
Oracle® Tuxedo
Accessing Mainframe from Java

12c Release 2 (12.1.3)

April 2014

Oracle Tuxedo Accessing Mainframe from Java, 12c Release 2 (12.1.3)

Copyright © 1996, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use,
duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed
or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If
you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

This software or hardware and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect
to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Contents
Generating a Java Application with the eGen Application
Generator

Overview .1

Writing an eGen Script .2

Writing the DataView Section of an eGen Script .2

Field Name Mapping Rules .4

Field Type Mappings .4

Accessors .5

Group Field Accessors .5

Elementary Field Accessors .6

Array Field Accessors. .7

Fields with REDEFINES Clauses. .7

COBOL Data Types. .8

Program Development .10

Important Areas .12

Tuxedo Mainframe Transaction Publisher
Overview .1

Using Tuxedo Mainframe Transaction Publisher .2

Tuxedo Mainframe Transaction Generator .3

Select COBOL Copybook .4

Define Code Generation Details .4
Accessing Mainframe from Java i

Configure Transaction Input and Output . 5

Enter Transaction Details . 6

Tuxedo Mainframe Transaction Publisher . 8

Pack Artifacts . 8

Publish to OSB . 9

Installing/Uninstalling Tuxedo Mainframe Transaction Publisher 10

Prerequisite. 10

Installing Tuxedo Mainframe Transaction Publisher. 11

Checking Installation Status. 12

Using graphical user interface . 12

Using command lines . 12

Uninstalling Tuxedo Mainframe Transaction Publisher . 13

Installation Notes . 14

Setting up JDeveloper Project . 14

Setting up Oracle Service Bus (OSB) . 16

Installing EGen Libraries for OSB. 16

Importing Shared Resources to OSB . 16
ii Accessing Mainframe from Java

Generating a Java Application with the
eGen Application Generator
This document includes the following topics:

Overview

Writing an eGen Script

Field Name Mapping Rules

Field Type Mappings

Accessors

COBOL Data Types

Program Development

Overview
Oracle Tuxedo supports seamless integration of CICS Transaction Gateway (CTG) application
running on J2EE application servers and JCA based.

With this feature, Oracle Tuxedo provides a tool to

parse COBOL copybooks used to describe CICS transactions/programs interfaces

generate Java bean style classes to populate data

Therefore, users can pass those classes to a CCI (or ECI-wrapped) interface to perform
ART-hosted CICS invocations.
Accessing Mainframe from Java 1

Writing an eGen Script
After you have obtained a COBOL Copybook for the mainframe applications, you are ready to
write an eGen script. This eGen script and the COBOL copybook that describes your data
structure will be processed by the eGen utility to generate a DataView and application code which
will serve as the basis for your custom Java application.

An eGen script has two sections. These are:

DataView. The DataView section of the script generates Java DataView code from a
COBOL copybook. The class file compiled from the generated code extends the Java
DataView class. Generating DataViews is discussed in detail in the remainder of this
section.

Note: If the purpose of your eGen script is to generate a DataView for use with the
WebLogic JAM to JMS EJB, or to launch a WebLogic Integration event, you only
need to create the DataView section of the script.

Java application. The Java application section of the script generates the Java application
code. This is discussed in detail in Basic Programming Techniques.

Writing the DataView Section of an eGen Script
The eGen utility parses a COBOL copybook and generates Java DataView code that encapsulates
the data record declared in the copybook. It does this by parsing an eGen script file containing a
DataView definition similar to the example shown in Listing 1 (keywords are in bold). The
section containing the DataView definition is the first section of the eGen script. Application
code is generated by the second section.

Listing 1 Sample DataView Section of an eGen Script

 generate view examples.CICS.outbound.gateway.EmployeeRecord from

emprec.cpy

Analyzing the parts of this line of code, we see that generate view tells the eGen utility to
generate a Java DataView code file. examples.CICS.outbound.gateway.EmployeeRecord
tells the eGen utility to call the DataView file EmployeeRecord.java. The package is called
examples.CICS.outbound.gateway. The EmployeeRecord class defined in
2 Accessing Mainframe from Java

Wri t ing an eGen Sc r ip t
EmployeeRecord.java is a subclass of the DataView class. The phrase from emprec.cpy tells
the eGen utility to form the EmployeeRecord DataView file from the COBOL copybook
emprec.cpy.

