Oracle® Tuxedo
ATMI COBOL Function Reference

12c Release 2 (12.1.3)

April 2014

ORACLE

Oracle Tuxedo ATMI COBOL Function Reference, 12¢ Release 2 (12.1.3)
Copyright © 1996, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use,
duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed
or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If
you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

This software or hardware and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect
to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Contents

Section 3(chl) - COBOL Functions

Introduction to the COBOL Application-Transaction Monitor Interface.............. 6
FINIT, FINIT32(3ChI). . .o oo e 39
FVFTOS, FVFTOS32(3ChI) . . oo oot e e e 40
FVSTOR(3CDI) . oo 42
TPABORT(BCD) . . o oottt 44
TPACALLBCD) . . oo 46
TPADVERTISECDI). . . oo oot 50
TPBEGIN(CDI) . . oo 51
TPBROADCAST(3CD) .. oot e e 53
TPCALL(3CDI) « oo 56
TPCANCEL(BCDI) & .ottt 61
TPCHKAUTH(BCDI). . . oottt 62
TPCHKUNSOL(3chI) ... e 64
TPCLOSECDI) . . oot e e 65
TPCOMMIT(BCBI) . oot e et e 66
TPCONNECT(3CDI) . v v e e e e e 69
TPDEQUEUE(BCD) . . v e e e e 73
TPDISCON(BCDI) . . . oo e e 83
TPENQUEUE(BCD) . . . oo e e e e 85
TPFORWAR(BCDI) . . oottt e e 95
TPGBLKTIME(3chI) . ..o e 98

ATMI COBOL Function Reference iii

iv

TPGETCTXT(3C0I) . . oot 100

TPGETLEV(3CHI) . . oo et e 101
TPGETRPLY(BCDI) . . oot e e 103
TPGETUNSOL(BCHI) © oot e 107
TPGPRIO(CDI) oo e e 108
TPINITIALIZE(BCDI) © oo e e 110
TPKEYCLOSE(3CDI) oot e 117
TPKEYGETINFOBCDI)o e 118
TPKEYOPEN(BCDI). . oo\ttt 121
TPKEYSETINFO(ICDI). . .. oo e e e 124
TPNOTIFY(BCDI). . . o oee e e e 126
TPOPEN(BCDI). . . . oot e 128
TPPOST(3CHI) . o o vttt 130
TPRECV(3CHI). . o .ot e 134
TPRESUME(BCDI). . . oo e 139
TPRETURN(3CDI) . . oo et 140
TPRMCLOSE(3CHI) © .ottt e e 144
TPRMEND(BCDI). . . oo e e 146
TPRMOPEN(BCDI). . . oot e 147
TPRMSTART(3CDI). . oot 148
TPSBLKTIME(BCDI) . . oot 150
TPSCMT(BCDI) . oot 152
TPSEND(BCDI).o 155
TPSETCTXT(BCDI) . . oo et 158
TPSETUNSOL(BCDI). . oot et e 160
TPSPRIO(BCDI) . . . oo e 162
TPSUBSCRIBE(3CHI)ot et 163
TPSUSPEND(3CDI) . . .o et 169

ATMI COBOL Function Reference

TPSVCSTART(3CDI) oottt 171

TPSVRDONE(3CHI). . oot eee e e e 174
TPSVRINIT(3CHI) . . oo e 175
TPTERM(BCDI). . o v oo e e 176
TPUNADVERTISE(CH) . . oot 178
TPUNSUBSCRIBE(3CDI) . . . oot e e e 179
TXBEGINGCD). . . oo e 182
TXCLOSEBCDI) . ..o e 183
TXCOMMIT(BCDI). . . oo 185
TXINFORM(BCDI) . . oo et 187
TXOPEN(3CHI). o v et e 188
TXROLLBACK(3CHI) . . oot 190
TXSETCOMMITRET(3CHI) oot e e e 192
TXSETTRANCTL(BCD) . . . oot 193
TXSETTIMEOUT(BCDI) . . .ot 195
USERLOG(3CHI) © oot 196

