Oracle® Tuxedo
Setting Up an Oracle Tuxedo Application
12c Release 2 (12.1.3)

April 2014

ORACLE

Setting Up an Oracle Tuxedo Application, 12¢ Release 2 (12.1.3)
Copyright © 1996, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use,
duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed
or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If
you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

This software or hardware and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect
to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Contents

1. Administrative Tasks and Tools

Tasks an Administrator Performs i 1-1
SetUP TaSKS . .ttt 1-1
RUN-TIME TasKS . .. oo 1-3
Differences Between the Oracle Tuxedo ATMI and CORBA Environments 1-4

Planning the Design of Your Application. 1-6

Tools to Help You Administer Your Application. 1-8

2. About the Configuration File

What Is the Configuration File? 2-1
Text and Binary Versions of the Configuration File 2-1

Contents of the Configuration File i 2-2

CORBA Administrative Requirements and Performance. 2-3
Configuring NameManagert 2-3
Reliability Requirements 2-4
Performance Hint. e 2-5

3. Creating the Configuration File
How to Create a Configuration File i, 3-2
How to Create the Configuration File for a Single-machine Application 3-2
How to Create the Configuration File for a Multiple-machine (Distributed) Application . .
3-3

How to Create the Configuration File for a Multiple-domain Application 3-4

Setting Up an Oracle Tuxedo Application iii

How to Create the RESOURCES Section of the Configuration File............... 3-7

Sample RESOURCES SeCtiont 3-8
Defining the Application Type.o 3-9
Characteristics of the MODEL and OPTIONS Parameters 3-10
Example Settings.ot 3-10
Controlling the Number of Buffer Types and Subtypes. 3-10
Characteristics of the MAXBUFTYPE and MAXBUFSTYPES Parameters. . .. 3-11
Example Settings.ot 3-11
Controlling the Number of Conversations. iiiiiiiien.., 3-11
Characteristics of the MAXCONYV Parametercooviivno.n. 3-11
Example Settingo 3-12
Defining IPC LIMitS.o 3-12
Characteristics of MAXACCESSERS, MAXSERVERS, MAXSERVICES,
MAXINTERFACES, and MAXOBJECTS Parameters. 3-13
Example Settings. oo 3-15
Enabling Load Balancing. 3-15
Characteristics of the LDBAL Parameter., 3-15
Example Settings. oot 3-16
Identifying the Master Machine. 3-16
Characteristics of the MASTER Parametercon... 3-16
Example Settings. oo 3-17
Specifying the Maximum Number of Network Groups. 3-17
Specifying the Number of Sanity Checks and Blocking Timeouts 3-17
Characteristics of the SCANUNIT, SANITYSCAN, and BLOCKTIME Parameters .
3-18
Timeouts for Blocking ATMI Operations.ccoiiiion.. .. 3-18
Example Settings. e 3-19
Establishing Operating System-level Security. 3-19

Setting Up an Oracle Tuxedo Application

Characteristics of the UID, GID, and PERM Parameters 3-19
Specifying the Security Level. i 3-20
Characteristics of the SECURITY, AUTHSVC, and OPTIONS Parameters 3-21

Defining the Security AttributesofaServer 3-22
Protecting Shared Memoryo o i 3-23
Characteristics of the PROTECTED, FASTPATH, and NO_OVERRIDE Parameters
3-23
Example Settings.o 3-23
Setting the Address of the System Resources for an Application 3-24
Characteristics of the IPCKEY Parameter., 3-24
Example Settings. oo 3-24
Specifying How Clients Receive Unsolicited Notification 3-24
Characteristics of the NOTIFY and USIGNAL Parameters................. 3-25
How to Create the MACHINES Section of the Configuration File............... 3-25
Sample MACHINES Section 3-29
Specifying the Maximum Number of ACL Entries inthe Cache. 3-31
Defining an Additional Service Request Load 3-32
Reserving the Physical Address and Machine ID............ 3-32
Characteristics of the Address and the LMID Parameter 3-32
Setting the Number of Lock Spins o i 3-33
Characteristics of the SPINCOUNT Parameter.oovv.. 3-33
Specifying Machines as TYPeSo ottt 3-33
Characteristics of the TYPE Parameter., 3-33
Identifying the Location of the Configuration File. 3-34
Characteristics of the TUXCONFIG Parametero, 3-34
Indicating the Size of the DTP TransactionLog 3-34
Defining the DTP Transaction LogName oo, 3-34
Specifying Environment Variable Settings. i 3-35

Setting Up an Oracle Tuxedo Application

vi

Characteristics of the ENVFILE Parametero, 3-35

Defining the Oracle Tuxedo Filesystem Containing the TLOG 3-35
Specifying a Machine’s Maximum Number of Simultaneous Global Transactions .. 3-36
Defining the Number of Accesser Entries on a Workstation Client 3-36
Defining Space Limits for Messages Transmitted by the BRIDGE 3-36
Indicating the Offset for the DTP TransactionLog, 3-37
Defining the Offset for TUXCONFIG. i 3-37

Characteristics of the TUXOFFSET Parameteroovvn... 3-37

Identifying the Locations of the System Software and Application Server Software . 3-38

Characteristics of the APPDIR and TUXDIR Parameters 3-38
Indicating a Threshold Message Size for Compression. 3-38
EXample. . . 3-39
Specifying the Pathname forthe ULOG, 3-39
Characteristics of the ULOGPFX Parameter 3-39
How to Create the GROUPS Section of the Configuration File 3-39
Sample GROUPS Sectionfor ATML. e 3-41
Sample GROUPS Section for CORBA. it 3-41
Specifying a Group Name, Number,and LMID 3-42
Characteristics of the Group Name, Group Number,and LMID 3-43
Indicating a Transaction Manager Server Name and Numbers per Group 3-43
Identifying the Environment File Location for Serversina Group............... 3-44

Defining Information Needed When Opening and Closing the Resource Manager .. 3-44

How to Create the NETWORK Section of the Configuration File 3-46
Sample NETWORK Section.o 3-47
Specifying a Device Name for the BRIDGE Process 3-47
Assigning a BRIDGE Network Address 3-48
Assigning Encryption Levels. 3-48
EXample. . o 3-49

Setting Up an Oracle Tuxedo Application

Assigning a tlisten Network Address 3-49

How to Create the NETGROUPS Section of the Configuration File. 3-50
Sample Network Groups Configuration it 3-51
Configuring a Sample UBBCONFIG File with Netgroups. 3-52

Assigning a Name to a Network Groupo 3-53

Assigning a Network Group NUmber. 3-53

Assigning a Priority to the Network Group 3-54

How to Create the SERVERS Section of the Configuration File. 3-54
Sample SERVERS SeCtion 3-58

Specifying a Server as Conversational i 3-60
Characteristics of the CONV Parametero, 3-60

Setting the Order in Which Servers Are Booted., 3-61
Required Order in Which to Boot CORBA C++Servers 3-61

Characteristics of the SEQUENCE, MIN, and MAX Parameters 3-65

Specifying Server Command-line Options. o ... 3-65
Characteristics of the CLOPT Parameter., 3-66

Identifying the Location of the Server Environment File. 3-67
Characteristics of the Server Environment File. 3-67

Defining Server Name, Group, and ID.t 3-67
Characteristics of the Server Name, SRVGRP, and SRVID Parameters. 3-68

Identifying Server Queue Information il 3-68
MSSQ EXample.o 3-68
Characteristics of the RQADDR, RQPERM, REPLYQ, and RPPERM Parameters . .

3-69
Defining Server Restart Information i 3-70

Characteristics of the RESTART, RCMD, MAXGEN, and GRACE Parameters. 3-71
Defining Server Access to Shared Memory i, 3-71
Characteristics of the SYSTEM_ACCESS Parameter 3-71

Setting Up an Oracle Tuxedo Application vii

viii

Defining the Server Dispatch Threadsot 3-72

Setting Security Parameters for ISL Serverso, 3-72
How to Create the SERVICES Section of the Configuration File. 3-73
Sample SERVICES SeCtion ot 3-74
Specifying Automatic Starts and Timeout Intervals for Transactions. 3-75
Specifying a List of Allowable Buffer Types fora Service..................... 3-76
Examples of the BUFTYPE Parameter., 3-76
Designating How Much Time to Processa Request, 3-76
What Happens When a Timeout OCCUIS.ot 3-77
How a Service Timeout ISReported., 3-77
Specifying Nontransactional Service-Level Blocktime. 3-78
Enabling Load BalanCing.ot 3-79
Characteristics of the LDBAL Parameter. 3-79
Defining the Name of the Routing Criteria 3-79
Specifying Service Parameters for Different Server Groups. 3-80
Controlling the Flow of Data by Service Priority 3-80
Characteristics of the PRIO Parameter 3-80
Sample SERVICES Section Using Different Priorities 3-80
Indicating Service Processing Time.t 3-81
How to Create the INTERFACES Section of the Configuration File 3-81
Specifying CORBA Interfaces in the INTERFACES Section 3-81
Specifying FACTORYROUTING Criteria. 3-83
Enabling Load Balancingt 3-85
Controlling the Flow of Data by Interface Priority. 3-85
Specifying Different Interface Parameters for Different Server Groups 3-86
How to Create the ROUTING Section of the Configuration File 3-86
ROUTING Section Example. o e 3-87
Defining the Routing Buffer Field and Field Type oot 3-88

Setting Up an Oracle Tuxedo Application

Specifying Range Criteria.ot 3-89

Defining BUffer TYpesot 3-89
CORBA Factory-based Routing in the University Production Sample Application . . 3-89
CORBA Factory-based Routing in the Bankapp Sample Application............. 3-93
How to Configure the Oracle Tuxedo System to Take Advantage of Threads 3-94
How to Compile a Configuration File 3-96

4. About Transactions

What IS a Transaction?ot 4-1
What Are the ACID Properties? e 4-2
How a Transaction Succeedsor Fails 4-3

Benefits of Using Transactions.t 4-4

Example of a Global Transaction. i 4-4

What Is the Oracle Tuxedo Transaction Manager (TM)?. 4-5

How the System Tracks Distributed Transaction Processing. 4-6

How the System Uses Global Transaction Identifiers (GTRIDs) for Tracking. ... 4-7

How the System Uses a Transaction Log (TLOG) for Tracking. 4-7
How the System Uses a Two-Phase Commit to Commit Transactions 4-9
How the System Handles Transaction Infection.......................... 4-10

How the ATMI Protects a Transaction’s Integrity Before a Two-Phase Commit . 4-11

SEE AlSD. . .o 4-12

5. Configuring Your ATMI Application to Use Transactions

Modifying the UBBCONFIG File to Accommodate ATMI Transactions. 5-1
Specifying Global Transaction Parameters in the RESOURCES Section........... 5-3
Creating a Transaction Log (TLOG) in the MACHINES Section................. 5-4
Creatingthe UDL i e e e e e 5-4
Defining Transaction-related Parameters in the MACHINES Section.......... 5-4

Setting Up an Oracle Tuxedo Application ix

Creating the Domains TransactionLog, 5-6

SEE AlSD . 5-6
Defining Resource Managers and the Transaction Manager Server in the GROUPS Section
5-6
Sample of the GROUPS Section. 5-7
Enabling a Service to Begin a Transaction in the SERVICES Section............. 5-8
Characteristics of the AUTOTRAN, TRANTIME, and ROUTING Parameters .. 5-9
Modifying the Domains Configuration File to Support Transactions 5-9
Characteristics of the DMTLOGDEV, DMTLOGNAME, DMTLOGSIZE,
MAXRAPTRAN, and MAXTRAN Parameters 5-10
Characteristics of the AUTOTRAN and TRANTIME Parameters. 5-11
Example: A Distributed Application with Transactions 5-12
Sample RESOURCES Sectioniiiii i 5-13
Sample MACHINES Sectiont e 5-14
Sample GROUPS and NETWORK Sectionscovviiinnnnnt. 5-15
Sample SERVERS, SERVICES, and ROUTING Sections. 5-16
SEE AlSO . . 5-17

6. Using Tuxedo with Oracle Real Application Clusters (RAC)

INSTANCE AWAIENESS oottt e 6-1
Using Tuxedo with XA Affinity 6-2
OVBIVIBW . . . ottt e et e e e e 6-2
XA ANty Priorityo 6-3
XA Affinity Policy 6-3
PrErEqUISITES . . oot 6-4
ConfiguIationS. . . . oo 6-4
Limitationso 6-5
Using Tuxedo with Common XIDot e 6-5

Setting Up an Oracle Tuxedo Application

OV IV B .« o ottt e e e e 6-5

PrErEQUISITES. . o . ot e 6-6
Configurationst 6-6
Limitations.o 6-7
Using Tuxedo with Single Group Multiple Branches (SGMB) 6-7
OVBIVIBW . . o 6-8
PrErEQUISITES. . . . ot 6-8
Configurationst 6-8
Limitations.o 6-9
Using Tuxedo with Fast Application Notification (FAN) 6-9
OVBIVIBW . ot 6-10
PrErEQUISITES. . o ottt 6-10
Configurationst 6-11
Limitations. 6-13
Using Tuxedo with Oracle Real Application Clusters (RAC) 6-13
OVEIVIBW .« oot 6-13
Limitations. 6-14
Software ReqUIrEMENtSot e 6-15
Configuring Tuxedo for Oracle RAC i i 6-15
SEE AlSD. . o 6-37

/. Enabling [Pv6

OVBIVIBW. .« ottt et e e e 7-1
Enabling [PV 7-1
IPV6 Address FOrmat.t 7-2
Tuxedo Component IPV6 SUPPOrt. oot 7-2
IPv4 and IPV6 Interoperability 7-3
Oracle Tuxedo MP Mode Interoperability 7-4

Setting Up an Oracle Tuxedo Application Xi

8. Managing The Oracle Tuxedo Service Metadata Repository

Oracle Tuxedo Service Metadata Repository. 8-1
Oracle Jolt Repository Similarities and Differences. 8-2
MIB(5) Similarities and Differences. i, 8-3

Creating The Oracle Tuxedo Service Metadata Repository. 8-3
The Oracle Tuxedo Service Metadata Repository InputFile 8-4

Configuring The Oracle Tuxedo Service Metadata Repository Server............ 8-16

Configuring Multiple Oracle Tuxedo Service Metadata Repository Servers. ... 8-16
Accessing The Oracle Tuxedo Service Metadata Repository File. 8-17

9. Managing CORBA Interface Repositories

Administration Considerations.t 9-2
Using Administration Commands to Manage Interface Repositories 9-3
PrereqUISITES . . .o 9-3
Creating and Populating an Interface Respository 9-4
Displaying or Extracting the Content of an Interface Repository.............. 9-4
Deleting an Object from an Interface Repository 9-4

Configuring the UBBCONFIG File to Start One or More Interface Repository Servers9-5

10. Distributing ATMI Applications Across a Network

What Is a Distributed ATMI Application?. i, 10-1
Example of a Distributed Application. 10-2
Implementing a Distributed Application. 10-2

Why Distribute an ATMI Application Acrossa Network? 10-3
Features of a Distributed Application., 10-4

Xii Setting Up an Oracle Tuxedo Application

11. Creating the Configuration File for a Distributed ATMI

Application

Configuration File Requirements for a Distributed Oracle Tuxedo ATMI Application11-1
Creating the RESOURCES Sectionoviii e 11-3
Creating the MACHINES Sectiont e 11-5
Creating the GROUPS SeCtion.ovii i e e e 11-7
Creating the SERVICES SeCtion ovv ittt 11-8
Creating the ROUTING SeCtion.ovvitti e e 11-10
Example Configuration File for a Distributed Application 11-11
Modifying the Domain Gateway Configuration File to Support Routing 11-12

Description of ROUTING Section Parameters in DMCONFIG. 11-12

12. Setting Up the Network for a Distributed Application

Configuring the Network for a Distributed Application. 12-1
How Data Moves Overa Network 12-5
How Data Moves Over Parallel Networks, 12-5
Example of a Network Configuration for a Simple Distributed Application. 12-8
How Failover and Failback Work in Scheduling Network Data 12-8
Example Configuration of Multiple Netgroups oot 12-8

Configuration File for the Sample Network 12-10

Assigning Priorities for Each Network Group 12-11

13. About Workstation Clients

What Is the Workstation Component?t 13-1
Sample Application with Four Workstation Clients. 13-2
How the Workstation Client Connects to an Application. 13-3

Setting Up an Oracle Tuxedo Application Xiii

14. Setting Up Workstation Clients

Defining Workstation Clients. i 14-1
Specifying the Maximum Number of Workstation Clients 14-4
Defining a Workstation Listener (WSL) asa Server.ccoouuaon.. 14-5
Passing Information to a WSL Process., 14-5
Using Command-line Options Set with CLOPT. 14-6
Detecting Network Failures 14-8
Using the Keep-alive Option e 14-9
Limitations When Using the Keep-alive Option. 14-10
Using the Network Timeout Option. 14-11
How Network Timeout Works 14-11
Limitations When Using the Network Timeout Option 14-11
Setting the Network Timeout Option 14-12
Sample Configuration File that Supports Workstation Clients 14-12
Modifying the MACHINES and SERVERS Sections 14-12

15. Managing Remote Oracle Tuxedo CORBA Client Applications

CORBA Object Terminology. oo e e e e 15-2
Remote CORBA Clent OVEIVIEWot 15-4
Illustration of an Application with Remote CORBAClients 15-4
How the Remote Client Connects to an Application 15-5
Setting Environment Variables for Remote CORBAClients 15-5
Setting the Maximum Number of Remote CORBAClients 15-6
Configuring a Listener for a Remote CORBAClient 15-7
Format of the CLOPT Parameteroiiiiiiinnennn.. 15-7
Modifying the Configuration File to Support Remote CORBA Clients 15-8
Configuring Outbound 11OP for Remote Joint Client/Servers. 15-9
Functional Description 15-9

Xiv Setting Up an Oracle Tuxedo Application

Using the ISL Command to Configure Outbound 1IOP Support 15-15

Types of Object References. e 15-15
User Interfaceo 15-15
Applying Service Version to Tuxedo Applications 15-16
OVBIVIBW . oot 15-16
Enabling and Disabling Application Service Versioning 15-16
UBB Config File Application Service Version Configuration 15-18
Domain Configuration File Application Service Version Configuration 15-19

16. Applying Service Version to Tuxedo Applications

OVEIVIBW. .« ottt 16-1
Enabling and Disabling Application Service Versioning. 16-2
Enable/Disable Application Service Versioning Using UBB Config File 16-2
Enable/Disable Application Service Versioning UsingMIB 16-2
Application Service Version Configurations 16-3
UBB Config File Configuration i ... 16-3
Domain Config File Configuration o ... 16-5
Version Based ROULING oot e 16-6
Resetting the User Configured Service Version Information UsingMIB 16-7
Interoperability e 16-8

17. Oracle Tuxedo Applications Packaging and Deployment

OVBIVIBW. .« ottt 17-1
COMIPONENES . vttt e 17-1
CONSErAINES\t 17-3

How to Deploy/Undeploy Tuxedo Applications 17-3
Introduction to Application Package Organization and Contents............. 17-3
Uploading/Deleting an Application Package 17-10

Setting Up an Oracle Tuxedo Application XV

Creating and DeployingaDomain, 17-10
Undeploying @aDomain. 17-19

18. Managing ATMI Java Server

OVBIVIBW . . ot e e 18-1
Configurations inUBBCONFIG e 18-2
Tuxedo Java Server Configuration File i, 18-2
Tuxedo Java Server Configuration File Version2.0....................... 18-3
Tuxedo Java Server Configuration File Version1.0...................... 18-11
Configuration for Tuxedo Java Server Transaction Manager 18-17
Create Spring Application Context.i .. 18-18
Transaction Management. i 18-19
AUTOTRAN. ..o 18-21
Supported Spring Application Transaction Modes. 18-21
Setting Up the JVM Library Environment., 18-23
Limitations 18-23
Java Server Configuration File Schema.........., 18-24
Java Server Configuration Schema File for version2.0................... 18-24
Java Server Configuration Schema File for version1.0................... 18-36

19. Configuring Tuxedo for Propagating ECID

OVBIVIBW . . ot e e e 19-1
Propagating ECID from Tuxedo to Database 19-3
Propagating ECID Between Tuxedoand WLS. 19-3
Propagating ECID within Tuxedo. i 19-4
Generating ECID by Native/WS/Jolt clients and Domain Gateway. 19-4
Interoperability 19-4

CoNfigUIAtIoNSo 19-5

Xvi Setting Up an Oracle Tuxedo Application

Enabling and Disabling ECID Propagation., 19-5

Configuring the Server to Propagate ECID viaOCI 19-5
Tracing ECID with Tuxedo System e 19-6
S AlSD . . 19-6

20. Logging Last Resource Transaction Optimization

OVBIVIBW. ottt 20-1
Logging Last Resource Configurations i, 20-2
Configuring LLR Library inRM File o i 20-2
Configuring OPENINFO in UBBCONFIG File 20-2
Configuring LLR Options in UBBCONFIGFile 20-3
Building LLR Server/TMS 20-4
Typical Configuration Example. i 20-4
Lazy Deletion on TLOG Records of Completed LLR Transactions 20-6
Constrains and Limitations. 20-7

Setting Up an Oracle Tuxedo Application Xvii

XViii Setting Up an Oracle Tuxedo Application

CHAPTERa

Administrative Tasks and Tools

This topic includes the following sections:
e Tasks an Administrator Performs
e Planning the Design of Your Application

e Tools to Help You Administer Your Application

Tasks an Administrator Performs

An administrator’s job can be viewed as two broadly defined tasks:
e Setup tasks—all the tasks required to prepare your system before booting your application.

e Run-time administration—any tasks performed on an application that has been booted.

Setup Tasks

During the setup phase, an administrator is responsible for the planning, design, installation,
security, and configuration of the Oracle Tuxedo system. Table 1-1 describes the required and
optional tasks during the setup phase.

Setting Up an Oracle Tuxedo Application 1-1

1-2

Table 1-1 Required and Optional Tasks During the Setup Phase

Setup Task Required Optional
Collect information from designers, programmers, and X
business users of the application

Set up the hardware and software, and install the Oracle X
Tuxedo system and the application (installation)

Set up the Oracle Tuxedo system parameters that govern how X
the application uses components (configuration)

Configure transactions for domains, machines, groups, X
interfaces, services, and other required components
(configuration)

Select and implement security methods for protecting the X
application and data

For CORBA environments, configure an Internet Inter-ORB X

Protocol (I10OP) Listener/Handler and modify the machine
configuration

Set up distributed applications with routing tools: X
factory-based routing for CORBA environments and

data-dependent routing for ATMI environments

Set up networked applications X
Configure local and remote domains X
Set up Workstation clients: add environment tables and a X
workstation listener, and modify the machine configuration

Create an application queue space and modify the X
configuration to support queued messages

Apply service version to Oracle Tuxedo applications X
After Tuxedo installation, deploy/undeploy the applications X

from a centralized control platform using
deployment/undeployment tool

Setting Up an Oracle Tuxedo Application

Tasks an Administrator Performs

Run-time Tasks

With your Oracle Tuxedo system installed and your TUXCONFIG file loaded, you are ready to boot
your application. When your application is launched, you must start monitoring its activities for
problems—Dboth actual and potential. Table 1-2 describes the required and optional tasks during
the run-time phase.

Table 1-2 Required and Optional Tasks During the Run-time Phase

Run-time Task Required Optional

Start up and shut down an application X

Manage buffers

X
Administer the security of your application X
X

Monitor the activities, problems, and performance of your
application

For ATMI environments, manage transactions

For CORBA environments, manage interfaces

Manage networked applications

Manage remote Workstation clients

Subscribe to events

Use queued messaging

Identify and resolve problems as they occur (troubleshoot)

X | X| X| X| X| X| X| X

Reassign primary responsibility for your application from the
MASTER machine to an alternate (BACKUP) machine
(migration) when problems occur on the MASTER (migration)

Change system parameters and the selection of services to meet X
evolving needs (dynamic modification)

Refine your application to reflect additional components, such X
as new machines or servers (dynamic reconfiguration)

Setting Up an Oracle Tuxedo Application 1-3

1-4

During run time, you may need to respond quickly to potential problems or evolving
requirements of an application. To help you perform these functions, you have a choice of three
tools: the Oracle Tuxedo Administration Console, the command-line interface, and the
AdminAPI. Table 1-3 describes some of the circumstances in which your intervention may be
needed.

Table 1-3 Circumstances Needed in Intervention
To... You May Want to...

Maximize performance Adds load balancing or set priorities for
interfaces and services.

Fix problems that may develop on the Replaces it with a designated BACKUP

MASTER machine machine.
Change processing and resource usage Adds machines, servers, clients, interfaces,
requirements services, and so on.

e “Planning the Design of Your Application” on page 1-6

e “Tools to Help You Administer Your Application” on page 1-8

Differences Between the Oracle Tuxedo ATMI and CORBA
Environments

For the Oracle Tuxedo CORBA environment, the Oracle Tuxedo administration facilities support
the administration of applications running within the context of the Object Request Broker (ORB)
and the TP Framework.

The UBBCONFIG configuration file for Oracle Tuxedo CORBA environments supports the
configuration of client and server applications, as follows:

e The RESOURCES section provides application-wide defaults for the sizing of bulletin board
tables.

e The MACHINES section allows the specification of processor-specific values for sizing of
those tables.

Setting Up an Oracle Tuxedo Application

Tasks an Administrator Performs

e The INTERFACES, section allows the specification of information about CORBA interfaces
used by the application.

e The ROUTING section provides support for a different type of routing criteria used with
Tuxedo CORBA environments. Also, existing ROUT ING sections that specify Oracle
Tuxedo ATMI data-dependent routing parameters continue to work without modification.

e In the Oracle Tuxedo ATMI environment, you configure workstation handlers and listeners
for connections from client applications to server applications. From an administrative
viewpoint, this task is similar in Oracle Tuxedo CORBA environments.

However, the Oracle Tuxedo CORBA environment uses a different communications
protocol to connect remote and foreign clients to Oracle Tuxedo server applications. The
protocol is the standard Internet Inter-ORB Protocol (I1OP). Instead of the Oracle Tuxedo
Workstation Handler (WSH) process and Workstation Listener (WSL) process, the
CORBA environment calls its gateway processes the 11OP Handler (ISH) and the 11OP
Listener (ISL). This results in a slight syntax difference, ISL instead of WSL, in the
SERVERS section of each application’s UBBCONFIG configuration file.

Overall, the administration tasks for the Oracle Tuxedo CORBA and ATMI environments are
similar. There are a few principal differences between the environments, however, as follows:

e In both environments, you use a routing criteria to distribute processing to specific server
groups. The routing mechanism in an Oracle Tuxedo CORBA environment system is
known as factory-based routing. It is fundamentally different than the Oracle Tuxedo
ATMI data-dependent routing mechanism.

In the Oracle Tuxedo ATMI environment, you can examine any FML field used for a
service invocation to determine the data-dependent routing criteria. In Oracle Tuxedo
CORBA environments, the system designer must personally communicate the routing
criteria of CORBA interfaces. For Oracle Tuxedo CORBA environments, there is no
service request message data or associated buffer information available for routing. This
occurs because CORBA routing is performed at the factory, not on a method invocation on
the target CORBA object.

e You cannot dynamically advertise CORBA interfaces at run time. However, you can
suspend or reactivate CORBA interfaces.

e No direct ACL control is provided for CORBA interfaces. No control over servants is
provided at the administrative level. In the UBBCONFIG configuration file, the
MANDATORY_ACL parameter to the SECURITY parameter is ignored.

e The LDAP single security administration feature is not supported by the CORBA interface.

Setting Up an Oracle Tuxedo Application 1-5

Note: The Management Information Base (MIB) defines the set of classes through which the

fundamental aspects of an application can be configured and managed. The MIB classes
provide an administrative programming interface to the Oracle Tuxedo CORBA and
ATMI environments.

Planning the Design of Your Application

An administrator needs to know a customer’s business requirements and how the software will
be used. Once these needs are understood, administrators can work with their system designers
and application developers to make sure that the application’s configuration can support its
requirements.

1-6

Answers to the following preliminary questions may help in planning the design of your
application.

1.
2.

How many machines will be used?

Will client applications reside on machines that are remote from the server applications?

For ATMI, which services will your application offer?

For CORBA, which interfaces will your client or server application use?

What resource managers (database) will the application use and where will they be located?

What “open” strings will the resource managers need?

What setup information will be needed for an RDBMS?

Will transactions be distributed?

Will the application use global transactions?

Setting Up an Oracle Tuxedo Application

Planning the Design of Your Application

10. What buffer types will be used?

11. Will data be distributed across machines?

12. To which external domains will the application export services? From which external
domains will the application import services?

13. Will factory-based or data-dependent routing be used in your application?

14. What are the names of the CORBA interfaces or ATMI services?

15. In what order of priority should the interfaces or services be available?

16. What are the reliability requirements? Will redundant listener and handler ports be needed?
Will replicated server applications be needed?

17. For CORBA environments, will the domain need an Interface Repository (IR) database? If
so, will the domain benefit from having IR replicas, and how many IR server applications
should be defined?

18. Are there any conversational services? What resource managers do they access? What buffer
types do they use?

See Also

e “Tools to Help You Administer Your Application” on page 1-8

Setting Up an Oracle Tuxedo Application 1-1

Tools to Help You Administer Your Application

The Oracle Tuxedo system gives you a choice of several methods for performing the same set of
administrative tasks for either Oracle Tuxedo ATMI or CORBA environments. Whether you are
more comfortable using a graphical user interface or entering commands at a shell prompt, you
will be able to find a comfortable method of doing your job as the administrator of an Oracle
Tuxedo application. Figure 1-1 illustrates the tools you can use to write the configuration file and
administer your Oracle Tuxedo application during run time.

Figure 1-1 Administration Tools

Command-Line | Administration
Litilities Console

| II |
'

Eluitin
ULOG
TLOG Board

MIB AP EventBroker

e Oracle Tuxedo Administration Console—a Web-based tool used to monitor an application,
and to dynamically configure its operation.

e Oracle Tuxedo MIB Application Programming Interface—an interface to a set of
procedures for accessing and modifying information in the MIBs.

e Command-line utilities—a set of commands used to manage, activate, configure, and
deactivate the application (that is, tmadmin(1), tmboot(1), tmconfig, wtmconfig(l),
tmshutdown (1), respectively). For more information, refer to the Oracle Tuxedo
Command Reference

1-8 Setting Up an Oracle Tuxedo Application

Table 1-4

Tools to Help You Administer Your Application

If You Use This Tool...

You Must...

Oracle Tuxedo Administration
Console

Use a graphical user interface (GUI) to create and edit the
TUXCONFIG file. Full descriptions of the GUI are
available by accessing Help directly from the GUI.

Oracle Tuxedo MIB
Application Programming
Interface

Write a program that modifies the TUXCONF IG file for
you.

Command-line interface

1. Create and edit the UBBCONF IG file (a text version of
TUXCONFIG) with a text editor.

2. Runtmloadcf to convert the UBBCONFIG file into a
TUXCONFIG (binary) file.
(For specific details about the tmloadcf command

options, see tmloadcf (1) in the Oracle Tuxedo
Command Reference.)

See Also

e “Management Operations Using the Oracle Tuxedo Administration Console” in
Introducing Oracle Tuxedo ATMI

e “Managing Operations Using the MIB” in Introducing Oracle Tuxedo ATMI

e “Managing Operations Using Command-Line Utilities” in Introducing Oracle Tuxedo

ATMI

e “Tasks an Administrator Performs” on page 1-1

e “Oracle Tuxedo ATMI Architecture” in Introducing Oracle Tuxedo ATMI

e “The Tuxedo CORBA Programming Environment,” in Getting Started with Oracle Tuxedo

CORBA Applications

e ACL_MIB(5), APPQ_MIB(5), EVENT_MIB(5), MIB(5), TM_MIB(5), WS_MIB(5), and
UBBCONFIG(5) in the File Formats, Data Descriptions, MIBs, and System Processes

Reference

e tmshutdown(1) in the Oracle Tuxedo Command Reference

Setting Up an Oracle Tuxedo Application 1-9

1-10 Setting Up an Oracle Tuxedo Application

About the Configuration File

This topic includes the following sections:
e What Is the Configuration File?

e Contents of the Configuration File

What Is the Configuration File?

Configuring each Oracle Tuxedo application is a central task of the administrator. By configuring
afile, you are describing your application using a set of parameters that the software interprets to
create a viable application. The configuration file is a repository that contains all the information
necessary to boot and run an application, such as specifications for application resources,
machines, machine groups, servers, available services, interfaces, and so on.

Text and Binary Versions of the Configuration File

The configuration file exists in two versions:

e The UBBCONFIG file is a text version of the configuration file, created and edited with any
text editor. Except for sample configuration files distributed with Oracle Tuxedo sample
applications, no UBBCONFIG file is provided. You must create a UBBCONFIG file for each
new application. The syntax used for entries in the file is described in UBBCONFIG(5) in
the File Formats, Data Descriptions, MIBs, and System Processes Reference.

Note: The Oracle Tuxedo software provides three sample UBBCONFIG files—ubbshm,
ubbmp, and ubbsimple—as part of the bankapp and simpapp applications. (See
Tutorials for Developing Oracle Tuxedo ATMI Applications.)

Setting Up an Oracle Tuxedo Application 2-1

e The TUXCONFIG file is a binary version of the configuration file, created from the text
version by the tmloadcf(1) command. Before tmloadcf is executed, the environment
variable TUXCONFIG must be set to the full pathname of the device or system file where
TUXCONFIG is to be loaded. If necessary, many parameters in TUXCONF G can be changed
while the application is running by using tmconfig, wtmconfig(1) or the MIB.

Contents of the Configuration File

Table 2-1 lists the nine sections of the configuration file and describes the purpose of each
section.

Table 2-1 Contents of the Configuration File

Required or

Section Optional Purpose

RESOURCES Required Defines all system parameters.

MACHINES Required Specifies all the machines in your application.

GROUPS Required Defines all groups, group names, and group IDs for your
application.

SERVERS Optional Specifies the initial conditions for servers started in the
system.

SERVICES Optional Provides information on services used by the application.

INTERFACES Optional For CORBA environments, provides information on
application-wide, default parameters for interfaces used
by the application.

NETWORK Optional Describes the network configuration for a LAN
environment.

NETGROUPS Optional Describes the network groups available to the application
in the LAN environment.

ROUTING Optional Provides information for data-dependent routing of

service requests using FML buffers and views.

The file must also contain a minimum of nine parameters. There are 80 different parameters, and
all sections but the first, may contain multiple entries, each with its own selection of parameters.

2-2 Setting Up an Oracle Tuxedo Application

CORBA Administrative Requirements and Performance

In all sections other than RESOURCES, you can use a default to specify parameters that are included
in multiple entries.

You can use the command-line interface or Oracle Tuxedo Administration Console to create the
binary version of the configuration file (TUXCONFIG). First you need to determine the type of
configuration you are defining in the file.

e A single-machine application—one or more local or remote clients communicate with one
or more servers residing on the same machine.

e A multiple-machine (distributed) application—one or more local or remote clients
communicate with one or more servers residing on several machines.

e A multiple-domain application—two or more applications communicate with each other
through the use of the Oracle Tuxedo Domains extension. Each application included in
such a configuration is called a domain.

CORBA Administrative Requirements and Performance

This section provides information to assist you in administering your CORBA environment in the
Oracle Tuxedo system.

Configuring NameManager

Adhering to the following requirements is fundamental to successful CORBA administration.

e NameManagers should coordinate their activities with each other using the Oracle Tuxedo
EventBroker without administrative or operations intervention. The EventBroker must be
started before any servers provide the NameManager service. If the EventBroker is not
configured into the application and is not running when the NameManager service is
booted, the NameManager aborts its startup and writes an error message to the user log.

e At least two servers must be configured to run the NameManager service as part of any
application. This requirement is to ensure that a working copy of the “name-to-IOR”
mapping is always available. If the servers are on different machines, and one machine
crashes, when the machine and application are restarted, the new NameManager obtains
the mapping from the other NameManager. If an application is solely contained on one
machine and the machine crashes, the NameManagers are rebooted as part of the
application startup because the application must be rebooted. If two NameManagers are not
configured in the application when a NameManager service is booted, the NameManager
aborts its startup and writes an error message to the user log.

Setting Up an Oracle Tuxedo Application 2-3

2-4

o NameManagers can be designated as either master or slave, the default being slave. If a
master NameManager server is not configured in the application and is not running when a
slave NameManager server starts, the server terminates itself during boot and writes an
error message to the user log.

o |f a NameManager service is not configured in the application when a FactoryFinder
service is booted, the FactoryFinder aborts its startup and writes an error message to the
user log. It is not necessary for the NameManager service to start before a FactoryFinder
service because the FactoryFinder only communicates with a NameManager when a
“find” request is received from an application. NameManagers, on the other hand,
attempt to communicate with each other when they boot. FactoryFinders do not
communicate with each other except when a request is received to find a factory that is in a
remote domain.

e Oracle Tuxedo EventBroker, NameManager, and FactoryFinder services must be started
before any of the application-specific servers. However, if more than one EventBroker is to
be configured in the application, all secondary EventBrokers must be started after all
application servers are started. There is no system protocol to enforce this in an application
server; therefore, you accomplish this by positioning all secondary EventBrokers after the
application servers.

e The Master NameManager must be started and must be running before any application
server can register a reference to a factory object. The existence of an executing Slave
NameManager is not sufficient.

Reliability Requirements

This section contains information that will improve CORBA reliability.

Managing Factory Entries

When application servers “die,” they often fail to unregister their factories with the
NameManager. In some cases, the FactoryFinder may give out object references for factories that
are no longer active. This occurs because the servers containing those factories have become
unavailable, have failed to unregister their factories with the NameManager, and there is no other
server capable of servicing the interface for that factory.

