Oracle Commerce Guided Search

Search Performance Tuning Guide
Version 11.1 « July 2014

ORACLE
COMMERCE

Contents

(= - o = 9
F Y oL TU L { g TE< e U] [T U PP TPRRR 9
WhO Should USE thiS QUIAE.........e ittt et e e e e e e e ettt e e e e e e e e e e e e e nnbabreeeeeaaaaeans 9
Conventions USEd IN thiS QUIAE.........c.uuiiiiiiiii e e e e e e e e e e s et e e e e e eaeaeeesaasansasaneeeaaaeeeeseannnnnnes 9
(07T a1 ¢=Tox (19 To T] r= o7 T T TU] o] oo o 1 RS 10
Part I: Assembler Performance TUuNiNg...........ccccoiiiiiimmmmmniiess s 11

Chapter 1: Hardware and Memory Requirements for Best Assembler Performance.13

L0d T T 01 1= gl = =Y o T 15
Chapter 3: Assembler Deployment Modelsccccccceiiiimireeciiiiinreencsneeneeenns 17
Part II: MDEX Engine Performance Tuning............ccoommmmmmmmmmmeesnnnnnnnnnnenennns 19
Chapter 4: Before You Begin.........ooceoiiiiieecciiirirreccs s s 21
Y o To 10 1 q (g T= I I T = T o o PRSPPI 21
[gg]eTolu =T o] fetelgler=T o] £ T O PP P P POPPTPPPPPP 21
Chapter 5: System Characteristics and Hardware..........cccccccceiiiimrrenciiiinnnennn. 23
MDEX Engine architecture and perfOrmMancCe..........c.ueiii i e 23
StOrage CONSIAEIAtIONS.coiiiiiiiii ettt e e e b et e e e e bbbt e e e e ab b et e e e anbb e e e e e annbeeeeeannees 25
Y =Yg oYy YA oTe] g 7T L= = 1 o] o =TSSR 26
NEIWOIK CONSIABIALIONS. ...t ittt e e e e e et e e et e e e e e e e e e s b b e b et e e et e e e e e e saannnrneneeeeees 34
Dgidx performance reCoOMMENUATIONS.uuiiiiiiiiiee e et e e e e e e e s e b ee e e e e anees 35
Operating System CONSIAEIAtIONS.coiiiiiiiii et e e e st e e e s et e e e s snseeeeesannseeeesanneeeens 35
Load balanCer CONSIAEIAtIONS.cooiiiiiii et e e e e e e e s e e et e e e e e e s eneee s 38
High availability CONSIAEIatioNS.ooiiiiii e e e e e e e e e e 39
Chapter 6: Using Multithreaded Mode...........cccoorimmmimrmmccccrrr e 41
AbOoUt MUIItIrEadEd MOTE.......ccoiiiii bbb e e e et e e s e e e e e e aeed 41
Benefits of multithreaded MDEX ENGINe........ccccvviveiiiiiiiie e
The MDEX Engine threading POOL........cccuiiiiiiiiiiiieee e
Configuring the number of MDEX Engine threads
When to increase the number of threads.............ooiii i e 43
Multithreaded MDEX ENgine PerfOrMancCe...........cooiuiiiiiiiiiiiea et e et e e et e e e e aneeeeaeene 44
Recommended threading strategies and OS platform..........cooii i 44
Chapter 7: Diagnosing Dgraph Problems..........cccommimmemmcccininnsncee e 47
INFOrMAtION YOU NEEA.....coi ittt e e e e a bt e e e e eab e et e e e snbe e e e e s aabeeeeeeanreeeeeeaas A7
Dgraph PerfOrMEANCE ISSUES.........ccciiiiiiiieeiee et e e e et e ettt e e e e e e e e e e et e e e e eeeeaaeeeseaeaatsbaeaeeeeaeaeeesaaasssrssnneeeeaaens 50
Identifying problems with resource usage by the application.............ccccoo i, 54
Recommendations for identifying Network problems............cooiii i 55
LY 1 (=T 0 1= P 57
Chapter 8: Dgraph Analysis and Tuning..........cccoommmmmmmmncnnnnnn s 59
Feature PEerfOrManCE OVEIVIEW.uuiiiiiiieie ettt e e e e e e e e et e e e e e e e e e e e eaab b e aeeeeeeaeeeeeeseananbasnneeeaaaaeas 59
Endeca record CONfIQUIAION.ooii it e e e e et e e e e e snb e e e e e eneee e e e ennees 59
Dimensions and diMENSION VAIUES..........coooiiiiiiiiiiiie ettt e s e e s e b e e e e e snbe e e e e anneed 60
Record sorting @and fIIEMNG.........cuiiiie et e e e st e e e e e er e e e e nnrre e e e e anreeeeeenned 65
EQL expressions and Record Relationship Navigation............c..ooiiiiiiiii e 68

] a1 o o1=] (13 Ve TP PRURRRRSOPP 73

Spelling auto-correction and Did YOU MeEaN.........ccoiiiiiiiiiiiiiii ettt e e s eneeee e 74

SeMMING AN TNESAUIUS. ... e e s et e e e e e e e e abbe e e e e anreeas 75

Record, phrase, and diMeNSION SEAICK.........ciiiii i s eeeeeeeeaesenrsrnnananns 76

= Tot=To [ot T 4 U1 Lo RSO 80

REIEVANCE TANKINGttt e ettt e e e s aa b et e e e et b et e e e abbe e e e e s anbeeeeesabbeeeeesanreeeeessasd 81

DYNAMIC DUSINESS FUIES.......oeieiiiiieet ettt ettt ettt s e e e s e e e e e e e eaaaaaaaeaeeeeeeeeeaesssennnsnsnnnnnd 82

Analytics performance CONSIAEIAtIONS.iiiiiiii e e e e e e e e e 82
Appendix A: The MDEX Engine Request LOQ........ccceeiimiieciiiieciirecce e 85
About the MDEX ENGINE reQUEST 100 ... ettt e e et e e e e ee e e e e e 85
ReqUEST 10g file TOMMAL........eiiiii ettt e ettt e e e ettt e e e e stee e e e e sastaeeeesanteeeeeesanneeeeesansneeeessnsd 85
Extracting information from reqUEST IOGS............eeiiiiiiiiii e e e e e 89
Storing logs on a separate PhYSICal ArIVE.........cooi it e e e s b e e e s anbeeeeeeaae 90
(RN To U351 (oo I o 1 o TN PP PUPPURP 90
Appendix B: The MDEX Engine Parameter Listing........ccccccovimmmmmciiiiinnnennnnnn. 93
Understanding the URL parameter MapPing........... e oot ee e e e e e e e e e e ee ettt s s e s e s e e e e e e aaaaaaaaaeeeeeeeeene 93

Mappings between request log and UrlIENEQuery URL parameters...........oocccviiiiiiiiiie e 93

List Of request [0g ParameEters.ottt e e e e e e e et e e e e e e e e e e e e nnnennnes 96

Example: interpreting €rror [0g MESSAQESuciiiiiiiii i e e s e s e e e e e e aaeaaaeeeeeeeeeeeaerennrrnrnnanas 96
DESCrIPLION Of QUEIY TYPES.... ittt e ettt e e e s bttt e e e e aab et e e e e sttt e e e e sanbeeeeeeanbeneeeesanbeeeeeeanen 97

=] o 0 U EERRR SR 97

= | o o TUT o - 7RSSR PRPR 98

=T =1 o PSPPSR 98

= SRR 98

= T 0] o]] = 1= PR 99

= U1 (o] o] g =TT =T o 1V o P PRSP 99

LoZoT0] 0To1UT o [IR RO OUUPP SRR

o Y7 0 PP

L= USSP

(0] 0. = LSO EPRRRRRR

o 140] o J PR

groupby

o PSPPSR

[[o] lo] (= TSR

irversion

=Y/ 0] (0] o 1< U UEPR

= 0 T SRR

oo PR

L= o3 o 1= o 11 o USSP

merchpreviewtime

L= o] T U111 USRS

0 To o 1Y PR

(0] o] 0 =T TP PPPPPPPP

L LU 1 o 1 TSRS

T o 1R

L0 o PR PSR

o) 17 SRR

o J RSSO

0 0 £ 7 PP

LT TP PUPPPTPRRR

PrE ENAIIMIE. ... et r et ettt e e e e e e e e oottt ettt e e et et aeaeeeaeeeeaaeaeaeteeteeertrra——————————————————

o]0 111=T TSP PP PPPTURRRN:

=T 1R

LY 1T =T o 1= o | S PPPRR

LT =] PSP PRPPRR

S]] 1= o1 O SESERR

£ 0 o S PP PP PP

] (0 (o2 (U1 =T P UUEPRP PP

L=10 0.1 T ORI
Appendix C: Creating Eneperf input files with the Request Log Parser....117
T3 =1 1= 11T T (o To= 1 1T o TS 117

iv Oracle Commerce Guided Search

Contents

LOg fOrMAt FEQUITEIMENTS.......cci ittt e e e et e e e e e e e e e e e e e et e s baeeeeeaaeeeessaasssbssaeeeeaaaeeesasaannssnes 117
INVOKING the REQUESE LOG ParSEr........oiiiiiiiiie ittt et e e et e e e e bbe e e e e e nnbee e e e ennees 117
Example output from the ReqUESt LOG ParSer........ oottt a e e e e e 118
Using the Request Log Parser With ENEPEIT...........ooooiiiiii i 120
Appendix D: Using the Eneperf TOOL.........ccciieciiiiimimecsirrrress e 121
Y oY 11 L A = =Y o =Y o RPN 121
L8] g Lo [=t g =T o1 o PRSPPI 121

o [T =To BT oY 1] g T T TR 122

L0 o) 110 4= 1 IE=T= 1 1110 T PP EPEPR: 125
= a1 (=Ko =1 1= o T= Ty 1 0T 1 01U | S 128
About the format of l0gs for use With ENEPErT.........ooo i e 130

The REQUEST LOQG ParSEr.......cci ittt ettt e e e e e e e e e ettt e e e ee e e e e e ssaee e aaeeeeaeeeeesaaassnssnaneeeaaaeeenanannns 130

Recommendations for generating a representative log for Eneperf.............oooiiiiiii e 131

Running Eneperf in two-stream mode: regular logs and logs with updates...........ccccoocciiiiiiiii i, 132

Converting an MDEX Engine request log file for ENEpert..........cooo oo 133

Performance testing .NET 2.0 applications that contain long or complex queries..........cccccccceeeeeiiiiccciinneen. 133

Creating a log file by hand using substitute search terms...........cccccoi i 134
[T 018 e o g To TR =1 41T o 1= O REERRR 134
Appendix E: Using the Request Log Analyzer..........cccccceeeiiiimmrmencinnnnnneennnnnn. 135
About the REQUESE LOG ANGIYZET........oiii it e e et e e e e et e e e e e s bbe e e e e e nbeeeeeennnees
1S3 =11 E= 11T T (o Tox=1 1 o] o RSP
(Yo (o) 5 aat=1 B C=To (U114 =T 0 g =]) T PUSRUPR:
INnvoking the ReqUESt LOG ANAIYZET ...ttt e e ettt e e e e e e e e e anbe e e e e eneeas

1] 0 =T U EERRRR

B L= a1] o I =T PO PRRPPR

T lo] f =T 1 = To L3RR

B == T TS =T PR
T a1 =T o L= o I =Y 0o o €SP
S €= 11 o3 7SRRI

(70T 40T oo I .41 15 o= 3PP URERR

L [T T Y ==] PP,

Longest-running requests by round-trip reSpoNnSe tiMeoccuiiiiiiiiiiii e

Longest-running requests by engine-only processing time
L@ U1 Yo = TR
Extended query types...

RESPONSE COUES.... .ot e et et e et e e et e e e e e e et et e ettt ettt teteae e b seseseeaaaaaaaaaseeaeeeeeseeeessersssnsnsnnnnnnns
= Te [1=Es A o] o171 oo TR PRSP
R oTe TS T oI o] (o] 11T T PRSPPI
Peak PEITOIMANCE ...ttt ettt eeseseeeeaeaaaaaaaaaeeeeseeresesssassssnsnnnnnnns
Threading and queueing INfOrMALION ... e e e e e e e e e e e e e e e e e e e s ssnnenes
T8 aal g F=Ta Va1 o] 4 4= (o] o N PRSP
Appendix F: MDEX Engine Statistics and Auditing......ccc..ccoorrirmcciiirnieenne. 153
About the MDEX ENngine StatiStiCS PAgE.cuiiiiiiiiiiiiiiie et 153
Viewing the MDEX ENgine STatiStiCs PAgE......ciivuiiieiiiiiie ettt ettt e e e et e e e e enree e e e e nneeas 153
Sections of the MDEX Engine StatiStiCS PagE........uuiiiiiiiiiiie e e ebaeee e 154
The Performance SUMMAry tab............ooo e 154
The General INformMation TAD...........coiiiiiii e e e e e et e e e s st e e e e e enreeeeeennnees 154
The Index Preparation 1aD...... ...ttt e e e e e e e e e 155
LI =T = Lo T €= o SRR 155
LI LT =] =11 S €= | o J PSP PRRPPR 156
About the MDEX ENgiNe AUAItING PAGE. ... uuuuiiiiiiiiiieee ittt eeees 158
Viewing the MDEX ENngine AUditiNg PAgE.......coiiiuuiiiiiiiiiii ettt e 159
Audit persistence file detailS.............uueeiiiiiiiiii e e e e e e e e e 159
Sections of the MDEX ENgine AUditiNg PAGEcciuriiiiiiiiiiiie ettt e e et e e e et e e e e snaeeeaeans 159
LI =X L 11 0 =1 £ = o SRR 160
The General INformMation TAD...........ooiiiiiiiii e e e e e et e e e s st e e e e e enreeeeeennnees 160
Appendix G: Useful Third-Party TOOIS.........ccccccceiiiiimmmmmciiiirrrcesss e ersemnsnn e 163
L0 oL o] =1 (o) 4 T (Yo] - TSP UPRRRPR 163
RS To] E= 14 TS I= T o LT) G (o o £ PR 163
Yo] =T Rt 01T o (o (o Lo - TS TUPPR 164
[0ty o =Tl ToaN (o To) £ T PERPPRRN 165

L AT AT gL {11V o o] =R 165

Appendix H: Tuning the Network Performance..........cccccccciiiimmieecciniinneennnnnn. 167
Tuning network performance 0N WINAOWS............ooiiiiiiiiieiie e et e e e e e e e s e st e e e e e aaaaeeessessnnbesanereaaaeeeeanan 167
Tuning network performManCe ON SOIAFIS.uiiiii et e e e e 168
Configuring the FIN_WAIT_2 timeouUt INTEIVAL..........oiiiiiiiiiie ettt e e et e e e et e e e e snaeeeaeans 168
Configuring FIN_WAIT_2 timeEOUL ON LiNUX......uuiiiiiieiiiiiieiiiiii e ee e et e e e e e e e e s e st eee e e e e aae e s e s e snnnneneeees 169
Configuring FIN_WAIT_2 timeout 0N SOIAIIS........coiiiiiiiiiiiiiiee et 169
Configuring FIN_WAIT_2 timeout 0N WINAOWS.........ocuiiiieiiiiiiee e seiieee e sttt e e ee e s s e e e s snnaaeeesanneeees 169

Vi Oracle Commerce Guided Search

Copyright and disclaimer

Copyright © 2003, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs,
including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, shall be subject to license terms and license restrictions applicable to the programs. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices.
UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim
all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Vi

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Oracle customers have access to electronic support through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

viii Oracle Commerce Guided Search

Preface

Oracle Commerce Guided Search is the most effective way for your customers to dynamically explore your
storefront and find relevant and desired items quickly. An industry-leading faceted search and Guided Navigation
solution, Guided Search enables businesses to influence customers in each step of their search experience.
At the core of Guided Search is the MDEX Engine™, a hybrid search-analytical database specifically designed
for high-performance exploration and discovery. The Oracle Commerce Content Acquisition System provides
a set of extensible mechanisms to bring both structured data and unstructured content into the MDEX Engine
from a variety of source systems. The Oracle Commerce Assembler dynamically assembles content from any
resource and seamlessly combines it into results that can be rendered for display.

Oracle Commerce Experience Manager enables non-technical users to create, manage, and deliver targeted,
relevant content to customers. With Experience Manager, you can combine unlimited variations of virtual
product and customer data into personalized assortments of relevant products, promotions, and other content
and display it to buyers in response to any search or facet refinement. Out-of-the-box templates and experience
cartridges are provided for the most common use cases; technical teams can also use a software developer's
kit to create custom cartridges.

About this guide

This guide describes how to diagnose and tune Dgidx and the Dgraph to provide optimal performance. It also
includes hardware provisioning recommendations as well as storage, memory, and network support
recommendations.

Who should use this guide

This guide is intended for system administrators and developers responsible for the performance of a Guided
Search implementation.

Conventions used in this guide

This guide uses the following typographical conventions:

Code examples, inline references to code elements, file names, and user input are set in monospace font. In
the case of long lines of code, or when inline monospace text occurs at the end of a line, the following symbol
is used to show that the content continues on to the next line: -

When copying and pasting such examples, ensure that any occurrences of the symbol and the corresponding
line break are deleted and any remaining space is closed up.

10 | Preface

Contacting Oracle Support

Oracle Support provides registered users with answers to implementation questions, product and solution
help, and important news and updates about Guided Search software.

You can contact Oracle Support through the My Oracle Support site at https:/support.oracle.com.

