Oracle® Tuxedo
Accessing Mainframe from Java

12c Release 2 (12.1.3)

April 2014

ORACLE

Oracle Tuxedo Accessing Mainframe from Java, 12¢ Release 2 (12.1.3)
Copyright © 1996, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use,
duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed
or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If
you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

This software or hardware and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect
to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Contents

Generating a Java Application with the eGen Application

Generator
OVBIVIBW . ottt e e 1
Writing an @Gen SCHIPLot 2
Writing the DataView Section of aneGen Script. it 2
Field Name Mapping RUIES oo 4
Field Type Mappings oot e 4
ACCESSONS . o v ot ettt et e e 5
Group Field ACCESSOIS\ttt e e 5
Elementary Field ACCESSOISttt e 6
Array Field ACCESSOrS. . . oottt et e e e e 7
Fields with REDEFINES Clauses.o ot e 7
COBOL Data TYPES. . o v v vttt e ettt e e e e e e 8
Program Development 10
IMPOItANt ArEaSot 12

Tuxedo Mainframe Transaction Publisher

OVBIVIBW . ottt e e 1
Using Tuxedo Mainframe Transaction Publisher 2
Tuxedo Mainframe Transaction Generator.vuirinennneennn.. 3
Select COBOL Copybook.o e 4

Define Code Generation Details i, 4

Accessing Mainframe from Java i

Configure Transaction Inputand OQutput oo, 5

Enter Transaction Details o e 6

Tuxedo Mainframe Transaction Publisher. 8
Pack Artifacts 8
PUBliShto OSB 9
Installing/Uninstalling Tuxedo Mainframe Transaction Publisher. 10
PrErEqUISITE. . . . et 10
Installing Tuxedo Mainframe Transaction Publisher. 11
Checking Installation Status. 12
Using graphical userinterface i 12

Using command lINeS oo 12
Uninstalling Tuxedo Mainframe Transaction Publisher 13
Installation NOteSot 14
Setting up JDeveloper Project.ot 14
Setting up Oracle Service Bus (OSB)o et 16
Installing EGen Librariesfor OSB.t 16
Importing Shared Resourcesto OSBot 16

Accessing Mainframe from Java

Generating a Java Application with the
eGen Application Generator

This document includes the following topics:

o Overview

Writing an eGen Script

Field Name Mapping Rules

Field Type Mappings

Accessors

COBOL Data Types

Program Development

Overview

Oracle Tuxedo supports seamless integration of CICS Transaction Gateway (CTG) application
running on J2EE application servers and JCA based.

With this feature, Oracle Tuxedo provides a tool to
e parse COBOL copybooks used to describe CICS transactions/programs interfaces

e generate Java bean style classes to populate data

Therefore, users can pass those classes to a CCI (or ECI-wrapped) interface to perform
ART-hosted CICS invocations.

Accessing Mainframe from Java

Writing an eGen Script

After you have obtained a COBOL Copybook for the mainframe applications, you are ready to
write an eGen script. This eGen script and the COBOL copybook that describes your data
structure will be processed by the eGen utility to generate a DataView and application code which
will serve as the basis for your custom Java application.

An eGen script has two sections. These are:

e DataView. The DataView section of the script generates Java DataView code from a
COBOL copybook. The class file compiled from the generated code extends the Java
DataView class. Generating DataViews is discussed in detail in the remainder of this
section.

Note: If the purpose of your eGen script is to generate a DataView for use with the
WebLogic JAM to JMS EJB, or to launch a WebL ogic Integration event, you only
need to create the DataView section of the script.

e Java application. The Java application section of the script generates the Java application
code. This is discussed in detail in Basic Programming Techniques.

Writing the DataView Section of an eGen Script

The eGen utility parses a COBOL copybook and generates Java DataView code that encapsulates
the data record declared in the copybook. It does this by parsing an eGen script file containing a
DataView definition similar to the example shown in Listing 1 (keywords are in bold). The
section containing the DataView definition is the first section of the eGen script. Application
code is generated by the second section.

Listing 1 Sample DataView Section of an eGen Script

generate view examples.CICS.outbound.gateway.EmployeeRecord from
emprec.cpy

Analyzing the parts of this line of code, we see that generate view tells the eGen utility to
generate a Java DataView code file. examples.CICS.outbound.gateway .EmployeeRecord
tells the eGen utility to call the DataView file EmployeeRecord. java. The package is called
examples.CICS.outbound.gateway. The EmployeeRecord class defined in

2 Accessing Mainframe from Java

Writing an eGen Script

EmployeeRecord. java is a subclass of the DataView class. The phrase from emprec.cpy tells
the eGen utility to form the EmployeeRecord DataView file from the COBOL copybook
emprec.cpy.

Additional generate view statements may be added to an eGen script in order to produce all
the DataViews required by your application. Also, additional options may be specified in the
eGen script to change details of the DataView generation. For example, the following script will
generate a DataView class that uses codepage cp500 for conversions to and from mainframe
format. If the codepage clause is not specified, the default codepage of cp037 is used.

Listing 2 Sample DataView Section with Codepage Specified

generate view examples.CICS.outbound.gateway.EmployeeRecord from
emprec.cpy codepage cp500

The following script will generate additional output intended to support use of the DataView class
with XML data:

Listing 3 Sample DataView Section Supporting XML

generate view sample_EmployeeRecord from emprec.cpy support xml

Additional files generated for XML support are listed in Table 1.

