
Oracle® Tuxedo
Programming an Oracle Tuxedo Application Using Java

12c Release 2 (12.1.3)

April 2014

Oracle Tuxedo Programming an Oracle Tuxedo Application Using Java, 12c Release 2 (12.1.3)

Copyright © 1996, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use,
duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed
or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If
you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

This software or hardware and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect
to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Contents
1. Introduction to Oracle Tuxedo Java Programming
Overview . 1-1

Programing Guidelines . 1-2

Programming Environment . 1-2

Tuxedo Java Server Threads and Java Class Instance Model. 1-2

Tuxedo Java Server Initialization and Termination Methods . 1-3

Tuxedo 12c Release 2 (12.1.3) Behaviors . 1-3

Tuxedo 12c Release 1 (12.1.1) Behaviors . 1-4

tpsvrinit() Handling. 1-4

tpsvrdone() Handling . 1-4

Tuxedo Java Server tpreturn() Methods . 1-5

Tuxedo Java Server Exception Handling . 1-5

2. ATMI Java Server User Interfaces
TuxedoJavaServer . 2-1

Oracle Tuxedo Java Context . 2-2

TJATMI Primitives for Tuxedo Java Applications. 2-2

TypedBuffers for Tuxedo Java Applications . 2-3

Limitations for Typedbuffer Support . 2-4

Get/Set Service Information . 2-4

Exception. 2-5

Trace . 2-5
Programming an Oracle Tuxedo Application Using Java i

Newly Added Java APIs from Tuxedo 12c Release 2 (12.1.3) 2-5

Newly Added Java APIs . 2-5

Examples for Programming with Newly Java APIs . 2-6

3. Implementing Services in Oracle Tuxedo Java Server
Typical Procedures . 3-1

Example: Implementing Java Service without Transaction . 3-2

Defining Java Classes . 3-2

Creating Java Server Configuration File . 3-5

Updating UBB Configuration File . 3-5

Example: Implementing Java Service with Transaction . 3-6

Defining Java Classes . 3-6

Creating Java Server Configuration File . 3-10

Updating UBB Configuration File . 3-11

4. Reference
Using FML with Oracle Tuxedo Java Server . 4-1

Overview of FML . 4-1

The Oracle WebLogic Tuxedo Connector FML API . 4-2

FML Field Table Administration. 4-2

Using the DynRdHdr Property for mkfldclass32 Class . 4-3

Gaining TypedFML32 Performance Improvements . 4-5

Using VIEW with Oracle Tuxedo Java Server. 4-5

Overview of VIEW Buffers. 4-5

How to Create a VIEW Description File. 4-6

Example VIEW Description File. 4-7

How to Use the viewj Compiler . 4-8

How to Pass Information to and from a VIEW Buffer . 4-10
ii Programming an Oracle Tuxedo Application Using Java

How to Use VIEW Buffers in JATMI Applications . 4-11

How to Get VIEW32 Data In and Out of FML32 Buffers 4-11
Programming an Oracle Tuxedo Application Using Java iii

iv Programming an Oracle Tuxedo Application Using Java

C H A P T E R 1
Introduction to Oracle Tuxedo Java
Programming
This topic includes the following sections:

Overview

Programing Guidelines

Programming Environment

Tuxedo Java Server Threads and Java Class Instance Model

Tuxedo Java Server Initialization and Termination Methods

Tuxedo Java Server tpreturn() Methods

Tuxedo Java Server Exception Handling

Overview
An Oracle Tuxedo service can be developed using pure Java language. The service implemented
with Java language functions the same as other Tuxedo services. You can call the services
advertised by the Tuxedo Java server (TMJAVASVR) using ATMI interfaces from client/ Tuxedo
server, and similarly, you can call the services advertised by the Tuxedo server using TJATMI
interfaces from the java-implemented service.

Besides, you can call java-implemented services from any type of Tuxedo clients, such as native
clients, /WS clients, and Jolt clients.
Programming an Oracle Tuxedo Application Using Java 1-1

It is supported to use a variety of mainstream Java technologies like TJATMI interface, JATMI
TypedBuffers, POLO java object, and so on to implement Tuxedo services.

Programing Guidelines
The following guidelines are basic instructions for Java service development.

Java server class, which implements Java services, should inherit the TuxedoJavaServer
class; Java server class also should have a default constructor.

In Java server class, Java method, which will be advertised as Java service, should take the
TPSVCINFO interface as the only input argument and should be declared to public.

Java server class should implement tpsvrinit() method, which will be called when
Tuxedo Java server starts up.

Java server class should implement tpsvrdone() method, which will be called when
Tuxedo Java server shuts down.

Java service could use Tuxedo Java ATMI (e.g, tpcall, tpbegin, etc).

Java service could return result to client by using tpreturn and exit by throwing
exception.

Programming Environment
For complete information on programming environment, see Configurations in UBBCONFIG.

Tuxedo Java Server Threads and Java Class Instance
Model

In Tuxedo 12c Release 1 (12.1.1), Tuxedo Java server uses traditional Tuxedo multithread
model and must be running in multithread mode.

Once started, Tuxedo Java server creates one global object (instance) for each class defined
in the configuration file and then the working threads share the global object (instance)
when handling the Java service.
1-2 Programming an Oracle Tuxedo Application Using Java

../ads/adjava.html#wp1079712

Tuxedo Java Se rver In i t i a l i za t i on and Te rminat ion Methods
Tuxedo Java Server Initialization and Termination
Methods

The method behaviors differ between Tuxedo 12c Release 2 (12.1.3) and Tuxedo 12c Release 1
(12.1.1).

Tuxedo 12c Release 2 (12.1.3) Behaviors

Tuxedo 12c Release 1 (12.1.1) Behaviors

Tuxedo 12c Release 2 (12.1.3) Behaviors
Java server supports the following initialization and termination methods: tpsvrinit(),
tpsvrinit(String []), tpsvrdone(), tpsvrthrinit(), tpsvrthrinit(String []), and
tpsvrthrdone().

Note: tpsvrinit() and tpsvrdone() are mandatory; the other four methods are optional.

When loading application server class, Java server retrieves all these initialization and
termination methods and invokes the corresponding initialization methods under the following
rules.

When being instantiated and activated, Java server invokes corresponding thread level of
initialization method if it is implemented in user server class. The invocation rules are listed as
below.

Table 1-1 Invocation Rules for Standard Initialization Methods

Implemented Initialization Methods Specified <server-clopt> Invoked Method

tpsvrinit() Yes tpsvrinit()

tpsvrinit() No tpsvrinit()

tpsvrinit(),
tpsvrinit(String [])

Yes tpsvrinit(String [])

tpsvrinit(),
tpsvrinit(String [])

No tpsvrinit()
Programming an Oracle Tuxedo Application Using Java 1-3

When a server dispatching thread is inactivated, tpsvrthrdone() method is invoked if the
server class implements it.

tpsvrthrinit() and tpsvrthrdone() will not be invoked if Java server is running in
single-thread mode.

Note: Users can invoke Java APIs in the initialization and termination methods.

Tuxedo 12c Release 1 (12.1.1) Behaviors

tpsvrinit() Handling
Users need to implement the tpsvrinit() method. Given that tpsvrinit() will be called
when server starts up, it's recommended to put the class scope initialization in this method. If one
class' tpsvrinit() fails, a warning message will be reported in user log and the Java server will
continue its execution.

tpsvrdone() Handling
Users need to implement the tpsvrdone() method. Given that tpsvrdone() will be called
when the server shuts down, it's recommended to put the class scope cleanup actions in this
method.