Oracle Commerce Guided Search Search Performance Tuning Guide

https://support.oracle.com

Part 1
Assembler Performance Tuning

* Hardware and Memory Requirements for Best Assembler Performance
* Latency
» Assembler Deployment Models

Chapter 1

Hardware and Memory Requirements for Best
Assembler Performance

Be sure to allocate enough memory for the JVM (Java Virtual Machine) in which the Assembler is running.
The greater the number of content items used by your Endeca Commerce application, the more memory (heap
space) your application will require for best Assembler performance.

Chapter 2
Latency

Network latency between the Assembler and the MDEX Engine can have a significant influence on the
Assembler's performance. Recommended practice is to run the Assembler and the MDEX Engine in a
configuration that keeps network latency to a minimum.

Chapter 3
Assembler Deployment Models

In most cases, the Assembler's performance is roughly the same, whether it is run as a process or as a service.
However, running Assembler as a service can aggravate existing network latency problems. In such cases,
running Assembler as a process can help reduce the latency.

Part 2
MDEX Engine Performance Tuning

* Before You Begin

» System Characteristics and Hardware
 Using Multithreaded Mode

* Diagnosing Dgraph Problems

» Dgraph Analysis and Tuning

Chapter 4
Before You Begin

This section provides background information you should know before you begin to diagnose performance
problems in your Guided Search implementation.

About the Dgraph

Any Guided Search implementation that enables customers to use Endeca Guided Search must include one
or more MDEX query engines, which use proprietary data structures and algorithms to provide real-time
responses to client requests. The process for a running MDEX engine is called a Dgraph. The performance
of Dgraph is a major determining factor in the success of any Guided Search implementation that enables
customers to use Guided Search.

You can use a single Dgraph or a set of load-balanced Dgraphs.

Important concepts

This section defines a number of terms that you need to understand when read this guide.
The following terms are used to discuss the performance of the MDEX Engine:

» Throughput is the number of requests processed by the MDEX Engine per unit of time. In this guide, unless
otherwise specified, it is expressed as query operations per second (ops/sec). Throughput is measured
with the performance tool Eneperf using an MDEX Engine request log.

» Dgraph sustained throughput is the measure of query capacity, that is, the maximum number of requests
that can be consistently processed by the MDEX Engine per second.

» Latency is how fast the MDEX Engine responds to queries, or the time it takes for a query to be returned
by the Engine, typically in milliseconds.

» Maximum latency is the maximum time it takes for the longest query to be returned by the MDEX Engine.

4 Note: Although latency and throughput are related, they cannot be directly derived from each another.

The inverse of the average latency is a lower bound on the maximum throughput. For example, if

the average latency for a shopper in a supermarket checkout line is five minutes, we know that the

checkout throughput of the store must be at least 0.2 shoppers per minute. In addition, latency and
throughput are tied together by concurrency. Using the same example, the real maximum throughput
may be 10 shoppers per minute because there are many checkout lanes.

» An operation is defined as a single request to the MDEX Engine.

22

Before You Begin | Important concepts

Such a request may have one of the following types:

» Navigation (possibly including record search, analytics, and so on)

* Dimension search

* Record search

» Aggregated record

» Administration (such as a Web Service invocation for administrative purposes, statistics, configuration
update, partial update, and so on)

Memory bandwidth is the rate at which data can be read from or stored in memory by a processor. It is
measured in bytes per second. In relation to MDEX Engine performance, you may be interested in the
memory bandwidth that a system can sustain while running a Dgraph or multiple Dgraphs.

The virtual process size (or address space) for the Dgraph is the total amount of virtual memory allocated
by the operating system to the MDEX Engine process at any point in time. This includes the Dgraph code,
the MDEX Engine data as represented on disk, the Dgraph cache and any temporary work space.
Resident set size (RSS) is the amount of physical memory currently allocated and used by the MDEX
Engine process. As the MDEX Engine process runs, the active executable code and data are brought into
RAM, becoming part of the RSS for the MDEX Engine.

You can view the resident set size of a process on Linux by using ps -0 pid,ucomm, or rss commands,
ucomm, or by using the top program which reports the RSS size.

The working set size (WSS) of the MDEX Engine process is the amount of physical memory needed for
those parts of the process that have been most recently and frequently accessed. In other words, the
Dgraph WSS is the amount of memory a Dgraph process is consuming now and that is needed to avoid

paging.
The WSS of the Dgraph process directly affects RAM usage. As the working set increases, the Dgraph

process memory demand increases. With a larger WSS, a process needs more memory to run with
acceptable performance.

You cannot measure the WSS, but you can make assumptions about it when you measure the resident
set size and observe performance; performance tends to degrade if the RSS cannot equal the WSS.

The Dgraph cache is an area of memory set aside for dynamically saving the partial and complete results
of processing queries.

Warming is the process during which the MDEX Engine performance gradually increases to a steady state.
A gradual increase in performance takes place either as the MDEX Engine starts up and processes queries
or following a partial update.

Utilization is the percentage of the total capacity of a resource that is actually being used.

The number of concurrent users is the number of site users engaging the MDEX Engine at any given time.
When planning for Dgraph capacity based on the number of concurrent users, remember that users do
not issue queries continuously. Typically, a user takes time to think after making one query before making
the next one.

Oracle Commerce Guided Search Search Performance Tuning Guide

Chapter 5
System Characteristics and Hardware

This section provides recommendations for hardware used for a Guided Search implementation and discusses
typical hardware-based issues that affect performance of the MDEX Engine.

MDEX Engine architecture and performance

The MDEX Engine is optimized for performance. This section reviews those characteristics of the Engine that
have a direct impact on its performance.

Hardware architecture diagram

The following diagram represents a typical MDEX Engine deployment architecture. It shows a set of application
servers and MDEX Engines, each with a dedicated hardware load balancer. The Information Transformation
Layer (ITL) that supplies data to the MDEX Engine index is not shown.

In this diagram, a load balancer directs query requests to one of the MDEX Engines. If you are using servers
with dual-core or quad-core processors, multiple multithreaded MDEX Engines can be configured on the same
machine, with two or more threads configured for each MDEX Engine.

24 System Characteristics and Hardware | MDEX Engine architecture and performance

Load balancer

Application Application

Load balancer

MDEX Engine MDEX Engina

Resource utilization

The MDEX Engine stores index structures in system memory to provide rapid access during query execution.
Less frequently accessed structures and record data are stored on disk; these are pulled into RAM only when
needed.

Storage locality

The data and indexes are stored in memory and on disk in a manner that provides optimal locality for common
access patterns. When queries have to access disk to retrieve information, they find all the data required with
the minimum number of seek operations. This decreases the cumulative disk access seek times thereby
decreasing the time needed for query processing and increasing query throughput.

Unified Dgraph cache

The MDEX Engine has a unified dynamic cache where it stores intermediate results and index structures for
future processing. When similar requests are made to the Engine with slight changes (example: sorting by
price, then ranking, then popularity), the Engine stores intermediate results in the cache. This makes possible
the optimal reuse of data previously retrieved from slower sources, such as disk. The cache is dynamically
managed by the MDEX Engine to keep the optimal data cached for the current query patterns.

Stateless architecture combined with load balancing

The Guided Search implementation has a stateless server architecture. Query processing does not require
any state information about prior queries from this client or other clients. Because of this, when multiple identical
MDEX Engines are placed in parallel behind a load balancer, the response will be identical regardless of which

Oracle Commerce Guided Search Search Performance Tuning Guide

System Characteristics and Hardware | Storage considerations 25

server receives the request. The throughput of such a system is equal to the throughput of a single server
times the number of parallel servers.

Multithreaded mode

The MDEX Engine always runs in multithreaded mode with the total number of threads set to 1 by default.
Oracle recommends that you increase this number to maximize your use of system resources. On processors
that are multithreaded or multicore, multiple query threads can use a single processor at the same time.

64-bit architecture

The MDEX Engine utilizes 64-bit operating systems and processors, and can store and access larger volumes
of data with scale. The MDEX Engine can utilize as much physical memory as can be placed in a server.
Running in the 64-bit environment, the MDEX Engine can service many memory-intensive requests
simultaneously without the risk of running out of memory address space. This, combined with a large Dgraph
cache (1GB), provides a significant performance benefit.

Storage considerations

Oracle recommends using one of two storage approaches with Oracle Guided Search implementations -- RAID
or SAN-backed network-attached storage (if using RAID is not possible).

Locally attached RAID storage (RAID 5/6, RAID 10, or RAID 0)

For RAID disks, use these recommendations.

Storage availability after disk failure is usually a requirement for your RAID configuration. In this case, you may
opt for either a read/write balanced configuration or a more purely read-oriented configuration.

For most implementations, a configuration that balances the demands of disk read and write activities is the
best choice.

* RAID 5/6. For some implementations, disk read speed is paramount and write speed is much less important
to performance. For example, suppose the baseline index is never modified by partial updates, and new
baseline indexes are moved into production only infrequently. In these implementations, a RAID 5 (or RAID
6) configuration improves availability with the least cost in spindles.

» RAID 10 (also known as RAID 1+0) is an excellent choice for devices that are partitioned across a disk
array of four or more spindles. RAID 10 provides the performance benefits of striping and the redundancy
of mirroring.

* RAID 0. The RAID 0 configuration is useful when storage availability after disk failure is not a concern.
This is because both read and write activities are parallelized across all available spindles to decrease
access latency and increase read and write throughput.

In any RAID configuration, high rotational speeds (such as 15k RPM or 10k RPM) are very beneficial to
performance. Performance-oriented RAID controller features, such as battery-backed write caching, or a large
cache size within the RAID controller, are also very beneficial to performance.

SAN-backed network-attached storage

Instead of using RAID disks, you can also use SAN-backed storage with a Fibre Channel backplane network
from the MDEX Engine server to the SAN.

Oracle Commerce Guided Search Search Performance Tuning Guide

26 System Characteristics and Hardware | Memory considerations

A storage area network (SAN) is a network to which remote storage devices are attached, usually accessible
by a single machine in a one-to-one relationship. The storage devices appear to the operating system as locally
attached to the server, rather than as disks attached to a network.

&
7" Note: Ensure that the SAN is properly configured. It is also preferable that the MDEX Engine have
dedicated access to its own SAN disk arrays.

In Guided Search implementations, a SAN is in many cases faster and easier to work with than local storage.
SAN-backed storage provides the following benefits:

* Faster promotion of index images from staging to production

 Faster backup of index images in production

 Faster copying of data from staging to production server

» Simpler backups of Endeca index files due to built-in functions for backups and snapshots in SAN

%
Note: Network-attached storage with NFS delivers best performance on Oracle Exalogic systems. While
NFS can be used on other systems, due to known performance issues, non-Exalogic use is not
recommended in Endeca implementations.

Memory considerations

This section discusses the relationship between the amount of RAM, the Dgraph process's use of virtual
memory, the Dgraph cache, the working set size (WSS), and the resident set size (RSS) for the Dgraph process
and their effect on performance.

In general, storing information on disk, instead of in memory, increases disk activity, which slows down the
server. Although all the information the MDEX Engine may need is stored on disk, the running MDEX Engine
attempts to store in memory as many as possible of the structures that it currently needs.

The decisions on what to keep in memory at any given time are based on which parts of the Dgraph are most
frequently used. This affects the resident set size and the working set size of the running Dgraph, which, as
they increase, lead to the increase of RAM being consumed.

Related Links

Dgraph virtual memory vs. RAM: use cases on page 27
While the amount of virtual memory consumed by the Dgraph process may grow and even exceed
RAM at times, it is important for performance reasons that the working set size of the Dgraph process
not exceed RAM.

About Dgraph process memory usage

The Dgraph performs best when the working set of its process fits in RAM without swapping memory pages
to disk.

The working set of the Dgraph process is a collection of pages in the virtual address space of the process that
is resident in physical memory. The pages in the working set have been most recently and frequently referenced.
In other words, the Dgraph working set is the amount of memory a Dgraph process is consuming now. This
is the amount of memory that is needed to avoid paging.

In general, depending on the query load, the virtual memory process size of the Dgraph fluctuates. In some
cases, it can exceed physical memory to a degree without affecting performance.

Oracle Commerce Guided Search Search Performance Tuning Guide

System Characteristics and Hardware | Memory considerations 27

The section “Dgraph virtual memory vs. RAM: use cases” illustrates these statements.

Many factors affect the amount of memory needed by the Dgraph process. The number of records in the source
data and their complexity are the most important factors, but the use of almost any feature will cause some
increase in RAM use.

The amount of memory needed for the Dgraph process also depends on other aspects of the query mix, such
as which of the items that typically constitute Guided Navigation are being used and requested (records,
dimensions, refinements, or other), and their particular use in the query mix.

Memory usage recommendations for optimizing performance

Use the following recommendations to measure memory and optimize its use for best performance.

* Periodically measure the virtual memory process size of the MDEX Engine and its resident set size. The
goal for these tests is to check whether the working set size (WSS) of the MDEX Engine starts to significantly
exceed physical memory (it may exceed physical memory to a degree). The WSS cannot be computed,
although it is always less than or equal to the amount of virtual process size for the MDEX Engine.

» Determine the WSS experimentally: if you notice that increasing RSS (by adding RAM or subtracting
competing processes) improves performance of the MDEX Engine, this means that the WSS was previously
larger than the RSS. This was likely the cause of the performance degradation.

« If the size of the WSS grows too close to the amount of RAM, or starts to exceed it, paging to disk begins
and you will notice rapid decreases in performance.

The most noticeable symptom of paging is a large increase in Dgraph query latency. For a list of tools commonly
used for measuring the amount of paging, see “Useful Third-Party Tools” in this guide.

Dgraph virtual memory vs. RAM: use cases

While the amount of virtual memory consumed by the Dgraph process may grow and even exceed RAM at
times, itis important for performance reasons that the working set size of the Dgraph process not exceed RAM.

The following diagram illustrates this relationship:

Oracle Commerce Guided Search Search Performance Tuning Guide

28

System Characteristics and Hardware | Memory considerations

VM VM

* RAM is the amount of physical memory
* VM is the Dgraph process virtual memory usage
* WSS is the Dgraph process working set size

VM

Dgraph
process Virtual
Mermory usage

In this diagram:

The diagram illustrates three distinct use cases:

» Typical operation with normal memory saturation. The graph on the left side illustrates the case where
the amount of virtual memory used by the Dgraph process completely fits into RAM and thus the working
set size of the Dgraph process also fits into RAM. This is a standard situation under which the Dgraph
maintains its best performance.

» Typical operation in an out-of-memory situation. The graph in the middle illustrates the case where,

while the amount of virtual memory exceeds RAM, the working set size of the Dgraph process fits into
RAM. In this case, the Dgraph also maintains its optimal performance.

» Potentially I/O bound operation with poor performance where WSS starts to exceed RAM. The graph

on the right side illustrates a situation that you should avoid. In this case, both the amount of virtual memory
consumed by the Dgraph and the working set size of the Dgraph exceed RAM. Two situations are possible
in this scenario that are of particular interest to you: the WSS can start to exceed RAM mildly or significantly.
Subsequently, the degradation in 1/0 performance can also be mild or significant. Identify the level of I/O
performance that is acceptable to your implementation. Depending on the acceptable I/O performance,
you can decide whether you need to address the situation with WSS exceeding RAM. In general, if WSS
starts to considerably exceed RAM, this causes Dgraph performance to drop dramatically.

Solutions for memory-based Dgraph performance problems

This section describes several ways to correct paging or out-of-memory problems with the Dgraph process.

» Add more RAM to the server hosting a single Dgraph or multiple Dgraphs. This is the simplest solution to

paging issues with the Dgraph. If multiple Dgraphs are sharing a machine, you can spread them out over

Oracle Commerce Guided Search Search Performance Tuning Guide

System Characteristics and Hardware | Memory considerations 29

a larger number of machines, thus giving each Dgraph a larger share of RAM. This solution has limits
based on your hardware capabilities.

In addition, you can take a conservative approach, and add additional RAM in cases where the Dgraph
memory consumption (WSS) approaches the amount of RAM available for the Dgraph, but does not exceed
it yet. In such cases, while additional RAM may not be necessary to create an environment free of 1/0
contention, it provides a buffer and ensures that memory is available when needed.

» Defragment the file system periodically. This can alleviate performance problems.

» Consider tuning the read_ahead_kb kernel parameter on Linux. For example, a large data scale
implementation that is operating out of memory can be a candidate for tuning this parameter.

» Explore how you use features such as wildcard search, multi-assign for dimensions, and others.

Related Links
Tuning the read_ahead_kb kernel parameter on page 37
Oracle recommends setting the read_ahead_kb kernel parameter to 64 kilobytes on all Linux
machines (RHEL 5). This setting controls how much extra data the operating system reads from disk
when performing 1/O operations.

About the Dgraph cache

The MDEX Engine cache (or the Dgraph cache) is a storage area in memory that the Dgraph uses to dynamically
save potentially useful data structures, such as partial and complete results of processing queries.

Since the Dgraph has direct access to the structures that it needs, it does not need to repeat the computational
work previously done. The structures that are chosen for storing enable the Dgraph to answer queries faster
by using fewer server resources.

The Dgraph cache is unified and adaptive:

» Dgraph uses a single cache, which stores data structures of all types. All threads share this cache.

» The cache evicts data structures that it finds no longer useful. Its eviction algorithm rates the usefulness
of each cache object based on your current data and your visitors’ current queries. When this information
changes, the Dgraph cache detects the change and adjusts, but you do not have to retune it.

The default Dgraph cache size (specified by the -—cmem flag) is 1024MB (1GB).

The Dgraph cache improves both throughput and latency by taking advantage of similarities between processed
queries. When a query is processed, the Dgraph checks to see whether processing time can be saved by
looking up the results of some or all of the query computation from an earlier query.