Table 1 Additional Files for DataView XML Support

File Name File Purpose

classname.dtd XML DTD for XML messages accepted and produced by this
DataView.

classname.xsd XML schema for XML messages accepted and produced by this
DataView.

Accessing Mainframe from Java 3

Field Name Mapping Rules

When you process a COBOL copybook containing field names, they are mapped to Java names
by the eGen utility. All alphabetic characters are mapped to lower case, except in the following
two cases.

All dashes are removed and the character following the dash is mapped to upper case.

When a prefix is added to the name (as when creating a field accessor function name), the first
character of the base name is mapped to upper case.

Table 2 lists some mapping examples.

Table 2 Example Field Name Mapping from COBOL to Java and Accessor

COBOL Field Name Java Base Name Sample Accessor Name
EMP-REC empRec setEmpRec
500-REC-CNT 500RecCnt set500RecCnt

Field Type Mappings

When you process a COBOL copybook, the data types of fields are mapped to Java data types.
The mapping is performed by the eGen utility according to the following rules:

1. Groups map to DataView subclasses.
All alphanumeric fields are mapped to type String.

All edited numeric fields are mapped to type String.

A v

All SIGN SEPARATE, BLANK WHEN ZERO or JUSTIFIED RIGHT fields are mapped to
type String.

o

SIGN IS LEADING is not supported.

6. The types COMP-1, COMP-2, COMP-5, COMP-X, and PROCEDURE-POINTER fields are
not supported (an error message is generated).

7. All INDEX fields are mapped to Java type int.
8. POINTER maps to Java type int.

4 Accessing Mainframe from Java

Accessors

9. All numeric fields with any digits to the right of the decimal point are mapped to type
BigDecimal.

10. All COMP-3 (packed) fields are mapped to type BigDecimal.

11. All other numeric fields are mapped as shown in Table 3.

Table 3 Numeric Field Mapping

Number of Digits Java Type

<=4 short

>4and<=9 int

>9and <=18 long

>18 BigDecimal
Accessors

This topic includes the following parts.
e Group Field Accessors
e Elementary Field Accessors
e Array Field Accessors

e Fields with REDEFINES Clauses

Group Field Accessors

Each nested group in a COBOL copybook is mapped to a corresponding DataView subclass. The
generated subclasses are nested exactly as the COBOL groups in the copybook. In addition, the
eGen utility generates a private instance variable of this class type and a get accessor.

For example, the following copybook:
10 MY-RECORD.
20 MY-GRP.
30 ALNUM-FIELD PIC X(20)-

Produces code similar to the following:

Accessing Mainframe from Java 5

public MyGrp2V getMyGrp(Q);
public static class MyGrp2V extends DataView

{

// Class definition

}

Elementary Field Accessors

Each elementary field is mapped to a private instance variable within the generated DataView
subclass. Access to this variable is accomplished by two accessors that are generated (set and

get).
These accessors have the following forms:
public void setFieldName(FieldType value);
public FieldType getFieldName();
Where:
FieldType
is described in the Field Type Mappings section.
FieldName
is described in the Field Name Mapping Rules section.
For example, the following copybook:
10 MY-RECORD.
20 NUMERIC-FIELD PIC S9(5).-
20 ALNUM-FIELD PIC X(20).
Produces the accessors:
public void setNumericField(int value);
public int getNumericField();
public void setAlnumField(String value);

public String getAlnumField();

Accessing Mainframe from Java

Accessors

Array Field Accessors

Array fields are handled according to the field accessor rules described in Group Field Accessors
and Elementary Field Accessors, with the addition that each accessor takes an additional int
argument that specifies which array entry is to be accessed, for example:

public void setFieldName(int index, FieldType value);
public FieldType getFieldName(int index);

Array fields specified with the DEPENDING ON clause are handled the same as fixed-size arrays
with the following special rules:

e The accessors may be used to get or set any instance up to the maximum array index.

e The controlling (DEPENDING ON) variable is evaluated when the DataView is converted to
or from an external format, such as a mainframe format. The eGen utility converts only the
array elements with subscripts less than the controlling value.

Fields with REDEFINES Clauses

Fields that participate in a REDEFINES set are handled as a unit. A private byte[] variable is

declared to hold the underlying mainframe data, as well as a private DataView variable. Each of
the redefined fields has an accessor or accessors. These accessors take more CPU overhead than
the normal accessors because they perform conversions to and from the underlying byte[] data.

For example the copybook:
10 MY-RECORD.
20 INPUT-DATA.

30 INPUT-A PIC X(4).
30 INPUT-B PIC X(4).
20 OUTPUT-DATA REDEFINES INPUT-DATA PIC X(8).

Produces Java code similar to the following:
private byte[] m_redef23;

private DataView m_redef23DV;
public InputDataV getlnputData();
public String getOutputData();

public void setOutputData(String value);

Accessing Mainframe from Java 1

public static class InputDataV extends DataView

{

// Class definition.

}

COBOL Data Types

This section summarizes the COBOL data types supported by WebLogic JAM software. Table 4
lists the COBOL data item definitions recognized by the eGen utility. Table 5 lists the syntactical
features and data types recognized by the eGen utility. If a COBOL feature is unsupported and it
is not listed as ignored in the table, an error message is generated.

