Oracle Commerce Guided Search

Internationalization Guide
Version 11.1 « July 2014

ORACLE
COMMERCE

Contents

(@fe] o)V Te | a1 =T Te le 11Tl F=] 1 = o 5
PIEIACE. .. ettt b e a e e e e e e aeeaaaree 7
Y o T 10 LA I £ U o = PRSPPI 7
WHhO ShOUIA USE thiS QUILE?......ceeiiiiiiii ittt ettt et e e e e e e e e e s bbb bbbt e e e e e e e e e e s e e annbbbbeeneeeaaaaaans 7
Conventions USE IN thiS QUIAE.........uuiiiiiiie e e e e e e e e s e s e e e e e aeaeeesssasansbataaeeeaeaeaeeessaannnrnnenees 7
100] g1 r= Yot i] (o I @ L= ol [ST U] o] Lo L P TP PO UPT PP PRPN 7

Part I: Overview Of Oracle Commerce Guided Search Internationalization...9

Chapter 1: Goals of Oracle Commerce Guided Search Internationalization.11

WHAL'S IN THIS GUILE......ceiiiiiitiei ettt ettt et e bt e e ne e e e s nr e e se et e nnne e e nnneeesnnees 11
Some Assumptions Made DY thiS GUITE........coiuuiiiiiiiii et snree e 11
Chapter 2: How Many MDEX Engines Do | Need?..........cccoooeviiiiiiiiiiiccciiieeees 13
Determining the number of MDEX Engines Needed by Your Application............cccuueiiiiiiiiiiiiiiieeceeeee e, 13
Chapter 3: Oracle Commerce Guided Search Components that Require Intemationalization. 17
Table of Components that Require Internationalization.............cc.evveieiiii i e e e e 17

Part Il: Internationalizing Oracle Commerce Guided Search Data Records..19

Chapter 4: Character ENCOAING........oviiiiiiiiiiiiiieiiii e 21
g (o To 18 {ox 1 o] o FU PO UPPRRRRRR 21
Chapter 5: Mapping Source Record Properties to Endeca Records............. 25
Steps for Mapping Source Record Properties to Guided Search...........cc.uuveeiiiiiiiiiiiiiie e 25
Part [1I: Analyzing and SOrtiNg........ccouuiiiiiiiiii e 27
Chapter 6: Language ANalYSIScoiiiiiiiiiiiiee e 29
Indexing Languages with @ Language ANAIYSIS.........c.ooiiiiiiiiiii it 29
Assigning Language IDs globally, per record, and Per PrOPEItY.........ouu i iiiiiiiiiieiieeie e et e e 31
Properties that contain more than 0NE [aNQUAGE.cuiiiie it e e e e e e e eea s 32
Setting the Language OFf QUETIES.ci ettt ettt et e e s e bbbt e e s bbb et e e s abbe et e e s annrneeens 33
Chapter 7: Configuring How Text is Processed in stemming.xmil................ 35
Specifying Language Analysis in SteMMING.XML........ooiiiiiiiiiee e e e 35
Specifying non-default [anguage @NaAIYSIS.........ciiieiiiiiiicee e e ————————— 37
Chapter 8: Configuring Sorting through Collations............cccccooevviiiiiiiieen, 39
ADOUL [ANGUAGE COIALIONS.eeiiiiiiii ettt e sttt e e s s bbbt e e e s bt e e e e nbbe e e e e annnees 39
Specifying a global language ID and collation OFAET.............eiiiiiii i 40
Part IV: Designing an Internationalized User Interface............cccccceeeveevevnnnnnnn. 41
Chapter 9: Designing an Internationalized User Interface...................ooce 43
Creating Cartridge Templates for SPecific LANQUAGES.cuuuiiii ittt 43
INternationaliZiNg HTML PAgES.uuu ittt et e e e e e e e e e s bbbt e et e e e e e e e e e e e aaaannnbbbbeeeaaaaaaaaeas 43
Diacritical Marks iN SEO URLS.........uiiiiiiiiiiie ettt ettt e s e sbb e e s e e s e e snnn e e e 44

Part V: Managing Text in Internationalized Applications..........cccccccovvevveinnnnnn. 45

Chapter 10: Text Management for Different Languages........ccccccevvevveevinnnnnnn. 47
Managing Text in Different LANGQUAGES.uuiiie ittt ettt et e b e e e st b e e e e aib e e e e e e abbe e e e e annees a7
Part VI: Configuring Custom Editors and Workbenchoil. 53
Chapter 11: Creating Language-Specific Versions of Custom Editors andWorkbench.55
Creating Language-Specific CUSIOM EQITOrS.ccciii i e e e s e e e e e e e e e e e s snrnnreaeeees 55
Customizing Menus With WOrKDENCH. ..o 55
Part VII: Logging and RePOITING.........uiiiiiiiiiiiiie e eeees e e e 57
Chapter 12: Logging and Reporting in an Internationalized Application.....59
[To To 1o JRE= g o I = 3= o Yo o 0o TSRS 59
Part VIII: Troubleshooting OLT Language Problems...............cciiiiiiiniiinnnnnn. 61
Finding and Correcting Terms UNKNOWN t0 OLT......ccciiiiiiiiiiiiiiiii e e et e e e e e e e e e s s s e s e e e e e e e e e e e s e s snnsnnenneeees 61
Finding Indexed Terms That Are UNKNOWN £0 OLT......oiiiiiiiiiiiiiee ettt 61
Appendix A: Latin-1 and OLT Language Analysis............cccooevviiiiiiiciiiinnccennnn. 65
[T e R F= T [o [= To Toa= T F= 1] T PR UTT TR
Oracle Language Technology (OLT) language analysis
Auxiliary dictionaries for OLT analysis..........
Creating an auxiliary OLT dictionary
Configuring decompounding in an auxiliary diCtioNary..............eeeeeiiiiiiiiiiiiieeee e e e 68
Mapping accented characters to unaccented CharaCters..........ccccuuuiiiiiiiiieee e 69
Appendix B: Language ReferenCe...........ccovvuiiii i 71
MDEX Engine Originally SUPPOrted LANGQUAGEScciiiiiiiiiiiiiiiiie it et e e e e ettt et e e e e e e s absb et ee e e e e e e e e aeaannbnbeeeeeeas 71

iv Oracle Commerce Guided Search

Copyright and disclaimer

Copyright © 2003, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs,
including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, shall be subject to license terms and license restrictions applicable to the programs. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices.
UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim
all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Oracle customers have access to electronic support through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Preface

Oracle Commerce Guided Search is the most effective way for your customers to dynamically explore your
storefront and find relevant and desired items quickly. An industry-leading faceted search and Guided Navigation
solution, Guided Search enables businesses to influence customers in each step of their search experience.
At the core of Guided Search is the MDEX Engine™, a hybrid search-analytical database specifically designed
for high-performance exploration and discovery. The Oracle Commerce Content Acquisition System provides
a set of extensible mechanisms to bring both structured data and unstructured content into the MDEX Engine
from a variety of source systems. The Oracle Commerce Assembler dynamically assembles content from any
resource and seamlessly combines it into results that can be rendered for display.

Oracle Commerce Experience Manager enables non-technical users to create, manage, and deliver targeted,
relevant content to customers. With Experience Manager, you can combine unlimited variations of virtual
product and customer data into personalized assortments of relevant products, promotions, and other content
and display it to buyers in response to any search or facet refinement. Out-of-the-box templates and experience
cartridges are provided for the most common use cases; technical teams can also use a software developer's
kit to create custom cartridges.

About This Guide

This guide describes how to create, configure, and deploy a Guided Search application that deals with multiple
languages.

Who should use this guide?

This guide is intended for the use of anyone who has responsibility for creating, configuring, or deploying a
Guided Search implementation that deals with multiple languages.

Conventions used in this guide

This guide uses the following typographical conventions:

Code examples, inline references to code elements, file names, and user input are set in monospace font. In
the case of long lines of code, or when inline monospace text occurs at the end of a line, the following symbol
is used to show that the content continues on to the next line: -

When copying and pasting such examples, ensure that any occurrences of the symbol and the corresponding
line break are deleted and any remaining space is closed up.

Contacting Oracle Support

Oracle Support provides registered users with answers to implementation questions, product and solution
help, and important news and updates about Guided Search software.

8 | Preface

You can contact Oracle Support through the My Oracle Support site at https://support.oracle.com.

Oracle Commerce Guided Search Internationalization Guide

https://support.oracle.com

Part 1

Overview Of Oracle Commerce Guided Search
Internationalization

« Goals of Oracle Commerce Guided Search Internationalization
*« How Many MDEX Engines Do | Need?
¢ Oracle Commerce Guided Search Components that Require Internationalization

Chapter 1
Goals of Oracle Commerce Guided Search
Internationalization

This guide explains how to use Oracle Commerce Guided Search to present your web pages in the languages
spoken where you are concentrating your sales efforts.

What's In This Guide

Internationalizing a web page requires more than providing text in the language spoken by your target audience.

It also requires that your application be configured to manage the text properly -- for example, by recognizing
the inflected variants of a word as equivalent to each other; by breaking up compound words so that searches
may be done on their individual parts; by ignoring words (such as "the", "and", "or") that have no meaning for
searches; by providing a thesaurus of words that will be treated as synonyms by searches, and so on. This
guide describes how to modify your application in ways such as these to manage the language or languages
spoken by your targeted customers.

This guide also provides information that will help you decide whether to use a single MDEX Engine and Oracle
Commerce Guided Search application for all the languages that you need to support, or to use a separate
MDEX Engine and application for each language; see How Many MDEX Engines Do | Need? on page 13.

For information about the parts of your Oracle Commerce Guide Search application that can or must be modified
for internationalization, see Table of Components that Require Internationalization on page 17.

Some Assumptions Made by this Guide

The guide makes the following assumptions:

« If working with Chinese, you are familiar with the encoding and character sets (Traditional versus Simplified,
Big5, GBK, and so on).

« If working with Chinese, Japanese, or Thai, you know that these languages do not use white space to
delimit words.

« If working with Japanese, you are familiar with the shift_jis variants and how the same character can
represent either the Yen symbol or the backslash character.

Chapter 2
How Many MDEX Engines Do | Need?

This chapter describes the most important factors to consider when you decide whether to use a single MDEX
Engine to handle all of your target languages, or a separate MDEX Engine for each language.

Determining the number of MDEX Engines Needed by Your
Application

No simple rule can tell you whether you need a single MDEX Engine for all the languages that your Oracle
Commerce Guided Search implementation must deal with, or a separate MDEX Engine for each language.
Instead, you must base your decision on the combined advantages and disadvantages of each approach, as
they apply to your implementation.

b
Note: This section does not discuss the number of servers that Guided Search implementations may
require. A single server can host multiple MDEX Engines, the number being limited largely by the
performance desired.

An MDEX Engine is a Dgraph process that uses as input a single index — that is, a set of files produced by a
Dgidx process. This set of files is the customer's source data, indexed by the Dgidx process for use by Guided
Search operations.

An index can contain customer information in a single language or in more than one language.

The following table lists some of the factors that make a single index (and MDEX Engine) for all languages,
or a separate index (and MDEX Engine) for each language, the better choice for processing your data.

Reasons to use a single index Reasons to use a separate index for each language

Data Ingest Data for multiple languages comes | Data for multiple languages comes from separate data
from the same data source and has | sources with different data structures.

the same structure. L L .
Each of your languages requires its own pipeline logic

Consistent pipeline logic and data | and data manipulation.
manipulation can be applied to all
your languages.