The Dgraph cache is used to dynamically cache query results as well as partial or intermediate results. For
example, if you perform a text search query the result is stored, if it was not already, in the cache. If you then
refine the results by selecting a dimension value, your original text search query is augmented with a refinement.
It is likely that the Dgraph can take advantage of the cached text search result from your original query and
avoid recomputing that result. If the navigation refinement result is also in the cache, the Engine does not need
to do that work either.

To a large extent, the contents of the Dgraph cache are self-adjusting: what information is saved there and
how long it is kept is decided automatically.

However, when deploying a Dgraph you need to decide how much memory to allocate for the Dgraph cache.

Allocating more memory to the cache improves performance by increasing the amount of information that can
be stored in it. Thus, this information does not have to be recomputed.

Your MDEX Engine is well-tuned only when the Dgraph cache and the file system cache are well-balanced;
therefore you need to understand them both.

Oracle Commerce Guided Search Search Performance Tuning Guide

30

System Characteristics and Hardware | Memory considerations

About the File System Cache

The file system (FS) cache is a mechanism that the operating system use to speed up read and write to disk
operations.

FS caching is beneficial to the MDEX Engine, and it is important to tune the file system cache and the Dgraph
cache on the server that runs the Dgraph.

For example, read acceleration is the aspect of the FS cache that has the greatest influence on the performance
of the MDEX Engine. The FS cache speeds up reads by holding recently accessed information in RAM (because
your process will need this data again), and by proactively reading ahead beyond the area recently accessed
and holding that information in RAM too (because your process will probably ask for that data next).

Related Links

Tuning the read_ahead_kb kernel parameter on page 37
Oracle recommends setting the read_ahead_ kb kernel parameter to 64 kilobytes on all Linux
machines (RHEL 5). This setting controls how much extra data the operating system reads from disk
when performing 1/O operations.

Some recommended ways to tune cache for best performance

In some cases, you will not have enough memory to maximize both the FS cache and the Dgraph cache - for
example, when you are operating at large data scale. In such cases, you must allocate memory between
internal Dgraph cache and FS cache, because you do not have enough memory to maximize both. No general
rule for allocating memory in these cases exists, however; you must determine the best way to allocate it
experimentally.

Use the following practices for optimizing the Dgraph and the file system caches for best performance:

» Examine the Cache tab of the MDEX Engine Stats page, especially if you need to tune the cache. In
particular, pay attention to these columns in the Cache tab:

* “Number of rejections”. Examining this column is useful if you want to see whether you need to increase
the amount of disk space used for the MDEX cache. Counts greater than zero in the "Number of
rejections” column indicate that the cache is undersized and you may want to increase it.

* “Number of reinsertions”. Examining this column is useful if you want to examine your queries for
similarities and improve performance by considering the redesign of the front-end application. Large
counts in the "Number of reinsertions" column indicate that simultaneous queries are computing the
same values, and it may be possible to improve performance by sequencing queries, if the application
design permits.

 "Total reinsertion time". Examining this column is useful for quantifying the overall performance impact
of queries that contribute to the "Number of reinsertions" column. This column represents the aggregated
time that has been spent calculating identical results in parallel with other queries. This is the amount
of compute time that potentially can be saved by sequencing queries in a re-design of the front-end
application.

» Experiment and increase the size of the Dgraph cache as your hardware allows. However, do not set the
Dgraph cache to use all the free memory available on your server, because you also need to allocate
memory for the file system cache and query working memory.

Use the Dgraph —-cmem flag to tune the Dgraph cache experimentally. It specifies the size of the cache
in megabytes of RAM, and is the major mechanism for tuning the Dgraph cache. By default, if -—cmem is
not specified, the size of the cache is 1024MB (1GB) for the Dgraph.

If you have unused physical memory, you can try improving the performance of the MDEX engine by
increasing cache size. When the MDEX Engine obtains extra memory for its cache, the cache algorithm

Oracle Commerce Guided Search Search Performance Tuning Guide

System Characteristics and Hardware | Memory considerations 31

identifies the best strategy for storing the most useful data structures and for evicting those structures that
are less likely to be needed frequently.

» For a specific MDEX Engine on any server, find the point of best performance experimentally:

Gradually increase the size of the Dgraph cache until it no longer improves performance. When performance
stops improving and starts degrading, you have increased cache too much.

Back off the Dgraph cache setting by a fair amount (such as 500MB). The right answer depends on both
raw data size and some subtle characteristics of the workload (such as, how much disk-backed information
the average query needs, and how similar or different queries are from each other).

» Review your query mix to see if it exhibits a high degree of similarity between queries (either because of
a highly constrained user interface or a highly homogeneous user base). This is one of the cases where
performance improvements from a larger Dgraph cache may not be noticeable. If all your queries are
similar, a large Dgraph cache is unlikely to be valuable.

+ Find the right balance between the Dgraph cache and the FS cache. When tuning the size of the Dgraph
cache, ensure that you do not accidentally displace the amount of memory allocated to the FS cache.

In general, the Dgraph cache may contain a slightly larger number of objects useful to the Dgraph than the
FS cache. This is often beneficial to Dgraph performance. However, this causes a significant performance
degradation when information that is not in the FS cache is needed. This is because real disk access (not
just access to the FS cache reads from RAM) will be needed more often, and disk reads are significantly
slower than reads from the FS cache.

» Be aware of the paging situation when you experimentally determine the best strategy for allocating RAM
to the Dgraph internal cache and the file system cache.

If you increase the Dgraph cache size in large increments between experiments, the Dgraph process
memory (including the Dgraph cache) may no longer not fit into physical RAM. In this situation not only
there is not enough room for the FS cache, but the Dgraph process starts paging and its performance
degrades significantly.

» As your hardware permits, experiment with increasing the FS cache, along with the Dgraph cache. In
general, performance gains from using the FS cache vary depending on the processes that you are running
and what they are doing with the disk.

For information on the file system caching mechanism, refer to the online sources of information that are
specific to your operating system and the file system that you use.

Warming the Dgraph cache after an update

You can improve the performance of a Dgraph by warming the internal Dgraph cache after an update has
been processed. To warm the cache, you specify the ——warmupseconds <seconds> flag to the Dgraph.

The --warmupseconds flag instructs the Dgraph to store a sample of client queries, and after an update is
processed, the Dgraph internally re-runs a sample of those queries to warm the cache before processing
external queries using the updated data. The warming queries run for the <seconds> value that you specify.

During the period of time that the cache is warming, the Dgraph continues to serve incoming queries against
the current data set. The Dgraph begins using the updated data as soon as the warming period is over. In
other words, the amount of time needed to process an update is increased by the number of seconds you
specify for --warmupseconds.

In the Dgraph request log, all warming query URLs are tagged with the additional parameter &log=warming
as a convenience to identify the log entries produced by warming queries.

Oracle Commerce Guided Search Search Performance Tuning Guide

32 System Characteristics and Hardware | Memory considerations

The Dgraph cache and its impact on virtual process size

The amount of memory allocated to the Dgraph cache directly affects the virtual process size of the Dgraph.
An example in this topic shows how to adjust the Dgraph cache.

Furthermore, since the cache is accessed frequently, the amount of virtual memory allocated to it affects the
working set size of the Dgraph. This may cause virtual memory paging, which can adversely affect throughput
and especially the maximum latency. Whether this is a problem depends on your deployment scenario.

Example: Adjusting the Dgraph cache
Consider a scenario where a single Dgraph runs on a machine with 8GB of physical memory:

+ If the virtual process size of the Dgraph is 6GB with a default (1GB) Dgraph cache, and the machine is not
being used for any other processes, it makes sense to experiment with increasing the Dgraph cache size
to 2.5GB to improve performance. The resulting 8.5GB virtual process size will not cause undue memory
pressure.

« If the virtual process size of the Dgraph is 9GB, this exceeds the amount of RAM (8GB) and creates
significant memory pressure. However, it may still make sense to increase the Dgraph cache size above
the default, if the increase is not aggressive. Although in such a situation, increasing the cache size further
will slow down those queries that are not assisted by the Dgraph cache, that may be acceptable if the effect
of speeding up queries by providing a larger cache is greater than the effect of slowing down queries by
causing virtual memory paging.

To make the right trade-off in this situation, increase the cache size while watching throughput, average
latency, and maximum latency. At some point you will see that throughput is improving but average latency
has gotten worse. Whether you are willing to trade latency degradation for throughput improvement will
depend on the specific performance numbers, on your application, and on the expectations of your users.

Estimating the MDEX Engine RAM requirements

This topic provides recommendations for estimating the requirements for physical memory for an Endeca 6.1.x
system given the anticipated growth of your data set.

The size of the Dgraph process is impacted by:

» The size of the Dgraph index generations in memory

the size of the precomputed sorts in memory (if precomputed sorts are used)
the size of the Dgraph cache

* Other factors, such as the size of the in-flight data

Each of these areas is discussed below in a separate section.

Impact of the MDEX Engine cache on WSS

Use --cmem to identify (or change) the Dgraph cache, and take it into account when estimating the projected
amount of RAM needed for the MDEX Engine operations in view of the projected growth of the data set.

Impact of partial updates on WSS

Partial updates can have a significant impact on RSS and WSS. The precise details of the Endeca generation
merging strategy are complex and proprietary. However, the rough pattern of memory usage that you can
expect to see from a Dgraph running with partial updates is as follows:

» Expect a jump in address space usage each time a partial update is applied. The size of the jump depends
on the size of the update. Each partial update causes one or more index generation files to be created.

Oracle Commerce Guided Search Search Performance Tuning Guide

System Characteristics and Hardware | Memory considerations 33

When merges of partial update generations occur, the MDEX Engine allocates space for a new generation
file and merges two or more existing generations into that new generation file. This allocation causes a
spike in the address space usage. Since some of the merged operations may cancel each other (for
example, adding a record in generation file N is canceled by the deletion of that record in generation file
N+1), the new total generation size may be smaller after the partial merge.

Additionally, when full generation merges occur, all existing generations are merged into a single new
generation file. Since the new generation file is roughly the same size as the sum of all pre-existing
generation files (minus any canceled operations), the WSS roughly doubles during this period.

While a full merge may cause the WSS to increase significantly, the effects on WSS are muted by the
paging behavior of the operating system. Based on Oracle's recommendations, it is unnecessary for an
MDEX Engine server to have a quantity of RAM equal to twice the generation file sizes when partial or full
merge is occurring.

It is fairly easy to detect the occurrence of a full merge. Watch the generations directory, found in
<dgidx_output>/<dataset prefix>_indexes/generations, and notice when the number of
generation files drops to 1.

During this testing, push enough of partial updates through the system to trigger the full merge. This will
provide you with a good enough estimate of how much RAM you need for handling partial updates.

%
Note: Beginning with version 6.1.4 of the MDEX Engine, you can set the partial updates merges to use

a balanced or aggressive merge strategy. For details on the merge policy, see the MDEX Engine Partial
Updates Guide.

Impact of sorting strategies on WSS

When measuring WSS, account for the sorting strategies used by the MDEX Engine. To ensure that you
measure the full "eventual" WSS of the Dgraph in 6.1.x, include a wide range of queries in your testing logs,
ensuring that a portion of your queries utilizes sorting strategies, including precomputed sorts.

e

Note: You can confirm whether your sorting queries utilize precomputed sort by checking whether any
of your properties is configured in Developer Studio so that it can be used for record sort, or by checking
the <RECORD_SORT_CONF 1G> element in your application's XML configuration files. This element lists
properties that are configured to use precomputed sort. Precomputed sort techniques may be used by
the MDEX Engine in the default sort queries. Therefore, to verify whether any of your sorting queries
use precomputed sort, you can check the Index Preparation Tab of the Stats page that contains
Precomputed Sorts statistics. This metric displays how much time the Dgraph has spent computing
sorts, including computing sorts and incremental sort updates.

Impact of in-flight data on WSS

In addition to the types of impact that are already listed in this topic, other factors, such as in-flight processing
and data can have an effect on WSS. These factors cannot be measured directly, but you should be aware of
their effect.

Recommendations for estimating projected RAM requirements

- 4"“." -

Important: Use the following recommendations with the understanding that estimating RSS and WSS
depends to a large degree on the operating system processing, and is also highly dependent on the
context of your Guided Search implementation. The size of the Dgraph process is affected by several
aspects, such as the size of the index in memory, cache, and other computations. These artifacts, in
turn, depend on the features you are using, such as types of updates you run (partial or baseline), or
whether the application relies on precomputed sorts. To summarize, while estimating requirements for

Oracle Commerce Guided Search Search Performance Tuning Guide

34 System Characteristics and Hardware | Network considerations

physical memory, use these recommendations in the context of your own implementation, to account
for variability in the RSS size due to these factors.

To estimate projected requirements for physical memory for an Endeca 6.1.x system, use the following
recommendations:

Measure RSS. Perform evaluations of your average resident set size for your indexes, and peak resident
set size, while noting the record set size on disk. For example, you may find it useful to identify various
ratios between average record size on disk, average resident set size of your indexes, and peak resident
set size. For testing these numbers, employ tests with varying levels of request activity sent to the Dgraph.
For example, send a considerable number of requests to the 6.1.x MDEX Engine with periodic cache
flushes to force the Dgraph to go to memory or disk as needed to fulfill some of the requests (this is true
if you replay request logs for your test).

If your implementation uses partial updates, account for this fact in your MDEX Engine testing. Include in
your tests large enough files that contain records which will be updated through partial updates. For more
information, see the section in this topic on Impact of partial updates on RSS.

Similarly, account for the size of the Dgraph cache, for sorting queries that utilize precomputed sorts, and
for the size of in-flight data (see sections in this topic on each of these aspects of the RSS).

Identify the ratio of the RSS to on-disk representation of the record set, and confirm that with different tests
this ratio remains the same.

Based on these evaluations, draw conclusions and identify the following numbers:

* The average on-disk record set size and the largest on-disk record set size.
* The peak resident set size observed with the current record set.

4 Note: If you are not using partial updates, this number could be roughly equivalent to the on-disk
representation of the MDEX Engine data plus the size of the cache for each of your Dgraphs,
the size of the in-flight processing and data, and the fact whether precomputed sort is being used.
If you are using partial updates, see a section in this topic for their impact on WSS and RSS.

Using these recommendations, you can identify the following numbers for the MDEX Engine 6.1.x:

» The average on disk record size that is used for your number of records.
» The peak resident set size (RSS) of the Dgraph.
* The peak virtual memory usage.

Predict the growth of the RSS that you will need. You can do so based on the projected growth of the
on-disk representation of the data set and the numbers that you obtain for the peak resident size, peak
virtual memory usage and their ratios to your data set size.

Once you predict the growth of the resident set size, you can estimate memory requirements for your Guided
Search implementation. This will make it possible to provision enough hardware to support the MDEX Engines
with the projected data set growth.

Network considerations

Oracle recommends that you use 100Mbit or Gigabit Ethernet. Also, make sure that all NICs in your
implementation use the same duplex setting. The full-duplex setting is highly recommended.

Oracle Commerce Guided Search Search Performance Tuning Guide

System Characteristics and Hardware | Dgidx performance recommendations 35

Dgidx performance recommendations

This topic provides information about performance considerations for Dgidx.

RAM and disk swap size recommendations

Although this guide deals with MDEX Engine performance, since the Dgidx program is involved in the indexing
process, it is important to plan for adequate Dgidx performance as well. It is especially important to plan for
Dgidx performance if you have a large data set.

Oracle recommends provisioning your hardware for running Dgidx using these estimates:

* Plan to run Dgidx with the provisioned amount of RAM that is equal to the size of the finished index size,
that is the size of the data/dgidx_output directory after a successful Dgidx run.

* Increase the amount of swap space size to at least the amount of RAM provisioned on your system.

Troubleshooting tips for Dgidx

if a record takes longer than 60 seconds to process by Dgidx, Dgidx prints out a warning enabling you to identify
and fix the record. This information can be useful to you if you need to identify a record with extremely large
numbers of property assignments. This may occur as a result of an issue with the ETL process. After you
identify the record, you can review it to decide whether all of its assignments are required by the application.

Operating system considerations

This section discusses various tuning changes on the Operating system level that you can perform on the
server running the MDEX Engine to optimize its performance.

Windows 2008 performance considerations

If you experience poor performance on an Intel Xeon processor-based servers running Windows Server 2008,
Oracle recommends changing the default BIOS setting for power management from "Dynamic" mode to "Static
High Performance" mode.

The BIOS has a mode setting that controls the power regulator. In the default "Dynamic" mode, the system
attempts to balance high performance with power savings. Setting the regulator to "Static High Performance"
mode forces the system to always favor performance.

This issue has been observed only on some Xeon-based servers.

VMware performance considerations

This topic discusses performance expectations of MDEX Engine deployments on VMware (all supported
versions) and provides recommendations for such deployments.

Virtualizing Guided Search deployments on VMware is motivated by cost management reduction that is typically
associated with server consolidation, as well as by human cost reduction associated with simplified server
administration and maintenance.

Oracle Commerce Guided Search Search Performance Tuning Guide

36

System Characteristics and Hardware | Operating system considerations

Supported guest operating systems

See the "Supported operating systems" section of the Endeca MDEX Engine Installation Guide for supported
guest operating systems.

Configuration guidelines
Oracle recommends using the following guidelines for MDEX Engine deployments on VMware:

» Configure four VCPUs on a virtual machine.

 Specify four threads for each Dgraph. Overall, the number of threads should not exceed the number of
VCPUs.

+ Allocate a single Dgraph per virtual machine. Oracle does not recommend running more than one MDEX
Engine per virtual machine.

Performance expectations

Overall, for server-level performance, the average and sustained throughput decrease in a VM environment,
while the latency and the warmup time increase.