Table 4 Major COBOL Features

COBOL Feature Support
IDENTIFICATION DIVISION Unsupported
ENVIRONMENT DIVISION Unsupported

DATA DIVISION

Partially Supported

WORKING-STORAGE SECTION

Partially Supported

Data record definition Supported

PROCEDURE DIVISION Unsupported

COPY Unsupported

COPY REPLACING Unsupported

EJECT, SKIP1, SKIP2, SKIP3 Supported
Table 5 COBOL Data Types

COBOL Type Java Type

COMP, COMP-4, BINARY (integer)

Short/Int/Long

COMP, COMP-4, BINARY (fixed)

BigDecimal

8 Accessing Mainframe from Java

Tahle 5 COBOL Data Types

COBOL Data Types

COBOL Type Java Type
COMP-3, PACKED-DECIMAL BigDecimal
COMP-5 Unsupported
COMP-X Unsupported
DISPLAY numeric (zoned) BigDecimal
BLANK WHEN ZERO (zoned) String

SIGN IS LEADING (zoned) Unsupported
SIGN IS LEADING SEPARATE (zoned) String

SIGN IS TRAILING (zoned) String

SIGN IS TRAILING SEPARATE (zoned) String
edited numeric String
COMP-1, COMP-2 (float) Unsupported
edited float numeric String
DISPLAY (alphanumeric) String
edited alphanumeric String
INDEX Int
POINTER Int
PROCEDURE-POINTER Unsupported

JUSTIFIED RIGHT

Unsupported (ignored)

SYNCHRONIZED

Unsupported (ignored)

REDEFINES Supported
66 RENAMES Unsupported
66 RENAMES THRU Unsupported
77 level Supported

Accessing Mainframe from Java

Tahle 5 COBOL Data Types

COBOL Type Java Type

88 level (condition) Unsupported (ignored)
group record Inner Class

OCCURS (fixed array) Array

OCCURS DEPENDING (variable-length array) Array

OCCURS INDEXED BY Unsupported (ignored)

OCCURS KEY IS Unsupported (ignored)

Program Development

Program development will be accomplished according to program snippet listed in Listing 4 and
according to class naming rules outlined here, although this can be adjusted depending on
customer requirements.

Listing 4 Program Snippet

try

InitialContext context = new InitialContext();

ECIConnectionSpec connSpec = new ECIConnectionSpec();
connSpec.setUserName(""TESOPO1™) ;
connSpec.setPassword(*'");

Connection connection = connectionFactory.getConnection(connSpec);

Interaction interaction = connection.createlnteraction();

// Create inputBean

Accessing Mainframe from Java

Program Development

K294Bean inRec = new K294Bean();
inRec.setl__Entete_ Tranld('K294™);
inRec.setl__Entete_ Vers(''0101');
inRec.setl__Entete__ Statut(*'99");
inRec.setl__Entete_ Nb_ Enreg((short)40);
inRec.setl__Entete_ User(""TESOPO1™);

inRec.setl__Entete_ Date(''2012-01-16");

// Data
inRec.setl__restea_ nupy(1);
inRec.setl__restea_ cdea(2);

inRec.setl__restea_ cdeal(l);

K294Bean outRec = new K294Bean();

// Create InteractionSpec
InteractionSpec interactionSpec = new ECIInteractionSpec();
((EClInteractionSpec)interactionSpec) .setFunctionName(**COMPT294™) ;
((EClInteractionSpec) interactionSpec) .setTranName(''K294') ;

((EClInteractionSpec)interactionSpec) .setCommareaLength(7132);

((EClInteractionSpec) interactionSpec).setinteractionVerb(ECIl InteractionSpe
C.SYNC_SEND_RECEIVE);

// execute transaction

interaction.execute((ECl InteractionSpec)interactionSpec, inRec,
outRec);

Accessing Mainframe from Java "

// Close all
interaction.close();

connection.close();

// List Data

K294bean_output__message t o_ data_ data data[] =
outRec.getT__o_ data_ data();

// Load List

for (int 1=0; i<data.length;i++)

{
if (data[i].getT_o_ data__data_ o_ restea_cdea()!=0)
{
out.printin(data[i]);
}
}
}
catch (Exception e)
{
System.out.printIn("Error : " + e.getMessage()):
e.printStackTrace();
}
Important Areas

The following listings show the important areas for program development. Field name mappings

may vary.

e Listing 5, “Setup Connection,” on page -13

Accessing Mainframe from Java

Program Development

e Listing 6, “Input Bean Usage,” on page -13
e Listing 7, “Service Invocation,” on page -14

e Listing 8, “Output Bean Usage,” on page -14

Listing 5 Setup Connection

ECIConnectionSpec connSpec = new ECIConnectionSpec();
connSpec.setUserName("'TESOPO1');

connSpec.setPassword(*""");

Connection connection = connectionFactory.getConnection(connSpec);

Interaction interaction = connection.createlnteraction();

// Create InteractionSpec
InteractionSpec interactionSpec = new ECIInteractionSpec();

((EClInteractionSpec)interactionSpec) .setFunctionName("'"COMPT294™) ;
((EClInteractionSpec)interactionSpec) .setTranName(''’K294™) ;
((EClInteractionSpec)interactionSpec).setCommareaLength(7132);

((EClInteractionSpec)interactionSpec).setlnteractionVerb(ECI InteractionSpe
c.SYNC_SEND_RECEIVE);