In general, an application factory can restart shortly thereafter, and then offer the factories.
However, to ensure that factory entries are not kept indefinitely, the NameManager is notified
when application servers die. Upon receipt of this notification, the NameManager may remove
those factory entries that are not supported in any currently active server.

Setting Up an Oracle Tuxedo Application

CORBA Administrative Requirements and Performance

Configuring Multiple NameManagers and FactoryFinders

At a minimum, two NameManagers, a master and a slave, must be configured in an application,
preferably on different machines, to provide querying capabilities for a FactoryFinder. Multiple
FactoryFinders can also be configured in an application.

Designating a Master NameManager

A Master NameManager must be designated in the UBBCONFIG file. All registration activities are
sent to the Master NameManager. The Master NameManager then notifies the Slave
NameManagers about the updates. If the Master NameManager is down,
registration/unregistration of factories is disabled until the Master restarts.

Performance Hint

You can optimize FactoryFinder and NameManager performance by running these services on
separate servers within the same machine rather than running these services on different
machines. This provides a quicker response because it eliminates the need for
machine-to-machine communication.

See Also

e “How to Create a Configuration File” on page 3-2

e “How to Create the Configuration File for a Multiple-machine (Distributed) Application”
on page 3-3.

e “Oracle Tuxedo Domains (Multiple-Domain) Servers” in Introducing Oracle Tuxedo
ATMI

e “How to Create the TUXCONFIG File” in Administering a Oracle Tuxedo Application at
Run Time

e For distributed Oracle Tuxedo CORBA applications, refer to the Scaling, Distributing, and
Tuning CORBA Applications guide.

Setting Up an Oracle Tuxedo Application 2-5

2-6 Setting Up an Oracle Tuxedo Application

BHAPTERa

Creating the Configuration File

This topic includes the following sections:
e How to Create a Configuration File
e How to Create the Configuration File for a Single-machine Application
e How to Create the Configuration File for a Multiple-machine (Distributed) Application
e How to Create the Configuration File for a Multiple-domain Application
e How to Create the RESOURCES Section of the Configuration File
e How to Create the MACHINES Section of the Configuration File
e How to Create the GROUPS Section of the Configuration File
e How to Create the NETWORK Section of the Configuration File
e How to Create the NETGROUPS Section of the Configuration File
e How to Create the SERVERS Section of the Configuration File
e How to Create the SERVICES Section of the Configuration File
e How to Create the INTERFACES Section of the Configuration File
e How to Create the ROUTING Section of the Configuration File
e How to Configure the Oracle Tuxedo System to Take Advantage of Threads

e How to Compile a Configuration File

Setting Up an Oracle Tuxedo Application 3-1

How to Create a Configuration File

Configuration file requirements are determined by the needs of your application. Following are
instructions for several types of configurations:

e How to Create the Configuration File for a Single-machine Application
e How to Create the Configuration File for a Multiple-machine (Distributed) Application
e How to Create the Configuration File for a Multiple-domain Application

e How to Configure the Oracle Tuxedo System to Take Advantage of Threads

See Also

e “About the Configuration File” on page 2-1

e UBBCONFIG(5) in the File Formats, Data Descriptions, MIBs, and System Processes
Reference

How to Create the Configuration File for a
Single-machine Application

For a single-machine configuration, you need to create the following sections of the configuration
file. Click on each task for instructions on completing that task.

1. Create the RESOURCES section of the configuration file
Create the MACHINES section of the configuration file

Create the GROUPS section of the configuration file

> v

Create the SERVERS section of the configuration file
5. Create the SERVICES section of the configuration file
6. Create the INTERFACES section of the configuration file (CORBA only)

7. Create the ROUTING section of the configuration file

You can also click on any area of the following diagram to learn how to create the section named
in that area.

3-2 Setting Up an Oracle Tuxedo Application

How to Create the Configuration File for a Multiple-machine (Distributed) Application

*RESOURCES (applicaton-wide information)
*MACHIHES (machine-wide information)

*GROUPS (group-wide information}

*SERVERS (server-
sur1 . specific information)
"d‘

suct suc2 f&

*SERVICES (services-
specific information}

surd

How to Create the Configuration File for a
Multiple-machine (Distributed) Application

Fora distributed ATMI application, you need to create the following sections of the configuration
file. Click any of the following tasks for instructions on completing that task.

1.

© N o o M w D

Create the RESOURCES section of the configuration file
Create the MACHINES section of the configuration file
Create the GROUPS section of the configuration file
Create the NETWORK section of the configuration file
Create the NETGROUPS section of the configuration file
Create the SERVERS section of the configuration file
Create the SERVICES section of the configuration file

Create the ROUTING section of the configuration file (optional)

Note: For detailed information about creating a configuration file for a distributed CORBA

application in the Oracle Tuxedo system, refer to the Scaling, Distributing, and Tuning
CORBA Applications guide.

You can also click on any area of the following diagram to learn how to create the section named
in that area.

Setting Up an Oracle Tuxedo Application 3-3

*RESOURCES (applicaton-wide information)

*MACHIHES (machine-wide information)

*GROUPS {group-wide information)

*HETWORK (networking

information) *SERVERS

SETMVEr-
*HETGROUPS (network specific
groups information) information
SErvices-

specific

information

How to Create the Configuration File for a
Multiple-domain Application

For a multiple-domain configuration, you need to create two configuration files for each
participating domain:

e UBBCONFIG—the application configuration file

e DMCONF1G—the domains configuration file

For an application that consists of two domains (for example, lapp and rapp for local and remote
domains, respectively), the following tasks are required.

Click on each task for instructions on completing that task.

Figure 3-1 shows the configuration tasks for a sample multiple—domain

application.

34 Setting Up an Oracle Tuxedo Application

How to Create the Configuration File for a Multiple-domain Application

Figure 3-1 Configuration Tasks for a Sample Multiple-domain Application

Set environment wariahles for
lapp

Define the Domains
environment in TBBCONEFIG

Define the Domains-related
parameters for lapp

I
Compile the application file
using trmloadcfi1) and the
dormain gatewsay configuratian
file using dmloadcfi1)

Set environment wariahles for
Irapp

Define the Domains
environment in UBBCONEIG

Define the Domains-related
parameters far rapp

I
Compile the application file
using trmloadcfi1) and the
domain gatewsay configuratian
file using dmloadcfi1)

Figure 3-2 shows which sections of the UBBCONF1G and DMCONF G files you need to configure for
atwo-domain application. One domain represents the local domain; the other, the remote domain.

Click on any area of the following diagram for instructions on creating that section of the
configuration file.

Setting Up an Oracle Tuxedo Application 3-5

Figure 3-2 Configuring a Multiple-domain Application

REMOTE DOMAIN

*RESOURCES (applicaton-wide information) *DM_LOCAL DOMAINS

*MACHIHES {machine-wide information}
*GROUPS (group-wide information) *DM_LOCAL _SERVICES

*SERVERS (server-specific information)
DMADM APP *DM_TDOMAIN

avet u_.-lcmnm SERVER g
"-I-J

)
SHE GWTDOMAIN

*SERVICES (services-
specific information)

UBBCONFIG File

LOCAL DOMAIN

*RESOURCES (applicaton-wide information) OM_LOCAL_DOMAINS

*MACHINES {machine-wide information}
*GROUPS {group-wide information) *DM_LOCAL _SERVICES
*SERVERS (server-specific information)
DMADM *OM_TDOMAIN
GWADM

GWTDOMAIN

U
*SERVICES (services-
specific information}

UBBCONFIG File DMCONFIG File

See Also

e “About Domains” in Using the Oracle Tuxedo Domains Component

e “Planning and Configuring ATMI Domains” in Using the Oracle Tuxedo Domains
Component

3-6 Setting Up an Oracle Tuxedo Application

How to Create the RESOURCES Section of the Configuration File

e DMCONFIG(5) in the File Formats, Data Descriptions, MIBs, and System Processes

Reference

How to Create the RESOURCES Section of the

Configuration File

The first section of every configuration file must be the RESOURCES section. The parameters
defined in this section control the application as a whole and serve as system-wide defaults. The
values of RESOURCES parameters can be overridden, however, on a per-machine basis by
assigning other values in the MACHINES section.

For each parameter in the RESOURCES section, Table 3-1 provides a description and links to
reference pages and additional information.

Table 3-1 Description and Links to Reference Pages and Additional Information

To Specify This Information in the
RESOURCES Section

Set This Parameter
(Required/0Optional)

For More Information, Click the
Following

Unique address of interprocess
communication (IPC) resources

IPCKEY (Required)

Shared memory address

Security access

UID, GID, and PERM (Optional)

Security access

Maximum number of processes that MAXACCESSERS (Optional) IPC limits
can be simultaneously connected to a

bulletin board

Maximum number of server table MAXSERVERS (Optional) IPC limits
entries in a bulletin board

Maximum number of service table MAXSERVICES (Optional) IPC limits
entries in a bulletin board

Maximum number of CORBA MAXINTERFACES (Optional) IPC limits
interfaces

Maximum number of CORBA objects MAXOBJECTS (Optional) IPC limits

Distinguished Bulletin Board Liaison
(DBBL) location at which booting,
shutdown, and other administrative
tasks are performed

MASTER (Required)

Master processor

Setting Up an Oracle Tuxedo Application 3-7

Tahle 3-1 Description and Links to Reference Pages and Additional Information

To Specify This Information in the Set This Parameter For More Information, Click the
RESOURCES Section (Required/Optional) Following
Bulletin board architecture MODEL, SHM or MP, and LAN or Application type

MIGRATE options (Required)

Security level SECURITY, AUTHSVC (Optional) Security levels

Principal name of the process used for SEC_PRINCIPAL_NAME, Security attributes
identification, location of private key ~ SEC_PRINCIPAL_LOCATION,

of principal user, and the environment 3nd SEC PRINCIPAL PASSVAR
variable containing the password - -

Default method for clients to detect NOTIFY, USIGNAL (Optional) Unsolicited notification
unsolicited messages

Protecting shared memory SYSTEM_ACCESS (Optional) Shared memory protection
Whether server load balancing is LDBAL (Optional) Load balancing

enabled

Maximum number of buffer types and MAXBUFTYPE, MAXBUFSTYPES Buffer types/subtypes
subtypes (Optional)

Maximum number of conversations MAXCONV (Optional) Conversation limits
allowed on a machine

Maximum number of network groups ~ MAXNETGROUPS (Optional) Network groups
Sanity check frequency and amount of ~ SCANUNIT, SANITYSCAN, Sanity check frequency and
time allowed for blocking calls BLOCKT IME (Optional) blocking timeouts

Sample RESOURCES Section

The following is a sample RESOURCES section of a configuration file.

*RESOURCES

IPCKEY 39211
ulbD 0

GID 1
PERM 0660

MAXACCESSERS 75

3-8 Setting Up an Oracle Tuxedo Application

Defining the Application Type

MAXSERVERS 40

MAXSERVICES 55

MASTER SITE1, SITE2

MODEL MP

OPTIONS LAN, MIGRATE

SECURITY APP_PW

AUTHSVC "AUTHSVC"

NOTIFY DIPIN

SYSTEM_ACCESS PROTECTED, NO_OVERRIDE

LDBAL Y

See Also

e UBBCONFIG(5) in the File Formats, Data Descriptions, MIBs, and System Processes

Reference

e “How to Create the MACHINES Section of the Configuration File” on page 3-25

Defining the Application Type

Among the architectural decisions needed for an Oracle Tuxedo application are the following:

e Should this application run on a single processor or multiprocessor with global shared
memory?

o Will the application be networked?

o Will server migration be supported?
Use the MODEL and OPTI0ONS parameters to define the application type.

The MODEL parameter specifies whether an application runs on a single processor. It is set to SHM
for uniprocessors and also for multiprocessors with global shared memory. A MODEL value of MP
is used for multiprocessors that do not have global shared memory, as well as for networked
applications. This is a required parameter.

The OPTIONS parameter is a comma-separated list of application configuration options. Two
available options are LAN (indicating a networked configuration) and MIGRATE (indicating that
application server migration is allowed).

Setting Up an Oracle Tuxedo Application 3-9

Characteristics of the MODEL and OPTIONS Parameters

Table 3-2 shows the characteristics of the model and OPTIONS parameters.

Table 3-2 Characteristics of the Model and OPTIONS Parameters

Parameter Characteristics

MODEL Itis arequired parameter. A value of SHM indicates a single machine with
global shared memory. A value of MP indicates either multiple machines
without global shared memory, or a networked application.

OPTIONS It is a comma-separated list of application configuration options. A value
of LAN indicates a local area network. A value of MIGRATE enables
server migration.

In the sample RESOURCES section, MODEL is set to MP; OPTIONS is set
to LAN and MIGRATE.

Example Settings

The following is a sample setting in the RESOURCES section of a configuration file.

*RESOURCES
MODEL MP
OPTIONS LAN, MIGRATE

Controlling the Number of Buffer Types and Subtypes

3-10

You can control the number of buffer types and subtypes allowed in the application with the
MAXBUFTYPE and MAXBUFSTYPE parameters, respectively. Unless you are creating many
user-defined buffer types, you can omit MAXBUFTYPE. If you intend to use many different VIEW
types, you may want to set MAXBUFSTYPE to a value higher than its current default.

Setting Up an Oracle Tuxedo Application

Controlling the Number of Conversations

Characteristics of the MAXBUFTYPE and MAXBUFSTYPES
Parameters

Parameter Characteristics

MAXBUFTYPE Maximum number of buffer types allowed in the system. Use
only if you create 8 or more user-defined buffer types. The
value of MAXBUFTYPE must be greater than 0 and less than
32,768. If not specified, the default is 16.

Example: MAXBUFTYPE 20

MAXBUFSTYPE Maximum number of buffer subtypes allowed in the system.
The value of MAXBUFSTYPE must be greater than 0 and less
than 32,768. If not specified, the default is 32.

Example: MAXBUFSTYPE 40

Example Settings

In this example, the maximum number of buffer types is 20; the maximum number of subtypes
is 40.

*RESOURCES
MAXBUFTYPE 20
MAXBUFSTYPE 40

Controlling the Number of Conversations

You can specify the maximum number of simultaneous conversations on a machine with the
MAXCONV parameter. The value of MAXCONV must be greater than 0 and less than 32,768.

Characteristics of the MAXCONV Parameter

The MAXCONV parameter has the following characteristics:
o |t defines the maximum number of simultaneous conversations allowed on each machine.

e The default for an application that has conversational servers listed in the SERVERS section
is 10; otherwise, the default is 1.

Setting Up an Oracle Tuxedo Application 3-11

e You can overwrite this parameter for any machine by specifying a different value in the
MACHINES section.

Example Setting

In this example, the maximum number of simultaneous conversations allowed on each machine
is 15.

*RESOURCES
MAXCONV 15

Defining IPC Limits

3-12

Because most interprocess communication (IPC) and shared memory bulletin board tables are
statically allocated for speedy processing, it is important to tune them correctly. If they are sized
too generously, memory and IPC resources are wasted; if too small, processes fail when the limits
are exceeded. You can use the tmloadcf -c command to find out the maximum IPC resources
required by a specific application. (See tmloadcf(1) in the Oracle Tuxedo Command
Reference.)

MAXACCESSERS, MAXSERVERS, MAXSERV ICES, MAXINTERFACES, and MAXOBJECTS are the tunable
parameters that control IPC sizing. The amount of shared memory allocated in an application is
controlled by the MAXGTT and MAXCONV parameters.

Setting Up an Oracle Tuxedo Application

Defining IPC Limits

Characteristics of MAXAGCESSERS, MAXSERVERS,
MAXSERVICES, MAXINTERFACES, and MAXOBJECTS

Parameters

Parameter

Characteristics

MAXACCESSERS

Maximum number of overall processes that can be
simultaneously connected to the bulletin board at any particular
site in the Oracle Tuxedo application. This number includes all
clients and system-supplied and application servers, but does
not include administrative processes such as the Bulletin Board
Liaison (BBL) and tmadmin(), which have reserved access
slots to the bulletin board.

The value of MAXACCESSERS must be greater than 0 and less
than 32,768. If not specified, the default is 50. You can
overwrite MAXACCESSERS, on a per-machine basis, in the
MACHINES section.

MAXSERVERS

Maximum number of server processes available to the
application. This number includes all system-supplied and
application servers.

The value of MAXSERVERS must be greater than 0 and less than
8,192. If not specified, the default is 50.

MAXSERVICES

Maximum number of different Oracle Tuxedo services that can
be advertised in the application. The value of MAXSERVICES
must be greater than 0 and less than 1,048,574. If not specified,
the default is 100.

Note: For CORBA environments, each CORBA interface is
mapped to an Oracle Tuxedo service. Make sure you
account for the number of services generated.

Setting Up an Oracle Tuxedo Application

3-13

3-14

Parameter Characteristics

MAXINTERFACES For CORBA environments, the maximum number of CORBA
interfaces that can be advertised in the application. The value
of MAXINTERFACES must be greater than 0 and less than
32,766. If not specified, the default is 100.

Note: Allinstances of an interface occupy and reuse the same
slot in the interface table in the bulletin board. For
example, if server SVR1 advertises interfaces 1F1 and
1F2, server SVR2 advertises interfaces 1F2 and 1F3,
and server SVR3 advertises interfaces 1F3 and 1F4,
the interface count is 4 (not 6) when calculating
MAXINTERFACES.

MAXOBJECTS For CORBA environments, the maximum number of active
CORBA objects in the application. The value of MAXOBJECTS
must be greater than 0 and less than 32,766. If not specified, the
default is 100.

Note: Examples of system-supplied servers are AUTHSVR, TMQUEUE, TMQFORWARD, TMUSREVT,
TMSYSEVT, TMS, TMS_QM, GWTDOMAIN, and WSL.

The cost incurred by increasing MAXACCESSERS is one additional semaphore per site per client or
server process (accesser—see note that follows). There is a small fixed semaphore overhead for
system processes in addition to that added by the MAXACCESSERS value. The cost of increasing
MAXSERVERS and MAXSERV ICES is a small amount of shared memory that is kept for each server,
service, and client entry, respectively. The general idea for these parameters is to allow for future
growth of the application. It is more important to scrutinize MAXACCESSERS.

Note: The system allocates one semaphore for each access slot to the bulletin board. A
semaphore is a latch circuit that prevents more than one process from accessing the same
shared memory in the bulletin board at the same time.

For Oracle Tuxedo releases prior to release 7.1, both the MAXACCESSERS and MAXSERVERS
parameters for an application play a part in the user license checking scheme. Specifically, a
machine is not allowed to boot if the number of MAXACCESSERS for that machine + the number
of MAXACCESSERS for the machine (or machines) already running in the application is greater than
the number of MAXSERVERS + user licenses for the application. Thus, the total number of
MAXACCESSERS for an application must be less than or equal to the number of MAXSERVERS + user
licenses for the application.

Setting Up an Oracle Tuxedo Application

Enabling Load Balancing

The user license checking scheme in Oracle Tuxedo release 7.1 or later considers only the
following two factors when performing its checks: the number of user licenses for an application
and the number of licenses currently in use for the application. When all user licenses are in use,
no new clients are allowed to join the application.

Example Settings

In this example, at most 75 processes (clients and servers) can access the system at any one time.
There is room for 40 servers advertising 55 services in the bulletin board.

*RESOURCES
MAXACCESSERS 75
MAXSERVERS 40
MAXSERVICES 55

Enabling Load Balancing

You can control whether a load balancing algorithm is used on the Oracle Tuxedo application as
awhole. When load balancing is used, a load factor is applied to each service within the system,
allowing you to track the total load on every server. Every service request is sent to the qualified
server that is least loaded.

To specify whether load balancing should be used, set the LDBAL parameter to Y (Yes) or N (No).
By default, it is set to N.

You should use load balancing only if necessary; that is, whenever a service is offered by servers
that use more than one queue. Load balancing is not appropriate for services offered by only one
server, or by servers in an MSSQ (Multiple Server, Single Queue) set. If you have only these
types of services in your configuration, set the LDBAL parameter to N. If LDBAL is set to N and
multiple queues offer the same service, the first available queue is selected.

Characteristics of the LDBAL Parameter

The LDBAL parameter has the following characteristics:
e |f LDBAL is set to Y, then load balancing is used.

e If LDBAL is set to Y and the application is networked, you can use TMNETLOAD for local
preference.

o |f LDBAL is set to N, the server assigned is the first available server.

Setting Up an Oracle Tuxedo Application 3-15

The default is N.

Because LDBAL incurs overhead, use it only when necessary.

Do not use load balancing if every Oracle Tuxedo service is offered by only one server.

e Do not use load balancing if every Oracle Tuxedo service is offered by one MSSQ server
set.

Example Settings

In this example, load balancing is enabled for the application.

*RESOURCES
LDBAL Y

See Also

e “What Is Load Balancing?” in Introducing Oracle Tuxedo ATMI

Identifying the Master Machine

The MASTER machine controls the booting and administration of the entire application. You must
specify a MASTER machine for every application by setting the MASTER parameter. The value of
MASTER is the Logical Machine Identifier (LM1D) for the appropriate computer. The LMID, in turn,
is defined as an alphanumeric string, chosen by the administrator, that is assigned to the LMID
parameter in the MACHINES section. Therefore, for example, if the value of the LMID parameter is
SITEL, then the value of MASTER must also be SITEL.

If you want to be able to bring down the MASTER machine without shutting down the application,
you must be able to migrate the MASTER. To enable migration, you must specify two values for
LMID: the primary MASTER and the backup MASTER.

Characteristics of the MASTER Parameter

The MASTER parameter has the following characteristics:
e Itisrequired and it controls booting and administration.
e Two LMIDs are required for migration to back up the master machine.

e In the sample RESOURCES section, the master site is SITE1; the backup site is SITE2.

3-16 Setting Up an Oracle Tuxedo Application

Specifying the Maximum Number of Network Groups

Example Settings

Sitel is the MASTER machine; SITE2 is the backup machine.

*RESOURCES
MASTER SITE1, SITE2

Specifying the Maximum Number of Network Groups

To specify the maximum number of configured network groups, set the MAXNETGROUPS
parameter. The value must be greater than or equal to 1 and less than 8192. The default is 8. This
parameter is optional.

Specifying the Number of Sanity Checks and Blocking
Timeouts

Periodically (every 120 seconds, by default) the Bulletin Board Liaison (BBL) checks the sanity
of the servers on its machine. You can change the frequency of these checks, however, by setting
the SCANUNIT and SANITYSCAN parameters.

Use the SANITYSCAN parameter to specify how many SCANUNITS elapse between sanity checks
of the servers. Its current default is set so that SANITYSCAN * SCANUNIT is approximately 120
seconds.

In addition, you can specify the number of timeout periods for blocking messages, transactions,
and other system activities by setting the BLOCKT IME parameter.

Note: Nontransactional blocking time values can be set on a per service, per ATMI call, and
per context basis. These blocktime values override the system-wide default BLOCKT IME
values set in the RESOURCES section of the UBBCONFIG file. For further information see
Specifying Nontransactional Service-Level Blocktime.

Setting Up an Oracle Tuxedo Application 3-17

3-18

Characteristics of the SCANUNIT, SANITYSCAN, and
BLOCKTIME Parameters

Parameter

Characteristics

SCANUNIT

Controls the granularity of check intervals and timeouts.
SCANUNIT must be a multiple of 2 or 5 between 0 and 60
seconds.

Example: SCANUNIT 10

The default is 10.

SANITYSCAN

Specifies how many scan units elapse between sanity checks of
the servers.

SANITYSCAN may be any number up to 32,767.

The default is such that SCANUNIT * SANITYSCAN is
approximately 120 seconds.

BLOCKTIME

Controls how long a message can block before it times out.
SCANUNIT * BLOCKT IME must not exceed 32,767.

The default is such that SCANUNIT * BLOCKTIME is
approximately 60 seconds.

Timeouts for Blocking ATMI Operations

The term timeout is used to refer, collectively, to the amount of time that elapses while a client:

o Waits to send a message into the request queue

o Waits to receive a message from the reply queue

e |s processed by the server

e Travels on the network

The term blocking timeout refers to the amount of time spent by a client request waiting for a

blocking condition to clear up. Block timeouts for asynchronous service requests and
conversations apply to individual send and receive operations. When a process sends a message
using tpacal 1 (3c), tpconnect (3c), or tpsend (3c), the timeout applies only to the period
during which the request waits to get on the queue if the queue is full. When a client process

Setting Up an Oracle Tuxedo Application

Establishing Operating System-level Security

issues a tpgetrply (3c) or tprecv(3c) call to receive a message, the timeout specifies how long
the client may wait for the incoming message if its queue is empty.

Example Settings

In this example, sanity scans are performed every 30 seconds and requests block for no more than
10 seconds. A SCANUNIT of 10 and a SANITYSCAN of 3 allow 3 blocks of 10 seconds or 30
seconds to elapse before the BBL scans.

*RESOURCES
SCANUNIT 10
SANITYSCAN 3
BLOCKT IME 1

Establishing Operating System-level Security

You can restrict access to Oracle Tuxedo administrative functions to authorized administrators
only, by setting three parameters: UID, GID, and PERM.

The defaults of UID and GID are the user ID and group 1D, respectively, of the person who runs
the tmloadcf(1) command on the configuration, unless overriding values have been specified
in the MACHINES section.

Characteristics of the UID, GID, and PERM Parameters

Parameter Characteristics

ulD The user ID of the administrator. The value is a numeric string corresponding to the
UNIX system user ID of the person who boots and shuts down the system.

The default is the user ID of the person who runs tmloadcf(1).
Example: UID=3002

Note: On Windows, this value must be set to 0.

Setting Up an Oracle Tuxedo Application 3-19

Parameter Characteristics

GID The numeric group ID of the administrator.
The default is the group ID of the person who runs tmloadcf(1).
Example: GID=100

Note: On Windows, this value must be set to 0.

PERM The value is an octal number that specifies permissions for the IPC resources created
when the application is booted. This parameter provides the first level of defense of
the Oracle Tuxedo system IPC structures against unauthorized access. These values
should be specified for production applications.

The default is 0600, which gives read/write access to all.
Example: PERM=0660

Note: You can overwrite the values assigned to these parameters for remote machines. The user
and group IDs on a remote machine are not required to be the same as the user and group
IDs on the MASTER machine. You can override the defaults by specifying different user
and group IDs in the MACHINES section of the configuration file. If not specified, values
specified in the RESOURCES section are used.

Specifying the Security Level
You can set the following three levels of security:

e PERM parameter—provides minimal security by restricting, through permissions, the ability
to write to the application queues.

e SECURITY parameter—provides greater security. When this parameter is set, a client must
supply a password when joining the application. This password is checked against the
password supplied by the administrator when the TUXCONFIG file is generated from the
UBBCONFIG file.

e AUTHSVC parameter—sets the maximum level of security. When this parameter is set, any
client request to join the application is sent to an authentication service. The authentication
service may be the default service supplied by the Oracle Tuxedo system or a third-party
vendor service, such as a Kerberos service. This level of security cannot be used unless the
SECURITY parameter is set.

3-20 Setting Up an Oracle Tuxedo Application

Specifying the Security Level

Notes: LAUTHSVR must be set in the SERVERS section of the UBBCONFIG file to enable LDAP
single security administration.

XAUTHSVR must be set in the SERVERS section of the UBBCONFIG file to enable the

extensible security administration of authentication and authorization.

Characteristics of the SECURITY, AUTHSVC, and OPTIONS

Parameters

Parameter Characteristics

SECURITY Security level that requires a password to join an application.
Accepted values are: NONE (default), APP_PW, USER_AUTH,
ACL, and MANDATORY_ACL.
To enable the LDAP single security administration or the
extensible security administration, the SECURITY level must
be set to USER_AUTH, MANDATORY_ACL, or ACL.
Default is NONE.
Example: SECURITY APP_PW

AUTHSVC The name of the authentication service.
SECURITY APP_PW or higher must be specified.
Default is no authentication service.
Client authentication with Kerberos is possible.
Example: AUTHSVC “AUTHSVC”’

OPTIONS To enable the extensible security administration, OPTIONS
should be set to EXT_AA.

e “Introducing ATMI Security” in Using Security in ATMI Applications

e Using Security in CORBA Applications

e File Formats, Data Descriptions, MIBs, and System Processes Reference

e Oracle Tuxedo Command Reference

Setting Up an Oracle Tuxedo Application

3-21

Defining the Security Attributes of a Server

You can use the SEC_PRINCIPAL_NAME, SEC_PRINCIPAL_LOCATION, and
SEC_PRINCIPAL_PASSVAR parameters to identify the security attributes of any servers used for
authentication.

e SEC_PRINCIPAL_NAME—defines the principal name used by the server for various security
operations.

e SEC_PRINCIPAL_LOCAT I10N—specifies the location of the private key of the principal user.

e SEC_PRINCIPAL_PASSVAR—specifies the environment variable that contains the password
used to open the private key of the principal user.

If Specified in This Parameter Defines And Overrides Parameter
This Section Settings in This Section
RESOURCES All system servers booted in the N/A

domain.
MACHINES All system servers booted on a RESOURCES

machine.
GROUPS All system and interoperating MACHINES

application servers booted within a

group.
SERVERS All system and interoperating GROUPS

application services booted within a
Sserver.

Note: These policies apply to the Workstation handler, Domains gateway processes, and
interoperating application servers.

See Also

e “Introducing ATMI Security” in Using Security in ATMI Applications
e “Administering Security” in Using Security in CORBA Applications

3-22 Setting Up an Oracle Tuxedo Application

Protecting Shared Memory

Protecting Shared Memory

You can shield system tables kept in shared memory from application clients and/or servers using
the SYSTEM_ACCESS parameter. This parameter is useful when applications are being developed
because faulty application code can inadvertently corrupt shared memory with a bad pointer.
Once an application is fully debugged and tested, the value of this parameter can be changed to
allow for faster responses. Following are valid values for this parameter:

e PROTECTED—Oracle Tuxedo libraries compiled with application code do not attach to
shared memory while executing system code.

e FASTPATH—Oracle Tuxedo libraries attach to shared memory at all times.

Once you select a value, you can specify NO_OVERRIDE, which means that the selected option
cannot be changed either by the client, in the TPINIT structure of the tpinit() call, or by the
administrator, in the SERVERS section for servers.

Characteristics of the PROTECTED, FASTPATH, and
NO_OVERRIDE Parameters

Parameter Characteristics

PROTECTED Internal structures in shared memory are not corrupted inadvertently by
application processes.

FASTPATH Application processes join the application with access to shared
(Default) memory at all times.

NO_OVERRIDDE The specified option (either PROTECTED or FASTPATH) cannot be
changed.

Example Settings

SYSTEM_ACCESS PROTECTED, NO_OVERRIDE

Setting Up an Oracle Tuxedo Application 3-23

Setting the Address of the System Resources for an
Application

To set the address of shared memory, set the 1PCKEY parameter. This parameter is used by the
Oracle Tuxedo system to allocate application IPC resources such that they may be located easily
by new processes joining the application. This key and its variations are used internally to allocate
the bulletin board, message queues, and semaphores that must be available to new application
processes. In single processor mode, this key names the bulletin board; in multiprocessor mode,
this key names the message queue of the DBBL.

Characteristics of the IPCKEY Parameter

The IPCKEY parameter has the following characteristics:
e |tisrequired.
e |t is used to access the bulletin board and other IPC resources.
e |ts value must be an integer in the range 32,769 to 262,144.

o No other application on the system may use this specific value for its IPCKEY. Its value
must be unique among all applications.

Example Settings

*RESOURCES
IPCKEY 39211

Specifying How Clients Receive Unsolicited Notification

You can select the default method by which clients receive unsolicited messages by setting the
NOTIFY parameter. The client, however, can override this choice when calling tpinit().

Following are four possible methods:
e IGNORE—clients ignore unsolicited messages.

e DIPIN—clients receive unsolicited messages only when they call tpchkunsol () or when
they make an ATMI call.

e SIGNAL—clients receive unsolicited messages by having the system generate a signal that
has the signal handler call the function, that is, set with tpsetunsol ().

3-24 Setting Up an Oracle Tuxedo Application

How to Create the MACHINES Section of the Configuration File

Note: This method is not allowed for multithreaded or multicontexted applications.

e THREAD—unsolicited messages are handled by a separate thread managed by the Oracle
Tuxedo system for this purpose.

The USIGNAL parameter specifies the signal to be used if SIGNAL-based notification is used. Two
types of signals can be generated: SIGUSR1 and S1GUSR2. The default is SIGUSR2. This method
has the advantage of immediate notification, but is limited when you are running a native client.
In that case, you must have the same user ID as the sending process. Workstation clients do not
have this limitation.

Note: This method is not available on all platforms.

Characteristics of the NOTIFY and USIGNAL Parameters

Parameter Characteristics
NOTIFY Value of IGNORE means clients should ignore unsolicited
messages.

Value of DIPIN means clients should receive unsolicited
messages only when they call tpchkunsol() or when they
make an ATMI call.

Value of SIGNAL means clients should receive unsolicited
messages by signals.

Default isDIPIN
Example: NOTIFY SIGNAL

USIGNAL Value of SIGUSR1 and SIGUSR2 means notify clients with
this type of signal.

Default is SIGUSR2
Example: USIGNAL SIGUSR1

How to Create the MACHINES Section of the
Configuration File

The second section of every configuration file must be the MACHINES section. The MACHINES
section defines parameters for each machine in an application. These parameters provide the
following information:

Setting Up an Oracle Tuxedo Application 3-25

e The mapping of the machine address to a logical identifier (LMID)
e The location of the configuration file (TUXCONF1G)

e The location of the installed Oracle Tuxedo software (TUXDIR)

e The location of the application servers (APPDIR)

e The location of the application log file (ULOGPFX)

e The location of the environment file (ENVFILE)

Note: For a particular machine, you can override the following system-wide parameters: UID,
GID, PERM, MAXACCESSERS, MAXOBJECTS, MAXCONV, and MAXGTT. Each parameter,
except MAXGTT, is described in the RESOURCES section.

For each parameter in the MACHINES section, Table 3-3 provides a description and links to
reference pages and additional information.

Table 3-3 How to Create the MACHINES Section of the Configuration File

To Specify This Information in the MACHINES Set This Parameter For More Information, Click
Section (Required/0ptional) the Following

The number of entries in the cache used for ACL MAXACLCACHE ACL entries in the cache
entries when SECURITY is set to ACL or (Optional)

MANDATORY_ACL.

The additional load to be added when computingthe NETLOAD (Optional) Additional loads
cost of sending a service request from this machine
to another machine.

The address is the name of the physical processor, LMID (Required) Address and machine ID
which all other entries describe. The LMID

parameter specifies the logical name of the

computer.

The number of attempts that should be made at user ~ SPINCOUNT (Optional) Bulletin board locking limit
level to lock the bulletin board before blocking
processes on a UNIX semaphore.

A value used for grouping machines into classes. TYPE (Optional) Class grouping value

3-26 Setting Up an Oracle Tuxedo Application

How to Create the MACHINES Section of the Configuration File

Table 3-3 How to Create the MACHINES Section of the Configuration File

To Specify This Information in the MACHINES
Section

Set This Parameter
(Required/0ptional)

For More Information, Click
the Following

The absolute pathname of the file or device where
the binary TUXCONFIG file is found on this
machine.

Note: The pathname specified for this parameter
must match exactly (including case) the
pathname specified for the TUXCONFI1G

environment variable. Otherwise,

tmloadcf(1) cannot be run successfully.

TUXCONFIG (Required)

Configuration file location

The maximum number of simultaneous
conversations in which processes on a particular
machine can be involved.

MAXCONV (Optional)

Conversation limits

The numeric size, in pages, of the DTP transaction
log for this machine.

TLOGSIZE (Optional)

DTP TLOG size

The name of the DTP transaction log for this
machine.

TLOGNAME (Optional)

DTP transaction log name

A value that specifies that all clients and servers on
the machine are to be executed with the
environment specified in the named file.

ENVF I LE (Optional)

Environment variable
settings

The Oracle Tuxedo filesystem that contains the DTP
transaction log (TLOG) for this machine.

TLOGDEVICE (Optional)

Filesystem containing the
TLOG

The maximum number of processes that can have
access to the bulletin board on this processor at any
one time.

MAXACCESSERS
(Optional)

IPC limits

For CORBA environments, the maximum number
of CORBA objects that can be accommodated in the
Active Object Table on this processor at any one
time.

MAXOBJECTS (Optional)

IPC limits

The maximum number of simultaneous global
transactions in which a particular machine can be
involved.

MAXGTT (Optional)

Limit of simultaneous global
transactions

Setting Up an Oracle Tuxedo Application

3-21

Table 3-3 How to Create the MACHINES Section of the Configuration File

To Specify This Information in the MACHINES

Set This Parameter

For More Information, Click

Section (Required/0ptional) the Following

The number of accesser entries on this processorto MAXWSCLIENTS Limit of workstation
be reserved for Workstation clients. The parameter (Optional) accesser entries

is only used when the Oracle Tuxedo system

Workstation component is used.

A limit for the amount of space that can be allocated MAXPENDINGBYTES Message space limits
for messages waiting to be transmitted by the bridge (Optional)

process.

The numeric offset in pages (from the beginning of
the device) to the start of the Oracle Tuxedo
filesystem that contains the DTP transaction log for
this machine.

TLOGOFFSET (Optional)

Numeric offset containing
the DTP TLOG

The numeric offset in pages (from the beginning of
the device) to the start of the Oracle Tuxedo
filesystem that contains the TUXCONF 1 G file for this
machine.

TUXOFFSET (Optional)

Numeric offset containing
the TUXCONFIG

The numeric group ID to be associated with the IPC
structures created for the bulletin board. The valid
range is 0-2147483647. If not specified, the default
is the value specified in the RESOURCES section.

