
Oracle® Tuxedo
Using Security in CORBA Applications

12c Release 2 (12.1.3)

April 2014

Oracle Tuxedo Using Security in CORBA Applications, 12c Release 2 (12.1.3)

Copyright © 1996, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use,
duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed
or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If
you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

This software or hardware and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect
to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Contents
The CORBA Security Features . 1-1

The CORBA Security Environment . 1-4

Oracle Tuxedo Security SPIs . 1-6

The SSL Protocol . 2-2

Digital Certificates . 2-5

Certificate Authority . 2-6

Certificate Repositories . 2-6

A Public Key Infrastructure . 2-7

PKCS-5 and PKCS-8 Compliance . 2-8

Supported Public Key Algorithms . 2-8

Supported Symmetric Key Algorithms. 2-9

Supported Message Digest Algorithms. 2-10

Supported Cipher Suites . 2-10

Standards for Digital Certificates . 2-11

Link-Level Encryption . 3-2

Password Authentication. 3-5

The SSL Protocol . 3-9

Certificate Authentication . 3-12

Using an Authentication Plug-in . 3-20

Authorization. 3-20

Auditing. 3-21

PKI Plug-ins . 3-22
Using Security in CORBA Applications iii

Commonly Asked Questions About the CORBA Security Features 3-24

Requirements for Using Public Key Security . 4-2

Who Needs Digital Certificates and Private/Private Key Pairs? 4-2

Requesting a Digital Certificate . 4-2

Publishing Certificates in the LDAP Directory Service. 4-3

Editing the LDAP Search Filter File . 4-4

Storing the Private Keys in a Common Location. 4-6

Defining the Trusted Certificate Authorities . 4-7

Creating a Peer Rules File . 4-8

Understanding min and max Values . 5-1

Verifying the Installed Version of LLE . 5-2

Configuring LLE on CORBA Application Links . 5-2

Setting Parameters for the SSL Protocol . 6-2

Defining a Port for SSL Network Connections . 6-2

Enabling Host Matching. 6-2

Setting the Encryption Strength . 6-4

Setting the Interval for Session Renegotiation . 6-6

Defining Security Parameters for the IIOP Listener/Handler . 6-6

Example of Setting Parameters on the ISL System Process . 6-8

Example of Setting Command-line Options on the CORBA C++ ORB 6-8

Configuring the Authentication Server . 7-2

Defining Authorized Users. 7-3

Defining a Security Level. 7-6

Configuring Application Password Security . 7-8

Configuring Password Authentication . 7-8

Sample UBBCONFIG File for Password Authentication . 7-9

Configuring Certificate Authentication . 7-11

Sample UBBCONFIG File for Certificate Authentication . 7-13
iv Using Security in CORBA Applications

Configuring Access Control . 7-15

Configuring Security to Interoperate with Older WebLogic Enterprise Client Applications
7-19

Registering the Security Plug-ins (SPIs) . 8-1

Building and Running the Security Sample Application . 10-1

Building and Running the Secure Simpapp Sample Application 10-2

Using the Bootstrapping Mechanism . 9-1

Using Password Authentication . 9-5

Using Certificate Authentication . 9-11

Using the Interoperable Naming Service Mechanism . 9-14

Using the Invocations_Options_Required() Method . 9-17

Using ULOGS and ORB Tracing . 10-2

CORBA::ORB_init Problems. 10-3

Password Authentication Problems . 10-4

Certificate Authentication Problems. 10-4

Tobj::Bootstrap::
resolve_initial_references Problems . 10-5

IIOP Listener/Handler Startup Problems . 10-6

Configuration Problems . 10-6

Problems with Using Callbacks Objects with the SSL Protocol 10-7

Troubleshooting Tips for Digital Certificates. 10-8

The CORBA Security Model . 12-2

Functional Components of the CORBA Security Environment. 12-3

The Principal Authenticator Object . 12-4

The Credentials Object . 12-6

The SecurityCurrent Object . 12-8

Method Descriptions. 16-1
Using Security in CORBA Applications v

vi Using Security in CORBA Applications

C H A P T E R 1
Overview of the CORBA Security
Features
This topic includes the following sections:

The CORBA Security Features

The CORBA Security Environment

Oracle Tuxedo Security SPIs

Notes: The Oracle Tuxedo product includes environments that allow you to build both
Application-to-Transaction Monitor Interfaces (ATMI) and CORBA applications. This
topic explains how to implement security in a CORBA application. For information
about implementing security in an ATMI application, see Using Security in ATMI
Applications.

The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Java client and Oracle Tuxedo CORBA Java client ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

The CORBA Security Features
Security refers to techniques for ensuring that data stored in a computer or passed between
computers is not compromised. Most security measures involve proof material and data
Using Security in CORBA Applications 1-1

encryption, where the proof material is a secret word or phrase that gives a user access to a
particular program or system, and data encryption is the translation of data into a form that cannot
be interpreted.

Distributed applications such as those used for electronic commerce (e-commerce) offer many
access points for malicious people to intercept data, disrupt operations, or generate fraudulent
input; the more distributed a business becomes, the more vulnerable it is to attack. Thus, the
distributed computing software, or middleware, upon which such applications are built must
provide security.

The CORBA security features of the Oracle Tuxedo product lets you establish secure connections
between client and server applications. It has the following features:

Authentication of CORBA C++ applications to the Oracle Tuxedo domain. Authentication
can be accomplished using a standard username/password combination or the identity
inside of the X.509 digital certificate provided to the server applications.

Data integrity and confidentiality through Link-Level Encryption (LLE) or the Secure
Sockets Layer (SSL) protocol. CORBA C++ applications can establish SSL sessions with
an Oracle Tuxedo domain. Oracle Tuxedo client applications can use LLE or SSL to
protect network traffic between bridges and domains.

Security Service Provider Interfaces (SPIs) that can be used to integrate security
mechanisms that provide authentication, authorization, auditing, and public key security
features. Security vendors can use the SPIs to integrate third-party security offerings into
the CORBA environment.

A Public Key Infrastructure (PKI) that uses the SSL protocol and X.509 digital certificates
to provide data privacy for messages sent over network links. In addition, a set of PKI SPIs
are provided.

To access the full security features of the CORBA environment, you need to install a license that
enable the use of the SSL protocol, LLE, and PKI. For information about installing the license
for the security features, see the Installing the Oracle Tuxedo System.

Note: Using Security in CORBA Applications describes the security features of the CORBA
environment in the Oracle Tuxedo product. For a complete description of using the
security features in the ATMI environment in the Oracle Tuxedo product, see Using
Security in ATMI Applications.

Table 1-1 summarizes the features in the CORBA security features in the Oracle Tuxedo product.
1-2 Using Security in CORBA Applications

The CORBA Secur i t y Features
.

Table 1-1 CORBA Security Features

Security Features Description Service Provider
Interface (SPI)

Default Implementation

Authentication Proves the stated identity of
users or system processes;
safely remembers and
transports identity information;
and makes identity information
available when needed.

Implemented as a
single interface

Provides security at three
levels: no authentication,
application password, and
certificate authentication.

Authorization Controls access to resources
based on identity or other
information.

Implemented as a
single interface

N/A

Auditing Safely collects, stores, and
distributes information about
operating requests and their
outcomes.

Implemented as a
single interface

Default auditing security is
implemented via the features
of the user log (ULOG).

Link-Level Encryption Uses symmetric key encryption
to establish data privacy for
messages moving over the
network links that connect the
machines in a CORBA
application.

N/A RC4 symmetric key
encryption.
Using Security in CORBA Applications 1-3

The CORBA Security Environment
Direct end-to-end mutual authentication in a distributed enterprise middleware environment such
as the Oracle Tuxedo CORBA environment can be prohibitively expensive, especially when
accomplished through security mechanisms optimized for long duration connections. It is not
efficient for principals to establish direct network connections with each server application, nor
is it practical to exchange and verify multiple authentication messages as part of processing each
service request. Instead, CORBA applications in an Oracle Tuxedo product implements a
delegated trust authentication model as shown in Figure 1-1.

The Secure Sockets
Layer (SSL) protocol

Uses asymmetric encryption to
establish data privacy for
messages moving over network
links between Oracle Tuxedo
domains.

N/A The SSL version 3.0
protocol.

Public key security Uses public key (or asymmetric
key) encryption to establish
data privacy for messages
moving over the network links
between remote client
applications and the IIOP
Listener/Handler. Complies
with SSL version 3.0 allowing
mutual authentication based on
X.509 digital certificates.

Implemented as the
following
interfaces:
• Public key

initialization
• Key

management
• Certificate

lookup
• Certificate

parsing
• Certificate

validation
• Proof material

mapping

Default public key security
supports the following
algorithms:
• RSA for key exchange.
• AES or DES and its

variants RC2 and RC4
for bulk encryption.

• MD5 and SHA for
message digests.

Table 1-1 CORBA Security Features (Continued)

Security Features Description Service Provider
Interface (SPI)

Default Implementation
1-4 Using Security in CORBA Applications

The CORBA Secur i t y Env i ronment
Figure 1-1 Delegated Trust Model

In a delegated trust model, principals (generally users of client applications) authenticate to a
trusted system gateway process. In the case of the CORBA applications, the trusted system
gateway process is the IIOP Listener/Handler. As part of successful authentication, security
tokens are assigned to the initiating principal. A security token is an opaque data structure suitable
for transfer between processes.

When a request from an authenticated principal reaches the IIOP Listener/Handler, the IIOP
Listener/Handler attaches the principal’s security tokens to the request and delivers the request to
the target server application for authorization and auditing purposes.

In a delegated trust authentication model, the IIOP Listener/Handler trusts that the authentication
software in the Oracle Tuxedo domain will verify the identity of the principal and generates the
appropriate security tokens. Server applications, in turn, trust that the IIOP Listener/Handler will
attach the correct security tokens. Server applications also trust that any other server applications
involved in the process of a request from a principal will safely deliver the security tokens.

A session is established between the initiating client application and the IIOP Listener/Handler
in the following way:
Using Security in CORBA Applications 1-5

1. When a client application wants to access an object within an Oracle Tuxedo domain, the
client application uses either a username and password or a X.509 digital certificate to
authenticate over the connection with the IIOP Listener/Handler.

2. A security association called a security context is established between a principal and the IIOP
Listener/Handler. This security context is used to control access to objects in the Oracle
Tuxedo domain.

The IIOP Listener/Handler retrieves the authorization and auditing tokens from the security
context. Together, the authorization and auditing tokens represent the principal’s identity
associated with the security context.

3. Once the authentication process is complete, the principal invokes an object in the Oracle
Tuxedo domain. The request is packaged into an IIOP request and forwarded to the IIOP
Listener/Handler. The IIOP Listener/Handler associates the request with the previously
established security context.

4. The IIOP Listener/Handler receives the request from the initiating principal.

The protection of messages between the client application and the IIOP Listener/Handler is
dependent on the security technology used in the CORBA application. The default
behavior of the Oracle Tuxedo product is to encrypt the authentication information but not
to protect the message sent between the client application and the Oracle Tuxedo domain.
The message is sent in clear text. The SSL protocol can be used to protect the message. If
the SSL protocol is configured to protect messages for integrity and confidentiality, the
request is digitally signed and sealed (encrypted) before it is sent to the IIOP
Listener/Handler.

5. The IIOP Listener/Handler forwards the request along with the authorization and auditing
tokens of the initiating principal to the appropriate server application.

6. When the request is received by the server application, the Oracle Tuxedo system interrogates
the forwarded tokens of the requesting principal to determine if the request should be
processed or denied. The CORBA security features will, based on the decision of the
authorization implementation, deny the processing of any request on an object for which the
requesting principal has no permission to access.

Oracle Tuxedo Security SPIs
As shown in Figure 1-2, the authentication, authorization, auditing, and public key security
features available with the Oracle Tuxedo product are implemented through a plug-in interface,
which allows security plug-ins to be integrated into the CORBA environment. A security plug-in
is a code module that implements a particular security feature.
1-6 Using Security in CORBA Applications

Orac le Tuxedo Secur i t y SP Is
Figure 1-2 Architecture for the Oracle Tuxedo Security Service Provider Interfaces

The Oracle Tuxedo product provides interfaces for the types of security plug-ins listed in
Table 1-2.
Using Security in CORBA Applications 1-7

Table 1-2 The Oracle Tuxedo Security Plug-Ins

Plug-In Description

Authentication Allows communicating processes to mutually
prove identification.

Authorization Allows system administrators to control access to
CORBA applications. Specifically, an
administrator can use authorization to allow or
disallow principals to use resources or services
provided by a CORBA application.

Auditing Provides a means to collect, store, and distribute
information about operating requests and their
outcomes. Audit-trail records may be used to
determine which principals performed, or
attempted to perform, actions that violated the
configured security policies of a CORBA
application. They may also be used to determine
which operations were attempted, which ones
failed, and which ones successfully completed.

Public key initialization Allows public key software to open public and
private keys. For example, gateway processes may
need to have access to a specific private key in
order to decrypt messages before routing them.

Key management Allows public key software to manage and use
public and private keys. Note that message digests
and session keys are encrypted and decrypted
using this interface, but no bulk data encryption is
performed using public key cryptography. Bulk
data encryption is performed using symmetric key
cryptography.

Certificate lookup Allows public key software to retrieve X.509v3
digital certificates for a given principal. Digital
certificates may be stored using any appropriate
certificate repository, such as Lightweight
Directory Access Protocol (LDAP).
1-8 Using Security in CORBA Applications

Orac le Tuxedo Secur i t y SP Is
The specifications for the SPIs are currently only available to third-party security vendors who
have entered into a special agreement with Oracle Systems, Inc. Customers who want to
customize a security feature must contact one of these vendors or Oracle Professional Services.
For example, an Oracle customer who wants a custom implementation of public key security
must contact a third-party vendor who can provide the appropriate security plug-in or Oracle
Professional Services.

For more information about security plug-ins, including installation and configuration
procedures, see your Oracle account executive.

Certificate parsing Allows public key software to associate a simple
principal name with an X.509v3 digital certificate.
The parser analyzes a digital certificate to generate
a principal name to be associated with the digital
certificate.

Certificate validation Allows public key software to validate an X.509v3
digital certificate in accordance with specific
business logic.

Proof material mapping Allows public key software to access the proof
materials needed to open keys, provide
authorization tokens, and provide auditing tokens.

Table 1-2 The Oracle Tuxedo Security Plug-Ins (Continued)

Plug-In Description
Using Security in CORBA Applications 1-9

1-10 Using Security in CORBA Applications

C H A P T E R 2
Introduction to the SSL Technology
This topic includes the following sections:

The SSL Protocol

Digital Certificates

Certificate Authority

Certificate Repositories

A Public Key Infrastructure

PKCS-5 and PKCS-8 Compliance

Supported Public Key Algorithms

Supported Symmetric Key Algorithms

Supported Message Digest Algorithms

Supported Cipher Suites

Standards for Digital Certificates

Notes: The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Java client and Oracle Tuxedo CORBA Java client ORB text references, associated code
Using Security in CORBA Applications 2-1

samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

The SSL Protocol
The Secure Sockets Layer (SSL) protocol allows you to integrate these essential features into
your CORBA application:

Confidentiality

Confidentiality is the ability to keep communications secret from parties other than the
intended recipient. It is achieved by encrypting data with strong algorithms. The SSL
protocol provides a secure mechanism that enables two communicating parties to negotiate
the strongest algorithm they both support and to agree on the keys with which to encrypt
the data.

Integrity

Integrity is a guarantee that the data being transferred has not been modified in transit. The
same handshake mechanism which allows the two parties to agree on algorithms and keys
also allows the two ends of an SSL connection to establish shared data integrity secrets
which are used to ensure that when data is received any modifications will be detected.

Authentication

Authentication is the ability to ascertain with whom you are speaking. By using digital
certificates and public key security, CORBA client and server applications can each be
authenticated to the other. This allows the two parties to be certain they are communicating
with someone they trust. The SSL protocol provides a mechanism that can be used to
authenticate principals to an Oracle Tuxedo domain using X.509 digital certificates. The
use of certificate authentication can be used as an alternative to password authentication.

The SSL protocol provides secure connections by allowing two applications connecting over a
network connection to authenticate the other’s identity and by encrypting the data exchanged
between the applications. When using the SSL protocol, the target always authenticates itself to
the initiator. Optionally, if the target requests it, the initiator can authenticate itself to the target.
Encryption makes data transmitted over the network intelligible only to the intended recipient.
An SSL connection begins with a handshake during which the applications exchange digital
2-2 Using Security in CORBA Applications

The SSL P ro toco l
certificates, agree on the encryption algorithms to use, and generate encryption keys used for the
remainder of the session.

The SSL protocol uses public key encryption for authentication. With public key encryption, a
pair of asymmetric keys are generated for a principal or other entity such as the IIOP
Listener/Handler or an application server. The keys are related such that the data encrypted with
the public key can only be decrypted using the corresponding private key. Conversely, data
encrypted with the private key can be decrypted only with the public key. The private key is
carefully protected so that only the owner can decrypt messages. The public key, however, is
distributed freely so that anyone can encrypt messages intended for the owner.

Figure 2-1 illustrates how the SSL protocol works in the CORBA security environment.
Using Security in CORBA Applications 2-3

Figure 2-1 The SSL Protocol in the CORBA Security Environment

When using the SSL protocol in the CORBA security environment, the IIOP Listener/Handler
authenticates itself to initiating principals. The IIOP Listener/Handler presents its digital
certificate to the initiating principal. To successfully negotiate a SSL connection, the client
application must then authenticate the IIOP Listener/Handler but the IIOP Listener/Handler will
accept any client application into the SSL connection. This type of authentication is referred to
as server authentication.

When using server authentication, the initiating client application is required to have digital
certificates for certificate authorities that are to be trusted. The IIOP Listener/Handler must have
2-4 Using Security in CORBA Applications

Dig i ta l Ce r t i f i ca tes
a private key and digital certificates that represents its identity. Server authentication is common
on the Internet where customers want to create secure connections before they share personal
data. In this case, the client application has a similar role to that of a Web browser.

With SSL version 3.0, principals can also authenticate to the IIOP Listener/Handler. This type of
authentication is referred to as mutual authentication. In mutual authentication, principals present
their digital certificates to the IIOP Listener/Handler. When using mutual authentication, both the
IIOP Listener/Handler and the principal need private keys and digital certificates that represent
their identity. This type of authentication is useful when you must restrict access to trusted
principals only.

The SSL protocol and the infrastructure needed to use digital certificates is available in the Oracle
Tuxedo product.