Table 1-2 Invocation Rules for Standard Thread Initialization Methods

Implemented Initialization Methods Specified
<server-clopt>

Invoked Method

tpsvrthrinit() Yes tpsvrthrinit()

tpsvrthrinit() No tpsvrthrinit()

tpsvrthrinit(),
tpsvrthrinit(String [])

Yes tpsvrthrinit(String [])

tpsvrthrinit(),
tpsvrthrinit(String [])

No tpsvrthrinit()

tpsvrthrinit(String []) Yes tpsvrthrinit(String [])

tpsvrthrinit(String []) No No method is invoked.
1-4 Programming an Oracle Tuxedo Application Using Java

Tuxedo Java Se rve r tp re turn () Methods
Tuxedo Java Server tpreturn() Methods
The tpreturn() in Java service does not immediately disrupt the Java service method's
execution but provide the return result to Tuxedo Java server.

How does tpreturn() behave in Java service is different from how does tpreturn() behave
in the existing Tuxedo system.

When a tpreturn() is called in the existing Tuxedo system, the flow control is
transferred to Tuxedo automatically.

When a tpreturn() is called in Java service, statements after tpreturn() will still be
executed. Users must make sure tpreturn() is the last execution statement in Java
service - if not, we suggest to use a following Java return invocation after tpreturn();
otherwise, tpreturn() will not transfer the flow control to the Tuxedo system
automatically.

Note: The use of a Java return statement in Java service without a previous tpreturn()
statement is not suggested - such use will make the Java server return TPFAIL with rcode
setting 0 to the corresponding client.

Tuxedo Java Server Exception Handling
Java service can throw any exception during execution and exit the Java service. In this
case the Java server will return TPFAIL with rcode setting to 0 for this service to its client.

All the exception information is recorded into the $APPDIR/stderr file.
Programming an Oracle Tuxedo Application Using Java 1-5

1-6 Programming an Oracle Tuxedo Application Using Java

C H A P T E R 2
ATMI Java Server User Interfaces
This topic includes the following sections:

TuxedoJavaServer

Oracle Tuxedo Java Context

TJATMI Primitives for Tuxedo Java Applications

TypedBuffers for Tuxedo Java Applications

Get/Set Service Information

Exception

Trace

Newly Added Java APIs from Tuxedo 12c Release 2 (12.1.3)

TuxedoJavaServer
TuxedoJavaServer is an abstract class, which should be inherited by all the user-defined classes
that implement the services.
Programming an Oracle Tuxedo Application Using Java 2-1

Oracle Tuxedo Java Context
To access the TJATMI primitives provided by Oracle Tuxedo Java server, you need to get a
TuxAppContext object that implements all the TJATMI primitives.

Because the service class inherits from TuxedoJavaServer, you can call getTuxAppContext()
in the service to get the context object. However, you cannot get TuxAppContext in
tpsvrinit() because the TuxAppContext is not ready at this time. If you try to get the
TuxAppContext object in tpsvrinit(), tpsvrinit() will fail and throw an exception.

TJATMI Primitives for Tuxedo Java Applications
TJATMI is a set of primitives that provides communication between clients and servers, such as
calling the services, starting and ending transactions, getting the connection to DataSource,
logging, and etc.

For more information, please refer to Java Server Javadoc.

Table 2-1 TuxedoJavaServer Interfaces

Function Description

tpsvrinit An abstract method, which should be implemented by child class to do
some initialization works

tpsvrdone An abstract method, which should be implemented by child class to do
some cleanup works

getTuxAppContext Use to retrieve the current attached Tuxedo application Java context.

Table 2-2 TJATMI Primitives

Name Operation

tpcall Use for synchronous invocation of an Oracle Tuxedo service during
request/response communication.

tpreturn Use to set the return value and data in Tuxedo Java Server.

tpbegin Use to begin a transaction.
2-2 Programming an Oracle Tuxedo Application Using Java

http://docs.oracle.com/cd/E53645_01/tuxedo/docs12cr2/javadoc/javasev/com/oracle/tuxedo/tjatmi/package-summary.html

TypedBuffe rs fo r Tuxedo Java App l i cat i ons
Note: The service continues running after tpreturn ends execution. It is recommended put
tpreturn() as the last executive statement in the service.

TypedBuffers for Tuxedo Java Applications
ATMI Java server reuses the Oracle WebLogic Tuxedo Connector TypedBuffers that
corresponds to Oracle Tuxedo typed buffers. Messages are passed to servers in typed buffers. The
ATMI Java server provides the following buffer types in Table 2-3:

tpcommit Use to commit the current transaction

tpabort Use to abort the current transaction

tpgetlev Use to check if a transaction is in progress

getConnection Use to get a connection to the configured DataSource

userlog Use to print the user log in Tuxedo user log file

Table 2-2 TJATMI Primitives

Name Operation

Table 2-3 TypedBuffers

Buffer Type Description

TypedString Buffer type used when the data is an array of characters that terminates
with the null character. Oracle Tuxedo equivalent: STRING.

TypedCArray Buffer type used when the data is an undefined array of characters (byte
array), any of which can be null. Oracle Tuxedo equivalent: CARRAY.

TypedFML Buffer type used when the data is self-defined. Each data field carries its
own identifier, an occurrence number, and possibly a length indicator.
Oracle Tuxedo equivalent: FML.

TypedFML32 Buffer type similar to TypeFML but allows for larger character fields,
more fields, and larger overall buffers. Oracle Tuxedo equivalent: FML32.

TypedXML Buffer type used when data is an XML based message. Oracle Tuxedo
equivalent: XML for Tuxedo Release 7.1 and higher.
Programming an Oracle Tuxedo Application Using Java 2-3

For more information about TypedBuffers, please see the Package of "weblogic.wtc.jatmi".

Additionally, "Using FML with Oracle Tuxedo Java Server" and "Using VIEW with Oracle
Tuxedo Java Server" in Reference are useful for you to use TypedFML/TypedFML32 and/or
TypedView/TypedView32 in Java server class.

Limitations for Typedbuffer Support
Fldid()/Fname() for the TypedFML32 which is embedded in another TypedFML32 cannot
work. To work around this issue, you can use the fieldtable class instead for name/id
transferring.

The weblogic.wtc.gwt.XmlViewCnv/XmlFmlCnv class is not available for the present.

Get/Set Service Information
Use the TPSVCINFO class to get/set service information sent by the Oracle Tuxedo client.

TypedView Buffer type used when the application uses a Java structure to define the
buffer structure using a view description file. Oracle Tuxedo equivalent:
VIEW

TypedView32 Buffer type similar to View but allows for larger character fields, more
fields, and larger overall buffers. Oracle Tuxedo equivalent: VIEW32.

Table 2-3 TypedBuffers

Buffer Type Description

Table 2-4 Getter Functions

Function Description

getServiceData Use to return the service data sent from the Oracle Tuxedo Client.

getServiceFlags Use to return the service flags sent from the Oracle Tuxedo Client.

getServiceName Use to return the service name that was called.

getAppKey Use to get the application authentication client key.

getClientID Use to get the client identifier for originating client.
2-4 Programming an Oracle Tuxedo Application Using Java

http://docs.oracle.com/cd/E24329_01/apirefs.1211/e24391/index.html
http://docs.oracle.com/cd/E24329_01/apirefs.1211/e24391/index.html
../pgj/pgjref.html

Except ion
Use TuxATMIReply to get the reply data and meta-data from a service invocation.

