
Oracle® Tuxedo
Using the EventBroker
12c Release 2 (12.1.3)

April 2014

Oracle Tuxedo Using the EventBroker, 12c Release 2 (12.1.3)

Copyright © 1996, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use,
duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed
or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If
you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

This software or hardware and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect
to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Using the EventBroker 1

What Is an Event? . 1-1

Differences Between Application-defined and System-defined Events. 1-2

What Is the EventBroker?. 1-2

How the EventBroker Works . 1-3

What Are the Benefits of Brokered Events?. 1-6

Process of Using the EventBroker . 2-1

How to Configure EventBroker Servers. 2-2

How to Set the Polling Interval. 2-3

Subscribing, Posting, and Unsubscribing to Events with the ATMI and the EVENT_MIB
2-3

Subscribing, Posting, and Unsubscribing to Events Across Domains 2-6

How to Select a Notification Method . 2-9

How to Cancel a Subscription to an Event . 2-10

How to Use the EventBroker with Transactions . 2-10

2 Using the EventBroker

Administering an Oracle Tuxedo Application at Run Time 1-1

C H A P T E R 1

About the EventBroker

This topic includes the following sections:

What Is an Event?

Differences Between Application-defined and System-defined Events

What Is the EventBroker?

How the EventBroker Works

What Are the Benefits of Brokered Events?

What Is an Event?
An event is a state change or other occurrence in a running application (such as a network
connection being dropped) that may require intervention by an operator, an administrator, or the
software. The Oracle Tuxedo system reports two types of events:

System-defined events—which are situations (primarily failures) defined by the Oracle
Tuxedo system, such as the exceeding of certain system capacity limits, server
terminations, security violations, and network failures.

Application-defined events—which are situations defined by a customer application, such
as the ones listed in Table 1-1.

1-2 Administering an Oracle Tuxedo Application at Run Time

Application events are occurrences of application-defined events, and system events are
occurrences of system-defined events. Both application and system events are received and
distributed by the Oracle Tuxedo EventBroker component.

Differences Between Application-defined and
System-defined Events

Application-defined events are defined by application designers and are therefore application
specific. Any of the events defined for an application may be tracked by the client and server
processes running in the application.

System-defined events are defined by the Oracle Tuxedo system code and are generally
associated with objects defined in TM_MIB(5). A complete list of system-defined events is
published on the EVENTS(5) reference page. Any of these events may be tracked by users of the
Oracle Tuxedo system.

The Oracle Tuxedo EventBroker posts both application-defined and system-defined events, and
an application can subscribe to events of both types. The two types of events can be distinguished
by their names: the names of system-defined events begin with a dot (.); the names of
application-specific events cannot begin with a dot (.).

What Is the EventBroker?
The Oracle Tuxedo EventBroker is a tool that provides asynchronous routing of application
events among the processes running in a Oracle Tuxedo application. It also distributes system
events to whichever application processes want to receive them.

Table 1-1 Application-defined Events

In an application for this type
of business . . .

An occurrence of this situation may be defined as an
“event” . . .

Stock brokerage A stock is traded at or above a specified price.

Banking A withdrawal or deposit above a specified amount is made.

The cash available in an ATM machine drops below a
specified amount.

Manufacturing An item is out of stock.

../rf5/rf5.html
../rf5/rf5.html

How the EventBroke r Works

Administering an Oracle Tuxedo Application at Run Time 1-3

The EventBroker performs the following tasks:

Monitors events and notifies subscribers when events are posted via tppost(3c).

Keeps an administrator informed of changes in an application.

Provides a system-wide summary of events.

Provides a tool through which an event can trigger a variety of notification activities.

Provides a filtering capability, providing additional conditions to the posted event’s buffer.

Note: For a sample application that you can copy and run as a demo, see “Tutorial for bankapp,
a Full C Application” in Tutorials for Developing Oracle Tuxedo ATMI Applications.

The EventBroker recognizes over 100 meaningful state transitions to a MIB object as system
events. A posting for a system event includes the current MIB representation of the object on
which the event occurred and some event-specific fields that identify the event that occurred. For
example, if a machine is partitioned, an event is posted with the following:

The name of the affected machine, as specified in the T_MACHINE class, with all the
attributes of that machine

Some event attributes that identify the event as machine partitioned

You can use the EventBroker simply by subscribing to system events. Then, instead of having to
query for MIB records, you can be informed automatically when events occur in the MIB by
receiving FML data buffers representing MIB objects.