Listing 6 Input Bean Usage

// Create inputBean
K294Bean inRec = new K294Bean();
inRec.getDfhcommarea() -
getlnputMessage() -
getlEntete().setlEnteteTranld('K294");

inRec.getDfhcommarea() -

Accessing Mainframe from Java 13

14

getlnputMessage() -

getlEntete() .setlEnteteVers(*'0101');
inRec.getDfhcommarea() -

getlnputMessage() -

getlEntete().setlEnteteStatut(*'99");
inRec.getDfhcommarea() -

getlnputMessage() -

getlEntete() .setlEnteteNbEnreg((short)40);

// reserve outputBean

K294Bean outRec = new K294Bean();

Listing 7 Service Invocation

// execute transaction

interaction.execute((ECI InteractionSpec)interactionSpec,
outRec);

inRec,

Listing 8 Output Bean Usage

K294bean_output__message t o data__data data[] =
outRec.getDfhcommarea() -getOutputMessage() -getTODatabData() ;

Accessing Mainframe from Java

Tuxedo Mainframe Transaction
Publisher

This document includes the following topics:

o Overview

Using Tuxedo Mainframe Transaction Publisher

Installing/Uninstalling Tuxedo Mainframe Transaction Publisher

Setting up JDeveloper Project

Setting up Oracle Service Bus (OSB)

Overview

Tuxedo Mainframe Transaction Publisher simplifies the process of exposing mainframe
transaction in Oracle Service Bus (OSB) by providing a graphical user interface.

Let us consider this scenario, where users want to expose their mainframe transaction in OSB.
The proxy service uses WSDL and the business service uses WTC.

Accessing Mainframe from Java

Service
Client

The tool generates POJO code based on the input COBOL copybook. These generated codes can
be used by users to access mainframe transaction.

» Java Callout Java Callout
“xml_2_pojo” “pojo_2_bytearray”

@
=
&
@
L]
>
X
o
1=
o

Business Service

3R
‘ Java Callout Java Callout
“pojo_2_xml” “bytearray_2_pojo”

Using Tuxedo Mainframe Transaction Publisher

Tuxedo Mainframe Transaction Publisher includes two parts: Generator and Publisher. They are
implemented as JDeveloper extensions and reside in a single JAR file.

e Tuxedo Mainframe Transaction Generator

e Tuxedo Mainframe Transaction Publisher

Tuxedo Mainframe Transaction Publisher is a project based tool. Users select the project and
right click to bring up context menu.

2 Accessing Mainframe from Java

Using Tuxedo Mainframe Transaction Publisher

{0 Oracle JDeveloper 12¢ - Application.jws : Client.jor ‘E@
FEile Edit View Application Refactor Search Navigate Build Run Team Toolks Window Help

G oEg 9@ 0-0- HES > B O sex

Applcations 11 @ startPage

[Appications . v

<IProjects BV E- o JDEVELOPER ORACLE

=-{5) i

W0 New ’
Edit Project Source Paths.. Lean &Explore Get Started Community

¥ Delete Project

@ Tuxedo MF Transaction Generator What's New

Featured Tutorials Featured Documentation
4% Turedo MF Transaction Publisher

@8 Find Project Files Release fiotes Getting Started with the JDeveloper IDE Developing Appicatons with Oracee JDeveloper
i Applcati] Show Classpath

" Shaw Ov Developing Rich Web Applicatons with Oracle ADF Developing Fusion Web Appications with Oradle ADF
4/ Recent i ow Overview e —

Deploy ! Buiding and Using Web Services Developing Web User Interfaces with Orade ADF

Clentipr -5
st Faces

@ Make Client,jpr CiriFg
&3 Rebuild Client jpr AlFs

[Run

& Debug Developing Extensions for Orace TDeveloper

Mobie Browser Developer's Guide for Orade ADF

Compare With y
Replace With »

Al Online Tutorials
[@) Project Properties...

Al Orline Documentation

[¥] show on Startup

Note: Users install this extension using JDeveloper's update center mechanism. For more
information, see Installing Tuxedo Mainframe Transaction Publisher.

Tuxedo Mainframe Transaction Generator

Tuxedo Mainframe Transaction Generator is implemented through the JDeveloper hook. Users
access this function by clicking the "Tuxedo Mainframe Transaction Generator" menu item.

By selecting this function, a graphical user interface base wizard window will be brought up to
guide users to do the following things.

1. Select COBOL Copybook
2. Define Code Generation Details
3. Configure Transaction Input and Output

4. Enter Transaction Details

Eventually, Tuxedo Mainframe Transaction Generator generates seven artifacts that are
organized in two parts.

Accessing Mainframe from Java 3

e Generated Java code based on the COBOL copybook

e OSB related configuration data which includes WSDL, configuration for OSB Business

Service, and configuration information for OSB Proxy Service

Select COBOL Copyhook

The following picture shows the wizard page for selecting COBOL copybook.

Select COBOL Copybook

| £2| Tuxedo Mainframe Transaction Generator - Step 2 of 5

Welcome

Copybook File:

|D: ‘data'copybookyui_f_pereiralwa45_fixed.cpy

Select COBOL Copybs

Define Code Generation,

Browse...