GID (Optional)

Security access

The numeric permissions associated with the IPC
structures that implement the bulletin board. This
parameter is used to specify the read/write
permissions for processes in the usual UNIX system
fashion (that is, with an octal number such as 0600).
The value can be between 0001 and 0777, inclusive.
If not specified, the default is the value specified in
the RESOURCES section.

PERM (Optional)

Security access

The numeric user ID to be associated with the IPC
structures created for the bulletin board. The valid

range is 0-2147483647. If not specified, the default
is the value specified in the RESOURCES section.

UID (Optional)

Security access

3-28 Setting Up an Oracle Tuxedo Application

How to Create the MACHINES Section of the Configuration File

Table 3-3 How to Create the MACHINES Section of the Configuration File

To Specify This Information in the MACHINES Set This Parameter For More Information, Click
Section (Required/0ptional) the Following
Principal name of the process used for SEC_PRINCIPAL_NAME, Security attributes

identification, location of private key of principal SEC_PRINCIPAL_LOCA

user, and the environment variable containing the TION,

password SEC_PRINCIPAL_PASS
VAR

The absolute pathname of the application directory TUXDIR (Required)
(APPDIR), which is the current directory for all

application and administrative servers booted on

this machine; and the absolute pathname of the

directory where the Oracle Tuxedo system software

is found on this machine.

System and application
software locations

The threshold message size for messages—bound CMPLIMIT (Optional)
to remote processes (string_valuel) and local

processes (string_value?2), respectively—on

which automatic data compression will be

performed.

Threshold message size

The full pathname to be used as the prefix of the ULOGPFX (Optional)
name of the userlog(3c) message file on this
machine.

ULOG pathname

Sample MACHINES Section

Following is a sample MACHINES section of a configuration file in an ATMI environment.

*MACHINES

gumby LMID=SITE1
TUXDIR="/tuxdir”
APPDIR="/home/apps/mortgage”

TUXCONFI1G=""/home/apps/mortgage/tuxconfig”

ENVFILE="/home/apps/mortgage/ENVFILE”

ULOGPFX=""/home/apps/mortgage/logs/ULOG”

MAXACCESSERS=100
MAXCONV=15

Following is a sample MACHINES section of a configuration file in a CORBA environment.

Setting Up an Oracle Tuxedo Application 3-29

*MACHINES

gumby LMID=SITE1
TUXDIR="/tuxdir”
APPDIR="/home/apps/mortgage”
TUXCONFI1G="/home/apps/mortgage/tuxconfig”
ENVFILE="/home/apps/mortgage/ENVFILE”
MAXOBJECTS=700
ULOGPFX=""/home/apps/mortgage/logs/ULOG”
MAXACCESSERS=100

Sample MACHINES Parameters

In the preceding sample MACHINES section, the following parameters and values are specified.

Parameter Meaning

gumby The machine name obtained with the command uname -n on UNIX
systems. On a Windows system, the value can be set using the
Computer Name value in the Network Control Panel and must be
specified in uppercase.

LMID=SITE1 The logical machine identifier of the machine gumby.

TUXDIR The full path to the installed Oracle Tuxedo software (shown in double
quotation marks).

APPDIR The full path to the application directory (shown in double quotation
marks).

TUXCONFIG The full pathname of the configuration file (shown in double quotation
marks).

Note: The pathname specified for this parameter must match exactly
(including case) the pathname specified for the TUXCONFI1G
environment variable. Otherwise, tmloadcf (1) cannot be
run successfully.

ENVFILE The full pathname of a file containing environment information (shown
in double quotation marks).

ULOGPEX The full pathname to be used as the prefix of the name of the log file
(shown in double quotation marks).

3-30 Setting Up an Oracle Tuxedo Application

Specifying the Maximum Number of ACL Entries in the Cache

Parameter Meaning

MAXACCESSERS For this machine, override the system-wide value (defined in the
RESOURCES section) with 100.

MAXOBJECTS (For the CORBA example.) For this machine, override the system-wide
value (defined in the RESOURCES section) with 700.

MAXCONV For this machine, override the system-wide value (defined in the
RESOURCES section) with 15.

How to Customize the Sample MACHINES Section

You can customize the MACHINES section by indicating the following:

e Your machine name for gumby

Note: On a Windows system, the machine name must be specified in UPPERCASE.
e The full path of your Oracle Tuxedo software directory as the value of TUXDIR
e The full path of your application directory as the value of APPDIR

e The full pathnames for ENVFILE, TUXCONFIG, and ULOGPFX on your system

See Also

e UBBCONFIG(5) in the File Formats, Data Descriptions, MIBs, and System Processes
Reference

e “How to Create the GROUPS Section of the Configuration File” on page 3-39

Specifying the Maximum Number of ACL Entries in the
Cache

You can use the MAXACLCACHE parameter to specify the number of ACL entries in the cache when
SECURITY is set to ACL or MANDATORY_ACL. By setting of this parameter to an appropriate value,
you can:

e Help conserve shared memory resources

e Reduce the number of disk accesses performed in order to do ACL checking

Setting Up an Oracle Tuxedo Application 3-31

The value must be a number greater than or equal to 10, and less than or equal to 30,000. The
default is 100.

Defining an Additional Service Request Load

You can use the NETLOAD parameter to specify a load to be added when computing the cost of
sending a service request from one machine to another. The value must be a number greater than
or equal to 0, and less than 32,768. The default is 0.

See Also

e “What Is Load Balancing?” in Introducing Oracle Tuxedo ATMI

Reserving the Physical Address and Machine ID

You initially define the address of your MASTER machine in the address portion, which is the basis
for a MACHINES section entry. All other parameters in the entry describe the machine specified by
this address. You must set the address to the value printed by calling uname -n on UNIX systems.
On Windows systems, see the Computer Name value in the Network Identification dialog from
the Network Control Panel.

The LMID parameter is mandatory. It specifies a logical name used to designate the computer for
which an address has just been provided. It may be any alphanumeric value, but it must be unique
among other machines in the application.

Characteristics of the Address and the LMID Parameter

The address and machine ID have the following characteristics:

e The address and machine ID are specified as follows:
address LMID=logical_machine_name
The address identifies the physical processor name.
e The LMID is specified as follows:
LMID=logical_machine_name

The LMID is the logical machine name for a physical processor. It may be any
alphanumeric string, but it must be unique within the MACHINES section.

3-32 Setting Up an Oracle Tuxedo Application

Setting the Number of Lock Spins

Setting the Number of Lock Spins

For some Oracle Tuxedo system operations (such as service name lookups and transactions), the
bulletin board must be locked for exclusive access: that is, it must be accessible by only one
process. If a process or thread finds that the bulletin board is locked by another process or thread,
it retries, or spins on the lock for SPINCOUNT number of times before giving up and going to sleep
on a waiting queue. Because sleeping is a costly operation, it is efficient to do some amount of
spinning before sleeping.

Characteristics of the SPINCOUNT Parameter

Though the value of the SPINCOUNT parameter is application- and system-dependent, it may be
helpful to keep the following basic guidelines in mind:

e A process on a uniprocessor system should not spin. If the bulletin board is locked when a
uniprocessor process tries to access it, then the process with the lock should be allowed to
run as quickly as possible. This is possible only if the newcomer process gives up
immediately.

e A SPINCOUNT value of 1 is appropriate for uniprocessors.

e On multiprocessors, a good starting value is 5,000, but some customers have benefited
from a SPINCOUNT value as high as 100,000.

e Set the SPINCOUNT value and observe your application throughput. Because you can tune
the SPINCOUNT value using the TMIB, you can adjust it while the system is running.

Specifying Machines as Types
You can use the TYPE parameter to group machines into classes. You can set TYPE to any string
that contains 15 or fewer characters.

Characteristics of the TYPE Parameter

o |f two machines have the same TYPE value, data encoding/decoding is not performed when
data is sent between the machines.

e TYPE can be given any string value. It is used simply for comparisons.

e The TYPE parameter should be used when the application involves a heterogeneous
network of machines or when different compilers are used on the machines in the network.

Setting Up an Oracle Tuxedo Application 3-33

o If a value not specified, the default is the null string, which matches any other entry for
which a value has not been specified.

Identifying the Location of the Configuration File

To identify the configuration file location and filename for an entry that identifies a machine, set
TUXCONFIG, a required parameter. The value of the TUXCONFIG parameter is enclosed in double
quotes and represents a full pathname, which may contain up to 64 characters.

Note: The pathname specified for this parameter must match exactly (including case) the
pathname specified for the TUXCONFIG environment variable. Otherwise, tmloadcf(1)
cannot be run successfully.

Characteristics of the TUXCONFIG Parameter

The TUXCONFIG parameter has the following characteristics:
e The syntax of the TUXCONFIG parameter is TUXCONFIG=""ful l_path_of_tuxconfig”.
e This parameter identifies the location and name of the configuration file.
e The value of TUXCONFIG can include up to 64 characters.

e The value of TUXCONFI1G must match the value of the TUXCONF1G environment variable.

Indicating the Size of the DTP Transaction Log

Use the TLOGS1ZE parameter to indicate the size, in pages, of the DTP transaction log for this
machine. The value must be a number greater than 0, and less than or equal to 2048, subject to
the amount of space available on the operating system filesystem. The default is 100 pages.

Defining the DTP Transaction Log Name

Use the TLOGNAME parameter to define the name of the DTP transaction log for this machine. The
default is TLOG. If more than one TLOG exists on the same TLOGDEV ICE, each must have a unique
name. The value of TLOGNAME must be different from the name of any other table in the vTOC
(Volume Table of Contents) on the TLOGDEVICE where the TLOG table is created. The value of
TLOGNAME must be an alphanumeric string containing 30 or fewer characters.

3-34 Setting Up an Oracle Tuxedo Application

Specifying Environment Variable Settings

Specifying Environment Variable Settings

With the ENVFILE parameter, you can specify a file that contains environment variable settings
for all processes to be booted by the Oracle Tuxedo system. The system sets TUXDIR and APPDIR
for each process, so these parameters should not be specified in this file.

You can, however, specify settings for the following parameters because they affect an
application’s operation:

e FIELDTBLS, FLDTBLDIR

e VIEWFILES, VIEWDIR
o TMCMPLIMIT
e TMNETLOAD

Characteristics of the ENVFILE Parameter

ENVFILE is an optional parameter with the following characteristics:

e The syntax of the value of the ENVFILE parameter is a string enclosed in double quotes:
ENVFILE="envFfile”.

e ENVFILE is the file containing environment variable settings for all processes booted by the
Oracle Tuxedo system. (The UBBCONFIG file issues warnings in a similar way, that is, using
fully qualified pathnames.)

e Set FIELDTBLS, FLDTBLDIR, and so on, but do not set TUXDIR and APPDIR.
e All settings must be hard coded. No evaluations such as FLDTBLDIR=$APPDIR are allowed.

e The format for entries in the file is VARIABLE=string.

For more information about setting environment variables, refer to tuxenv(5) in File Formats,
Data Descriptions, MIBs, and System Processes Reference.

Defining the Oracle Tuxedo Filesystem Containing the
TLOG

Use the TLOGDEVICE parameter to specify the Oracle Tuxedo filesystem that contains the DTP
transaction log (TLOG) for this machine. The TLOG is stored as an Oracle Tuxedo system VTOC
table on the specified device. The value of TLOGDEVICE must be a string containing a maximum
of 64 characters.

Setting Up an Oracle Tuxedo Application 3-35

If this parameter is not specified, then it is assumed that the machine does not have a TLOG.

Specifying a Machine’s Maximum Number of
Simultaneous Global Transactions

Use the MAXGTT parameter to indicate the maximum number of simultaneous global transactions
in which a particular machine can be involved. The value must be a number greater than or equal
to 0, and less than 32,768. You can override the value specified in the RESOURCES section with a
value specified in the MACHINES section for an individual machine.

Defining the Number of Accesser Entries on a
Workstation Client

Use the MAXWSCLIENTS parameter to define the number of entries on a machine to be reserved
for Workstation clients. Set the number of accesser slots reserved for MAXWSCLIENTS cautiously,
since this number takes a portion of the total accesser slots specified with MAXACCESSERS for this
machine; the accesser slots reserved for MAXWSCLIENTS are unavailable for use by other clients
and servers on this machine. By setting this parameter to an appropriate value, you can help
conserve IPC resources because Workstation client access to the system is multiplexed through
an Oracle Tuxedo system-supplied surrogate, the Oracle Tuxedo Workstation Handler (WSH).

The value of MAXWSCLIENTS must be greater than or equal to 0 and less than 32,768. If not
specified, the default is 0. It is an error to set this parameter to a number greater than
MAXACCESSERS.

Note: The value of MAXWSCLIENTS is constrained by the number of your licensed users.

Defining Space Limits for Messages Transmitted hy the
BRIDGE

3-36

Use the MAXPENDINGBYTES parameter to define a limit for the amount of space that can be
allocated for messages waiting to be transmitted by the BRIDGE process. This number must be
between 100,000 and MAXLONG.

There are two situations when MAXPEND INGBYTES is significant:
e When the BRIDGE requests an asynchronous connection

e When all circuits are busy

Setting Up an Oracle Tuxedo Application

Indicating the Offset for the DTP Transaction Log

You can configure larger computers that have more memory and disk space, with larger
MAXPEND INGBYTES, and smaller computers with smaller MAXPEND INGBYTES.

Indicating the Offset for the DTP Transaction Log

Every Oracle Tuxedo filesystem has a Volume Table of Contents (VTOC): a list of the files on
the devices named in the Universal Device List (UDL). The UDL specifies the location of the
physical storage space for Oracle Tuxedo system tables. In an Oracle Tuxedo system application,
all system files might be stored together on the same raw disk slice or operating system filesystem
file.

Use the TLOGOFFSET parameter to indicate the offset in pages (from the beginning of the device)
to the start of the Oracle Tuxedo filesystem that contains the DTP transaction log for this
machine. The offset must be a number greater than or equal to 0, and less than the number of
pages on the device. The default is 0.

Defining the Offset for TUXCONFIG

Every Oracle Tuxedo filesystem has a Volume Table of Contents (VTOC): a list of the files on
the devices named in the Universal Device List (UDL). The UDL specifies the location of the
physical storage space for Oracle Tuxedo system tables. In an Oracle Tuxedo system application,
all system files might be stored together on the same raw disk slice or operating system filesystem
file.

Use the TUXOFFSET parameter to define the offset in pages (from the beginning of the device) to
the start of the Oracle Tuxedo filesystem that contains the TUXCONFIG for this machine. (For
information on how this value is used in the environment, see the ENVFILE parameter in the
MACHINES section.)

Characteristics of the TUXOFFSET Parameter

e The offset must be a number greater than or equal to 0, and less than the number of pages
on the device.

e The default offset is 0.

e The value of TUXOFFSET, if non-zero, is placed in the environment of all servers booted on
a machine.

Setting Up an Oracle Tuxedo Application 3-37

Identifying the Locations of the System Software and
Application Server Software

Each machine in an application that supports servers must have a copy of the Oracle Tuxedo
system software and application software. You identify the location of system software with the
TUXDIR parameter. You identify the location of the application software with the APPDIR
parameter. Both parameters are mandatory. The APPD IR parameter becomes the current working
directory of all server processes. The Oracle Tuxedo software looks in TUXDIR/bin and APPDIR
for executables.

Characteristics of the APPDIR and TUXDIR Parameters

Parameter Characteristics

APPDIR The syntax requires a full pathname enclosed in double quotes:
APPDIR="APPDIR”.

APPDIR identifies the location of application software.
APPDIR is a required parameter.

APPD IR becomes the current working directory of server processes.

TUXDIR The syntax requires a full pathname enclosed in double quotes:
TUXDIR="“TUXDIR”.

TUXDIR identifies the location of the Oracle Tuxedo software.
TUXDIR is a required parameter.

Indicating a Threshold Message Size for Compression

Use the CMPLIMIT parameter to define the threshold message sizes at which automatic data
compression is performed for messages bound to remote processes (string_valuel) and local
processes (string_value?2), respectively.

Both values must be either a non-negative numeric value or the string MAXLONG. If not specified,
the default is MAXLONG,MAXLONG.

Note: Setthe CMPLIMIT value and observe your application throughput. Because you can tune
the CMPLIMIT value using the TMIB, you can adjust it while the system is running.

3-38 Setting Up an Oracle Tuxedo Application

Specifying the Pathname for the ULOG

Example

CMPLIMIT=string_valuel,string_value2

Specifying the Pathname for the ULOG

Set the ULOGPFX parameter to specify the full pathname to be used as the prefix of the name of
the userlog(3c) message file on this machine. The value of ULOGPFX for a given machine is used
to create the userlog(3c) message file for all servers, clients, and administrative processes
executed on that machine. If this parameter is not specified, the path specified by the APPDIR
environment variable is used. mmddyy (month, day, year) is appended to the prefix to form the
full name of the log file.

Characteristics of the ULOGPFX Parameter

The ULOGPFX parameter has the following characteristics:

e The syntax of the value of the ULOGPFX parameter is a string enclosed in double quotes:
ULOGPFX="ULOGPFX”.

e The application log contains all messages for TPESYSTEM and TPEQS errors.
e You can use the user log to log application errors.
e The ULOGPFX defaults to APPDIR/ULOG.

e For the sample filename BANKLOG. 022667, the prefix of the name of the userlog is
specified as follows.
ULOGPFX="/mnt/usr/appdir/logs/BANKLOG”

See Also

e “How to Create the GROUPS Section of the Configuration File” on page 3-39

How to Create the GROUPS Section of the Configuration
File
Use the GROUPS section to designate logically grouped sets of servers, which can later be used to

access resource managers, and facilitate server group migration. The GROUPS section of the
configuration file contains definitions of server groups. You must define at least one server group

Setting Up an Oracle Tuxedo Application 3-39

for a machine to have application servers running on it. If no group is defined for a machine, the
group can still be part of the application and you can run the administrative command
tmadmin(1) from that site.

For nontransactional, nondistributed systems, groups are relatively simple. You only need to map
the group name to the number and logical machine ID for each group. Additional flexibility is
available to support distributed transactional systems.

For each parameter in the GROUPS section, Table 3-4 provides a description and links to reference
pages and additional information.

Table 3-4 How to Create the GROUPS Section of the Configuration File

To Specify This Information in the GROUPS Section Set This Parameter For More Information, Click
(Required/Optional) the Following

The logical name of the group. GROUPNAME (Required) Group name

The group number associated with this server group. GRPNO (Required) Group number

This number must be greater than 0 and less than
30000, and must be unique among all entries in the

GROUPS section.

The resource manager dependent information needed CLOSEINFO (Optional) Information for closing the
when closing the resource manager. resource manager

The resource manager dependent information needed OPENINFO (Optional) Information for opening the
when opening the resource manager. resource manager

The number of transaction manager servers to start for TMSCOUNT (Optional) Number of TMS servers in

the associated group, if TMSNAME is specified. the group
Principal name of the process used for identification, ~SEC_PRINCIPAL_NAM Security attributes
location of private key of principal user, and the E,
environment variable containing the password. SEC_PRINCIPAL_LOC
ATION,
SEC_PRINCIPAL_PAS
SVAR
A value that specifies that all servers in the group are ENVFILE (Optional) Server group environment
to be executed with the environment specified in the
named file.

3-40 Setting Up an Oracle Tuxedo Application

How to Create the GROUPS Section of the Configuration File

Table 3-4 How to Create the GROUPS Section of the Configuration File

To Specify This Information in the GROUPS Section Set This Parameter For More Information, Click
(Required/Optional) the Following

A value that specifies that this group of servers resides LMID (Required) Server group location
on the machine symbolically named by

string_valuel in the MACHINES section (or the

default in SHM mode).

The name of the transaction manager server process ~ TMSNAME (Optional) Transaction manager server
associated with this group. for group

Sample GROUPS Section for ATMI

Following is a sample GROUPS section of a configuration file in an ATMI environment.
##EVBGRP1 LMID=SITE1l GRPNO=104

DEFAULT : TMSNAME=TMS_SQL TMSCOUNT=2 LMID=SITE1

BANKB1GRPNO=1 OPENINFO=""TUXEDO/SQL:APPDIR1/bankdl1:bankdb:readwrite"
BANKB2GRPNO=2 OPENINFO=""TUXEDO/SQL :APPDIR1/bankdl2:bankdb:readwrite"
BANKB3GRPNO=3 OPENINFO=""TUXEDO/SQL :APPDIR1/bankdl3:bankdb:readwrite"

Sample GROUPS Section for CORBA

The followiing sample GROUPS section is from the UBBCONFIG file in the Tuxedo CORBA
University sample Production application. In this sample, the groups specified by the RANGES
identifier in the ROUTING section of the UBBCONFIG file need to be identified and configured.

The Production sample specifies four groups: ORA_GRP1, ORA_GRP2, APP_GRP1, and
APP_GRP2. These groups mst be configured, and the machines on which they run on must be

identified.
*GROUPS
APP_GRP1
LMID = SITE1
GRPNO = 2
TMSNAME = TMS
APP_GRP2
LMID = SITE1
GRPNO = 3

TMSNAME = TMS

Setting Up an Oracle Tuxedo Application 3-41

ORA_GRP1

LMID = SITE1
GRPNO = 4

OPENINFO = "ORACLE_XA:Oracle_XA+Acc=P/scott/tiger+SesTm=100+LogDir=_+MaxCur=5"

CLOSEINFO = ™"
TMSNAME = ""TMS_ORA™

ORA_GRP2

LMID = SITE1
GRPNO = 5

OPENINFO = "ORACLE_XA:Oracle_XA+Acc=P/scott/tiger+SesTm=100+LogDir=_+MaxCur=5"

CLOSEINFO = "
TMSNAME = "TMS_ORA™

The preceding example shows how the ORA_GRP1, ORA_GRP2, APP_GRP1, and APP_GRP2
groups are configured. See the section “CORBA Factory-based Routing in the University
Production Sample Application” on page 3-89 to understand how the names in the GROUPS
section match the group names specified in the ROUTING section. This match is critical for the
routing function to work correctly. Also, any change in the way groups are configured in an
application must be reflected in the ROUTING section.

Note: The Production sample application packaged with the Oracle Tuxedo software is
configured to run entirely on one machine. However, you can easily configure this
application to run on multiple machines by specifying the other machines in the LMID
parameter. This step assumes that you specify the MODEL MP parameter in the RESOURCES
section.

See Also

e “How to Create the SERVERS Section of the Configuration File” on page 3-54

Specifying a Group Name, Number, and LMID

3-42

The group name, which is the basis for a GROUPS section entry, is an alphanumeric name by which
the group is identified; it specifies the logical name (string_value) of the group. It is given a
mandatory, unique group number (GRPNO). Each group must reside wholly on one logical
machine (LMID).

The LMID specifies that this group of servers resides on the machine symbolically named by
string_valuel in the MACHINES section.

Setting Up an Oracle Tuxedo Application

Indicating a Transaction Manager Server Name and Numbers per Group

Characteristics of the Group Name, Group Number, and
LMID

Parameter Characteristics
Group_name required_ Itisrequired.
parameters [optional_ It is an alphanumeric name by which the group is identified.
parameters]
It is unique and specifies the logical name of the group.
GRPNO (Group Number) It is required and is unique.
LMID=string_valuel It is required.
[,string_value?] Each LMD value must be an alphanumeric string containing

30 or fewer characters.

Up to two logical machine names can be specified. If a
second logical name is given and server group migration is
enabled, the machine with which the server group is
associated can be migrated.

See Also

e UBBCONFIG(5) in the File Formats, Data Descriptions, MIBs, and System Processes
Reference

e “How to Create the NETWORK Section of the Configuration File” on page 3-46

Indicating a Transaction Manager Server Name and
Numbers per Group

The name of the transaction manager server (TMS) must be specified in the entry for any group
with servers that will participate in distributed transactions (transactions across multiple resource
managers—and possibly machines). To specify a TMS, set the TMSNAME parameter. This
parameter specifies the file (string_value) to be executed by tmboot(1) when booting the
server group.

The value TMS is reserved to indicate use of the null XA interface. This interface can be used for
server groups that do not have resource managers. If you do not have a resource manager, you
may not need a TMS. This server group may be infected with transactional messages. If a

Setting Up an Oracle Tuxedo Application 3-43

non-empty value other than TMS is specified, then a TLOGDEV ICE must be specified for the
machine(s) associated with the LMID value(s) for this entry. A unique server identifier is selected
automatically for each TM server. Servers are restartable an unlimited number of times.

If TMSNAME is specified, TMSCOUNT=number must also be specified to indicate the nhumber of
transaction manager servers to start for the associated group. The default for TMSCOUNT is 3. If
specified and the value is non-zero, the minimum value is 2 and the maximum value is 256. The
servers are set up in an MSSQ set automatically.

Identifying the Environment File Location for Servers in
a Group

If the value of the ENVFILE environment variable (ENVFILE=string_value) is an invalid
filename, no values are added to the environment. Lines must be of the form ident=value where
ident contains only underscores or alphanumeric characters.

Within value, strings of the form ${env} are expanded when the file is processed using variables
already defined for the environment. (Forward referencing is not supported. If a value is not set,
the variable is replaced with an empty string.) You can use a back slash (\) to escape dollar signs
and other back slashes. All other shell quoting and escape mechanisms are ignored and the
expanded value is placed in the environment.

Environment files are provided in at least two sections of the configuration file. The Oracle
Tuxedo system reads them in the following order:

1. MACHINES section ENVFILE
2. GROUPS section ENVFILE

3. SERVERS section ENVFILE (Optional)

Values in the SERVERS section override values in the GROUPS section. Values in the GROUPS
section override values in the MACHINES section.

Defining Information Needed When Opening and Closing
the Resource Manager

3-44

The values of both the OPENINFO and CLOSE INFO parameters must be alphanumeric strings that
contain a maximum of 256 characters, and are enclosed in double quotation marks. These settings
specify the resource manager dependent information needed when opening and closing the
resource manager for this group (that is, for this group name).

Setting Up an Oracle Tuxedo Application

Defining Information Needed When Opening and Closing the Resource Manager

This value is ignored if the TMSNAME parameter for this group is not set or is set to TMS. If the
TMSNAME parameter is set to a value other than TMS but the OPENINFO string is set to the null string
(") or is not specified, a resource manager exists for the group but does not require any
information for executing an open operation. If the TMSNAME parameter is set to a value other than
TMS but the CLOSE INFO string is set to the null string (****) or is not specified, a resource manager
exists for the group but does not require any information for executing a close operation.

The format of the OPENINFO string is dependent on the requirements of the vendor providing the
underlying resource manager. The information required by the vendor must be prefixed with the
published name of the vendor’s transaction (XA) interface, followed immediately by a colon (:).

For Oracle Tuxedo /Q databases, the format of OPENINFO is as follows:

e On UNIX
OPENINFO = "TUXEDO/QM:gmconfig:qgspace"”

e On Windows
OPENINFO = ""TUXEDO/QM:gmconfig;gspace"

In all these settings, TUXEDO/QM is the published name of the Oracle Tuxedo /Q XA interface,
gmconfig is replaced with the name of the QMCONFIG (see gmadmin(21) in the Oracle Tuxedo
Command Reference) on which the queue space resides, and gspace is replaced with the name
of the queue space. For Windows, the separator after gnconfig must be a semicolon (;).

Note: The CLOSEINFO string is not used for Oracle Tuxedo /Q databases.

For other vendors’ databases, the format of the OPENINFO string is specific to the particular
vendor providing the underlying resource manager. As an example, the following OPENINFO
string demonstrates the type of information needed when opening the Oracle resource manager.

OPENINFO=""0Oracle_XA: Oracle_XA+Acc=P/Scott/*****+SesTm=30+LogDit=/tmp"

Oracle_XA is the published name of the Oracle XA interface. The series of five asterisks (*) in
the OPENINFO string pertains to the encrypting of a password, which is described in the
paragraphs that follow.

Passwords passed to a resource manager in the OPENINFO string can be stored in either clear text
or encrypted form. To encrypt a password, first enter a series of five or more continuous asterisks
in the OPENINFO string at the place where you want the password to go. Then load the UBBCONFIG
file by running tmloadcf(1). When tmloadcf() encounters the string of asterisks, it prompts
you to create a password. For example:

Setting Up an Oracle Tuxedo Application 3-45

tmloadcf -y /usr5/apps/bankapp/myubbconfig
Password for OPENINFO (SRVGRP=BANKB3):
password

tmloadcf() stores the password in the TUXCONFIG file in encrypted form. If you then regenerate
the UBBCONFIG file from the TUXCONFIG file using tmunloadcf (1), the password is printed in
the regenerated UBBCONFIG file in encrypted form with @@ as delimiters. For example:

OPENINFO=""0Oracle_XA:
Oracle_XA+Acc=P/Scott/@@A0986F7733D4@@+SesTm=30+LogDit=/tmp"

When tmloadcf() encounters an encrypted password in a UBBCONFIG file generated by
tmunloadcf(), it does not prompt the user to create a password.

How to Create the NETWORK Section of the Configuration
File

If you have more than one machine in your distributed application, you need to create a NETWORK
section in your configuration file. This section sets up communications among your machines.
You can configure network groups in both the NETGROUPS and NETWORK sections of an
application’s UBBCONFIG file.

For each parameter in the NETWORK section, Table 3-5 provides a description and links to
reference pages and additional information.

Table 3-5 How to Create the NETWORK Section of the Configuration File

To Specify This Information in the NETWORK Section Set This Parameter For More Information,
(Required/0ptional) Click the Following

The device name to be used by the BRIDGE process placed BRIDGE (Optional) BRIDGE device name
on that LMID to access the network.
The complete network address to be used by the BRIDGE ~ NADDR (Required) BRIDGE network
process; that is, the listening address on the LMID. address
The minimum level of encryption required when a network ~ MINENCRYPTBITS Encryption levels
link to this machine is being established. (Optional)
The maximum level of encryption allowed when a network MAXENCRYPTBITS Encryption levels
link is being established. (Optional)

3-46 Setting Up an Oracle Tuxedo Application

Specifying a Device Name for the BRIDGE Process

Table 3-5 How to Create the NETWORK Section of the Configuration File

To Specify This Information in the NETWORK Section Set This Parameter
(Required/Optional)

For More Information,
Click the Following

The network group associated with this network entry. If NETGROUP (Optional)
unspecified, then the default, DEFAULTNET, is assumed. (If

not set to DEFAULTNET, this parameter must be defined as

a group name in the NETGROUPS section.)

Network group

The network address used by the tlisten(1) process NLSADDR (Optional)
servicing the network on the node identified by the LMID.

tlisten network
address

Sample NETWORK Section

The following configuration file excerpt shows a NETWORK section for a two-site configuration.

*NETWORK
SITE1l NADDR=""//mach1:80952"
NLSADDR="//machl:serve"
SITE2 NADDR=""//mach386:80952""
NLSADDR="//mach386:serve""

See Also

e UBBCONFIG(5) in the File Formats, Data Descriptions, MIBs, and System Processes

Reference

e “How to Create the NETGROUPS Section of the Configuration File” on page 3-50

Specifying a Device Name for the BRIDGE Process

To specify the device name to be used by the BRIDGE process placed on the LMID to access the

network, set the BRIDGE parameter as follows:

BRIDGE=string_value

If you are using TCP/IP, you do not need to specify the device name for the BRIDGE.

The pathname for the network transport endpoint file has the following form:

/dev/provider_name

Setting Up an Oracle Tuxedo Application 3-41

Assigning a BRIDGE Network Address

To specify the complete network address to be used by the BRIDGE process placed on the LMID
as its listening address, set the NADDR parameter as follows:

NADDR = string_value

The listening address for a BRIDGE is the location at which it is contacted by other BRIDGE
processes participating in the application.

The listening address for a BRIDGE may also be specified in one of the following three forms:

e //host.name:port_number

e //# _#_#.#:port_number

e Oxhex-digits or \\xhex-digits

In the first of these formats, host.name is resolved to the address of the TCP/IP host address at
the time the address is bound. This format is based on locally configured name resolution
facilities accessed via an operating system command. The value of port_number can be a
symbolic name or a decimal number.

In the second format, the string #.#.#.# represents four decimal numbers (each of which is
between 0 and 255), separated by periods. The value of port_number is a decimal number in the
range 0 to 65,535 (the hexadecimal representations of the string specified). The value of
port_number can be a symbolic name or a decimal number.

In the third format, the string Oxhex-digits or \\xhex-digits must contain an even number
of valid hex digits. A string in either of these forms is translated internally into a character array
containing TCP/IP addresses.

Note: On some platforms lower numbers may be reserved for the system.

Assigning Encryption Levels

3-48

To set up the minimum level of encryption required when establishing a network link to the
machine, set the MINENCRYPTBITS parameter. Valid values are 0, 56, and 128. 0 means no
encryption, while 56, and 128 specify the encryption key length (in bits). If this minimum level
of encryption cannot be met, link establishment fails. The default is 0.

To set up a maximum level of encryption when establishing a network link, set the
MAXENCRYPTBITS parameter. Valid values are 0, 56, and 128. 0 means no encryption, while 56,
and 128 specify the encryption key length (in bits). The default is 128.

Setting Up an Oracle Tuxedo Application

Assigning a tlisten Network Address

Example

MAXENCRYPTBITS=128
MINENCRYPTBITS=0

See Also

e “Link-Level Encryption” in Using Security in CORBA Applications

Assigning a tlisten Network Address

To specify the network address used by the tlisten(1) process servicing the network on the
machine identified by the LMID, set the NLSADDR parameter as follows:

NLSADDR=string_value

The value of string is a network address in the same format as that specified for the NADDR
parameter.

The tlisten address for NLSADDR may be specified in one of the following three forms:

e //host.name:port_number

e //#_#_#_#:port_number

o Oxhex-digits or \\xhex-digits

In the first of these formats, host.name is resolved to the address of the TCP/IP host address at
the time the address is bound. This format is based on locally configured name resolution
facilities accessed via an operating system command. The value of port_number can be a
symbolic name or a decimal number.

In the second format, the string #_#_#_# represents four decimal numbers (each of which is
between 0 and 255), separated by periods. The value of port_number is a decimal number in the
range 0 to 65,535 (the hexadecimal representations of the string specified). The value of
port_number can be a symbolic name or a decimal number.

In the third format, the string Oxhex-digits or \\xhex-digits must contain an even number
of valid hex digits. A string in either of these forms is translated internally into a character array
containing TCP/IP addresses.

tmloadcf (1) prints an error if NLSADDR is missing from an entry for any machine besides the
MASTER LMID, for which it prints a warning. If NLSADDR is missing from the MASTER LMID,

Setting Up an Oracle Tuxedo Application 3-49

tmadmin(d)cannot run in administrator mode on remote machines; it is limited to read-only
operations. In addition, the backup site cannot reboot the MASTER site after failure.

How to Create the NETGROUPS Section of the
Configuration File

The NETGROUPS section of the UBBCONFIG file describes the network groups available to an
application in a LAN environment. There is no limit to the number of network groups to which
you can assign a pair of machines. The method of communication to be used by members of
different networks in a network group is determined by the priority mechanism (NETPR10).

Every LMID must be a member of the default network group (DEFAULTNET). The network group
number for this group (that is, the value of NETGRPNO) must be zero. However, you can modify
the default priority of DEFAULTNET. Networks defined in the Oracle Tuxedo system prior to
release 6.4 are assigned to the DEFAULTNET network group.

For each parameter in the NETGROUPS section, Table 3-6 provides a description and links to
reference pages and additional information.

Table 3-6 How to Create the NETGROUPS Section of the Configuration File

To Specify This Information in the NETGROUPS Section Set This Parameter For More Information,

(Optional) (Required/Optional) Click the Following

Allow more netgroups to be defined than the default (8). MAXNETGROUPS Maximum netgroups

This value is specified in the RESOURCES section. (Optional)

The maximum size of data waiting for the network to MAXPENDINGBYTES Message space limits

become available. This value is specified in the MACHINES (Optional)

section.

The network group associated with this network entry. NETGROUP (Required) Network group name

A unique network group number that you must assigntouse NETGRPNO (Required) Network group

in failover and failback situations. number

The priority of this network group. NETPRIO (Optional) Network group
priority

3-50 Setting Up an Oracle Tuxedo Application

How to Create the NETGROUPS Section of the Configuration File

Sample Network Groups Configuration

You can associate network addresses with a network group. The following example illustrates
how this capability may be useful.

First State Bank has a network of five machines (A-E). Each machine belongs to two or three of
four netgroups that you have defined in the following way:

e DEFAULTNET (the default network, which is the corporate WAN)
e MAGENTA_GROUP (a LAN)
e BLUE_GROUP (a LAN)

e GREEN_GROUP (a private LAN that provides high-speed, fiber, point-to-point links between
member machines)

Every machine belongs to DEFAULTNET (the corporate WAN). In addition, each machine is
associated with either the MAGENTA_GROUP or the BLUE_GROUP. Finally, some machines in the
MAGENTA_GROUP LAN also belong to the private GREEN_GROUP. Figure 3-3 shows machines A
through E in the networks for which they have addresses.

Figure 3-3 Example of a Network Grouping

MAGENTA_GROUP BLUE_GROUP
NETPRIO=200 NETPRID=200
A B c D E
GREEMN_GROUP
NETPRID=300

DEFAULTNET{CORPORATE WAN)
NETPRIO==100

Table 3-7 shows which machines have addresses for which groups.

Setting Up an Oracle Tuxedo Application 3-51

Table 3-7 Machines and Addresses for Groups

This Machine Has Addresses for These Groups

Aand B DEFAULTNET (the corporate WAN)
MAGENTA_GROUP (LAN)
GREEN_GROUP (LAN)

C DEFAULTNET (the corporate WAN)
MAGENTA_GROUP (LAN)

Dand E DEFAULTNET (the corporate WAN)
BLUE_GROUP (LAN)

Note: Because the local area networks are not routed among locations, machine D (in the
BLUE_GROUP LAN) may contact machine A (in the GREEN_GROUP LAN) only by using
the single address they have in common: the corporate WAN network address.