Digital Certificates
Digital certificates are electronic documents used to uniquely identify principals and entities over
networks such as the Internet. A digital certificate securely binds the identity of a principal or
entity, as verified by a trusted third party known as a certificate authority (CA), to a particular
public key. The combination of the public key and the private key provides a unique identity to
the owner of the digital certificate.

Digital certificates allow verification of the claim that a specific public key does in fact belong to
a specific principal or entity. A recipient of a digital certificate can use the public key contained
in the digital certificate to verify that a digital signature was created with the corresponding
private key. If such verification is successful, this chain of reasoning provides assurance that the
corresponding private key is held by the subject named in the digital certificate, and that the
digital signature was created by that particular subject.

A digital certificate typically includes a variety of information, such as:

The name of the subject (holder, owner) and other identification information required to
uniquely identify the subject, such as the URL of the Web server using the digital
certificate, or an individual’s e-mail address.

The subject’s public key.

The name of the certificate authority that issued the digital certificate.

A serial number.

The validity period (or lifetime) of the digital certificate (defined by a start date and an end
date).
Using Security in CORBA Applications 2-5

The most widely accepted format for digital certificates is defined by the ITU-T X.509
international standard. Thus, digital certificates can be read or written by any application
complying with X.509. The PKI in the CORBA security environment recognizes digital
certificates that comply with X.509 version 3, or X.509v3.

Certificate Authority
Digital certificates are issued by a certificate authority. Any trusted third-party organization or
company that is willing to vouch for the identities of those to whom it issues digital certificates
and public keys can be a certificate authority. When a certificate authority creates a digital
certificate, the certificate authority signs it with its private key, to ensure the detection of
tampering. The certificate authority then returns the signed digital certificate to the requesting
subject.

The subject can verify the digital signature of the issuing certificate authority by using the public
key of the certificate authority. The certificate authority makes its public key available by
providing a digital certificate issued from a higher-level certificate authority attesting to the
validity of the public key of the lower-level certificate authority. The second solution gives rise
to hierarchies of certificate authorities. This hierarchy is terminated by a self-signed digital
certificate known as the root key.

The recipient of an encrypted message can develop trust in the private key of a certificate
authority recursively, if the recipient has a digital certificate containing the public key of the
certificate authority signed by a superior certificate authority whom the recipient already trusts.
In this sense, a digital certificate is a stepping stone in digital trust. Ultimately, it is necessary to
trust only the public keys of a small number of top-level certificate authorities. Through a chain
of digital certificates, trust in a large number of users’ digital signatures can be established.

Thus, digital signatures establish the identities of communicating entities, but a digital signature
can be trusted only to the extent that the public key for verifying the digital signature can be
trusted.

Certificate Repositories
To make a public key and its identification with a specific subject readily available for use in
verification, the digital certificate may be published in a repository or made available by other
means. Certificate repositories are databases of digital certificates and other information
available for retrieval and use in verifying digital signatures. Retrieval can be accomplished
automatically by directly requesting digital certificates from the repository as needed.
2-6 Using Security in CORBA Applications

A Publ i c Key In f ras t ruc ture
In the CORBA security environment, Lightweight Directory Access Protocol (LDAP) is used as
a certificate repository. Oracle Systems, Inc. does not provide or recommend any specific LDAP
server. The LDAP server you choose should support the X.500 scheme definition and the LDAP
version 2 or 3 protocol.

A Public Key Infrastructure
A Public Key Infrastructure (PKI) consists of protocols, services, and standards supporting
applications of public key cryptography. Because the technology is still relatively new, the term
PKI is somewhat loosely defined: sometimes PKI simply refers to a trust hierarchy based on
public key digital certificates; in other contexts, it embraces digital signature and encryption
services provided to end-user applications as well.

There is no single standard public key infrastructure today, though efforts are underway to define
one. It is not yet clear whether a standard will be established or multiple independent PKIs will
evolve with varying degrees of interoperability. In this sense, the state of PKI technology today
can be viewed as similar to local and wide area (WAN) network technology in the 1980s, before
there was widespread connectivity via the Internet.

The following services are likely to be found in a PKI:

Key registration for issuing a new digital certificate for a public key.

Certificate revocation for canceling a previously-issued digital certificate and private key.

Key selection for obtaining a party’s public key.

Trust evaluation for determining whether a digital certificate is valid and which operations
it authorizes.

Figure 2-2 shows the PKI process flow.

Figure 2-2 PKI Process Flow

Subject

Certificate
Authority

Recipient

Repository

1

3

4

2 5 6
Using Security in CORBA Applications 2-7

1. The subject applies to a certificate authority for digital certificate.

2. The certificate authority verifies the identity of subject and issues a digital certificate.

3. The certificate authority or the subject publishes the digital certificate in a certificate
repository such as LDAP.

4. The subject digitally signs an electronic message with the associated private key to ensure
sender authenticity, message integrity, and nonrepudiation, and then sends message to
recipient.

5. The recipient retrieves the sender’s certificate from the certificate repository and then
retrieves the public key from the certificate.

The Oracle Tuxedo product does not provide the tools necessary to be a certificate authority.
Oracle Systems, Inc. recommends using a third-party certificate authority such as VeriSign or
Entrust. By offering a Public Key SPI, Oracle Systems, Inc. extends the opportunity to all Oracle
Tuxedo customers to use a PKI security solution with the PKI software from their vendor of
choice. See “PKI Plug-ins” on page 3-22 for more information.

PKCS-5 and PKCS-8 Compliance
Informal but recognized industry standards for public key software have been issued by a group
of leading communications companies, led by RSA Laboratories. These standards are called
“Public-Key Cryptography Standards,” or PKCS. The Oracle Tuxedo product uses PKCS-5 and
PKCS-8 to protect the private keys used with the SSL protocol.

PKCS-5 is a specification of a format for using password-based encryption that uses DES
to protect data.

PKCS-8 is a specification of a format for storing private keys, including the ability to
encrypt them with PKCS-5.

Supported Public Key Algorithms
Public key (or asymmetric key) algorithms are implemented through a pair of different but
mathematically related keys:

A public key (which is distributed widely) for verifying a digital signature or transforming
data into a seemingly unintelligible form.

A private key (which is always kept secret) for creating a digital signature or returning the
data to its original form.
2-8 Using Security in CORBA Applications

Suppor ted Symmet r i c Key A lgo r i thms
The public key security in the CORBA security environment also supports digital signature
algorithms. Digital signature algorithms are simply public key algorithms used to provide digital
signatures.

The Oracle Tuxedo product supports the Rivest, Shamir, and Adelman (RSA) algorithm, the
Diffie-Hellman algorithm, and Digital Signature Algorithm (DSA). With the exception of DSA,
digital signature algorithms can be used for digital signatures and encryption. DSA can be used
for digital signatures but not for encryption.

Supported Symmetric Key Algorithms
In symmetric key algorithms, the same key is used to encrypt and decrypt a message. The public
key encryption system uses symmetric key encryption to encrypt a message sent between two
communicating entities. Symmetric key encryption operates at least 1000 times faster than public
key cryptography.

A block cipher is a type of symmetric key algorithm that transforms a fixed-length block of
plaintext (unencrypted text) data into a block of ciphertext (encrypted text) data of the same
length. This transformation takes place in accordance with the value of a randomly generated
session key. The fixed length is called the block size.

The Public key security feature in the CORBA security environment supports the following
symmetric key algorithms:

DES-CBC (Data Encryption Standard for Cipher Block Chaining)

DES-CBC is a 64-bit block cipher run in Cipher Block Chaining (CBC) mode. It provides
56-bit keys (8 parity bits are stripped from the full 64-bit key).

Two-key triple-DES (Data Encryption Standard)

Two-key triple-DES is a 128-bit block cipher run in Encrypt-Decrypt-Encrypt (EDE)
mode. Two-key triple-DES provides two 56-bit keys (in effect, a 112-bit key).

For some time it has been common practice to protect and transport a key for DES
encryption with triple-DES, which means that the input data (in this case the single-DES
key) is encrypted, decrypted, and then encrypted again (an encrypt-decrypt-encrypt
process). The same key is used for the two encryption operations.

RC2 (Rivest’s Cipher 2)

RC2 is a variable key-size block cipher.

– RC4 (Rivest’s Cipher 4)
Using Security in CORBA Applications 2-9

RC4 is a variable key-size block cipher with a key size range of 40 to 128 bits. It is faster
than DES and is exportable with a key size of 40 bits. A 56-bit key size is allowed for
foreign subsidiaries and overseas offices of United States companies. In the United States,
RC4 can be used with keys of virtually unlimited length, although the public key security
in the CORBA security environment restricts the key length to 128 bits.

AES-256-CBC (Advanced Encryption Standard for Cipher Block Chaining)

AES-256-CBC is a 128-bit block cipher run in Cipher Block Chaining (CBC) mode. It
provides 256-bits keys

Customers of the Oracle Tuxedo product cannot expand or modify this list of algorithms.

Supported Message Digest Algorithms
The CORBA security environment supports the MD5 and SHA-1 (Secure Hash Algorithm 1)
message digest algorithms. Both MD5 and SHA-1 are well known, one-way hash algorithms. A
one-way hash algorithm takes a message and converts it into a fixed string of digits, which is
referred to as a message digest or hash value.

MD5 is a high-speed, 128-bit hash; it is intended for use with 32-bit machines. SHA-1 offers
more security by using a 160-bit hash, but is slower than MD5.

Supported Cipher Suites
A cipher suite is a SSL encryption method that includes the key exchange algorithm, the
symmetric encryption algorithm, and the secure hash algorithm used to protect the integrity of
the communication. For example, the cipher suite RSA_WITH_RC4_128_MD5 uses RSA for key
exchange, RC4 with a 128-bit key for bulk encryption, and MD5 for message digest.

The CORBA security environment supports the cipher suites described in Table 2-1.

Table 2-1 SSL Cipher Suites Supported by the CORBA Security Environment

Cipher Suite Key
Exchange
Type

Symmetric
Key
Strength

SSL_RSA_WITH_RC4_128_SHA RSA 128

SSL_RSA_WITH_RC4_128_MD5 RSA 128
2-10 Using Security in CORBA Applications

Standards fo r D ig i ta l Ce r t i f i ca tes
Standards for Digital Certificates
The CORBA security environment supports the digital certificates that conform to the X.509v3
standard. The X.509v3 standard specifies the format of digital certificates. Oracle recommends
obtaining certificates from a certificate authority such as Verisign or Entrust.

SSL_RSA_WITH_DES_CDC_SHA RSA 56

SSL_RSA_EXPORT_WITH_RC4_40_MD5 RSA 40

SSL_RSA_EXPORT_WITH_DES40_CBC_SHA RSA 40

SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5 RSA 40

SSL_DH_DSS_EXPORT_WITH_DES40_CBC_SHA Diffie-
Hellman

40

SSL_DH_RSA_EXPORT_WITH_DES40_CBC_SHA Diffie-
Hellman

40

SSL_RSA_WITH_3DES_EDE_CBC_SHA RSA 112

SSL_RSA_WITH_NULL_SHA RSA 0

SSL_RSA_WITH_NULL_MD5 RSA 0

Table 2-1 SSL Cipher Suites Supported by the CORBA Security Environment

Cipher Suite Key
Exchange
Type

Symmetric
Key
Strength
Using Security in CORBA Applications 2-11

2-12 Using Security in CORBA Applications

C H A P T E R 3
Fundamentals of CORBA Security
This topic includes the following sections:

Link-Level Encryption

Password Authentication

The SSL Protocol

Certificate Authentication

Using an Authentication Plug-in

Authorization

Auditing

PKI Plug-ins

Commonly Asked Questions About the CORBA Security Features

Notes: The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Java client and Oracle Tuxedo CORBA Java client ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.
Using Security in CORBA Applications 3-1

Link-Level Encryption
Link-Level Encryption (LLE) establishes data privacy for messages moving over the network
links. The objective of LLE is to ensure confidentiality so that a network-based eavesdropper
cannot learn the content of Oracle Tuxedo system messages or CORBA application-generated
messages. It employs the symmetric key encryption technique (specifically, RC4), which uses the
same key for encryption and decryption.

When LLE is being used, the Oracle Tuxedo system encrypts data before sending it over a
network link and decrypts it as it comes off the link. The system repeats this
encryption/decryption process at every link through which the data passes. For this reason, LLE
is referred to as a point-to-point facility.

LLE can be used to encrypt communication between machines and/or domains in a CORBA
application..

Note: LLE cannot be used to protect connections between remote CORBA client applications
and the IIOP Listener/Handler.

There are three levels of LLE security: 0-bit (no encryption), 56-bit (Export), and 128-bit
(Domestic). The Export LLE version allows 0-bit and 56-bit encryption. The Domestic LLE
version allows 0, 56, and 128-bit encryption.

How LLE Works
LLE works in the following way:

1. The system administrator sets parameters for any processes that want to use LLE to control
the encryption strength.

– The first configuration parameter is the minimum encryption level that a process will
accept. It is expressed as a key length: 0, 56, or 128 bits.

– The second configuration parameter is the maximum encryption level a process can
support. It also is expressed as a key length: 0, 56, or 128 bits.

For convenience, the two parameters are denoted as (min, max). For example, the values
(56, 128) for a process mean that the process accepts at least 56-bit encryption but can
support up to 128-bit encryption.

2. An initiator process begins the communication session.

3. A target process receives the initial connection and starts to negotiate the encryption level to
be used by the two processes to communicate.
3-2 Using Security in CORBA Applications

L ink-Leve l Encrypt ion
4. The two processes agree on the largest common key size supported by both.

5. The configured maximum key size parameter is reduced to agree with the installed software's
capabilities. This step must be done at link negotiation time, because at configuration time it
may not be possible to verify a particular machine's installed encryption package.

6. The processes exchange messages using the negotiated encryption level.

Figure 3-1 illustrates these steps.

Figure 3-1 How LLE Works

Encryption Key Size Negotiation
When two processes at the opposite ends of a network link need to communicate, they must first
agree on the size of the key to be used for encryption. This agreement is resolved through a
two-step process of negotiation.

1. Each process identifies its own min-max values.

2. Together, the two processes find the largest key size supported by both.

Determining min-max Values
When either of the two processes starts up, the Oracle Tuxedo system (1) checks the
bit-encryption capability of the installed LLE version by checking the LLE licensing information
Using Security in CORBA Applications 3-3

in the lic.txt file and (2) checks the LLE min-max values for the particular link type as
specified in the two configuration files. The Oracle Tuxedo system then proceeds as follows:

If the configured min-max values accommodate the installed LLE version, then the local
software assigns those values as the min-max values for the process.

If the configured min-max values do not accommodate the installed LLE version, for
example, if the Export LLE version is installed but the configured min-max values are (0,
128), then the local software issues a run-time error; link-level encryption is not possible at
this point.

If there are no min-max values specified in the configurations for a particular link type,
then the local software assigns 0 as the minimum value and assigns the highest
bit-encryption rate possible for the installed LLE versions as the maximum value, that is,
(0, 128) for the Domestic LLE version.

Finding a Common Key Size
After the min-max values are determined for the two processes, the negotiation of key size begins.
The negotiation process need not be encrypted or hidden. Once a key size is agreed upon, it
remains in effect for the lifetime of the network connection.

Table 3-1 shows which key size, if any, is agreed upon by two processes when all possible
combinations of min-max values are negotiated. The header row holds the min-max values for one
process; the far left column holds the min-max values for the other.

Table 3-1 Interprocess Negotiation Results

(0, 0) (0, 56) (0, 128) (56, 56) (56, 128) (128, 128)

(0, 0) 0 0 0 ERROR ERROR ERROR

(0, 56) 0 56 56 56 56 ERROR

(0, 128) 0 56 128 56 128 128

(56, 56) ERROR 56 56 56 56 ERROR

(56, 128) ERROR 56 128 56 128 128

(128, 128) ERROR ERROR 128 ERROR 128 128
3-4 Using Security in CORBA Applications

Password Authent i cat ion
WSL/WSH Connection Timeout During Initialization
The length of time a Workstation client can take for initialization is limited. By default, this
interval is 30 seconds in an application not using LLE, and 60 seconds in an application using
LLE. The 60-second interval includes the time needed to negotiate an encrypted link. This time
limit can be changed when LLE is configured by changing the value of the MAXINITTIME
parameter for the Workstation Listener (WSL) server in the UBBCONFIG file, or the value of the
TA_MAXINITTIME attribute in the T_WSL class of the WS_MIB(5).

Development Process
To use LLE in a CORBA application, you need to install a license that enables the use of LLE.
For information about installing the license, see Installing the Oracle Tuxedo System.

The implementation of LLE is an administrative task. The system administrators for each
CORBA application set min-max values in the UBBCONFIG file that control encryption strength.
When the two CORBA applications establish communication, they negotiate what level of
encryption to use to exchange messages. Once an encryption level is negotiated, it remains in
effect for the lifetime of the network connection.

Password Authentication
The CORBA security environment supports a password mechanism to provide authentication to
existing CORBA applications and to new CORBA applications that are not prepared to deploy a
full Public Key Infrastructure (PKI). When using password authentication, the applications that
initiate invocations on CORBA objects authenticate themselves to the Oracle Tuxedo domain
using a defined username and password.

The following levels of password authentication are provided:

None—indicates that no password or access checking is performed in the CORBA
application.

Application Password—indicates that users are required to supply a domain password in
order to access the CORBA application.

User Authentication—indicates that users are required to supply an application password as
well as the domain password in order to access the CORBA application.

ACL—indicates that authorization is used in the CORBA application and access control
checks are performed on interfaces, queue names, and event names. If an associated ALC
is not found for a user, it is assumed that access is granted.
Using Security in CORBA Applications 3-5

Mandatory ACL—indicates that authorization is used in the CORBA application and
access control checks are performed on interfaces, queue names, and event names. The
value of Mandatory ACL is similar to ACL, but permission is denied if an associated ACL
is not found for the user.

When using Password authentication, you have the option of using the
Tobj::PrincipalAuthenticator::logon() or the
SecurityLevel2::PrincipalAuthenticator::authenticate() methods in your client
application.

If you use password authentication, the SSL protocol can be used to provide confidentiality and
integrity to communication between applications. For more information, see “The SSL Protocol”
on page 3-9.

How Password Authentication Works
Password authentication works in the following way:

1. The initiating application accesses the Oracle Tuxedo domain in one of the following ways:

– Through the CORBA Interoperable Naming Service (INS) Bootstrapping mechanism.
Use this mechanism if you are using a client ORB from another vendor. For more
information about using CORBA INS, see the CORBA Programming Reference in the
Oracle Tuxedo online documentation

– The Oracle Bootstrapping mechanism. Use this mechanism if you are using Oracle
CORBA client applications.