If you consider deploying an MDEX Engine with the Dgraph that is configured with four threads and where the
MDEX Engine is assumed to be utilized at full capacity, expect a 10-30% performance overhead with a
VMware-based deployment compared with a non-VM deployment. The indexing performance is also expected
to be in the range of 10-30% overhead above the non-VM deployment. In some deployments, depending on
your hardware, storage and implementation strategy, performance overhead can be up to 50%.

These performance expectations manifest in the decrease in sustained throughput, increase in average latency,
increase in the amount of time it takes the Dgraph to reach 80% of its expected level of throughput, and increase
in the latency of the longest query (99% of queries perform better than this query).

Additional performance recommendations

Performance risk associated with virtualizing the MDEX Engine is directly related to the performance and
scalability requirements of your application. While Oracle recommends virtualization, customers interested in
virtualizing HPC (high-performance computing) applications should analyze the risk associated with such
projects and seek IT support with strong virtualization skills and experience. Oracle believes that virtualization
of the MDEX Engine on VMware is most appropriate at smaller data scale.

Oracle recommends the following practices to ensure adequate performance on VMware:

» Implement vendor best practices for tuning performance of network and storage in a VM environment. For
example, be aware of the limitation of four virtual CPUs per virtual machine.

» Be aware of the virtualization performance tax. The performance overhead, or "tax", of virtualizing the
MDEX Engine varies by data set and by performance metric. When a deployment is properly configured
and sized, the performance overhead is generally about 10%-30%. Oracle expects that the virtualization
performance tax will exceed the range of 10%-30% and may reach up to 50% in the following situations:

* Improperly configured or improperly sized deployments. Adequate memory allocation is especially
important. Plan for additional memory and storage requirements due to index replication.

» Write-heavy workloads. In particular, the following Guided Search configurations are susceptible: (1)
deployments where Dgidx and Forge are used heavily, and (2) Dgraphs under extensive and sustained
partial update load.

* Rely on a robust deployment architecture. Most of the initial performance problems associated with deploying
VMware occur due to mis-configurations or inadequate system resources.

» The approach to disk storage can be a significant factor in performance. Both locally-attached storage and
network-attached storage solutions are supported. To ensure adequate performance, pay special attention
to testing and tuning the bandwidth and latency of your storage solution with VMware. Consult with the

Oracle Commerce Guided Search Search Performance Tuning Guide

System Characteristics and Hardware | Operating system considerations 37

documentation for your storage manufacturer for information on tuning your storage configuration for
VMware.

» Expect that lower throughput will lead to longer warmup periods.

+ Plan for lower ratio of query threads to update threads for applications leveraging frequent partial updates.
Frequent partial updates are recommended in such implementations because each Dgraph is limited to
four threads by the virtual machine limit of four virtual CPUs. On non-VM platforms, a Dgraph can be
configured with significantly more threads, improving the ratio of query threads to update threads during
partial update processing.

Linux considerations

This section lists recommended tuning changes on RHEL 4 and RHEL 5 configurations for the MDEX Engine.

About the read_ahead_kb kernel parameter
Starting with the MDEX Engine version 6.0, the MDEX Engine takes advantage of the readahead function.

Readahead is a technique employed by the Linux kernel that can improve file reading performance. If the
kernel assumes that a particular file is being read sequentially, it attempts to read subsequent blocks from the
file into memory before the application requests them. Setting the readahead can speed up the system's
throughput, since the reading application does not have to wait as long for its subsequent requests, since they
are served from cache in RAM, not from disk. However, in some cases the readahead setting generates
unnecessary /O operations and occupies memory pages which are needed for some other purpose. Therefore,
tuning readahead for best performance is recommended.

You can tune readahead for optimum performance based on the settings recommended by Endeca.

Tuning the read_ahead_kb kernel parameter

Oracle recommends setting the read_ahead_kb kernel parameter to 64 kilobytes on all Linux machines
(RHEL 5). This setting controls how much extra data the operating system reads from disk when performing
I/O operations.

Reducing this value from the default typically increases sustained throughput for the MDEX Engine while also
increasing its warmup time. Warmup is defined as initial performance of the MDEX Engine after startup
(throughput and query latency), until the sustained level of performance is reached. Therefore, if you decide
to tune this parameter, choose a value to balance these concerns.

Reducing read_ahead_kb has a noticeable effect and increases throughput for the MDEX Engine only in
cases where a large data set may not fit into the MDEX Engine memory.

In cases when the index fits into memory, reducing read_ahead_kb from its default has no noticeable effect
on the MDEX Engine performance.

When operating the MDEX Engine on a large data set that is running out of memory, consider adding more
memory in addition to tuning read_ahead_kb to improve performance.

Setting read_ahead_kb to 64 kilobytes is a reasonable choice for most applications running on Linux.

To tune the read_ahead_kb kernel parameter on RHEL 5:

Add a command to Zetc/rc. local as root:
echo 64 > /sys/block/sda/queue/read_ahead_ kb

where sda is the name of the disk device for the MDEX Engine, and 64 is the number of kilobytes for the
new read_ahead_kb setting.

Oracle Commerce Guided Search Search Performance Tuning Guide

38 System Characteristics and Hardware | Load balancer considerations

Changing the 1/O scheduler on RHEL 5
Oracle recommends changing the default I/O scheduler that the Linux kernel uses from CFQ to DEADLINE.

This dramatically speeds up performance of Guided Search applications with large data sets in cases where
both the amount of physical memory available to the MDEX Engine and disk I/O are limited. This
recommendation applies to Endeca implementations on both RAID disk arrays and individual disks.

To adjust the 1/0 scheduler on a device:

1. Add a command similar to the following to /etc/rc.local as root:
echo deadline > /sys/block/sda/queue/scheduler

where sda is the name of the block device where the Dgraph input resides on your system. This changes
the scheduler to DEADLINE.

2. Use performance tools to validate the results.

Disabling the swap token timeout on RHEL 5

Oracle recommends disabling the swap token timeout by setting it to zero. The swap token is a mechanism
in Linux that allows some processes to make progress when the total working set size of all processes exceeds
the size of physical RAM.

In situations when only one process is active, and the virtual memory size of that process gets close to, or
exceeds the size of the available RAM, enabling the swap token negatively affects performance. In the context
of the Dgraph, this can happen if the physical server is dedicated exclusively to running the MDEX Engine,
and the index size is close to, or exceeds the size of the available RAM.

Oracle recommends disabling the swap token for those MDEX Engine configurations running on Linux that
serve large data sets and are memory- and disk-bound.

If you choose not to disable the swap token, and experience erratic Dgraph performance, you may wish to
examine the system to determine whether the swap token is causing problems. The swap token can cause
"direct steal" operations.

To measure "direct steal" operations, check the contents of /proc/vmstat, adding pgsteal _dma32 and
pgsteal_normal values and subtracting kswapd_steal.

Note: Oracle recommends that you disable the swap token explicitly for the MDEX Engine disk devices
even though you can obtain a patch for the Linux kernel that disables it.

To disable the swap token timeout on RHEL 5:

As part of the boot process, add one of the following options to your Zetc/rc. local file as root:
sysctl -w vm.swap_token_timeout=0

or

echo 0 > /proc/sys/vm/swap_token_timeout

Or, add vm.swap_token_timeout = 0to /etc/sysctl._conf.

Load balancer considerations

For all deployment architectures, Oracle recommends the following load balancing practices.

Oracle Commerce Guided Search Search Performance Tuning Guide

System Characteristics and Hardware | High availability considerations 39

* Use load balancers with the MDEX Engine to increase throughput and ensure availability in the event of
hardware failure. Oracle recommends including two hardware-based load-balancing switches configured
redundantly in your configuration. Having two load balancers ensures their availability in the event of a
load balancer hardware failure.

» Use the "least connections" model as the best routing algorithm for balancing traffic to the Dgraphs. The
‘round robin” model can have negative consequences, especially when occasional long-running queries
are possible and the site is operating near its maximum traffic load.

» Ensure that return traffic from Dgraphs to the client tier is directly transmitted, and does not pass back
through the load balancer hardware.

 Use scripting for load balancers. For example, you can use http://[host]: [port]/admin?op=ping
on the load balancer to check whether the Dgraph process is running on this port. If it is not running, the
load balancer fails over to another port, and directs queries to the MDEX Engine that is currently available.

Load balancing and session affinity

In a load balancing situation, consider enabling session affinity on the application server that directs server
requests to the load balanced Dgraphs.

Session affinity, also known as “sticky sessions”, is the function of the load balancer that directs subsequent
requests from each unique session to the same Dgraph in the load balancer pool. Implementing session affinity
makes the utilization of the Dgraph cache more effective, which improves performance of Dgraph access and
the application server.

To facilitate session affinity, your application code can call ENEQuery.setQuerylInfo() to create an ENE~
QueryInfo object. In this object, you set query-specific information in name/value pairs (such as the session
ID and query ID) for the MDEX Engine to log.

Alternatively, you can also set this information by calling HttpENEConnection.addHttpHeader() and
specifying a name/value pair.

In either approach, the Web application sends the name/value pairs to the MDEX Engine. However, the set-
QuerylInfo() method adds the name/value pairs to the query object itself; while the addHttpHeader ()
method adds the name/value pairs to the header of the HTTP GET request.

In cases where long URLSs interact poorly with a load balancer, you may need to force a POST request. You
can force a POST request by calling HttpENEConnection.setMaxUr 1 () and specifying an upper limit on
the length of the URL. Any URLS longer than the specified value are sent to the MDEX Engine using a POST
request. You can also call setMaxUr 1 () and specify a value of 0 to force a POST request for all queries
regardless of URL length.

Remember that application code automatically sends a query using a POST if the URL becomes too long to
send using a GET request. The setMaxUr 1 () provides a way to force the request type if necessary.

Session affinity increases the latency overhead of the load balancer. Therefore, Oracle recommends testing
the load balanced environment for performance optimization. This helps to determine whether the benefit of
increased leverage from the Dgraph cache exceeds the cost of increased latency in the load balancer.

High availability considerations

Oracle recommends the following practices to ensure high performance and high availability.

» Use the Dgraph in multithreaded mode and experiment with increasing the number of threads. By default,
the Dgraph runs in multithreaded mode with the number of threads set to one. It can be configured to run
with a larger number of threads.

Oracle Commerce Guided Search Search Performance Tuning Guide

40 System Characteristics and Hardware | High availability considerations

* Protect your configuration from hardware failures:
Use redundant disk drives with RAID (RAID 0, RAID 0+1, RAID 5), or SAN.
Utilize device redundancy for servers, load balancer devices and routers.

Use a second data center (hot or cold standby) to protect from site failures, such as power and network
outages or enterprise data center failures.

 Protect your configuration from software failures:

If you have not done this already, upgrade to 64-bit systems to avoid “out of address space” failures.
(Starting with its version 6.*, MDEX Engine installations are only supported on 64-bit systems.)

Use respawning monitors to protect against unexpected fatal process errors.
Watch out for paging with process memory usage.

Periodically examine your application for slow queries, or massive responses (too many results returned
not all of which may be needed by the users).

Oracle Commerce Guided Search Search Performance Tuning Guide

Chapter 6
Using Multithreaded Mode

This section discusses MDEX Engine performance in multithreaded mode.

About multithreaded mode

The MDEX Engine always runs in multithreaded mode with the default number of threads set to 1. Multithreaded
mode cannot be disabled.

The MDEX Engine always starts with a pool of threads that you can control with the --threads flag. These
threads include query processing and partial update processing threads and additional threads that support
query and update processing.

Each thread acts like an independent MDEX Engine, processing client requests one at a time and performing
other tasks that support these requests, such as sorting and background index merging. It is important that
the threads share data, memory, and the server network port.

Thus, a multithreaded MDEX Engine with n threads appears to be a single MDEX Engine process that can
work on n queries at a time. Each of the independent threads can run on independent CPUs (or cores), enabling
a single multithreaded MDEX Engine to make use of multi-processor hardware.

Multiple threads can also share a processor, especially a multi-core processor, allowing an MDEX Engine
running on a single-processor host to remain responsive as long-running queries are handled.

Benefits of multithreaded MDEX Engine

The MDEX Engine normally runs in multithreaded mode with the default number of threads set to one. For
many applications, Oracle recommends running the MDEX Engine with more than one thread. These applications
have the following characteristics.

* Large index files on disk. Only one set of index files is required for the multithreaded MDEX Engine.
Thus, in addition to reduced hardware costs, the multithreaded approach reduces the hardware hosting
disk space required.

* Long-running queries. For applications that rely on commonly used MDEX Engine features, almost all
queries complete in a fraction of a second. This enables the MDEX Engine to remain responsive at all
times. However, many applications make use of more advanced features (such as computing complex
aggregate Analytics queries) and can encounter longer running queries. Multithreaded mode enables the
MDEX Engine to remain responsive while working on such long-running queries.

42 Using Multithreaded Mode | The MDEX Engine threading pool

» Simplified system management and network architecture. Configuring the MDEX Engine to run with
multiple threads is much simpler than adding servers to run additional MDEX Engines, which requires
reconfiguring the file system, adding load balancers, and making other infrastructure changes.

» Applications with high throughput requirements with limited hardware resources. The most efficient
way to achieve simultaneous high throughput is to add MDEX Engines and run multiple MDEX Engines
on distinct servers. But, when hardware resources are limited, running a multithreaded MDEX Engine on
the same server requires fewer hardware resources than multiple distinct Engines, because all threads in
the multithreaded MDEX Engine share resources.

The MDEX Engine relies on in-memory index structures to provide sub-second responses to complex
queries. As the scale of application data increases, so does the memory required to host a single instance
of the MDEX Engine.

Multithreaded execution mode enables more efficient utilization of RAM through SMP (Symmetric
Multi-Processing) configurations. For example, if your current data scale requires 4GB of RAM, and query
throughput requires four CPUs, multithreaded execution allows the site to be hosted on a single
quad-processor machine with 5-6GB of RAM, rather than using more costly options, such as four
single-processor machines, each with 4GB of RAM, or a 16GB machine with four Dgraphs on it.

» Applications that heavily use the MDEX Engine dynamic cache. Such applications cause a multithreaded
MDEX Engine (with threads greater than 1) to perform better than multiple singlethreaded MDEX Engines
because all threads in a multithreaded Engine share the same dynamic cache. This is especially true when
that cache is cleared frequently due to restarts or partial updates, or when the cache is typically under
heavy eviction pressure.

The MDEX Engine threading pool

The MDEX Engine consistently manages all processor-intensive tasks related to query processing using its
preconfigured threading pool.

The --threads flag reflects the total number of threads in the MDEX Engine threading pool.

You define the number of threads in the threading pool at MDEX Engine startup, based on the setting for the
-—threads flag.

Recall that the recommended number of threads for the MDEX Engine is typically equal to the number of cores
on the MDEX Engine server. By managing the threading pool, the MDEX Engine enables you more accurately
to limit the available computation resources to each core. This ensures that the system resources are used
effectively for the highly prioritized tasks in the MDEX Engine all of which support query processing and high
performance.

The threading pool manages the following MDEX Engine tasks:

* Query processing tasks
+ Update and administrative operations

+ All tasks that support query processing in the MDEX Engine. The MDEX Engine allocates these tasks for
threads in the threading pool. The tasks include all high-priority, CPU-intensive, frequently performed
operations the MDEX Engine runs in production. For example, they include precomputed sorting, background
merging of index generations, and operations that support high performance of updates, among others.

Other MDEX Engine operations that do not have a significant impact on CPU usage are not managed by the
threading pool.

If you use operating system commands such as top to examine the number of threads used by the MDEX
Engine server, you may see a number that is larger than the number you specify with the -—threads flag.

Oracle Commerce Guided Search Search Performance Tuning Guide

Using Multithreaded Mode | Configuring the number of MDEX Engine threads 43

This is because in addition to this number of threads, the MDEX Engine may use additional threads for other
tasks. These additional threads support tasks that are run infrequently, are less-CPU intensive, and do not
affect overall MDEX Engine performance. You cannot control these additional threads.

e
"~ Note: Be sure to set the number of MDEX Engine threads to (at most) two less than the number of
hardware cores on the machine where the MDEX Engine is running. This will ensure that certain

housekeeping tasks run by the MDEX Engine will have enough threads to execute. This text is true

regardless of whether partial updates are taking place.

Configuring the number of MDEX Engine threads

For most applications, Oracle recommends experimenting and increasing the number of threads.
By default, the MDEX Engine runs in multithreaded mode with the number of threads set to 2.

To increase the number of threads:

Specify it for the —-threads flag when starting the MDEX Engine (Dgraph).
For example: --threads 4

This starts the MDEX Engine in multithreaded mode with four threads that are used for query processing and
other MDEX Engine tasks that support query processing.

When to increase the number of threads

Oracle recommends using a higher setting for threads than in previous releases. Increasing the number of
threads allows the MDEX Engine to handle more queries simultaneously.

Use the following recommendations:

+ If you are using an application with a low throughput without long-running queries, this implementation can
run in a singlethreaded mode in which one thread is used to process all query requests to the MDEX
Engine. The same thread is used for other query-related processes of the MDEX Engine.

+ If you are using a single MDEX Engine server with one thread, it is worth increasing the number of threads
to improve performance.

A simple recommendation is to configure at least one thread per core. Higher ratios may generate more
throughput, but due to the potential impact on latencies, Oracle recommends running further testing to find
the thread count most beneficial to the needs of a specific application.

If increasing the number of threads stops improving query performance, this is an inflection point at which
you can start considering the need to switch to a configuration with more Dgraphs.