ATMI COBOL Function Reference

vi ATMI COBOL Function Reference

Section 3(chl) - COBOL Functions

Table 1 Oracle Tuxedo ATMI COBOL Functions

Name

Description

Introduction to the COBOL
Application-Transaction Monitor Interface

Provides an introduction to the COBOL ATMI

FINIT, FINIT32(3cbl)

Initializes fielded buffer

FVFTOS, FVFT0S32(3cbl)

Copies from fielded buffer to COBOL structure

FVSTOF(3cbl) Copies from C structure to fielded buffer

TPABORT (3cbl) Abort current Oracle Tuxedo ATMI transaction
TPACALL(3cbl) Routine to send a message to a service asynchronously
TPADVERTISE(3cbl) Routine for advertising service names

TPBEGIN(3cbl) Routine to begin an Oracle Tuxedo ATMI transaction
TPBROADCAST (3cbl) Broadcasts notification by name

TPCALL(3cbl) Routine to send a message to a service synchronously
TPCANCEL (3cbl) Cancels a communication handle for an outstanding reply
TPCHKAUTH(3cbl) Checks if authentication required to join an Oracle Tuxedo

ATMI application

ATMI COBOL Function Reference

Table 1 Oracle Tuxedo ATMI COBOL Functions

Name Description

TPCHKUNSOL (3cbl) Checks for unsolicited message

TPCLOSE(3chl) Closes the Oracle Tuxedo ATMI resource manager
TPCOMMIT(3cbl) Commits current Oracle Tuxedo ATMI transaction
TPCONNECT(3cbl) Establishes a conversational connection
TPDEQUEUE(3cbl) Routine to dequeue a message from a queue
TPDISCON(3cbl) Takes down a conversational connection
TPENQUEUE(3cbl) Routine to enqueue a message

TPFORWAR(3cbl) Forwards an Oracle Tuxedo ATMI service request to another

routine

TPGBLKTIME (3cbl)

Routine for retrieving a previously set, per second, blocktime
value

TPGETCTXT(3cbl) Retrieves a context identifier for the current application
association

TPGETLEV(3cbl) Checks if an Oracle Tuxedo ATMI transaction is in progress

TPGETRPLY(3cbl) Gets reply from asynchronous message

TPGETUNSOL (3cbl) Gets unsolicited message

TPGPRIO(3cbl) Gets service request priority

TPINITIALIZE(3cbI) Joins an Oracle Tuxedo ATMI application

TPKEYCLOSE(3cbl) Closes a previously opened key handle

TPKEYGETINFO(3cbl) Gets information associated with a key handle

TPKEYOPEN(3cbl) Opens a key handle for digital signature generation, message
encryption, or message decryption

TPKEYSETINFO(3cbl) Sets optional attribute parameters associated with a key handle

TPNOTIFY(3cbl) Sends notification by client identifier

2 ATMI COBOL Function Reference

Table 1 Oracle Tuxedo ATMI COBOL Functions

Name Description

TPOPEN(3cbl) Opens the Oracle Tuxedo ATMI resource manager
TPPOST(3cbl) Posts an event

TPRECV(3cbl) Receives a message in a conversational connection

ATMI COBOL Function Reference

Table 1 Oracle Tuxedo ATMI COBOL Functions

Name Description
TPRESUME(3cbl) Resumes a global transaction
TPRETURN(3cbl) Returns from an Oracle Tuxedo ATMI service routine

TPRMCLOSE (3cbl)

Routine for closing a specified RM configured in a
multiple RMs server group

TPRMEND (3cbl)

Routine for ending current work performed on behalf of a
transaction branch in a specified RM

TPRMOPEN (3cbl)

Routine for opening a specified RM configured in a multiple
RMs server group

TPRMSTART (3cbl)

Routine for starting work on behalf of a transaction branch of
specified RM in a MRM server

TPSBLKTIME (3cbl)

Routine for setting the blocktime value, in seconds, of a potential
blocking API.

