serviceroutinejoining atransaction that was started by another processis called a participant.
A transaction can have severa participants. A service can be invoked to do work on the same
transaction more than once. Only theinitiator of atransaction (that is, a process calling either
tpbegin () Of tpresume ()) can call tpcommit () OfF tpabort (). Participants influence the
outcome of atransaction by using tpreturn () Of tpforward (). Thesetwo callssignify theend
of a service routine and indicate that the routine has finished its part of the transaction.

TX Transactions

Transactionsdefined by the TX Interface are practically identical with those defined by the ATMI
functions. An application developer may use either set of functions when writing clients and
service routines, but should not intermingle one set of functions with the other within asingle
process (that is, a process cannot call tpbegin () and later call tx_commit ()).

The TX Interface hastwo calls for opening and closing resource managers in a portable manner,
tx_open () and tx_close (), respectively. Transactions are started with tx_begin () and
completed with either tx_commit () OF tx_rollback().tx_info() isused to retrieve
transaction information, and there are three calls to set options for transactions:

tx_set commit_return(), tx_set transaction control (), and
tx_set_transaction_timeout (). The TX Interface hasno equivalentsto ATMI's
tpsuspend () and tpresume ().

In addition to the semantics and rules defined for ATMI transactions, the TX Interface has some
additional semanticsthat are worth introducing here. First, service routine writers wanting to use
the TX Interface must supply their own tpsvrinit () routinethat cals tx_open (). The default
Oracle Tuxedo ATMI system-supplied tpsvrinit () callstpopen (). The samerule appliesfor
tpsvrdone () : if the TX Interface is being used, then service routine writers must supply their
OWnN tpsvrdone () that calls tx_close().

Second, the TX Interface hastwo additional semanticsnot foundin ATMI. Theseare chained and
unchained transactions, and transaction characteristics.

ATMI C Function Reference 13

Chained and Unchained Transactions

The TX Interface supports chained and unchained modes of transaction execution. By default,
clients and service routines execute in the unchained mode; when an active transaction is
completed, a new transaction does not begin until tx_begin () iscalled.

In the chained mode, a new transaction starts implicitly when the current transaction compl etes.
That is, when tx_commit () O tx_rollback () iscalled, the Oracle Tuxedo ATMI system
coordinates the completion of the current transaction and initiates a new transaction before
returning control to the caller. (Certain failure conditions may prevent a new transaction from
starting.)

Clients and service routines enable or disable the chained mode by calling
tx_set_transaction_control (). Transitions between the chained and unchained mode
affect the behavior of the next tx_commit () Of tx_rollback () cal. Thecall to
tx_set_transaction_control () doesnot put thecallerinto or takeit out of transaction mode.

Since tx_close () cannot be called when the caller isin transaction mode, acaller executing in
chained mode must switch to unchained mode and compl ete the current transaction before calling

tx_close().

Transaction Characteristics

A client or aserviceroutinemay call tx_info () to obtain the current values of their transaction
characteristics and to determine whether they are executing in transaction mode.

The state of an application process includes several transaction characteristics. The caller
specifiesthese by calling tx_set_* () functions. When aclient or aserviceroutine setsthe value
of acharacteristic, it remainsin effect until the caller specifies adifferent value. When the caller
obtains the value of a characteristic viatx_info (), it does not change the value.

Error Handling

14

Most of the ATMI functions have one or more error returns. An error condition is indicated by
an otherwise impossible returned value. Thisisusually -1 or error, or O for abad field identifier
(BaDFLDID) Or address. The error typeis aso made available in the external integer tperrno.
tperrno iSnot cleared on successful calls, so it should be tested only after an error has been
indicated.

The tpstrerror () function is provided to produce a message on the standard error output. It
takes one argument, an integer (found in tperrno) and returns a pointer to the text of an error
message in LIBTUX_CAT. The pointer can be used as an argument to userlog ().

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

tperrordetail () can beused asthefirst step of athree step procedure to get additional detail
about an error in the most recent Oracle Tuxedo ATMI system call on the current thread.
tperrordetail () returnsan integer which isthen used as an argument to
tpstrerrordetail () to retrieve apointer to a string that contains the error message. The
pointer can then be used as an argument to userlog Or t0 fprintf ().

Theerror codesthat can be produced by an ATMI function are described on each ATMI reference
page. TheF_error () and F_error32 () functions are provided to produce a message on the
standard error output for FML errors. They take one parameter, astring; print the argument string
appended with a colon and a blank; and then print an error message followed by a newline
character. The error message displayed is the one defined for the error number currently in
Ferror () Of Ferror32 (), Whichis set when errors occur.

Fstrerror (), and itscounterpart, Fstrerror32 (), can be used to retrieve the text of an FML
error message from a message catal og; it returns a pointer that can be used as an argument to

userlog.

The error codes that can be produced by an FML function are described on each FML reference
page.

Timeouts

There are three types of timeouts in the Oracle Tuxedo ATMI system: oneis associated with the
duration of atransaction from start to finish. A second is associated with the maximum length of
time ablocking call will remain blocked before the caller regains control. The third is a service
timeout and occurs when a call exceeds the number of seconds specified in the svcTIMEOUT
parameter in the sErvICES section of the configuration file.

Thefirst kind of timeout is specified when atransaction is started with tpbegin (). (See
tpbegin (3c) for details.) The second kind of timeout can occur when using the Oracle Tuxedo
ATMI system communication routines defined in tpcall (3c). Callers of these routines
typically block when awaiting areply that has yet to arrive, although they can also block trying
to send data (for example, if request queues are full). The maximum amount of time a caller
remains blocked is determined by an Oracle Tuxedo ATMI system configuration file parameter.
(Seethe BLoCKTIME parameter in UBBCONFIG (5) for details.)

Blocking timeouts are performed by default when the caller is not in transaction mode. When a
client or server isin transaction mode, it is subject to the timeout val ue with which the transaction
was started and is not subject to the blocking timeout value specified in the ussconr1c file.

When atransaction timeout occurs, replies to asynchronous requests made in transaction mode
becomeinvalid. That is, if a processiswaiting for a particular asynchronous reply for a request

ATMI C Function Reference 15

../rf5/rf5.html

sent in transaction mode and a transaction timeout occurs, the descriptor for that reply becomes
invalid. Similarly, if atransaction timeout occurs, an event is generated on the connection
descriptor associated with the transaction and that descriptor becomesinvalid. On the other hand,
if ablocking timeout occurs, the descriptor is still valid and the waiting process can reissue the
call to await the reply.

The servicetimeout mechanism providesaway for the systemto kill processesthat may befrozen
by some unknown or unexpected system error. When a service timeout occursin a
request/response service, the Oracle Tuxedo ATMI system kills the server processthat is
executing the frozen service and returns error code TPESVCERR. If a service timeout occursin a
conversational service, the Tp_EVSVCERR event is returned.

If atransaction hastimed out, the only valid communi cations before the transaction is aborted are
calsto tpacall () with TPNOREPLY, TPNOTRAN, and TPNOBLOCK Set.

Sincerelease 6.4, some additional detail has been provided beyond the TpEsVCERR error code. |
aservice fails due to exceeding the timeout threshold, an event, .sysserviceTimeout, iS
posted.

Dynamic Service Advertisements

By default, aserver’'s services are advertised when it is booted and unadvertised when it is shut
down. If aserver needsto control the set of servicesthat it offersat run time, it can do so by
caling tpadvertise () and tpunadvertise (). Theseroutines affect only the services offered
by the calling server unless that server belongs to a Multiple Server, Single Queue (MSSQ) set.
Because al serversin an MSSQ set must offer the same set of services, these routines also affect
the advertisements of all servers sharing the caller’s MSSQ set.

Buffer Management

16

Initially, aprocess has no buffers. Before sending a message, a buffer must be allocated using
tpalloc (). Thesender’ sdatacan then beplaced in the buffer and sent. Thisbuffer hasaspecific
structure. The particular structure is denoted by the type argument to the tpalioc () function.
Since some structures can need further classification, a subtype can also be given (for example,
aparticular type of C structure).

When receiving amessage, a buffer isrequired into which application data can be received. This
buffer must be oneoriginally gotten from tpalioc (). Notethat an Oracle Tuxedo ATMI system
server, initsmain, alocates a buffer whose address is passed to a request/response or
conversational service upon invoking the service. (See tpservice (3c) for details on how this
buffer istreated.)

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

Buffers used for receiving messages are treated dlightly differently than those used for sending:
the size and address usually change upon receipt of amessage, since the system internally swaps
the buffer passed into the receive call with internal buffersit used to processthe buffer. A buffer
may grow or shrink when it receives data. Whether it grows or shrinks depends on the amount of
data sent by the sender, and the internal data flow needed to get the data from sender to receiver.
Many factors can affect the buffer size, including compression, receiving a message from a
different type of machine, and the action of thepostrecv () function for the type of buffer being
used (seebuffer (3c)). The buffer sizesin Workstation clients are usually different from those
in native clients.

It is best to think of the receive buffer as a placeholder, rather than the actual container that will
receive the message. The system sometimes uses the size of the buffer you pass as a hint, so it
does help if it is big enough to hold the expected reply.

On the sending side, buffer types that might be filled to less than their allocated capacity (for
example, FML or STRING buffers) send only the amount used. A 100K FML 32 buffer with one
integer field in it is sent as amuch smaller buffer, containing only that integer.

This means that the receiver will receive a buffer smaller than what was originally alocated by
the sender, yet larger than the data that was sent. For example, if a STRING buffer of 10K bytes
isallocated, and the string“HEL L O” iscopied into it, only the six bytes are sent, and the receiver
will probably end up with abuffer that isaround 1K or 4K bytes. (It may be larger or smaller,
depending on other factors.) The Oracle Tuxedo ATMI system guarantees only that a received
message will contain all of the data that was sent; it does not guarantee that the message will
contain all the free space it originally contained.

The process receiving the reply is responsible for noting size changes in the buffer (using
tptypes ()) and reallocating the buffer if necessary. All Oracle Tuxedo ATMI functions change
areceiver’ s buffer return information about the amount of datain the buffer, so it should become
standard practice to check the buffer size every time areply isreceived.

One can send and receive messages using the same data buffer. Alternatively, a different data
buffer can be allocated for each message. It is usually the responsibility of the calling processto
freeits buffers by invoking tpfree (). However, in limited cases, the Oracle Tuxedo ATMI
system frees the caller’ s buffer. For more information about buffer usage, see the descriptions of
communication functions such as tpfree ().

Buffer Type Switch

The tmtype_sw_t structure provides the description required when adding new buffer typesto
tm_typesw (), the buffer type switch for a process. The switch elements are defined in
typesw (5). The function names used in this entry are templates for the actual function names

ATMI C Function Reference 17

../rf5/rf5.html

18

defined by the Oracle Tuxedo ATMI system or by applicationsin which custom buffer typesare
created. These function names can be mapped easily to switch elements: to create a template
name simply add the prefix _tm to the element name of afunction pointer. For example, the
template name for the element initbuf iS_tminitbuf.

The type element must be non-NULL and at most 8 charactersin length. If this element is not
unique in the switch, then subtype () must be non-NULL.

The subtype () element can be NULL, astring of at most 16 characters, or * (the wildcard
character). The combination of type () and subtype () must uniquely identify an element in the
switch.

A given type can have multiple subtypes. If all subtypes are to be treated the same for agiven
type, then thewildcard character, “*”, can be used. Notethat the tptypes () function can be used
to determine a buffer’ s type and subtype if subtypes need to be distinguished. If some subset of
the subtypes within a particul ar type are to be treated individually, and the rest are to be treated
identically, then those that are to be singled out with specific subtype values should appear in the
switch before the subtype designated with the wildcard. Thus, searching for types and subtypes
in the switch is done from top to bottom, and the wildcard subtype entry accepts any “leftover”
type matches.

Thedfitsize () element isused when allocating or reallocating a buffer. The semantics of
tpalloc () and tprealloc () aresuch that thelarger of the following two valuesis used to
create or reallocate abuffer: thevalueof dtitsize () or thevaueof the size parameter for the
tpalloc() and tprealloc () functions. For some types of structures, such asafixed-sized C
structure, the buffer size should equal the size of the structure. If df1tsize () issettothisvalue,
then the caller may not need to specify the buffer’ slength to routinesin which abuffer is passed.
dfltsize () canbeOor less. However, if tpalloc() Of tprealloc() iscaled and the size
parameter for the function being called is also less than or equal to O, then the routine will fail.
We recommend setting df1tsize () to avaue greater than O.

The Oracle Tuxedo ATMI system provides five basic buffer types:

e CARRAY—a Character array, possibly containing NULL characters, which is neither encoded
nor decoded during transmission

e sTrRING—a NULL-terminated character array
o rvr—fielded buffers (FML Or FM1.32)

e xuML.—XML document or datagram buffer

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

e view—simple C structures (view or view32); al views are handled by the same set of
routines. The name of a particular view isits subtype name.

Two of these buffer types have synonyms: x_ocTET isasynonym for carray, and both
X_C_TYPE and x_coMMON are synonyms for view. x_c_TypE supports al the same elements as
vIEW, Whereasx_common supports only longs, shorts, and characters. x_comvon should be used
when both C and COBOL programs are communicating.

An application wishing to supply its own buffer type can do so by adding an instance to the
tm_typesw () array. Whenever adding or deleting abuffer type, be careful toleaveaNULL entry
at theend of thearray. Notethat abuffer typewithaNULL nameisnot permitted. An application
client or server islinked with the new buffer type switch by explicitly specifying the name of the
source or object file on the buildserver () Of buildclient () command line using the - £
option.

Unsolicited Notification

There are two methods for sending messages to application clients outside the boundaries of the
client/server interaction defined above. The first is the broadcast mechanism supported by
tpbroadcast (). Thisfunction allows application clients, servers, and administrators to
broadcast typed buffer messagesto a set of clients selected on the basis of the names assigned to
them. The names assigned to clients are determined in part by the application (specifically, by the
information passed in the reInTT typed buffer at tpinit () time) and in part by the system
(based on the processor through which the client accesses the application).

The second method isthe notification of aparticular client asidentified from an earlier or current
service request. Each service request contains a unique client identifier that identifies the
originating client for the service request. Callsto the tpcall () and tpforward () functions
from within a service routine do not change the originating client for that chain of service
requests. Client identifiers can be saved and passed between application servers. The
tpnotify () functionisused to notify clientsidentified in this manner.

Single or Multiple Application Contexts per Process

The Oracle Tuxedo ATMI system allows client programs to create an association with one or
more applications per process. If tpinit () iscalled with the TPMULTICONTEXTS parameter
included inthe f1ags field of the TeInTT Structure, then multiple client contexts are allowed. If
tpinit () iscaledimplicitly, is called withaNULL parameter, or the £1ags field does not
include TeMuL.TTICONTEXTS, then only a single application association is allowed.

Insingle-context mode, if tpinit () iscalled morethanonce (that is, if itiscalled after the client
has already joined the application), no action is taken and success is returned.

ATMI C Function Reference 19

In multicontext mode, each call to tpinit () createsanew application association. The
application can obtain a handle representing this application association by calling
tpgetctxt (). Any thread in the same processcan call tpsetctxt () to set that thread’ s context.

Once an application has chosen single-context mode, all callsto tpinit () must specify
single-context mode until all application associations are terminated. Similarly, once an
application has chosen multicontext mode, all callsto tpinit () must specify multicontext mode
until all application associations are terminated.

Server programs can be associated with only a single application and cannot act as clients.
However, within each server program, there may be multiple server dispatch contexts. Each
server dispatch context worksin its own thread.

Table 2 showsthetransitionsthat may occur, within aclient process, among the following states:
the uninitialized state, the initialized in single-context mode state, and the initialized in
multicontext mode state.

Tahle 2 Per-Process Context Modes

Function States

Uninitialized Initialized Single-context Initialized Multicontext

So Mode Mode

$ Sy

tpinit without S S S)(error)
TPMULTICONTEXTS
tpinit with S, S, (error) S
TPMULTICONTEXTS
Implicit tpinit S S S, (error)
tpterm—not last S
association
tpterm—Iast association S S
tpterm—no association S

20 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

Context State Changes for a Client Thread

In amulticontext application, callsto various functions result in context state changes for the
calling thread and any other threadsthat are active in the same context asthe calling process. The
following diagram illustrates the context state changes that result from callsto the tpinit (),
tpsetctxt (), and tpterm() functions. (The tpgetctxt () function does not produce any
context state changes.)

Multicontext State Transitions

tpinit () without TPMULTICONTEXTS tpinit () with TPMULTICONTEXTS
or or
implicit tpinit () invoked by ATMI function tpsetctxt () toavalid context

/ptZ'm(

tpterm()
or
tpsetctxt ()

tpterm()

or
tpsetctxt ()

tpterm()

(see Note)
tpinit () without

TPMULTICONTEXTS

INVALID
CONTEXT

tpsetctxt ()

Note: When tpterm() iscaled by athread running in the multicontext state
(reMuLTICONTEXTS), the calling thread is placed in the NULL context state
(revuLLconTEXT). All other threads associated with the terminated context are switched
to theinvalid context state (TPINVALIDCONTEXT).

Table 3listsall possible context state changesproduced by calling tpinit (), tpsetctxt (), and
tpterm (). These states are thread-specific; different threads can be in different states when they

ATMI C Function Reference 21

are part of amulticontexted application. By contrast, each context state listed in the preceding
table (“ Per-Process Context Modes”) appliesto an entire process.

Table 3 Context State Changes for a Client Thread

When this function is
executed . ..

Then a thread in this context state resultsin. ..

NULL Context Single Context Multicontext Invalid Context
tpinit without Single context Single context Error Error
TPMULTICONTEXTS
tpinit with Multicontext Error Multicontext Error
TPMULTICONTEXTS
tpsetctxt to NULL Error NULL NULL
TPNULLCONTEXT
tpsetctxt to Error Single context Error Error
context O
tpsetctxt to Multicontext Error Multicontext Multicontext
context >0
Implicit tpinit Single context N/A N/A Error
tpterminthisthread NULL NULL NULL NULL
tpterminadifferent N/A NULL Invalid N/A

thread of this context

Support for Threads Programming

The Oracle Tuxedo ATMI system supports multithreaded programming in several ways. If the
process is using single-context mode, then as the application creates new threads, those threads
share the Oracle Tuxedo ATMI context for the process. In aclient, after athread issues a
tpinit () call insingle-context mode, other threads may then proceed to issue ATMI calls. For
example, onethread may issueatpacall () and adifferent thread in the same process may issue

atpgetrply ().

When in multicontext mode, threads initially are not associated with an Oracle Tuxedo ATMI
application. A thread can either join an existing application association by calling tpsetctxt ()
or create anew association by calling tpinit () with the TeMuLTICONTEXTS flag set.

22 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

Whether running in single-context mode or multicontext mode, the application isresponsiblefor
coordinating its threads so that ATMI operations are performed at the appropriate time.

An application may create additional threadswithin aserver by using OSthread functions. These
threads may operate independently of the Oracle Tuxedo ATMI system, or they may operatein
the same context as one of the server dispatch threads. Initially, application-created server threads
arenot associated with any server dispatch context. An application-created server thread may call
tpsetctxt () to associate itself with a server dispatch thread. The application-created server
thread must complete al of its ATMI calls before the dispatched thread calls tpreturn () or
tpforward (). A server thread dispatched by the Oracle Tuxedo ATMI system may not call
tpsetctxt (). In addition, application-created threads may not make ATMI calls that would
causeanimplicit tpinit () when not associated with a context. On the other hand, thisfailureto
make ATMI calls does not occur with dispatcher-created threads because those threads are
always associated with a context. All server threads are prohibited from calling tpinit ().

In amultithreaded application, athread that is operating in the TPINVALIDCONTEXT State is
prohibited from calling many ATMI functions. The following lists specify which functions may
and may not be called under these circumstances.

The Oracle Tuxedo ATMI system allows athread operating in the TPINVALIDCONTEXT State to
call the following functions:

® catgets (3c)

® catopen, catclose(3c)
® decimal (3c)

® gp_mktime (3c)

® nl_langinfo(3c)

® setlocale(3c)

® strerror (3c)

® strftime(3c)

® tpalloc(3c)

® tpconvert (3c)

® tpcryptpw(3c)

® tperrordetail (3c¢)
® tpfml32toxml (3c)

® tpfmltoxml (3c)

ATMI C Function Reference 23

® tpfree(3c)

® tpgblktime (3c)
® tpgetctxt(3c)
® tpgetrepos(3c)
® tprealloc(3c)
® tpsblktime (3c)
® tpsetctxt(3c)
® tpsetrepos(3c)
® tpstrerror (3c)
® tpstrerrordetail (3c¢)
® tpterm(3c)

® tptypes(3c)

® tpxmltofml32 (3c)
® tpxmltofml (3c)
® TRY (3c)

® tuxgetenv(3c)
® tuxputenv(3c)
® tuxreadenv(3c)
® userlog(3c)

® Usignal (3c)

® Uunix_err(3c)

The Oracle Tuxedo ATMI system does not allow athread operating in the TPINVALIDCONTEXT
state to call the following functions:

® AEWsetunsol (3c)
® tpabort (3c)

® tpacall (3c)

® tpadmcall (3c)

® tpbegin(3c)

® tpbroadcast (3c)

® tpcall (3c)

24 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

tpcancel (3¢)
tpchkauth (3c)
tpchkunsol (3¢)
tpclose(3c)
tpcommit (3c)
tpconnect (3¢)
tpdequeue (3c)
tpenqueue (3c¢)
tpgetadmkey (3¢)
tpgetlev (3c)
tpgetrply (3c)
tpgprio(3c)
tpinit (3c¢)
tpnotify (3c)
tpopen (3c)
tppost (3¢)
tprecv(3c)
tpresume (3c)
tpscmt (3¢)
tpsend(3c)
tpsetunsol (3¢)
tpsprio(3c)
tpsubscribe (3¢)
tpsuspend(3c)
tpunsubscribe (3¢)
tx_begin(3c)
tx_close(3c)
tx_commit (3c¢)
tx_info (3c)

tx_open(3c)

ATMI C Function Reference

25

® tx rollback(3c)
® tx_set_commit_return(3c)
® tx_set_transaction_control (3c)

® tx_set_transaction_timeout (3c)

C Language ATMI Return Codes and Other Definitions

Thefollowing return code and flag definitions are used by the ATMI routines. For an application
to work with different transaction monitors without change or recompilation, each system must
define its flags and return codes as follows:

/*

* The following definitions must be included in atmi.h

*/

/* Flags to service routines */

#define TPNOBLOCK 0x00000001 /* non-blocking send/rcv */
#define TPSIGRSTRT 0x00000002 /* restart rcv on interrupt */
#define TPNOREPLY 0x00000004 /* no reply expected */

#define TPNOTRAN 0x00000008 /* not sent in transaction mode */
#define TPTRAN 0x00000010 /* sent in transaction mode */
#define TPNOTIME 0x00000020 /* no timeout */

#define TPABSOLUTE 0x00000040 /* absolute value on tmsetprio */
#define TPGETANY 0x00000080 /* get any valid reply */

#define TPNOCHANGE 0x00000100 /* force incoming buffer to match */
#define RESERVED_BIT1 0x00000200 /* reserved for future use */
#define TPCONV 0x00000400 /* conversational service */
#define TPSENDONLY 0x00000800 /* send-only mode */

#define TPRECVONLY 0x00001000 /* recv-only mode */

#define TPACK 0x00002000 /* */

/* Flags to tpreturn - also defined in xa.h */

#define TPFAIL 0x20000000 /* service FAILURE for tpreturn */
#define TPEXIT 0x08000000 /* service FAILURE with server exit */
#define TPSUCCESS 0x04000000 /* service SUCCESS for tpreturn */
/* Flags to tpscmt - Valid TP_COMMIT_CONTROL

* characteristic values

*/

#define TP_CMT_LOGGED 0x01

#define TP_CMT_COMPLETE 0x02

26 ATMI C Function Reference

/*
*
/*

*

return after commit
decision is logged */
return after commit has
completed */

Introduction to the C Language Application-to-Transaction Monitor Interface

/* client identifier structure */
struct clientid_t {
long clientdatal4]; /* reserved for internal use */
}
typedef struct clientid_t CLIENTID;
/* context identifier structure */
typedef long TPCONTEXT_T;
/* interface to service routines */
struct tpsvcinfo {
name[128];

long flags; /* describes service attributes */
char *data; /* pointer to data */

long len; /* request data length */

int cd; /* connection descriptor

* if (flags TPCONV) true */

long appkey; /* application authentication client
* key */

CLIENTID cltid; /* client identifier for originating

* client */
}i

typedef struct tpsvcinfo TPSVCINFO;

/* tpinit(3c) interface structure */
#define MAXTIDENT 30

struct tpinfo_t {

char usrname [MAXTIDENT+2] ; /* client user name */

char cltname [MAXTIDENT+2] ; /* app client name */

char passwd[MAXTIDENT+2]; /* application password */

long flags; /* initialization flags */

long datalen; /* length of app specific data */
long data; /* placeholder for app data */

i
typedef struct tpinfo_t TPINIT;

/* The transactionID structure passed to tpsuspend(3c) and tpresume(3c) */
struct tp_tranid_t {

long infol[6]; /* Internally defined */

i

typedef struct tp_tranid_t TPTRANID;
/* Flags for TPINIT */

#define TPU_MASK 0x00000007 /* unsolicited notification
* mask */

ATMI C Function Reference 21

#define TPU_SIG 0x00000001 /* signal based

*

notification */

#define TPU_DIP 0x00000002 /* dip-in based
* notification */
#define TPU_IGN 0x00000004 /* ignore unsolicited
* messages */
#define TPU_THREAD 0x00000040 /* THREAD notification */
#define TPSA_FASTPATH 0x00000008 /* System access ==
* fastpath */
#define TPSA_PROTECTED 0x00000010 /* System access ==
* protected */
#define TPMULTICONTEXTS 0x00000020 /* multiple context associa-
* tions per process */
/* /Q tpgctl_t data structure */
#define TMQNAMELEN 127
#define TMMSGIDLEN 32
#define TMCORRIDLEN 32
struct tpgctl_t { /* control parameters to queue primitives */

long flags; /*
long deqg time; /*
long priority; /*
long diagnostic; /*
char msgid[TMMSGIDLEN] ; /*
char corrid[TMCORRIDLEN] ; /*
char replyqueue [TMQONAMELEN+1] ; /*
char failurequeue[TMQNAMELEN+1]; /*
CLIENTID cltid; /*

/*
long urcode; /*
long appkey; /*
long delivery_gos; /*
long reply_gos; /*
long exp_time /*

}i
typedef struct tpgctl_t TPQCTL;

indicates which values are set */
absolute/relative time for dequeuing */
enqueue priority */

indicates reason for failure */

ID of message before which to queue */
correlation ID used to identify message */
queue name for reply message */

queue name for failure message */

client identifier for */

originating client */

application user-return code */
application authentication client key */
delivery quality of service */

reply message quality of service */
expiration time */

/* /Q structure elements that are valid - set in flags */

#ifndef TPNOFLAGS

#define TPNOFLAGS 0x00000 /* no flags set -- no get */
#endif

#define TPQCORRID 0x00001 /* set/get correlation ID */
#define TPQFAILUREQ 0x00002 /* set/get failure queue */
#define TPQBEFOREMSGID 0x00004 /* enqueue before message ID */
#define TPQGETBYMSGIDOLD 0x00008 /* deprecated */

#define TPQMSGID 0x00010 /* get msgid of eng/deqg message */
#define TPQPRIORITY 0x00020 /* set/get message priority */
#define TPQTOP 0x00040 /* enqueue at queue top */
#define TPQWAIT 0x00080 /* wait for dequeuing */

28 ATMI C Function Reference

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

/* Valid
#define

#define
#define

/* error return codes */

Introduction to the C Language Application-to-Transaction Monitor Interface

TPQREPLYQ
TPQTIME_ABS
TPQTIME_REL

TPQGETBYCORRIDOLD

TPQPEEK

TPOQDELIVERYQOS

TPOQREPLYQOS

TPQEXPTIME_ABS
TPQEXPTIME_REL
TPQEXPTIME_NONE
TPQGETBYMSGID
TPQGETBYCORRID

flags for the quality of
TPQQOSDEFAULTPERSIST

TPQQOSPERSISTENT
TPQQOSNONPERSISTENT

extern int tperrno;

extern long tpurcode;

/* tperrno values

- error codes */

0x00100
0x00200
0x00400
0x00800
0x01000
0x02000
0x04000
0x08000
0x10000
0x20000
0x40008
0x80800

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

set/get reply queue */

set absolute time */

set relative time */
deprecated */

non-destructive dequeue */
delivery quality of service */
reply msg quality of service*/
absolute expiration time */
relative expiration time */
never expire */

dequeue by msgid */

dequeue by corrid */

service fields in the TPQCTL structure */

0x00001

0x00002
0x00004

/*
/*
/*
/*

queue's default persistence */
policy */

disk message */

memory message */

* The reference pages explain the context in which the following

* error codes can return.

*/

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

TPMINVAL
TPEABORT
TPEBADDESC
TPEBLOCK
TPEINVAL
TPELIMIT
TPENOENT
TPEOS
TPEPERM
TPEPROTO
TPESVCERR
TPESVCFAIL
TPESYSTEM
TPETIME
TPETRAN
TPGOTSIG
TPERMERR
TPEITYPE
TPEOTYPE
TPERELEASE
TPEHAZARD

0 oUW N R O

/*

minimum error message */

ATMI C Function Reference 29

#define
#define
#define
#define
#define
#define

/* conversations - events */
TPEV_DISCONIMM

#define
#define
#define
#define
#define

TPEHEURISTIC
TPEEVENT
TPEMATCH
TPEDIAGNOSTIC
TPEMIB
TPMAXVAL

TPEV_SVCERR
TPEV_SVCFAIL
TPEV_SVCSUCC
TPEV_SENDONLY

/* /Q diagnostic codes

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

/* EventBroker Messages */

#define
#define
#define
#define

OMEINVAL
OMEBADRMID
OMENOTOPEN
OMETRAN
OMEBADMSGID
QMESYSTEM
QMEOS
OMEABORTED
OMENOTA
QMEPROTO
OMEBADQUEUE
OMENOMSG
QMEINUSE
OMENOSPACE
OMERELEASE
QMEINVHANDLE
OMESHARE

TPEVSERVICE
TPEVQUEUE
TPEVTRAN
TPEVPERSIST

21
22
23
24
25
26

0x0001
0x0002
0x0004
0x0008
0x0020

*/
-1
-2
-3
-4
-5
-6
=7
-8
QMEABORTED
-9
-10
-11
-12
-13
-14
-15
-16

0x00000001
0x00000002
0x00000004
0x00000008

/* Subscription Control Structure */

struct tpevctl_t {
long flags;
char namel [XATMI_SERVICE_NAME_LENGTH] ;
char name2 [XATMI_SERVICE_NAME_LENGTH] ;
TPQCTL gctl;

i

typedef struct tpevctl_t TPEVCTL;

30 ATMI C Function Reference

/* maximum error message */

Introduction to the C Language Application-to-Transaction Monitor Interface

C Language TX Return Codes and Other Definitions
Thefollowing return code and flag definitions are used by the TX routines. For an application to
work with different transaction monitors without change or recompilation, each system must
define its flags and return codes as follows:

#define TX_H_VERSION 0 /* current version of this
* header file */

/*

* Transaction identifier

*/

#define XIDDATASIZE 128 /* size in bytes */

struct xid_t {
long formatID; /* format identifier */
long gtrid_length; /* value not to exceed 64 */
long bgual_length; /* value not to exceed 64 */

char data[XIDDATASIZE];
}i
typedef struct xid_t XID;
/*
* A value of -1 in formatID means that the XID is null.
x/

/*

* Definitions for tx_ routines

*/

/* commit return values */

typedef long COMMIT_RETURN;

#define TX_COMMIT_COMPLETED 0
#define TX_COMMIT_DECISION_LOGGED 1

/* transaction control values */
typedef long TRANSACTION_CONTROL;
#define TX_UNCHAINED 0
#define TX_CHAINED 1

/* type of transaction timeouts */
typedef long TRANSACTION_TIMEOUT;

/* transaction state values */
typedef long TRANSACTION_STATE;
#define TX_ACTIVE 0
#define TX_TIMEOUT_ROLLBACK_ONLY 1
#define TX_ROLLBACK_ONLY 2

/* structure populated by tx_info */
struct tx_info_t {

ATMI C Function Reference 31

XID xid;
COMMIT_ RETURN when_return;
TRANSACTION_CONTROL transaction_control;
TRANSACTION_TIMEOUT transaction_timeout;
TRANSACTION_STATE transaction_state;
i
typedef struct tx_info_t TXINFO;

/*
* tx_ return codes
* (transaction manager reports to application)

*/

#define TX_NOT_SUPPORTED 1 /* option not supported */

#define TX_OK 0 /* normal execution */

#define TX_OUTSIDE -1 /* application is in an RM
* local transaction */

#define TX_ROLLBACK -2 /* transaction was rolled
* back */

#define TX_MIXED -3 /* transaction was

* partially committed and

* partially rolled back */
#define TX_HAZARD -4 /* transaction may have been

* partially committed and

* partially rolled back */

#define TX_PROTOCOL_ERROR -5 /* routine invoked in an
* improper context */
#define TX_ERROR -6 /* transient error */
#define TX_FAIL -7 /* fatal error */
#define TX_EINVAL -8 /* invalid arguments were given */
#define TX_COMMITTED -9 /* transaction has

* heuristically committed */

#define TX_NO_BEGIN -100 /* transaction committed plus
* new transaction could not
* be started */
#define TX_ROLLBACK_NO_BEGIN (TX_ROLLBACK+TX_NO_BEGIN)
/* transaction rollback plus
* new transaction could not
* be started */
#define TX_MIXED_NO_BEGIN (TX_MIXED+TX_NO_BEGIN)
/* mixed plus new transaction
* could not be started */
#define TX_HAZARD_NO_BEGIN (TX_HAZARD+TX_NO_BEGIN)
/* hazard plus new transaction
* could not be started */
#define TX_COMMITTED_NO_BEGIN (TX_COMMITTED+TX_NO_BEGIN)
/* heuristically committed plus

32 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

* new transaction could not
* be started */

ATMI State Transitions

The Oracle Tuxedo ATMI system keeps track of the state for each process and verifiesthat legal
state transitions occur for the various function calls and options. The state information includes
the processtype (request/response server, conversational server, or client), theinitialization state
(uninitialized or initialized), the resource management state (closed or open), the transaction state
of the process, and the state of all asynchronous request and connection descriptors. When an
illegal state transition is attempted, the called function fails, setting tperrno to TPEPROTO. The
legal states and transitions for thisinformation are described in the following tables.

Table 4 indicates which functions may be called by request/response servers, conversational
servers, and clients. Note that tpsvrinit (), tpsvrdone (), tpsvrthrinit (), and
tpsvrthrdone () are not included in this table because they are not called by applications (that
is, they are application-supplied functions that areinvoked by the Oracle Tuxedo ATMI system).

Table 4 Available Functions

Function Process Type

Request/Response Server Gonversational Server Client

tpabort Y Y Y
tpacall Y Y Y
tpadvertise Y Y N
tpalloc Y Y Y
tpbegin Y Y Y
tpbroadcast Y Y Y
tpcall Y Y Y
tpcancel Y Y Y
tpchkauth Y Y Y
tpchkunsol N N Y
tpclose Y Y Y

ATMI C Function Reference 33

34

Table 4 Available Functions (Continued)

Function

Process Type

Request/Response Server

Conversational Server

Client

tpcommit

Y

<

tpconnect

tpdequeue

tpdiscon

tpenqueue

tpfmltoxml

tpfml32toxml

tpforward

tpfree

tpgblktime

tpgetctxt

tpgetlev

tpgetrepos

tpgetrply

tpgprio

tpinit

tpnotify

tpopen

tppost

tprealloc

tprecv

tpresume

<| <| <| <| <| <] z|=<|=<|<|<| <|=<|=<|=<|=<|=<|=<|=<]| <] <

<| <| <| <| <| <] z|=<|=<|<|<|<|=<|=<|z|=<|=<|=<|=<]| <] <

<| <| <| <| <| <|=<|=<|=<|z|=<|<|=<|=<|z|=<|=<| <|<|<]| <[«

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

Table 4 Available Functions (Continued)

Function Process Type

Request/Response Server Conversational Server Client

tpreturn Y Y N
tpsblktime Y Y Y
tpscmt Y Y Y
tpsend Y Y Y
tpservice Y Y N
tpsetctxt Y (in application- Y (in application- Y
created threads) created threads)
tpsetrepos Y Y N
tpsetunsol N N Y
tpsprio Y Y Y
tpsubscribe Y Y Y
tpsuspend Y Y Y
tpterm N N Y
tptypes Y Y Y
tpunadvertise Y Y N
tpunsubscribe Y Y Y
tpxmltofml Y Y Y
tpxmltofml32 Y Y Y

The remaining state tables are for both clients and servers, unless otherwise noted. Keep in mind
that because some functions cannot be called by both clients and servers (for example,

tpinit ()), certain statetransitions shown below may not be possiblefor both processtypes. The
above table should be consulted to determine whether the processin questionisallowed to call a
particular function.

ATMI C Function Reference 35

36

Thefollowing state table indicates whether or not athread in aclient process has been initialized
and registered with the transaction manager. Note that this table assumes the use of tpinit (),

which is optional in single-context mode. That is, asingle-context client may implicitly join an
application by issuing one of many ATMI functions (for example, tpconnect () OF tpcall()).
A client must use tpinit () when one of the following istrue:

e Application authentication isrequired. (See tpinit (3c) and the description of the
SECURITY keyword in uBBCONFIG (5) for details.)

e The client wants to access an X A-compliant resource manager directly. (See tpinit (3c)
for details.)

e The client wants to create multiple application associations.

A server isplaced in theinitialized state by the Oracle Tuxedo ATMI system’smain () beforeits
tpsvrinit () functionisinvoked, and it isplaced in the uninitialized state by the Oracle Tuxedo
ATMI system’smain () after its tpsvrdone () function hasreturned. Notethat in all of the state
tables shown below, an error return from afunction causes the thread to remain in the same state,
unless otherwise noted.

Table 5 Thread Initialization States

Function States

Uninitialize Initialize

lo h
tpalloc lo Iy
tpchkauth lo I1
tpfree lo l1
tpgetctxt I0 Il
tpinit I 1
tprealloc lo I
tpsetctxt I1 I1

(set to anon-NULL context)

ATMI C Function Reference

../rf5/rf5.html

Introduction to the C Language Application-to-Transaction Monitor Interface

Tahle 5 Thread Initialization States (Continued)

Function States
Uninitialize Initialize
Iy h
tpsetctxt lo lo
(with the TPNULLCONTEXT
context set)
tpsetunsol lo I1
tpterm lo lo
(in this thread)
tpterm lo lo
(in adifferent thread of this
context)
tptypes lo I
All other ATMI functions I I

The remaining state tables assume a precondition of state 1, (regardless of whether a process
arrived inthisstate viatpinit (), tpsetctxt (), or the Oracle Tuxedo ATMI system’s

main()).

Table 6 indicates the state of aclient or server with respect to whether or not a resource manager

associated with the process has been initialized.

Table 6 Resource Management States

Function States

Closed Open

Ro Ry
tpopen Ry Ry
tpclose Ro Ro
tpbegin Rl

ATMI C Function Reference

31

Table 6 Resource Management States (Continued)

Function States

Closed Open

Ro Ry
tpcommit Ry
tpabort Ry
tpsuspend Ry
tpresume Ry
tpservice with flag TPTRAN Ry
All other ATMI functions Rg Ry

Table 7 indicates the state of a process with respect to whether or not the processis associated
with atransaction. For servers, transitions to states T,and T, assume a precondition of state Ry

(for example, tpopen () has been called with no subsequent call to tpclose () Of tpterm()).

Table 7 Transaction State of Application Association

Function State
Not in Transaction Initiator Participant
Ty Ty Ty

tpbegin

tpabort To

tpcommit To

tpsuspend TO

tpresume T, To

tpservice with flag TPTRAN Ts

38 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

Tahle 7 Transaction State of Application Association (Continued)

Function State
Not in Transaction Initiator Participant
Ty Ty T
tpservice (not in transaction To
mode)
tpreturn To To
tpforward To To
tpclose Rg
tpterm lo To
All other ATMI functions To T, T,

Table 8 indicates the state of a single request descriptor returned by tpacall ().

Tahle 8 Asynchronous Request Descriptor States

Function States

No Descriptor Valid

Ag Descriptor A,
tpacall Aq
tpgetrply AO
tpcancel AOa
tpabort Ag AgP
tpcommit Ag AgP
tpsuspend Ag Aq°
tpreturn Ag Ag

ATMI C Function Reference

39

Tahle 8 Asynchronous Request Descriptor States (Continued)

Function States

No Descriptor Valid

Ag Descriptor A,
tpforward Ao Ag
tpterm lo lo
All other ATMI functions Ag Aq

Note: @This state change occurs only if the descriptor is not associated with the caller’s
transaction.

bThis state change occursonly if the descriptor is associated with the caller’ stransaction.

¢ 1f the descriptor is associated with the caller’ stransaction, then tpsuspend () returnsa
protocol error.

Table 9 indicates the state of a connection descriptor returned by tpconnect () or provided by a
service invocation in the TesvcInFo structure. For primitives that do not take a connection
descriptor, the state changes apply to all connection descriptors, unless otherwise noted.

The states are as follows:
o Co—No descriptor
e C;—tpconnect () descriptor send-only
e Cy—tpconnect () descriptor receive-only
e Cz—TpsvciINrFo descriptor send-only

e C,—TpsvCINFO descriptor receive-only

40 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

Table 9 Connection Request Descriptor States

Function/Event States

tpconnect With TPSENDONLY C,?

tpconnect With TPRECVONLY C,?

tpservice with flag TPSENDONLY Cs b

tpservice with flag TPRECVONLY Cy"

tprecv/no event C, Cy
tprecv/TPEV_SENDONLY C Cs
tprecv/TPEV_DISCONIMM Co Co
tprecv/TPEV_SVCERR Co
tprecv/TPEV_SVCFAIL Co
tprecv/TPEV_SVCSUCC Co

tpsend/no event C, Cs
tpsend with flag TPRECVONLY C, Cy
tpsend/TPEV_DISCONIMM Co Co
tpsend/TPEV_SVCERR Co
tpsend/TPEV_SVCFAIL Co

tpterm (client only) Co Co

tpcommit (originator only) Co Co® Cot

tpsuspend (originator only) Co c, ¢ C,¢

tpabort (originator only) Co Co© Co®

ATMI C Function Reference

4

Tahle 9 Connection Request Descriptor States (Continued)

Function/Event States

Co C Cy Cs C4
tpdiscon Co Co
tpreturn (CONV Server) Co Co Co G
tpforward (CONV server) Co Co Co G
All other ATMI functions Co (o] (o C; C4

Note: 2If processisin transaction mode and TPNOTRAN is not specified, the connection isin
transaction mode.

b1f the rpTRAN flag is set, the connection is in transaction mode.
¢ If the connection is not in transaction mode, no state change.

d1f the connection is in transaction mode, then tpsuspend () returns a protocol error.

TX State Transitions

The Oracle Tuxedo ATMI system ensures that a process calls the TX functionsin alegal
sequence. When an illegal state transition is attempted (that is, acall from a state with a blank
transition entry), the called function returns Tx_ProTOCOL_ERROR. The legal states and
transitionsfor the TX functions are shown in Table 10. Callsthat return failure do not make state
transitions, unless they are described by specific state table entries. Any Oracle Tuxedo ATMI
system client or server is allowed to use the TX functions.

The states are defined bel ow:

o Sy: No RMs have been opened or initialized. An application association cannot start a
global transaction until it has successfully called tx_open.

e S;: An application association has opened its RM but is not in a transaction. Its
transaction_control characteristic is TX_UNCHAINED.

e S0 An application association has opened its RM but is not in a transaction. Its
transaction_control characteristicisS TX CHAINED.

42 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

o S3: An application association has opened its RM and isin atransaction. Its
transaction_control characteristic is TX_UNCHAINED.

e S,: An application association has opened its RM and isin atransaction. Its

transaction_control characteristic isS TX CHAINED.

Table 10 TX Function States and Transitions

Function States

S 0§ S % 0y
tx_begin S3 Sy
tx_close S S S
tx_commit —> TX_SET1 S, Sy
tx_commit —> TX_SET2 S,
tx_info S S, S3 Sy
tx_open S S 7 S Sy
tx_rollback —> TX_ SET1 Sl S4
tx_rollback —> TX_ SET2 S,
tx_set_commit_return S S, S3 Sy
tx_set_transaction_control control S, S, Sy Sy
= TX_CHAINED
tx_set_transaction_control control = S S S3 S3
TX_UNCHAINED
tx_set_transaction_timeout S S S3 S,

e TX_SET1 denotes any of the following: Tx_oOK, TX_ROLLBACK, TX_MIXED, TX_HAZARD, Of
TX_COMMITTED. TX_ROLLBACK iS not returned by tx_rollback () and TX_COMMITTED iS

not returned by tx_commit ().

e Tx_sET2 denotes any of the following: Tx_NO_BEGIN, TX_ROLLBACK_NO_BEGIN,
TX_MIXED_NO_BEGIN, TX_HAZARD_NO_BEGIN, Of TX_COMMITTED_NO_BEGIN.

ATMI C Function Reference 43

TX_ROLLBACK_NO_BEGIN iSnot returned by tx_rollback() and
TX_COMMITTED_NO_BEGIN IS not returned by tx_commit ().

e If Tx_FaTL iSreturned on any call, the application processisin an undefined state with
respect to the above table.

e When tx_info () returns either TX_ROLLBACK_ONLY Of TX_TIMEOUT ROLLBACK_ONLY in
the transaction state information, the transaction is marked rollback-only and will be rolled
back whether the application program calls tx_commit () Or tx_rollback().

See Also

buffer (3c), tpadvertise(3c), tpalloc(3c), tpbegin(3c), tpcall (3c¢),
tpconnect (3c¢), tpgetctxt (3¢c), tpinit(3c), tpopen(3c), tpservice(3c),
tpsetctxt (3c), tuxtypes(5), typesw(5)

AEMsethlockinghook(3c)

Name
AEMsetblockinghook () —Establishes an application-specific blocking hook function.

Synopsis
#include <atmi.h>
int AEMsetblockinghook (_TM_FARPROC)

Description
AEMsetblockinghook () isan “ATMI Extension for Mac” that allows a Mac task to install a

new function which the ATMI networking software uses to implement blocking ATMI calls. It
takes a pointer to the procedure instance address of the blocking function to be installed.

A default function, by which blocking ATMI calls are handled, isincluded. The function
AEMsetblockinghook () givesthe application the ability to executeits own function at
“blocking” timein place of the default function. If called withaNULL pointer, the blocking hook
function is reset to the default function.

When an application invokes a blocking ATMI operation, the operation is initiated and then a
loop is entered which is equivalent to the following pseudocode:

for(;;) {
execute operation in non-blocking mode

if error

44 ATMI C Function Reference

../rf5/rf5.html
../rf5/rf5.html

Introduction to the C Language Application-to-Transaction Monitor Interface

break;

if operation complete
break;

while (BlockingHook ())

}
Return Values

AEMsetblockinghook () returnsapointer to the procedure-instance of the previoudy installed
blocking function. The application or library that callsthe AEMsetblockinghook () function
should save thisreturn value so that it can be restored if necessary. (If “nesting” is not important,
the application may simply discard the value returned by AEMsetblockinghook () and
eventually use AEMsetblockinghook(NULL) to restore the default mechanism.)
AEMsetblockinghook () returns NULL on error and sets tperrno to indicate the error
condition.

Errors
Under failure, AEMsetblockinghook () Sets tperrno to the following value:

[TPEPROTO]
AEMsetblockinghook () was called while a blocking operation was in progress.

Portability
Thisinterface is supported only in Mac clients.

Notices
The blocking function is reset after tpterm (3c) iscalled by the application.

AEOaddtypesw(3c)

Name
AEOaddtypesw () —Installs or replaces a user-defined buffer type at execution time.

Synopsis
#include <atmi.h>
#include <tmtypes.h>

int FAR PASCAL AEOaddtypesw (TMTYPESW *newtype)

ATMI C Function Reference 45

Description

AEOaddtypesw () isan“ATMI Extension for OS/2” that allows an OS/2 client to install a new,
or replace an existing, user-defined buffer type at execution time. The argument to this function
isapointer to aTMTYPESW Structure that contains the information for the buffer type to be
installed.

If the type () and the subtype () match an existing buffer type already installed, then all the
information is replaced with the new buffer type. If the information does not match the type ()
and the subtype () fields, then the new buffer type is added to the existing types registered with
the Oracle Tuxedo ATMI system. For new buffer types, make sure that thewsu and other Oracle
Tuxedo ATMI system processes involved in the call processing have been built with the new
buffer type.

The function pointersin the TMTyPESW array should appear in the Module Definition file of the
application in the ExpPoRTS section.

The application can also use the Oracle Tuxedo ATMI system’ sdefined buffer type routines. The
application and the Oracle Tuxedo ATMI system’ s buffer routines can be intermixed in one user
defined buffer type.

Return Values

Upon success, AEcaddtypesw () returns the number of user buffer types in the system Upon
failure, AEOaddtypesw () returns-1 and sets tperrno to indicate the error condition.

Errors
Upon failure, AEocaddtypesw () Sets tperrno to one of the following values:

[TPEINVAL]
AEOaddtypesw () Was called and the type parameter was NULL.

[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error iswrittento a
log file.

Portability

Thisinterfaceis supported only in Windows clients. The preferred way to install atype switchis
to add it to the Oracle Tuxedo ATMI system type switch DLL. Please refer to Setting Up an
Oracle Tuxedo Application for more information.

46 ATMI C Function Reference

Notices

Introduction to the C Language Application-to-Transaction Monitor Interface

FAR PASCAL is used only for the 16-bit OS/2 environment.

Examples

#include <os2.h>
#include <atmi.h>
#include <tmtypes.h>

int FAR PASCAL Nfinit (char FAR *, long);

int (FAR PASCAL

* 1pFinit) (char FAR *, long);

int FAR PASCAL Nfreinit (char FAR *, long);

int (FAR PASCAL

* lpFreinit) (char FAR *, long);

int FAR PASCAL Nfuninit (char FAR *, long);

int (FAR PASCAL

TMTYPESW
{
“MYFML"”,
NULL,
_froute

}i

* 1lpFuninit) (char FAR *, long);
newtype =

e, 1024, NULL,
_fpresend, _fpostsend, _fpostrecv,

newtype.initbuf = Nfinit;
newtype.reinitbuf = Nfreinit;
newtype.uninitbuf = Nfuninit;

if (AEOaddtypesw (newtype) == -1) {

userlog (“AEOaddtypesw failed %s”,

}
int
FAR PASCAL
Nfinit (char FAR

return(l) ;

int
FAR PASCAL

*ptr, long len)

Nfreinit (char FAR *ptr, long len)

return(l) ;

int
FAR PASCAL

NULL,
_fencdec,

tpstrerror (tperrno)) ;

ATMI C Function Reference 41

Nfuninit (char FAR *ptr, long mdlen)

return(l) ;

The application Module Definition File:
; EXAMPLE.DEF file
NAME EXAMPLE
DESCRIPTION 'EXAMPLE for 0S/2'
EXETYPE 0S/2
EXPORTS
Nfinit

Nfreinit
Nfuninit

See Also
buildwsh (1), buffer(3c), typesw(5)

AEPishlocked(3c)

Name
AEPisblocked ()—Determinesif ablocking call isin progress.

Synopsis
#include <atmi.h>

int far pascal AEPisblocked(void)

Description
AEPisblocked () isan“ATMI Extension for OS/2 Presentation Manager” that alows a OS/2
PM task to determineif it is executing while waiting for a previous blocking call to complete.

Return Values

If there is an outstanding blocking function awaiting completion, aEPisblocked () returns 1.
Otherwise, it returns 0.

48 ATMI C Function Reference

../rf5/rf5.html
../rfcm/rfcmd.html

Introduction to the C Language Application-to-Transaction Monitor Interface

Errors
No errors are returned.

Portability
Thisinterface is supported only in OS/2 PM clients.

Comments

Although ablocking ATMI call appears to an application as though it “blocks,” the OS/2 PM
ATMI DLL hasto relinquish the processor to allow other applications to run. This means that it
is possible for the application which issued the blocking call to be reentered, depending on the
message(s) it receives. In thisinstance, the AErisblocked () function can be used to ascertain
whether the task has been reentered while waiting for an outstanding blocking call to complete.
Note that ATMI prohibits more than one outstanding call per thread.

See Also

AEMsetblockinghook (3c¢)

AEWsetunsol(3c)

Name
AEWsetunsol () —Posts a Windows message for Oracle Tuxedo ATMI unsolicited event.

Synopsis
#include <windows.h>
#include <atmi.h>
int far pascal AEWsetunsol (HWND hWnd, WORD wMsg)

Description

In certain Microsoft Windows programming environments, it is natural and convenient for the
Oracle Tuxedo ATMI system'’ sunsolicited messagesto be posted to the Windows event message
queue.

AEWsetunsol () controls which window to notify, hwnd, and which Windows message type to
post, wMsg. When an Oracle Tuxedo ATMI unsolicited message arrives, a Windows message is
posted. 1param () isset to the Oracle Tuxedo ATMI system buffer pointer, or zero if none. If
1lpraram() iShon-zero, the application must call tpfree () to release the buffer.

If wisg is zero, any future unsolicited messages will be logged and ignored.

ATMI C Function Reference 49

In amultithreaded application, athread in the TpINVALIDCONTEXT State is not allowed to issuea
call to AEwsetunsol ().

Return Values
Upon failure, aEwsetunsol () returns-1 and sets tperrno to indicate the error condition.

Errors
Upon failure, AEWsetunsol () Sets tperrno to one of the following values:

[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error iswrittento a
log file.

[TPEOS]
An operating system error has occurred.
Portability
Thisinterface is supported only in Microsoft Windows clients.

Notices

AEWsetunsol () posting of Windows messages may not be activated simultaneously with a
tpsetunsol () callback routine. The most recent tpsetunsol () OF AEWsetunsol () request
controls how unsolicited messages will be handled.

See Also

tpsetunsol (3¢)

bhuffer(3c)

Name
buffer () —Semantics of elementsin tmtype_sw_t.

Synopsis

int /* Initialize a new data buffer */
_tminitbuf (char *ptr, long len)

int /* Reinitialize a reallocated data buffer */
_tmreinitbuf (char *ptr, long len)

int /* Uninitialize a data buffer to be freed */
_tmuninitbuf (char *ptr, long len)

long /* Process buffer before sending */

50 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

_tmpresend (char *ptr, long dlen, long mdlen)

void /* Process buffer after sending */

_tmpostsend(char *ptr, long dlen, long mdlen)

long /* Process buffer after receiving */

_tmpostrecv (char *ptr, long dlen, long mdlen)

long /* Encode/decode a buffer to/from a transmission format */
_tmencdec (int op, char *encobj, long elen, char *obj, long olen)

int /* Determine server group for routing based on data */

_tmroute (char *routing_name, char *service, char *data, long \ 1len, char *group)
int /* Evaluate boolean expression on buffer’s data */

_tmfilter (char *ptr, long dlen, char *expr, long exprlen)

int /* Extract buffer’s data based on format string */

_tmformat (char *ptr, long dlen, char *fmt, char *result, long \ maxresult)
long /* Process buffer before sending, possibly generating copy */

_tmpresend2 (char *iptr, long ilen, long mdlen, char *optr, long olen, long *flags

)

long /* Multibyte code-set encoding conversion */

_tmconvmb (char *ibufp, long ilen, char *enc_name, char *obufp, long olen, long
*flags)

Description

This page describes the semantics of the elements and routines defined in the tmtype_sw_t
structure. These descriptions are necessary for adding new buffer types to a process buffer type
switch, tm_typesw. The switch elementsare defined in typesw (5) . Thefunction namesused in
thisentry aretemplatesfor the actual function names defined by the Oracle Tuxedo ATMI system
aswell as by applications adding their own buffer types. The names map to the switch elements
very simply: the template names are made by taking each function pointer’s element name and
prepending _tm (for example, the element initbuf hasthe function name _tminitbuf ()).

Theelement type must be non-NULL and up to 8 charactersin length. The element subtype can
be NULL, astring of up to 16 characters, or thewildcard character, “*”. If type isnot uniquein
the switch, then subtype must be used; the combination of type and subtype must uniquely
identify an element in the switch.

A given type can have multiple subtypes. If al subtypes are to be treated the same for agiven
type, then thewildcard character, “*”, can be used. Notethat thefunction tptypes () can be used
to determine a buffer’ s type and subtype if subtypes need to be distinguished. If some subset of
the subtypes within a particular type are to be treated individually, and the rest are to be treated
identically, then those which are to be singled out with specific subtype values should appear in
the switch before the subtype designated with the wildcard. Thus, searching for types and
subtypes in the switch is done from top to bottom, and the wildcard subtype entry accepts any
“leftover” type matches.

ATMI C Function Reference 51

../rf5/rf5.html

dfltsize () isused when allocating or reallocating abuffer. Thelarger of dfitsize () andthe
routines’ size parameter isused to create or reallocate abuffer. For sometypesof structures, like
afixed sized C structure, the buffer size should equal the size of the structure. If df1tsize() is
set to this value, then the caller may not need to specify the buffer’ s length to routines in which
abuffer ispassed. af1tsize () canbeO or less; however, if tpalloc() Or tprealloc () IS
called and its size parameter is also less than or equal to 0, then the routine will fail. It is not
recommended to set df1tsize () to avaluelessthan 0.

Routine Specifics

The names of the functions specified below are template names used within the Oracle Tuxedo
ATMI system. Any application adding new routinesto the buffer type switch must use namesthat
correspond to real functions, either provided by the application or library routines. If aNULL
function pointer is stored in a buffer type switch entry, the Oracle Tuxedo ATMI system callsa
default function that takes the correct number and type of arguments, and returns a default value.

_tminitbuf

_tminitbuf () iscaled fromwithin tpalioc () after abuffer has been alocated. It ispassed a
pointer to the new buffer, ptr, dong with its size so that the buffer can beinitialized
appropriately. 1en isthelarger of the length passed into tpalioc () and the default specifiedin
dfltsize () inthat type sswitch entry. Notethat pcr will never be NULL due to the semantics
of tpalloc () and tprealloc (). Upon successful return, per isreturned to the caller of
tpalloc().

If asingle switch entry is used to manipulate many subtypes, then the writer of _tminitbuf ()
can use tptypes () to determine the subtype.

If no buffer initialization needs to be performed, specify a NULL function pointer.

Upon success, _tminitbuf () returnsl. If thefunction fails, it returns-1 causing tpalloc () to
aso return failure setting tperrno t0 TPESYSTEM.

_tmreinitbuf

52

_tmreinitbuf () behavesthesameas_tminitbuf () exceptitisusedtoreinitiaizea
reallocated buffer. It is called from within tprealloc () after the buffer has been reallocated.

If no buffer reinitialization needs to be performed, specify a NULL function pointer.

Upon success, _tmreinitbuf () returns 1. If the function fails, it returns -1 causing
tprealloc () to alsoreturn failure setting tperrno t0 TPESYSTEM.

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

_tmuninitbuf

_tmuninitbuf () iscaled by tpfree () before the databuffer isfreed. _tmuninitbuf () is
passed a pointer to the application portion of adata buffer, along with its size, and can be used to
clean up any structures or state information associated with that buffer. ptr will never be NULL
dueto tpfree ()'ssemantics. Notethat _tmuninitbuf () should not free the buffer itself. The
tpfree () functionis called automatically for any rL.o_pTr fieldsin the data buffer.

If no processing needs to be performed before freeing a buffer, specify aNULL function pointer.

Upon success, _tmuninitbuf () returns 1. If the function fails, it returns-1 causing tpfree ()
to print alog message.

_tmpresend

_tmpresend () iscalled beforeabufferissent in tpcall (), tpacall (), tpconnect (),
tpsend (), tpbroadcast (), tpnotify (), tpreturn (), Of tpforward (). ltisalso called after
_tmroute () but before _tmencdec (). If ptr () isnon-NULL, preprocessing is performed on a
buffer beforeitissent. _tmpresend ()’sfirst argument, ptr, isthe application data buffer passed
into the send call. Its second argument, dien, isthe data’slength as passed into the send call. Its
third argument, mdien, isthe actual size of the buffer in which the data resides.

One important requirement on this function is that it ensures that when the function returns, the
datapointed to by pcr can besent “asis.” That is, since_tmencdec () iscaled only if the buffer
isbeing sent to adissimilar machine, _tmpresend () must ensure upon return that no element in
ptr’sbuffer isapointer to data that is not contiguous to the buffer.

If no preprocessing needs to be performed on the data and the amount of datathe caller specified
is the same as the amount that should be sent, specify aNULL function pointer. The default
routine returns d1en and does nothing to the buffer.

If _tmpresend2 () isnot NULL, _tmpresend () isnot called and _tmpresend2 () iscaledin
its place.

Upon success, _tmpresend () returnstheamount of datato be sent. If thefunctionfails, it returns
-1 causing _tmpresend ()’scaller to also return failure setting tperrno t0 TPESYSTEM.

_tmpostsend
_tmpostsend () iscaled after abufferissentin tpcall (), tpbroadcast (), tpnotify(),
tpacall (), tpconnect(), Of tpsend(). Thisroutine allows any post-processing to be

performed on a buffer after it is sent and before the function returns. Because the buffer passed
into the send call should not be different upon return, _tmpostsend () iscalled to repair abuffer
changed by _tmpresend (). Thisfunction’sfirst argument, pt r, pointsto the data sent asaresult

ATMI C Function Reference 53

of _tmpresend (). The datd slength, asreturned from _tmpresend (), is passed in asthis
function’s second argument, d1en. Thethird argument, mdien, isthe actua size of the buffer in
which the data resides. Thisroutineis called only when ptrisnon-NULL.

If no post-processing needs to be performed, specify aNULL function pointer.

_tmpostrecv

_tmpostrecv () iscaled after abuffer isreceived, and possibly decoded, in tpgetrply (),
tpcall(), tprecv(), OrintheOracle Tuxedo ATMI system’s server abstraction, and before
itisreturned to the application. If ptrisnon-NULL, _tmpostrecv () allows post-processing to
be performed on a buffer after it is received and before it is given to the application. Its first
argument, ptr, points to the data portion of the buffer received. Its second argument, dien,
specifiesthe data’ s size coming into _tmpostrecv (). Thethird argument, mdien, specifiesthe
actua size of the buffer in which the data resides.

If _tmpostrecv () changesthe datalength in post-processing, it must return the data’ s new
length. Thelength returned is passed up to the application in amanner dependent on the call used
(for example, tpcall () setsthe datalength in one of its arguments for the caller to check upon
return).

The buffer’ s size might not be large enough for post-processing to succeed. If more spaceis
required, _tmpostrecv () returnsthe negative absolute value of the desired buffer size. The
calling routine then resizes the buffer, and calls _tmpostrecv () asecond time.

If no post-processing needs to be performed on the data and the amount of datareceived isthe
same as the amount that should be returned to the application, specify aNULL function pointer.
The default routine returns d1en and does nothing to the buffer.

On success, _tmpostrecv () returnsthe size of the datathe application should be made aware of
when the buffer is passed up from the corresponding receive call. If the function fails, it returns
-1 causing _tmpostrecv ()’scaller to return failure, setting tperrno to TPESYSTEM.