Configuring a Sample UBBCONFIG File with Netgroups

To set up the configuration just described, the First State Bank system administrator defines each
group in the NETGROUPS section of the UBBCONFIG file, as shown in Listing 3-1.

Listing 3-1 Sample NETGROUPS and NETWORK Sections

*NETGROUPS

DEFAULTNET NETGRPNO = 0O NETPRIO = 100 #default
BLUE_GROUP NETGRPNO = 9 NETPRIO = 200
MAGENTA_GROUP NETGRPNO = 125 NETPRIO = 200
GREEN_GROUP NETGRPNO = 13 NETPRIO = 300

*NETWORK

A NETGROUP=DEFAULTNET NADDR="//A_CORPORATE:5723”
A NETGROUP=MAGENTA_GROUP NADDR=""//A_MAGENTA:5724"

A NETGROUP=GREEN_GROUP NADDR=""//A_GREEN:5725"

3-52 Setting Up an Oracle Tuxedo Application

Assigning a Name to a Network Group

B NETGROUP=DEFAULTNET NADDR=""//B_CORPORATE:5723"
B NETGROUP=MAGENTA_GROUP NADDR=""//B_MAGENTA:5724"

B NETGROUP=GREEN_GROUP NADDR=""//B_GREEN:5725"

C NETGROUP=DEFAULTNET NADDR=""//C_CORPORATE:5723"
C NETGROUP=MAGENTA_GROUP NADDR=""//C_MAGENTA:5724"

D NETGROUP=DEFAULTNET NADDR=""//D_CORPORATE:5723"
D NETGROUP=BLUE_GROUP NADDR=""//D_BLUE:5726"

E NETGROUP=DEFAULTNET NADDR=""//E_CORPORATE:5723"
E NETGROUP=BLUE_GROUP NADDR=""//E_BLUE:5726"
See Also

e UBBCONFIG(5) in the File Formats, Data Descriptions, MIBs, and System Processes

Reference

e “How to Create the SERVERS Section of the Configuration File” on page 3-54

e “Setting Up the Network for a Distributed Application” on page 12-1

Assigning a Name to a Network Group

To assign a name to a network group, set the NETGROUP parameter as follows:

NETGROUP required_parameters [optional_parameters]

If you set NETGROUP to DEFAULTNET, then the entry describes the default network group. All
network entries with a NETGROUP parameter of DEFAULTNET are represented in the T_MACHINE
class of the TM_MIB, while NETWORK entries associated with any other NETGROUP are represented
in the T_NETMAP class of the TM_MIB, so they can interoperate with previous releases.

Assigning a Network Group Number

To accommodate circumstances in which you may need to use failover and failback, you must

set the NETGRPNO parameter as follows:

NETGRPNO=numeric_value

Setting Up an Oracle Tuxedo Application 3-53

If this entry describes DEFAULTNET, the value of NETGRPNO must be zero.

Assigning a Priority to the Network Group

A pair of machines in multiple network groups of the same priority can communicate
simultaneously over the circuits with the highest priority. To assign network group priorities, use
the NETPR10 parameter. If all network circuits of a certain priority are torn down by an
administrator or by network conditions, the next lower priority circuit is used. Retries of the
higher priority circuits are attempted. The value of the NETPR10 parameter must be a number
greater than zero and less than 8,192. The default is 100.

How to Create the SERVERS Section of the Configuration
File
The SERVERS section of the configuration file contains information specific to a server process.
While this section is not required, an application without this section has no application servers

and little functionality. Each entry in this section represents a server process to be booted in the
application and includes the following information:

e The name, group, and numeric identifier for a server (SRVGRP, SRVID)
e Server command-line options defined by servopts (CLOPT)

e Parameters to determine the booting order and number of servers to boot (SEQUENCE, MIN,
MAX)

e A server-specific environment file (ENVFILE)

e Server queue-related information (RQADDR, RQPERM, REPLYQ, RPPERM)
e Restart information (RESTART, RCMD, MAXGEN, GRACE)

e Designation as a conversational server (CONV)

e Overriding of system-wide shared memory access (SYSTEM_ACCESS)

e Setting security parameters for 11OP Listener (ISL) servers

Note: Command-line options supported by the Oracle Tuxedo system are described in
servopts(5) in the File Formats, Data Descriptions, MIBs, and System Processes
Reference.

3-54 Setting Up an Oracle Tuxedo Application

How to Create the SERVERS Section of the Configuration File

For each parameter in the SERVERS section, Table 3-8 provides a description and links to
reference pages and additional information.

Table 3-8 How to Create the SERVERS Section of the Configuration File

To Specify This Information in the SERVERS
Section (Optional)

Set This Parameter (Required/Optional)

For More Information,
Click the Following

Whether the server is a conversational
server. Connections can be made only to
conversational servers, and rpc requests
(via tpacal 1(3c) or tpcal 1(3c)) can be
made only to non-conversational servers.

CONV (optional run-time parameter)

Conversational server

Principal name of the process used for
identification, location of the principal user’s
private key, and the environment variable
containing the password

SEC_PRINCIPAL_NAME,
SEC_PRINCIPAL_LOCATION,
SEC_PRINCIPAL_PASSVAR

Security attributes

When this server should be booted or shut
down relative to other servers.

SEQUENCE (Optional boot parameter)

Server boot order

The minimum number of occurrences of the
server to be booted by tmboot.

MIN (Optional boot parameter)

Server boot order

The maximum number of occurrences of the
server that can be booted.

MAX (Optional boot parameter)

Server boot order

A list of servopts(5) options to be passed
to a server process at boot time. If none are
specified, the defaultis -A. string_value
may contain up to 256 characters.

CLOPT (Optional boot parameter)

Server command-line
options

Arequest for the addition of the values in this
file to the environment of the server during
its initialization. If a server is associated with
a server group that can be migrated to a
second machine, the ENVFILE must be in
the same location on both machines.

ENVFILE (Optional run-time
parameter)

Server environment
file

The name of the group in which the server is
to run. string_value must be the logical
name associated with a server group in the
GROUPS section.

SRVGRP (Required)

Server group

Setting Up an Oracle Tuxedo Application

3-55

Tahle 3-8 How to Create the SERVERS Section of the Configuration File

To Specify This Information in the SERVERS
Section (Optional)

Set This Parameter (Required/Optional)

For More Information,
Click the Following

An integer that uniquely identifies a server
within a group. Identifiers must be between 1
and 30,000 inclusive.

SRVID (required)

Server ID

The symbolic name of the request queue for
the process.

RQADDR (Optional run-time parameter)

Server queue
information

The numeric permissions on the request
queue.

RQPERM (Optional run-time parameter)

Server queue
information

Whether a reply queue should be established
for the process.

REPLYQ (Optional run-time parameter)

Server queue
information

The numeric permissions on the reply queue.

RPPERM (Optional run-time parameter)

Server queue
information

The command that should be executed when
the process abnormally terminates, if the
process is restartable.

RCMD (Optional run-time parameter)

Server restart
information

The maximum number minus one time that
the process can be restarted within the period
specified by GRACE, if the process is
restartable.

MAXGEN (Optional run-time parameter)

Server restart
information

A parameter that specifies that the process
can have up to MAXGEN lives within the
specified number of seconds, if the process is
restartable.

GRACE (Optional run-time parameter)

Server restart
information

Whether the process is restartable. Default is
N. If server migration is specified, RESTART
must be setto VY. (A server terminated with a
SIGTERM signal must be rebooted.)

RESTART (Optional run-time
parameter)

Server restart
information

The default mode used by Oracle Tuxedo
system libraries within application processes
to gain access to Oracle Tuxedo system
internal tables.

SYSTEM_ACCESS (Optional run-time
parameter)

System access to

Servers

3-56

Setting Up an Oracle Tuxedo Application

How to Create the SERVERS Section of the Configuration File

Tahle 3-8 How to Create the SERVERS Section of the Configuration File

To Specify This Information in the SERVERS Set This Parameter (Required/Optional)

Section (Optional)

For More Information,
Click the Following

The minimum number of server dispatch MINDISPATCHTHREADS
threads started on initial server boot. The

separate dispatched thread that is used when

MAXD1SPATCHTHREADS>1 is not counted

as part of the MAXD I SPATCHTHREADS

value. It is required that

MINDISPATCHTHREADS<=

MAXD I SPATCHTHREADS. The default for

this parameter is 0.

Threads

The maximum number of concurrently MAXD I SPATCHTHREADS
dispatched threads that each server process

may spawn. If MAXD I SPATCHTHREADS>1,

then a separate dispatcher thread is used and

does not count against this limit. It is

required that MIND I SPATCHTHREADS<=

MAXD I SPATCHTHREADS. The default for

this parameter is 1.

Threads

Setting Up an Oracle Tuxedo Application 3-57

Tahle 3-8 How to Create the SERVERS Section of the Configuration File

To Specify This Information in the SERVERS
Section (Optional)

Set This Parameter (Required/Optional)

For More Information,
Click the Following

The stack size in bytes for each server thread
after the initial thread. If not specified or
specified as 0, the operating system default is
used. This option has an affect on the server
only when a value greater than 1 is specified
for MAXD I SPATCHTHREADS.

THREADSTACKSIZE

threads

The WebLogic Server embedded
LDAP-based authentication server. It is a
System /T provided server that offers the
authentication service while the user security
information is located in WebLogic Server.
This server may be used in a secure
application to provide per-user
authentication when clients join the
application.

SECURITY USER_AUTH or higher must be
specified.

Default uses the file
$TUXDIR/udataobj/tpldap to get
LDAP configuration information.

Example: LAUTHSVR SRVGRP=
“AUTH*’SRVID=100

CLOPT="-A--

-f/usr/tuxedo/udataobj/tpldap”

LAUTHSVR (Optional)

LAUTHSVR(5)

Sample SERVERS Section

Following is a sample SERVERS section of a configuration file.

*SERVERS

DEFAULT: RESTART=Y MAXGEN=5 GRACE=3600
REPLYQ=N CLOPT="-A”
ENVFILE="/usr/home/envfile”
SYSTEM_ACCESS=PROTECTED

3-58 Setting Up an Oracle Tuxedo Application

How to Create the SERVERS Section of the Configuration File

RINGUP1 SRVGRP=GROUP1 SRVID=1 MIN=3
RQADDR=""ring1"
RINGUP2 SRVGRP=GROUP1 SRVID=4 MIN =3

RQADDR="ring2"

Note: Omitted from this sample are SEQUENCE (the order of booting is 1 to 6), REPLYQ and
RPPERM (the server does not receive replies), RCMD (no special commands are desired on
restart), and CONV (servers are not conversational). Defaults are applied to all servers
unless a different setting is specified for a specific server.

Sample SERVERS Section Parameters

In the preceding sample SERVERS section, the following parameters and values are specified.

Parameter Meaning
RESTART=Y (default) Restart the servers.
MAXGEN=5 (default) The MAXGEN parameter specifies a number greater than 0 and less

than 256 that controls the number of times a server can be started
within the period specified by the GRACE parameter. The default is
1. If the server is to be restartable, MAXGEN must be >= 2. The
number of restarts is at most number - 1 times. RESTART must
be Y or MAXGEN is ignored.

GRACE=3600 (default) IfRESTART is Y, the GRACE parameter specifies the time period (in
seconds) during which this server can be restarted as MAXGEN - 1
times. The number assigned must be equal to or greater than 0. The
maximum is 2,147,483,648 seconds (or a little more than 68 years).
If GRACE is not specified, the default is 86,400 seconds (24 hours).
As soon as one GRACE period is over, the next grace period begins.
Setting the grace period to O removes all limitations; the server can
be restarted an unlimited number of times.

REPLYQ=N (default) There is no reply queue.

CLOPT="-A" (default) Specify -A on the command line of each server.
ENVFILE="/usr/home/envfile” Read environment settings from the file ENVFILE.
(default)

SYSTEM_ACCESS=PROTECTED Deny access to internal tables outside system code.
(default)

Setting Up an Oracle Tuxedo Application 3-59

Parameter Meaning

RINGUP1 Sample name of the first server to be booted.

SRVGRP=GROUP1 SRVID=1 MIN=3 Three instances of the sample server will be booted in group

RQADDR="ring1" GROUP1 with server IDs of 1, 2, and 3, respectively. The three
servers will form an MSSQ set and will read requests from queue
ringl.

Note: RQADDR assigns a symbolic name to the request queue of
this server. MSSQ sets are established by using the same
symbolic queue name for more than one server, as well as
same executable name for all the servers (and by
specifying a value greater than 1 for MIN).

RINGUP2 Name of the second sample server to be booted.
See Also
e UBBCONFIG(5) in the File Formats, Data Descriptions, MIBs, and System Processes
Reference

e “How to Create the SERVICES Section of the Configuration File” on page 3-73

Specifying a Server as Conversational

If a server is conversational (that is, if it establishes a two-way connection between a client and
a dedicated server), the CONV parameter is required and must be set to Y. The default is N,
indicating that the server will not be part of a conversation.

Characteristics of the CONV Parameter

The CONV parameter has the following characteristics:

e A Y value indicates a server is conversational; an N value indicates a server is not
conversational.

e A Y value is required if the server is to receive conversational requests.

e The default is N.

3-60 Setting Up an Oracle Tuxedo Application

Setting the Order in Which Servers Are Booted

Setting the Order in Which Servers Are Booted

To specify the sequence of servers to be booted, set the SEQUENCE parameter for each server. The
value of SEQUENCE can be any number between 1 and 10,000. A server with a smaller SEQUENCE
value is booted before a server with a larger value. If the SEQUENCE parameter is not set for any
servers, the servers are booted in the order in which they are listed in the SERVERS section. If
some, but not all servers are sequenced, the sequenced servers are booted first. The order in which
servers are shut down is the reverse of the order in which they were booted.

The SEQUENCE parameter is optional. It may be helpful in a large application in which control
over boot order is important.

WARNING: In CORBA environments, there is a strict order in which the system EventBroker,
the FactoryFinder object, and the application factories must be booted. A CORBA
application program will not boot if the order is changed. See the section
“Required Order in Which to Boot CORBA C++ Servers” on page 3-61 for
details.

To boot multiple servers, set the MIN parameter, which provides a shortcut to booting. All servers
share the same options. If you specify RQADDR, the servers form an MSSQ set. The default for
MIN is 1.

To specify the maximum number of servers that can be booted, set the MAX parameter. The
tmboot (1) command boots MIN servers at run time. Additional servers can be booted up to MAX.
The default is MIN.

The MIN and MAX parameters are helpful in keeping the size of the configuration files for large
applications manageable. Allowances for MAX values must be made in the IPC resources. The MIN
and MAX parameters are also used for conversational services and automatic server spawning.

Required Order in Which to Boot CORBA C++ Servers

The following is the correct order in which to boot the servers In an Oracle Tuxedo CORBA
environment. A CORBA application program will not boot if the order is changed.

1. The system EventBroker, TMSYSEVT.

2. The TMFFNAME server with the -N option and the -M option, which starts the NameManager
service (as a Master). This service maintains a mapping of application-supplied names to
object references.

3. The TMFFNAME server with the -N option only, to start a Slave NameManager service.

Setting Up an Oracle Tuxedo Application 3-61

4. The TMFFNAME server with the -F option, to start the FactoryFinder object.

5. The application C++ servers that are advertising factories.

Listing 3-2 shows the order in which servers are booted for the Oracle Tuxedo CORBA
University Basic application, which is one of the sample applications included with the Oracle
Tuxedo software. This SERVERS section is excerpted from an edited version of the ubb_b.nt
configuration file.

Listing 3-2 Edited SERVERS Section from a University Sample UBBCONFIG

*SERVERS
By default, restart a server if it crashes, up to 5 times
in 24 hours.

#

DEFAULT:
RESTART =Y
MAXGEN = 5

Start the Oracle Tuxedo System EventBroker. This event broker
must be started before any servers providing the
NameManager Service

#

TMSYSEVT
SRVGRP = SYS_GRP
SRVID =1

TMFFNAME is a Oracle Tuxedo CORBA provided server that
runs the NameManager and FactoryFinder services.

The NameManager service is a Oracle Tuxedo CORBA-specific
service that maintains a mapping of application-supplied names
to object references.

Start the NameManager Service (-N option). This name
manager is being started as a Master (-M option).

#

TMFFNAME

3-62 Setting Up an Oracle Tuxedo Application

Setting the Order in Which Servers Are Booted

SRVGRP = SYS_GRP
SRVID =2
CLOPT = "-A —— -N -M"

Start a slave NameManager Service

#

TMFFNAME
SRVGRP = SYS_GRP
SRVID =3
CLOPT = "-A -- -N"

Start the FactoryFinder (-F) service
#

TMFFNAME
SRVGRP = SYS_GRP
SRVID =4
CLOPT = "-A -—- -F"

Start the interface repository server
#

TMIFRSVR
SRVGRP = SYS_GRP
SRVID =5

Start the university server
#
univb_server

SRVGRP = ORA_GRP

SRVID 6

RESTART = N

Start the listener for 1I10P clients
#
Specify the host name of your server machine as
well as the port. A typical port number is 2500
#
I1SL

SRVGRP = SYS_GRP

Setting Up an Oracle Tuxedo Application

3-63

3-64

SRVID
CLOPT

7
"-A -- -n //TRIXIE:2500"

In the example, after the TMSYSEVT and TMFFNAME servers are started, servers are started for:

e An Interface Repository. For information about this feature and the command-line options
(CLOPT parameter), see Chapter 9, “Managing CORBA Interface Repositories.”

e The univb_server, for the University Basic sample application. For details about the
sample applications, see the Guide to the CORBA University Sample Applications.

e An Internet Inter-ORB Protocol (I10P) Server Listener (also known as an ISL). For
information about this feature and the CLOPT parameter, refer to Chapter 15, “Managing
Remote Oracle Tuxedo CORBA Client Applications.”

Note: When migrating or shutting down and restarting groups or machines for any reason, if
there are active slave NameManagers in other groups, be sure to organize your
UBBCONFIG file so that a FactoryFinder or a slave NameManager is never restarted before
the master NameManager is active. For example, if you have a FactoryFinder in the same
group as the master NameManager, arrange the order of these servers in the UBBCONFIG
file so the master NameManager is started first.

Setting Up an Oracle Tuxedo Application

Characteristics of the SEQUENCE, MIN, and MAX Parameters

Characteristics of the SEQUENCE, MIN, and MAX
Parameters

Parameter Characteristics

SEQUENCE It is an optional parameter with a numeric range of 1 - 10,000.
Smaller values are booted before larger values.

Servers for which this parameter is not set are booted in the order in which
they are listed in the SERVERS section.

All sequenced servers are booted before any unsequenced servers.

MIN It represents the minimum number of servers to boot during run time.
If RQADDR is specified and MIN>1, an MSSQ set is created.
All instances have the same server options.
The range of values is 0 to 1000 .
The default is 1.

MAX It represents the maximum number of servers to boot.

The range of values for MAX is 0 to 1000. If MAX is not specified, the
default is the value of MIN.

Specifying Server Command-line Options

The Oracle Tuxedo system allows you to specify options that are used when a server processes a
request. These options are defined in servopts, which lists the run-time options for server
processes. The server may need to obtain information from the command line. The CLOPT
parameter allows you to specify command-line options that can change some defaults in the
server, or pass user-defined options to the tpsvrinit() function.

The standard main() of a server parses one set of options ending with the argument --, and passes
the remaining options to tpsvrinit(). The default for CLOPT is -A, which tells the server to
advertise all the services built into it with bui ldserver (1) or bui ldobjserver(1). Table 3-9
provides a partial list of the available options.

Setting Up an Oracle Tuxedo Application 3-65

3-66

Table 3-9 Specifying Server Command-line Options

Use This Option To

-o filename Redirect standard output to file i lename .

-e Ffilename Redirect standard error to file filename.

-S services Advertise services. For example, -s X,y,z to advertise services
X, Y, and z.

-s X,Y,z:funcname Advertise services X, y, and z, but process requests for those
services with function funcname. This is called aliasing a
function name.

-r Specify that the server should log the services performed.
-v Print out the list of the service name/function name to standard
output.

This option cannot be used in the CLOPT in the UBBCONFIG. It
must be used when manually invoking the server.

Note: You can find other standard main() options listed on servopts(5) in the File Formats,
Data Descriptions, MIBs, and System Processes Reference.

Characteristics of the CLOPT Parameter

e The syntax is CLOPT="servopts -- application_opts”.

e This is an optional parameter with a default of -A.

e Both main() and tpsvrinit() use server command-line options.
e servopts(5) options are passed to main().

e Application options are passed to tpsvrinit().
In the BANKAPP sample application, command-line options are specified as follows:
CLOPT="-A -- -T 10"

The server is given the option of advertising all services (-A) and teller 1D of 10 so it can update
a specific teller record with each operation. The use of this option, especially the options passed

Setting Up an Oracle Tuxedo Application

Identifying the Location of the Server Environment File

to tpsvrinit(), require communication between the system administrator and the application
programmer.

See Also

e servopts(5) in the File Formats, Data Descriptions, MIBs, and System Processes
Reference

Identifying the Location of the Server Environment File

Use the ENVFILE parameter in the MACHINES section to specify environment settings. You can
also specify the same parameter for a specific server process; the semantics are the same. If both
the MACHINES section ENVFILE and the SERVERS section ENVFILE are specified, both go into
effect. For any overlapping variable defined in both the MACHINES and SERVERS sections, the
setting in the SERVERS section prevails.

Characteristics of the Server Environment File

ENVFILE, the parameter that defines the server environment file, has the following
characteristics:

e It is an optional parameter that contains the same semantics as the ENVFILE parameter in
the MACHINES section, but defines only one server.

e For overlapping variables, the setting in the SERVERS section ENVFILE overrides the setting
in the MACHINES and GROUPS sections ENVFILE.

For more information about setting environment variables, refer to tuxenv(5) in File Formats,
Data Descriptions, MIBs, and System Processes Reference.

Defining Server Name, Group, and ID

You initially assign a name to a server in the SERVERS section. The name you specify must be the
name of an executable file built with one of the following commands:

e bui ldserver (1) for ATMI applications

e buildobjserver(1) for CORBA C++ server applications

You must also specify a group identifier (SRVGRP) for each server. The value of SRVGRP must be
the name specified in the beginning of a GROUPS section entry. Finally, you must also provide
each server process in a given group with a unique numeric identifier (SRVID). Every server entry

Setting Up an Oracle Tuxedo Application 3-67

must include the SRVGRP and SRVID parameters. Because the entries describe machines to be
booted and not just applications, it is possible that in some cases the same server name will be
displayed in many entries.

Characteristics of the Server Name, SRVGRP, and SRVID
Parameters

Parameter Characteristics

Server_name It identifies the executable to be booted.
It is built with bui ldserver (1) for ATMI.
It is built with bui Idobjserver (1) for CORBA.

It is required, but may not be unique within a server group.

SRVGRP (Server It identifies the group affiliation.

Group) The group name begins with a GROUPS section entry.
It is required.

SRVID (Server ID) It is numeric.

It is required and unique within a server group.

Identifying Server Queue Information

Server queue information controls the creation and access of server message queues. On an
Oracle Tuxedo system, you can create Multiple Server, Single Queue (MSSQ) sets by using the
RQADDR parameter. For any given server, you can set this parameter to an alphanumeric value. By
specifying the same value for RQADDR on all servers that offer the same services, you can
consolidate those services under one message queue, thus creating an MSSQ set and establishing
load balancing.

MSSQ Example

An MSSQ set is similar to a bank staff. Four tellers may be available to handle the business
requests of many customers who wait in a single line. All customers are assured of an equitable
wait in line. Understandably, a loan officer is not included in the group of tellers handling
requests from customers in that line. The loan officer cannot handle requests for deposits and

3-68 Setting Up an Oracle Tuxedo Application

Identifying Server Queue Information

withdrawals (as the tellers can), and not all customers want loans. Similarly, a server cannot join
an MSSQ set if the services it offers are not the same as the services offered by the servers in an
MSSQ set.

The RQPERM parameter allows you to specify the permissions for server request queues, along the
lines of the UNIX system convention (for example, 0666). This setting allows services to control
access to the request queue.

If the service routines within an MSSQ server perform service requests, they must receive replies
to their requests on a reply queue. You can set up such a reply queue by specifying REPLYQ=Y.
By default, REPLYQ is set to N. If REPLYQ is set to Y, you can also assign permissions to it with the
RPPERM parameter.

Characteristics of the RQADDR, RQPERM, REPLYQ, and
RPPERM Parameters

Parameter Characteristics

RQADDR It is an alphanumeric value that allows MSSQ sets to be created. The
value is the same for all members of an MSSQ set. All members of an
MSSQ set must offer the same set of services and the servers in an MSSQ
set should have the same executable name. In order to boot multiple
servers, set the value greater than 1 for Min parameter.

RQPERM Represents the permissions on a request queue. If no parameter is
specified, the permissions of the bulletin board, as specified by PERM in
the RESOURCES section, are used. If no value is specified there, the
default of 0666 is used. When the default is used, your application is
available to anyone with a login on the system.

Setting Up an Oracle Tuxedo Application 3-69

Parameter Characteristics

REPLYQ Specifies whether a reply queue, separate from the request queue, is to be
set up for this server. If only one server is using the request queue, replies
can be picked up from the request queue without causing problems. On
an Oracle Tuxedo system, if the server is a member of an MSSQ set and
contains services programmed to receive reply messages, REPLYQ
should be set to Y so that an individual reply queue is created for this
server. If not, the reply is sent to the request queue shared by all servers
of the MSSQ set, and there is no way of assuring that it will be picked up
by the server that is waiting for it. Multithreaded servers automatically
create REPLYQs even if this parameter is not set.

RPPERM Assigns permissions to the reply queue. This parameter is useful only
when REPLYQ=Y. If requests and replies are read from the same queue,
only RQPERM is needed; RPPERM is ignored.

Defining Server Restart Information

3-10

A properly debugged server should not terminate on its own. By default, servers that do terminate
while the application is running are not restarted by the Oracle Tuxedo system. You can set the
RESTART parameter to Y if you want the server to restart. The RCMD, MAXGEN, and GRACE
parameters are relevant to a server if RESTART=Y.

The RCMD parameter lets you specify a command to be performed in parallel with restarting a
server. For example, you may want to have e-mail sent to the developer of the server or to
someone who is auditing such activity.

The MAXGEN parameter represents the total number of lives to which a server is entitled within the
period specified by GRACE. The server can then be restarted MAXGEN-1 times during GRACE
seconds. If GRACE is set to zero, there is no limit on server restarts. MAXGEN defaults to 1 and may
not exceed 256. GRACE must be greater than or equal to zero and must not exceed 2,147,483,647
(2%-1).

Note: A fully debugged server should not need to be restarted. RESTART and associated
parameters should have two settings: one for the testing phase, and another for
production.

Setting Up an Oracle Tuxedo Application

Defining Server Access to Shared Memory

Characteristics of the RESTART, RCMD, MAXGEN, and GRACE
Parameters

Parameter Characteristics

RESTART A setting of Y enables a server to restart.
The default is N.

RCMD Specifies an executable file to be run at restart time.
Allows you to take an action when a server is restarted.

MAXGEN Represents the maximum number of server lives in a specific interval.
The default is 1; the maximum is 256.

GRACE Represents the interval used by MAXGEN.
Zero represents unlimited restart.
It must be between 0 and 2147,483,647 (231 - 1).
The default is 24 hours.

Defining Server Access to Shared Memory

The SYSTEM_ACCESS parameter determines whether a server process may attach to shared
memory and thus have access to internal tables outside system code. During application
development, we recommend that such access be denied (PROTECTED). When the application is
fully tested, you can change the value of SYSTEM_ACCESS to FASTPATH to yield better
performance.

This parameter setting overrides the value specified in the RESOURCES section unless the
NO_OVERRIDE value has been specified. In this case, the parameter is ignored. The NO_OVERRIDE
value may not be used in this section.

Characteristics of the SYSTEM_ACCESS Parameter

The SYSTEM_ACCESS parameter has the following characteristics:

e A value of PROTECTED indicates that the server may not attach to shared memory outside
of system code.

Setting Up an Oracle Tuxedo Application 3-N1

e A value of FASTPATH indicates that the server will attach to shared memory at all times.
e |f NO_OVERRIDE is specified in the RESOURCES section, this parameter is ignored.
e The default is the value of the SYSTEM_ACCESS parameter in the RESOURCES section.

e The Oracle Tuxedo system runs more slowly when a value of PROTECTED is set.

Defining the Server Dispatch Threads

MAXD 1 SPATCHTHREADS is the maximum number of concurrently dispatched threads that each
server process may spawn. If MAXD I SPATCHTHREADS>1, then a separate dispatcher thread is used
and does not count against this limit. It is required that

MIND I SPATCHTHREADS<=MAXDISPATCHTHREADS. If not specified, the default for this parameter
is 1.

MINDISPATCHTHREADS is the minimum number of server dispatch threads started on initial server
boot. The separate dispatched thread that is used when MAXD 1 SPATCHTHREADS>1 is not counted

as part of the MAXDISPATCHTHREADS value. It is required that
MINDISPATCHTHREADS<=MAXDISPATCHTHREADS. The default for this parameter is 0.

You must specify the stack size in bytes for each server thread after the initial thread. If not
specified or specified as 0, the operating system default is used. This option has an affect on the
server only when a value greater than 1 is specified for MAXD1SPATCHTHREADS.

Setting Security Parameters for ISL Servers

In CORBA environments the 11OP Listener (ISL) process listens for remote clients requesting a
connection. The ISL process is specified in one entry as a server supplied by the Oracle Tuxedo
system.

The Secure Socket Layer (SSL) protocol defines how processes can communicate in a secure
manner over I1OP. Use the -s option on the ISL command to set the required parameters. You
only need to set these parameters if you are using the SSL protocol, which is installed in the
Oracle Tuxedo Security Pack.

The following table lists the SSL parameters characteristics.

3-12 Setting Up an Oracle Tuxedo Application

How to Create the SERVICES Section of the Configuration File

Parameter Characteristics

SEC_PRINCIPAL_NAME Specifies the identity of the 11OP Listener/Handler.

SEC_PRINCIPAL_LOCATION Specifies the location of the private key for the 11OP Listener/Handler.

SEC_PRINCIPAL_PASSWORD Specifies the phrase for the private key of the 1OP Listener/Handler.

For more information about setting these parameters, see Using Security in CORBA Applications.

How to Create the SERVICES Section of the Configuration
File
Detailed information about the services in your application can be entered in the SERVICES
section of the configuration file. For nontransactional, nondistributed applications, such

information is relatively simple. The SERVICES section includes the following types of
information:

e Load balancing information (SRVGRP)

e Assignment of priorities to services

Different service parameters for different server groups

Buffer type checking information (BUFTYPE)

o Nontransactional service-level blocktime values

There are no required parameters for services. You need to list services only if you are setting
optional parameters.

For each parameter in the SERVICES section, Table 3-10 provides a description and links to
reference pages and additional information.

Setting Up an Oracle Tuxedo Application 3-13

Table 3-10 How to Create the SERVICES Section of the Configuration File

To Specify This Information in the
SERVICES Section

Set This Parameter
(Required/Optional)

For More Information, Click
the Following

Whether a transaction should be started
automatically when a request message is
received that is not already in transaction
mode.

AUTOTRAN (For DTP
applications only)

Automatic starts for
transactions

A list of types and subtypes of data buffers
accepted by this service. This parameter
may contain up to 256 characters with a
maximum of 32 type/subtype
combinations.

BUFTYPE (Optional)

Buffer types

A load factor to be imposed on the system
by SVCNAM.

LOAD (Optional)

Load balancing

The name of the routing criteria used for
this service when data- dependent routing is
used.

ROUTING (Optional)

Routing criteria name

The name of the sever group from which
SVCNAM gets all group parameter settings.

SRVGRP (Optional)

Server group parameters

The dequeuing priority of SVCNM.

PRIO (Optional)

Service priorities

Set the nontransactional blocking time
value, in seconds, of the indicated service.

BLOCKT IME (Optional)

Specifying Nontransactional
Service-Level Blocktime

The amount of time, in seconds, that is
allowed for processing of the indicated
service.

SVCTIMEOUT (Optional)

Service processing time

The default timeout interval, in seconds, for
a transaction automatically started for the
associated service.

TRANTIME (For DTP
applications only)

Timeout values for transactions

Sample SERVICES Section

Following is a sample of the SERVICES section of a configuration file.

3-14 Setting Up an Oracle Tuxedo Application

Specifying Automatic Starts and Timeout Intervals for Transactions

*SERVICES

#

DEFAULT: LOAD=50 PRI0=50
RINGUP BUFTYPE="VIEW:ringup”

In this example, the default load and priority of a service are 50; the one service declared is a
RINGUP service that accepts a RINGUP VIEW as its required buffer type.

See Also

e UBBCONFIG(5) in the File Formats, Data Descriptions, MIBs, and System Processes
Reference

e “How to Create the ROUTING Section of the Configuration File” on page 3-86

Specifying Automatic Starts and Timeout Intervals for
Transactions

You can determine whether a transaction should be started automatically if a request message is
already in transaction mode by coding the AUTOTRAN ={Y N} parameter. The default is N.

You can specify a timeout interval between the time at which a transaction for a service begins
and the time at which it is rolled back if not completed. To specify a timeout interval that will be
used automatically, set the TRANTIME parameter as follows:

TRANT IME=number

The default is 30 seconds. A value of 0, the maximum timeout value for the computer, means a
transaction will never time out.

An additional transaction timeout property named MAXTRANT IME is available from the
RESOURCES section of the UBBCONFIG file. If the MAXTRANT IME timeout value is less than the
TRANT IME timeout value or the timeout value passed in a tpbegin(3c) call to start a transaction,
the timeout for a transaction is reduced to the MAXTRANT IME value.

Note: MAXTRANTIME has no effect on a transaction started on a machine running Oracle Tuxedo
8.0 or earlier, except that when a machine running Oracle Tuxedo 8.1 or later is infected
by the transaction, the transaction timeout value is capped—reduced if necessary—to the
MAXTRANT IME value configured for that node.

Setting Up an Oracle Tuxedo Application 3-715

See Also

e Using the Oracle Tuxedo Domains Component

e For more information about MAXTRANT IME, see MAXTRANT IME in the RESOURCES section in
UBBCONFIG(5) or TA_MAXTRANTIME in the T_DOMAIN class in TM_MIB(5).

Specifying a List of Allowable Buffer Types for a Service

With the BUFTYPE parameter, you can tune a service to check buffer types independently of the
service code. Set this parameter with a list of allowable buffer types for a service in the following
format:

type[:subtype[,subtype]]
To allow all subtypes, set the value of subtype to *.

If the value of the BUFTYPE parameter for a service is ALL, this service accepts all buffer types.
The default is ALL.

Examples of the BUFTYPE Parameter

BUFTYPE Example Meaning

BUFTYPE="FML;VIEW:aud,aud2™ FMLand VI1EW buffer types with subtypes aud and
aud2 are allowed.

BUFTYPE="FML;VIEW:*" All FML and VIEW buffer types are allowed.

BUFTYPE=ALL All buffer types are allowed (the default).

Designating How Much Time to Process a Request

3-16

Sometimes an unexpected system error occurs, freezing a service or causing it to run out of
control while it is processing a request. Obviously, it is a good idea to remove these processes,
but it is difficult to detect them or determine how they developed errors. The Oracle Tuxedo
system provides a mechanism for terminating such processes even when you cannot identify
them. To use this mechanism, set the SYCTIMEOUT parameter.

The SVCTIMEOUT parameter allows you to designate an amount of time (in seconds) in which a
service should be able to process a request. If the interval defined by this parameter elapses and

Setting Up an Oracle Tuxedo Application

Designating How Much Time to Process a Request

a service has not finished processing a request, the process for that request is killed. In essence,
the service timeout mechanism acts like a scavenger for frozen or out of control application
servers. By default, the Oracle Tuxedo system does not terminate any service process; you must
set the SVCTIMEOUT parameter to activate this feature.

You can assign a value to the SVCTIMEOUT parameter in the UBBCONFIG file or by dynamically
changing the TA_SVCTIMEOUT attribute in TM_MIB. We recommend that you set the value of
SVCTIMEOUT or TA_SVCTIMEOUT to at least two to three times the number of seconds it takes for
your longest running service to process a request. Setting the service timeout in this way
guarantees that the Oracle Tuxedo system removes only frozen processes.

This section describes the causes and results of service timeout errors, and explains how the
Oracle Tuxedo system reports such errors. Advice about how to handle errors is also provided.

What Happens When a Timeout Occurs

When a timeout occurs, the Oracle Tuxedo system terminates the server process running the
frozen service (but not its child processes, if any). It then returns a TPESVCERR error, indicating
that an unknown problem occurred during processing. In a conversational service, the
conversation event TPEV_SVCERR is returned.

How a Service Timeout Is Reported

The Oracle Tuxedo system reports a service timeout through the following three mechanisms:

e TPED_SVCTIMEOUT—timeout error detail that provides more information than
tpstrerror(3c)

e _SysServiceTimeout—a system event

e ULOG information about .SysServiceTimeout

Because the SVCTIMEOUT value is configurable, it is important for clients to be able to easily
distinguish between a TPESVCERR caused by exceeding the value set for SVCTIMEOUT, and a
TPESVCERR caused by other situations. Although the ULOG contains this information, it is difficult
for client programs to extract it. To differentiate a service timeout TPESVCERR from others, a
program can include a call to the tperrordetai 1(3c) routine (after a TPESVCERR has been
detected), which yields TPED_SVCTIMEOUT when a service timeout occurs.