TPSCMT (3cbl) Sets when TPCOMMIT should return

TPSEND(3cbl) Routine to send a message in a conversational connection
TPSETCTXT(3cbl) Sets a context identifier for the current application association
TPSETUNSOL (3cbl) Sets method for handling unsolicited messages
TPSPRIO(3cbl) Sets service request priority

TPSUBSCRIBE(3cbl) Subscribes to an event

TPSUSPEND(3cbl) Suspends a global transaction

TPSVCSTART (3cbl) Starts an Oracle Tuxedo ATMI service
TPSVRDONE(3cbl) Routine to terminate an Oracle Tuxedo ATMI server
TPSVRINIT(3cbl) Routine to initialize an Oracle Tuxedo ATMI server
TPTERM(3cbl) Leaves an application

TPUNADVERTISE(3cbl) Routine for unadvertising service names
TPUNSUBSCRIBE(3chl) Unsubscribes to an event

4 ATMI COBOL Function Reference

Table 1 Oracle Tuxedo ATMI COBOL Functions

Name Description

TXBEGIN(3chl) Begins a global transaction
TXCLOSE(3chl) Closes a set of resource managers
TXCOMMIT (3cbl) Commits a transaction
TXINFORM(3cbl) Returns global transaction information
TXOPEN(3cbl) Opens a set of resource managers
TXROLLBACK(3cbl) Rolls back a transaction
TXSETCOMMITRET(3cbl) Sets commit_return characteristic

ATMI COBOL Function Reference

Table 1 Oracle Tuxedo ATMI COBOL Functions

Name Description

TXSETTRANCTL(3cbl) Sets transaction_control characteristic
TXSETTIMEOUT(3cbl) Sets transaction_timeout characteristic
USERLOG(3chl) Writes a message to the Oracle Tuxedo ATMI central event log

Introduction to the COBOL Application-Transaction
Monitor Interface

Description

The Application-Transaction Monitor Interface (ATMI) provides the interface between the
COBOL application and the transaction processing system. This interface is known as ATMI and
these pages specify its COBOL language binding. It provides routines to open and close
resources, manage transactions, manage record types, and invoke request/response and
conversational service calls.

Communication Paradigms

The routines described in the ATMI reference pages imply a particular model of communication.
This model is expressed in terms of how client and server programs can communicate using
request and reply messages.

There are two basic communication paradigms: request/response and conversational.
Request/response services are invoked by service requests along with their associated data.
Request/response services can receive exactly one request (upon entering the service routine) and
send at most one reply (upon returning from the service routine). Conversational services, on the
other hand, are invoked by connection requests along with a means of referring to the open
connection (that is, a handle used in calling subsequent connection routines). Once the connection
has been established and the service routine invoked, either the connecting program or the
conversational service can send and receive data as defined by the application until the
connection is torn down.

Note that a program can initiate both request/response and conversational communication, but
cannot accept both request/response and conversational service requests. The following sections
describe the two communication paradigms in greater detail.

6 ATMI COBOL Function Reference

Introduction to the COBOL Application-Transaction Monitor Interface

Note: Invarious parts of the Oracle Tuxedo ATMI documentation we refer to threads. Because
the Oracle Tuxedo system does not support multithreading in COBOL, COBOL
programmers may assume that the term thread refers to an entire process or context,
depending on the circumstances. For example:

o A multithreaded/multicontexted C client with three threads associated with three
contexts maps to a multicontexted COBOL client with three contexts.

o A multithreaded/single-context C client with three threads associated with a single
context maps to a non-threaded, single-context COBOL client.

Oracle Tuxedo Request/

Response Paradigm for Client/Server
With regard to request/response communication, a client is defined as a program that can send
requests and receive replies. By definition, clients cannot receive requests nor send replies. A
client can send any number of requests, and can wait for the replies synchronously or receive
(some limited number of) the replies at its convenience. In certain cases, a client can send a
request that has no reply. TPINITIALIZEQ) and TPTERM() allow a client to join and leave an
Oracle Tuxedo ATMI application.

A request/response server is a program that can receive one (and only one) service request at a
time and send at most one reply to that request. While a server is working on a particular request,
it can act like a client by initiating request/response or conversational requests and receiving their
replies. In such a capacity, a server is called a requester. Note that both client and server programs
can be requesters (in fact, a client can be nothing but a requester).