_tmencdec

54

_tmencdec () isused to encode/decode abuffer sent/received over anetwork to/from amachine
having different data representations. The Oracle Tuxedo ATMI system recommends the use of
XDR; however, any encoding/decoding scheme can be used that obeys the semantics of this
routine.

Thisfunctioniscaled by tpcall (), tpacall (), tpbroadcast (), tpnotify (),
tpconnect (), tpsend (), tpreturn (), OF tpforward () to encode the caller’s buffer only
when it isbeing sent to an “unlike” machine. Inthese calls, _tmencdec () iscalled after both

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

_tmroute () and _tmpresend (), respectively. Recall from the description of _tmpresend ()
that the buffer passed into _tmencdec () contains no pointersto datathat isnot contiguousto the
buffer.

Onthereceiving end, tprecv (), tpgetrply (), thereceive half of tpcall () and the server
abstraction all call _tmencdec () to decode abuffer after they have received it from an “unlike’
machine but before calling _tmpostrecv ().

_tmencdec ()’ sfirst argument, op, specifies whether the function is encoding or decoding data.
op can be one of TMENCODE OF TMDECODE.

When op iS TMENCODE, encobj pointsto a buffer allocated by the Oracle Tuxedo ATMI system
where the encoded version of the datawill be copied. The unencoded dataresidesin ob;. That is,
when op iS TMENCODE, _tmencdec () transforms ob7 to its encoded format and places the result
in encobj. The size of the buffer pointed to by encobj is specified by e1en and is at least four
times the size of the buffer pointed to by ob7 whoselength is o1en. olen isthe length returned
by _tmpresend. _tmencdec() returnsthe size of the encoded datain encob7 (that is, the
amount of data to actually send). _tmencdec () should not free either of the buffers passed into
the function.

When op iS TMDECODE, encobj pointsto a buffer allocated by the Oracle Tuxedo ATMI system
where the encoded version of the data resides as read off a communication endpoint. The length
of the buffer is e1en. ob7 pointsto abuffer that is at least the same size as the buffer pointed to
by encob7; into which the decoded datais copied. Thelength of ob7 iSolen. Asob; isthe buffer
ultimately returned to the application, this buffer may be grown by the Oracle Tuxedo ATMI
system before calling _tmencdec () to ensure that it is large enough to hold the decoded data.
_tmencdec () returns the size of the decoded datain obj. After _tmencdec () returns,
_tmpostrecv () iscalled with ob;j passed asitsfirst argument, _tmencdec ()’sreturn value as
its second, and olen asitsthird. _tmencdec () should not free either of the buffers passed into
the function.

_tmencdec () iscaled only when non-NULL data needs to be encoded or decoded.

If no encoding or decoding needs to be performed on the data even when dissimilar machines
exist in the network, specify aNULL function pointer. The default routine returns either oien
(op eguals TMENCODE) Of elen (op €qualS TMDECODE).

Onsuccess, _tmencdec () returnsanon-negative length as described above. If thefunction fails,
it returns -1 causing _tmencdec () 'scaller to return failure, setting tperrno t0 TPESYSTEM.

ATMI C Function Reference 55

_tmroute

The default for message routing isto route amessage to any available server group that offersthe
desired service. Each service entry in the ueconr1c file can specify the logical name of some
routing criteriafor the service using the rouT NG parameter. Multiple services can sharethe same
routing criteria. In the case that a service has a routing criteria name specified, _tmroute() is
used to determine the server group to which amessage is sent based on datain the message. This
mapping of datato server group iscalled “ data-dependent routing.” _tmroute () iscalled before
abuffer is sent (and before _tmpresend () and _tmencdec () are called) intpcall(),
tpacall (), tpconnect(), and tpforward().

routing_name isthelogica name of therouting criteria(as specified inthe useconr1c file) and
is associated with every service that needs data dependent routing. service isthe name of the
service for which the request is being made. The parameter data pointsto the data that is being
transmitted in therequest and 1en isitslength. Unlike the other routines described in these pages,
_tmroute () iscaled even when ptrisNULL. The group parameter is used to return the name
of the group to which the request should be routed. This group name must match one of the group
names listed in the uBeconF1G file (and one that is active at the time the group is chosen). If the
request can go to any available server providing the specified service, group should be set to the
NULL string and the function should return 1.

If data dependent routing is not needed for the buffer type, specify aNULL function pointer. The
default routine sets group to the NULL string and returns 1.

Upon success, _tmroute () returns 1. If the function fails, it returns -1 causing _tmroute ()'S
caller to aso return failure; asaresult, tperrno isset to TPESYSTEM. If _tmroute () fals
because arequested server or service is not available, tperrno is set t0 TPENOENT.

If group isset tothenameof aninvalid server group, thefunction calling _tmroute () will return
an error and set tperrno t0 TPESYSTEM.

_tmfilter

56

_tmfilter () iscaled by the EventBroker server to analyze the contents of abuffer posted by
tppost (). Anexpression provided by the subscriber (tpsubscribe ()) isevaluated with respect
to the buffer’s contents. If the expression istrue, _tmfilter () returns 1 and the EventBroker
performs the subscription’s notification action. Otherwise, if _tmfilter () returnsO, the
EventBroker does not consider this posting a*“match” for the subscription.

If exprienis-1, exprisinterpreted asaNULL-terminated character string. Otherwise expr is
interpreted as exprien bytesof binary data. An exprilen of O indicates no expression.

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

If filtering does not apply to this buffer type, specify a NULL function pointer. The default
routine returns 1 if thereis no expression or if expr isan empty NULL-terminated string.
Otherwise the default routine returns O.

_tmformat

_tmformat () iscalled by the EventBroker server to convert a buffer's datainto a printable
string, based on aformat specification named rmt. The EventBroker converts posted buffersto
strings as input for userlog Or system notification actions.

The output is stored as a character string in the memory location pointed to by result. Up to
maxresult bytesarewrittenin result, including aterminating NULL character. If resultis
not large enough, _tmformat () truncatesits output. The output string is always NULL
terminated.

On success, _tmformat () returns anon-negative integer. 1 means success, 2 means the output
string is truncated. If the function fails, it returns -1 and stores an empty stringin result.

If formatting does not apply to this buffer type, specify aNULL function pointer. The default
routine succeeds and returns an empty string in result.

_tmpresend?

_tmpresend2 () iscalled before abufferissentin tpcall(), tpacall (), tpconnect (),
tpsend (), tpbroadcast (), tpnotify (), tpreturn (), and tpforward (). It isaso called
after _tmroute () but before _tmencdec (). If iptrisnot NULL, preprocessing is performed
on a buffer before the buffer is sent.

Thefirst argument to _tmpresend2 (), iptr, iSthe application data buffer passed into the send
call. The second argument, iIen, isthelength of the data as passed into the send call. Thethird
argument, mdlen, isthe actual size of the buffer in which the data resides.

Unlike_tmpresend (), _tmpresend?2 () receivesapointer, optr, whichisused to passapointer
to abuffer into which the datain iptr can be placed, after any required processing is done. Use
this pointer if you want to use anew buffer for the data modified by _tmpresend2 () instead of
modifying the input buffer. The fifth argument, o1en, isthe size of the optr buffer. The sixth
argument, flags, tells_tmpresend2 () whether the buffer being processed is the parent buffer
(the one being sent). The £1ags argument isreturned by _tmpresend? () to indicate the results
of processing.

Thesize of the optr buffer may not belarge enough for successful postprocessing. If more space
isrequired, _tmpresend?2 () returnsthe negative absolute value of the desired buffer size. All

ATMI C Function Reference 57

58

olen bytesof the optr buffer are preserved. The calling routine then resizes the buffer and calls
_tmpresend2 () asecond time.

If no postprocessing needs to be performed on the data, and the amount of data received isthe
same as the amount that should be returned to the application, specify aNULL function pointer.
The default routine returns i 1en and does not modify the buffer.

Thefollowing isavalid flag on input to _tmpresend2 ():

[TMPARENT]
Thisisthe parent buffer (the one being sent).

Theflagsreturned in f1ags specify theresults of _tmpresend2 (). Possible values are:

[TMUSEIPTR]
_tmpresend?2 () was successful: the processed dataisin the buffer referenced by iptr,
and the return value contains the length of the data to be sent.

[TMUSEOPTR]
_tmpresend?2 () was successful: the processed dataisin the buffer referenced by optr,
and the return value contains the length of the data to be sent.

If TmusEOPTR isreturned, the processing done after messages are transmitted isdifferent fromthe
processing doneby _tmpresend () : the iptr buffer remains unchanged and _tmpostsend () IS
not called. If TMusEIPTR iSreturned, _tmpostsend () iscaled, asitiscalledfor _tmpresend().
It isthe responsibility of the caller to allocate and to free or cache the optr buffer.

There are severa reasons why you may want to use this approach for atyped buffer:

e The buffer created by processing for transmission is larger than the maximum length
allowed for the input buffer.

e Undoing the processing to prepare a buffer for transmission is so complicated that it is
easier to copy the datato a different buffer.

The _tmpresendz () function ensures that when a function returns, the data in the buffer to be
sent can be sent without further processing. Because _tmencdec () iscaled only if the buffer is
being sent to adissimilar machine, _tmpresend2 () ensures, upon return, that all datais stored
contiguously in the buffer to be sent.

If no preprocessing needs to be performed on the data, and the amount of data specified by the
caler isthe same as the amount that should be sent, specify aNULL function pointer for
_tmpresend?2 () inthe buffer type switch. If _tmpresend2 () iSNULL, _tmpresend() is
called by defaullt.

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

Upon success, _tmpresend2 () returns the amount of datato be sent or, if alarger buffer is
needed, the negative absolute value of the desired buffer size. If the function fails, it returns -1,
causing the caller of _tmpresend?2 () to aso return failure, setting tperrno to TPESYSTEM.

_tmconvmb

_tmconvmb () iscalled after tmpostrecv () to convert multibyte datafrom asource encoding to
atarget encoding. Thefirst argument to _tmconvmb (), ibufp, iSapointer to astream of bytes—
the multibyte data—to be converted. The second argument, i 1en, isthe number of bytesin
ibufp. Thethird argument, enc_name, isone of the encoding names used in the processing. For
an MBSTRING buffer, the third argument is the target encoding name; for an FM L 32 buffer, the
third argument is the source encoding name.

_tmconvmb () receives apointer, obufp, which isused to pass a pointer to a buffer into which
thedatain ibufp can be placed, after any required code-set encoding conversion is done. Use
this pointer if you want to use a new buffer for the data converted by _tmconvmb () instead of
modifying theinput pointer. Thefifth argument, olen, isthesize of the obufp buffer. The f1ags
argument isreturned by _tmconvmb () to indicate the results of processing.

The size of the obu£p buffer may not be large enough for successful post processing. If more
spaceisrequired, _tmconvmb () returnsthe negative absolute value of the desired buffer size. All
ilen bytesof the i bufp buffer are preserved. The calling routine then resizesthe buffer and calls
_tmconvmb () asecond time.

If no code-set encoding conversion needs to be performed on the data, and the encoding name of
the sending process is the same as the encoding name of the receiving process, specify aNULL
function pointer. The default routinereturns i 1en and does not convert the buffer. If thisfunction
does not know how to convert the code-set encoding, it returns -1.

The value returned in f1ags specifiesthe result of _tmconvmb () . Possible values are:

[TMUSEIPTR]
_tmconvmb () Was successful: the processed dataisin the buffer referenced by ibufp,
and the return value contains the length of the converted data to be passed to the service.

[TMUSEOPTR]
_tmconvmb () Was successful: the processed datais in the buffer referenced by obufp,
and the return value contains the length of the datato be converted. It isthe responsibility
of the caller to allocate and to free or cache the obup buffer.

Upon success, _tmconvmb () returns the amount of data buffer that had code-set encoding
conversion or, if alarger buffer is needed, the negative absolute value of the desired buffer size.

ATMI C Function Reference 59

If thefunction fails, it returns-1, causing the caller of _tmconvmb () to aso return failure, setting
tperrno tO TPESYSTEM.

See Also

tpacall (3c), tpalloc (3c), tpcall (3¢c), tpconnect (3¢), tpdiscon(3c), tpfree(3c),
tpgetrply (3c), tpgprio(3c), tprealloc (3c), tprecv(3c), tpsend(3c), tpsprio(3c),
tptypes (3c), tuxtypes (5)

catgets(3c)

Name
catgets () —Reads a program message.

Synopsis
#include <nl_types.h>

char *catgets (nl_catd catd, int set_num, int msg_num, char *s)

Description

catgets () attemptsto read message msg_num, in Set set_num, from the message catalogue
identified by catd. catd isacataogue descriptor returned from an earlier call to catopen(). s
pointsto adefault message string which will bereturned by catgets () if theidentified message
catalogueis not currently available.

A thread in amultithreaded application may issue acall to catgets () while running in any
context state, including TPINVALIDCONTEXT.

Diagnostics

If the identified message is retrieved successfully, catgets () returns a pointer to an internal
buffer area containing the NUL L terminated message string. If the call is unsuccessful because
the message catalogue identified by catd isnot currently available, a pointer to s is returned.

See Also

catopen, catclose(3c)

60 ATMI C Function Reference

../rf5/rf5.html

Introduction to the C Language Application-to-Transaction Monitor Interface

catopen, catclose(3c)

Name
catopen (), catclose () —Opens/closes a message catal ogue.

Synopsis
#include <nl_types.h>
nl_catd catopen (char *name, int oflag)

int catclose (nl_catd catd)

Description

catopen () Opensamessage catalogue and returns a catalogue descriptor. name specifiesthe
name of the message catal ogue to be opened. If name containsa* /" then name specifiesa
pathname for the message catalogue. Otherwise, the environment variable NL.spaTH is used. If
NLSPATH does hot exist in the environment, or if a message catal ogue cannot be opened in any of
the paths specified by NLspaTH, then the default path isused (seenl_types (5)).

The names of message catal ogues, and their location in the filestore, can vary from one system
to another. Individual applications can choose to name or locate message catal ogues according to
their own specia needs. A mechanism is therefore required to specify where the catalogue
resides.

The nLspaTH variable provides both the location of message catal ogues, in the form of asearch
path, and the naming conventions associated with message catal ogue files. For example:

NLSPATH=/nlslib/%$L/%N.cat:/nlslib/%N/%L

The metacharacter ¢ introduces a substitution field, where 1. substitutes the current setting of the
LANG environment variable (see following section), and s substitutes the value of the name
parameter passed to catopen (). Thus, in the above example, catopen () will searchin
/nlslib/$LANG/name.cat, thenin /nlslib/name/$1.aNG, for the required message catal ogue.

NLSPATH Will normally be set up on a system wide basis (for example, in /etc/profile) and
thus makes the location and haming conventions associated with message catal ogues transparent
to both programs and users.

The following table lists the full set of metacharacters.

ATMI C Function Reference 61

../rf5/rf5.html

Metacharacter Description

oe
=

The value of the name parameter passed to catopen.

The value of LANG.

oP
[

o°
=

The value of the language element of LANG.

oP
pa

The value of the territory element of LaANG.

The value of the codeset el ement of LANG.

oe
Q

oe
oe

A single %.

The r.anG environment variable provides the ability to specify the user’ s requirementsfor native
languages, local customs and character set, asan ASCII string in the form
LANG=language[_territory|[.codeset]]

A user who speaks German as it is spoken in Austriaand has aterminal that operatesin 1SO
8859/1 codeset, would want the setting of the Lang variable to be asfollows:

LANG=De_A.88591
With this setting it should be possible for the user to find relevant cataloguesiif they exist.

If the LaNG variableis not set then the value of 1.c_MESSAGES asreturned by setlocale (3c) IS
used. If thisisnuLL then the default path as defined innl_types (5) isused.

oflag () isreserved for future use and should be set to 0. The results of setting thisfield to any
other value are undefined.

catclose () closesthe message catalogue identified by catd.
A thread in amultithreaded application may issue acall to catopen() Or catclose () while
running in any context state, including TPINVALTDCONTEXT.

Diagnostics

If successful, catopen () returns a message catal ogue descriptor for use on subsequent calls to
catgets () and catclose (). Otherwise catopen () refurns (nl_catd) -1.catclose()
returns O if successful, otherwise -1.

See Also

catgets (3c), setlocale(3c),nl_types(5)

62 ATMI C Function Reference

../rf5/rf5.html
../rf5/rf5.html

decimal(3c)

Name

Introduction to the C Language Application-to-Transaction Monitor Interface

decimal ()—Decimal conversion and arithmetic routines.

Synopsis

#include “decimal.h”

int
lddecimal (cp,
char*cp;

int
len;
dec_t*np;

void
stdecimal (np,
dec_t*np;
char*cp;

int len;

int

len,

cp,

deccmp (nl, n2)

dec_t*nl;
dec_t*n2;

int

dectoasc (np,
dec_t*np;
char*cp;

int len;

int right;

int

deccvasc (cp,
char*cp;

int len;
dec_t*np;

int

dectoint (np,
dec_t*np;
int *ip;

int
deccvint (in,

cp,

/*

/‘k
/*

1
/%
/*
/*

/‘k
/*
/*

np) /* load a decimal */
input: location of compacted format */

input: length of compacted format */
output: location of dec_t format */

en) /* store a decimal */

input: location of dec_t format */
output: location of compacted format */
input: length of compacted format */

compare two decimal numbers */
input: number to be compared */
input: number to be compared */

len, right) /* convert dec_t to ascii */

/* input: number to be converted */

/* output: number after conversion */

/* input: length of output string */

/* input: number of places to right of decimal point */
len, np) /* convert ascii to dec_t */

/* input: number to be converted */

ip)

np)

/'k
/*

/'k
/*

/‘k

input: maximum length of number to be converted */
output: number after conversion */

/* convert int to dec_t */
input: number to be converted */
output: number after conversion */

convert dec_t to int */

ATMI C Function Reference

63

int in; /* input: number to be converted */

dec_t*np; /* output: number after conversion */
int

dectolong (np, 1lngp) /* convert dec_t to long */
dec_t*np; /* input: number to be converted */
long*1lngp; /* output: number after conversion */
int

deccvlong (1lng, np) /* convert long to dec_t */
longlng; /* input: number to be converted */
dec_t*np; /* output: number after conversion */
int

dectodbl (np, dblp) /* convert dec_t to double */
dec_t*np; /* input: number to be converted */
double *dblp; /* output: number after conversion */
int

deccvdbl (dbl, np) /* convert double to dec_t */
double *dbl; /* input: number to be converted */
dec_t*np; /* output: number after conversion */
int

dectoflt (np, fltp) /* convert dec_t to float */
dec_t*np; /* input: number to be converted */
float*fltp; /* output: number after conversion */
int

deccvilt (f1t, np) /* convert float to dec_t */
double *flt; /* input: number to be converted */
dec_t*np; /* output: number after conversion */
int

decadd (*nl, *n2, *n3) /* add two decimal numbers */
dec_t*nl; /* input: addend */

dec_t*n2; /* input: addend */

dec_t*n3; /* output: sum */

int

decsub(*nl, *n2, *n3) /* subtract two decimal numbers */
dec_t*nl; /* input: minuend */

dec_t*n2; /* input: subtrahend */

dec_t*n3; /* output: difference */

int

decmul (*nl, *n2, *n3) /* multiply two decimal numbers */
dec_t*nl; /* input: multiplicand */

dec_t*n2; /* input: multiplicand */

dec_t*n3; /* output: product */

64 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

int

decdiv(*nl, *n2, *n3) /* divide two decimal numbers */
dec_t*nl; /* input: dividend */

dec_t*n2; /* input: divisor */

dec_t*n3; /* output: quotient */

Description

These functions allow storage, conversion, and manipulation of packed decimal data on the
Oracle Tuxedo ATMI system. Note that the format in which the decimal datatypeis represented
on the Oracle Tuxedo ATMI system is different from its representation under CICS.

A thread in amultithreaded application may issue acall to any of the decimal conversion
functions while running in any context state, including TPINVALIDCONTEXT.

Native Decimal Representation

Decimals are represented on native Oracle Tuxedo ATMI system nodes using the dec_t
structure. This definition of this structure is as follows:

#define DECSIZE 16

struct decimal {
short dec_exp; /* exponent base 100 */
short dec_pos; /* sign: l=pos, 0O=neg, -1l=null */
short dec_ndgts; /* number of significant digits */

char dec_dgts[DECSIZE]; /* actual digits base 100 */
}i
typedef struct decimal dec_t;

It should never be necessary for programmers to directly accessthe dec_t structure, but it is
presented here nevertheless to give an understanding of the underlying data structure. If large
amounts of decimal data need to be stored, the stdecimal () and 1ddecimal () functions may
be used to obtain a more compact format. dectoasc (), dectoint (), dectolong (),
dectodbl (), and dectoflt () alow the conversion of decimalsto other datatypes.
deccvasc (), deccvint (), deccvlong (), deccvdbl (), anddeccvflt () alow theconversion
of other data types to the decimal datatype. deccmp () isthe function which compares two
decimals. It returns-1 if the first decimal isless than the second, O if the two decimals are equal,
and 1if thefirst decimal is greater than the second. A negative value other than -1 is returned if
either of the argumentsisinvalid. decadd (), decsub(), decmul (), and decdiv () perform
arithmetic operations on decimal numbers.

Return Value

Unless otherwise stated, these functions return O on success and a hegative value on error.

ATMI C Function Reference 65

getURLEntityCacheDir(3c)

Name

getURLEntityCacheDir () - SpecifiesaXercesclassmethod for getting the absolute path to the
location where the DTD, schema and Entity files are cached.

Synopsis

char * getURLEntityCacheDir ()

Description

getURLEntityCacheDir () iSamethod that is called to find out the location where the DTD,
schema and Entity files are cached. It returns the absol ute path to the cached file location. This
method is exclusively used in conjunction with the following two Xerces objects:

o XercesDOMParser

o SAXparser

getURLEntityCaching(3c)

Name

GetURLEntityCaching () - SpecifiesaXerces class method for getting the caching mechanism
for DTD, schemaand Entity files.

Synopsis

bool getURLEntityCaching ()

Description

GetURLEntityCaching () iSamethod that iscalled to find out if caching of the DTD, schema
and Entity files are turned on or off. It returnstrueif cachingisturned on and falseif cachingis
turned off. Thismethod isexclusively used in conjunction with the following two X erces objects:

o XercesDOM Parser

o SAXparser

66 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

gp_mktime(3c)

Name
gp_mktime () —Converts a tm structure to a calendar time.

Synopsis
#include <time.h>

time_t gp_mktime (struct tm *timeptr);

Description

gp_mktime () convertsthe time represented by the tm structure pointed to by timeptrintoa
calendar time (the number of seconds since 00:00:00 Universal Coordinated Time—UTC,
January 1, 1970).

The tm structure has the following format:

struct tm {

int tm_sec; /* seconds after the minute [0, 61] */
int tm_min; /* minutes after the hour [0, 59] */
int tm_hour; /* hour since midnight [0, 23] */

int tm_mday; /* day of the month [1, 31] */

int tm_mon; /* months since January [0, 11] */

int tm_year; /* years since 1900 */

int tm_wday; /* days since Sunday [0, 6] */

int tm_yday; /* days since January 1 [0, 365] */
int tm_isdst; /* flag for daylight savings time */

}i

In addition to computing the calendar time, gp_mktime () normalizesthe supplied tm structure.
The original values of the tm_wday and tm_yday components of the structure are ignored, and
the original values of the other components are not restricted to the rangesindicated in the
definition of the structure. On successful completion, the values of the tm_wday and tm_yday
components are set appropriately, and the other components are set to represent the specified
calendar time, but with their values forced to be within the appropriate ranges. The final value of
tm_mday isnot set until tm_mon and tm_year are determined.

Theoriginal values of the components may be either greater than or less than the specified range.
For example, a tm_hour of -1 means 1 hour before midnight, tm_mday of 0 means the day
preceding the current month, and tm_mon of -2 means 2 months before January of tm_year.

ATMI C Function Reference 67

If tm_isdstispositive, theoriginal valuesare assumed to bein the alternatetime zone. If it turns
out that the alternate time zone is not valid for the computed calendar time, then the components
areadjusted tothemaintimezone. Likewise, if tm_isdst iSzero, theorigina valuesare assumed
to be in the main time zone and are converted to the alternate time zone if the main time zoneis
not valid. If tm_isdst isnegative, the correct time zone is determined and the components are
not adjusted.

Local time zone information isused asif gp_mktime () had called tzset ().

gp_mktime () returnsthe specified calendar time. If the calendar time cannot be represented, the
function returnsthe value (t ime_t)-1.

A thread in amultithreaded application may issue acall to gp_mktime () while running in any
context state, including TPINVALIDCONTEXT.

Example

68

What day of the week is July 4, 20017

#include <stdio.h>

#include <time.h>

static char *const wdayl[] = {
"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday", "-unknown-"

}i

struct tm time_str;
VA
time_str.tm_year = 2001 - 1900;
time_str.tm mon =7 - 1;
time_str.tm_mday = 4;
time_str.tm_hour = 0;
time_str.tm _min = 0;
time_str.tm_sec = 1;
time_str.tm isdst = -1;
if (gp_mktime (time_str) == -1)
time_str.tm_wday=7;

printf ("%$s\en", wdayl[time_str.tm_wday]) ;

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

Notices

tm_year of thetm structure must be for year 1970 or |ater. Calendar times before 00:00:00 UTC,
January 1, 1970 or after 03:14:07 UTC, January 19, 2038 cannot be represented.

Portability

On systems where the C compilation system aready providesthe ANSI C mktime () function,
gp_mktime () Simply callsmktime () to do the conversion. Otherwise, the conversionis
provided directly in gp_mktime ().

In the latter case, the Tz environment variable must be set. Note that in many installations, Tz is
set to the correct value by default when the user logs on. The default value for Tz iseMT0. The
format for Tz isthe following:

stdoffset[dst[offset], [start[time],end[time]]]

stdand dst
Three or more bytesthat designate the standard time zone (s td) and daylight savingstime
time zone (dst). Only stdisrequired. If dst ismissing, then daylight savings time does
not apply in thislocale. Uppercase and lowercase |etters are allowed. Any characters
except aleading colon (:), digits, acomma (,), aminus (-) or aplus (+) are alowed.

offset
Indicatesthe value one must add to thelocal timeto arrive at Coordinated Universal Time.
The offset hasthefollowing form: hh[:mm[:ss]]. The minutes (mm) and seconds (ss) are
optional. The hour (hh) isrequired and may be asingle digit. The offset following std
isrequired. If no offset follows dst, daylight savingstime is assumed to be one hour
ahead of standard time. One or more digits may be used; the value is always interpreted
asadecimal number. The hour must be between 0 and 24, and the minutes (and seconds)
if present, between 0 and 59. Out of range values may cause unpredictable behavior. If
preceded by a“-”, thetime zoneis east of the Prime Meridian; otherwiseit iswest (which
may be indicated by an optional preceding “+” sign).

start/time,end/time
Indicates when to change to and back from daylight savings time, where start/time
describes when the change from standard time to daylight savings time occurs, and
end/ t ime describes when the change back happens. Each time field describes when, in
current local time, the change is made.
The formats of start and end are one of the following:

ATMI C Function Reference 69

Jn
The Julian day n (1 n 365). Leap days are not counted. That is, in all years,
February 28 is day 59 and March 1 isday 60. It isimpossible to refer to the
occasional February 29.

The zero-based Julian day (0 n 365). Leap days are counted, and it is possible to
refer to February 29.

Mm.n.d
Day d (0 4 6) of week n of month mintheyear (1 n 5, 1 m 12), where week 5 means “the
last 4-day in month m,” which may occur in either the fourth or the fifth week). Week 1is
the first week in which day g occurs. Day 0 (zero) is Sunday.

Implementation specific defaultsare used for start and end if these optional fieldsare not given.
The t ime hasthe sameformat as o £ fset except that no leading sign (“-” or “+") isallowed. The
default, if £ime isnot specified, is 02:00:00.

See Also

ctime(3C), getenv(3C), timezone(4) in aUNIX system reference manual

nl_langinfo(3c)

Name
nl_langinfo ()—Language information.

Synopsis
#include <nl_types.h>

#include <langinfo.h>

char *nl_langinfo (nl_item item) ;

Description

nl_langinfo () returnsapointer to aNULL-terminated string containing information relevant
to a particular language or cultural area defined in the programs locale. The manifest constant
names and values of item are defined by 1anginfo.h.

For example:

nl_langinfo (ABDAY_ 1) ;

10 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

returns a pointer to the string “pim” if the identified language is French and a French localeis
correctly installed; or “sun” if the identified language is English.

A thread in amultithreaded application may issueacall tonl_langinfo () whilerunninginany
context state, including TPINVALIDCONTEXT.

Diagnostics

If setlocale () hasnot been caled successfully, or if 1anginfo () datafor asupported
language is either not available or i temis not defined therein, thennl_langinfo () returnsa
pointer to the corresponding string in the C locale. In @l locales, n1_langinfo() returnsa
pointer to an empty string if i tem contains an invalid setting.

Notices

Thearray pointed to by the return value should not be modified by the program. Subsequent calls
tonl_langinfo () may overwritethe array.

See Also

setlocale(3c), strftime (3c), langinfo(5),nl_types(5)

rpc_sm_allocate, rpc_ss_allocate(3c)

Name

rpc_sm_allocate(), rpc_ss_allocate()—Allocates memory within the RPC stub
memory management scheme.

Synopsis
#include <rpc/rpc.h>
idl_void_p_t rpc_sm_allocate(unsigned32 size, unsigned32 *status)

idl_void_p_t rpc_ss_allocate(unsigned32 size)

Description

Applicationscal rpc_sm_allocat3 () to alocate memory within the RPC stub memory
management scheme. The input parameter, size, specifiesin bytes, the size of memory to be
allocated. Before a call to this routine, the stub memory management environment must have
been established. For service code that is called from the server stub, the stub itself normally
establishes the necessary environment. When rpc_sm_allocate () isused by codethat is not
called from the stub, the application must establish the required memory management
environment by calling rpc_sm_enable_allocate().

ATMI C Function Reference n

../rf5/rf5.html
../rf5/rf5.html

Specificaly, if the parameters of a server stub include any pointers other than those used for
passing parameters by reference or the [enable_allocate] atributeis specified for the
operation in the ACS file, then the environment is automatically set up. Otherwise, the
environment must be set up by the application by calling rpc_sm_enable_allocate().

When the stub establishes the memory management environment, the stub itself frees any
memory allocated by rpc_sm_allocate (). The application can free such memory before
returning to the calling stub by calling rpc_sm_free ().

When the application establishes the memory management environment, it must free any
memory allocated, either by calling rpc_sm_free () or by calling

rpc_sm_disable_allocate().

The output parameter, status, returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not. Possible status codes and their
meanings include:

rpc_s ok
Always returned. The return value is used to determine failure.

rpc_ss_allocate () iStheexception-returning version of thisfunction and has no status output
parameter. No exceptions are raised.

A thread in a multithreaded application may issue acall to rpc_sm_allocate() Of
rpc_ss_allocate () Whilerunning in any context state, including TPINVALIDCONTEXT.

Return Values

Upon success, the routines return apointer to the allocated memory. Notethat in the | SO standard
C environments, idl_void_p_t isdefined asvoid * and in other environmentsit is defined as
char *.

If there isinsufficient memory, the routines return aNULL pointer.

See Also

rpc_sm disable_allocate, rpc_ss disable allocate(3c), rpc_sm_enable allocate,
rpc_ss enable allocate(3c), rpc_sm free, rpc_ss free(3c)

Programming Oracle Tuxedo ATMI Applications Using TXRPC

12 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

rpc_sm_client_free, rpc_ss_client_free(3c)

Name
rpc_sm_client_free(), rpc_ss_client_free ()—Frees memory returned from aclient
stub.
Synopsis
#include <rpc/rpc.h>
void rpc_sm_client_free (idl_void_p_t node_to_free, unsigned32 *status)

void rpc_ss_client_free (idl_void_p_t node_to_free)

Description

Therpc_sm_client_free () routinereleasesmemory allocated and returned from aclient stub.
Theinput parameter, node_to_free, Specifies apointer to memory returned from aclient stub.
Note that in the SO standard C environments, idl_void_p_t isdefined asvoid * and in other
environments is defined as char *.

This routine enables a routine to deallocate dynamically allocated memory returned by an RPC
call without knowledge of the memory management environment from which it was called.

Note that this routine is always called from client code, even if the code can is executing as part
of aserver.

The output parameter, status, returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not. Possible status codes and their
meanings include:

rpc_s ok
Success.

rpc_ss_client_free() isthe exception-returning version of this function and has no status
output parameter. No exceptions are raised.

A thread in a multithreaded application may issue acall to rpc_sm_client_free() OF
rpc_ss_client_free () Whilerunningin any context state, including TPINVALIDCONTEXT.

Return Values
None.

ATMI C Function Reference 13

See Also

rpc_sm free, rpc_ss free(3c), rpc_sm set client_alloc free, rpc_ss set_client_alloc_free(3c),
rpc_sm_swap client_alloc_free, rpc_ss swap_client_alloc_free(3c)

Programming Oracle Tuxedo ATMI Applications Using TXRPC

rpc_sm_disable_allocate, rpc_ss_disable_allocate(3c)

Name

rpc_sm_disable_allocate(), rpc_ss_disable_allocate ()—Releases resources and
allocated memory within the stub memory management scheme.

Synopsis

#include <rpc/rpc.h>
void rpc_sm_disable_allocate (unsigned32 *status);

void rpc_ss_disable_allocate(void) ;

Description

14

The rpc_sm_disable_allocate () routinereleases all resources acquired by acall to
rpc_sm_enable_allocate (), and any memory alocated by calsto rpc_sm allocate()
after the call to rpc_sm_enable_allocate () Was made.

The rpc_sm_enable_allocate() and rpc_sm_disable_allocate() routines must be used
in matching pairs. Calling this routine without a previous matching call to
rpc_sm_enable_allocate() resultsin unpredictable behavior.

The output parameter, status, returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not. Possible status codes and their
meanings include:

rpc_s ok
Success.

rpc_ss_disable_allocate () iSthe exception-returning version of this function and has no
status output parameter. No exceptions are raised.

A thread in amultithreaded application may issue acall t0 rpc_sm_disable_allocate() Of
rpc_ss_disable_allocate () Whilerunningin any context state, including
TPINVALIDCONTEXT.

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

Return Values
None.

See Also
rpc_sm allocate, rpc_ss allocate(3c), rpc_sm_enable allocate, rpc_ss enable allocate(3c)
Programming Oracle Tuxedo ATMI Applications Using TXRPC

rpc_sm_enable_allocate, rpc_ss_enable_allocate(3c)

Name

rpc_sm_enable_allocate(), rpc_ss_enable_allocate ()—Enablesthe stub memory
management environment.

Synopsis
#include <rpc/rpc.h>
void rpc_sm_enable_allocate (unsigned32 *status)

void rpc_ss_enable_allocate(void)

Description

Applications can call rpc_sm_enable_allocate () to establish astub memory management
environment in cases where oneis not established by the stub itself. A stub memory management
environment must be established before any callsare madeto rpc_sm_allocate (). For service
code called from the server stub, the stub memory management environment is normally
established by the stub itself. Code that is called from other contexts needs to call
rpc_sm_enable_allocate () beforecalling rpc_sm_allocate () (for example, if the service
codeis called directly instead of from the stub).

The output parameter, status, returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not. Possible status codes and their
meanings include:

rpc_s ok
Success.

rpc_s no_memory
Insufficient memory available to set up necessary data structures.

rpc_ss_enable_allocate() iSthe exception-returning version of this function and has no
status output parameter. The following exceptions are raised by this routine:

ATMI C Function Reference 15

rpc_x_no_memory
Insufficient memory available to set up necessary data structures.

A thread in a multithreaded application may issue acall t0o rpc_sm_enable_allocate() Of
rpc_ss_enable_allocate () Whilerunning in any context state, including
TPINVALIDCONTEXT.

Return Values
None.

See Also
rpc_sm allocate, rpc_ss allocate(3c), rpc_sm disable_allocate, rpc_ss _disable allocate(3c)
Programming Oracle Tuxedo ATMI Applications Using TXRPC

rpc_sm_free, rpc_ss_free(3c)

Name
rpc_sm_free, rpc_ss_free()—Freesmemory allocated by the rpc_sm_allocate() routine.

Synopsis
#include <rpc/rpc.h>
void rpc_sm_free(idl_void_p_t node_to_free, unsigned32 *status)

void rpc_ss_free(idl_void_p_t node_to_free)

Description

Applications call rpc_sm_free () to release memory allocated by rpc_sm_allocate(). The
input parameter, node _to_free, specifiesapointer to memory allocated by rpc_sm_allocate().
Note that in SO standard C environments, idl_void_p_t isdefined asvoid * and in other
environmentsis defined as char *.

When the stub allocates memory within the stub memory management environment, service code
called from the stub can also use rpc_sm_free () to release memory alocated by the stub.

Unpredictable behavior resultsif rpc_ss_free () iscalled with a pointer to memory not
allocated by rpc_sm_allocate () or memory allocated by rpc_sm_allocate (), but not the
first address of such an allocation.

16 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

The output parameter, status, returns the status code from thisroutine. This status code indicates

whether the routine completed successfully or, if not, why not. Possible status codes and their
meanings include:

rpc_s ok
Success.

rpc_ss freeisthe exception-returning version of thisfunction and has no status output parameter.
No exceptions are raised.

A thread in amultithreaded application may issueacall to rpc_sm_free() Of rpc_ss_free()
while running in any context state, including TPINVALIDCONTEXT.

Return Values
None.

See Also
rpc_sm_alocate, rpc_ss alocate(3c)
Programming Oracle Tuxedo ATMI Applications Using TXRPC

rpc_sm_set_client_alloc_free, rpc_ss_set_client_alloc_free(3c)

Name

rpc_sm_set_client_alloc_free(), rpc_ss_set_client_alloc_free ()—Setsthe
memory allocation and freeing mechanisms used by the client stubs.

Synopsis
#include <rpc/rpc.h>

void rpc_sm_set_client_alloc_free(idl_void_p_t (*p_allocate) (unsigned long
size), void (*p_free) (idl_void_p_t ptr), unsigned32 *status)

void rpc_ss_set_client_alloc_free(idl_void_p_t (*p_allocate) (unsigned long
size), void (*p_free) (idl_void_p_t ptr))
Description

The rpc_sm_set_client_alloc_free() routine overridesthe default routines that the client
stub uses to manage memory. Theinput parameters, p_allocate and p_free specify memory
alocator and free routines. The default memory management routines are ISO Cmalloc () and

ATMI C Function Reference 11

free () except when the remote call occurs within server code in which case the memory
management routines must be rpc_ss_allocate () and rpc_ss_free().

The output parameter, status, returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not. Possible status codes and their
meanings include:

rpc_s_ok
Success.

rpc_s_no_memory
Insufficient memory available to set up necessary data structures.

rpc_ss_set_client_alloc_free iSthe exception-returning version of thisfunction and has
no status output parameter. The following exceptions are raised by this routine:
rpc_X no_memory

Insufficient memory available to set up necessary data structures.

A thread in a multithreaded application may issue acall to
rpc_sm_set_client_alloc_free() Of rpc_ss_set_client_alloc_free() while runni ng
in any context state, including TPINVALIDCONTEXT.

Return Values
None.

See Also
rpc_sm_allocate, rpc_ss alocate(3c), rpc_sm free, rpc_ss free(3c)
Programming Oracle Tuxedo ATMI Applications Using TXRPC

rpc_sm_swap_client_alloc_free, rpc_ss_swap_client_alloc_free(3c)

Name
rpc_sm_swap_client_alloc_free(), rpc_ss_swap_client_alloc_free() —Exchanges
current memory allocation and freeing mechanism used by client stubs with one supplied by
client.

Synopsis

#include <rpc/rpc.h>

void rpc_sm_swap_client_alloc_free(idl_void_ p_t (*p_allocate) (unsigned

18 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

long size),
void (*p_free) (idl_void_p_t ptr), idl_void_p_t
(**p_p_old_allocate) (unsigned long size),

void (**p_p_old_free) (idl_void_p_t ptr), unsigned32 *status)

void rpc_ss_swap_client_alloc_free(idl_void_p_t (*p_allocate) (unsigned
long size),

void (*p_free) (idl_void_p_t ptr), idl_void_p_t

(**p_p_o0ld_allocate) (unsigned long size),

void (**p_p_old_free) (idl_void_p_t ptr))

Description

The rpc_sm_swap_client_alloc_free() routine exchangesthe current allocate and free
mechanisms used by the client stubs for routines supplied by the caller. The input parameters,
p_allocate andp_free, specify new memory allocation and free routines. The output
parameters, p_p_old_allocate andp_p_old_free return the memory allocation and free
routinesin use before the call to this routine.

When acallable routine is an RPC client, it may need to ensure which allocate and free routines
are used, despite the mechanism its caller had selected. This routine allows scoped replacement
of the allocation/free mechanism to allow this.

The output parameter, status, returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not. Possible status codes and their
meanings include:

rpc_s_ok
Success.

rpc_s_no_memory

Insufficient memory available to set up necessary data structures.
rpc_ss_swap_client_alloc_free isthe exception-returning version of thisfunction and has
no status output parameter. The following exceptions are raised by this routine;
rpc_X no_memory

Insufficient memory available to set up necessary data structures.
A thread in a multithreaded application may issue acall to

rpc_sm_swap_client_alloc_free() Of rpc_ss_swap_client_alloc_free() While
running in any context state, including TPINVALTDCONTEXT.

ATMI C Function Reference 19

Return Values
None.

See Also
rpc_sm allocate, rpc_ss allocate(3c), rpc_sm free, rpc_ss free(3c),
rpc_sm set client_alloc free, rpc_ss set_client_alloc_free(3c)

Programming Oracle Tuxedo ATMI Applications Using TXRPC.

setlocale(3c)

Name
setlocale ()—Modifies and queries a program’slocae.

Synopsis
#include <locale.h>
char *setlocale (int category, const char *locale);

Description

setlocale () Selectstheappropriate piece of the program’slocale as specified by the category
and Ilocale arguments. The category argument may have the following values:

LC_CTYPE
LC_NUMERIC
LC_TIME
LC_COLLATE
LC_MONETARY
LC_MESSAGES
LC_ALL

These names are defined in the 10cale. h header file. For the Oracle Tuxedo ATMI system
compatibility functions, setlocale () alowsonly asingle 1ocalefor al categories. Setting any
category is treated the same as.c_arz, which names the program'’s entire locale.

A vaueof “C” for 1ocale specifies the default environment.

A value of "" for 10cale specifiesthat the locale should be taken from an environment variable.
The environment variable r.anc is checked for alocale.

At program startup, the equivalent of

80 ATMI C Function Reference

Files

Note

Introduction to the C Language Application-to-Transaction Monitor Interface

setlocale(LC_ALL, "C")

is executed. This has the effect of initializing each category to the locale described by the
environment “C”.

If apointer to astring isgiven for locale, setlocale () attemptsto set thelocalefor al the
categoriesto locale. The locale must be asimplelocale, consisting of asinglelocale. If
setlocale() falsto set thelocale for any category, aNULL pointer isreturned and the
program’s locale for all categoriesis not changed. Otherwise, locale is returned.

A NULL pointer for 1ocale causeSsetlocale () toreturnthe currentlocale associated with the
category. The program’slocaleis not changed.

A thread in a multithreaded application may issue acall to setlocale () whilerunninginany
context state, including TPINVALIDCONTEXT.

STUXDIR/locale/C/LANGINFO - time and money database for the C locale
STUXDIR/locale/locale/* - locale specific information for each

locale $TUXDIR/locale/C/*_CAT - text messages for the C locale

A compositelocaleisnot supported. A compositelocaleisastring beginning witha*“/”, followed
by the locale of each category, separated by a“/".

See Also

mklanginfo (1)

ctime(3C), ctype(3C), getdate(3C), localeconv(3C), strftime(3C), strtod(3C),
print£(39), environ(5) in aUNIX system reference manual

setURLEntityCacheDir(3c)

Name

setURLEntityCacheDir () - SpecifiesaXercesclassmethod for setting the directory wherethe
DTD, schema and Entity files are to be cached.

Synopsis

void setURLEntityCacheDir (const char* cachedir)

ATMI C Function Reference 81

../rfcm/rfcmd.html

Description

setURLEntityCacheDir () iSsmethod called when caching isturned on and you want the DTD,
schemaand Entity filesto be cached to aspecific directory. cachedir specifiesthe absolute path
to the location of thefiles.

If this method is not called and caching is turned on either by calling the method
setURLEntityCaching () Or by not setting the environment variable, then the files are cached
in the current directory. This method is exclusively used in conjunction with the following two
Xerces objects:

o XercesDOMParser

o SAXparser

setURLEntityCaching(3c)

Name

setURLEntityCaching () - Specifies a Xerces class method for setting or unsetting DTD,
schema or Entity file caching for the XML parser.

Synopsis

void setURLEntityCaching (bool UseCache)

Description

setURLEntityCaching ()isamethod that cachesthe DTD, schemaand Entity files by default.
It allows you to turn caching of the files on or off. usecache is set to falseif caching isto be
turned off and set to true if caching isto be turned on. This method is exclusively used in
conjunction with the following two Xerces objects:

o XercesDOM Parser
o SAXparser
strerror(3c)

Name
strerror () —Gets error message string.

82 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

Synopsis
#include <string.h>

char *strerror (int errnum) ;

Description

strerror mapsthe error number in errnum to an error message string, and returns a pointer to
that string. strerror usesthe same set of error messages asperror. Thereturned string should
not be overwritten.

A thread in a multithreaded application may issueacall to strerror () while running in any
context state, including TPINVALIDCONTEXT.

See Also
perror(3) inaUNIX system reference manual

strftime(3c)

Name
strftime () —Converts date and time to string.

Synopsis

#include <time.h>

size_t *strftime (char *s, size_t maxsize, const char *format, const struct
tm *timeptr) ;

Description
strftime () places charactersinto the array pointed to by s as controlled by the string pointed
toby format. The format string consists of zero or more directives and ordinary characters. All
ordinary characters (including the terminating NULL character) are copied unchanged into the
array. For strftime (), NO more than maxsize characters are placed into the array.

If formatis(char *)0, then the locale’ sdefault format is used. The default format isthe same as

"o ~m
sC .

Each directive is replaced by appropriate characters as described in the following list. The
appropriate characters are determined by the n.c_t1ME category of the program’s locale and by
the values contained in the structure pointed to by timeptr.

ATMI C Function Reference 83

84

Character Description

%% Same as %

%a Locale' s abbreviated weekday name

%A Locale sfull weekday name

%b Local€' s abbreviated month name

%$B Locale' s full month name

%c Locale' s appropriate date and time representation
%C Locale s date and time representation as produced by date(1)
%d Day of month (01-31)

%D Date as %m/%d/%y

%e Day of month (1-31; single digits are preceded by a blank)
%h Local€e' s abbreviated month name.

%H Hour (00 - 23)

%I Hour (01-12)

%3 Day number of year (001 - 366)

%m Month number (01 - 12)

$M Minute (00 - 59)

%n Same as\

P Locale s equivaent of either AM or PM

3T Time as %l:%M:%S [AM|PM]

%R Time as %H:%M

%S Seconds (00 - 61), allows for leap seconds

3t Insert atab

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

%T Time as %H:%M:%S

U Week number of year (00 - 53), Sunday isthe first day of week 1
W Weekday number (0-6), Sunday =0

W Week number of year (00 - 53), Monday isthefirst day of week 1
¥x Locale' s appropriate date representation

X Locale' s appropriate time representation

3y Y ear within century (00 - 99)

Y Y ear as ccyy (for example, 1986)

%z Time zone name or no charactersif no time zone exists

The difference between su and sw liesin which day is counted as the first of the week. Week
number 01 isthe first week in January starting with a Sunday for su or aMonday for sw. Week
number 00 contains those days before the first Sunday or Monday in January for $u and sw,
respectively.

If the total number of resulting charactersincluding the terminating NULL character is not more
than maxsize, strftime (), returnsthe number of characters placed into the array pointed to by
s not including the terminating NULL character. Otherwise, zero isreturned and the contents of
the array are indeterminate.

A thread in a multithreaded application may issue acall to strftime () whilerunning in any
context state, including TPINVALIDCONTEXT.

Selecting the Output Language

By default, the output of strftime (), appearsin U.S. English. The user can request that the
output of strftime () bein aspecific language by setting the 1ocale for category LC_TIME
insetlocale ().

Time Zone
The time zone is taken from the environment variable Tz. See ct ime(3c) for adescription of Tz.

ATMI C Function Reference 85

Examples

The exampleillustratesthe use of strftime (). It showswhat the string in str would look like
if the structure pointed to by tmptr contains the values corresponding to Thursday, August 28,
1986 at 12:44:36 in New Jersey.

strftime (str, strsize, "%A %$b %d %j", tmptr)

Thisresultsin str containing "Thursday Aug 28 240",

Files

$TUXDIR/locale/locale/LANGINFO—Tile containing compiled locale-specific date and time
information

See Also

mklanginfo(1l), setlocale(3c)

tpabort(3c)

Name
tpabort ()—Routine for aborting current transaction.

Synopsis
#include <atmi.h>
int tpabort (long flags)

Description

tpabort () signifiesthe abnormal end of atransaction. When this call returns, al changes made
to resources during the transaction are undone. Like tpcommit (), thisfunction can becalled only
by theinitiator of atransaction. Participants (that is, service routines) can express their desire to
have a transaction aborted by calling tpreturn () with TPFAIL.

If tpabort () iscalled while call descriptorsexist for outstanding replies, then upon return from
the function, the transaction is aborted and those descriptors associated with the caller’s
transaction areno longer valid. Call descriptorsnot associated with the caller’ stransaction remain
valid.

For each open connection to aconversational server in transaction mode, tpabort () will senda
TPEV_DISCONIMM event to the server, whether or not the server has control of a connection.

86 ATMI C Function Reference

../rfcm/rfcmd.html

Introduction to the C Language Application-to-Transaction Monitor Interface

Connections opened before tpbegin () or with the TenoTrRAN flag (that is, not in transaction
mode) are not affected.

Currently, the sole argument to the tpabort () function, f1ags, isreserved for future use and
should be set to 0.

In amultithreaded application, athread in the TP INVAL IDCONTEXT State isnot allowed to issue a
call to tpabort ().

Return Values
Upon failure, tpabort () returns-1 and sets tperrno to indicate the error condition.

Errors
Upon failure, tpabort () Sets tperrno to one of the following values:

[TPEINVAL]
flags isnot equal to 0. The caller’ s transaction is not affected.

[TPEHEURISTIC]
Due to a heuristic decision, the work done on behalf of the transaction was partially
committed and partially aborted.

[TPEHAZARD]
Due to some failure, the work done on behalf of the transaction could have been
heuristically completed.

[TPEPROTO]
tpabort () wascaled improperly (for example, by a participant).

[TPESYSTEV]
An Oracle Tuxedo system error has occurred. The exact nature of the error iswrittento a
log file.

[TPEOS]
An operating system error has occurred.

Notices

When using tpbegin (), tpcommit (), and tpabort () to delineate an Oracle Tuxedo ATMI
system transaction, it is important to remember that only the work done by a resource manager
that meetsthe X A interface (and islinked to the caller appropriately) hastransactional properties.
All other operations performed in a transaction are not affected by either tpcommit () or
tpabort ().

ATMI C Function Reference 87

See Also

tpbegin(3c), tpcommit (3¢), tpgetlev (3c)

tpacall(3c)

Name
tpacall ()—Routine for sending a service request.

Synopsis

#include <atmi.h>
int tpacall (char *svc, char *data, long len, long flags)

Description

tpacall () Ssends arequest message to the service named by sve. The request is sent out at the
priority defined for svc unlessoverridden by apreviouscall to tpspri (). If dataisnon-NULL,
it must point to a buffer previously allocated by tpalloc () and 1en should specify the amount
of datain the buffer that should be sent. Note that if data pointsto abuffer of atype that does

not require alength to be specified, (for example, an rmr fielded buffer), then 1enisignored (and
may be 0). If data isNULL, 1enisignored and arequest is sent with no data portion. The type
and subtype of data must match one of the types and subtypes recognized by svc. Note that for
each request sent while in transaction mode, a corresponding reply must ultimately be received.

Thefollowingisalist of valid f1ags:

TPNOTRAN
If the caller isin transaction mode and thisflag is set, then when svc isinvoked, it is not
performed on behalf of the caller’ s transaction. If svc belongs to a server that does not
support transactions, then thisflag must be set when the caller isin transaction mode. Note
that svc may still be invoked in transaction mode but it will not be the same transaction:
a sve may have asaconfiguration attribute that it is automatically invoked in transaction
mode. A caller in transaction mode that sets thisflag is still subject to the transaction
timeout (and no other). If a service fails that was invoked with thisflag, the caller’s
transaction is not affected.

TPNOREPLY
Informs tpacall () that areply is not expected. When TPNOREPLY iS Set, the function
returns O on success, where 0 isan invalid descriptor. When the caller isin transaction
mode, this setting cannot be used unless TPNOTRAN iS alSo Set.

88 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

TPNOBLOCK
Therequest isnot sent if ablocking condition exists (for example, theinternal buffersinto
which the message is transferred are full). When TpnoBLOCK is not specified and a
blocking condition exists, the caller blocks until the condition subsides or atimeout occurs
(either transaction or blocking timeout).

TPNOTIME
Thisflag signifiesthat the caller iswilling to block indefinitely and wants to be immune

to blocking timeouts. Transaction timeouts may still occur.

TPSIGRSTRT
If asignal interrupts any underlying system calls, then the interrupted system call is
reissued.
In amultithreaded application, athread in the TPINVAL IDCONTEXT Stateisnot allowed to issue a
cal to tpacall ().

Return Values
Upon successful completion, tpacall () returnsadescriptor that can be used to receivethereply
of the request sent.

Upon failure, tpacall () returnsavalue of -1 and sets tperrno to indicate the error condition.

Errors
Upon failure, tpacall () Sets tperrno to one of the following values. (Unless otherwise noted,
failure does not affect the caller’ stransaction, if one exists.)

[TPEINVAL]
Invalid arguments were given (for example, svcisNULL, data does not point to space
allocated with tpalloc (), OF flags areinvalid).

[TPENOENT]
Cannot send to sve because it does not exist or is a conversationa service.

[TPEITYPE]
The type and subtype of data is not one of the allowed types and subtypes that svc

accepts.

[TPELIMIT]
The caller’ s request was not sent because the maximum number of outstanding
asynchronous requests has been reached.

ATMI C Function Reference 89

90

Note: The maximum number is 2048 from Oracle Tuxedo 12c Release 2 (12.1.3), and
50 in previous releases.

[TPETRAN]
sve belongs to a server that does not support transactions and TPNOTRAN Was Not Set.

[TPETIME]
This error code indicates that either atimeout has occurred or tpacall () hasbeen
attempted, in spite of the fact that the current transaction is already marked rollback only.

If the caller isin transaction mode, then either the transaction is aready rollback only or
atransaction timeout has occurred. The transaction is marked abort-only. If the caller is
not in transaction mode, a blocking timeout has occurred. (A blocking timeout cannot
occur if TeNoBLOCK and/or TPNOTIME IS specified.)

If atransaction timeout has occurred, then, with one exception, any attempts to send new
requests or receive outstanding replies will fail with reeTIME until the transaction has
been aborted. The exception is arequest that does not block, expects no reply, and is not
sent on behalf of thecaller’ stransaction (that is, tpacall () with TPNOTRAN, TPNOBLOCK,
and TPNOREPLY Set).

When a service fails inside a transaction, the transaction is put into the
TX_ROLLBACK_ONLY State. This state is treated, for most purposes, as though it were
equivalent to atimeout. All further ATMI callsfor thistransaction (with the exception of
those issued in the circumstances described in the previous paragraph) will fail with
TPETIME.

[TPEBLOCK]
A blocking condition exists and TpnoOBLOCK Was specified.

[TPGOTSIG]
A signal was received and TPSIGRSTRT Was hot specified.

[TPEPROTO]
tpacall () wascalled improperly.

[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error iswrittento a
log file.

[TPEOS]
An operating system error has occurred. If amessage queue on aremote location isfilled,
TPEOS May be returned even if tpacall () returned successfully.

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

See Also

tpalloc(3c), tpcall (3c¢), tpcancel (3c¢), tpgetrply (3c), tpgprio(3c), tpsprio(3c)

tpadmecall(3c)

Name
tpadmcall () —Administers unbooted application.

Synopsis
#include <atmi.h>
#include <fml32.h>
#include <tpadm.h>

int tpadmcall (FBFR32 *inbuf, FBFR32 **outbuf, long flags)

Description

tpadmcall () isused to retrieve and update attributes of an unbooted application. It may aso be
used in an active application to perform direct retrievals of alimited set of attributes without
requiring communication to an external process. Thisfunction provides sufficient capability such
that complete system configuration and administration can take place through system provided
interface routines.

inbuf isapointer to an FML32 buffer previously allocated with tpalloc () that containsthe
desired administrative operation and its parameters.

outbuf isthe address of a pointer to the FML 32 buffer that should contain the results. outbuf
must point to an FML 32 buffer originally allocated by tpalioc (). If the same buffer isto be
used for both sending and receiving, outbuf should be set to the address of inbuf.

Currently, tpadmcall ()’slast argument, f1ags, isreserved for future use and must be set to 0.

MIB(5) should be consulted for generic information on construction of administrative requests.
T™™_MIB(5) and appg_M1B (5) should be consulted for information on the classes that are
accessible through tpadmcall ().

There are four modes in which callsto tpadmcall () can be made.

Made 1. Unbooted, Unconfigured Application:
The caller is assumed to be the administrator of the application. The only operations
permitted areto SET aNEW T_DOMAIN class object, thus defining an initial

ATMI C Function Reference 91

../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html

configuration for the application, and to GET and SET objects of the classes defined in
APPQ_MIB().

Moaode 2: Unbooted, Configured Application:
The caller is assigned administrator or other privileges based on a comparison of their
UID/GID to that defined in the configuration for the administrator on the local system.
The caller may GET and SET any attributes for any classint_m1B () and aprPQ_MIB ()
for which they have the appropriate permissions. Note that some classes contain only
attributes that are inaccessible in an unbooted application and attempts to access these
classeswill fail.

Moaode 3: Booted Application, Unattached Process:
The caller is assigned administrator or other privileges based on a comparison of their
UID/GID to that defined in the configuration for the administrator on the local system.
The caller may GET any attributes for any classin ™v_m18 () for which they have the
appropriate permissions. Similarly, the caller may GET and SET any attributes for any
classin appg_MIB (), Subject to class-specific restrictions. Attributes accessible only
while ACTIVE will not be returned.

Mode 4: Booted Application, Attached Process:
Permissions are determined from the authentication key assigned at tpinit () time. The
caller may GET any attributes for any classin tv_wm18 () for which they have the
appropriate permissions. Additionally, the caller may GET and SET any attributesfor any
classin appg_MIB (), subject to class-specific restrictions.

Access to and update of binary Oracle Tuxedo ATMI system application configuration files
through this interface routine is controlled through the use of UNIX system permissions on
directory names and filenames.

In amultithreaded application, athread in the TPINVAL IDCONTEXT State isnot allowed to issue a
call to tpadmcall ().

Environment Variables

The following environment variables must be set prior to calling this routine;

TUXCONFIG
Name of the file or device on which the binary Oracle Tuxedo system configuration file
for this application is or should be stored.

Notices

92

Use of the Ta_occurs attribute on GeT requestsis not supported when using tpadmcall ().
GETNEXT requests are not supported when using tpadmcall ().

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

Return Values
tpadmcall () returns 0 on success and -1 on failure.

Errors
Upon failure, tpadmcall () Sets tperrno to one of the following values:

Note: Except for TpEINVAL, the caller’s output buffer, outbu £, will be modified to include
TA_ERROR, TA_STATUS, and possibly Ta_BaprLD attributes to further qualify the error
condition. SeeMIB (5), TM MIB(5), and appo MIB(5) for an explanation of possible
error codes returned in this fashion.

[TPEINVAL]
Invalid arguments were specified. The f1ags vaueisinvalid or inbuf Or outbuf are not
pointers to typed buffers of type “FML32.”

[TPEMIB]
The administrative request failed. outbuf is updated and returned to the caller with
FML32 fields indicating the cause of the error asisdiscussed inM1B (5) and TM_MIB (5).

[TPEPROTO]
tpadmcall () was called improperly.

[TPERELEASE]
tpadmcall () was called with the TuxconFIc environment variable pointing to a
different release version configuration file.

[TPEOS]
An operating system error has occurred. A numeric value representing the system call that
falled isavallablein vunixerr.

[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error iswritten to
userlog().

Interoperability

Thisinterface supports access and update to the local configuration file and bulletin board only;
therefore, there are no interoperability concerns.

Portability

Thisinterface isavailable only on UNIX system sites running Oracle Tuxedo ATMI release 5.0
or later.

ATMI C Function Reference 93

../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html

Files
Thefollowing library files are required:

${TUXDIR}/1lib/libtmib.a, ${TUXDIR}/1lib/libgm.a,
$S{TUXDIR}/1lib/libtmib.so.<rel>, ${TUXDIR}/1lib/libgm.so.<rel>
${TUXDIR}/1lib/libtmib.1lib, ${TUXDIR}/1lib/libgm.1lib

Thelibraries must be linked manually when using buildclient. The user must use:
-L${TUXDIR}/1lib -ltmid -lgm

See Also

ACL_MIB(5),APPQ_MIB(5), EVENT MIB(5),MIB(5), TM_MIB(5),WS_MIB(5)
Setting Up an Oracle Tuxedo Application
Administering an Oracle Tuxedo Application at Run Time

tpadvertise(3c)

Name
tpadvertise ()—Routine for advertising a service name.

Synopsis
#include <atmi.h>

int tpadvertise(char *svcname, void (*func) (TPSVCINFO *))

Description

tpadvertise () alowsaserver to advertise the services that it offers. By default, aserver’'s

services are advertised when it is booted and unadvertised when it is shutdown.

All servers belonging to a Multiple Server, Single Queue (MSSQ) set must offer the same set of
services. Theseroutines enforcethisrule by affecting the advertisements of all servers sharing an

MSSQ set.

tpadvertise () advertises svcname for the server (or the set of servers sharing the caller’s
MSSQ set). svename should be 127 characters or less, but cannot be NULL or the NULL string
(“"). (See * SERVICES section of UBBCONFIG (5).) func isthe address of an Oracle Tuxedo
ATMI system service function. Thisfunction will beinvoked whenever arequest for svcnameis
received by the server. func cannot be NULL. Explicitly specified function names (see
servopts (5)) can be up to 128 characterslong. Names longer than 127 characters are accepted

94 ATMI C Function Reference

../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html

Introduction to the C Language Application-to-Transaction Monitor Interface

and truncated to 127 characters. Users should make sure that truncated names do not match other
Service names.

If svename isalready advertised for the server and func matches its current function, then
tpadvertise () returnssuccess (thisincludes truncated names that match already advertised
names). However, if svcname is aready advertised for the server but func does not match its
current function, then an error is returned (this can happen if truncated names match already
advertised names).

Service names starting with dot (.) are reserved for administrative services. An error will be
returned if an application attempts to advertise one of these services.

Return Values
Upon failure, tpadvertise () returns-1 and sets tperrno to indicate the error condition.