In addition, a system event, .SysServiceTimeout, is generated when a service timeout occurs.
When a .SysServiceTimeout event occurs, it is reflected in the ULOG in the following way:

Setting Up an Oracle Tuxedo Application 3-11

ERROR: .SysServiceTimeout: %TA_SERVERNAME, group %TA_SRVGRP, id %TA_SRVID
server killed due to a service timeout

How to Control a Service Timeout

e Application administrators may control the service timeout by changing the SVCTIMEOUT
parameter in the SERVICES section of the UBBCONFIG file, or by modifying the
TA_SVCTIMEOUT attribute of the T_SERVER or T_SERVICE class of the TM_MIB. They may
also monitor the ULOG file for service timeout activity.

e In addition to monitoring the ULOG file for service timeout activity, application operators
can subscribe to the .SysServiceTimeout event, which alerts them when a service
timeout occurs.

e Application programmers can use the tperrordetai1(3c) and tpstrerrordetail(3c)
functions, and the TPED_SVCTIMEOUT error detail code. They may want to add one or
more subscriptions to the. SysServiceTimeout system event, which is generated when a
service timeout occurs.

Specifying Nontransactional Service-Level Blocktime

3-18

Different services take different amounts of time and need individual BLOCKT IME values.
Sometimes, an application needs or desires to override the default blocktime value for an
individual client or for an individual service call.

The UBBCONFIG file SERVICES section BLOCKT IME parameter allows you to designate the
blocking time value, per second, for individual nontransactional services. It overrides the default
RESOURCES section BLOCKT IME parameter value for the designated service. Per service

BLOCKT IME parameter values can also be set for remote services using the DMCONFIG file. For
more information, see UBBCONFIG (5), SERVICES section and DMCONFIG (5), DM_IMPORT
section.

Unlike the SVCTIMEOUT parameter, the BLOCKT IME parameter does not terminate a service
application. Instead, it lets the client know that (after a specified time in seconds), no reply has
been received by the server while the service request is still processing.

Note: Application programmers can also set nontransactional blocktime requests and retrieve
blocktime values by using the tpsblktime (3c) and tpgblktime (3c)functions.

Setting Up an Oracle Tuxedo Application

Enabling Load Balancing

Enabling Load Balancing

To activate load balancing, set the RESOURCES section parameter LDBAL to Y. A load factor is
assigned to each service performed (via the LOAD parameter) and the Oracle Tuxedo system keeps
track of the total load of services that each server has performed. Each service request is routed
to the server with the smallest total load. The routing of that request causes the server’s total to
be increased by the LOAD factor of the service requested.

Load information is stored only on the site originating the service request. It would be inefficient
for the Oracle Tuxedo system to make continuous attempts to propagate load information to all
sites in a distributed application. When performing load balancing in such an environment, each
site knows only about the load it originated and performs load balancing accordingly. This means
that each site has different load statistics for a given server (or queue). The server perceived as

being the least busy differs from site to site.

When load balancing is not activated, and multiple servers offer the same service, the first
available queue receives the request.

Characteristics of the LDBAL Parameter

The LDBAL parameter has the following characteristics:
e Load balancing is used if the RESOURCES LDBAL parameter is set to Y.
e The load factor is added to a server’s total load.

e The load is relative to other services.

Defining the Name of the Routing Criteria

When using data-dependent routing, you need to specify the routing criteria to be used for a
service. To specify such criteria, set the ROUTING parameter as follows:

ROUTING=string_value
If this parameter is not set, the service does not perform data-dependent routing.

The maximum value of string is 15 characters. No more than one value may be assigned to the
ROUTING parameter for a given service. Even if you have multiple entries for one service and
those entries contain different SRVGRP parameters, the value of ROUT ING must be the same in all
entries.

Setting Up an Oracle Tuxedo Application 3-19

Specifying Service Parameters for Different Server
Groups

You can assign the same service to multiple groups and assign different values to the various
service-specific parameters you set for the service entries for the different groups. To do this,
create a separate entry for the service for each group, specifying a group-specific value for the
SRVGRP parameter.

Controlling the Flow of Data by Service Priority

3-80

You can exert significant control over the flow of data in an application by assigning service
priorities using the PR10 parameter. The value of PRIO must be a number between 0 and 100.
The higher the number, the higher the priority of the service to which it is assigned. Higher
priority services are dequeued before lower priority services, but the system dequeues every tenth
request in FIFO order to prevent a message from waiting indefinitely on the queue.

For instance, Server 1 offers Services A, B, and C. Services A and B have a priority of 50 and
Service C has a priority of 70. A service requested for C will always be dequeued before a request
for A or B. Requests for A and B are dequeued equally with respect to one another.

Note: A priority can also be changed dynamically with the tpsprio()call.

Characteristics of the PRI0 Parameter

The PR10 parameter has the following characteristics:
e |t determines the priority of a service on the server’s queue.
e The highest assigned priority gets first preference.

e Every tenth request is dequeued FIFO.

Sample SERVICES Section Using Different Priorities

The following sample from the SERVICES section of a configuration file shows how priorities are
assigned to services:

*SERVICES
A SRVGRP=GRP1 PRIO=50 LOAD=60
A SRVGRP=GRP2 PRI0=70 LOAD=30

Setting Up an Oracle Tuxedo Application

Indicating Service Processing Time

In this example, different service-specific parameters are assigned to two server groups. Service
A is assigned a priority of 50 and a load of 60 in server group GRP1, and a priority of 70 and a
load of 30 in server group GRP2.

Indicating Service Processing Time

To indicate the maximum amount of time, in seconds, allowed for processing a service, set the
SVCTIMEOUT parameter as follows:

SVCTIMEOUT=number

The value must be greater than or equal to 0. A value other than 0 indicates that the service will
be timed out: the server processing the server request will be terminated with a SIGKILL signal.
The default for this parameter is 0.

How to Create the INTERFACES Section of the
Configuration File

Note: This section applies only to the CORBA environments.in Oracle Tuxedo.

The INTERFACES section in the configuration file is used to define parameters for CORBA
environments in the Oracle Tuxedo system. In this section, you define application-wide default
parameters for CORBA interfaces used by the application. For a CORBA interface participating
in factory-based routing, you define the interface names and specify the name of the routing
criteria that the Tuxedo CORBA environment should apply to each interface. Factory-based
routing is a feature that lets you distribute processing to specific server groups.

In addition to defining the INTERFACES section, you must specify routing criteria in the ROUTING
section and the names of groups in the GROUPS section when you implement factory-based
routing. For details about the parameters and more information about factory-based routing, see
the section “How to Create the ROUTING Section of the Configuration File” in this chapter.

Specifying CORBA Interfaces in the INTERFACES Section

You indicate specific information about CORBA interfaces used by your application in the
INTERFACES section of the configuration file. There are no required parameters. CORBA
interfaces need not be listed if no optional parameters are desired. The INTERFACES section
includes the following types of information:

e Whether transactions should be started automatically (AUTOTRAN) (CORBA only)

Setting Up an Oracle Tuxedo Application 3-81

e The routing criteria to be used for factory-based routing for this CORBA interface
(FACTORYROUTING) (CORBA only)

e L oad balancing information (LOAD)

e Assignment of priorities to interfaces (PR10)

e Different service parameters for different server groups (SRVGRP)

e Timeout value for transactions associated with this CORBA interface (TRANT IME)

e Timeout value for processing a method for this CORBA interface (TIMEOUT)

The following table lists the AUTOTRAN, FACTORYROUTING, LOAD, PR10O, SRVGRP, TRANT IME,
and TIMEOUT parameters characteristics.

Parameter

Characteristic

AUTOTRAN = {Y | N }

For each CORBA interface, set AUTOTRAN to Y if you want a transaction to start
automatically when an operation invocation is received. AUTOTRAN=Y has no
effect if the interface is already in transaction mode. The default is N.

The effect of specifying a value for AUTOTRAN is dependent on the transactional
policy specified by the system designer in the implementation configuration file
(ICF) or Server Description File (XML) for the interface. This transactional policy
will become the transactional policy attribute of the associated T_1FQUEUE MIB
object at run time. The only time this value actually affects the behavior of the
application is if the system designer specified a transaction policy of optional.

Note: To work properly, this feature may be dependent on personal
communication between the system designer and the system administrator.
If the system administrator sets this value to Y without prior knowledge of
the ICF or XML parameters set by the programmer, the actual run-time
effort of the parameter might be unknown.

FACTORYROUTING =
criterion-name

Specify the name of the routing criteria to be used for factory-based routing for this
CORBA interface. You must specify a FACTORYROUT ING parameter for
interfaces requesting factory-based routing.

LOAD = number

This is an arbitrary number between 1 and 100 that represents the relative load that
the CORBA interface is expected to impose on the system. The numbering scheme
is relative to the LOAD numbers assigned to other CORBA interfaces used by this
application. The default is 50. The number is used by the Oracle Tuxedo system to
select the best server to route the request.

3-82 Setting Up an Oracle Tuxedo Application

How to Create the INTERFACES Section of the Configuration File

Parameter

Characteristic

PRIO = number

Specify the dequeuing priority number for all methods of the CORBA interface.
The value must be greater than 0 and less than or equal to 100. 100 is the highest
priority. The default is 50.

SRVGRP =
server-group-name

Use SRVGRP to indicate that any parameter defined in this portion of the
INTERFACES section applies to the interface within the specified server group. For
a given CORBA interface, this feature lets you define different parameter values in
different server groups.

TRANTIME = number

If AUTOTRAN is set to Y, you must set the TRANT IME parameter, which is the
transaction timeout in seconds, for the transactions to be computed. The value must
be greater than or equal to zero and must not exceed 2,147,483,647 (231 - 1), or
about 70 years. A value of 0 (zero) implies there is no timeout for the transaction.
(The default is 30 seconds.)

TIMEOUT=number

The amount of time, in seconds, to allow for processing of a method for this
CORBA interface. The values must be greater than or equal to 0. A value of 0
indicates that the interface cannot time out. A timed-out method causes the server
processing the method for the interface to terminate with a SIGKILL event. You
should consider specifying a timeout value for the longest-running method for the
interface.

Specifying FACTORYROUTING Criteria

For each CORBA interface, the INTERFACES section specifies what kinds of criteria the interface
routes on. The INTERFACES section specifies the routing criteria via an identifier,

FACTORYROUTING.

University Sample

The University Production sample application demonstrates how to code factory-based routing
(see Listing 3-3). You can find the UBBCONFIG files (ubb_p.nt or ubb_p.mk) for this sample in
the directory where the Oracle Tuxedo software is installed. Look in the
\samples\corba\university\production subdirectory.

Listing 3-3 Production Sample INTERFACES Section

*INTERFACES

Setting Up an Oracle Tuxedo Application 3-83

"IDL:beasys.com/UniversityP/Registrar:1.0"
FACTORYROUTING = STU_ID

"IDL:beasys.com/BillingP/Teller:1.0"
FACTORYROUTING = ACT_NUM

The preceding example shows the fully qualified interface names for the two interfaces in the
University Production sample. The FACTORYROUTING identifier specifies the names of the
routing values, which are STU_ID and ACT_NUM, respectively.

To understand the connection between the INTERFACES FACTORYROUTING parameter and the
ROUT ING section, see the section “CORBA Factory-based Routing in the University Production
Sample Application” on page 3-89.

Bankapp Sample

Listing 3-4 shows how factory-based routing is specified in the Bankapp sample application.

Listing 3-4 Bankapp Sample Factory-based Routing

*INTERFACES
"IDL:BankApp/Teller:1.0"
FACTORYROUT ING=atmID

*ROUTING
atmlD

TYPE = FACTORY

FIELD = "atmilD"

FIELDTYPE = LONG

RANGES = "1-5:BANK_GROUP1,

6-10: BANK_GROUPZ2,

*:BANK_GROUP1

In this example, the IDL:Bankapp/Teller interface uses a factory-based routing scheme called
atmlD, as defined in the ROUTING section. In the ROUTING section, the sample indicates that the
processing will be distributed across two groups. BANK_GROUP1 processes interfaces used by the

3-84 Setting Up an Oracle Tuxedo Application

How to Create the INTERFACES Section of the Configuration File

application when the atm1D field is between 1 and 5, or greater than 10. BANK_GROUP2 processes
interfaces used by the application when the atmiD field is between 6 and 10, inclusive.

Enabling Load Balancing

In Oracle Tuxedo CORBA envirionments, load balancing is always enabled.

A LOAD factor is assigned to each CORBA interface invoked, which keeps track of the total load
of CORBA interfaces that each server process has performed. Each interface request is routed to
the server with the smallest total load. The routing of that request causes the server’s total to be
increased by the LOAD factor of the CORBA interface requested. When load balancing is not
activated, and multiple servers offer the same CORBA interface, the first available queue
receives the request.

For more information about load balancing in Oracle Tuxedo CORBA environments, refer to
“Enabling System-controlled Load Balancing,” in the Scaling, Distributing, and Tuning CORBA
Applications manual.

Support for parallel objects in CORBA environments has been added for release 8.0 of Oracle
Tuxedo, which introduces load balancing across mulitple servers in a local domain. For more
information about parallel objects in Oracle Tuxedo CORBA environments, refer to the “Using
Parallel Objects” section in Scaling, Distributing, and Tuning CORBA Applications.

Controlling the Flow of Data by Interface Priority

You can control the flow of data in a Oracle Tuxedo client or server application by assigning
interface priorities using the PR10 parameter. For instance, Server 1 offers Interfaces A, B, and
C. Interfaces A and B have a priority of 50 and Interface C has a priority of 70. An interface
requested for C will always be dequeued before a request for A or B. Requests for A and B are
dequeued equally with respect to one another. The system dequeues every tenth request in FIFO
order to prevent a message from waiting indefinitely on the queue.

The PR10 parameter has the following characteristics:
e |t determines the priority of a CORBA interface on the server’s queue.
e The highest assigned priority gets first preference.

e Every tenth request is dequeued FIFO.

Setting Up an Oracle Tuxedo Application 3-85

Specifying Different Interface Parameters for Different
Server Groups

You can specify different load, priority, or other interface-specific parameters for different server
groups. To do this, you should repeat the interface’s entry for each group with different values
for the SRVGRP parameter.

How to Create the ROUTING Section of the Configuration
File
The ROUTING section of UBBCONFIG allows you to provide a full definition of the routing criteria

named in the SERVICES section (for ATMI data-dependent routing) or in the INTERFACES section
(for CORBA factory-based routing).

Note: For more information about configuring factory-based routing for CORBA
environments, refer to the Scaling, Distributing, and Tuning CORBA Applications guide.

For each parameter in the ROUTING section, Table 3-11 provides a description and links to
reference pages and additional information.

Tahle 3-11 How to Create the ROUTING Section of the Configuration File

To Specify This Information in the ROUTING Section Set This Parameter For More Information,
(Optional) (Required/Optional) Click the Following
Ranges and associated server groups for the routing field. RANGES (Required) Range criteria

The value must be a string with a maximum length of 15 criterion_name
characters. (required)

For ATMI, the routing criteria name specified as the value
of the ROUT ING parameter in the SERV I CES section for
data-dependent routing.

For CORBA, the routing criteria name specified in the
INTERFACES section as the FACTORYROUT ING parameter
factory-based routing.

3-86 Setting Up an Oracle Tuxedo Application

How to Create the ROUTING Section of the Configuration File

Tahle 3-11 How to Create the ROUTING Section of the Configuration File

To Specify This Information in the ROUTING Section
(Optional)

Set This Parameter For More Information,
(Required/Optional) Click the Following

Specifies the routing type.

For ATMI, the default is TYPE=SERVICE to ensure that
existing UBBCONF G files used in Tuxedo ATMI
environments continue to work properly.

For CORBA, use TYPE=FACTORY when implementing
factory-based routing for a CORBA interface.

TYPE

Name of the routing field, which is assumed to be an FML
buffer, XML element or element attribute, view field name
identified in an FML field table (using FLDTBLDIR and
FIELDTBLS environment variables), or an FML view table
(using the VIEWDIR and VIEWFILES environment
variables), respectively. This information is used to obtain
the associated field value for data-dependent routing when
sending a message.

In CORBA factory-based routing, this value specifies the
name of the routing field. The maximum length is 30
characters. It must correspond to a field name specified for
factory-based routing in a factory’s call to:
TP::create_object reference (C++) or
com.beasys.Tobj.TP::create_object_
reference (Java) for the interface.

FI1ELD (Required) Routing buffer field
and type

A list of types and subtypes of data buffers for which this
routing entry is valid. This parameter may contain up to 256
characters with a maximum of 32 type/subtype
combinations.

BUFTYPE (required) Buffer types and
subtypes

ROUTING Section Example

The following is a sample ROUT ING section from a configuration file:

BRNCH FIELD=B_FLD
RANGES="0-2:DBG1,3-5:DBG2,6-9:DBG3"
BUFTYPE=""FML""

Setting Up an Oracle Tuxedo Application 3-87

Defining the Routing Buffer Field and Field Type

The following table describes the routing buffer field and field type.

Parameter

Characteristics

FIELD

The name of the buffer field on which the routing is performed. It may contain up to 30 characters.

In Oracle Tuxedo data-dependent routing, the value of this parameter is one of the following: the
name of an FML field (for FML buffers); an XML element or attribute; a VIEW field name identified
in an FML field table (using the FLDTBLDIR and FIELDTBLS environment variables); or an FML
view table (using the VIEWD IR and VIEWF ILES environment variables). This information is used
to obtain the associated field value for data-dependent routing during message processing. If a

field in an FML32 buffer is used for routing, it must have a field number less than or equal to 8191.

In routing XML documents, the FIELD syntax contains either a routing element type (or name) or
a routing element attribute name. You must define the FIELD parameter with the following
syntax:

root_element[/child_element][/child_element][/. .
-1[/@attribute_name]

The element is assumed to be an element type (or name) or an element attribute name of an XML
document or datagram. This information is used to obtain the associated element content or
element attribute value for data-dependent routing when a document or datagram is being sent.
Because indexing is not supported, the Oracle Tuxedo system recognizes only the first occurrence
of a given element type when processing an XML buffer for data-dependent routing.

In CORBA factory-based routing, this value specifies the name of the routing field. The maximum
length is 30 characters. It must correspond to a field name specified for factory-based routing in a
factory’s call to:

TP::create_object _reference (C++) or
com.beasys.Tobj.TP::create_object_reference (Java) for the interface.

FIELDTYPE

This parameter is used only for routing XML buffers. It indicates the type of the routing field
specified in FIELD.The syntax is as follows:

FIELDTYPE=type
where type is one of the following: string, char, short, long, float, or double.
The default type of the routing field is string.

3-88 Setting Up an Oracle Tuxedo Application

Specifying Range Criteria

Specifying Range Criteria
The RANGES parameter allows you to map field values to a group name as follows:
RANGES=""[vall[-val2]:groupl] [,val3[-val4]:group2]...[,*:groupn]”

where val1, val 2, and so on, are values of a field and groupn may be either a group name or the
wildcard character (*) denoting that any group may be selected. The * character occupying the
place of val at the end is a catch-all choice, that is, it specifies if the data does not fall into any
range that has been specified then it goes to the default group on the other hand if the data fall
into the range but there is no viable server in the group associated with the range entry, then the
service request is forwarded to the default group specified on the wildcard “*” range entry. The
value of val1 may be:

e A number (when it is used in a numeric field)
e A STRING or CARRAY buffer (enclosed in single quotation marks)

e MIN or MAX, to show a machine minimum or maximum data value

There is no limit to the number of ranges that may be specified, but routing information incurs a
cost because it is stored in shared memory.

Note: Overlapping ranges are allowed, but values that belong to both ranges map to the first
group. For example, if RANGES is specified as RANGES=""0-5:Groupl,3-5:Group2",
then a range value of 4 routes to Group1.

Defining Buffer Types

For Oracle Tuxedo data-dependent routing, the BUFTYPE parameter determines the buffer type
allowed. This parameter is similar to its SERVICES section counterpart in that it restricts the
routing criteria to a specific set of buffer types and subtypes. Only FML, XML and VIEW types can
be used for routing. The syntax is the same as the syntax in the SERVICES section, a
semicolon-separated list of type:subtype[,subtype]. You can specify only one type for
routing criteria. This restriction limits the number of buffer types allowed in routing services.

CORBA Factory-based Routing in the University
Production Sample Application

The CORBA University Production sample application demonstrates how to implement
factory-based routing in Oracle Tuxedo. You can find the ubb_p_nt or ubb_p.mk UBBCONFIG

Setting Up an Oracle Tuxedo Application 3-89

3-90

files for this sample in the directory where the Oracle Tuxedo software is installed. Look in the
\samples\corba\university\production subdirectory.

The following INTERFACES, ROUTING, and GROUPS sections from the ubb_b._nt
configuration file show how you can implement factory-based routing in a CORBA application
in Oracle Tuxedo.

The INTERFACES section lists the names of the interfaces for which you want to enable
factory-based routing. For each interface, this section specifies what kinds of criteria the interface
routes on. This section specifies the routing criteria via an identifier, FACTORYROUT ING, as in the
example in Listing 3-5.

Listing 3-5 Production Sample INTERFACES Section

*INTERFACES

"IDL:beasys.com/UniversityP/Registrar:1.0"
FACTORYROUTING = STU_ID

"IDL:beasys.com/BillingP/Teller:1.0"
FACTORYROUTING = ACT_NUM

The preceding example shows the fully qualified interface names for the two interfaces in the
Production sample in which factory-based routing is used. The FACTORYROUTING identifier
specifies the names of the routing values, which are STU_ID and ACT_NUM, respectively.

The ROUTING section specifies the following data for each routing value:

e The TYPE parameter, which specifies the type of routing. In the Production sample, the
type of routing is factory-based routing. Therefore, this parameter is defined to FACTORY .

e The FIELD parameter, which specifies the variable name that the factory inserts as the
routing value. In the Production sample, the field parameters are student_id and
account_number, respectively.

e The FIELDTYPE parameter, which specifies the data type of the routing value. In the
Production sample, the field types for student_id and account_number are long.

Setting Up an Oracle Tuxedo Application

CORBA Factory-based Routing in the University Production Sample Application

e The RANGES parameter, which associates a server group with a subset of the valid ranges
for each routing value.

Listing 3-6 shows the ROUT ING section of the UBBCONFIG file used in the Production sample
application.

Listing 3-6 Production Sample ROUTING Section

*ROUTING
STU_ID
FIELD = "student_id"
TYPE = FACTORY
FIELDTYPE = LONG
RANGES = ""100001-100005:0RA_GRP1,100006-100010:0RA_GRP2'*
ACT_NUM
FIELD = "account_number"*
TYPE = FACTORY
FIELDTYPE = LONG
RANGES = ""200010-200014:APP_GRP1,200015-200019:APP_GRP2*"

The preceding example shows that Registrar objects for students with IDs in one range are
instantiated to one server group, and Registrar objects for students with IDs in another range are
instantiated in another group. Likewise, Teller objects for accounts in one range are instantiated
to one server group, and Teller objects for accounts in another range are instantiated in another
group.

The groups specified by the RANGES identifier in the ROUT ING section of the UBBCONFIG file need
to be identified and configured. For example, the Production sample specifies four groups:
ORA_GRP1, ORA_GRP2, APP_GRP1, and APP_GRP2. These groups need to be configured, and the
machines where they run need to be identified.

Listing 3-7 shows the GROUPS section of the Production sample UBBCONF1G file. Notice how the
names in the GROUPS section match the group names specified in the ROUTING section; this is
critical for factory-based routing to work correctly. Furthermore, any change in the way groups
are configured in an application must be reflected in the ROUTING section. (Note that the

Setting Up an Oracle Tuxedo Application 3-91

Production sample packaged with the Oracle Tuxedo software is configured to run entirely on one
machine. However, you can easily configure this application to run on multiple machines.)

Listing 3-7 Production Sample GROUPS Section

*GROUPS
APP_GRP1
LMID = SITE1
GRPNO = 2

TMSNAME = TMS

APP_GRP2
LMID = SITE1
GRPNO = 3
TMSNAME = TMS

ORA_GRP1
LMID = SITE1
GRPNO = 4

OPENINFO = "ORACLE_XA:Oracle_XA+Acc=P/scott/tiger+SesTm=100+LogDir=_+MaxCur=5"

CLOSEINFO = ™"
TMSNAME = ""TMS_ORA™

ORA_GRP2
LMID = SITE1
GRPNO = 5

OPENINFO = "ORACLE_XA:Oracle_XA+Acc=P/scott/tiger+SesTm=100+LogDir=_+MaxCur=5"

CLOSEINFO = ™"
TMSNAME = "TMS_ORA™

3-92 Setting Up an Oracle Tuxedo Application

CORBA Factory-based Routing in the Bankapp Sample
Application

CORBA Factory-based Routing in the Bankapp Sample Application

Listing 3-8 shows how the INTERFACES section extends the Bankapp sample application to use
factory-based routing. The sample included with the Oracle Tuxedo software does not contain
these parameter settings.

Listing 3-8 Bankapp Sample INTERFACES Section

*INTERFACES

"IDL:BankApp/Teller:1.0"
FACTORYROUTING=atmlID

*ROUTING
atmlID
TYPE = FACTORY
FIELD = "atmID"
FIELDTYPE = LONG
RANGES = ''1-5:BANK_GROUP1,
6-10: BANK_GROUP2,
*:BANK_GROUP1
*GROUPS
SYS_GRP
LMID = SITE1
GRPNO =1
BANK_GROUP1
LMID = SITE1
GRPNO =2
BANK_GROUP2
LMID = SITE1
GRPNO =3

In this example, the IDL:Bankapp/Tel ler interface employs a factory-based routing scheme
called atmlD, as defined in the ROUTING section. The example indicates that the processing will
be distributed across the following two server groups:

Setting Up an Oracle Tuxedo Application

3-93

e BANK_GROUP1 processes interfaces used by the application when the atmID field is
between 1 and 5 (inclusive), or greater than 10.

e BANK_GROUP2 processes interfaces used by the application when the atmID is between 6
and 10, inclusive.

How to Configure the Oracle Tuxedo System to Take
Advantage of Threads

To configure a multicontexted application, edit your UBBCONFIG file as usual and add those
parameters, listed in Table 3-12, that are needed for your application. Use a text editor or the
Oracle Tuxedo Administration Console.

Tahle 3-12 Setting Parameters in the Configuration File to Use Threads

In This Section Set These Parameters With These Considerations.

RESOURCES MAXACCESSERS Optional parameter, but you must
assign a value to it you want more than
50 accessers (the default number).

Each context of a multicontexted
client is counted separately for
licensing purposes.

NOTIFY Optional parameter that defines the
default method to be used for
unsolicited notification. Valid values
for multicontexted applications are:
< DIPIN
< THREAD
= [IGNORE

3-94 Setting Up an Oracle Tuxedo Application

How to Configure the Oracle Tuxedo System to Take Advantage of Threads

Tahle 3-12 Setting Parameters in the Configuration File to Use Threads (Continued)

In This Section Set These Parameters

With These Considerations.

MACHINES MAXACCESSERS

Optional parameter, but you must
assign a value to it you want more than
50 accessers (the default number).

Each context of a multicontexted
client is counted separately for
licensing purposes.

MAXWSCLIENTS

Optional parameter.

Each context of a multicontexted
Workstation client is counted
separately for licensing purposes.
Because the default is 0, this parameter
must be set if any Workstation clients
are to access the system via the
machine being defined.

Setting Up an Oracle Tuxedo Application 3-95

Tahle 3-12 Setting Parameters in the Configuration File to Use Threads (Continued)

In This Section Set These Parameters

With These Considerations.

SERVERS MINDISPATCHTHREADS

Optional parameter.

MAXD ISPATCHTHREADS

Required parameter in multithreaded
Servers.

When making an existing server
multithreaded, an experienced
programmer must verify that the
source code for the server has been
written in a thread-safe manner. In
other words, it is not possible to
convert a single-threaded server,
written with static variables, to a
multithreaded server simply by
increasing the value of

MAXD 1 SPATCHTHREADS in the
configuration file. This server must
also be built for multithreading.

THREADSTACKSIZE

Optional parameter.

You may need to set it if your server
dispatch threads require an especially
large stack.

The default, 0, should be sufficient for
most applications. (Keep in mind that
when 0 is passed to the operating
system, the operating system invokes
its own default.)

How to Compile a Configuration File

Compiling a configuration file means generating a binary version of the file (TUXCONFIG) from
the text version (UBBCONFIG). To compile a configuration file, run the tmloadcf command.

tmloadcT parses a UBBCONFIG file and loads the binary file.

tmloadcT reads a file (or standard input written in UBBCONFIG syntax), checks the syntax, and
optionally loads a binary configuration file called TUXCONFIG. The TUXCONFIG and (optionally)
TUXOFFSET environment variables point to the TUXCONFIG file and (optional) offset where the

3-96 Setting Up an Oracle Tuxedo Application

How to Compile a Configuration File

information should be stored. You can run tmloadcf only on the machine designated as MASTER
in the RESOURCES section of the UBBCONFIG file, unless the -c or -n option is specified.

Notes: The user identifier (UID) of the person running tmloadcf must match the UID, if
specified, in the RESOURCES section of the UBBCONFIG file.

The pathname specified for the TUXCONFIG environment variable must match exactly
(including case) the pathname specified for TUXCONFIG parameter within the MACHINES
section of the UBBCONF G file. Otherwise, tmloadcf(1) cannot be run successfully.

Setting Up an Oracle Tuxedo Application 3-97

3-98 Setting Up an Oracle Tuxedo Application

About Transactions

This topic includes the following sections:

e What Is a Transaction?

Benefits of Using Transactions

Example of a Global Transaction

What Is the Oracle Tuxedo Transaction Manager (TM)?

How the System Tracks Distributed Transaction Processing

e How the System Uses a Two-Phase Commit to Commit Transactions

Note: For information about using transactions in an Oracle Tuxedo CORBA environment,
refer to Using CORBA Transactions.

What Is a Transaction?

A transaction is a set of related actions. A global transaction is a set of related actions that span
multiple programs and resource managers. In this topic, whenever we use the term transaction,
we are referring to a global transaction.

A simple example of a transaction is a withdrawal from a bank account, which can be described
as a set of actions that changes the state of an account balance (by reducing it). For this
transaction, the system must execute a procedure that consists of three operations:

Setting Up an Oracle Tuxedo Application 4-1

Procedure for Any Transaction Procedure for Bank Withdrawal Example

1. Verify the activity to be performed 1. Verify that a withdrawal will be made

2. Perform the work of the transaction 2. Withdraw a specified amount from the account

3. Create a permanent record of the completed work 3. Update the record of the balance of the account

42

These steps are performed by a discrete software module created expressly for the purpose of
executing this transaction. The module must also include or use code that launches and ends the
transaction. If the code sections that launch and end the transaction are not part of the main
transaction software module, then they are usually packaged together in a separate module.

A transaction coordinator is a software module that executes the logic to manage a transaction
among all participating resources.

What Are the ACID Properties?

When a transaction such as a bank withdrawal is performed, it is imperative that all its constituent
operations either succeed or fail together. Consider the problems that can occur if one operation
in a transaction succeeds while another operation in the same transaction fails: a bank that allows
a customer to withdraw money without recording the reduced balance in an updated account
record will not stay in business for long!

A transaction that adheres to the rule that all constituent operations either succeed or fail is
characterized by atomicity. The Oracle Tuxedo system requires all transactions to be
characterized by atomicity and three related attributes: consistency, isolation, and durability.
These four attributes are known collectively as the ACID properties of transactions performed
within the Oracle Tuxedo system.

Table 4-1 shows the ACID of Oracle Tuxedo Transactions.

Setting Up an Oracle Tuxedo Application

What Is a Transaction?

Table 4-1 ACID Properties of Oracle Tuxedo Transactions

This Property. ..

Means That. . .

Atomicity

A transaction is a discrete unit of work: all constituent operations
must either succeed or fail. These operations may include
queuing messages, updating databases, and displaying the results
of a transaction on a screen.

Consistency

A transaction must either (a) leave the system in a correct state or
(b) abort. If a transaction cannot achieve a stable state, it must
return to its initial state.

Isolation The behavior of a transaction is not affected by other transactions
being executed simultaneously. A transaction must serialize all
access to shared resources and guarantee that concurrent
programs do not corrupt each other’s operations.

Durability The effects of a committed transaction are permanent. Even if the

system fails, the changes resulting from a transaction are
permanent and durable.

How a Transaction Succeeds or Fails

Whether a transaction succeeds or fails depends on the requirements of atomicity.

If...

Then...

Any operation within the
transaction fails for any reason

e The transaction aborts, that is, it terminates abruptly.

* The transaction rolls back, that is, it undoes its own work and
restores the state of the enterprise to its pre-transaction state.
For example, after an attempt to withdraw money from a bank
account fails and is rolled back, the bank account contains the
same amount of money it contained before the transaction,
and the record of the account balance shows the same amount
that it showed before the transaction.

All operations within the
transaction succeed

The client commits the transaction. In other words, it formally
signals that it is ready to terminate and the effects of the
transaction should be preserved: the order database is updated
permanently and the order sent to the shipping department is kept
as a permanent record in that department’s queue.

Setting Up an Oracle Tuxedo Application 4-3

Benefits of Using Transactions

The Oracle Tuxedo system, including its communication APIs and protocols, is designed to
support the use of transactions. The Oracle Tuxedo communication calls, which make it easy to
create transactions, are indispensable tools for writing distributed applications.

By using transactions you can:

Create distributed applications easily

Commit the effects of your communications as a single unit

Quickly manage potential problems that may occur in a distributed environment, such as
machine, program, or network failures

Undo work, when errors occur, in a simple, programmatic way

Example of a Global Transaction

44

An e-retailer uses a service called CUST_ORDER. When a customer places an order through the
company’s Web site, the CUST_ORDER service performs two operations:

o |t updates the company’s database of orders.

o |t sends the new order to the shipping department, where it is put on a queue, awaiting
fulfillment.

The company wants to be sure that the CUST_ORDER service adheres to the principle of atomicity:
whenever CUST_ORDER is executed, both the database update and the enqueueing of the customer
request on the shipping department queue must be completed successfully. To make sure that the
CUST_ORDER service always handles customer orders with atomicity, the client that invokes
CUST_ORDER associates its request with a global transaction.

To associate a service with a global transaction, a client:
1. Calls tpbegin() to begin the transaction
2. lssues a service request

3. Calls tpcommit() to end the transaction

As part of a global transaction, the operation is performed as a single unit of work. When the
CUST_ORDER service is invoked, the server is propagated with the client’s transaction. The two
resulting operations, accessing the order database and enqueuing the order to the shipping queue,
become part of the client’s transaction.

Setting Up an Oracle Tuxedo Application

What Is the Oracle Tuxedo Transaction Manager (TM)?

If either operation fails for any reason, whether due to a system error or an application error, the
work of the transaction is undone or rolled back. In other words, the transaction is returned to its
initial state.

If both operations succeed, however, the client commits the transaction. In other words, it
formally signals that the effects of the transaction should be made permanent: the order database
is updated permanently and the order sent to the shipping department is kept in that department’s
queue.

What Is the Oracle Tuxedo Transaction Manager (TM)?

A resource manager (RM) is a data repository, such as a database management system or the
Application Queuing Manager, with tools for accessing the data. The Oracle Tuxedo system uses
one or more RMs to maintain the state of an application. For example, bank records in which
account balances are maintained are kept in an RM. When the state of the application changes
through a service that allows a customer to withdraw money from an account, the new balance in
the account is recorded in the appropriate RM.

The Oracle Tuxedo system helps you manage transactions involving resource managers that
support the XA interface. To coordinate all the operations performed and all the modules affected
by a transaction, the Oracle Tuxedo system plays the role of the Transaction Manager (TM).

The TM coordinates global transactions involving system-wide resources. Local resource
managers (RMs) are responsible for individual resources. The Transaction Manager Server
(TMS) begins, commits, and aborts transactions involving multiple resources. The application
code uses the normal embedded SQL interface to the RM to perform reads and updates. The TMS
uses the XA interface to the RM to perform the work of a global transaction.

Table 4-2 summarizes the actions taken by the Transaction Manager on behalf of each
transaction.

Table 4-2 Actions Performed by the Transaction Manager

When ... The Transaction Manager . ..
The application launches a Assigns a global transaction identifier (GTRID) to the
transaction transaction.

Other processes communicate with ~ Tracks those communication partners.
the process that launched the
transaction

Setting Up an Oracle Tuxedo Application 4-5

Tahle 4-2 Actions Performed by the Transaction Manager

When. .. The Transaction Manager . . .

The RM is accessed as part of the Passes the appropriate GTRID to the RM so the RM
work of the transaction can monitor which database records are being
accessed for the transaction.

The application signals that a Performs a two-phase commit protocol. Specifically,
transaction is to be committed it:
(a) contacts communication partners during Phase 1,
(b) logs the successful outcome of Phase 1, and
(c) contacts partners in Phase 2.

The application indicates that the Executes a rollback procedure.
transaction is to be aborted

A failure occurs Executes a recovery procedure.

How the System Tracks Distributed Transaction
Processing

46

Oracle Tuxedo transactions can be used in a distributed architecture: a local machine involved in
a transaction can communicate with a remote machine which may, in turn, communicate with
another remote machine. The work of transactions executed in this type of arrangement is
referred to as distributed transaction processing.

Because the system must constantly maintain enough information about a transaction to be able
to roll it back (that is, to restore it to its initial state) at any moment, tracking distributed
transaction processing (DTP) can be a complex task. To perform this task successfully, the Oracle
Tuxedo system stores tracking information about all the participants in a transaction in a
dedicated file called a transaction log, or TLOG.

Figure 4-1 shows an application in which two Transaction Managers (TMs) are being used. Both
TMs record tracking data in the same TLOG.

Setting Up an Oracle Tuxedo Application

How the System Tracks Distributed Transaction Processing

Figure 4-1 Transaction Management

WE Yes i Tl
W"/ TLOG _\‘_\ ,}V)

Transaction T i
Y oar W7 ransaction Yoar W7
Manager :4h Yes Manager Yes

Commit the Ves Roll Back the

Transaction Transaction

Yes

Before committing a transaction, the TM must repeatedly answer the question of whether to
proceed. If necessary, the TM makes the decision to roll back.