A request/response server can forward a request to another request/response server. Here, the
server passes along the request it received to another server and does not expect a reply. It is the
responsibility of the last server in the chain to send the reply to the original requester. Use of the
forwarding routine ensures that the original requester ultimately receives its reply.

Servers and service routines offer a structured approach to writing Oracle Tuxedo ATMI
applications. In a server, the application writer can concentrate on the work performed by the
service rather than communications details such as receiving requests and sending replies.
Because many of the communication details are handled by the Oracle Tuxedo system, the
application must adhere to certain conventions when writing a service routine. At the time a
server finishes its service routine, it can send a reply using TPRETURN() or forward the request
using TPFORWAR(Q). A service is not allowed to perform any other work nor is it allowed to
communicate with any other program after this point. Thus, a service performed by a server is
started when a request is received and ended when either a reply is sent or the request is
forwarded.

ATMI COBOL Function Reference 1

Concerning request and reply messages, there is an inherent difference between the two: a request
has no associated context before it is sent, but a reply does. For example, when sending a request,
the caller must supply addressing information, whereas a reply is always returned to the program
that originated the request, that is, addressing context is maintained for a reply and the sender of
the reply can exert no control over its destination. The differences between the two message types
manifest themselves in the parameters and descriptions of the routines described in TPCALL().

When a request message is sent, it is sent at a particular priority. The priority affects how a request
is dequeued: when a server dequeues requests, it dequeues the one with the highest priority. To
prevent starvation, the oldest request is dequeued every so often regardless of priority. By default,
arequest’s priority is associated with the service name to which the request is being sent. Service
names can be given priorities at configuration time (see UBBCONFIG(5)). A default priority is
used if none is defined. In addition, the priority can be set at run time using a routine (TPSPR10Q))
described in TPCALL(). By doing so, the caller can override the configuration or default priority
when the message is sent.

Oracle Tuxedo System Conversational Paradigm for Client/Server

With regard to conversational communication, a client is defined as a program that can initiate a
conversation but cannot accept a connection request.

A conversational server is a program that can receive connection requests. Once the connection
has been established and the service routine invoked, either the connecting program or the
conversational service can send and receive data as defined by the application until the
connection is torn down. The conversation is half-duplex in nature such that one side of the
connection has control and can send data until it gives up control to the other side. While the
connection is established, the server is “reserved” such that no other program can establish a
connection with the server.

As with a request/response server, the conversational server can act as a requester by initiating
other requests or connections with other servers. Unlike a request/response server, a
conversational server can not forward a request to another server. Thus, a conversational service
performed by a server is started when a request is received and ended when the final reply is sent
via TPRETURNQ).

Once the connection is established, the communications handle implies any context needed
regarding addressing information for the participants. Messages can be sent and received as
needed by the application. There is no inherent difference between the request and reply
messages and no notion of priority of messages.

8 ATMI COBOL Function Reference

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12cr2/rf5/rf5.html

Introduction to the COBOL Application-Transaction Monitor Interface

Oracle Tuxedo System Queued Message Model

The Oracle Tuxedo ATMI queued message model allows for enqueuing a request message to
stable storage for subsequent processing without waiting for its completion, and optionally
getting a reply via a queued response message. The ATMI functions that queue messages and
dequeue responses are TPENQUEUE() and TPDEQUEUE(). They can be called from any type of
Oracle Tuxedo ATMI application processes: client, server, or conversational.

The queued message facility is an XA-compliant resource manager. Persistent messages are
enqueued and dequeued within transactions to ensure reliable one-time-only processing.

ATMI Transactions

The Oracle Tuxedo system supports two sets of mutually exclusive functions for defining and
managing transactions: the Oracle Tuxedo system’s ATMI transaction demarcation functions
(the names of which include the prefix TP) and X/Open’s TX Interface functions (the names of
which include the prefix TX_). Because X/Open used ATMI’s transaction demarcation functions
as the base for the TX Interface, the syntax and semantics of the TX Interface are quite similar to
those of the ATMI. This section is an overview of ATMI transaction concepts. The next section
introduces additional concepts about the TX Interface.