C—€—@€

01 DOCO045-AREA.

05 MUCIM PIC 59(09) COMP-3.
05 TIPOIN PIC 59(03) COMP-3.
05 ORDEMIM PIC 59(03) COMP-3.
05 ORGACIN PIC 59(05) COMP-3.
05 DTINL PIC 59(08) COMP-3.
05 DTFIM PIC 52(0%) COMP-3.
05 TIPOCOMNTA PIC X(01).

05 TIPOMOW PIC X(02).

05 NMOVPED PIC 9(03).

05 INDSALDO PIC X(01).

05 MONTANTE-IMF
05 MONTANTE-SUP

PIC 59(15)V3(2) COMP-3,
PIC 59(15)V9(2) COMP-3.

Help

05 DTMOVULT PIC 52(09) COMP-3.
05 MUMSEQULT PIC 59(09) COMP-3.
05 SALDOULT PIC 59(15)Va(2) COMP-3,
05 INDCURSOR. PIC X{01).
05 CAMPO-ALUX PIC X{10).
< Back Mext = Finish Cancel

Define Code Generation Details
The following screenshot shows the wizard page for defining code generation details.

The following fields are used.

Transaction ID

Name of the mainframe transaction. This is used in code and artifacts generation to name
the OSB project, artifacts, and data mapping classes.

POJOs Package

This is used as Java package name for the mapping classes.

Namespace

This is used as WSDL and schema namespace in the WSDL and XSD OSB artifacts.

Accessing Mainframe from Java

Using Tuxedo Mainframe Transaction Publisher

|£| Tuxedo Mainframe Transaction Generator - Step 3 of 5 @I

Define Code Generation Details

Select COBOL Copybool
Define Code General

Choose Transaction Inp

C—@ L —

Transaction ID: [WA45 |

POI0s Package: |b|:i. trx |

MNamespace: ttp: /fwww. bpi. pt] |

Help < Back Mext = Einish Cancel

Configure Transaction Input and Output
The following screenshot shows the wizard page for configuring the input and output fields from
the COBOL copybook.

Accessing Mainframe from Java

| £:| Tuxedo Mainfrarme Transaction Generator - Step 4 of 5 @
Choose Transaction Input and Output
Element Type Input Output
1 o e —
I) nucin wsd:integer O O
¥ Define Code Generation [tipoin xsd:integer L} O
) Choose Transaction 1 ordemin wsdiinteger = O
| [orgaoin xsd:iinteger O O
@ Enter Transaction Detail [dtini xsd:integer O O
[dtfim xsd:integer L} O
[tipoconta xsd:string = O
[tipomaw xsd:string = 3
[nmovped xsd:integer O O
[indsaldo xusd:string O O
[montanteInf xsd:decimal = O
[montantesup wsd:decimal = O
[dtmovult xsd:iinteger O O
[numseqult xsd:integer O O
[saldoult xsd:decimal L} O
[indeursor xsd:string = O
[1_campoAux xed:istring 1
Help < Back Mext = Finish Cancel

Enter Transaction Details

The following screenshot shows wizard page for entering information needed by mainframe
transaction.

The following fields are used.

Tuxedo transaction resource name
Name of the generated Tuxedo transport/WTC import that will be generated.

Tuxedo transaction remote hame
Name of the Tuxedo service on the remote Tuxedo domain as exported from there.

Tuxedo remote domain
ID of the remote Tuxedo/TMA domain.

Tuxedo network address
Network address for the Tuxedo/TMA remote domain.

OSB local domain
ID of the OSB domain.

Accessing Mainframe from Java

Using Tuxedo Mainframe Transaction Publisher

OSB network address
Network address of the OSB domain.

WebL ogic target server
Name of the WLS server.

|£:| Tuxedo Mainframe Transaction Generator - Step 5 of 5 @

Enter Transaction Details

Choose Transaction Inp

I
1

)
.

I Tuxedo transaction resource name: |\“.|’.-'-\45
[Enter Transaction D¢
= Tuxedo transaction remote name: [wass
Tuxedo remote domain: |TUX'DOM

Tuxedo network address (ff <host=: <port=): |.|".|"jad<al: 1234

058 local domain: [oseoom
0SB network address {f/<host=: <port=): |,|".|"gunite: 56?B|
WebLogic target server: |server 1
Help = Back Finish Cancel

Users are allowed to set the defaults value for the mainframe transaction details according to user
needs through the JDeveloper's "Preference™ menu item from the "Tools" drop down menu.

Accessing Mainframe from Java 1

© Preferences @

Tuxedo MF Publisher Properties

Tuxedo remote domain: |TU?(DOM

----- Oracle BPEL 1.1 Designer
----- Oracle BPEL 2.0 Designer |
----- Cracle Business Rule Desigr 058 local domain: |OSBDOM |

Tuxedo network address (ff <host>: <port=): |,|"ﬂ10st:port

----- Orade Cloud
- Profiler

..... Resource Bundle Weblogic target server: |server1

[#-- Run

----- Shortcut Keys

- SOA

[#- Swing GUI Builder

----- Task Tags

[#-- TopLink

- UML

----- Usage Reporting

[#-- Versioning

----- Web Browser and Proxy

----- W5 Policy Store

----- ¥ML Schemas

----- XQuery Editor

[#- X5L Maps

0SB network address (ff <host>: <port:): |fﬂ105t:port

Help OK Cancel

Tuxedo Mainframe Transaction Publisher

Tuxedo Mainframe Transaction Publisher is implemented through the Ul hook. Users access this
function by selecting the Tuxedo Mainframe Transaction Publisher menu item.