How the System Uses Global Transaction Identifiers
(GTRIDs) for Tracking

The Oracle Tuxedo system tracks the flow of all transactions being executed within a distributed
system, including those being executed concurrently. When it is time to commit a transaction, the
coordinator must know which RMs have participated in the transaction and, therefore, needs to
be able to distinguish among transactions. For this reason the Oracle Tuxedo system assigns a
global transaction identifier, or GTRID to each transaction.

The Oracle Tuxedo system communicates with any RM accessed by an application through the
XA interface. The RMs track transactions by assigning local transaction identifiers, and map
global identifiers to local identifiers.

How the System Uses a Transaction Log (TLOG) for Tracking

A global transaction is recorded in the transaction log (TLOG) only when it is in the process of
being committed. At the end of the first phase of a two-phase commit protocol, the TLOG records
the reply from the global transaction participants.

The existence of a TLOG record indicates that a global transaction should be committed; no TLOG
records are written for transactions that are to be rolled back.

In the first “pre-commit” phase, each resource manager must commit to performing the
transaction request. If all parties commit, transaction management performs the second phase: it

Setting Up an Oracle Tuxedo Application 4-7

4-8

commits and completes the transaction. If either task fails because of an application or system
failure, both tasks fail and the work performed is undone or “rolled back” to its initial state.

The TMS that coordinates global transactions uses the TLOG file. Each machine should have its
own TLOG.

If you are using the Domains component in your application, keep in mind that the Domains
gateway performs the functions of the TMS in Domains groups. However, Domains uses its own
transaction log containing information similar to that recorded in the TLOG, in addition to
Domains-specific information.

Writing TLOG to an Oracle Database

If you want to write TLOG into an Oracle database, you must do the following steps:

1. Install Oracle database 10g client (or later), create link IibclIntsh.so for
libcIntsh.so.x.x (for example, libclntsh.so0.10.1) and set LD_LIBRARY_PATH for
link IibcIntsh.so on Linux platform.

2. Set UBBCONFIG(5) TLOGDEVICE or DMCONFIG(5) DMTLOGDEV using the following format:
"DB:Oracle_XA: ..". For example:

TLOGDEVICE="DB:0Oracle_XA:ORACLE_XA+SqlNet=0ORCL+ACC=P/scott/tiger"
DMTLOGDEV=""DB:0Oracle_XA:0RACLE_XA+SqINet=ORCL+ACC=P/scott/tiger"

3. Run tmloadcf to generate TUXCONFIG.

4. Create TLOG using the tmadmin and dmadmin commands. Below is an example to create
TLOG using tmadmin. After TLOG command crlog is done, a table is created; the value that
TLOGNAME defines in UBBCONFIG becomes the table name.

$ tmadmin
$ crlog -m <Machine>

Note the followings.
e You can only write TLOG to an Oracle database. Third party databases are not supported.
e There is no need for you to create TLOG using tmadmin command crdl.

e TLOGDEVICE/DMTLOGDEV points to Oracle database schema, which Tuxedo treats it as a
database storage device.

e Below are the rules for TLOGNAME in UBBCONFIG.

Setting Up an Oracle Tuxedo Application

How the System Uses a Two-Phase Commit to Commit Transactions

— TLOGNAME in UBBCONFIG must not be empty. If multiple TLOG files are stored in the
same schema of database, DBA should guarantee that TLOGNAME is unique for each
TLOG, and Tuxedo exclusively accesses the database table that TLOGNAME specifies for
the TLOG.

— Do not start TLOGNAME with "QS" or "TUX" because they are reserved by Tuxedo. DBA
should guarantee that.

— Uppercase TLOGNAME when using TLOG2DB.

— Different platforms should share different database schemas.

How the System Uses a Two-Phase Commit to Commit
Transactions

A two-phase commit is an algorithm used to ensure the integrity of a committing transaction.

To understand how this algorithm works, consider the following sample scenario. A group of six
friends wants to rent a house for a one-week vacation. No member of the group can afford to pay
more than one sixth of the rent; if any of the six cannot participate, then the house cannot be
rented.

1.

In Phase 1 of this project, the organizer of the vacation contacts each person to verify
availability and collect a sixth of the rent. If the organizer learns that even one person cannot
participate, she contacts every member of the group, individually, to notify him or her that the
house cannot be rented. If, however, each member of the group confirms availability and pays
one sixth of the rent, the Phase 1 concludes successfully.

In Phase 2 of the project, the organizer notifies each member of the group that the vacation
will take place as planned.

A two-phase transaction commit works in much the same way as the vacation planning project.

1.

In Phase 1, the transaction coordinator contacts potential participants in the transaction. The
participants all agree to make the results of the transaction permanent, but do not do so
immediately. The participants log information to disk to ensure they can complete Phase 2. If
all the participants agree to commit, the coordinator logs that agreement and the outcome is
decided. The recording of this agreement in the log ends Phase 1.

In Phase 2, the coordinator informs each participant of the decision, and they permanently
update their resources.

Setting Up an Oracle Tuxedo Application 4-9

4-10

How the System Handles Transaction Infection

Any application module called by another module to participate in a transaction is said to be
transactionally infected. Once an application module is infected, the Oracle Tuxedo system
tracks all participants to determine which of them should be involved in the two-phase commit.
Figure 4-2 shows how the system tracks participants.

Figure 4-2 Transactional Infection

Server i
Service Af)
Client 1 1 ;
tpreturn) ;
tphecdin (. . .)F 2 }
tpoall f(“"Serwvice A", | . :I;/ Server B
tpoall ("Serwiece B", . . .); 3
tpcall {("Service C", . . _); " Bervice E()
{
tpoommit) ; 4 - - e .
tpreturnd) ;
2 }
Senver C

Serwice Cf)
{
tpreturnl) ;

}

In the preceding figure, Client 1 begins the transaction and calls three services: A, B, and C.
Because they have been called into the transaction, Services A, B, and C are transactionally
infected. All work performed by servers A, B, and C is part of the transaction begun by Client 1.
All work is performed as one unit; either it is performed together and is successful, or it fails and
is rolled back by calling tpabort. If the transaction fails, it returns to its initial state and its effects
of the transaction on resource managers are undone. (Resource managers that are not
transactionally aware and those that are accessed from outside the transaction cannot be rolled
back.)

Setting Up an Oracle Tuxedo Application

How the System Uses a Two-Phase Commit to Commit Transactions

How the ATMI Protects a Transaction’s Integrity Before a
Two-Phase Commit

All work performed by each resource involved in a transaction must be completed before a
two-phase commit is begun. The ATMI ensures that all the work of the transaction is stopped
when it is time for the two-phase commit protocol to begin.

The following step-by-step description of a transaction shows how the ATMI stops a transaction
process before a two-phase commit.

1. Client_1 initiates (with tpbegin()) a transaction.
2. Client_1 invokes (with tpcal 1)) Service_A, which:
a. Isinfected with the transaction
b. Executes its operations
c. Calls tpreturnQ)
d. Completes its work for the transaction
3. Client_1 invokes (with tpcal 1)) Service_B, which:
a. Is infected with the transaction
b. Executes its operations
c. Calls tpreturnQ)
d. Completes its work for the transaction
4. Client_1 invokes (with tpcal 1)) Service_C, which:
a. Is infected with the transaction
b. Executes its operations
c. Calls tpreturnQ)
d. Completes its work for the transaction

5. Client_1 initiates (with tpcommit()) the commitment process.

If, during the transaction, an invoked service is performing another service, or is involved in an
open conversation, the ATMI tracks that activity and prevents the application from proceeding to
the commitment process until the activity is complete.

Setting Up an Oracle Tuxedo Application 4-1

4-12

The ATMI guarantees that the transaction is committed only if all invoked services have
performed their transaction work successfully. When all work has been performed successfully,
the Transaction Manager informs the resource managers that all updates made during the
transaction are permanent.

See Also

“Modifying the UBBCONFIG File to Accommodate ATMI Transactions” on page 5-1
“Modifying the Domains Configuration File to Support Transactions” on page 5-9
“Example: A Distributed Application with Transactions” on page 5-12

“Writing Global Transactions” in Programming Oracle Tuxedo ATMI Applications Using C
“What You Can Do Using the ATMI” in Introducing Oracle Tuxedo ATMI

For more information about using transactions in a Oracle Tuxedo CORBA environment,
refer to Using CORBA Transactions

Setting Up an Oracle Tuxedo Application

CHAPTERa

Configuring Your ATMI Application to
Use Transactions

This topic includes the following sections:

e Modifying the UBBCONFIG File to Accommodate ATMI Transactions

Specifying Global Transaction Parameters in the RESOURCES Section

Creating a Transaction Log (TLOG) in the MACHINES Section

Defining Resource Managers and the Transaction Manager Server in the GROUPS Section

Enabling a Service to Begin a Transaction in the SERVICES Section

Modifying the Domains Configuration File to Support Transactions

e Example: A Distributed Application with Transactions

Note: For information about using transactions in an Oracle Tuxedo CORBA environment,
refer to Using CORBA Transactions.

Modifying the UBBCONFIG File to Accommodate ATMI
Transactions

To accommodate transactions, you must modify the RESOURCES, MACHINES, GROUPS, and
SERVICES sections of the application UBBCONFIG file in the following ways.

Setting Up an Oracle Tuxedo Application 5-1

5-2

In This Section . . . Specify . ..

RESOURCES The number of transactions allowed in the application, and the value
of the commit control flag.

MACHINES The TLOG information for each machine.

GROUPS Information about each resource manager, and about the Transaction
Manager Server.

SERVICES Enabling of the automatic transaction option.

Setting Up an Oracle Tuxedo Application

Specifying Global Transaction Parameters in the RESOURCES Section

Specifying Global Transaction Parameters in the
RESOURCES Section

The following table describes the transaction-related parameters in the RESOURCES section.

Set This
Parameter. ..

To...

MAXGTT

Limit the total number of global transaction identifiers (GTR1Ds)
allowed on one machine at one time. The maximum value allowed is
2048; the minimum, O; and the default, 100. You can override the value
of MAXGTT on a per-machine basis in the MACHINES section.

Entries remain in the table only while a global transaction is active, so
this parameter has the effect of setting a limit on the number of
simultaneous transactions.

CMTRET

Indicate the initial setting of the TP_COMMIT_CONTROL characteristic
as one of the following:

e LOGGED—the TP_COMMIT_CONTROL characteristic is set to
TP_CMT_LOGGED, which means that tpcommit() returns when
all the participants have successfully pre-committed.

e COMPLETE—the TP_COMMIT_CONTROL characteristic is set to
TP_CMT_COMPLETE, which means that tpcommit() does not
return until all the participants have successfully committed.

The default is COMPLETE.

To determine the appropriate setting, consult your resource manager
(RM) vendors. If any RM in the application uses the late commit
implementation of the XA standard, the setting should be COMPLETE. If
all RMs use the early commit implementation, the setting should be
LOGGED for performance reasons. (You can override this setting with
tpscmt().)

MAXTRANT IME

Specify the maximum length of the timeout for the transactions.
Valid values are between 0 and 2,147,483,647 inclusive.

0 represents no limitation on transaction timeout value occurs.
Default is 0.

Note: For more information about MAXTRANT IME, see

MAXTRANT IME in the RESOURCES section in UBBCONF1G(5)
or TA_MAXTRANT IME in the T_DOMAIN class in TM_MIB(5).

Setting Up an Oracle Tuxedo Application 5-3

Creating a Transaction Log (TLOG) in the MACHINES
Section

5-4

To create a TLOG, complete the following tasks:
e Create a Universal Device List (UDL).
e Define transaction-related parameters in the MACHINES section.

e Create a Domains transaction log.

Creating the UDL

The Universal Device List (UDL) is a map of the Oracle Tuxedo filesystem. The UDL gets loaded
into shared memory when an application is booted. The TLOG refers to a log in which information
about transactions is kept until the transaction is completed. To create an entry in the UDL for the
TLOG device, create a UDL on each machine using global transactions. (If the TLOGDEVICE is
mirrored between two machines, it is unnecessary to do this on the paired machine.) The Bulletin
Board Liaison (BBL) then initializes and opens the TLOG during the boot process.

To create a UDL, enter the following command before the application is booted:
tmadmin -c crdl -z config -b blocks
Note: The command fails if the device already exists.

The value of config must be the full pathname of the device on which you create the UDL. It
should match the value of the TLOGDEVICE parameter in the MACHINES section of the
configuration file. The value of blocks must be the number of blocks to be allocated on the
device.

Note: If the value of blocks is less than the value of TLOGSI1ZE, you risk a performance
degradation. Therefore, you should specify a value for blocks that is greater than that of
TLOGSIZE. For example, if TLOGSI1ZE is specified as 200 blocks, specifying -b 500 does
not cause a degradation.

For more information about storing the TLOG, see Installing the Oracle Tuxedo System.

Defining Transaction-related Parameters in the MACHINES
Section

To define a global transaction log (TLOG), you must set several parameters in the MACHINES
section of the UBBCONFIG file.

Setting Up an Oracle Tuxedo Application

Creating a Transaction Log (TLOG) in the MACHINES Section

For one of these parameters, TLOGDEVICE, you must manually create a device list entry for the
TLOGDEVICE on each machine where a TLOG is needed. You can do this either before or after
TUXCONFIG has been loaded, but you must complete this step before the system is booted.

The following table describes the transaction-related parameters in the MACHINES section.

Set This Parameter . .. To Specify . . .
TLOGNAME The name of the DTP transaction log for the machine.
TLOGDEVICE The Oracle Tuxedo filesystem that contains the DTP

transaction log (TLOG) for the machine. If this parameter is not
specified, it is assumed that there is no TLOG on the machine.
The value may contain a maximum of 64 characters.

TLOGSIZEE The size, in physical pages, of the TLOG file. The value must
be between 1 and 2048; the default, 100. Assign a value that
is large enough to hold the number of outstanding transactions
on the machine at a given time. One transaction is logged per
page. The default should be enough for most applications.

TLOGOFFSET The offset, in pages, from the beginning of the TLOGDEVICE
to the start of the VTOC that contains the transaction log for the
machine.The value must be greater than or equal to 0, and less
than the number of pages on the device. The default is 0.

TLOGOFFSET is rarely necessary. However, if two VTOCs
share the same device, or if a VTOC is stored on a device (such
as a filesystem) that is shared with another application, you
can use TLOGOFFSET to indicate a starting address relative to
the address of the device.

Writing TLOG to an Oracle Database

If you want to write tlog into an Oracle database, you do not need to create a UDL.
You must do the following steps:

1. Install Oracle database 10g client (or later), create link IibclIntsh.so for
libcIntsh.so.x.x (for example, libclntsh.so0.10.1) and set LD_L IBRARY_PATH for
link libclIntsh.so on Linux platform.

2. Set UBBCONFIG(5) TLOGDEVICE or DMCONFIG(5) DMTLOGDEV using the following format:
"DB:Oracle_XA: ..".

Setting Up an Oracle Tuxedo Application 5-5

3. Create tlog using the tmadmin and dmadmin commands.

Note: You can only write tlog to an Oracle database. Third party databases are not supported.

Creating the Domains Transaction Log

Before starting a Domains gateway group, you must create a Domains transaction log.
Specifically, you must create a Domains transaction log for the named local domain on the
current machine (that is, the machine on which DMADM is running). To create a log, enter the
following command:

dmadmin crdmlog crdlog -d local_domain_name

The command uses the parameters specified in the DMCONFI1G file. This command fails if the
named local domain is active on the current machine or if a log already exists. If a transaction log
has not been created, the Domains gateway group creates one when that group starts.

See Also

e “What Is the Transaction Log (TLOG)?” in Administering an Oracle Tuxedo Application at
Run Time

Defining Resource Managers and the Transaction
Manager Server in the GROUPS Section

The parameters available for GROUPS section entries allow you to define the attributes of
transaction manager servers (TMSs) and resource managers (RMs) for a particular group.

e For a TMS, a server that performs most of the work that controls global transactions, you
can define the following parameters:

— TMSNAME contains the name of the executable for the transaction manager server
associated with the group defined in the entry. The Oracle Tuxedo system provides a
null transaction manager server called TMS, which is used by groups that participate in
transactions, but do not use an RM. This TMS server does not communicate with any
resource manager; it simply manages transactions without communicating with an RM.

— TMSCOUNT contains the number of TMSs to be booted (minimum of 2, maximum of 10,
default of 3).

e For each resource manager you can define the OPENINFO and CLOSE INFO parameters. The
value of each is a string that contains information needed to open or close a resource

5-6 Setting Up an Oracle Tuxedo Application

Defining Resource Managers and the Transaction Manager Server in the GROUPS Section

manager, respectively. Appropriate values for these parameters are supplied by RM
vendors. For example, if you are using an Oracle database as your RM, you might supply
the value shown in the following entry:

OPENINFO=""ORACLE_XA:
Oracle_XA+Acc=P/Scott/*****+SesTm=30+LogDit=/tmp”

Sample of the GROUPS Section

The following sample entry is from the GROUPS section in bankapp, the sample banking
application you received with the Oracle Tuxedo system.

BANKB1 GRPNO=1 TMSNAME=TMS_SQL TMSCOUNT=2
OPENINFO=""TUXEDO/SQL : APPDIR/bankdl1:bankdb: readwrite”

Description of Transaction Values in the Sample GROUPS Section
This table describes the transaction values shown in the sample GROUPS entry.

Transaction Value Purpose

BANKB1 GRPNO=1 Contains the name of the transaction manager

TMSNAME=TMS_SQL TMSCOUNT=2 server (TMS_SQL), and the number (2) of these
servers to be booted in the group BANKB1

TUXEDO/SQL Published name of the resource manager

APPDIR/bankdl1 Device name

bankdb Database name

readwrite Access mode

Characteristics of the TMSNAME, TMSCOUNT, OPENINFO, and CLOSEINFO
Parameters

The following table lists the characteristics of the TMSNAME, TMSCOUNT, OPENINFO, and
CLOSE INFO parameters.

Setting Up an Oracle Tuxedo Application 5-1

Set This
Parameter. .. To Specify the ...

TMSNAME Name of the transaction manager server executable.
Required parameter for applications with transactions.
TMS is a null transactional manager server.

TMSCOUNT Number of transaction manager servers (must be between 2 and 10).
Default is 3. This parameter is optional.

OPENINFO, Information needed to open or close a resource manager.
CLOSEINFO Content depends on the resource manager.
Value starts with the name of the resource manager.

Omission means the RM needs no information to open or close.

Enabling a Service to Begin a Transaction in the
SERVICES Section

In certain situations, you may want to set three transaction-related parameters—AUTOTRAN,
TRANTIME, and ROUT ING—in the SERVICES section.

e |f you want a transaction to be started by a service instead of a client, you must set the
AUTOTRAN flag to Y. This setting is useful if a service is not needed as part of any larger
transaction, and if the application wants to relieve the client of making transaction
decisions. If the service is called when a transaction already exists, this call becomes part
of it. (The default is N.)

Note: Generally, clients are the best initiators of transactions because a service can
participate in a larger transaction.

o |f AUTOTRAN is set to Y, you must set the TRANT IME parameter, which is the length of the
timeout for transactions to be created. The value must be greater than or equal to 0, and

must not exceed 2,147,483,647 (that is, 23! - 1, or about 70 years). A value of zero
implies there is no timeout for the transaction. (The default is 30 seconds.)

e You must define the ROUTING parameter for transactions that use data-dependent routing.

5-8 Setting Up an Oracle Tuxedo Application

Modifying the Domains Configuration File to Support Transactions

Characteristics of the AUTOTRAN, TRANTIME, and ROUTING
Parameters

The following table lists the characteristics of the AUTOTRAN, TRANTIME, and ROUT ING
parameters.

Set This
Parameter. .. To...

AUTOTRAN Make a service the initiator of a transaction.

To work properly, may be dependent on personal communication
between the application designer and the application administrator. If the
administrator sets this value to Y without prior knowledge of the ICF
parameters set by the developer, the wrong application behavior, or
failure of the application might be observed.

If a transaction already exists, a new one is not started.
Default is N.

TRANT IME Specify the length of the timeout for the AUTOTRAN transactions.
Valid values are between 0 and 2,147,483,647 inclusive.
0 represents no timeout.
Default is 30 seconds.

ROUTING Point to an entry in the ROUT ING section where data-dependent routing
is specified for transactions that request this service.

Modifying the Domains Configuration File to Support
Transactions

To enable transactions across domains, you need to set parameters in both the DM_LOCAL and the
DM_ IMPORT sections of the Domains configuration file (DMCONFIG). Entries in the DM_LOCAL
section define local domain characteristics. Entries in the DM_IMPORT section define services that
are imported, or available from remote domains.

Setting Up an Oracle Tuxedo Application 5-9

5-10

Characteristics of the DMTLOGDEV, DMTLOGNAME,
DMTLOGSIZE, MAXRAPTRAN, and MAXTRAN Parameters

The DM_LOCAL section of the Domains configuration file identifies local domains and the
gateway groups associated with them. For each gateway group (Local Domain), you must create
an entry that specifies the parameters required for the Domains gateway processes running in that

group.

The following table describes the five transaction-related parameters in this section: DMTLOGDEV,

DMTLOGNAME, DMTLOGS 1 ZE, MAXRAPTRAN, and MAXTRAN.

Set This
Parameter. ..

To Specify . . .

DMTLOGDEV

The Oracle Tuxedo filesystem that contains the Domains transaction log
(DMTLOG) for this machine. The DMTLOG is stored as an Oracle Tuxedo
VTOC table on the TLOGDEVICE (an Oracle Tuxedo filesystem). If this
parameter is not specified, the Domains gateway group is not allowed to
process requests in transaction mode. Local domains running on the same
machine can share the same DMTLOGDEY filesystem, but a separate log (a
table in the DMTLOGDEV) must be created for each local domain. The
name of each log is determined by the DMTLOGNAME parameter.

DMTLOGNAME

The name of the Domains transaction log for this domain. If this domain
resides on the same filesystem as other local domains (as reflected by a
common value for DMTLOGDEV), then the value of DMTLOGNAME must
be unique for each log. The value may contain a maximum of 30
characters. The default is DMTLOG.

DMTLOGSIZE

The size, in pages, of the Domains transaction log for this machine. The
value must be greater than zero and less than the amount of available
space on the Oracle Tuxedo filesystem. The default is 100 pages.

Note: The number of domains in a transaction determines the number
of pages you must specify in the DMTLOGS I ZE parameter. There
is no one-to-one mapping between transactions and log pages.

Setting Up an Oracle Tuxedo Application

Modifying the Domains Configuration File to Support Transactions

Set This
Parameter . . . To Specify . . .

MAXRAPTRAN The maximum number of domains that can be involved in a transaction.
It must be greater than zero and less than 32,768. The default is 16.

MAXTRAN The maximum number of simultaneous global transactions allowed in
this local domain. It must be greater than or equal to zero, and less than
or equal to the MAXGTT parameter (which is defined in the configuration
file). The default is the value of MAXGTT.

Characteristics of the AUTOTRAN and TRANTIME Parameters

The DM_IMPORT section of the Domains configuration file provides information about services
that are imported and thus available from remote domains. Each remote service is associated with
a particular remote domain.

You have the option of setting two parameters in the DM_IMPORT section that support
transactions: AUTOTRAN and TRANTIME. The following table describes these parameters.

This Parameter . . . IsUsed...

AUTOTRAN By gateways to automatically start and terminate transactions
for remote services. This capability is required if you want to
enforce reliable network communication with remote services.
To request this capability, set the AUTOTRAN parameter to Y in
the entry for the appropriate remote service.

TRANT IME To specify the default timeout, in seconds, for a transaction
automatically started for the service being defined. The value
must be greater than or equal to zero, and less than 2147483648.
A value of zero implies the maximum timeout value for the
machine. The default is 30 seconds.

An additional transaction-timeout property named MAXTRANT IME from the RESOURCES section of
the UBBCONFIG file is also available. If the MAXTRANT IME timeout value is less than the TRANT IME
timeout value or the timeout value passed in a tpbegin(3c) call to start a transaction, the timeout
for a transaction is reduced to the MAXTRANT IME value. MAXTRANT IME has no effect on a
transaction started on a machine running Oracle Tuxedo 8.0 or earlier, except that when a

Setting Up an Oracle Tuxedo Application 5-11

machine running Oracle 8.1 or later is infected by the transaction, the transaction timeout value
is capped—reduced if necessary—to the MAXTRANT IME value configured for that node.

For a Domains configuration, the following transaction-handling scenarios are possible:

e If an interdomain transaction infects a node that does not understand the MAXTRANT IME
parameter, or the node understands the MAXTRANT IME parameter but the parameter is not
set, the timeout value for the transaction is determined by TRANTIME or by the timeout
value passed in the tpbegin() call that started the transaction. If the TRANTIME or
tpbegin() timeout value is exceeded, all Oracle nodes infected with the transaction—
including the node that started the transaction—generate a TMS timeout message.

o If an interdomain transaction infects a node that understands the MAXTRANT IME parameter
and the parameter is set for that node, the timeout value for the transaction is reduced to no
greater than the MAXTRANT IME value on that node.

If the TRANTIME or tpbegin() timeout value is less than or equal to MAXTRANT IME, the
transaction-handling scenario becomes the one previously described.

If the TRANTIME or tpbegin() timeout value is greater than MAXTRANT IME, the infected
node reduces the timeout value for the transaction to MAXTRANT IME. If the MAXTRANT IME
timeout value is exceeded, the infected node generates a TMS timeout message.

For more information about MAXTRANT IME, see MAXTRANT IME in the RESOURCES section in
UBBCONFIG(5) or TA_MAXTRANTIME in the T_DOMAIN class in TM_MIB(5).

Example: A Distributed Application with Transactions

5-12

This section provides sample entries from a configuration file that defines bankapp as an
application that supports transactions and is distributed over three sites. The application is
characterized by the following:

Data-dependent routing on ACCOUNT_1D

Data distributed over three databases

BRIDGE processes communicating with the system via the ATMI interface

Application administration from one site

The file includes seven sections: RESOURCES, MACHINES, GROUPS, NETWORK, SERVERS,
SERVICES, and ROUT ING.

Setting Up an Oracle Tuxedo Application

Example: A Distributed Application with Transactions

Sample RESOURCES Section

The following listing shows a sample RESOURCES section.

Listing 5-1 Sample RESOURCES Section

*RESOURCES
#

IPCKEY

ulibD

GID

PERM
MAXACCESSERS
MAXSERVERS
MAXSERVICES
MAXGTT
MASTER
SCANUNIT
SANITYSCAN
BBLQUERY
BLOCKT IME
DBBLWAIT
OPTIONS
MODEL

LDBAL

99999

0660

25

25

40

20

SITE3, SITEl
10

12

180

30

6

LAN, MIGRATE
MP

Y

In the preceding listing, note the following:

o MAXSERVERS, MAXSERVICES, and MAXGTT are set to values that are smaller than the

defaults, which reduces the size of the bulletin board.

e The MASTER is SITE3 and the backup master is SITEL.

e Itis possible to use a networked configuration with migration because MODEL is set to MP

and OPTIONS is set to LAN, MIGRATE.

e Because BBLQUERY is set to 180 and SCANUNIT is set to 10, the DBBL will check the remote
BBLS every 1800 seconds (that is, every half hour).

Setting Up an Oracle Tuxedo Application

5-13

Sample MACHINES Section

The following listing shows a sample MACHINES section.

Listing 5-2 Sample MACHINES Section

*MACHINES

giselle LMID=SITE1
TUXDIR=""/usr/tuxedo”
APPDIR="/usr/home”
ENVFILE="/usr/home/ENVFILE”
TLOGDEVICE=""/usr/home/TLOG”
TLOGNAME=TLOG
TUXCONF1G=""/usr/home/tuxconfig”
TYPE="3B600"

romeo LMID=SITE2
TUXDIR=""/usr/tuxedo”
APPDIR="/usr/home”
ENVFILE="/usr/home/ENVFILE”
TLOGDEVICE="/usr/home/TLOG”
TLOGNAME=TLOG
TUXCONF1G=""/usr/home/tuxconfig”
TYPE=""SEQUENT”

juliet LMID=SITE3

TUXDIR=""/usr/tuxedo”
APPDIR="/usr/home”
ENVFILE="/usr/home/ENVFILE”
TLOGDEVICE=""/usr/home/TLOG”
TLOGNAME=TLOG
TUXCONF1G=""/usr/home/tuxconfig”
TYPE=""AMDAHL”

In the preceding listing, note the following:

5-14 Setting Up an Oracle Tuxedo Application

Example: A Distributed Application with Transactions

e TLOGDEVICE and TLOGNAME are specified, which implies that transactions will be done.

e The TYPE parameters are all different, which indicates that all messages sent between
machines will be encoded and decoded.

Sample GROUPS and NETWORK Sections

The following listing shows sample GROUPS and NETWORK sections.

Listing 5-3 Sample GROUPS and NETWORK Sections

*GROUPS

DEFAULT: TMSNAME=TMS_SQL TMSCOUNT=2

BANKB1 LMID=SITE1 GRPNO=1
OPENINFO="TUXEDO/SQL : Zusr/home/bankdl1:bankdb:readwrite”
BANKB2 LMID=SITE2 GRPNO=2
OPENINFO="TUXEDO/SQL : Z/usr/home/bankdl2:bankdb:readwrite”
BANKB3 LMID=SITE3 GRPNO=3

OPENINFO="TUXEDO/SQL : Zusr/home/bankdl3:bankdb:readwrite”

*NETWORK

SITEL NADDR=""0X0002ab117B2D4359”
BRIDGE=""/dev/tcp”
NLSADDR=""0X0002ab127B2D4359”

SITE2 NADDR=""0X0002ab117B2D4360”
BRIDGE=""/dev/tcp”
NLSADDR=""0X0002ab127B2D4360"

SITE3 NADDR=""0X0002ab117B2D4361"

BRIDGE=""/dev/tcp”
NLSADDR="0X0002ab127B2D4361"

In the preceding listing, note the following:

Setting Up an Oracle Tuxedo Application 5-15

e The TMSCOUNT is set to 2, which means that only two TMS_SQL transaction manager servers
will be booted per group.

e The OPENINFO string indicates that the application will perform database access.

Sample SERVERS, SERVICES, and ROUTING Sections

The following listing shows sample SERVERS, SERVICES, and ROUTING sections.

Listing 5-4 Sample SERVERS, SERVICES, and ROUTING Sections

*SERVERS

DEFAULT: RESTART=Y MAXGEN=5 REPLYQ=N CLOPT=""-A"

TLR SRVGRP=BANKB1 SRVID=1 CLOPT="-A -- -T 100"
TLR SRVGRP=BANKB2 SRVID=3 CLOPT="-A -- -T 400"
TLR SRVGRP=BANKB3 SRVID=4 CLOPT="-A -- -T 700"
XFER SRVGRP=BANKB1 SRVID=5 REPLYQ=Y

XFER SRVGRP=BANKB2 SRVID=6 REPLYQ=Y

XFER SRVGRP=BANKB3 SRVID=7 REPLYQ=Y

*SERVICES

DEFAULT: AUTOTRAN=N

WITHDRAW ROUTING=ACCOUNT_ID

DEPOSIT ROUTING=ACCOUNT_ID

TRANSFER ROUT ING=ACCOUNT_ID

INQUIRY ROUT ING=ACCOUNT_ID

*ROUTING

ACCOUNT_ID FI1ELD=ACCOUNT_ID BUFTYPE="FML”’

RANGES="MON - 9999:%*,
10000 - 39999:BANKB1
40000 - 69999 :BANKB2
70000 - 100000:BANKB3

In the preceding listing, note the following:

5-16 Setting Up an Oracle Tuxedo Application

Example: A Distributed Application with Transactions

Calls to the tpsvrinit() function by TLR servers will include a number (100, 400, or
700) specified with the -T option.

All service requests are routed on the ACCOUNT_ID field.

No services are performed in AUTOTRAN mode.

See Also

“What Is a Transaction?” on page 4-1

“Using Tuxedo with Oracle Real Application Clusters (RAC)” on page 6-1

“Writing Global Transactions” in Programming Oracle Tuxedo ATMI Applications Using C
“What You Can Do Using the ATMI” in Introducing Oracle Tuxedo ATMI

For more information about using transactions in an Oracle Tuxedo CORBA environment,
refer to Using CORBA Transactions

Setting Up an Oracle Tuxedo Application 5-11

5-18 Setting Up an Oracle Tuxedo Application

CHAPTERa

Using Tuxedo with Oracle Real
Application Clusters (RAC)

This chapter includes the following sections.
e Instance Awareness
e Using Tuxedo with XA Affinity
e Using Tuxedo with Common XID
e Using Tuxedo with Single Group Multiple Branches (SGMB)

e Using Tuxedo with Fast Application Notification (FAN)

This release also supports the following RAC features added in previous releases.

e Using Tuxedo with Oracle Real Application Clusters (RAC)

Instance Awareness

For the servers associated with Oracle Database, Tuxedo uses customized callback to retrieve
Oracle Database instance information.

o XA Server

Tuxedo uses customized callback to retrieve Oracle Database instance information by static
callback registration for XA servers.

o Non-XA Server

Using Tuxedo with Oracle Real Application Clusters (RAC) 6-1

Using Tuxedo with Oracle Real Application Clusters (RAC)

Tuxedo uses customized callback to retrieve Oracle Database instance information by
dynamic callback registration for non-XA servers with the following requirements.

— $TUXDIR/1ib/tuxociucb.so.1.0 package should be deployed in
$ORACLE_HOME/lib.

— ORA_OCI_UCBPKG environment variable must include the package name.

It is necessary to deploy the package into $ORACLE_HOME/ I ib before running a non-XA
server that needs instance awareness; otherwise, the server that uses dynamic callback
registration will fail.

Non-XA server tries to automatically set the environment variable ORA_0C1_UCBPKG when
booting up. If the server fails to do so, an error message will occur in ULOG and the
instance awareness will be disabled in the server.

Using Tuxedo with XA Affinity

This section contains the following topics.

6-2

Overview

XA Affinity Priority
XA Affinity Policy
Prerequisites
Configurations

Limitations

Overview

Oracle RAC environments have a one-to-many relationship between database and instances.
Servers or groups of a Tuxedo application running on an Oracle RAC may connect to different
instances.

It is XA Affinity that ensures all database operations to connect the same RAC instance when
possible (no matter if those operations are in one global transaction branch or in different
branches of one global transaction) and automatically exchanges the affinity information between
Tuxedo domain and WebL ogic Server via WTC (WebLogic Tuxedo Connector).

Using Tuxedo with Oracle Real Application Clusters (RAC)

Using Tuxedo with XA Affinity

XA Affinity Priority

Tuxedo server selection rules are listed as below, in high to low priority order.
e GWTDOMAIN Transaction routing
e Oracle RAC routing for transaction affinity using RAC instances
e Service versioning

e Client/server affinity routing

XA Affinity

Load balance based on Oracle RAC LBA (Load Balancing Advisor)

e Tuxedo load balance

If XA Affinity is enabled, the Oracle RAC routing rule that environment variable TUXRACGROUPS
specifies will be disabled.

Note: XA Affinity has no impact on domain routing. Only when a request arrives at a domain
and starts to be routed to a service in that domain, XA Affinity affects server routing.

XA Affinity Policy

In the first place, Tuxedo selects the server that is associated with the same instance name, DB
name, and service name. If this attempt fails, Tuxedo follows the following policies to find the
server.

e Tuxedo tries to find the server which is associated with both the same DB name and the
same service name. The server's group must not be involved in the current global
transaction.

o |f the above attempt fails, Tuxedo tries to find the server which is associated with both the
same DB name and the same instance name.

o If the above attempt fails, Tuxedo tries to find the server which is associated with the same
DB name.

o |f the above attempt fails, Tuxedo finds the server according to Tuxedo normal load
balance.

Note: If Tuxedo finds multiple servers that are at the same priority, Tuxedo will find the server
according to Tuxedo normal load balance.

Using Tuxedo with Oracle Real Application Clusters (RAC) 6-3

Using Tuxedo with Oracle Real Application Clusters (RAC)

Prerequisites

Software Requirements
Only supports Linux platforms on Exalogic and Solaris platforms on SPARC SuperCluster.

For specific platform software requirements, refer to Oracle Tuxedo 12c Release 2 (12.1.3)
Platform Data Sheets.

Installation Notes
e The Oracle Tuxedo must be 12¢ Release 2 (12.1.3) or above.

e The Oracle Database must be 11.2.0.2.0 or above.

Configurations

As long as the option EECS in OPTIONS of UBBCONFIG *RESOURCES section is specified, XA
Affinity feature is enabled by default. A new option, NO_XAAFFINITY, is introduced to
RMOPT IONS of UBBCONFIG *RESOURCES section to explicitly disable XA Affinity.

RMOPTIONS {[-..[NO_XAAFFINITY],*}

Listing 6-1 shows an example to configure EECS; Listing 6-2 lists an example to explicitly disable
XA Affinity.

Listing 6-1 Example to Configure EECS

* RESOURCES

OPTIONS EECS

Listing 6-2 Example to Explicitly Disable XA Affinity

* RESOURCES
OPTIONS EECS

RMOPTIONS NO_XAAFFINITY

6-4 Using Tuxedo with Oracle Real Application Clusters (RAC)

Using Tuxedo with Common XID

This flag can also be specified in T_DOMAIN class via TM_MI1B, when the tuxedo application is
inactive. For more information, see File Formats, Data Descriptions, MIBs, and System
Processes Reference.

Note: XA Affinity requires Tuxedo servers to retrieve Oracle Database instance information.
Users can query a server’s instance information through Tuxedo TM_MIB T_SERVER
class's TA_INSTSTR field. For more information, see T_SERVER Class Definition.