In the Oracle Tuxedo system, a transaction is used to define a single logical unit of work that
either wholly succeeds or has no effect whatsoever. A transaction allows work performed in
many processes, possibly at different sites, to be treated as an atomic unit of work. The initiator
of a transaction normally uses TPBEGIN() and either TPCOMMIT () or TPABORT() to delineate the
operations within a transaction.

The initiator may also suspend its work on the current transaction by issuing TPSUSPEND().
Another process may take over the role of the initiator of a suspended transaction by issuing
TPRESUME(). As a transaction initiator, a program must call one of the following: TPSUSPEND(),
TPCOMMIT(), or TPABORT(). Thus, one program can start a transaction that another may finish.

If a program calling a service is in transaction mode, then the called service routine is also placed
in transaction mode on behalf of the same transaction. Otherwise, whether the service is invoked
in transaction mode or not depends on options specified for the service in the configuration file.
A service that is not invoked in transaction mode can define multiple transactions between the
time it is invoked and the time it ends. On the other hand, a service routine invoked in transaction
mode can participate in only one transaction, and work on that transaction is completed upon
termination of the service routine. Note that a connection cannot be upgraded to transaction
mode: if TPBEGIN() is called while a conversation exists, the conversation remains outside of the
transaction (as if TPCONNECT () had been called with the TPNOTRAN setting).

ATMI COBOL Function Reference 9

A service routine joining a transaction that was started by another program is called a participant.
A transaction can have several participants. A service can be invoked to do work on the same
transaction more than once. Only the initiator of a transaction (that is, a program calling either
TPBEGIN(Q) or TPRESUMEQ)) can call TPCOMMIT() or TPABORT (). Participants influence the
outcome of a transaction by using TPRETURN() or TPFORWAR(). These two calls signify the end
of a service routine and indicate that the routine has finished its part of the transaction.

TX Transactions

Transactions defined by the TX Interface are practically identical with those defined by the ATMI
functions. An application writer may use either set of functions when writing clients and service
routines. In fact, the Oracle Tuxedo system does not require all client and server programs within
a single application to use one set of functions or the other. However, the two function sets may
not be used together within a single program (that is, a program cannot call TPBEGIN() and later
call TXCOMMITQ)).

The TX Interface has two calls for opening and closing resource managers in a portable manner,
TXOPEN() and TXCLOSE(), respectively. Transactions are started with TXBEGIN() and
completed with either TXCOMMIT() or TXROLLBACK(). TXINFORMQ) is used to retrieve
transaction information, and there are three calls to set options for transactions:
TXSETCOMMITRET(), TXSETTRANCTL(), and TXSETTIMEOUT(). The TX Interface has no
equivalents to ATMI’s TPSUSPEND() and TPRESUME(Q).

In addition to the semantics and rules defined for ATMI transactions, the TX Interface has some
additional semantics that are worth introducing here. First, service routine writers wanting to use
the TX Interface must supply their own TPSVRINIT() routine that calls TXOPEN(). The default
Oracle Tuxedo system-supplied TPSVRINIT() calls TPOPEN(). The same rule applies for
TPSVRDONE(Q): if the TX Interface is being used, then service routine writers must supply their
own TPSVRDONE() that calls TXCLOSEQ).

Second, the TX Interface has two additional semantics not found in ATMI. These are chained and
unchained transactions, and transaction characteristics.

Chained and Unchained Transactions

10

The TX Interface supports chained and unchained modes of transaction execution. By default,
clients and service routines execute in the unchained mode; when an active transaction is
completed, a new transaction does not begin until TXBEGIN(Q) is called.

In the chained mode, a new transaction starts implicitly when the current transaction completes.
That is, when TXCOMMIT() or TXROLLBACK() is called, the Oracle Tuxedo system coordinates

ATMI COBOL Function Reference

Introduction to the COBOL Application-Transaction Monitor Interface

the completion of the current transaction and initiates a new transaction before returning control
to the caller. (Certain failure conditions may prevent a new transaction from starting.)

Clients and service routines enable or disable the chained mode by calling TXSETTRANCTL().
Transitions between the chained and unchained mode affect the behavior of the next TXCOMMIT()
or TXROLLBACK() call. The call to TXSETTRANCTL () does not put the caller into or take it out of
transaction mode.