2. The initiating application obtains credentials for the user. The initiating application must
provide proof material to be used by the Oracle Tuxedo domain to authenticate the user. This
proof material consists of the name of the user and a password.

– The initiating application creates the security context using a
PrincipalAuthenticator object. The request for authentication is sent to the IIOP
Listener/Handler. The proof material in the authentication request is securely relayed to
the authentication server, which verifies the supplied information.

– If the verification succeeds, the Oracle Tuxedo system constructs a Credentials
object that is used by all future invocations. The Credentials object for the user is
associated with the Current object that represents the security context.

3. The initiating application invokes a CORBA object in the Oracle Tuxedo domain using an
object reference. The request is packaged into an IIOP request and is forwarded to the IIOP
Listener/Handler that associates the request with the previously established security context.
3-6 Using Security in CORBA Applications

Password Authent i cat ion
4. The IIOP Listener/Handler receives the request from the initiating application.

5. The IIOP Listener/Handler forwards the request, along with the credentials of the initiating
application, to the appropriate CORBA object.

Figure 3-2 illustrates these steps.

Figure 3-2 How Password Authentication Works

Development Process for Password Authentication
Defining password authentication for a CORBA application includes administration and
programming steps. Table 3-2 and Table 3-3 list the administration and programming steps for
password authentication. For a detailed description of the administration steps for password
authentication, see “Configuring Authentication” on page 7-1. For a complete description of the
programming steps, see “Writing a CORBA Application That Implements Security” on
page 10-1.
Using Security in CORBA Applications 3-7

Table 3-2 Administration Steps for Password Authentication

Step Description

1 Set the SECURITY parameter in the UBBCONFIG file to APP_PW, USER_AUTH,
ACL, or MANDATORY_ACL.

2 If you defined the SECURITY parameter as USER_AUTH, ACL, or
MANDATORY_ACL, configure the authentication server (AUTHSRV) in the
UBBCONFIG file.

3 Use the tpusradd and tpgrpadd commands to define lists of authorized users
and groups including the IIOP Listener/Handler.

4 Use the tmloadcf command to load the UBBCONFIG file. When the UBBCONFIG
file is loaded, the system administrator is prompted for a password. The password
entered at this time becomes the password for the CORBA application.

Table 3-3 Programming Steps for Password Authentication

Step Description

1 Write application code that uses the Bootstrap object to obtain a reference to the
SecurityCurrent object or CORBA INS to obtain a reference to a
PrincipalAuthenticator object in the Oracle Tuxedo domain.

2 Write application code that obtains the PrincipalAuthenticator object from the
SecurityCurrent object.

3 Write application code that uses the
Tobj::PrincipalAuthenticator::logon() or
SecurityLevel2::PrincipalAuthenticator::authenticate()
operation to establish a security context with the Oracle Tuxedo domain.

4 Write application code that prompts the user for the password defined when the
UBBCONFIG file is loaded.
3-8 Using Security in CORBA Applications

The SSL P ro toco l
The SSL Protocol
The Oracle Tuxedo product provides the industry-standard SSL protocol to establish secure
communications between client and server applications. When using the SSL protocol, principals
use digital certificates to prove their identity to a peer.

The default behavior of the SSL protocol in the CORBA security environment is to have the IIOP
Listener/Handler prove its identity to the principal who initiated the SSL connection using digital
certificates. The digital certificates are verified to ensure that each of the digital certificates has
not been tampered with or expired. If there is a problem with any of the digital certificates in the
chain, the SSL connection is terminated. In addition, the issuer of a digital certificate is compared
against a list of trusted certificate authorities to verify the digital certificate received from the
IIOP Listener/Handler has been signed by a certificate authority that is trusted by the Oracle
Tuxedo domain.

Like LLE, the SSL protocol can be used with password authentication to provide confidentiality
and integrity to communication between the client application and the Oracle Tuxedo domain.
When using the SSL protocol with password authentication, you are prompted for the password
of the IIOP Listener/Handler defined by the SEC_PRINCIPAL_NAME parameter when you enter
the tmloadcf command.

How the SSL Protocol Works
The SSL protocol works in the following manner:

1. The IIOP Listener/Handler presents its digital certificate to the initiating application.

2. The initiating application compares the digital certificate of the IIOP Listener/Handler against
its list of trusted certificate authorities.

3. If the initiating application validates the digital certificate of the IIOP Listener/Handler, the
application and the IIOP Listener/Handler establish an SSL connection.

The initiating application can then use either password or certificate authentication to
authenticate itself to the Oracle Tuxedo domain.

Figure 3-3 illustrates how the SSL protocol works.

Figure 3-3 How the SSL Protocol Works in a CORBA Application
Using Security in CORBA Applications 3-9

Requirements for Using the SSL Protocol
To use the SSL protocol in a CORBA application, you need to install a license that enables the
use of the SSL protocol and PKI. For information about installing the license for the security
features, see Installing the Oracle Tuxedo System.

The implementation of the SSL protocol is flexible enough to fit into most public key
infrastructures. The Oracle Tuxedo product requires that digital certificates are stored in an
LDAP-enabled directory. You can choose any LDAP-enabled directory service. You also need
to choose the certificate authority from which to obtain digital certificates and private keys used
in a CORBA application. You must have an LDAP-enabled directory service and a certificate
authority in place before using the SSL protocol in a CORBA application.

Development Process for the SSL Protocol
Using the SSL protocol in a CORBA application is primarily an administration process.
Table 3-4 lists the administration steps required to set up the infrastructure required to use the
SSL protocol and configure the IIOP Listener/Handler for the SSL protocol. For a detailed
description of the administration steps, see “Managing Public Key Security” on page 4-1 and
“Configuring the SSL Protocol” on page 6-1.

Once the administration steps are complete, you can use either password authentication or
certificate authentication in your CORBA application. For more information, see “Writing a
CORBA Application That Implements Security” on page 10-1.
3-10 Using Security in CORBA Applications

The SSL P ro toco l
Note: If you are using the Oracle CORBA C++ ORB as a server application, the ORB can also
be configured to use the SSL protocol. For more information, see “Configuring the SSL
Protocol” on page 6-1.

If you use the SSL protocol with password authentication, you need to set the SECURITY
parameter in the UBBCONFIG file to desired level of authentication and if appropriate, configure

Table 3-4 Administration Steps for the SSL Protocol

Step Description

1 Set up an LDAP-enabled directory service. You will be prompted for the name of
the LDAP server during the installation of the Oracle Tuxedo product.

2 Install the license for the SSL protocol.

3 Obtain a digital certificate and private key for the IIOP Listener/Handler from a
certificate authority.

4 Publish the digital certificates for the IIOP Listener/Handler and the certificate
authority in the LDAP-enabled directory service.

5 Define the SEC_PRINCIPAL_NAME, SEC_PRINCIPAL_LOCATION, and
SEC_PRINCIPAL_PASSVAR parameters for the ISL server process in the
UBBCONFIG file.

6 Set the SECURITY parameter in the UBBCONFIG file to NONE.

7 Define a port for secure communication on the IIOP Listener/Handler using the -S
option of the ISL command.

8 Create a Trusted Certificate Authority file (trust_ca.cer) that defines the
certificate authorities trusted by the IIOP Listener/Handler.

9 Use the tmloadcf command to load the UBBCONFIG file.

10 Optionally, create a Peer Rules file (peer_val.rul) for the IIOP
Listener/Handler.

11 Optionally, modify the LDAP Search filter file to reflect the directory hierarchy in
place in your enterprise.
Using Security in CORBA Applications 3-11

the Authentication Server (AUTHSRV). For information about the administration steps for
password authentication, see “Password Authentication” on page 3-5.

Figure 3-4 illustrates the configuration of a CORBA application that uses the SSL protocol.

Figure 3-4 Configuration for Using the SSL Protocol in a CORBA Application

Certificate Authentication
Certificate authentication requires that each side of an SSL connection proves its identity to the
other side of the connection. In the CORBA security environment, the IIOP Listener/Handler
presents its digital certificate to the principal who initiated the SSL connection. The initiator then
provides a chain of digital certificates that are used by the IIOP Listener/Handler to verify the
identity of the initiator.
3-12 Using Security in CORBA Applications

Cer t i f i ca te Au thent i cat i on
Once a chain of digital certificates is successfully verified, the IIOP Listener/Handler retrieves
the value of the distinguished name from the subject of the digital certificate. The CORBA
security environment uses the e-mail address element of the subject’s distinguished name as the
identity of the principal. The IIOP Listener/Handler uses the identity of the principal to
impersonate the principal and establish a security context between the initiating application and
the Oracle Tuxedo domain.

Once the principal has been authenticated, the principal that initiated the request and the IIOP
Listener/Handler agree on a cipher suite that represents the type and strength of encryption that
they both support. They also agree on the encryption key and synchronize to start encrypting all
subsequent messages.

Figure 3-5 provides a conceptual overview of the certificate authentication.

Figure 3-5 Certificate Authentication

Commonly, X.509 V3 CA certificates are required to contain the Basic Constraints extension,
marked as being from a Certificate Authority (CA), and marked as a critical extension (see IETF
RFC 2459). Ensuring that V3 CA certificates protects against non-CA certificates from
masquerading as intermediate CA certificates.

For more information, please refer to the following URL:
http://www.ietf.org/rfc/rfc2459.txt

Note: This default behavior will not check Basic Constraints on X.509 V1 and V2 certificates,
as these versions of X.509 certificates do not support certificate extensions.
Using Security in CORBA Applications 3-13

There is a mechanism provided to control the level of enforcement that will be performed in order
to avoid problems with some customer's applications:

The mechanism is used by setting the value of the environment variable
TUX_SSL_ENFORCECONSTRAINTS. The levels of enforcement are as follows:

1
This level is the default. No checking is performed on V1 or V2 certificates in the
certificate chain. The Basic Constraints for V3 CA certificates are checked and the
certificates are verified to be CA certificates.

TUX_SSL_ENFORCECONSTRAINTS=1

2
This level does the same checking as level 1, and additionally enforces two more
requirements:

– All CA certificates in the certificate chain must be V3 certificates.

– The Basic Constraints extensions of the CA certificates must be marked as "critical" in
accordance with IETF RFC 2459.

This is not the default setting because a number of current commercially available V3 CA
certificates do not mark the Basic Constraints as critical.

TUX_SSL_ENFORCECONSTRAINTS=2

Note: In versions of Tuxedo prior to Tuxedo 12.1.1 a value of 0 was also allowed, which
disabled Basic Constraints enforcement entirely. This option was provided for
compatibility with older certificates back when Basic Constraints were still a fairly recent
feature in the X.509 standard. Since this is no longer the case, the
TUX_SSL_ENFORCECONSTRAINTS=0 value is no longer supported in Tuxedo 12.1.1 and
later releases.

How Certificate Authentication Works
Certificate authentication works in the following manner:

1. The initiating application accesses the Oracle Tuxedo domain in one of the following ways:

– Through the CORBA INS Bootstrapping mechanism. Use this mechanism if you are
using a client ORB from another vendor. For more information about using CORBA
INS, see CORBA Programming Reference in the Oracle Tuxedo online documentation.

– The Oracle Bootstrapping mechanism. Use this mechanism if you are using the Oracle
client ORB.
3-14 Using Security in CORBA Applications

Cer t i f i ca te Au thent i cat i on
2. The initiating application instantiates the Bootstrap object with a URL in the form of
corbaloc://host:port or corbalocs://host:port and controls the requirement for
protection by setting attributes on the SecurityLevel2::Credentials object returned as
a result of the SecurityLevel2::PrincipalAuthenticator::authenticate operation.

Note: You can also use the SecurityLevel2::Current::authenticate() method to
secure the bootstrapping process and specify that certificate authentication is to be used.

3. The initiating application obtains the digital certificates and the private key of the principal.
Retrieval of this information may require proof material to be supplied to gain access to the
principal’s private key and certificate. The proof material typically is a pass phrase rather than
a password.

 The security context is established as result of a
SecurityLevel2::PrincipalAuthenticator::authenticate() method.

The IIOP Listener/Handler receives and validates the application’s digital certificate as part
of the authentication process.

4. If the verification succeeds, the Oracle Tuxedo system constructs a Credentials object. The
Credentials object for the principal represents the security context for the current thread of
execution.

5. The initiating application invokes a CORBA object in the Oracle Tuxedo domain using an
object reference.

6. The request is packaged into an IIOP request and is forwarded to the IIOP Listener/Handler
that associates the request with the established security context.

7. The request is digitally signed and encrypted before it is sent to the IIOP Listener/Handler.
The Oracle Tuxedo system performs the signing and sealing of requests.

8. The IIOP Listener/Handler receives the request from the initiating application. The request is
decrypted.

9. The IIOP Listener/Handler retrieves the e-mail component of the subjectDN of the principal’s
and uses that as the identity of the user.

10. The IIOP Listener/Handler forwards the request, along with the associated tokens of the
principal, to the appropriate CORBA object.
Using Security in CORBA Applications 3-15

Figure 3-6 How Certificate Authentication Works

Development Process for Certificate Authentication
To use certificate authentication in a CORBA application, you need to install a license that
enables the use of the SSL protocol and PKI. For information about installing the license, see
Installing the Oracle Tuxedo System.

Using certificate authentication in a CORBA application includes administration and
programming steps. Table 3-5 and Table 3-6 list the administration and programming steps for
certificate authentication. For a detailed description of the administration steps, see “Managing
Public Key Security” on page 4-1 and “Configuring the SSL Protocol” on page 6-1.
3-16 Using Security in CORBA Applications

Cer t i f i ca te Au thent i cat i on
Table 3-5 Administration Steps for Certificate Authentication

Step Description

1 Set up an LDAP-enabled directory service. You will be prompted for the name of
the LDAP server during the installation of the Oracle Tuxedo product.

2 Install the license for the SSL protocol.

3 Obtain a digital certificate and private key for the IIOP Listener/Handler from a
certificate authority.

4 Obtain digital certificates and private keys for the CORBA client applications from
a certificate authority.

5 Store the private key files for the CORBA client applications and the IIOP
Listener/Handler in the Home directory of the user or in
$TUXDIR/udataobj/security/keys.

6 Publish the digital certificates for the IIOP Listener/Handler, the CORBA
applications, and the certificate authority in the LDAP-enabled directory service.

7 Define the SEC_PRINCIPAL_NAME, SEC_PRINCIPAL_LOCATION, and
SEC_PRINCIPAL_PASSVAR for the ISL server process in the UBBCONFIG file.

8 Set the SECURITY parameter in the UBBCONFIG file to USER_AUTH, ACL, or
MANDATORY_ACL.

9 Configure the Authentication Server (AUTHSRV) in the UBBCONFIG file.

10 Use the tpusradd and tpgrpadd commands to define the authorized Users and
Groups of your CORBA application.

11 Define a port for SSL communication on the IIOP Listener/Handler using the -S
option of the ISL command.

12 Enable certificate authentication in the IIOP Listener/Handler using the -a option
of the ISL command.

13 Create a Trusted Certificate Authority file (trust_ca.cer) that defines the
certificate authorities trusted by the IIOP Listener/Handler.

12 Create a Trusted Certificate Authority file (trust_ca.cer) that defines the
certificate authorities trusted by the CORBA client application.
Using Security in CORBA Applications 3-17

Figure 3-7 illustrates the configuration of a CORBA application that uses certificate
authentication.

13 Use the tmloadcf command to load the UBBCONFIG file. You will be prompted
for the password of the IIOP Listener/Handler defined in the
SEC_PRINCIPAL_NAME parameter.

14 Optionally, create a Peer Rules file (peer_val.rul) for both the CORBA client
application and the IIOP Listener/Handler.

15 Optionally, modify the LDAP Search filter file to reflect the directory hierarchy in
place in your enterprise.

Table 3-5 Administration Steps for Certificate Authentication (Continued)

Step Description
3-18 Using Security in CORBA Applications

Cer t i f i ca te Au thent i cat i on
Figure 3-7 Configuration for Using Certificate Authentication in a CORBA Application

Table 3-6 lists the programming steps for using certificate authentication in a CORBA
application. For more information, see “Writing a CORBA Application That Implements
Security” on page 10-1.
Using Security in CORBA Applications 3-19

Using an Authentication Plug-in
The Oracle Tuxedo product allows the integration of authentication plug-ins into a CORBA
application. The Oracle Tuxedo product can accommodate authentication plug-ins using various
authentication technologies, including shared-secret password, one-time password,
challenge-response, and Kerberos. The authentication interface is based on the generic security
service (GSS) application programming interface (API) where applicable and assumes
authentication plug-ins have been written to the GSSAPI.

If you chose to use an authentication plug-in, you must configure the authentication plug-in in the
registry of the Oracle Tuxedo system. For more detail about the registry, see “Configuring
Security Plug-ins” on page 8-1.

For more information about an authentication plug-ins, including installation and configuration
procedures, see your Oracle account executive.

Authorization
Authorization allows system administrators to control access to CORBA applications.
Specifically, an administrator can use authorization to allow or disallow principals to use
resources or services provided by a CORBA application.

Table 3-6 Programming Steps for Certificate Authentication

Step Description

1 Write application code that uses the corbaloc or corbalocs URL address
formats of the Bootstrap object. Note that the CommonName in the Distinguished
Name of the certificate of the IIOP Listener/Handler must match exactly the host
name provided in the URL address format. For more information on the URL
address formats, see “Using the Bootstrapping Mechanism” on page 10-1.

You can also use the CORBA INS bootstrap mechanism to object a reference to a
PrincipalAuthenticator object in the Oracle Tuxedo domain. For more information
about using CORBA INS, see the CORBA Programming Reference.

2 Write application code that uses the authenticate() method of the
SecurityLevel2::PrincipalAuthenticator interface to perform
authentication. Specify Tobj::CertificateBased for the method argument
and the pass phrase for the private key as the auth_data argument for
Security::Opaque.
3-20 Using Security in CORBA Applications

Aud i t ing
The CORBA security environment supports the integration of authorization plug-ins.
Authorization decisions are based in part on the user identity represented by an authorization
token. Authorization tokens are generated during the authentication process so coordination
between the authentication plug-in and the authorization plug-in is required.

If you chose to use an authorization plug-in, you must configure the authorization plug-in the
registry of the Oracle Tuxedo system. For more detail about the registry, see “Configuring
Security Plug-ins” on page 8-1.

For more information about authorization plug-ins, including installation and configuration
procedures, see your Oracle account executive.

Auditing
Auditing provides a means to collect, store, and distribute information about operating requests
and their outcomes. Audit-trail records may be used to determine which principals performed, or
attempted to perform, actions that violated the configured security policies of a CORBA
application. They may also be used to determine which operations were attempted, which ones
failed, and which ones successfully completed.