Additional generate view statements may be added to an eGen script in order to produce all
the DataViews required by your application. Also, additional options may be specified in the
eGen script to change details of the DataView generation. For example, the following script will
generate a DataView class that uses codepage cp500 for conversions to and from mainframe
format. If the codepage clause is not specified, the default codepage of cp037 is used.

Listing 2 Sample DataView Section with Codepage Specified

 generate view examples.CICS.outbound.gateway.EmployeeRecord from

emprec.cpy codepage cp500

The following script will generate additional output intended to support use of the DataView class
with XML data:

Listing 3 Sample DataView Section Supporting XML

 generate view sample.EmployeeRecord from emprec.cpy support xml

Additional files generated for XML support are listed in Table 1.

Table 1 Additional Files for DataView XML Support

File Name File Purpose

classname.dtd XML DTD for XML messages accepted and produced by this
DataView.

classname.xsd XML schema for XML messages accepted and produced by this
DataView.
Accessing Mainframe from Java 3

Field Name Mapping Rules
When you process a COBOL copybook containing field names, they are mapped to Java names
by the eGen utility. All alphabetic characters are mapped to lower case, except in the following
two cases.

All dashes are removed and the character following the dash is mapped to upper case.

When a prefix is added to the name (as when creating a field accessor function name), the first
character of the base name is mapped to upper case.

Table 2 lists some mapping examples.

Field Type Mappings
When you process a COBOL copybook, the data types of fields are mapped to Java data types.
The mapping is performed by the eGen utility according to the following rules:

1. Groups map to DataView subclasses.

2. All alphanumeric fields are mapped to type String.

3. All edited numeric fields are mapped to type String.

4. All SIGN SEPARATE, BLANK WHEN ZERO or JUSTIFIED RIGHT fields are mapped to
type String.

5. SIGN IS LEADING is not supported.

6. The types COMP-1, COMP-2, COMP-5, COMP-X, and PROCEDURE-POINTER fields are
not supported (an error message is generated).

7. All INDEX fields are mapped to Java type int.

8. POINTER maps to Java type int.

Table 2 Example Field Name Mapping from COBOL to Java and Accessor

COBOL Field Name Java Base Name Sample Accessor Name

EMP-REC empRec setEmpRec

500-REC-CNT 500RecCnt set500RecCnt
4 Accessing Mainframe from Java

Accessors
9. All numeric fields with any digits to the right of the decimal point are mapped to type
BigDecimal.

10. All COMP-3 (packed) fields are mapped to type BigDecimal.

11. All other numeric fields are mapped as shown in Table 3.

Accessors
This topic includes the following parts.

Group Field Accessors

Elementary Field Accessors

Array Field Accessors

Fields with REDEFINES Clauses

Group Field Accessors
Each nested group in a COBOL copybook is mapped to a corresponding DataView subclass. The
generated subclasses are nested exactly as the COBOL groups in the copybook. In addition, the
eGen utility generates a private instance variable of this class type and a get accessor.

For example, the following copybook:

10 MY-RECORD.

20 MY-GRP.

30 ALNUM-FIELD PIC X(20).

Produces code similar to the following:

Table 3 Numeric Field Mapping

Number of Digits Java Type

<= 4 short

> 4 and <= 9 int

> 9 and <= 18 long

> 18 BigDecimal
Accessing Mainframe from Java 5

 public MyGrp2V getMyGrp();

public static class MyGrp2V extends DataView

{

// Class definition

}

Elementary Field Accessors
Each elementary field is mapped to a private instance variable within the generated DataView
subclass. Access to this variable is accomplished by two accessors that are generated (set and
get).

These accessors have the following forms:

 public void setFieldName(FieldType value);

 public FieldType getFieldName();

Where:

FieldType

is described in the Field Type Mappings section.

FieldName

is described in the Field Name Mapping Rules section.