Since TXCLOSE() cannot be called when the caller is in transaction mode, a caller executing in
chained mode must switch to unchained mode and complete the current transaction before calling
TXCLOSEQ).

Transaction Characteristics

A client or a service routine may call TXINFORM() to obtain the current values of their transaction
characteristics and to determine whether they are executing in transaction mode.

The state of an application program includes several transaction characteristics. The caller
specifies these by calling TXSET* functions. When a client or a service routine sets the value of
a characteristic, it remains in effect until the caller specifies a different value. When the caller
obtains the value of a characteristic via TXINFORM(), it does not change the value.

Timeouts

There are three types of timeouts in the Oracle Tuxedo ATMI system: one is associated with the
duration of a transaction from start to finish. A second is associated with the maximum length of
time a blocking call will remain blocked before the caller regains control. The third is a service
timeout and occurs when a call exceeds the number of seconds specified in the SVCTIMEOUT
parameter in the SERVICES section of the configuration file.

The first kind of timeout is specified when a transaction is started with TPBEGIN() (see
TPBEGIN(Q) for details). The second kind of timeout can occur when using the Oracle Tuxedo
ATMI communication routines defined in TPCALL(). Callers of these routines typically block
when awaiting a reply that has yet to arrive, although they can also block trying to send data (for
example, if request queues are full). The maximum amount of time a caller remains blocked is
determined by an Oracle Tuxedo ATMI configuration file parameter. (See the BLOCKT IME
parameter in UBBCONFIG(5) for details.)

Blocking timeouts are performed by default when the caller is not in transaction mode. When a
client or server is in transaction mode, it is subject to the timeout value with which the transaction
was started and is not subject to the blocking timeout value specified in the UBBCONFIG file.

ATMI COBOL Function Reference "

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12cr2/rf5/rf5.html

When a transaction timeout occurs, replies to asynchronous requests made in transaction mode
become invalid. That is, if a program is waiting for a particular asynchronous reply for a request
sent in transaction mode and a transaction timeout occurs, the handle for that reply becomes
invalid. Similarly, if a transaction timeout occurs, an event is generated on the connection handle
associated with the transaction and that handle becomes invalid. On the other hand, if a blocking
timeout occurs, the handle is still valid and the waiting program can reissue the call to await the
reply.

The service timeout mechanism provides a way for the system to Kill processes that may be frozen
by some unknown or unexpected system error. When a service timeout occurs in a
request/response service, the Oracle Tuxedo system Kills the server process that is executing the
frozen service and returns error code TPESVCERR. If a service timeout occurs in a conversational
service, the TPEV_SVCERR event is returned.

If a transaction has timed out, the only valid communications before the transaction is aborted are
calls to TPACALL () with TPNOREPLY, TPNOTRAN, and TPNOBLOCK set.

Dynamic Service Advertisements

By default, a server’s services are advertised when it is booted and unadvertised when it is shut
down. If a server needs to control the set of services that it offers at run time, it can do so by
calling TPADVERTISE() and TPUNADVERTISE(). These routines affect only the services offered
by the calling server unless that server belongs to a multiple server, single queue (MSSQ) set.
Because all servers in an MSSQ set must offer the same set of services, these routines also affect
the advertisements of all servers sharing the caller’s MSSQ set.

Typed Records

12

In order to send data to another application program, the sending application program first places
the data in a record. The ATMI interface supports the notion of a typed record. A typed record
is really a pair of COBOL records. The data record is defined in static storage and contains
application data to be passed to another application program. An auxiliary type record
accompanies the data record and it identifies to the Oracle Tuxedo system the interpretation and
translation rules of the data record as it passes across heterogeneous machine boundaries. The
auxiliary type record contains the data record’s type, its optional subtype, and its optional length.
Some record types require further specification via a subtype (for example, a particular record
layout) and those of variable length require a length to be specified.