Errors
Upon failure, tpadvertise () Setstperrno to one of the following values:

[TPEINVAL]
svename ISNULL or the NULL string (*”),or beginswith a“.” or funcisNULL.

[TPELIMIT]
svcname cannot be advertised because of space limitations. (See MaxsERVICES in the
RESOURCES Section of UBBCONFIG (5).)

[TPEMATCH]
svcname isalready advertised for the server but with afunction other than func. Although
thefunctionfails, svcname remainsadvertised with itscurrent function (that is, func does
not replace the current function).

[TPEPROTO]
tpadvertise () was caled in an improper context (for example, by aclient).

[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error iswrittento a
log file.

[TPEOS]
An operating system error has occurred.

See Also

tpservice (3c), tpunadvertise (3c)

ATMI C Function Reference 95

../rf5/rf5.html

tpalloc(3c)

Name

tpalloc ()—Routine for allocating typed buffers.

Synopsis

Descr

#include <atmi.h>

char * tpalloc(char *type, char *subtype, long size)

iption

tpalloc () returnsapointer to abuffer of type type. Depending on the type of buffer, both
subtype and size are optional. The Oracle Tuxedo ATMI system provides a variety of typed
buffers, and applications are free to add their own buffer types. Consult tuxtypes(5) in Oracle
Tuxedo File Formats, Data Descriptions, MIBs, and System Processes Reference for more
details.

If subtypeisnon-NULL in tmtype_sw for aparticular buffer type, then subtype must be
specified when tpalloc () iscalled. Theallocated buffer will be at least aslarge asthe larger of
sizeand dfltsize, Where dfltsize isthe default buffer size specified in tmtype_sw for the
particular buffer type. For buffer type sTrInG the minimum is 512 bytes; for buffer types rur,
and view the minimum is 1024 bytes.

Note that only the first eight bytes of type and the first 16 bytes of subtype are significant.

Because some buffer types require initialization before they can be used, tpalloc () initializes
abuffer (in an Oracle Tuxedo ATMI system-specific manner) after it isallocated and beforeitis
returned. Thus, the buffer returned to the caller isready for use. Note that unlessthe initialization
routine cleared the buffer, the buffer is not initialized to zeros by tpalloc ().

A thread in amultithreaded application may issue acall to tpalloc () whilerunning in any
context state, including TPINVALIDCONTEXT.

Return Values

Upon successful completion, tpalloc () returnsapointer to abuffer of the appropriate type
aligned on along word; otherwise, it returns NULL and sets tperrno to indicate the condition.

Errors

96

Upon failure, tpalloc () Sets tperrno to one of the following values:

ATMI C Function Reference

../rf5/rf5.html
../rf5/rf5.html

Introduction to the C Language Application-to-Transaction Monitor Interface

[TPEINVAL]
Invalid arguments were given (for example, type isSNULL).

[TPENOENT]
No entry in tmtype_sw matches type and, if non-NULL, subtype.

[TPEPROTO]
tpalloc () wascalled improperly.

[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error iswrittento a
log file.

[TPEOS]
An operating system error has occurred.
Usage
If buffer initialization fails, the allocated buffer isfreed and tpalloc () failsreturning NULL.

This function should not be used in concert withmalloc (), realloc (), Or free() intheC
library (for example, abuffer allocated with tpalioc () should not be freed with free ()).

Two buffer types are supported by any compliant implementation of the Oracle Tuxedo ATMI
system extension. Details are in the Introduction to the C Language Application-to-Transaction
Monitor Interface.

See Also

tpfree(3c), tprealloc (3c), tptypes (3c)

tpappthrinit(3c)

Name

tpappthrinit () - Routine for creating and initializing a new Tuxedo context in an
application-created server thread

Synopsis
#include <atmi.h>

int tpappthrinit (TPINIT *tpthrinfo);

ATMI C Function Reference 97

Description

tpappthrinit () createsanew Tuxedo context in an application-created server thread. The
context created by tpappthrinit () connectsto the domain that the application server isin. It
also sets the context of current application thread to the newly created context.

Before an application-created thread in a Tuxedo server process can use Tuxedo ATMI system
communication or transaction routines, it first must call tpappthrinit (), or associate itself
with avalid context using tpsetctxt ().

After tpappthrinit () successfully returns, the application-created server thread can initiate
service regquests and define transactions.

Note: Theapplicationthread cannot call tpreturn () oOf tpforward (). Theapplication thread
may send, but cannot receive unsolicited messages.

After tpappthrinit () successfully returns, the application-created server thread can get the
current context by calling tpgetctxt () and passit asatpsetctxt () parameter called by
another application-created server thread to associate itself to the context.

Note: Itisnot allowed to set the context created by tpappthrinit () inserviceroutine.

The tpappthrinit () argument, tpthrinfo, iSapointer to aTPINIT buffer typeanda
NULL subtype. rrInIT isabuffer typeisdefined inthe atmi . h header file. The buffer must be
allocated via tpalloc () prior to calling tpappthrinit (). It should be released using

tpfree () after caling tpappthrinit ().

Please refer tothe tpinit () routine for description of TeInTT Structure. The tpthrinfo
members usrname, data, and datalen are used to pass authentication information to
tpappthrinit (). When SECURITY iS set to USER_AUTH or above, the TpinNIT buffer passed to
tpappthrinit () ispassed to the authentication service configured for the application. Whether
or not aparticular field intheTpInIT buffer isused by the authentication services depends on the
implementation. At security levelsNonE and App_pw, the tpthrinfo members cltname,
grpname, and passwd are currently not used and must be set to O-length strings. The TpINTT
member flags isaso not used by tpappthrinit ().

tpappthrinit () canonly becalled in an application created server-thread. The server must be
built using the buildserver -t option.

Note: tpappthrinit () iSnot allowed in service routines.

Return Values

98

Upon successfully creating and initializing a Tuxedo context, tpappthrinit () returnsO.

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

Upon failure, it leaves the calling thread in TPNULLCONTEXT, returns -1, and sets tperrno to
indicate the error condition.

Errors
Upon failure, tpappthrinit () Setstperrno to one of the following values:

[TPEINVAL]
Invalid arguments were specified. For example: tpthrinfo isnon-NULL but does not
point to aTpINIT typed buffer.

[TPEPROTO]
tpappthrinit () hasbeen called improperly. For example: it iscalled in client program,
or service routine, or the server is not built with the buildserver -t option.

[TPENOENT]
The context cannot be created due to space limitations.

[TPEPERM]
The context cannot be created because of authentication failure.

[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error iswrittento a
log file.

[TPEOS]
An operating system error has occurred.

See Also

tpappthrterm(3c), tpinit (3c), tpterm(3c),tpgetctxt (3c), tpsetctxt (3c)

Programming a Multithreaded and Multicontexted ATMI application

tpappthrterm(3c)

Name

tpappthrterm() - Routine for terminating Tuxedo context created by tpappthrinit () inan
application-created server thread.

Synopsis
#include<atmi.h>

int tpappthrterm(void) ;

ATMI C Function Reference 99

../pgc/pgthr.html

Description

tpappthrterm() removes the current Tuxedo context, and sets the context of a current
application-created server thread to TeNULLCONTEXT. |f the application thread isin transaction
mode, then thetransactionisrolled back. When tpappthrterm () returnssuccessfully, thecaller
can no longer perform most Tuxedo ATMI operations. Any outstanding conversations are
immediately disconnected.

tpappthrterm () canonly be used to terminated a context which is created by
tpappthrinit (), and it can only beinvoked in an application-created server thread, the server
must be built using the buildserver -t option.

Notes: tpappthrterm() isnot allowed in service routine, or in application-created server
thread which is currently associated with a server-dispatched context.
It isimportant to avoid calling tpappthrterm() on acontext while other application
created server-threads are still working on that context.

Return Values

Upon successfully terminating a Tuxedo context, tpappthrterm () returns o and sets current
context to TPNULLCONTEXT.

Upon failure, tpappthrterm() returns -1 and sets tperrno to indicate the error condition.

Errors
Upon failure, tpappthrterm() Sets tperrno to one of the following values:

[TPEPROTO]
tpappthrterm() hasbeen calledimproperly. For example, itiscalledin client program,
or serviceroutine, or it iscalled in an application-created server thread which is currently
associated with a server-dispatched context.

[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error iswrittento a
log file.

[TPEOS]
An operating system error has occurred.

See Also

tpappthrinit (3c), tpinit(3c), tpgetctxt (3¢c), tpsetctxt (3¢c), tpterm(3c)

Programming a Multithreaded and Multicontexted ATMI application

100 ATMI C Function Reference

../pgc/pgthr.html

Introduction to the C Language Application-to-Transaction Monitor Interface

tpatz(3c)

Name
tpatz () —Resource access control.

Synopsis
#include <atmi.h>

tpatz (char *restype, char *resname, char *action, long flag)

Description
tpatz () checkswhether users are allowed to access specified resources. This function can only
be called in server side and can be called with multiple threads. This API forwards requests to
authorization service for authorization. tpatz () canwork with servers (such as xauTHsvr or
EAUTHSVT) to complete authorization.

restype iSthe resource type defined by users or Tuxedo system. resname is a string pointer
indicating the resource name. action iSresources operation. flag is reserved.

Valid string length is listed as below:
e restype: [1,15]
® resname: [1,127]
® action : [1,15]
Return Values
e Upon authorization success, tpatz () returns 1.
e Upon authorization failure, tpatz () returnsO.
e Upon system failure, tpatz () returns -1 and sets tperrno to indicate the error condition.

Errors

[TPEINVAL]
Invalid arguments are given (for example, string length exceeds valid length).

Notices

This API builds a cache in each application server to improve efficiency. The following
environment variables control this cache to meet user requirements.

® TMATZPRIVILEGEMAX

ATMI C Function Reference 101

® TMATZRESOURCEMAX
o TMATZEXP

For more information, please refer to Setting Up the Authorization Cache.

tpbegin(3c)

Name

tpbegin ()—Routine for beginning a transaction.

Synopsis

#include <atmi.h>

int tpbegin(unsigned long timeout, long flags)

Description

102

A transaction in the Oracle Tuxedo ATMI system is used to define asingle logical unit of work
that either wholly succeeds or has no effect whatsoever. A transaction allows work being
performed in many processes, at possibly different sites, to be treated as an atomic unit of work.
Theinitiator of atransaction uses tpbegin () and either tpcommit () Of tpabort () to delineate
the operations within atransaction. Once tpbegin () iscalled, communication with any other
program can place the latter (of necessity, aserver) in “transaction mode” (that is, the server’s
work becomes part of the transaction). Programs that join atransaction are called participants. A
transaction always has one initiator and can have severa participants. Only the initiator of a
transaction can call tpcommit () Or tpabort (). Participants can influence the outcome of a
transaction by thereturn values (rva1s) they usewhenthey cal tpreturn (). Onceintransaction
mode, any service requests made to servers are processed on behalf of the transaction (unlessthe
requester explicitly specifies otherwise).

Note that if a program starts a transaction while it has any open connections that it initiated to
conversational servers, these connectionswill not be upgraded to transaction mode. Itisasif the
TPNOTRAN flag had been specified on the tpconnect () cal.

tpbegin ()'sfirst argument, timeout, specifiesthat the transaction should be allowed at least
timeout seconds before timing out. Once atransaction times out it must be marked abort-only.
If timeout isO, then the transaction is given the maximum number of seconds allowed by the

system before timing out (that is, the timeout value equals the maximum value for an unsigned
long as defined by the system).

Currently, tpbegin ()’ssecond argument, f1ags, isreserved for future use and must be set to 0.

ATMI C Function Reference

../sec/secadm.html#wp1506498

Introduction to the C Language Application-to-Transaction Monitor Interface

In amultithreaded application, athread in the TpINVALIDCONTEXT State is not allowed to issuea
call to tpbegin().

Return Values
Upon failure, tpbegin () returns-1 and sets tperrno to indicate the error condition.

Errors

Upon failure, tpbegin () Sets tperrno to one of the following values:

[TPEINVAL]
flags isnot equal to 0.

[TPETRAN]

The caller cannot be placed in transaction mode because an error occurred starting the
transaction.

[TPEPROTO]

tpbegin () wascalled in animproper context (for example, the caller isaready in
transaction mode).

[TPESYSTEM]

An Oracle Tuxedo system error has occurred. The exact nature of the error iswrittento a
log file.

[TPEOS]
An operating system error has occurred.

Notices

When using tpbegin (), tpcommit (), and tpabort () to delineate an Oracle Tuxedo ATMI
system transaction, it isimportant to remember that only the work done by a resource manager
that meetsthe XA interface (and islinked to the caller appropriately) hastransactional properties.
All other operations performed in atransaction are not affected by either tpcommit () or
tpabort (). Seebuildserver () for details on linking resource managers that meet the XA
interface into a server such that operations performed by that resource manager are part of an
Oracle Tuxedo ATMI system transaction.

See Also

tpabort (3¢), tpcommit (3¢), tpgetlev (3c), tpscmt (3¢)

ATMI C Function Reference 103

tpbroadcast(3c)

Name

tpbroadcast () —Routine to broadcast notification by name.

Synopsis

Descr

104

#include <atmi.h>

int tpbroadcast (char *1mid, char *usrname, char *cltname,

char *data, long len, long flags)

iption

tpbroadcast () alowsaclient or server to send unsolicited messagesto registered clientswithin
the system. The target client set consists of those clients matching identifiers passed to
tpbroadcast (). Wildcards can be used in specifying identifiers.

Imid, usrname, and c1tname are logical identifiers used to select the target client set. A NULL
value for any argument constitutes a wildcard for that argument. A wildcard argument matches
al clientidentifiersfor that field. A 0-length string for any argument matches only O-length client
identifiers. Each identifier must meet the size restrictions defined for the system to be considered
valid, that is, each identifier must be between 0 and MaxTTIDENT charactersin length.

The data portion of the request is pointed to by data, abuffer previously allocated by

tpalloc (). Ien specifies how much of data to send. Note that if data pointsto a buffer type
that does not require a length to be specified (for example, an ruL fielded buffer), then 1enis
ignored (and may be 0). Also, data may be NULL, in which case 1en isignored. The buffer
passes through the typed buffer switch routines just as any other outgoing or incoming message
would; for example, encode/decode are performed automatically.

Thefollowingisalist of valid f1ags:

TPNOBLOCK
Therequest isnot sent if ablocking condition exists (for example, theinternal buffersinto
which the message is transferred are full).

TPNOTIME
Thisflag signifies that the caller iswilling to block indefinitely and wants to be immune
to blocking timeouts. Transaction timeouts may still occur.

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

TPSIGRSTRT
If asignal interrupts any underlying system calls, then the interrupted system call is
reissued. Upon successful return from tpbroadcast (), the message has been delivered
to the system for forwarding to the selected clients. tpbroadcast () doesnot wait for the
message to be delivered to each selected client.

In amultithreaded application, athread in the TPINVALIDCONTEXT Stateis not allowed to
issue acal to tpbroadcast ().

Return Values
Upon failure, tpbroadcast () returns-1 and sets tperrno to indicate the error condition.

Errors

Upon failure, tpbroadcast () Sends no broadcast messages to application clients and sets
tperrno to one of the following values:

[TPEINVAL]
Invalid argumentswere given (for example, identifierstoo long or invalid flags). Notethat
useof anillegal LMD Will cause tpbroadcast () tofail and return TPEINVAL. HOwever,
non-existent user or client names will simply successfully broadcast to no one.

[TPETIME]
A blocking timeout occurred. (A blocking timeout cannot occur if TpNoBLOCK and/or
TPNOTIME iS specified.)

[TPEBLOCK]
A blocking condition was found on the call and TpNoBLOCK Was specified.

[TPGoTSIG]
A signal was received and TPSIGRSTRT Was not specified.

[TPEPROTO]
tpbroadcast () was called improperly.

[TPESYSTEV]
An Oracle Tuxedo system error has occurred. The exact nature of the error iswrittento a
log file.

[TPEOS]
An operating system error has occurred.

ATMI C Function Reference 105

Portability

Theinterfacesdescribed in tpnotify (3c) aresupported on native site UNIX-based processors.
In addition, the routines tpbroadcast () and tpchkunsol () aswell asthe function
tpsetunsol () aresupported on UNIX and MS-DOS workstation processors.

Usage

Clients that select signal-based notification may not be signal-able by the system due to signal
restrictions. When this occurs, the system generates alog messagethat it is switching notification
for the selected client to dip-in and the client is notified then and thereafter viadip-in notification.
(See the description of the RESOURCES NOTIFY parameter in uBBCONFIG () for adetailed
discussion of notification methods.)

Because signaling of clientsis always done by the system, the behavior of notification is always
consistent, regardless of where the originating notification call is made. Therefore to use
signal-based notification:

e A native client must be running as an application administrator

e A Workstation client is not required to be running as the application administrator

The ID for the application administrator is identified as part of the configuration for the
application.

If signal-based notification is selected for a client, then certain ATMI calls can fail, returning
TPGOTSIG due to receipt of an unsolicited message if TPSIGRSTRT is not specified. See
UBBCONFIG(5) and tpinit (3c) for more information on notification method selection.

See Also

tpalloc(3c), tpinit (3c), tpnotify (3c), tpterm(3c), UBBCONFIG(5)

tpcall(3c)

Name
tpcall ()—Routine for sending service request and awaiting its reply.

Synopsis
int tpcall (char *svc, char *idata, long ilen, char **odata, long \

*olen, long flags)

106 ATMI C Function Reference

../rf5/rf5.html
../rf5/rf5.html

Introduction to the C Language Application-to-Transaction Monitor Interface

Description

tpcall () sendsarequest and synchronously awaitsitsreply. A cal to thisfunction isthe same
ascaling tpacall () immediately followed by tpgetrply (). tpcall () sendsarequest to the
service named by sve. Therequest is sent out at the priority defined for svc unless overridden
by aprevious call to tpspri (). The data portion of areguest is pointed to by idata, abuffer
previously alocated by tpalloc (). ilen specifies how much of idata to send. Note that if
idata pointsto abuffer of atype that does not require alength to be specified, (for example, an
ruL fielded buffer), then i1en isignored (and may be 0). Also, idata may be NULL, in which
case ilenisignored. Thetype and subtype of idata must match one of the types and subtypes
recognized by sve.

Note: If application needsto usean XML buffer asthe send bufferinatpcali (), thesendlen
parameter must be specified to accurate length, which is string length of the XML buffer
+1.

odata isthe address of a pointer to the buffer where areply isread into, and olen pointsto the
length of that reply. * odata must point to abuffer originally allocated by tpalloc (). If thesame
buffer isto be used for both sending and receiving, odata should be set to the address of idata.
FML and Fu1.32 buffers often assume a minimum size of 4096 bytes; if the reply islarger than
4096, the size of the buffer isincreased to a size large enough to accommodate the data being
returned. Also, if idata and * odata were equal when tpcall () wasinvoked, and * odata is
changed, then idata no longer pointsto avalid address. Using the old address can lead to data
corruption or process exceptions. As of release 6.4, the default allocation for buffersis 1024
bytes. Also, historical information is maintained on recently used buffers, allowing a buffer of
optimal sizeto be reused as areturn buffer.

Buffers on the sending side that may be only partially filled (for example, FML or STRING
buffers) will have only the amount that is used send. The system may then enlarge the received
data size by some arbitrary amount. This means that the receiver may receive a buffer that is
smaller than what was originally allocated by the sender, yet larger than the data that was sent.

The receive buffer may grow, or it may shrink, and its address almost invariably changes, asthe
system swaps buffers around internally. To determine whether (and how much) areply buffer
changed in size, compare itstotal size before tpgetrply () wasissued with * 1en. See
“Introduction to the C Language Application-to-Transaction Monitor Interface” for more
information about buffer management.

If * 01en isO upon return, then the reply has no data portion and neither * odata nor the buffer it
points to were modified. It isan error for * odata or olento be NULL.

Thefollowingisalist of valid fiags:

ATMI C Function Reference 107

108

TPNOTRAN
If the caller isin transaction mode and thisflag is set, then when svc isinvoked, it is not
performed on behalf of the caller’s transaction. Note that svc may still be invoked in
transaction mode but it will not be the same transaction: a sve may have asaconfiguration
attribute that it is automatically invoked in transaction mode. A caller in transaction mode
that setsthisflag isstill subject to the transaction timeout (and no other). If aservicefails
that was invoked with this flag, the caller’ s transaction is not affected.

TPNOCHANGE
By default, if abuffer isreceived that differsin type from the buffer pointed to by * odata,
then * odata’s buffer type changes to the received buffer’s type so long as the receiver
recognizes the incoming buffer type. When thisflag is set, the type of the buffer pointed
toby * odataisnot allowed to change. That is, the type and subtype of the received buffer
must match the type and subtype of the buffer pointed to by * odata.

TPNOBLOCK
Therequest isnot sent if ablocking condition exists (for example, theinternal buffersinto
which the message is transferred are full). Note that this flag applies only to the send
portion of tpcall (): the function may block waiting for the reply. When TpNoBLOCK iS
not specified and ablocking condition exists, the caller blocks until the condition subsides
or atimeout occurs (either transaction or blocking timeout).

TPNOTIME
Thisflag signifies that the caller iswilling to block indefinitely and wants to be immune
to blocking timeouts. However, if the caller isin transaction mode, this flag has no effect;
it is subject to the transaction timeout limit. Transaction timeouts may still occur.

TPNOCOPY
Thisflagisonly availablefor Exalogic and used when the Use of Shared Memory for Inter
Process Communication feature is enabled (see SHMQ option in UBBCONFIG(5)). It
indicates Tuxedo not making safe copy for request buffer during message sending
process, thus saving cost of copying large buffers. However, in the event that tpcali ()
fails, causing the caller application unable to access the request buffer anymore, it is
recommended you call tpfree () to release the request buffer. If Use of Shared Memory
for Inter Process Communication is not enabled, this flag has no effect.

TPSIGRSTRT
If asignal interrupts any underlying system calls, then the interrupted system call is
reissued.

In amultithreaded application, athread in the TPINVAL IDCONTEXT Stateisnot allowed toissue a
call to tpcall().

ATMI C Function Reference

../rf5/rf5.html
../rf5/rf5.html

Introduction to the C Language Application-to-Transaction Monitor Interface

Return Values

Upon successful return from tpcall () or upon return where tperrno is Set t0 TPESVCFATL,
tpurcode () contains an application defined value that was sent as part of tpreturn().

Uponfailure, tpcall () returns-1and sets tperrno to indicate the error condition. If acall fails
with a particular tperrno value, asubsequent call to tperrordetail (), with no intermediate
ATMI calls, may provide more detailed information about the generated error. Refer to the
tperrordetail (3c) reference page for more information.

Errors

Upon failure, tpcall () Sets tperrno to one of the following values. (Unless otherwise noted,
failure does not affect the caller’ s transaction, if one exists.)

[TPEINVAL]
Invalid arguments were given (for example, svcisNULL or f1ags areinvalid).

[TPENOENT]
Cannot send to sve because it does not exist, or it isaconversationa service, or the name
provided begins with adot (.).

[TPEITYPE]
The type and subtype of idata isnot one of the allowed types and subtypesthat svc
accepts.

[TPEOTYPE]
Either the type and subtype of the reply are not known to the caller; or, TPNOCHANGE Was
setin flags and thetype and subtype of * odata do not match the type and subtype of the
reply sent by the service. Neither * odata, its contents, nor * o1en is changed. If the
service request was made on behalf of the caller’ s current transaction, then the transaction
is marked abort-only since the reply is discarded.

[TPETRAN]
sve belongsto a server that does not support transactions and TPNOTRAN Was not set.

[TPETIME]
This error code indicates that either atimeout has occurred or tpcall () has been
attempted, in spite of the fact that the current transaction is already marked rollback only.

If the caller isin transaction mode, then either the transaction is already rollback only or
atransaction timeout has occurred. The transaction is marked abort-only. If the caler is
not in transaction mode, a blocking timeout has occurred. (A blocking timeout cannot

ATMI C Function Reference 109

110

occur if reNoBLOCK and/or TeNoTIME iSspecified.) In either case, no changes are madeto
*odata, its contents, or *olen.

If atransaction timeout has occurred, then, with one exception, any attemptsto send new
requests or receive outstanding replies will fail with reeTIME until the transaction has
been aborted. The exception is arequest that does not block, expects no reply, and is not
sent on behalf of the caller’ stransaction (that is, tpacall () with TPNOTRAN, TPNOBLOCK,
and TPNOREPLY Set).

When a service fails inside a transaction, the transaction is put into the
TX_ROLLBACK_ONLY State. This state is treated, for most purposes, as though it were
equivalent to atimeout. All further ATMI callsfor thistransaction (with the exception of
those issued in the circumstances described in the previous paragraph) will fail with
TPETIME.

[TPESVCFATL]

The serviceroutine sending the caller’ sreply caled tpreturn () withTpra1L. Thisisan
application-level failure. The contents of the service sreply, if one was sent, isavailable
in the buffer pointed to by * odata. If the service request was made on behalf of the
caller’ scurrent transaction, then the transaction is marked abort-only. Notethat regardless
of whether the transaction has timed out, the only valid communications before the
transaction is aborted are callsto tpacall () with TPNOREPLY, TPNOTRAN, and
TPNOBLOCK Set.

[TPESVCERR]

A service routine encountered an error either in tpreturn (3c) Of tpforward (3c) (for
example, bad arguments were passed). No reply datais returned when this error occurs
(that is, neither * odata, its contents, nor * o1en is changed). If the service request was
made on behalf of the caller’ s transaction (that is, TenOoTRAN Was not set), then the
transaction ismarked abort-only. Notethat regardless of whether the transaction hastimed
out, the only valid communications before the transaction is aborted are calls to
tpacall () With TPNOREPLY, TPNOTRAN, and TPNOBLOCK Set. If either sveTIMEOUT inthe
UBBCONFIG fileor TA_svcTIMEOUT inthe TM_MIB iSNnon-zero, TPESVCERR iS returned
when a service timeout occurs.

[TPEBLOCK]

A blocking condition was found on the send call and TpNoBLOCK Was specified.

[TPGoTSIG]

A signal was received and TPSIGRSTRT Was not specified.

[TPEPROTO]

tpcall () was called improperly.

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error iswrittento a
log file.

[TPEOS]
An operating system error has occurred. If amessage queue on aremote location isfilled,
TPEOS May bereturned even if tpcall () returned successfully.
See Also

tpacall (3c),tpalloc(3c), tperrordetail (3¢c), tpforward(3c), tpfree(3c),
tpgprio(3c), tprealloc (3c), tpreturn(3c), tpsprio(3c), tpstrerrordetail (3c¢),
tptypes (3c)

tpcancel(3c)

Name
tpcancel ()—Routine for canceling a call descriptor for outstanding reply.

Synopsis
#include <atmi.h>

int tpcancel (int cd)

Description

tpcancel () cancelsacall descriptor, cd, returned by tpacali (). Itisan error to attempt to
cancel acall descriptor associated with atransaction.

Upon success, cd isno longer valid and any reply received on behalf of cq will be silently
discarded.

In amultithreaded application, athread in the TpINVALIDCONTEXT State is not allowed to issuea
call to tpcancel ().

Return Values
Upon failure, tpcancel () returns-1 and sets tperrno to indicate the error condition.

Errors
Upon failure, tpcancel () Sets tperrno to one of the following values:

[TPEBADDESC]
cdisaninvalid descriptor.

ATMI C Function Reference m

[TPETRAN]
cd() is associated with the caller’ stransaction. cd remains valid and the caller’ s current
transaction is not affected.

[TPEPROTO]
tpcancel () was called improperly.

[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error iswrittento a
log file.

[TPEOS]
An operating system error has occurred.

See Also

tpacall (3c)

tpchkauth(3c)

Name
tpchkauth () —Routine for checking if authentication required to join an application.

Synopsis

#include <atmi.h>

int tpchkauth (void)

Description

tpchkauth () checksif authentication isrequired by the application configuration. Thisis
typically used by application clientsprior to calling tpinit () to determineif apassword should
be obtained from the user.

In amultithreaded application, athread in the reINvALTDCONTEXT Stateisnot allowed toissuea
call to tpchkauth ().

Return Values
Upon success, tpchkauth () returns one of the following non-negative values:

TPNOAUTH
Indicates that no authentication is required.

112 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

TPSYSAUTH
Indicates that system authentication only is required.

TPAPPAUTH
Indicates that both system and application specific authentication are required.

Upon failure, tpchkauth () returns-1 and sets tperrno to indicate the error condition.

Errors
Upon failure, tpchkauth () Sets tperrno to one of the following values:

[TPESYSTEN]
An Oracle Tuxedo system error has occurred. The exact nature of the error iswrittento a
log file.

[TPEOS]
An operating system error has occurred.

Interoperability
tpchkauth () isavailable only on sitesrunning release 4.2 or | ater.

Portability

Theinterfaces described in tpchkauth (3c) are supported on UNIX, Windows, and MS-DOS
operating systems.

See Also

tpinit (3c)

tpchkunsol(3c)

Name
tpchkunsol () —Routine for checking for unsolicited message.

Synopsis
#include <atmi.h>

int tpchkunsol (void)

ATMI C Function Reference 113

Description

tpchkunsol () isused by aclient to trigger checking for unsolicited messages. Callsto this
routine in aclient using signal-based notification do nothing and return immediately. This call
has no arguments. Calls to this routine can result in calls to an application-defined unsolicited
message handling routine by the Oracle Tuxedo ATMI system libraries.

In amultithreaded application, athread in the TPINVAL IDCONTEXT State isnot allowed to issue a
call to tpchkunsol ().

Return Values

Upon successful completion, tpchkunsol () returns the number of unsolicited messages
dispatched; otherwise it returns -1 and sets tperrno to indicate the error condition.

Errors

Upon failure, tpchkunsol () S&ts tperrno to one of the following values:

[TPEPROTO]
tpchkunsol () was called in animproper context (for example, from within a server).

[TPESYSTEV]
An Oracle Tuxedo system error has occurred. The exact nature of the error iswrittento a
log file.

[TPEOS]
An operating system error has occurred.

Portability

114

Theinterfacesdescribed in tpnotify (3c) aresupported on native site UNIX-based processors.
In addition, the routines tpbroadcast () and tpchkunsol () aswell asthe function
tpsetunsol () are supported on UNIX and MS-DOS workstation processors.

Clients that select signal-based notification may not be signal-able by the system due to signal
restrictions. When this occurs, the system generates alog messagethat it is switching notification
for the selected client to dip-in and the client is notified then and thereafter viadip-in notification.
(See the description of the RESOURCES NOTIFY parameter in uBBCoNFIG (5) for adetailed
discussion of notification methods.)

Because signaling of clientsis always done by the system, the behavior of notification is always
consistent, regardless of where the originating notification call is made. Therefore to use
signal-based notification:

ATMI C Function Reference

../rf5/rf5.html

Introduction to the C Language Application-to-Transaction Monitor Interface

e A native client must be running as an application administrator

e A Workstation client is not required to be running as the application administrator

The ID for the application administrator is identified as part of the configuration for the
application.

If signal-based notification is selected for a client, then certain ATMI calls can fail, returning
TPGOTSIG dueto receipt of an unsolicited message if TPSIGRSTRT is not specified. See
UBBCONFIG(5) and tpinit (3c) for moreinformation on notification method selection.

See Also

tpbroadcast (3c¢),tpinit(3c), tpnotify (3c), tpsetunsol (3¢)

tpclose(3c)

Name
tpclose ()—Routine for closing aresource manager.

Synopsis

#include <atmi.h>
int tpclose(void)

Description

tpclose () tears down the association between the caller and the resource manager to which it
islinked. Since resource managers differ in their c1ose semantics, the specific information
needed to close a particular resource manager is placed in a configuration file.

If aresource manager isaready closed (that is, tpclose () iscalled more than once), no action
is taken and successiis returned.

In amultithreaded application, athread in the TpINVALIDCONTEXT State is not allowed to issuea
cal to tpclose ().

If the current server is built with the - option, tpclosetriesto close all of opened RMsincluding
opened by tprmopen (3c) routine in runtime stage.

Return Values
Upon failure, tpclose () returns-1 and sets tperrno to indicate the error condition.

ATMI C Function Reference 115

../rf5/rf5.html

Errors
Upon failure, tpclose () failsand sets tperrno to one of the following values:

[TPERMERR]
A resource manager failed to close correctly. More information concerning the reason a
resource manager failed to close can be obtained by interrogating a resource manager in
its own specific manner. Note that any calls to determine the exact nature of the error
hinder portability.

[TPEPROTO]
tpclose () wascaled in animproper context (for example, whilethe caller isin
transaction mode).

[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error iswrittento a
log file.

[TPEOS]
An operating system error has occurred.

See Also

tpopen(3c), tprmopen(3c), tprmclose(3c), tprmstart(3c), tprmend(3c)

tpcommit(3c)

Name
tpcommi t () —Routine for committing current transaction.

Synopsis
#include <atmi.h>

int tpcommit (long flags)

Description

tpcommit () signifiesthe end of atransaction, using atwo-phase commit protocol to coordinate
participants. tpcommit () can be called only by theinitiator of atransaction. If any of the
participants cannot commit the transaction (for example, they call tpreturn () with TPFAIL),
then the entire transaction is aborted and tpcommit () fails. That is, al of the work involved in
the transaction isundone. If al participants agree to commit their portion of the transaction, then
this decision is logged to stable storage and all participants are asked to commit their work.

116 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

Depending on the setting of the Tp_comMIT_coNTROL characteristic (see tpscmt (3¢)),
tpcommit () canreturn successfully either after the commit decision has been logged or after the
two-phase commit protocol has completed. If tpcommit () returnsafter the commit decision has
been logged but before the second phase has completed (Tp_cuTt_1.0GGED), then all participants
have agreed to commit the work they did on behalf of the transaction and should fulfill their
promise to commit the transaction during the second phase. However, because tpcommit () is
returning before the second phase has compl eted, there is a hazard that one or more of the
participants can heuristically complete their portion of the transaction (in a manner that is not
consistent with the commit decision) even though the function has returned success.

If the Tp_coMmMIT_coNTROL characteristic is set such that tpcommit () returns after the
two-phase commit protocol has completed (Tp_cMT_coMPLETE), thenitsreturn valuereflectsthe
exact status of the transaction (that is, whether the transaction heuristically completed or not).

Notethat if only asingle resource manager isinvolved in atransaction, then aone-phase commit
isperformed (that is, the resource manager is not asked whether or not it can commit; itissimply
told to commit). In this case, the Tp_commIT_coNTROL characteristic has no bearing and
tpcommit () Will return heuristic outcomes if present.

If tpcommit () iscalled whilecall descriptorsexist for outstanding replies, then upon return from
the function, the transaction is aborted and those descriptors associated with the caller’s
transaction areno longer valid. Call descriptors not associated with the caller’ stransaction remain
valid.

tpcommit () must be called after all connections associated with the caller’ s transaction are
closed (otherwise TPEABORT isreturned, the transaction is aborted and these connections are
disconnected in adisorderly fashion with aTpeEv_bpIscontvm event). Connections opened before
tpbegin () or with the TpPNoTRAN flag (that is, connections not in transaction mode) are not
affected by callsto tpcommit () Or tpabort ().

Currently, tpcommit ()'ssoleargument, flags, isreserved for future use and must be set to 0.
In amultithreaded application, athread in the TPINVAL IDCONTEXT Stateisnot allowed to issue a
call to tpcommit ().

Return Values
Upon failure, tpcommit () returns-1 and sets tperrno to indicate the error condition.

Errors
Upon failure, tpcommit () Sets tperrno to one of the following values:

ATMI C Function Reference 117

[TPEABORT]
Thetransaction could not commit because either the work performed by the initiator or by
oneor moreof its participants could not commit. Thiserror isalsoreturned if tpcommit ()
is called with outstanding replies or open conversational connections.

[TPEHAZARD]
Due to some failure, the work done on behalf of the transaction could have been
heuristically completed.

[TPEHEURISTIC]
Due to a heuristic decision, the work done on behalf of the transaction was partially
committed and partially aborted.

[TPEINVAL]
flags isnot equal to 0. The caller’ s transaction is not affected.

[TPEOS]
An operating system error has occurred.

[TPEPROTO]
tpcommit () was called in an improper context (for example, by a participant).

[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error iswrittento a
log file.

[TPETIME]

The transaction has timed out and its status is unknown: it may have been either
committed or aborted. If atransaction has timed out and its statusis known to be aborted,
then TPEABORT is returned.

Notices

118

When using tpbegin (), tpcommit (), and tpabort () to delineate an Oracle Tuxedo ATMI
system transaction, it is important to remember that only the work done by a resource manager
that meetsthe X A interface (and islinked to the caller appropriately) hastransactional properties.
All other operations performed in a transaction are not affected by either tpcommit () or
tpabort (). Seebuildserver (1) for details on linking resource managers that meet the XA
interface into a server such that operations performed by that resource manager are part of an
Oracle Tuxedo ATMI system transaction.

ATMI C Function Reference

../rfcm/rfcmd.html

Introduction to the C Language Application-to-Transaction Monitor Interface

See Also

tpabort (3c¢), tpbegin (3c), tpconnect (3c¢), tpgetlev(3c), tpreturn(3c), tpscmt (3¢)

tpconnect(3c)

Name
tpconnect () —Routine for establishing a conversational service connection.

Synopsis

#include <atmi.h>

int tpconnect (char *svc, char *data, long len, long flags)

Description

tpconnect () alowsaprogram to set up a half-duplex connection to a conversationa service,
sve. The name must be one of the conversational service names posted by a conversational
server.

As part of setting up a connection, the caller can pass application-defined data to the listening
program. If the caller chooses to pass data, then data must point to abuffer previoudly allocated
by tpalloc (). 1en specifies how much of the buffer to send. Notethat if data pointsto abuffer
of atype that does not require alength to be specified, (for example, an rur fielded buffer), then
lenisignored (and may be 0). Also, data can be NULL in which case lenisignored (no
application datais passed to the conversational service). The type and subtype of data must
match one of the types and subtypes recognized by svc. data and 1en are passed to the
conversational serviceviathe resvcinro structure with which the serviceisinvoked; the service
does not haveto call tprecv () to get the data.

Thefollowingisalist of valid fiags:

TPNOTRAN
If the caller isin transaction mode and thisflag is set, then when svc isinvoked, it is not
performed on behalf of the caller’s transaction. Note that sve may still be invoked in
transaction mode but it will not be the same transaction: a sve may have asaconfiguration
attribute that it is automatically invoked in transaction mode. A caller in transaction mode
that setsthisflag is still subject to the transaction timeout (and no other). If aservicefails
that was invoked with this flag, the caller’ s transaction is not affected.

ATMI C Function Reference 119

TPSENDONLY
The caller wants the connection to be set up initially such that it can only send data and
the called service can only receive data (that is, the caller initially has control of the
connection). Either TPSENDONLY OF TPRECVONLY must be specified.

TPRECVONLY
The caller wants the connection to be set up initially such that it can only receive dataand
the called service can only send data (that is, the service being called initially has control
of the connection). Either TPSENDONLY OF TPRECVONLY must be specified.

TPNOBLOCK
The connectionisnot established and the datais not sent if ablocking condition exists (for
example, the data buffers through which the message is sent are full). Note that this flag
applies only to the send portion of tpconnect () ; the function may block waiting for an
acknowledgement from the server. When TpnoBLOCK is not specified and a blocking
condition exists, the caller blocks until the condition subsides or a blocking timeout or
transaction timeout occurs.

TPNOTIME
Thisflag signifies that the caller iswilling to block indefinitely and wants to be immune
to blocking timeouts. Transaction timeouts will still affect the program.

TPSIGRSTRT
If asignal interrupts any underlying system calls, then the interrupted call is reissued.

In amultithreaded application, athread in the TPINVAL IDCONTEXT Stateisnot allowed toissue a
call to tpconnect ().

Return Values

Errors

120

Upon successful completion, tpconnect () returns a descriptor that is used to refer to the
connection in subsequent calls. Otherwise it returns -1 and sets tperrno to indicate the error
condition.

Upon failure, tpconnect () Sets tperrno to one of the following values. (Unless otherwise
noted, failure does not affect the caller’ stransaction, if one exists.)

[TPEBLOCK]
A blocking condition exists and TpnoBLOCK Was specified.

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

[TPEINVAL]
Invalid arguments were given (for example, sve isNULL, data isnon-NULL and does
not point to abuffer allocated by tpalloc (), TPSENDONLY OF TPRECVONLY Was not
specified in f1ags, Or flags are otherwiseinvalid).

[TPEITYPE]
The type and subtype of data is not one of the allowed types and subtypes that svc
accepts.

[TPELIMIT]
The caller’ s request was not sent because the maximum number of outstanding
connections has been reached.

[TPENOENT]
Cannot initiate a connection to sve because it does not exist or is not a conversational
service.

[TPEOS]
An operating system error has occurred.

[TPEPROTO]
tpconnect () was called improperly.

[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error iswrittento a
log file.

[TPETIME]
This error code indicates that either atimeout has occurred or tpconnect () has been
attempted, in spite of the fact that the current transaction is already marked rollback only.

If the caller isin transaction mode, then either the transaction is already rollback only or
atransaction timeout has occurred. The transaction is marked abort-only. If the caler is
not in transaction mode, a blocking timeout has occurred. (A blocking timeout cannot
occur if TeNOBLOCK and/or TPNOTIME is specified.)

If atransaction timeout has occurred, then, with one exception, any attemptsto start new
conversations, send new requests, or receive outstanding replies will fail with TPETIME
until the transaction has been aborted. The exception is arequest that does not block,
expects no reply, and is not sent on behalf of the caller’ stransaction (that is, tpacall ()
with TPNOTRAN, TPNOBLOCK, and TPNOREPLY Set).

When a service fails inside atransaction, the transaction is put into the
TX_ROLLBACK_ONLY State. This state is treated, for most purposes, as though it were

ATMI C Function Reference 121

equivaent to atimeout. All further ATMI calls for thistransaction (with the exception of
those issued in the circumstances described in the previous paragraph) will fail with
TPETIME.

[TPETRAN]
sve belongs to a program that does not support transactions and TPNOTRAN Was Not Set.

[TPcoTSIG]
A signal was received and TPSIGRSTRT Was not specified.

See Also

tpalloc (3c),tpdiscon(3c), tprecv(3c), tpsend(3c), tpservice (3c)

tpconvert(3c)

Name
tpconvert () —Converts structures to/from string representations.

Synopsis
#include <atmi.h>

#include <xa.h>

int tpconvert (char *strrep, char *binrep, long flags)

Description

tpconvert () converts the string representation of interface structures (strrep) to or from the
binary representation (binrep).

Both the direction of the conversion and the interface structure type are determined from the
flags argument. To convert a structure from binary representation to string representation, the
programmer must set the TPTOSTRING bit in £1ags. To convert astructure from string to binary
the programmer must clear the bit. The following flags are defined to indicate the particular
structure type to be converted; only one may be specified at atime:

TPCONVCLTID
Convert CLIENTID (See atmi .h).

TPCONVTRANID
Convert TPTRANID (See atmi . h).

122 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

TPCONVXID
Convert Xx1D (See xa.h).

For conversions from binary to string representation, strrep should be at least TpcoNvMAXSTR
charactersin length.

Note that unequal string versions of TpTRANTD and x1D values may be considered equal by the
system when accessing Tv_M1B (5) classes that allow these values as key fields (for example,
T_TRANSACTION O T_ULOG). Therefore, string values for these data types should not be
fabricated or manipulated by application programs. Tv_m1B (5) guarantees that only objects
matching the global transaction identified by the string are returned when one of these valuesis
used as a key field.

A thread in a multithreaded application may issue a call to tpconvert () while running in any
context state, including TPINVALIDCONTEXT.

Return Values
Upon failure, tpconvert () returns-1 and sets tperrno to indicate the error condition.

Errors
Under the following conditions, tpconvert () failsand sets tperrno to one of the following
values:

[TPEINVAL]
Invalid arguments were specified. strrep or binrepisaNULL pointer, or f1ags does
not indicate exactly one structure type.

[TPEOS]
An operating system error has occurred. A numeric val ue representing the system call that
falled isavallablein vunixerr.

[TPESYSTEV]
An Oracle Tuxedo system error has occurred. The exact nature of the error iswritten to
userlog(3c).

Portability

Thisinterface is available only on Oracle Tuxedo ATMI release 5.0 or later. Thisinterfaceis
available on workstation platforms.

See Also

tpresume (3c), tpservice (3c), tpsuspend(3c), tx_info(3c), TM_MIB(5)

ATMI C Function Reference 123

../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html

tpconvmb(3c)

Name

tpconvmb () —Converts encoding of charactersin an input buffer to a named target encoding.

Synopsis

#include <atmi.h>
extern int tperrno;
int

tpconvmb (char **bufp, int *len, char *target_encoding, long flags)

Description

Thisfunction is used to convert an input buffer to a desired codeset encoding.

Thisfunction is added for user convenience and is not required for normal codeset data
conversion that is done automatically.

The bufp argument isavalid pointer to an MBSTRING typed buffer message. This pointer will
be reallocated interndly if the size of the buffer isinsufficient to handle the output data of the
converted buffer.

The 1en argument, on input, contains the number of bytes that need to be converted. Upon
successful completion of conversion it will contain the number of bytes used in bufp.

The target_encoding argument isthe target codeset encoding name used to convert the typed
buffer provided in the bufp message.

The f1ags argument is not used by the Tuxedo conversion code. It will be passed along to the
buffer type switch function for user defined conversion functions.

Return Values

124

Upon success, tpconvmb() returns 0. This function returns -1 on error and sets tperrno as
described below. The function may fail for the following reasons.

[TPEINVAL]
target_encoding, len, Of bufp arguments are NULL. Ienor target_encodingis
invalid.

[TPEPROTO]
bufp translates to a Tuxedo buffer that does not have a buffer typeswitch conversion
function

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

[TPESYSTEM]
A Tuxedo system error has occurred. (e.g. bufp does not correspond to avalid Tuxedo

buffer).

[TPEOS]
An operating system error has occurred. A numeric value representing the system call that

failed is available in Uunixerr.

See Also

tpalloc(3c), tpgetmbenc (3c), tpsetmbenc (3¢)

tpcryptpw(3c)

Name
tpcryptpw () —Encrypts the application password in an administrative request.

Synopsis
#include <atmi.h>
#include <fml32.h>

int tpcryptpw (FBFR32 *buf)

Description

tpcryptpw () isused to encrypt the application password stored in an administrative request
buffer prior to sending the request for servicing. Application passwords are stored as string values
using the FML 32 field identifier ra_passworp. Thisencryption is necessary to insure that clear
text passwords are not compromised and that appropriate propagation of the update can take place
to al active application sites. Additiona system fields may be added to the callers buffer and
existing fields may be modified to satisfy the request.

A thread in a multithreaded application may issue acall to tpcryptpw () Whilerunning in any
context state, including TPINVALIDCONTEXT.

Return Values
Upon failure, tpcryptpw () returns -1 and sets tperrno to indicate the error condition.

ATMI C Function Reference 125

Errors
Upon failure, tpcryptpw() Sets tperrno to one of the following values:

[TPEINVAL]
Invalid arguments were specified. The bur valueis NULL, does not point to a FML32
typed buffer or appdir could not be determined from the input buffer or the environment.

[TPEPERM]
The calling process did not have the appropriate permissions necessary to perform the
requested task.

[TPEOS]
An operating system error has occurred. A numeric value representing the system call that
falled isavallable in vunixerr.

[TPESYSTEN]
An Oracle Tuxedo system error has occurred. The exact nature of the error is written to

userlog(3c).

Portability

Thisinterfaceis available only on UNIX system sites running Oracle Tuxedo ATMI release 5.0
or later. Thisinterface is not available to Workstation clients.

Files
${TUXDIR}/1lib/libtmib.a, ${TUXDIR}/1lib/libtmib.so.rel

See Also
MIB(5), TM_MIB(5)
Setting Up an Oracle Tuxedo Application

Administering an Oracle Tuxedo Application at Run Time

tpdequeue(3c)

Name
tpdequeue () —Routine to dequeue a message from a queue.

126 ATMI C Function Reference

../rf5/rf5.html
../rf5/rf5.html

Introduction to the C Language Application-to-Transaction Monitor Interface

Synopsis
#include <atmi.h>
int tpdequeue (char *gspace, char *gname, TPQCTL *ctl, char **data, long

*len, long flags)

Description
tpdequeue () takesamessage for processing from the queue named by gname in the gspace
queue space.

By default, the message at the top of the queue is dequeued. The order of messages on the queue
is defined when the queue is created. The application can request a particular message for
dequeuing by specifying its message identifier or correlation identifier using the ct1 parameter.
ct1 flags can also be used to indicate that the application wantsto wait for amessage, in the case
when amessage is not currently available. It is possible to usethe ct1 parameter to look at a
message without removing it from the queue or changing its relative position on the queue. See
the section below describing this parameter.

data isthe address of a pointer to the buffer into which amessage isread, and 1en pointsto the
length of that message. * data must point to a buffer originally allocated by tpalioc().If a
message is larger than the buffer passed to tpdequeue, the buffer isincreased in size to
accommodate the message. To determine whether amessage buffer changed in size, compareits
(total) size before tpdequeue () wasissued with * 1en. If * 1en islarger, then the buffer has
grown; otherwise, the buffer has not changed size. Notethat * data may change for reasons other
than the buffer’ ssize increased. If * 1en is 0 upon return, then the message dequeued has no data
portion and neither * data nor the buffer it pointsto were modified. Itisan error for * data or 1en
to be NULL.

The message is dequeued in transaction mode if the caller isin transaction mode and the
TPNOTRAN flag is not set. This hasthe effect that if tpdequeue () returns successfully and the
caller’ stransaction iscommitted successfully, then the messageisremoved from the queue. If the
caller’ stransactionisrolled back either explicitly or asthe result of atransaction timeout or some
communication error, then the message will be left on the queue (that is, the removal of the
message from the queueis also rolled back). It is not possible to enqueue and dequeue the same
message within the same transaction.

The message is not dequeued in transaction mode if either the caller is not in transaction mode,
or the revoTRAN flag is set. When not in transaction mode, if acommunication error or atimeout
occurs, the application will not know whether or not the message was successfully dequeued and
the message may be lost.

ATMI C Function Reference 121

128

Thefollowingisalist of valid fiags:

TPNOTRAN
If the caller isin transaction mode and thisflag is set, the message is not dequeued within
the caller’ stransaction. A caller in transaction mode that setsthisflagisstill subject tothe
transaction timeout (and no other) when dequeuing the message. If message dequeuing
fails, the caller’ stransaction is not affected.

TPNOBLOCK
The message is not dequeued if ablocking condition exists. If thisflagis set and a
blocking condition exists such astheinternal buffersinto which the messageistransferred
arefull, the call failsand tperrno is set to TeEBLOCK. If thisflag is set and a blocking
condition exists because the target queueis opened exclusively by ancther application, the
cal fails, tperrno isset to TPEDIAGNOSTIC, and the diagnostic field of the TrocTL,
structure is set to oMESHARE. In the |atter case, the other application, which is based on a
Oracle product other than the Oracle Tuxedo ATMI system, opened the queue for
exclusive read and/or write using the Queuing Services APl (QSAPI).

When TpNOBLOCK iS hot set and a blocking condition exists, the caller blocks until the
condition subsides or atimeout occurs (either transaction or blocking timeout). This
blocking condition does not include blocking on the queueitself if the TeowazT optionin
flags (of the TpocTL Structure) is specified.

TPNOTIME
Setting this flag signifies that the caller iswilling to block indefinitely and wants to be
immune to blocking timeouts. Transaction timeouts may still occur.

TPNOCHANGE
When thisflag is set, the type of the buffer pointed to by * data is not alowed to change.
By default, if abuffer isreceived that differsin type from the buffer pointed to by * data,
then * data’s buffer type changesto the received buffer’ s type so long as the receiver
recognizes the incoming buffer type. That is, the type and subtype of the dequeued
message must match the type and subtype of the buffer pointed to by * data.

TPSIGRSTRT
Setting thisflag indicates that any underlying system callsthat are interrupted by asignal
should be reissued. When thisflag is not set and asignal interrupts a system call, the call
fails and sets tperrno t0 TPGOTSIG.

If tpdequeue () returns successfully, the application can retrieve additional information about
the message using the ct 1 datastructure. Theinformation may include the message identifier for
the dequeued message; a correlation identifier that should accompany any reply or failure
message so that the originator can correl ate the message with the original request; the quality of

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

service the message was delivered with, the quality of service any repliesto the message should
be delivered with; the name of areply queueif areply isdesired; and the name of thefailure queue
on which the application can queue information regarding failure to dequeue the message. These
are described below.

In amultithreaded application, athread in the TPINVAL IDCONTEXT Stateisnot allowed to issue a
cal to tpdequeue ().

Control Parameter

The TrocTL structure is used by the application program to pass and retrieve parameters
associated with dequeuing the message. The f1ags element of TpocTL is used to indicate what
other elements in the structure are valid.

Oninput to tpdequeue (), the following elements may be set in the TpocTL structure:

long flags; /* indicates which of the values
* are set */

char msgid[32]; /* ID of message to dequeue */

char corrid[32]; /* correlation identifier of

* message to dequeue */

Thefollowing isalist of valid bitsfor the £1ags parameter controlling input information for
tpdequeue ().

TPNOFLAGS
No flags are set. No information is taken from the control structure.

TPQGETBYMSGID
Setting this flag requests that the message with the message identifier specified by
ct1—>msgid be dequeued. The message identifier may be acquired by aprior call to
tpengueue (3c) . Note that a message identifier changesif the message has moved from
one queue to another. Note al so that the entire 32 bytes of the messageidentifier value are
significant, so the value specified by ¢t 1—>msgid must be completely initialized (for
example, padded with NULL characters).

TPQGETBYCORRID
Setting this flag requests that the message with the correlation identifier specified by
ct1l—>corrid be dequeued. The correlation identifier is specified by the application
when engueuing the message with tpenqueue (). Note that the entire 32 bytes of the
correlation identifier value are significant, so the value specified by ct1—>corrid must
be completely initialized (for example, padded with NULL characters).

ATMI C Function Reference 129

130

TPQWAIT
Setting this flag indicates that an error should not be returned if the queue is empty.
Instead, the process should wait until a messageis available. If TrowaIT isSSetin
conjunction with TPQGETBYMSGID OF TPQGETBYCORRID, it indicates that an error should
not bereturned if no message with the specified messageidentifier or correlation identifier
is present in the queue. Instead, the process should wait until a message meeting the
criteriaisavailable. Theprocessisstill subject to the caller’ stransaction timeout, or, when
not in transaction mode, the process is subject to the timeout specified on the TMQUEUE
process by the -t option.

If amessage matching the desired criteriaisnot immediately available and the configured
action resources are exhausted, tpdequeue returns-1, tperrno iSset to TPEDIAGNOSTIC,
and the diagnostic field of the TpocTL Structureis set to QMESYSTEM.

Note that each tpdequeue () request specifying the TeowatT control parameter requires
that a queue manager (TMQUEUE) action object be available if a message satisfying the
condition is not immediately available. If an action object is not available, the
tpdequeue () request fails. The number of available queue manager actions are specified
when a queue space is created or modified. When awaiting dequeue request compl etes,
the associated action object associated is made available for another request.

TPQPEEK
If thisflag is set, the specified message is read but is not removed from the queue. This
flag implies the TenoTRAN flag has been set for the tpdequeue () oOperation. That is,
non-destructive dequeuing is non-transactional . Note that it is not possible to read
messages enqueued or dequeued within a transaction before the transaction compl etes.

When athread is non-destructively dequeuing a message using TPQPEEK, the message
may not be seen by other non-blocking dequeuers for the brief time the system is
processing the non-destructive dequeue request. This includes degqueuers using specific
selection criteria (such asmessageidentifier and correlation identifier) that arelooking for
the message currently being non-destructively dequeued.

On output from tpdequeue (), the following elements may be set in the TpocTL Structure:

long flags; /* indicates which of the values
* should be set */

long priority; /* enqueue priority */
char msgid[32]; /* ID of message dequeued */
char corrid[32]; /* correlation identifier used to

* identify the message */

long delivery_gos; /* delivery quality of service */

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

long reply_dgos; /* reply message quality of service */
char replyqueue[128]; /* queue name for reply */
char failurequeue[1l28]; /* queue name for failure */
long diagnostic; /* reason for failure */
long appkey; /* application authentication client
* key */
long urcode; /* user-return code */
CLIENTID cltid; /* client identifier for originating

* client */

Thefollowingisalist of valid bitsfor the £1ags parameter controlling output information from
tpdequeue (). For any of these bits, if the flag bit isturned on when tpdequeue () iscalled, the
associated element in the structure is popul ated with the value provided when the message was
gueued, and the bit remains set. If avalueisnot available or the bit is not set when tpdequeue ()
iscaled, tpdequeue () completes with the flag turned off.

TPQPRIORITY

If thisflagisset, thecall to tpdequeue () issuccessful, and the message was queued with
an explicit priority, then the priority isstored in ct 1—>priority. The priority isin the
range 1 to 100, inclusive, and the higher the number, the higher the priority (that is, a
message with a higher number is dequeued before a message with alower number). For
gueues not ordered by priority, the valueisinformational.

If no priority was explicitly specified when the message was queued and the call to
tpdequeue () issuccessful, the priority for the messageis 50.

TPQOMSGID

If thisflag isset and thecall to tpdequeue () issuccessful, the messageidentifier isstored
in ct1->msgid. The entire 32 bytes of the message identifier value are significant.

TPQCORRID

If thisflagisset, thecall to tpdequeue () issuccessful, and the message was queued with
acorrelation identifier, then the correlation identifier is stored in ct 1—>corrid. The
entire 32 bytes of the correlation identifier value are significant. Any Oracle Tuxedo
ATMI /Q provided reply to amessage has the correlation identifier of the original request

message.

TPQDELIVERYQOS

If thisflagisset, thecall to tpdequeue () issuccessful, and the message was queued with
adelivery quality of service, then the flag—TPQQOSDEFAULTPERSIST,

TPQQOSPERSISTENT, Of TPQQOSNONPERSISTENT—IS Stored in ctl->delivery gos. If
no delivery quality of service was explicitly specified when the message was queued, the

ATMI C Function Reference 131

132

default delivery policy of the target queue dictates the delivery quality of service for the
message.
TPQREPLYQOS

If thisflagisset, thecall to tpdequeue () issuccessful, and the message was queued with
areply quality of service, then the flag—TPQQOSDEFAULTPERSIST, TPQQOSPERSISTENT,
O TPQQOSNONPERSTSTENT—IiSStored in ct1->reply.gos. If noreply quality of service
was explicitly specified when the message was queued, the default delivery policy of the
ctl->replyqueue queue dictates the delivery quality of service for any reply.

Note that the default delivery policy is determined when the reply to amessageis
enqueued. That is, if the default delivery policy of the reply queue is modified between
the time that the original message is enqueued and the reply to the message is enqueued,
the policy used isthe onein effect when the reply isfinally enqueued.

TPQREPLYQ
If thisflag isset, thecall to tpdequeue () issuccessful, and the message was queued with
areply queue, then the name of thereply queueisstored in ct 1—>replyqueue. Any reply
to the message should go to the named reply queue within the same queue space as the
request message.

TPQFAILUREQ
If thisflagisset, thecall to tpdequeue () issuccessful, and the message was queued with
afailure queue, thenthe name of thefailure queueisstored in ct 1—>failurequeue. Any
failure message should go to the named failure queue within the same queue space asthe
request message.
The following remaining bits for the f1ags parameter are cleared (set to zero) when
tpdequeue () iscaled: TPQTOP, TPQBEFOREMSGID, TPQTIME_ABS, TPQTIME_REL,
TPQEXPTIME ABS, TPQEXPTIME REL, and TPQEXPTIME_NONE. These bits are valid bits for the
flags parameter controlling input information for tpenqueue ().

If the call to tpdequeue () failed and tperrno iSset to TPEDIAGNOSTIC, avaue indicating the
reason for failureisreturnedin ct 1—>diagnostic. The possible values are defined below in the
Diagnostics section.

Additionally on output, if the call to tpdequeue () issuccessful, ct1—>appkey is set to the
application authentication key, ct1—>c1tidisset to the identifier for the client originating the
request, and ct1—>urcode iSSet to the user-return code val ue that was set when the message was
enqueued.

If the ct1 parameter isNULL, theinput flags are considered to be TpNOFLAGS, and no output
information is made available to the application program.

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

Return Values
Upon failure, tpdequeue () returns-1 and sets tperrno to indicate the error condition.

Errors

Upon failure, tpdequeue () Sets tperrno to one of the following values. (Unless otherwise
noted, failure does not affect the caller’ s transaction, if one exists.)

[TPEINVAL]
Invalid argumentswere given (for example, gname iISNULL, data doesnot point to space
alocated with tpalloc () oOr flags areinvalid).

[TPENOENT]
Cannot accessthe gspace because it isnot available (that is, the associated TMQUEUE (5)
server isnot available), or cannot start aglobal transaction dueto the lack of entriesin the
Globa Transaction Table (GTT).

[TPEOTYPE]
Either the type and subtype of the dequeued message are not known to the caller; or,
TPNOCHANGE Was Set in f1ags and the type and subtype of * data do not match the type
and subtype of the dequeued message. In either case, * data, itscontents, and * 1en are not
changed. When the call is made in transaction mode and this error occurs, the transaction
is marked abort-only, and the message remains on the queue.

[TPETIME]
This error code indicates that either atimeout has occurred or tpdequeue () has been
attempted, in spite of the fact that the current transaction is already marked rollback only.

If the caller isin transaction mode, then either the transaction is already rollback only or
atransaction timeout has occurred. The transaction is marked abort-only. If the caller is
not in transaction mode, a blocking timeout has occurred. (A blocking timeout cannot
occur if TepnoBLOCK and/or TPNOTIME iSspecified.) In either case, no changes are madeto
*data, itscontents, or *1len.

If atransaction timeout has occurred, then, with one exception, any attempts to perform
further conversational work, send new requests, or receive outstanding replies will fail
with rpETIME until the transaction has been aborted. The exception is arequest that does
not block, expects no reply, and is not sent on behalf of the caller’ s transaction (that is,
tpacall () With TPNOTRAN, TPNOBLOCK, and TPNOREPLY Set).

When a service fails inside a transaction, the transaction is put into the
TX_ROLLBACK_ONLY State. This state is treated, for most purposes, as though it were
equivaent to atimeout. All further ATMI callsfor thistransaction (with the exception of

ATMI C Function Reference 133

../rf5/rf5.html

those issued in the circumstances described in the previous paragraph) will fail with
TPETIME.

[TPEBLOCK]
A blocking condition exists and TpNOBLOCK Was specified.

[TPcoTSIG]
A signal was received and TPSIGRSTRT Was not specified.

[TPEPROTO]
tpdequeue () Was called improperly. Thereis no effect on the queue or the transaction.

[TPESYSTEN]
An Oracle Tuxedo system error has occurred. The exact nature of the error iswrittento a
log file. Thereis no effect on the queue.

[TPEOS]
An operating system error has occurred. Thereis no effect on the queue.

[TPEDIAGNOSTIC]
Dequeuing a message from the specified queue failed. The reason for failure can be
determined by the diagnostic value returned via ct1 structure.

Diagnostic

134

The following diagnostic values are returned during the dequeuing of a message:

[oMETINVAL]
Aninvalid flag value was specified.

[QMEBADRMID]
An invalid resource manager identifier was specified.