For example, the following copybook:

 10 MY-RECORD.

20 NUMERIC-FIELD PIC S9(5).

20 ALNUM-FIELD PIC X(20).

Produces the accessors:

public void setNumericField(int value);

public int getNumericField();

public void setAlnumField(String value);

public String getAlnumField();
6 Accessing Mainframe from Java

Accessors
Array Field Accessors
Array fields are handled according to the field accessor rules described in Group Field Accessors
and Elementary Field Accessors, with the addition that each accessor takes an additional int
argument that specifies which array entry is to be accessed, for example:

public void setFieldName(int index, FieldType value);

public FieldType getFieldName(int index);

Array fields specified with the DEPENDING ON clause are handled the same as fixed-size arrays
with the following special rules:

The accessors may be used to get or set any instance up to the maximum array index.

The controlling (DEPENDING ON) variable is evaluated when the DataView is converted to
or from an external format, such as a mainframe format. The eGen utility converts only the
array elements with subscripts less than the controlling value.

Fields with REDEFINES Clauses
Fields that participate in a REDEFINES set are handled as a unit. A private byte[] variable is
declared to hold the underlying mainframe data, as well as a private DataView variable. Each of
the redefined fields has an accessor or accessors. These accessors take more CPU overhead than
the normal accessors because they perform conversions to and from the underlying byte[] data.

For example the copybook:

 10 MY-RECORD.

20 INPUT-DATA.

30 INPUT-A PIC X(4).

30 INPUT-B PIC X(4).

20 OUTPUT-DATA REDEFINES INPUT-DATA PIC X(8).

Produces Java code similar to the following:

private byte[] m_redef23;

private DataView m_redef23DV;

public InputDataV getInputData();

public String getOutputData();

public void setOutputData(String value);
Accessing Mainframe from Java 7

public static class InputDataV extends DataView

{

// Class definition.

}

COBOL Data Types
This section summarizes the COBOL data types supported by WebLogic JAM software. Table 4
lists the COBOL data item definitions recognized by the eGen utility. Table 5 lists the syntactical
features and data types recognized by the eGen utility. If a COBOL feature is unsupported and it
is not listed as ignored in the table, an error message is generated.

Table 4 Major COBOL Features

COBOL Feature Support

IDENTIFICATION DIVISION Unsupported

ENVIRONMENT DIVISION Unsupported

DATA DIVISION Partially Supported

WORKING-STORAGE SECTION Partially Supported

Data record definition Supported

PROCEDURE DIVISION Unsupported

COPY Unsupported

COPY REPLACING Unsupported

EJECT, SKIP1, SKIP2, SKIP3 Supported

Table 5 COBOL Data Types

COBOL Type Java Type

COMP, COMP-4, BINARY (integer) Short/Int/Long

COMP, COMP-4, BINARY (fixed) BigDecimal
8 Accessing Mainframe from Java

COBOL Data Types
COMP-3, PACKED-DECIMAL BigDecimal

COMP-5 Unsupported

COMP-X Unsupported

DISPLAY numeric (zoned) BigDecimal

BLANK WHEN ZERO (zoned) String

SIGN IS LEADING (zoned) Unsupported

SIGN IS LEADING SEPARATE (zoned) String

SIGN IS TRAILING (zoned) String

SIGN IS TRAILING SEPARATE (zoned) String

edited numeric String

COMP-1, COMP-2 (float) Unsupported

edited float numeric String

DISPLAY (alphanumeric) String

edited alphanumeric String

INDEX Int

POINTER Int

PROCEDURE-POINTER Unsupported

JUSTIFIED RIGHT Unsupported (ignored)

SYNCHRONIZED Unsupported (ignored)

REDEFINES Supported

66 RENAMES Unsupported

66 RENAMES THRU Unsupported

77 level Supported

Table 5 COBOL Data Types

COBOL Type Java Type
Accessing Mainframe from Java 9

Program Development
Program development will be accomplished according to program snippet listed in Listing 4 and
according to class naming rules outlined here, although this can be adjusted depending on
customer requirements.