How the EventBroker Works
The Oracle Tuxedo EventBroker is a tool through which an arbitrary number of suppliers of
event notifications can post messages for an arbitrary number of subscribers. The suppliers of
such notifications may be application or system processes operating as clients or servers. The
subscribers of such notifications may be administrators or application processes operating as
clients or servers.

Client and server processes using the EventBroker communicate with one another based on a set
of subscriptions. Each process sends one or more subscription requests to the EventBroker,
identifying the event types that the process wants to receive. The EventBroker, in turn, acts like
a newspaper delivery person who delivers newspapers only to customers who have paid for a
subscription. For these reasons, the paradigm on which the EventBroker is based is described as
publish-and-subscribe communication.

../rf3c/rf3c.html
../tutor/tutba.html

1-4 Administering an Oracle Tuxedo Application at Run Time

Event suppliers (either clients or servers) notify the EventBroker of events as they occur. We refer
to this type of notification as posting an event. Once an event supplier posts an event, the
EventBroker matches the posted event with the subscribers that have subscribed for that event
type. Subscribers may be administrators or application processes. When the EventBroker finds a
match, it takes the action specified for each subscription; subscribers are notified and any other
actions specified by subscribers are initiated.

Figure 1-1 shows how the EventBroker handles event subscriptions and postings.

Figure 1-1 Posting and Subscribing to an Event

As the administrator for your Oracle Tuxedo application, you can enter subscription requests on
behalf of client and server processes through calls to the T_EVENT_COMMAND class of the
EVENT_MIB(5). You can also invoke the tpsubscribe(3c) function to subscribe,
programmatically, to an event by using the EventBroker.

Event Notification Methods
The EventBroker subscription specifies one of the notification methods shown in Figure 1-2.

Figure 1-2 Supported Notification Methods

../rf5/rf5.html
../rf3c/rf3c.html

How the EventBroke r Works

Administering an Oracle Tuxedo Application at Run Time 1-5

Notify a client—the EventBroker keeps track of a client’s interest in particular events and
notifies the client, without being prompted, when such an event occurs. For this reason,
this method is called unsolicited notification.

Invoke a service—if a subscriber wants event notifications to be passed to service calls, the
subscriber process should invoke the tpsubscribe() function to provide the name of the
service to be called.

Enqueue message to stable-storage queues—for subscriptions with requests to send event
notifications to stable-storage queues, the EventBroker will obtain a queue space, queue
name, and correlation identifier. A subscriber specifies a queue name when subscribing to
an event. The correlation identifier can be used to differentiate among multiple
subscriptions for the same event expression and filter rule, that are destined for the same
queue.

Execute a command—when an event is posted, the buffer associated with it is transformed
into a system command that is then executed. For example, the buffer may be changed to a
system command that sends an e-mail message. This process must be executed through the
MIB.

Write messages to the user log—when events are detected and matched by the
EventBroker, the specified messages are written to the user log, or ULOG. This process must
be executed through the MIB.

Severity Levels of System Events
The EventBroker assigns one of three levels of severity to system events such as server
terminations or network failure.

Table 1-2 shows the severity levels of system events.

Table 1-2 Severity Levels of System Events

The level of severity is
. . . When the EventBroker is informed of . . .

ERROR An abnormal occurrence, such as a server being terminated or a
network connection being dropped.

1-6 Administering an Oracle Tuxedo Application at Run Time

What Are the Benefits of Brokered Events?
Anonymous communication—the Event Broker enables Oracle Tuxedo programs to
subscribe to events in which they are interested and it keeps track of all subscriptions.
Therefore, a subscriber to one event does not need to know which programs subscribe to
the same event, and a poster of an event does not need to know which other programs
subscribe to that event. This anonymity allows subscribers to come and go without
synchronizing with posters.

Decoupling of exception conditions—a publish-and-subscribe communication model
allows the software detecting an exception condition to be decoupled from the software
handling the exception condition.

Tight integration with the Oracle Tuxedo system—the EventBroker retains functionality
such as message buffers, messaging paradigms, distributed transactions, and ACL
permission checks for event postings.

Variety of notification methods—when a client or server subscribes to a system event (such
as the termination of a server) or an application event (such as an ATM machine running
out of money), it specifies an action that the EventBroker should take when it is notified
that the target event has occurred.