[QMENOTOPEN]
The resource manager is not currently open.

[oMETRAN]
The call was not in transaction mode or was made with the TenoTRAN flag set and an error
occurred trying to start atransaction in which to dequeue the message. Thisdiagnosticis
not returned by queue managers from Oracle Tuxedo release 7.1 or later.

[oMEBADMSGID]
An invalid message identifier was specified for dequeuing.

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

[oMESYSTEM]
A system error has occurred. The exact nature of the error iswrittento alog file.

[ouEOS]
An operating system error has occurred.

[oMEABORTED]
The operation was aborted. When executed within a global transaction, the global
transaction has been marked rollback-only. Otherwise, the queue manager aborted the
operation.

[oMEPROTO]
A dequeue was done when the transaction state was not active.

[oMEBADQUEUE]
Aninvalid or deleted queue name was specified.

[oMENOMSG]
No message was available for dequeuing. Note that it is possible that the message exists
on the queue and another application process has read the message from the queue. In this
case, the message may be put back on the queue if that other process rolls back the
transaction.

[oMEINUSE]
When dequeuing a message by message identifier or correlation identifier, the specified
message isin use by another transaction. Otherwise, all messages currently on the queue
are in use by other transactions. This diagnostic is not returned by gueue managers from
Oracle Tuxedo release 7.1 or later.

[QMESHARE]
When dequeuing a message from a specified queue, the specified queue is opened
exclusively by another application. The other application is one based on an Oracle
product other than the Oracle Tuxedo system that opened the queue for exclusive read
and/or write using the Queuing Services APl (QSAP!).

See Also

agmadmin (1), tpalloc(3c), tpenqueue (3c), APPQ MIB(5), TMQUEUE (5)

tpdiscon(3c)

Name
tpdiscon ()—Routine for taking down a conversational service connection.

ATMI C Function Reference 135

../rf5/rf5.html
../rf5/rf5.html
../rfcm/rfcmd.html

Synopsis

#include <atmi.h>
int tpdiscon(int cd)

Description

tpdiscon () immediately tears down the connection specified by cd and generates a
TPEV_DISCONTMM event on the other end of the connection.

tpdiscon () canbecalledonly by theinitiator of the conversation. tpdiscon () cannot becalled
within a conversational service on the descriptor with which it was invoked. Rather, a
conversational service must use tpreturn () to signify that it has completed its part of the
conversation. Similarly, even though aprogram communicating with aconversational service can
issue tpdiscon (), the preferred way isto let the service tear down the connection in
tpreturn () ; doing So ensures correct results.

tpdiscon () causesthe connection to be torn down immediately (that is, abortive rather than
orderly). Any datathat has not yet reached its destination may belost. tpdiscon () canbeissued
even when the program on the other end of the connection is participating in the caller's
transaction. In this case, the transaction must be aborted. Also, the caller does not need to have
control of the connection when tpdiscon () iscalled.

Return Values

Upon failure, tpdiscon () returns-1 and sets tperrno to indicate the error condition.

Errors

136

Upon failure, tpdiscon () Sets tperrno to one of the following values:

[TPEBADDESC]
cdisinvalid or is the descriptor with which a conversational service was invoked.

[TPETIME]
This error code indicates that either atimeout has occurred or tpdiscon () hasbeen
attempted, in spite of the fact that the current transaction is already marked rollback only.

If the caller isin transaction mode, then either the transaction is already rollback only or
atransaction timeout has occurred. The transaction is marked abort-only. (Note that
calling tpdiscon () onaconnectioninthe caler’ stransaction would haveresulted in the
transaction being marked abort-only, even if tpdiscon () had succeeded.)

If the caller is not in transaction mode, a blocking timeout has occurred.

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

If atransaction timeout has occurred, then, with one exception, any attempts to perform
further conversational work, send new requests, or receive outstanding replies will fail
with TpETIME until the transaction has been aborted. The exception is arequest that does
not block, expects no reply, and is not sent on behalf of the caller’ s transaction (that is,
tpacall () With TPNOTRAN, TPNOBLOCK, and TPNOREPLY Set).

When a service fails inside atransaction, the transaction is put into the
TX_ROLLBACK_ONLY State. This state is treated, for most purposes, as though it were
equivalent to atimeout. All further ATMI callsfor thistransaction (with the exception of
those issued in the circumstances described in the previous paragraph) will fail with
TPETIME.

[TPEPROTO]
tpdiscon () was caled improperly.

[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error iswrittento a
log file. The descriptor is no longer valid.

[TPEOS]
An operating system error has occurred. The descriptor is no longer valid.

See Also

tpabort (3c¢), tpcommit (3¢), tpconnect (3c¢), tprecv(3c), tpreturn(3c), tpsend(3c)

tpenqueue(3c)

Name
tpengueue () —Routine to enqueue a message.

Synopsis
#include <atmi.h>
int tpenqueue (char *gspace, char *gname, TPQCTL *ctl, char *data, long len,

long flags)

Description

tpenqueue () storesamessage on the queue named by gname in the gspace queue space. A
gueue space is a collection of queues, one of which must be gname.

ATMI C Function Reference 131

138

When the messageisintended for an Oracle Tuxedo ATMI system server, the gname matchesthe
name of aserviceprovided by the server. The system provided server, TMQFORWARD (5) , provides
adefault mechanism for dequeuing messages from the queue and forwarding them to serversthat
provide a service matching the queue name. If the originator expectsareply, then thereply to the
forwarded service request is stored on the originator’s queue, unless otherwise specified. The
originator will dequeue the reply message at a subsequent time. Queues can also be used for a
reliable message transfer mechanism between any pair of Oracle Tuxedo ATMI system processes
(clients and/or servers). In this case, the queue name does not match a service name but some
agreed upon name for transferring the message.

If dataisnon-NULL, it must point to a buffer previoudly allocated by tpalloc () and len
should specify the amount of datain the buffer that should be queued. Notethat if data pointsto
abuffer of atype that does not require alength to be specified (for example, an rmr fielded
buffer), then 1enisignored. If dataisNULL, 1enisignored and amessageis queued with no
data portion.

The message is queued at the priority defined for gspace unless overridden by apreviouscall to
tpspriol().

If the caller iswithin atransaction and the TenoTRAN flag is not set, the message is queued in
transaction mode. This has the effect that if tpenqueue () returns successfully and the caller’'s
transaction is committed successfully, then the message is guaranteed to be avail able subsequent
to the transaction completing. If the caller’ s transaction is rolled back either explicitly or asthe
result of atransaction timeout or some communication error, then the message will be removed
from the queue (that is, the placing of the message on the queue is aso rolled back). It is not
possible to enqueue then degqueue the same message within the same transaction.

The message is not queued in transaction mode if either the caller is not in transaction mode, or
the renoTRAN flag is set. Once tpenqueue () returns successfully, the submitted messageis
guaranteed to be in the queue. When not in transaction mode, if acommunication error or a
timeout occurs, the application will not know whether or not the message was successfully stored
on the queue.

The order in which messages are placed on the queueis controlled by the applicationviact 1 data
structure as described below; the default queue ordering is set when the queue is created.

Thefollowingisalist of valid fiags:

TPNOTRAN
If the caller isin transaction mode and this flag is set, the message is not queued within
the caller’ stransaction. A caller in transaction mode that setsthisflagisstill subject tothe

ATMI C Function Reference

../rf5/rf5.html

Introduction to the C Language Application-to-Transaction Monitor Interface

transaction timeout (and no other) when queuing the message. If message queuing fails,
the caller’ s transaction is not affected.

TPNOBLOCK
The message is not enqueued if ablocking condition exists. If thisflag is set and a
blocking condition exists such astheinternal buffersinto which the messageistransferred
arefull, the call failsand tperrno is set to TPEBLOCK. If thisflag is set and ablocking
condition exists because the target queueis opened exclusively by another application, the
call fails, tperrno isset to TPEDTIAGNOSTIC, and the diagnostic field of the TrocTL.
structureis set to oMESHARE. In thelatter case, the other application, which isbased on an
Oracle product other than the Oracle Tuxedo ATMI system, opened the queue for
exclusive read and/or write using the Queuing Services APl (QSAPI).

When TpNOBLOCK is hot set and a blocking condition exists, the caller blocks until the
condition subsides or atimeout occurs (either transaction or blocking timeout). If a
timeout occurs, the call failsand tperrno is set to TPETIME.

TPNOTIME
Setting this flag signifies that the caller iswilling to block indefinitely and wants to be
immune to blocking timeouts. Transaction timeouts may still occur.

TPSIGRSTRT
If thisflagisset and asignal interrupts any underlying system calls, theinterrupted system
call isreissued. If TPSIGRSTRT is not set and a signal interrupts a system call,
tpenqueue () fallsand tperrno IS Set t0 TPGOTSIG.

Additional information about queuing the message can be specified via ct 1 data structure. This
information includes valuesto override the default queue ordering placing the message at the top
of the queue or before an enqueued message; an absolute or relative time after which a queued
message is made available; an absolute or relative time when a message expires and is removed
from the queue; the quality of service for delivering the message; the quality of service that any
replies to the message should use; acorrelation identifier that aidsin correlating areply or failure
message with the queued message; the name of aqueueto which areply should be enqueued; and
the name of a queue to which any failure message should be enqueued.

In amultithreaded application, athread in the TPINVAL IDCONTEXT Stateisnot allowed to issue a
call to tpenqueue ().

Control Parameter

The TpocTL structure is used by the application program to pass and retrieve parameters
associated with enqueuing the message. The f1ags element of TpocTL is used to indicate what
other elementsin the structure are vaid.

ATMI C Function Reference 139

Oninput to tpengueue (), the following elements may be set in the TpocTL structure:

long flags; /* indicates which of the values

* are set */

long deqg time; /* absolute/relative for dequeuing */
long priority; /* enqueue priority */

long exp_time /* expiration time */

long delivery_gos /* delivery quality of service */

long reply_ gos /* reply quality of service */

long urcode; /* user-return code */

char msgid[32]; /* ID of message before which to queue

* request */
char corrid([32]; /* correlation identifier used to

* jdentify the msg */
char replyqueue[1l28]; /* queue name for reply message */
char failurequeue[l28]; /* queue name for failure message */

Thefollowing isalist of valid bitsfor the £1ags parameter controlling input information for

tpenqueue () :

TPNOFLAGS
No flags or values are set. No information is taken from the control structure.

TPQTOP
Setting this flag indicates that the queue ordering be overridden and the message placed
at the top of the queue. This request may not be granted depending on whether or not the
queue was configured to allow overriding the queue ordering. TpoToP and
TPQBEFOREMSGID are mutually exclusive flags.

TPOQBEFOREMSGID
Setting this flag indicates that the queue ordering be overridden and the message placed
in the queue before the message identified by ct1—>msgid. Thisrequest may not be
granted depending on whether or not the queue was configured to allow overriding the
gueue ordering. TPoTOP and TPQBEFOREMSGID are mutually exclusive flags. Notethat the
entire 32 bytes of the message identifier value are significant, so the value identified by
ct1->msgid must be completely initialized (for example, padded with NULL
characters).

TPQTIME ABS
If thisflag is set, the message is made available after the time specified by
ctl—>deqg time. The deg time isan absolute time value as generated by time(2),
mktime(3C), Or gp_mktime (3c) (the number of seconds since 00:00:00 Universal

140 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

Coordinated Time—UTC, January 1, 1970). TPQTIME_ABS and TPQTIME_REL are
mutually exclusive flags. The absolute time is determined by the clock on the machine
where the queue manager process resides.

TPQTIME_REL
If thisflag is set, the message is made available after atime relative to the completion of
the enqueuing operation. ct1—>deq_time specifiesthe number of secondsto delay after
the enqueuing completes before the submitted message should be available.
TPQTIME_aABS and TPQTIME_REL are mutually exclusive flags.

TPQPRIORITY
If thisflagis set, the priority at which the message should be enqueued is stored in
ctl—>priority. The priority must bein the range 1 to 100, inclusive. The higher the
number, the higher the priority (that is, a message with a higher number is dequeued
before a message with alower number). For queues not ordered by priority, thisvalueis
informational .

If thisflag is not set, the priority for the message is 50 by default.

TPQCORRID

If thisflag is set, the correlation identifier value specified in ct1—>corridisavailable
when a message is dequeued with tpdequeue (). Thisidentifier accompanies any reply
or failure message that is queued so that an application can correlate areply with a
particular request. Note that the entire 32 bytes of the correlation identifier value are
significant, so the value specified in ct1—>corrid must be completely initialized (for
example, padded with NULL characters).

TPQREPLYQ
If thisflagisset, areply queue namedin ct 1—>replyqueue iSassociated with the queued
message. Any reply to the message will be queued to the named queue within the same
gueue space asthe request message. Thisstring must be NULL terminated (maximum 127
charactersin length).

TPQFAILUREQ
If thisflagisset, afailure queue named inthe ct 1—> failurequeue isassociated with the
gueued message. If (1) the enqueued message is processed by TMQFORWARD (), (2)
TMQFORWARD Was started with the -a option, and (3) the service fails and returns a
non-NULL reply, afailure message consisting of thereply and itsassociated tpurcode is
enqueued to the named queue within the same queue space as the original request
message. This string must be NULL-terminated (maximum 127 characters in length).

ATMI C Function Reference M4

142

TPODELIVERYQOS, TPQREPLYQOS

If the TPoDELIVERYQOS flag is set, the flags specified by ct1->delivery._gos control
the quality of service for delivery of the message. In this case, one of three mutually
exclusive flags— TPQQOSDEFAULTPERSIST, TPQQOSPERSISTENT, Of
TPQQOSNONPERSISTENT—MUSt be set in ctl->delivery gos. |f TPODELIVERYQOS iS
not set, the default delivery policy of the target queue dictates the delivery quality of
service for the message.

If therrorEPLYQOS flag isset, theflagsspecified by ct1->reply goscontrol thequality
of service for any reply to the message. In this case, one of three mutually exclusive
ﬂagS——TPQQOSDEFAULTPERSIST,TPQQOSPERSISTENT,OFTPQQOSNONPERSISTENT——
must besetin ct1->reply. gos. The TrorEPLYQOS flag isused when areply isreturned
from messages processed by TMoFORWARD. Applications not using TMOFORWARD to invoke
services may use the TPorREPLYQOS flag asahint for their own reply mechanism.

If TPOREPLYQOS iS not set, the default delivery policy of the ct1->replyqueue queue
dictatesthe delivery quality of servicefor any reply. Note that the default delivery policy
is determined when the reply to a message is enqueued. That is, if the default delivery
policy of the reply queue is modified between the time that the original messageis
engueued and the reply to the message is enqueued, the policy used isthe one in effect
when thereply isfinally enqueued.

Thefollowing isthelist of valid flagsfor ct1->delivery gos and ctl->reply._gos:

TPQQOSDEFAULTPERSIST
This flag specifies that the message is to be delivered using the default delivery
policy specified on the target queue.

TPQOOSPERSISTENT
Thisflag specifies that the message isto be delivered in a persistent manner using
the disk-based delivery method. Setting this flag overrides the default delivery
policy specified on the target queue.

TPQQOSNONPERSISTENT
This flag specifies that the message isto be delivered in a non-persistent manner
using the memory-based delivery method. Specifically, the message is queued in
memory until it is dequeued. Setting thisflag overrides the default delivery policy
specified on thetarget queue. If the caller istransactional, non-persistent messages
are enqueued within the caller’ stransaction, however, non-persistent messagesare
lost if the system is shut down, crashes, or the IPC shared memory for the queue
spaceis removed.

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

TPQEXPTIME_ABS
If thisflag is set, the message has an absolute expiration time, which is the absolute time
when the message will be removed from the queue.
The absolute expiration time is determined by the clock on the machine where the queue
manager process resides.

The absolute expiration time isindicated by the value stored in ct1->exp_time. The
value of ct1->exp_time must be set to an absolute time value generated by time(2),
mktime(3C), OF gp_mktime (3c) (the number of seconds since 00:00:00 Universal
Coordinated Time—UTC, January 1, 1970).

If an absolute time is specified that is earlier than the time of the enqueue operation, the
operation succeeds, but the message is not counted for the purpose of calculating
thresholds. If the expiration time is before the message availability time, the message is
not available for dequeuing unless either the availability or expiration time is changed so
that the availability time is before the expiration time. In addition, these messages are
removed from the queue at expiration time even if they were never available for
dequeuing. If amessage expires while it iswithin a transaction, the expiration does not
cause the transaction to fail. Messages that expire while being enqueued or dequeued
within a transaction are removed from the queue when the transaction ends. There is no
notification that the message has expired.

TPQEXPTIME_ABS, TPQEXPTIME_REL, and TPQEXPTIME_NONE are mutually exclusive
flags. If none of these flags is set, the default expiration time associated with the target
gueue is applied to the message.

TPQEXPTIME_REL
If thisflag is set, the message has arelative expiration time, which is the number of
seconds after the message arrives at the queue that the message is removed from the
gueue. Therelative expiration timeisindicated by the value stored in ct1->exp_time.

If the expiration time is before the message availability time, the messageis not available
for dequeuing unless either the availability or expiration time is changed so that the
availability time is before the expiration time. In addition, these messages are removed
from the queue at expiration time even if they were never available for dequeuing. The
expiration of a message during a transaction, does not cause the transaction to fail.

M essagesthat expire while being enqueued or dequeued within atransaction are removed
from the queue when the transaction ends. Thereis no acknowledgment that the message
has expired.

TPQEXPTIME_ABS, TPQEXPTIME_REL, and TPQEXPTIME_NONE are mutually exclusive
flags. If none of these flags is set, the default expiration time associated with the target
gueue is applied to the message.

ATMI C Function Reference 143

144

TPOQEXPTIME_ NONE
Setting this flag indicates that the message should not expire. This flag overrides any
default expiration policy associated with the target queue. A message can be removed by
dequeuing it or by deleting it via an administrative interface.

TPQEXPTIME_ABS, TPQEXPTIME_REL, and TPQEXPTIME_NONE are mutually exclusive
flags. If none of these flagsis set, the default expiration time associated with the target
gueue is applied to the message.

TPQENQGETUSAGE
Setting this flag indicates that you need tpengue () function to return queue space usage
when tpenque () succeeds; tpenque () Will then return the queue space usage percentage
iNctl->auxiliary[AUXIDX_QSPACEUSAGE] When succeeding. For example, if
ctl->auxiliary [AUXIDX_QSPACEUSAGE] iS50, the current queue space usage
percentage is 50%.

The returned queue space usage is the maximum between the message usage ratio and the
disk usageratio. The disk usage ratio isthe current used disk divided by the effective disk
space. The effective disk spaceis calculated by subtracting the reserved disk space (used
by queue space control area) and the redundant space (50 blocks) from the overall
allocated queue space disk space.

Additionally, the urcode element of TrocTL can be set with a user-return code. This value will
be returned to the application that dequeues the message.

On output from tpenqueue (), the following elements may be set in the TpocTL Structure:

long flags; /* indicates which of the values
* are set */
char msgid[32]; /* ID of enqueued message */

long diagnostic; /* indicates reason for failure */

Thefollowing isavalid bit for the f1ags parameter controlling output information from
tpenqueue (). If thisflag isturned on when tpenqueue () iscalled, the/Q server TMQUEUE (5)
populates the associated element in the structure with a message identifier. If thisflag isturned
off when tpenqueue () iscalled, TMQUEUE () does not populate the associated element in the
structure with a message identifier.

TPQMSGID
If thisflagisset and thecall to tpenqueue () issuccessful, the messageidentifier isstored
in ct1—>msgid. Theentire 32 bytes of the message identifier value are significant, so the
valuestored in ct1—>msgid iscompletely initialized (for example, padded with NULL
characters). The actual padding character used for initialization varies between rel eases of
the Oracle Tuxedo ATMI /Q component.

ATMI C Function Reference

../rf5/rf5.html

Introduction to the C Language Application-to-Transaction Monitor Interface

The remaining members of the control structure are not used on input to tpenqueue ().

If the call to tpengueue () failed and tperrno iSset to TPEDIAGNOSTIC, avaue indicating the
reason for failureisreturnedin ct 1—>diagnostic. The possible values are defined below in the
Diagnostics section.

If this parameter isNULL, the input flags are considered to be TpnorFLaGs and no output
information is made available to the application program.

Return Values

Upon failure, tpenqueue () returns -1 and sets tperrno to indicate the error condition.
Otherwise, the message has been successfully queued when tpenqueue () returns.

Errors

Upon failure, tpenqueue () Sets tperrno to one of the following values. (Unless otherwise
noted, failure does not affect the caller’ stransaction, if one exists.)

[TPEINVAL]
Invalid arguments were given (for example, gspace isNULL, data does not point to
space allocated with tpalloc (), Or flags areinvalid).

[TPENOENT]
Cannot access the gspace because it isnot available (that is, the associated TMQUEUE (5)
server isnot available), or cannot start aglobal transaction dueto the lack of entriesin the
Globa Transaction Table (GTT).

[TPETIME]
This error code indicates that either atimeout has occurred or tpengqueue () has been
attempted, in spite of the fact that the current transaction is already marked rollback only.

If the caller isin transaction mode, then either the transaction is already rollback only or
atransaction timeout has occurred. The transaction is marked abort-only. If the caller is
not in transaction mode, a blocking timeout has occurred. (A blocking timeout cannot
occur if TPNOBLOCK and/or TPNOTIME is specified.)

If atransaction timeout has occurred, then, with one exception, any attemptsto send new
requests or receive outstanding replies will fail with reeTIME until the transaction has
been aborted. The exception is arequest that does not block, expects no reply, and is not
sent on behalf of the caller’ stransaction (that is, tpacall () with TPNOTRAN, TPNOBLOCK,
and TPNOREPLY Set).

When a service fails inside a transaction, the transaction is put into the
TX_ROLLBACK_ONLY State. This state is treated, for most purposes, as though it were

ATMI C Function Reference 145

../rf5/rf5.html

equivaent to atimeout. All further ATMI calls for thistransaction (with the exception of
those issued in the circumstances described in the previous paragraph) will fail with
TPETIME.

[TPEBLOCK]
A blocking condition exists and TpNOBLOCK Was specified.

[TPcoTSIG]
A signal was received and TPSIGRSTRT Was not specified.

[TPEPROTO]
tpengueue () Was called improperly.

[TPESYSTEN]
An Oracle Tuxedo system error has occurred. The exact nature of the error iswrittento a
log file.

[TPEOS]
An operating system error has occurred.

[TPEDIAGNOSTIC]
Enqueuing a message on the specified queue failed. The reason for failure can be
determined by the diagnostic returned via ct1.

Diagnostic

146

The following diagnostic values are returned during the enqueuing of a message:

[oMETINVAL]
Aninvalid flag value was specified.

[QMEBADRMID]
An invalid resource manager identifier was specified.

[QMENOTOPEN]
The resource manager is not currently open.

[oMETRAN]
The call was not in transaction mode or was made with the TenoTRAN flag set and an error
occurred trying to start atransaction in which to enqueue the message. Thisdiagnosticis
not returned by queue managers from Oracle Tuxedo release 7.1 or later.

[oMEBADMSGID]
An invalid message identifier was specified.

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

[oMESYSTEM]
A system error occurred. The exact nature of the error iswritten to alog file.

[ouEOS]
An operating system error occurred.

[oMEABORTED]
The operation was aborted. When executed within a global transaction, the global
transaction has been marked rollback-only. Otherwise, the queue manager aborted the
operation.

[oMEPROTO]
An enqueue was done when the transaction state was not active.

[oMEBADQUEUE]
Aninvalid or deleted queue name was specified.

[oMENOSPACE]
Due to an insufficient resource, such as no space on the queue, the message with its
required quality of service (persistent or non-persistent storage) was not enqueued.
QMENOSPACE is returned when any of the following configured resourcesis exceeded: (1)
the amount of disk (persistent) space allotted to the queue space, (2) the amount of
memory (non-persistent) space allotted to the queue space, (3) the maximum number of
simultaneously active transactions allowed for the queue space, (4) the maximum number
of messages that the queue space can contain at any one time, (5) the maximum number
of concurrent actions that the Queuing Services component can handle, or (6) the
maximum number of authenticated usersthat may concurrently use the Queuing Services
component.

[OMERELEASE]
An attempt was made to enqueue a message to a queue manager that isfrom aversion of
the Oracle Tuxedo system that does not support a newer feature.

[QMESHARE]
When enqueuing a message from a specified queue, the specified queue is opened
exclusively by another application. The other application is one based on an Oracle
product other than the Oracle Tuxedo system that opened the queue for exclusive read
and/or write using the Queuing Services APl (QSAP!).

See Also

agmadmin (1), gp_mktime (3c), tpacall (3c), tpalloc (3c), tpdequeue (3c), tpinit(3c),
tpsprio(3c), APPQ MIB(5), TMOQFORWARD (5), TMQUEUE (5)

ATMI C Function Reference 141

../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html
../rfcm/rfcmd.html

tpenvelope(3c)

Name
tpenvelope () —Accesses the digital signature and encryption information associated with a
typed message buffer.

Synopsis

#include <atmi.h>
int tpenvelope (char *data, long len, int occurrence, TPKEY *outputkey, long

*status, char *timestamp, long flags)

Description

tpenvelope () providesaccessto the following types of digital signature and encryption
information associated with a typed message buffer:

e Digital-signature registration requests

A sending process explicitly registers a digital signature request for a message buffer by
caling tpsign (), or implicitly registers adigital signature request for a message buffer by
calling tpkey_open () withthe TpkEY_AUuTOSIGN flag specified.

e Digital signatures

Just before the message buffer is sent, the public key software generates and attaches a
digital signature to the message buffer for each digital-signature registration request; a
digital signature enables areceiving process to verify the signer (originator) of the

message.
e Encryption registration requests

A sending process explicitly registers an encryption (seal) request for a message buffer by
caling tpseal (), or implicitly registers an encryption (seal) request for a message buffer
by caling tpkey_open () with the TPkEY_AUTOENCRYPT flag specified.

e Encryption envelopes

Just before the message buffer is sent, the public key software encrypts the message
content and attaches an encryption envelope to the message buffer for each encryption
registration request; an encryption envelope enables areceiving process to decrypt the
message.
Signature and encryption information is available to both sending and receiving processes. In a
sending process, digital signature and encryption information is generally in a pending state,

148 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

waiting until the message is sent. In areceiving process, digital signatures have already been
verified, and encryption and decryption have already been performed. Failuresin decryption or
signature verification might prevent message delivery, in which case the receiving process never
receives the message buffer and therefore has no knowledge of the message buffer.

data must point to avalid typed message buffer either (1) previously allocated by a process
calling tpalloc () or (2) delivered by the system to areceiving process. If the message buffer is
self-describing, 1enisignored (and may be 0). Otherwise, 1en must contain the length of datain
data.

There may be multiple occurrences of digital-signature registration requests, digital signatures,
encryption registration requests, and encryption envel opes associated with amessage buffer. The
occurrences are stored in sequence, with the first item at the zero position and subsequent items
in consecutive positions. The occurrence input parameter indicates which item is requested.
When the value of occurrence isbeyond the position of thelast item, tpenvelope () failswith
the TPENOENT error condition. All items may be examined by calling tpenvelope () repeatedly
until TPENOENT is returned.

The handle to the key associated with a digital-signature registration request, digital signature,
encryption registration request, or encryption envelope isreturned via outputkey. The key
handle returned is a separate copy of the original key opened by calling tpkey_open ().
Properties of the key, such as the prINCTPAL attribute parameter, can be obtained by calling
tpkey_getinfo (). Itisthecaler'sresponsibility to release key handle outputkey by calling
tpkey_close().

Note: If outputkeyisNULL, no key handleis returned.

The status output parameter reportsthe state of the digital-signature registration request, digital
signature, encryption registration request, or encryption envelope. If the value of the statusis not
NULL, it is set to one of the following states:

TPSIGN_PENDING
A digital signature has been requested on behalf of the signer principal associated with the
corresponding private key, and will be generated when the message buffer istransmitted
from this process.

TPSIGN_OK
The digital signature has been verified.

TPSIGN_TAMPERED_MESSAGE
The digital signature is not valid because the content of the message buffer has been
altered.

ATMI C Function Reference 149

150

TPSIGN_TAMPERED_CERT
The digital signature is not valid because the signer’ s digital certificate has been atered.

TPSIGN_REVOKED_CERT
Thedigital signatureis not valid because the signer’ s digital certificate has been revoked.

TPSIGN_POSTDATED
The digital signature is not valid because its timestamp is too far into the future.

TPSIGN_EXPIRED_CERT
The digital signature is not valid because the signer’ s digital certificate has expired.

TPSIGN_EXPIRED
The digital signature is not valid because its timestamp is too old.

TPSIGN_UNKNOWN
The digital signature is not valid because the signer’ s digital certificate was issued by an
unknown Certification Authority (CA).

TPSEAL_PENDING
An encryption (seal) has been requested for the recipient principal associated with the
corresponding public key, and will be performed when the message buffer istransmitted
from this process.

TPSEAL_OK
The encryption envelopeisvalid.

TPSEAL_TAMPERED_CERT
The encryption envelopeis not valid because the recipient’ sdigital certificate has been
altered.

TPSEAL_REVOKED_CERT
The encryption envelope is not valid because the recipient’ s digital certificate has been
revoked.

TPSEAL_EXPIRED_CERT
The encryption envelopeisnot valid because therecipient’ sdigital certificate has expired.

TPSEAL_UNKNOWN
The encryption envelopeis not valid because the recipient’ sdigital certificate wasissued
by an unknown CA.

The timestamp output parameter contains the digital signature’ s timestamp according to the
local clock on the machine where the digital signature was generated. The integrity of thisvalue
is protected by the associated digital signature. The memory locationindicated by timestampis
set to the NULL-terminated signature time in format yyyyMMppHHMMSS, Where Yyvyy=year,
mv=month, pp=day, er=hour, MM=minute, and ss=second. timestamp may be NULL, in which

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

case no value isreturned. Encryption seals do not contain timestamps, and the memory location
indicated by timestamp is unchanged.

The f1ags parameter may be set to one of the following values:

e TPKEY_REMOVE—Theitem at position occurrence isremoved (that is, it isno longer
associated with the buffer). Output parameters outputkey, status, and timestamp
related to the item are captured before the item is removed. Items at subsequent positions
are shifted down by one, so there are never any gapsin the numbering of occurrence.

e TPKEY_REMOVEALL-AIl items associated with the message buffer are removed. The output
parameters outputkey, status, and timestamp are not returned.

e TPKEY VERIFY-AIl digital signatures associated with the message buffer are reverified.
The status of a signature may change after reverification. For example, if a message buffer
has been modified by areceiving process, the status of the originator’s signature changes
from TPSIGN_OK O TPSIGN_TAMPERED_MESSAGE.

Return Values
On failure, this function returns -1 and sets tperrno to indicate the error condition.

Errors
[TPEINVAL]
Invalid arguments were given. For example, the value of data isNULL or the value
assigned to flags isunrecognized.
[TPENOENT]
This occurrence does not exist.
[TPESYSTEV]
An error occurred. Consult the system error log file for details.
See Also

tpkey_close(3c), tpkey_getinfo(3c), tpkey_open(3c), tpseal (3¢), tpsign(3c)

tperrordetail(3c)

Name

tperrordetail ()—Getsadditional detail about an error generated from the last Oracle Tuxedo
ATMI system call.

ATMI C Function Reference 151

Synopsis

#include <atmi.h>

int tperrordetail (long flags)

Description

tperrordetail () returnsadditional detail related to an error produced by the last Oracle
Tuxedo ATMI system routine called in the current thread. tperrordetail () returnsanumeric
valuethat isalso represented by asymbolic name. If thelast Oracle Tuxedo ATMI system routine
called in the current thread did not produce an error, then tperrordetail () will return zero.
Therefore, tperrordetail () should be called after an error has been indicated; that is, when
tperrno has been set.

Currently f1ags isreserved for future use and must be set to 0.

A thread in amultithreaded application may issueacall to tperrordetail () whilerunningin
any context state, including TPINVALIDCONTEXT.

Return Values

152

Upon failure, tperrordetail () returnsa-1 and sets tperrno to indicate the error condition.

These are the symbolic names and meaning for each numeric valuethat tperrordetail () may
return. The order in which these are listed is not significant and does not imply precedence.

TPED_CLIENTDISCONNECTED
A Jolt client is disconnected currently. The Tpack flagisusedinatpnotify () call and
thetarget of tpnotify () isacurrently disconnected Jolt client. When tpnotify () fails,
a subsequent call to tperrordetail () with no intermediate ATMI callswill return
TPED_CLIENTDISCONNECTED.

TPED_DECRYPTION_FAILURE
A process receiving an encrypted message cannot decrypt the message. This error most
likely occurs because the process does not have access to the private key required to
decrypt the message.

When acall fails due to this error, a subsequent call to tperrordetail () with no
intermediate ATMI callswill return TPED_DECRYPTION_FAILURE.

TPED_DOMAINUNREACHABLE
A domainisunreachable. Specifically, adomain configured to satisfy arequest that alocal
domain cannot service was not reachable when a request was made. After the request
failure, asubsequent call to tperrordetail () with no intermediate ATMI calls will
return TPED_DOMAINUNREACHABLE.

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

The following table indicates the corresponding values returned by tperrno when calls

to tpcall (), tpgetrply (), Of tprecv () fail because of an unreachable domain. The
error detail returned by a subsequent call to tperrordetail () is
TPED_DOMAINUNREACHABLE.

ATMI Call tperrno Error Detail

tpcall TPESVCERR TPED_DOMAINUNREACHABLE
tpgetrply TPESVCERR TPED_DOMAINUNREACHABLE
tprecv TPEEVENT

TPED_DOMAINUNREACHABLE
TPEV_SVCERR

Note that the TPED_DoOMATNUNREACHABLE feature applies to Oracle Tuxedo Domains
only. It does not apply to other domains products such as Connect OS|I TP Domains and
Connect SNA Domains.

TPED_INVALID_CERTIFICATE

A processreceiving adigitally signed message cannot verify the digital signature because
theassociated digital certificateisinvalid. Thiserror most likely occurs becausethedigital
certificate has expired, the digital certificate was issued by an unknown Certification
Authority (CA), or the digital certificate has been altered.

When acall fails due to this error, a subsequent call to tperrordetail () with no
intermediate ATMI callswill return TPED_INVALID CERTIFICATE.

TPED_INVALID_SIGNATURE

A processreceiving adigitally signed message cannot verify the digital signature because
the signatureisinvalid. Thiserror most likely occurs because the message has been

altered, the timestamp for the digital signatureistoo old, or the timestamp for the digital
signature istoo far into the future.

When acall fails due to this error, a subsequent call to tperrordetail () with no
intermediate ATMI callswill return TPED_INVALID_SIGNATURE.

TPED_INVALIDCONTEXT
A thread is blocked in an ATMI call when another thread terminates its context.
Specifically, any thread blocked in an ATMI call when another thread terminates its
context will return fromthe ATMI call withafailurereturn; tperrno iSset t0 TPESYSTEM.

A subsequent call to tperrordetail () with no intermediate ATMI callswill return
TPED_INVALIDCONTEXT.

ATMI C Function Reference 153

TPED_INVALID_ XA_TRANSACTION
An attempt was made to start a transaction but the no_xa flag was turned on in this
domain.

TPED_NOCLIENT
No client exists. The Tpack flagisused inatpnotify () cal but thereisno target for
tpnotify (). When tpnotify () fals, tperrno isset to TPENOENT. A subsequent call to
tperrordetail () with nointermediate ATMI callswill return TPED_NOCLIENT.

TPED_NOUNSOLHANDLER
A client does not have an unsolicited handler set. Thetpack flagisusedinatpnotify ()
call and thetarget of the tpnotify () isinan Oracle Tuxedo ATMI session, but it has not
set an unsolicited notification handler. When tpnotify () fails, tperrno is set to
TPENOENT. A subsequent call to tperrordetail () withnointermediate ATMI callswill
NXUH1TPED_NOUNSOLHANDLER.

TPED_RDMA_MSGQDAEMON

RDMA Msgq_daemon failure. When RDMA is enabled, requests sent through RDMA fails
when the RDMA daemon process (Msgg_daemon), encounters a serious problem.
tperrno then returns TpEOS / TPETTME, and a subsequent call to tperrordetail () with
no intermediate ATMI calls returns TPED_RDMA_MSGQDAEMON.
The request failure could be encountered by the following calls:

® tpcall/tpacall/tpgetrply/tpadmcall/tpforward

® tpinit/tpappthrinit

® tpbegin/tpcommit/tpscmt/tpabort/tpsuspend/tpresume

® tpconnect/tpsend/tprecv/tpdiscon

® tpbroadcast/tpnotify

® tpengqueue/tpdequeue

® tpsubscribe/tpunsubscribe/tppost

TPED_RDMA_INVALIDQUEUE
Invalid RDMA queue. When RDMA is enabled, Msgq_daemon shared memory may
causeaninterna error. After therequest failure, tperrno returnstreos, and asubsequent
call to tperrordetail () with no intermediate ATMI callsreturn
TPED_RDMA_INVALIDQUEUE. Refer to TPED_RDMA MSGODAEMON for the calls that could
encounter thisfailure.

TPED_RDMA_NOMEMORY
Not enough shared memory to handle RDMA request. When RDMA is enabled and
Msgqg_daemon Starts without enough shared memory, an internal error may develop;

154 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

tperrno then returns Tpeos. A subsequent call to tperrordetail () with no
intermediate ATMI callswill return TPED_RDMA_NOMEMORY. Refer to
TPED_RDMA_MSGQDAEMON for the calls that may possibly encounter this failure.

TPED_SVCTIMEQUT

A server wasterminated due to a service timeout. The servicetimeout is controlled by the
value of svcrrmeoUT inthe uBBcoNF1G file or Ta_svcTIMEOUT in T_SERVER and

T_SERVICE classesin the rv_m1B. When acall fails dueto thiserror, a subsequent call to

tperrordetail () with nointermediate ATMI calls will return TPED_SVCTIMEOUT.
TPED_TERM

A Workstation client has been disconnected from the application. When acall fails dueto

this error, a subsequent call to tperrordetail () with no intermediate ATMI callswill
return TPED_TERM.

Errors

Upon failure, tperrordetail () SetS tperrno to one of the following values:
TPEINVAL

flags not set to zero

See Also

Introduction to the C Language Application-to-Transaction Monitor Interface,
tpstrerrordetail (3c), tperrno (5)

tpexport(3c)

Name

tpexport () —Converts atyped message buffer into an exportable, machine-independent string
representation, that includes digital signatures and encryption envelopes.

Synopsis
#include <atmi.h>
int tpexport (char *ibuf, long ilen,

char *ostr, long *olen,
long flags)

Description

tpexport () converts atyped message buffer into an externalized representation. An
externalized representation is a message buffer that does not include any Oracle Tuxedo ATMI

ATMI C Function Reference 155

../rf5/rf5.html

header information that is normally added to a message buffer just before the buffer is
transmitted.

The externalized representation may be transmitted between processes, machines, or Oracle
Tuxedo ATMI applicationsviaany communication mechanism. It may be archived on permanent
storage, and remains valid after a system shutdown and reboot.

An externalized representation includes:

e Any digita signatures associated with ibuf. They are verified later when the buffer is
imported.

e Any encryption envelopes associated with ibuf. The buffer content remains protected by
encryption. Only specified recipients with access to avalid private key for decryption may
later import the buffer.

ibuf must point to avalid typed message buffer either (1) previoudy allocated by aprocess
calling tpalloc () or (2) delivered by the system to areceiving process. ilen specifies how
much of ibuf to export. Notethat if ibuf pointsto abuffer type for which alength need not be
specified (for example, an rur fielded buffer), then i1en isignored (and may be 0).

ostrisapointer to the output area that will hold an externalized representation of the buffer’s
content and associated properties. If TPEX_STRING iSSet in flags, then the externalized format
will be a string type. Otherwise, the output length is determined by * o1en and may contain
embedded NULL bytes.

Oninput, * o1en specifiesthe maximum storage size available at ostr. Onoutput * olenisset to
the actual number of bytes written to ostr (including aterminating NULL character if
TPEX_STRING iSSetin flags).

The f1ags argument may be set to TpEx_sTRING if string format (base 64 encoded) is desired
for the output buffer. Otherwise, the output will be binary.

Return Values
On failure, thisfunction returns -1 and sets tperrno to indicate the error condition.
Errors

[TPEINVAL]
Invalid arguments were given. For example, the value of ibur iSNULL or the value of
flags iShot set correctly.

156 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

[TPEPERM]
Permission failure. The cryptographic service provider was not able to access a private
key necessary to produce adigital signature.

[TPESYSTEN]
An error occurred. Consult the system error log file for details.

[TPELIMIT]
Insufficient output storage was provided. * olen is set to the necessary amount of space.

See Also

tpimport (3c)

tpfml32toxml(3c)

Name
tpfml32toxml () —Converts FML 32 buffersto XML data

Synopsis
#include <fml32.h>

int tpfml32toxml (FBFR32 *fml32bufp, char *vfile, char *rtag, char
**xmlbufp, long flags)

Description
This function is used to convert FML32 buffersto XML data. It supports the following valid arguments:

fml32bufp
This argument is a pointer to an input FML 32 typed buffer.

viile
Thisargument is not used for FML32 to XML conversion at thistime. It is reserved for
the fully qualified path name of an XML Schemafile used to validate XML output when
this capability is supported by Xerces.

rtag
The argument is a pointer to the input root element name for the output XML
document.When aroot element name is specified during conversion, it isidentified and
saved for useasan XML root tag with an optional Type attribute added to the root element
name. If the input root name is not specified, then the default output XML root tag
<FML32> isused.

ATMI C Function Reference 157

xmlbufp
Thisargument is a pointer to an output XML typed buffer in a pre-defined format for
describing FML 32 fielded buffers.

flag
Thisargument is not used for FML32 to XML conversion at this time and should be set
to 0.

Return Values

Upon success, tpfml32toxml () returns 0. Thisfunction returns -1 on error and Sets tperrno
to indicate the error condition.

Errors
Upon failure, tpfm132toxml () Sets tperrno to one of the following values:

[TPEINVAL]
Either fm132bufp Or xmlbufp isnot avalid typed buffer.

[TPESYSTEV]
A Tuxedo system error has occurred. The exact nature of the error iswritten to
userlog (3). Thiswill aso indicate when a conversion to XML was unable to be done.
In that instance error detail info will be added to the userlog.

[TPEOS]
An operating system error has occurred. A numeric value representing the system call that
failed is available in Uunixerr.

SEE ALSO

tpxmltofml32 (3c), tpxmltofml (3c), tpfmltoxml (3c)

tpfmltoxml(3c)

Name
tpfmltoxml () —Converts FML buffersto XML data

Synopsis
#include <fml.h>
int tpfmltoxml (FBFR *fmlbufp, char *vfile, char *rtag, char **xmlbufp, long
flags)

158 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

Description

Thisfunction is used to convert FML buffersto XML data. It supports the following valid
arguments:

fmlbufp
The argument is a pointer to an input FML typed buffer.

vfile
The argument is not used for FML to XML conversion at thistime. It is reserved for the
fully qualified path name of an XML Schemafile used to validate XML output when this
capability is supported by Xerces.

rtag
This argument is a pointer to the input root element name for the output XML
document.When aroot element name is specified during conversion, it isidentified and
saved for useasan XML root tag with an optional Type attribute added to the root element
name. If theinput root nameis not specified, then the default output XML root tag <FmL>
is used.

xmlbufp
Thisargument is a pointer to an output XML typed buffer in a pre-defined format for
describing FML fielded buffers.

flag
Thisargument isnot used for FML to XML conversion at thistime and should be set to o.

Return Values

Upon success, tpfmltoxml () returns o. Thisfunction returns -1 on error and sets tperrno to
indicate the error condition.

Errors
Upon failure, tpfmltoxml () SEtS tperrno to one of the following values:

[TPEINVAL]
Either fm132bufp Or xmlbufp isnot avalid typed buffer.

[TPESYSTEM]
A Tuxedo system error has occurred. The exact nature of the error iswritten to
userlog(3). Thiswill also indicate when a conversion to XML was unable to be done.
In that instance error detail info will be added to the userlog.

[TPEOS]
An operating system error has occurred. A numeric val ue representing the system call that
failed isavailable in Uunixerr.

ATMI C Function Reference 159

SEE ALSO

tpxmltofml32 (3c),tpfml32toxml (3¢c), tpxmltofml (3c)

tpforward(3c)

Name

tpforward () —Routine for forwarding a service request to another service routine.

Synopsis

Descr

160

#include <atmi.h>

void tpforward(char *svc, char *data, long len, long flags)

iption

tpforward () alowsaserviceroutineto forward aclient’ srequest to another service routine for
further processing. tpforward () actslike tpreturn () inthatitisthelast call madeinaservice
routine. Like tpreturn (), tpforward () should be called from within the service routine

dispatched to ensure correct return of control to the Oracle Tuxedo ATMI system dispatcher.
tpforward () cannot be called from within a conversational service.

Thisfunction forwards arequest to the service named by svc using datapointed to by data. The
service name must not begin with adot. A serviceroutine forwarding arequest receivesno reply.
After the request is forwarded, the service routine returns to the communication manager
dispatcher and the server isfree to do other work. Note that because no reply is expected from a
forwarded request, the request may be forwarded without error to any serviceroutinein the same
executable as the service that forwarded the request.

If the serviceroutineisin transaction mode, tpforward () putsthe caller portion of the
transaction in a state where it may be completed when the originator of the transaction issues
either tpcommit () Of tpabort (). If atransaction was explicitly started with tpbegin () while
in aserviceroutine, the transaction must be ended with either tpcommit () or tpabort () before
caling tpforward (). Thus, al servicesin a“forward chain” are either all started in transaction
mode or none are.

The last server in aforward chain sends areply back to the originator of the request using
tpreturn (). Inessence, tpforward () transfersto another server the responsibility of sending
areply back to the awaiting requester.

tpforward () should becalled after receiving all replies expected from service requestsinitiated
by the service routine. Any outstanding replies which are not received will automatically be

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

dropped by the communi cation manager dispatcher upon receipt. In addition, the descriptors for
those replies become invalid and the request is not forwarded to sve.

data pointsto the dataportion of areply to besent. If dataisnon-NULL, it must point to abuffer
previously obtained by acall to tpalloc (). If thisisthe same buffer passed to the serviceroutine
upon itsinvocation, then its disposition is up to the Oracle Tuxedo ATMI system dispatcher; the
service routine writer does not have to worry about whether it isfreed or not. In fact, any attempt
by the user to free this buffer will fail. Also any attempt to reall ocate this buffer in another thread
is prohibited. However, if the buffer passed to tpforward () isnot the same one with which the
serviceisinvoked, then tpforward () will freethat buffer. 1en specifies the amount of the data
buffer to be sent. If data pointsto a buffer which does not require alength to be specified, (for
example, an FML fielded buffer), then 1enisignored (and can be 0). If dataisSNULL, then 1en
isignored and a request with zero length dataiis sent.

The f1ags argument is reserved for future use and should be set to O (zero).

Return Values

A service routine does not return any value to its caller, the communication manager dispatcher.
Thus, tpforward () isdeclared asavoid. See tpreturn (3c) for amore extensive discussion.

Errors
If any errors occur either in the handling of the parameters passed to the function or in its
processing, a“failed” messageissent back to the original requester (unlessno reply isto be sent).
The existence of outstanding replies or subordinate connections, or the caller’ stransaction being
marked abort-only, qualify as failures which generate failed messages.

If either sverIMEOUT in the uBBCONFIG file or TA_sveTIMEOUT inthe TM_MIB iS non-zero, the
event, TPEV_SVCERR iS returned when a service timeout occurs.

Failed messages are detected by the requester with the TrEsvCERR error indication. When such
an error occurs, the caller’ sdatais not sent. Also, thiserror causesthe caller’ s current transaction
to be marked abort-only.

If atransaction timeout occurs, either during the service routine or while the request is being
forwarded, the requester waiting for areply with either tpcall () or tpgetrply () will geta
TPETIME error return. When a service fails inside a transaction, the transaction timesout and is
put into the Tx_rorrBACK_oNLY state. All further ATMI calls for that transaction will fail with
TPETIME. The waiting requester will not receive any data. Service routines, however, are
expected to terminate using either tpreturn () Or tpforward (). A conversationa service
routine must Use tpreturn () ; it cannot use tpforward ().

ATMI C Function Reference 161

If aservice routine returns without using either tpreturn () or tpforward () (thatis, if it uses
the C language return statement or simply “falls out of the function”) or if tpforward () is
called fromaconversational server, the server will print awarning messagein alog fileand return
aservice error to the original requester. All open connections to subordinates will be
disconnected immediately, and any outstanding asynchronous replieswill be marked stale. If the
server was in transaction mode at the time of failure, the transaction is marked abort-only. Note
asothat if either tpreturn () Or tpforward () are used outside of a service routine (for
example, in clients, or in tpsvrinit () Of tpsvrdone ()), then these routines simply return
having no effect.

Client/Server Affinity
If you configure service session roles that invoke tpforward, see Table 11.

Table 11 tpforward Session Roles

Session Role Forwarding service Forwarded service
BEGIN LIBTUX_CAT:6835: ERROR'isprinted Theaffinity server and affinity scope
in ULOG. The session will not initiate. should be determined by forwarded service

The affinity client isthe onethat calls
forwarding service.

END LIBTUX_CAT:6836: ERROR'isprinted Unlesstheforwardingserviceisinvolvedin
in ULOG. The session will not terminate the session, the session terminates.
between affinity client and server.

NONE The session is propagated. The session is propagated.

For more information see, What is Client/Server Affinity?in Oracle Tuxedo ATMI Architecture.

See Also

tpalloc (3c), tpconnect (3¢), tpreturn (3c), tpservice(3c), tpstrerrordetail (3¢)

tpfree(3c)

Name
tpfree ()—Routine for freeing atyped buffer.

162 ATMI C Function Reference

../int/intatm.html

Introduction to the C Language Application-to-Transaction Monitor Interface

Synopsis
#include <atmi.h>

void tpfree(char *ptr)

Description

The argument to tpfree () isapointer to a buffer previously obtained by either tpalioc () or
tprealloc (). If ptriSNULL, no action occurs. Undefined results will occur if ptr does not
point to atyped buffer (or if it pointsto space previously freed with tpfree ()). Inside service
routines, tpfree () returns and does not free the buffer if ptr pointsto the buffer passed into a
serviceroutine.

Some buffer types require state information or associated datato be removed as part of freeing a
buffer. tpfree () removes any of these associations (in a communication manager-specific
manner) before abuffer is freed.

Once tpfree () returns, ptr should not be passed as an argument to any Oracle Tuxedo ATMI
system routine or used in any other manner.

A thread in a multithreaded application may issue a call to tpfree () whilerunning in any
context state, including TPINVALIDCONTEXT.

When freeing an FML32 buffer using tpfree (), the routine recursively frees all embedded
buffers to prevent memory leaks. In order to preserve the embedded buffers, you should assign
the associated pointer to NULL beforeissuingthe tpfree () command. As stated above, if ptr is
NULL, no action occurs.

Return Values
tpfree () does not return any valueto itscaller. Thus, it is declared asavoid.

Usage

This function should not be used in concert withmalloc (), realloc(), Of free() intheC
library (for example, abuffer alocated with tpalioc () should not be freed with free ()).

See Also

Introduction to the C Language A pplication-to-Transaction Monitor Interface, tpalloc (3c),
tprealloc (3c)

ATMI C Function Reference 163

tpgblktime(3c)

Name
tpgblktime () —Retrieves aprevioudy set, per second or millisecond, blocktime value

Synopsis
#include <atmi.h>

int tpgblktime (long flags)

Description
tpgblktime () retrievesapreviously set blocktime value, per second or millisecond according
to flag TPBLK_MTLLISECOND. If tpgblktime () Specifiesablocktime flag value, and no such
flag value has been set, the return value is 0. A blocktime flag value less than 0 produces an

error.
Thefollowingisalist of vaid fiags:

TPBLK_MILLISECOND
This flag sets the return blocktime value in milliseconds. If the unit of scanUNIT iS
millisecond in TUXCONFIG, invoking tpgblktime Without flag TPBLK_MILLISECOND
will return an error TPEINVAL.

TPBLK_SECOND
This flag sets the return blocktime value in seconds. Thisis default behavior.

TPBLK_NEXT
This flag returns blocktime value for the previously set tpsblktime (TPBLK_NEXT) call.

TPBLK_ALL
This flag returns blocktime value for the previously set tpsblktime (TPBLK_ALL) call.

Thisflag returns the applicable blocktime value for the next blocking ATMI set dueto a
previous tpsblktime () call without the TPBLK_NEXT Or TPBLK_ALL flag blocktime
value, or a system-wide default blocktime value.

Note: When aworkstation client callsa tpgbiktime () 0 flag, the system-wide default
blocktime value cannot be returned. A 0 valueis returned instead.

Return Values
Upon success, tpgblktime () returnsapositive integer indicating the blocking time value
currently in effect for the corresponding flag value. A 0 return value indicates that no such
blocking time override is currently in effect.

164 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

Thisfunctionreturns-1 on error and sets tperrno to indicate the error condition. Thefailure does
not affect the existing transaction, if one exists.

Error
Upon failure, tpgblktime () S&tS tperrno to one of the following values:

[TPEINVAL]
Invalid argumentswere given. For example, the f1ags valueis negative or more than one
blocktime flag value (TPBLK_NEXT, TPBLK_ALL, TPBLK_NEXT |
TPBLK_MILLISECOND, TPBLK_NEXT | TPBLK_SECOND, TPBLK_ALL |
TPBLK_MILLISECOND, TPBLK_ALL | TPBLK_SECOND, or 0) Was specified.

Table 12 Relation Between SCANUNIT and Flag in tpshlktime

SCANUNIT in Flag in tpshlktime Result

UBBCONFIG

In second TPBLK_SECOND passed

In second TPBLK_MILLISEC passed
OND

In millisecond TPBLK_SECOND failed

In millisecond TPBLK_MILLISEC passed

OND
[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error iswrittento a
log file.
See Also

tpcall(3c), tpcommit(3c), tprecv(3c), tpsblktime(3c), UBBCONFIG (5)

tpgetadmkey(3c)

Name
tpgetadmkey () —Gets administrative authentication key.

ATMI C Function Reference 165

../rf5/rf5.html

Synopsis
#include <atmi.h>

long tpgetadmkey (TPINIT *tpinfo)

Description

tpgetadmkey () iSavailable for application use by an application specific authentication server.
It returns an application security key suitable for assignment to the indicated user for the purpose
of administrative authentication. This routine must be called with a client name (that is,
tpinfo—>cltname) Of either tpsysadm () Of tpsysop () ; otherwise, avalid administrative key
will not be returned.

In amultithreaded application, athread in the TPINVAL IDCONTEXT Stateisnot allowed to issue a
cal to tpgetadmkey ().

Return Values

Upon success, tpgetadmkey () returns anon-0 value with the high-order bit (0x80000000) set;
otherwise it returns 0. Zero may bereturned if tpinfoiSNULL, tpinfo—>cltname iSnot
tpsysadm () OfF tpsysop (), Or lastly if the effective user ID is not the configured application
administrator for this site.

Errors
A zero return value is the only indication that avalid administrative key was not assigned.

Portability
Thisinterfaceisavailable only on UNIX system sitesrunning Oracle Tuxedo release 5.0 or later.

See Also

tpaddusr (1), tpusradd (1), tpinit (3c), AUTHSVR(5)
Setting Up an Oracle Tuxedo Application
Administering an Oracle Tuxedo Application at Run Time

tpgetcallinfo(3c)

Name
tpgetcallinfo ()— Routinefor retrieving call path message monitoring attributes.

166 ATMI C Function Reference

../rf5/rf5.html
../rfcm/rfcmd.html
../rfcm/rfcmd.html

Introduction to the C Language Application-to-Transaction Monitor Interface

Synopsis

int tpgetcallinfo(const char *msg, FBFR32 **obuf, long flags)
Description
tpgetcallinfo () isused for call path monitoring only. It supports the following parameters:

msg
The typed buffer use for measurement.

obuf
The FML 32 buffer used to contain the fields.

flags
Reserved for future use.

tpgetcallinfo () retrieves the message monitoring attributes when call path monitoring is
enabled.

tpgetcallinfo () can beusedin different scenariosto accomplish different functions. Typical
usageis asfollows:

Application server calls tpgetcallinfo () to check the requested message monitoring
attributes. It can provide the following information:

e Correlation ID of the request. It is generated by the caller
e Begins time stamping when the monitoring initiator starts the call

e Last stop time stamp on the call path tree of the monitored request. Usualy, it is used to
measure the process requested message waiting time for a service

Workstation client address if the request is from a Tuxedo workstation client

e Custom HTTP headers when the request originates from a Web Services (GWWS) gateway
with custom HTTP headers mode enabled

The monitoring initiator calls tpgetcallinfo () to get the end to the monitored call end
time.

Note: tpgetcallinfo () canbecalled at any timefor areply buffer after areply is received.
Thisis especially useful with tpacall/tpgetrply.

Table 13 lists the FML monitor metrics field names.

ATMI C Function Reference 167

Table 13 Monitor Initiator Field Names

Field Name Type Description Service Monitoring
Initiator
TA_MONCORRID string Themonitored call correlation ID. Itisa Y Y
critical call path monitoring metric.
TA_MONLASTTIMESEC long Timestamp for the last stop on the call Y Y
path tree in seconds.
TA_MONLASTTIMEUSEC long Timestamp of last stop onthe call path Y Y
tree in microseconds.
TA_MONSTARTTTIMESEC long Timestamp when the monitoring Y Y
initiator startsthe call in seconds.
TA_MONSTARTTIMEUSEC long Timestamp of the monitoring initiator Y Y
starts the call in microseconds.
TA_MONCLTADDR string The workstation client address Y N
TA_MONTOTALTIME long The end-to-end time used for a N Y
monitored call in milliseconds.
TA_ECID string Execution context ID Y Y
TA_MSGTAG string Tuxedo Message Tag Y Y

Table 14 lists the FML custom HTTP header names.

Table 14 Monitor Initiator Field Names

Field Name Type Description
TA_HTTP_HEADER_NAME string HTTP header name part
TA_HTTP_HEADER_VALUE string HTTP header value part

Return Values

Upon successfully getting a FML 32 buffer containing the monitoring attributes, returns 0.

Upon failure, tpgetcallinfo () returns-1 and sets tperrno to indicate the error condition.

168 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

Errors
Upon failure, tpgetcallinfo () Sets tperrno to one of the following values,

[TPEINVAL]

Invalid arguments were given (for example, msg is NULL or obuf is not avalid FML32

buffer)

[TPESYSTEM]

The message input does not contain monitoring attributes. Usually thisis because the call

path monitoring is not turned on for the message.

[TPEOS]
An operating system error has occurred.

Example(s)
Thefollowing isaservice-side tpgetcallinfo example.

#include <stdio.h>

#include <atmi.h>

#include <userlog.h>

#include <fml32.h>

#include <tpadm.h>

#if defined(__STDC_) || defined(___cplusplus)
tpsvrinit (int argc, char *argvl[])
#else

tpsvrinit (argc, argv)

int argc;

char **argv;

#endif

{

/* tpsvrinit logic */
#ifdef _ cplusplus
extern "C"
#endif
void
#if defined(__STDC__) || defined(__cplusplus)
APPSVC (TPSVCINFO *rgst)
#else
TOUPPER (rgst)
TPSVCINFO *rgst;

ATMI C Function Reference

169

#endif
{
FBFR32 *metainfo;
int len = 0;
/* Allocate the metainfo space */
metainfo = tpalloc("FML32", NULL, 1024);
if (metainfo == NULL) {
userlog("Memory allocation failed");
tpreturn (TPFAIE, 0, 0, 0);
}
/* Get the monitoring attributes*/
if (tpgetcallinfo(rgst->data, &metainfo, 0) == 0)
{

char *corrid;

char *msgtag;

long laststopsec, starttimesec;

if ((corrid = Ffind32 (metainfo, TA_MONCORRID, 0, &len)) {
userlog("Correlation ID = %s", corrid);

}

if ((msgtag = Ffind32 (metainfo, TA_MSGTAG, 0, &len)) {
userlog ("Tuxedo Message Tag = %s", corrid);

}
len = sizeof(starttimesec);
if ((Fget32(metainfo, TA_MONSTARTTIMESEC, &starttimesec,

userlog ("Message beginning time = %1d", starttimesec);

len = sizeof (lasttimesec);
if ((Fget32 (metainfo, TA_MONLASTTIMESEC, &lasttimesec, &len) == 0)

userlog ("Message entering my queue time = %$1d", lasttimesec);

}
}

tpfree (metainfo) ;

170 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

/* rest of service processment */

Thefollowing is an example of retrieving custom HTTP headers attached to a request received

by a Tuxedo service.

void
#1f defined(__STDC__) || defined(__cplusplus)
APPSVC (TPSVCINFO *rgst)
#else
APPSVC (rgst)
TPSVCINFO *rgst;
#endif
{
FBFR32 *metainfo;
int len = 0;
/* Allocate the metainfo space */
metainfo = tpalloc("FML32", NULL, 1024);
if (metainfo == NULL) {
userlog ("Memory allocation failed");
tpreturn (TPFAIL, 0, 0, 0);
}
/* Get custom headers */
if (tpgetcallinfo(rgst->data, &metainfo, 0) == 0)
{
int ret;
FLDID32 fieldID = TA_HTTP_HEADER_NAME;

FLDOCC32 fieldOCC = 0;

ATMI C Function Reference

m

ret = Fnext32 (metainfo, &fieldID, &fieldOCC, NULL, NULL) ;
if (ret == 1) {
do {
char fldName[1024];
char fldvalue[1024];
FLDLEN32 nameLen, valuelLen;
nameLen = sizeof (fldName) ;
valueLen = sizeof (fldvalue) ;
/* £ieldOCC contains index of name/value pair */
/* check return values and ENOSPACE */
Fget32 (metainfo, TA_HTTP_HEADER_ NAME,
fieldOCC, (char *) &fldName, &nameLen) ;
/* always come in pairs */
Fget32 (metainfo, TA_HTTP_HEADER_ VALUE,
fieldOCC, (char *) &fldvalue, &valueLen) ;
userlog("retrieved: %s: %s", fldName, fldvalue);
/* move to next name-value pair */
} while (Fnext32(metainfo, &fieldID, &fieldOCC, NULL, NULL) ;
}
tpfree (metainfo) ;

/* rest of service processing */

See Also
tpsetcallinfo(3c)

172 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

tpgetcixt(3c)

Name
tpgetctxt ()—Retrieves a context identifier for the current application association.

Synopsis
#include <atmi.h>
int tpgetctxt (TPCONTEXT T *context, long flags)

Description

tpgetctxt () retrieves an identifier that represents the current application context and places
that identifier in context. Thisfunction operates on a per-thread basis in a multithreaded
environment, and on a per-process basis in a non-threaded environment.

Typically, athread:
1. Cdlstpinit()
2. Cdlstpgetctxt ()

3. Handlesthe value of context asfollows:

— Inamultithreaded application—passes the value of context to ancther thread in the
same process so the other thread can call tpsetctxt ().

— Inasingle-threaded or multithreaded application—saves this context identifier for itself
so it can switch back to the indicated context |ater.

The second argument, f1ags, isnot currently used and must be set to 0.

tpgetctxt () may be caled in single-context applications as well asin multicontext
applications.