Baseline and | Data for all languages can be

Partial Updates | updated at the same time, making
the development of control scripts
simpler and easier.

14 How Many MDEX Engines Do | Need? | Determining the number of MDEX Engines Needed by Your Application

Reasons to use a single index

Deployment Deployment is simpler and less likely
to require co-ordination of updates.

Dimensions Your customer data includes a single

and or small number of languages,

Languages and/or, your application defines a
small number of dimensions. In these
cases, providing a version of each
dimension in each language within
a single index is unlikely to slow a
customer's access to the data.

Query Results | Hit rates on queries may be higher
when there is only one cache on the
server where the MDEX Engine is

installed.

Note: Each index requires its own

cache.

Records

Keyword
Redirects

Merchandising
Triggers

OLT Your source data includes text in

Reasons to use a separate index for each language

Your customer data includes several languages and
your application defines a large number of dimensions.
The large number of dimension versions required (one
for each dimension in each language) may slow the
customer's access to the data if provided within a single
index. Access time is less likely to be affected if a
separate index is used for each language.

For most purposes, multiple languages require separate
indexes only when the amount of indexed data in each
language is large — for example, 100 GB.

An index can support only a single set of keyword
redirects. When an index contains keywords in different
languages, keyword redirects may be executed
inappropriately. This can happen when a keyword in
one language is mistaken for a keyword in another
language, and the keywords have different redirect
behaviors. When each language is handled by a
different index, there is no possibility of confusion
among keywords written in different languages.

An index can support only a single set of keywords. If
an index contains keywords in different languages,
business rules may be executed inappropriately,
because keywords in different languages can be
mistaken for each other.

When each language is handled by a different index,
there is no possibility of confusion among keywords
written in different languages.

Note: Keywords that trigger merchandising rules must
be specified in each supported language. For example,
if English, French, and Spanish are supported by a
single index, the English keyword "pants" must also be
specified in French ("pantalon™) and in Spanish
("pantalones").

Your source data includes more than one language

Languages several languages that do not require | that is better processed using OLT language analysis,

or benefit from OLT analysis, such

Oracle Commerce Guided Search

Internationalization Guide

How Many MDEX Engines Do | Need? | Determining the number of MDEX Engines Needed by Your Application 15

Reasons to use a single index Reasons to use a separate index for each language

as English, French, Spanish, and such as Chinese, Japanese, Korean, or German. In
Italian. this case, use a different index for each OLT language.

Stop Words An index can use only one set of stop words. When an
application uses a single index for more than one
language, it is possible for a word in one of these
languages to be mistaken for a stop word in one of the
other languages. For example, the French word "thé"
(tea) might be mistaken for the English stop word "the"
(the definite article). This type of confusion is avoided
when a separate index is used for each language.

Thesaurus An index can use only one thesaurus. When an
application uses a single index for more than one
language, it is possible for a word in one language to
be mistake for a thesaurus entry in another. For
example, the German word "Gift" (poison) might be
mistaken for the English word "gift" (a present). This
type of confusion is avoided when a separate index is
used for each language.

Note: The number of MDEX Engines that you need is also influenced by factors such as the number
of Oracle Commerce Guided Search features that your implementation is using, the number of records
in the index, and the throughput (ops/sec) that you want to achieve.

Oracle Commerce Guided Search Internationalization Guide

Chapter 3

Oracle Commerce Guided Search Components that
Require Internationalization

To create one or more versions of your Guided Search implementation to support the different languages
targeted by your sales efforts, you must modify several components of that implementation.

Table of Components that Require Internationalization

The following table lists the components of an Oracle Commerce Guided Search implementation that you must
modify or create in order to support the language or languages that your application is targeting.

Component Changes required for internationalization For more information, see:

Pre-processing | Pre-processing scripts must specify the character | Character Encoding on page 21
scripts sets to be used by your Oracle Commerce Guided
Search implementations.

Source data Source data must be tagged with ISO-639 codes | Assigning Language IDs globally, per
that identify the languages in which the data is to | record, and per property on page 31
be presented to the users of your Oracle
Commerce Guided Search implementation.

Language Either Latin-1 language analysis or Oracle How the MDEX Engine Chooses a
analysis Language Technology (OLT) Analysis must be Language Analysis on page 29
selected to determine how dgidx and dgraph parse
and process text.

Language A suitable collation for controlling how text is Configuring Sorting through Collations on
collations sorted during indexing and query processing must | page 39

be selected.
Endeca A separate version of each Oracle Commerce MDEX Engine Developer's Guide
dimensions dimension must be created for each language.
Oracle Properties of source data records must be mapped | MDEX Engine Developer's Guide
Commerce either to dimensions or to properties of the

Guided Search | corresponding Oracle Commerce records.
indexed records

18 Oracle Commerce Guided Search Components that Require Internationalization | Table of Components that
Require Internationalization

Component

Search Terms

Cartridge
templates
Custom editors

Menus

HTML

Text
manipulation

Logging and
reporting

Changes required for internationalization

Search terms must be properly encoded before
users of your Oracle Commerce Guided Search
application submit them to a form.

If your implementation supports multiple locales,
you can localize your custom templates

Create language specific custom editors for
Experience Manager.

Create language-specific menus and other aspects
of the user interface that contain static text.

Ensure that HTML pages take into account the
requirements of the languages that they will
display.

The following text manipulation features must be
configured for use in particular languages: sorting,
stemming, decompounding, thesaurus,
wildcarding, spelling and did you mean, stop
words, and keyword triggers.

Consider running a separate Logserver for each
language, to make it easier to run
language-specific logs and reports.

Oracle Commerce Guided Search Internationalization Guide

For more information, see:

Encoding Search Terms on page 23

Creating Cartridge Templates for Specific
Languages on page 43

Creating Language-Specific Custom
Editors on page 55

Customizing Menus with Workbench on
page 55

Internationalizing HTML Pages on page
43
Managing Text in Different Languages on

page 47

MDEX Engine Developer's Guide.

Part 2

Internationalizing Oracle Commerce Guided Search
Data Records

 Character Encoding
* Mapping Source Record Properties to Endeca Records

Chapter 4
Character Encoding

This chapter explains how to configure your Oracle Commerce Guided Search implementation to use the
character encodings that are best suited to the languages that your implementation supports.

Introduction

The text that an Oracle Commerce Guided Search application displays to its users is stored in memory as
char arrays, c-strings, pascal strings, or other data structures. Before the application can display the text, it
must convert the text into a format that it can display correctly and legibly. The process of converting the text
is known as encoding.

Any process that reads and writes data must both encode and decode it. In particular, data must be encoded
or decoded during I/O operations such as the following:

« Reading from disk

» Saving to disk

» Sending across a network
« Rendering a web page

Related Links

Character Encoding on page 21
This chapter explains how to configure your Oracle Commerce Guided Search implementation to use
the character encodings that are best suited to the languages that your implementation supports.

Choosing the Right Encoding for a Language on page 22
Choosing the right encoding for text can minimize loss of information and ensure that your application
renders text correctly and legibly.

Specifying Character Sets Through Java Manipulators (Forge) on page 22
You must specify the encoding for characters displayed in your application's user interface through
a Java Manipulator component of the Forge pipeline.

Encoding Search Terms on page 23
You must ensure that search terms are properly encoded before users of your Guided Search
application submit them to a form.

Specifying Character Encodings for HTML Pages on page 23
In each HTML page that your application displays, you must specify the correct character encoding
using a Content-Type META tag. In addition, any links in the page must also encode these strings

properly.

22 Character Encoding | Introduction

Choosing the Right Encoding for a Language

Choosing the right encoding for text can minimize loss of information and ensure that your application renders
text correctly and legibly.

Unless you have reason to use other encodings, choose UTF-8 for:

« All of your Endeca indexing processes, such as Forge and Dgidx.
« Rendering English and most European languages. UTF-8 is optimized for these languages.
« UNICODE characters, which your application may display incorrectly if they are not encoded as UTF-8.

Note: Use the same encoding across all of your Endeca data processing/indexing components.

When to Use Encodings Other Than UTF-8
Use encodings other than UTF-8 only for reasons such as the following:

 Your data is in Hindi, Arabic, Chinese, Japanese, Korean or other languages for which UTF-8 is not a
suitable or even a possible encoding. Some Korean glyphs are not supported by Unicode, for example.

« Encodings such as EUC, Shift JIS, HZ, and GB2312 have lower memory and conversion costs than UTF-8
for Chinese, Japanese, and Korean, as well as for certain cell phones.

» Encodings other than UTF-8 can reduce consumption of disk space for Chinese, Japanese, and Korean
languages.

« You need to debug the indexing process using editors that support only EUC or Shift JIS.
Know the Encoding of Your Source Data
Make sure you know (or can determine) the encoding of all of your source data. Note the following:

« Web pages from web crawls can be in any of a wide variety of encodings.
« Some applications encode text in CP1252 and variants of the 1ISO-8859 encodings.

« Some documents are stored in encodings other than the ones that they declare; for example, web pages
that declare their charset to be UTF-8 may in fact have been saved in 1ISO-8859-1 or CP1252.

Note: Make sure that all input sources, such as CAS, encode any text that they read from external
sources using the same encoding that the external sources use for the text.

Specifying Character Sets Through Java Manipulators (Forge)

You must specify the encoding for characters displayed in your application's user interface through a Java
Manipulator component of the Forge pipeline.

Java Manipulators

In Java Manipulators, you can specify Java routines that set the character encoding of your source data to
UTF-8 as follows:

File ¥ = new File(fileName);

FilelnputStream fis = new FilelnputStream(f);
InputStreamReader isr = new InputStreamReader(fis, "UTF8'");
Buffered reader r = new (BufferedReader(isr);

Guided Search saves characters as UTF-8 by default.

For detailed information about how to create and configure Java Manipulators, refer to the Developer Studio
Online Help.

Oracle Commerce Guided Search Internationalization Guide

Character Encoding | Introduction 23

Encoding Search Terms

You must ensure that search terms are properly encoded before users of your Guided Search application
submit them to a form.

Specify encoding (such as UTF-8) for search terms in the following calls to the Presentation API:
« Statements that retrieve information from the HttpServletRequest object:
* request.setCharacterkEncoding("'UTF-8"");
Statements that construct URL query strings:
« UrlGen urlg = new UrlGen(request.getQueryString(), "UTF-8");
Statements that create queries to the MDEX Engine; for example:

» Java: ENEQuery usq = new UrlENEQuery(request.getQueryString(),"UTF-8");
« .NET:ENEQuery nequery = new UrlENEQuery(Request.QueryString.ToString(), "UTF-
8!!);
For information about how to invoke the Presentation API to create and manage queries, refer to the MDEX
Engine Development Guide.

Unicode Normalization of Search Terms

During indexing, text is normalized to NFC (Normalization Form Composition); that is, equivalent sequences
of characters are converted to the same sequence of code points. For best recall, be sure to normalize your
search terms to NFC before they are used in queries.

To normalize text, use a Normalizer object such as the one provided with the IBM International Components
for Unicode (ICU) library:

import com.ibm.icu.text.Normalizer;

String nfc = Normalizer._.normalize(searchTerms, Normalizer_NFC);

Lowercase Conversion of Search Terms

Uppercase characters in search terms are automatically mapped to lowercase characters. For example,
searching for WINES is equivalent to searching for wines.