Limitations

e Groups with MRM (multiple RM) are not supported.

e The max number of affinity context (database name+instance name+service name) in one
transaction is 16.

o XA Affinity does not support multi-server single queue.
o XA Affinity does not support multi-threaded server.

o XA Affinity does not support cross-domain services.

Using Tuxedo with Common XID

This section contains the following topics.
e Overview

e Prerequisites

e Configurations

e Limitations

Overview

In general, for global transactions, each participating group has its own transaction branch, and a
distinguished transaction branch identifier (XID) identifies each branch. If a global transaction
involves multiple groups, Oracle Tuxedo adopts two-phase commit on each branch, taking the
first participating group as the coordinator.

However, with common XID feature in this release, Oracle Tuxedo shares the coordinator group
transaction branch with all other groups within the same transaction. The groups that connect to

Using Tuxedo with Oracle Real Application Clusters (RAC) 6-5

Using Tuxedo with Oracle Real Application Clusters (RAC)

the same Oracle Database instance through the same service use the coordinator branch directly.
For those groups, XA committing operations are not required and are saved.

In the most extreme case, where all groups in a global transaction use the coordinator branch
directly, Oracle Tuxedo adopts one-phase commit instead of two-phase commit; no TLOG is
written.

Typical Scenario

Assume there are two groups GRP1 and GRP2 in a Tuxedo application domain DOM1. Server SERV1
belongs to GRP1 and offers service SVC1 while server SERV2 belongs to GRP2 and offers service
SvC2. Both SERV1 and SERV2 connect to the same instance.

Then a native client begins a global transaction at first, invokes svci followed by svc2, and
commits the transaction.

If common XID functionality is enabled in the above case, Tuxedo invokes one-phase commit on
the transaction and no TLOG is written; otherwise, two-phase commit is invoked.

Users are allowed to trace the above behaviors through TMTRACE. Please refer to TUTRACE for
more information.

Prerequisites

Software Requirements
Only supports Linux platforms on Exalogic and Solaris platforms on SPARC SuperCluster.

For specific platform software requirements, refer to Oracle Tuxedo 12c Release 2 (12.1.3)
Platform Data Sheets.
Installation Notes

e The Oracle Tuxedo must be 12c Release 2 (12.1.3) or above.

e The Oracle Database must be 11.2.0.2.0 or above.

Configurations

As long as the option EECS in OPT10NS of UBBCONFIG *RESOURCES section is specified, common
XID feature is enabled by default. A new option, NO_COMMONXID, is introduced to RMOPT I1ONS of
UBBCONFIG *RESOURCES section to explicitly disable common XID.

RMOPTIONS {[.-..|NO_COMMONXID],*}

Using Tuxedo with Oracle Real Application Clusters (RAC)

Using Tuxedo with Single Group Multiple Branches (SGMB)

Listing 6-1, “Example to Configure EECS,” on page 6-4 shows an example to configure EECS;
Listing 6-3 lists an example to explicitly disable common XID.

Listing 6-3 Example to Explicitly Disable Common XID

* RESOURCES
OPTIONS EECS

RMOPTIONS NO_COMMONXID

This flag can also be specified in T_DOMAIN class via TM_MIB, when the tuxedo application is
inactive. For more information, see File Formats, Data Descriptions, MIBs, and System
Processes Reference.

Note: Common XID requires Tuxedo servers to retrieve Oracle Database instance information.
Users can query a server’s instance information through Tuxedo TM_MIB T_SERVER
class's TA_INSTSTR field. For more information, see T_SERVER Class Definition.

Limitations

e Groups with MRM (multiple RM) are not supported.

e Multi-threaded servers do not provide instance information via MIB; however, common
XID still performs well on server-dispatched threads.

e In two-phase commit scenarios, GWTDOMAIN is always involved to do prepare and/or
commit.

o |f the coordinator group is the group where GWTDOMAIN locates, common XID does not
work.

Using Tuxedo with Single Group Multiple Branches
(SGMB)

This section contains the following topics.

o Overview

Using Tuxedo with Oracle Real Application Clusters (RAC) 6-7

Using Tuxedo with Oracle Real Application Clusters (RAC)

6-8

e Prerequisites
e Configurations

e Limitations

Overview

In previous releases, servers in the same participated group use the same transaction branch in a
global transaction. However the transaction branch would fail if these serves connect to different
instances of a RAC. An XA error, XAER_AFFINITY, will be reported, meaning one branch cannot
go through different instances. For this reason, the RAC service used by a Tuxedo group must be
a singleton RAC service. A DTP service (if the DTP option, -x in srvctl modify service, is
specified) or a service offered by only one instance could be a singleton RAC service.

In this release, using different transaction branches on different instances in a single group will
solve the issue. The Tuxedo group can then use non-singleton service and take advantage of its
benefits, such as load balance.

Prerequisites

Software Requirements
Only supports Linux platforms on Exalogic and Solaris platforms on SPARC SuperCluster.

For specific platform software requirements, refer to Oracle Tuxedo 12¢ Release 2 (12.1.3)
Platform Data Sheets.
Installation Notes

e The Oracle Tuxedo must be 12c Release 2 (12.1.3) or above.

e The Oracle Database must be 11.2.0.2.0 or above.

Configurations

As long as the option EECS in OPTIONS of UBBCONFIG *RESOURCES section is specified, SGMB
feature is enabled by default. A new option, SINGLETON, is introduced to RMOPT IONS of
UBBCONFIG *RESOURCES section to explicitly disable SGMB.

RMOPTIONS {[-..|SINGLETON],*}

Using Tuxedo with Oracle Real Application Clusters (RAC)

Using Tuxedo with Fast Application Notification (FAN)

This option indicates all RAC services used in the domain are singleton, so the SGMB feature is
not necessary to work.

Listing 6-1, “Example to Configure EECS,” on page 6-4 shows an example to configure EECS;
Listing 6-4 lists an example to explicitly disable SGMB.

Listing 6-4 Example to Explicitly Disable SGMB

* RESOURCES
OPTIONS EECS

RMOPTIONS SINGLETON

This flag can also be specified in T_DOMAIN class via TM_MIB, when the tuxedo application is

inactive. For more information, see File Formats, Data Descriptions, MIBs, and System
Processes Reference.

Note: SGMB requires Tuxedo servers to retrieve Oracle Database instance information. Users
can query a server’s instance information through Tuxedo TM_MIB T_SERVER class's
TA_INSTSTR field. For more information, see T_SERVER Class Definition.

Limitations

e Groups with MRM (multiple RM) are not supported.
e A transaction fails if more than 16 instances are involved in a single group.

e Read-Only optimization for XA does not work in a transaction if the preferred reserved
group is a multi-branch group. If GWTDOMAIN is not the coordinator, the preferred reserved
group is the coordinator group; otherwise, the preferred reserved group is the participated
group coming next in the coordinator domain.

e Multi-threaded servers do not provide instance information via MIB; however, SGMB still
performs well on server-dispatched threads.

Using Tuxedo with Fast Application Notification (FAN)

This section contains the following topics.

Using Tuxedo with Oracle Real Application Clusters (RAC) 6-9

Using Tuxedo with Oracle Real Application Clusters (RAC)

Overview

Prerequisites

Configurations

e Limitations

Overview
Tuxedo uses Fast Application Notification (FAN) to
e Provide rapid failure detection.

e Remove invalid DB connections from Tuxedo server and create valid DB connection. If
Tuxedo server cannot create valid DB connection, Tuxedo removes these servers from the
routing list.

e Perform graceful shutdown for planned and unplanned Oracle RAC node outages.
e Adapt to changes in topology, such as adding or removing a node.

e Distribute runtime work requests to all active Oracle RAC instances, including those
rejoining a cluster.

Prerequisites

Software Requirements
Only supports Linux platforms on Exalogic and Solaris platforms on SPARC SuperCluster.

For specific platform software requirements, refer to Oracle Tuxedo 12c Release 2 (12.1.3)
Platform Data Sheets.
Installation Notes

e The Oracle Tuxedo must be 12c Release 2 (12.1.3) or above.

e The Oracle Database must be 11.2.0.2.0 or above.

e Using the connection steering requires Oracle client 11.2.0.2.0 or Oracle client 12.1.0.1.0
with a specific patch (contact Oracle Support for the patch, or higher release of Oracle
client).

6-10 Using Tuxedo with Oracle Real Application Clusters (RAC)

Using Tuxedo with Fast Application Notification (FAN)

Configurations

e Configurations on DB

e Configurations on Tuxedo

Configurations on DB
DB configuration includes the following topics.

e ONS
e Load Balancing Advisor (LBA)
o TAF

ONS

On Oracle server side, ONS daemon must be enabled.

If Tuxedo is taken as a native client, ONS daemon on the client side must also be enabled. The
ONS daemon configuration file is located in $SORACLE_HOME/opmn/conf/ons.config. After

configuring ONS, start ONS daemon with onsctl start command. Please make sure that ONS
daemon is running all the time.

If Tuxedo is taken as a remote client, ONS daemon on the client side is not used. It is the preferred
mode.

Note: On the Oracle client side, if the Oracle version is lower than 12.1.0.1.0, ONS daemon
must be enabled.

Load Balancing Advisor (LBA)

The ONS may publish LBA about a service if the service has load balancing advisory goal. You
can use -B option to specify the goal via srvctl when creating or modifying the service.

TAF

If TAF is enabled, all Tuxedo servers can automatically do the reconnection by TAF; otherwise,
only XA servers can automatically do the reconnection.

Reconnection is finished by TAF with the following requirements for user code.

e XA server

OPENINFO must include threads=t.

Using Tuxedo with Oracle Real Application Clusters (RAC) 6-11

Using Tuxedo with Oracle Real Application Clusters (RAC)

6-12

e Non-XA server

To monitor FAN event for the instance associated with the specific non-XA application
server, $TUXDIR/1ib/tuxociucb.so.1.0 should be deployed in $ORACLE_HOME/lib,
and the name of this binary must be specified in ORA_OCI_UCBPKG environment variable.

-L option in the servopts must be used for a non-XA server to indicate that the server will
connect to the Oracle Database. Since the ECID is enabled when -L is specified, a new
option -F is introduced into servopts to close ECID. The usage is F noECID. The example
is below.

*SERVERS

serverl
SRVGRP=GRP1 SRVID=1 CIOPT="-L libclntsh.so -F noECID"

For TAF support, the OCI environment must be created in OCI_THREADED mode.

Pro*C users should be able to precompile with threads=yes and use the embedded SQL
statement as below before creating the first executable embedded SQL statement;
otherwise, only XA servers can do the reconnection.

EXEC SQL ENABLE THREADS;

Configurations on Tuxedo

It is required to configure TMFAN server in UBBCONFIG *SERVERS section and configure the
option EECS in OPTIONS of UBBCONFIG *RESOURCES section. A new option, NO_FAN, is
introduced to RMOPTIONS of UBBCONFIG *RESOURCES section to explicitly disable FAN.

RMOPTIONS {[...[INO_FAN],*}

Listing 6-1, “Example to Configure EECS,” on page 6-4 shows an example to configure EECS;
Listing 6-5 lists an example to explicitly disable FAN.

Listing 6-5 Example to Explicitly Disable FAN

* RESOURCES
OPTIONS EECS

RMOPTIONS NO_FAN

Using Tuxedo with Oracle Real Application Clusters (RAC)

Using Tuxedo with Oracle Real Application Clusters (RAC)

This flag can also be specified in T_DOMAIN class via TM_MI1B, when the tuxedo application is
inactive. For more information, see File Formats, Data Descriptions, MIBs, and System
Processes Reference.

Note: FAN requires Tuxedo servers to retrieve Oracle Database instance information. Users
can query a server’s instance information through Tuxedo TM_MIB T_SERVER class's
TA_INSTSTR field. For more information, see T_SERVER Class Definition.

Limitations
e Groups with MRM (multiple RM) are not supported.

o |f the customized server is going to use OCI to connect Oracle database, 0C1_NO_UCB
should not be set at OCl initialization time.

e Load balance based on Oracle RAC LBA (Load Balancing Advisor) does not support
multi-server single queue.

Load balance based on Oracle RAC LBA (Load Balancing Advisor) does not support
multi-threaded server.

Load balance based on Oracle RAC LBA (Load Balancing Advisor) does not support
cross-domain services.

Using Tuxedo with Oracle Real Application Clusters (RAC)

This section contains the following topics.
e Overview
e Limitations
e Software Requirements

e Configuring Tuxedo for Oracle RAC

Overview

The Oracle Real Application Clusters (RAC) feature supports clustering of machines that utilize
replicated Oracle database services accessing the same Oracle database. Oracle RAC provides the
ability to concurrently access the same Oracle database from instances physically located on
multiple Oracle server machines, and offers the ability to failover unsuccessful database instances
to alternate locations.

Using Tuxedo with Oracle Real Application Clusters (RAC) 6-13

Using Tuxedo with Oracle Real Application Clusters (RAC)

6-14

However, specific support for Oracle RAC is required by the Transaction Monitor in order to take
advantage of these replication and failover features in an XA transaction environment or to obtain
optimal RAC performance. This is because Oracle 10g does not allow the same database to be
accessed from multiple RAC instances within the same XA transaction.

Note: Oracle 12c does allow the same database to be accessed from multiple RAC instances
within the same XA transaction, but performance may be better if all accesses within a
particular XA transaction occur from the same RAC instance.

In addition, Oracle 10gR1 requires Transaction Monitor involvement when prepared transactions
failover from one RAC instance to another.

Tuxedo provides Transaction Monitor support for Oracle RAC by allowing an administrator to
specify lists of groups associated with different RAC instances. This allows Tuxedo to ensure that
groups associated with different instances of the same RAC database do not participate in the
same transaction. The Tuxedo Oracle RAC support feature also provides a way for Tuxedo
transaction manager server (TMS) processes to be notified of RAC failover events which is
required when using Oracle 10gR1.

Consequently, this allows the TMS to re-obtain a list of Oracle 10gR1 prepared transactions from
Oracle as required for RAC failover recovery.

Note: When using Oracle 10gR2, administrators should use an Oracle DTP Service
to access the Oracle RAC system. This DTP service name should be specified in the
OPENINFO string for the associated Tuxedo groups. Oracle 10gR2 verifies the service
name, and migrates it to an alternate instance if required.

When using Oracle 12c or later release, the service name is transparently and
automatically migrated to an alternate instance, if required, without any specific
configuration.

Limitations

e Tuxedo supports Oracle RAC only when using Oracle 10g or later release, and does not
support Oracle RAC when using Oracle 9i.

Note: For Oracle 10gR1, patch set 10.1.0.3 or above is required.

For Oracle 10gR2, patch set 10.2.0.2 or above is required due to the bug described at:
https://metalink.oracle.com/metalink/plsql/f?p=130:14:3193163745563425327::::p
14 database_id.

For Oracle 12c, patch set 11.1.0.6 or above is preferred. Use of Oracle 12c¢ is highly
encouraged due to significant RAC improvements.

Using Tuxedo with Oracle Real Application Clusters (RAC)

Using Tuxedo with Oracle Real Application Clusters (RAC)

e In some instances, using Oracle RAC with the Dynamic XA switch enabled may generate a
core dump and cause a system crash. Please contact Oracle Support directly if you
encounter this issue and provide the following information:

— BUG 4644880 - Oracle bug fix identification number

— the patch set version for the 10g release you are using

Software Requirements

For specific platform software requirements, refer to Oracle Tuxedo 12¢ Release 2 (12.1.3)
Platform Data Sheets.

Configuring Tuxedo for Oracle RAC

Tuxedo support for Oracle RAC requires two steps:
e Configuring Transaction Propagation

e Configuring Transaction Recovery

The following command and environment variables are used to exclusively configure Tuxedo for
Oracle RAC support:

® Three environment variables

— TUXRACGROUPS (required for Oracle 10gR1 and 10gR2, optional for Oracle 11g and
later releases)

— XARETRYDURATIONSECONDS (required only for Oracle 10gR1)

— XARETRY INTERVAL (required only for Oracle 10gR1)

e One Command

— TMS_rac_refresh(2)(required only for Oracle 10gR1)

Configuring Transaction Propagation

Oracle 10gR1 does not allow the same database to be accessed from multiple RAC instances
within the same XA transaction. In addition, Oracle 10gR1 requires Transaction Monitor
involvement when prepared transactions failover from one RAC instance to another.

Oracle 10gR2 permits different RAC instances to operate on different transaction branches in
RAC, but if transaction branches are on different instances, then they are loosely coupled and do

Using Tuxedo with Oracle Real Application Clusters (RAC) 6-15

Using Tuxedo with Oracle Real Application Clusters (RAC)

6-16

not share locks. Also, for optimum commit performance, it is important to use only a single RAC
instance within a given XA transaction.

For this reason, it is still important to associate an XA transaction with a single RAC instance in
Oracle 10gR2. (For further information on using Oracle XA with RAC, refer to the "Developing
Applications with Oracle XA" chapter in the Oracle Database Application Developer's Guide -
Fundamentals.

The TUXRACGROUPS environment variable is used to associate Tuxedo groups with specific
instances of Oracle RAC configurations so that Tuxedo does not include groups from multiple
instances of the same RAC configuration within the same XA transaction.

Note: When using Oracle 10g, a single transaction should not span multiple Oracle RAC
instances. The groups that participate in a particular transaction are determined at the
time the transaction is started. Each transaction is assigned to one particular instance of
each RAC configuration such that the groups in each instance of a particular RAC
configuration are assigned to an equal number of transactions.

Oracle 12c permits different RAC instances to operate on different transaction branches
in RAC, and if transaction branches are on different instances, then they are tightly
coupled and share locks and resources. So the TUXRACGROUPS environment variable is
not necessary when using Oracle 12c. This environment variable still works in Oracle
12c and you can use it to associate Tuxedo groups with specific instances of Oracle RAC
configurations.

TUXRACGROUPS
The TUXRACGROUPS environment variable specifies the groups that are associated with a
particular RAC configuration, and will disallow sending service calls in the same
transaction to two or more groups identified as different instances of the same RAC
configuration.

WARNING: If the TUXRACGROUPS environment variable is used, it must be set on all machines
in a configuration, and must have the same sets of groups specified in the same
order on all machines.

If this restriction is not followed, then inconsistent sets of groups can be included
within a transaction. The coordinating group will notice the inconsistency at
commit time, roll back the transaction, and send an error message to the userlog.

TUXRACGROUPS Syntax

The TUXRACGROUPS environment variable is used to define Oracle RAC group configurations. Its
syntax is as follows:

TUXRACGROUPS="G1,G2,..,6m;H1,H2, .. ,Hn[;..]:11,12,..,10;J1,32,..,3p[;.][:..1"

Using Tuxedo with Oracle Real Application Clusters (RAC)

Using Tuxedo with Oracle Real Application Clusters (RAC)

Comma (,) separated list
Used to specify groups in the same instance of an Oracle RAC configuration. Multiple
groups from a comma separated list can be used together in the same transaction.

Note: Typically, most users place all of the services associated with one database
instance in a single group, therefore commas are not needed in the TUXRACGROUPS
value.

Semicolon (;) separated list
Used to specify sets of groups in different instances of an oracle RAC configuration.
Groups from different RAC instances from the same RAC database configuration cannot
be used together in the same transaction.

Since the purpose of the TUXRACGROUPS environment variable is to specify groups
associated with different instances of the same Oracle RAC configuration, all applications
using the TUXRACGROUPS variable should have at least one semicolon in the environment
variable value.

Colon () separated list
Used to separate information about one Oracle RAC configuration from information
about a different Oracle RAC configuration. The colon indicates that multiple Oracle
RAC database configurations are totally independent of each other.

Note: Typically, most users specify only one RAC database configuration, therefore
colons are not needed in the TUXRACGROUPS value.

TUXRACGROUPS Examples

This section describes four different examples for defining Oracle RAC group configurations:
e Example 1: Simple Configuration
e Example 2: Oracle RAC Single Instance with Multiple Groups
e Example 3: Multiple Oracle RAC Instances with Multiple Groups

Example 1: Simple Configuration
TUXRACGROUPS="G1;G2"
Figure 6-1 shows a simple Oracle RAC configuration.

In this example, there is one Oracle database, (ORAL), two Oracle RAC instances with 1 group
per each instance.

Using Tuxedo with Oracle Real Application Clusters (RAC) 6-17

Using Tuxedo with Oracle Real Application Clusters (RAC)

The same transaction request to both GROUP1 and GROUP2 cannot be sent because they access
database services through different instances that map to the same Oracle RAC database

configuration.
Figure 6-1 (ORA1) Simple Configuration

Oracle RAC Configuration 1

Oracle

Database
1
(ORAT1)

QOracle RAC Oracle RAC
Instance 1 Instance 2

e
e

©
=r

c

-
0]
=
=
=

[=]

Example 2: Oracle RAC Single Instance with Multiple Groups
TUXRACGROUPS=""GROUP1 ; GROUP2 : GROUP3 ; GROUP4 , GROUP5"
Figure 6-2 shows an example of adding multiple groups to a single instance.

In this example, there are two Oracle databases: ORA1 and ORA2. ORAL offers machine-specific
services ORA1SITEL and ORA1SITE2, and ORA2 offers machine-specific services ORA2SITE1 and
ORA2SITE2. The objective is to assign an approximately equal number of transactions and
configure the same services to the groups associated with each instance of an Oracle RAC

configuration.

6-18 Using Tuxedo with Oracle Real Application Clusters (RAC)

Using Tuxedo with Oracle Real Application Clusters (RAC)

The same transaction request to both GROUP1 and GROUP2 cannot be sent because they access
database services through different instances that map to the same Oracle RAC database
configuration. The same applies to GROUP3 and GROUP4 or GROUP3 GROUP5, the same transaction

cannot be sent to both these groups.

GROUP4 and GROUPS both access the same database service of the same Oracle RAC database
configuration, so these groups would be permitted together. GROUP1 and GROUP4 would be
permitted together, because they access different RAC database configurations. If there is also a
GROUPG in this configuration, it would be permitted with any other group, because GROUP6 is not
an Oracle RAC group.

Note: The number of groups in each Oracle RAC instance does not have to be the same.

Figure 6-2 (ORA2) Single Oracle RAC Instance with Multiple Groups

Oracle RAC Configuration 1

Oracle RAC Configuration 2

Oracle

Database
1
(ORA1)

Oracle

Database
2
(ORA2)

Oracle RAC Oracle RAC Oracle RAC Oracle RAC
Instance 1 Instance 2 Instance 1 Instance 2
| |
==
| —| | S— |
— —
—/ —

ot

52 af

| J
Group 1 Group 2 Group 3 Group 4 Group 5
(ORA1Sitet) (ORA1Site2) (ORAZ2Site1) (ORAZSite2) (ORAZSIite2)

The *GROUPS and *SERVERS sections of the UBBCONFIG file for this configuration might look as

follows in Listing 6-6:

Using Tuxedo with Oracle Real Application Clusters (RAC)

Using Tuxedo with Oracle Real Application Clusters (RAC)

Listing 6-6 UBBCONFIG File *GROUPS and *SERVERS Sections Example

*GROUPS
DEFAULT: TMSNAME=TMS_ORA TMSCOUNT=2

GROUP1 LMID=SITE1 GRPNO=1
OPENINFO=""0RACLE_XA:Oracle_XA+Acc=P/scott/tiger+SqlNet=0ORA1SITE1+SesTm=100
+LogDir=_+MaxCur=5"

GROUP2 LMID=SITE2 GRPNO=2
OPENINFO=""ORACLE_XA:Oracle_XA+Acc=P/scott/tiger+SqlNet=0RA1SITE2+SesTm=100
+LogDir=.+MaxCur=5"

GROUP3 LMID=SITE1 GRPNO=3
OPENINFO=""ORACLE_XA:Oracle_XA+Acc=P/scott/tiger+SqlNet=0RA2SITE1+SesTm=100
+LogDir=.+MaxCur=5"

GROUP4 LMID=SITE2 GRPNO=4
OPENINFO=""0RACLE_XA:Oracle_XA+Acc=P/scott/tiger+SqlNet=0RA2SITE2+SesTm=100
+LogDir=.+MaxCur=5"

GROUP5 LMID=SITE2 GRPNO=5
OPENINFO=""ORACLE_XA:Oracle_XA+Acc=P/scott/tiger+SqlNet=0RA2SITE2+SesTm=100
+LogDir=.+MaxCur=5"

GROUP6 LMID=SITE1 GRPNO=6 TMSNAME=TMS_QM
OPENINFO=""TUXEDO/QM:/home/myapplication/QUE :QSPACE"

*SERVERS

DEFAULT: RESTART=Y MAXGEN=5 REPLYQ=Y CLOPT="'-A"
EMPLOYEE_SVR SRVGRP=GROUP1 SRVID=1
EMPLOYEE_SVR SRVGRP=GROUP2 SRVID=2
BANKING_SVR SRVGRP=GROUP3 SRVID=3
BANKING_SVR SRVGRP=GROUP4 SRVI1D=4
BANKING_SVR SRVGRP=GROUP5 SRVID=5

Note: GROUP4 and GROUP5 have the same OPENINFO strings, because they both use the same
database service from the same database.

6-20 Using Tuxedo with Oracle Real Application Clusters (RAC)

Using Tuxedo with Oracle Real Application Clusters (RAC)

The specification of the OPENINFO string for Oracle groups in the *GROUPS section is the

same as when using Oracle without RAC. For information on how to specify an

OPENINFO string for an Oracle group, refer to the Developing Applications with Oracle

XA chapter in the Oracle Database Application Developer's Guide - Fundamentals.
Example 3: Multiple Oracle RAC Instances with Multiple Groups

TUXRACGROUPS="'"GROUP11,GROUP12,GROUP13;GROUP21,GROUP22:GROUP3;GROUP4,
GROUPS™

Figure 6-3 shows an example of adding multiple groups to multiple instances.

This example is similar to the previous example — except that GROUP11, GROUP12, and GROUP13
are all associated with the first RAC instance of the first RAC configuration, and GROUP21 and
GROUP22 are both associated with the second RAC instance.

If the first service call in a transaction in this configuration goes to GROUP12, then it would be
possible to send other service calls in this transaction to GROUP11, GROUP12, or GROUP13, but not
to GROUP21 or GROUP22.

If a transactional service call is made to a service that is not advertised in any permitted groups
but is available in one or more prohibited groups, the result is:

o the call fails
e tperrno is set to TPENOENT

e tperrordetail is set to the new value TPED_GROUP_FORB IDDEN

Using Tuxedo with Oracle Real Application Clusters (RAC) 6-21

Using Tuxedo with Oracle Real Application Clusters (RAC)

Figure 6-3 Multiple Oracle RAC Instances with Multiple Groups

Oracle RAC Configuration 1 Oracle RAC Configuration 2

Oracle Oracle

Database
2
(ORAZ2)

Database
1
(ORA1)

Oracle RAC Oracle RAC Oracle RAC Oracle RAC
Instance 1 Instance 2 Instance 1 Instance 2

Group Group Group Group Group Group Group Group

" 12 13 21 22 3 4 5

For each RAC configuration defined as part of the TUXRACGROUPS environment variable, Tuxedo
determines which RAC group(s) in that configuration participate in a particular transaction when
that transaction is started.

Transaction Creation Behavior Using TUXRACGROUPS

Transactions are a pinned to Oracle RAC instances for as long as they exist. This is true
independently, whether the call flow for such a transaction ever reaches a Tuxedo service
associated with Oracle RAC or not.

There are two ways that transactions can be created:

e Transactions created in a group listed inside TUXRACGROUPS are pinned to the Oracle RAC
instance configured via TUXRACGROUPS.

6-22 Using Tuxedo with Oracle Real Application Clusters (RAC)

Using Tuxedo with Oracle Real Application Clusters (RAC)

e Transactions created in groups not listed inside TUXRACGROUPS are pinned to one of the
available Oracle RAC instances in a load-balancing-like algorithm.

Data Dependent Routing Using TUXRACGROUPS

Data dependent routing has been extended to support Oracle RAC configurations. It is possible
to define multiple groups for the same routing range in the UBBCONFIG *ROUTING section.
Listing 6-7 shows an example of different Tuxedo groups with the same range of values.

Listing 6-7 Tuxedo Groups with Same Range Values

RANGES=""1-5:GROUP1A, 1-5:GROUP1B, 6-10:GROUP2B, 6-10:GROUP2A, *:*'"

In this example, GROUP1A and GROUP1B are responsible for the same data range and GROUP2A and
GROUP2B are responsible for the same data range. Tuxedo routes the service request to the group
associated with the Oracle RAC instance that the transaction belongs to.

Data dependent routing for transactional services offered in RAC groups achieves the desired
result only if:

e Each Oracle RAC Instance configuration offers a service instance that can process each
data value.

Since all but one of the instances in a RAC configuration are disallowed in a particular
transaction, each data value must be specified for a service in each RAC instance.
Otherwise, that data value will not be processed by any service in the RAC configuration
for some transactions.

e Different service instances connected to the same Oracle RAC Instance process different
data values.

If all data values are processed by the same set of service instances, then there is no need
to use data dependent routing.

e Multiple RANGES entries for each routing value must be created for each RAC instance
offering the service.

If a routing was not configured for a special RAC instance a service calls for a transaction
pinned to that Oracle RAC Instance will fail with tperrno set to TPENOENT and tperror
detail set to TPED_GROUP_FORB IDDEN.

Using Tuxedo with Oracle Real Application Clusters (RAC) 6-23

Using Tuxedo with Oracle Real Application Clusters (RAC)

6-24

When transactional routing occurs, any groups that are not permitted for the current transaction
are ignored. The routing decision only considers:

e Groups associated with the allowable RAC instance.

e Groups not associated with a RAC configuration.

If routing is performed for a non-transactional request, all groups can participate. The service is
routed to the first group matching the data value listed in the UBBCONFIG file *ROUT ING section
RANGES field. All non-transactional requests for a special range of values are handled by one
Oracle RAC instance only.

If routing is performed for a mixture of transactional and non-transactional requests, some
applications may not require non-transactional request load balancing. You can vary the RAC
instances listed first in your application for different data values so that non-transactional requests
are balanced accordingly among services offered by different RAC instances.

There is no way to enforce load balancing between all groups associated with the same routing
range for non-transactional requests. If you want to enforce one-by-one load balancing, try the
following:

e Varying the RAC instance listed first for each data value so that each RAC instance occurs
first for approximately equal amounts of data, or

e Calling an intermediate AUTOTRAN service (in the UBBCONFIG file *SERVICES
section) to enforce that each service call is associated with a transaction.

Figure 6-4 shows an example of routing transactional and non-transactional requests in an Oracle
RAC configuration.

Using Tuxedo with Oracle Real Application Clusters (RAC)

Using Tuxedo with Oracle Real Application Clusters (RAC)

Figure 6-4 Routing Transactional/Non-Transactional Requests

Oracle RAC Configuration 1

Oracle

Database
1
(ORA1)

Oracle RAC Oracle RAC
Instance 1 Instance 2
=
===
—
| —
—
Group Group Group Group
1A 2A 1B 2B

The configuration shown in the example consists of 2 Oracle RAC instances. If 1,000 transactions
are created in a group not listed in TUXRACGROUPS, around 500 transactions will be pinned to
Oracle RAC instance 1 and can only access GROUP1A and GROUP2A. The other 500 transactions
will be pinned to Oracle RAC instance 2 and can only access GROUP1B and GROUP2B.

Listing 6-8 shows an example of how the *SERVICES and *ROUT ING sections of the UBBCONFI1G
file for this configuration might look:

Listing 6-8 UBBCONFIG File *SERVICES and *ROUTING Sections Example

*SERVICES

Using Tuxedo with Oracle Real Application Clusters (RAC) 6-25

Using Tuxedo with Oracle Real Application Clusters (RAC)

6-26

DEPOSIT SRVGRP=GROUP1A ROUTING=MYROUTE
DEPOSIT SRVGRP=GROUP2A ROUTING=MYROUTE
DEPOSIT SRVGRP=GROUP1B ROUTING=MYROUTE
DEPOSIT SRVGRP=GROUP2B ROUT ING=MYROUTE

*ROUTING

MYROUTE FIELD=""BRANCH_ID”
RANGES="1-5:GROUP1A, 1-5:GROUP1B, 6-10:GROUP2B, 6-10:GROUP2A, *:*”
BUFTYPE="FML32”

GROUP1A and GROUP2A belong to Oracle RAC instance 1. GROUP1B and GROUP2B belong to
Oracle RAC instance 2. Requests with a BRANCH_ 1D 1 through 5 must be handled by GROUP1A or
GROUP1B. Requests with a BRANCH_1D 6 through 10 must be handled by GROUP2A or GROUP2B.

For transactional requests, all transactions pinned to Oracle RAC instance 1; branches 1-5 map
to GROUP1A and branches 6-10 map to GROUP2A. The other half is assigned to Oracle RAC
instance 2; branches 1-5 map to GROUP1B and branches 6-10 map to GROUP2B.

For non-transactional requests, branches 1-5 map to GROUP1A, and branches 6-10 map to
GROUP2B. These are the first groups specified that match the respective routing ranges.
Requests with an invalid BRANCH_ 1D are mapped to any permitted group.

Note: Oracle RAC instance 1 is specified first for one data range and RAC instance 2 is
specified first for the other data range in an attempt to achieve some non-transactional
load balancing between RAC instances.

Assigning Transactions to Special Oracle RAC Instances

You may want to split your environment into multiple machines. For example, you may want a
Tuxedo domain with some machines only accessing Oracle RAC instance 1 and other machines
only accessing Oracle RAC instance 2 in order to enforce regional independency if Tuxedo
installations and Oracle RAC installations are distributed over different buildings. The
environment may be configured so that as few as possible calls should be sent outside of a
building.

Figure 6-5 shows an example with, machine 1 serving GROUP1A and GROUP2A; machine 2 serving
GROUP1B and GROUP2B. In addition, calls might be made and transactions might be created from
a Tuxedo /Domain Gateway, for Tuxedo /WS clients, Tuxedo Native Clients, Tuxedo /Q, or any
server linked with another Resource Manager such as MQ Series.

Using Tuxedo with Oracle Real Application Clusters (RAC)

Using Tuxedo with Oracle Real Application Clusters (RAC)

Whenever a request is sent, the transaction should be pinned to the local machine and avoid
hopping between different machines as much as possible.

Figure 6-5 Assigning Transactions to Special Oracle RAC Instances

Oracle RAC Configuration

Cracle
Database
1
(ORA1)
Oracle RAC Oracle RAC
Instance 1 Instance 2

=]

=
—
[—]
—

I

55 GF 6f Afap &f 6f oF 9§ af

ADMGRPA GRDUP GROUP GRP._ TDOM GRP_CLIENT ADMGRPA GRoup GROUP GRP_TDOM GRP_CLIENT

N

Transaction Starting Points

Listing 6-9 shows a UBBCONFIG file example with two physical machines, TUXM1 and TUXM2,
running Tuxedo. Both machines have two groups connecting to an Oracle RAC. Groups GROUP1A
and GROUP2A are running on machine TUXM1 connecting to RAC instance 1. Groups GROUP1B and
GROUP2B are running on machine TuXm2 connecting to RAC instance 2.

Listing 6-9 UBBCONFIG File Example

*MACHINES
DEFAULT:

Using Tuxedo with Oracle Real Application Clusters (RAC) 6-27

Using Tuxedo with Oracle Real Application Clusters (RAC)

APPDIR="/path/to/appdir"
ENVFILE="/path/to/oracle._env"
TUXDIR=""/path/to/tuxdir"
TUXCONFIG=""/path/to/tuxconfig"
TLOGDEVICE=""/path/to/TLOG"

"machinel™ LMID=TUXM1

"machine2" LMID=TUXM2

*GROUPS

ADMGRPA LMID=TUXM1 GRPNO=10 OPENINFO=NONE
ADMGRPB LMID=TUXM2 GRPNO=20 OPENINFO=NONE

GROUP1A LMID=TUXM1 GRPNO=101 TMSNAME=TMS_ORA
OPENINFO="0racle_XA:Oracle_XA+ACC=P/user/password+Sgqlnet=0RA1SITE1+SesTm=1
00+LogDir=_+MaxCur=5"

GROUP1B LMID=TUXM2 GRPNO=102 TMSNAME=TMS_ORA

OPENINFO=""0racle_XA:Oracle_XA+ACC=P/user/password+Sqlnet=0RA1SITE2+SesTm=1
00+LogDir=.+MaxCur=5"

GROUP2A LMID=TUXM1 GRPNO=201 TMSNAME=TMS_ORA
OPENINFO=""0racle_XA:Oracle_XA+ACC=P/user/password+Sqlnet=0RA1SITE1+SesTm=1
00+LogDir=.+MaxCur=5"

GROUP2B LMID=TUXM2 GRPNO=202 TMSNAME=TMS_ORA

OPENINFO=""0racle_XA:Oracle_XA+ACC=P/user/password+Sqlnet=0RA1SITE2+SesTm=1
00+LogDir=.+MaxCur=5"

GROUP_TDOM_A LMID=TUXM1 GRPNO=301
GROUP_TDOM_B LMID=TUXM2 GRPNO=302

GROUP_CLIENT_A LMID=TUXM1 GRPNO=401 TMSNAME=TMS
GROUP_CLIENT_B LMID=TUXM2 GRPNO=402 TMSNAME=TMS

6-28 Using Tuxedo with Oracle Real Application Clusters (RAC)

Using Tuxedo with Oracle Real Application Clusters (RAC)

*SERVERS
DEFAULT: RESTART=Y MAXGEN=5 REPLYQ=Y CLOPT="-A"

TMSYSEVT SRVGRP=""ADMGRPA' SRVID=10
TMUSREVT SRVGRP="'ADMGRPA" SRVI1D=20

TMSYSEVT SRVGRP="ADMGRPB'" SRVID=10 CLOPT="-A -- -S "
TMUSREVT SRVGRP="ADMGRPB'" SRVID=20 CLOPT="-A -- -S "

EMPLOYEE_SVR SRVGRP=GROUP1A SRVID=1
EMPLOYEE_SVR SRVGRP=GROUP1B SRVID=2
BANKING_SVR SRVGRP=GROUP2A SRVID=3
BANKING_SVR SRVGRP=GROUP2B SRVI1D=4

DMADM SRVGRP="'GROUP_TDOM_A" SRVID=100
GWADM SRVGRP=""GROUP_TDOM_A" SRVID=110
GWTDOMAIN SRVGRP="GROUP_TDOM_A" SRVID=111 REPLYQ=Y RQADDR="'GWGRP_M1"
GWADM SRVGRP="'"GROUP_TDOM_B" SRVID=110
GWTDOMAIN SRVGRP="GROUP_TDOM_B"" SRVID=111 REPLYQ=Y RQADDR="'GWGRP_M2"

Additionally, there is a group for administrative services, as well as one group for Tuxedo
/Domain gateways and one group for native Tuxedo clients on both machines. All transactions
are created by GWTDOMAIN and native clients. Even if GWTDOMAIN and the native Tuxedo
clients never connect to an Oracle RAC directly, they must be included in TUXRACGROUPS as
shown in Listing 6-10 to ensure that the opened transactions belong to the correct RAC instance
and are handled locally.