If the subscriber is an Oracle Tuxedo client, it can do one of the following at the time it
subscribes:

– Request unsolicited notification

– Name a service routine that should be invoked

– Name an application queue in which the EventBroker should store the data for later
processing

INFO (short for
“Information”)

A state change resulting from a process or a change in the
configuration.

WARN (short for
“Warning”)

The fact that a client has not been allowed to join the application
because it failed authentication. A configuration change that
threatens the performance of the application has occurred.

Table 1-2 Severity Levels of System Events

The level of severity is
. . . When the EventBroker is informed of . . .

What Are the Benef i ts o f Broke red Events?

Administering an Oracle Tuxedo Application at Run Time 1-7

If the subscriber is an Oracle Tuxedo server, it can do one of the following at the time it
subscribes:

– Specify a service request

– Name an application queue in which the EventBroker should store the data

See Also
“Subscribing to Events” on page 1-1

“Subscribing, Posting, and Unsubscribing to Events with the ATMI and the EVENT_MIB”
on page 1-3 in Introducing Oracle Tuxedo ATMI

EVENT_MIB(5) in the File Formats, Data Descriptions, MIBs, and System Processes
Reference

tpsubscribe(3c) in the Oracle Tuxedo ATMI C Function Reference

tpunsubscribe(3c) in the Oracle Tuxedo ATMI C Function Reference

../rf5/rf5.html
../rf3c/rf3c.html
../rf3c/rf3c.html

1-8 Administering an Oracle Tuxedo Application at Run Time

Administering an Oracle Tuxedo Application at Run Time 2-1

C H A P T E R 1

Subscribing to Events

This topic includes the following sections:

Process of Using the EventBroker

How to Configure EventBroker Servers

How to Set the Polling Interval

Subscribing, Posting, and Unsubscribing to Events with the ATMI and the EVENT_MIB

Subscribing, Posting, and Unsubscribing to Events across Domains

How to Select a Notification Method

How to Cancel a Subscription to an Event

How to Use the EventBroker with Transactions

Process of Using the EventBroker
Use of the EventBroker requires the completion of several preparatory steps. The following
flowchart lists these steps and indicates whether each step should be performed by an application
administrator or programmer.

2-2 Administering an Oracle Tuxedo Application at Run Time

For instructions on any of these tasks, click on the appropriate box in the flowchart.

Note: A good way to learn how the EventBroker works is by running bankapp, the sample
application delivered with the Oracle Tuxedo system. To find out how to copy bankapp
and run it as a demo, see “Tutorial for bankapp, a Full C Application” in Tutorials for
Developing Oracle Tuxedo ATMI Applications.

How to Configure EventBroker Servers
A client accesses the EventBroker through either of two servers provided by the Oracle Tuxedo
system: TMUSREVT(5), which handles application events, and TMSYSEVT(5), which handles
system events. Both servers process events and trigger the sending of notification to subscribers.

To set up the Oracle Tuxedo EventBroker on your system, you must configure either or both of
these servers in the SERVERS section of the UBBCONFIG file, as shown in the following example.

 *SERVERS

 TMSYSEVT SRVGRP=ADMIN1 SRVID=100 RESTART=Y GRACE=900 MAXGEN=5

 CLOPT="-A --"

 TMSYSEVT SRVGRP=ADMIN2 SRVID=100 RESTART=Y GRACE=900 MAXGEN=5

 CLOPT="-A -- -S -p 90"

 TMUSREVT SRVGRP=ADMIN1 SRVID=100 RESTART=Y

 MAXGEN=5 GRACE=3600

 CLOPT="-A --"

 TMUSREVT SRVGRP=ADMIN2 SRVID=100 RESTART=Y

 MAXGEN=5 GRACE=3600

 CLOPT="-A -- -S -p 120"

../rf5/rf5.html
../rf5/rf5.html
../tutor/tutba.html

How to Se t the Po l l ing In te rva l

Administering an Oracle Tuxedo Application at Run Time 2-3

We recommend that you assign the principal server to the MASTER site, even though either server
can reside anywhere on your network.

Note: You can reduce the network traffic caused by event postings and notifications by
assigning secondary servers to other machines in your network.

How to Set the Polling Interval
Periodically, the secondary server polls the primary server to obtain the current subscription list,
which includes filtering and notification rules. By default, polling is done every 30 seconds. If
necessary, however, you can specify a different interval.