By selecting this function, a welcome wizard page will be displayed to do the following things.
1. Pack Artifacts

2. Publish to OSB

Pack Artifacts

In this step, the artifacts generated by Tuxedo Mainframe Transaction Generator are packed. The
following wizard page tells users the name of the packaged JAR file, and where it will be
generated.

Accessing Mainframe from Java

Using Tuxedo Mainframe Transaction Publisher

| £ Tuxede Mainframe Transaction Publisher - Step 2 of 3 @
Pack Artifacts
Welcome The file wa45_osb.jar will be generated in directory
T Dt \test\mtp\Client/artifacts.
v Pack Artifacts
$ b 05 This file can be imported into Orade Service Bus 12c.
Help < Back Next = Finish Cancel

The following wizard page helps users to publish the generated artifacts to OSB. This Tuxedo
Mainframe Transaction Publisher function allows users to specify the OSBs URL, administrator's
name, and administrator's password.

Note: Tuxedo Mainframe Transaction Publisher allows users to manually install the OSB
project by not selecting "Publish to Oracle Service Bus (OSB)?".

Accessing Mainframe from Java 9

|2 Tuxedo Mainframe Transaction Publisher - Step 3 of 3 @

Publish to OSB

|
s Pack Artifacts

I
! Publish to 0SB

Publish to Orade Service Bus (058)?
OSBURL: |http:/localhost: 7001 |

Username: |web|0gic |

Password: |l |

Help < Back Finish Cancel

Installing/Uninstalling Tuxedo Mainframe Transaction
Publisher

10

Prerequisite

To ensure successful installation of the Tuxedo Mainframe Transaction Publisher, a pristine
JDeveloper should be used. Users should install the pristine JDeveloper at a new location; they
should neither import any preference from other installations nor use JDeveloper to start from
installer.

After installation, users use the following commands to start the JDeveloper.

e cd $ORACLE_HOME
e jdeveloper/jdev/bin/jdev -clean -console

Note: JDeveloper Studio is available for download from Oracle Technology Network.

Accessing Mainframe from Java

Installing/Uninstalling Tuxedo Mainframe Transaction Publisher

Installing Tuxedo Mainframe Transaction Publisher

The Tuxedo Mainframe Transaction Publisher is distributed in a single zip file named
"tuxedo.mtp.update.<version>.zip". Its current version is 12.1.2.0.

Do the following steps to complete the Tuxedo Mainframe Transaction Publisher installation.
1. Select "Install From Local File" and enter the zip file location in "File Name:" text field.
2. Click the "Next" button (and the "Summary" page shows up).

3. Click the "Finish" button to complete the installation.

After completing the installation, jar files will be installed in
MW_HOME/JDeve loper/jdev/extension/tuxedo directory.

Note: The zip file is located in $TUXDIR/udataobj. To find out
"tuxedo.mtp.update.12.1.2.0.zip", open the JDeveloper and click the "Help"
menu item in the menu bar, and select "Check for Updates” from the drop down menu
that is brought up.

© Check for Updates - Step1 of 4
Select update source
. Search for updates published to Update Centers, or install an update from a bundle you have already downloaded.
& Source
T Automatically check for updates at startup
2 Updates
() Search Update Centers: Proxy Settings...
Oracle Fusion Middleware Products Add...
hitp:ifwr wwe oracle.comfocom/groups/public/@otn/documents/webcontent/1 56082.xm
Official Oracle Extensions and Updates
hitp:/fapex oracle.com/pls/apex/f?p=updatecenter:uc
|:| Open Source and Partners Extensions
hitp:ifer v oracle. comfocom/groups/public/@otn/documentsi/webcontent/130355.xm
["] Internal Automatic Updates (12.1.2)
hitp:ifide us oracle.com/center2 xml
() Install From Local File
Help Mext = Cancel

Accessing Mainframe from Java "

Checking Installation Status

After the installation, when the updater asks to restart JDeveloper, choose not to. Then users go
to the command line and re-enter jdeveloper/jdev/bin/jdev -clean -console to verify
whether the installation is successful.

Users can check the installation status using any of the following ways.
e Using graphical user interface

e Using command lines

Using graphical user interface
Click "Help"- "About" - "Extension".

0 About Oracle JDeveloper 12¢ @

Export =

About Version Properties = Extensions

Q %
Name Identifier v
Tuxedo MF Transaction Publisher com.oracle, tuxedo. mtp

Ok

Using command lines

Listing 1 Using Command Lines to Check Installation Status

D:\oracle\jdeveloper\12.1.2_2>jdeveloper\jdev\bin\jdev -su -clean -console

Accessing Mainframe from Java

Installing/Uninstalling Tuxedo Mainframe Transaction Publisher

osgi>

osgi> ss tuxedo

Framework is launched.

id State Bundle

927 RESOLVED com.oracle._tuxedo.mtp_12.1.2

Uninstalling Tuxedo Mainframe Transaction Publisher

Do the following steps to uninstall the Tuxedo Mainframe Transaction Publisher from
JDeveloper's menu bar.

1. Click the "Tools" menu item (and a drop down menu shows up).
Select the "Features" (and the "Manage Features and Updates" page shows up.
Select the "Installed Updates".