In some cases, uppercase characters can be converted to lowercase characters in more than one way, given
a variety of local spelling conventions. For example, the German word FLUSS (river) can be converted either
to fluss or to fluf3.

You can pre-process the search terms in application code to conform to local spelling conventions before the
search term is submitted.

Specifying Character Encodings for HTML Pages

In each HTML page that your application displays, you must specify the correct character encoding using a
Content-Type META tag. In addition, any links in the page must also encode these strings properly.

The following example illustrates how to specify character encoding for an HTML page using the Java URLEn—
coder class:

<META http-equiv=""Content-Type"™ content="text/html; charset=UTF-8">
<a href="search. jsp?term=<%=URLEncoder .encode(searchTerm,UTF-8") %>">

Oracle Commerce Guided Search Internationalization Guide

Chapter 5
Mapping Source Record Properties to Endeca Records

This chapter provides guidelines for mapping multiple language properties of source database records to
properties or dimensions in Endeca records. For information about how to create Endeca dimensions and
properties and map them to properties of source database records, refer to the Oracle Commerce Developer

Studio Help.

Steps for Mapping Source Record Properties to Guided Search

To map source record properties in different languages to Endeca dimensions or properties, follow these steps:

1. Identify the properties of your source database record that exist in more than one language. For example,
the same set of logically related properties can exist in corresponding English and French versions, as

follows:
Books Livres
HardbackBooks LivresReliés
PaperbackBooks LivresdePoche
AudioBooks LivresAudio
eBooks eBooks

2. Decide whether each source database property should be mapped to an Endeca dimension or an Endeca
property. Endeca dimensions refer to general categories of products and services, providing the logical
structure needed for guided navigation and record searches. Endeca properties provide descriptions of
products or services; your application can display these descriptions when the user accesses the records
to which they apply. For more information about Endeca records, dimensions, and properties, refer to the
Oracle Commerce Guided Search Concepts Guide.

Note: For best results from Experience Manager and the boost/bury feature, dimension names should be
NCN-compliant.

3. Use the Oracle Commerce Developer Studio to create dimensions and their dimension values, and map
the dimensions and dimension values to the appropriate properties of your source database records. For
example, create two dimensions, Books and Livres, and map the other, more specific, source database

26 Mapping Source Record Properties to Endeca Records | Steps for Mapping Source Record Properties to Guided
Search

record properties to values of these dimensions, as follows:

c
2
g > Books
E
° I
| e
3
S
HardbackBooks PaperbackBooks AudioBooks eBooks - %
3
<
o
c
s 3
g > Livres
E
° I
| =}
3
o
3
o
LivresReliés LivresdePoche LivresAudio eBooks -+ 3
3
<
i)
c
o
n

Note: Dimension names must be NCName-compliant. Dimension values can contain diacritical marks
and extended characters.

4. Create Endeca properties and map them to the appropriate properties of your source database record.

Oracle Commerce Guided Search Internationalization Guide

Part 3
Analyzing and Sorting

e Language Analysis
» Configuring How Text is Processed in stemming.xml
« Configuring Sorting through Collations

Chapter 6
Language Analysis

This chapter describes how the MDEX Engine selects and applies a set of rules known as a language analysis
when it indexes the text in your source records.

Indexing Languages with a Language Analysis

A language analysis is a set of rules that the MDEX Engine applies when it indexes text in any of the languages
in a particular group of languages. The languages in this group have common characteristics that require
special handling by an appropriate language analysis.

Every form of language analysis provides, at a minimum, tokenization: the breaking up of compound phrases
into their constituent words or characters. Language analysis can optionally include stemming, which makes
it possible to match inflected word forms that share a stem for example, to treat "family”, "families”, and "family's"
as forms that match each other. Each language analysis includes a different set of other text management
features, such as ignoring "stop words" (that is, common words without value for searches, such as "the"), and
ignoring accents (diacritic folding).

The MDEX Engine can apply a language analysis to records, record properties, dimension tags on records,
or to all record data processed by an MDEX Engine. Only one language analysis can be applied to any of
these units at a time.

Oracle Commerce Guided Search supports two standard forms of language analysis, Latin-1 and OLT (Oracle
Language Technologies), which are designed for use with different languages. Customers can create and use
non-standard language analyses, if neither Latin-1 nor OLT meets their requirements. For detailed information
about Latin-1 and OLT language analysis, see Latin-1 and OLT Language Analysis on page 65.

Related Links
Language Analysis on page 29
This chapter describes how the MDEX Engine selects and applies a set of rules known as a language
analysis when it indexes the text in your source records.

How the MDEX Engine Chooses a Language Analysis on page 29
To choose a language analysis to use for processing a particular record, the MDEX Engine follows
these steps:

How the MDEX Engine Chooses a Language Analysis

To choose a language analysis to use for processing a particular record, the MDEX Engine follows these steps:

30

Language Analysis | Indexing Languages with a Language Analysis

1. If alanguage ID code has been associated with the record, it assumes that all the record's content is in
that language and proceeds to the next record.

2. If it does not find a language ID code for the record, it examines the first property in the record.

3. Ifit finds a language ID code for the first property, it associates that language with the property value and
proceeds to the next property in the record.

4. If it does not find a language ID code for the first property, it proceeds to the next property.

5. When it has examined all properties, it applies the default language for MDEX as a whole (as specified by
dgidx --lang <l anguage code>)to any properties for which no language is specified; or, if no default
language has been specified,

6. It applies en (United States English) to any properties for which a language is not specified.

7. It then proceeds to the next record, on which it repeats Steps 1 - 6.

For information about how language ID codes can be associated with records, properties, and dimensions,
see Assigning Language IDs globally, per record, and per property on page 31. For information about dgidx,
refer to the Oracle Commerce Guided Search Administrator's Guide.

27 Note: In the preceding sequence of steps, the MDEX Engine treats dimensions the same way that it
treats properties.

When dgidx has determined the language of the record, property, or dimension, it consults the stemming.xml
file (if one exists) to determine whether it contains an entry for that language. If an entry exists, dgidx uses
information in the entry to decide which language analysis to apply to the language, and which features of that
analysis to use. If no stemming file exists, or one exists but does not contain an entry for a particular language,
an applicable default language analysis is applied. For information about stemming.xml, see Specifying
Language Analysis in stemming.xml on page 35.

The following figure illustrates the process by which the MDEX Engine chooses a language analysis as
described above:

Oracle Commerce Guided Search Internationalization Guide

Language Analysis | Assigning Language IDs globally, per record, and per property 31

Begin find the
Ianguaga analysis_

Baegin find the
language.

Auto-configuration
applies OLT analysis

Dgidx examines one record at a time to determine the
language or languages in which the source data is written,
It assumes that:

Is the language
one of those
originally supported
by MDEX?

Auto-configuration
applies Latin-1
analysis.

Is there a
stemming.xml
file?

1. The language of the entire record is the language
specified by the language 1D code associated with the
record; if no language ID code has been specified, then

2. The language of the first property or dimension in the
record is the language specified by the language ID code
associated with that property or dimension; if no language
ID code is specified, it proceeds to the next property or
dimension, repeating this step for each property/dimension
until finally

Note: Only the
languages originally
supported by MDEX
can be spacified in
stemming.xml,

Apply the language
analysis associated
by default with that
language

Is the language
specified in
stemming , xml?

3. For any properties or dimensions with no language ID
code, it assumes that the language is the global default for
dgidx, as specified by the following command:

dgidx --lang <language-code>;

or,

Is the language
one of those originally
supported by the MDEX
Engine?

4. If a default language has not been not specified, it

A Dgidx applies Latin-1
assumes English (en) by defaul, e

language analysis.

Auto-configuration applies OLT
language analysis if the language
is the default; it applies Latin-1

language analysis if the language
is not the default.

Assigning Language IDs globally, per record, and per property

You assign language IDs at the following different levels:

« Per MDEX Engine, globally, to specify a default language for any records, properties, or dimension tags
that have not been assigned a language. If no global default language is specified, English is assumed to
be the global default.

 Per record. This is appropriate when different records contain different languages.

« Per dimension or property. This is appropriate when records contain dimensions or properties in different
languages.

 Per query, which should be used in your front-end application if the language varies from query to query.

The language ID value that you assign to a record, property, or dimension must be a valid RFC-3066 or ISO-639
code, such as en (English), de (German), ja (Japanese), or zh-TW (traditional Chinese).

A full list of ISO-639 codes is available at:
http://www.loc.gov/standards/iso639-2/php/code_list.php

Assigning Language IDs Globally (per MDEX Engine)

Specify a global language ID using the --lang <lang_code> option on the Dgidx and Dgraph commands,
where <lang_code> is the ISO-639 code for the language in the records; for example:

Oracle Commerce Guided Search Internationalization Guide

32 Language Analysis | Properties that contain more than one language

dgidx --lang en
dgraph --lang en

If you do not specify a global language 1D, the MDEX Engine assumes by default that the language ID is en
(English).

Assigning Language IDs per Record

Assign a language ID to each record if each record contains only one language, but different records contain
different languages.

To specify a language ID for a record, create a Java manipulator in your Developer Studio pipeline, and
configure it to add a property named Endeca.Document.|l ang_code to the record, where <lang_code> is
the 1SO-639 language ID code for the language in the records; for example: Endeca.Document. ja, which
indicates that the language of the record is Japanese.

For more information about how to create and use Java manipulators, refer to the Developer Studio Help.

Assigning Language IDs per Property

Assign language IDs to individual properties in pr ef i x . languages . xml files, where prefix is the name
of your application; for example, smithHardware. languages.xml.

For example, the following excerpt from a languages file assigns language IDs to properties hamed "Property
1", "Property 2", and "Property 3":

<?xml version="1.0" encoding="UTF-8"7?>
<IDOCTYPE LANGUAGE SYSTEM "languages.dtd'>
<LANGUAGES>

<KEY LANGUAGE NAME="Property 1" LANGUAGE="en'/>
<KEY LANGUAGE NAME="‘Property 2" LANGUAGE="es"/>
<KEY LANGUAGE NAME="‘Property 3" LANGUAGE="ja"/>
</LANGUAGES>

Note: You must also create language-specific user interfaces to display information in particular
languages. For information about how to do this, refer to the Workbench User's Guide and the Assembler
Application Developer's Guide.

Properties that contain more than one language

Some properties are written predominantly in one language but contain words or phrases in another language
or languages. You can assign to such a property the language ID of the language in which the property is
written predominantly.

Any queries against the property must have the same language ID as the property. However, search terms in
any of the languages that a property contains will return expected results.

Language-specific functions will be applied to search terms for the language specified in the property's language
ID. Thus, if the language ID of a property is ja, any language-specific functions such as stemming that are
applied to the property will be for Japanese; these functions will be applied to all words in the search terms,
although they work well only for the language of the language ID.

Oracle Commerce Guided Search Internationalization Guide

Language Analysis | Setting the Language of Queries 33

Setting the Language of Queries

If your application accesses data in more than one language, you must specify the language of each particular
guery at query time. For example, if you set the language ID of a property to ja, any search run against that
property must also specify the language id ja, or text management features such as word breaks will not
function correctly.

The MDEX Engine (Dgraph) determines the language of the text of a query according to the following rule:

1. The language specified by the setLanguage ld method (Java) or the Language I d instance property
(.NET) of the ENEQuery object; or, if no language has been specified, then:
2. The default language of the Dgidx.