The application programmer may choose one of the six supported typed records. Note, the Oracle
Tuxedo system provides a method for adding user-specific typed records. For details, refer to the
“Introduction to the C Language Application-Transaction Monitor Interface” in the Oracle

ATMI COBOL Function Reference

Introduction to the COBOL Application-Transaction Monitor Interface

Tuxedo ATMI C Function Reference. REC-TYPE in TPTYPE-REC selects which record type the
application wishes to send or receive. SUB-TYPE in TPTYPE-REC must also be given when further
classification is required (for example, a view record). When sending, LEN in TPTYPE-REC
indicates the number of bytes to be sent and when receiving the number of bytes to move into the
user’s record. The following are the supported REC-TYPES.

CARRAY
The CARRAY record type allows an arbitrary number of characters which may contain
LOW-VALUE characters anywhere in the record. When sending data, LEN must contain the
number of bytes to be transferred.

STRING
The STRING record type allows an arbitrary number of characters which may not contain
LOW-VALUE characters within the record but may be at the end of the record. When
sending data, LEN must contain the number of bytes to be transferred.

VIEW
This record type describes a COBOL record that was generated using the viewc()
compiler. When using a VIEW, SUB-TYPE must contain the name of the view. When
sending a VIEW type, LEN must contain the number of bytes to be transferred or set
NO-LENGTH which will send the length of the view.

Two of the above record types have synonyms: X_OCTET is a synonym for CARRAY, and
X_COMMON is a synonym for VIEW. X_COMMON supports a subset of the data types supported by
VIEW: longs (PIC S9(9) COMP-5), shorts (PIC S9(4) COMP-5), and characters (PIC
X(n)). X_COMMON should be used when both C and COBOL programs are communicating.

In all three cases, after a successful transfer, LEN contains the number of bytes transferred. When
receiving data, LEN must contain the maximum number of bytes the data area contains. After a
successful call, LEN contains the number of bytes moved into the data area. If the size of the
incoming message is larger than the size specified in LEN, only LEN amount of data is moved into
the data area; the remaining data is discarded.

Buffer Type Switch

The Oracle Tuxedo system provides a method for adding user specific record types. For details,
see the “Buffer Type Switch” section in Introduction to the C Language
Application-to-Transaction Monitor Interface in Oracle Tuxedo ATMI C Function Reference.

Single or Multiple Application Context per Process

The Oracle Tuxedo system allows client programs to create an association with one or more
applications per process. If TPINITIALIZE() is called with the TP-MULTI-CONTEXTS setting of

ATMI COBOL Function Reference 13

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs12cr2/rf3c/rf3c.html

CONTEXTS-FLAG in TPINFDEF-REC, then multiple client contexts are allowed. If
TPINITIALIZE(Q) is called implicitly or the CONTEXTS-FLAG is not set to TP-MULT I-CONTEXTS,
then only a single application association is allowed.

In single-context mode, if TPINITIALIZE() is called more than once (that is, if it is called after
the client has already joined the application), no action is taken and success is returned.

In multi-context mode, each call to TPINITIALIZE() creates a new application association. The
program can obtain a handle representing this application association by calling TPGETCTXT()
and it can call TPSETCTXT() to set its context.

Once an application has chosen single-context mode, all calls to TPINITIALIZE() must specify
single-context mode until all application associations are terminated. Similarly, once an
application has chosen multi-context mode, all calls to TPINITIALIZE() must specify
multi-context mode until all application associations are terminated.

Server programs can be associated with only a single application and cannot act as clients.

Note: In addition to allowing multiple application contexts per process, the Oracle Tuxedo
system allows multiple application threads per process. Multithreading is supported,
however, only in the C language interface.

Table 2 shows the transitions that may occur, within a client process, among the following states:
the uninitialized state, the initialized in single-context mode state, and the initialized in
multi-context mode state.