The current implementation of the auditing feature supports the recording of logon failures,
impersonation failures, and disallowed operations into the ULOG file. In the case of disallowed
operations, the value of the parameters to the operation are not provided because there is no way
to know the order and data types of the parameter for an arbitrary operation. Audit entries for
logon and impersonation include the identity of the principal attempting to be authenticated. For
information about setting up the ULOG file, see Setting Up an Oracle Tuxedo Application.

You can enhance the auditing capabilities of your CORBA application by using an auditing
plug-in. The Oracle Tuxedo system will invoke the auditing plug-in at predefined execution
points, usually before an operation is attempted and then when potential security violations are
detected or when operations are successfully completed. The actions taken to collect, process,
protect, and distribute auditing information depend on the capabilities of the auditing plug-in.
Care should be taken with the performance impact of audit information collection, especially
successful operation audits, which may occur at a high rate.

Auditing decisions are based partly on user identity, which is stored in an auditing token. Because
auditing tokens are generated by the authentication plug-in, providers of authentication and
auditing plug-ins need to ensure that these plug-ins work together.

The purpose of an auditing request is to record an event. Each auditing plug-in returns one of two
responses: success (the audit succeeded and the event was logged) or failure (the audit failed
Using Security in CORBA Applications 3-21

and the event was not logged the event). An auditing plug-in is called once before the operation
is performed and once after the operation completes.

The preoperation audit allows the auditing of both attempts to call an operation, and also
allows storage of input data for the postoperation check.

The postoperation audit reports the status of the completion of an operation. For failure
status, the postoperation audit is called to report a potential security violation. Usually this
type of report is issued when a preoperation or postoperation authorization check fails or
when some other potential security attack is detected.

Multiple implementations of the auditing plug-in can be used in a CORBA application. Using
multiple authorization plug-ins causes more than one preoperation and postoperation auditing
operation to be performed.

When using multiple auditing plug-ins, all the plug-ins are placed under a single master auditing
plug-in. Each subordinate authorization plug-in returns SUCCESS or FAILURE. If any plug-in fails
the operation, the auditing master plug-in determines the outcome to be FAILURE. Other error
returns are also considered FAILURE. Otherwise, SUCCESS is the outcome.

In addition, an Oracle Tuxedo system process may call an auditing plug-in when a potential
security violation occurs. (Suspicion of a security violation arises when a preoperation or
postoperation authorization check fails or when an attack on security is detected.) In response,
the auditing plug-in performs a postoperation audit and returns whether the audit succeeded.

The auditing process is somewhat different for users of the auditing feature provided by the
Oracle Tuxedo product and users of auditing plug-ins. The default auditing feature does not
support preoperation audits. If the default auditing feature receives a preoperation audit request,
it returns immediately and does nothing.

If you chose to use an auditing plug-in other than the default auditing plug-in, you must configure
the auditing plug-in the registry of the Oracle Tuxedo system. For more detail about the registry,
see “Configuring Security Plug-ins” on page 8-1.

For more information about auditing plug-ins, including installation and configuration
procedures, see your Oracle account executive.

PKI Plug-ins
The Oracle Tuxedo product provides a PKI environment which includes the SSL protocol and the
infrastructure needed to use digital certificates in a CORBA application. However, you can use
the PKI interfaces to integrate a PKI plug-in that supplies custom message-based digital signature
3-22 Using Security in CORBA Applications

PK I P lug- ins
and message-based encryption to your CORBA applications. Table 3-7 describes the PKI
interfaces.

The PKI interfaces support the following algorithms:

Public key algorithms: Rivest, Shamir, and Adelman (RSA) and Digital Signature
Algorithm (DSA)

Table 3-7 PKI Interfaces

PKI Interface Description

Public key initialization Allows public key software to open public and
private keys. For example, gateway processes may
need to have access to a specific private key in
order to decrypt messages before routing them.

Key management Allows public key software to manage and use
public and private keys. Note that message digests
and session keys are encrypted and decrypted
using this interface, but no bulk data encryption is
performed using public key cryptography. Bulk
data encryption is performed using symmetric key
cryptography.

Certificate lookup Allows public key software to retrieve X.509v3
digital certificates for a given principal. Digital
certificates may be stored using any appropriate
certificate repository, such as Lightweight
Directory Access Protocol (LDAP).

Certificate parsing Allows public key software to associate a simple
principal name with an X.509v3 digital certificate.
The parser analyzes a digital certificate to generate
a principal name to be associated with the digital
certificate.

Certificate validation Allows public key software to validate an X.509v3
digital certificate in accordance with specific
business logic.

Proof material mapping Allows public key software to access the proof
materials needed to open keys, provide
authorization tokens, and provide auditing tokens.
Using Security in CORBA Applications 3-23

Symmetric key algorithms:

– Data Encryption Standard for Cipher Block Chaining (DES-CBC)

– Two-key triple-DES

– Rivest’s Cipher 4 (RC4)

Message digest algorithms:

– Message Digest 5 (MD5)

– Secure Hash Algorithm 1 (SHA-1)

If you chose to use a PKI plug-in, you must configure the PKI plug-in in the registry of the Oracle
Tuxedo system. For more detail about the registry, see “Configuring Security Plug-ins” on
page 8-1.

For more information about PKI plug-ins, including installation and configuration procedures,
see your Oracle account executive.

Commonly Asked Questions About the CORBA Security
Features

The following sections answer some of the commonly asked questions about the CORBA
security features.

Do I Have to Change the Security in an Existing CORBA
Application?
The answer is no. If you are using security interfaces from previous versions of the WebLogic
Enterprise product in your CORBA application there is no requirement for you to change your
CORBA application. You can leave your current security scheme in place and your existing
CORBA application will work with CORBA applications built with Oracle Tuxedo 8.0 or later.

For example, if your CORBA application consists of a set of server applications which provide
general information to all client applications which connect to them, there is really no need to
implement a stronger security scheme. If your CORBA application has a set of server
applications which provide information to client applications on an internal network which
provides enough security to detect sniffers, you do not need to implement the additional security
features.
3-24 Using Security in CORBA Applications

Commonly Asked Quest ions Abou t the CORBA Secur i t y Features
Can I Use the SSL Protocol in an Existing CORBA
Application?
The answer is yes. You may want to take advantage of the extra security protection provided by
the SSL protocol in your existing CORBA application. For example, if you have a CORBA server
application which provides stock prices to a specific set of client applications, you can use the
SSL protocol to make sure the client applications are connected to the correct CORBA server
application and that they are not being routed to a fake CORBA server application with incorrect
data. A username and password is sufficient proof material to authenticate the client application.
However, by using the SSL protocol, the message request/reply information can be protected as
an additional level of security.

The SSL protocol offers CORBA applications the following benefits:

Protection of the entire conversation including the initial bootstrapping process. The SSL
protocol protects against Man-In-The-Middle attacks, replay attacks, tampering, and
sniffing.

Even if you only use the default settings, the SSL protocol provides signed and sealed
protection since the default encryption settings are a minimum of 56 bits by default.

Client verification of the connected IIOP Listener/Handler using the digital certificate of
the IIOP Listener/Handler. The client application can then apply additional security rules to
restrict access to the client application by the IIOP Listener/Handler. This protection also
applies to IIOP Listener/Handlers connecting to remote server applications when using
callback objects.

To use the SSL protocol in a CORBA application, set up the infrastructure to use digital
certificates, change the command-line options on the ISL server process to use the SSL protocol,
and configure a port for secure communications on the IIOP Listener/Handler. If your existing
CORBA application uses password authentication, you can use that code with the SSL protocol.
If your CORBA C++ client application does not already catch the InvalidDomain exception
when resolving initial references to the Bootstrap object and performing authentication, write
code to handle this exception. For more information, see “PKI Plug-ins” on page 3-22.

When Should I Use Certificate Authentication?
You might be ready to migrate your existing CORBA application to use Internet connections
between the CORBA application and Web browsers and commercial Web servers. For example,
users of your CORBA application might be shopping over the Internet. The users must be
confident that:
Using Security in CORBA Applications 3-25

They are in fact communicating with the server at the online store and not an impostor that
mimics the store’s server to get credit card information.

The data exchanged between the user of the CORBA application and the online store will
be unintelligible to network eavesdroppers.

The data exchanged with the online store will arrive unaltered. An instruction to order
$500 worth of merchandise must not accidently or maliciously become a $5000 order.

In these situations, the SSL protocol and certificate authentication offer CORBA applications the
maximum level of protection. In addition to the benefits achieved through the use of the SSL
protocol, certificate authentication offers CORBA applications:

IIOP Listener/Handler verification of the client application that initiates a request using the
digital certificate of the client application. In addition, the IIOP Listener/Handler can apply
additional rules which restrict access to the client application based on the identity
established by the digital certificate. A remote ORB acting as a server application can also
be configured to allow mutual authentication and verify the identity of a client application
based on a digital certificate.

Inside the Oracle Tuxedo domain, the client application can still have an Oracle Tuxedo
username and password. The IIOP Listener/Handler maps the identity defined in a digital
certificate to an Oracle Tuxedo username and password thus allowing existing CORBA
applications to have an identity in native CORBA server applications.

 For more information, see “PKI Plug-ins” on page 3-22.
3-26 Using Security in CORBA Applications

C H A P T E R 10
Writing a CORBA Application That
Implements Security
This topic includes the following sections:

Using the Bootstrapping Mechanism

Using Password Authentication

Using Certificate Authentication

Using the Interoperable Naming Service Mechanism

Using the Invocations_Options_Required() Method

Notes: The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Java client and Oracle Tuxedo CORBA Java client ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

Using the Bootstrapping Mechanism
Note: This mechanism should be used with the Oracle CORBA client applications.

The Bootstrap object in the Oracle Tuxedo CORBA environment has been enhanced so that users
can specify that all communication to a given IIOP Listener/Handler be protected. The Bootstrap
Using Security in CORBA Applications 9-1

object supports corbaloc and corbalocs Uniform Resource Locator (URL) address formats to
be used when specifying the location of the IIOP Listener/Handler. The type of security provided
depends on the format of URL used to specify the location of the IIOP Listener/Handler.

As with the Host and Port address format, you use the URL address formats to specify the
location of the IIOP Listener/Handler, but the bootstrapping process behaves differently. When
using the corbaloc or corbalocs URL address format, the initial connection to the IIOP
Listener/Handler is deferred until either:

The principal uses password authentication with either the
Tobj::PrincipalAuthenticator::logon or the
SecurityLevel2::PrincipalAuthenticator::authenticate methods.

The principal calls the Tobj_Bootstrap::resolve_initial_references method
using an object ID value other than SecurityCurrent.

Using the corbalocs URL address format indicates that the SSL protocol is used to protect at
least the integrity of the connection between the principal and the IIOP Listener/Handler.

Table 10-1 highlights the differences between the two URL address formats.

Both the corbaloc and corbalocs URL address formats provide stringified object references
that are easily manipulated in both TCP/IP and Domain Name System (DNS) environments. The
corbaloc and corbalocs URL address formats contain a DNS-style host name or an IP address
and port.

Table 10-1 Differences Between corbaloc and corbalocs URL Address Formats

URL Address Formats Functionality

corbaloc By default, invocations on the IIOP Listener/Handler are unprotected.
Configuring the IIOP Listener/Handler for the SSL protocol is optional.

A principal can secure the bootstrapping process by using the
authenticate() method of the
SecurityLevel2::PrincipalAuthenticator interface and the
invocation_options_required() method of the
SecurityLeve12::Credentials interface to specify that certificate
authentication is to be used.

corbalocs Invocations on the IIOP Listener/Handler are protected and the IIOP
Listener/Handler or the CORBA C++ ORB must be configured to enable the use
of the SSL protocol. For more information, see “Configuring the SSL Protocol”
on page 6-1.
9-2 Using Security in CORBA Applications

Using the Boots t rapp ing Mechan ism
The URL address formats follow and extend the definition of object URLs adopted by the Object
Management Group (OMG) as part of the Interoperable Naming Service submission. The Oracle
Tuxedo software also extends the URL format described in the OMG Interoperable Naming
Service submission to support a secure form that is modeled after the URL for secure HTTP, as
well as to support functionality in previous releases of the WebLogic Enterprise product.

Listing 10-1 contains examples of the new URL address formats.

Listing 10-1 Examples of the corbaloc and corbalocs URL Address Formats

corbaloc://555xyz.com:1024,corbaloc://555backup.com:1022,
corbaloc://555last.com:1999
corbalocs://555xyz.com:1024,(corbalocs://555backup.com:1022|corbalocs://55

5last.com:1999)
corbaloc://555xyz.com:1111
corbalocs://24.128.122.32:1011, corbalocs://24.128.122.34

As an enhancement to the URL syntax described in the OMG Interoperable Naming Service
submission, the Oracle Tuxedo product extends the syntax to support a list of multiple URLs,
each with a different scheme. Listing 10-2 contains examples of specifying multiple URLs.

Listing 10-2 Examples of Specifying Multiple URL Address Formats

corbalocs://555xyz.com:1024,corbaloc://555xyz.com:1111
corbalocs://ctxobj.com:3434,corbalocs://mthd.com:3434,corbaloc://force.com:111
1

In the examples in Listing 10-2, if the parser reaches the URL corbaloc://force.com:1111,
it resets its internal state as if it had never attempted secure connections, and then begins
attempting unprotected connections. This situation occurs if the client application has not set any
SSL parameters on the Credentials object.

The following sections describe the behavior when using the different address formats of the
Bootstrap object.
Using Security in CORBA Applications 9-3

Using the Host and Port Address Format
If a CORBA client application uses the Host and Port address format of the Bootstrap object, the
constructor method of the Bootstrap object constructs an object reference using the specified host
name and port number. The invocation to the IIOP Listener/Handler is made without the
protections offered by the SSL protocol.

The client application can still authenticate using password authentication. However, since the
bootstrapping process is performed over an unprotected and unverified link, all communications
are vulnerable to the following security attacks:

The Man-in-the-Middle attack, because there was no verification that the principal to
which the connection was made was the desired principal.

The Denial of Service attack, because no object references were returned, the object
references returned were invalid, or the security token was invalid.

The Sniffer attack, because the information was sent in the clear so that anyone with a
packet sniffer can see the content of a message that was not encrypted (for example, only
the username/password information is encrypted).

The Tamper attack, because the integrity of the information is not protected. The contents
of the message could be changed and the change would not be detected.

The Replay attack, because the same request can be sent repeatedly without detection.

Note: If the IIOP Listener/Handler is configured for the SSL protocol and the Host and Port
address format of the Bootstrap object is used, the invocation on the specified CORBA
object results in a INVALID_DOMAIN exception.

Using the corbaloc URL Address Format
By default, the invocation on the IIOP Listener/Handler is unprotected when using the corbaloc
URL address format and password authentication. Therefore, all communications are vulnerable
to the following security attacks:

The Man-in-the-Middle attack, because there was no verification that the principal to
which the connection was made was the desired principal.

The Denial of Service attack, because no object references were returned, the object
references returned were invalid, or the security token was invalid.
9-4 Using Security in CORBA Applications

Us ing Password Authent i cat i on
The Sniffer attack, because the information was sent in the clear so that anyone with a
packet sniffer can see the content of a message that was not encrypted (for example, only
the username/password information is encrypted).

The Tamper attack, because the integrity of the information is not protected. The content of
the message could be changed and the change would not be detected.

The Replay attack, because the same request can be sent repeatedly without detection.

You can protect the bootstrapping process when using the corbaloc URL address format by
using the SecurityLevel2::PrincipalAuthenticator::authenticate() method,
specifying that certificate authentication is to be used, and setting the
invocation_methods_required method on the Credentials object.

Note: If the IIOP Listener/Handler is configured for the SSL protocol but not configured for
certificate authentication and the corbaloc URL address format is used, the invocation
on the specified CORBA object results in an INVALID_DOMAIN exception.

Oracle recommends that existing CORBA applications migrate to the corbaloc URL address
format instead of using the Host and Port Address format.

Using the corbalocs URL Address Format
The corbalocs URL address format is the recommended format to use to ensure that
communications between principals and the IIOP Listener/Handler are protected. The
corbalocs URL address format functions in the same way as the corbaloc URL address
format, except the SSL protocol is used to protect all communications with the IIOP
Listener/Handler or the CORBA C++ ORB regardless of the type of authentication used.

When the defaults are used with the corbalocs URL address format, communications are
vulnerable only to Denial of Service security attacks. Using the SSL protocol and certificate
authentication guards against Sniffer, Tamper, and Replay attacks. In addition, the validation
check of the host specified in the digital certificate guards against Man-in-the-Middle attacks.

To use the corbalocs URL address format, the IIOP Listener/Handler or the CORBA C++ ORB
must be configured to enable the use of the SSL protocol. For more information about configuring
the IIOP Listener/Handler or the CORBA C++ ORB for the SSL protocol, see “Configuring the
SSL Protocol” on page 6-1.

Using Password Authentication
This section describes implementing password authentication in a CORBA applications.
Using Security in CORBA Applications 9-5

The Security Sample Application
The Security sample application demonstrates password authentication. The Security sample
application requires each student using the application to have an ID and a password. The
Security sample application works in the following manner:

1. The client application has a logon method. This method invokes operations on the
PrincipalAuthenticator object, which is obtained as part of the process of logging on to access
the domain.

2. The server application implements a get_student_details() method on the Registrar
object to return information about a student. After the user is authenticated and the logon is
complete, the get_student_details() method accesses the student information in the
database to obtain the student information needed by the client logon method.

3. The database in the Security sample application contains course and student information.

Figure 10-1 illustrates the Security sample application.

Figure 10-1 Security Sample Application

CORBA C++ Client
Application

Database

logon()

Security Required

CORBA Server
Application

Registrar Object

get_student_details()

browse_courses()

get_course_details()

CORBA
9-6 Using Security in CORBA Applications

Us ing Password Authent i cat i on
The source files for the Security sample application are located in the
\samples\corba\university directory in the Oracle Tuxedo software. For information about
building and running the Security sample application, see the Guide to the CORBA University
Sample Applications.

Writing the Client Application
When using password authentication, write client application code that does the following:

1. Uses the Bootstrap object to obtain a reference to the SecurityCurrent object for the specific
Oracle Tuxedo domain. You can use the Host and Port Address format, the corbaloc URL
address format, or the corbalocs URL address format.