Note: When OLT analysis is selected, the language of queries can be set only with setLanguageld();
setting the language on ENEQuery has no effect.

If all your data is in the same language, set the default language of the MDEX Engine to that language. For
information about how to do this, see Assigning Language IDs Globally (per MDEX Engine) on page 31.

Properties searched by queries with different language IDs

Some properties will be searched by queries in different languages; that is, by queries with different language
IDs. For example, a Partnumber property might be searched for in both Japanese and English.

In such a case, you can create a separate Partnumber property for each language. Each property name must
be appended with the applicable language ID code; for example: Partnumber_ja (for Japanese searches)
and Partnumber_en for English.

Oracle Commerce Guided Search Internationalization Guide

Chapter 7
Configuring How Text is Processed in stemming.xml

The stemming.xml file determines whether Dgidx performs stemming on particular languages. It also controls
which language analysis (Latin-1 or OLT) applies to particular languages.

Specifying Language Analysis in stemming.xml

The stemming.xml file contains information that enables dgidx to select a language analysis for a particular
language.

The stemming . xml file can contain entries only for the languages originally supported by the MDEX Engine.
For a list of the originally supported languages and default language analysis applied to each, see MDEX
Engine Originally Supported Languages on page 71.

If your source data includes one of the languages originally supported by MDEX and you need to enable
stemming for that language, be sure that an entry for this language is included in the stemming.xml file. If
stemming.xml does not contain an entry for a language, stemming is not enabled for that language and the
default analysis is applied to that language.

In stemming.xml, the entry for a language is contained in a separate <STEMMING> element. Each subelement
in the <STEMMING> element begins with STEM_language-code, where language-code identifies the language;
for example, STEM_DE for German, STEM_EL for Greek, and STEM_HE for Hebrew. The subelements specify
the following:

« Whether stemming is to be performed on that language.
« Whether a static stemming file is to be used.
» Whether compound matching is to be performed.

For example, the following entry, for American English, specifies that stemming is to be performed using a
static wordforms file, and that compound matching is not to be performed:

<IDOCTYPE STEMMING SYSTEM "‘stemming.dtd"
<STEMMING>
<STEM_EN_US ENABLE="TRUE"
USE_COMPOUND_MATCHING=""FALSE"
USE_STATIC_WORDFORMS=""TRUE" />
</STEMMING>

The following sections describe the subelements of the <STEMMING> element. For more information about
stemming.xml, refer to the Platform Services XML Reference.

36

Configuring How Text is Processed in stemming.xml | Specifying Language Analysis in stemming.xml

ENABLE

When ENABLE is set to TRUE, language analysis (in addition to tokenization) is enabled; the analysis includes
not only stemming, but other functions that the analysis can perform, such as the use of a thesaurus, of stop
words, and so on.

When ENABLE is set to FALSE, the language analysis performs only tokenization. A warning is displayed if
ENABLE is set to FALSE and OLT language analysis is selected. The warning informs you that the setting of
ENABLE in this case will be ignored, because OLT performs stemming unconditionally.

Note that the only stemming that Latin-1 analysis performs on English is to treat singular and plural wordforms
as matches for each other; for example, to make "house" and "houses" match each other. This follows
necessarily from the largely uninflected nature of English.

USE_STATIC_WORDFORMS

If set to TRUE, the stemming feature uses the static wordform dictionary files shipped with the MDEX Engine
package. A static wordform dictionary file defines sets of inflected forms that are treated as matches for each
other by the Guided Search feature; for example, the German word that means table, "Tisch", in its different
grammatical cases, is specified as follows in the German wordforms file:

<WORD_FORMS>
<WORD_FORM>tisch</WORD_FORM>
<WORD_FORM>tisches</WORD_FORM>
<WORD_FORM>tische</WORD_FORM>
<WORD_FORM>tischen</WORD_FORM>
</WORD_FORMS>

Default static wordform dictionary files are stored in Endeca\MDEX\version\conf\stemming (on Windows)
and usr/local/endeca/MDEX/version/conf/stemming (on UNIX). You can update the default static
wordform dictionary files, or create custom static wordform dictionary files to use in place of the default files.
For information about how to do this, refer to the MDEX Developer's Guide.

If set to FALSE, dgidx generates the wordforms file from the source data dynamically.

Static wordform files are always used for stemming by Latin-1 analysis and are never used by OLT analysis.
Thus, if USE_STATIC_WORDFORMS is set to TRUE, Latin-1 is selected,; if set to FALSE, OLT is selected.

4 Note: Setting USE_STATIC_WORDFORMS to TRUE forces Latin-1 analysis to be selected for a
language even if Latin-1 is not the better analysis for that language. For example, if you set
USE_STATIC_WORDFORMS to TRUE for traditional Chinese, Latin-1 is applied, with the result that
the Chinese text is not properly tokenized. Similarly, setting USE_STATIC_WORDFORMS analysis to
FALSE forces OLT analysis to be used, which produces unsatisfactory results for some Western languages
such as English.

USE_COMPOUND_MATCHING

If set to TRUE, the stemming feature matches compound words with any of their elements taken individually.

For example, when compound matching is enabled, the GERMAN word Bananenstecker (banana plug) can
be matched either by "Banane" (banana) or by "Stecker" (plug). When compound matching is disabled,
Bananenstecker is not matched by "Banane" or "Stecker", although it can be matched by inflected forms such
as "Bananensteckers" (genitive singular).

Developer Studio and Custom stemming.xml Files

To change default values in stemming.xml, you can edit it manually — that is, you can edit it directly using a
text editor, rather than editing it through Developer Studio. Manual edits that you make to stemming.xml can

Oracle Commerce Guided Search Internationalization Guide

Configuring How Text is Processed in stemming.xml | Specifying non-default language analysis 37

be affected when you save your Developer Studio project and when you upgrade Developer Studio to the
current version.

> . . - . .
7~ Note: The default values provided in stemming.xml by Developer Studio for the languages that it
supports are suitable for almost all purposes.

Effect on stemming.xml of Saving Your Developer Studio Project

Developer Studio enables you to select the languages for which you want to enable stemming; the stem-
ming.xml file is then written with default values for the languages that you select. You can change the default
values only by editing stemming.xml manually.

Before you edit stemming.xml manually, always save and close your Developer Studio project. If you make
manual edits to stemming.xml while your project is open in Developer Studio, those edits are overwritten
when you save the project.

However, if you close your Developer Studio project before you edit stemming.xml manually, your edits are
preserved, unless they conflict with default stemming values that are specified in the project. In this case, the
edits are preserved as long as the stemming configuration in Developer Studio is not changed.

Effect on stemming.xml of Upgrading Developer Studio

When you upgrade Developer Studio to a newer version, you are prompted to save any existing Developer
Studio projects to a new location. Your existing project, however, is preserved in its existing location; as a
result, you have two projects, one using the older version of Developer Studio, and one using the new version.

The stemming.xml file for the newer, upgraded project has the same values as the original stemming.xml
file. You can edit the upgraded version of stemming.xml manually or using Developer Studio. Any edits that
you make to the upgraded version of stemming.xml do not affect the original version.

%
Note: Oracle recommends that you save the existing Developer Studio project as prompted when you
open the existing project with a new version of Developer Studio.

Specifying non-default language analysis

With the exception of Chinese, Japanese, and Korean (the CJK languages), you can set the default language
analysis for each language to either OLT or Latin-1 language analysis. CJK languages default to OLT analysis
and cannot be configured to use Latin-1.

To change the default language analyzer for other languages:

1. For Dutch, English, English (UK), French, German, Italian, Portuguese, and Spanish, which default to
Latin-1 analysis:

a) Open the stemming file for your application.
For example, Endeca\apps\<app name>\config\pipeline\<app name>.stemming.xml.
b) In the entry for the language, set USE_STATIC_WORDFORMS=""FALSE"".
¢) Save and close the file.
This configures the language for OLT analysis.
2. For Arabic, Czech, Danish, Greek, Hungarian, Polish, and Russian, which default to OLT analysis:
a) Navigate to the MDEX\<version>\conf\stemming\custom directory.
b) Create a static stemming dictionary named <lang id> word_forms_collection._xml.

Oracle Commerce Guided Search Internationalization Guide

38 Configuring How Text is Processed in stemming.xml | Specifying non-default language analysis

c) Open the stemming file for your application.
For example, Endeca\apps\<app name>\config\pipeline\<app name>.stemming.xml.

d) In the entry for the language, set USE_STATIC_WORDFORMS=""TRUE"".

e) Save and close the file.
This configures the language for Latin-1 analysis.
4 Note: The configuration for the stemming.xml file was designed to accept only a limited set of
languages. These languages must be enabled explicitly in the file to set the language analyzer.
Additional languages, including those listed below in Step 3, are automatically configured based on
the presence or absence of a custom stemming dictionary.

3. For Catalan, Croatian, Finnish, Hebrew, Persian (Farsi), Portuguese (Brazil), Norwegian (Bokmal and
Nynorsk), Romanian, Serbian, Serbian (Latin), Slovak, Slovenian, Swedish, Thai, and Turkish, which default
to OLT analysis:

a) Navigate to the MDEX\<version>\conf\stemming\custom directory.
b) Create a static stemming dictionary named <lang id> word_forms_collection.xml.
This configures the language for Latin-1 analysis.

The presence of the static stemming dictionary is sufficient to change the language analyzer to Latin-1.

> . . .) . .
7 Note: The Dgidx and Dgraph load custom dictionaries for all languages configured in the stemming.xml
file.

Oracle Commerce Guided Search Internationalization Guide

Chapter 8
Configuring Sorting through Collations

Collations are used by your application to determine how it sorts the records returned by a customer's searches.

About language collations

Guided Search supports different collations for sorting in different languages. These include the Endeca
collation, the Standard collation, and several language-specific collations. Guided Search uses the Endeca
collation by default.

The Endeca Collation

The Endeca collation places lower case characters before the upper case versions of those same characters.
For example, the Endeca collation sorts text as follows:

0<l< ...<9<a<A<b<Bx<x...<z<1Z

The Endeca collation is optimized for unaccented languages and ignores accents and punctuation. For this
reason, in applications that use English as their global language, the Endeca collation performs better during
indexing and query processing than the Standard collation. In applications that use non-Latin scripts or Latin
scripts with accents, the Endeca collation may produce unexpected results for accented characters.

The Standard Collation

The Standard collation sorts data according to the International Components for Unicode (ICU) standard for
the language you specify with —--lang flag. For details about the standard collation for a particular language,
see the Unicode Common Locale Data Repository at http://cldr._unicode.org/. In applications that
include internationalized data, the Standard collation is typically the more appropriate choice because it accounts
for character accents during sorting.

Language Specific Collations

In addition to the Endeca and Standard collations, dgidx and the dgraph support the following language-specific
ICU collations:

« de-u-co-phonebk, a German collation that sorts according to phone book order rather than by dictionary
order.

e es-u-co-trad, a Spanish collation that sorts the ch and Il characters in the traditional order rather than
the standard order.

e zh-u-co-endeca, zh-TW-u-co-endeca For basic Latin characters, lowercase characters are placed

before uppercase characters. Otherwise, characters are sorted by the numeric value of their UNICODE
encodings (that is, by "code point" order).