You can configure the polling interval (represented in seconds) with the -p command-line option
in TMUSREVT(5) or TMSYSEV(5) entries in the configuration file, as follows:

-p poll_seconds

It may appear that event messages are lost while subscriptions are being added and secondary
servers are being updated.

Subscribing, Posting, and Unsubscribing to Events with
the ATMI and the EVENT_MIB

As the administrator for your Oracle Tuxedo application, you can enter subscription requests on
behalf of a client or server process through calls to the T_EVENT_COMMAND class of the
EVENT_MIB(5). You can also use invoke the tpsubscribe(3c) function to subscribe,
programmatically, to an event.

Figure 1-1 shows how clients and servers use the EventBroker to subscribe to events, to post
events, and to unsubscribe to events.

Figure 1-1 Subscribing to an Event

../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html
../rf3c/rf3c.html

2-4 Administering an Oracle Tuxedo Application at Run Time

Identifying Event Categories Using eventexpr and filter
Clients or servers can subscribe to events by calling tpsubscribe(3c). The tpsubscribe()
function takes one required argument: eventexpr. The value of eventexpr can be a wildcard
string that identifies the set of event names about which the user wants to be notified. Wildcard
strings are described on the tpsubscribe(3c) reference page in the Oracle Tuxedo ATMI C
Function Reference.

As an example, a user on a UNIX system platform who wants to be notified of all events related
to the category of networking can specify the following value of eventexpr:

\.SysNetwork.*

The backslash preceding the period (.) indicates that the period is literal. (Without the preceding
backslash, the period (.) would match any character except the end-of-line character.) The
combination .* at the end of \.SysNetwork.* matches zero or more occurrences of any
character except the end-of-line character.

In addition, clients or servers can filter event data by specifying the optional filter argument
when calling tpsubscribe(). The value of filter is a string containing a Boolean filter rule
that must be evaluated successfully before the EventBroker posts the event.

As an example, a user who wants to be notified only about system events having a severity level
of ERROR can specify the following value of filter:

”TA_EVENT_SEVERITY=’ERROR’”

When an event name is posted that evaluates successfully against eventexpr, the EventBroker
tests the posted data against the filter rule associated with eventexpr. If the data passes the filter
rule or if there is no filter rule for the event, the subscriber receives a notification along with any
data posted with the event.

Accessing the EventBroker
Your application can access the EventBroker through either the ATMI or the EVENT_MIB(5).
Table 1-1 describes both methods.

../rf5/rf5.html
../rf3c/rf3c.html
../rf3c/rf3c.html

Subscr ib ing , Pos t ing , and Unsubscr ib ing to Events w i th the ATMI and the EVENT_MIB

Administering an Oracle Tuxedo Application at Run Time 2-5

Table 1-1 Accessing the EventBroker

Method Function Purpose

ATMI tppost(3c) Notifies the EventBroker, or posts an event and any
accompanying data. The event is named by the eventname
argument and the data argument, if not NULL, points to the data.
The posted event and data are dispatched by the Oracle Tuxedo
EventBroker to all subscribers with subscriptions that
successfully evaluate against eventname and optional filter
rules that successfully evaluate against data.

tpsubscribe(3c) Subscribes to an event or a set of events named by eventexpr.
Subscriptions are maintained by the Oracle Tuxedo EventBroker,
and are used to notify subscribers when events are posted via
tppost(). Each subscription specifies one of the following
notification methods: client notification, service calls, message
enqueuing to stable-storage queues, executing of commands, and
writing to the user log. Notification methods are determined by
the subscriber’s process type (that is, whether the process is a
client or a server) and the arguments passed to tpsubscribe().

tpunsubscribe(3c) Removes an event subscription or a set of event subscriptions
from the Oracle Tuxedo EventBroker’s list of active
subscriptions. subscription is an event subscription handle
returned by tpsubscribe(). Setting subscription to the
wildcard value, -1, directs tpunsubscribe to unsubscribe to
all nonpersistent subscriptions previously made by the calling
process. Nonpersistent subscriptions are those made without the
TPEVPERSIST bit setting in the ctl->flags parameter of
tpsubscribe(). Persistent subscriptions can be deleted only
by using the handle returned by tpsubscribe().

EVENT_MIB(5) N/A The EVENT_MIB is a management information base (MIB) that
stores subscription information and filtering rules. In your own
application, you cannot define new events for the Oracle Tuxedo
EventBroker using EVENT_MIB, but you can customize the
EventBroker to track events and notify subscribers of occurrences
of special interest to the application.