Exception
You need to catch the exception thrown by JATMI primitives in the service, such as tpcall().
There are two types of exceptions that JATMI can throw:

TuxATMITPException: Exception thrown that represents a TJATMI failure.

TuxATMITPReplyException: Exception thrown if there was a service failure
(TPESVCFAIL or TPSVCERROR) and user data may be associated with the exception.

For more information, please refer to Java Server Javadoc.

Trace
You also need to export TMTRACE=atmi:ulog as you have done for traditional Tuxedo ATMI.
The TJATMI API traces are written into ULOG as other ATMI traces.

Newly Added Java APIs from Tuxedo 12c Release 2
(12.1.3)

Newly Added Java APIs

Examples for Programming with Newly Java APIs

Newly Added Java APIs
From Tuxedo 12c Release 2 (12.1.3), Tuxedo Java server adds a bunch of Java APIs in terms of
event, unsolicited message, /Q, asynchronous call, block time control, and server service forward.
For detailed information about all newly added Java APIs, please refer to Javadoc.

Table 2-5 Getter Functions for Reply

Function Description

getReplyBuffer Return the (possibly null) typed buffer returned from a service

gettpurcode Return the tpurcode returned from a service
Programming an Oracle Tuxedo Application Using Java 2-5

http://docs.oracle.com/cd/E53645_01/tuxedo/docs12cr2/javadoc/javasev/com/oracle/tuxedo/tjatmi/package-summary.html

Note: Except for tpappthrinit() and tpappthrterm(), all APIs must be invoked only after
the TuxAppContext object is successfully created and acquired by the caller.

Examples for Programming with Newly Java APIs
Most Tuxedo Java APIs must be invoked in a valid Tuxedo context. Before invoking these APIs,
a valid Tuxedo context must be acquired.

The following examples present the ways to program with Java APIs.

Example for Invoking APIs in Server Initialization and Termination Stage

Example for Invoking APIs in Service Routine

Example for Forwarding Service Requests

Example for Invoking APIs in an Application Server Thread

Listing 2-1 Example for Invoking APIs in Server Initialization and Termination Stage

public int tpsvrinit()

{

TuxAppContext myAppCtxt = null;

try {

 int cd;

 TypedString rqstData = new TypedString("hello”);

TuxATMIReply rply = null;

 myAppCtxt = getTuxAppContext();

 cd = myAppCtxt.tpacall("data_process", rqstData, 0);

 rply = myAppCtxt.tpgetrply(cd, 0);

 ...

} catch (TuxATMITPException ex) {

} catch (Throwable ex) {

}

2-6 Programming an Oracle Tuxedo Application Using Java

Newl y Added Java AP Is f r om Tuxedo 12c Re lease 2 (12 .1 .3)
return 0;

}

public void tpsvrdone()

{

TuxAppContext myAppCtxt = null;

try {

TypedString rqstData = new TypedString("hello”);

TuxATMIReply rply = null;

myAppCtxt = getTuxAppContext();

rply = myAppCtxt.tpcall("data_process", rqstData, 0);

 ...

} catch (TuxATMITPException ex) {

} catch (Throwable ex) {

}

return;

}

Listing 2-2 Example for Invoking APIs in Service Routine

public void MYSERVICE(TPSVCINFO rqst)

{

TuxAppContext myAppCtxt = null;

try {

 TypedFML32 rqstData = (TypedFML32)rqst.getServiceData();

 TuxATMIReply rply = null;

 TypedFML32 rplyData = null;
Programming an Oracle Tuxedo Application Using Java 2-7

myAppCtxt = getTuxAppContext();

rply = myAppCtxt.tpcall("data_process", rqstData, 0);

 rplyData = (TypedFML32)rply.getReplyBuffer();

 myAppCtxt.tpreturn(TPSUCCESS, 0, rplyData, 0);

} catch (TuxATMITPException ex) {

} catch (Throwable ex) {

}

return;

}

Listing 2-3 Example for Forwarding Service Requests

public void MYSERVICE(TPSVCINFO rqst)

{

TuxAppContext myAppCtxt = null;

try {

 TypedFML32 rqstData = (TypedFML32)rqst.getServiceData();

 TuxATMIReply rply = null;

 TypedFML32 rplyData = null;

myAppCtxt = getTuxAppContext();

rply = myAppCtxt.tpcall("data_process", rqstData, 0);

 rplyData = (TypedFML32)rply.getReplyBuffer();

 myAppCtxt.tpforward("FWD_SVC", rplyData, 0);

} catch (TuxATMITPException ex) {

} catch (Throwable ex) {

}

2-8 Programming an Oracle Tuxedo Application Using Java

Newl y Added Java AP Is f r om Tuxedo 12c Re lease 2 (12 .1 .3)
return;

}

Listing 2-4 Example for Invoking APIs in an Application Server Thread

public class SimpServTuxAppThread implements Runnable, TuxATMIConstants {

public void run() {

 try {

 TPINIT tpinfo = null;

 int rtn = 0;

 rtn = TuxAppContextUtil.tpappthrinit(tpinfo);

 TuxAppContext myAppCtxt = null;

 myAppCtxt = TuxAppContextUtil.getTuxAppContext();

 TuxATMIReply rply = null;

 TypedString rqStr = new TypedString("Is_is_simple_appThread_test");

 rply = myAppCtxt.tpcall("SVC", rqStr, TPNOTIME|TPSIGRSTRT);

 rtn = TuxAppContextUtil.tpappthrterm();

 } catch (TuxATMITPException ex) {

 } catch (Throwable ex) {

 }

}

}

In the above example, a valid Tuxedo application context can be created by invoking
TuxAppContextUtil.tpappthrinit() in an application created Java server thread. After the
invocation of TuxAppContextUtil.tpappthrinit() is successfully completed, you can get a
Programming an Oracle Tuxedo Application Using Java 2-9

valid Tuxedo application context by invoking TuxAppContextUtil.getTuxAppContext()
method and then Tuxedo Java APIs can be called in the context.
2-10 Programming an Oracle Tuxedo Application Using Java

C H A P T E R 3
Implementing Services in Oracle
Tuxedo Java Server
This topic includes the following sections:

Typical Procedures

Example: Implementing Java Service without Transaction

Example: Implementing Java Service with Transaction

Typical Procedures
Typical steps of implementing the services in Oracle Tuxedo Java server are as follows.