A thread in a multithreaded application may issue acall to tpgetctxt () while running in any
context state, including TPINVALIDCONTEXT.

Return Values

Upon successful completion, tpgetctxt () returns anon-negative value. Context is set to the
current context 1D, which may be represented by any of the following:

e A context ID greater than O, indicating a context in a multicontexted application.

ATMI C Function Reference 1713

e TPSINGLECONTEXT, indicating that the current thread has successfully executed tpinit ()
without the TPMuLTICONTEXTS flag, or that the current thread was just created in a process
that has successfully executed tpinit () without the TeMurTICONTEXTS flag. The value of
TPSINGLECONTEXT iSO.

e TPNULLCONTEXT, indicating that the current thread is not associated with a context.

e TPINVALIDCONTEXT, indicating that the current thread isin theinvalid context state. If a
thread in amulticontexted client issuesacall to tpterm () while other threads in the same
context are still working, the working threads are placed in the TPINVALIDCONTEXT
context. The value of TPINVALIDCONTEXT iS-1.

A thread in the TPINVALIDCONTEXT State is prohibited from issuing calls to most ATMI
functions. For a complete list of functions that may and may not be called, see the
Introduction to the C Language Application-to-Transaction Monitor I nterface.

For details about the TPINVALIDCONTEXT context state, see tpterm (3c).

Uponfailure, tpgetctxt () returnsavalueof -1 and sets tperrno toindicatethe error condition.

Errors
Upon failure, tpgetctxt () Sets tperrno to one of the following values:
[TPEINVAL]

Invalid arguments have been given. For example, the value of context isNULL or the
value of fiagsisnotO.

[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error has been
written to alog file.

[TPEOS]
An operating system error has occurred.

See Also

Introduction to the C Language A pplication-to-Transaction Monitor Interface, tpsetctxt (3c),
tpterm(3c)

tpgetlev(3c)

Name
tpgetlev ()—Routine for checking if atransaction isin progress.

174 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

Synopsis
#include <atmi.h>

int tpgetlev ()

Description

tpgetlev () returnsto the caller the current transaction level. Currently, the only levels defined
areOand 1.

In amultithreaded application, athread in the reINvALTDCONTEXT Stateisnot allowed toissuea
cal to tpgetlev ().

Return Values
Upon successful completion, tpgetlev () returnseither a0 to indicate that no transaction isin
progress, or 1 to indicate that atransaction isin progress,

Upon failure, tpgetlev () returns-1 and sets tperrno to indicate the error condition.

Errors

Upon failure, tpgetlev () Setstperrno to one of the following values:

[TPEPROTO]
tpgetlev () was caled improperly.

[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error iswrittento a
log file.

[TPEOS]
An operating system error has occurred.

Notices

When using tpbegin (), tpcommit () and tpabort () to delineate an Oracle Tuxedo ATMI
system transaction, it is important to remember that only the work done by a resource manager
that meetsthe X A interface (and islinked to the caller appropriately) hastransactional properties.
All other operations performed in atransaction are not affected by either tpcommit () or
tpabort (). Seebuildserver (1) for detailson linking resource managers that meet the XA
interface into a server such that operations performed by that resource manager are part of an
Oracle Tuxedo ATMI system transaction.

ATMI C Function Reference 175

../rfcm/rfcmd.html

See Also

tpabort (3c¢), tpbegin (3c), tpcommit (3¢), tpscmt (3¢)

tpgetmbenc(3c)

Name
tpgetmbenc () —Gets the code-set encoding name from a typed buffer.

Synopsis
#include <atmi.h>
extern int tperrno;
int

tpgetmbenc (char *bufp, char *enc_name, long flags)

Description

This function is used to get the codeset encoding name sent with atyped buffer. This name can
be compared to atarget codeset if a conversion is required (see tpconvmb(3c)).

The bufp argument isavalid pointer to atyped buffer message.

The enc_name argument will be set to the encoding name, found in bu fp, upon successful
execution of thisfunction. The returned string will be NULL terminated. The user must take care
to alocate a buffer large enough to hold the encoding name plus the NULL terminator (see
NL_LANGMAX iN <limits.h>). An MBSTRING typed buffer without the encoding name set is
invalid.

The f1ags argument is not currently used and should be set to zero.

Return Values

Upon success, tpgetmbenc () returnsavalue of 0. This function returns -1 on error and sets
tperrno as described below for each function. The function may fail for the following reasons.

[TPEINVAL]
enc_name Of bufp argument isNULL.

[TPEPROTO]
This error occurs if bufp cannot provide an encoding name.

176 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

[TPESYSTEM]
A Tuxedo system error has occurred. (e.g. bufp does not correspond to avalid Tuxedo
buffer).
See Also

tpalloc(3c), tpconvmb (3c), tpsetmbenc (3c)

tpgetrepos(3c)

Name
tpgetrepos () - retrieves service parameter information from a Tuxedo service metadata
repository file.

#include <atmi.h>

Synopsis

int tpgetrepos (char *reposfile, FBFR32* idata, FBFR32** odata)

Description

tpgetrepos () providesan alternative repository accessinterfaceto the . TMMETAREPOS Service
provided by TMMETADATA (5) . It retrieves service parameters from a Tuxedo service metadata
repository file. To use tpgetrepos (), the metadata repository file must reside on the native
client or server that initiates the request. Thisallowsfor repository information access even when
TMMETADATA (5) has not been booted.

Note: tpgetrepos () canasobeusedtoview Jolt repository files. It cannot modify an existing
Jolt repository file or create a new one.

tpgetrepos () accepts the following parameters:

reposfile
specifies the path name of afile accessible on the current machine where the Tuxedo
Metadata Repository is located. The caller must have read permission for thisfile.

idata
specifieswhat type of service parameter information isretrieved, and pointsto an FML 32
buffer.

*odata
On output, points to an FML32 buffer containing the retrieved service parameter
information and operation status.

ATMI C Function Reference 171

../rf5/rf5.html
../rf5/rf5.html

METAREPOS (5) describes the FML 32 buffer format tpgetrepos () uses. It issimilar to the
format used by the Tuxedo MIB.

Return Value

tpgetrepos () returns 0 on success. On failure, it sets tperrno and returns-1. On most failure

conditions, the Ta_erroRr field in * odata is popul ated with information about the specific error,
asisdone by the Tuxedo MIB.

Errors
Upon failure, tpgetrepos () SetS tperrno to one of the following values:
Note: Except for TPEINVAL, odata iSmodified to include Ta_ERROR, TA_sTaTUs for each
service entry to further qualify the error condition.

[TPEINVAL]

Invalid arguments were specified. The reposfile valueisinvalid or idata Or odata are
not pointers to FM1.32 typed buffers.

[TPEMIB]

The m1B-like request failed. odata is updated and returned to the caller with Fyr32 fields
indicating the cause of the error as discussed in MIB (5).

[TPEPROTO]

tpgetrepos () wasimproperly called. The reposfile file argument given isnot avalid
repository file.

[TPEOS]

An operating system error has occurred. A numeric value representing the system call that
failed isavailablein vunixerr.

[TPESYSTEM]

An Oracle Tuxedo system error has occurred. The exact nature of the error isreported in
userlog().

Portability

Thisinterface is available only on Oracle Tuxedo release 9.0 or later.

Files
Thefollowing library files are required:

${TUXDIR}/lib/libtrep.a
$S{TUXDIR}/1lib/libtrep.so.<rel>
${TUXDIR}/lib/libtrep.lib

178 ATMI C Function Reference

../rf5/rf5.html

Introduction to the C Language Application-to-Transaction Monitor Interface

The libraries must be linked manually when using buildclient. The user must use:
-L${TUXDIR}/1lib -ltrep

See Also

tpsetrepos(Bc),tmloadrepos(l),tmunloadrepos(l),TMMETADATA(S),hﬂanag"E]The
Tuxedo Service Metadata Repository in Setting Up an Oracle Tuxedo Application

tpgetrply(3c)

Name
tpgetrply ()—Routine for getting areply from a previous request.

Synopsis

#include <atmi.h>
int tpgetrply(int *cd, char **data, long *len, long flags)

Description

tpgetrply () returnsareply from apreviously sent request. Thisfunction’sfirst argument, cd,
points to a call descriptor returned by tpacall (). By default, the function waits until the reply
matching * cd arrives or a timeout occurs.

data must be the address of a pointer to a buffer previously allocated by tpalloc() and 1en
should point to along that tpgetrply () setstothe amount of data successfully received. Upon
successful return, * data points to abuffer containing the reply and * 1en contains the size of the
data. FML and FML 32 buffers often assume a minimum size of 4096 bytes; if thereply islarger
than 4096, the size of the buffer isincreased to asize large enough to accommodate the databeing
returned. As of release 6.4, the default allocation for buffersis 1024 bytes. Also, historical
information is maintained on recently used buffers, allowing abuffer of optimal sizeto be reused
as areturn buffer.

Buffers on the sending side that may be only partially filled (for example, FML or STRING
buffers) will have only the amount that is used send. The system may then enlarge the received
data size by some arbitrary amount. This means that the receiver may receive a buffer that is
smaller than what was originally allocated by the sender, yet larger than the data that was sent.

The receive buffer may grow, or it may shrink, and its address almost invariably changes, as the
system swaps buffers around internally. To determine whether (and how much) areply buffer
changed in size, compare itstotal size before tpgetrply () wasissued with * 1en. See the

ATMI C Function Reference 179

../rf5/rf5.html
../rfcm/rfcmd.html
../rfcm/rfcmd.html
../ads/admrp.html
../ads/admrp.html

180

“Introduction to the C Language Application-to-Transaction Monitor Interface” for more
information about buffer management.

If * 1enisO, then the reply has no data portion and neither * data nor the buffer it pointsto were
modified.

Itisan error for *data or 1ento be NULL.

Within any particular context of a multithreaded program:

e Callsto tpgetrply (TPGETANY) and tpgetrply () for aspecific handle cannot be issued
concurrently.

e Multiple callsto tpgetrply (TPGETANY) cannot be issued concurrently.

Any tpgetrply () cal that would, if issued, cause aviolation of either of these restrictions,
returns -1 and sets tperrno t0 TPEPROTO.

It is acceptable to issue:
e Concurrent callsto tpgetrply () for different handles.

e A cal to tpgetrply(TPGETANY) in asingle context concurrently with acall to
tpgetrply (), With or without TPGETANY, in a different context.

Thefollowingisalist of vaid fiags:

TPGETANY
Thisflag signifiesthat tpgetrply () should ignorethe descriptor pointed to by cg, return
any reply available and set cd to point to the call descriptor for the reply returned. If no
repliesexist, tpgetrply () by default will wait for one to arrive.

TPNOCHANGE
By default, if abuffer isreceived that differsin type from the buffer pointed to by * data,
then * data’s buffer type changes to the received buffer’ s type so long as the receiver
recognizes the incoming buffer type. When thisflag is set, the type of the buffer pointed
toby *data isnot alowed to change. That is, the type and subtype of the received buffer
must match the type and subtype of the buffer pointed to by *data.

TPNOBLOCK
tpgetrply () doesnot wait for thereply to arrive. If the reply isavailable, then
tpgetrply () getsthereply and returns. When thisflag is not specified and areply is not
available, the caller blocks until the reply arrives or atimeout occurs (either transaction or
blocking timeout).

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

TPNOTIME
Thisflag signifiesthat the caller iswilling to block indefinitely for itsreply and wants to
be immune to blocking timeouts. Transaction timeouts may still occur.

TPSIGRSTRT
If asignal interrupts any underlying system calls, then the interrupted system call is
reissued.

Except as noted below, * cq is no longer valid after itsreply is received.

In amultithreaded application, athread in the TPINVAL IDCONTEXT Stateisnot allowed toissue a
cal to tpgetrply ().

Return Values

Upon successful return from tpgetrply () Or uponreturn where tperrno iSset t0 TPESVCFATL,
tpurcode () contains an application defined value that was sent as part of tpreturn().

Upon failure, tpgetrply () returns-1 and sets tperrno to indicate the error condition.

Errors

Upon failure, tpgetrply () SetS tperrno asindicated below. Note that if TPGETANY is not set,
then* cdisinvalidated unless otherwise stated. If TPGETANY iSSet, then cd pointsto the descriptor
for the reply on which the failure occurred; if an error occurred before areply could be retrieved,
then cd pointsto 0. Also, the failure does not affect the caller’ s transaction, if one exists, unless
otherwise stated. If acall fails with a particular tperrno value, a subsequent call to
tperrordetail () with nointermediate ATMI calls, may provide more detailed information
about the generated error. Refer to the tperrordetail (3c) reference page for more
information.

[TPEINVAL]
Invalid arguments were given (for example, cd, data, *data or 1enisNULL or fiags
areinvalid). If caisnon-NULL, thenitisstill valid after this error and the reply remains
outstanding.

[TPEOTYPE]
Either the type and subtype of the reply are not known to the caller; or, TPNOCHANGE wWas
setin f1lags and the type and subtype of * data do not match the type and subtype of the
reply sent by the service. Regardless, neither * data, its contents nor * 1en are changed. If
the reply was to be received on behalf of the caller’s current transaction, then the
transaction is marked abort-only since the reply is discarded.

[TPEBADDESC]
cd points to an invalid descriptor.

ATMI C Function Reference 181

182

[TPETIME]

This error code indicates that either atimeout has occurred or tpgetrply () has been
attempted, in spite of the fact that the current transaction is already marked rollback only.

If the caller isin transaction mode, then either the transaction is already rollback only or
atransaction timeout has occurred. The transaction is marked abort-only. If the caller is
not in transaction mode, a blocking timeout has occurred. (A blocking timeout cannot
occur if TePNoBLOCK and/or TPNOTIME iSspecified.) In either case, no changes are madeto
*data, itscontents, or *1en. *cd remains valid unlessthe caller isin transaction mode
(and TPcETANY has not been set).

If atransaction timeout has occurred, then, with one exception, any attemptsto send new
requests or receive outstanding replies will fail with reeTIME until the transaction has
been aborted. The exception is arequest that does not block, expects no reply, and is not
sent on behalf of thecaller’ stransaction (that is, tpacall () with TPNOTRAN, TPNOBLOCK,
and TPNOREPLY Set).

When a service fails inside a transaction, the transaction is put into the
TX_ROLLBACK_ONLY State. This state is treated, for most purposes, as though it were
equivaent to atimeout. All further ATMI calls for thistransaction (with the exception of
those issued in the circumstances described in the previous paragraph) will fail with
TPETIME.

[TPESVCFAIL]

The serviceroutine sending the caller’ sreply called tpreturn () with TpFAIL. Thisisan
application-level failure. The contents of the service' sreply, if onewas sent, isavailable
inthe buffer pointed to by * data. If the service request was made on behalf of thecaller’s
transaction, then the transaction is marked abort-only. Note that regardless of whether the
transaction hastimed out, the only valid communications before the transaction is aborted
are calsto tpacall () with TPNOREPLY, TPNOTRAN, and TPNOBLOCK Set.

[TPESVCERR]

A service routine encountered an error either in tpreturn () or tpforward() (for
example, bad arguments were passed). No reply datais returned when this error occurs
(thatis, neither * data, itscontents nor * 1en are changed). If the service request was made
on behalf of the caller’ s transaction, then the transaction is marked abort-only. Note that
regardless of whether the transaction hastimed out, the only valid communications before
the transaction is aborted are callsto tpacall () with TPNOREPLY, TPNOTRAN, and
TPNOBLOCK Set. If either svcrIMEOUT in the uBBCONFIG file or Ta_sveTIMEOUT in the
TM_MIB iSNON-Zero, TPESVCERR IS returned when a service timeout occurs.

[TPEBLOCK]

A blocking condition exists and TpNoBLOCK Was specified. * cd remains valid.

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

[TPGoTSIG]
A signal was received and TPSIGRSTRT Was not specified.

[TPEPROTO]
tpgetrply () was called improperly.

[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error iswrittento a
log file.

[TPEOS]
An operating system error has occurred. If amessage queue on aremote location isfilled,
TPEOS may possibly be returned.

See Also

tpacall (3c), tpalloc(3c), tpcancel (3¢), tperrordetail (3c¢), tprealloc(3c),
tpreturn(3c), tpstrerrordetail (3c), tptypes (3¢c)

tpgprio(3c)

Name
tpgprio ()—Routine for getting a service request priority.

Synopsis
#include <atmi.h>

int tpgprio(void)

Description

tpgprio () returnsthe priority for the last request sent or received by the current thread in its
current context. Priorities can range from 1 to 100, inclusive, with 100 being the highest priority.
tpgprio () may becalled after tpcall () of tpacall (), (alSO tpenqueue (), OF tpdequeue (),
assuming the queued management facility isinstalled), and the priority returned isfor the request
sent. Also, tpgprio () may be called within a service routine to find out at what priority the
invoked servicewassent. tpgprio () may becalled any number of timesand will return the same
value until the next request is sent.

In amultithreaded application tpgprio () operates on a per-thread basis.

Because the conversation primitives are not associated with priorities, issuing tpsend () or
tprecv () hasno affect on the priority returned by tpgprio (). Also, thereis no priority

ATMI C Function Reference 183

associated with aconversational serviceroutineunlessatpcall () OF tpacall () isdonewithin
that service.

In amultithreaded application, athread in the TPINVAL IDCONTEXT Stateisnot allowed to issue a
call to tpgprio().

Return Values
Upon success, tpgprio () returnsarequest’s priority;

Upon failure, tpgprio () returns-1 and sets tperrno to indicate the error condition.

Errors
Upon failure, tpgprio () Sets tperrno to one of the following values:
[TPENOENT]

tpgprio () was called and no requests (viatpcall () Of tpacall ()) have been sent, or
it is called within a conversational service for which no requests have been sent.

[TPEPROTO]
tpgprio () wascalled improperly.

[TPESYSTEV]
An Oracle Tuxedo system error has occurred. The exact nature of the error iswrittento a
log file.

[TPEOS]
An operating system error has occurred.

See Also

tpacall (3c), tpcall (3c¢c), tpdequeue (3¢c), tpenqueue (3¢), tpservice (3c),
tpsprio(3c)

tpimport(3c)

Name

tpimport () —Converts an externalized representation of a message buffer into atyped message
buffer.

184 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

Synopsis
#include <atmi.h>
int tpimport (char *istr, long ilen, char **obuf, long *olen,

long flags)

Description
tpimport () converts an externalized representation of a message buffer into atyped message
buffer. An externalized representation is a message buffer that does not include any Oracle
Tuxedo ATMI header information that is normally added to a message buffer just before the
buffer istransmitted. A process converts a typed message buffer into an externalized
representation by calling the tpexport () function.

Any digital signatures associated with istr are verified when the buffer isimported, and are
available for examination after importing via tpenvelope ().

If the istr buffer representation is encrypted, the importing process must have accessto avalid
private key for decryption. Decryption is performed automatically during the importing process.

If TPEX_STRING iSnot setin flags, then ilen containsthe length of the binary data contained
inistr.If ilenisO, istrisassumed to point to a NULL-terminated string, and the
TPEX_STRING flag isinferred.

* obuf Must point to avalid typed message buffer either (1) previously allocated by a process
calling tpalloc () or (2) delivered by the system to areceiving process. The buffer will be
reallocated as necessary to accommodate the result, and its buffer type or subtype may change.

* o1en isset to theamount of valid data contained in the output buffer. If o1enisNULL oninput,
itisignored.

The f1ags argument should be set to TpEX_sTRING if the input externalized representationisin
string format (base 64 encoded). Otherwise, the input isin binary format of length i1en.

Return Values
On failure, thisfunction returns -1 and sets tperrno to indicate the error condition.
Errors

[TPEINVAL]
Invalid arguments were given. For example, thevalue of istriSNULL or the f1ags
parameter is not set correctly.

ATMI C Function Reference 185

[TPEPERM]
Permission failure. The cryptographic service provider was not able to access a private
key necessary for decryption.

[TPEPROTO]
A protocol failure occurred. Thefailureinvolvesaninvalid dataformatin iscx or adigital
signature that failed verification.

[TPESYSTEM]
An error occurred. Consult the system error log file for more details.

See Also

tpenvelope (3c¢), tpexport (3c)

tpinit(3c)

Name

tpinit ()—Joins an application.

Synopsis

Descr

186

#include <atmi.h>

int tpinit (TPINIT *tpinfo)
iption
tpinit () allowsaclienttojoinan Oracle Tuxedo ATMI system application. Beforeaclient can

use any of the Oracle Tuxedo ATMI system communication or transaction routines, it must first
join an Oracle Tuxedo ATMI system application.

tpinit () hastwo modes of operation: single-context mode and multicontext mode, which will
bediscussed in detail below. Becausecaling tpinit () isoptiona whenin single-context mode,
asingle-context client may also join an application by calling many ATMI routines (for example,
tpcall ()), whichtransparently call tpinit () with tpinfo setto NULL. A client may want to
cal tpinit () directly sothat it can set the parameters described below. In addition, tpinit ()
must be used when multicontext mode is required, when application authentication is required
(seethedescription of the secur1TY keyword in UBBCONFIG (5)), or when the application wishes
to supply its own buffer type switch (see typesw (5)). After tpinit () successfully returns, the
client can initiate service requests and define transactions.

In single-context mode, if tpinit () iscalled morethan once (that is, if itis called after theclient
has already joined the application), no action is taken and success s returned.

ATMI C Function Reference

../rf5/rf5.html
../rf5/rf5.html

Introduction to the C Language Application-to-Transaction Monitor Interface

In amultithreaded client, athread in the TPINVALIDCONTEXT State is not allowed to issue a call
to tpinit (). Tojoin an Oracle Tuxedo ATMI application, a multithreaded Workstation client
must always call tpinit () with the TemuLTICONTEXTS flag set, even if the client isrunning in
single-context mode.

Note: The TevuLTICONTEXTS MOde of tpinit will continueto work properly when the
TMNOTHREADS environment variable is set to yes. Setting this environment variable to
yes turns off multithreaded processing for applications that do not use threads.

Description of the TPINFO Structure

tpinit ()’'sargument, tpinfo, isapointer to atyped buffer of type TprnTT and aNULL
subtype. reInTT isabuffer typethatistypedefedintheatmi . h header file. The buffer must be
allocated viatpalloc () priortocaling tpinit (). The buffer should befreed using tpfree ()
after calling tpinit (). The TpINIT typed buffer structure includes the following members:

char usrname [MAXTIDENT+2] ;
char cltname [MAXTIDENT+2] ;
char passwd [MAXTIDENT+2] ;
char grpname [MAXTIDENT+2] ;
long flags;

long datalen;

long data;

The values of usrname, cltname, grpname, and passwd are all NULL-terminated strings.
usrname iSaname representing the caller. cltname isaclient name whose semantics are
application defined. The value sysclient isreserved by the system for the c1tname field. The
usrname and cltname fields are associated with the client at tpinit () time and are used for
both broadcast notification and administrative statistics retrieval. They should not have more
characters than maxT1DENT, Which is defined as 30. passwd is an application password in
unencrypted format that is used for validation against the application password. The passwd is
limited to 30 characters. grpname iS used to associate the client with aresource manager group
name. If grpname is set to a 0-length string, then the client is not associated with aresource
manager and is in the default client group. The value of grpname must be the NULL string
(O-length string) for Workstation clients. Note that grpname is not related to ACL GROUPS.

Single-context Mode Versus Multicontext Mode

tpinit () hastwo modes of operation: single-context mode and multicontext mode. In
single-context mode, a process may join at most one application at any one time. Multiple
application threads may access this application. Single-context mode is specified by calling

ATMI C Function Reference 187

188

tpinit () withaNULL parameter or by calling it without specifying the reMur.TIcOoNTEXTS flag
inthe f1ags field of the TeINTT Structure. Single-context modeisalso specified when tpinit ()
is called implicitly by another ATMI function. The context state for a process operating in
single-context mode iS TPSTINGLECONTEXT.

Note: The TevuLTICONTEXTS MOde of tpinit will continue to work properly when the
TMNOTHREADS environment variableis set to “yes”.

Insingle-context mode, if tpinit () iscalled morethan once (that is, if itiscalled after the client
has already joined the application), no action is taken and success is returned.

Multicontext mode is entered by calling tpinit () with the TpMuLTICONTEXTS flag set in the
flags field of the TpINTT Structure. In multicontext mode, each call to tpinit () resultsinthe
creation of a separate application association.

An application association is a context that associates a process and an Oracle Tuxedo ATMI
application. A client may have associationswith multiple Oracle Tuxedo ATMI applications, and
may al so have multiple associations with the same application. All of aclient’ s associations must
be made to applications running the same release of the Oracle Tuxedo ATMI system, and either
all associations must be native clients or al associations must be Workstation clients.

For native clients, the value of the Tuxconr1c environment variable is used to identify the
application to which the new association will be made. For Workstation clients, the value of the
WSNADDR Of WSENVF ILE environment variableisused to identify the application to which the new
association will be made. The context for the current thread is set to the new association.

In multicontext mode, the application can get a handle for the current context by calling
tpgetctxt () and passthat handle as a parameter to tpsetctxt (), thus setting the context in
which a particular thread or process will operate.

Mixing single-context mode and multicontext mode is not allowed. Once an application has
chosen one of these modes, calling tpinit () inthe other modeisnot allowed unless tpterm ()
isfirst called for all application associations.

TPINFO Structure Field Descriptions

In addition to controlling multicontext and single-context modes, the setting of f1ags isusedto
indicate both the client-specific notification mechanism and the mode of system access. These
two settings may override the application default. If these settings cannot override the application
default, tpinit () printsawarning in alog file, ignores the setting, and restores the application
default settinginthe f1ags field uponreturnfrom tpinit () . For client notification, the possible
valuesfor f1ags are asfollows:

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

TPU_SIG
Select unsolicited notification by signals. This flag should be used only with
single-threaded, single-contexted applications; it cannot be used when the
TPMULTICONTEXTS flagis set.

TPU_DIP
Select unsolicited notification by dip-in.

TPU_THREAD
Select THREAD notification in a separate thread managed by the Oracle Tuxedo ATMI
system. Thisflag isalowed only on platforms that support multithreading. If
TPU_THREAD iS specified on a platform that does not support multithreading, it is
considered an invalid argument and will result in an error return with tperrno set to
TPEINVAL.

TPU_IGN
Ignore unsolicited notification.

Only one of the above flags can be used at atime. If the client does not select a notification
method viathe flags field, then the application default method will be set in the flags field upon
return from tpinit ().

For setting the mode of system access, the possible values for f1ags are asfollows:

TPSA_FASTPATH
Set system access to fastpath.

TPSA_PROTECTED
Set system access to protected.

Only one of the above flags can be used at atime. If the client does not select anotification
method or a system access mode viathe flags field, then the application default method(s) will
be set in the f1ags field upon return from tpinit (). See UBBCONFIG (5) for details on both
client notification methods and system access modes.

If your application uses multithreading and/or multicontexting, you must set the following flag:

TPMULTICONTEXTS
See description in “ Single-context Mode V ersus Multicontext Mode.”

datalen isthe length of the application-specific data that follows. The buffer type switch entry
for the rrInTT typed buffer sets thisfield based on the total size passed in for the typed buffer
(the application data size isthe total size lessthe size of the rrInTT Structureitself plusthe size
of the data placehol der as defined in the structure). data isaplace holder for variable length data
that isforwarded to an application-defined authentication service. It isawaysthelast element of
this structure.

ATMI C Function Reference 189

../rf5/rf5.html

A macro, TPINITNEED, iS available to determine the size TpINIT buffer necessary to
accommodate a particular desired application specific data length. For example, if 8 bytes of
application-specific dataare desired, TpINITNEED(8) Will return the required TpinIT buffer size.

A NULL valuefor tpinfo is alowed for applications not making use of the authentication
feature of the Oracle Tuxedo ATMI system. ClientsusingaNULL argument will get: defaults of
O-length strings for usrname, c1tname and passwd; no flags set; and no application data.

Return Values

Upon failure, tpinit () leavesthe calling processin itsoriginal context, returns -1, and sets
tperrno to indicate the error condition. Also, tpurcode () is Set to the value returned by the
auTHSVR(D) server.

Errors

190

Upon failure, tpinit () Sets tperrno to one of the following values:

[TPEINVAL]
Invalid arguments were specified. tpinfoisnon-NULL and does not point to atyped
buffer of type TPINIT.

[TPENOENT]
The client cannot join the application because of space limitations.

[TPEPERM]
The client cannot join the application because it does not have permission to do so or
because it has not supplied the correct application password. Permission may be denied
based on an invalid application password, failure to pass application-specific
authentication, or use of restricted names. tpurcode () may be set by an
application-specific authentication server to explain why the client cannot join the
application.

[TPEPROTO]
tpinit () hasbeen called improperly. For example: (a) the caler is aserver; (b) the
TPMULTICONTEXTS flag has been specified in single-context mode; or (c) the
TPMULTICONTEXTS flag has not been specified in multicontext mode.

[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error iswrittento a
log file.

[TPEOS]
An operating system error has occurred.

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

Interoperability

tpchkauth () and anon-NULL value for the TpInTT typed buffer argument of tpinit () are
available only on sites running release 4.2 or later.

Portability

The interfaces described in tpinit (3c) are supported on UNIX system, Windows, and
MS-DOS operating systems. However, signal-based notification is not supported on 16-bit
Windows or MS-DOS platforms. If itisselected at tpinit () time, then auserlog () message
is generated and the method is automatically set to dip-in.

Environment Variables

TUXCONFIG
Used within tpinit () wheninvoked by anative client. It indicates the application to
which the client should connect. Note that this environment variable is referenced only
when tpinit () iscaled. Subsequent calls make use of the application context.

WSENVFILE
Used within tpinit () wheninvoked by a Workstation client. It indicates afile
containing environment variable settings that should be set in the caller’ s environment.
See compilation(5) for details on environment variable settings necessary for
Workstation clients. Note that thisfileis processed only when tpinit () iscalled and not
before.

WSNADDR
Used within tpinit () wheninvoked by aWorkstation client. It indicates the network
addresses of the workstation listener that isto be contacted for access to the application.
Thisvariable isrequired for Workstation clients and isignored for native clients.

TCP/IP addresses may be specified in the following forms:
//host.name:port_number

//#.#.#.#:port_number

In the first format, the domain finds an address for hostname using the local name
resolution facilities (usually DNS). hostname must be the local machine, and the local

name resol ution facilities must unambiguously resolve hostname to the address of the
local machine.

In the second format, the string #. #. #. # isin dotted-decimal format. In dotted-decimal
format, each # should be a number from 0 to 255. This dotted-decimal number represents
the IP address of the local machine.

ATMI C Function Reference 191

../rf5/rf5.html

192

In both of the above formats, port_number isthe TCP port number at which the domain
process will listen for incoming requests. port_number Can either be anumber between
0 and 65535 or aname. If port_number iSaname, then it must be found in the network
services database on your local machine.

The address can also be specified in hexadecimal format when preceded by the characters
0x. Each character after theinitial 0x isanumber between 0 and 9 or aletter between A
and F (case insensitive). The hexadecimal format is useful for arbitrary binary network
addresses such as |PX/SPX or TCP/IP.

The address can also be specified as an arbitrary string. The value should be the same as
that specified for theNLsaDDR parameter in the NETWORK Section of the configuration file.

More than one address can be specified if desired by specifying acomma-separated list of
pathnames for wsNapDr. Addresses are tried in order until a connection is established.
Any member of an address list can be specified as a parenthesized grouping of
pipe-separated network addresses. For example:

WSNADDR= (//ml .acme.com:3050|//m2.acme.com:3050),//m3.acme.com:3050
For users running under Windows, the address string looks like the following:

set
WSNADDR:(//ml.acme.com:3050A|//m2.acme.com:3050),//m3.acme.com:3050

Because the pipe symbol (|) is considered a special character in Windows, it must be
preceded by a carat (~)—an escape character in the Windows environment—when it is
specified on the command line. However, if wsNaDDR is defined in an envfile, the Oracle
Tuxedo ATMI system gets the val ues defined by wsNaDDR through the tuxgetenv (3c)
function. In this context, the pipe symbol (|) isnot considered a specia character, so you
do not need to escape it with acarat (»).

The Oracle Tuxedo ATMI system randomly selects one of the parenthesi zed addresses.
This strategy distributes the load randomly across a set of listener processes. Addresses
aretried in order until a connection is established. Use the value specified in the
application configuration file for the workstation listener to be called. If the value begins
with the characters ox, it isinterpreted as a string of hex-digits; otherwise, it isinterpreted
as ASCII characters.

To configure /WS client to use Sockets Direct Protocol (SDP) on UNIX, the address string
isasfollows:

S export WSNADDR=sdp://IB_IP:port

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

To configure /WS client to use IP over InfiniBand (IPolB) on UNIX, the address string is
asfollows:

$ export WSNADDR=//IB_IP:port

To configure /WS client to use IP over TCP/IP on UNIX, the address string is as follows:
$ export WSNADDR=//ETH_IP:port

WSFADDR
Used within tpinit () wheninvoked by a Workstation client. It specifies the network
address used by the Workstation client when connecting to the workstation listener or
workstation handler. This variable, along with the wsFranGe variable, determinesthe
range of TCP/IP ports to which a Workstation client will attempt to bind before making
an outbound connection. This address must be a TCP/IP address. The port portion of the
TCP/IP address represents the base address from which arange of TCP/IP ports can be
bound by the Workstation client. The wsFrRaNGE variable specifies the size of the range.
For example, if thisaddressis / /mymachine.oracle.com: 30000 and wSFRANGE iS 200,
then all native processes attempting to make outbound connections from this rvrp will
bind a port on mymachine.oracle.com between 30000 and 30200. If not set, this
variable defaults to the empty string, which implies the operating system chooses alocal
port randomly.

WSFRANGE
Used within tpinit () wheninvoked by a Workstation client. It specifies the range of
TCP/IP portsto which aWorkstation client process will attempt to bind before making an
outbound connection. ThewsFaDDR parameter specifiesthe base address of the range. For
example, if thewsFADDR parameter is set to / /mymachine.oracle.com: 30000 and
WSFRANGE is set to 200, then all native processes attempting to make outbound
connections from this zxrp will bind aport on mymachine . oracle. com between 30000
and 30200. The valid range is 1-65535. The default is 1.

WSDEVICE
Used within tpinit () wheninvoked by a Workstation client. It indicates the device
name to be used to access the network. This variable is used by Workstation clients and
ignored for native clients. Note that certain supported transport level network interfaces
do not require a device name; for example, sockets and NetBIOS. Workstation clients
supported by such interfaces need not specify wspEVICE.

WSTYPE
Usedwithin tpinit () wheninvoked by aWorkstation client to negotiate encode/decode
responsibilities with the native site. This variable is optional for Workstation clients and
ignored for native clients.

ATMI C Function Reference 193

WSRPLYMAX
Used by tpinit () to set the maximum amount of core memory that should be used for
buffering application replies before they are dumped to file. The default for this parameter
256,000 bytes. For more information, see the programming documentation for your
instantiation.

TMMINENCRYPTBITS
Used to establish the minimum level of encryption required to connect to the Oracle
Tuxedo ATMI system. “0” means no encryption, while “56” and “128" specify the
encryption key length (in bits). The link-level encryption value of 40 bitsisalso provided
for backward compatibility. If this minimum level of encryption cannot be met, link
establishment will fail. The default is“0”.

TMMAXENCRYPTBITS
Used to negotiate the level of encryption up to thislevel when connecting to the Oracle
Tuxedo ATMI system. “0” means no encryption, while “56” and “128” specify the
encryption length (in bits). The link-level encryption value of 40 bitsis also provided for
backward compatibility. The default is“128.”

Warning

194

Signal-based notificationisnot allowed in multicontext mode. In addition, signal restrictionsmay
prevent the system from using signal-based notification even though it has been selected by a
client. When this happens, the system generates alog message that it is switching notification for
the selected client to dip-in and the client is notified then and thereafter via dip-in notification.
(See the description of theNoTIFY parameter in the RESOURCES section of uBBconFIG (5) for a
detailed discussion of notification methods.)

Because signaling of clientsis always done by the system, the behavior of notification is always
consistent, regardless of where the originating notification call is made. Therefore to use
signal-based notification:

e A native client must be running as an application administrator.

e A Workstation client is not required to be running as the application administrator

The ID for the application administrator is identified as part of the configuration for the
application.

If signal-based notification is selected for a client, then certain ATMI calls may fail, returning
TPGOTSIG due to receipt of an unsolicited message if TPSIGRSTRT is not specified.

ATMI C Function Reference

../rf5/rf5.html

Introduction to the C Language Application-to-Transaction Monitor Interface

See Also

Introduction to the C Language A pplication-to-Transaction Monitor Interface, tpgetctxt (3c),
tpsetctxt (3c), tpterm(3c)

tpkey_close(3c)

Name
tpkey_close ()—Closesapreviously opened key handle.

Synopsis
#include <atmi.h>
int tpkey_close(TPKEY hKey, long flags)

Description

tpkey_close () releases apreviously opened key handle and all resources associated with it.
Any sensitive information, such as the principal’s private key, is erased from memory.

Key handles can be opened in one of two ways:
e By an explicit call to tpkey_open ()

e Asoutput from tpenvelope ()

It isthe application’s responsibility to release key resources by calling tpkey _close (). Oncea
process closes a key, the process can no longer use the key handle to register a message buffer
for digital signature or encryption. If the process opened the key using tpkey_open () with the
TPKEY_AUTOSIGN Of TPKEY_AUTOENCRYPT flag specified, the key handle no longer appliesto
future communication operations after the key is closed.

Even though akey is closed, however, the key handle continues to be valid for any associated
signature or encryption request registered before the key was closed. When the last buffer
associated with aclosed key isfreed or overwritten, resources attributable to the key are rel eased.

The f1ags argument is reserved for future use and must be set to O.

Return Values
On failure, this function returns -1 and sets tperrno to indicate the error condition.

ATMI C Function Reference 195

Errors

[TPEINVAL]
Invalid arguments were given. For example, the value of hxey isnot avalid key.

[TPESYSTEM]
An error occurred. Consult the system error log file for details.

See Also

tpenvelope (3c), tpkey_getinfo (3c), tpkey_open(3c), tpkey_setinfo(3c)

tpkey_getinfo(3c)

Name
tpkey_getinfo () —Gets information associated with akey handle.

Synopsis
#include <atmi.h>
int tpkey_getinfo (TPKEY hKey, char *attribute_name, void *value, long

*value_len, long flags)

Description

tpkey_getinfo () reportsinformation about akey handle. A key handle represents a specific
principal’s key and the information associated with it.

The key under examination isidentified by the hxey input parameter. The attribute for which
information isdesired isidentified by the at tri bute_name input parameter. Some attributes are
specific to a cryptographic service provider, but the following core set of attributes should be
supported by all providers.

Attribute Value

PRINCIPAL The name identifying the principal associated with the key (key
handle), represented as a NULL-terminated character string.

PKENCRYPT ALG AnASN.1 Distinguished Encoding Rules (DER) object identifier of
the public key algorithm used by the key for public key encryption.

The object identifier for RSA isidentified in the following table.

196 ATMI C Function Reference

Attribute

Value

PKENCRYPT_BITS

The key length of the public key algorithm (RSA modulus size). The
value must be within the range of 512 to 2048 hits, inclusive.

SIGNATURE_ALG

An ASN.1 DER object identifier of the digital signature algorithm
used by the key for digital signature.

Theobject identifiersfor RSA and DSA areidentified inthefollowing
table.

SIGNATURE_BITS

Thekey length of the digital signature agorithm (RSA modulus size).
The value must be within the range of 512 to 2048 bits, inclusive.

ENCRYPT_ALG

An ASN.1DER object identifier of the symmetric key agorithm used
by the key for bulk data encryption.

The object identifiersfor AES, DES, 3DES, and RC2 areidentified in
the following table.

ENCRYPT_BITS

The key length of the symmetric key algorithm. The value must be
within the range of 40 to 128 hits, inclusive.

When an agorithm with afixed key length is set in ENCRYPT_ALG,
the ENCRYPT BITS vaueisautomatically set tothefixed key length.
For example, if ENCRYPT_ALG isset to DES, the ENCRYPT_BITS
valueis automatically set to 56.

DIGEST_ALG AnASN.1DER object identifier of the message digest algorithm used
by the key for digital signature.
The object identifiersfor MD5 and SHA-1 are identified in the
following table.

PROVIDER The name of the cryptographic service provider.

VERSION The version number of the cryptographic service provider’s software.

Introduction to the C Language Application-to-Transaction Monitor Interface

The ASN.1 DER agorithm object identifiers supported by the default public key implementation
are given in the following table.

ATMI C Function Reference

197

ASN.1 DER Algorithm Object Identifier Algorithm

{ 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, Oxf7, 0x0d, 0x02, 0x05 } MD5

{ 0x06, 0x05, 0x2h, Ox0e, 0x03, 0x02, Ox1a} SHA1

{ 0x06, 0x09, 0x2a, 0x86, 0x48, 0x86, Oxf7, 0xOd, 0x01, 0x01, Ox01 } RSA

{ 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0xOc } DSA

{ 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x01, 0x02 } AES128-cbc

{ 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x01, Ox2a } AES256-cbc

{ 0x06, 0x05, 0x2b, Ox0e, 0x03, 0x02, 0x07 } DES
{ 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, Oxf7, 0x0d, 0x03, 0x07 } 3DES
{ 0x06, 0x08, Ox2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x03, 0x02 } RC2

The information associated with the specified attribute name parameter will be stored in the
memory location indicated by va1ue. The maximum amount of datathat can be stored at this
location is specified by the caller in value_len.

After tpkey_getinfo () completes, value_len is set to the size of the data actually returned
(including aterminating NULL value for string values). If the number of bytes that need to be
returned exceeds value_len, tpkey_getinfo () fails(with the TpELTMIT error code) and sets
value_len to the required amount of space.

The f1ags argument is reserved for future use and must be set to O.

Return Values
On failure, this function returns -1 and sets tperrno to indicate the error condition.

Errors

[TPEINVAL]
Invalid arguments were given. For example, hxey ishot avalid key.

[TPESYSTEN]
An error occurred. Consult the system error log file for details.

198 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

[TPELIMIT]
Insufficient space was provided to hold the requested attribute value.

[TPENOENT]
The requested attribute is not associated with this key.

See Also

tpkey_close(3c), tpkey_open (3c), tpkey_setinfo (3c)

tpkey_open(3c)

Name
tpkey_open () —Opens akey handle for digital signature generation, message encryption, or
message decryption.

Synopsis

#include <atmi.h>
int tpkey_open (TPKEY *hKey, char *principal_name, char *location, char

*identity proof, long proof_ len, long flags)

Description
tpkey_open () makes akey handle available to the calling process. A key handle represents a
specific principal’ s key and the information associated with it.

A key may be used for one or more of the following purposes:

e Generating adigital signature, which protects a typed message buffer’s content and proves
that a specific principal originated the message. (A principal may be a person or a process.)
Thistype of key isaprivate key and is available only to the key’s owner.

Cdling tpkey_open () with the principal’s name and either the TPKEY_SIGNATURE OF
TPKEY_AUTOSIGN flag returns a handle to the principal’s private key and digital certificate.

o Verifying adigital signature, which proves that a typed message buffer’s content remains
unaltered and that a specific principal originated the message.

Signature verification does not require acall to tpkey_open () ; the verifying process uses
the public key specified in the digital certificate accompanying the digitally signed
message to verify the signature.

ATMI C Function Reference 199

200

e Encrypting a message buffer destined for a specific principal. Thistype of key is available
to any process with access to the principal’s public key and digital certificate.

Cdling tpkey_open () with the principal’s name and either the TPKEY_ENCRYPT OF
TPKEY_AUTOENCRYPT flag returns a handle to the principal’s public key viathe principal’s
digital certificate.

e Decrypting a message buffer intended for a specific principal. Thistype of key isaprivate
key and is available only to the key’'s owner.

Calling tpkey_open () with the principal’s name and the TpxEY_DECRYPT flag returnsa
handle to the principal’s private key and digital certificate.

The key handle returned by tpkey_open () isstored in * hrey, the value of which cannot be
NULL.

The principal_name input parameter specifies the key owner’sidentity. If the value of
principal_nameisaNULL pointer or an empty string, adefault identity is assumed. The
default identity may be based on the current login session, the current operating system account,
or another attribute such as aloca hardware device.

Thefile location of akey may be passed into the 10cation parameter. If the underlying key
management provider does not require a location parameter, the value of this parameter may be
NULL.

To authenticate the identity of principal name, proof material such asapassword or pass
phrase may be required. If required, the proof material should be referenced by
identity proof. Otherwise, the value of this parameter may be NULL.

The length of the proof material (in bytes) is specified by proof 1en. If proof lenisO,
identity_proof isassumed to be aNULL-terminated character string.

The type of key access required for akey’s mode of operation is specified by the f1ags
parameter:

TPKEY_SIGNATURE:
This private key is available to generate digital signatures.

TPKEY_AUTOSIGN.
Whenever this process transmits a message buffer, the public key software uses the
signer’s private key to generate adigital signature and then attaches the digital signature
to the buffer. TPkEY_S1GNATURE iSimplied.

TPKEY_ENCRYPT
This public key is available to identify the recipient of an encrypted message.

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

TPKEY_AUTOENCRYPT:
Whenever this process transmits a message buffer, the public key software encrypts the
message content, uses the recipient’s public key to generate an encryption envelope, and
then attaches the encryption envelope to the buffer. TereY_ENCRYPT iSsimplied.

TPKEY_DECRYPT:
This private key is available for decryption.

Any combination of one or more of these flag valuesis alowed. If akey isused only for
encryption (TPKEY_ENCRYPT), identity proof iSnot required and may be set to NULL.

Return Values

Upon successful completion, * hkey is set to avalue that represents this key, for use by other
functionssuch as tpsign () and tpseal ().

On failure, this function returns -1 and sets tperrno to indicate the error condition.

Errors
[TPEINVAL]
Invalid arguments were given. For example, the value of hxey iSNULL or the f1ags
parameter is not set correctly.
[TPEPERM]
Permission failure. The cryptographic service provider was not able to access a private
key for this principal, given the proof information and current environment.
[TPESYSTEM]
A system error occurred. Consult the systems error log file for details.
See Also

tpkey_close(3c), tpkey_getinfo(3c), tpkey_setinfo(3c)

tpkey_setinfo(3c)

Name
tpkey_setinfo ()—Setsoptiona attribute parameters associated with a key handle.

ATMI C Function Reference 201

Synopsis
#include <atmi.h>
int tpkey setinfo (TPKEY hKey, char *attribute_name, void *value, long
value_len, long flags)

Description

tpkey_setinfo () setsan optiona attribute parameter for akey handle. A key handle represents
aspecific principal’ s key and the information associated with it.

The key for which information isto be modified isidentified by the hxey input parameter. The
attribute for which information is to be modified isidentified by the at tribute_name input
parameter. Some attributes may be specific to a certain cryptographic service provider, but the
core set of attributes presented on the tpkey_getinfo (3c) reference page should be supported
by all providers.

Theinformation to be associated with the attribute_name parameter is stored in the memory
location indicated by value. If the data content of value isself-describing, vaiue_lenis
ignored (and may be 0). Otherwise, value_Ilen must contain the length of datain vaiue.

The f1ags argument is reserved for future use and must be set to 0.

Return Values
On failure, thisfunction returns -1 and sets tperrno to indicate the error condition.

Errors
[TPEINVAL]
Invalid arguments were given. For example, hxeyisnot avalidkey or attribute name
refersto aread-only value.
[TPELIMIT]
The value provided istoo large.
[TPESYSTEM]
An error occurred. Consult the system error log file for details.
[TPENOENT]
The requested attribute is not recognized by the key’s cryptographic service provider.
See Also

tpkey_close(3c), tpkey_getinfo(3c), tpkey_open (3c)

202 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

tpnotify(3c)

Name
tpnotify () —Routine for sending notification by client identifier.

Synopsis
#include <atmi.h>
int tpnotify (CLIENTID *clientid, char *data, long len, long flags)

Description
tpnotify () alowsaclient or server to send an unsolicited message to an individual client.

clientidisapointer to aclient identifier saved from the TpsvcInrFo structure of aprevious or
current service invocation, or passed to aclient via some other communications mechanism (for
example, retrieved via the administration interface).

The data portion of the request is pointed to by data, abuffer previously allocated by
tpalloc (). Ien specifies how much of data to send. Note that if data pointsto abuffer type
that does not require a length to be specified, (for example, an ruvL fielded buffer) then 1enis
ignored (and may be 0). Also, data may be NULL in which case 1en isignored.

Upon successful return from tpnotify (), the message has been delivered to the system for
forwarding to the identified client. If the Tpack flag was set, a successful return means the
message has been received by the client. Furthermore, if the client has registered an unsolicited
message handler, the handler will have been called.

Thefollowingisalist of vaid fiags:

TPACK
Therequest is sent and the caller blocks until an acknowledgement messageis received
from the target client.

TPNOBLOCK
The request is not sent if a blocking condition exists in sending the notification (for
example, the internal buffers into which the message is transferred are full).

TPNOTIME
Thisflag signifies that the caller iswilling to block indefinitely and wants to be immune
to blocking timeouts. Transaction timeouts may still occur.

ATMI C Function Reference 203

TPSIGRSTRT
If asignal interrupts any underlying system calls, then the interrupted system call is
reissued.

Unlessthe Track flag is set, tpnotify () doesnot wait for the message to be delivered
to the client.

In amultithreaded application, athread in the TPINVAL IDCONTEXT State isnot allowed to issue a
call to tpnotify ().

Return Values

Upon failure, tpnotify () returns-1 and sets tperrno to indicate the error condition. If a call
failswith a particular tperrno value, a subsequent call to tperrordetail (), with no
intermediate ATMI calls, may provide more detail ed information about the generated error. Refer
tothe tperrordetail (3c) reference page for moreinformation.

Errors
Upon failure, tpnotify () Sets tperrno to one of the following values:

[TPEINVAL]
Invalid arguments were given (for example, invalid flags).

[TPENOENT]
Thetarget client does not exist or does not have an unsolicited handler set and the Tpack
flagisset.

[TPETIME]
A blocking timeout occurred and neither TPNOBLOCK hor TPNOTIME were specified, or
TPACK Was Set but no acknowledgment was received and TpNoTIME Was not specified. (A
blocking timeout cannot occur if TpNoBLOCK and/or TPNOTIME IS specified.)

[TPEBLOCK]
A blocking condition was found on the call and TpnoBLOCK Was specified.

[TPcoTsIG]
A signal was received and TPSIGRSTRT Was not specified.

[TPEPROTO]
tpnotify () was called improperly.

[TPESYSTEV]
An Oracle Tuxedo system error has occurred. The exact nature of the error iswrittento a
log file.

204 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

[TPEOS]
An operating system error has occurred.

[TPERELEASE]
When the Tpack is set and the target isaclient from aprior release of Oracle Tuxedo that
does not support the acknowledgment protocol.
See Also

Introduction to the C Language Application-to-Transaction Monitor Interface, tpalloc (3c),
tpbroadcast (3¢), tpchkunsol (3¢), tperrordetail (3c), tpinit(3c¢c), tpsetunsol (3¢),
tpstrerrordetail (3c¢), tpterm(3c)

tpopen(3c)

Name
tpopen () —Routine for opening a resource manager.

Synopsis
#include <atmi.h>

int tpopen(void)

Description

tpopen () opens the resource manager to which the caller islinked. At most one resource
manager can be linked to the caller. This function is used in place of resource manager-specific
open () callsand alows a service routine to be free of callsthat may hinder portability. Since
resource managersdiffer intheir initialization semantics, the specific information needed to open
aparticular resource manager is placed in a configuration file.

If aresource manager is aready open (that is, tpopen () is called more than once), no actionis
taken and success is returned.

In amultithreaded application, athread in the TPINVAL IDCONTEXT Stateisnot allowed to issue a
call to tpopen ().

If the current server isbuilt with the -m option, tpopen will open all of RMsin UBBCONFIG (5)
*RM S section configured as auTo=y related with current server group and set correspond context
fields.

If opening any RM fails, tpopen returns TPERMERR.

ATMI C Function Reference 205

Return Values

Upon failure, tpopen () returns-1 and sets tperrno to indicate the error condition.

Errors

Upon failure, tpopen () Sets tperrno to one of the following values:

[TPERMERR]

A resource manager failed to open correctly. More information concerning the reason a
resource manager failed to open can be obtained by interrogating a resource manager in
its own specific manner. Note that any calls to determine the exact nature of the error
hinder portahility.

[TPEPROTO]

tpopen () Was called in an improper context (for example, by aclient that has not joined
an Oracle Tuxedo system server group).

[TPESYSTEV]

An Oracle Tuxedo system error has occurred. The exact nature of the error iswrittento a
log file.

[TPEOS]
An operating system error has occurred.

See Also

tpclose(3c),, tprmopen(3c), tprmclose(3c), tprmstart(3c), tprmend(3c)

tppost(3c)

Name
tppost ()—Posts an event.
Synopsis

#include <atmi.h>

int tppost(char *eventname, char *data, long len, long flags)

Description

The caller uses tppost () to post an event and any accompanying data. The event is named by
eventname and data, if not NULL, points to the data. The posted event and its data are
dispatched by the Oracle Tuxedo ATMI EventBroker to all subscribers whose subscriptions

206 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

successfully evaluate against eventname and whose optional filter rules successfully evaluate
against data.

eventname iSaNULL-terminated string of at most 31 characters. eventname’sfirst character

cannot be adot (“.”) asthis character is reserved as the starting character for all events defined
by the Oracle Tuxedo ATMI system itself.

If dataisnon-NULL, it must point to a buffer previoudly allocated by tpalioc() and ien
should specify the amount of datain the buffer that should be posted with the event. Note that if
data pointsto a buffer of atype that does not require alength to be specified (for example, an
FML fielded buffer), then 1enisignored. If dataisNULL, 1enisignored and theevent is posted
with no data.

When tppost () isused within atransaction, the transaction boundary can be extended to include
those servers and/or stable-storage message queues notified by the EventBroker. When a
transactional posting is made, some of the recipients of the event posting are notified on behal f
of the poster’ s transaction (for example, servers and queues), while some are not (for example,
clients).

If the poster iswithin atransaction and the renoTRAN flag is not set, the posted event goesto the
EventBroker in transaction mode such that it dispatches the event as part of the poster’s
transaction. The broker dispatches transactional event notifications only to those service routine
and stable-storage queue subscriptions that used the TPEVTRAN bit setting inthe ct1—>flags
parameter passed to tpsubscribe (). Client notifications, and those service routine and
stable-storage queue subscriptions that did not use the TPEVTRAN bit setting in the ct1—>f1ags
parameter passed to tpsubscribe (), are also dispatched by the EventBroker but not as part of
the posting process' s transaction.

If theposter isoutsideatransaction, tppost () isaone-way post with no acknowledgement when
the service associated with the event fails. This occurs even when TpevTRAN is set for that event
(using the ct1—>f1ags parameter passed to tpsubscribe ()). If the poster isin atransaction,
then tppost () returns TPESVCFAIL when the associated service fails in the event.

Thefollowingisalist of vaid fiags:

TPNOTRAN
If the caller isin transaction mode and thisflag is set, then the event posting is not made
on behalf of the caller’ stransaction. A caller in transaction mode that setsthisflag is till
subject to the transaction timeout (and no other) when posting events. If the event posting
fails, the caller’ s transaction is not affected.

ATMI C Function Reference 207

TPNOREPLY
Informs tppost () not to wait for the EventBroker to process all subscriptions for
eventname before returning. When TPNOREPLY iS Set, tpurcode () iSSet to zero
regardless of whether tppost () returns successfully or not. When the caller isin
transaction mode, this setting cannot be used unless TPNOTRAN iS al SO Set.

TPNOBLOCK
The event is not posted if a blocking condition exists. If such a condition occurs, the call
failsand tperrno is set to TPEBLOCK. When TPNOBLOCK iS not specified and a blocking
condition exists, the caller blocks until the condition subsides or atimeout occurs (either
transaction or blocking timeout).

TPNOTIME
Thisflag signifiesthat the caller iswilling to block indefinitely and wants to be immune
to blocking timeouts. Transaction timeouts may still occur.

TPSIGRSTRT
If asignal interrupts any underlying system calls, then the interrupted system call is
reissued. When TpsIGRSTRT is hot specified and asignal interrupts a system call, then
tppost () falsand tperrno iS set to TPGOTSIG.

In amultithreaded application, athread in the reINvALTDCONTEXT Stateisnot allowed toissuea
cal to tppost ().

Return Values

Upon successful return from tppost (), tpurcode () containsthe number of event notifications
dispatched by the EventBroker on behalf of eventname (that is, postings for those subscriptions
whose event expression evaluated successfully against eventname and whosefilter rule
evaluated successfully against data). Upon return where tperrno is set to TPESVCFATIL,
tpurcode () containsthe number of non-transactional event notifications dispatched by the
EventBroker on behalf of eventname.

Upon failure, tppost () returns -1 sets tperrno to indicate the error condition.

Errors

Upon failure, tppost () Sets tperrno to one of the following values. (Unless otherwise noted,
failure does not affect the caller’ stransaction, if one exists.)

[TPEINVAL]
Invalid arguments were given (for example, eventname isNULL).

208 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

[TPENOENT]
Cannot access the Oracle Tuxedo User EventBroker.

[TPETRAN]
The caller isin transaction mode, TPNOTRAN Was not set and tppost () contacted an
EventBroker that does not support transaction propagation (that is, TMUSREVT (5) is not
running in an Oracle Tuxedo ATMI system group that supports transactions).

[TPETIME]
This error code indicates that either atimeout has occurred or tppost () has been
attempted, in spite of the fact that the current transaction is already marked rollback only.

If the caller isin transaction mode, then either the transaction is aready rollback only or
atransaction timeout has occurred. The transaction is marked abort-only. If the caller is
not in transaction mode, a blocking timeout has occurred. (A blocking timeout cannot
occur if TeNoBLOCK and/or TPNOTIME iS specified.)

If atransaction timeout has occurred, then, with one exception, any attemptsto send new
requests or receive outstanding replies will fail with reeTIME until the transaction has
been aborted. The exception is arequest that does not block, expects no reply, and is not
sent on behalf of the caller’ stransaction (that is, tpacall () with TPNOTRAN, TPNOBLOCK,
and TPNOREPLY Set).

When tppost () failsinside atransaction, the transaction is put into the
TX_ROLLBACK_ONLY State. This state is treated, for most purposes, as though it were
equivalent to atimeout. All further ATMI callsfor thistransaction (with the exception of
those issued in the circumstances described in the previous paragraph) will fail with
TPETIME.

[TPESVCFATL]
The EventBroker encountered an error posting a transactional event to either a service
routine or to a stable storage queue on behalf of the caller’ s transaction. The caller’s
current transaction is marked abort-only. When this error is returned, tpurcode ()
contains the number of non-transactional event notifications dispatched by the
EventBroker on behalf of eventname; transactional postings are not counted since their
effectswill be aborted upon completion of the transaction. Note that so long asthe
transaction has not timed out, further communication may be performed before aborting
the transaction and that any work performed on behalf of the caller’ s transaction will be
aborted upon transaction completion (that is, for subsequent communication to have any
lasting effect, it should be done with TPNOTRAN Set).

[TPEBLOCK]
A blocking condition exists and TpnoBLOCK Was specified.

ATMI C Function Reference 209

../rf5/rf5.html

[TPGoTSIG]
A signal was received and TPSIGRSTRT Was not specified.

[TPEPROTO]
tppost () was called improperly.

[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error iswrittento a
log file.

[TPEOS]
An operating system error has occurred.

See Also

tpsubscribe (3c¢), tpunsubscribe (3¢), EVENTS (5), TMSYSEVT (5), TMUSREVT (5)

tprealloc(3c)

Name

tprealloc ()—Routine to change the size of atyped buffer.

Synopsis

#include <atmi.h>

char * tprealloc(char *ptr, long size)

Description

210

tprealloc() changesthe size of the buffer pointed to by ptr to size bytesand returns apointer
to the new (possibly moved) buffer. Similar to tpalloc (), the size of the buffer will be at least
aslargeasthelarger of sizeand dfltsize, Wheredfitsize isthe default buffer size specified
in tmtype_sw. If the larger of the two isless than or equal to zero, then the buffer is unchanged
and NULL isreturned. A buffer’ styperemainsthe same after it isreallocated. After thisfunction
returns successfully, the returned pointer should be used to reference the buffer; ptr should no
longer be used. The buffer’s contents will not change up to the lesser of the new and old sizes.

Some buffer types require initialization before they can be used. tprealloc () reinitidizesa
buffer (in a communication manager-specific manner) after it is reallocated and beforeit is
returned. Thus, the buffer returned to the caller isready for use.

A thread in amultithreaded application may issue acall to tprealloc () whilerunning in any
context state, including TPINVALIDCONTEXT.

ATMI C Function Reference

../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html

Introduction to the C Language Application-to-Transaction Monitor Interface

Return Values
Upon successful completion, tprealloc () returnsapointer to a buffer of the appropriate type
aligned on along word.

Upon failure, tprealloc () returns NULL and sets tperrno to indicate the error condition.

Errors
If thereinitialization function fails, tprealloc () fails, returning NULL and the contents of the
buffer pointed to by ptr may not be valid. Upon failure, tprealloc () Sets tperrno to one of
the following values:

[TPEINVAL]
Invalid arguments were given (for example, ptr does not point to a buffer originally

allocated by tpalloc()).

[TPEPROTO]
tprealloc () was called improperly.

[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error iswrittento a

log file.

[TPEOS]
An operating system error has occurred.
Usage
If buffer reinitialization fails, tprealloc () failsreturning NULL and the contents of the buffer
pointed to by ptr may not be valid. This function should not be used in concert withmalioc (),
realloc () or free () intheClibrary (for example, abuffer allocated with tprealloc () should
not be freed with free ()).

See Also
tpalloc(3c), tpfree(3c), tptypes (3c)

tprecv(3c)

Name
tprecv () —Routine for receiving a message in a conversational connection.

ATMI C Function Reference 21

Synopsis

#include <atmi.h>
int tprecv(int cd, char **data, long *len, long flags, long \

*revent)

Description

212

tprecv () isused to receive data sent across an open connection from another program.
tprecv ()’ sfirst argument, cd, specifies on which open connection to receive data. cdisa
descriptor returned from either tpconnect () or the TpsvcINFo parameter to the service. The
second argument, data, isthe address of apointer to abuffer previously allocated by tpalloc ().

data must be the address of a pointer to a buffer previously allocated by tpalloc () and 1en
should point to along that tprecv () setsto the amount of data successfully received. Upon
successful return, *data pointsto abuffer containing the reply and *1en contains the size of
the buffer. Fur, and FM1.32 buffers often assume a minimum size of 4096 bytes; if thereply is
larger than 4096 bytes, the size of the buffer isincreased to a size large enough to accommodate
the data being returned.

Buffers on the sending side that may be only partially filled (for example, FML or STRING
buffers) will have only the amount that is used sent. The system may then enlarge the received
data size by some arbitrary amount. This means that the receiver may receive a buffer that is
smaller than what was originally allocated by the sender, yet larger than the data that was sent.

The receive buffer may grow, or it may shrink, and its address almost invariably changes, as the
system swaps buffers around internally. To determine whether (and how much) areply buffer
changed in size, compareitstotal size before tprecv () wasissued with *1en. See* Introduction
to the C Language Application-to-Transaction Monitor Interface” for more information about
buffer management.