You can use the EVENT_MIB to subscribe to an event, or to
modify or cancel a subscription.

../rf5/rf5.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html

2-6 Administering an Oracle Tuxedo Application at Run Time

Note: tppost(3c), tpsubscribe(3c), and tpunsubscribe(3c) are C functions.
Equivalent routines (TPPOST(3cbl), TPSUBSCRIBE(3cbl), and
TPUNSUBSCRIBE(3cbl)) are provided for COBOL programmers. See the Oracle
Tuxedo ATMI C Function Reference and the Oracle Tuxedo ATMI COBOL Function
Reference for details.

Subscribing, Posting, and Unsubscribing to Events
Across Domains

Overview
Tuxedo is now equipped to subscribe, post, and unsubscribe brokered events in cross domain
environment.

To realize such feature, two new sections, DM_EVT_IN and DM_EVT_OUT, are added to DMCONFIG
to manage static event in/out information.

For details of DM_EVT_IN and DM_EVT_OUT, see “DMCONFIG(5)” in Tuxedo Reference Guide.

Note: In UBBCONFIG, the EvtBroker server should be configured prior to the GWT server as GWT
will subscribe the configured events to the EvtBroker when starting up.

Configurations in DMCONFIG

How to Process Brokered Events Crossing Domains
Figure 1-2 as below illustrates a typical processing flow of subscribing, posting, and
unsubscribing a brokered event in cross domain environment.

../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rf5/rf5.html

Subscr ib ing , Pos t ing , and Unsubscr ib ing to Events Ac ross Domains

Administering an Oracle Tuxedo Application at Run Time 2-7

Figure 1-2 Cross Domain Event Overall Flow

How to Configure DMCONFIG — Case Study
This use case elaborates how to get DMCONFIG well configured.

As shown on Figure 1-2, two clients (Client A and Client B) are located in two domains (Domain
A and Domain B), each has one machine within SHM mode (Machine A and Machine B).

For machine A, use dmloadcf to create new BDMCONFIG with additional configurations in
DMCONFIG as below, and then tmboot Tuxedo.

*DM_EVT_IN

MACHINEB_EVT

LACCESSPOINT=DOMAINA

*DM_EVT_OUT

MACHINEA_EVT

LACCESSPOINT= DOMAINA

RACCESSPOINT= DOMAINB

For machine B, use dmloadcf to create new BDMCONFIG with additional configurations in
DMCONFIG as below, and then tmboot Tuxedo.

2-8 Administering an Oracle Tuxedo Application at Run Time

*DM_EVT_IN

MACHINEA_EVT

 LACCESSPOINT=DOMAINB

*DM_EVT_OUT

MACHINEB_EVT

 LACCESSPOINT= DOMAINB

 RACCESSPOINT= DOMAINA

After configuring as above, take a two-step test as below by two clients.

1. Client B issues tpsubscribe (“MACHINEA_EVT”) on Machine B;

2. Client A issues tppost (“MACHINEA_EVT”) on Machine A.

Result: Client B will receive the event MACHINEA_EVT if DMCONFIG is configured correctly.

In cross domain environment, all events should be explicitly imported or exported — requests for
an unknown domain will not be accepted. Once configured correctly, GWT server will
automatically subscribe every configured event to the local Event Broker when Tuxedo starts up.
When receiving a remote event message, local GWT will forward this request to Event Broker. On
the other side, when a local event is posted, the Event Broker will forward this event to the local
GWT which has subscribed such event. After that, the local GWT will forward this event to the
configured remote domain’s GWT.

Dynamically Modifying the Event Configurations
Besides allowing users to set up static configurations as above, Tuxedo provides two
administration methods to dynamically modify the event configurations as needed without
shutting the system down: dmadmin command and MIB operations.

For “dmadmin” command, two sub-commands (“advertiseevent” and “unadvertiseevent”)
and two sections (“EVENTS_IN” and “EVENTS_OUT”) are added to support the modification of
event configurations dynamically. Related classes are added in MIB operations.

For detailed information, see dmadmin(1) in Tuxedo Command Reference, and DM_MIB(5) in
Tuxedo Reference Guide.

Interoperability
The cross domain event broker feature is supported only when both GWT and EvtBroker are
running Oracle Tuxedo 12c Release 1 (12.1.1) or higher.