1. Define a class that inherits from TuxedoJavaServer

2. Provide a default constructor

3. Implement the tpsvrinit() and tpsvrdone() method

4. Implement the service method which should use TPSVCINFO as its only argument parameter,
as follows:

a. Get the TuxAppContext object using getTuxAppContext() method

b. Get the client request data using TPSVCINFO.getServiceData() method from
TPSVCINFO object

c. If you have configured a DataSource, get a connection to the DataSource using
TuxAppContext.getConnection() method
Programming an Oracle Tuxedo Application Using Java 3-1

d. Do the business logic, such as call some other services using TuxAppContext.tpcall(),
manipulate the database, etc.

e. Allocate a new TypedBuffer and put a reply data in the TypedBuffer

f. Call TuxAppContext.tpreturn() to return the reply data to client

Example: Implementing Java Service without Transaction
Following is a simple example that implements the TOUPPER service. It includes three steps:

1. Defining Java Classes: Listing 3-1

2. Creating Java Server Configuration File: Listing 3-2

3. Updating UBB Configuration File: Listing 3-3

Defining Java Classes

Listing 3-1 Java Class Definition

import weblogic.wtc.jatmi.TypedBuffer;

import weblogic.wtc.jatmi.TypedString;

import com.oracle.tuxedo.tjatmi.*;

public class MyTuxedoJavaServer extends TuxedoJavaServer {

 public MyTuxedoJavaServer()

 {

 return;

 }

 public int tpsvrinit() throws TuxException

 {

 System.out.println("MyTuxedoJavaServer.tpsvrinit()");

 return 0;
3-2 Programming an Oracle Tuxedo Application Using Java

Example : Imp lement ing Java Serv ice w i thout T ransact ion
 }

 public void tpsvrdone()

 {

 System.out.println("MyTuxedoJavaServer.tpsvrdone()");

 return;

 }

 public void JAVATOUPPER(TPSVCINFO rqst) throws Exception {

 TypedBuffer svcData;

 TuxAppContext myAppCtxt = null;

 TuxATMIReply myTuxReply = null;

 TypedBuffer replyTb = null;

 /* Get TuxAppContext first */

 myAppCtxt = getTuxAppContext();

 svcData = rqst.getServiceData();

 TypedString TbString = (TypedString)svcData;

 myAppCtxt.userlog("Handling in JAVATOUPPER()");

 myAppCtxt.userlog("Received string is:" + TbString.toString());

 String newStr = TbString.toString();

 newStr = newStr.toUpperCase();

 TypedString replyTbString = new TypedString(newStr);

 /* Return new string to client */

 myAppCtxt.tpreturn(TPSUCCESS, 0, replyTbString, 0);

 }
Programming an Oracle Tuxedo Application Using Java 3-3

 public void JAVATOUPPERFORWARD(TPSVCINFO rqst) throws Exception {

 TypedBuffer svcData;

 TuxAppContext myAppCtxt = null;

 TuxATMIReply myTuxReply = null;

 TypedBuffer replyTb = null;

 long flags = TPSIGRSTRT;

 /* Get TuxAppContext first */

 myAppCtxt = getTuxAppContext();

 svcData = rqst.getServiceData();

 TypedString TbString = (TypedString)svcData;

 myAppCtxt.userlog("Handling in JAVATOUPPERFORWARD()");

 myAppCtxt.userlog("Received string is:" + TbString.toString());

 /* Call another service "TOUPPER" which may be implemented by another

Tuxedo Server */

 try {

 myTuxReply = myAppCtxt.tpcall("TOUPPER", svcData, flags);

 /* If success, get reply buffer */

 replyTb = myTuxReply.getReplyBuffer();

 TypedString replyTbStr = (TypedString)replyTb;

 myAppCtxt.userlog("Replied string from TOUPPER:" +

replyTbStr.toString());

 /* Return the replied buffer to client */

 myAppCtxt.tpreturn(TPSUCCESS, 0, replyTb, 0);

 } catch (TuxATMITPReplyException tre) {

 myAppCtxt.userlog("TuxATMITPReplyException:" + tre);

 myAppCtxt.tpreturn(TPFAIL, 0, null, 0);

 } catch (TuxATMITPException te) {
3-4 Programming an Oracle Tuxedo Application Using Java

Example : Imp lement ing Java Serv ice w i thout T ransact ion
 myAppCtxt.userlog("TuxATMITPException:" + te);

 myAppCtxt.tpreturn(TPFAIL, 0, null, 0);

 }

 }

}

Creating Java Server Configuration File
Listing 3-2 shows an configuration example that exports
MyTuxedoJavaServer.JAVATOUPPER() method as Tuxedo service name JAVATOUPPER and
MyTuxedoJavaServer.JAVATOUPPERFORWARD() method as Tuxedo service name
JAVATOUPPERFORWARD.

Listing 3-2 Java Server Configuration File

<?xml version="1.0" encoding="UTF-8"?>

<TJSconfig>

 <TuxedoServerClasses>

 <TuxedoServerClass name="MyTuxedoJavaServer"></TuxedoServerClass>

 </TuxedoServerClasses>

</TJSconfig>

Updating UBB Configuration File

Listing 3-3 UBB Config File Configuration

*GROUPS

TJSVRGRP LMID=simple GRPNO=2
Programming an Oracle Tuxedo Application Using Java 3-5

*SERVERS

TMJAVASVR SRVGRP= TJSVRGRP SRVID=4CLOPT="-- -c TJSconfig.xml"

MINDISPATCHTHREADS=2 MAXDISPATCHTHREADS=2

Example: Implementing Java Service with Transaction
Listing 3-4 shows an example that implements the WRITEDB_SVCTRN_COMMIT service which
inserts the user request string into the table: TUXJ_TRAN_TEST.

It includes three steps:

1. Defining Java Classes: Listing 3-4

2. Creating Java Server Configuration File: Listing 3-5

3. Updating UBB Configuration File: Listing 3-6

Defining Java Classes

Listing 3-4 Class Definition

import weblogic.wtc.jatmi.TypedBuffer;

import weblogic.wtc.jatmi.TypedString;

import com.oracle.tuxedo.tjatmi.*;

import java.sql.SQLException;

/* MyTuxedoTransactionServer is user defined class */

public class MyTuxedoTransactionServer extends TuxedoJavaServer{

 public MyTuxedoTransactionServer ()

 {

 return;

 }

 public int tpsvrinit() throws TuxException
3-6 Programming an Oracle Tuxedo Application Using Java

Example : Implement ing Java Se rv i ce w i th T ransact ion
 {

 System.out.println("In MyTuxedoTransactionServer.tpsvrinit()");

 return 0;

 }

 public void tpsvrdone()

 {

 System.out.println("In MyTuxedoTransactionServer.tpsvrdone()");

 return;

 }

public void WRITEDB_SVCTRN_COMMIT(TPSVCINFO rqst) throws TuxException {

 TuxAppContext myAppCtxt;

 TypedBuffer rplyBuf = null;

 String strType = "STRING";

 String ulogMsg;

 TypedString rqstMsg;

 Connection connDB = null;

 Statement stmtDB = null;

 String stmtSQL;

 int trnLvl, trnStrtInSVC;

 int trnRtn;

 int rc = TPSUCCESS;

 rqstMsg = (TypedString)rqst.getServiceData();

 myAppCtxt = getTuxAppContext();

 myAppCtxt.userlog("JAVA-INFO: Request Message Is \"" +

rqstMsg.toString() + "\"");
Programming an Oracle Tuxedo Application Using Java 3-7

 rplyBuf = new TypedString("This Is a Simple Transaction Test from

Tuxedo Java Service");

 long trnFlags = 0;

 try {

 trnStrtInSVC = 0;

 trnLvl = myAppCtxt.tpgetlev();

 if (0 == trnLvl) {

 long trnTime = 6000;

 myAppCtxt.userlog("JAVA-INFO: Start a transaction...");

 trnRtn = myAppCtxt.tpbegin(trnTime, trnFlags);

 myAppCtxt.userlog("JAVA-INFO: tpbegin return " + trnRtn);

 trnStrtInSVC = 1;