40 Configuring Sorting through Collations | Specifying a global language ID and collation order

e zh-u-co-pinyin, zh-TW-u-co-pinyin, an alphabetic sort of the Romanization of the readings of
Chinese characters

e zh-u-co-big5han, zh-TW-u-co-big5han, which collates in the order of the big5han character
encoding once used for Traditional Chinese. The encoding is now Unicode, but the collation order remains
in use.

¢ zh-u-co-gbh2312han, zh-TW-u-co-gb2312han, a collation defined by the GB2312 standard (mainland
China) for Simplified Chinese. It is a mixture of pinyin for common characters and radical/stroke for less
common characters.

e zh-u-co-stroke, zh-TW-u-co-stroke, a collation based on the total stroke count of the characters
and is typically used with Traditional Chinese.

e zh-u-co-unihan, zh-TW-u-co-unithan, a collation defined by the Unified Han (Unihan) standard
and based on (most significant first) radical/stroke, then Unicode block, and finally code point.

>
7 Note: Collations with the prefix zh-u-co- apply to Simplified Chinese, and those with the prefix zh-TW-u-co-
apply to Traditional Chinese.

The following section explains how to specify the collation that you want to use for your data.

Specifying a global language ID and collation order

If most of the text in an application is in a single language, you can specify a global language ID by providing
the —-lang option and a <l ang- i d> argument to the Dgidx and dgraph components. The MDEX Engine
treats all text as being in the language specified by <l ang- i d>, unless you tag text with a more specific
language ID (that is, per-record, per-dimension, or per-query language IDs). The <l ang- i d> defaults to en
(US English) if left unspecified.

For example, to indicate that text is English (United Kingdom), specify: --lang en-GB.

In addition to specifying a language identifier, you can optionally specify a collation order using an argument
to the -—lang option. A collation is specified in the form:

--lang <l ang-i d>-u-co-<col | ati on>, where:
« <l ang-i d>is the language Id and may also include a sub-tag. If unspecified, the value of <lang-i1d> is
en (US English).
e —Uu is a separator value between the language identifier portion of the argument and the collation identifier
portion of the argument.
e —co is a key that indicates a collation value follows.

« —<col | ati on>isthe collation type of either endeca, standard, or in some cases, other language-specific
ICU collations such as phonebk . If unspecified, the value of <col | at i on> defaults to en-u-co-endeca.

For example, --lang de-u-co-phonebk instructs Dgidx and the dgraph to treat all the text as German
and collate the text in phonebook order.

Dgidx sorts records by the value of particular properties and/or dimensions. The properties and dimensions
used for sorting are specified by the —-sort option of the Dgidx command. The --sort option also specifies
whether ascending or descending sort order is used with each property or dimension. For information about
the -—sort option, refer to the MDEX Engine Developer's Guide. If you do not specify a particular sort order
through the —-sort option, Dgidx sorts records by their internal record IDs.

Oracle Commerce Guided Search Internationalization Guide

Part 4
Designing an Internationalized User Interface

« Designing an Internationalized User Interface

Chapter 9
Designing an Internationalized User Interface

You must create a version of each of your cartridge templates for each of the languages that your Oracle
Commerce Guided Search application supports.

Creating Cartridge Templates for Specific Languages

To create localized versions of your cartridge templates, follow these steps:

1.

Create resource property files to store localized strings for each locale. Each resource property file name
must follow this format:

Resources_<I| ocal e>.properties

where <I ocal e> is the ISO language code. For example Resources_fr.properties indicates that
French values are stored in it. Place these files in a locales folder for your custom template:

<app di r>\config\cartridge_ templates\<template_identifier>\locales

. Specify values that do not change for locale (thumbnail URLs for example) in the single Resources.prop-

erties file or directly in the template.xml file.

In the template itself, use ${pr oper t y. nanme}notation in element content and attributes to reference a
localized string in the Resources_<locale>_properties. Only content in the Description,
ThumbnailURL, and EditorPanel sections can reference localized strings in the resources properties files.
For more information about creating language-specific cartridge templates, refer to the Assembler Application
Developer's Guide.

Internationalizing HTML Pages

When you design HTML pages for use by multi-lingual web applications, keep the following guidance in mind:

Remove all text from images so that you do not have to provide a separate version of images for each
language.
Use the HTML Submit button rather than customized "submit" images.

Do not use fixed font sizes. These prevent users from increasing font sizes in their browsers, which for
some languages they may need to do to make the text legible. It may be necessary to create a separate
style sheet for each language.

Do not assume that any particular font is supported for all languages.

44 Designing an Internationalized User Interface | Diacritical Marks in SEO URLs

Allow text to wrap.

Place checkboxes and radio buttons in separate cells of tables, to ensure that they always align properly.
» Design your HTML pages to accommodate different text lengths.

» Use icons whose meanings are universally recognized.

« Do not assume that colors have universally recognized meanings. Red may not mean "stop" in some
cultures, and green may not mean "go".

Diacritical Marks in SEO URLs

Search engine optimized (SEO) URLs can contain diacritical marks.

Unless you are aware of some language-specific recommendation to remove diacritical marks from URLSs,
leave them in the URLSs.

Oracle Commerce Guided Search Internationalization Guide

Part 5
Managing Text in Internationalized Applications

« Text Management for Different Languages

Chapter 10
Text Management for Different Languages

This chapter describes how you can manage and manipulate text in different languages.

Managing Text in Different Languages

The set of text management features that Guided Search supports varies from language to language.

Related Links

Text Management for Different Languages on page 47
This chapter describes how you can manage and manipulate text in different languages.

Stemming Text on page 48
Stemming is the process of reducing words to their stem, base, or root form.

Decompounding Text on page 48
Some words are formed by joining together words that can stand on their own. These compound
words can be broken up into their component words, so that the compound word is included in the
search results for any of its component words. The process of breaking up a compound word in this
way is known as decompounding.

Creating a Thesaurus for a Multi-Lingual Application on page 48
Each MDEX Engine has only one thesaurus. The thesaurus is used for all records processed by the
MDEX Engine, whatever their languages.

Wildcarding Text in a Multi-Lingual Application on page 49
Wildcarding is the use of characters that can be matched by any other characters. Wildcarding is
supported only by Latin-1 language analysis, and not by OLT analysis.

Configuring Language-Specific Spelling Correction on page 49
To prevent queries in one language from being spell-corrected according to the conventions of a
different language, you must configure spelling correction for each particular language.

Stop Words in an Internationalized Application on page 50
A stop word is a commonly used word, such as "the", that a search engine has been programmed to
ignore. Each MDEX Engine has only one stop word list. As a result, each stop word will be used for
all records processed by the MDEX Engine, whatever their languages.

Merchandising Keyword Triggers on page 50
Keyword redirects send a user's search to a Web page (that is, to a URL).

Text Management for Different Languages | Managing Text in Different Languages

Stemming Text

Stemming is the process of reducing words to their stem, base, or root form.

%
Note: This section applies only to Latin-1 analysis. OLT analysis uses a language specific OLT dictionary
for stemming and decompounding.

Guided Search applications support stemming for the following languages:

« Simplified Chinese
* Traditional Chinese
 Dutch
* English
* French
* German
* ltalian
» Japanese
» Korean
» Portuguese
* Spanish
All of these languages except Chinese, Japanese, and Korean have predefined stemming files. You can add

terms to and remove them from the predefined stemming files; for information about how to do this, refer to
the MDEX Engine Developer's Guide.

Stemming files are generated for Chinese, Japanese, and Korean, during ITL processing.

Decompounding Text

Some words are formed by joining together words that can stand on their own. These compound words can
be broken up into their component words, so that the compound word is included in the search results for any
of its component words. The process of breaking up a compound word in this way is known as decompounding.

In order to decompound a word, language analysis requires that all the components of the word be in the
dictionary. For example, a language analysis decompounds the word "Bananenstecker" (banana plug) into
"Bananen” and "Stecker" only if both of these words are in the dictionary.

Compound words are common in most Germanic languages (German, Norwegian, and Swedish), as well as
in Japanese.

Creating a Thesaurus for a Multi-Lingual Application

Each MDEX Engine has only one thesaurus. The thesaurus is used for all records processed by the MDEX
Engine, whatever their languages.

If your MDEX Engine processes records in more than one language, avoid adding words to the thesaurus that
have different meanings in these languages. English and French in particular each include a large number of
words that are spelled the same, or almost the same, as in the other language, but that have an entirely different
meaning. For example, in English "chair" means a piece of furniture; in French, "chair* means "flesh".

Oracle Commerce Guided Search Internationalization Guide

Text Management for Different Languages | Managing Text in Different Languages 49

Wildcarding Text in a Multi-Lingual Application

Wildcarding is the use of characters that can be matched by any other characters. Wildcarding is supported
only by Latin-1 language analysis, and not by OLT analysis.

Configuring Language-Specific Spelling Correction

To prevent queries in one language from being spell-corrected according to the conventions of a different
language, you must configure spelling correction for each particular language.

You configure spelling correction for particular languages when you tag your data with language 1Ds. Guided
Search generates a language-specific dictionary for any data that has been tagged with a language ID. To
find the correct spellings in the language specified by a particular language ID, the spelling correction feature
consults the dictionary for that language.

S
7 Note: Spelling correction can be used only with languages that are written in alphabetic scripts. Thus,
spelling correction is not supported for Chinese, and has limited application to Japanese and Korean,
owing to the non-alphabetic nature of the scripts in which these languages are written.

If all properties within a Search interface are in the same language, spelling correction will correct words by
suggesting other words in these properties. If you use record filters to return records only in a particular
language, spelling correction will correct words only by suggesting words that occur in these records.

Selecting an Appropriate Mode for Spelling Correction

In addition to requiring a language-specific dictionary to reference, spelling correction also requires that dgidx
be configured to use the proper spelling mode. Select a spelling mode option for dgidx by specifying one of
the parameters to the dgidx --spel Imode option listed in the following table.

Use this Spelling Mode for this language or type of language

aspell (the default) English and similar languages for which sound-alike corrections can be
made, using phonetic rules. aspell does not perform corrections to
non-alphabetic/non-ASCII terms such as café, 1234, or A&M.

espell Non-English words or terms that are not words, such as such as part
numbers; performs non-phonetic (edit-distance-based) corrections.

aspell_OR_espell Languages that include both ASCII and non-ASCII characters and phrases.
Aspell corrects ASCII words and Espell corrects other words.

aspell_AND_espell Both modules suggest corrections and the user selects the best selection
from the union of results.

disable Chinese or other languages that use non-alphabetic scripts to which the
concept of spelling does not apply.

For example, to select the espell mode, use the following command:

dgidx --spellmode espell

You can discover which spelling mode works best for an alphabetic language other than English by testing
the following spelling modes with data in that language: espell, aspell, aspell_OR_espell, and as—
pell_AND_espell.

Oracle Commerce Guided Search Internationalization Guide

50 Text Management for Different Languages | Managing Text in Different Languages

Note: In some cases, you may find it easier to create a separate Oracle Commerce Guide Search
application for each language that you are targeting, rather than configuring a single application to
manage all languages. For information about the advantages and disadvantages of each approach, see
How Many MDEX Engines Do | Need? on page 13.

Specifying a Correction Mode in a Configuration File

Follow these steps to specify a correction mode in a configuration file. If such a configuration file exists, it
overrides any parameter specified in the dgidx —spellmode option.