../rfcm/rfcmd.html
../rf5/rf5.html

How to Se lec t a Not i f i cat i on Method

Administering an Oracle Tuxedo Application at Run Time 2-9

How to Select a Notification Method
The EventBroker supports a variety of methods for notifying subscribers of events, as shown in
Figure 1-3.

Figure 1-3 Notification Methods Supported by the EventBroker

Whichever notification method you choose, the procedure for implementing it is the same: in
your call to tpsubscribe(), specify an argument that refers to a structure of type TPEVCTL.

If the value of the argument is NULL, the EventBroker sends an unsolicited message to the
subscriber. Two of these methods, having the notification sent to a service and having it sent to a
queue in stable storage, cannot be requested directly by a client. Instead, a client must invoke a
service routine to subscribe on its behalf.

For each subscription, you can select any of the following notification methods. The EventBroker
can:

Notify the client—the EventBroker keeps track of events in which the client is interested
and sends unsolicited notifications to the client when they occur. Some events are
anonymously posted. A client can join an application, regardless of whether any other
clients have subscribed, and post events to the EventBroker. The EventBroker matches
these events against its database of subscriptions and sends an unsolicited notification to
the appropriate clients. (See the definition of the T_EVENT_CLIENT class in the
EVENT_MIB(5) entry in the File Formats, Data Descriptions, MIBs, and System Processes
Reference.)

../rf5/rf5.html

2-10 Administering an Oracle Tuxedo Application at Run Time

Invoke a service—if a subscriber wants event notifications to be sent to service calls, then
the ctl parameter must point to a valid TPEVCTL structure. (See the definition of the
T_EVENT_SERVICE class in the EVENT_MIB(5) entry in the File Formats, Data
Descriptions, MIBs, and System Processes Reference.)

Enqueue messages to stable-storage queues—for subscriptions to stable-storage queues, a
queue space, queue name, and correlation identifier are specified, in addition to values for
eventexpr and filter, so that matching can be performed. The correlation identifier can
be used to differentiate among several subscriptions characterized by the same event
expression and filter rule, and destined for the same queue. (See the definition of the
T_EVENT_QUEUE class in the EVENT_MIB(5) entry in the File Formats, Data Descriptions,
MIBs, and System Processes Reference.)

Execute commands—using the T_EVENT_COMMAND class of the EVENT_MIB, subscribers
can invoke an executable process. When a match is found, the data is used as the name of
the executable process and any required options. (See the definition of the
T_EVENT_COMMAND class in the EVENT_MIB(5) entry in the File Formats, Data
Descriptions, MIBs, and System Processes Reference.)

Write messages to the user log (ULOG)—using the T_EVENT_USERLOG class of the
EVENT_MIB, subscribers can write system USERLOG messages. When events are detected
and matched, they are written to the USERLOG. (See the definition of the T_EVENT_USERLOG
class in the EVENT_MIB(5) entry in the File Formats, Data Descriptions, MIBs, and
System Processes Reference.)

How to Cancel a Subscription to an Event
When a client leaves an application by calling tpterm(3c), all of its subscriptions are canceled
unless the subscription is specified as persistent. (If persistent, the subscription continues to
receive postings even after a client performs a tpterm().) If the client later rejoins the
application and wants to renew those subscriptions, it must subscribe again.

A well-behaved client unsubscribes before calling tpterm(). This is accomplished by issuing a
tpunsubscribe(3c) call before leaving an application.

How to Use the EventBroker with Transactions
Special handling is needed to use the EventBroker with transactions.

Before you can use the EventBroker with transactions, you must configure the NULL_TMS
parameter with the TMUSREVT(5) server for the server groups in which the EventBroker is
running.

../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html
../rf3c/rf3c.html
../rf3c/rf3c.html

How to Use the EventBroker w i th T ransact ions

Administering an Oracle Tuxedo Application at Run Time 2-11

The advantage of posting an event in a transaction is that all of the work, including work
not related to the posting, is guaranteed to be complete if the transaction is successful. If
any work performed within the transaction fails, it is guaranteed that all the work done
within the transaction will be rolled back. The disadvantage is that the poster takes a risk
that something may cause the transaction to be aborted, and the posting will be lost.

To specify that a subscription is part of a transaction, use the TPEVTRAN flag with
tpsubscribe(3c). If the subscription is made transactionally, the action taken in response
to an event will be part of the caller’s transaction.