 }

 connDB = myAppCtxt.getConnection();

 if (null != connDB) {

 myAppCtxt.userlog("JAVA-INFO: Get connection: (" +

 connDB.toString() + ").");

 }

 stmtDB = connDB.createStatement();

 if (null != stmtDB) {

 myAppCtxt.userlog("JAVA-INFO: Create statement: (" +

 stmtDB.toString() + ").");

 }

 stmtSQL = "INSERT INTO TUXJ_TRAN_TEST VALUES ('" +

 rqstMsg.toString() + "')";

 myAppCtxt.userlog("JAVA-INFO: Start to execute sql (" + stmtSQL

+ ")...");

 stmtDB.execute(stmtSQL);
3-8 Programming an Oracle Tuxedo Application Using Java

Example : Implement ing Java Se rv i ce w i th T ransact ion
 myAppCtxt.userlog("JAVA-INFO: End to execute sql (" + stmtSQL +

").");

 if (1 == trnStrtInSVC) {

 myAppCtxt.userlog("JAVA-INFO: tpcommit current

transaction...");

 trnRtn = myAppCtxt.tpcommit(trnFlags);

 myAppCtxt.userlog("JAVA-INFO: tpcommit return " + trnRtn);

 trnStrtInSVC = 0;

 if (-1 == trnRtn) {

 rc = TPFAIL;

 }

 }

 } catch (TuxATMIRMException e) {

 String errMsg = "ERROR: TuxATMIRMException: (" + e.getMessage()

+ ").";

 myAppCtxt.userlog("JAVA-ERROR: " + errMsg);

 rc = TPFAIL;

 } catch (TuxATMITPException e) {

 String errMsg = "ERROR: TuxATMITPException: (" + e.getMessage()

+ ").";

 myAppCtxt.userlog("JAVA-ERROR: " + errMsg);

 rc = TPFAIL;

 } catch (SQLException e) {

 String errMsg = "ERROR: SQLException: (" + e.getMessage() + ").";

 myAppCtxt.userlog("JAVA-ERROR: " + errMsg);

 rc = TPFAIL;

 } catch (Exception e) {

 String errMsg = "ERROR: Exception: (" + e.getMessage() + ").";
Programming an Oracle Tuxedo Application Using Java 3-9

 myAppCtxt.userlog("JAVA-ERROR: " + errMsg);

 rc = TPFAIL;

 } catch (Throwable e) {

 String errMsg = "ERROR: Throwable: (" + e.getMessage() + ").";

 myAppCtxt.userlog("JAVA-ERROR: " + errMsg);

 rc = TPFAIL;

} finally {

 if (null != stmtDB) {

try {

 stmtDB.close();

} catch (SQLException e) {}

 }

myAppCtxt.tpreturn(rc, 0, rplyBuf, 0);

 }

}

Creating Java Server Configuration File

Listing 3-5 Java Server Configuration File

<?xml version="1.0" encoding="UTF-8"?>

<TJSconfig>

 <ClassPaths>

<ClassPath>/home/oracle/app/oracle/product/11.2.0/dbhome_2/ucp/lib/ucp.jar

</ClassPath>
3-10 Programming an Oracle Tuxedo Application Using Java

Example : Implement ing Java Se rv i ce w i th T ransact ion

<ClassPath>/home/oracle/app/oracle/product/11.2.0/dbhome_2/jdbc/lib/ojdbc6

.jar</ClassPath>

 </ClassPaths>

 <DataSources>

 <DataSource name="oracle">

<DriverClass>oracle.jdbc.xa.client.OracleXADataSource</DriverClass>

 <JdbcDriverParams>

<ConnectionUrl>jdbc:oracle:thin:@//10.182.54.144:1521/javaorcl</Connection

Url>

 </JdbcDriverParams>

 </DataSource>

 </DataSources>

<TuxedoServerClasses>

 <TuxedoServerClass name=" MyTuxedoTransactionServer">

 </TuxedoServerClass>

</TuxedoServerClasses>

</TJSconfig>

Updating UBB Configuration File

Listing 3-6 UBB Conf File Configuration

*GROUPS

ORASVRGRP LMID=simple GRPNO=1
Programming an Oracle Tuxedo Application Using Java 3-11

OPENINFO="Oracle_XA:Oracle_XA+Acc=P/scott/triger+SesTm=120+MaxCur=5+LogDir

=.+SqlNet=javaorcl"

TMSNAME=TMSORA TMSCOUNT=2

*SERVERS

TMJAVASVR SRVGRP=ORASVRGRP SRVID=3

 CLOPT="-- -c TJSconfig.xml"

MINDISPATCHTHREADS=2 MAXDISPATCHTHREADS=4
3-12 Programming an Oracle Tuxedo Application Using Java

C H A P T E R 4
Reference
This topic includes the following sections:

Using FML with Oracle Tuxedo Java Server

Using VIEW with Oracle Tuxedo Java Server

Using FML with Oracle Tuxedo Java Server

Overview of FML
FML is a set of java language functions for defining and manipulating storage structures called
fielded buffers. Each fielded buffer contains attribute-value pairs in fields. For each field:

The attribute is the field's identifier.

The associated value represents the field's data content.

An occurrence number.

There are two types of FML:

FML16 based on 16-bit values for field lengths and identifiers. It is limited to 8191 unique
fields, individual field lengths of 64K bytes, and a total fielded buffer size of 64K bytes.

FML32 based on 32-bit values for the field lengths and identifiers. It allows for about 30
million fields, and field and buffer lengths of about 2 billion bytes.
Programming an Oracle Tuxedo Application Using Java 4-1

For more information about using FML, see Programming a Tuxedo ATMI Application Using
FML.

The Oracle WebLogic Tuxedo Connector FML API
The FML application program interface (API) is documented in the weblogic.wtc.jatmi package
included in the Javadocs for "WebLogic Server Classes".

FML Field Table Administration
Field tables are generated in a manner similar to Oracle Tuxedo field tables. The field tables are
text files that provide the field name definitions, field types, and identification numbers that are
common between the two systems. To interoperate with an Oracle Tuxedo system using FML,
the following steps are required:

1. Copy the field tables from the Oracle Tuxedo system to Oracle Tuxedo Java server
environment.

For example: Your Oracle Tuxedo distribution contains a bank application example called
bankapp. It contains a file called bankflds that has the following structure:
name number type flags comments

ACCOUNT_ID 110 long - -

ACCT_TYPE 112 char - -

ADDRESS 109 string - -

2. Converted the field table definition into Java source files. Use the mkfldclass/mkfldclass32
utility supplied in the weblogic.wtc.jatmi package. This class is a utility function that reads a
FML/FML32 Field Table and produces a Java file which implements the FldTbl interface.
There are two instances of this utility:

– mkfldclass

– mkfldclass32

Use the correct instance of the command to convert the bankflds field table into FML32
java source. The following example uses mkfldclass.

java weblogic.wtc.jatmi.mkfldclass bankflds

The resulting file is called bankflds.java and has the following structure:
import java.io.*;

import java.lang.*;
4-2 Programming an Oracle Tuxedo Application Using Java

http://download.oracle.com/docs/cd/E13203_01/tuxedo/tux100/fml/fml01.html
http://download.oracle.com/docs/cd/E13203_01/tuxedo/tux100/fml/fml01.html
http://docs.oracle.com/cd/E24329_01/apirefs.1211/e24391/index.html
http://docs.oracle.com/cd/E24329_01/apirefs.1211/e24391/index.html

Using FML w i th Orac le Tuxedo Java Serve r
import java.util.*;

import weblogic.wtc.jatmi.*;

public final class bankflds

 implements weblogic.wtc.jatmi.FldTbl

{

 /** number: 110 type: long */

 public final static int ACCOUNT_ID = 33554542;

 /** number: 112 type: char */

 public final static int ACCT_TYPE = 67108976;

 /** number: 109 type: string */

 public final static int ADDRESS = 167772269;

 /** number: 117 type: float */

.