2. Gets the PrincipalAuthenticator object from the SecurityCurrent object.

3. Uses one of the following methods to authenticate the principal:

– C++—SecurityLevel2::PrincipalAuthenticator::authenticate() using
Tobj::TuxedoSecurity

– C++—Tobj::PrincipalAuthenticator::logon()

The SecurityLevel2::PrincipalAuthenticator interface is defined in the CORBAservices
Security Service specification. This interface contains two methods that are used to accomplish
the authentication of the principal. There are two methods because authentication of principals
may require more than one step. The authenticate() method allows the caller to authenticate
and optionally select attributes for the principal of this session.

The CORBA environment extends the PrincipalAuthenticator object with functionality to
support similar security to that found in the ATMI environment in the Oracle Tuxedo product.
The enhanced functionality is provided by the Tobj::PrincipalAuthenticator interface.

The methods defined for the Tobj::PrincipalAuthenticator interface provide a focused,
simplified form of the equivalent CORBA-defined interface. You can use either the
CORBA-defined or the Oracle Tuxedo extensions when developing a CORBA application.

The Tobj::PrincipalAuthenticator interface provides the same functionality as the
SecurityLevel2::PrincipalAuthenticator interface. However, unlike the
SecurityLevel2::PrincipalAuthenticator::authenticate() method, the logon()
method of the Tobj::PrincipalAuthenticator interface does not return a Credentials object.
As a result, CORBA applications that need to use more than one principal identity are required
to call the Current::get_credentials() method immediately after the logon() method to
Using Security in CORBA Applications 9-7

retrieve the Credentials object as a result of the logon. Retrieval of the Credentials object directly
after a logon method should be protected with serialized access.

Note: The user data specified as part of the logon cannot contain embedded NULLs.

The following sections contain C++ code examples that illustrate implementing password
authentication. For a Visual Basic code example, see “Automation Security Reference” on
page 16-1.

C++ Code Example That Uses the
SecurityLevel2::PrincipalAuthenticator::authenticate() Method
Listing 10-3 contains C++ code that performs password authentication using the
SecurityLevel2::PrincipalAuthenticator::authenticate()method.

Listing 10-3 C++ Client Application That Uses the SecurityLevel2::PrincipalAuthenticator::authenticate()
Method

...
//Create Bootstrap object
 Tobj_Bootstrap* bootstrap = new Tobj_Bootstrap(orb,
 corbalocs://sling.com:2143);
//Get SecurityCurrent object
CORBA::Object_var var_security_current_oref =
 bootstrap.resolve_initial_references(“SecurityCurrent”);
SecurityLevel2::Current_var var_security_current_ref =
 SecurityLevel2::Current::_narrow(var_security_current_oref.in());
//Get the PrincipalAuthenticator
SecurityLevel2::PrincipalAuthenticator_var var_principal_authenticator =
 var_security_current_oref->principal_authenticator();

const char * user_name = “john”
const char * client_name = “university”;
char system_password[31] = {‘\0’};
char user_password[31] = {‘\0’};

Tobj::PrincipalAuthenticator_ptr var_bea_principal_authenticator =

 Tobj::PrincipalAuthenticator::_narrow(var_bea_principal_authenticator.in())
;

//Determine the security level
Tobj::AuthType auth_type = var_bea_principal_authenticator->get_auth_type();
switch (auth_type)
{
9-8 Using Security in CORBA Applications

Us ing Password Authent i cat i on
 case Tobj::TOBJ_NOAUTH;
 break;

 case Tobj::TOBJ_SYSAUTH
 strcpy(system_password, “sys_pw”);

 case Tobj::TOBJ_APPAUTH
 strcpy(system_password, “sys_pw”);
 strcpy(user_password, “john_pw”);
 break;
}
if (auth_type != Tobj::TOBJ_NOAUTH)

{
 SecurityLevel2::Credentials_var creds;
 Security::Opaque_var auth_data;
 Security::AttributeList_var privileges;
 Security::Opaque_var cont_data;
 Security::Opaque_var auth_spec_data;

var_bea_principalauthenticator->build_auth_data(user_name,
 client_name,
 system_password,
 user_password,
 NULL,
 auth_data,
 privileges);
Security::AuthenticationStatus status =
 var_bea_principalauthenticator->authenticate(
 Tobj::TuxedoSecurity,
 user_name,
 auth_data,
 privileges,
 creds,
 cont_data, auth_spec_data);

if (status != Security::SecAuthSuccess)
 {
 //Failed authentication
 return;
 }
}
// Proceed with application
...
Using Security in CORBA Applications 9-9

C++ Code Example That Uses the Tobj::PrincipalAuthenticator::logon()
Method
Listing 10-4 contains C++ code that performs password authentication using the
Tobj::PrincipalAuthenticator::logon()method.

Listing 10-4 C++ Client Application That Uses the Tobj::PrincipalAuthenticator::logon() Method

...
CORBA::Object_var var_security_current_oref =
 bootstrap.resolve_initial_references(“SecurityCurrent”);
SecurityLevel2::Current_var var_security_current_ref =
 SecurityLevel2::Current::_narrow(var_security_current_oref.in());
//Get the PrincipalAuthenticator
SecurityLevel2::PrincipalAuthenticator_var var_principal_authenticator_oref =
 var_security_current_oref->principal_authenticator();

//Narrow the PrincipalAuthenticator
Tobj::PrincipalAuthenticator_var var_bea_principal_authenticator =
 Tobj::PrincipalAuthenticator::_narrow
 var_principal_authenticator_oref.in());

const char * user_name = “john”
const char * client_name = “university”;
char system_password[31] = {‘\0’};
char user_password[31] = {‘\0’};

//Determine the security level
Tobj::AuthType auth_type = var_bea_principal_authenticator->get_auth_type();
switch (auth_type)
{
 case Tobj::TOBJ_NOAUTH;
 break;

 case Tobj::TOBJ_SYSAUTH
 strcpy(system_password, “sys_pw”);

 case Tobj::TOBJ_APPAUTH
 strcpy(system_password, “sys_pw”);
 strcpy(user_password, “john_pw”);
 break;
}
if (auth_type != Tobj::TOBJ_NOAUTH)

{
 SecurityLevel2::Credentials_var creds;
9-10 Using Security in CORBA Applications

Us ing Cer t i f i ca te Au thent i cat i on
 Security::Opaque_var auth_data;
 Security::AttributeList_var privileges;
 Security::Opaque_var cont_data;
 Security::Opaque_var auth_spec_data;

//Determine the security level
Tobj::AuthType auth_type = var_bea_principal_authenticator->get_auth_type();
Security::AuthenticationStatus status = var_bea_principal_authenticator->logon(
 user_name,
 client_name,
 system_password,
 user_password,
 0);

if (status != Security::SecAuthSuccess)
 {
 //Failed authentication
 return;
 }
}
// Proceed with application
...
// Log off
 try
 {
 logoff();
 }
...

Using Certificate Authentication
This section describes implementing certificate authentication in CORBA applications.

The Secure Simpapp Sample Application
The Secure Simpapp sample application uses the existing Simpapp sample application and
modifies the code and configuration files to support secure communications through the SSL
protocol and certificate authentication.

The server application in the Secure Simpapp sample application provides an implementation of
a CORBA object that has the following two methods:

– The upper method accepts a string from the client application and converts the string
to uppercase letters.
Using Security in CORBA Applications 9-11

– The lower method accepts a string from the client application and converts the string
to lowercase letters.

The Simpapp sample application was modified in the following ways to support certificate
authentication and the SSL protocol:

In the ISL section of the UBBCONFIG file, the -a, -S, -z, and -Z options of the ISL
command are specified to configure the IIOP Listener/Handler for the SSL protocol.

In the ISL section of the UBBCONFIG file, the SEC_PRINCIPAL_NAME, the
SEC_PRINCIPAL_LOCATION, and the SEC_PRINCIPAL_PASSVAR parameters are defined to
specify proof material for the IIOP Listener/Handler.

The code for the CORBA client application uses the corbalocs URL address format.

The code for the CORBA client application uses the authenticate() method of the
SecurityLevel2:PrincipalAuthenticator interface to authenticate the principal and
obtain credentials for the principals.

The source files for the C++ Secure Simpapp sample application are located in the
\samples\corba\simpappSSL directory of the Oracle Tuxedo software. For instructions for
building and running the Secure Simpapp sample application, see “Building and Running the
CORBA Sample Applications” on page 9-1.

Writing the CORBA Client Application
When using certificate authentication, write CORBA client application code that does the
following:

1. Uses the Bootstrap object to obtain a reference to the SecurityCurrent object for the specific
Oracle Tuxedo domain. Use the corbalocs URL address format.

2. Gets the PrincipalAuthenticator object from the SecurityCurrent object.

3. Uses the authenticate() method of the SecurityLevel2:PrincipalAuthenticator
interface to authenticate the principals and obtain credentials for the principals. When using
certificate authentication, specify Tobj::CertificateBased for the method argument and
the pass phrase for the private key as the auth_data argument for Security::Opaque.

The following sections contain C++ code examples that illustrate implementing certificate
authentication.
9-12 Using Security in CORBA Applications

Us ing Cer t i f i ca te Au thent i cat i on
C++ Code Example of Certificate Authentication
Listing 10-5 illustrates using certificate authentication in a CORBA C++ client application.

Listing 10-5 CORBA C++ Client Application That Uses Certificate Authentication

....
// Initialize the ORB
CORBA::ORB_var v_orb = CORBA::ORB_init(argc, argv, "");
// Create the bootstrap object
Tobj_Bootstrap bootstrap(v_orb.in(), corbalocs://sling.com:2143);
// Resolve SecurityCurrent
CORBA::Object_ptr seccurobj =
 bootstrap.resolve_initial_references("SecurityCurrent");
SecurityLevel2::Current_ptr seccur =
 SecurityLevel2::Current::_narrow(seccurobj);
// Perform certificate-based authentication
 SecurityLevel2::Credentials_ptr the_creds;
 Security::AttributeList_var privileges;
 Security::Opaque_var continuation_data;
 Security::Opaque_var auth_specific_data;
 Security::Opaque_var response_data;
//Principal email address
 char emailAddress[] = “milozzi@bigcompany.com;”
// Pass phrase for principal’s digital certificate
 char password[] = “asdawrewe98infldi7;”
// Convert the certificate private key password to opaque
 unsigned long password_len = strlen(password);
 Security::Opaque ssl_auth_data(password_len);
// Authenticate principal certificate with principal authenticator
 for(int i = 0; (unsigned long) i < password_len; i++)
 ssl_auth_data[i] = password[i];
 Security::AuthenticationStatus auth_status;
 SecurityLevel2::PrincipalAuthenticator_var PA =
 seccur->principal_authenticator();
 auth_status = PA->authenticate(Tobj::CertificateBased,
 emailAddress,
 ssl_auth_data,
Using Security in CORBA Applications 9-13

 privileges,
 the_creds,
 continuation_data,
 auth_specific_data);
 while(auth_status == Security::SecAuthContinue) {
 auth_status = PA->continue_authentication(
 response_data,
 the_creds,
 continuation_data,
 auth_specific_data);
 }
...

Using the Interoperable Naming Service Mechanism
Note: This mechanism should be used with third-party client ORBs.

To use the Interoperable Naming Service mechanism to access the Oracle Tuxedo domain with
the proper credentials, perform the following steps:

1. Use the ORB::resolve_initial_references() operation to get a
SecurityLevel2::PrincipalAuthenticator object for the Oracle Tuxedo domain. The
SecurityLevel2::PrincipalAuthenticator object adheres to the standard
CORBAservices Security Service instead of the proprietary Oracle delegated interfaces and
contains methods for the purpose of authenticating principals.

2. Use the authenticate() method of the SecurityLevel2::PrincipalAuthenticator
object to log on to the Oracle Tuxedo domain and authenticate the client ORB to the Oracle
Tuxedo domain. If security credentials are required to access the Oracle Tuxedo domain, the
authenticate() method will return a status indicating that continued authentication is
required.

3. Use the continue_authentication() method of the
SecurityLevel2::PrincipalAuthenticator object to pass encyrpted logon and
credential information to the Oracle Tuxedo domain.
9-14 Using Security in CORBA Applications

Us ing the In te roperab le Naming Serv ice Mechanism
For more information about using the CORBA Interoperable Naming Service (INS) mechanism,
see the CORBA Bootstrap Object Programming Reference for the
SecurityLevel2::PrincipalAuthenticator interface.

Protecting the Client Credentials
The following information provides a sample that protects the client credentials before
performing the step of continuing authentication.

The following example assumes a Java client using J2SE v 1.4, accessing an Oracle Tuxedo
application.

1. Add $TUXDIR/udataobj/java/jdk/tuxsecenv.jar to your CLASSPATH.

2. In your client code, call com.bea.protectLogonData() before you call the
PrincipalAuthenticator continue_authentication() method.

3. The following is sample code that shows a protectLogonData() call. This code depends on
Java classes that are generated from these IDL files in $TUXDIR/include: security.idl,
lcs.idl, ns.idl, tobj.idl.

Listing 10-6 Sample Client Code Using CORBA INS

 try {
 // Initialize the ORB.

 ORB orb = ORB.init(args, null);

 // Authentication

 org.omg.CORBA.Object sec_obj =
 orb.resolve_initial_references("PrincipalAuthenticator");

 org.omg.SecurityLevel2.PrincipalAuthenticator pa =
 org.omg.SecurityLevel2.PrincipalAuthenticatorHelper.narrow(sec_obj);

 String userName = "geni";
 String clientName = "SimpleClient";

 org.omg.Security.SecAttribute[] privilege =
Using Security in CORBA Applications 9-15

 new org.omg.Security.SecAttribute[1];

 org.omg.SecurityLevel2.CredentialsHolder myCreds =
 new org.omg.SecurityLevel2.CredentialsHolder();

 org.omg.Security.OpaqueHolder cont_data = // continuation data
 new org.omg.Security.OpaqueHolder();

 org.omg.Security.OpaqueHolder auth_data = // auth specific data
 new org.omg.Security.OpaqueHolder();

 org.omg.Security.AuthenticationStatus status = pa.authenticate(
 1,
 userName,
 clientName.getBytes(),
 privilege,
 myCreds,
 cont_data,
 auth_data
);

 if (status.value() == 2) {

 // further authentication required

 org.omg.SecurityLevel2.Credentials creds = myCreds.value;
 String secUid = new String(cont_data.value);

 org.omg.Security.OpaqueHolder cont_data_2 =
 new org.omg.Security.OpaqueHolder();
 org.omg.Security.OpaqueHolder auth_data_2 =
 new org.omg.Security.OpaqueHolder();
 org.omg.Security.OpaqueHolder opqholder =
 new org.omg.Security.OpaqueHolder();
 byte[] ba0 = new byte[0];

 String userPasswd = new String("abc123");
 String domainPasswd = new String("abc123");
9-16 Using Security in CORBA Applications

Us ing the Invocat i ons_Opt ions_Requi red() Method

 // encrypt the logon data
 com.bea.LogonData td = new com.bea.LogonData();
 int rc = td.protectLogonData(
 userName,
 clientName,
 domainPasswd,
 userPasswd,
 secUid,
 ba0,
 opqholder
);

 // continue authentication
 status = pa.continue_authentication(
 opqholder.value,
 creds,
 cont_data_2,
 auth_data_2
);
 }
 else {
 System.out.println("No security required");
 }
 .
 .
 .

Using the Invocations_Options_Required() Method
When using certificate authentication, it may be necessary for a principal to explicitly define the
security attributes it requires. For example, a bank application may have specific security
requirements it needs to meet before the bank application can transfer data to a database. The
invocation_options_required() method of the SecurityLevel2::Credentials
interface allows the principal to explicitly control the security characteristics of the SSL
Using Security in CORBA Applications 9-17

connection. When using the corbaloc URL address format, you can secure the bootstrapping
process by using the authenticate()and invocation_options_required() methods of the
SecurityLevel2::Credentials interface.

To use the invocation_options_required() method, complete the following steps:

1. Write application code that uses the authenticate() method of the
SecurityLevel2::PrincipalAuthenticator object to specify certificate authentication
is being used.

2. Use the invocation_options_required() method to specify the security attributes the
principal requires. See the description of the invocation_options_required() method in
the “C++ Security Reference” on page 14-1 and “Java Security Reference” on page 15-1 for
a complete list of security options.

Listing 10-7 provides a C++ example that uses the invocation_options_required() method.

Listing 10-7 C++ Example That Uses the invocation_options_required() Method

// Initialize the ORB
CORBA::ORB_var v_orb = CORBA::ORB_init(argc, argv, "");
// Create the bootstrap object
Tobj_Bootstrap bootstrap(v_orb.in(), corbalocs://sling.com:2143);
// Resolve SecurityCurrent
CORBA::Object_ptr seccurobj =
 bootstrap.resolve_initial_references("SecurityCurrent");
SecurityLevel2::Current_ptr seccur =
 SecurityLevel2::Current::_narrow(seccurobj);
// Perform certificate-based authentication
 SecurityLevel2::Credentials_ptr the_creds;
Security::AttributeList_var privileges;
 Security::Opaque_var continuation_data;
 Security::Opaque_var auth_specific_data;
 Security::Opaque_var response_data;
//Principal email address
 char emailAddress[] = “milozzi@bigcompany.com;”
// Pass phrase for principal’s digital certificate
 char password[] = “asdawrewe98infldi7;”
// Convert the certificate private key password to opaque
 unsigned long password_len = strlen(password);
9-18 Using Security in CORBA Applications

Us ing the Invocat i ons_Opt ions_Requi red() Method
 Security::Opaque ssl_auth_data(password_len);
// Authenticate principal certificate with principal authenticator
 for(int i = 0; (unsigned long) i < password_len; i++)
 ssl_auth_data[i] = password[i];
 Security::AuthenticationStatus auth_status;
 SecurityLevel2::PrincipalAuthenticator_var PA =
 seccur->principal_authenticator();

 auth_status = PA->authenticate(Tobj::CertificateBased,
 emailAddress,
 ssl_auth_data,
 privileges,
 the_creds,
 continuation_data,

 auth_specific_data);
 the_creds->invocation_options_required(

 Security::Integrity|

 Security::DetectReplay|

 Security::DetectMisordering|

 Security::EstablishTrustInTarget|

 Security::EstalishTrustInClient|

 Security::SimpleDelegation);
 while(auth_status == Security::SecAuthContinue) {
 auth_status = PA->continue_authentication(

 response_data,

 the_creds,

 continuation_data,

 auth_specific_data);
 }
Using Security in CORBA Applications 9-19

9-20 Using Security in CORBA Applications

C H A P T E R 13
Security Modules
This topic contains the Object Management Group (OMG) Interface Definition Language (IDL)
definitions for the following modules that are used in the CORBA security model:

CORBA

TimeBase

Security

Security Level 1

Security Level 2

Tobj

Notes: The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Java client and Oracle Tuxedo CORBA Java client ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.
Using Security in CORBA Applications 13-1

CORBA Module
The OMG added the CORBA::Current interface to the CORBA module to support the Current
pseudo-object. This change enables the CORBA module to support Security Replaceability and
Security Level 2.