Note: Native clients must set tpinfo->grpname to the local group to ensure the right behavior.
For more information, see “Avoiding Transactions Created by Tuxedo Native Clients
Being Sent to a Remote Machine” on page 6-31.

Listing 6-10 TUXGROUPS

TUXRACGROUPS=""GROUP_TDOM_A ,GROUP_CLIENT_A, GROUP1A ,GROUP2A ; GROUP_TDOM_B,
GROUP_CLIENT_B,GROUP1B,GROUP2B™

Using Tuxedo with Oracle Real Application Clusters (RAC) 6-29

Using Tuxedo with Oracle Real Application Clusters (RAC)

6-30

TUXRAGROUPS Transaction Use Cases

Dealing with Service Calls that are Made Outside of Transactions

As long as no transaction is involved, Tuxedo will try to handle as many requests as possible on
the local machine as long as the load allows and requests will only go to remote machines if no
local services are idle according to the load balancing algorithm. Summarized this means one
does not have to care about requests sent to remote machines if all services are available on all
machines.

What an administrator always has to ensure is that he includes all service groups into the
TUXRACGROUPS environment variable that are accessed during the call flow and that are
candidates for opening a new transaction even if they are not linked with the Oracle RM and/or
are not physically associated with any Oracle RAC instance. The environment variable
TUXRACGROUPS does not have any impact for non-transactional service calls.

Avoiding Transactions Created by a Group Handling an External Resource Manager Being
Sent to a Remote Machine

If you have a Tuxedo server built with another RM such as MQSeries or another database, you
can force newly started transactions to be pinned to your local machine by including this group
into the TUXRACGROUPS environment variable as well.

Listing 6-11 MQSeries Example

TUXRACGROUPS=""MQSGROUPA , GROUP1A , GROUP2A ; MQSGROUPB , GROUP1B , GROUP2B"*

In this example MQSGROUPA, GROUP1A and GROUP2A are located on machine 1 and MQSGROUPB,
GROUP1B and GROUP2B are located on machine 2.

If a server inside group MQSGROUPA creates a transaction, all Tuxedo service calls for services
under groups GROUP1A, GROUP2A, GROUP1B and GROUP2B will only go to GROUP1A and GROUP2A.
GROUP1B and GROUP2B are ignored as they belong to RAC instance 2 and the transaction was
already created for RAC instance 1 via group MQSGROUPA.

Avoiding Transactions Created by GWTDOMAIN Being Sent to a Remote Machine?

Create on local Tuxedo /Domain Gateway on each machine. Set the TUXRACGROUPS environment
variable as shown in Listing 6-12.

Using Tuxedo with Oracle Real Application Clusters (RAC)

Using Tuxedo with Oracle Real Application Clusters (RAC)

Listing 6-12 GWTDOMAIN Example

TUXRACGROUPS=""GWTGROUPA ,GROUP1A, GROUP2A ; GWTGROUPB , GROUP1B , GROUP2B™*

In this example GWTGROUPA, GROUP1A and GROUP2A are located on machine 1 and GWTGROUPB,
GROUP1B and GROUP2B are located on machine 2.

If GWTDOMAIN on machine 1 creates a new transaction because it receives an external request,
all Tuxedo service calls for services under groups GROUP1A, GROUP2A, GROUP1B and GROUP2B
will only go to GROUP1A and GROUP2A. GROUP1B and GROUP2B are ignored as they belong to RAC
instance 2 and the transaction was already created for RAC instance 1 via group GWTGROUPA.

Avoiding Transactions created by TMQFORWARD Being Sent to a Remote Machine

Create a local Tuxedo /Q configuration on each machine. Set your TUXRACGROUPS environment
variable as shown in Listing 6-13.

Listing 6-13 TMQFORWARD Example

TUXRACGROUPS=""QUEUEGROUPA , GROUP1A , GROUP2A ; QUEUEGROUPB , GROUP1B , GROUP2B"*

In this example QUEUEGROUPA, GROUP1A and GROUP2A are located on machine 1 and
QUEUEGROUPB, GROUP1B and GROUP2B are located on machine 2.

If TMQFORWARD on machine 1 transactionally forwards a new message to such an Oracle
service, all Tuxedo service calls for services under groups GROUP1A, GROUP2A, GROUP1B and
GROUP2B will only go to GROUP1A and GROUP2A. GROUP1B and GROUP2B are ignored as they
belong to RAC instance 2 and the transaction was already created for RAC instance 1 via group
QUEUEGROUPA.

Avoiding Transactions Created by Tuxedo Native Clients Being Sent to a Remote Machine

You can also bind native clients to a special server group. You just have to build the client using
the command buildclient -r <RM_of_the_group> -f <source_file> -0
<binary_file> and initiate tpinit() with the group name that you want to use.

Using Tuxedo with Oracle Real Application Clusters (RAC) 6-31

Using Tuxedo with Oracle Real Application Clusters (RAC)

6-32

For example, you can create two additional groups CLIENTGROUPA and CL IENTGROUPB,and start
at least two TMS in each group. Set your TUXRACGROUPS environment variable as shown in
Listing 6-14.

Listing 6-14 Remote Machine Example

TUXRACGROUPS=""CLIENTGROUPA ,GROUP1A,GROUP2A; CLIENTGROUPB ,GROUP1B,GROUP2B""

Whenever you initiate tpinit(TPINIT *tpinfo) with a TPINIT structure where
tpinfo->grpname is set to CLIENTGROUPA the client is associated with CLIENTGROUPA. When
tpinfo->grpname is set to CLIENTGROUPB, the client is associated with CLIENTGROUPB.

Native clients on machine 1 should always call tpinit() with tpinfo->grpname =
CLIENTGROUPA; native clients on machine 2 should always call tpinit() with
tpinfo->grpname = CLIENTGROUPB if CLIENTGROUPA is running on machine 1 and
CLIENTGROUPB is running on machine 2. When a Tuxedo Native Client calls tpbegin(), the
transaction is associated with RAC instance 1 in case of CLIENTGROUPA and with RAC instance
2 in case of CLIENTGROUPB

Avoiding Sending Transactions Created by Tuxedo /WS Clients to Remote Machines

The grpname value must be the NULL string (0-length string) for Workstation clients.
You cannot set any group name and you cannot pin /WS clients to special groups. tpbegin()
inside the Tuxedo /WS clients is always unspecified and the opened transaction is distributed in
equal parts over all RAC instances.

The best practice to use with Tuxedo /WS Clients is to avoid transaction handling on the client
side, and start the transaction with the first server that is called by the Tuxedo /WS Client. For
example, you can automatically force creating a transaction when setting the AUTOTRAN
parameter for the called service in the UBBCONFIG file *SERVICES section.

Configuring Transaction Recovery

TMS_rac_refresh(1), XARETRYDURAT IONSECONDS, and XARETRY INTERVAL specifically
handle transaction recovery issues.

TMS_rac_refresh(2)is called when an Oracle RAC group fails over to an alternate group.
TMS_rac_refresh(2) should not be executed manually from the command line; the proper way
to invoke TMS_rac_refresh(1) is to use Oracle Fast Application Notification (FAN).

Using Tuxedo with Oracle Real Application Clusters (RAC)

Using Tuxedo with Oracle Real Application Clusters (RAC)

Note: For more details on configuring Oracle FAN, refer to Oracle 10g documentation.

The XARETRYDURAT IONSECONDS and XARETRY INTERVAL environment variables are used to retry
transaction recovery operations (xa_recover()) as required by Oracle RAC.

XARETRYDURAT IONSECONDS
Specifies the time interval during which the Tuxedo Transaction Manager Server (TMS)
retries xa_recover () operations when TMS_rac_refresh(1) is called. If it is not set or
set to 0, then xa_recover() is performed once only.
The default value for XARETRYDURAT IONSECONDS s O.

Note: For Oracle 10.1, it is recommended that XARETRYDURAT IONSECONDS is set to 120.

XARETRY INTERVAL
Specifies the interval in seconds that xa_recover () operations are retried during the
XARETRYDURAT IONSECONDS interval. The XARETRY INTERVAL value is relevant only if
XARETRYDURAT IONSECONDS is set to a value greater than 0.

The default value for XARETRY INTERVAL is 30.

Configuring Oracle 10g Fast Application Notification (FAN)

A key process in configuring Tuxedo for Oracle RAC is setting up Oracle FAN to invoke
TMS_rac_refresh(1) with the appropriate group parameter on group failover. (More group
parameter and group failover information is provided in Configuring Transaction Propagation.)

More information regarding Oracle FAN can be found in the Workload Management with Oracle
Real Application Clusters (PDF) White Paper

Oracle FAN Script Example
Listing 6-15 is an example of an Oracle FAN script.

Listing 6-15 Oracle FAN Script Example

//This File should be placed at ORA_CRS_HOME/racg/usrco//

#1 /bin/ksh
#parse the event

AWK=awk

Using Tuxedo with Oracle Real Application Clusters (RAC) 6-33

Using Tuxedo with Oracle Real Application Clusters (RAC)

NOTIFY_EVENTTYPE=$1 # Event type is handled differently

for ARGS in $*
do
PROPERTY="echo $ARGS|$AWK -F"=" "{print $1}""
VALUE="echo $ARGS|$AWK -F"=" "{print $2}"°
case ${PROPERTY} in
VERSION]version)NOTIFY_VERSION=$VALUE; ;
SERVICE|service)NOTIFY_SERVICE=$VALUE; ;
DATABASE | database)NOTIFY_DATABASE=$VALUE; ;
INSTANCE] instance)NOTIFY_INSTANCE=$VALUE; ;
HOST|host) NOTIFY_HOST=$VALUE ;;
STATUS|status) NOTIFY_STATUS=$VALUE; ;
REASON]reason) NOTIFY_REASON=$VALUE; ;
CARD|card) NOTIFY_CARDINALITY=$VALUE ;;
TIMESTAMP | timestamp) NOTIFY_LOGDATE=$VALUE;; # catch
event

(hh24:mi:ss)
esac
done

#Set the REFRESH_DIR environment variable.
. /home/oracle/callout._env

#Make a log to record events.
FAN_LOGFILE=/home/oracle/app/products/10.1.0.3.0/db_1/calloutlog/ hostname
T _upti

me . log

touch ${FAN_LOGFILE}

echo ${1} >>${FAN_LOGFILE}

#invoke the TMS_rac_refresh command.
if [${NOTIFY_EVENTTYPE} = "INSTANCE" -a ${NOTIFY_STATUS} = "‘down"]
then
${REFRESH_DIR}/rac_refresh >> ${FAN_LOGFILE} 2>&1
fi

6-34 Using Tuxedo with Oracle Real Application Clusters (RAC)

Using Tuxedo with Oracle Real Application Clusters (RAC)

#1 /bin/ksh
#TUXEDO and Oracle RAC server are not one the same machine.
export REFRESH_DIR=/tmp

#1 /bin/ksh
#I1T TUXEDO and Oracle RAC server on different machine

. /home/oracle/callout.env

rsh -1 ${LOGNAME} ${TUX_MASTER_MACHINE} ${REFRESH_DIR}/rac_refresh
>/tmp/runl._log 2>&1

rsh -1 ${LOGNAME} ${TUX_NONMASTER_MACHINE}
${REFRESH_DIR}/rac_refresh >/tmp/runl.log 2>&1

#1T TUXEDO and Oracle RAC server are on same machine
#set up environment variable

#export APPDIR=/tmp

#export ORACLE_HOME=/home/oracle/OralOg

#export TUXDIR=/nfs/users/1ibo/r902/BJ/bld

#export PATH=. :${PATH}:${TUXDIR}/bin

#. $TUXDIR/tux.env

#export TUXCONFIG=${APPDIR} /tuxconfig

#invoke TMS_rac_refresh
#TMS_rac_refresh RACDBGRP1
#TMS_rac_refresh RACDBGRP3

Using Tuxedo with Oracle Real Application Clusters (RAC) 6-35

Using Tuxedo with Oracle Real Application Clusters (RAC)

Configuring Transaction Recovery for Oracle 10gR2

For Oracle 10gR2, it is much simpler to configure transaction recovery. The database services
specified in the OPENINFO string for each group associated with Oracle RAC should be declared
in Oracle as DTP services.

For example, in Listing 6-6, GROUP1 accessed Oracle via service ORA1SITEL and GROUP2
accessed Oracle via service ORA1SITE2. In Oracle 10gR2, service ORA1SITEL should be declared
with DTP=TRUE, with preferred instance SI1TE1, and with available instance SITE2. Service
ORA1SITE2 should be declared with DTP=TRUE, with preferred instance SITE2, and with
available instance SITEL. A similar process should be followed for groups GROUP3, GROUP4, and
GROUPS.

By declaring different preferred instances, the application will be able to get the benefit of load
balancing during normal operation when both instances are available.

The setting of the TUXRACGROUPS environment variable will ensure that different instances of the
RAC configuration are not combined in the same transaction in order to obtain optimal
performance. If one of the RAC instances goes down, Oracle will transfer the DTP service to the
non-preferred instance while maintaining transactional integrity.

When using Oracle 10gR2 DTP services, it is not necessary and is not recommended to configure
Oracle FAN, use TMS_rac_refresh(1) or set the XARETRYDURAT IONSECONDS or
XARETRY INTERVAL environment variables.

Configuring Transaction Recovery for Oracle 12¢
For Oracle 12c, no specific configuration is needed; transaction recovery is transparent.

Specifying Environment Variables in the UBBCONFIG File

Although the Tuxedo Oracle RAC environment variables can be initiated at the operating system
command line, it is highly recommended that you use the ENVFILE parameter specified in the
*MACHINES section of the UBBCONFIG file to initiate these environment variables.

Apply the following syntax considerations when setting the environment variables for Oracle
RAC.

e When Tuxedo environment variables are set using ENVFILE, which is the preferred
method, quotation marks are not permitted around the environment variable value.

e If environment variables are set at the command line, quotation marks are required if
environment variable values contain characters that could be interpreted as special by the
command line interpreter. An example of a special character is a semicolon.

6-36 Using Tuxedo with Oracle Real Application Clusters (RAC)

Using Tuxedo with Oracle Real Application Clusters (RAC)

e Ensure that the Tuxedo Oracle RAC environment variables are set consistently on all nodes
in a RAC configuration.

See Also

® buildtms (1)

® UBBCONFIG(5)
e “About Transactions” on page 4-1

e “Configuring Your ATMI Application to Use Transactions” on page 5-1

e “Writing Global Transactions” in Programming an Oracle Tuxedo ATMI
Application Using C

e Oracle Real Application Clusters Home Page
e Oracle Application Server Adapters for Tuxedo

e Best Practices for Using XA with RAC

Using Tuxedo with Oracle Real Application Clusters (RAC) 6-37

Using Tuxedo with Oracle Real Application Clusters (RAC)

6-38 Using Tuxedo with Oracle Real Application Clusters (RAC)

Enabling IPv6

This topic includes the following sections:
e Overview
e Enabling IPv6
e IPv4 and IPv6 Interoperability

e Oracle Tuxedo MP Mode Interoperability

Overview

IPv6 is the next generation internet protocol. It fixes a number of problems in IPv4, such as the
limited number of available IPv4 addresses. It also adds many improvements to IPv4 in areas

such as routing and network autoconfiguration. IPv6 has strong mobile device support, and has
attractive features for ISPs or Telecom companies, such as QoS and security. IPv6 is expected to
gradually replace IPv4, with the two coexisting for a number of years during a transition period.

Note: Oracle Tuxedo 11g Release 1 (11.1.1.0) only supports IPv6 basic functionality in this
release. Advanced IPv6 features (for example, QoS and flow control) are not supported.

Enabling IPv6

A Tuxedo process can only supports one IP version at the same time. In order to switch between
IPv4 and IPv6, you must use the TMUSEIPV6 environment variable. For more information, see

Setting Up an Oracle Tuxedo Application 1-1

Enabling IPv6

1-2

tuxenv(5)in the File Formats, Data Descriptions, MIBs, and System Processes Reference in the
Tuxedo 11g Release 1 (11.1.1.0) Reference Guide.

The default value is n|N (IPv4). If TMUSEIPV6 is set to y]Y IPv6 is used as the network protocol.

TMUSEIPV6 can be set in the *MACHINES, *GROUPS, *SERVERS sections in the UBBCONFIG file,
or you can set it before booting Tuxedo.

IPv6 Address Format

The following are valid IPv6 formats:

e e80:0:0:0:202:55FF:Fecf:50b

e fe80::202:55fFF:Fecf:50b
Tuxedo support two formats of V6 address:

//[1Pv6 address]:port
//hostname:port

The IPv6 address in the URL is enclosed by square brackets. For hostname, it does not need to
be enclosed by square brackets. For example: //[fe80: :202:55FF: fecf:50b]:9010 or
//bjaix5:9010

You can use[::] or [0:0:0:0:0:0:0:0] as IPv6 wildcard addresses. For example:
For a server booted on bjaix5 (a dual stack machine), the wildcard address can be //[::]:60120
or//[0:0:0:0:0:0:0:0]:60120

The server listens on 60120 on all bjaix5 interfaces (172.22.34.45 and
fe80: :202:55FF: fecf:50b). It can accept IPv6 and IPv4 protocol.

Tuxedo Component IPv6 Support

Following Tuxedo components support IPv6:

e BRIDGE & BSBRIDGE

e tlisten

o GWTDOMAIN
¢ WSL/WSH

o WS

Setting Up an Oracle Tuxedo Application

IPv4 and IPv6 Interoperability

CERT-C

e Jolt

ISL/ISH

e CORBA client

e SNMP

e SALT

e CORBA & ATMI SSL LDAP

Notes: Tuxedo invokes database XA call back to operate with database. For XA IPv6 depends
on the database vendor support.

WEBGUI does not support IPv6

IPv4 and IPv6 Interoperability

Tuxedo supports the following TCP/IP address formats:
e |Pv4 only
e |PVv6 only

e IPv4 and IPv6 mixed environment
Note: Windows 2000, 20003, and XP platforms do not support dual stack.
Table 7-1 summarizes IPv4 and IPv6 interoperability.

Table 7-1 IPv4 and IPv6 Interoperability

IPv4 Server IPv6 Server IPv4 Server IPv6 Server
IPv4 Host Only IPv6 Host Only Dual Host Stack Dual Host Stack

IPv4 client, IPv4 No IPv4 1Pv4(1)
IPv4-only host

IPv6 client, No IPv6 No IPv6
IPv6-only host

Setting Up an Oracle Tuxedo Application 1-3

Enabling IPv6

Table 7-1 IPv4 and IPv6 Interoperability

IPv4 client, IPv4 No IPv4 IPv4(1)
dual-stack host

IPv6 client, IPv4 IPv6 1Pv4(2) IPv6
dual-stack host

1. On Linux and UNIX platforms, the server must listen using the 1Pv6 wildcard address
).

2. IPv6 client can connect to an IPv4 server on Dual-stack host with textual V4 IP address only
(for example, //10.130.5.144:10002).

Oracle Tuxedo MP Mode Interoperability

If a master uses IPv6 and NADDR & NLSADDR are configured as //[I1Pv6 address]:port,
all slave nodes must use IPv6 as well. Slave nodes using IPv4 cannot start.

If master is using IPv4, all slave nodes must use IPv4 as well. Slave nodes using IPv6 cannot start.

Note: Oracle Tuxedo MP mode cannot be configured using a wildcard address ([::]) in
UBBCONFIG. If you use a wildcard address in MP mode, tmloadcf fails and an
ERROR message is sent to ULOG.

1-4 Setting Up an Oracle Tuxedo Application

CHAPTERa

Managing The Oracle Tuxedo Service
Metadata Repository

This topic includes the following sections:
e Oracle Tuxedo Service Metadata Repository
e Creating The Oracle Tuxedo Service Metadata Repository
e Configuring The Oracle Tuxedo Service Metadata Repository Server

e Accessing The Oracle Tuxedo Service Metadata Repository File

Oracle Tuxedo Service Metadata Repository

The Oracle Tuxedo service metadata repository contains Oracle Tuxedo service definitions that
allow Oracle Tuxedo clients to access Oracle Tuxedo service parameter information. It provides
Oracle Tuxedo application developers and administrators the ability to store and retrieve detailed
service parameter information on any or all Oracle Tuxedo application services.

The Oracle Tuxedo service metadata repository is designed to process interactive queries by
developers and administrators during application development or modification. It is not designed
to process high volumes of automated queries during the application production phase.

Five utilities are used in conjunction with the Oracle Tuxedo service metadata repository

e TMMETADATA(5): Oracle Tuxedo service metadata repository server. It provides one

service, . TMMETAREPOS, which uses an FML32 input and output buffer format described in
METAREPOS(5)

Note: The .TMMETAREPOS buffer format is similar to MIB(5).

Setting Up an Oracle Tuxedo Application 8-1

e tmloadrepos(1): creates or updates the binary metadata repository file and loads it with
service parameter information.

e tmunloadrepos(1): displays service information from the Oracle Tuxedo service
metadata repository. Output can be optionally specified as plain text format, WSDL
format, or C pseudocode

e tpgetrepos(3c): programmatically uses FML32 buffers to output service information
from the Oracle Tuxedo service metadata repository

e tpsetrepos(3c): programmatically uses FML32 buffers to add, delete, or update service
parameter information to the metadata repository file

Oracle Jolt Repository Similarities and Differences

Oracle Jolt also provides a service repository that allows applications to manually enter Oracle
Tuxedo service information, including service names, input and output buffer types, parameter
names, parameter data types, the number of times each parameter is expected, and whether each
parameter is for input, output, or both. All of which seem very similar to the Oracle Tuxedo
service metadata repository. However, there are also some distinct difference as noted in

Table 8-1:

Table 8-1 Oracle Jolt Repository Similarities and Differences

Oracle Jolt Repository Oracle Tuxedo Service Metadata
Repository
Designed for JAVA client Designed for Web service based
communication with Oracle communication with Oracle
Function Tuxedo servers Tuxedo servers
GUI interface Yes No
Uses plain text repository input file Yes (via bulkloader) Yes (via tmloadrepos)
Service and Parameter keywords and ~ Yes Yes (but more than Oracle Jolt
values Repository to provide more

detailed service information)

Binary (service indexed

Repository file format Plain text for quick access)

8-2

Setting Up an Oracle Tuxedo Application

Creating The Oracle Tuxedo Service Metadata Repository

Tahle 8-1 Oracle Jolt Repository Similarities and Differences

Administration utility,
Access method Administration utility, direct programming API, system
editing service

Plain text and C-pseudocode
Unload output format Plain text

Can read, but not modify,
existing Oracle Jolt Repository
file. Cannot create an Oracle Jolt
Repository file.

Inter operability Cannot read Oracle Tuxedo
service metadata repository file

MIB(5) Similarities and Differences

Programmatic access to the Oracle Tuxedo System Metadata Repository is accomplished through
the use of a FML32 buffer format that is very similar to the Oracle Tuxedo MIB format. However,
there are also some distinct difference as noted in Table 8-2:

Table 8-2 MIB(5) Similarities and Differences

MIB(5) METAREPOS(5)
Input/out buffers FML32 FML32
Generic MIB fields Yes Yes, but with some limitations.

See METAREPOS(5)

No authentic MIB class entities,
Authentic MIB class entities Many but uses similar type

-TMMETAREPOS in
Service entry .TMIB in BBL TMMETADA server

Creating The Oracle Tuxedo Service Metadata Repository

The metadata repository file contains all the service parameter information that is accessed in the
Oracle Tuxedo service metadata repository. The tmloadrepos command is used to create a
metadata repository file. Metadata repository file service parameter information is input directly

Setting Up an Oracle Tuxedo Application 8-3

8-4

from the computer console (standard input) if a repository input file is not specified or from a
specified plain text repository input file. For example:

tmloadrepos-i/usr/tuxedo/repository_input_file
/usr/tuxedo/service_metatdata_repository.

The Oracle Tuxedo Service Metadata Repository Input File

The repository_input_fi le contains service parameter keywords and their associated values.
Keywords are divided into two categories: service-level and parameter-level.

Note: Keyword abbreviations are also supported. Both keywords and abbreviations are case
sensitive. For more information on keywords, abbreviations, and values, see Using
Service-Level Keywords and Values and Using Parameter-Level Keywords and Values.

No more than one keyword/value combination can be specified per line. The maximum line
character length is 1024 bytes. String parameter values do not need to be set off with quotation
marks.

The repository_input file uses the following syntax: <keyword><=value> and has the
following input conventions:

u(n and u)n
When a parameter must define a sub-parameter, a line consisting of a single left
parenthesis '(‘and a line consisting of a single right parenthesis ") * denotes the beginning
and end of the embedded sub-parameter portion of the parameter. The left and right
parentheses can be used recursively.

\ and “\”
You can include blank lines in the repository_input file as needed for readability. A
new line is preceded by a\ character. To use an actual '\' character it must be written as "\\'.

Lines starting with a '#' are interpreted as comment lines. Unlike comments specified via
the svcdescription or paramdescription keywords, comments are not stored in the
binary repository_file or output by tmunloadrepos.

The repository_input file can consist of zero or more service parameter definitions. Each
service definition starts with a line beginning with the <service> keyword followed by zero or
more lines beginning with one of the other service-level keywords, followed by parameter-level
keywords. A particular service-level keyword may not be repeated for a particular service.

Setting Up an Oracle Tuxedo Application

Creating The Oracle Tuxedo Service Metadata Repository

Using Service-Level Keywords and Values

A service definition must begin with the keyword service<=NAME> or the abbreviation
sv<=NAME>. Services using CARRAY, STRING, or XML buffer types can have only one parameter
per service. The Oracle Tuxedo service metadata repository service-level keywords are as
follows in Table 8-3:

Table 8-3 Service-Level Keyword, Abbreviations, and Values

Service-Level Keyword
Keyword Abbreviation Value
service Y Any Oracle Tuxedo service name

Note: This key valued can only be once per Metadata

Repository instance. It cannot be duplicated within the

same Metadata Repository.

tuxservice tsv Actual Oracle Tuxedo service name

Note: The difference between the service and

tuxservice keywords is:

* service represents the service entry stored in the
Metadata Repository.

e tuxservice represents the actual Oracle Tuxedo
service name. Two or more service definitions can
have the same value as tuxservice.

When used together, these two keywords make it possible

to have multiple service definitions for one Oracle Tuxedo

service. By default, tuxservice has the same value as
service
servicetype st Service invocation type. Legal values are:

request - response - the service is a synchronous
oneway - the service will not send response to the client
queue - the service is a /Q related application

conv - the service is conversional

Setting Up an Oracle Tuxedo Application 8-5

8-6

Tahle 8-3 Service-Level Keyword, Abbreviations, and Values (Continued)

Service-Level Keyword
Keyword Abbreviation Value
SNAISC ISC Enables outbound Tuxedo service requests to map to

APPC transaction programs or CICS programs. It is only
valid when the value of servicemode is "sna". Its valid
value list is;: APPC,ATI, DPL, DTP. The default value
APPC indicates the remote service is a transaction
program that may or may not be running under CICS. The
DPL value indicates the remote service maps to a program
running under CICS.

servicemode sm

Type of service origination(Optional). Legal values are:

tuxedo - the service is an Oracle Tuxedo originated
service

webservice - proxy service converted from external
Web Service Interface

sna - import service for SNA gateway. For export
service, tuxedo is the default value.

If not specified, tuxedo is the default value.
Note: Do not specify webservice for any Oracle

Tuxedo service, webservice is reserved for
SALT proxy service only.

export ex

Y (default) or N. In the Oracle Jolt repository, this
keyword is used to determine service availability to the
Oracle Jolt client.

In the Oracle Tuxedo repository, this keyword does not
have any meaning, but is nevertheless accepted to
maintain compatibility with existing Oracle Jolt bulk
loader files.

Note: If exportis setto N, the service will not be
exported for C pseudo-code or text format.

Setting Up an Oracle Tuxedo Application

Tahle 8-3 Service-Level Keyword, Abbreviations, and Values (Continued)

Creating The Oracle Tuxedo Service Metadata Repository

Service-Level
Keyword

Keyword
Abbreviation

Value

inbuf

bt

Oracle Tuxedo service request (input) buffer type. Select
one of the following type values (case sensitive):

FML, FML32, VIEW, VIEW32, STRING, CARRAY, XML,
X_OCTET, X_COMMON, X_C_TYPE, MBSTRING or other
arbitrary string representing an application defined
custom buffer type.

Note: The "inbuf'* value of each service definition
cannot be NULL.

outbuf

BT

Oracle Tuxedo service response (output) buffer type with
TPSUCCESS. Select one of the following type values
(case sensitive):

FML, FML32, VIEW, VIEW32, STRING, CARRAY, XML,
X_OCTET, X_COMMON, X_C_TYPE, MBSTRING or other
arbitrary string representing an application defined
custom buffer type.

Note: The "outbuf" value of each service definition
cannot be NULL for a "service" typed service
or a "queue” typed service.

errbuf

ebt

Oracle Tuxedo service response (error) buffer type with
TPFAIL. Select one of the following type values (case
sensitive):

FML, FML32, VIEW, VIEW32, STRING, CARRAY, XML,
X_OCTET, X_COMMON, X_C_TYPE, MBSTRING or other
arbitrary string representing an application defined
custom buffer type.

inview

vn

View name for input buffer(Optional)

Note: This keyword is mandatory only if one of the
following buffer types is used: VIEW, VIEW32,
X_COMMON, X_C_TYPE, FML and FML32.

Setting Up an Oracle Tuxedo Application

8-1

8-8

Tahle 8-3 Service-Level Keyword, Abbreviations, and Values (Continued)

Service-Level
Keyword

Keyword
Abbreviation

Value

outview

VN

View name for output buffer (Optional)

Note: This keyword is mandatory only if one of the
following buffer types is used: VIEW, VIEW32,
X_COMMON, X_C_TYPE, FML and FML32.

errview

evn

View name for error buffer (Optional)

Note: This keyword is mandatory only if one of the
following buffer types is used: VIEW, VIEW32,
X_COMMON, X_C_TYPE.

inbufschema

Customized message schema association for input buffer
(Optional). Value format is:

XSD_E:<element_local_name>@namespaceURI

For example, XSD_E :Book@http://example.org
represents the input buffer is associated with a XML
element <Book> defined in the XML namespace
“http://example.org”.

Note: This keyword is introduced for supporting Oracle
SALT extensible message mapping and
conversion feature. For more information about
SALT message conversion, see Data Type
Mapping and Message Conversion in Oracle
SALT Programming Web Services.

outbufschema

0oscC

Customized message schema association for output buffer
(Optional). Value format is:

XSD_E:<element_local_name>@namespaceURI

errbufschema

esc

Customized message schema association for error buffer
(Optional). Value format is:

XSD_E:<element_local_name>@namespaceURI

svcdescripti
on

sd

Any string value. A new-line break can be used to
improve readability if the string is too long.

sendgspace

sgs

Send queue space name. Optional for a *"queue’ typed
service.

Setting Up an Oracle Tuxedo Application

Creating The Oracle Tuxedo Service Metadata Repository

Tahle 8-3 Service-Level Keyword, Abbreviations, and Values (Continued)

Service-Level Keyword

Keyword Abbreviation Value

sendqueue sgn Send queue name. Optional for a *"queue" typed service.

rplyqueue rgn Reply queue name. Optional for a ""queue" typed
service.

errqueue egn Error queue name. Optional for a ""queue’* typed service.

rcvgspace RQS Receive queue space name. Optional for a ""queue"
typed service.

rcvqgueue RQN Receive queue name. Optional for a *'queue™ typed
service.

version Vs This parameter is exclusive to the Oracle Tuxedo service
metadata repository and accommodates any string value
used by the application.
Oracle Tuxedo does not interpret this parameter.

attributes att This parameter is exclusive to the Oracle Tuxedo service
metadata repository and accommodates any string value
used by the application.
Oracle Tuxedo does not interpret this parameter.

fieldtbls Ttb This parameter is optional and specifies a

comma-separated list of field tables where the FML or
FML32 fields used by this service can be found. The
fieldtbls parameter is intended for reference use by
application developers.

Using Parameter-Level Keywords and Values

A parameter begins with the keyword <param><=NAME> or the abbreviation <pn><=NAME>
followed by a listing of parameter keywords. It ends with another <param> or <service>
keyword, or when end-of-file is encountered. The parameters can be listed in any order after
<param><=NAME>.

Note: A particular service can specify multiple occurrences of the <param> keyword. That is
to say, more than one parameter can exist for a particular service. For example, a
parameter with an FML or VIEW buffer.

Setting Up an Oracle Tuxedo Application 8-9

8-10

The Oracle Tuxedo service metadata repository parameter-level keywords are as follows in

Table 8-4:

Tahle 8-4 Parameter-Level Keyword, Abbreviations, and Values

Parameter-Level Metadata Repository
Keyword Abbreviation

Value

param pn

Any parameter name

type pt

byte, short, integer, float, double, string,
carray, dec_t, xml, ptr, fmI32, view32,
mbstring.

Note: The parameter type must be consistent with its
service buffer type. For example, an FML16
buffer only allow parameters with the following
type: byte (char), short, integer, long,
float, double, string, carray. All other
type parameters are not permitted. See following
buffer type/parameter type matching table.

subtype pst

A view name for a view32 typed parameter

Setting Up an Oracle Tuxedo Application

Creating The Oracle Tuxedo Service Metadata Repository

Tahle 8-4 Parameter-Level Keyword, Abbreviations, and Values (Continued)

Parameter-Level Metadata Repository
Keyword Abbreviation

Value

access pa

in, out, err, inout, inerr, outerr,
inouterr, noaccess.

in - indicates a parameter that is used for input only.
out - indicates a parameter that is used for output only.
err - indicates a parameter that is used for error output
only.

inout - indicates a parameter that is used for both input
and output.

inerr - indicates a parameter that is used for both input
and error output.

outerr - indicates a parameter that is used for both
output and error output.

inouterr - indicates a parameter that is used for input,
output and error output.

noacesss - indicates a parameter that must be provided
on input but which is not referenced in the server, such as
an obsolete parameter or a parameter that must be
provided as a filler field in a view.

The set of parameters expected on input is those specified
with in, inout, inerr, inouterr, or noaccess
access

The set of parameters returned on output is those specified
with out, inout, outerr, or inouterr access.

The set of parameters returned on error output is those
specified with err, inerr, outerr, or inouterr
access.

count po

Maximum number of occurrences (default is 1). The value
for unlimited occurrences is 0. The value range is [0,
32767].

In the Oracle Jolt repository, this parameter is used only
by the Repository Editor to format test screens. In the
Oracle Tuxedo repository, this parameter is stored for
display and is also used by
tmunloadrepos(1)pseudocode generation options.

paramdescrip pd
tion

Any string value. A new-line break can be used to
improve readability if the string is too long.

Setting Up an Oracle Tuxedo Application 8-11

Tahle 8-4 Parameter-Level Keyword, Abbreviations, and Values (Continued)

Parameter-Level
Keyword

Metadata Repository
Abbreviation

Value

size

pl

This optional parameter indicates the number of bytes
allocated for the parameter. It is used in pseudo code
generation for non-numeric parameters and can be used
for programmer reference purposes.

The following parameter types expect this value:
carray, string, xml, mbstring.

requiredcoun
t

ro

Minimum number of times that the parameter must be
specified.The value range is [0, 32767].

fldnum

fno

This optional parameter indicates the field number of the
parameter if it is a FML/FML32 Field.

Note: It is not recommended that you use this
information if the Fieldtbl files have already
been defined by indicating field table directories
using environment FLDTBLDIR(32) and
indicating field table files using environment
FIELDTBLS(32)or Fieldtbl service-level
keyword.

Note: If you configured the £ldnum field, you will
receive the responding fldid according to the
Fldnum value instead of the param value.

vibname

vfb

This parameter is optional for view structure members. It
is used to indicate the field name in the fielded buffer.
Please reference viewfile(5)

vilag

vl

This parameter is optional for view structure members.
Legal values are combination of the following options:
“C", "F", "L", °N", "P", "S". Please reference
viewfile(5).

vnull

vnu

This parameter is optional for view structure members. It
indicates the view member default null value.

8-12 Setting Up an Oracle Tuxedo Application

Creating The Oracle Tuxedo Service Metadata Repository

Tahle 8-4 Parameter-Level Keyword, Abbreviations, and Values (Continued)

Parameter-Level Metadata Repository
Keyword Abbreviation Value

paramschema psc This parameter is optional to save the XML Schema
information for the decomposed FML32 field.

Note: This parameter keyword is introduce