If *1enis0, then no data was received and neither *data nor the buffer it points to were
modified. Itisan error for data, *data Or 1entobe NULL.

tprecv () can beissued only by the program that does not have control of the connection.
Thefollowingisalist of valid f1ags:

TPNOCHANGE
By default, if abuffer isreceived that differsin type from the buffer pointed to by * data,
then * data’s buffer type changesto the received buffer’ s type so long as the receiver
recognizes the incoming buffer type. When thisflag is set, the type of the buffer pointed
to by *data isnot allowed to change. That is, the type and subtype of the received buffer
must match the type and subtype of the buffer pointed to by * data.

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

TPNOBLOCK
tprecv () doesnot wait for datato arrive. If datais already available to receive, then
tprecv () getsthedataand returns. When thisflagisnot specified and no dataisavailable
to receive, the caller blocks until data arrives.

TPNOTIME
Thisflag signifiesthat the caller iswilling to block indefinitely and wants to be immune
to blocking timeouts. Transaction timeouts will still affect the program.

TPSIGRSTRT
If asignal interrupts the underlying receive system call, then the call is reissued.

If an event existsfor the descriptor, cd, then tprecv () will return setting tperrno t0 TPEEVENT.
The event typeisreturned in revent. Data can be received along with the TpEV_svcsucc,
TPEV_SVCFAIL, and TPEV_SENDONLY events. Valid eventsfor tprecv () are asfollows:

TPEV_DISCONIMM
Received by the subordinate of a conversation, this event indicates that the originator of
the conversation has either issued an immediate disconnect on the connection via
tpdiscon (), Or itissued tpreturn (), tpcommit () OF tpabort () with the connection
still open. This event is aso returned to the originator or subordinate when a connection
is broken due to a communications error (for example, a server, machine, or network
failure). Because this is an immediate disconnection notification (that is, abortive rather
than orderly), datain transit may be lost. If the two programs were participating in the
same transaction, then the transaction is marked abort-only. The descriptor used for the
connection is no longer valid.

TPEV_SENDONLY
The program on the other end of the connection has relinquished control of the
connection. Therecipient of thisevent isallowed to send data but cannot receive any data
until it relinquishes control.

TPEV_SVCERR
Received by the originator of a conversation, this event indicates that the subordinate of
the conversation hasissued tpreturn (). tpreturn () encountered an error that
precluded the service from returning successfully. For example, bad arguments may have
been passed to tpreturn () oOr tpreturn () may have been called while the service had
open connections to other subordinates. Due to the nature of this event, any application
defined data or return code are not available. The connection has been torn down and is
no longer avalid descriptor. If thisevent occurred as part of the cd recipient’ stransaction,
then the transaction is marked abort-only.

TPEV_SVCFAIL
Received by the originator of a conversation, this event indicates that the subordinate
service on the other end of the conversation has finished unsuccessfully as defined by the

ATMI C Function Reference 213

application (that is, it called tpreturn () with TpraIL or TPEXIT). If the subordinate
service wasin control of this connection when tpreturn () was called, then it can pass
an application defined return value and atyped buffer back to the originator of the
connection. As part of ending the service routine, the server hastorn down the connection.
Thus, cdisno longer avalid descriptor. If this event occurred as part of the recipient’s
transaction, then the transaction is marked abort-only.

TPEV_SVCSUCC
Received by the originator of a conversation, this event indicates that the subordinate
service on the other end of the conversation has finished successfully as defined by the
application (that is, it called tpreturn () with Tpsuccess). Aspart of ending the service
routine, the server has torn down the connection. Thus, cqisno longer avalid descriptor.
If therecipient isin transaction mode, then it can either commit (if it is also theinitiator)
or abort the transaction causing the work done by the server (if also in transaction mode)
to either commit or abort.

In amultithreaded application, athread in the TPINVAL IDCONTEXT State isnot allowed to issue a
cal to tprecv ().

Return Values

Uponreturnfrom tprecv () where revent isset to either TPEV_svcsucc Of TPEV_SVCFATIL, the
tpurcode global contains an application defined value that was sent as part of tpreturn ().

Upon failure, tprecv () returns-1 and sets tperrno to indicate the error condition. If acall fails
with a particular tperrno value, asubsequent call to tperrordetail (), with no intermediate
ATMI calls, may provide more detailed information about the generated error. Refer to the
tperrordetail (3c) reference page for more information.

Errors

214

Upon failure, tprecv () Sets tperrno to one of the following values:

[TPEINVAL]
Invalid arguments were given (for example, datais not the address of a pointer to abuffer
allocated by tpalloc () Or flags areinvalid).

[TPEOTYPE]
Either the type and subtype of the incoming buffer are not known to the caller, or
TPNOCHANGE Was Set in f1ags and the type and subtype of *data do not match the type
and subtype of the incoming buffer. Regardless, neither *data, its contentsnor *1en are
changed. If the conversation is part of the caller’ s current transaction, then the transaction
is marked abort-only because the incoming buffer is discarded.

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

[TPEBADDESC]
cdisinvalid.

[TPETIME]
This error code indicates that either atimeout has occurred or tprecv () has been
attempted, in spite of the fact that the current transaction is already marked rollback only.

If the caller isin transaction mode, then either the transaction is already rollback only or
atransaction timeout has occurred. The transaction is marked abort-only. If the caler is
not in transaction mode, a blocking timeout has occurred. (A blocking timeout cannot
occur if TenvoBLOCK and/or TeNOTIME isSpecified.) In either case, no changes are madeto
*data Or its contents.

If atransaction timeout has occurred, then, with one exception, any attemptsto send new
requests or receive outstanding replies will fail with TeeTIME Until the transaction has
been aborted. The exception is arequest that does not block, expects no reply, and is not
sent on behalf of the caller’ stransaction (that is, tpacall () with TPNOTRAN, TPNOBLOCK,
and TPNOREPLY Set).

When an ATMI call failsinside a transaction, the transaction is put into the
TX_ROLLBACK_ONLY State. This state is treated, for most purposes, as though it were
equivalent to atimeout. All further ATMI callsfor thistransaction (with the exception of
those issued in the circumstances described in the previous paragraph) will fail with
TPETIME.

[TPEEVENT]

An event occurred and itstypeis available in revent. Thereis arelationship between the
[TrETIME] and the [TPEEVENT] return codes. While in transaction mode, if the receiving
side of aconversation is blocked on tprecv and the sending side calls tpabort (), then
the receiving side gets areturn code of [TpEVENT] with an event of TpEV_DI1sconTMm. If,
however, the sending sidecallstpabort () beforethereceivingsidecallstprecv (), then
the transaction may have already been removed from the GTT, which causes tprecv ()
to fail with the [TpETIME] code.

[TPEBLOCK]
A blocking condition exists and TpnoOBLOCK Was specified.

[TPGOTSIG]
A signal was received and TPSIGRSTRT Was not specified.

[TPEPROTO]
tprecv () wascalledinanimproper context (for example, the connection was established
such that the calling program can only send data).

ATMI C Function Reference 215

[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error iswrittento a
log file.

[TPEOS]
An operating system error has occurred.
Usage
A server can pass an application defined return value and typed buffer when calling tpreturn ().
Thereturn valueisavailable in the global variable tpurcode and the buffer isavailablein data.
See Also

tpalloc (3c), tpconnect (3¢c), tpdiscon(3c), tperrordetail (3¢), tpsend(3c),
tpservice(3c), tpstrerrordetail (3c)

tpresume(3c)

Name

tpresume () —Resumes a global transaction.
Synopsis

#include <atmi.h>

int tpresume (TPTRANID *tranid, long flags)

Description

tpresume () iSused to resume work on behalf of a previously suspended transaction. Once the
caller resumeswork on atransaction, it must either suspend it with tpsuspend (), or completeit
with one of tpcommit () Or tpabort () at alater time.

Thecaller must ensurethat itslinked resource managers have been opened (viatpopen ()) before
it can resume work on any transaction.

tpresume () placesthe caller in transaction mode on behalf of the global transaction identifier
pointed to by tranid. Itisan error for tranidto be NULL.

Currently, f1ags are reserved for future use and must be set to 0.

In amultithreaded application, athread in the TpINVALIDCONTEXT State is not allowed to issuea
cal to tpresume ().

216 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

tpresume () can take effect in al participated resource managers including those in amultiple
resource mangers server group in aglobal transaction.

Return Value
tpresume () returns-1 on error and sets tperrno to indicate the error condition.

Errors

Under the following conditions, tpresume () failsand sets tperrno to:

[TPEINVAL]
Either tranidisaNULL pointer, it points to a non-existent transaction identifier
(including previously completed or timed-out transactions), or it points to a transaction
identifier that the caller is not allowed to resume. The caller’s state with respect to the
transaction is not changed.

[TPEMATCH]

tranid pointsto atransaction identifier that another process has already resumed. The
caller’ s state with respect to the transaction is not changed.

[TPETRAN]
The Oracle Tuxedo system is unable to resume the global transaction becausethe caller is
currently participating in work outside any global transaction with one or more resource
managers. All such work must be completed before a global transaction can be resumed.
The caller’ s state with respect to the local transaction is unchanged.

[TPEPROTO]

tpresume () was called in an improper context (for example, the caler isalready in
transaction mode). The caller’s state with respect to the transaction is not changed.

[TPESYSTEM]

An Oracle Tuxedo system error has occurred. The exact nature of the error iswrittento a
log file.

[TPEOS]
An operating system error has occurred.

Notes

XA-compliant resource managers must be successfully opened to be included in the global
transaction. (See tpopen (3c) for details.)

A process resuming a suspended transaction must reside on the same logical machine (LMID) as
the process that suspended the transaction. For a Workstation client, the workstation handler

ATMI C Function Reference 217

(WSH) to which it is connected must reside on the same logical machine as the handler for the
Workstation client that suspended the transaction.

See Also
tpabort (3c¢), tpcommit (3¢), tpopen (3c), tpsuspend(3c), tprmopen(3c),
tprmclose(3c), tprmstart(3c), tprmend(3c)

tpreturn(3c)

Name

tpreturn () —Returns from an Oracle Tuxedo ATMI system service routine.

Synopsis

void tpreturn(int rval, long rcode, char *data, long len, long \
flags)

Description

tpreturn () indicatesthat a service routine has completed. tpreturn () actslikeareturn
statement in the C language (that is, when tpreturn () iscalled, the service routine returns to
the Oracle Tuxedo ATMI system dispatcher). Itisrecommended that tpreturn () becalled from
within the service routine dispatched to ensure correct return of control to the Oracle Tuxedo
ATMI system dispatcher.

tpreturn () isused to send a service' sreply message. If the program receiving thereply is
waiting in either tpcall (), tpgetrply (), OF tprecv (), then after asuccessful call to
tpreturn (), thereply isavailable in the receiver’s buffer.

For conversational services, tpreturn () also tearsdown the connection. That is, the service
routine cannot call tpdiscon () directly. To ensure correct results, the program that connected
to the conversational service should not call tpdiscon ()] rather, it should wait for notification
that the conversational service has completed (that is, it should wait for one of the events, like
TPEV_SVCSUCC Of TPEV_SVCFATL, Sent by tpreturn()).

If the service routine was in transaction mode, tpreturn () placesthe service' s portion of the
transaction in a state from which it may be either committed or rolled back when the transaction
iscompleted. A service may beinvoked multiple times as part of the same transaction so it is not
necessarily fully committed or rolled back until either tpcommit () or tpabort () iscaled by
the originator of the transaction.

218 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

tpreturn () should be called after receiving all replies expected from service requests initiated
by the service routine. Otherwise, depending on the nature of the service, either a TPESVCERR
statusor aTPEV_SVCERR event will be returned to the program that initiated communication with
the service routine. Any outstanding replies that are not received will automatically be dropped
by the communication manager. In addition, the descriptors for those replies become invalid.

tpreturn () should be called after closing all connectionsinitiated by the service. Otherwise,
depending on the nature of the service, either a TPESVCERR OF a TPEV_SVCERR event will be
returned to the program that initiated communication with the serviceroutine. Also, animmediate
disconnect event (that is, TPEV_DIscoNIMM) is sent over al open connections to subordinates.

Since a conversational service has only one open connection which it did not initiate, the
communication manager knows over which descriptor data (and any event) should be sent. For
this reason, a descriptor is not passed to tpreturn ().

The following is adescription of the arguments for tpreturn (). rval can be set to one of the
following:

TPSUCCESS
The service hasterminated successfully. If datais present, thenit will be sent (barring any
failures processing the return). If the caller isin transaction mode, then tpreturn ()
placesthe caller’ s portion of the transaction in a state such that it can be committed when
the transaction ultimately commits. Note that acall to tpreturn () does not necessarily
finalize an entire transaction. Also, even though the caller indicates success, if there are
any outstanding replies or open connections, if any work done within the service caused
its transaction to be marked rollback-only, then afailed message is sent (that is, the
recipient of the reply receives a TPESVCERR indication or a TPEV_SVCERR event). Note
that if atransaction becomes rollback-only while in the service routine for any reason,
then rval should besetto Tera1L. If TPSUCCESS isspecified for aconversational service,
aTPEV_SVCSUCC event is generated.

TPFATIL
The service has terminated unsuccessfully from an application standpoint. An error will
be reported to the program receiving the reply. That is, the call to get the reply will fail
and therecipient receivesaTpsvcrarL indication or aTpEv_svcraIL event. If thecaller
isin transaction mode, then tpreturn () marksthetransaction asrollback-only (notethat
the transaction may aready be marked rollback-only). Barring any failuresin processing
thereturn, the caller’ sdatais sent, if present. One reason for not sending the caller’ s data
isthat a transaction timeout has occurred. In this case, the program waiting for the reply
will receive an error of TeETTIME. If TPFATL is Specified for a conversational service, a
TPEV_SVCFAIL event is generated.

ATMI C Function Reference 219

220

TPEXIT
This value behaves the same as TpraTL With respect to completing the service, but when
TPEXIT iSreturned, the server exits after thetransactionisrolled back and thereply is sent
back to the requester.
When specified for a multithreaded process, Trex1T indicates that an entire process (not
only asingle thread within that process) will be killed.
If the server isrestartable, then the server is restarted automatically.

If rval isnot set to one of these three values, then it defaults to TPFATL.

An application defined return code, rcode, may be sent to the program receiving the service
reply. This code is sent regardless of the setting of rva1 aslong as areply can be successfully
sent (that is, aslong as the receiving call returns success or TpESVCFATL). In addition, for
conversational services, this code can be sent only if the service routine has control of the
connection when it issues tpreturn (). Thevalue of rcode is availablein the receiver in the
variable, tpurcode ().

data pointsto the dataportion of areply to besent. If dataisnon-NULL, it must point to abuffer
previously obtained by acall to tpalloc (). If thisisthe same buffer passed to the serviceroutine
upon itsinvocation, then its disposition is up to the Oracle Tuxedo ATMI system dispatcher; the
service routine writer does not have to worry about whether it isfreed or not. In fact, any attempt
by the user to free this buffer will fail. Also any attempt to reall ocate this buffer in another thread
is prohibited. However, if the buffer passed to tpreturn () isnot the same one with which the
serviceisinvoked, then tpreturn () freesthat buffer. Although the main buffer isfreed, any
buffers referenced by embedded fields within that buffer are not freed. 1en specifies the amount
of the data buffer to be sent. If data pointsto abuffer which does not require alength to be
specified, (for example, an FML fielded buffer), then 1en isignored (and can be 0).

If dataisNULL, then 1enisignored. Inthiscase, if areply isexpected by the program that
invoked the service, then areply is sent with no data. If no reply is expected, then tpreturn ()
frees data as necessary and returns sending no reply.

Currently, f1ags isreserved for future use and must be set to O (if set to a non-zero value, the
recipient of the reply receives a TPESVCERR indication or a TPEV_SVCERR event).

If the service is conversational, there are two cases where the caller’ s return code and the data
portion are not transmitted:

o |f the connection has already been torn down when the call is made (that is, the caller has
received TPEV_DISCONIMM ON the connection), then this call smply ends the service
routine and rolls back the current transaction, if one exists.

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

o |f the caller does not have control of the connection, either TPEV_SVCFATL Of
TPEV_SVCERR IS sent to the originator of the connection as described above. Regardless of
which event the originator receives, no datais transmitted; however, if the originator
receives the TpEV_SVCFAIL event, the return code is available in the originator's
tpurcode()Vaﬂaue.

Return Values

A service routine does not return any valueto its caller, the Oracle Tuxedo ATMI system
dispatcher; thus, it is declared as avoid. Service routines, however, are expected to terminate
using either tpreturn () Of tpforward (). A conversational service routine must use
tpreturn (), and cannot use tpforward () . If aservice routine returns without using either
tpreturn() Of tpforward () (thatis, it usesthe C language return statement or just simply
“fallsout of thefunction”) or tpforward () iscalled from aconversationa server, the server will
print awarning message in the log and return a service error to the service requester. In addition,
all open connections to subordinates will be disconnected immediately, and any outstanding
asynchronous replieswill be dropped. If the server wasin transaction mode at the time of failure,
thetransactionismarked rollback-only. Note also that if either tpreturn () Or tpforward() are
used outside of a serviceroutine (for example, in clients, or in tpsvrinit () Of tpsvrdone()),
then these routines simply return having no effect.

Errors

Since tpreturn () endsthe serviceroutine, any errors encountered either in handling arguments
or in processing cannot beindicated to the function’s caller. Such errors cause tperrno to be set
to TPESVCERR for a program receiving the service' s outcome via either tpcall () or
tpgetrply (), and causethe event, TPEV_SVCERR, t0 be sent over the conversation to aprogram
using tpsend () Of tprecv ().

If either sverIMEOUT in the uBBCONFIG file or TA_sveTIMEOUT inthe TM_MIB iS non-zero, the
event TPEV_SVCERR is returned when a service timeout occurs.

tperrordetail () and tpstrerrordetail () can be used to get additional information about
an error produced by thelast Oracle Tuxedo ATMI system routine called in the current thread. If
an error occurred, tperrordetail () returnsanumeric valuethat can be used asan argument to
trstrerrordetail () to retrieve the text of the error detail.

See Also

tpalloc(3c), tpcall (3c), tpconnect (3¢c), tpforward(3c), tprecv(3c), tpsend(3c),
tpservice(3c), tprmopen(3c), tprmclose(3c), tprmstart(3c), tprmend(3c)

ATMI C Function Reference 221

tprmclose(3c)

Name

tprmclose () - Routine that closes a specified RM configured in a multiple RMs server group.

Synopsis
#include <atmi.h>
int tprmclose(char *rmname, long flags)

Description

tprmclose () closesaspecified resource manager by the argument rmname. If current context
isin atransaction context, this routine does nothing and returns error to caller. If current RM is
till not opened or already closed (that is, tprmclose () iscalled morethan once), no actionis
taken and success is returned.

tprmclose () can only close those resource manager opened via tprmopen () routine.

Thefirst parameter rmname currently must be avalue which is configured in the *rms section of
UBBCONFIG. The flags must be 0.

Return Values
Upon failure, tprmclose () returns-1 and sets the tperrno to indicate the error condition.

Error
Upon failure, tprmclose () Sets tperrno to one of the following values:

[TPERMERR]
A resource manager failed to close correctly. More information concerning the reason a
resource manager failed to close can be obtained by interrogating a resource manager in
its own specific manner. Note that any calls to determine the exact nature of the error
hinder portahility.

[TPEPROTO]
tprmclose () wascalled in aimproper context. For example, it was invoked by a server
which isnot built specified using the -m option when executing buildserver, it was
executed in an ongoing transaction context.

[TPEINVAL]
Invalid parameters were given (for example, the flags value is not 0, or the rmname is
NULL or not avalid resource manager name configured in current *rus section whichis
associated with a multiple resource managers server group).

222 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error iswrittento a

log file.
[TPEOS]
An operating system error has occurred.

See Also
tpopen(3c), tpclose(3c)), tprmopen (3c)

tprmend(3c)

Name

tprmend () - Routine for ending current work performed on behalf of atransaction branchin a
specified RM.

Synopsis

#include <atmi.h>

int tprmend (char *rmname, long flags);
Description

tprmend () ends current work performed on behalf of atransaction branch in a specified RM.
This routine informs the resource manager to disassociate with the transaction branch. If current
RM isstill not opened or current context is not in atransaction state, tprmend () does nothing
and return success to caller.

Thefirst parameter rmida currently must be avalue which is configured in UBBCONFIG of this
multiple resource manager group. The flags must be 0.

Return Values
Upon failure, tprmend () returns-1 and sets the tperrno to indicate the error condition.

Error
Upon failure, tprmend () setstperrno to one of the following values:

[TPERMERR]
An error occurred in dissociating the transaction branch operation. Note that any callsto
determine the exact nature of the error hinder portability.

ATMI C Function Reference 223

[TPEPROTO]
tprmend () wascalled in aimproper context (for example, it war invoked in a server
which was not specified with -u option when executing buildserver).

[TPETRAN]
tprmend () was called in anon-transaction context.

[TPEINVAL]
Invalid parameters were given (for example, the flags valueis not 0, or the rmname
parameter isNULL or not avalid resource manager name configured in current multiple
resource managers server group).

[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error iswrittento a
log file.

[TPEOS]
An operating system error has occurred.

See Also
tprmstart (3c)

tprmopen(3c)

Name

tprmopen () - Routines for open a specified RM configured in the UBBCONFIG *Rrums section
which is associated with a multiple RMs server group.

Synopsis
#include <atmi.h>
int tprmopen (char *rmname, long flags)

Description

tprmopen () opens a specific resource manager by name configured in the UBBCONFIG *rmMs
section and associated with a multiple resource managers server group. If the resource manager
specified by rmname is already open (that is, tprmopen () is called more than once with this

rmname, OF the rmname has been opened by tpopen ()), no action istaken and successisreturned.

The first parameter rmname currently must be avalue which is configured in UBBCONFI G of
this multiple resource manager group. The flags must be 0.

224 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

Return Values
Upon failure, tprmopen () returns -1 and sets the tperrno to indicate the error condition.

Error
Upon failure, tprmopen () Setstperrno to one of the following values:

[TPERMERR]
A resource manager failed to open correctly. More information concerning the reason a
resource manager failed to open can be obtained by interrogating a resource manager in
its own specific manner. Note that any calls to determine the exact nature of the error
hinder portability.

[TPEPROTO]
tprmopen () Was caled in aimproper context(for example, it was invoked by a server
which is not built with -m option by buildserver, it was invoked by a client process).

[TPEINVAL]
Invalid parameters were given (for example, the flagsvalueisnot O, or the rmname isnull
or not avalid resource manager name configured in the UBBCONFIG *rus section
associated with an Multiple RMs server group).

The other caseisthis RM is not a CAE specification of RM.

[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error iswrittento a
log file.

[TPEOS]

An operating system error has occurred.

See Also
tpopen(3c), tpclose(3c), tprmclose(3c)
tprmstart(3c)
Name
tprmstart () - Routinethat starts work on behalf of a transaction branch of a specified RM in

aMRM server.
Synopsis

#include <atmi.h>
int tprmstart (char *rmname, long flags)

ATMI C Function Reference 225

Description

tprmstart () informsthe opened RM to join this transaction work unit on behalf of a
transaction branch. If current RM is already in started state, then this routine skips the operation.
If current RM is still not opened, tprmstart () does nothing and return error to caller.

Thefirst parameter rmname currently must be avalue which is configured in UBBCONFI G of
this multiple resource manager group. The flags must be 0.

tprmstart () doesnot support old preliminary specification type of RM.

Return Values

Error

Upon failure, tprmstart () returns -1 and sets the tperrno to indicate the error condition.

Upon failure, tprmopen () Setstperrno to one of the following values:

[TPERMERR]
A resource manager failed to start correctly. More information concerning the reason a
resource manager failed to start can be obtained by interrogating aresource manager inits
own specific manner. Note that any callsto determine the exact nature of the error hinder

portability.

[TPEPROTO]
tprmstart () was called in aimproper context (for example, it was invoked by a server
which isnot in aMultiple RMs server group or current process was not built with -m
option in buildserver, the current RM is till not open).

[TPETRAN]
tprmstart () was called in a non-transaction context.

[TPEINVAL]
Invalid parameters were given (for example, the flags valueis not 0, or rmname iSNULL
or not avalid resource manager name configured in the *ruS section which is associated
with amultiple resource managers server group).

[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error iswrittento a

log file.

[TPEOS]
An operating system error has occurred.

See Also

226

tprmend (3c)

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

tpshiktime(3c)

Name

tpsblktime () —Routinefor setting blocktime in seconds or milliseconds for the next service call or for
all servicecalls

Synopsis
#include <atmi.h>

int tpsblktime (int blktime, long flags)

Description

tpsblktime () iSused to set the blocktime value, in seconds or milliseconds, of a potential
blocking API. A potential blocking API isdefined as: any system API that can use the flag
TBNOBLOCK as avalue. It does not have any effect on transaction timeout values.

Thebilktime rangeis0to 32767. If the flag TPBLX_MILLISECOND iS Set, the scopeisfrom 0 to
32767 milliseconds; if the flag TPBLX_SECOND is set, the scopeis from 0 to 32767 seconds.
Effective blocktime values are rounded up to the nearest multiple of the scanunIT value as
depicted in the following example:

User Set Blocktime Value Scanunit Value Effective Blocktime Value
13 5 15
18 5 20

A Ovalueindicatesthat any previously set blocking timeflag valueis cancelled, and the blocking
time set with a different blocktime flag value prevails. If tpsblktime () isnot called, the
BLOCKTIME valueinthe »sErvIcEs section or thedefault *RESoURCES section of theuBBcoNFIG
fileisused.

Note: Blocking timeouts set with tpsblktime () take precedence over the BLOCKTIME
parameter Set in the servIicEs and RESOURCES section of the ussconric file. The
precedence for blocktime checking is as follows:
tpsblktime (TPBLK_NEXT), tpsblktime (TPBLK_ALL), *SERVICES, *RESOURCES

Thefollowingisalist of valid fiags:

ATMI C Function Reference 227

228

TPBLK_MILLISECOND

Thisflag sets the blocktime value, in milliseconds. To set millisecond blocktime, second
argument flags must contain TpBLK_MILLISECOND. Without that, the unit of the first
argument is second. If the unit of scanun1T issecond in TUXCONFIG, invoking
tpsblktime With flag TPBLK_MILLISECOND Will return an error TPEINVAL.

TPBLK_SECOND

This flag sets the blocktime value, in seconds. Thisis default behavior.

TPBLK_NEXT

This flag sets the blocktime value for the next potential blocking API.
Any API that is called containing the TpNoBLOCK flag is not effected by tpsblktime
(TPBLK_NEXT) and continues to be non-blocking.

A TpBLK_NEXT flag value overridesaTperk_aLL flag value for those API calls that
immediately follow it. For example:

tpsblktime (50, TPBLK_ALL)

tpcall (one)

tpsblktime (30, TPBLK_NEXT | TPBLK_MILLISECOND)

tpcall (two)

tpcall (three)

tpcall (two) Will have a 30 millisecond blocking timeout based on tpsblktime

(30, TPBLK_NEXT | TPBLK_MILLISECOND). tpcall (one) and tpcall (three) Will have
a 50 second blocking timeout based on tpsblktime (50, TPBLK_ALL).

tpsblktime (TPBLK_NEXT) operateson aper-thread basis. Therefore, it isnot necessary

for applications to use any mutex around the tpsblktime (TPBLK_NEXT) call and the
subsequent API call which it affects.

TPBLK_ALL

Thisflag setsthe blocktime value for the all subsequent potential blocking APIs until the
next tpsblktime () iscalled within that context. Any API that is called containing the
TPNOBLOCK flag isnot effected by tpsblktime (TPBLK_ALL) and continuesto be
non-blocking.

tpsblktime (TPBLK_ALL) Operates on aper-context basis. Therefore, it is necessary to
call tpsblktime (TPBLK_ALL) inonly onethread of context that isused in multiple
threads.

tpsblktime (TPBLK_ALL)Will not affect any context that follows after tpterm(3c) is
called.

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

Note: In order to perform blocking time values that are not affected by thread timing
dependencies, it is best that tpsblktime (TPBLK_ALL) iscaledina
multi-threaded context immediately after tpinit (3c¢) using the
TPMULTICONTEXTS flag and before the return value of tpgetctxt (3¢) ismade
available to other threads.

When tpsblktime (TPBLK_ALL) iscaledinaservice on amulti-threaded server, it will
affect the currently executed thread only. To set the blocktime for al services, it is best
to use tpsblktime (TPBLK_ALL) With tpsvrinit (3¢c) Of tpsvrthrinit (3c).

Return Values

tpsblktime () returns-1 on error and Sets tperrno to indicate the error condition.

Error

Upon failure, tpsblktime () S&tStperrno to one of the following values:

[TPEINVAL]

Invalid arguments were given. For example, the value of b1xtime isnegative or more
than one TPBLK_NEXT, TPBLK_ALL, TPBLK_NEXT | TPBLK_MILLISECOND,
TPBLK_NEXT | TPBLK_SECOND, TPBLK_ALL | TPBLK_MILLISECOND,

TPBLK_ALL | TPBLK_SECOND blocktime flag value is specified.

Table 15 Relation Between SCANUNIT and Flag in tpshlktime

SCANUNIT in Flag in tpshlktime Result

UBBCONFIG

In second TPBLK_SECOND passed

In second TPBLK_MILLISEC failed
OND

In millisecond TPBLK_SECOND Passed

In millisecond TPBLK_MILLISEC passed

OND

[TPERELEASE]

tpsblktime () wascaledinaclient attached to aworkstation handler running an earlier

Tuxedo release.

ATMI C Function Reference 229

[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error iswrittento a
log file.

See Also

tpcall (3c), tpcommit(3c), tprecv(3c), tpgblktime(3c), UBBCONFIG (5)

tpsemt(3c)

Name

tpscmt () —Routine for setting when tpcommit () should return.

Synopsis

#include <atmi.h>

int tpscmt(long flags)

Description

230

tpscmt () Setsthe Tp_comMmMIT_CONTROL characteristic to the value specified in f1ags. The
TP_COMMIT_CONTROL characteristic affects the way tpcommit () behaves with respect to
returning control to itscaller. A program can call tpscmt () regardless of whether itisin
transaction mode or not. Note that if the caller is participating in atransaction that another
program must commit, thenitscall to tpscmt () doesnot affect that transaction. Rather, it affects
subsequent transactions that the caller will commit.

In most cases, atransaction is committed only when an Oracle Tuxedo ATMI system thread of
control calls tpcommit (). Thereis one exception: when a serviceis dispatched in transaction
mode because the auToTRrAN Variablein the *servIcEs section of theussconrIc fileisenabled,
then the transaction completes upon calling tpreturn (). If tpforward () iscalled, then the
transaction will be completed by the server ultimately calling tpreturn (). Thus, the setting of
the Tp_comm1T_CONTROL Characteristic in the service that calls tpreturn () determines when
tpcommit () returnscontrol within aserver. If tpcommit () returnsaheuristic error code, the
server will write amessage to alog file.

When aclient joins an Oracle Tuxedo ATMI system application, theinitial setting for this
characteristic comes from a configuration file. (See the cuTrET variable in the RESOURCES
section of UBBCONFIG(5))

The following are the valid settings for f1ags:

ATMI C Function Reference

../rf5/rf5.html
../rf5/rf5.html

Introduction to the C Language Application-to-Transaction Monitor Interface

TP_CMT_LOGGED
Thisflag indicates that tpcommit () should return after the commit decision has been
logged by the first phase of the two-phase commit protocol but before the second phase
has completed. This setting allows for faster response to the caller of tpcommit ()
althoughthereisarisk that atransaction participant might decideto heuristically complete
(that is, abort) its work due to timing delays waiting for the second phase to complete. If
this occurs, there is no way to indicate this situation to the caller since tpcommit () has
aready returned (although the Oracle Tuxedo ATMI system writesamessageto alogfile
when a resource manager takes a heuristic decision). Under normal conditions,
participants that promise to commit during the first phase will do so during the second
phase. Typically, problems caused by network or site failures are the sourcesfor heuristic
decisions being made during the second phase.

TP_CMT_COMPLETE
Thisflagindicatesthat tpcommit (3c) should return after the two-phase commit protocol
has finished completely. This setting allows for tpcommit () to return an indication that
aheuristic decision occurred during the second phase of commit.

In amulti-threaded application, athread in the TPINVALIDCONTEXT State is not allowed to issue
acall to tpscmt ().

Return Values
Upon success, tpscmt () returns the previous value of the Tp_comMIT_CONTROL Characteristic.

Upon failure, tpscemt () returns -1 and sets tperrno to indicate the error condition.

Errors
Upon failure, tpscmt () Sets tperrno to one of the following values:

[TPEINVAL]
flags iSnot one of TP_CMT LOGGED Of TP_CMT_ COMPLETE.

[TPEPROTO]
tpscmt () was called improperly.

[TPESYSTEV]
An Oracle Tuxedo system error has occurred. The exact nature of the error iswrittento a
log file.

[TPEOS]
An operating system error has occurred.

ATMI C Function Reference 231

Notices

When using tpbegin (), tpcommit () and tpabort () to delineate an Oracle Tuxedo ATMI
system transaction, it isimportant to remember that only the work done by a resource manager
that meetsthe XA interface (and islinked to the caller appropriately) hastransactional properties.
All other operations performed in atransaction are not affected by either tpcommit () or
tpabort (). Seebuildserver (1) for detailson linking resource managers that meet the XA
interface into a server such that operations performed by that resource manager are part of an
Oracle Tuxedo ATMI system transaction.

See Also

tpabort (3c), tpbegin(3c), tpcommit (3¢c), tpgetlev(3c)

tpseal(3c)

Name

tpseal () —Marks atyped message buffer for encryption.

Synopsis

#include <atmi.h>

int tpseal (char *data, TPKEY hKey, long flags)

Description

tpseal () marks, or registers, amessage buffer for encryption. The principa who owns hxey can
decrypt this buffer and access its content. A buffer may be sealed for more than one recipient
principal by making several callsto tpseal ().

data must point to avalid typed message buffer either (1) previously alocated by a process
calling tpalloc () or (2) delivered by the systemto areceiving process. The content of the buffer
may be modified after tpseal () isinvoked.

When the message buffer pointed to by data istransmitted from a process, the public key
software encrypts the message content and attaches an encryption envel ope to the message buffer
for each encryption registration request. An encryption envelope enables a receiving process to
decrypt the message.

The f1ags argument is reserved for future use and must be set to 0.

Return Values

232

On failure, this function returns -1 and sets tperrno to indicate the error condition.

ATMI C Function Reference

../rfcm/rfcmd.html

Introduction to the C Language Application-to-Transaction Monitor Interface

Errors

[TPEINVAL]
Invalid argumentsweregiven. For example, hxey isnot avalid key for encrypting or data
isSNULL.

[TPESYSTEM]
An error has occurred. Consult the system error log file for details.

See Also

tpkey _close(3c), tpkey_open(3c)

tpsend(3c)

Name
tpsend () —Routine for sending a message in a conversational connection.

Synopsis
#include <atmi.h>

int tpsend(int cd, char *data, long len, long flags, long *revent)

Description

tpsend () isused to send data across an open connection to another program. The caller must
have control of the connection. tpsend ()’ sfirst argument, cd, specifies the open connection
over which datais sent. cd isadescriptor returned from either tpconnect () or the TpsvcINFO
parameter passed to a conversational service.

The second argument, data, must point to a buffer previously allocated by tpalioc(). len
specifies how much of the buffer to send. Notethat if data pointsto abuffer of atype that does
not require alength to be specified (for example, an FvL fielded buffer), then 1en isignored (and
may be 0). Also, data can be NULL inwhich case 1en isignored (no application datais sent—
thismight be done, for instance, to grant control of the connection without transmitting any data).
Thetype and subtype of data must match one of the types and subtypes recognized by the other
end of the connection.

Thefollowingisalist of valid fiags:

TPRECVONLY
Thisflag signifies that, after the caller’s data is sent, the caller gives up control of the
connection (that is, the caller can not issue any more tpsend() calls). When the receiver

ATMI C Function Reference 233

on the other end of the connection receivesthe datasent by tpsend (), it will also receive
an event (TPEV_SENDONLY) indicating that it has control of the connection (and can not
issue more any tprecv () cals).

TPNOBLOCK
The data and any events are not sent if a blocking condition exists (for example, the
internal buffersinto which the message istransferred are full). When TpNoBLOCK iS not
specified and ablocking condition exists, the caller blocks until the condition subsides or
atimeout occurs (either transaction or blocking timeout).

TPNOTIME
Thisflag signifiesthat the caller iswilling to block indefinitely and wants to be immune
to blocking timeouts. Transaction timeouts may still occur.

TPSIGRSTRT
If asignal interrupts any underlying system calls, then the interrupted system call is
reissued.

If an event existsfor the descriptor, cd, then tpsend () will fail without sending the caller’ sdata.
The event typeisreturned in revent. Valid eventsfor tpsend () areasfollows:

TPEV_DISCONIMM
Received by the subordinate of a conversation, this event indicates that the originator of
the conversation hasissued an immediate disconnect on the connection viatpdiscon (),
oritissued tpreturn (), tpcommit () OF tpabort () withthe connection still open. This
event is also returned to the originator or subordinate when a connection is broken due to
a communications error (for example, aserver, machine, or network failure).

TPEV_SVCERR
Received by the originator of a conversation, this event indicates that the subordinate of
the conversation has issued tpreturn () without having control of the conversation. In
addition, tpreturn () hasbeenissued in amanner different from that described for
TPEV_SVCFAIL below. Thisevent can be caused by an ACL permissions violation; that
is, the originator does not have permission to connect to the receiving process. This event
isnot returned at the time the tpconnect () isissued, but isreturned with the first
tpsend () (following atpconnect () with flag TPSENDONLY) OF tprecv () (following a
tpconnect () With flag TPRECVONLY). A system event and alog message are aso
generated.

TPEV_SVCFAIL
Received by the originator of a conversation, this event indicates that the subordinate of
the conversation hasissued tpreturn () without having control of the conversation. In
addition, tpreturn () wasissued with the rva1 set to TPFAIL or TPEXIT and data to
NULL.

234 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

Because each of these eventsindicates an immediate disconnection notification (that is, abortive
rather than orderly), datain transit may belost. The descriptor used for the connectionisnolonger
valid. If the two programs were participating in the same transaction, then the transaction has
been marked abort-only.

If the value of either svcTiMEOUT inthe uBBCcoNFIG file or Ta_sveTiMEOUT inthe TM _MIB IS
non-zero, TPESVCERR iS returned when a service timeout occurs.

In amultithreaded application, athread in the reINvALTDCONTEXT Stateisnot allowed toissuea
call to tpsend ().

Return Values

Uponreturnfrom tpsend () wWhere revent iSset to either TPEV_svcsucc Of TPEV_SVCFATL, the
tpurcode () global contains an application-defined value that was sent as part of tpreturn().
Thefunction tpsend () returns-1on error and sets tperrno toindicatethe error condition. Also,
if an event exists and no errors were encountered, tpsend () returns-1 and tperrno is set to
[TPEEVENT].

Errors
Upon failure, tpsend () Sets tperrno to one of the following values:

[TPEINVAL]
Invalid arguments were given (for example, data does not point to a buffer allocated by
tpalloc () OF flags areinvalid).

[TPEBADDESC]
cdisinvalid.

[TPETIME]
This error code indicates that either atimeout has occurred or tpsend () has been
attempted, in spite of the fact that the current transaction is already marked rollback only.

If the caller isin transaction mode, then either the transaction is aready rollback only or
atransaction timeout has occurred. The transaction is marked abort-only. If the caller is
not in transaction mode, a blocking timeout has occurred. (A blocking timeout cannot
occur if TeNoBLOCK and/or TPNOTIME iS specified.)

If atransaction timeout has occurred, then, with one exception, any attemptsto send new
requests or receive outstanding replies will fail with TeETIME Until the transaction has
been aborted. The exception is arequest that does not block, expects no reply, and is not
sent on behalf of the caller’ stransaction (that is, tpacall () with TPNOTRAN, TPNOBLOCK,
and TPNOREPLY Set).

ATMI C Function Reference 235

When atransactional ATMI call failsinside a transaction, the transaction is put into the
TX_ROLLBACK_ONLY State. This state is treated, for most purposes, as though it were
equivaent to atimeout. All further ATMI calls for thistransaction (with the exception of
those issued in the circumstances described in the previous paragraph) will fail with
TPETIME.

[TPEEVENT]
An event occurred. data isnot sent when this error occurs. The event typeisreturned in
revent.

[TPEBLOCK]
A blocking condition exists and TpnoBLOCK Was specified.

[TPGoTSIG]
A signal was received and TPSIGRSTRT Was not specified.

[TPEPROTO]
tpsend () wascalledinanimproper context (for example, the connection was established
such that the calling program can only receive data).

[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error iswrittento a
log file.

[TPEOS]
An operating system error has occurred.

See Also

tpalloc(3c), tpconnect (3c), tpdiscon(3c), tprecv(3c), tpservice(3c)

tpservice(3c)

Name
tpservice ()—Template for service routines.

Synopsis
#include <atmi.h> /* C interface */
void tpservice(TPSVCINFO *svcinfo) /* C++ interface - must have
* C linkage */

extern “C” void tpservice (TPSVCINFO *svcinfo)

236 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

Description

tpservice () isthetemplate for writing service routines. Thistemplateis used for servicesthat
receiverequestsviatpcall (), tpacall () Of tpforward () routinesaswell asby servicesthat
communicate via tpconnect (), tpsend () and tprecv () routines.

Service routines processing regquests made via either tpcall () oOr tpacall () receive at most
one incoming message (in the data element of svcinfo) and send at most one reply (upon
exiting the service routine with tpreturn ()).

Conversational services, on the other hand, areinvoked by connection requests with at most one
incoming message al ong with ameans of referring to the open connection. When aconversational
service routineisinvoked, either the connecting program or the conversational service may send
and receive data as defined by the application. The connection is half-duplex in nature meaning
that one side controlsthe conversation (that is, it sends data) until it explicitly gives up control to
the other side of the connection.

Concerning transactions, service routines can participatein at most one transaction if invoked in
transaction mode. As far as the service routine writer is concerned, the transaction ends upon
returning from the service routine. If the service routine is not invoked in transaction mode, then
the service routine may originate as many transactions as it wants using tpbegin (),

tpcommit (), and tpabort (). Notethat tpreturn () isnot used to complete a transaction.
Thus, itisan error to call tpreturn () with an outstanding transaction that originated within the
service routine.

Service routines are invoked with one argument: svcinfo, apointer to a service information
structure. This structure includes the following members:

char name[128];
char *data;
long len;

long flags;

int cd;

long appkey;
CLIENTID cltid;

name iS populated with the service name that the requester used to invoke the service.

The setting of £1ags upon entrance to a service routine indicates attributes which the service
routine may want to note. The following are the possible values for f1ags:

ATMI C Function Reference 237

238

TPCONV
A connection request for a conversation has been accepted and the descriptor for the
conversation isavailablein cd. If not set, then thisis arequest/response serviceand cdis
not valid.

TPTRAN
The service routine is in transaction mode.

TPNOREPLY
The caller is not expecting areply. This option will not be set if Tpconv is set.

TPSENDONLY
The serviceisinvoked such that it can only send data across the connection and the
program on the other end of the connection can only receive data. Thisflag is mutually
exclusive with TereECcvONLY and may be set only when Tpconv is also set.

TPRECVONLY
The service isinvoked such that it can only receive data from the connection and the
program on the other end of the connection can only send data. Thisflag is mutually
exclusive with TpsENDONLY and may be set only when Tpconv is also set.

data pointsto the data portion of arequest message and 1en isthe length of the data. The buffer
pointed to by data wasallocated by tpalloc () inthecommunication manager. Thisbuffer may
be grown by the user with tprealloc (); however, it cannot be freed by the user. Itis
recommended that this buffer bethe one passed to either tpreturn () oOr tpforward () whenthe
service ends. If adifferent buffer is passed to those routines, then that buffer is freed by them.
Notethat the buffer pointed to by data will be overwritten by the next servicerequest evenif this
buffer is not passed to tpreturn () Or tpforward (). data may be NULL if no data
accompanied the request. In this case, 1en will be 0.

When Tpconv isset in flags, cd isthe connection descriptor that can be used with tpsend ()
and tprecv () to communicate with the program that initiated the conversation.

appkey is set to the application key assigned to the requesting client by the application defined
authentication service. Thiskey valueis passed along with any and all service requests made
whilewithin thisinvocation of the serviceroutine. appkey will have avalue of -1 for originating
clients that do not pass through the application authentication service.

citidistheuniqueclientidentifier for the originating client associated with this service request.
The definition of thisstructureis made availableto the applicationin atmi . h solely so that client
identifiers may be passed between application serversif necessary. Therefore, the semantics of

the fields defined bel ow are not documented and applications should not manipul ate the contents

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

of cL.IENTID structures. Doing sowill invalidate the structures. The cL.TENTID structureincludes
the following member:

long clientdatal4];

Note that for C++, the service function must have C linkage. Thisis done by declaring the
function as ‘extern“C."”’

Return Values

A service routine does not return any valueto its caller, the communication manager dispatcher;
thus, it is declared as avoid. Service routines, however, are expected to terminate using either
tpreturn () Of tpforward (). A conversational service routine must use tpreturn (), and
cannot use tpforward (). If aservice routine returns without using either tpreturn () or
tpforward () (thatis, it usesthe C language return statement or just simply “falls out of the
function”) or tpforward () iscalled from aconversational server, the server will print awarning
messagein alog fileand return aservice error to the originator or requester. All open connections
to subordinateswill be disconnected immediately, and any outstanding asynchronous replieswill
be marked stale. If the server was in transaction mode at the time of failure, the transaction is
marked abort-only. Note also that if either tpreturn() or tpforward () are used outside of a
serviceroutine (for example, inclients, orin tpsvrinit () Of tpsvrdone ()), then theseroutines
simply return having no effect.

Errors

Since tpreturn () endsthe serviceroutine, any errors encountered either in handling arguments
or in processing cannot be indicated to the function’ s caller. Such errors cause tperrno to be set
to TPESVCERR for a program receiving the service' s outcome via either tpcall () or
tpgetrply (), and causethe event, TPEV_SVCERR, t0 be sent over the conversation to a program
using tpsend () Of tprecv ().

See Also

tpalloc (3c), tpbegin(3c), tpcall (3¢), tpconnect (3¢), tpforward(3c),

tpreturn (3c), servopts (5)

tpsetcallinfo(3c)

Name
tpsetcallinfo ()- Routine for adding out-of-band information to a Tuxedo request.

ATMI C Function Reference 239

../rf5/rf5.html

Synopsis

int tpsetcallinfo(const char *msg, FBFR32 *obuf, long flags)

Description

tpsetcallinfo () isused for adding out-of-band data to an existing Tuxedo typed message. It
supports the following parameters:

msg
The typed buffer used to attach out-of-band data. This buffer must has been previously
alocated by aprocess calling tpalloc () and used in the subsequent tpcall () asidata

obuf
The FML 32 buffer used to contain the fields.

flags

Reserved for future use.

tpsetcallinfo can be used in the following use-case:

e add custom HTTP headersto an outgoing HTTP or SOAP call when the target serviceis
an HTTP/REST or SOAP web service accessed through the GWWS gateway.

Note: Thisfeature can potentially add HT TP headersthat may interferewiththe HTTP protocol
itself, so care should be taken when using the tpsetcallinfo () APl. Custom HTTP
headers are added to the end of other headersand in many cases should not be aproblem,
however thisis not a guarantee depending on the application server involved. For
example, setting 'content-Length: nnn'may causearequest or responseto berejected
or mis-handled. Care should be taken by the application programmer so asto not employ
headersthat may interfere with the other party (application server, HTTP server or SOAP
client programming kit for example).

e add a Tuxedo Message Tag, which is out-of-band string information with the maximum
length of 1024 characters. Its value can be retrieved through tpgetcallinfo (). Itis
propagated to the whole call path once it is added to the request message. If more than one
Tuxedo Message Tag value is set, the later one overwrites the previous one.

Table 16 lists the FML names.

240 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

Table 16 FML Names

Field Type Description

TA_HTTP_HEADER_NAME string HTTP header name part.
TA_HTTP_HEADER_VALUE string HTTP header value part.
TA_HTTP_CONNECT_URTI string Its value overrides the outbound service URI
TA_MSGTAG string Tuxedo Message Tag

Return Values
Upon successfully getting a FML 32 buffer containing the monitoring attributes, returns 0.

Upon failure, tpsetcallinfo () returns -1 and sets tperrno to indicate the error condition.

Errors
Upon failure, tpsetcallinfo () Setstperrno to one of the following values:

[TPEINVAL]
Invalid arguments were given (for example, msg isSNULL or obuf isnhot avalid FML32
buffer)

[TPESYSTEM]
The message input does not contain monitoring attributes. Usually thisis because the call
path monitoring is not turned on for the message.

[TPEOS]
An operating system error has occurred.

Example(s)
Thefollowingisaclient-side tpsetcallinfo example:

{

FBFR32 *request;
FBFR32 *metainfo;
char name[50];

char value[50];

ATMI C Function Reference M

char msgtag[] = "0052kRkQAevI9XbHpIsT41i£0007zK000000";
FLDLEN32 len;
int len = 0;
/* Allocate the metainfo space */
metainfo = tpalloc ("FML32", NULL, 1024);
if (metainfo == NULL) {
userlog("Memory allocation failed");
tpreturn (TPFAIL, 0, 0, 0);
}
request = tpalloc("STRING", NULL, 1024);
/* Set custom headers */
strcpy (name, "header_name") ;
strcpy (value, "header_value");
len = strlen(name) ;
if (Fchg32 (metainfo, TA_HTTP_HEADER_NAME, 0, name, len) < 0) {
F_error32 ("program_name") ;
tpfree(request) ;
tpfree (metainfo) ;
exit(1l);
}
len = strlen(value);
if (Fchg32 (metainfo, TA_HTTP_HEADER_VALUE, 0, value, len) < 0) {
F_error32 ("program_name") ;
tpfree(request) ;
tpfree (metainfo) ;

exit(1l);

242 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

len = strlen(msgtag) ;

if (Fchg32 (metainfo, TA_MSGTAG, 0, msgtag, len) < 0) {
F_error32("message tag");
tpfree(request) ;

tpfree (metainfo) ;

exit(1l);
}
if (tpsetcallinfo(request, metainfo, 0) < 0) {
userlog("an error occurred when attaching metainfo to the buffer");
tpfree(request) ;
tpfree (metainfo) ;
exit(1l);
}

strcpy (request, "this_is_the_request");
response = tpalloc("STRING", NULL, 1024);
rlen = 1024;

if (tpcall (svc_name, (char *)request, 0, (char **)&response, (long *)&rlen,
0) == -1){

(void) fprintf (stderr, "%s service failed\n\n", svc_name) ;
tpfree(response) ;
tpfree(request) ;
tpfree (metainfo) ;

exit (1) ;

ATMI C Function Reference 243

See Also

tpgetcallinfo (3c)

tpsetctxt(3c)

Name

tpsetctxt () —Setsacontext identifier for the current application association.

Synopsis

#include <atmi.h>
int tpsetctxt (TPCONTEXT_ T context, long flags)

Description

244

tpsetctxt () definesthe context in which the current thread operates. Thisfunction operateson
aper-thread basis in a multithreaded environment, and on a per-process basis in a non-threaded
environment.

Subsequent Oracle Tuxedo ATMI callsmadein thisthread reference the application indicated by
context. The context should have been provided by apreviouscall to tpgetctxt () inoneof the
threads of the same process. If the value of context is TPNULLCONTEXT, then the current thread
is disassociated from any Oracle Tuxedo ATMI context.

You can put an individual thread in a process operating in multicontext mode into the
TPNULLCONTEXT State by issuing the following call:

tpsetctxt (TPNULLCONTEXT, O0)
TPINVALIDCONTEXT isnot avalid input valuefor context.

A thread in the TpINvVALIDCONTEXT State is prohibited from issuing callsto most ATMI
functions. (For acompletelist of the functionsthat may and may not be called, see “ Introduction
to the C Language Application-to-Transaction Monitor Interface.”.) Therefore, you may
sometimes need to move athread out of the TPINVALIDCONTEXT State. To do so, call
tpsetctxt () With context set to TPNULLCONTEXT Or another valid context. (It isalso alowable
to call the tpterm() function to exit from the TPINVALIDCONTEXT State.)

The second argument, f1ags, isnot currently used and must be set to 0.

A thread in amultithreaded application may issue acall to tpsetctxt () while running in any
context state, including TPINVALIDCONTEXT.

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

Return Values
Upon successful completion, tpsetctxt () returns anon-negative value.

Upon failure, it leaves the calling processin its original context, returns avalue of -1, and sets
tperrno to indicate the error condition.

Errors
Upon failure, tpsetctxt () Sets tperrno to one of the following values:

[TPEINVAL]
Invalid arguments have been given. For example, f1ags hasbeen set to avalue other than
0 or the context iS TPINVALIDCONTEXT.

[TPENOENT]
The value of context isnot avalid context.

[TPEPROTO]
tpsetctxt () hasbeen called in an improper context. For example: (a) it hasbeen called
in a server-dispatched thread; (b) it has been called in a process that has not called
tpinit (); (c) it hasbeen called in aprocessthat hascalled tpinit () without specifying
the remurTICcONTEXTS flag; or (d) it has been called from more than one thread in a
process where the TMNOTHREADS environment variable has been turned on.

[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error has been
written to alog file.

[TPEOS]
An operating system error has occurred.

See Also
Introduction to the C Language Application-to-Transaction Monitor Interface, tpgetctxt (3c)

tpsetmbenc(3c)

Name
tpsetmbenc () —Sets the code-set encoding name for atyped buffer.

Synopsis
#include <atmi.h>

extern int tperrno;

ATMI C Function Reference 245

int

tpsetmbenc (char *bufp, char *enc_name, long flags)

Description

Thisfunction is used for setting or resetting the codeset encoding name. The encoding nameis
sent along with theinput typed buffer. A processreceiving these message can use tpgetmbenc ()
to retrieve this encoding name.

tpsetmbenc () Setsthe codeset encoding name to be included with a Tuxedo system request.
Once this function sets anon-NULL encoding name in the caller's buffer, all requests sent (via
tpcall (), tpsend()) include this string until reset or unset. Aninitial codeset encoding name
isapplied to aMBSTRING buffer, during tpalloc (), using the TPMBENC environment
variable. An MBSTRING buffer without an encoding name defined isinvalid.

The bufp argument isavalid pointer to atyped buffer with an encoding name.
The enc_name argument is the encoding name to use to identify the codeset encoding.

The f1ags argument isO or RM_ENC. For RM_ENC the encoding name will be removed from
the MBSTRING buffer and the enc_name argument will be ignored. Note that an MBSTRING
buffer without an encoding name will fail the _tmconvmb() conversion.

Return Values

Upon success, tpsetmbenc () returnsa0 value otherwise it returns anon-zero on error and sets
tperrno to indicate the error condition. This function may fail for the following reasons.

[TPEINVAL]
buf, enc_name argument iSNULL or enc_name isnot avalid name to use.

[TPESYSTEM]
A Tuxedo system error has occurred. (e.g. bufp does not correspond to avalid Tuxedo
buffer, could not add or remove the encoding name from the buffer)

See Also

246

tpalloc (3c), tpconvmb (3¢), tpgetmbenc (3c¢), tpservice (3c), tuxsetmbenc (3¢)

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

tpsetrepos(3c)

Name

tpsetrepos () - adds, edits, or deletes service parameter information from a Tuxedo Service
Metadata repository file

Synopsis

int tpsetrepos (char *reposfile, FBFR32* idata, FBFR32** odata)

Description

tpsetrepos () providesan aternative repository accessinterfaceto the . TMMETAREPOS Service
provided by TMvETADATA (5) . It adds, edits, or del etes parameter information from a Tuxedo
Service Metadatarepository file. To use tpsetrepos (), the metadatarepository file must reside
on the native client or server that initiates the request. This allows for repository information
access even when TMMETADATA (5) has not been booted.

tpsetrepos () isavailablein processeslinked with the Oracle Tuxedo nativelibraries, but isnot
available in processes linked with the Oracle Tuxedo workstation libraries.

Note: tpsetrepos () cannot be used to add, edit, or delete service parameter informationin a
JOLT Repository file.

reposfile
specifies the path name of afile accessible on the current machine where the Tuxedo
Metadata Repository is located. The user must have read and write permissions for this
file

idata
specifies what type of service information is added, edited, or deleted, and pointsto an
FML32 buffer.

*odata
On output, pointsto an FML 32 buffer containing the retrieved service information and
operation status.
METAREPOS (5) describes the FML32 buffer format tpsetrepos () uses. It issimilar to the
format used by M1B (5).

Return Values

tpsetrepos () returns 0 on success. On failure, it setstperrno and returns -1. On most failure
conditions, theTa_eRRoR field in *odata ispopulated with information about the specific error,
asis done by the Tuxedo MIB.

ATMI C Function Reference 247

../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html

Errors

Upon failure, tpsetrepos () S&S tperrno to one of the following values:

Note: Except for TPEINVAL, odata ismodified to include Ta_grroOR, Ta_sTaTus for each
service entry to further qualify the error condition.

[TPEINVAL]
Invalid arguments were specified. The reposfile value isinvalid or idata or odata are
not pointersto rur.32 typed buffers.

[TPEMIB]
Them1e-like request failed. odata is updated and returned to the caller with Fvr32 fields
indicating the cause of the error as discussed inMIB(5).

[TPEPROTO]
tpsetrepos () wasimproperly called. The reposfile file argument given is not avalid
repository file.

[TPEPERM]
A Jolt repository fileis specified. tpsetrepos () cannot be applied to a Jolt repository
file

[TPEOS]
An operating system error has occurred. A numeric value representing the system call that
falled isavallablein vunixerr.

[TPESYSTEM]

An Oracle Tuxedo system error has occurred. The exact nature of the error isreported in
userlog().

Portability

Files

248

Thisinterface is available only on Oracle Tuxedo release 9.0 or later.

Thefollowing library files are required:

$S{TUXDIR}/lib/libtrep.a
${TUXDIR}/lib/libtrep.so.<rel>
S{TUXDIR}/1lib/libtrep.lib

The libraries must be linked manually when using buildclient. The user must use;
-L${TUXDIR}/1lib -ltrep

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

See Also

tpgetrepos (3c), tmloadrepos (1), tmunloadrepos (1), TMMETADATA (5), Managing The
Tuxedo Service Metadata Repository in Setting Up an Oracle Tuxedo Application

tpsetunsol(3c)

Name
tpsetunsol () —Sets the method for handling unsolicited messages.

Synopsis

#include <atmi.h>
void (*tpsetunsol (void (_TMDLLENTRY *) (*disp) (char *data, long len, long
flags))) (char *data, long len, long flags)

Description

tpsetunsol () alowsaclient toidentify the routine that should beinvoked when an unsolicited
message is received by the Oracle Tuxedo ATMI system libraries. Before the first call to
tpsetunsol (), any unsolicited messagesreceived by the Oracle Tuxedo ATMI system libraries
on behalf of the client are logged and ignored. A call to tpsetunsol () withaNULL function
pointer has the same effect. The method used by the system for notification and detection is
determined by the application default, which can be overridden on a per-client basis (see
tpinit(3c)).

The function pointer passed on the call to tpsetunsol () must conform to the parameter definition
given. The _TMDLLENTRY macro is required for Windows-based operating systemsto obtain the
proper calling conventions between the Tuxedo libraries and your code. On Unix systems, the
_TMDLLENTRY Macro is not required because it expands to the null string.

data points to the typed buffer received and 1en isthelength of the data. £1ags are currently
unused. data can be NULL if no data accompanied the notification. data may be of a buffer
type/subtype that is not known by the client, in which case the message dataiis unintelligible.

data cannot be freed by application code. However, the system freesit and invalidates the data
area following return.

Processing within the application’s unsolicited message handling routine is restricted to the
following Oracle Tuxedo ATMI functions. tpalloc(), tpfree(), tpgetctxt(),
tpgetlev (), tprealloc (), and tptypes ().

ATMI C Function Reference 249

../rf5/rf5.html
../rfcm/rfcmd.html
../rfcm/rfcmd.html
../ads/admrp.html
../ads/admrp.html

Notethat in amultithreaded programming environment, it is possible for an unsolicited message
handling routineto call tpgetctxt (), create another thread, have that thread call tpsetctxt ()
to the appropriate context, and have the new thread use the full set of ATMI functions that are
available to clients.

If tpsetunsol () iscalled from athread that is not currently associated with a context, this
establishes a per-process default unsolicited message handler for al new tpinit () contexts
created. It has no effect on contexts already associated with the system. A specific context may
change this default unsolicited message handler by calling tpsetunsol () again when the
context is active. The per-process default unsolicited message handler may be changed by again
caling tpsetunsol () inathread not currently associated with a context.

In amultithreaded application, athread in the TPINVAL IDCONTEXT Stateisnot allowed to issue a
call to tpsetunsol ().

Return Values

Upon success, tpsetunsol () returns the previous setting for the unsolicited message handling
routine. (NULL isa successful return indicating that no message handling function had been set
previoudly.)

Upon failure, it returns TPuNsoLERR and sets tperrno to indicate the error condition.

Errors
Upon failure, tpsetunsol () S&ts tperrno to one of the following values:

[TPEPROTO]
tpsetunsol () hasbeen called in an improper context. For example, it has been called
from within a server.

[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error iswrittento a
log file.

[TPEOS]
An operating system error has occurred.

Portability

The interfaces described in tpnotify (3¢) are supported on native site UNIX-based and
Windows processors. In addition, the routines tpbroadcast () and tpchkunsol (), aswell as
the function tpsetunsol (), are supported on UNIX and MS-DOS workstation processors.

250 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

See Also

tpinit(3c), tpterm(3c)

tpsign(3c)

Name
tpsign () —Marks atyped message buffer for digital signature.

Synopsis
#include <atmi.h>

int tpsign(char *data, TPKEY hKey, long flags)

Description

tpsign () marks, or registers, a message buffer for digital signature on behalf of the principal
associated with hrey.

data must point to a valid typed message buffer either (1) previoudly allocated by a process
caling tpalloc () or(2) delivered by the systemto areceiving process. The content of the buffer
may be modified after tpsign () isinvoked.

When the buffer pointed to by data is transmitted from a process, the public key software
generates and attaches a digital signature to the message buffer for each digital-signature
registration request. A digital signature enables a receiving process to verify the signer
(originator) of the message.

The f1ags argument is reserved for future use and must be set to O.

Return Values
On failure, this function returns -1 and sets tperrno to indicate the error condition.
Errors

[TPEINVAL]
Invalid arguments were given. For example, hrkey isnot avalid key for signing or the
valueof dataisNULL.

[TPESYSTEM]
An error occurred. Consult the system error log file for details.

ATMI C Function Reference 251

See Also

tpkey_close(3c), tpkey_open(3c)

tpsprio(3c)

Name

tpsprio () —Setsthe service request priority.

Synopsis

Descr

252

#include <atmi.h>

int tpsprio(prio, flags)

iption

tpsprio () Setsthe priority for the next request sent or forwarded by the current thread in the
current context. The priority set affects only the next request sent. Priority can also be set for
messages enqueued or dequeued by tpengueue () Of tpdequeue (), if the queued message
facility isinstalled. By default, the setting of prio increments or decrements a service's default
priority up to amaximum of 100 or down to a minimum of 1, depending on its sign, where 100
isthe highest priority. The default priority for arequest is determined by the service to which the
request isbeing sent. Thisdefault may be specified administratively (See UBBCONFIG (5)), or take

the system default of 50. tpsprio () hasno effect on messages sent via tpconnect () or
tpsend().