Listing 4 Program Snippet

try

 {

 InitialContext context = new InitialContext();

 ECIConnectionSpec connSpec = new ECIConnectionSpec();

 connSpec.setUserName("TESOP01");

 connSpec.setPassword("");

 Connection connection = connectionFactory.getConnection(connSpec);

 Interaction interaction = connection.createInteraction();

 // Create inputBean

88 level (condition) Unsupported (ignored)

group record Inner Class

OCCURS (fixed array) Array

OCCURS DEPENDING (variable-length array) Array

OCCURS INDEXED BY Unsupported (ignored)

OCCURS KEY IS Unsupported (ignored)

Table 5 COBOL Data Types

COBOL Type Java Type
10 Accessing Mainframe from Java

Program Deve lopment
 K294Bean inRec = new K294Bean();

 inRec.setI__Entete__TranId("K294");

 inRec.setI__Entete__Vers("0101");

 inRec.setI__Entete__Statut("99");

 inRec.setI__Entete__Nb__Enreg((short)40);

 inRec.setI__Entete__User("TESOP01");

 inRec.setI__Entete__Date("2012-01-16");

 // Data

 inRec.setI__restea__nupy(1);

 inRec.setI__restea__cdea(2);

 inRec.setI__restea__cdea1(1);

 K294Bean outRec = new K294Bean();

 // Create InteractionSpec

 InteractionSpec interactionSpec = new ECIInteractionSpec();

 ((ECIInteractionSpec)interactionSpec).setFunctionName("COMPT294");

 ((ECIInteractionSpec)interactionSpec).setTranName("K294");

 ((ECIInteractionSpec)interactionSpec).setCommareaLength(7132);

((ECIInteractionSpec)interactionSpec).setInteractionVerb(ECIInteractionSpe

c.SYNC_SEND_RECEIVE);

 // execute transaction

 interaction.execute((ECIInteractionSpec)interactionSpec, inRec,

outRec);

Accessing Mainframe from Java 11

 // Close all

 interaction.close();

 connection.close();

 // List Data

 K294bean_output__message_t__o__data__data data[] =

outRec.getT__o__data__data();

 // Load List

 for (int i=0; i<data.length;i++)

 {

 if (data[i].getT__o__data__data__o__restea__cdea()!=0)

 {

 out.println(data[i]);

 }

 }

 }

catch (Exception e)

 {

 System.out.println("Error : " + e.getMessage());

 e.printStackTrace();

 }

Important Areas
The following listings show the important areas for program development. Field name mappings
may vary.

Listing 5, “Setup Connection,” on page -13
12 Accessing Mainframe from Java

Program Deve lopment
Listing 6, “Input Bean Usage,” on page -13

Listing 7, “Service Invocation,” on page -14

Listing 8, “Output Bean Usage,” on page -14

Listing 5 Setup Connection

ECIConnectionSpec connSpec = new ECIConnectionSpec();

 connSpec.setUserName("TESOP01");

 connSpec.setPassword("");

 Connection connection = connectionFactory.getConnection(connSpec);

 Interaction interaction = connection.createInteraction();

 // Create InteractionSpec

 InteractionSpec interactionSpec = new ECIInteractionSpec();

 ((ECIInteractionSpec)interactionSpec).setFunctionName("COMPT294");

 ((ECIInteractionSpec)interactionSpec).setTranName("K294");

 ((ECIInteractionSpec)interactionSpec).setCommareaLength(7132);

((ECIInteractionSpec)interactionSpec).setInteractionVerb(ECIInteractionSpe

c.SYNC_SEND_RECEIVE);

Listing 6 Input Bean Usage

// Create inputBean

 K294Bean inRec = new K294Bean();

 inRec.getDfhcommarea().

 getInputMessage().

 getIEntete().setIEnteteTranId("K294");

 inRec.getDfhcommarea().
Accessing Mainframe from Java 13

 getInputMessage().

 getIEntete().setIEnteteVers("0101");

 inRec.getDfhcommarea().

 getInputMessage().

 getIEntete().setIEnteteStatut("99");

 inRec.getDfhcommarea().

 getInputMessage().

 getIEntete().setIEnteteNbEnreg((short)40);

// reserve outputBean

 K294Bean outRec = new K294Bean();

Listing 7 Service Invocation

// execute transaction

 interaction.execute((ECIInteractionSpec)interactionSpec, inRec,

outRec);