Note: This method can be used only for subscriptions that cause an Oracle Tuxedo service
to be invoked, or that cause a record to be enqueued on a permanent queue.

How Transactions Work with the EventBroker
If both a poster and a subscriber agree to link their transactions, they create a form of voting. The
poster makes an assertion that something is true and infects the message with this transaction. (In
other words, the message that leaves the originating process is marked as being associated with
the transaction.) The transaction goes to the EventBroker.

The EventBroker’s actions, such as calling the service or putting a message in the queue for the
subscriber, are also part of the same transaction. If a service routine that is running encounters an
error, it can fail the transaction, rolling back everything, including all other transactional
subscriptions and the poster’s original transaction, which might have invoked other services and
performed other database work. The poster makes an assertion (“I’m about to do this”), provides
data, and links the data to its transaction.

A number of anonymous subscribers, that is, subscribers about which the poster knows nothing,
are invoked transactionally. If any subscriber fails to link its work with the poster’s work, the
whole transaction is rolled back. All transactional subscribers must agree to link their work with
the poster’s work, or all the work is rolled back. If a poster has not allowed the posting to
participate in its transaction, the EventBroker starts a separate transaction, and gathers all the
transactional subscriptions into that transaction. If any of these transactions fail, all the work done
on behalf of the transactional subscriptions is rolled back, but the poster’s transaction is not rolled
back. This process is controlled by the TPEVTRAN flag.

Example of Using the EventBroker with Transactions
A stock trade is about to be completed by a brokerage application. A number of database records
have been updated by various services during the trade transaction. A posting states that the trade
is about to happen.

../rf3c/rf3c.html

2-12 Administering an Oracle Tuxedo Application at Run Time

An application responsible for maintaining an audit trail of such trades has subscribed to this
event. Specifically, the application has requested the placement of a record in a specified queue
whenever an event of this type is posted. A service routine responsible for determining whether
trades can be performed, also subscribes to this type of event; it, too, is notified whenever such a
trade is proposed.

If all goes well, the trade is completed and an audit trail is made.

If an error occurs in the queue and no audit trail can be made, the entire stock trade is rolled back.
Similarly, if the service routine fails, the transaction is rolled back. If all is successful, the trade
is made and the transaction is committed.

See Also
?$paratext>? on page 1-2

“Managing Events Using EventBroker” in Introducing Oracle Tuxedo ATMI

“Using Event-based Communication” in Tutorials for Developing Oracle Tuxedo ATMI
Applications

tppost(3c), tpsubscribe(3c), and tpunsubscribe(3c) in the Oracle Tuxedo ATMI C
Function Reference

TPPOST(3cbl), TPSUBSCRIBE(3cbl), and TPUNSUBSCRIBE(3cbl) in the Oracle Tuxedo
ATMI COBOL Function Reference

EVENT_MIB(5), EVENTS(5), TMSYSEVT(5), and TMUSREVT(5) in the File Formats, Data
Descriptions, MIBs, and System Processes Reference

../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html
../rf5/rf5.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3c/rf3c.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../rf3cbl/rf3cbl.html
../int/intman.html
../tutor/tutov.html

	Oracle® Tuxedo
	12c Release 2 (12.1.3)

	Oracle Tuxedo Using the EventBroker, 12c Release 2 (12.1.3)
	About the EventBroker
	What Is an Event?
	Differences Between Application-defined and System-defined Events
	What Is the EventBroker?
	How the EventBroker Works
	Event Notification Methods
	Severity Levels of System Events

	What Are the Benefits of Brokered Events?

	Subscribing to Events
	Process of Using the EventBroker
	How to Configure EventBroker Servers
	How to Set the Polling Interval
	Subscribing, Posting, and Unsubscribing to Events with the ATMI and the EVENT_MIB
	Identifying Event Categories Using eventexpr and filter
	Accessing the EventBroker

	Subscribing, Posting, and Unsubscribing to Events Across Domains
	Overview
	Configurations in DMCONFIG
	How to Process Brokered Events Crossing Domains
	How to Configure DMCONFIG — Case Study

	Dynamically Modifying the Event Configurations
	Interoperability

	How to Select a Notification Method
	How to Cancel a Subscription to an Event
	How to Use the EventBroker with Transactions
	How Transactions Work with the EventBroker
	Example of Using the EventBroker with Transactions