Table 2 Per-Process Context Modes

Function States
Uninitialized Initialized Single-context Initialized Multi-context
So Mode Mode S,
$1
TPINITIALIZEQ S1 S1 S, (error)
without
TP-MULTI-CONTEXTS
TPINITIALIZEQ) with S5 S (error) Sy
TP-MULTI-CONTEXTS
Implicit S, S, S, (error)
TPINITIALIZEQ
14 ATMI COBOL Function Reference

Introduction to the COBOL Application-Transaction Monitor Interface

Tahle 2 Per-Process Context Modes

Function States
Uninitialized Initialized Single-context Initialized Multi-context
So Mode Mode S,
S
TPTERM(Q) - not last S,
association
TPTERMQ) - last So So
association
TPTERMQ) - no So
association

Unsolicited Notification

There are two methods for sending messages to application clients outside the boundaries of the
client/server interaction defined above. The first is the broadcast mechanism supported by
TPBROADCAST(). This function allows application clients, servers, and administrators to
broadcast typed record messages to a set of clients selected on the basis of the names assigned to
them. The names assigned to clients are determined in part by the application (specifically, by the
information passed in the TPINFDEF-REC data structure at TPINITIALIZE time) and in part by
the system (based on the processor through which the client accesses the application).

The second is the notification of a particular client as identified from an earlier or current service
request. Each service request contains a unique client identifier that identifies the originating
client for the service request. Calls to the TPCALL() and TPFORWAR() functions from within a
service routine do not change the originating client for that chain of service requests. Client
identifiers can be saved and passed between application servers. The TPNOTIFY () function is
used to notify clients identified in this manner.

COBOL Language ATMI Return Codes and Other Definitions

The following return code and setting definitions are used by the ATMI routines:

*

* TPSTATUS.cbl

*

05 TP-STATUS PIC S9(9) COMP-5.
88 TPOK VALUE 0.

ATMI COBOL Function Reference 15

88 TPEABORT VALUE 1.

88 TPEBADDESC VALUE 2.
88 TPEBLOCK VALUE 3.
88 TPEINVAL VALUE 4.
88 TPELIMIT VALUE 5.
88 TPENOENT VALUE 6.
88 TPEOS VALUE 7.
88 TPEPERM VALUE 8.
88 TPEPROTO VALUE 9.
88 TPESVCERR VALUE 10.
88 TPESVCFAIL VALUE 11.
88 TPESYSTEM VALUE 12.
88 TPETIME VALUE 13.
88 TPETRAN VALUE 14.
88 TPEGOTSIG VALUE 15.
88 TPERMERR VALUE 16.
88 TPEITYPE VALUE 17.
88 TPEOTYPE VALUE 18.
88 TPERELEASE VALUE 19.
88 TPEHAZARD VALUE 20.
88 TPEHEURISTIC VALUE 21.
88 TPEEVENT VALUE 22.
88 TPEMATCH VALUE 23.
88 TPEDIAGNOSTIC VALUE 24.
88 TPEMIB VALUE 25.
88 TPEMAXVAL VALUE 26.
05 TPEVENT PIC S9(9) COMP-5.

88 TPEV-NOEVENT VALUE O.
88 TPEV-DISCONIMM VALUE 1.
88 TPEV-SENDONLY VALUE 2.
88 TPEV-SVCERR VALUE 3.
88 TPEV-SVCFAIL VALUE 4.
88 TPEV-SVCSUCC VALUE 5.
05 TPSVCTIMOUT PIC S9(9) COMP-5.
88 TPED-NOEVENT VALUE O.
88 TPEV-SVCTIMEOUT VALUE 1.
88 TPEV-TERM VALUE 2.
05 APPL-RETURN-CODE PIC S9(9) COMP-5.

16 ATMI COBOL Function Reference

Introduction to the COBOL Application-Transaction Monitor Interface

The TPTYPE COBOL structure is used whenever sending or receiving application data. REC-TYPE
indicates the type of data record that is to be sent. SUB-TYPE indicates the name of the view if a
VIEW REC-TYPE is specified. LEN indicates the amount of data to send and the amount received.

*

* TPTYPE.cbl
*
05 REC-TYPE
88 X-OCTET
88 X-COMMON
05 SUB-TYPE
05 LEN
88 NO-LENGTH

PIC X(8).
VALUE "*X_OCTET".
VALUE *'X_COMMON".

PIC X(16).

PIC S9(9) COMP-5.
VALUE 0.

05 TPTYPE-STATUS PIC S9(9) COMP-5.

88 TPTYPEOK
88 TPTRUNCATE

VALUE O.
VALUE 1.

The TPSVCDEF dat