.

.

}

3. Compile the resulting bankflds.java file using the following command:
javac bankflds.java

The result is a bankflds.class file. When loaded, the Oracle Tuxedo Java server uses the
class file to add, retrieve and delete field entries from an FML field.

4. Add the field table class to <Resources> section in Tuxedo Java server's configuration file
(Also make sure it is also included in <ClassPath> of Tuxedo Java server's configuration file).

For example:
<Resources>

<FieldTable16Classes>bankflds</FieldTable16Classes>

</Resources>

5. Restart your Tuxedo Java server to load the field table class definitions.

Using the DynRdHdr Property for mkfldclass32 Class
You may need to use the DynRdHdr utility if:
Programming an Oracle Tuxedo Application Using Java 4-3

You are using very large FML tables and the .java method created by the mkfldclass32
class exceeds the internal Java Virtual Machine limit on the total complexity of a single
class or interface.

You are using very large FML tables and are unable to load the class created when
compiling the .java method.

Use the following steps to use the DynRdHdr property when compiling your FML tables:

1. Convert the field table definition into Java source files.

2. java -DDynRdHdr=Path_to_Your_FML_Table

weblogic.wtc.jatmi.mkfldclass32 userTable

The arguments for this command are defined as follows:

3. Compile the userTable file using the following command:
javac userTable.java

4. Add the field table class to <Resources> section in Tuxedo Java server's configuration
file(Also make sure it is also included in <ClassPath> of Tuxedo Java server's configuration
file).

For example:
<Resources>

<FieldTable32Classes>userTable</FieldTable32Classes>

</Resources>.

Table 4-1 Arguments for the Commend to Use the DynRdHdr Property

Attribute Description

-DDynRdHdr Oracle WebLogic Tuxedo Connector property used to compile an FML
table.

Path_to_Your_FML_Ta
ble

Path name of your FML table. This may be either a fully qualified path or
a relative path that can be found as a resource file using the server's
CLASSPATH.

weblogic.wtc.jatmi.
mkfldclass32

This class is a utility function that reads an FML32 Field Table and
produces a Java file which implements the FldTbl interface.

userTable Name of the .java method created by the mkfldclass32 class.
4-4 Programming an Oracle Tuxedo Application Using Java

Us ing V IEW w i th Orac le Tuxedo Java Serve r
5. Restart your Tuxedo Java server to load the field table class definitions.

Once you have created the userTable.class file, you can modify the FML table and deploy the
changes without having to manually create an updated userTable.class. When the Java server
is started, Java server will load the updated FML table.

If the Path_to_Your_FML_Table attribute changes, you will need to use the preceding
procedure to update your userTable.java and userTable.class files.

Gaining TypedFML32 Performance Improvements
Two new constructors for TypedFML32 are available to improve performance. The following
topic provides explanation as to when to use these constructors.

The constructors are defined in the Javadocs for "WebLogic Server Classes".

To gain TypedFML32 performance improvements, you can choose to give size hints to
TypedFML32 constructors. There are two parameters that are available to those constructor:

A parameter that hints for maximum number of fields. This includes all the occurrences.

A parameter for the total number of field IDs used in the buffer.

For instance, a field table used by the buffer contains 20 field IDs, and each field can occur 20
times. In this case, the first parameter should be 400 for the maximum number of fields. The
second parameter should be 20 for the total number of field IDs.
TypeFML32 mybuffer = new TypeFML32(400, 20);

Note: This usually works well with any size of buffer; however, it does not work well with
extremely small buffers.

If you have an extremely small buffer, use those constructor without hints. An example
of an extremely small buffer is a buffer with less than 16 total occurrences. If the buffer
is extremely large, for example contains more than 250000 total field occurrences, then
the application should consider splitting it into several buffers smaller than 250000 total
field occurrences.

Using VIEW with Oracle Tuxedo Java Server

Overview of VIEW Buffers
Oracle Tuxedo Java server allows you to use a Java VIEW buffer type analogous to an Oracle
Tuxedo VIEW buffer type derived from an independent C structure. This allows Oracle Tuxedo
Programming an Oracle Tuxedo Application Using Java 4-5

Java server classes and Oracle Tuxedo applications to pass information using a common
structure.

For more information on Oracle Tuxedo VIEW buffers, see "Using a VIEW Typed Buffer" in
Programming a Tuxedo ATMI Application Using C.

How to Create a VIEW Description File
Your Oracle Tuxedo Java server class and your Oracle Tuxedo application must share the same
information structure as defined by the VIEW description. The following format is used for each
structure in the VIEW description file:
$ /* VIEW structure */

VIEW viewname

type cname fbname count flag size null

where

The file name is the same as the VIEW name.

You can have only one VIEW description per file.

The VIEW description file is the same file used for both the viewj compiler and the Oracle
Tuxedo viewc compiler.

viewname is the name of the information structure.

You can include a comment line by prefixing it with the # or $ character.

The following table describes the fields that must be specified in the VIEW description file
for each structure.

Table 4-2 VIEW Description File Fields

Field Description

type Data type of the field. Can be set to short, long, float, double,
char, string, carray, or dec_t (packed decimal).

cname Name of the field as it appears in the information structure.

fbname Ignored.

count Number of times field occurs.
4-6 Programming an Oracle Tuxedo Application Using Java

http://download.oracle.com/docs/cd/E13203_01/tuxedo/tux100/pgc/pgbuf.html

Us ing V IEW w i th Orac le Tuxedo Java Serve r
Example VIEW Description File
The following provides an example VIEW description which uses VIEW buffers to send
information to and receive information from an Oracle Tuxedo application. The file name for this
VIEW is infoenc.

Listing 4-1 Example VIEW Description

VIEW infoenc

flag Specifies any of the following optional flag settings:
• N-zero-way mapping
• C-generate additional field for associated count member (ACM)
• L-hold number of bytes transferred for STRING and CARRAY

size For STRING and CARRAY buffer types, specifies the maximum length of
the value. This field is ignored for all other buffer types.

null User-specified NULL value, or minus sign (-) to indicate the default value
for a field. NULL values are used in VIEW typed buffers to indicate empty
C structure members.

The default NULL value for all numeric types is 0 (0.0 for dec_t). For
character types, the default NULL value is '\0'. For STRING and CARRAY
types, the default NULL value is " ".

Constants used, by convention, as escape characters can also be used to
specify a NULL value. The VIEW compiler recognizes the following escape
constants: \ddd (where d is an octal digit), \0, \n, \t, \v, \r, \f, \\,
\', and \".

You may enclose STRING, CARRAY, and char NULL values in double or
single quotes. The VIEW compiler does not accept unescaped quotes within
a user-specified NULL value.

You can also specify the keyword NONE in the NULL field of a VIEW
member description, which means that there is no NULL value for the
member. The maximum size of default values for string and character array
members is 2660 characters.