1. Using any standard text editor, create a file that contains the following text:

<?xml version="1.0" encoding="UTF-8"7>
<IDOCTYPE SPELL_CONFIG SYSTEM "spell_config.dtd.">
<SPELL_CONFI1G>
<SPELL_ENGINE>
<DICT_PER_LANGUAGE>
<ESPELL/>
</DICT_PER_LANGUAGE>
</SPELL_ENGINE>
</SPELL_CONFI1G>

2. Save the file as <app name>_ prefix.spell_config.xml.
For more information about the structure of a spell_confTig.xml file, refer to the Platform Services XML
Reference. See also the spell_config.dtd in the MDEX Engine conf/dtd directory.

3. Store the file in the directory where you store your project's other XML instance configuration files.

4. Run a baseline update and restart the MDEX Engine with the new configuration file.

Stop Words in an Internationalized Application

A stop word is a commonly used word, such as "the", that a search engine has been programmed to ignore.
Each MDEX Engine has only one stop word list. As a result, each stop word will be used for all records
processed by the MDEX Engine, whatever their languages.

Thus, if you are using a single MDEX Engine for more than one language, provide a separate version of each
stop word for each of the languages that your application supports.

Before you specify a stop word in one language, make sure that it does not appear with the same spelling but
a different meaning in the other languages that your application supports. English and French in particular
share many such "false cognates." For example, the French word for tea, "thé", can be mistaken for the English
word "the", which is commonly designated as a stop word.

Merchandising Keyword Triggers

Keyword redirects send a user's search to a Web page (that is, to a URL).

Like dynamic business rules, keyword redirects use trigger and target values. The user's search is redirected
if it contains a keyword (the trigger), and you have provided a rule that redirects any search containing that
keyword to a particular URL (the target). These features are applied after navigation filtering.

If your application supports multiple languages and you intend to use a given keyword trigger in each language,
you must create a separate rule for the keyword trigger in each language.

Oracle Commerce Guided Search Internationalization Guide

Text Management for Different Languages | Managing Text in Different Languages 51

For example, if the word "pants" (English) triggers a rule, and the same rule should apply to queries in French
and Spanish, then two other rules must be created: one triggered by "pantalones” (Spanish) and one triggered
by "pantalon” (French).

For detailed information about how create keyword triggers, refer to the MDEX Engine Developer's Guide.

Oracle Commerce Guided Search Internationalization Guide

Part 6
Configuring Custom Editors and Workbench

« Creating Language-Specific Versions of Custom Editors and Workbench

Chapter 11

Creating Language-Specific Versions of Custom
Editors and Workbench

Creating Language-Specific Custom Editors

If your implementation supports multiple locales, you can localize your custom editors.

To create language-specific custom editors, you must do the following things:

» Modify your editor's pom.xml file.

« Create resource properties files that contain localized strings.

» Modify the editor module.

« Add the getMessage() function to your custom editors to retrieve the localized strings.

For information about how to perform these tasks, refer to the Assembler Application Developer's Guide.

Customizing Menus with Workbench

If your implementation supports multiple locales, you can localize your custom Workbench extensions and
menus.

You can store localized values for the following attributes:
« Extension names, descriptions, and icons

Extensions enable you to incorporate Web applications related to your Guided Search implementation as
plug-ins to Workbench. An extension can be as simple as a static Web page or it can provide sophisticated
functionality to control, monitor, and configure your Guided Search applications. Extensions can be hosted
on the same server as Workbench or on another server.

* Menu nodes, descriptions, and icons

For detailed information about how to use Workbench to customize these attributes, refer to the Oracle
Commerce Guided Search Administrator's Guide.

Part 7
Logging and Reporting

« Logging and Reporting in an Internationalized Application

Chapter 12

Logging and Reporting in an Internationalized
Application

Logging and Reporting

Log messages produced by the Content Acquisition System (CAS), Forge, dgidx, and the MDEX Engine are
in English and use the UTF-8 character encoding. Labels and other text in reports (apart from messages) are
also in English and use UTF-8 character encoding.

The language and character encoding of reports and error messages are not configurable.
4 Note: Most common UNIX/Linux shells and terminal programs do not display UTF-8 by default; as a
consequence, they display some valid UTF-8 characters as question marks (?). If question marks appear
in log messages inexplicably, use the od (octal dump) command in Linux or a UTF-8 compatible display
to display the log message in a different format. This will enable you to determine whether the questions
marks are simply UTF-8 characters that the shell cannot display, or some other characters.

Part 8
Troubleshooting OLT Language Problems

« Finding and Correcting Terms Unknown to OLT

Finding and Correcting Terms Unknown to OLT

MDEX enables you to generate reports that list the indexed terms (property values or dimension names) that
are unknown to OLT. You can then correct the terms so that Oracle Language Technology (OLT) can recognize
them and perform linguistic analysis on them.

Finding Indexed Terms That Are Unknown to OLT

This section describes how to generate vocabulary reports that list indexed terms (property values or dimension
names) that are unknown to OLT, how to run queries on these reports, and how to correct problems so that
OLT can recognize and process them. Unknown terms are reported only for the languages for which OLT
analysis is enabled.

Terms can be unknown for any of the following reasons:

« Limitations of OLT: The terms are not included in the OLT dictionary, even though they are valid words in
their proper languages. For information about how to customize your OLT dictionary to include unknown
terms, see Creating an auxiliary OLT dictionary on page 67.

« Incorrect language assignments: The terms belong to a language other that the language associated with
the records and/or properties where they occur. For example, "millésime" (French for "vintage") reported
as "unknown" in a record incorrectly associated with the German language. For information about how to
assign languages to records and properties, see Assigning Language IDs globally, per record, and per
property on page 31.

* Non-linguistic entities: The terms are non-linguistic entities such as weights and measures, part numbers
or stock keeping units (SKUs); for example: 12V, 10x15, mm?, 110004A846K. OLT is not designed to
recognize non-linguistic entities.

The reports can include the following information about each unknown term:

* The number of times that this term occurs in your indexed data.
» The language associated with the records and/or properties where the term occurs.

62

| Finding and Correcting Terms Unknown to OLT

Generating a Vocabularly Report of Unknown Terms

You can generate a vocabulary report listing the unknown terms in all your indexed data at baseline update
time. You can also automatically generate vocabulary reports of all the unknown terms in the data affected by
partial updates, whenever you run the partial updates.

b
Note: Vocabulary reports are for audit and review only. You cannot modify your OLT dictionaries by
editing vocabulary reports; for information about auxiliary OLT dictionaries, see Creating an auxiliary
OLT dictionary on page 67.
Generating Vocabulary Reports at Baseline Update Time

You can specify that a vocabulary report be generated whenever you run a baseline update. To do this, add
the —--vocabulary-report option to the dgidx command line:

dgidx --vocabulary-report

If you are running dgidx from the Deployment Template, add an <arg>--vocabulary-report</arg>
element to the Datalngest.xml file; for example:

<dgidx id="_.." host-id="_.__">
<args>
<ar g>- - vocabul ary-report </ arg>
</érés;
</dgidx>
The report is written to a file whose name is of the form:
db_prefix.vocabulary_ report._xml
where:
db_prefix isthe name of the project; for example:
Discover.vocabulary_ report.xml

The file is written to the directory specified in the <output_dir> element of the Datalngest.xml file; for
example:

<output-dir>data/dgidx_output</output-dir>

Thus, the vocabulary report in this example would be written to a file with the following name in the following
directory:

[appdir]/data/dgidx_output/Discover.vocabulary_ report.xml

4
7~ Note: In this guide, the abbreviation[appdir] stands for the directory that contains your application.

Generating Vocabulary Reports at Partial Update Time

To generate reports that include only the unknown terms added to your spelling dictionary through partial
updates, add the --vocabulary-report option to the dgraph command line:

dgraph --vocabulary-report

A dgraph vocabulary report is generated whenever you run a partial update successfully. The report includes
only those unknown terms that occur in records introduced or affected by the partial update.

Oracle Commerce Guided Search Internationalization Guide

| Finding and Correcting Terms Unknown to OLT 63

If you are running Dgraph from the Deployment Template, add an <arg>--vocabulary-report</arg>
element to the DgraphDefaul ts.xml file; for example
<dgraph-defaul ts>
<args>
<ar g>- - vocabul ary-report </ arg>

</érés;
</ég;aﬁh—defaults>

The report is written to a file whose name is of the form:
<db_prefix>.vocabulary_report.v<VERSI ON>.xml

where:
db_prefix isthe name of the project
<VERSI ON> is the generation number of the committed partial update.

The file is written to the directory specified in the <input_dir> element of the AuthoringDgraphClus—
ter._xml and LiveDgraphCluster._xml files; thus, the vocabulary report for a partial update might be
written to a file with the following name in the following directory:

[appdir]/data/dgraphs/AuthoringDgraph/dgraph_input/Discover.vocabulary_ re-
port.v27._xml

Sample Queries on Vocabulary Report
The following XQuery scripts illustrate how to query vocabulary reports for commonly useful information.
Sample 1: Find the Fifty Most Frequently Occurring Unknown Terms

The following XQuery code queries vocabulary_report.xml for the fifty most frequently occuring unknown
words. This information can identify instances of language misconfiguration and words needing OLT
customization.

declare namespace ene="http://xmlns.endeca.com/ene/dgraph™;
let $x := doc(''vocabulary_report.xml')
let $sorted-unknowns :=
for $term in $x//ene:terms[@class=""unknown']/ene:term
order by number($term/@count) descending
return <unknown>{$term/../../@lang} {$term/@count} {$term/@value}</unknown>
(: Return the unknown terms as a table of count-lang-term tuples. :)
(: Sort by frequency of occurence and limit to top 50. :)
let $tab -= "	"
for $unk in subsequence($sorted-unknowns, 1, 50)
return fn:concat($unk/@count/string(), $tab, $unk/@lang/string(),
$tab, $unk/@value/string())

The following is an example of the vocabulary report from a Swedish-English technical catalog that was
analyzed by the Sample 1 XQuery and shows unknowns that fall into a variety of categories:

159711 sv false
496 sv mp3
270 sv 12v
55 sv creative
51 sv microfiber
36 sv gummiklatt

You might customize the OLT dictionary in response to this information as follows:

Oracle Commerce Guided Search Internationalization Guide

64 | Finding and Correcting Terms Unknown to OLT

« The word "false" is English metadata in the product catalog that is being tokenized as Swedish. Because
this metadata is never searched by customers, no customization of the OLT dictionary is needed.

» The words "mp3" and "12v" are common abbreviations that are only expected to match exactly and do not
need customization.

« The words "microfiber”, a technical term, and "gummiklatt", a compound, are candidates for customization
of the Swedish OLT dictionary. Unless these words are added to the OLT dictionary, they will be matched
only by an exact match (or thesaurus entry); matching by inflection or component parts will not occur.

« The English word "creative" may be in a property that is intended for English search but is mistakenly
associated with Swedish. If this is the case, there will be more English words as unknowns. Analyzing the
number of unknowns by property can be used to identify properties that may have a high number of
unknowns due to a misconfiguration of the language assumed for the property.