Listing 8 Output Bean Usage

K294bean_output__message_t__o__data__data data[] =

outRec.getDfhcommarea().getOutputMessage().getTODataData();
14 Accessing Mainframe from Java

Tuxedo Mainframe Transaction
Publisher
This document includes the following topics:

Overview

Using Tuxedo Mainframe Transaction Publisher

Installing/Uninstalling Tuxedo Mainframe Transaction Publisher

Setting up JDeveloper Project

Setting up Oracle Service Bus (OSB)

Overview
Tuxedo Mainframe Transaction Publisher simplifies the process of exposing mainframe
transaction in Oracle Service Bus (OSB) by providing a graphical user interface.

Let us consider this scenario, where users want to expose their mainframe transaction in OSB.
The proxy service uses WSDL and the business service uses WTC.
Accessing Mainframe from Java 1

The tool generates POJO code based on the input COBOL copybook. These generated codes can
be used by users to access mainframe transaction.

Using Tuxedo Mainframe Transaction Publisher
Tuxedo Mainframe Transaction Publisher includes two parts: Generator and Publisher. They are
implemented as JDeveloper extensions and reside in a single JAR file.

Tuxedo Mainframe Transaction Generator

Tuxedo Mainframe Transaction Publisher

Tuxedo Mainframe Transaction Publisher is a project based tool. Users select the project and
right click to bring up context menu.
2 Accessing Mainframe from Java

Us ing Tuxedo Mainf rame T ransact i on Pub l i sher
Note: Users install this extension using JDeveloper's update center mechanism. For more
information, see Installing Tuxedo Mainframe Transaction Publisher.

Tuxedo Mainframe Transaction Generator
Tuxedo Mainframe Transaction Generator is implemented through the JDeveloper hook. Users
access this function by clicking the "Tuxedo Mainframe Transaction Generator" menu item.

By selecting this function, a graphical user interface base wizard window will be brought up to
guide users to do the following things.

1. Select COBOL Copybook

2. Define Code Generation Details

3. Configure Transaction Input and Output

4. Enter Transaction Details

Eventually, Tuxedo Mainframe Transaction Generator generates seven artifacts that are
organized in two parts.
Accessing Mainframe from Java 3

Generated Java code based on the COBOL copybook

OSB related configuration data which includes WSDL, configuration for OSB Business
Service, and configuration information for OSB Proxy Service

Select COBOL Copybook
The following picture shows the wizard page for selecting COBOL copybook.

Define Code Generation Details
The following screenshot shows the wizard page for defining code generation details.

The following fields are used.

Transaction ID
Name of the mainframe transaction. This is used in code and artifacts generation to name
the OSB project, artifacts, and data mapping classes.

POJOs Package
This is used as Java package name for the mapping classes.

Namespace
This is used as WSDL and schema namespace in the WSDL and XSD OSB artifacts.
4 Accessing Mainframe from Java

Us ing Tuxedo Mainf rame T ransact i on Pub l i sher
Configure Transaction Input and Output
The following screenshot shows the wizard page for configuring the input and output fields from
the COBOL copybook.
Accessing Mainframe from Java 5

Enter Transaction Details
The following screenshot shows wizard page for entering information needed by mainframe
transaction.

The following fields are used.

Tuxedo transaction resource name
Name of the generated Tuxedo transport/WTC import that will be generated.

Tuxedo transaction remote name
Name of the Tuxedo service on the remote Tuxedo domain as exported from there.

Tuxedo remote domain
ID of the remote Tuxedo/TMA domain.

Tuxedo network address
Network address for the Tuxedo/TMA remote domain.

OSB local domain
ID of the OSB domain.
6 Accessing Mainframe from Java

Us ing Tuxedo Mainf rame T ransact i on Pub l i sher
OSB network address
Network address of the OSB domain.

WebLogic target server
Name of the WLS server.

Users are allowed to set the defaults value for the mainframe transaction details according to user
needs through the JDeveloper's "Preference" menu item from the "Tools" drop down menu.
Accessing Mainframe from Java 7

Tuxedo Mainframe Transaction Publisher
Tuxedo Mainframe Transaction Publisher is implemented through the UI hook. Users access this
function by selecting the Tuxedo Mainframe Transaction Publisher menu item.