A lower priority message does not remain enqueued forever because every tenth message is
retrieved ona“firstin, first out” (FIFO) basis. Response time should not be aconcern of thelower
priority interface or service.

In amultithreaded application tpsprio () operates on a per-thread basis.
Thefollowing isalist of valid flags.

TPABSOLUTE
The priority of the next request should be sent out at the absolute value of prio. The
absolute value of prio must be within the range 1 and 100, inclusive, with 100 being the
highest priority. Any value outside of this range causes a default value to be used.

In amultithreaded application, athread in the TPINVAL IDCONTEXT Stateisnot allowed to issue a
call to tpsprio().

ATMI C Function Reference

../rf5/rf5.html

Introduction to the C Language Application-to-Transaction Monitor Interface

Return Values
Upon failure, tpsprio () returns-1 and sets tperrno to indicate the error condition.

Errors
Upon failure, tpsprio () Sets tperrno to one of the following values:

[TPEINVAL]
flags areinvalid.

[TPEPROTO]
tpsprio () wascalled improperly.

[TPESYSTEV]
An Oracle Tuxedo system error has occurred. The exact nature of the error iswrittento a
log file.

[TPEOS]
An operating system error has occurred.

See Also
tpacall (3c), tpcall (3¢c),tpdequeue (3¢c), tpenqueue (3¢c), tpgprio(3c)

tpstrerror(3c)

Name
tpstrerror () —Gets error message string for an Oracle Tuxedo ATMI system error.

Synopsis
#include <atmi.h>
char *

tpstrerror (int err)

Description

tpstrerror () isusedtoretrievethetext of an error message from LIBTUX_CAT. erristheerror
code set in tperrno when an Oracle Tuxedo ATMI system function call returnsa-1 or other
failure value.

Y ou can use the pointer returned by tpstrerror () asan argument to userlog () or the UNIX
function fprintf ().

ATMI C Function Reference 253

A thread in amultithreaded application may issue acall to tpstrerror () while runningin any
context state, including TPINVALIDCONTEXT.

Return Values

Upon success, tpstrerror () returnsapointer to astring that contains the error message text.
If errisaninvalid error code, tpstrerror () returnsaNULL.

Errors

Upon failure, tpstrerror () returnsaNULL but does not set tperrno.
Example

#include <atmi.h>

char *p;
if (tpbegin(10,0) == -1) {
p = tpstrerror (tperrno);

userlog (“%s”, p);

(void) tpabort (0) ;
(void) tpterm() ;
exit (1) ;

See Also

userlog (3c), Fstrerror, Fstrerror32 (3fml)

tpstrerrordetail(3c)

Name
tpstrerrordetail ()—Gets error detail message string for an Oracle Tuxedo ATMI system
error.

Synopsis
#include <atmi.h>
char * tpstrerrordetail (int err, long flags)

254 ATMI C Function Reference

../rf3fml/rf3fml.html
../rf3fml/rf3fml.html

Introduction to the C Language Application-to-Transaction Monitor Interface

Description
tpstrerrordetail () iSused to retrieve the text of an error detail of an Oracle Tuxedo ATMI
system error. err isthe valuereturned by tperrordetail ().

The user can use the pointer returned by tpstrerrordetail () asan argument to userlog ()
or the UNIX function fprintf ().

Currently f1ags isreserved for future use and must be set to O.

A thread in amultithreaded application may issueacall to tpstrerrordetail () whilerunning
in any context state, including TPINVALIDCONTEXT.

Return Values
Upon success, the function returns a pointer to astring that contains the error detail message text.

Upon failure (that is, if errisaninvalid error code), tpstrerrordetail () returnsaNULL.

Errors
Upon falure, tpstrerrordetail () returnsaNULL but does not set tperrno.

Example
#include <atmi.h> .
int ret;
char *p;
if (tpbegin(10,0) == -1) {
ret = tperrordetail(0);
if (ret == -1) {
(void) fprintf (stderr, “tperrordetail() failed!\n");
(void) fprintf(stderr, “tperrno = %d, %$s\n”,
tperrno, tpstrerror (tperrno));
}
else if (ret != 0) {

(void) fprintf (stderr, “errordetail:%s\n”,

tpstrerrordetail (ret, 0));

ATMI C Function Reference 2595

}

See Also

Introduction to the C Language Application-to-Transaction Monitor Interface,

tperrordetail (3c¢), tpstrerror (3c), userlog(3c), tperrno(5)

tpsubscribe(3c)

Name

tpsubscribe () —Subscribes to an event.

Synopsis

Descr

256

#include <atmi.h>

long tpsubscribe (char *eventexpr, char *filter, TPEVCTL *ctl, long flags)
iption

The caller uses tpsubscribe () to subscribe to an event or set of events named by eventexpr.
Subscriptions are maintained by the Oracle Tuxedo ATMI EventBroker, TMUSREVT (5), and are
used to notify subscribers when events are posted via tppost () . Each subscription specifies a
notification method which can take one of three forms: client notification, service calls, or

message enqueuing to stable-storage queues. Notification methods are determined by the
subscriber’s process type and the arguments passed to tpsubscribe ().

Theevent or set of eventsbeing subscribed toisnamed by eventexpr, aNULL-terminated string
of at most 255 characters containing a regular expression. For example, if eventexpris
“\e\e..*", the caller is subscribing to all system-generated events; if eventexpris
“\e\e.sysserver. *", thecallerissubscribing to all system-generated eventsrelated to servers.
If eventexpris" [a-z].+*", thecaller issubscribing to all user events starting with A-Z; if
eventexpriS".* (ERR|err) .*", thecaller issubscribing to al user events containing either the
substring ErRr or the substring err in the event name. Events called account_error and
ERROR_STATE, for example, would both qualify. For more information on regular expressions,
see “Regular Expressions” on page 260.

If present, £i1terisastring containing a Boolean filter rule that must be evaluated successfully
before the EventBroker posts the event. Upon receiving an event to be posted, the EventBroker
appliesthefilter rule, if one exists, to the posted event’ sdata. If the data passes thefilter rule, the
EventBroker invokes the notification method; otherwise, the broker does not invoke the

ATMI C Function Reference

../rf5/rf5.html
../rf5/rf5.html

Introduction to the C Language Application-to-Transaction Monitor Interface

associated notification method. The caller can subscribe to the same event multiple times with
different filter rules.

Filter rules are specific to the typed buffersto which they are applied. For FML and view buffers,
the filter ruleis a string that can be passed to each’s Boolean expression compiler (see
Fboolco(3fml) and Fvboolco(3fml), respectively) and evaluated against the posted buffer (see
Fboolev(3fml) and Fvboolev(3fml), respectively). For strInG buffers, thefilter ruleisa
regular expression. All other buffer types require customized filter evaluators (see buffer (3c)
and typesw (5) for details on adding customized filter evaluators). filterisa
NULL-terminated string of at most 255 characters.

If the subscriber is an Oracle Tuxedo ATMI system client processand ct1 isNULL, then the
EventBroker sends an unsoli cited messageto the subscriber when the event to which it subscribed
isposted. That is, when an event name is posted that evaluates successfully against eventexpr,
the EventBroker teststhe posted dataagainst thefilter rule associated with eventexpr. If thedata
passes the filter rule or if thereis no filter rule for the event, then the subscriber receives an
unsolicited notification along with any data posted with the event. In order to receive unsolicited
notifications, the client must register (via tpsetunsol ()) an unsolicited message handling
routine. If an Oracle Tuxedo ATMI system server process calls tpsubscribe () withaNULL
ct1 parameter, then tpsubscribe () fails setting tperrno to TPEPROTO.

Clients receiving event notification via unsolicited messages should remove their subscriptions
from the EventBroker’ slist of active subscriptions before exiting (see tpunsubscribe (3c¢) for
details). Using tpunsubscribe ()’ swildcard handle, -1, clients can conveniently remove all of
their “non-persistent” subscriptions which include those associated with the unsolicited
notification method (see the description of TPEVPERSIST below for subscriptions and their
associated notification methods that persist after a process exits). If aclient exits without
removing its non-persistent subscriptions, then the EventBroker will removethem when it detects
that the client is no longer accessible.

If the subscriber (regardless of process type) wants event notifications to go to service routines
or to stable-storage queues, then the ¢t 1 parameter must point to avalid TpEvCTL structure. This
structure contains the following elements:

long flags;
char namel [128];
char name2 [128] ;

TPQCTL qgctl;

Note: Theservicenamelength limitis 127 bytes. If the service name length exceeds 127 bytes,
TPEINVAL iS returned.

ATMI C Function Reference 257

../rf5/rf5.html

258

Thefollowingisalist of valid bits for the ct 1—>f1ags element controlling options for event
subscriptions:

TPEVSERVICE

Setting this flag indicates that the subscriber wants event notifications to be sent to the
Oracle Tuxedo ATMI system service routine named in ct1—>name1. That is, when an
event name is posted that eval uates successfully against eventexpr, the EventBroker
tests the posted data against the filter rule associated with eventexpr. If the data passes
the filter rule or if thereis no filter rule for the event, then a service request is sent to
ct1—>namel alongwith any dataposted with theevent. Theservicenamein ct1—>name1
can be any valid Oracle Tuxedo ATMI system service name and it may or may not be
active at the time the subscription is made. Service routines invoked by the EventBroker
should return with no reply data. That is, they should call tpreturn () withaNULL data
argument. Any data passed to tpreturn () will be dropped. TPEVSERVICE and
TPEVQUEUE are mutually exclusive flags.

If TPEVTRAN isalsO setin ct1—>flags, thenif the processcaling tppost () isin
transaction mode, the EventBroker callsthe subscribed service routine such that it will be
part of the poster’ s transaction. Both the EventBroker, TMusrEvT (5), and the subscribed
serviceroutinemust belong to server groupsthat support transactions (See UBBCONFIG (5)
for details). If TPEVTRAN iS not Set in ct1—>f1ags, then the EventBroker callsthe
subscribed service routine such that it will not be part of the poster’ s transaction.

TPEVQUEUE

Setting this flag indicates that the subscriber wants event notifications to be enqueued to
the queue space named in ct1—>name1 and the queue named in ct1—>name2. That is,
when an event name is posted that evaluates successfully against eventexpr, the
EventBroker teststhe posted data against thefilter rule associated with eventexpr. If the
data passes the filter rule or if there is no filter rule for the event, then the EventBroker
enqueues a message to the queue space named in ct1—>name1 and the queue named in
ct1—>name2 dongwith any data posted with the event. The queue space and queue name
can be any valid Oracle Tuxedo ATMI system queue space and queue name, either of
which may or may not exist at the time the subscription is made.

ct1—>gct1 can contain options further directing the EventBroker’s enqueuing of the
posted event. If no options are specified, then ct1—>gct1. f1ags should be set to
TPNOFLAGS. Otherwise, options can be set as described in the “ Control Parameter”
subsection of tpenqueue (3c) (specifically, see the section describing the valid list of
flags controlling input information for tpengueue (3c)). TPEVSERVICE and TPEVQUEUE
are mutualy exclusive flags.

ATMI C Function Reference

../rf5/rf5.html
../rf5/rf5.html

Introduction to the C Language Application-to-Transaction Monitor Interface

If TPEVTRAN iSalSO Setin ct1—>flags, thenif the process calling tppost () isin
transaction mode, the EventBroker enqueues the posted event and its data such that it will
be part of the poster’s transaction. The EventBroker, TMusrevT (5), must belong to a
server group that supports transactions (see uBBcoNFIG (5) for details). If TPEVTRAN iS
not set in ct1—>flags, then the EventBroker enqueues the posted event and its data such
that it will not be part of the poster’ s transaction.

TPEVTRAN
Setting this flag indicates that the subscriber wants the event notification for this
subscription to be included in the poster’ s transaction, if one exists. If the poster is not a
transaction, then atransaction is started for this event notification. If thisflag is not set,
then any events posted for this subscription will not be done on behalf of any transaction
in which the poster is participating. This flag can be used with either TPEVSERVICE OF
TPEVQUEUE.

TPEVPERSIST

By default, the Oracle Tuxedo EventBroker del etes subscriptions when the resource to
which it isposting is not available (for example, the EventBroker cannot access a service
routine and/or a queue space/queue name associated with an event subscription). Setting
this flag indicates that the subscriber wants this subscription to persist across such errors
(usually because the resource will become available again in the future). When thisflagis
not used, the EventBroker will removethis subscription if it encountersan error accessing
either the service name or queue space/queue name designated in this subscription.

If thisflag is used with TpEVTRAN and the resource is not available at the time of event
notification, then the EventBroker will return to the poster such that its transaction must
be aborted. That is, even though the subscription remains intact, the resource’ s
unavailability will cause the poster’ s transaction to fail.

If the EventBroker’ s list of active subscriptions already contains a subscription that matches the
one being requested by tpsubscribe (), then the function fails setting tperrno to TPEMATCH.
For a subscription to match an existing one, both eventexpr and £i1ter must match those of a
subscription aready in the EventBroker’s active list of subscriptions. In addition, depending on
the notification method, other criteriaare used to determine matches.

If the subscriber is an Oracle Tuxedo ATMI system client processand ct1 isNULL (such that
the caller receives unsolicited notifications when events are posted), then its system-defined
client identifier (known asacLIENTID) isalso used to detect matches. That is, tpsubscribe ()
falsif eventexpr, filter, and the caller’s cLIENTID match those of a subscription already
known to the EventBroker.

ATMI C Function Reference 259

../rf5/rf5.html
../rf5/rf5.html

If the caller has set ct1—>flags t0 TPEVSERVICE, then tpsubscribe () falsif eventexpr,
filter, and the service name set in ct1—>name1 match those of a subscription already known
to the EventBroker.

For subscriptions to stable-storage queues, the queue space, queue name, and correlation
identifier are used, in addition to eventexpr and £i1ter, when determining matches. The
correlation identifier can be used to differentiate among several subscriptions for the same event
expression and filter rule, destined for the same queue. Thus, if the caller hasset ct1—>f1agsto
TPEVQUEUE, and TPQCOORID iSnot Setin ct1—>gctl. flags, then tpsubscribe () falsif
eventexpr, filter, the queue space name set in ct1—>name1, and the queue name set in
ct1—>name2 match those of a subscription (which also does not have a correlation identifier
specified) already knownto the EventBroker. Further, if TpocoorIDiISSEtiN ct1—>gctl. flags,
then tpsubscribe () falsif even texpr, filter, ct1—>namel, ct1—>name2, and
ctl—>gctl. corrid match those of a subscription (which has the same correlation identifier
specified) already known to the EventBroker.

Thefollowingisalist of valid fiags for tpsubscribe():

TPNOBLOCK
The subscription isnot madeif ablocking condition exists. If such acondition occurs, the
call failsand tperrno isset to TPERLOCK. When TpNOBLOCK is not specified and a
blocking condition exists, the caller blocksuntil the condition subsides or atimeout occurs
(either transaction or blocking timeout).

TPNOTIME
Thisflag signifiesthat the caller iswilling to block indefinitely and wants to be immune
to blocking timeouts. Transaction timeouts may still occur.

TPSIGRSTRT
If asignal interrupts any underlying system calls, then the interrupted system call is
reissued. When TpsIGRSTRT is hot specified and asignal interrupts a system call, then
tpsubscribe () falsand tperrno is Set to TPGOTSIG.

In amultithreaded application, athread in the reINvALTDCONTEXT Stateisnot allowed toissuea
cal to tpsubscribe ().

Regular Expressions

260

The regular expressions described in Table 17 are much like those used in the UNIX system
editor, ed(1). The aternation operator, (|), has been added along with some other practica
things. In general, however, there should be few surprises.

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

Regular expressions (RES) are constructed by applying any of thefollowing production rulesone

or more times.

Table 17 Regular Expressions

Rule

Matching Text

character

Itself (character isany ASCII character except the special ones mentioned below).

\ character

Itself except asfollows:
¢ \\—newline

« \\t—tab

* \\b—backspace

e \\r—carriage return
e \\f—formfeed

\ special-character

Its unspecial self. The special charactersare. * + 2 | () [{ and \\.
—Any character except the end-of-line character (usually newline or NULL).
~—Beginning of theline.

$—End-of-line character.

[class] any character in the class denoted by a sequence of characters and/or ranges. A
range is given by the construct character-character. For example, the character
class, [azA-Z0-9_], will match any alphameric character or “_". To beincludedin
the class, a hyphen, “-", must be escaped (preceded by a“\\") or appear first or last
inthe class. A literal “]” must be escaped or appear first in the class. A literal “/”
must be escaped if it appearsfirst in the class.

[* class] Any character in the complement of the class with respect to the ASCII character
set, excluding the end-of-line character.

RE RE The sequence. (catenation)

RE | RE Either the left RE or theright RE. (I€ft to right alternation)

RE * Zero or more occurrences of RE.

RE + One or more occurrences of RE.

RE ? Zero or one occurrences of RE.

RE { n } n occurrences of RE. n must be between 0 and 255, inclusive.

ATMI C Function Reference 261

Tahble 17 Regular Expressions (Continued)

Rule Matching Text

RE { m, n } m through n occurrences of RE, inclusive. A missing m is taken to be zero. A
missing n denotes m or more occurrences of RE.

(RE) Explicit precedence/grouping.

(RE) $n Thetext matching RE iscopied into the nth user buffer. n may be 0 through 9. User
buffers are cleared before matching begins and loaded only if the entire pattern is
matched.

There are three levels of precedence. In order of decreasing binding strength they are:
® catenation closure (*,+,?,{...})
® catenation
® alternation (])

Asindicated above, parentheses are used to give explicit precedence.

Return Values

Upon successful completion, tpsubscribe () returns ahandle that can be used to remove this
subscription from the EventBroker’ s list of active subscriptions. The subscriber or any other
process is allowed to use the returned handle to delete this subscription.

Upon failure, tpsubscribe () returns-1 and sets tperrno to indicate the error condition.

Errors
Upon failure, tpsubscribe () Sets tperrno to one of the following values. (Unless otherwise
noted, failure does not affect the caller’ s transaction, if one exists.)

[TPEINVAL]
Invalid arguments were given (for example, eventexpr iISNULL).

[TPENOENT]
Cannot access the Oracle Tuxedo EventBroker.

[TPELIMIT]
The subscription failed because the EventBroker’ s maximum number of subscriptionshas
been reached.

262 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

[TPEMATCH]
The subscription failed because it matched one already listed with the EventBroker.

[TPEPERM]
The client is not attached as tpsysadm and the subscription action is either a service call
or the enqueuing of a message.

[TPETIME]
This error code indicates that either atimeout has occurred or tpsubscribe () has been
attempted, in spite of the fact that the current transaction is already marked rollback only.

If the caller isin transaction mode, then either the transaction is aready rollback only or
atransaction timeout has occurred. The transaction is marked abort-only. If the caller is
not in transaction mode, a blocking timeout has occurred. (A blocking timeout cannot
occur if TeNoBLOCK and/or TPNOTIME iS specified.)

If atransaction timeout has occurred, then, with one exception, any attemptsto send new
requests or receive outstanding replies will fail with reeTIME until the transaction has
been aborted. The exception is arequest that does not block, expects no reply, and is not
sent on behalf of the caller’ stransaction (that is, tpacall () with TPNOTRAN, TPNOBLOCK,
and TPNOREPLY Set).

When atransactional ATMI call failsinside atransaction, the transaction is put into the
TX_ROLLBACK_ONLY State. This state is treated, for most purposes, as though it were
equivalent to atimeout. All further ATMI callsfor thistransaction (with the exception of
those issued in the circumstances described in the previous paragraph) will fail with
TPETIME.

[TPEBLOCK]
A blocking condition exists and TpnOBLOCK Was specified.

[TPGOTSIG]
A signal was received and TPSIGRSTRT Was not specified.

[TPEPROTO]
tpsubscribe () was called improperly.

[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error iswrittento a
log file.

[TPEOS]
An operating system error has occurred.

ATMI C Function Reference 263

See Also

buffer (3c), tpenqueue (3c), tppost (3¢), tpsetunsol (3¢), tpunsubscribe (3c¢),
Fboolco, Fboolco32, Fvboolco, Fvboolco32(3fml), Fboolev, Fboolev32,
Fvboolev, Fvboolev32(3fml), EVENTS(5), EVENT_MIB(5), TMSYSEVT (5), TMUSREVT (5),
tuxtypes (5), typesw(5), UBBCONFIG (5)

tpsuspend(3c)

Name

tpsuspend () —Suspends a global transaction.

Synopsis

#include <atmi.h>

int tpsuspend(TPTRANID *tranid, long flags)

Description

264

tpsuspend () isused to suspend the transaction active in the caller’ s process. A transaction
begun with tpbegin () may be suspended with tpsuspend () . Either the suspending process or
another process may use tpresume () to resume work on a suspended transaction. When
tpsuspend () returns, the caller is no longer in transaction mode. However, while a transaction
issuspended, all resources associated with that transaction (such as database locks) remain active.
Like an active transaction, asuspended transaction is susceptibl e to the transaction timeout value
that was assigned when the transaction first began.

For the transaction to be resumed in another process, the caller of tpsuspend () must have been
theinitiator of the transaction by explicitly calling tpbegin (). tpsuspend () may aso becalled
by a process other than the originator of the transaction (for example, a server that receives a
request in transaction mode). In the latter case, only the caller of tpsuspend () may call
tpresume () to resumethat transaction. This caseis allowed so that a process can temporarily
suspend a transaction to begin and do some work in another transaction before completing the
original transaction (for example, to run atransaction to log afailure before rolling back the
original transaction).

tpsuspend () returnsin the space pointed to by tranid the transaction identifier being
suspended. The caller isresponsiblefor allocating the spaceto which tranidpoints. It isan error
for tranidto be NULL.

To ensure success, the caller must have completed all outstanding transactional communication
with servers beforeissuing tpsuspend (). That is, the caller must have received al replies for

ATMI C Function Reference

../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html
../rf3fml/rf3fml.html

Introduction to the C Language Application-to-Transaction Monitor Interface

requests sent with tpacall () that were associated with the caller’ s transaction. Also, the caller
must have closed al connections with conversational services associated with the caller’s
transaction (that is, tprecv () must havereturned the TpEv_svcsucc event). If either ruleis not
followed, then tpsuspend () fails, the caler’s current transaction is not suspended and all
transactional communication descriptors remain valid. Communication descriptors not
associated with the caller’ s transaction remain valid regardless of the outcome of tpsuspend ().

Currently, f1ags are reserved for future use and must be set to 0.

In amultithreaded application, athread in the reINvALTDCONTEXT Stateisnot allowed toissue a
cal to tpsuspend ().

tpsuspend () can take effect in all participated resource managers including those in amultiple
resource mangers server group in aglobal transaction.

Return Value
tpsuspend () returns-1 on error and sets tperrno to indicate the error condition.

Errors
Under the following conditions, tpsuspend () failsand sets tperrno to:

[TPEINVAL]
tranidisaNULL pointer or f1agsisnot 0. The caller’s state with respect to the
transaction is not changed.

[TPEABORT]
The caller’ s active transaction has been aborted. All communication descriptors
associated with the transaction are no longer valid.

[TPEPROTO]
tpsuspend () was called in an improper context (for example, the caller isnot in
transaction mode). The caller’s state with respect to the transaction is not changed.

[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error iswrittento a
log file.

[TPEOS]
An operating system error has occurred.

See Also

tpacall (3c), tpbegin (3c), tprecv (3c), tpresume (3¢c), tprmopen(3c),
tprmclose(3c), tprmstart(3c), tprmend(3c)

ATMI C Function Reference 265

tpsvrdone(3c)

Name

tpsvrdone ()—Terminates an Oracle Tuxedo ATMI system server.

Synopsis

Descr

#include <atmi.h>

void tpsvrdone (void)

iption

The Oracle Tuxedo ATMI system server abstraction calls tpsvrdone () after it has finished
processing service requests but beforeit exits. When thisroutineisinvoked, the server is till part
of the system but its own services have been unadvertised. Thus, Oracle Tuxedo ATMI system
communication can be performed and transactions can be defined in this routine. However, if
tpsvrdone () returns with open connections, asynchronous replies pending or while still in

transaction mode, the Oracle Tuxedo ATMI systemwill closeitsconnections, ignore any pending
replies, and abort the transaction before the server exits.

If aserver is shut down by the invocation of tmshutdown -y, Services are suspended and the
ability to perform communication or to begin transactionsin tpsvrdone () islimited.

If an application does not provide thisroutinein aserver, then the default version provided by the
Oracle Tuxedo ATMI system iscalled instead. If a server has been defined as a single-threaded
server, the default tpsvrdone () cals tpsvrthrdone (), and the default version of
tpsvrthrdone () calstx_close (). If aserver has been defined as a multithreaded server,
tpsvrthrdone () iscalled in each server dispatch thread, but is not called from tpsvrdone ().
Regardless of whether the server is multithreaded, the default tpsvrdone () calSuserlog to
indicate that the server is about to exit.

Usage

When calledin tpsvrdone (), the tpreturn () and tpforward () functionssimply return with
no effect.

See Also

266

tpsvrthrdone (3c¢), tpsvrthrinit (3c), servopts (5)

ATMI C Function Reference

../rf5/rf5.html

Introduction to the C Language Application-to-Transaction Monitor Interface

tpsvrinit(3c)

Name
tpsvrinit ()—Initializes an Oracle Tuxedo system server.

Synopsis
#include <atmi.h>

int tpsvrinit(int argc, char **argv)

Description

The Oracle Tuxedo ATMI system server abstraction calls tpsvrinit () duringitsinitialization.
Thisroutineis called after the thread of control has become a server but before it handles any
service requests; thus, Oracle Tuxedo ATMI system communication may be performed and
transactions may be defined in this routine. However, if tpsvrinit () returnswith either open
connections or asynchronous replies pending, or while still in transaction mode, the Oracle
Tuxedo ATMI system closes the connections, ignores any pending replies, and aborts the
transaction before the server exits.

If an application does not provide thisroutinein aserver, then the default version provided by the
Oracle Tuxedo ATMI system is called, instead.

If a server has been defined as a single-threaded server, the default tpsvrinit () cals
tpsvrthrinit (), and the default version of tpsvrthrinit () calstx_open (). If aserver has
been defined asamultithreaded server, tpsvrthrinit () iscaledineach server dispatch thread,
but isnot called from tpsvrinit (). Regardless of whether the server is single-threaded or
multithreaded, the default version of tpsvrinit () callsuserlog () toindicate that the server
started successfully.

Application-specific options can be passed into a server and processed in tpsvrinit () (see
servopts (5)). The options are passed through argc and argv. Since getopt () isusedin an
Oracle Tuxedo ATMI system server abstraction, optarg (), optind (), and opterr () may be
used to control option parsing and error detection in tpsvrinit ().

Note: Wheninvoking tpsvrinit() inyour code, avoid long blocking actions. Otherwise,
when one remote server in an MP configuration has trouble with tpsvrinit ()
processing, then tmboot failsto boot the other servers on that node.

If an error occursin tpsvrinit (), the application can cause the server to exit gracefully (and
not take any service requests) by returning -1. The application itself should not call exit ().

ATMI C Function Reference 267

../rf5/rf5.html

When tpsvrinit () returns-1, the system does not restart the server. Instead, the administrator
must run tmboot to restart the server.

Return Values
A negative return value causes the server to exit gracefully.

Usage

When used outside a service routine (for example, in clients, in tpsvrinit (), orin
tpsvrdone ()), the tpreturn () and tpforward () functions simply return with no effect.

See Also

tpopen (3c), tpsvrdone (3¢), tpsvrthrinit (3c), servopts (5)
getopt(3) in a C language reference manual

tpsvrthrdone(3c)

Name
tpsvrthrdone ()—Terminates an Oracle Tuxedo ATMI server thread.

Synopsis
#include <atmi.h>

void tpsvrthrdone (void)

Description

The Oracle Tuxedo ATMI server abstraction calls tpsvrthrdone () during the termination of
each thread that has been started to handle dispatched service requests. In other words, even if a
thread is terminated before it has handled arequest, the tpsvrdone () function iscalled. When
thisroutineis called, the thread of control isstill part of the Oracle Tuxedo ATMI server, but the
thread has finished processing al service requests. Thus, Oracle Tuxedo ATMI communication
may be performed and transactions may be defined in thisroutine. However, if tpsvrthrdone ()
returnswith either open connections or asynchronous replies pending, or while still in transaction
mode, the Oracle Tuxedo ATMI system closes the connections, ignores any pending replies, and
aborts the transaction before the server dispatch thread exits.

If an application does not provide this routine in a server, then the default version of
tpsvrthrdone () provided by the Oracle Tuxedo ATMI system is called instead. The default
version of tpsvrthrdone () calls tx_close().

268 ATMI C Function Reference

../rf5/rf5.html

Introduction to the C Language Application-to-Transaction Monitor Interface

tpsvrthrdone () iscaled even in single-threaded servers. In a single-threaded server,
tpsvrthrdone () iscalled from the default version of tpsvrdone (). In aserver with the
potential for multiple dispatch threads, tpsvrdone () doesnot call tpsvrthrdone ().

Usage

When called from tpsvrthrdone (), the tpreturn () and tpforward () functions simply
return with no effect.

See Also

tpforward(3c), tpreturn (3c), tpsvrdone (3c), tpsvrthrinit(3c), tx_close(3c),

servopts (5)

tpsvrthrinit(3c)

Name
tpsvrthrinit ()—Initializes an Oracle Tuxedo ATMI server thread.

Synopsis
#include <atmi.h>

int tpsvrthrinit (int argc, char **argv)

Description

The Oracle Tuxedo ATMI server abstraction calls tpsvrthrinit () during the initialization of
each thread that handles dispatched service requests. Thisroutineis called after the thread of
control has become part of the Oracle Tuxedo ATMI server but before the thread handles any
servicerequests. Thus, Oracle Tuxedo ATMI communication may be performed and transactions
may be defined in this routine. However, if tpsvrthrinit () returns with either open
connections or asynchronous replies pending, or while still in transaction mode, the Oracle
Tuxedo ATMI system closes the connections, ignores any pending replies, and aborts the
transaction before the server dispatch thread exits.

If an application does not provide this routine in a server, then the default version of
tpsvrthrinit () provided by the Oracle Tuxedo ATMI system is called instead. The default
version of tpsvrthrinit () calstx_open().

tpsvrthrinit () iscalled evenin single-threaded servers. In asingle-threaded server,
tpsvrthrinit () iscalled from the default version of tpsvrinit (). In aserver with the
potential for multiple dispatch threads, tpsvrinit () doesnot cal tpsvrthrinit ().

ATMI C Function Reference 269

../rf5/rf5.html

Application-specific options can be passed into aserver and processed in tpsvrthrinit (). For
more information about options, see servopts (5). The options are passed argc and argv.
Because getopt () isusedinan Oracle Tuxedo ATMI server abstraction, optarg (), optind (),
and opterr () May be used to control option parsing and error detection in tpsvrthrinit ().

If anerror occursin tpsvrthrinit (), theapplication can causethe server dispatch thread to exit
gracefully (and not take any service requests) by returning -1. The application should not call
exit () or any operating system thread exit function.

Return Values
A negative return value will cause the server dispatch thread to exit gracefully.

Usage

When used outside a service routine (for example, when used inaclient or in tpsvrinit (),
tpsvrdone(),tpsvrthrinit(),Ortpsvrthrdone())thetpreturn()andtpforward()
functions simply return with no effect.

See Also

tpforward(3c), tpreturn (3c), tpsvrthrdone (3c¢), tpsvrthrinit(3c), tx_open(3c),

servopts (5)

getopt(3) in a C language reference manual

tpterm(3c)

Name
tpterm () —Leaves an application.

Synopsis
#include <atmi.h>

int tpterm(void)

Description

tpterm () removes aclient from an Oracle Tuxedo ATMI system application. If theclientisin
transaction mode, then the transaction isrolled back. When tpterm () returns successfully, the
caller can no longer perform Oracle Tuxedo ATMI client operations. Any outstanding
conversations are immediately disconnected.

270 ATMI C Function Reference

../rf5/rf5.html
../rf5/rf5.html

Introduction to the C Language Application-to-Transaction Monitor Interface

If tpterm() iscaled morethan once (that is, if it is called after the caller has aready |eft the
application), no action is taken and success is returned.

Multithreading and Multicontexting Issues

In good programming practice, all threads but one should either exit or switch context before the
singleremaining thread issuesacall to tpterm (). If thisis not done, then the remaining threads
are put in aTPINVALIDCONTEXT context. A description of the semantics of this context follows.

When invoked by one thread in a context with which multiple threads are associated, tpterm():

e Operates on all threads in a context, but not on all contextsin a process

e Executesimmediately, even if other threadsin the same process are still associated with
that context

Any thread blocked in an ATMI call when another thread terminatesits context will return from
the ATMI call with afailurereturn; tperrno is set to TPESYSTEM. In addition, if
tperrordetail () isinvoked after such afailurereturn, it returns TPED_INVALIDCONTEXT.

In asingle-context application, whenever asinglethread calls tpterm (), the context state for all
threadsis set t0 TPNULLCONTEXT.

In a multicontexted application, however, when tpterm () isinvoked by one thread, all other
threads in the same context are placed in a state such that if they subsequently call most ATMI
functions, those functions will, instead, return failure with tperrno Set to TPEPROTO. Lists of
the functions that are allowed and disallowed in such an invalid context state are provided in
“Introduction to the C Language Application-to-Transaction Monitor Interface” on page 8. If a
thread in the invalid context state (TPINVALIDCONTEXT) callsthe tpgetctxt () function,
tpgetctxt () Setsthe context parameter t0 TPINVALIDCONTEXT.

A thread may exit from the TpINvALIDCONTEXT State by calling one of the following:

e tpsetctxt () With the TeNULLCONTEXT context or another valid context

® tpterm()
Itisforbidden to call tpsetctxt () with acontext of TPINVALIDCONTEXT; doing SO resultsin
failure with tperrno set to reEPROTO. When athread invokes ATMI functions other than
tpsetunsol () that do not require the caller to be associated with an application, these functions

behave asif they wereinvoked inthe NULL context. Client applications using unsolicited thread
notification should explicitly call tpterm () to terminate the unsolicited notification thread.

After invoking tpterm (), athread is placed in the TeNULLCONTEXT context. Most ATMI
functionsinvoked by athread in the TenULLCcONTEXT context perform an implicit tpinit ().

ATMI C Function Reference 2N

Whether or not the call to tpinit () succeeds depends on the usual determining factors,
unrelated to context-specific or thread-specific issues.

A thread in amultithreaded application may issue acall to tpterm() whilerunningin any
context state, including TPINVALIDCONTEXT.

Return Values

Upon success in a single-context application, all threads in the application’s current context are
placed in the TPNULLCONTEXT State.

Upon success in amulticontexted application, the calling thread is placed in the TPNULLCONTEXT
state and all other threads in the same context as the calling thread are placed in the
TPINVALIDCONTEXT State. The user may change the context state of the latter threads by running
tpsetctxt () Withthe context argument set to TPNULLCONTEXT Or another valid context.

Uponfailure, tpterm () leavesthecalling processinitsoriginal context state, returns-1, and sets
tperrno to indicate the error condition.

Errors
Upon failure, tpterm () Sets tperrno to one of the following values:

[TPEPROTO]
tpterm () was caled in an improper context (for example, the caller is a server).

[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error iswrittento a
log file.

[TPEOS]
An operating system error has occurred.

See Also

tpinit(3c), tpgetctxt (3c), tpsetctxt (3c), tpsetunsol (3¢)

tptypes(3c)

Name
tptypes () —Routine to determine information about a typed buffer.

272 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

Synopsis
#include <atmi.h>

long tptypes (char *ptr, char *type, char *subtype)

Description

tptypes () takesasitsfirst argument a pointer to adata buffer and returns the type and subtype
of that buffer in its second and third arguments, respectively. ptr must point to a buffer gotten
fromtpalloc (). If type and subtype arenon-NULL, then the function popul ates the character
arrays to which they point with the names of the buffer’ s type and subtype, respectively. If the
names are of their maximum length (8 for type, 16 for subtype), the character array is not
NULL-terminated. If no subtype exists, then the array pointed to by subtype will contain a
NULL string.

Note that only the first eight bytes of type and the first 16 bytes of subtype are populated.
A thread in a multithreaded application may issue acall to tptypes () while running in any
context state, including TPINVALIDCONTEXT.

Return Values

Upon success, tptypes () returnsthe size of the alocated buffer. Note that this valueisthe
allocated buffer, which is used to save the return data, rather than the length of the return data.

Upon failure, it returns -1 and sets tperrno to indicate the error condition.

Errors
Upon failure, tptypes () Setstperrno to one of the following values:
[TPEINVAL]

Invalid argumentswere given (for example, ptr doesnot point to abuffer gotten from \s
tpalloc())

[TPEPROTO]
tptypes () wascaled improperly.

[TPESYSTEV]
An Oracle Tuxedo system error has occurred. The exact nature of the error iswrittento a
log file.

[TPEOS]
An operating system error has occurred.

ATMI C Function Reference 273

See Also

tpalloc(3c), tpfree(3c), tprealloc (3c)

tpunadvertise(3c)

Name
tpunadvertise ()—Routine for unadvertising a service name.

Synopsis
#include <atmi.h>

int tpunadvertise (char *svcname)

Description
tpunadvertise () alowsaserver to unadvertise aservice that it offers. By default, a server’s
services are advertised when it is booted and they are unadvertised when it is shut down.

All servers belonging to a Multiple Server, Single Queue (MSSQ) set must offer the same set of
services. Theseroutines enforce thisrule by affecting the advertisements of all serverssharing an

MSSQ set.

tpunadvertise () reMoVes svcname asan advertised service for the server (or the set of servers
sharing the caller' s MSSQ set). svcname cannot be NULL or the NULL string (*”). Also,
svecname should be 127 characters or less. (See the * SERVICES section of UBBCONFIG (5)).
Longer names will be accepted and truncated to 127 characters. Care should be taken such that
truncated names do not match other service names.

Return Values
Upon failure, tpunadvertise () returns-1 and sets tperrno to indicate the error condition.

Errors
Upon failure, tpunadvertise () Setstperrno to one of the following values:

[TPEINVAL]
svename iISNULL or the NULL string (“”).

[TPENOENT]
svcname IS Not currently advertised by the server.

274 ATMI C Function Reference

../rf5/rf5.html

Introduction to the C Language Application-to-Transaction Monitor Interface

[TPEPROTO]
tpunadvertise () wascaled in an improper context (for example, by aclient).

[TPESYSTEN]
An Oracle Tuxedo system error has occurred. The exact nature of the error iswrittento a
log file.

[TPEOS]
An operating system error has occurred.

See Also

tpadvertise (3c)

tpunsubscribe(3c)

Name
tpunsubscribe ()—Unsubscribes to an event.

Synopsis
#include <atmi.h>

int tpunsubscribe(long subscription, long flags)

Description

Thecaller usestpunsubscribe () toremovean event subscription or aset of event subscriptions
from the Oracle Tuxedo EventBroker’ s list of active subscriptions. subscription isan event
subscription handle returned by tpsubscribe (). Setting subscription to the wildcard value,
-1, directs tpunsubscribe () to unsubscribeto all non-persistent subscriptions previously made
by the calling process. Non-persistent subscriptions are those made without the reEvPERSTST bit
settinginthe ct1—>f1ags parameter of tpsubscribe () . Persistent subscriptions can be deleted
only by using the handle returned by tpsubscribe ().

Notethat the -1 handle removes only those subscriptions made by the calling process and not any
made by previous instantiations of the caller (for example, a server that dies and restarts cannot
use the wildcard to unsubscribe to any subscriptions made by the original server).

Thefollowingisalist of valid fiags:

TPNOBLOCK
The subscription is not removed if ablocking condition exists. If such a condition occurs,
the call failsand tperrno is set to TPEBLOCK. When TPNOBLOCK is hot specified and a

ATMI C Function Reference 275

blocking condition exists, the caller blocks until the condition subsides or atimeout occurs
(either transaction or blocking timeout).

TPNOTIME
Thisflag signifiesthat the caller iswilling to block indefinitely and wants to be immune
to blocking timeouts. Transaction timeouts may still occur.

TPSIGRSTRT
If asignal interrupts any underlying system calls, then the interrupted system call is
reissued. When Tps1GRSTRT is hot specified and a signal interrupts a system call, then
tpunsubscribe () failsand tperrno is set to TPGOTSIG.

In amultithreaded application, athread in the TPINVAL IDCONTEXT Stateisnot allowed to issue a
call to tpunsubscribe().

Return Values

Upon completion of tpunsubscribe (), tpurcode () containsthe number of subscriptions
deleted (zero or greater) from the EventBroker’slist of active subscriptions. tpurcode () may
contain a number greater than 1 only when the wildcard handle, -1, isused. Also, tpurcode ()
may contain a number greater than 0 even when tpunsubscribe () completes unsuccessfully
(that is, when thewildcard handleis used, the EventBroker may have successfully removed some
subscriptions before it encountered an error deleting others).

Upon failure, tpunsubscribe () returns-1 and sets tperrno to indicate the error condition.

Errors

Uponfailure, tpunsubscribe () Setstperrno to oneof thefollowing values. (Unlessotherwise
noted, failure does not affect the caller’ s transaction, if one exists.)

[TPEINVAL]

Invalid arguments were given (for example, subscription isan invalid subscription
handle).

[TPENOENT]
Cannot access the Oracle Tuxedo EventBroker.

[TPETIME]
This error code indicates that either atimeout has occurred or tpunsubscribe () has
been attempted, in spite of the fact that the current transaction is already marked rollback
only.

If the caller isin transaction mode, then either the transaction is already rollback only or
atransaction timeout has occurred. The transaction is marked abort-only. If the caller is

276 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

not in transaction mode, a blocking timeout has occurred. (A blocking timeout cannot
occur if TeNoBLOCK and/or TPNOTIME IS specified.)

If atransaction timeout has occurred, then, with one exception, any attemptsto send new
requests or receive outstanding replies will fail with reeTIME until the transaction has
been aborted. The exception is arequest that does not block, expects no reply, and is not
sent on behalf of the caller’ stransaction (that is, tpacall () with TPNOTRAN, TPNOBLOCK,
and TPNOREPLY Set).

When atransactional ATMI call failsinside atransaction, the transaction is put into the
TX_ROLLBACK_ONLY State. This state is treated, for most purposes, as though it were
equivalent to atimeout. All further ATMI callsfor thistransaction (with the exception of
those issued in the circumstances described in the previous paragraph) will fail with
TPETIME.

[TPEBLOCK]
A blocking condition exists and TpnoOBLOCK Was specified.

[TPGOTSIG]
A signal was received and TPSIGRSTRT Was not specified.

[TPEPROTO]
tpunsubscribe () was called improperly.

[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error iswrittento a

log file.

[TPEOS]
An operating system error has occurred.

See Also
tppost (3c¢), tpsubscribe (3c¢), EVENTS (5), EVENT_MIB(5), TMSYSEVT (5), TMUSREVT (5)

tputrace(3c)

Name
tputrace () —User-defined trace information application.

ATMI C Function Reference 2117

../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html

Synopsis

#include <atmi.h>
int tputrace (char *trrec, int nest, char *category, char *funcname, int
utrtype, va_list args)

Description

218

tputrace (3c)isauser-defined APl the allows flexibility in monitoring and obtaining detailed

trace output information (such as full user data content that is passed to or returned from ATMI

functions) and defineshow and wherethisinformation isoutput. By default, tputrace () outputs
trace record information to userlog (3c) if the user does not update or modify otherwise.

tputrace (3c) iscaled exclusively by specifying the utrace receiver with TMTRACE. For
example: TMTRACE=atmi:utrace. Specifyingtheutrace receiver automatically invokes
tputrace (3c)and appliesit only to atmi trace category records for output. For more TMTRACE
and utrace receiver information, see tmtrace (5) in the File Formats, Data Descriptions,
MIBs, and System Processes Reference.

Valid tputrace (3c) arguments are:

trrec
Trace information record defined by user. ttrec isalways specified asthefirst argument
in tputrace (3c). Outputting trrec to the userlog, produces the same results as
tmtrace(5).

nest
Definesthe nesting level. Use thisif indentations are added to the tputrace (3¢) output
lines.

category
Defines the ATMI function category, for example "atmi"”, "iatmi" or "xa".

funcname
Defines the function name. For example, "tpcall” Or "tconnect”.

utrtype
Indicates whether tputrace (3c) iscaled when entering or leaving an ATMI function.
Set values asfollows: 0 = entering, 1 = leaving.

args

Define arguments passed to the tputrace (3c) output function. Thisincludes user data
or flags passed to ATMI functions. Thelist of the argumentsfor each ATMI functionsare
defined inthe tputrace () exampleimplementation in the Example(s) section. The
argument list is also available from tmtrace (5) trace information output.

ATMI C Function Reference

../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html

Introduction to the C Language Application-to-Transaction Monitor Interface

Libutrace Library

A separate Tuxedo library, 1ibutrace, isused in conjunction with tputrace (). The default
libutrace isinstalled in the Tuxedo system shared library directory ($TuxpIr/1ib in UNIX
and $TUXDIR%\bin in Windows).

Users can also write their own their own custom libutrace library and caninstall it in either:

o the Tuxedo system shared library directory, or

e the Tuxedo application directory (sapppIR in UNIX and $appDIRS in Windows).

If the custom 1ibutrace library isinstaled in the system directory, it replaces the default
libutrace andisused by all Tuxedo clients and servers on the machine. If the custom
libutrace library isinstalled in the application directory, it is used only by the clients and the
servers in the application.

Whenever tputrace () ismodified, the Libutrace library must be recompiled and linked to
Tuxedo 9.0 or later. A sample tputrace () sourcefileislocated in the
$TUXDIR/samples/atmi/libutrace directory.

The Example(s) section further illustrates how to customize tputrace ().

WARNING: Thedefault or custom 1ibutrace library isloaded into every Tuxedo application
process, including system servers such as BBL or WSL. This being the case, all
Tuxedo system servers consume some amount of memory for loading
libutrace. Thedefault 1ibutrace library isvery small so memory

consumption is negligible. But a custom libutrace can consume alarger amount
of memory depending on how much functionality the user adds.

Example(s)
Thisis example shows the user-level trace information userlog output for the simpc1 execution
of the Tuxedo simpapp Sample program.

In order to customize user-level trace information and output, you must do the following:
1. Modify tputrace().

2. Re-compilethe 1ibutrace library and link to Tuxedo.

ATMI C Function Reference 219

For this example, when TMTRACE=atmi :utrace iSspecified it writesthe contents of the user data
and flags passed to the ATMI functions to the Tuxedo userlog.

280

Listing 1 Simpapp Sample User-Level Trace Information Userlog Output

091206 .HOST1!?proc.1560.1520.0: UTRAC:at: } tpinit = 1
091206.HOST1!?proc.1560.1520.0: UTRAC:at: { tpalloc("STRING", "", 7)
091206 .HOST1!?proc.1560.1520.0: UTRAC:at: } tpalloc = 0x86a8e8
091206 .HOST1!?proc.1560.1520.0: UTRAC:at: { tpalloc("STRING", "", 7)
091206 .HOST1!?proc.1560.1520.0: UTRAC:at: } tpalloc = 0x87fa20
091206 .HOST1!?proc.1560.1520.0: UTRAC:at: { tpcall(

091206 .HOST1!?proc.1560.1520.0: UTRAC:at: svc="TOUPPER"

091206 .HOST1!?proc.1560.1520.0: UTRAC:at: idata=(0x86a8e8) {
091206 .HOST1!?proc.1560.1520.0: UTRAC:at: len=0

091206 .HOST1!?proc.1560.1520.0: UTRAC:at: type="STRING"
091206 .HOST1!?proc.1560.1520.0: UTRAC:at: value="abcdef"
091206 .HOST1!?proc.1560.1520.0: UTRAC:at: }

091206 .HOST1!?proc.1560.1520.0: UTRAC:at: odata=(0x12££48) {
091206 .HOST1!?proc.1560.1520.0: UTRAC:at: data=(0x87£fa20) {
091206 .HOST1!?proc.1560.1520.0: UTRAC:at: len=0

091206 .HOST1!?proc.1560.1520.0: UTRAC:at: type="STRING"
091207 .HOST1!?proc.1560.1520.0: UTRAC:at: }

091207 .HOST1!?proc.1560.1520.0: UTRAC:at: len=(0x12f£f44)0
091207 .HOST1!?proc.1560.1520.0: UTRAC:at: }

091207 .HOST1!?proc.1560.1520.0: UTRAC:at: flags=<none>

091207 .HOST1!?proc.1560.1520.0: UTRAC:at:)

091207 .HOST1!simpserv.760.2188.0: UTRAC:at: { tpservice(

091207 .HOST1!simpserv.760.2188.0: UTRAC:at: svcinfo=(0x5e1518) {
091207 .HOST1!simpserv.760.2188.0: UTRAC:at: name="TOUPPER"
091207 .HOST1!simpserv.760.2188.0: UTRAC:at: flags=<none>
091207 .HOST1!simpserv.760.2188.0: UTRAC:at: data=(0x602820) {
091207 .HOST1!simpserv.760.2188.0: UTRAC:at: len=7

091207 .HOST1!simpserv.760.2188.0: UTRAC:at: type="STRING"
091207 .HOST1!simpserv.760.2188.0: UTRAC:at: value="abcdef"
091207 .HOST1!simpserv.760.2188.0: UTRAC:at: }

091207 .HOST1!simpserv.760.2188.0: UTRAC:at: cd=0

091207 .HOST1!simpserv.760.2188.0: UTRAC:at: appkey=0

ATMI C Function Reference

091207 .HOST1!simpserv.760.2188.0:

Introduction to the C Language Application-to-Transaction Monitor Interface

UTRAC:

cltid=(0x5el54c) {1095811926,0,12,0}

091207
091207
091207
091207
091207
091207
091207
091207
091207
091207
091207
091207
091207
091207
091207
091207
091207

.HOST1!simpserv.
.HOST1!simpserv.
.HOST1!simpserv.
.HOST1!simpserv.
.HOST1!simpserv.
.HOST1!simpserv.
.HOST1!simpserv.
.HOST1!simpserv.

760.2188.
760.2188.
760.2188.
760.2188.
760.2188.
760.2188.
760.2188.
760.2188.
760.2188.

.HOST1!simpserv.
.HOST1!simpserv.
.HOST1!simpserv.
.HOST1!simpserv.
.HOST1!?proc.1560.1520.0:
.HOST1!?proc.1560.
.HOST1!?proc.1560.
.HOST1!?proc.1560.
.HOST1!?proc.1560.

760.2188.
760.2188.
760.2188.

1520.
1520.
1520.
1520.

o O o o

0:

|091207.HOST1! ?proc.1560.1520.0:

091207
091207
091207
091207
091207
091207
091207
091207
091207
091207
091207
091207
091207
091207
091207

.HOST1!?proc.1560.1520.0:
.HOST1!?proc.1560.1520.0:
.HOST1!?proc.1560.1520.0:
.HOST1!simpserv.760.2188.
.HOST1!?proc.
.HOST1! ?proc.
.HOST1! ?proc.
.HOST1! ?proc.
.HOST1!?proc.
.HOST1!?proc.
.HOST1!simpserv.760.218
.HOST1!?proc.1560.
.HOST1!?proc.1560.
.HOST1! ?proc.1560.
.HOST1!?proc.1560.

1560.
1560.
1560.
1560.
1560.
1560.

1520.0:
1520.
1520.
1520.
1520.
1520.

1520.
1520.
1520.
1520.

0
0
0
0:
0:
8
0
0

0:

.0:

-2:
-2:

O O O O O O O O O o o

UTRAC:
UTRAC:
UTRAC:
UTRAC:
UTRAC:
UTRAC:
UTRAC:
UTRAC:
UTRAC:
UTRAC:
UTRAC:
UTRAC:

at:

at:
at:
at:
at:
at:
at:
at:
at:
at:
at:
at:
at:

UTRAC:at:
UTRAC:at:
UTRAC:at:
UTRAC:at:
UTRAC:at:

UTRAC:a
UTRAC:at
UTRAC:at
UTRAC:at

UTRAC:
UTRAC:
UTRAC:
UTRAC:
UTRAC:
UTRAC:

UTRAC:at
UTRAC:at
UTRAC:a
UTRAC:a

t:

UTRAC:at:
at:
at:
at:
at:
at:
at:
UTRAC:at:

t:
t:

)

{ tpreturn/(

rval=TPSUCCESS

rcode=0

data=(0x602820) {
len=0
type="STRING"
value="ABCDEF"

}

flags=<none>

)
} tpcall(
ret=0

odata=(0x12££48) {
data=(0x881690) {

len=7

type="STRING"
value="ABCDEF"

}

len=(0x12££44)7

} tpreturn
}
)

tpfree

B e T A

tpfree

} tpservice
{ tpterm()

} tpterm = 1

{ tpterm()

} tpterm = 1

[long jump]

tpfree (0x86a8e8)

tpfree (0x881690)

ATMI C Function Reference

281

Return Values
tmutrace (3c) returns o when run successfully, and return -1 when a failure occurs.

Errors

Failure depends on the tputrace () user-level implementation/customization. The default
tputrace () implementation included in Tuxedo 9.0 or later does not cause failure.

See Also
® tmtrace(5)
® userlog(3c)

e Using the Run-time and User-level tracing utilitiesin Monitoring Your Oracle Tuxedo
Application in Administering an Oracle Tuxedo Application at Run Time

tpxmitofmlI32(3c)

Name
tpxmltofml32 ()—Converts XML datato FML32 buffers

Synopsis
#include <fml32.h>
int tpxmltofml32 (char *xmlbufp, char *vfile, FBFR32 **fml32bufp, char
**rtag, long flags)

Description

Thisfunction is used to convert XML buffersto FML32 buffers. It supports the following valid
arguments:

xmlbufp
Thisargument is a pointer to valid XML typed buffer input.

viile
The argument is the fully qualified path name of an XML Schema file used to validate
XML input. To usethisargument, you must set the TPxPARSNSPACE and TPXPARSDOSCHE
flags and not set the TpxpPARSNEVER flag.

fml32bufp
Thisargument isapointer to an output FM L 32 typed buffer created from the input XML.

282 ATMI C Function Reference

../rf5/rf5.html
../ada/admon.html
../ada/admon.html

rtag

flags

Introduction to the C Language Application-to-Transaction Monitor Interface

This argument is a pointer that stores the root element name from the input XML
document.

Thisargument isused in XML to FML/FML 32 conversion to map to a Tuxedo 9.x subset
of Xerces parser classes (see, XercesParser 2.5 documentation). The following isalist of
Tuxedo 9.x valid Xerces parser £lags:

TPXPARSNEVER
Sets setvalidationScheme to Val_Never. The parser will not report Schema
validation errors.

TPXPARSALWAYS
Sets setvalidationScheme toval_Always. The parser will always report Schema
validation errors.

Note: TPXPARSNEVER takesprecedent over TPXPARSALWAYS if both argumentsare used at the
same time.

TPXPARSSCHFULL
SetssetvValidationSchemaFullChecking totrue. Thisflag alowsthe user to turn
full Schema constraint checking on/off. Only takes effect if Schema validation is enabled.
If turned off, partial constraint checking is done. Full schema constraint checking includes
those checking that may betime-consuming or memory intensive. Currently, particleunique
attribution constraint checking and particle derivation restriction checking are controlled by
this option.

TPXPARSCONFATAL
SetssetvalidationConstraintFatal to true. Thisflag allows usersto set the
parser’ sbehavior when it encountersavalidation constraint error. If set to true, and
the parser will treat validation error as fatal and will exit depends on the state of
getExitOnFirstFatalError. If false, then it will report the error and continue
processing.

TPXPARSNSPACE
Sets setDoNamespaces to true. Thisflag allows users to enable or disable the
parser’ s namespace processing. When set to true, parser starts enforcing al the
constraints and rules specified by the NameSpace specification.

TPXPARSDOSCH
Sets setDoSchema to true. Thisflag alows usersto enable or disable the parser’s
schema processing. When set to false, parser will not process any schema found.

Note: If set to true, namespace processing must also be turned on.

ATMI C Function Reference 283

284

TPXPARSEREFN
Sets setCreateEntityReferencNodes to false. Thisflag allows the user to specify
whether the parser should create entity reference nodes in the DOM tree being produced.
When the create flag is true, the parser will create EntityReference nodesin the DOM tree.
The EntityReference nodes and their child nodes will be read-only. When the createflagis
false, no EntityReference nodes will be created.The replacement text of the entity is
included in either case, either asachild of the Entity Reference node or in place at the
location of the reference.

TPXPARSNOEXIT
SetssetExitOnFirstFatalError tofase Thisflag allows usersto set the parser's
behavior when it encounters thefirst fatal error. If set to true, the parser will exit at thefirst
fatal error. If false, then it will report the error and continue processing.

TPXPARSNOINCWS
Sets set IncludeIgnorableWhitespace to false. Thisflag allows the user to
specify whether avalidating parser should include ignorable whitespaces as text
nodes. It has no effect on non-validating parserswhich awaysinclude non-markup
text.

When set to false, all ignorable whitespace will be discarded and no text node is
added to the DOM tree.

TPXPARSCACHESET
Sets setcacheGrammarFromParse to true. Thisflag allows usersto enable or disable
caching of grammar when parsing XML documents. When set to true, the parser will cache
the resulting grammar for usein subsequent parses. If theflag is set to true, the Use cached
grammar flag will aso be set to true.

TPXPARSCACHERESET
Resets resetCachedGrammarPool. Resetsthe documentsvector pool and release
all the associated memory back to the system.

When parsing a document using aDOM parser, al memory alocated for aDOM
treeis associated to the DOM document.

If you do multiple parse using the same DOM parser instance, then multiple DOM
documentswill be generated and saved in avector pool. All these documents (and
thus al the allocated memory) won't be deleted until the parser instance is
destroyed.

If you do not need these DOM documents anymore and do not want to destroy the
DOM parser instance at this moment, then you can call this method to reset the
document vector pool and release all the allocated memory back to the system. It
isan error to call this method if you arein the middle of a parse (for example, a
mid progressive parse).

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

Return Values

Upon success, tpxmltofml32 () returnso. Thisfunction returns -1 on error and sets tperrno
to indicate the error condition.

Errors
The function may fail for the following reasons:
[TPEINVAL]

Either fm132bufp Or xmlbufp isnot avalid typed buffer, or parser has problems
understanding the input.

[TPESYSTEN]
A Tuxedo system error has occurred. The exact nature of the error iswritten to
userlog (3). Thiswill asoindicate when aconversion to FML 32 was unableto be done.
In that instance error detail info will be added to the userlog.

[TPEOS]
An operating system error has occurred. A numeric value representing the system call that
failed isavailable in Uunixerr.

SEE ALSO

tpfml32toxml (3¢c), tpxmltofml (3c),tpfmltoxml (3c)

tpxmitofml(3c)

Name
tpxmltofml () —Converts XML datato FML buffers

Synopsis
#include <fml.h>
int tpxmltofml (char *xmlbufp, char *vfile, FBFR **fmlbufp, char **rtag,
long flags)

Description
Thisfunctionisused to convert XML datato FML buffers. It supportsthefollowing valid arguments:

xmlbufp
Thisargument is a pointer to valid XML typed buffer input.

ATMI C Function Reference 285

viile
The argument is the fully qualified path name of an XML Schemafile used to validate
XML input. To usethisargument, you must set the TPxPARSNSPACE and TPXPARSDOSCHE
flags and not set the TPxPARSNEVER flag.

fmlbufp
Thisargument is a pointer to an output FML typed buffer created from the input XML.

rtag
This argument is a pointer that stores the root element name from the input XML
document.

flags
Thisargument isused in XML to FML/FM32L conversion to map to a Tuxedo 9.x subset
of Xerces parser classes (see, XercesParser 2.5 documentation). The following isalist of
Tuxedo 9.x valid Xerces parser £lags:

TPXPARSNEVER
Sets setvalidationScheme to Val_Never. The parser will not report Schema
validation errors.

TPXPARSALWAYS
SetssetvalidationScheme toval_Always. The parser will always report Schema
validation errors.

Note: TPXPARSNEVER takesprecedent over TPXPARSALWAYS if both argumentsare used at the
sametime.

TPXPARSSCHFULL
Sets setvalidationSchemaFullChecking to true. Thisflag allowsthe user to turn
full Schema constraint checking on/off. Only takes effect if Schema validation is enabled.
If turned off, partial constraint checking is done. Full schema constraint checking includes
those checking that may betime-consuming or memory intensive. Currently, particleunique
attribution constraint checking and particle derivation restriction checking are controlled by
this option.

TPXPARSCONFATAL
SetssetvalidationConstraintFatal to true. Thisflag allows usersto set the
parser’ sbehavior when it encountersavalidation constraint error. If set totrue, and
the parser will treat validation error as fatal and will exit depends on the state of
getExitOnFirstFatalError. If false, then it will report the error and continue
processing.

TPXPARSNSPACE
Sets setDoNamespaces to true. Thisflag allows users to enable or disable the
parser’ s namespace processing. When set to true, parser starts enforcing all the
constraints and rules specified by the NameSpace specification.

286 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

TPXPARSDOSCH
Sets setDoSchema to true. Thisflag allows users to enable or disable the parser’s
schema processing. When set to false, parser will not process any schema found.

Note: If set to true, namespace processing must also be turned on.

TPXPARSEREFN
SefssetCreateEntityReferencNodes tofase. Thisflag allows the user to specify
whether the parser should create entity reference nodes in the DOM tree being produced.
When the create flag is true, the parser will create EntityReference nodesin the DOM tree.
The EntityReference nodes and their child nodes will be read-only. When the createflagis
false, no EntityReference nodes will be created.The replacement text of the entity is
included in either case, either asachild of the Entity Reference node or in place at the
location of the reference.

TPXPARSNOEXIT
SetssetExitOnFirstFatalError tofase Thisflag allows usersto set the parser's
behavior when it encountersthefirst fatal error. If set to true, the parser will exit at the first
fatal error. If false, then it will report the error and continue processing.

TPXPARSNOTNCWS
Sets set IncludeIgnorableWhitespace to false. Thisflag allowsthe user to
specify whether avalidating parser should include ignorable whitespaces as text
nodes. It hasno effect on non-validating parserswhich alwaysinclude non-markup
text.

When set to false, al ignorable whitespace will be discarded and no text node is
added to the DOM tree.

TPXPARSCACHESET
Sets setcacheGrammarFromParse to true. Thisflag allows users to enable or disable
caching of grammar when parsing XML documents. When set to true, the parser will cache
the resulting grammar for usein subsequent parses. If theflag is set to true, the Use cached
grammar flag will aso be set to true.

TPXPARSCACHERESET
ResetsresetCachedGrammarpPool. Resetsthe documentsvector pool and release
all the associated memory back to the system.

When parsing a document using a DOM parser, al memory allocated for a DOM
treeis associated to the DOM document.

If you do multiple parse using the same DOM parser instance, then multiple DOM
documentswill be generated and saved in avector pool. All these documents (and
thus al the allocated memory) won't be deleted until the parser instanceis
destroyed.

ATMI C Function Reference 287

If you do not need these DOM documents anymore and do not want to destroy the
DOM parser instance at this moment, then you can call this method to reset the
document vector pool and release all the allocated memory back to the system. It
isan error to call this method if you are in the middle of a parse (for example, a
mid progressive parse).