Sample 2: Display the Properties that Include the Ten Most Frequently Occurring Unknown Terms

The following XQuery code queries vocabulary-report.xml for the properties with the ten most frequently
occurring unknown words. This information is useful for identifying language misconfiguration.
declare namespace ene="http://xmlns.endeca.com/ene/dgraph’;
let $x := doc(''vocabulary_report._.xml')
let $sorted-unknowns :=
for $prop in $x//ene:terms[@class="unknown']/ene:by_property
order by number($prop/@count) descending

return <unknown>{$prop/..7/../@0lang} {$prop/@count} {$prop/@name}</unknown>
(: Return the unknown terms as a table of count-lang-property tuples.:)
(: Sort by frequency of occurence and limit to top 10. :)
let $tab := "	"
for $unk in subsequence($sorted-unknowns, 1, 10)
return fn:concat($unk/@count/string(), $tab, $unk/@lang/string(),$tab,
$unk/@name/string())

The following is an example of the vocabulary report from a Swedish-English technical catalog that was
analyzed by the Sample 1 XQuery and shows unknowns that fall into several different categories:
30446 sv ProductDescription_en
28195 sv ProductStockStatus

10286 sv ProductlmageURL
345 sv ProductDescription_sv

You might customize the OLT dictionary in response to this information as follows:

« The "ProductStockStatus" and "ProductimageURL" fields contain metadata that is not involved in text
search, so the number of unknowns is not an issue.

* The "ProductDescription_en" and "ProductDescription_sv" fields are text searchable. In this case, the
property "ProductDescription_en" was incorrectly configured as Swedish. Reconfiguration of the language
associated with ProductDescript_en will correct the high unknown count.

Oracle Commerce Guided Search Internationalization Guide

Appendix A
Latin-1 and OLT Language Analysis

This appendix compares Latin-1 and OLT language analysis, including their effects on various features of
Oracle Commerce Guided Search, and provides general guidance about which type of language analysis may
be appropriate for your application.

Latin-1 language analysis

Latin-1 language analysis is available for all languages except Chinese (Simplified, Traditional), Japanese,
and Korean. It is enabled by default for the following languages: Dutch, English, English (UK), French, German,
Italian, Portuguese, and Spanish.

It supports the following features:

« Tokenization: Dividing text into words, phrases, symbols, or other meaningful elements delimited by spaces.

« Wildcard search: Searching for phrases that include characters (wildcards) that match all characters.

» Phrase search: Searching for exact matches of a particular string.

« Search characters: Searching for particular characters.

« Diacritic folding: Ignoring accent marks when indexing and searching: for example, treating "Furtwangler"
and "Furtwaengler" as matching terms.

« Static stemming: Matching the base (uninflected) form of a word; for example, matching "box" to "boxes".
» Stop words: Common words (such as "the", "and", or "while") that have no value for searching.

It performs no form of analysis that is specific to any language.

Oracle Language Technology (OLT) language analysis

Oracle Language Technology analysis performs language-specific dictionary-based forms of linguistic analysis,
including the following:

» Segmentation: Identifying word breaks in text from languages that do not use whitespaces as word delimiters.
Formerly unseparated words must be contiguous to each other and in the same property. Note that Latin-1
analysis is unsuitable for languages that do not use whitespaces as delimiters.

 Tokenization: Breaking a stream of text up into words, phrases, symbols, or other meaningful elements.

 Orthographic normalization: Accounting for variations in the representation of words in languages that have
standardized alternatives to diacritic marks (such as "ae" or "a" for & in German); for example, treating
"Furtwaengler" and "Furtwangler" as matching terms.

66

Latin-1 and OLT Language Analysis | Auxiliary dictionaries for OLT analysis

« Decompounding: Dividing compound word forms into their base terms; for example, dividing

"Altertumswissenschaft" into "Altertums" and "Wissenschaft".

Diacritic folding: Ignoring character accents in data when indexing and searching text.

» Dynamic stemming: Determining the base (uninflected) form of a word. The process is based on dictionary
entries and language specific rules.

 Stop words: Common words (such as "the", "and", or "while") that have no value for searching.

A single MDEX Engine can process any number of the originally supported languages whose default language
analysis is OLT; for example, a single MDEX Engine can process data in Arabic, Finnish, and Hebrew. However,
among the languages that were not originally supported, a single MDEX Engine can process only one language
whose default analysis is OLT.

The management of the originally supported languages can be configured in the file stemming.xml.
For a complete list of the languages supported by the MDEX engine, see MDEX Engine Originally Supported
Languages on page 71.

%
Note: OLT analysis is only partially compatible with Oracle Commerce record and dimension search
features; for example, it does not support wildcard search, phrase search, and search characters. If
your application requires these search features, use Latin-1 analysis.

Different releases of the MDEX Engine may include different versions of OLT. To find out which version of
OLT the MDEX Engine uses, enter the --version option for the Dgidx or Dgraph at the command line.

%
Note: Only one type of language analysis can be applied to any particular record, dimension, or property.

Auxiliary dictionaries for OLT analysis

You can optionally add an auxiliary dictionary to supplement the primary OLT dictionary for any supported
language. This may be necessary if searches for terms that exist in your data are not producing the expected
results.

The auxiliary dictionary is a UTF-8 encoded file that is line oriented and tab delimited. Each line in the file
represents an entry to supplement the primary dictionary.

Entries to an auxiliary dictionary are of the following form:

COWAND valuel value2 ...

Specify STEM or COMPOUND for COMVAND .
Using the STEM command

Each line beginning with STEM includes a term that represents the uninflected stem (or, lemma) of a word, and
one or more attributes that identify the part(s) of speech (POS) of the word. The POS attributes must be
separated from each other by commas (with no spaces). The command name STEM and the new term must
be separated from each other and from the POS attbributes by tabs.

STEM new_terml POS,POS,POS, ...

STEM new_term2 POS,POS,POS, ...
STEM new_term3 POS,POS,POS, ...

The POS attributes enable Guided Search to identify the possible inflectional endings of the new term in its
given language.

Oracle Commerce Guided Search Internationalization Guide

Latin-1 and OLT Language Analysis | Auxiliary dictionaries for OLT analysis 67

You can specify the part of speech (POS) attributes by their full names or by abbreviations of their names
(listed here in parentheses):

« noun (N) - A simple noun, like table, book, procedure

« nounProper (propN) - A proper name of a person, a place, and so on, that is typically capitalized, such
as Zachary, Supidito, Susquehanna

e verb (V) - Any verb in its dictionary form, such as deconstruct, upsell, or skate

- adjective (Adj) - Moadifiers of nouns, typically can be compared (green, greener, greenest), such as
fast, trenchant, pendulous

e adverb (Adv) - Any general modifier of a sentence that may modify an adjective or verb or may stand
alone, such as slowly, yet, perhaps

* preposition (Prep) - Aword that forms a prepositional phrase with a noun, such as off, beside, from.
Also used for postpositions in languages that have postpositions of similar function.

e punct (Punct) - Any non-letter symbol that is treated as a unit by itself, such as %, $,]

e pronoun (Pro) - Any pronominal form, including personal pronouns (I, they), demonstrative pronouns
(those, this), relative pronouns (who, which, wherever)

e interrog (Wh) - An interrogative word, such as who, why, when, where, how

« determiner (Det) - Words that carry grammatical information about a noun group, for example
definite/indefinite, such as the, a, an

» particle (Part) - Small, invariant words that convey grammatical information; also used for interjections.

e conjunction (Conj) - Conjunctions that introduce subordinate clauses, such as although, because,
while; and conjunctions that introduce coordinate clauses, such as and, or, yet

« numCardinal (Card) - Cardinal numbers, like thirteen, 100, five

 numOrdinal (Ord) - Ordinal numbers, like thirteenth, 100th, fifth

For example, the following German auxiliary dictionary shows three entries. Each entry is marked with the
attribute N to indicate it is a noun:
STEM aalglatt N

STEM ausriuster N
STEM verdranger N

Decompounding

You can manually configure an auxiliary dictionary to define components of compound words. This can be
useful if existing language dictionaries do not reflect the usage of the language in a region or market, or if
existing libraries have not kept up with changes to the language.

For example, the German orthography reform of 1996 introduced a standard set of rules for compound words,
but these rules are not always followed. For this and similar cases, you may decide explicitly to configure
dictionary entries that mark the divisions within compound words. For more information, see Auxiliary dictionaries
for OLT analysis on page 66.

Segmentation

Word segmentation in languages that do not include spacing between words (Chinese, Japanese, Korean,
and Thai) is handled through OLT and is based on the lemmas, or base words, defined in the stemming
dictionary. If you are seeing incorrect search results for these languages, you can provide an auxiliary or
custom OLT stemming dictionary to produce correct search results.

Creating an auxiliary OLT dictionary

To create an auxiliary dictionary:

Oracle Commerce Guided Search Internationalization Guide

68 Latin-1 and OLT Language Analysis | Auxiliary dictionaries for OLT analysis

5.
6.

Start a text editor that supports UTF-8 characters and enables you to edit the language that you want to
supplement.

Create a new UTF-8 encoded file.

Add terms to the dictionary. Start each term on a separate line that begins with the command STEM or
COMPOUND, followed by the word or character, any optional attributes, and then a carriage return.

Save the dictionary file with the filename dictionary.<RFC3066 language code>.dictinthe
%ENDECA_MDEX_ROOT%\olt directory on Windows or in $ENDECA_MDEX_ROOT/olt on UNIX.

& - .
~7 Note: The dictionary name should correspond to the --lang value you pass to the dgidx. If you are
using a supported language that includes a region code, include it in the filename. For example:
%ENDECA_MDEX_ROOT%\olt\dictionary.zh-CN.dict.

Re-index your data and specify the —-lang flag to dgidx with appropriate <lang 1d> value.
Restart the dgraph.

The dgidx and dgraph load custom dictionaries for all languages configured in the stemming.xml file.

Configuring decompounding in an auxiliary dictionary

You can configure a language-specific stemming dictionary to define the components of compound words.
This process is known as decompounding. If decompounding is enabled
(USE_COMPOUND_MATCHING="TRUE" in stemming.xml), then searching for a word matches both that
word as well any compounds that include the word as a component.

Each of the individual components of a decompounded word must be a lemma -- that is, an uninflected word
stem. If a lemma that you need to specify as a component of a compound word does not exist in your dictionary,
you must add the lemma to your dictionary. You can add the lemma to your dictionary using the STEM command.

To customize decompounding:

1.

Open the dictionary file that you wish to modify.
For example, %YENDECA_MDEX_ROOT%\olt\dictionary.de._dict.

Locate or add the terms that you wish to configure for decompounding.

For example, you may wish to customize the decompounding of the German word, "Binnenschiffahrt,"
which refers to transport along inland rivers.

. Add the entry using a command of the form COMPOUND word stenil|sten?].. PCS,PCS ..

where:

» word is the compound word that you are adding to the dictionary. You must specify the uninflected stem
(lemma) of the word.
» steml is the first component of the compound word.

& . .
77 Note: All components must be lemmas. For example, you can specify the German word "Arbeit"
(work) as a component, because this form of the word is the word's lemma. You cannot, however,
specify "Arbreits" (of work), because this form is not the lemma.

« stem2, stem3, and so on are the remaining components of the compound word.

» POS, the part of speech of word, such as N (noun), Adj (adjective), and so on. By specifying the part of
speech of word, you enable the search feature to determine the set of inflectional endings to look for.

Oracle Commerce Guided Search Internationalization Guide

Latin-1 and OLT Language Analysis | Auxiliary dictionaries for OLT analysis 69

In the case of the above example, you could add the word in either or both of two ways: one that adheres
to the German orthography reform standards of 1996, and one that reflects the earlier spelling of the word:

COMPOUND Binnenschifffahrt Binnen|Schiff]Fahrt N
COMPOUND Binnenschiffahrt Binnen|Schiff|Fahrt N

If a compound word is composed only of lemmas, you can add the word to your dictionary using either a
COMPOUND command or a STEM command of the following form:

STEM word steml|stem2]|... POS,POS,...