Table 4-2 VIEW Description File Fields

Field Description
Programming an Oracle Tuxedo Application Using Java 4-7

#type cname fbname count flag size null

float amount AMOUNT 2 - - 0.0

short status STATUS 2 - - 0

int term TERM 2 - - 0

char mychar MYCHAR 2 - - -

string name NAME 1 - 16 -

carray carray1 CARRAY1 1 - 10 -

dec_t decimal DECIMAL 1 - 9 - #size ignored by viewj/viewj32

END

Note: fbname and null fields are not relevant for independent Java and C structures and are
ignored by the Java and C VIEW compiler. You must include a value (for example, a dash)
How to Use the viewj CompilerHow to Use the viewj Compileras a placeholder in these
fields.

How to Use the viewj Compiler
To compile a VIEW typed buffer, run the viewj command, specifying the package name and the
name of the VIEW description file as arguments. The output file is written to the current directory.

To use the viewj compiler, enter the following command:
java weblogic.wtc.jatmi.viewj [options] [package] viewfile

To use the viewj32 compiler, enter the following command:
java weblogic.wtc.jatmi.viewj32 [options] [package] viewfile

The arguments for this command are defined as follows:
4-8 Programming an Oracle Tuxedo Application Using Java

Us ing V IEW w i th Orac le Tuxedo Java Serve r
Table 4-3 Arguments for the Commands for viewj Compiler

Argument Description

options • -associated_fields:

Use to set AssociatedFieldHandling to true. This allows set and get
accessor methods to use the values of the associated length and count fields
if they are specified in the VIEW description file. If not specified, the
default value for AssociatedFieldHandling is false.
• -bean_names:

Use to create set and get accessor names that follow JavaBeans naming
conventions. The first character of the field name is changed to upper case
before the set or get prefix is added. The signature of indexed set accessors
for array fields changes from the default signature of void setAfield (T
value, int index) to void setAfield (int index, T value).
• -compat_names:

Use to create set and get accessor names that are formed by taking the field
name from the VIEW description file and adding a set or get prefix.
Provides compatibility with releases prior to WebLogic Server 8.1 SP2.
Default value is -compat_names if -bean_names or
-compat_names is not specified.
• -modify_strings:

Use to generate different Java code for encoding strings sent to Oracle
Tuxedo and decoding strings received from Oracle Tuxedo. Encoding code
adds a null character to the end of each string. Decoding code truncates
each string at the first null character received.
• -xcommon:

Use to generate output class as extending TypedXCommon instead of
TypedView.
• -xtype:

Use to generate output class as extending TypedXCType instead of
TypedView.

Note: -compat_names and -bean_names are mutually
exclusive options.
Programming an Oracle Tuxedo Application Using Java 4-9

For example:

A VIEW buffer is compiled as follows:
java weblogic.wtc.jatmi.viewj -compat_names
examples.javaserver.atmi.simpview infoenc

A VIEW32 buffer is compiled as follows:
java weblogic.wtc.jatmi.viewj32 -compat_names -modify_strings

examples.javaserver.atmi.simpview infoenc

How to Pass Information to and from a VIEW Buffer
The output of the viewj and viewj32 command is a .java source file that contains set and get
accessor methods for each field in the VIEW description file. Use these set and get accessor
methods in your Java applications to pass information to and from a VIEW buffer.

The AssociatedFieldHandling flag is used to specify if the set and get methods use the values
of the associated length and count fields if they are specified in the VIEW description file.set
methods set the count for an array field and set the length for a string or carray field.

Array get methods return an array that is at most the size of the associated count field.

String and carray get methods return data that is at most the length of the associated length
field.

Use one of the following to set or get the state of the AssociatedFieldHandling flag:

Use the -associated_fields option for the viewj and viewj32 compiler to set the
AssociatedFieldHandling flag to true.

Invoke the void setAssociatedFieldHandling (boolean state) method in your Java
application to set the state of the AssociatedFieldHandling flag.

package The package name to be included in the .java source file.

Example: examples.wtc.atmi.simpview

viewfile Name of the VIEW description file.

Example: Infoenc

Table 4-3 Arguments for the Commands for viewj Compiler

Argument Description
4-10 Programming an Oracle Tuxedo Application Using Java

Us ing V IEW w i th Orac le Tuxedo Java Serve r
– If false, the set and get methods ignore the length and count fields.

– If true, the set and get methods use the values of the associated length and count fields
if they are specified in the VIEW description file.

– The default state is false.

Invoke the boolean getAssociatedFieldHandling() method in your Java application to
return the current state of AssociatedFieldHandling.

How to Use VIEW Buffers in JATMI Applications
Use the following steps when incorporating VIEW buffers in your JATMI applications:

1. Create a VIEW description file for your application as described above.

2. Compile the VIEW description file as described above.

3. Use the set and get accessor methods to pass information to and receive information from a
VIEW buffer as described above.

4. Import the output class of the VIEW compiler into your source code.

5. If necessary, compile the VIEW description file for your Oracle Tuxedo application and
include the output in your C source file as described in "Using a VIEW Typed Buffer" in
Programming a Tuxedo ATMI Application Using C.

6. Configure the fully qualified class name of the compiled Java VIEW description file in
<Resources> section in Tuxedo Java server configuration. The class of the compiled Java
VIEW description file should also be included in <ClassPath> of your configuration file.

For example: (for VIEW32)
<Resources>

<ViewFile32Classes>
examples.javaserver.atmi.simpview</ViewFile32Classes>

</Resources>

7. Launch your Oracle Tuxedo Java Server.

How to Get VIEW32 Data In and Out of FML32 Buffers
A helper class is available to add and get VIEW32 data in and out of an FML32 buffer. The class
name is wtc.jatmi.FViewFld. This class assists programmers in developing JATMI-based
applications that use VIEW32 field type for FML32 buffers.
Programming an Oracle Tuxedo Application Using Java 4-11

http://download.oracle.com/docs/cd/E13203_01/tuxedo/tux100/pgc/pgbuf.html
http://download.oracle.com/docs/cd/E13203_01/tuxedo/tux100/pgc/pgbuf.html

No change to configuration is required. You still configure the VIEW32 class using the
ViewFile32Classes attribute in the <Resources> section of the Tuxedo Java server
configuration file.

The following access methods are available in this helper class.

FViewFld (String vname, TypedView32 vdata);

FviewFld (FviewFld to_b_clone);

void setViewName (String vname)

String getViewName();

void setViewData (TypedView32 vdata)

void TypedView32 getViewData();

Listing 4-2 Example: How to Add and Retrieve an Embedded TypedView32 Buffer in a TypedFML32 Buffer

String toConvert = new String("hello world");

TypedFML32 MyData = new TypedFML32(new MyFieldTable());

Long d1 = new Long(1234);

Float d2 = new Float(12.32);

MyView data = new myView();

FviewFld vfld;

data.setamount((float)100.96);

data.setstatus((short)3);

vfld = new FviewFld("myView", data);

try {

 myData.Fchg(MyFieldTable.FLD0, 0, toConvert);

 myData.Fchg(MyFieldTable.FLD1, 0, 1234);

 myData.Fchg(MyFieldTable.FLD2, 0, d2);

 myData.Fchg(MyFieldTable.myview, 0, vfld);

} catch (Ferror fe) {
4-12 Programming an Oracle Tuxedo Application Using Java

Us ing V IEW w i th Orac le Tuxedo Java Serve r
 log("An error occurred putting data into the FML32 buffer. The error is

" + fe);

}

try {

 myRtn = myTux.tpcall("FMLVIEW", myData, 0);

} catch(TPReplyException tre) {

...