By selecting this function, a welcome wizard page will be displayed to do the following things.

1. Pack Artifacts

2. Publish to OSB

Pack Artifacts
In this step, the artifacts generated by Tuxedo Mainframe Transaction Generator are packed. The
following wizard page tells users the name of the packaged JAR file, and where it will be
generated.
8 Accessing Mainframe from Java

Us ing Tuxedo Mainf rame T ransact i on Pub l i sher
Publish to OSB
The following wizard page helps users to publish the generated artifacts to OSB. This Tuxedo
Mainframe Transaction Publisher function allows users to specify the OSBs URL, administrator's
name, and administrator's password.

Note: Tuxedo Mainframe Transaction Publisher allows users to manually install the OSB
project by not selecting "Publish to Oracle Service Bus (OSB)?".
Accessing Mainframe from Java 9

Installing/Uninstalling Tuxedo Mainframe Transaction
Publisher

Prerequisite
To ensure successful installation of the Tuxedo Mainframe Transaction Publisher, a pristine
JDeveloper should be used. Users should install the pristine JDeveloper at a new location; they
should neither import any preference from other installations nor use JDeveloper to start from
installer.

After installation, users use the following commands to start the JDeveloper.

cd $ORACLE_HOME

jdeveloper/jdev/bin/jdev -clean -console

Note: JDeveloper Studio is available for download from Oracle Technology Network.
10 Accessing Mainframe from Java

Ins ta l l ing/Un insta l l ing Tuxedo Mainf rame T ransact i on Pub l i sher
Installing Tuxedo Mainframe Transaction Publisher
The Tuxedo Mainframe Transaction Publisher is distributed in a single zip file named
"tuxedo.mtp.update.<version>.zip". Its current version is 12.1.2.0.

Do the following steps to complete the Tuxedo Mainframe Transaction Publisher installation.

1. Select "Install From Local File" and enter the zip file location in "File Name:" text field.

2. Click the "Next" button (and the "Summary" page shows up).

3. Click the "Finish" button to complete the installation.

After completing the installation, jar files will be installed in
MW_HOME/JDeveloper/jdev/extension/tuxedo directory.

Note: The zip file is located in $TUXDIR/udataobj. To find out
"tuxedo.mtp.update.12.1.2.0.zip", open the JDeveloper and click the "Help"
menu item in the menu bar, and select "Check for Updates" from the drop down menu
that is brought up.
Accessing Mainframe from Java 11

Checking Installation Status
After the installation, when the updater asks to restart JDeveloper, choose not to. Then users go
to the command line and re-enter jdeveloper/jdev/bin/jdev -clean -console to verify
whether the installation is successful.

Users can check the installation status using any of the following ways.

Using graphical user interface

Using command lines

Using graphical user interface
Click "Help"- "About" - "Extension".

Using command lines

Listing 1 Using Command Lines to Check Installation Status

D:\oracle\jdeveloper\12.1.2_2>jdeveloper\jdev\bin\jdev -su -clean -console
12 Accessing Mainframe from Java

Ins ta l l ing/Un insta l l ing Tuxedo Mainf rame T ransact i on Pub l i sher
osgi>

osgi> ss tuxedo

Framework is launched.

id State Bundle

927 RESOLVED com.oracle.tuxedo.mtp_12.1.2

Uninstalling Tuxedo Mainframe Transaction Publisher
Do the following steps to uninstall the Tuxedo Mainframe Transaction Publisher from
JDeveloper's menu bar.

1. Click the "Tools" menu item (and a drop down menu shows up).

2. Select the "Features" (and the "Manage Features and Updates" page shows up.

3. Select the "Installed Updates".

4. Select "Tuxedo MF Transaction Publisher".

5. Click "Uninstall" button to complete the uninstallation.
Accessing Mainframe from Java 13

Installation Notes
Tuxedo Mainframe Transaction Publisher requires

Oracle JDeveloper 12.1.2 extension

Oracle Service Bus (OSB) 11.1.1.7

JDK 1.7 or above on both Oracle JDeveloper and Oracle Service Bus (OSB)

Note: When users install Tuxedo Mainframe Transaction Publisher on Oracle JDeveloper
12.1.2 extension, a matisse related exception will be reported. This exception has no
impact on the use of Tuxedo Mainframe Transaction Publisher.