Listing 13-1 shows the CORBA::Current interface OMG IDL statements.

Note: This information is taken from CORBAservices: Common Object Services Specification,
p. 15-230. Revised Edition: March 31, 1995. Updated: November 1997. Used with
permission by OMG.

Listing 13-1 CORBA::Current Interface OMG IDL Statements

module CORBA {
 // Extensions to CORBA
 interface Current {
 };
};

TimeBase Module
All data structures pertaining to the basic Time Service, Universal Time Object, and Time
Interval Object are defined in the TimeBase module. This allows other services to use these data
structures without requiring the interface definitions. The interface definitions and associated
enums and exceptions are encapsulated in the TimeBase module.

Listing 13-2 shows the TimeBase module OMG IDL statements.

Note: This information is taken from CORBAservices: Common Object Services Specification,
p. 14-5. Revised Edition: March 31, 1995. Updated: November 1997. Used with
permission by OMG.

Listing 13-2 TimeBase Module OMG IDL Statements

// From time service
module TimeBase {
 // interim definition of type ulonglong pending the
13-2 Using Security in CORBA Applications

 // adoption of the type extension by all client ORBs.
 struct ulonglong {
 unsigned long low;
 unsigned long high;
 };
 typedef ulonglong TimeT;
 typedef short TdfT;
 struct UtcT {
 TimeT time; // 8 octets
 unsigned long inacclo; // 4 octets
 unsigned short inacchi; // 2 octets
 TdfT tdf; // 2 octets

 // total 16 octets
 };
};

Table 13-1 defines the TimeBase module data types.

Note: This information is taken from CORBAservices: Common Object Services Specification,
p. 14-6. Revised Edition: March 31, 1995. Updated: November 1997. Used with
permission by OMG.
Using Security in CORBA Applications 13-3

Security Module
The Security module defines the OMG IDL for security data types common to the other security
modules. This module depends on the TimeBase module and must be available with any ORB
that claims to be security ready.

Listing 13-3 shows the data types supported by the Security module.

Table 13-1 TimeBase Module Data Type Definitions

Data Type Definition

Time
ulonglong

OMG IDL does not at present have a native type representing an unsigned
64-bit integer. The adoption of technology submitted against that RFP will
provide a means for defining a native type representing unsigned 64-bit
integers in OMG IDL.

Pending the adoption of that technology, you can use this structure to
represent unsigned 64-bit integers, understanding that when a native type
becomes available, it may not be interoperable with this declaration on all
platforms. This definition is for the interim, and is meant to be removed when
the native unsigned 64-bit integer type becomes available in OMG IDL.

Time TimeT TimeT represents a single time value, which is 64-bit in size, and holds the
number of 100 nanoseconds that have passed since the base time. For
absolute time, the base is 15 October 1582 00:00.

Time TdfT TdfT is of size 16 bits short type and holds the time displacement factor in
the form of seconds of displacement from the Greenwich Meridian.
Displacements east of the meridian are positive, while those to the west are
negative.

Time UtcT UtcT defines the structure of the time value that is used universally in the
service. When the UtcT structure is holding, a relative or absolute time is
determined by its history. There is no explicit flag within the object holding
that state information. The inacclo and inacchi fields together hold a
value of type InaccuracyT packed into 48 bits. The tdf field holds time
zone information. Implementation must place the time displacement factor
for the local time zone in this field whenever it creates a Universal Time
Object (UTO).

The content of this structure is intended to be opaque; to be able to marshal
it correctly, the types of fields need to be identified.
13-4 Using Security in CORBA Applications

Note: This information is taken from CORBAservices: Common Object Services Specification,
p. 15-193 to 15-195. Revised Edition: March 31, 1995. Updated: November 1997. Used
with permission by OMG.

Listing 13-3 Security Module OMG IDL Statements

module Security {
 typedef sequence<octet> Opaque;

 // Extensible families for standard data types
 struct ExtensibleFamily {
 unsigned short family_definer;
 unsigned short family;

 };

 //security attributes
 typedef unsigned long SecurityAttributeType;

 // identity attributes; family = 0
 const SecurityAttributeType AuditId = 1;
 const SecurityAttributeType AccountingId = 2;
 const SecurityAttributeType NonRepudiationId = 3;

 // privilege attributes; family = 1
 const SecurityAttributeType Public = 1;
 const SecurityAttributeType AccessId = 2;
 const SecurityAttributeType PrimaryGroupId = 3;
 const SecurityAttributeType GroupId = 4;
 const SecurityAttributeType Role = 5;
 const SecurityAttributeType AttributeSet = 6;
 const SecurityAttributeType Clearance = 7;
 const SecurityAttributeType Capability = 8;

 struct AttributeType {
 ExtensibleFamily attribute_family;
 SecurityAttributeType attribute_type;
 };

Using Security in CORBA Applications 13-5

 typedef sequence <AttributeType> AttributeTypeLists;
 struct SecAttribute {
 AttributeType attribute_type;
 Opaque defining_authority;
 Opaque value;
 // The value of this attribute can be
 // interpreted only with knowledge of type
 };

 typedef sequence<SecAttribute> AttributeList;

 // Authentication return status
 enum AuthenticationStatus {
 SecAuthSuccess,
 SecAuthFailure,
 SecAuthContinue,
 SecAuthExpired
 };

 // Authentication method

 typedef unsigned long AuthenticationMethod;

 enum CredentialType {
 SecInvocationCredentials;
 SecOwnCredentials;
 SecNRCredentials

 // Pick up from TimeBase
 typedef TimeBase::UtcT UtcT;
};

Table 13-2 describes the Security module data type.
13-6 Using Security in CORBA Applications

Security Level 1 Module
This section defines those interfaces available to client application objects that use only Level 1
Security functionality. This module depends on the CORBA module and the Security and
TimeBase modules. The Current interface is implemented by the ORB.

Listing 13-4 shows the Security Level 1 module OMG IDL statements.

Note: This information is taken from CORBAservices: Common Object Services Specification,
p. 15-198. Revised Edition: March 31, 1995. Updated: November 1997. Used with
permission by OMG.

Listing 13-4 Security Level 1 Module OMG IDL Statements

module SecurityLevel1 {
 interface Current : CORBA::Current {// PIDL
 Security::AttributeList get_attributes(
 in Security::AttributeTypeList attributes
);
 };
};

Security Level 2 Module
This section defines the additional interfaces available to client application objects that use Level
2 Security functionality. This module depends on the CORBA and Security modules.

Listing 13-5 shows the Security Level 2 module OMG IDL statements.

Table 13-2 Security Module Data Type Definition

Data Type Definition

sequence<octet> Data whose representation is known only to the Security Service
implementation.
Using Security in CORBA Applications 13-7

Note: This information is taken from CORBAservices: Common Object Services Specification,
p. 15-198 to 15-200. Revised Edition: March 31, 1995. Updated: November 1997. Used
with permission by OMG.

Listing 13-5 Security Level 2 Module OMG IDL Statements

module SecurityLevel2 {
 // Forward declaration of interfaces
 interface PrincipalAuthenticator;
 interface Credentials;
 interface Current;
 // Interface Principal Authenticator
 interface PrincipalAuthenticator {
 Security::AuthenticationStatus authenticate(
 in Security::AuthenticationMethod method,
 in string security_name,
 in Security::Opaque auth_data,
 in Security::AttributeList privileges,
 out Credentials creds,
 out Security::Opaque continuation_data,
 out Security::Opaque auth_specific_data
);

 Security::AuthenticationStatus
 continue_authentication(
 in Security::Opaque response_data,
 inout Credentials creds,
 out Security::Opaque continuation_data,
 out Security::Opaque auth_specific_data
);
 };

 // Interface Credentials
 interface Credentials {
 attribute Security::AssociationOptions
 invocation_options_supported;
 attribute Security::AssociationOptions
13-8 Using Security in CORBA Applications

 invocation_options_required;
 Security::AttributeList get_attributes(
 in Security::AttributeTypeList attributes
);
 boolean is_valid(
 out Security::UtcT expiry_time
);
 };

 // Interface Current derived from SecurityLevel1::Current
 // providing additional operations on Current at this
 // security level. This is implemented by the ORB.
 interface Current : SecurityLevel1::Current { // PIDL
 void set_credentials(
 in Security::CredentialType cred_type,
 in Credentials cred
);

 Credentials get_credentials(
 in Security::CredentialType cred_type
);
 readonly attribute PrincipalAuthenticator
 principal_authenticator;
 };
};

Tobj Module
This section defines the Tobj module interfaces.

This module provides the interfaces you use to program the ATMI-style of authentication.

Listing 13-6 shows the Tobj module OMG IDL statements.
Using Security in CORBA Applications 13-9

Listing 13-6 Tobj Module OMG IDL Statements

//Tobj Specific definitions

 //get_auth_type () return values
 enum AuthType {
 TOBJ_NOAUTH,
 TOBJ_SYSAUTH,
 TOBJ_APPAUTH
 };
 typedef sequence<octet> UserAuthData;
 interface PrincipalAuthenticator :
 SecurityLevel2::PrincipalAuthenticator { // PIDL

 AuthType get_auth_type();
 Security::AuthenticationStatus logon(
 in string user_name,
 in string client_name,
 in string system_password,
 in string user_password,
 in UserAuthData user_data
);
 void logoff();

 void build_auth_data(
 in string user_name,
 in string client_name,
 in string system_password,
 in string user_password,
 in UserAuthData user_data,
 out Security::Opaque auth_data,
 out Security::AttributeList privileges
);
 };
};
13-10 Using Security in CORBA Applications

C H A P T E R 14
C++ Security Reference
This topic contains the C++ method descriptions for CORBA security.

SecurityLevel1::Current::get_attributes

Synopsis
Returns attributes for the Current interface.

OMG IDL Definition
Security::AttributeList get_attributes(

in Security::AttributeTypeList attributes
);
};

Argument
attributes

The set of security attributes (privilege attribute types) whose values are desired. If this
list is empty, all attributes are returned.

Description
This method gets privilege (and other) attributes from the principal’s credentials for the Current
interface.
Using Security in CORBA Applications 14-1

Return Values
The following table describes valid return values.

Note: The defining_authority field is always empty. Depending on the security level
defined in the UBBCONFIG file not all the values for the get_attribute method may
be available. Two additional values, Group Id and Role, are available with the security
level is set to ACL or MANDATORY_ACL in the UBBCONFIG file.

Note: This information is taken from CORBAservices: Common Object Services Specification,
pp. 15-103, 104. Revised Edition: March 31, 1995. Updated: November 1997. Used with
permission by OMG.

SecurityLevel2::PrincipalAuthenticator::authenticate

Synopsis
Authenticates the principal and optionally obtains credentials for the principal.

OMG IDL Definition
Security::AuthenticationStatus
 authenticate(
 in Security::AuthenticationMethod method,
 in Security::SecurityName security_name,
 in Security::Opaque auth_data,
 in Security::AttributeList privileges,
 out Credentials creds,
 out Security::Opaque continuation_data,
 out Security::Opaque auth_specific_data);

Return Value Meaning

Security::Public Empty (Public is returned when no authentication was
performed).

Security::AccessId Null terminated ASCII string containing the Oracle
Tuxedo username.

Security::PrimaryGroupId Null terminated ASCII string containing the Oracle
Tuxedo name of the principal.
14-2 Using Security in CORBA Applications

Arguments
method

The security mechanism to be used. Valid values are Tobj::TuxedoSecurity and
Tobj::CertificateBased.

security_name
The principal’s identification information (for example, logon information). The value
must be a pointer to a NULL-terminated string containing the username of the principal.
The string is limited to 30 characters, excluding the NULL character.

When using certificate authentication, this name is used to look up a certificate in the
LDAP-enabled directory service. It is also used as the basis for the name of the file in
which the private key is stored. For example:
milozzi@company.com is the e-mail address used to look up a certificate in the
LDAP-enabled directory service and milozzi_company.pem is the name of the private
key file.

auth_data
The principals’ authentication, such as their password or private key. If the
Tobj:TuxedoSecurity security mechanism is specified, the value of this argument is
dependent on the configured level of authentication. If the Tobj::CertificateBased
argument is specified, the value of this argument is the pass phrase used to decrypt the
private key of the principal.

privileges
The privilege attributes requested.

creds
The object reference of the newly created Credentials object.The object reference is not
fully initialized; therefore, the object reference cannot be used until the return value of the
SecurityLevel2::Current::authenticate method is SecAuthSuccess.

continuation_data
If the return value of the SecurityLevel2::Current::authenticate method is
SecAuthContinue, this argument contains the challenge information for the
authentication to continue. The value returned will always be empty.

auth_specific_data
Information specific to the authentication service being used. The value returned will
always be empty.
Using Security in CORBA Applications 14-3

Description

The SecurityLevel2::Current::authenticate method is used by the client application to
authenticate the principal and optionally request privilege attributes that the principal requires
during its session with the Oracle Tuxedo domain.

If the Tobj::TuxedoSecurity security mechanism is to be specified, the same functionality
can be obtained by calling the Tobj::PrincipalAuthenticator::logon operation, which
provides the same functionality but is specifically tailored for use with the ATMI authentication
security mechanism.

Return Values
The following table describes the valid return values.

Return Value Meaning

SecAuthSuccess The object reference of the newly created Credentials object
returned as the value of the creds argument is initialized and ready
to use.

SecAuthFailure The authentication process was inconsistent or an error occurred
during the process. Therefore, the creds argument does not contain
an object reference to a Credentials object.

If the Tobj::TuxedoSecurity security mechanism is used, this
return value indicates that authentication failed or that the client
application was already authenticated and did not call either the
Tobj::PrincipalAuthenticator::logoff or the
Tobj_Bootstrap::destroy_current operation.

SecAuthContinue Indicates that the authentication procedure uses a
challenge/response mechanism. The creds argument contains the
object reference of a partially initialized Credentials object. The
continuation_data indicates the details of the challenge.
14-4 Using Security in CORBA Applications

SecurityLevel2::Current::set_credentials

Synopsis
Sets credentials type.

OMG IDL Definition
void set_credentials(
 in Security::CredentialType cred_type,
 in Credentials creds
);

Arguments
cred_type

The type of credentials to be set; that is, invocation, own, or non-repudiation.

creds
The object reference to the Credentials object, which is to become the default.

SecAuthExpired Indicates that the authentication data contained some information,
the validity of which had expired; therefore, the creds argument
does not contain an object reference to a Credentials object.

If the Tobj::TuxedoSecurity security mechanism is used, this
return value is never returned.

CORBA::BAD_PARAM The CORBA::BAD_PARAM exception occurs if:
• Values for the security_name, auth_data, or

privileges arguments are not specified.
• The length of an input argument exceeds the maximum length

of the argument.
• The value of the method argument is

Tobj::TuxedoSecurity and the content of the
auth_data argument contains a username or a
clientname as an empty or a NULL string.

Return Value Meaning
Using Security in CORBA Applications 14-5

Description
This method can be used only to set SecInvocationCredentials; otherwise,
set_credentials raises CORBA::BAD_PARAM. The credentials must have been obtained from a
previous call to SecurityLevel2::Current::get_credentials or
SecurityLevel2::PrincipalAuthenticator::authenticate.

Return Values
None.

Note: This information is taken from CORBAservices: Common Object Services Specification,
p. 15-104. Revised Edition: March 31, 1995. Updated: November 1997. Used with
permission by OMG.

SecurityLevel2::Current::get_credentials

Synopsis
Gets credentials type.

OMG IDL Definition
Credentials get_credentials(
 in Security::CredentialType cred_type
);

Argument
cred_type

The type of credentials to get.

Description
This call can be used only to get SecInvocationCredentials; otherwise, get_credentials
raises CORBA::BAD_PARAM. If no credentials are available, get_credentials raises
CORBA::BAD_INV_ORDER.

Return Values
Returns the active credentials in the client application only.

Note: This information is taken from CORBAservices: Common Object Services Specification,
p. 15-105. Revised Edition: March 31, 1995. Updated: November 1997. Used with
permission by OMG.
14-6 Using Security in CORBA Applications

SecurityLevel2::Current::principal_authenticator

Synopsis
Returns the PrincipalAuthenticator.

OMG IDL Definition
readonly attribute PrincipalAuthenticator
 principal_authenticator;

Description

The PrincipalAuthenticator returned by the principal_authenticator attribute is of
actual type Tobj::PrincipalAuthenticator. Therefore, it can be used both as a
Tobj::PrincipalAuthenticator and as a SecurityLevel2::PrincipalAuthenticator.

Note: This method raises CORBA::BAD_INV_ORDER if it is called on an invalid SecurityCurrent
object.

Return Values
Returns the PrincipalAuthenticator.

SecurityLevel2::Credentials
Synopsis

Represents a particular principal’s credential information that is specific to a process. A
Credentials object that supports the SecurityLevel2::Credentials interface is a
locality-constrained object. Any attempt to pass a reference to the object outside its locality, or
any attempt to externalize the object using the CORBA::ORB::object_to_string() operation,
results in a CORBA::Marshall exception.

OMG IDL Definition
#ifndef _SECURITY_LEVEL_2_IDL
#define _SECURITY_LEVEL_2_IDL

#include <SecurityLevel1.idl>

#pragma prefix “omg.org”

Using Security in CORBA Applications 14-7

module SecurityLevel2

 {

 interface Credentials

 {

 attribute Security::AssociationOptions

 invocation_options_supported;

 attribute Security::AssociationOptions

 invocation_options_required;
Security::AttributeList

 get_attributes(

 in Security::AttributeTypeList attributes);

 boolean

 is_valid(

 out Security::UtcT expiry_time);

};

 };
#endif /* _SECURITY_LEVEL_2_IDL */

C++ Declaration
class SecurityLevel2

 {

 public:

 classCredentials;

 typedefCredentials *Credentials_ptr;

 class Credentials : public virtual CORBA::Object

 {

 public:

 static Credentials_ptr _duplicate(Credentials_ptr obj);

 static Credentials_ptr _narrow(CORBA::Object_ptr obj);

 static Credentials_ptr _nil();

 virtual Security::AssociationOptions
14-8 Using Security in CORBA Applications

 invocation_options_supported() = 0;

 virtual void

 invocation_options_supported(

 const Security::AssociationOptions options) = 0;

 virtual Security::AssociationOptions

 invocation_options_required() = 0;

 virtual void

 invocation_options_required(

 const Security::AssociationOptions options) = 0;

 virtual Security::AttributeList *

 get_attributes(

 const Security::AttributeTypeList & attributes) = 0;

 virtual CORBA::Boolean

 is_valid(Security::UtcT_out expiry_time) = 0;

 protected:

 Credentials(CORBA::Object_ptr obj = 0);

 virtual ~Credentials() { }

 private:

 Credentials(const Credentials&) { }

 void operator=(const Credentials&) { }

 }; // class Credentials

 }; // class SecurityLevel2

SecurityLevel2::Credentials::get_attributes

Synopsis
Gets the attribute list attached to the credentials.
Using Security in CORBA Applications 14-9

OMG IDL Definition
Security::AttributeList get_attributes(
 in AttributeTypeList attributes
);

Argument
attributes

The set of security attributes (privilege attribute types) whose values are desired. If this
list is empty, all attributes are returned.