}

TypedFML32 myDataBack = (TypedFML32)myRtn.getReplyBuffer();

 Integer myNewLong;

 Float myNewFloat;

 myView View;

 String myNewString;

try {

 myNewString = (String)myDataBack.Fget(MyFieldTable.FLD0, 0);

 myNewLong = (Integer)myDataBack.Fget(MyFieldTable.FLD1, 0);

 myNewFloat = (Float)myDataBack.Fget(MyFieldTable.FLD2, 0);

 vfld = (FviewFld)myDataBack.Fget(MyFieldTable.myview, 0);

 view = (myView)vfld.getViewData();

} catch (Ferror fe) {

 ...

}

The following code listing is an example FML Description (MyFieldTable) related to the
example in Listing 4-2.
Programming an Oracle Tuxedo Application Using Java 4-13

Listing 4-3 Example FML Description

*base 20000

#name number type flags comments

FLD0 10 string - -

FLD1 20 long - -

FLD2 30 float - -

myview 50 view32 - defined in View description file
4-14 Programming an Oracle Tuxedo Application Using Java

	Oracle® Tuxedo
	12c Release 2 (12.1.3)

	Oracle Tuxedo Programming an Oracle Tuxedo Application Using Java, 12c Release 2 (12.1.3)
	Contents
	Introduction to Oracle Tuxedo Java Programming
	Overview
	Programing Guidelines
	Programming Environment
	Tuxedo Java Server Threads and Java Class Instance Model
	Tuxedo Java Server Initialization and Termination Methods
	Tuxedo 12c Release 2 (12.1.3) Behaviors
	Table 1-1 Invocation Rules for Standard Initialization Methods
	Table 1-2 Invocation Rules for Standard Thread Initialization Methods

	Tuxedo 12c Release 1 (12.1.1) Behaviors
	tpsvrinit() Handling
	tpsvrdone() Handling

	Tuxedo Java Server tpreturn() Methods
	Tuxedo Java Server Exception Handling
	ATMI Java Server User Interfaces

	TuxedoJavaServer
	Table 2-1 TuxedoJavaServer Interfaces

	Oracle Tuxedo Java Context
	TJATMI Primitives for Tuxedo Java Applications
	Table 2-2 TJATMI Primitives

	TypedBuffers for Tuxedo Java Applications
	Table 2-3 TypedBuffers
	Limitations for Typedbuffer Support

	Get/Set Service Information
	Table 2-4 Getter Functions
	Table 2-5 Getter Functions for Reply

	Exception
	Trace
	Newly Added Java APIs from Tuxedo 12c Release 2 (12.1.3)
	Newly Added Java APIs
	Examples for Programming with Newly Java APIs
	Listing 2-1 Example for Invoking APIs in Server Initialization and Termination Stage
	Listing 2-2 Example for Invoking APIs in Service Routine
	Listing 2-3 Example for Forwarding Service Requests
	Listing 2-4 Example for Invoking APIs in an Application Server Thread
	Implementing Services in Oracle Tuxedo Java Server

	Typical Procedures
	1. Define a class that inherits from TuxedoJavaServer
	2. Provide a default constructor
	3. Implement the tpsvrinit() and tpsvrdone() method
	4. Implement the service method which should use TPSVCINFO as its only argument parameter, as follows:
	a. Get the TuxAppContext object using getTuxAppContext() method
	b. Get the client request data using TPSVCINFO.getServiceData() method from TPSVCINFO object
	c. If you have configured a DataSource, get a connection to the DataSource using TuxAppContext.getConnection() method
	d. Do the business logic, such as call some other services using TuxAppContext.tpcall(), manipulate the database, etc.
	e. Allocate a new TypedBuffer and put a reply data in the TypedBuffer
	f. Call TuxAppContext.tpreturn() to return the reply data to client

	Example: Implementing Java Service without Transaction
	1. Defining Java Classes: Listing 3-1
	2. Creating Java Server Configuration File: Listing 3-2
	3. Updating UBB Configuration File: Listing 3-3
	Defining Java Classes
	Listing 3-1 Java Class Definition

	Creating Java Server Configuration File
	Listing 3-2 Java Server Configuration File

	Updating UBB Configuration File
	Listing 3-3 UBB Config File Configuration

	Example: Implementing Java Service with Transaction
	1. Defining Java Classes: Listing 3-4
	2. Creating Java Server Configuration File: Listing 3-5
	3. Updating UBB Configuration File: Listing 3-6
	Defining Java Classes
	Listing 3-4 Class Definition

	Creating Java Server Configuration File
	Listing 3-5 Java Server Configuration File

	Updating UBB Configuration File
	Listing 3-6 UBB Conf File Configuration
	Reference

	Using FML with Oracle Tuxedo Java Server
	Overview of FML
	The Oracle WebLogic Tuxedo Connector FML API
	FML Field Table Administration
	1. Copy the field tables from the Oracle Tuxedo system to Oracle Tuxedo Java server environment.
	2. Converted the field table definition into Java source files. Use the mkfldclass/mkfldclass32 utility supplied in the weblogic...
	3. Compile the resulting bankflds.java file using the following command:
	4. Add the field table class to <Resources> section in Tuxedo Java server's configuration file (Also make sure it is also included in <ClassPath> of Tuxedo Java server's configuration file).
	5. Restart your Tuxedo Java server to load the field table class definitions.

	Using the DynRdHdr Property for mkfldclass32 Class
	1. Convert the field table definition into Java source files.
	2. java -DDynRdHdr=Path_to_Your_FML_Table
	Table 4-1 Arguments for the Commend to Use the DynRdHdr Property
	3. Compile the userTable file using the following command:
	4. Add the field table class to <Resources> section in Tuxedo Java server's configuration file(Also make sure it is also included in <ClassPath> of Tuxedo Java server's configuration file).
	5. Restart your Tuxedo Java server to load the field table class definitions.

	Gaining TypedFML32 Performance Improvements

	Using VIEW with Oracle Tuxedo Java Server
	Overview of VIEW Buffers
	How to Create a VIEW Description File
	Table 4-2 VIEW Description File Fields

	Example VIEW Description File
	Listing 4-1 Example VIEW Description

	How to Use the viewj Compiler
	Table 4-3 Arguments for the Commands for viewj Compiler

	How to Pass Information to and from a VIEW Buffer
	How to Use VIEW Buffers in JATMI Applications
	1. Create a VIEW description file for your application as described above.
	2. Compile the VIEW description file as described above.
	3. Use the set and get accessor methods to pass information to and receive information from a VIEW buffer as described above.
	4. Import the output class of the VIEW compiler into your source code.
	5. If necessary, compile the VIEW description file for your Oracle Tuxedo application and include the output in your C source file as described in "Using a VIEW Typed Buffer" in Programming a Tuxedo ATMI Application Using C.
	6. Configure the fully qualified class name of the compiled Java VIEW description file in <Resources> section in Tuxedo Java ser...
	7. Launch your Oracle Tuxedo Java Server.

	How to Get VIEW32 Data In and Out of FML32 Buffers
	Listing 4-2 Example: How to Add and Retrieve an Embedded TypedView32 Buffer in a TypedFML32 Buffer
	Listing 4-3 Example FML Description