Setting up JDeveloper Project
Users must set up the "Library and Classpath" for every project before using Tuxedo Mainframe
Transaction Publisher; otherwise, the compilation of the generated class fails.

To do the setup, right click the project to bring up context menu and select "Project Properties".
Then select "Add JAR/Directory" and add the eGen libraries.
14 Accessing Mainframe from Java

Se t t ing up JDeve loper P ro jec t
Accessing Mainframe from Java 15

Setting up Oracle Service Bus (OSB)

Installing EGen Libraries for OSB
It is required for users to add eGen libraries to OSB's classpath by doing the following steps.

1. Create or use an existing Oracle Service Bus Domain.

2. Edit <domain_path>/bin/setDomainEnv.sh and eGen libraries to the classpath.

3. Restart OSB to reflect these changes in the classpath.

The eGen libraries can be extracted from the updated zip file.

Users should add the followings to setDomainEnv.sh.

Listing 2 Adding Information to setDomainEnv.sh

#

EGen Classpath for MTP

#

BASE_EGEN_LIBS_PATH=<location of the libraries>

EGEN_CLASSPATH=${BASE_EGEN_LIBS_PATH}/com.bea.core.xml.xmlbeans_2.2.0.0.ja

r${CLASSPATHSEP}${BASE_EGEN_LIBS_PATH}/weblogic_apache.jar${CLASSPATHSEP}$

{BASE_EGEN_LIBS_PATH}/xmltoolkit.jar${CLASSPATHSEP}${BASE_EGEN_LIBS_PATH}/

egen.jar

CLASSPATH="${CLASSPATH}${CLASSPATHSEP}${EGEN_CLASSPATH}"

export CLASSPATH

Importing Shared Resources to OSB
An OSB project with some shared resources is used by Tuxedo Mainframe Transaction Publisher
generated OSB resources. The file with complete OSB project is in
$TUXDIR/udataobj/mtp_shared_sbconfig.jar.

1. Use OSB's console to import this JAR.
16 Accessing Mainframe from Java

Se t t ing up Orac le Se rv i ce Bus (OSB)
System Administration > Import Resources

2. Enter the mtp_shared_sbconfig.jar location.
Accessing Mainframe from Java 17

3. Click "Next>>" button.
18 Accessing Mainframe from Java

Se t t ing up Orac le Se rv i ce Bus (OSB)
4. Select "Import".
Accessing Mainframe from Java 19

5. Click "Activate" button.

6. Click "Submit" button.

7. Check for any error or conflict and resolve them.
20 Accessing Mainframe from Java

	Oracle® Tuxedo
	12c Release 2 (12.1.3)

	Oracle Tuxedo Accessing Mainframe from Java, 12c Release 2 (12.1.3)
	Generating a Java Application with the eGen Application Generator
	Overview
	Writing an eGen Script
	Writing the DataView Section of an eGen Script

	Field Name Mapping Rules
	Field Type Mappings
	Accessors
	Group Field Accessors
	Elementary Field Accessors
	Array Field Accessors
	Fields with REDEFINES Clauses

	COBOL Data Types
	Program Development
	Important Areas

	Tuxedo Mainframe Transaction Publisher
	Overview
	Using Tuxedo Mainframe Transaction Publisher
	Tuxedo Mainframe Transaction Generator
	Select COBOL Copybook
	Define Code Generation Details
	Configure Transaction Input and Output
	Enter Transaction Details

	Tuxedo Mainframe Transaction Publisher
	Pack Artifacts
	Publish to OSB

	Installing/Uninstalling Tuxedo Mainframe Transaction Publisher
	Prerequisite
	Installing Tuxedo Mainframe Transaction Publisher
	Checking Installation Status
	Using graphical user interface
	Using command lines

	Uninstalling Tuxedo Mainframe Transaction Publisher
	Installation Notes

	Setting up JDeveloper Project
	Setting up Oracle Service Bus (OSB)
	Installing EGen Libraries for OSB
	Importing Shared Resources to OSB