Return Values

Upon success, tpxmltofml () returnsaO0. Thisfunction returns-1 on error and sets tperrno
to indicate the error condition.

Errors
The function may fail for the following reasons.

[TPEINVAL]
Either fm132bufp Or xmlbufp isnot avalid typed buffer, or parser has problems
understanding the input.

[TPESYSTEM]
A Tuxedo system error has occurred. The exact nature of the error iswritten to
userlog (3c). Thiswill also indicate when aconversion to FML was unable to be done.
In that instance error detail info will be added to the userlog.

[TPEOS]
An operating system error has occurred. A numeric value representing the system call that
failed is available in Uunixerr.

SEE ALSO

® tpxmltofml32(3c), tpfml32toxml (3¢c), tpfmltoxml (3¢)

e Converting XML Data To and From FML/FML 32 Buffersin Programming Oracle Tuxedo
ATMI Applications Using C

TRY(3c)

Name
TRY () —EXxception-returning interface.

Synopsis

#include <texc.h>

288 ATMI C Function Reference

../pgc/pgbuf.html

Introduction to the C Language Application-to-Transaction Monitor Interface

TRY

try block

[CATCH (exception_name) handler_block]
[CATCH_ALL handler_block]

ENDTRY

TRY

try block
FINALLY
finally block
ENDTRY

RAISE (exception_name)
RERAISE

/* declare exception */

EXCEPTION exception_name;

/* initialize address (application) exception */
EXCEPTION_INIT (EXCEPTION exception_name)

/* intialize status exception (map status to exception */

exc_set_status (EXCEPTION *exception_name, long status)

/* map status exception to status */

exc_get_status (EXCEPTION *exception _name, long *status)

/* compare exceptions */
exc_matches (EXCEPTION *el, EXCEPTION *e2)

/* print error to stderr */

void exc_report (EXCEPTION *exception)

Description

The Try/caTcH interface provides a mechanism to handl e exceptions without the use of status
variables (for example, errno or status variables passed back from an RPC operation). These
macros are defined in texc.h.

ATMI C Function Reference 289

290

The TRy try_blockisablock of C or C++ declarations and statements in which an exception
may be raised (code that is not associated with raising an exception should be placed before or
after the try. block). Each TRY/ENDTRY pair constitutes a“scope,” with respect to exceptions
(not unlike C scoping), or aregion of code over which exceptions are caught. These scopes can
be properly nested. When an exception is raised, an error is reported to the application by
searching the active scopes for actions written to handle (“absorb”) an exception (caTch or
cATCH_ALL clauses) or complete the scopes (FINALLY clauses). If ascope does not handle an
exception, the scope is torn down with the exception raised at the next higher level (unwinding
the stack of exception scopes). Execution resumes at the point after which the exception is
handled; there isno provision for resuming execution at the point of error. If the exception is not
handled by any scope, the program is terminated (a message is written to the log via
userlog(3c) and abort(3) is caIIed).

Zero or more occurrences of CATCH (exception_name) handler_block may beprovided. Each
handler_blockisablock of C or C++ declarations and statements in which the associated
exception (exception_name) isprocessed (normally, actions are specified for recovery fromthe
failure). If an exception israised by a statement in try_block, then thefirst carcu clause that
matches the exception is executed.

Within acaTch or CATCH_ALL handler_block, the current exception can be referenced by the
EXCEPTION pointer turs_catch (for example, for logic based on or printing the exception
value).

If the exception is not handled by one of the caTch clauses, then the caTch_arL clauseis
executed. By default, no further action is taken for an exception that is handled by acaTcu or
caTcH_aLL clause. If no carcu_aLL clause exists, then the exception israised at the try._block
at the next higher level, assuming that the try._b1ock isnested within another try_bilock. If an
ANSI C compiler is used, register and automatic variables that are used in the handler blocks
should be declared with the volatile attribute (asistrue of any blocks that use
setjmp/longimp). AlSo note that output parameters and return values from the functions that
can generate an exception are indeterminate.

Within acaTcH or CATCH_ALL handler_block, the current exception can be propagated to the
next higher level (the exception is“reraised”) using the RERATSE Statement. The RERAISE
statement must appear lexically within the scope of a handier_block (that is, not within a
function called by the handier_block). Any exception that is caught but not fully handled
should bereraised. In many cases, acarcH_art handler should reraise the exception because the
handler is not written to handle every exception. The application should al so be written such that
an exception israised to the proper scope such that the handler blockstake the appropriate actions

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

and modify the appropriate state (for example, if an exception occurs while opening afile, the
handler function for that level should not try to close the unopened file).

An exception can be raised from anywhere by using the RaTsE(exception_name) statement.
This statement causes the exception to start propagating at the current try. block and will be
reraised until it is handled.

The rrnaLLy clause can be used to specify an epilogue block of code that is executed after the
try_block, whether or not an exceptionisraised. If an exceptionisraised inthe try._block, it
isreraised after the finally. block isexecuted. This clause can be used to avoid replicating
epilogue codetwice, oncein acaTcH_ALL clause, and again after the ENpTRY. Itisnormally used
to execute cleanup activities, restoring invariants (for example, shared data, locks) as the scopes
are unwound, whether or not exceptions are raised (that is, on both normal and abnormal exits
from the block). Note (in the “ Synopsis’ section) that arFINALLY clause cannot be used with a
CATCH Or CATCH_ALL clause for the same try block; use nested try blockS.

The enDTRY Statement must be used to complete the Try block, since it contains code that must
be executed to make sure that exceptions are handled and the context is cleaned up. A
try_block, handler_block, Of finally_block must not contain areturn, hon-local jump,
or any other means of leaving the block such that the ENDTRY iS not reached (for example,

goto (), break (), continue(), longjmp ()).

Thisinterfaceis provided to handle exceptions from RPC operations. However, thisisageneric
interface that can be used for any application. An exception isdeclared to be of type ExcepTION.
(Thisisacomplex datatype; do not try to useit like along integer.) There are two types of
exceptions. They are declared in the same manner but initialized differently.

One type of exception is used to define application exceptions. It isinitialized by calling the
EXCEPTION_INIT () macro. The address of the exception is stored as the value within the
address exception. Note that thisvalue is valid only within a single address space and will
change if the exception is an automatic variable. For this reason, an address exception should
be declared as a static or external variable, not an automatic or register variable. The
exc_get_status () macro will evaluateto -1 for an address exception. Using the
exc_set_status () macro on this exception will makeit a status exception.

The exc_matches macro can be used to compare two exceptions. To compare equal, the
exceptions must both be the same type and have the same value (for example, the same status
valuefor status exceptions, or the same addresses for address exceptions). This comparison
is used for the carcH clause, described above.

When status exceptions are raised, acommon part of handling the exception might beto print out
the status value, or better yet, a string indicating what status value occurred. If the string isto be

ATMI C Function Reference 291

printed to the standard error output, then the function exc_report () can becalled with a pointer
to the status exception to print the string in one operation.

CATCH_ALL

{

exc_report (THIS_CATCH) ;
}

ENDTRY

If something elseis to be done with the string (for example, printing the error to the user log),
exc_get_status () can beused on THIS_cATCH to get the status value (remember that
THIS_CATCH is already a pointer to an EXCEPTION, hot an EXCEPTION), and
dce_error_ing text () can be used to get the string value associated with the status value.

CATCH_ALL

{
unsigned long status_to_convert;
unsigned char error_text[200];

int status;

exc_get_status (THIS_CATCH, status_to_convert) ;
dce_error_ing text(status_to_convert, error_text, status);
userlog(“%s”, (char *)error_text);

}

ENDTRY

Note: A thread in a multithreaded application may invoke the Try/carch interface while
running in any context state, including TPINVALIDCONTEXT.

When to Use Exception and Status Returns

292

The status of RPC operations can be determined portably by defining status variables for each
operation ([comm_status] and [fault_status] parameters are defined via the Attribute
Configuration File). The status-returning interface isthe only interface provided in the X/OPEN
RPC specification. The fault_status attributeindicatesthat errors occurring on the server due
to incorrectly specified parameter values, resource constraints, or coding errors be reported by an
additional status argument or return value. Similarly, the comm_status attribute indicates that
RPC communicationsfailuresbe reported by an additional statusargument or return value. Using
status values works well for fine-grained error handling (on a per-call basis) with recovery
specified for each possible error on each call, and where it is necessary to retry from the point of
failure. The disadvantageisthat it is not transparent whether or not the call islocal or remote. The

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

remote call hasadditional status parameters, or astatusreturn valueinstead of being avoid return.
Thus, the application must have procedure declarations adjusted between local and distributed
code.

For application portability from an OSF/DCE environment, the TRy/cATCH exception-returning
interface is also provided. Thisinterface may not be provided in all environments. However, it
has the advantage that procedure declarations need not be adjusted between local and distributed
code, maintaining existing interfaces. The checking for errors can be simplified such that each
procedure call does not have specific failure checking or recovery code. If an error isnot handled
at some level, then the program exits with a system error message such that the error is detected
and can be corrected (omissions become more obvious). Exceptions work better for
coarse-grained exception handling.

Built-in Exceptions

The exceptions shown in Table 18 are “built-in” to the use of this exception interface. The first
TRY clause setsup asignal handler to catch the signalslist below if they are not currently ignored
or caught; the other exceptions are defined only for DCE program portability.

Table 18 Built-in Exceptions

Exception

Description

exc_e_SIGBUS

An unhandled sTGBUS signal occurred.

exc_e_SIGEMT

An unhandled STGEMT signal occurred.

exc_e_SIGFPE

An unhandled STGFPE signal occurred.

exc_e_SIGILL

An unhandled STGILL signal occurred.

exc_e_SIGIOT

An unhandled sTGIOT signal occurred.

exc_e_SIGPIPE

An unhandled STGPIPE signa occurred.

exc_e_SIGSEGV

An unhandled STGSEGV signa occurred.

exc_e_SIGSYS

An unhandled sTGSYs signal occurred.

exc_e_SIGTRAP

An unhandled sSTGTRAP signa occurred.

exc_e_SIGXCPU

An unhandled sTGXCPU signal occurred.

exc_e_SIGXFSZ

An unhandled sTGXFsz signa occurred.

ATMI C Function Reference

293

294

Table 18 Built-in Exceptions (Continued)

Exception Description

pthread_e_badparam

pthread_e_defer_qg full

pthread_e_existence

pthread_e_in_use

pthread_e_nostackmem

pthread_e_nostack

pthread_e_signal_g full

pthread_e_stackovf

pthread_e_unimp

pthread_e_use_error

exc_e_decovf

exc_e_exquota

exc_e_fltdiv

exc_e_fltovf

exc_e_fltund

exc_e_illaddr

exc_e_insfmem

exc_e_intdiv

exc_e_intovf

exc_e_nopriv

exc_e_privinst

exc_e_resaddr

exc_e_resoper

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

Table 18 Built-in Exceptions (Continued)

Exception Description

exc_e_subrng

exc_e_uninitexc

These same exception codes are also defined with the“_e” at the end of the name (for example,
exc_e_SIGBUS isalso defined as exc_sIcBUS_e). Equivalent status codes are defined with
similar namesbut the“_e_" ischangedto “_s_" (for example, exc_e_s1GBUS iSequivaent to
the exc_s_s1GBUS status code).

Caveats

In OSF/DCE, the header fileis named exc_handling.h; the Oracle Tuxedo ATMI system
header fileis texc.h. Itis not possible for the same source file to use both DCE and Oracle
Tuxedo ATMI system exception handling. Further, within a program, the handling of signal
exceptions can only be done by either DCE or the Oracle Tuxedo ATMI system, not both.

Examples
Thefollowing is an example C source file that uses exceptions:

#include <texc.h>
EXCEPTION badopen_e; /* declare exception for bad open() */

doit (char *filename)

{

EXCEPTION_INIT (badopen_e) ; /* initialize exception */
TRY get_and_ update_data(filename) ; /* do the operation */
CATCH (badopen_e) /* exception - open() failed */
fprintf (stderr, “Cannot open %s\en”, filename) ;
CATCH_ALL /* handle other errors */
/* handle rpc service not available, ... */
exc_report (THIS_CATCH)
ENDTRY
}
/ *

* Open output file
* Get the remote data item
* Write out to file
*/
get_and_update_data (char *filename)

{

ATMI C Function Reference 295

FILE *fp;
if ((fp == fopen(filename)) == NULL) /* open output file */
RAISE (badopen_e) ; /* raise exception */
TRY
/* in this block, file is opened successfully -
* use associated FINALLY to close file
*/
long data;
/ *
* Execute RPC call - exceptions are raised to the calling
* function, doit()
*/
data = remote_get_datal() ;
fprintf (fp, “%1ld\en”, data);
FINALLY
/* Whether or not exceptions are raised, close the file */
fclose (fp) ;
ENDTRY
}

See Also

userlog(3c)

abort(2) inaUNIX system reference manual

Programming Oracle Tuxedo ATMI Applications Using TXRPC

tuxgetenv(3c)

Name
tuxgetenv () —Returns value for environment name.

Synopsis
#include <atmi.h>

char *tuxgetenv(char *name)

Description

tuxgetenv () searchestheenvironment list for astring of theform name=vaiue and, if thestring
ispresent, returnsapointer to the vaue inthe current environment. Otherwise, it returnsaNULL
pointer.

296 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

This function provides a portable interface to environment variables across the different
platforms on which the Oracle Tuxedo ATMI system is supported, including those platforms that
do not normally have environment variables.

Note that tuxgetenv IS case-sensitive.

A thread in a multithreaded application may issue acall to tuxgetenv () whilerunning in any
context state, including TPTNVALIDCONTEXT.

Return Values

If apointer to the string exists, tuxgetenv () returnsthat pointer. If a pointer does not exist,
tuxgetenv () returnsaNULL pointer.

Portability

On M S Windows, this function overcomes the inability to share environment variables between
an application and aDynamic Link Library. The Oracle Tuxedo ATMI Workstation DLL
maintains an environment copy for each application that is attached to it. This associated
environment and context information is destroyed when tpterm() is called from aWindows
application. The value of an environment variabl e could be changed after the application program
Cd|Stpterm(L

It is recommended that uppercase variable names be used for the Windows environments.
(tuxreadenv () convertsal environment variable names to uppercase.)

See Also

tuxputenv (3c), tuxreadenv (3c)

tuxgetmbaconv(3c)

Name
tuxgetmbaconv () —Gets the value for environment variable TeMBaconv in the process
environment.

Synopsis

#include <atmi.h>

extern int tperrno;

int

tuxgetmbaconv (long flags) /* Get TPMBACONV info */

ATMI C Function Reference 297

Description

Thisfunction isused for getting the TPMBACONYV status. The tuxgetnombaconv () function
is used by an application devel oper to check if the automatic conversion capability of the typed
switch buffersisturned off. By default the TPMBACONYV is not set and automatic conversion
functions are used.

The f1ags argument is not currently used and should be set to O.

Return Values

tuxgetnombaconv () returns MBAUTOCONVERSION_ON if the TPMBACONYV is set and
MBAUTOCONVERSION_OFF if TPMBACONYV isnot set.

See Also

tuxgetenv (3c), tuxsetmbaconv (3c)

tuxgetmbenc(3c)

Name

tuxgetmbenc () —Gets the code-set encoding name for environment variable TpvBENC in the
process environment.

Synopsis
#include <atmi.h>

extern int tperrno;

int

tuxgetmbenc (char *enc_name, long flags)

Description

This function is used for getting the codeset encoding name that is contained in the TPMBENC
environment variable. This environment variable is automatically used as the default codeset
encoding name when an MBSTRING typed buffer is created. The default encoding name can be
reset or unset using the tpsetmbenc() function once the new message is available.

The enc_name argument will contain the value of the TPMBENC environment variable upon
successful execution of thisfunction. This pointer should be large enough for the encoding name
to be copied into.

The f1ags argument is not currently used and should be set to O.

298 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

Return Values
Upon success, tuxgetmbenc() returns O; otherwise, it returns a non-zero value on error.

See Also

tpconvmb (3¢), tpgetmbenc (3¢), tpsetmbenc (3¢), tuxgetenv (3c), tuxsetmbenc (3¢)

tuxputenv(3c)

Name
tuxputenv () —Changes or adds a value to the environment.
Synopsis

#include <atmi.h>
int tuxputenv (char *string)

Description

string pointsto astring of the form “name=value.” tuxputenv () makesthe value of the
environment variable name equal to value by altering an existing variable or creating anew one.
In either case, the string pointed to by string becomes part of the environment.

Thisfunction providesaportableinterface to environment variables across different platformson
where Oracle Tuxedo ATMI system is supported (including those platformsthat do not normally
have environment variables).

Note: tuxputenv () iScase-sensitive.

A thread in a multithreaded application may issue acall to tuxputenv () while running in any
context state, including TPINVALIDCONTEXT.

Return Values

If tuxputenv () cannot obtain enough space, viamalloc (), for an expanded environment, it
returns a non-zero integer. Otherwise, it returns zero.

Portability

On M S Windows, this function overcomes the inability to share environment variables between
an application and aDynamic Link Library. The Oracle Tuxedo ATMI system Workstation DL L
maintains an environment copy for each application that is attached to it. This associated
environment and context information is destroyed when tpterm () is caled from a Windows

ATMI C Function Reference 299

application. Thevalue of an environment variable could be changed after the application program
Cd|Stpterm(L

We recommend using uppercase variable names for the DOS, Windows, and OS/2,
environments. (tuxreadenv () convertsall environment variable names to uppercase.)

See Also

tuxgetenv (3c), tuxreadenv (3c)

tuxreadenv(3c)

Name
tuxreadenv () —Adds variables to the environment from afile.

Synopsis
#include <atmi.h>

int tuxreadenv (char *file, char *label)

Description

tuxreadenv () readsafile containing environment variables and adds them to the environment,
independent of platform. Thesevariablesareavailableusing tuxgetenv () and can bereset using

tuxputenv ().
The format of the environment file is as follows:

e Any leading space or tab character on alineisignored and is not considered in the
following points.

e Lines containing variables to be put into the environment are of the form:
variable=value
or
set variable=value

where variable must begin with an aphabetic or underscore character and contain only
alphanumeric or underscore characters, and value may contain any character except
newline.

e Within the vaiue, strings of the form ${ env} are expanded using variables already in the
environment (forward referencing is not supported and if avalueis not set, the variableis
replaced with the empty string). Backslash (\) may be used to escape the dollar sign and

300 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

itself. All other shell quoting and escape mechanisms are ignored and the expanded vaiue
is placed into the environment.

e Lines beginning with slash (/), pound sign (#), semicolon (;), or exclamation point (!) are
treated as comments and ignored. Lines beginning with other characters besides these
comment characters, aleft square bracket, or an alphabetic or underscore character are
reserved for future use; their use is undefined.

e Thefileis partitioned into sections by lines beginning with left square bracket ([), which
actsas alabel. The label will be silently truncated if longer than 31 characters. The format
of alabel is:

[Iabell]

where 1abel follows the same rulesfor variable above (lineswith invalid 1abel values
areignored).

e Variable lines between the top of the file and the first label are put into the environment for
all labels (thisisthe global section). Other variables are put into the environment only if
the label matches the label specified for the application. A label of [] will indicate the
global section.

If rizeisNULL, then adefault filename is used. The fixed filenames are as follows:

DOS, Windows, 0S2, NT: C:\TUXEDO\TUXEDO.ENV

MAC: TUXEDO.ENV in the system preferences directory
NETWARE: SYS:SYSTEM\TUXEDO.ENV

POSIX: /usr/tuxedo/TUXEDO.ENV O /var/opt/tuxedo/TUXEDO.ENV

If 1abelisNULL, then only variablesin the global section are put into the environment. For
other values of 1abel, the global section variables plus any variablesin a section matching the
label are put into the environment.

An error message is printed to the userlog () if thereisamemory failure, if anon-NULL
filename does not exist, or if anon-NULL label does not exist.

A thread in amultithreaded application may issue acall to tuxreadenv () whilerunningin any
context state, including TPINVALIDCONTEXT.

Example
Thefollowing is an example environment file.
TUXDIR=/usr/tuxedo
[applicationl]

;this i1s a comment
/* this is a comment */

ATMI C Function Reference 301

#this is a comment

//this is a comment
FIELDTBLS=appl_flds
FLDTBLDIR=/usr/appl/udataobj
[application2]
FIELDTBLS=app2_flds
FLDTBLDIR=/usr/app2/udataobj

Return Values

If tuxreadenv () cannot obtain enough space, viamalloc (), for an expanded environment, or if
it cannot open and read afile with anon-NULL name, it returns a non-zero integer. Otherwise,
tuxreadenv () returns zero.

Portability

In the DOS, Windows, OS2, and NetWare environments, tuxreadenv () convertsall
environment variable names to uppercase.

See Also

tuxgetenv (3c), tuxputenv (3c)

tuxsetmbaconv(3c)

Name

tuxsetmbaconv () —Sets the value for environment variable Tpveaconv in the process
environment.

Synopsis
#include <atmi.h>

extern int tperrno;

int
tuxsetmbaconv (int onoff, long flags) /* Set TPMBACONV */

Description

Thisfunction is used for setting or resetting the TpvBaconv environment variable. By default
TPMBACONYV iS not set and automatic conversion functions are used.

302 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

The onof £ argument is equal to MBAUTOCONVERSION_OFF t0 unset TpMBacony and turn off
auto-conversions. It is equal to MBAUTOCONVERSION_ON to Set TpMBACONV and turn on the typed
switch buffers auto-conversion of codeset multi-byte data.

The f1ags argument is not currently used and should be set to O.

Return Values

Upon success, tuxsetnombaconv () returns 0; otherwise, it returns a non-zero value on error.
(for example, it returns -1 if the ono£ £ arg is not one of the defined values).

See Also

tuxgetmbaconv (3c), tuxputenv (3c)

tuxsetmbenc(3c)

Name

tuxsetmbenc () —Sets the code-set encoding name for environment variable TpuBENC in the
process environment.

Synopsis

#include <atmi.h>

extern int tperrno;

int

tuxsetmbenc (char *enc_name, long flags)

Description

This function isused for setting or resetting the codeset encoding name that is contained in the
TPMBENC environment variable. Thisenvironment variableisautomatically used asthe default
codeset encoding namewhen an MBSTRING typed buffer iscreated. Thisdefault encoding name
can be reset or unset using the tpsetmbenc () function once the new messageis available.

The enc_name argument is the encoding name to use to identify the codeset.

The f1ags argument is not currently used and should be set to 0.

Return Values
Upon success, tuxsetmbenc () returns 0; otherwise, it returns a non-zero value on error.

ATMI C Function Reference 303

See Also

tpconvmb (3¢), tpgetmbenc (3¢), tpsetmbenc (3¢), tuxgetmbenc (3¢), tuxputenv (3c)

tuxthrputenv(3c)

Name

tuxthrputenv () —Changes or adds an environment variable for the current thread.

Synopsis

#include <atmi.h>

int tuxthrputenv (char *string)

Description

string pointsto astring of the form “name=value.” tuxthrputenv () makesthe value of the
environment variable name equal to value by altering an existing variable or creating anew one.
In either case, the string pointed to by string becomes part of the environment.

This function provides a portable interface to environment variables across different platforms
where the Oracle Tuxedo ATMI system is supported (including those platforms that do not
normally have environment variables). It allows athread in a multithreaded application to useits
own environment variables.

tuxthrputenv worksonly whenitisread by tuxgetenv (). If getenvisused, tuxthrputenv
fails.

Note: tuxthrputenv () iScase-senstive, it overridesthe tuxputenv set value.

Return Values

If tuxthrputenv () cannot obtain enough space viamalloc () for an expanded environment, it
returns a non-zero integer. Otherwise, it returns zero.

Portability

304

On MSWindows, tuxthrputenv () overcomes the inability to share environment variables
between an application and a Dynamic Link Library. The Oracle Tuxedo ATMI system
Workstation DLL maintains an environment copy for each application that is attached to it. This
associated environment and context information is destroyed when tpterm () iscalled froma
Windows application. The value of an environment variable could be changed after the
application program calls tpterm ().

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

It is recommended that you use uppercase variable names for the DOS, Windows, and 0OS/2,
environments. (tuxreadenv () convertsall environment variable names to uppercase.)

See Also

tuxgetenv (3c), tuxreadenv (3c), tuxputenv (3c)

tx_begin(3c)

Name
tx_begin ()—Beginsaglobal transaction.

Synopsis
#include <tx.h>

int tx_begin(void)

Description

tx_begin () isused to placethe calling thread of control in transaction mode. The calling thread
must first ensure that its linked resource managers have been opened (via tx_open ()) beforeit
can start transactions. tx_begin () fails (returning [Tx_proTocoL_ERROR]) if the caller is
already in transaction mode or tx_open () has not been called.

Once in transaction mode, the calling thread must call tx_commit () Of tx_rollback() tO
complete its current transaction. There are certain cases related to transaction chaining where
tx_begin () doesnot need to be called explicitly to start atransaction. See tx_commit () and
tx_rollback () for details.

In amultithreaded application, athread in the TpINvVALIDCONTEXT State is not allowed to issuea
call to tx_begin().

Optional Set-up

tx_set_transaction_timeout ()

Return Value
Upon successful completion, tx_begin () returns Tx_ox, a non-negative return value.

Errors
Under the following conditions, tx_begin () failsand returns one of these negative values:

ATMI C Function Reference 305

[Tx_ouTsiDE]
The transaction manager is unable to start a global transaction because the calling thread
of contral is currently participating in work outside any global transaction with one or
more resource managers. All such work must be compl eted before aglobal transaction can
be started. The caller’s state with respect to the local transaction is unchanged.

[TX_PROTOCOL_ERROR]
The function was called in an improper context (for example, the caller isalready in
transaction mode). The caller’s state with respect to transaction mode is unchanged.

[TX_ERROR]
Either the transaction manager or one or more of the resource managers encountered a
transient error trying to start a new transaction. When this error isreturned, the caler is
not in transaction mode. The exact nature of the error iswritten to alog file.

[Tx_FATL]
Either the transaction manager or one or more of the resource managers encountered a
fatal error. The nature of the error is such that the transaction manager and/or one or more
of the resource managers can no longer perform work on behalf of the application. When
thiserror isreturned, the caller is not in transaction mode. The exact nature of the error is
written to alog file.

See Also

tx_commit (3c¢), tx_open(3c), tx_rollback(3c), tx_set_transaction_timeout (3c)

Warnings

XA-compliant resource managers must be successfully opened to be included in the global
transaction. (See tx_open (3c) for details.) Both the X/Open TX interface and the X-Windows
system define the type XID. It is not possible to use both X-Windows callsand TX callsin the
samefile.

tx_close(3c)

Name
tx_close ()—Closes aset of resource managers.

Synopsis
#include <tx.h>

int tx_close(void)

306 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

Description

tx_close () closesaset of resource managersin aportable manner. It invokes atransaction
manager to read resource-manager-specific information in a transacti on-manager-specific
manner and pass this information to the resource managers linked to the caller.

tx_close () closesall resource managersto which the caller islinked. Thisfunction isusedin
place of resource-manager-specific “close” callsand allows an application program to be free of
callswhich may hinder portability. Since resource managersdiffer in their termination semantics,
the specific information needed to “close” a particular resource manager must be published by
each resource manager.

tx_close () should be called when an application thread of control no longer wishes to
participate in global transactions. tx_close () fails (returning [Tx_proTocor_ERROR]) if the
caller isintransaction mode. That is, no resource managers are closed even though some may not
be participating in the current transaction.

When tx_close () returns success (Tx_ok), all resource managers linked to the calling thread
are closed.

In amultithreaded application, athread in the TPINVAL IDCONTEXT Stateisnot allowed to issue a
cal to tx_close().

Return Value
Upon successful completion, tx_close() returns Tx_ox, a non-negative return value.

Errors
Under the following conditions, tx_close () falsand returns one of these negative values:

[TX_PROTOCOL_ERROR]
The function was called in an improper context (for example, the caller isin transaction
mode). No resource managers are closed.

[TX_ERROR]
Either the transaction manager or one or more of the resource managers encountered a
transient error. The exact nature of the error iswritten to alog file. All resource managers
that could be closed are closed.

[Tx_FATL]
Either the transaction manager or one or more of the resource managers encountered a
fatal error. The nature of the error is such that the transaction manager and/or one or more
of the resource managers can no longer perform work on behalf of the application. The
exact nature of the error iswrittento alog file.

ATMI C Function Reference 307

See Also

tx_open(3c)

Warnings

Both the X/Open TX interface and the X-Windows system define the type XID. Itisnot possible
to use both X-Windows calls and TX callsin the samefile.

tx_commit(3c)

Name
tx_commit ()—Commits aglobal transaction.

Synopsis
#include <tx.h>

int tx_commit (void)

Description

tx_commit () iSused to commit the work of the transaction active in the caller’ s thread of
control.

If the transaction_control characteristic (see tx_set_transaction_control (3c))is
TX_UNCHAINED, then when tx_commit () returns, the caller is no longer in transaction mode.
However, if the transaction control characteristicisTx_CHAINED, thenwhen tx_commit ()
returns, the caller remainsin transaction mode on behalf of a new transaction (see the Return
Value and Errors sections below).

In amultithreaded application, athread in the TPINVAL IDCONTEXT Stateisnot allowed to issue a
cal to tx_commit ().

Optional Set-up
® tx set_commit_return()
® tx_set_transaction_control ()

® tx_set_transaction_timeout ()

Return Value
Upon successful completion, tx_commit () returns Tx_oxk, a non-negative return value.

308 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

Errors
Under the following conditions, tx_commit () failsand returns one of these negative values:

[Tx_NO_BEGIN]
The current transaction committed successfully; however, a new transaction could not be
started and the caller is no longer in transaction mode. This return value may occur only
when the transaction_control characteristic is TXx_CHAINED.

[TX_ROLLBACK]
The current transaction could not commit and has been rolled back. In addition, if the
transaction_control characteristic is TX_CHAINED, anew transaction is started.

[TX_ROLLBACK_NO_BEGIN]
The transaction could not commit and has been rolled back. In addition, anew transaction
could not be started and the caller is no longer in transaction mode. This return value can
occur only when the transaction_control characteristic is TX_CHAINED.

[Tx_MIXED]
The work done on behalf of the transaction was partially committed and partially rolled
back. In addition, if the transaction control characteristic is TX_CHAINED, a New
transaction is started.

[TX_MIXED_NO_BEGIN]
The work done on behalf of the transaction was partially committed and partially rolled
back. In addition, a new transaction could not be started and the caller isno longer in
transaction mode. This return value can occur only when the transaction_control
characteristic is Tx_CHAINED.

[Tx_HAZARD]
Dueto afailure, some of the work done on behalf of the transaction may have been
committed and some of it may have been rolled back. In addition, if the
transaction_control characteristic is TX_CHAINED, a new transaction is started.

[TX_HAZARD_NO_BEGIN]
Due to afailure, some of the work done on behalf of the transaction may have been
committed and some of it may have been rolled back. In addition, anew transaction could
not be started and the caller is no longer in transaction mode. This return value can occur
only when the transaction_control characteristic iS TX_CHAINED.

[TX_PROTOCOL_ERROR]
The function was called in an improper context (for example, the caller isnot in
transaction mode). The caller’s state with respect to transaction mode is not changed.

ATMI C Function Reference 309

[Tx_FATL]
Either the transaction manager or one or more of the resource managers encountered a
fatal error. The nature of the error is such that the transaction manager and/or one or more
of the resource managers can no longer perform work on behalf of the application. The
exact nature of the error iswrittento alog file. The caller’s state with respect to the
transaction is unknown.

See Also

tx_begin(3c), tx_set_commit_return(3c), tx_set_transaction_control (3c),
tX_set_transaction_timeout (3c)

Warnings

Both the X/Open TX interface and the X-Windows system define the type XID. It isnot possible
to use both X-Windows callsand TX callsin the samefile.

tx_info(3c)

Name
tx_info ()—Returns global transaction information.

Synopsis

#include <tx.h>
int tx_info (TXINFO *info)

Description

tx_info () returnsglobal transaction information in the structure pointed to by info. In
addition, this function returns a value indicating whether the caller is currently in transaction
mode or not. If infoisnon-NULL, then tx_info () populatesaTxINFo structure pointed to by
infowith global transaction information. The TxINFo structure containsthe following elements:

XID xid;

COMMIT_RETURN when_return;
TRANSACTION_CONTROL transaction_control;
TRANSACTION_TIMEOUT transaction_timeout;
TRANSACTION_STATE transaction_state;

If tx_info () iscaledintransaction mode, then xid will be populated with a current transaction
branchidentifier and t ransaction_state will contain the state of the current transaction. If the
caller is not in transaction mode, xid will be populated with the NULL XID (seethe tx.nh file

310 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

for details). In addition, regardless of whether the caller isin transaction mode, when_return,
transaction_control, and transaction_timeout contain the current settings of the
commit_returnand transaction_control characteristics, and the transaction timeout value
in seconds.

The transaction timeout value returned reflects the setting that will be used when the next
transaction is started. Thus, it may not reflect the timeout value for the caller’s current global
transaction since calls made to tx_set_transaction_timeout () after the current transaction
was begun may have changed its value.

If infoisNULL, no TxINFO Structure is returned.

In amultithreaded application, athread in the TpINVALIDCONTEXT State is not allowed to issuea
cal to tx_info ().

Return Value

If the caller isin transaction mode, then 1isreturned. If the caller isnot in transaction mode, then
Oisreturned.

Errors
Under the following conditions, tx_info () failsand returns one of these negative values:

[TX_PROTOCOL_ERROR]
Thefunction was called in an improper context (for example, the caller has not yet called

tx_open())

[Tx_FaTL]
The transaction manager encountered afatal error. The nature of the error is such that the
transaction manager can no longer perform work on behalf of the application. The exact
nature of the error iswritten to alog file.

See Also

tx_open(3c), tx_set_commit_return(3c), tx_set_transaction_control (3c),

tx_set_ transaction_timeout (3c)

Warnings
Within the same global transaction, subsequent callsto tx_info () areguaranteed to provide an
XI1D with the same gt rid component, but not necessarily the same bqual component. Both the
X/Open TX interface and the X-Windows system define the type XID. It is not possible to use
both X-Windows callsand TX callsin the samefile.

ATMI C Function Reference n

tx_open(3c)

Name

tx_open () —Opens a set of resource managers.

Synopsis

Descr

#include <tx.h>

int tx_open (void)

iption

tx_open () opensaset of resource managersin a portable manner. It invokes a transaction
manager to read resource-manager-specific information in a transaction-manager-specific
manner and pass this information to the resource managers linked to the caller.

tx_open () attemptsto open all resource managers that have been linked with the application.
Thisfunction is used in place of resource-manager-specific “open” callsand alows an
application program to be free of calls which may hinder portability. Since resource managers
differ in their initialization semantics, the specific information needed to “open” a particular
resource manager must be published by each resource manager.

If tx_open () returns Tx_ERROR, then no resource managers are open. If tx_open () returns
TX_OK, some or al of the resource managers have been opened. Resource managers that are not
open will return resource-manager-specific errors when accessed by the application. tx_open ()
must successfully return before athread of control participates in global transactions.

Once tx_open () returns success, subsequent callsto tx_open () (before an intervening call to
tx_close()) are alowed. However, such subsequent calls will return success, and the TM will
not attempt to reopen any RMs.

In amultithreaded application, athread in the TPINVAL IDCONTEXT State isnot allowed to issue a
call to tx_open().

Return Value

Upon successful completion, tx_open () returns Tx_oK, a non-negative return value.

Errors

312

Under the following conditions, tx_open () failsand returns one of these negative values:

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

[Tx_ERROR]
Either the transaction manager or one or more of the resource managers encountered a
transient error. NO resource managers are open. The exact nature of the error iswritten to
alogfile.

[Tx_FaTL]
Either the transaction manager or one or more of the resource managers encountered a
fatal error. Tx_raIL isreturned if tpinit () isnot called beforethecall to tx_openina
secure application (SECURITY APP_PW). The nature of the error is such that the
transaction manager and/or one or more of the resource managers can no longer perform
work on behalf of the application. The exact nature of the error iswritten to alog file.

See Also

tx_close(3c)

Warnings

Both the X/Open TX interface and the X-Windows system define the type XID. It isnot possible
to use both X-Windows calls and TX callsin the samefile.

tx_rollback(3¢c)

Name
tx_rollback ()—Rolls back a global transaction.

Synopsis
#include <tx.h>

int tx_rollback(void)

Description

tx_rollback () isused to roll back the work of the transaction active in the caller’ s thread of
control.

If the transaction_control characteristic (see tx_set_transaction_control (3c))is
TX_UNCHAINED, then when tx_rollback () returns, the caler isno longer in transaction mode.
However, if the transaction control characteristic is Tx_CHAINED, then when
tx_rollback () returns, the caller remainsin transaction mode on behalf of a new transaction
(see the Return Vaue and Errors sections below).

ATMI C Function Reference 313

In amultithreaded application, athread in the TpINVALIDCONTEXT State is not allowed to issuea
call to tx_rollback().

Optional Set-up
® tx_set_transaction_control ()

® tx_set_transaction_timeout ()

Return Value
Upon successful completion, tx_rollback () returns TX_oK, a non-negative return value.

Errors
Under the following conditions, tx_rollback () failsand returns one of these negative values:

[Tx_NO_BEGIN]
The current transaction rolled back; however, a new transaction could not be started and
the caller is no longer in transaction mode. This return value may occur only when the
transaction_control characteristic iS TX CHAINED.

[Tx_MIXED]
The work done on behalf of the transaction was partially committed and partially rolled
back. In addition, if the transaction control characteristic is TX_CHAINED, a New
transaction is started.

[TX_MIXED_NO_BEGIN]
The work done on behalf of the transaction was partially committed and partialy rolled
back. In addition, a new transaction could not be started and the caller isno longer in
transaction mode. This return value can occur only when the transaction_control
characteristic is Tx_CHAINED.

[Tx_HAZARD]
Dueto afailure, some of the work done on behalf of the transaction may have been
committed and some of it may have been rolled back. In addition, if the
transaction_control characteristic is TX_CHAINED, a new transaction is started.

[TX_HAZARD_NO_BEGIN]
Due to afailure, some of the work done on behalf of the transaction may have been
committed and some of it may have been rolled back. In addition, anew transaction could
not be started and the caller is no longer in transaction mode. This return value can occur
only when the transaction_control characteristic iS TX_CHAINED.

314 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

[Tx_coMMITTED]
Thework done on behalf of the transaction was heuristically committed. In addition, if the
transaction_control characteristic is TX_CHAINED, a new transaction is started.

[TX_COMMITTED_NO_BEGIN]
The work done on behalf of the transaction was heuristically committed. In addition, a
new transaction could not be started and the caller is no longer in transaction mode. This
return value can occur only when the transaction _control characteristicis
TX_CHAINED.

[TX_PROTOCOL_ERROR]
The function was called in an improper context (for example, the caller isnot in
transaction mode).

[Tx_FATL]
Either the transaction manager or one or more of the resource managers encountered a
fatal error. The nature of the error is such that the transaction manager and/or one or more
of the resource managers can no longer perform work on behalf of the application. The
exact nature of the error iswrittento alog file. The caller’s state with respect to the
transaction is unknown.
See Also

tx_begin(3c), tx_set_transaction_control (3c), tx_set_transaction_timeout (3c)

Warnings

Both the X/Open TX interface and the X-Windows system define the type XID. It isnot possible
to use both X-Windows callsand TX callsin the samefile.

tx_set_commit_return(3c)

Name

tx_set commit_return ()—Setsthe commit return characteristic.

Synopsis
#include <tx.h>

int tx_set_commit_return (COMMIT_RETURN when_return)

ATMI C Function Reference 315

Description
tx_set_commit_return () Setsthe commit_return characteristic to the value specified in
when_return. This characteristic affectsthe way tx_commit () behaves with respect to
returning control toitscaller. tx_set_commit_return () may be called regardless of whether
itscaller isin transaction mode. This setting remainsin effect until changed by a subsequent call

10 tx_set_commit_return().
Theinitia setting for this characteristic is Tx_coMMIT_COMPLETED.

Thefollowing are the valid settings for when_return:

TX_COMMIT DECISION_LOGGED
Thisflag indicates that tx_commit () should return after the commit decision has been
logged by the first phase of the two-phase commit protocol but before the second phase
has completed. This setting allows for faster response to the caller of tx_commit ().
However, thereisarisk that atransaction will have a heuristic outcome, in which casethe
caller will not find out about this situation via return codes from tx_commit (). Under
normal conditions, participants that promise to commit during the first phase will do so
during the second phase. In certain unusual circumstances however (for example,
long-lasting network or node failures), phase 2 completion may not be possible and
heuristic results may occur.

TX_COMMIT_ COMPLETED
Thisflag indicatesthat tx_commit () should return after the two-phase commit protocol
hasfinished completely. Thissetting allowsthecaller of tx_commit () to seereturn codes
that indicate that atransaction had or may have had heuristic results.

In amultithreaded application, athread in the TPINVAL IDCONTEXT State isnot allowed to issue a

cal to tx_set commit_return().

Return Value

Upon successful completion, tx_set_commit_return () returns Tx_ox, anon-negative return
value.

Errors

Under the following conditions, tx_set_commit_return () doesnot change the setting of the
commi t_return characteristic and returns one of these negative values:

[Tx_EINVAL]
when_return iSnot one of TX_COMMIT_DECISION_LOGGED Of TX_COMMIT COMPLETED.

316 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

[Tx_PROTOCOL_ERROR]
The function was called in an improper context (for example, the caller has not yet called

tx_open ()).

[Tx_FaTL]
The transaction manager encountered afatal error. The nature of the error is such that the
transaction manager can no longer perform work on behalf of the application. The exact
nature of the error iswritten to alog file.

See Also

tx_commit (3c¢), tx_info(3c), tx_open (3c)

Warnings

Both the X/Open TX interface and the X-Windows system define the type XID. It isnot possible
to use both X-Windows calls and TX callsin the samefile.

tx_set_transaction_control(3c)

Name

tx_set_transaction_ control ()—Setsthe transaction control characteristic.

Synopsis
#include <tx.h>
int tx_set_transaction_control (TRANSACTION_CONTROL control)

Description

tx_set_transaction_control () Setsthe transaction control characteristic to the value
specified in control. This characteristic determines whether tx_commit () and

tx_rollback () start anew transaction before returning to their caller.
tx_set_transaction_control () may be called regardless of whether the application
programisin transaction mode. This setting remainsin effect until changed by a subsequent call

10 tx_set_transaction_control ().
Theinitial setting for this characteristic is Tx_UNCHAINED.

The following are the valid settings for contro1:

ATMI C Function Reference 317

TX_UNCHAINED
Thisflag indicatesthat tx_commit () and tx_rollback () should not start a new
transaction before returning to their caller. The caller must issue tx_begin () to start a
new transaction.

TX_CHAINED
Thisflagindicatesthat tx_commit () and tx_rollback () should start anew transaction
before returning to their caller.

In amultithreaded application, athread in the reINvALTDCONTEXT Stateisnot allowed toissuea

Cd|tOtx_set_transaction_control(L

Return Value

Upon successful completion, tx_set_transaction_control () retUrnSTx_oK, anon-negative
return value.

Errors

Under thefollowing conditions, tx_set_transaction_control () doesnot changethe setting
of the transaction_control characteristic and returns one of these negative values:

[Tx_EINVAL]
control iSNnot one of TX_UNCHAINED Of TX_CHAINED.

[TX_PROTOCOL_ERROR]
Thefunction was called in an improper context (for example, the caller has not yet called
tx_open()).

[Tx_Fa1L]
The transaction manager encountered afatal error. The nature of the error is such that the
transaction manager can no longer perform work on behalf of the application. The exact
nature of the error iswritten to alog file.

See Also

tx_begin(3c), tx_commit (3c¢c), tx_info(3c), tx_open(3c), tx_rollback(3c)

Warnings

Both the X/Open TX interface and the X-Windows system define the type XID. It isnot possible
to use both X-Windows callsand TX callsin the samefile.

318 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

tx_set_transaction_timeout(3c)

Name

tx_set transaction timeout ()—Setsthe transaction timeout characteristic.

Synopsis
#include <tx.h>

int tx_set_ transaction_timeout (TRANSACTION_ TIMEOUT timeout)

Description
tx_set transaction_ timeout () Setsthe transaction timeout characteristic to the value
specifiedin timeout. Thisvalue specifiesthetime period in which the transaction must compl ete
before becoming susceptible to transaction timeout; that is, the interval between the AP calling
tx_begin() and tx_commit () OF tx_rollback(). tx_set_transaction_timeout () may
be called regardless of whether its caller isin transaction mode or not. If
tx_set_transaction_timeout () iscalled in transaction mode, the new timeout value does
not take effect until the next transaction.

Theinitidl transaction timeout valueisO (no timeout).

timeout Specifies the number of seconds allowed before the transaction becomes susceptible to
transaction timeout. It may be set to any value up to the maximum value for a1ong as defined by
the system. A timeout value of zero disables the timeout feature.

In amultithreaded application, athread in the reINvALTDCONTEXT Stateisnot allowed toissuea

call to tx_set_transaction_timeout ().

Return Value

Upon successful completion, tx_set_transaction_timeout () retUrnSTx_oK, anon-negative
return value.

Errors

Under the following conditions, tx_set_transaction_timeout () doesnot changethe setting
of the transaction_timeout characteristic and returns one of these negative values:

[Tx_EINVAL]
The timeout value specified isinvalid.

ATMI C Function Reference 319

[Tx_PROTOCOL_ERROR]
The function was called improperly. For example, it was called before the caller called

tx_open().

[Tx_FaTL]
The transaction manager encountered an error. The nature of the error is such that the
transaction manager can no longer perform work on behalf of the application. The exact
nature of the error iswritten to alog file.
See Also

tx_begin(3c), tx_commit (3c), tx_info(3c), tx_open(3c), tx_rollback(3c)

Warnings

Both the X/Open TX interface and the X-Windows system define thetype XID. It isnot possible
to use both X-Windows calls and TX callsin the samefile.

userlog(3c)

Name
userlog () —Writes amessage to the Oracle Tuxedo ATMI system central event log.

Synopsis
#include “userlog.h”

extern char *proc_name;

int userlog (format [,arg] . . .)

char *format;

Description

userlog () acceptsaprintf (3s) styleformat specification, with afixed output file—the
Oracle Tuxedo ATMI system central event log.

The central event log is an ordinary UNIX file whose pathname is composed as follows. When
attached to a native Tuxedo application, the value of the TuxconrFIG parameter uLocpPFx isused
asthe prefix for the filename. If ULOGPFX iS NOt Set in TUXCONFIG, $APPDIR/ULOG isused. The
prefix is determined at tpinit () time or at server boot time. When not attached to a native
Tuxedo application, the value of the environment variable ur.ocprx is used as the prefix for the
filename. If uLocpPFx ishot set, ur.og isused. The prefix is determined the first timeuserlog ()
iscaled. Eachtimeuserlog () iscalled thedateis determined, and the month, day, and year are

320 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

concatenated to the prefix as mmddyy to set the name for the file. The first time a process writes
to the user log, it first writes an additional message indicating the associated Oracle Tuxedo
ATMI system version.

The message is then appended to the file. With this scheme, processes that call useriog () on
successive days will write into different files.

Messages are appended to the log file with atag made up of the time (hhmmss), System name,
process name, and process ID, thread 1D, and context ID of the calling process. Thetag is
terminated with acolon (:). The name of the process is taken from the pathname of the external
variable proc_name. If proc_name hasvalue NULL, the printed nameis set to ?proc.

Oracle Tuxedo ATMI system-generated error messages in the log file are prefixed by a unique
identification string of the form:

<catalog>:<number>:
This string givesthe name of theinternationalized catal og contai ning the message string, plusthe

message humber. By convention, Oracle Tuxedo ATMI system-generated error messages are
used only once, so the string uniquely identifies alocation in the source code.

If the last character of the format specification is not a newline character, userlog () appends
one.

userlog () isused by the Oracle Tuxedo ATMI system to record avariety of events.
Theuserlog mechanismisentirely independent of any database transaction logging mechanism.

A thread in a multithreaded application may issue a call to userlog () while running in any
context state, including TPINVALIDCONTEXT.

Environment Variables

ULOGPFX
This environment variable is as described above in Description.

ULOGMILLISEC
An on/off switch environment variable that time stamps messages sent to the userlog file
in millisecond timeintervalsinstead of seconds. If not specified, default time stamping is
in seconds. The server must be rebooted when uLocMILLISEC iSturned on or off.
Example: ULOGMILLISEC=Y

ULOGRTNSIZE
An on/off switch environment variable that specifies the userlog rotation file size. The
default rotation file sizeis 2GB. The server must be rebooted when ULOGRTNSIZE iS

ATMI C Function Reference N

turned on or off.
Example: uLoGRTNSIZE=1000000 (When thefile sizeis 1IMb)

Rotated files are saved in using the following syntax: filename.nn.
Example: UL0G.083103.1, ULOG.083103.2 ... ULOG.083103.10, €tC.

Note: If uLoGRTNSIZE iS not specified, file rotation does not take place.

TUX_SIGNAL_ULOGPATTERN
An environment variable that allows a process to send itself a specific signal when a
userlog message matches a certain regular expression.

A valid valueis of theform
TUX_SIGNAL_ULOGPATTERN=<var>signal_number</var>:<var>regular_express
ion</var> Where <var>signal_number</var> iSapositive integer and the
<var>regular_expression</var> format is as described on the <code>tpsub
scribe (3c)</code> manual page.

The regular expression is matched against the userlog message after adding the
timestamp, machine name, process and transaction information. Thismatching isdonefor
all userlog messages except for messages generated within userlog () itself. For
example:

TUX_SIGNAL_ULOGPATTERN=6:ERROR. * [Mm]emory.allocation

This setting will cause a process to send itself signal 6 (szcaBrT) immediately after the
userlog of any memory allocation error message. The default signal dispositionisto dump
acore and exit, which might be useful in debugging why the memory allocation failure
happened.

ULOGDEBUG
If thefirst character of the environment variable ur.ogpeBUG IS 1 Of v, the message sent to
userlog () isalso written to the standard error of the calling process, using the
fprintf (3s) function.

Examples

322

If the variable ULOGPFX iSSet t0 /application/logs/log and if thefirst call to userlog()
occurred on 9/7/90, thelog file created isnamed /application/logs/log.090790. If thecal:

userlog (“UNKNOWN USER '$%s' (UID=%d)”, usrname, UID);

ismade at 4:22:14pm on the UNIX system file named m1 by the sec program, whose process-id
is$23431, and the variable usrname containsthe string “sxx”, and the variable urp contains the
integer 123, the following line appearsin the log file:

162214 .ml!sec.23431: UNKNOWN USER 'sxx' (UID=123)

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

If the message is sent to the central event log while the process is in transaction mode, the user
log entry has additional componentsin the tag. These components consist of the literal gtrid
followed by three 1ong hexadecimal integers. Theintegers uniquely identify the global
transaction and make up what is referred to as the global transaction identifier. Thisidentifier is
used mainly for administrative purposes, but it does make an appearance in the tag that prefixes
the messagesin the central event log. If the foregoing message is written to the central event log
in transaction mode, the resulting log entry will look like this:

162214 .logsys!security.23431: gtrid x2 x24elb803 x239: UNKNOWN USER 'sxx'
(UID=123)

If the shell variable uLocpDEBUG has avalue of y, the log message is also written to the standard
error of the program named security.

Errors
userlog () hangsif the message sent to it islarger than Burs1z asdefined in stdio.h

Diagnostics
userlog () returnsthe number of characters output, or a negative value if an output error was
encountered. Output errorsinclude the inability to open, or write to the current log file. Inability
to write to the standard error, when ULOGDEBUG iS Set, is not considered an error.

Notices

It isrecommended that applications’ useof userlog () messages belimited to messagesthat can
be used to help debug application errors; flooding the log with incidental information can make
it hard to spot actual errors.

See Also
e print£(3S) inaUNIX system reference manual

e Using Log Filesto Monitor Activity in Monitoring Your Oracle Tuxedo Application in
Administering an Oracle Tuxedo Application at Run Time

Usignal(3c)

Name
Usignal ()—Signal handling in an Oracle Tuxedo ATMI system environment.

ATMI C Function Reference 323

../ada/admon.html

Synopsis

#include “Usignal.h”

UDEFERSIGS ()
UENSURESIGS ()
UGDEFERLEVEL ()
URESUMESIGS ()
USDEFERLEVEL (level)

int (*Usignal (sig, func) ()
int sig;

int (*func) () ;

void Usiginit ()

Description

Many of the facilities provided by the Oracle Tuxedo ATMI system software require concurrent
access to data structures in shared memory. Processes accessing the shared data structuresrunin
user mode, and are thus interruptible by signals sent to them. In order to ensure the consistency
of the shared data structures, it isimportant that the operations which access them not be
interrupted by thereceipt of certain UNIX signals. The functionsdescribed in this section provide
protection against the most common signals, and are used internally by much of the Oracle
Tuxedo ATMI system code. Additionally, they are available to applications to prevent the
untimely arrival of asignal.

Theideabehind the Oracle Tuxedo ATMI system signal handling package isthat signals should
be deferrable whilein critical code sections. To this end, signals are not immediately processed
when received. Instead, an Oracle Tuxedo ATMI system routine first catchesthe sent signal. If it
is safeto process the signal, the specified action for the signal istaken. If it isnot safe to process
the signal when it arrives, the arrival is noted, but the processing is deferred until the user
indicates that the critical section of code has been terminated.

Werecommend against any use of signalsin multithreaded programs, although the software does
not prevent such usage. If signals are used, however, athread in amultithreaded application may
issueacall to usignal () whilerunningin any context state, including TPINVALIDCONTEXT.

Catching Signals

324

User code that uses calls rmopen () oOr tpinit () should catch signals through the use of the
Usignal () function. usignal () behaveslikethe UNIX signal () system call, except that

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

Usignal () first arrangesfor the signal to be caught by an internal routine before dispatching the
user routine.

Deferring and Restoring Signals

The calls described in this section need only be used if application code wishes to defer signals.
In general, these routines are called automatically by Oracle Tuxedo ATMI system routinesto
protect themselves from untimely signal arrival.

Before deferring or restoring signals, the mechanism must beinitialized. Thisis done
automatically for Oracle Tuxedo ATMI system clients when they call tpinit () and for Oracle
Tuxedo ATMI system servers. It isalso done the first time that the application callsusignal ().
It can be done explicitly by caling usiginit ().

The unpereERrsIGS () macro should be used when entering a section of critical code. After
UDEFERSIGS () iscaled, signalsare held in apending state. The uRESUMESIGS () macro should
be invoked when the critical section is exited. Note that signal deferrals stack. The stack is
implemented via a counter which isinitially set to zero. When signals are deferred by a call to
UDEFERSIGS (), the counter isincremented. When signals are resumed, by acall to
URESUMESIGS (), the counter isdecremented. If asignal arriveswhilethe counter isnon-zero, the
processing of the signal is deferred. If the counter is zero when the signal arrives, the signal is
processed immediately. If signal resumption causes the counter to be become zero (that is, prior
to theresumption it had value 1), any signalsthat arrived during the deferral period are processed.
In general, each call to upEFERSIGS () should have a counterpart call to URESUMESIGS ().

UDEFERSIGS increments the deferral counter, but returns the value of the counter prior to its
incrementation. The macro UENSURESIGS () may be used to explicitly set the deferral counter to
zero (and thus force the processing of deferred signals), in case the user wishesto protect against
unmatching UDEFERSIGS () and URESUMESIGS () .

The function UGDEFERLEVEL () returns the current setting of the deferral counter. The macro
usperFERLEVEL(level) allows the setting of a specific deferral level. uGDEFERLEVEL () and
USDEFERLEVEL () are useful to set the counter appropriately in setjmp/longjmp Situations
where a set of deferrals/resumes are bypassed. The ideaisto save the value of the counter when
setjmp () iscalled, viaacal to uGDEFERLEVEL (), and to restore it viaacall to
USDEFERLEVel () When the 1ongjmp () is performed.

Notices

Usignal providessignal deferral for thefollowing signals: sTGHUP,SIGINT, SIGQUIT, SIGALRM,
SIGTERM, SIGUSR1, and sIcusr2.Handling regquestsfor al other signal numbers are passed
directly to signalL () by usignal (). Signals may be deferred for a considerable time. For this

ATMI C Function Reference 325

Files

reason, during signal deferral, individual signal arrivals are counted. When it is safe to process a
signal that may have arrived many times, the signal’ s processing routine is iteratively called to
process each arrival of the signal. Before each call the default action for the signal isinstantiated.
The ideaisto handle the deferred occurrences of the signal asif they happened in quick
succession in safe code,

In general, users should not mix callsto signal () and usignalL () for the samesignal. The
recommended procedureisto go throughusignal (), sothat it isalways aware of the state of the
signal. Sometimes it may be necessary, such as when an application wants to use darms within
Oracle Tuxedo ATMI system services. To do this, usiginiT () should be caledtoinitiaizethe
signal deferring mechanism. Then signaL () can be called to override the mechanism for the
desired signal. To restore the deferring mechanism for the signd, it is necessary to call
UsignaL () for the signal with s1c_1cn, and then again with the desired signal-handling
function.

The shell variable utMvEDSTGS can be used to override the deferral of signals. If the value of this
variable begins with the letter v asin:

UIMMEDSIGS=y

signals are not intercepted (and thus not deferred) by the usignal () code. In such acase, acall
tousignal () ispassed immediately to signalL ().

Usignal is not available under DOS operating systems.

Usignal.h

See Also

signal(2) inaUNIX system reference manual

Uunix_err(3c)

Name

Uunix_err ()—PrintsaUNIX system cal error.

Synopsis

326

#include Uunix.h

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

void Uunix_err(s)

char *s;

Description
When an Oracle Tuxedo ATMI system function callsa UNIX system call that detects an error,
an error isreturned. The external integer tunixerr () isset to avalue (as defined in tunix.h)
that identifies the system call that returned the error. In addition, the system call setserrno () to
avalue (asdefined in errno.h) that tellswhy the system call failed.

Theuunix_err () function is provided to produce a message on the standard error output,
describing the last system call error encountered during acall to an Oracle Tuxedo ATMI system
function. It takes one argument, astring. Thefunction printsthe argument string, then acolon and
ablank, followed by the name of the system call that failed, the reason for failure, and anewline.
To be of most use, the argument string should include the name of the program that incurred the
error. The system call error number is taken from the externa variable tunixerr (), the reason
istaken from errno (). Both variables are set when errors occur. They are not cleared when
non-erroneous calls are made.

To simplify variant formatting of messages, the array of message strings:
extern char *Uunixmsgl];

isprovided; tunixerr () canbeused asanindex into thistableto get the name of the system call
that failed (without the newline).

A thread in a multithreaded application may issue acall to tunix_err () whilerunning in any
context state, including TPINVALIDCONTEXT.

Examples

#include Uunix.h

extern int Uunixerr, errno;

if ((fd=open(“myfile”, 3, 0660)) == -1)

{

Uunixerr = UOPEN;
Uunix_err (“myprog”) ;
exit (1) ;

}

ATMI C Function Reference 327

328 ATMI C Function Reference

	Oracle® Tuxedo
	12c Release 2 (12.1.3)

	Oracle Tuxedo ATMI C Function Reference, 12c Release 2 (12.1.3)
	Contents
	Introduction to the C Language Application-to-Transaction Monitor Interface
	AEMsetblockinghook(3c)
	AEOaddtypesw(3c)
	AEPisblocked(3c)
	AEWsetunsol(3c)
	buffer(3c)
	catgets(3c)
	catopen, catclose(3c)
	decimal(3c)
	getURLEntityCacheDir(3c)
	getURLEntityCaching(3c)
	gp_mktime(3c)
	nl_langinfo(3c)
	rpc_sm_allocate, rpc_ss_allocate(3c)
	rpc_sm_client_free, rpc_ss_client_free(3c)
	rpc_sm_disable_allocate, rpc_ss_disable_allocate(3c)
	rpc_sm_enable_allocate, rpc_ss_enable_allocate(3c)
	rpc_sm_free, rpc_ss_free(3c)
	rpc_sm_set_client_alloc_free, rpc_ss_set_client_alloc_free(3c)
	rpc_sm_swap_client_alloc_free, rpc_ss_swap_client_alloc_free(3c)
	setlocale(3c)
	setURLEntityCacheDir(3c)
	setURLEntityCaching(3c)
	strerror(3c)
	strftime(3c)
	tpabort(3c)
	tpacall(3c)
	tpadmcall(3c)
	tpadvertise(3c)
	tpalloc(3c)
	tpappthrinit(3c)
	tpappthrterm(3c)
	tpatz(3c)
	tpbegin(3c)
	tpbroadcast(3c)
	tpcall(3c)
	tpcancel(3c)
	tpchkauth(3c)
	tpchkunsol(3c)
	tpclose(3c)
	tpcommit(3c)
	tpconnect(3c)
	tpconvert(3c)
	tpconvmb(3c)
	tpcryptpw(3c)
	tpdequeue(3c)
	tpdiscon(3c)
	tpenqueue(3c)
	tpenvelope(3c)
	tperrordetail(3c)
	tpexport(3c)
	tpfml32toxml(3c)
	tpfmltoxml(3c)
	tpforward(3c)
	tpfree(3c)
	tpgblktime(3c)
	tpgetadmkey(3c)
	tpgetcallinfo(3c)
	tpgetctxt(3c)
	tpgetlev(3c)
	tpgetmbenc(3c)
	tpgetrepos(3c)
	tpgetrply(3c)
	tpgprio(3c)
	tpimport(3c)
	tpinit(3c)
	tpkey_close(3c)
	tpkey_getinfo(3c)
	tpkey_open(3c)
	tpkey_setinfo(3c)
	tpnotify(3c)
	tpopen(3c)
	tppost(3c)
	tprealloc(3c)
	tprecv(3c)
	tpresume(3c)
	tpreturn(3c)
	tprmclose(3c)
	tprmend(3c)
	tprmopen(3c)
	tprmstart(3c)
	tpsblktime(3c)
	tpscmt(3c)
	tpseal(3c)
	tpsend(3c)
	tpservice(3c)
	tpsetcallinfo(3c)
	tpsetctxt(3c)
	tpsetmbenc(3c)
	tpsetrepos(3c)
	tpsetunsol(3c)
	tpsign(3c)
	tpsprio(3c)
	tpstrerror(3c)
	tpstrerrordetail(3c)
	tpsubscribe(3c)
	tpsuspend(3c)
	tpsvrdone(3c)
	tpsvrinit(3c)
	tpsvrthrdone(3c)
	tpsvrthrinit(3c)
	tpterm(3c)
	tptypes(3c)
	tpunadvertise(3c)
	tpunsubscribe(3c)
	tputrace(3c)
	tpxmltofml32(3c)
	tpxmltofml(3c)
	TRY(3c)
	tuxgetenv(3c)
	tuxgetmbaconv(3c)
	tuxgetmbenc(3c)
	tuxputenv(3c)
	tuxreadenv(3c)
	tuxsetmbaconv(3c)
	tuxsetmbenc(3c)
	tuxthrputenv(3c)
	tx_begin(3c)
	tx_close(3c)
	tx_commit(3c)
	tx_info(3c)
	tx_open(3c)
	tx_rollback(3c)
	tx_set_commit_return(3c)
	tx_set_transaction_control(3c)
	tx_set_transaction_timeout(3c)
	userlog(3c)
	Usignal(3c)
	Uunix_err(3c)