A typical estimate that you can use to start testing with the increased number of threads is about 1 thread
per core. For example:

» On a standard processor, enable 1 thread per processor
» On a dual-core processor, enable 2 threads per processor
» On a quad-core processor, enable 4 threads per processor

Oracle Commerce Guided Search Search Performance Tuning Guide

44 Using Multithreaded Mode | Multithreaded MDEX Engine performance

Multithreaded MDEX Engine performance

The performance of an MDEX Engine process is a function of a number of factors.
These factors include:

» Base, single-threaded performance, given the application data and query profile
* Number of processors on the host system

* Query characteristics

* Host operating system

Generally, on a host system with N CPUs or cores, where one single-threaded MDEX Engine can serve K
operations/seconds of query load, N or more independent MDEX Engine processes will serve somewhat less
than N times K, commonly in the 80-90% ultilization range. In other words, given the base single-instance

performance of K, the expected N-processor performance is given by ¥ KN whee (08 <U7<09)

The expected performance for one multithreaded MDEX Engine with more than one thread is similar, but
generally somewhat less. In this case, the expected performance is given by the above formula, except with
utilization in the 65% to 85% range (©7=Y=083) However, less RAM is required for running one multithreaded
MDEX Engine with threads more than one compared with running separate single-threaded MDEX Engines.

For example, if one single-threaded MDEX Engine provides 20 ops/sec on a given load, running two MDEX
Engines on a dual processor may provide around 36 ops/sec (U=90%, K=20, N=2). Running the same application
with an MDEX Engine with threads more than one may provide 32 ops/sec (U=80%, K=20, N=2).

Similarly, if a single MDEX Engine requires 16GB of RAM, two Engines will require 32GB. Whereas a single
MDEX Engine with more than one processing thread will only require slightly more than 16GB of RAM.

To summarize, Oracle recommends that you run a single MDEX Engine with the number of threads set to
more than one, as opposed to multiple MDEX Engines. (Running multiple MDEX Engines introduces
implementation complexity and also requires a load balancer.)

MDEX Engine Thread Requirements for Partial Updates

The MDEX Engine places a cap on the number of threads available for partial updates (that is, for admin
operations such as admin?op=update) and for certain internal actions consequently performed by the MDEX
Engine. This cap is set by the formula (N+1)/2, where N is the argument of the --threads switch of the dgraph
command specified at startup time. This cap limits the impact of these administrative/internal actions on query
processing.

If an MDEX instance is to run partial updates, recommended practice is to deploy the instance on a system
with at least 8 cores available so that there are sufficient computing resources available for partial updates.

Recommended threading strategies and OS platform

The size of the thread pool and the host operating system impact performance and processor utilization.

In general, Oracle recommends using one thread per processor or core for good performance in most cases.
The actual optimal number of threads for a given application depends on many factors, and is best determined
through experimental performance measurements using expected query load on production data.

If high performance is required, enable more than one thread. Determine the optimal number of threads through
load testing of different configurations.

As a starting point, enable the following number of threads:

» On a quad-core processor, enable 4 threads per processor

Oracle Commerce Guided Search Search Performance Tuning Guide

Using Multithreaded Mode | Recommended threading strategies and OS platform 45

* On a hyperthreaded processor, enable 2 threads per processor
» On a standard processor, enable 1 thread per processor

For example, consider a server with two hyperthreaded processors and sufficient disk resources and RAM,
on which a high-performance application will be deployed. The appropriate starting point for such an architecture
would be one MDEX Engine running multithreaded with 4 threads.

Multithreaded MDEX Engine on Linux and Solaris

On Linux and Solaris, the MDEX Engine uses the POSIX Thread Library, Pthreads. You can examine the
thread count using standard tools, such as top.

Multithreaded MDEX Engine on Windows

On Windows, the MDEX Engine uses native Windows threads. The thread count for an MDEX Engine can be
examined in the Windows Task Manager in the Threads column.

4 Note: The number of threads listed may be greater than the value specified for the --threads flag;
the additional threads that could be listed are those that are used infrequently by processes that are not
CPU-intensive and represent internal maintenance tasks. All the CPU-intensive, query processing-related
threads are controlled by the --threads flag.

Multithreaded MDEX Engine on VMware

On VMware, use the following configuration:

» Be aware of the limitation of four virtual CPUs per virtual machine.
 Specify four threads for each Dgraph. Overall, the number of threads should not exceed the number of
VCPUs.

Oracle Commerce Guided Search Search Performance Tuning Guide

Chapter 7
Diagnosing Dgraph Problems

This section discusses techniques for determining the root cause of apparent poor MDEX Engine performance.
It walks you through some example scenarios and points you in the appropriate direction, based upon the
problems that may be present in your Guided Search implementation.

Information you need

This section lists the information you need and the tools you can use to gather information in order to analyze
and optimize the MDEX Engine performance.

Use the following sources of information:

» System state characteristics
The MDEX Engine request log

» The Request Log Analyzer utility
» Eneperf

Sometimes poor application performance is the symptom of an operational problem (with the hardware, network,
connections, or the application server). At other times, it may require you to review and revise the application
coding, the Dgraph settings that were chosen previously and may need to be adjusted, or interactions between
different features.

The first step in performance tuning is to find out what is causing the application to run more slowly than
expected.

As you gather information about system performance, Oracle recommends that you note what steps you take
and any changes you make to your environment, to ensure that you can analyze them or revert to your previous
settings if needed.

When testing performance, make sure that the types of operations used to produce a load against the Dgraph
are representative of an actual application usage scenario.

System state characteristics

The first clues to identifying the source of a performance problem are found in the system state. The following
characteristics are easy to extract and may immediately indicate a direction in which to concentrate further
investigation.

» The Dgraph_input directory.

* Information about changes in the configuration. This includes:

48 Diagnosing Dgraph Problems | Information you need

» Can the issue be replicated in the staging environment?
» Could the issue be caused by changes in network traffic or other network-related performance issues?
» Have there been any changes to the incoming data, pipeline or configuration files?

» CPU utilization, disk I/0 activity, and internal resource use. This includes:

» Physical number of CPUs available and the number of cores per CPU

» The number of threads the Dgraph has been started with, and the total number of Dgraphs started on
one machine

+ The type of disk I/O connection

» CPU utilization statistics from the Dgraph host (especially when the performance problem is exhibited,
if it is transient)

» CPU utilization statistics from the front-end application host

« disk I/O activity: processes other than the Dgraphs running on the machine that are not standard
daemons or services (for example, a periodic backup process may interfere with disk access)

* Memory utilization. This includes:

* Amount of allocated memory on the application server

» Amount of physical memory (RAM) available on the Dgraph machine

» Memory footprint of the Dgraph process. This includes the Dgraph cache (obtain it with ——cmem),
resident set size, and the amount of virtual memory available for the Dgraph process.

» Storage capacity and configuration. This includes:

« Disk capacity in GB and disk rotation speed

» Configuration and number of disks holding the index

» Whether network-attached storage is used (SAN with Fibre Channel is recommended) versus local
storage

» Whether RAID configuration is used (the simultaneous use of two or more hard disk drives to achieve
greater levels of performance)

« If RAID is used, the configuration of the read-ahead policy for RAID. If the policy you have allows
read-ahead, this lets the disk controller read additional data into the disk cache, which in turn increases
the Dgraph performance.

* Whether mirrored disks are used

This information defines the basic parameters for the performance problem. Typically, you base initial hypotheses
on these findings, and confirm them with the next steps of the investigation.

S
7~ Note: ltis likely that you already have many of the tools you need to assess system state.

Performance tools overview

You can use the following performance tools.

» The MDEX Engine Request Log

+ The MDEX Engine Statistics page
+ The MDEX Engine Auditing page
* The Request Log Analyzer

» Eneperf

The following sections describe these tools in detail.

Oracle Commerce Guided Search Search Performance Tuning Guide

Diagnosing Dgraph Problems | Information you need 49

The MDEX Engine request log
The MDEX Engine request log captures per-query metrics from a running Dgraph.

You can sort, filter, or otherwise manipulate the Dgraph request log to collect performance information. For
example, you can sort the Dgraph request log based on query processing time to get the list of most expensive
queries, or sort it on response duration to track latency trends.

The MDEX Engine Statistics page

The MDEX Engine Statistics page (also called the Dgraph Stats page) provides aggregated metrics since
startup, and creates a detailed breakdown of what a running Dgraph is doing.

If performance is an issue, this page can help you to figure out which features are at fault.

Typically the feature in the Hot-spot Analysis section with the highest total is the best place to start your
investigation. You can use the figures in the Dgraph Stats page to calculate useful metrics.

For example, to determine your application’s network usage, you can multiply the number of ops/second by
the average result page size.

The MDEX Engine Auditing page

The MDEX Engine Auditing page lets you view the aggregate MDEX Engine metrics over time and provides
output of XML reports that track ongoing usage statistics.

These statistics persist through process restarts. This data can be used to verify compliance with licensing
terms, and is also useful for tracking product usage. Each Dgraph in an implementation is audited separately.

The Request Log Analyzer

Use the Request Log Analyzer for processing request logs to analyze query load metrics for the MDEX Engine.
The Request Log Analyzer reports actual performance, not the expected performance.

Use the Request Log Analyzer utility together with Eneperf to investigate whether you have performance under
load.

Here are some of the ways you can use this utility:

* Isolate requests within a specific time range with the —-timelower and --timeupper flags.
» Focus your attention on user-generated requests, by excluding admin, invalid, empty and error requests
with the ——ignore flag.

» Ensure that all statistics are logged. Request metrics in Endeca log reports do not correspond directly to
query load metrics for the MDEX Engine. Differences in request metrics can arise from pages that issue
multiple queries and from caching. For example, run the Request Log Analyzer with —-—showAl I flag to
ensure all statistics are logged:

reqloganalyzer --showAllGraphl.log > Graphl.stats

» Determine whether the performance bottleneck is caused by the Dgraph by comparing the statistics for
“Engine-Only Processing Time” with “Round-Trip Response Time”.

» Show statistics based on threading with the --showthreading flag. This is useful when tuning your
Dgraph threading configuration to increase the number of query threads.

Oracle Commerce Guided Search Search Performance Tuning Guide

50 Diagnosing Dgraph Problems | Dgraph performance issues

Eneperf

Eneperf is a lightweight performance testing tool that is included in your Guided Search installation. It makes
Presentation API queries and XQuery-based queries against the Dgraph based on your Dgraph request logs
and reveals how many operations per second the Dgraph responds with.

Dgraph performance issues

This section discusses locating and addressing Dgraph performance issues.

Improving the speed of Dgraph startup

Starting with the 6.1.x version of the MDEX Engine, Web services are loaded by default at startup. For this
reason, Dgraph startup takes slightly longer than it did in the version 6.0.1. The Dgraph startup is typically
faster than in Endeca IAP 5.1.

In most cases this increase in startup time is not an issue. However, if you find the startup time a problem and
you are not planning to use Web services, you can turn off Web services and thus avoid the startup penalty.
To do this, start the Dgraph with the --disable_web_services flag. (This flag is particularly useful during
development, when you might be starting and stopping the Dgraph frequently.)

>
7~ Note: When web services are disabled, every process that writes to dgraph will fail. This includes
Workbench features such as thesaurus entries, automatic phrases, keyword redirects, and stopwords.

Tips for troubleshooting long processing time

You can use the Request Log Analyzer, installed with the MDEX Engine, to determine whether the performance
bottleneck is caused by the Dgraph by comparing the statistics for “Engine-Only Processing Time” with
“Round-Trip Response Time”.

If "Engine-Only Processing Time" as returned by the Request Log Analyzer tool is long, look further into specific
query features to identify possible causes of the problem. This list identifies which problems you may want to
isolate first:

* Is the long processing time for the Engine caused by limitations of hardware resources? Identify whether
long query time is caused by CPU, memory, or disk I/O utilization.

* Is a high number of records being returned by the MDEX Engine? Identify how many records are being
returned per query by looking for large nbins values in queries as reported by the Request Log Analyzer.
This value indicates the maximum number of records that can be returned in the query. If this number is
high, this can be expensive to compute and affects performance. Consider implementing paging control
methods. For information on using paging control methods, see the MDEX Engine Developer's Guide.

* Are all dimension refinements (dimension values) exposed for navigation? That is, examine whether your
queries are spending most of their time in refinement computation. Identify whether all dimension refinements
are exposed by looking for al Igroups=1 in the Dgraph request log (request URL parameter) or in Request
Log Analyzer reports.

This setting corresponds to NavAl IRefinements value of the ENEQuery method.

If the al Igroups=1 setting is present in the URL parameter, review this configuration setting for your
application to decide whether it is necessary. Exposing all refinements for navigation can decrease
performance because the MDEX Engine has to examine each dimension value in the dimensions and

Oracle Commerce Guided Search Search Performance Tuning Guide

Diagnosing Dgraph Problems | Dgraph performance issues 51

determine whether or not that dimension value is a valid refinement given a current navigation state.
Exposing all dimension refinements for navigation is not recommended.

For dimensions with many dimension values, Oracle recommends introducing a hierarchy (for example, a
sift dimension hierarchy for automatically generated dimensions), so that the MDEX Engine has fewer
dimension values to consider at one time.

* Are your longest queries similar? Check the longest queries for similarities, such as whether they all use
the same search interface with relevance ranking, wildcard search, or record filters. See the sections in
this guide about tuning performance of each of these features.

* Is record search being used? Identify whether a record search is being used by any queries by looking for
“attrs=search_interface_name” in a query. This indicates that a record search is being used which
means that possibly expensive relevance ranking modules can be contributing to high computation time.

» Which relevance ranking strategies are being used? Check the app_prefix.relrank strategies.xml
file for the presence of Exact, Phrase and Proximity ranking modules and test the same query with these
modules removed.

* Is sorting enabled for properties or dimensions? Identify whether sorting with sort keys is enabled, for which
properties and dimensions it is being used and whether it is needed. The first time a sort key is issued to
a Dgraph after startup the key must be computed which can slow down performance. To isolate this problem,
test the query in the staging environment by removing the sort key. If you confirm sort keys are the issue,
consider using sort keys in a representative batch of queries used to warm up the Dgraph after startup.
The sorts will become cached and these queries will be faster.

Note: Also, identify if sorting for properties and dimensions is necessary. In particular, it is not
necessary to flag all sortable properties as sort keys in the project. This is often a performance
problem itself.

Related Links

CPU recommendations for optimizing performance on page 53
Use the following recommendations to optimize CPU performance.

I/O recommendations for optimizing performance on page 53
If you are testing the Dgraph maximum throughput using Eneperf with an adequate num connections
and the CPU is still not fully utilized, 1/0 could be a problem, especially if your application is search
intensive but light on other features.

Disk access recommendations for optimizing performance on page 53
To optimize disk access performance, consider the following recommendations.

Relevance ranking on page 81
Relevance ranking can impose a significant computational cost in the context of affected search
operations (that is, operations where relevance ranking is enabled).

Warming performance vs. steady state performance

When a Dgraph starts, its performance will gradually increase until it reaches a steady state. This process is
known as Dgraph warming.

Itis important to distinguish between the warming performance of the Dgraph and the steady state performance.
Many of the techniques discussed in this guide address either one or the other, while others address both
types of performance diagnostics and optimization.

The following considerations apply specifically to diagnosing and optimizing the warming performance of the
Dgraph:

Oracle Commerce Guided Search Search Performance Tuning Guide

52 Diagnosing Dgraph Problems | Dgraph performance issues

+ Disk I/0 problems can sometimes cause slow warming.
« ltis helpful to run a Dgraph warming script at startup. For example, you can use a request log of characteristic
queries played against the Dgraph to help warm it to a steady state.

About planning for peak Dgraph load

It is important that you plan your capacity to handle peak load. Sustained load above the projected peak load
results in requests being queued for a long time. The system cannot keep up, and as a result, site performance
(in particular latency) degrades.

About tuning the number of threads

Standard system diagnostic tools can tell you how busy CPUs on the machine are. If performance is poor and
the CPUs are not very busy, try to increase the number of threads.

By default, starting with the MDEX Engine version 6.0, the Dgraph is running in multithreaded mode, with the
--threads setting set to 1.

If increasing the number of threads does not help, one of the following is happening:

* You are using too many threads in one process. This is unlikely unless you exceed four threads, in which
case consider using multiple Dgraphs.

* You have an I/O problem.
» There is an underlying network problem that needs to be investigated.

Multithreaded Dgraphs on machines with multithreaded processors

Processors with multithreading is a feature that allows a single microprocessor to act like two or more separate
processors to the operating system and the application programs that use it.

Hyperthreading is a feature of Intel® Xeon® processors, as well as of Pentium 4® processors that support this
technology.

Similarly, SPARC® Chip Multithreading (CMT) processors provide the technology for processor multithreading.

If your machine features hyperthreading or CMT, adding threads to your Dgraph can improve peak throughput
by up to 30% per processor.

Multiple Dgraphs on one machine vs. multithreaded Dgraphs

You can run more than one Dgraph on a single machine, add additional threads to a single Dgraph, or run
several Dgraphs with several threads enabled for each. Depending on your application, one choice might be
better than the other.

The following use cases describe these choices:

* In most cases, the following recommendation applies: Dgraphs with a large memory footprint, especially
in search-intensive applications, should be run in multithreaded mode with the number of threads greater
than one for best performance.

For example, suppose you have a four-processor 16GB machine and a 3GB Dgraph. You could run four
identical separate Dgraphs. A better alternative is to run one four-threaded Dgraph and thus reap the
benefits of having more disk cache.