Select "Tuxedo MF Transaction Publisher".

a ~ w N

Click "Uninstall" button to complete the uninstallation.

Accessing Mainframe from Java 13

@) Manage Features and Updates @

Current Role: |Studio Developer (All Features) i Check for Updates ~

Features Installed Updates
To remove one or more installed updates, select the bundles and click Uninstall
2l Other

= Update does not have a category specified
[] &% Tuxedo MF Transaction Publisher

Collapse All

Help Close

Installation Notes

Tuxedo Mainframe Transaction Publisher requires

e Oracle JDeveloper 12.1.2 extension
e Oracle Service Bus (OSB) 11.1.1.7
e JDK 1.7 or above on both Oracle JDeveloper and Oracle Service Bus (OSB)

Note: When users install Tuxedo Mainframe Transaction Publisher on Oracle JDeveloper
12.1.2 extension, a matisse related exception will be reported. This exception has no
impact on the use of Tuxedo Mainframe Transaction Publisher.

Setting up JDeveloper Project

Users must set up the "Library and Classpath” for every project before using Tuxedo Mainframe
Transaction Publisher; otherwise, the compilation of the generated class fails.

To do the setup, right click the project to bring up context menu and select "Project Properties”.
Then select "Add JAR/Directory" and add the eGen libraries.

14 Accessing Mainframe from Java

Setting up JDeveloper Project

@ Project Properties - Di\test\mtp\mysimpapp\mysimpapp.jpr

Q, Search Libraries and Classpath

[E- Project Source Paths (7) Use Custom Settings
-~ ADF Business Components (3) Use Project Settings
- ADF Model
- ADF View Java SE Version:

- Ant Change...
- Compiler

----- Dependencies
----- Deployment Export Description Add Library...
----- EJE Module

----- Extension

----- Facelets Tag Libraries
----- Features

[Javadoc

- Java EE Application

Classpath Entries:

Add JARDirectary...

----- JSP Tag Libraries

----- 15P Visual Editor

I ¢ = 2l

Help Ok Cancel

@) Project Properties - D:\test\mitp\mysimpapp\mysimpapp.jpr

Q Libraries and Classpath
- Project Source Paths () Use Custom Settings
[#-- ADF Business Components (3) Use Project Settings
[+ ADF Model
..... ADF View Jawva SE Version:
[Ant Change...
[+ Compiler)
----- Dependencies Classpath Entries:
----- Deployment Export Description Add Library...
EJB Module [Com.bea.core.xml.xmbeans_2.2.0.0.jar Add JAR Directory
----- Extension (2 Egen.jar =
----- Facelets Tag Libraries 8 Weblogic_apache jar
..... Features ¥mitoolkit.jar
[Javadoc L2} Ant.far)) &
----- Java EE Application 8 Eommon:;o—.z. Ljar ﬁ
""" A @ P:Eir:!l:rlxmrldf r1 11ar
----- 15P Tag Libraries - i &
] [swingx-all-1.6. 3.jar
Editor 3
- Maven
----- Resource Bundle
----- Run/Debug
Help OK Cancel

Accessing Mainframe from Java 15

Setting up Oracle Service Bus (0SB)
Installing EGen Libraries for 0SB

It is required for users to add eGen libraries to OSB's classpath by doing the following steps.
1. Create or use an existing Oracle Service Bus Domain.
2. Edit <domain_path>/bin/setDomainEnv.sh and eGen libraries to the classpath.

3. Restart OSB to reflect these changes in the classpath.
The eGen libraries can be extracted from the updated zip file.

Users should add the followings to setDomainEnv.sh.

Listing 2 Adding Information to setDomainEnv.sh

#

EGen Classpath for MTP

#

BASE_EGEN_LIBS_PATH=<location of the libraries>

EGEN_CLASSPATH=${BASE_EGEN_LIBS_PATH}/com.bea.core.xml _.xmlbeans_2.2.0.0.ja
r${CLASSPATHSEP}${BASE_EGEN_LIBS_PATH}/weblogic_apache . jar${CLASSPATHSEP}$
{BASE_EGEN_LIBS_PATH}/xmltoolkit. jar${CLASSPATHSEP}${BASE_EGEN_LIBS_PATH}/
egen.jar

CLASSPATH=""${CLASSPATH}${CLASSPATHSEP}${EGEN_CLASSPATH}"

export CLASSPATH

Importing Shared Resources to 0SB

An OSB project with some shared resources is used by Tuxedo Mainframe Transaction Publisher
generated OSB resources. The file with complete OSB project is in
$TUXDIR/udataobj/mtp_shared_sbconfig.jar.