Description
This method returns the attribute list attached to the credentials of the principal. In the list of
attribute types, you are required to include only the type value(s) for the attributes you want
returned in the AttributeList. Attributes are not currently returned based on attribute family
or identities. In most cases, this is the same result you would get if you called
SecurityLevel1::Current::get_attributes(), since there is only one valid set of
credentials in the principal at any instance in time. The results could be different if the credentials
are not currently in use.

Return Values
Returns attribute list.

Note: This is information taken from CORBAservices: Common Object Services Specification,
p. 15-97. Revised Edition: March 31, 1995. Updated: November 1997. Used with
permission by OMG.

SecurityLevel2::Credentials::invocation_options_supported

Synopsis
Indicates the maximum number of security options that can be used when establishing an SSL
connection to make an invocation on an object in the Oracle Tuxedo domain.

OMG IDL Definition
attribute Security::AssociationOptions
 invocation_options_supported;

Argument
None.
14-10 Using Security in CORBA Applications

Description
This method should be used in conjunction with the
SecurityLevel2::Credentials::invocation_options_required method.

The following security options can be specified:

Return Values
The list of defined security options.

Security Option Description

NoProtection The SSL protocol does not provide message protection.

Integrity The SSL protocol provides an integrity check of messages. Digital signatures
are used to protect the integrity of messages.

Confidentiality The SSL connection protects the confidentiality of messages. Crytography is
used to protect the confidentiality of messages.

DetectReplay The SSL protocol provides replay detection. Replay occurs when a message is
sent repeatedly with no detection.

DetectMisordering The SSL protocol provides sequence error detection for requests and request
fragments.

EstablishTrustInTarget Indicates that the target of a request authenticates itself to the initiating
principal.

NoDelegation Indicates that the principal permits an intermediate object to use its privileges
for the purpose of access control decisions. However, the principal’s privileges
are not delegated so the intermediate object cannot use the privileges when
invoking the next object in the chain.

SimpleDelegation Indicates that the principal permits an intermediate object to use its privileges
for the purpose of access control decisions, and delegates the privileges to the
intermediate object. The target object receives only the privileges of the client
application and does not know the identity of the intermediate object. When
this invocation option is used without restrictions on the target object, the
behavior is known as impersonation.

CompositeDelegation Indicates that the principal permits the intermediate object to use its
credentials and delegate them. The privileges of both the principal and the
intermediate object can be checked.
Using Security in CORBA Applications 14-11

If the Tobj::TuxedoSecurity security mechanism is used to create the security association,
only the NoProtection, EstablishTrustInClient, and SimpleDelegation security options
are returned. The EstablishTrustInClient security option appears only if the security level
of the CORBA application is defined to require passwords to access the Oracle Tuxedo domain.

Note: A CORBA::NO_PERMISSION exception is returned if the security options specified are not
supported by the security mechanism defined for the CORBA application. This exception
can also occur if the security options specified have less capabilities than the security
options specified by the
SecurityLevel2::Credentials::invocation_options_required method.

The invocation_options_supported attribute has set() and get() methods. You
cannot use the set() method when using the Tobj::TuxedoSecurity security
mechanism to get a Credentials object. If you do use the set() method with the
Tobj::TuxedoSecurity security mechanism, a CORBA::NO_PERMISSION exception is
returned.

SecurityLevel2::Credentials::invocation_options_required

Synopsis
Specifies the minimum number of security options to be used when establishing an SSL
connection to make an invocation on a target object in the Oracle Tuxedo domain.

OMG IDL Definition
attribute Security::AssociationOptions
 invocation_options_required;

Argument
None.

Description
Use this method to specify that communication between principals and the Oracle Tuxedo
domain should be protected. After using this method, a Credentials object makes an invocation
on a target object using the SSL protocol with the defined level of security options. This method
should be used in conjunction with the
SecurityLevel2::Credentials::invocation_options_supported method.

The following security options can be specified:
14-12 Using Security in CORBA Applications

Return Values
The list of defined security options.

If the Tobj::TuxedoSecurity security mechanism is used to create the security association,
only the NoProtection, EstablishTrustInClient, and SimpleDelegation security options
are returned. The EstablishTrustInClient security option appears only if the security level
of the CORBA application is defined to require passwords to access the Oracle Tuxedo domain.

Security Option Description

NoProtection The SSL protocol does not provide message protection.

Integrity The SSL protocol provides an integrity check of messages. Digital signatures
are used to protect the integrity of messages.

Confidentiality The SSL connection protects the confidentiality of messages. Crytography is
used to protect the confidentiality of messages.

DetectReplay The SSL protocol provides replay detection. Replay occurs when a message is
sent repeatedly with no detection.

DetectMisordering The SSL protocol provides sequence error detection for requests and request
fragments.

EstablishTrustInTarget Indicates that the target of a request authenticates itself to the initiating
principal.

NoDelegation Indicates that the principal permits an intermediate object to use its privileges
for the purpose of access control decisions. However, the principal’s privileges
are not delegated so the intermediate object cannot use the privileges when
invoking the next object in the chain.

SimpleDelegation Indicates that the principal permits an intermediate object to use its privileges
for the purpose of access control decisions, and delegates the privileges to the
intermediate object. The target object receives only the privileges of the client
application and does not know the identity of the intermediate object. When
this invocation option is used without restrictions on the target object, the
behavior is known as impersonation.

CompositeDelegation Indicates that the principal permits the intermediate object to use its
credentials and delegate them. The privileges of both the principal and the
intermediate object can be checked.
Using Security in CORBA Applications 14-13

Note: A CORBA::NO_PERMISSION exception is returned if the security options specified are not
supported by the security mechanism defined for the CORBA application. This exception
can also occur if the security options specified have more capabilities than the security
options specified by the
SecurityLevel2::Credentials::invocation_options_supported method.

The invocation_options_required attribute has set() and get() methods. You
cannot use the set() method when using the Tobj::TuxedoSecurity security
mechanism to get a Credentials object. If you do use the set() method with the
Tobj::TuxedoSecurity security mechanism, a CORBA::NO_PERMISSION exception is
returned.

SecurityLevel2::Credentials::is_valid

Synopsis
Checks status of credentials.

OMG IDL Definition
boolean is_valid(
 out Security::UtcT expiry_time
);

Description
This method returns TRUE if the credentials used are active at the time; that is, you did not call
Tobj::PrincipalAuthenticator::logoff or Tobj_Bootstrap::destroy_current. If
this method is called after Tobj::PrincipalAuthenticator::logoff(), FALSE is returned.
If this method is called after Tobj_Bootstrap::destroy_current(), the
CORBA::BAD_INV_ORDER exception is raised.

Return Values
The expiration date returned contains the maximum unsigned long long value in C++. Until
the unsigned long long datatype is adopted, the ulonglong datatype is substituted. The
ulonglong datatype is defined as follows:

 // interim definition of type ulonglong pending the
 // adoption of the type extension by all client ORBs.
 struct ulonglong {
 unsigned long low;
14-14 Using Security in CORBA Applications

 unsigned long high;
 };

Note: This information is taken from CORBAservices: Common Object Services Specification,
p. 15-97. Revised Edition: March 31, 1995. Updated: November 1997. Used with
permission by OMG.

SecurityLevel2::PrincipalAuthenticator
Synopsis

Allows a principal to be authenticated. A Principal Authenticator object that supports the
SecurityLevel2::PrincipalAuthenticator interface is a locality-constrained object. Any
attempt to pass a reference to the object outside its locality, or any attempt to externalize the
object using the CORBA::ORB::object_to_string() operation, results in a
CORBA::Marshall exception.

OMG IDL Definition
#ifndef _SECURITY_LEVEL_2_IDL
#define _SECURITY_LEVEL_2_IDL

#include <SecurityLevel1.idl>

#pragma prefix “omg.org”

module SecurityLevel2

 {

 interface PrincipalAuthenticator

 { // Locality Constrained

 Security::AuthenticationStatus authenticate (

 in Security::AuthenticationMethod method,

 in Security::SecurityName security_name,

 in Security::Opaque auth_data,

 in Security::AttributeList privileges,

 out Credentials creds,

 out Security::Opaque continuation_data,

 out Security::Opaque auth_specific_data

);
Using Security in CORBA Applications 14-15

 Security::AuthenticationStatus continue_authentication (

 in Security::Opaque response_data,

 in Credentials creds,

 out Security::Opaque continuation_data,

 out Security::Opaque auth_specific_data

);

 };

 };
#endif // SECURITY_LEVEL_2_IDL

#pragma prefix "beasys.com"
module Tobj

 {

 const Security::AuthenticationMethod

 TuxedoSecurity = 0x54555800;

 CertificateBased = 0x43455254;

 };

C++ Declaration
class SecurityLevel2

 {

 public:

 classPrincipalAuthenticator;

 typedefPrincipalAuthenticator * PrincipalAuthenticator_ptr;

 class PrincipalAuthenticator : public virtual CORBA::Object

 {

 public:

 static PrincipalAuthenticator_ptr

 _duplicate(PrincipalAuthenticator_ptr obj);

 static PrincipalAuthenticator_ptr

 _narrow(CORBA::Object_ptr obj);

 static PrincipalAuthenticator_ptr _nil();
14-16 Using Security in CORBA Applications

 virtual Security::AuthenticationStatus

 authenticate (

 Security::AuthenticationMethod method,

 const char * security_name,

 const Security::Opaque & auth_data,

 const Security::AttributeList & privileges,

 Credentials_out creds,

 Security::Opaque_out continuation_data,

 Security::Opaque_out auth_specific_data) = 0;

 virtual Security::AuthenticationStatus

 continue_authentication (

 const Security::Opaque & response_data,

 Credentials_ptr & creds,

 Security::Opaque_out continuation_data,

 Security::Opaque_out auth_specific_data) = 0;

 protected:

 PrincipalAuthenticator(CORBA::Object_ptr obj = 0);

 virtual ~PrincipalAuthenticator() { }

 private:

 PrincipalAuthenticator(const PrincipalAuthenticator&) { }

 void operator=(const PrincipalAuthenticator&) { }

 }; // class PrincipalAuthenticator

 };

SecurityLevel2::PrincipalAuthenticator::continue_authentication

Synopsis
Always fails.
Using Security in CORBA Applications 14-17

OMG IDL Definition
Security::AuthenticationStatus continue_authentication(
 in Security::Opaque response_data,
 in Credentials creds,
 out Security::Opaque continuation_data,
 out Security::Opaque auth_specific_data
);

Description
Because the Oracle Tuxedo software does authentication in one step, this method always fails and
returns Security::AuthenticationStatus::SecAuthFailure.

Return Values

Always returns Security::AuthenticationStatus::SecAuthFailure.

Note: This information is taken from CORBAservices: Common Object Services Specification,
pp. 15-92, 93. Revised Edition: March 31, 1995. Updated: November 1997. Used with
permission by OMG.

Tobj::PrincipalAuthenticator::get_auth_type

Synopsis
Gets the type of authentication expected by the Oracle Tuxedo domain.

OMG IDL Definition
AuthType get_auth_type();

Description
This method returns the type of authentication expected by the Oracle Tuxedo domain.

Note: This method raises CORBA::BAD_INV_ORDER if it is called with an invalid
SecurityCurrent object.

Return Values
A reference to the Tobj_AuthType enumeration. Returns the type of authentication required to
access the Oracle Tuxedo domain. The following table describes the valid return values.
14-18 Using Security in CORBA Applications

Tobj::PrincipalAuthenticator::logon

Synopsis
Authenticates the principal.

OMG IDL Definition
Security::AuthenticationStatus logon(
 in string user_name,
 in string client_name,
 in string system_password,
 in string user_password,
 in UserAuthData user_data
);

Return Value Meaning

TOBJ_NOAUTH No authentication is needed; however, the client
application can still authenticate itself by specifying a
username and a client application name. No password
is required.

To specify this level of security, specify the NONE
value for the SECURITY parameter in the RESOURCES
section of the UBBCONFIG file.

TOBJ_SYSAUTH The client application must authenticate itself to the
Oracle Tuxedo domain, and must specify a username, a
name, and a password for the client application.

To specify this level of security, specify the APP_PW
value for the SECURITY parameter in the RESOURCES
section of the UBBCONFIG file.

TOBJ_APPAUTH The client application must provide proof material that
authenticates the client application to the Oracle
Tuxedo domain.The proof material may be a password
or a digital certificate.

To specify this level of security, specify the
USER_AUTH value for the SECURITY parameter in the
RESOURCES section of the UBBCONFIG file.
Using Security in CORBA Applications 14-19

Arguments
user_name

The Oracle Tuxedo username. The authentication level is TOBJ_NOAUTH. If user_name
is NULL or empty, or exceeds 30 characters, logon raises CORBA::BAD_PARAM.

client_name
The Oracle Tuxedo name of the client application. The authentication level is
TOBJ_NOAUTH. If the client_name is NULL or empty, or exceeds 30 characters, logon
raises the CORBA::BAD_PARAM exception.

system_password
The CORBA client application password. The authentication level is TOBJ_SYSAUTH. If
the client name is NULL or empty, or exceeds 30 characters, logon raises the
CORBA::BAD_PARAM exception.

Note: The system_password must not exceed 30 characters.

user_password
The user password (needed for use by the default Oracle Tuxedo authentication service).
The authentication level is TOBJ_APPAUTH. The password must not exceed 30 characters.

user_data
Data that is specific to the client application (needed for use by a custom Oracle Tuxedo
authentication service). The authentication level is TOBJ_APPAUTH.

Note: TOBJ_SYSAUTH includes the requirements of TOBJ_NOAUTH, plus a client application
password. TOBJ_APPAUTH includes the requirements of TOBJ_SYSAUTH, plus
additional information, such as a user password or user data.

Note: The user_password and user_data arguments are mutually exclusive, depending
on the requirements of the authentication service used in the configuration of the
Oracle Tuxedo domain. The Oracle Tuxedo default authentication service expects a
user password. A customized authentication service may require user data. The logon
call raises the CORBA::BAD_PARAM exception if both user_password and
user_data are specified.

Description
This method authenticates the principal via the IIOP Listener/Handler so that the principal can
access an Oracle Tuxedo domain. This method is functionally equivalent to
SecurityLevel2::PrincipalAuthenticator::authenticate, but the arguments are
oriented to ATMI authentication.

Note: This method raises CORBA::BAD_INV_ORDER if it is called with an invalid
SecurityCurrent object.
14-20 Using Security in CORBA Applications

Return Values
The following table describes the valid return values.

Tobj::PrincipalAuthenticator::logoff

Synopsis
Discards the security context associated with the principal.

OMG IDL Definition
void logoff();

Description
This call discards the security context, but does not close the network connections to the Oracle
Tuxedo domain. Logoff also invalidates the current credentials. After logging off, invocations
using existing object references fail if the authentication type is not TOBJ_NOAUTH.

If the principal is currently authenticated to an Oracle Tuxedo domain, calling
Tobj_Bootstrap::destroy_current() calls logoff implicitly.

Note: This method raises CORBA::BAD_INV_ORDER if it is called with an invalid
SecurityCurrent object.

Return Values
None.

Return Value Meaning

Security::AuthenticationStatus::
SecAuthSuccess

The authentication succeeded.

Security::AuthenticationStatus::
SecAuthFailure

The authentication failed, or the client application was
already authenticated and did not call one of the following
methods:
Tobj::PrincipalAuthenticator:logoff

Tobj_Bootstrap::destroy_current
Using Security in CORBA Applications 14-21

Tobj::PrincipalAuthenticator::build_auth_data

Synopsis
Creates authentication data and attributes for use by
SecurityLevel2::PrincipalAuthenticator::authenticate.

OMG IDL Definition

void build_auth_data(
 in string user_name,
 in string client_name,
 in string system_password,
 in string user_password,
 in UserAuthData user_data,
 out Security::Opaque auth_data,
 out Security::AttributeList privileges
);

Arguments
user_name

The Oracle Tuxedo username.

client_name
The CORBA client name.

system_password
The CORBA client application password.

user_password
The user password (default Oracle Tuxedo authentication service).

user_data
Client application-specific data (custom Oracle Tuxedo authentication service).

auth_data
For use by authenticate.

privileges
For use by authenticate.
14-22 Using Security in CORBA Applications

Note: If user_name, client_name, or system_password is NULL or empty, or exceeds
30 characters, the subsequent authenticate method invocation raises the
CORBA::BAD_PARAM exception.

Note: The user_password and user_data parameters are mutually exclusive, depending
on the requirements of the authentication service used in the configuration of the
Oracle Tuxedo domain. The Oracle Tuxedo default authentication service expects a
user password. A customized authentication service may require user data. If both
user_password and user_data are specified, the subsequent authentication call
raises the CORBA::BAD_PARAM exception.

Description

This method is a helper function that creates authentication data and attributes to be used by
SecurityLevel2::PrincipalAuthenticator::authenticate.

Note: This method raises CORBA::BAD_INV_ORDER if it is called with an invalid
SecurityCurrent object.

Return Values
None.
Using Security in CORBA Applications 14-23

14-24 Using Security in CORBA Applications

C H A P T E R 16
Automation Security Reference
This topic contains the Automation method descriptions for CORBA security. This topic includes
the following section:

Method Descriptions

Notes: The Automation security methods do not support certificate authentication or the use of
the SSL protocol.

The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Java client and Oracle Tuxedo CORBA Java client ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

Method Descriptions
This section describes the Automation Security Service methods.

DISecurityLevel2_Current
The DISecurityLevel2_Current object is an Oracle implementation of the CORBA Security
model. In this release of the Oracle Tuxedo software, the get_attributes(),
Using Security in CORBA Applications 16-1

set_credentials(), get_credentials(), and Principal_Authenticator() methods are
supported.

DISecurityLevel2_Current.get_attributes

Synopsis
Returns attributes for the Current interface.