Oracle Commerce Guided Search Search Performance Tuning Guide

Diagnosing Dgraph Problems | Dgraph performance issues 53

By running with more than one thread, /0 and computation can be overlapped. Although the time to process
an individual request isn’t improved (and can actually increase slightly due to contention for shared
resources), overall throughput is significantly boosted.

Likewise, in many cases it is appropriate to run two or more Dgraphs on one machine, each with several
threads. Two four-threaded Dgraphs on one machine is an especially common configuration. The trade-off
between thread contention and memory depends on the memory footprint that you estimate is needed for
each Dgraph and the amount of memory available on the machine that will host multiple Dgraphs.

Disk access recommendations for optimizing performance

To optimize disk access performance, consider the following recommendations.

Use a dedicated storage device with low latency and high 10 ops/sec for all your Endeca indices and files.
Locally-attached storage with a RAID controller is preferred. Only in cases where that is not possible, SAN
using a Fibre Channel will typically provide strong performance assuming it has been configured correctly.
If you are using an array controller, Oracle recommends using a striped disk configuration, such as RAID
5/6 or RAID 0+1 that enable you to avoid having redundant disks but ensures fault tolerance.

Do not use disks with NFS, or other file system protocols. They are known to slow down performance.
Ensure that the log files are saved locally. Turning off verbose mode, which prints information about each
request to stdout, can sometimes help performance.

Ensure that you have a fast disk subsystem and plenty of memory available for disk cache managed by
the operating system, since the Dgraph keeps its various text search indices on disk, including search and
navigation indexes.

CPU recommendations for optimizing performance

Use the following recommendations to optimize CPU performance.

If the CPU is under-utilized, increase the number of threads for the Dgraph.

If the CPU is over-utilized and you are not satisfied with throughput, investigate which activities make it
busy. Add machines or make the queries less taxing by tuning individual features.

Related Links
Dgraph Analysis and Tuning on page 59

This section describes Dgraph performance tuning tips feature by feature. Features are not presented
in order of severity of system impact.

/0 recommendations for optimizing performance

If you are testing the Dgraph maximum throughput using Eneperf with an adequate num connections and
the CPU is still not fully utilized, 1/0 could be a problem, especially if your application is search intensive but
light on other features.

There is no absolute threshold that indicates that an application is 1/0 bound, but typical symptoms include
very high numbers of I/O hits per second or KB per second. If I/O is below the specifications for the hardware,
it is less likely to be a problem. In some cases, it is even possible to go beyond a device’s theoretical maximum
because of disk caching.

To determine the level of 1/0O activity, use the following tools:

* On Solaris, run iostat -2
e On Linux, run sar -b

Oracle Commerce Guided Search Search Performance Tuning Guide

54 Diagnosing Dgraph Problems | Identifying problems with resource usage by the application

+ On Windows, do the following:
On the Task Manager, open the Processes tab.
From the menus, select View > Select Columns.

Check I/0 Reads, 1/0 Read Bytes, 1/0 Writes, and I/O Write Bytes. These options enable new columns
in the Processes pane that provide similar information to sar -b on UNIX.

Identifying problems with resource usage by the application

Use the following recommendations to identify performance problems associated with resource usage.

* Isolate performance testing for those parts of the application that specifically use the MDEX Engine from
testing for other parts of the application. In other words, measure the performance of those parts of the
application that use the MDEX Engine separately from the performance of those parts that use other
software that may cause performance problems, such as a relational database. For example, if the latency
is high, consider testing the interaction of the application with the database, if you are using one.

+ If you are sending a lot of requests to the front-end application and performance is slow but the MDEX
Engine servers are idle, the front-end application and its resource usage is probably the issue. There are
two possible fixes: you can reduce consumption of resources by the application by reviewing your coding
practices for the front-end application, or add resources.

Coding practices for the front-end application

Reviewing your front-end application code can help reduce resource usage performance issues that affect it.
Review your Web application to check for any of the following problems.

+ Creating or discarding objects unnecessarily.

» Excessive looping, particularly over properties that are not going to be displayed.

 Creating too many variables.

Web application ephemeral port contention

Each client/server connection has a unique identifier (known as a quad) that includes an ephemeral port number
that will later be reassigned. Each operating system has a range of numbers that it uses as ephemeral ports
(for example, on Windows the range is 1024 through 4999).

The operating system allocates ephemeral ports when a new socket is set up.

If the range is relatively small and you are making several requests per page in parallel, you can run out of
port numbers. At that point the ephemeral port numbers assigned by the operating system start colliding with
ones already in use as they are recycled too quickly, and subsequent connections will be aborted.

To address this problem, try one of the following:

* Reduce the two-minute time interval that the system waits between a connection close and port
reassignment. The minimum recommended time is 30 seconds.

» Change the ephemeral port range. The method varies depending on your operating system; however,
details are easily obtained on the Web.

Oracle Commerce Guided Search Search Performance Tuning Guide

Diagnosing Dgraph Problems | Recommendations for identifying network problems 55

Recommendations for identifying network problems

Often the diagnosis of slow performance comes from a query load played against the front-end application.
The front-end application, or the configuration of its application server, may be the reason for the poor
performance.

Alternatively, the network may be the problem, although this is less likely.
To identify whether the network is a performance issue:

» Compare Eneperf performance on the local host and a remote host. First, run Eneperf against the Dgraph
on the Dgraph machine. Next, run the same Eneperf against the same Dgraph, but from the front-end
machine (if possible), or somewhere on the other side of the network. If the difference is negligible, the
network is not a problem. If Eneperf across the network is slow, you need to consider both the network
itself and the application configuration.

+ Alternatively, you can run the Request Log Analyzer and compare the “Round-Trip Response Time” with
the “Engine-Only Processing Time”. If “Round-Trip Response Time” is long but the “Engine-Only Processing
Time” is short, this can indicate a network problem or a configuration of an application server for the
front-end application.

» Measure network performance using Netperf, a freely available tool that can be used to measure bandwidth.
Alternatively, you can FTP some large files across the network link. If these tools show poor throughput
across the network, this can indicate a network hardware problem such as a failing network interface card
(NIC) or cable.

+ In addition, check Eneperf statistics, the Dgraph request logs, or the Dgraph Stats page to see how much
data is being transmitted back from the Dgraph on an average request. Large average result page size
can saturate the network.

If it seems as if your application is trying to move too much data, it is likely that you may need to change the
configuration of your application. To determine if changes are needed, consider the following:

* Is all of the data actually being used by the application? In other words, does the MDEX Engine return
record fields that are then ignored by the front-end application? This is an especially serious problem with
large documents.

* Is your application returning unnecessary fields with the Select feature? (This is described in “Controlling
Record Values with the Select Feature” in the MDEX Engine Developer's Guide.)

* Is your application returning navigation pages that are too large? (Navigation pages are result list pages,
as opposed to record detail pages.) If the application returns a lot of detailed information in the result list
pages, consider reserving the details for a click-through and reducing the size of the result list pages your
application returns on initial requests.

* Is your application returning large numbers of records without using the bulk record API? (This is described
in “Bulk Export of Records” in the MDEX Engine Developer's Guide.)

* |Is the network saturated? Upgrade to Gigabit Ethernet and identify the transmission speed being used.
Ensure there is ample network bandwidth between the front-end application and the Dgraph. To identify
Gigabit Ethernet transmission speeds, work with your network administrator.

* What is the configuration of NIC cards? Ensure that NIC duplex settings match between the Dgraph host
and the web application client host and that both are set to full duplex. A mismatch can cause latency
issues.

» Could large response sizes returned by the Dgraph be saturating the network? Use the Request Log
Analyzer analysis to confirm large response s izes returned by the Dgraph, which can be caused by the
query features you use. The way certain features are used can cause slow processing time and also
saturate the network.

» Do you have queries waiting in the Dgraph queue to be processed? Check "Threading/Queuing Information"
summary in the Request Log Analyzer for the number of items experiencing queue issues and the number

Oracle Commerce Guided Search Search Performance Tuning Guide

56 Diagnosing Dgraph Problems | Recommendations for identifying network problems

of HTTP Error request 408 timeouts. Review the Dgraph setting for the number of worker threads and
consider increasing it, if it is set to 1. Queuing can also be caused by spikes in traffic.

» Does the front-end application process the responses returned by the Dgraph quickly enough? Check
CPU, memory, and disk I/O utilization on the front-end application server. Ensure the application server
does not need to be tuned and that large responses are not being returned by the Dgraph.

Related Links

Tips for troubleshooting long processing time on page 50
You can use the Request Log Analyzer, installed with the MDEX Engine, to determine whether the
performance bottleneck is caused by the Dgraph by comparing the statistics for “Engine-Only
Processing Time” with “Round-Trip Response Time”.

Troubleshooting connection errors

This topic discusses how to debug connection errors with ENEQuery exceptions.

Problem - The application server does not seem to connect to the Guided Search server. The Endeca reference
application has no difficulty connecting. A connection to the port works as confirmed by JUnit tests. A problem
exists connecting to the server once all the reference application libraries are packaged into the EAR file that
is run inside the WebSphere application server.

Solution - In general, the HttpENEConection.query ENEQuery method is used to issue a query against
the Dgraph. In the HttpENEConnection . query method in the Java version of the Endeca Presentation API,
any connections problems are raised as an ENEQueryException. (There is an equivalent in .NET version
of the Endeca Presentation API).

To diagnose a connection problem from an application server to an Guided Search server, the following
assumptions are made:

» The Java version of the Endeca Presentation API is being used.
» The connection from the application server to the MDEX Engine is running on HTTP, not HTTPS.

» The application server and the MDEX Engine on the Guided Search server are configured on separate
machines.

To troubleshoot the connection problem, do the following:

1. Verify from the application server machine that you can connect to the port on the Guided Search server.
Using telnet on Windows or Unix can help you determine if you can successfully make a connection:

telnet <hostname> <dgraph port>

a) If you cannot establish a connection with telnet, check that the Dgraph process is running with the
specified port. Check the Dgraph stderr log to confirm the Dgraph was able to successfully bind to
the port and another process is not using the port. You can also verify the Guided Search server machine
is listening on a socket with the specified port using netstat -a. Check that a valid network route
exists from the application server to the Guided Search server. You can also use ping. Also, use
tracert on Windows, tracepath on Linux, or traceroute on Solaris. If no valid network paths
exist, check with your network administrator to eliminate possible problems with a firewall or routing
configuration.

b) If you can obtain a connection from telnet, verify that the application server can talk to the Guided Search
server. Write a Java program with a static void main method to make a connection to the MDEX
Engine on the Guided Search server. Make sure the Endeca Navigation JAR file is included in your
classpath. If this program makes a connection successfully, the problem should only occur within the
application server.

Oracle Commerce Guided Search Search Performance Tuning Guide

Diagnosing Dgraph Problems | Next steps 57

2. Write a utility JSP page that connects to the MDEX Engine on the Guided Search application server and
place it on the application server to verify the connection. Alternatively, you can run the Reference Application
on the application server.

3. If everything works correctly, to troubleshoot further check the application server configuration. For
Websphere, do the following:
a) Check all log files in 1BM/Websphere/AppServer/profiles/AppSrv0l/logs/serverl.
b) Verify that the Reference application is correctly packaged as EAR file.
c) Make sure Websphere deployed the EAR file and the application is running in the WAS admin console.
Assuming that you have WAS 6.1, go to Security > Secure Administration, application and infrastructure

and check whether Java 2 security is enabled. If it is enabled, make sure your was.policy file is saved
in the META-INF directory.

Next steps

Your hardware needs should be based on the number of ops/second revealed by Eneperf testing. If you feel
that the resulting hardware requirements are too great, the next thing to do is identify costly features in your
front-end application and see what you can do about them.

Modifications you can make to your Dgraph settings in order to improve the performance of your Guided Search
application are discussed in the next chapter.

Oracle Commerce Guided Search Search Performance Tuning Guide

Chapter 8
Dgraph Analysis and Tuning

This section describes Dgraph performance tuning tips feature by feature. Features are not presented in order
of severity of system impact.

Feature performance overview

Once you have determined that the Dgraph is the bottleneck using the techniques described in this guide,
there are many things you can do to tune performance. In many cases, unnecessary complexity slows
performance, so small changes can yield big returns.

It is best to begin making adjustments with a conservative strategy that you understand well. Do not modify
too many features at once—it makes it difficult to assess the impact of any one change.

Details on tuning specific features can be found in the following sections. Where applicable, they discuss
problematic feature interactions. Likewise, each section indicates whether the kind of data you are processing
(for example, large text fields as opposed to many part numbers) significantly impacts a feature’s performance.

This chapter calls out only those aspects of a feature that affect application performance. For more general
information about implementing these features, see the Platform Services Forge Guide, MDEX Engine
Developer's Guide and the MDEX Engine Developer's Guide.

Endeca record configuration

This section discusses the performance implications of some aspects of Endeca record configuration.

Record select

The Select feature prevents the transfer of unneeded properties and dimension values when they are not used
by the front-end Web application.

It therefore makes the application more efficient because the unneeded data does not take up network bandwidth
and memory on the application server. This may be relevant if your logs are showing large result pages.

You set the selection list on the ENEQuery . setSelection() method (Java), or the ENEQuery.Selection
property (.NET).

60 Dgraph Analysis and Tuning | Dimensions and dimension values

Aggregated records

Aggregated Endeca records are not necessarily an expensive feature in the MDEX Engine. However, use
them only when necessary, because they add organizational and implementation complexity to the application
(particularly if the rollup key is different from the display information).

Using aggregated records slows down the performance of sorting and paging.

Note also that dynamic statistics on regular and aggregated records (controlled with the --stat-abins
Dgraph flag) are expensive computations for the MDEX Engine. See the topic in this section for more details.

Derived properties on aggregated records

Some overhead is introduced to calculate derived properties on aggregated records. In most cases this should
be negligible. However, large numbers of derived properties and, more importantly, aggregated records with
many member records may degrade performance.

The number of records returned with an aggregated record and performance

You can use the Np parameter to specify the number of records to be returned with an aggregated records.
For example, Np=1 means that a single representative record is returned with each aggregate record, and
Np=2 brings back all records.

Utilizing Np=2 may adversely affect your performance, as it causes the MDEX Engine to serialize more records
for each query. The degree to which performance is affected is proportional to the number of base records for
each aggregate record that is returned.

In most cases, it is not recommended to bring back all records in each query and aggregate all records with
Np=2 as this computation could be expensive for the MDEX Engine to serialize the result. However, Np=2 can
be useful in some cases. The impact on performance is proportional to the number of records that will be
returned as aggregates.

For example, if each aggregate record contains only 2 records, the record serialization time is only twice the
time as it is for Np=1. If, however, each aggregated record has 100 records associated with it, it is 100 times
more expensive to perform the record serialization for Np=2 than for Np=1.

Record serialization time is typically only a large portion of the query processing time in very low latency
applications or with very large numbers of returned records.

Note also that in many cases, a 100-fold increase in record serialization time is barely noticeable. You can
examine the Prefetching horizontal records statistics in the Hotspot Analysis section of the
Stats page to determine whether their performance issue is due to returning many records.

For example, if you have a very small data set with queries served almost entirely from the cache, where most
of the computation done by the Dgraph for each query consists of assembling the records to be returned, the
negative effect on performance is reflected in the Prefetching horizontal records statistics being
very large in this case which indicates that Np=2 should not be used.

Dimensions and dimension values

This section discusses tuning features related to dimensions and dimension values.

Hidden dimensions

You prevent a dimension from appearing in the navigation controls by designating it as a hidden dimension.

Oracle Commerce Guided Search Search Performance Tuning Guide

Dgraph Analysis and Tuning | Dimensions and dimension values 61

Hidden dimensions, like regular dimensions, are composed of dimension values that allow the user to refine
a set of records. The difference between regular dimensions and hidden dimensions is that regular dimensions
are returned for both navigation and record queries, while hidden dimensions are only returned for record
queries and dimension search.

In cases where certain dimensions in an application are composed of many values, marking such dimensions
as hidden improves Dgraph performance to the extent that queries on large dimensions are limited, reducing
the processing cycles and amount of data the Dgraph must return.

Dimensions and dimension values with high record coverage

Consider a case where records have dimensions that have almost—but not quite—full coverage over the
records. For example, 99% of the records have a dimension value for a Location dimension, but the remaining
1% do not.

While this factor does not affect performance significantly, you can add an “n/a” dimension value to fill the gap
and make the dimension have 100% coverage, if you want to let users explicitly refine to records that do not
have an assignment for that dimension.

Flat dimension hierarchy

In general, avoid using large, flat dimensions (that is, dimensions with thousands of dimension values at the
same level of hierarchy).

This is doubly true if statistics are enabled for those dimensions. It is better to design dimensions that contain
sensible levels of hierarchy.

For some applications with extremely large, non-hierarchical dimensions, larger values for -—esampmin can
meaningfully improve dynamic refinement ranking quality with minor performance cost.

Displaying multiselect dimensions

When making decisions about whether to configure a dimension as multiselect, keep in mind that users may
take longer to refine the list of results, because the user can continue to refine a multiselect dimension until
all leaf dimensions have been selected.

In particular, refinements for dimensions tagged as multiselect OR are expensive.

Multi-assign dimensions

A dimension is considered to be multi-assign if there exists a record which has more than one dimension value
assigned to it from that dimension.

Making a dimension multi-assign can slow down refinement computation. To improve performance, you can
use multi-assign only for those dimensions for which you need it, and avoid making dimensions multi-assign
where it is not useful.

Oracle Commerce Guided Search Search Performance Tuning Guide

62 Dgraph Analysis and Tuning | Dimensions and dimension values

Displaying refinement dimension values

Run-time performance of the MDEX Engine is sometimes directly related to the number of refinement dimension
values being computed for display. If any refinement dimension values are being computed by the MDEX
Engine but not being displayed by the application, use the Ne parameter more strictly.