1. Use OSB's console to import this JAR.

16 Accessing Mainframe from Java

Setting up Oracle Service Bus (0SB)

System Administration > Import Resources

w- [hrge/ocathost 700

Ble [t Yiow Fpeete ook Hep

= O -

o Favorites g @ eipeessSR @ Web Slice Gallery
| =] Oracle Sernce Bus : bnport Besources

st =] 1 4| 2¢ |10 Googie

Y v B v 0 mm v Pagew Safetyw Tgohw i)~ L

ORACLE' Service Bus 11gR1

Connected to : osb_domain | o Home | Oracle WLS Console | Logout | Help | Orade Support

About Servce Bus]

| weblogic session | Created 4/4/14 4:18 PM | Mo Corficts | 1 Chacges

1 acwe sessonds) | |

Tmpert from UDOT
Auto-Tmport Status
Publesh bo LDOT

Augto-Publesh Status

L Local intsaret | Protected Mede: OFF

v Bims v

2. Enter the mtp_shared_sbconfig. jar location.

Accessing Mainframe from Java

17

18

_ridpbasnuel_windowlabel:

FEile gt View Fpeorites Jook Help
x -

| Feeites n @] OprestR @) Wek Sice Gallery =
. [0 Onache Service - Impoet Rescurces:]

BB - & - Baes ey Tok- @

ORACLE Service Bus 11gR1

mm:w[GrHome | Orsde WLS Console | Logout | Melp | Orace Support | Abeut Senvce Bus |

| weblogkc session | Created 4/4/14 4:16 PM | o Conficts | Ho Changes | 1 Actwe Sessin(s)

Impart from LIDOT
Aut-Inport Stabus.
Publish to UGOT

AuterPublish Status

Exmoute Customization File

shcon|_Bwse.. |

WL Loeal intranet | Presected Mode: O3 v Rex -

3. Click "Next>>" button.

Accessing Mainframe from Java

Setting up Oracle Service Bus (0SB)

mv (& partall_nfpbstrued windowlabelzImportConh soConfiguralion, = 0 e % 0 G =

Epmwimmﬂw

© o Favortes s] eprenSR] Web Sice Gallery =
= L Resouce. Cf v B - - Bagem eleye Tock- @ B

ORACLE' Service Bus 11gR1
|| oo, webiogic Connected to : osh_domain | Griome | Oracle W1s Coneole | Logous | Welp | oracle Support | about Service fus

“:#-h- weblogic sesston | Created 4/4/14 4:18 PM | No Conficts | Mo Changes | 1 Actie Session(s) |
= o Conflkts:

= View Changes iag Imposrt Resodircas- Project IAR Fils
° el S " incude Dependences

T[T f——

o
=

e Tyve Overations | eferences |
’Lm B 4| shared Fropect L = | = e

Export Resaurces

ool
UDDI Regisiies QTop
Imgort from VDD
AuterImport Stats
Publich to UODT

AutorPublish Status

filobal Resources
DI Providers
SMTP Servers.
Preny Senatrs

Customization
Find & Replace
Criate Customization Fie
Exituts Customization File

S Local intranet | Prosected Modes Off o W% -

4. Select "Import".

Accessing Mainframe from Java 19

20

G [B o ocobene ot

| Fle ESt Yoew Faewites Took b

+ [52 [42] |1 oo

- x T -
| o Favornes i) etpremSh 2] Web S Gatery >
| oncesew Inpens B B e b s Tk @

CORACLE' Service Bus 11gR1

Cha enter Weeconse, weblogic Connected o ; osb_domain | % Home | Cracle WLS Conscle | Logeut | Help | Oracle Support | Abeut Service Dus |
weblogic session weblogic session | Created 4/4/14 4:18 P | 1o Conficts | 1 Changa(s) | 1 Acowe Sessonls) | |
= 1 Conflicts

= View Changes | | The import was completed successlully. |

(] [[|| 2 Mot Reeere

Mems1-1ofl (4|4 |1 F |k

Status = Hame Bath Tupe Diagnostic Hessage
Impert Resources 2 | | -

|) o genarc_took | sharadassats R
Export Resoury =
- Merns 1-10f1| 14 | 4 [2 0 b B
oot
DD Regisiries [_impottanomer |
Tmpost from UDDT
oo
Austo-Import Sxatus
Publsh to UODT

Auto-Publsh Stabus.

filobal Resources:
DI Providers
SMTP Senvars
Preosy Seevers

Find & Replace
Create Customization Fie
Dmecute Customization File

B Local intranet | Protected Mode: OIf v RN -

5. Click "Activate" button.
6. Click "Submit" button.

7. Check for any error or conflict and resolve them.

Accessing Mainframe from Java

	Oracle® Tuxedo
	12c Release 2 (12.1.3)

	Oracle Tuxedo Accessing Mainframe from Java, 12c Release 2 (12.1.3)
	Generating a Java Application with the eGen Application Generator
	Overview
	Writing an eGen Script
	Writing the DataView Section of an eGen Script

	Field Name Mapping Rules
	Field Type Mappings
	Accessors
	Group Field Accessors
	Elementary Field Accessors
	Array Field Accessors
	Fields with REDEFINES Clauses

	COBOL Data Types
	Program Development
	Important Areas

	Tuxedo Mainframe Transaction Publisher
	Overview
	Using Tuxedo Mainframe Transaction Publisher
	Tuxedo Mainframe Transaction Generator
	Select COBOL Copybook
	Define Code Generation Details
	Configure Transaction Input and Output
	Enter Transaction Details

	Tuxedo Mainframe Transaction Publisher
	Pack Artifacts
	Publish to OSB

	Installing/Uninstalling Tuxedo Mainframe Transaction Publisher
	Prerequisite
	Installing Tuxedo Mainframe Transaction Publisher
	Checking Installation Status
	Using graphical user interface
	Using command lines

	Uninstalling Tuxedo Mainframe Transaction Publisher
	Installation Notes

	Setting up JDeveloper Project
	Setting up Oracle Service Bus (OSB)
	Installing EGen Libraries for OSB
	Importing Shared Resources to OSB