MIDL Mapping
HRESULT get_attributes(
 [in] VARIANT attributes,
 [in,out,optional] VARIANT* exceptionInfo,
 [out,retval] VARIANT* returnValue);

Automation Mapping
Function get_attributes(attributes, [exceptionInfo])

Parameters
attributes

The set of security attributes (privilege attribute types) whose values are desired. If this
list is empty, all attributes are returned.

exceptioninfo
An optional input argument that allows the client application to get additional exception
data if an error occurs.

Description
This method gets privilege (and other) attributes from the credentials for the client application
from the Current interface.

Return Values
A variant containing an array of DISecurity_SecAttribute objects. The following table
describes the valid return values.
16-2 Using Security in CORBA Applications

Method Desc r ip t ions
DISecurityLevel2_Current.set_credentials

Synopsis
Sets credentials type.

MIDL Mapping
HRESULT set_credentials(
 [in] Security_CredentialType cred_type,
 [in] DISecurityLevel2_Credentials* cred,
 [in,out,optional] VARIANT* exceptionInfo);

Automation Mapping
Sub set_credentials(cred_type As Security_CredentialType,
 cred As DISecurityLevel2_Credentials,
 [exceptionInfo])

Description
This method can be used only to set SecInvocationCredentials; otherwise,
set_credentials raises CORBA::BAD_PARAM. The credentials must have been obtained from a
previous call to DISecurityLevel2_Current.get_credentials.

Arguments
cred_type

The type of credentials to be set; that is, invocation, own, or nonrepudiation.

Return Value Meaning

Security::Public Empty (Public is returned when no authentication was
performed.)

Security::AccessId Null-terminated ASCII string containing the Oracle
Tuxedo username.

Security::PrimaryGroupId Null-terminated ASCII string containing the Oracle
Tuxedo name of the client application.
Using Security in CORBA Applications 16-3

cred
The object reference to the Credentials object, which is to become the default.

exceptioninfo
An optional input argument that allows the client application to get additional exception
data if an error occurs.

Return Values
None.

DISecurityLevel2_Current.get_credentials

Synopsis
Gets credentials type.

MIDL Mapping
HRESULT get_credentials(
 [in] Security_CredentialType cred_type,
 [in,out,optional] VARIANT* exceptionInfo,
 [out,retval] DISecurityLevel2_Credentials** returnValue);

Automation Mapping
Function get_credentials(cred_type As Security_CredentialType,
 [exceptionInfo]) As DISecurityLevel2_Credentials

Description
This call can be used only to get SecInvocationCredentials; otherwise, get_credentials
raises CORBA::BAD_PARAM. If no credentials are available, get_credentials raises
CORBA::BAD_INV_ORDER.

Arguments
cred_type

The type of credentials to get.

exceptioninfo
An optional input argument that allows the client application to get additional exception
data if an error occurs.
16-4 Using Security in CORBA Applications

Method Desc r ip t ions
Return Values
A DISecurityLevel2_Credentials object for the active credentials in the client application
only.

DISecurityLevel2_Current.principal_authenticator

Synopsis
Returns the PrincipalAuthenticator.

MIDL Mapping
HRESULT principal_authenticator([out, retval]
 DITobj_PrincipalAuthenticator** returnValue);

Automation Mapping
Property principal_authenticator As DITobj_PrincipalAuthenticator

Description
The PrincipalAuthenticator returned by the principal_authenticator property is of
actual type DITobj_PrincipalAuthenticator. Therefore, it can be used as a
DISecurityLevel2_PrincipalAuthenticator.

Note: This method raises CORBA::BAD_INV_ORDER if it is called on an invalid SecurityCurrent
object.

Return Values
A DITobj_PrincipalAuthenticator object.

DITobj_PrincipalAuthenticator
The DITobj_PrincipalAuthenticator object is used to log in to and log out of the Oracle
Tuxedo domain. In this release of the Oracle Tuxedo software, the authenticate,
build_auth_data(), continue_authentication(), get_auth_type(), logon(), and
logoff() methods are implemented.
Using Security in CORBA Applications 16-5

DITobj_PrincipalAuthenticator.authenticate

Synopsis
Authenticates the client application.

MIDL Mapping
HRESULT authenticate(

 [in] long method,

 [in] BSTR security_name,

 [in] VARIANT auth_data,

 [in] VARIANT privileges,

 [out] DISecurityLevel2_Credentials**

 creds,

 [out] VARIANT* continuation_data,

 [out] VARIANT* auth_specific_data,

 [in,out,optional] VARIANT* exceptionInfo,

 [out,retval] Security_AuthenticationStatus* returnValue);

Automation Mapping
Function authenticate(method As Long, security_name As String,
 auth_data, privileges, creds As DISecurityLevel2_Credentials,
 continuation_data, auth_specific_data,
 [exceptionInfo]) As Security_AuthenticationStatus

Arguments
method

Must be Tobj::TuxedoSecurity. If method is invalid, authenticate raises
CORBA::BAD_PARAM.

security_name
The Oracle Tuxedo username.

auth_data
As returned by DITobj_PrincipalAuthenticator.build_auth_data. If auth_data
is invalid, authenticate raises CORBA::BAD_PARAM.
16-6 Using Security in CORBA Applications

Method Desc r ip t ions
privileges
As returned by DITobj_PrincipalAuthenticator.build_auth_data. If
privileges is invalid, authenticate raises CORBA::BAD_PARAM.

creds
Placed into the SecurityCurrent object.

continuation_data
Always empty.

auth_specific_data
Always empty.

exceptioninfo
An optional input argument that allows the client application to get additional exception
data if an error occurs.

Description
This method authenticates the client application via the IIOP Listener/Handler so that it can
access an Oracle Tuxedo domain.

Return Values
A Security_AuthenticationStatus Enum value. The following table describes the valid
return values.

Return Value Meaning

Security::Authentication
Status::
SecAuthSuccess

The authentication succeeded.

Security::Authentication
Status::
SecAuthFailure

The authentication failed, or the client application was
already authenticated and did not invoke
Tobj::PrincipalAuthenticator:logoff or
Tobj_Bootstrap::destroy_current.
Using Security in CORBA Applications 16-7

DITobj_PrincipalAuthenticator.build_auth_data

Synopsis
Creates authentication data and attributes for use by
DITobj_PrincipalAuthenticator.authenticate.

MIDL Mapping
HRESULT build_auth_data(

 [in] BSTR user_name,

 [in] BSTR client_name,

 [in] BSTR system_password,

 [in] BSTR user_password,

 [in] VARIANT user_data,

 [out] VARIANT* auth_data,

 [out] VARIANT* privileges,
 [in,out,optional] VARIANT* exceptionInfo);

Automation Mapping
Sub build_auth_data(user_name As String, client_name As String,
 system_password As String, user_password As String, user_data,
 auth_data, privileges, [exceptionInfo])

Arguments
user_name

The Oracle Tuxedo username.

client_name
A name of the CORBA client application.

system_password
The password for the CORBA client application.

user_password
The user password (for default authentication service).

user_data
Client application-specific data (custom authentication service).
16-8 Using Security in CORBA Applications

Method Desc r ip t ions
auth_data
For use by authenticate.

privileges
For use by authenticate.

exceptioninfo
An optional input argument that allows the client application to get additional exception
data if an error occurs.

Note: If user_name, client_name, or system_password is NULL or empty, or exceeds
30 characters, the subsequent authenticate method invocation raises the
CORBA::BAD_PARAM exception.

Note: The user_password and user_data parameters are mutually exclusive, depending
on the requirements of the authentication service used in the configuration of the
Oracle Tuxedo domain. The default authentication service expects a user password.
A customized authentication service may require user data. If both user_password
and user_data are specified, the subsequent authentication call raises the
CORBA::BAD_PARAM exception.

Description

This method is a helper function that creates authentication data and attributes to be used by
DITobj_PrincipalAuthenticator.authenticate.

Note: This method raises CORBA::BAD_INV_ORDER if it is called with an invalid
SecurityCurrent object.

Return Values
None.

DITobj_PrincipalAuthenticator.continue_authentication

Synopsis
Always returns Security::AuthenticationStatus::SecAuthFailure.

MIDL Mapping
HRESULT continue_authentication(
 [in] VARIANT response_data,
 [in,out] DISecurityLevel2_Credentials** creds,
Using Security in CORBA Applications 16-9

 [out] VARIANT* continuation_data,
 [out] VARIANT* auth_specific_data,
 [in,out,optional] VARIANT* exceptionInfo,
 [out,retval] Security_AuthenticationStatus* returnValue);

Automation Mapping
Function continue_authentication(response_data,
 creds As DISecurityLevel2_Credentials, continuation_data,
 auth_specific_data, [exceptionInfo]) As
 Security_AuthenticationStatus

Description
Because the Oracle Tuxedo software does authentication in one step, this method always fails and
returns Security::AuthenticationStatus::SecAuthFailure.

Return Values
Always returns SecAuthFailure.

DITobj_PrincipalAuthenticator.get_auth_type

Synopsis
Gets the type of authentication expected by the Oracle Tuxedo domain.

MIDL Mapping
HRESULT get_auth_type(
 [in, out, optional] VARIANT* exceptionInfo,
 [out, retval] Tobj_AuthType* returnValue);

Automation Mapping
Function get_auth_type([exceptionInfo]) As Tobj_AuthType

Argument
exceptioninfo

An optional input argument that allows the client application to get additional exception
data if an error occurs.
16-10 Using Security in CORBA Applications

Method Desc r ip t ions
Description
This method returns the type of authentication expected by the Oracle Tuxedo domain.

Note: This method raises CORBA::BAD_INV_ORDER if it is called with an invalid
SecurityCurrent object.

Returned Values
A reference to the Tobj_AuthType enumeration. The following table describes the valid return
values.

Return Value Meaning

TOBJ_NOAUTH No authentication is needed; however, the client
application can still authenticate itself by specifying
a username and a client application name. No
password is required.

To specify this level of security, specify the NONE
value for the SECURITY parameter in the
RESOURCES section of the UBBCONFIG file.

TOBJ_SYSAUTH The client application must authenticate itself to the
Oracle Tuxedo domain, and must specify a
username, a name, and a password for the client
application.

To specify this level of security, specify the APP_PW
value for the SECURITY parameter in the
RESOURCES section of the UBBCONFIG file.

TOBJ_APPAUTH The client application must provide proof material
that authenticates the client application to the Oracle
Tuxedo domain.The proof material may be a
password or a digital certificate.

To specify this level of security, specify the
USER_AUTH value for the SECURITY parameter in
the RESOURCES section of the UBBCONFIG file.
Using Security in CORBA Applications 16-11

DITobj_PrincipalAuthenticator.logon

Synopsis
Logs in to the Oracle Tuxedo domain. The correct input parameters depend on the authentication
level.

MIDL Mapping
HRESULT logon(

 [in] BSTR user_name,

 [in] BSTR client_name,

 [in] BSTR system_password,

 [in] BSTR user_password,

 [in] VARIANT user_data,

 [in,out,optional] VARIANT* exceptionInfo,
 [out,retval] Security_AuthenticationStatus*

 returnValue);

Automation Mapping
Function logon(user_name As String, client_name As String,
 system_password As String, user_password As String,
 user_data, [exceptionInfo]) As Security_AuthenticationStatus

Description
For remote CORBA client applications, this method authenticates the client application via the
IIOP Listener/Handler so that the remote client application can access an Oracle Tuxedo domain.
This method is functionally equivalent to DITobj_PrincipalAuthenticator.authenticate,
but the parameters are oriented to security.

Arguments
user_name

The Oracle Tuxedo username. This parameter is required for TOBJ_NOAUTH,
TOBJ_SYSAUTH, and TOBJ_APPAUTH authentication levels.

client_name
The name of the CORBA client application. This parameter is required for TOBJ_NOAUTH,
TOBJ_SYSAUTH, and TOBJ_APPAUTH authentication levels.
16-12 Using Security in CORBA Applications

Method Desc r ip t ions
system_password

A password for the CORBA client application. This parameter is required for
TOBJ_SYSAUTH and TOBJ_APPAUTH authentication levels.

user_password
The user password (default authentication service). This parameter is required for the
TOBJ_APPAUTH authentication level.

user_data

Application-specific data (custom authentication service). This parameter is required for
the TOBJ_APPAUTH authentication level.

Note: If user_name, client_name, or system_password is NULL or empty, or exceeds
30 characters, the subsequent authenticate method invocation raises the
CORBA::BAD_PARAM exception.

Note: If the authorization level is TOBJ_APPAUTH, only one of user_password or
user_data may be supplied.

exceptioninfo
An optional input argument that allows the client application to get additional exception
data if an error occurs.

Return Values
The following table describes the valid return values.

DITobj_PrincipalAuthenticator.logoff

Synopsis
Discards the current security context associated with the CORBA client application.

Return Value Meaning

Security::AuthenticationStatus::
SecAuthSuccess

The authentication succeeded.

Security::AuthenticationStatus::
SecAuthFailure

The authentication failed, or the client application was already
authenticated and did not call one of the following methods:
Tobj::PrincipalAuthenticator:logoff

Tobj_Bootstrap::destroy_current
Using Security in CORBA Applications 16-13

MIDL Mapping
HRESULT logoff([in, out, optional] VARIANT* exceptionInfo);

Automation Mapping
Sub logoff([exceptionInfo])

Description
This call discards the context associated with the CORBA client application, but does not close
the network connections to the Oracle Tuxedo domain. Logoff also invalidates the current
credentials. After logging off, calls using existing object references fail if the authentication type
is not TOBJ_NOAUTH.

If the client application is currently authenticated to an Oracle Tuxedo domain, calling
Tobj_Bootstrap.destroy_current() calls logoff implicitly.

Argument
exceptioninfo

An optional input argument that allows the client application to get additional exception
data if an error occurs.

Return Values
None.

DISecurityLevel2_Credentials
The DISecurityLevel2_Credentials object is an Oracle implementation of the CORBA
Security model. In this release of the Oracle Tuxedo software, the get_attributes() and
is_valid() methods are supported.

DISecurityLevel2_Credentials.get_attributes

Synopsis
Gets the attribute list attached to the credentials.
16-14 Using Security in CORBA Applications

Method Desc r ip t ions
MIDL Mapping
HRESULT get_attributes(
 [in] VARIANT attributes,
 [in,out,optional] VARIANT* exceptionInfo,
 [out,retval] VARIANT* returnValue);

Automation Mapping
Function get_attributes(attributes, [exceptionInfo])

Arguments
attributes

The set of security attributes (privilege attribute types) whose values are desired. If this
list is empty, all attributes are returned.

exceptioninfo
An optional input argument that allows the client application to get additional exception
data if an error occurs.

Description
This method returns the attribute list attached to the credentials of the client application. In the
list of attribute types, you are required to include only the type value(s) for the attributes you want
returned in the AttributeList. Attributes are not currently returned based on attribute family
or identities. In most cases, this is the same result you would get if you called
DISecurityLevel2.Current::get_attributes(), since there is only one valid set of
credentials in the client application at any instance in time. The results could be different if the
credentials are not currently in use.

Return Values
A variant containing an array of DISecurity_SecAttribute objects.

DISecurityLevel2_Credentials.is_valid

Synopsis
Checks the status of credentials.
Using Security in CORBA Applications 16-15

MIDL Mapping
HRESULT is_valid(
 [out] IDispatch** expiry_time,
 [in,out,optional] VARIANT* exceptionInfo,
 [out,retval] VARIANT_BOOL* returnValue

Automation Mapping
Function is_valid(expiry_time As Object,
 [exceptionInfo]) As Boolean

Description
This method returns TRUE if the credentials used are active at the time; that is, you did not call
DITobj_PrincipalAuthenticator.logoff or destroy_current. If this method is called
after DITobj_PrincipalAuthenticator.logoff(), FALSE is returned. If this method is
called after destroy_current(), the CORBA::BAD_INV_ORDER exception is raised.

Return Values
The output expiry_time as a DITimeBase_UtcT object set to max.
16-16 Using Security in CORBA Applications

	Oracle® Tuxedo
	12c Release 2 (12.1.3)

	Oracle Tuxedo Using Security in CORBA Applications, 12c Release 2 (12.1.3)
	Overview of the CORBA Security Features
	The CORBA Security Features
	The CORBA Security Environment
	Oracle Tuxedo Security SPIs

	Introduction to the SSL Technology
	The SSL Protocol
	Digital Certificates
	Certificate Authority
	Certificate Repositories
	A Public Key Infrastructure
	PKCS-5 and PKCS-8 Compliance
	Supported Public Key Algorithms
	Supported Symmetric Key Algorithms
	Supported Message Digest Algorithms
	Supported Cipher Suites
	Standards for Digital Certificates

	Fundamentals of CORBA Security
	Link-Level Encryption
	How LLE Works
	Encryption Key Size Negotiation
	Determining min-max Values
	Finding a Common Key Size

	WSL/WSH Connection Timeout During Initialization
	Development Process

	Password Authentication
	How Password Authentication Works
	Development Process for Password Authentication

	The SSL Protocol
	How the SSL Protocol Works
	Requirements for Using the SSL Protocol
	Development Process for the SSL Protocol

	Certificate Authentication
	How Certificate Authentication Works
	Development Process for Certificate Authentication

	Using an Authentication Plug-in
	Authorization
	Auditing
	PKI Plug-ins
	Commonly Asked Questions About the CORBA Security Features
	Do I Have to Change the Security in an Existing CORBA Application?
	Can I Use the SSL Protocol in an Existing CORBA Application?
	When Should I Use Certificate Authentication?

	Writing a CORBA Application That Implements Security
	Using the Bootstrapping Mechanism
	Using the Host and Port Address Format
	Using the corbaloc URL Address Format
	Using the corbalocs URL Address Format

	Using Password Authentication
	The Security Sample Application
	Writing the Client Application
	C++ Code Example That Uses the SecurityLevel2::PrincipalAuthenticator::authenticate() Method
	C++ Code Example That Uses the Tobj::PrincipalAuthenticator::logon() Method

	Using Certificate Authentication
	The Secure Simpapp Sample Application
	Writing the CORBA Client Application
	C++ Code Example of Certificate Authentication

	Using the Interoperable Naming Service Mechanism
	Protecting the Client Credentials

	Using the Invocations_Options_Required() Method

	Security Modules
	CORBA Module
	TimeBase Module
	Security Module
	Security Level 1 Module
	Security Level 2 Module
	Tobj Module

	C++ Security Reference
	SecurityLevel2::Credentials
	SecurityLevel2::PrincipalAuthenticator

	Automation Security Reference
	Method Descriptions
	DISecurityLevel2_Current
	DITobj_PrincipalAuthenticator
	DISecurityLevel2_Credentials