The worst-case scenario for run-time performance is having a data set with a large number of dimensions,
each dimension containing a large number of refinement dimension values, and setting the ENEQuery.set-
NavAl IRefinements() method (Java), or ENEQuery.NavAl IRefinements() property (.NET) to true.
This combination is slow to compute and creates a page with an overwhelming number of refinement choices
for the user. Endeca does not recommend using this strategy.

In general, you may want to reconsider the number of refinements you display, as well as consider implementing
precedence rules.

Related Links

Precedence rules on page 80
This section discusses precedence rules and explains their performance impact.

Dynamic statistics on dimension values

You should only enable a dimension for dynamic statistics if you intend to use the statistics in your Guided
Search-enabled Web application. Because the Dgraph performs additional computation for the statistics, there
is a performance cost to enabling statistics that your application does not use.

Using dynamic refinement ranking can greatly speed up refinement computation by displaying only the top
refinements for a dimension, rather than computing the exhaustive list of refinements.

To decide whether or not dynamic refinement count statistics are likely to be appropriate for a project, consider
the following aspects of your configuration:

» The number of dimension value refinements per page, especially dimension values assigned to large
numbers of records. The more refinements are returned on each page, the more counts that need to be
computed, and the bigger the performance impact.

For example, if the data set has a large number of dimensions, and/or the application uses ENEQuery .set-
NavAl IRefinements (true), then the performance impact will be larger. This is especially true if many
of the dimension values are assigned to large numbers of records. This frequently happens with hierarchical
dimensions. For example, it is more expensive to count Red Wines than it is to count Merlots.

» The number of records in the data set. Data sets with large numbers of records will see a proportionally
higher performance impact from record count statistics.

» The average number of results per query. Applications that tend to perform searches that match larger
numbers of records will see proportionally higher impact from refinement count statistics.

As a simple rule, add up the counts for all of the refinements on the page. The performance impact of record
count statistics grows proportionally with that sum over all refinements. All of the above considerations are
aspects of the application that can make that sum larger, and increase your performance slowdown related to
record counts.

You can speed up computation of dynamic statistics for refinements by doing the following:
+ Set the following options in the STATS subelement in the refinement_config.xml file:

+ RECORD_COUNT_DISABLE_THRESHOLD specifies the maximum number of records in a result set
above which the MDEX Engine does not compute or return any dynamic statistics for that query. This
speeds up processing if you do not need the counts in this case.

Oracle Commerce Guided Search Search Performance Tuning Guide

Dgraph Analysis and Tuning | Dimensions and dimension values 63

* MAX_RECORDS_COUNT causes the MDEX Engine to stop computing dynamic statistics for a particular
dimension value when it has reached the specified value. The count returned in this case is the minimum
of the actual count and MAX_RECORDS_COUNT. Thus, you can set this parameter to a specific value if
you do not need to know the count for a particular dimension value once it is sufficiently high.

Aggregated refinement counts

Dynamic statistics on regular and aggregated records are expensive computations for the MDEX Engine.

You should only enable a dimension for dynamic statistics if you intend to use the statistics in your Guided
Search-enabled Web application.

Similarly, you should only use the —-stat-abins flag with the Dgraph to calculate aggregated record counts
if you intend to use the statistics in your Guided Search-enabled Web application. Because the Dgraph does
additional computation for additional statistics, there is a performance cost for those that you are not using.

In applications where record counts or aggregated record counts are not used, these lookups are unnecessary.
The MDEX Engine takes more time to return navigation objects for which the number of dimension values per
record is high.

The —--stat-abins flag for the Dgraph lets you calculate aggregated record counts beneath a given refinement.
For more information on using this flag, see the MDEX Engine Developer's Guide.

Dynamic refinement ranking and performance

You can use —-esampmin with the Dgraph, to specify the minimum number of records to sample during
refinement computation. The default is 0.

For most applications, larger values reduce performance without improving dynamic refinement ranking quality.
For some applications with extremely large, non-hierarchical dimensions (if they cannot be avoided), larger
values for —-—esampmin can meaningfully improve dynamic refinement ranking quality with minor performance
cost.

Disabled refinements

Performance impact from displaying disabled refinements falls into three categories. They are discussed in
the order of importance.

» The cost of computation involved in determining the base and default navigation states.

The base and default navigation states are computed based on the top-level filters that may belong to
these states. These filters are text searches, range, EQL and record filters and selections from dimensions.
The types and numbers of these top-level filters in the base and default navigation states affect the MDEX
Engine processing involved in computing the default navigation state. The more filters exist in the current
navigation state, the more expensive is the task; some filters, such as EQL, are more expensive to take
into account than others.

» The trade off between using dynamic refinement ranking and disabled refinements.

In general, these two features pursue the opposite goals in the user interface — dynamic ranking allows
you to intelligently return less information to the users based on most popular dimension values, whereas
disabled refinements let you return more information to the users based on those refinements that are not
available in the current navigation state but would have been available if some of the selections were not
made by the users.

Oracle Commerce Guided Search Search Performance Tuning Guide

64 Dgraph Analysis and Tuning | Dimensions and dimension values

Therefore, carefully consider your choices for the user interface of your front-end application and decide
for which of your refinements you would like to have one of these user experiences:

* Dynamically ranked refinements
 Disabled refinements

If, for example, for some dimensions you want to have only the most popular dimension values returned,
you need dynamic ranking for those refinements. For it, you set the sampling size of records (with -
—esampin), which directly affects performance: the smaller the sampling, the quicker the computation.
However, for those dimensions, the MDEX Engine then does not compute (and therefore, does not return)
disabled refinements.

If, on the other hand, in your user experience you would like to show grayed out (disabled) refinements,
and your performance allows it, you can decide to enable them, instead of dynamic ranking for those
dimensions. This means that for those dimensions, you need to disable dynamic ranking. As a side effect,
this involves a performance cost, since computing refinements without dynamic ranking is more expensive.
In addition, with dynamic ranking disabled, the MDEX Engine will need to compute refinement counts for
more dimension values.

» The cost of navigation queries.

Disabled refinements computation slightly increases the navigation portion of your query processing. This
increase is roughly proportional to the number of dimensions for which you request the MDEX Engine to
return disabled refinements.

Displaying dimension value properties

Dimension value properties (that is, key-value pairs that the Dgraph passes back along with a dimension value)
could slightly increase the processing or querying time because additional data is moved through the system,
but this effect is generally minimal.

If your Guided Search application does complex formatting on the properties, this could slow down page loads.
If the properties are used to add formatting HTML or perform other trivial operations, they have minimal impact
on performance.

Collapsible dimension values

Collapsible dimension values have a negative impact on performance.

Mapping source properties

Automatically mapping source properties is a feature that, while it can be used in the staging environment to
facilitate testing, is not recommended for using in the production environment.

The Property Mapper in Developer Studio allows you to automatically map source properties to Endeca
properties or Endeca dimensions, if no mapping is found. (This feature is also known as Automapper). The
option of the Property Mapper that lets you map source properties to Endeca properties or dimensions defines
the setting that Forge uses to handle source properties that have neither explicit nor implicit mappings.

Use this option with caution because each source property that is mapped uses system resources. Ideally,
you should only map source properties that you intend to use in your implementation. Many production-level
implementations automatically pull and process new data when it is available. If this data has new source
properties, they will be mapped and included in your MDEX Engine indices, which uses system resources

Oracle Commerce Guided Search Search Performance Tuning Guide

Dgraph Analysis and Tuning | Record sorting and filtering 65

unnecessarily. As a result, the Forge output is larger, the indexer is larger and the MDEX Engine has additional
indices to process.

Indexing all properties with Dgidx

The --nostrictattrs flag for Dgidx allows you to index every property found on a record, including those
properties that do not have corresponding property mapper settings. Using this flag may negatively affect
performance of Dgidx and the MDEX Engine.

If a large number of unused properties are sent to Dgidx, they will get indexed and will consume system
resources during the indexing process and at run-time. These properties can also affect performance of the
front-end application API, because the amount of information communicated between the MDEX Engine and
the APl increases.

Record sorting and filtering

This section discusses the performance impact of record sorting and filtering.

Sorting records by dimension or property

Enabling dimensions and properties for sorting increases the size of the Dgraph process and may negatively
affect partial update latency. The specific size of the increase is related to the number of records included in
the data set.

Therefore, in Developer Studio, enable only those dimensions or properties for sorting which are specifically
needed by an application. Sorting gets slower as the process size grows and paging gets deeper.

In general, the MDEX Engine explicitly uses precomputed sorts for properties that you specifically configure
as sort keys in Developer Studio, using the “Prepare sort offline” option.

Sorting can be done on any property, whether configured for sort or not. Configuring for sort mainly controls
the generation of a precomputed sort (an internal optimization done by the MDEX Engine), and secondarily
enables the field to be returned in the API sort keys function. In cases where the precomputed sort is rarely
or never used (such as when the number of search results is typically small), the memory can be saved.

If the Dgraph has to compute precomputed sort objects to answer queries, the precomputed sort process in
the Dgraph can be time-consuming. As a side effect of this processing, if you issue the admin?op=exit
command to shut down the Dgraph while the precomputed sort process is still running, the actual shutdown
may be delayed from the time the command is issued. This delay occurs because the Dgraph shutdown process
may still be waiting for the completion of its creating several precomputed sort objects.

Geospatial sorting and filtering

Geospatial sorting and filtering is a query-time operation. The computation time it requires increases as larger
sets of records are sorted and filtered. For best performance, apply geospatial sorting and filtering once the
set of records has been reduced by normal refinement or search.

To optimize performance of geofilters, consider using these recommendations:

» Examine the request log for the presence of long distance queries that contain a geofilter. If there is a
noticeable percentage of such queries, remove the geofilter from them.

Oracle Commerce Guided Search Search Performance Tuning Guide

66

Dgraph Analysis and Tuning | Record sorting and filtering

In other words, if a portion of your queries represents searches in which distance is very large and thus
appears to be not an important factor in a query, remove the geofilter from such queries.

For example, for users searching for cars within a radius beyond 10, 000 miles, remove the geofilter for
those queries. Removing the geofilter does not affect the records returned, but cuts the MDEX Engine
response times in half.

In general, when the MDEX Engine applies a geofilter, it first uses the area's bounding rectangle to reduce
the number of records it has to consider, and then performs the computation on remaining records, to
determine if the record falls within the specified radius. This computation is expensive. For queries containing
a geofilter for very large distances, the bounding rectangle includes all records, which means that the
MDEX Engine performs this expensive computation for each record.

* Restrict the number of records returned to speed up MDEX Engine performance.

Range filters

Range filters do not impact the amount of memory needed by the Dgraph. However, because the feature is
evaluated entirely at request time, the Dgraph response times are directly related to the number of records
being evaluated for a given range filter request.

You should test your application to ensure that the resulting performance is compatible with the requirements
of the implementation.

Record filters

Record filters can impact the following areas.

+ Spelling auto-correction and spelling Did You Mean. Record filters impose an extra performance cost on
spelling auto-correction and spelling Did You Mean.

* Memory cost

» Expression evaluation

Large OR filters ("part lists")

» Large scale negation

Record filters with complex logic

Record filters: memory cost

The evaluation of record filter expressions is based on the same indexing technology that supports navigation
queries in the Dgraph. Because of this, there is no additional memory or indexing cost associated with using
navigation dimension values in record filters.

When using property values in record filter expressions, additional memory and indexing cost is incurred
because String properties are not indexed for navigation by default.

In some cases, it may be worth replacing some of the filters with dimensions that have the same meaning. For
example, if you notice that 20% of queries have a filter of "price > 0" on them, to improve performance, add a
"has price?" dimension to your records instead of using a filter in this case.

Expression evaluation in record filters: impact on performance

Because expression evaluation is based on composition of indexed information, most expressions of moderate
size (that is, tens of terms and operators) do not add significantly to request processing time. Furthermore,
because the Dgraph caches the results of record filter operations, the costs of expression evaluation are

Oracle Commerce Guided Search Search Performance Tuning Guide

Dgraph Analysis and Tuning | Record sorting and filtering 67

typically only incurred on the first use of a filter during a navigation session. However, some expected uses of
record filters have known performance bounds, which are described in the following sections.

Large OR filters (“part lists”)

One common use of record filters is to specify lists of individual records to identify data subsets (for example,
custom part lists for individual customers, culled from a superset of parts for all customers).

The total cost of processing records can be broken down into two main parts: the parsing cost and the evaluation
cost. For large expressions such as “part lists”, which are commonly stored as file-based filters, XML parsing
performance dominates total processing cost.

XML parsing cost is linear in relation to the size of the filter expression, but incurs a much higher unit cost than
actual expression evaluation. Though lightweight, expression evaluation exhibits non-linear slowdown as the
size of the expression grows.

OR expressions with a small number of operands perform linearly in the number of results, even for large result
sets. While the expression evaluation cost is reasonable into the low millions of records for large OR expressions,
parsing costs relative to total query execution time can become too large, even for smaller numbers of records.

Part lists beyond approximately one hundred thousand records generally result in unacceptable performance
(10 seconds or more load time, depending on hardware platform). Lists with over one million records can take
a minute or more to load, depending on hardware. Because results are cached, load time is generally only an
issue on the first use of a filter during a session. However, long load times can cause other Dgraph requests
to be delayed and should generally be avoided.

Large-scale negation

In most common cases, where the NOT operator is used in conjunction with other positive expressions (that
is, AND with a positive property value), the cost of negation does not add significantly to the cost of expression
evaluation.

However, the costs associated with less typical, large-scale negation operations can be significant. For example,
running top-level negation filtering, such as “NOT avai lability=FALSE” on a record set of several million
records leads to lower throughput.

If possible, attempt to rephrase expressions to avoid the top-level use of NOT in Boolean expressions. For
example, in the case where you want to list only available products, the expression “availabl ity=TRUE”
yields better performance than “NOT avai labi lity=FALSE”.

Optimizing URL record filters that use complex logic

URL record filters with complex logic may cause an expected growth in memory usage for the MDEX Engine.
You can create either a fast-running filter that heavily uses memory, or a slow-running filter that uses minimum
memory. This section explains the trade offs and recommends which filter logic you should use.

The filter syntax dictates the sequence in which queries are being run by the MDEX Engine.
Use these recommendations:

« If your goal is to run the record filter as quickly as possible, regardless of concerns for potential memory
usage growth on the MDEX Engine server, use the query logic in your filter that is as flat as possible. In
other words, use AND and OR operations directly on the records, and do not use nested operations.

For example, this filter lists several records directly without any nested operations. It maximizes query
performance at the expense of memory usage:

Oracle Commerce Guided Search Search Performance Tuning Guide

68 Dgraph Analysis and Tuning | EQL expressions and Record Relationship Navigation

Nr=OR(P_WinelD:89955,P_WinelD:73036,P_WinelD:69087,P_WinelD:69993,
P_WinelD:60641,P_WinelD:58831,P_WinelD:44996,P_WinelD:52212,
P_WinelD:81192,P_WinelD:75040,P_WinelD:76632)

« If your goal is to run the record filter that minimizes memory usage by the MDEX Engine, each AND and
OR statements should contain at most two direct records. Since in many cases you may need to include
more than two records in your filters, you can nest AND and OR operations.

For example, this heavily nested filter minimizes memory usage at the expense of MDEX Engine query
processing time:

Nr=0R(OR(OR(OR(OR(OR(OR(OR(OR(OR(P_WinelD:89955,P_WinelD:73036),
P_WinelD:69087),P_WinelD:69993),P_WinelD:60641),P_WinelD:58831),
P_WinelD:44996),P_WinelD:52212),P_WinelD:81192),P_WinelD:75040), P_WinelD:76632)

To summarize, if the data set is large, the filter with flat query logic consumes more memory but runs faster
than the filter with nested logic, which runs slower but consumes minimum memory.

If hardware limitations prevent you from accommodating the expected memory growth, change the logic of
your existing URL record filter.

EQL expressions and Record Relationship Navigation

You can use Endeca Query Language (EQL) expressions for these purposes.

* To filter query results based on dimension values, individual property values, ranges of property values
and search terms.

» To combine EQL expressions using Boolean logic.
» To enable an Endeca feature known as Record Relationship Navigation (RRN).

For more information on EQL and Record Relationship Navigation, see the MDEX Engine Developer's Guide.

When to use EQL-based filters vs. other filter types

You can use EQL expressions to express all of the filter capabilities that are also supported by range filters
(NF), text search filters (Ntt, Ntk, Ntx) and navigation refinements. This topic helps you decide which type
of filters to use, EQL-based or regular.

In general, due to their Boolean logic capabilities, EQL expressions offer more flexibility than regular filters
expressed through other Ur IENEQuery parameters. However, EQL expressions have different performance
characteristics, and demonstrate other effects that you should take into account when considering which type
of filter to implement.

Consider the following characteristics when deciding which type of filters to use, EQL-based or regular:
» Unless you need EQL filter functionality, use regular filters.

In general, when it is possible to express a query using regular filters (range filters and other types), use
those methods instead of EQL expressions, as they often provide better query performance. Use EQL
expressions after you have evaluated using other features for expressing your query logic.

In particular:

» EQL-based filters may be slower than record filters (Nr).

Oracle Commerce Guided Search Search Performance Tuning Guide

Dgraph Analysis and Tuning | EQL expressions and Record Relationship Navigation 69

Use record filters (Nr) for large filters. (Large filters are used to filter out lists of individual records that
identify data subsets, for example custom part lists created for individual customers that are culled
from a superset of parts for all customers.) Large filters are better expressed with file-based record
filter expressions than with EQL expressions.