For example, you can add the compound Dutch word appelsalade, which is composed of two lemmas,
using either a STEM or a COMPOUND command, as follows:

COMPOUND appelsalade appel|salade N
STEM appel|salade N

You cannot use STEM to add a Dutch word such as sperziebonensalade ("green bean salad"), however,
because one of its components, "bonen", ("beans") is an inflected form (plural), and thus is not a lemma.
You can, however, add Sperziebonensalade using the following COMPOUND command:

COMPOUND sperziebonensalade sperzie]boon]salade N

where "boon" is the lemma of the Dutch word for "bean".

The above COMPOUND command enables sperziebonensalade to be found by searches for "boon" or
"bonnen" (or "salade", "saladen" or "sperzie") if you specify USE_COMPOUND_MATCHING="TRUE" in
stemming.xml. If USE_COMPOUND_MATCHING="FALSE", then defining the sperziebonensalade as
a compound does not have any effect on searches (the searches do not use the components) but will not
cause an error.

4. Save and close the file.

Mapping accented characters to unaccented characters

dgidx supports mapping Latinl, Latin extended-A, and Windows CP1252 international characters to their
simple ASCII equivalents during indexing. You can optionally specify the —-diacritic-folding flag to
dgidx to map accented characters to simple ASCII equivalents. This mapping allows the dgraph to match
Anglicized search queries such as cafe against result text containing international characters (accented) such
as café.

Oracle Commerce Guided Search Internationalization Guide

Appendix B
Language Reference

MDEX Engine Originally Supported Languages

The following table lists the languages originally supported by the MDEX Engine, as well as the default language
analyzer and language code for each.

The MDEX Engine supports other languages in addition to those that it supported originally, and it treats these
languages differently when it chooses a language analysis to apply to them. For information about how the
MDEX Engine chooses a language analysis for a language, see Analyzing and Sorting on page 27.

Language Default Analyzer Language Code
Arabic OoLT ar
Catalan OoLT ca
Chinese (Simplified) oLT zh-CN
Chinese (Traditional) OoLT zh-TW
Croatian OoLT hr
Czech OLT cs
Danish OoLT da
Dutch Latin-1 nl
English Latin-1 en
English (United Kingdom) Latin-1 en-GB
Finnish OLT Ti
French Latin-1 fr
German Latin-1 de
Greek OoLT el
Hebrew OLT he
Hungarian oLT hu

Italian Latin-1 it

72 Language Reference | MDEX Engine Originally Supported Languages

Language Default Analyzer Language Code
Japanese OoLT ja
Korean OLT ko
Norwegian (Bokmal) OoLT nb
Norwegian (Nyorsk) OLT nn
Persian (Farsi) OoLT fa

Polish OLT pl
Portuguese Latin-1 pt
Portuguese (Brazil) OoLT pt-BR
Romanian OLT ro
Russian OLT ru
Serbian OoLT Sr
Serbian (Latin) OoLT sr-Latn
Slovak OoLT sk
Slovenian OLT sl
Spanish Latin-1 es
Swedish OLT sv

Thai OoLT th
Turkish OLT tr

Oracle Commerce Guided Search

Internationalization Guide

Index

--lang option of Dgidx command 30, 32
--sort option of Dgidx command 40
--version option of Dgidx and Dgraph commands 66

A

analysis, See language analysis
auxiliary OLT dictionary

about 66

creating 67

C

cartridge templates
for specific languages 43
character encoding, See encoding
Chinese language, See CJK languages
CJK languages
requirement to use OLT analysis with 37
stemming files generated automatically for 48
collations
de-u-co-phonebk 39, 40
Endeca 39
language specific 39
specifying through --lang option of Dgidx command 40
standard 39
zh-TW-u-co-big5han 40
zh-TW-u-co-endeca 39
zh-TW-u-co-gb2312han 40
zh-TW-u-co-pinyin 40
zh-TW-u-co-stroke 40
zh-TW-u-co-unihan 40
zh-u-co-big5han 40
zh-u-co-endeca 39
zh-u-co-gb2312han 40
zh-u-co-pinyin 40
zh-u-co-stroke 40
zh-u-co-unihan 40
CP1252 character encoding 22
custom editors
adding getMessage() to 55
creating language specific 55

D

de-u-co-phonebk collation 39, 40
decompounding 48, 66

through auxiliary dictionaries 67
Dgidx command

--lang option of 30, 32

--sort option of 40

--version option 66
Dgidx process 13

Dgraph command 32
--version option 66
Dgraph process 13
diacritic folding 65
defined 29
diacritical marks
allowed in dimension names 26
allowed in SEO URLs 44
dictionaries
auxiliary for OLT 67
dimensions
can contain diacritical marks and extended characters
26
creating 25
distinguished from Endeca properties 25
limitations of search feature with OLT 66

E

encoding
choosing the best one for your data 22
CP1252 22
EUC 22
GB2312 22
HTML pages 23
HZ 22
ISO-8859 22
setting through pre-preprocessing 22
Shift JIS 22
UTF-8 22
Endeca records
assigning language IDs to 32
mapping source data to 25
EUC character encoding 22
extended characters
allowed in dimension names 26

G

GB2312 character encoding 22
getMessage() 55

H

HTML
encoding of 23
internationalization guidelines 43
HZ character encoding 22

Index

indexes

reasons for using one or more than one 13
internationalization

components requiring 17

of cartridge templates 43
internationalized data

creating an auxiliary OLT dictionary for 66
internationalizing

custom editors 55
1ISO-8859 character encodings 22

J

Japanese language, See CJK languages
Java manipulators
setting character encoding with 22

K

Korean language, See CJK languages

L
language analysis
defined 29
how MDEX chooses one 30
Latin-1 30
OLT 30

supported forms of 29
language analyzers
non-default 37
language ID codes
full list of 31
language IDs
assigning per MDEX Engine 32
assigning per property 32
assigning per record 32
in properties searched for by queries in different
languages 33
specifying 31
specifying globally 40
languages
originally supported by MDEX Engine 71
Latin-1 language analysis 30
functions performed by 65
languages that support 65

M

MDEX Engine
configuring to support multiple languages 11, 13
default language of 32
languages originally supported by 71
number of needed for international applications 11
number of needed for multi-lingual applications 13

74

N

NFC, See Normalization Form Composition
normalization 65
Normalization Form Composition 23

O

OLT analysis

languages that default to 38
OLT language analysis 30

auxiliary dictionaries for 67

functions performed by 65

limitations of with dimension search feature 66
Oracle Commerce dimensions, See dimensions
Oracle Language Technologies, See OLT language analysis
originally supported MDEX Engine languages 71
orthographic normalization 65

P

pom.xml custom editor file 55
properties
with more than one language 32

R

records
assigning language IDs to 31

S

search terms

lower case conversion of 23
segmentation

through auxiliary dictionaries 67
SEO URLs

diacritical marks allowed in 44
setLanguageld() 33
Shift JIS character encoding 22
source records

mapping properties of 25
spell.config.xml configuration file 50
stemming

defined 29, 30

languages that support 48
STEMMING element

ENABLE subelement of 36

USE_COMPOUND_MATCHING subelement of 36

USE_STATIC_WORDFORMS subelement of 36
stemming files

generated by ITL 48

modifying predefined 48
stemming.xml configuration file 35
stop words

defined 29

Oracle Commerce Guided Search

T

thesaurus 48

tokenization
and language analysis 65
defined 30

U

Unicode Common Locale Data Repository 39
URLs 44

See also SEO URLs
UTF-8 character encoding 22

w

wildcards 49
Workbench
customizing menus and extensions with 55

Index

X

XML configuration files
pom.xml 55
spell.config.xml 50
stemming.xml 35

Z

zh-TW-u-co-big5han collation 40
zh-TW-u-co-endeca collation 39
zh-TW-u-co-pinyin collation 40
zh-TW-u-co-stroke collation 40
zh-TW-u-co-unihan collation 40
zh-u-co-big5han collation 40
zh-u-co-endeca collation 39
zh-u-co-gh2312han collation 40
zh-u-co-pinyin collation 40
zh-u-co-stroke collation 40
zh-u-co-unihan collation 40

75

	Contents
	Copyright and disclaimer
	Preface
	About This Guide
	Who should use this guide?
	Conventions used in this guide
	Contacting Oracle Support

	Overview Of Oracle Commerce Guided Search Internationalization
	Goals of Oracle Commerce Guided Search Internationalization
	What's In This Guide
	Some Assumptions Made by this Guide

	How Many MDEX Engines Do I Need?
	Determining the number of MDEX Engines Needed by Your Application

	Oracle Commerce Guided Search Components that Require Internationalization
	Table of Components that Require Internationalization

	Internationalizing Oracle Commerce Guided Search Data Records
	Character Encoding
	Introduction
	Choosing the Right Encoding for a Language
	Specifying Character Sets Through Java Manipulators (Forge)
	Encoding Search Terms
	Unicode Normalization of Search Terms
	Lowercase Conversion of Search Terms

	Specifying Character Encodings for HTML Pages

	Mapping Source Record Properties to Endeca Records
	Steps for Mapping Source Record Properties to Guided Search

	Analyzing and Sorting
	Language Analysis
	Indexing Languages with a Language Analysis
	How the MDEX Engine Chooses a Language Analysis

	Assigning Language IDs globally, per record, and per property
	Assigning Language IDs Globally (per MDEX Engine)
	Assigning Language IDs per Record
	Assigning Language IDs per Property

	Properties that contain more than one language
	Setting the Language of Queries
	Properties searched by queries with different language IDs

	Configuring How Text is Processed in stemming.xml
	Specifying Language Analysis in stemming.xml
	Developer Studio and Custom stemming.xml Files

	Specifying non-default language analysis

	Configuring Sorting through Collations
	About language collations
	Specifying a global language ID and collation order

	Designing an Internationalized User Interface
	Designing an Internationalized User Interface
	Creating Cartridge Templates for Specific Languages
	Internationalizing HTML Pages
	Diacritical Marks in SEO URLs

	Managing Text in Internationalized Applications
	Text Management for Different Languages
	Managing Text in Different Languages
	Stemming Text
	Decompounding Text
	Creating a Thesaurus for a Multi-Lingual Application
	Wildcarding Text in a Multi-Lingual Application
	Configuring Language-Specific Spelling Correction
	Specifying a Correction Mode in a Configuration File

	Stop Words in an Internationalized Application
	Merchandising Keyword Triggers

	Configuring Custom Editors and Workbench
	Creating Language-Specific Versions of Custom Editors and Workbench
	Creating Language-Specific Custom Editors
	Customizing Menus with Workbench

	Logging and Reporting
	Logging and Reporting in an Internationalized Application
	Logging and Reporting

	Troubleshooting OLT Language Problems
	Finding and Correcting Terms Unknown to OLT
	Finding Indexed Terms That Are Unknown to OLT

	Latin-1 and OLT Language Analysis
	Latin-1 language analysis
	Oracle Language Technology (OLT) language analysis
	Auxiliary dictionaries for OLT analysis
	Creating an auxiliary OLT dictionary
	Configuring decompounding in an auxiliary dictionary
	Mapping accented characters to unaccented characters

	Language Reference
	MDEX Engine Originally Supported Languages

	Index