« EQL-based range filters are slower than range filters (NT).

+ To utilize merchandising rules or other supplementary information generated by regular filters, use
them alone or in combination with EQL filters.

EQL-based filters do not trigger the same supplementary information as a similar refinement navigation or
a text search filter. For example, a navigation refinement may trigger merchandising rules, but an EQL
filter does not.

In cases when you want to take advantage of additional information, such as search reports, merchandising
rules, DYM and —--whymatch, use either of the following solutions:

» Use regular filters.

» Use EQL expressions in conjunction with other query parameters (such as N, Ntt, and Nr filtering
parameters, and NF, Nrk, Nrt, Nrr, and Nrm relevance ranking parameters).

EQL combined with these parameters provides such actions as triggering merchandising rules, sorting,
search reports or relevance ranking.

For examples and information on the feature interaction possibilities, see the MDEX Engine Developer's
Guide.

» To implement security, use record filters.

Use record filters instead of EQL-based filters to implement security filtering, such as filtering based on
user role or catalog type. Record filters (Nr) are useful also in cases when you want to use file-based filters.
(File-based filters are the recommended method for filtering out large numbers of included or excluded
records.)

+ To maximize the use of the Dgraph cache, use record filters.

Use the Nr parameter instead of EQL for those parts of the filter that are static across many queries. This
is because static parts of the filter are faster with Nr than with EQL, due to the maximized use of the filter
cache.

EQL caches the results of the entire filter, as well as those of a few limited sub expressions. Record filters
(Nr) also cache the full results of each filter. Thus, if some part of an EQL filter is static across many queries
and can be expressed in the language of the Nr parameter, it can be advantageous to use Nr for that part
of the filter so as to maximize use of the cache.

* For more flexibility, use filters in combination.

Use EQL-based filters instead of record filters when you do not require security implications, or when you
need more flexibility in expressing filter logic. In this case you may want to improve EQL filter performance
by using record filters in conjunction with EQL-based filters, as explained in the next bullet.

* To narrow down the set of records, use record filters first.

Record filters act as pre-filters and narrow down the working set of records for future evaluation by the
MDEX Engine. Other expressions in such a query operate only on records returned by a record filter. By
comparison, EQL-based filters do not narrow down the working set of records in this way. This has
performance implications.

When evaluating a query, the MDEX Engine first evaluates record filters of type Nr, and then all other
filters.

Oracle Commerce Guided Search Search Performance Tuning Guide

70 Dgraph Analysis and Tuning | EQL expressions and Record Relationship Navigation

Performance impact of EQL-based filters

Use the following recommendations to optimize query performance of EQL-based filters.

+ To optimize the performance of EQL-based filters, use record filters in conjunction with EQL-based filters.
Use record filters first (Nr) if you can, to narrow down the working set, and then use EQL logic to filter
within the smaller working set of records.

+ Monitor the size of the standard Dgraph request log file. EQL-based filters have verbose syntax. Since all
Endeca queries are logged to the standard Dgraph request log, the size of EQL-based queries affects disk
space due to the growing size of the Dgraph logs. As an alternative, consider using file-based record filters.

+ Identify slow queries during testing. To determine whether an EQL-based filter is slowing down your
navigation queries, set the EQL statistics logging in the Dgraph. For example:

--log_stats <file_name>
--log_stats_thresh N

This file contains timing for queries taking longer than the specified threshold. Oracle recommends setting
a low threshold value during development, and a more conservative value for testing. Do not use statistics
logging in production since the verbosity of the logs can cause heavy disk writes and consume available
disk space. Look for nodes with large sel¥_time_ms values to identify the total time, in milliseconds,
spent in this query node and its descendants.

» To optimize EQL query performance, use EQL for queries based on property value instead of queries
based on range. For example, if the application's price property contains only 0 or positive values, using
an EQL expression to query for “not (price = 0)” provides a better query performance than using queries
of type “price > 0”. (This recommendation is true for regular range filters as well.)

» To speed up the MDEX Engine processing of queries, consider implementing the filtering logic in the Forge
pipeline. For more complex range expressions, it is more efficient to implement the filtering logic in the
Forge pipeline. Use expression logic in a record manipulator or Java manipulator to create a new property
with a Boolean value.

For example, create an “onsale = true” property value if the record has “price > 0” and “price < listprice”
properties, and then use the EQL expression to perform a query based on the property value for the newly
created property (that is, for “onsale = true”), rather than using EQL for computing range filter expressions
on the original properties.

Performance impact of RRN

You can use EQL expressions for Record Relationship Navigation (RRN).

;’ﬁ'_
S Important: You must configure the MDEX Engine in order to enable Record Relationship Navigation.

This capability is an optional module that extends the MDEX Engine. Endeca customers who are entitled
by their license to use Record Relationship Navigation can find instructions on the Endeca Support site.
Contact your Oracle representative if you need to obtain a Record Relationship Navigation license.

Use the following recommendations to speed up the RRN queries:

* When writing RRN filters, take into account that RRN filter expressions work from the inside out. That is,
the innermost, or most nested, expressions are evaluated by the MDEX Engine before the outer ones. The
following example illustrates this bottom-up processing:

collection()/record
author_bookref = collection()/record

book year = "'1843"

Oracle Commerce Guided Search Search Performance Tuning Guide

Dgraph Analysis and Tuning | EQL expressions and Record Relationship Navigation 7

] .
/book_id
1

The MDEX Engine first finds the records that have the book_year property set to “1843”. Then it finds the
list of all of the values in the book_id property for that set of records. Finally, it finds the set of records with
the author_bookref property set to any of the values in that list.

To speed up RRN queries, assign different property names for records representing different concepts.
This is because RRN query performance depends on the number of records in the “nested” EQL query.
Keep the number of records that match results for the innermost expression of the RRN filter relatively
small. For example, in this query:

collection()/record[
record_type = "Film"

and
endeca:matches(., "title", "Godfather'™)
and
actor_id = collection()/record[
record type = "Actor"
and
gender = "male™
and
nationality = "ltalian”
1

the MDEX Engine uses its bottom-up query execution strategy in the following way:

It first evaluates the inner query and finds the set of records for which the record_type property has the
value "Actor," the gender property has the value "male," and the nationality property has the value "ltalian."

It then creates a collection of all the values of the id property for this set of records.

Next, it iterates over the set of “/id” values to filter the set of "Film" records. Thus, if the size of the collection
of “/id” values is really large, the iteration can be relatively slow.

In this example, if the number of film IDs that are returned from the innermost filter to the Actor filter is
relatively small, the RRN filter that will evaluate these records will be fast; if the number of IDs returned is
large, the RRN evaluation will be slow.

To generalize, when you know that the number of records that will have to be evaluated for a RRN filter is
quite large (in this example, it is the number of Italian male actors), a query could be slow. To solve this
problem, one solution is to use the user interface and force the users to narrow down the set of records
early on in the navigation process.

If this is not a reasonable solution for your application, and you cannot guarantee that the user’s navigation
path will necessarily limit the set of records, you can narrow down this set by limiting the number of records
that match in the innermost query, as shown in this example:

collection()/record[
record_type = "Film"

and
endeca:matches(., "title", "Godfather'™)
and
actor_id = collection()/record[
record _type = "Actor"
and
gender = "male"
and
nationality = "ltalian”
and

film_id = collection()/record[

Oracle Commerce Guided Search Search Performance Tuning Guide

72 Dgraph Analysis and Tuning | EQL expressions and Record Relationship Navigation

record_type = "Film"
and
endeca:matches(., "title", "Godfather'™)
1/id
1/id
1

This method is mimicking a top-down execution of a query.

While building an application, test the performance of this inner query with EQL statistics logging to evaluate
the time spent in it.

» To speed up RRN queries, assign different property names for different record types of the RRN col lec—
tion()/record function.
For example, consider this generic RRN query:
collection()/record[propertyKeyl = recordPath/propertyKey2?]

where:

propertyKeyl is the NCName of an Endeca property on a record type to be filtered, such as record of
type Vineyard. The resulting records will have this property.

recordPath is one or more of the collection()/record functions.

propertyKey?2 is the NCName of an Endeca property on another record type, such as record of type
Wine, that will be compared to propertyKeyl. Records that satisfy the comparison will be added by the
MDEX Engine to the returned set of records.

In this example, instead of assigning the same value of “ID” for propertyKeyl and propertyKey?2,
assign two different property names— “wine_reference_ID” on a record representing a vineyard, and
“wine_ID” on a record representing a wine. As the number of records evaluated for the RRN query increases,
having the naming convention with different property names for different record types has a greater effect
on performance.

When properties with the same name are assigned on each side of the RRN query, this negatively affects
RRN query performance.

For more information about RRN, see the MDEX Engine Developer's Guide.

Tips for troubleshooting EQL filters

To detect queries with errors in EQL, check the Dgraph standard error log located at $ENDE—
CA_PROJECT_DIR/1ogs/dgraphs/DgraphN/DgraphN.reqglog.

We recommend using tail -T to follow the log during query development.
To troubleshoot EQL filters, use the following recommendations:
» Watch for disk space limitations. All Endeca queries are logged to the standard Dgraph request log. Be
careful to monitor the size of this log file; there is a risk to run out of disk space due to large log files.
» Watch for filter length limitations. The Dgraph process has no limits on the length of a request. The

Endeca APlIs, however, may have limitations stemming from the programming languages in which they
are implemented.

» Detect slow EQL queries with a dedicated statistics log. Use these Dgraph flags to enable a special
EQL statistics log:

« ——log_stats [path_to file]
+ ——log_stats_thresh N

Oracle Commerce Guided Search Search Performance Tuning Guide

Dgraph Analysis and Tuning | Snippeting 73

The log contains an execution plan, including timing, for queries taking longer than the specified threshold.
To identify slow EQL queries, in the log, look for nodes with large sel f_time_ms values.

This statistics logging is turned off by default. Specifying a target for --log_stats implicitly turns it on.

Oracle recommends placing this log in the same directory as all other Dgraph logs, such as in: $ENDE-
CA_PROJECT_DIR/l1ogs/dgraphs/DgraphN/DgraphN.eqllog.

You can specify values for the optional --log_stats_thresh argument either as seconds or milliseconds,
such as 1s or 500. If unspecified, the default is 60 seconds. Oracle recommends setting a low threshold
value during development and a more conservative value for testing to capture queries that take longer
than the threshold. In general, do not use statistics logging in production, as additional logs can cause
operational issues due to heavy disk usage and consumption of available disk space.

Typical causes of EQL filter errors

EQL filter errors are logged into the Dgraph standard error log. This topic lists the most frequent causes of
EQL filter errors.

When errors with parsing or syntax occur in EQL filters, they are logged to the Dgraph standard error log
located at SENDECA_PROJECT_DIR/1ogs/dgraphs/DgraphN/DgraphN.reqlog.

Note: When EQL filter errors occur, the query returns zero results and no messages are included in the
API response. Therefore, it is important to look into the Dgraph standard error log.

The top issues that may cause errors in the EQL filters are the following:

» Missing brackets. Make sure your expressions have matching brackets [] and parentheses ().

» Case-sensitivity. All fields and values are case-sensitive. This includes boolean operators which must be
lower case.

» Property is not indexed properly. Ensure that you enable properties for record filters in Developer Studio.
For any property enabled for record filtering, the Dgidx process creates an inverted index. If a property is
not enabled, you may receive an error message like this: Property *'p_name™ is not invertible;
comparison will fail.

* Property or dimension is not an NCName. For example, ""Wine Type" is not correct, ""Wine_Type"
or "WineType" are correct.

» Whitespace is present in values. For example, this is applicable to property value filters: ""Foo " 1=
"'"Foo"".

Snippeting

You can minimize the performance impact of snippeting by limiting the number of words in a property that the
MDEX Engine evaluates to identify the snippet.

This approach is especially useful in cases where a snippet-enabled property stores large amounts of text.
Provide the --snip_cutoff <num words> flag to the Dgraph to restrict the number of words that the MDEX
Engine evaluates in a property. For example, --snip_cutoff 300 evaluates the first 300 words of the
property to identify the snippet.

If the ——snip_cutoff Dgraph flag is not specified, or is specified without a value, the snippeting feature
defaults to a cutoff value of 500 words.

Oracle Commerce Guided Search Search Performance Tuning Guide

74 Dgraph Analysis and Tuning | Spelling auto-correction and Did You Mean

Spelling auto-correction and Did You Mean

This section discusses tuning the spelling auto-correction and spelling Did You Mean features.

Spelling auto-correction

Spelling auto-correction performance is impacted by the size of the dictionary in use. Spell-corrected keyword
searches with many words, in systems with very large dictionaries, can take a disproportionately long time to
process relative to other Dgraph requests.

It is important to carefully analyze the performance of the system together with application requirements prior
to production application deployment.

Performance of admin?op=updateaspell

You can use the admin?op=updateaspel l administrative query to make changes to the Aspell spelling
dictionary without having to stop and restart the MDEX Engine. This administrative query causes the MDEX
Engine to temporarily stop processing other regular queries, update the spelling dictionary and then resume
its regular processing.

If the total amount of searchable text is large, this increases the latency of the admin?op=updateaspell
operation, especially at large data scale.

Dictionary pruning

The performance of spelling correction in the Dgraph depends heavily on the size of the dictionary. An
unnecessarily large dictionary can slow response times and provide less focused results.

Dictionary pruning techniques allow you to reduce the size of the dictionary without sacrificing much in the way
of usefulness. To improve spelling correction performance, consider making the following adjustments in
Developer Studio’s Spelling editor:

speling x|

Dictionary Configuration |

Dimension Search Record Search |

Add word to speling dictionary if:

it occurs at leask I 4 kirnes

and is between |3 and | 16 characters long

® Help | [o]'8 I Cancel |

+ Set the minimum number of word occurrences to a number greater than one.

The first setting in the Spelling editor indicates the number of times a word must occur in the source data
in order for it to be included in the dictionary. For record search, the default value is four, which means
only words that appear four or more times are included in the dictionary.

+ Set the minimum word length to a number greater than one.

Oracle Commerce Guided Search Search Performance Tuning Guide

Dgraph Analysis and Tuning | Stemming and thesaurus 75

The second setting in the Spelling editor specifies the minimum length (number of characters) of a word
for inclusion in the dictionary. By default, words that are longer than three characters and shorter than
sixteen characters are included.

While less dramatic than tuning the minimum word occurrences, adjusting the minimum word length can
result in a cleaner, more useful dictionary.

Tuning word break analysis

Word-break analysis allows you to consider alternate queries computed by changing the word divisions in the
user’s query. The performance impact of word-break analysis can be considerable, depending on your data.
Seemingly small deviations from default values, such as increasing the value of -—wb_maxbrks from one to
two or decreasing the value of -—wb-minbrklen from two to one, can have a significant impact, because
they greatly increase the workload on the MDEX Engine. Oracle suggests that you tune this feature carefully
and test its impact thoroughly before exposing it in a production environment.

Did You Mean

Lowering the value for -—dym_hthresh (a Dgraph spelling option) may improve the performance of Did You
Mean.

The option --dym_hthresh indicates when spelling Did You Mean engages. The default is 20, meaning that
spelling Did You Mean engages even if there are up to 20 results.

Depending upon your data, making Did You Mean suggestions at this point may be unnecessary or even
overwhelming to your end users. Setting --dym_hthresh to 2 or 4 is often a better choice.

Stemming and thesaurus

Stemming and thesaurus equivalences generally introduce little memory overhead (beyond the amount of
memory required to store the raw string forms of the equivalences).

In terms of online processing, both features expand the set of results for typical user queries.

While this generally slows search performance (search operations require an amount of time that grows linearly
with the number of results), typically these additional results are a required part of the application behavior
and cannot be avoided.

The overhead involved in matching the user query to thesaurus and stemming forms is generally low, but could
slow performance in cases where a large thesaurus (tens of thousands of entries) is asked to process long
search queries (dozens of terms).

Because matching for stemming entries is performed on a single-word basis, the cost for stemming-oriented
query expansion does not grow with the size of the stemming database or with the length of the query. However,
the stemming performance of a specific language is affected by the degree to which the language is inflected.
For example, German nouns are much more inflected than English nouns.

Guidelines for thesaurus development

To avoid performance problems related to expensive and non-useful thesaurus search query expansions,
consider the following thesaurus clean-up rules.

Oracle Commerce Guided Search Search Performance Tuning Guide

76

Dgraph Analysis and Tuning | Record, phrase, and dimension search

Use --thesaurus_cutoff <limit> to set a limit on the number of words in a user’s search query that
are subject to thesaurus replacement. The default value of <l imit>is 3. Up to 3 words in a user’s search
query can be replaced with thesaurus entries. If there are more terms in the query that match thesaurus
entries, these terms are not replaced by thesaurus expansion. This option serves as a performance guard
against very expensive thesaurus queries. Lower values improve thesaurus engine performance.

Do not create a two-way thesaurus entry for a word with multiple meanings. For example, khaki can refer
to a color as well as to a style of pants. If you create a two-way thesaurus entry for khaki = pants, then a
user’s search for khaki towels could return irrelevant results for pants.

Do not create a two-way thesaurus entry between a general and several more-specific terms, such as fop
= shirt = sweater = vest. This increases the number of results the user has to go through while reducing
the overall accuracy of the items returned.

In this instance, better results are attained by creating individual one-way thesaurus entries between the
general term top and each of the more specific terms.

Use care when creating thesaurus entries that include a term that is a substring of another term in the
entry. Consider the following example with a two-way equivalency between Adam and Eve and Eve.

If users type Eve, they get results for Eve or (Adam and Eve) (that is, the same results they would have
gotten for Eve without the thesaurus). If users type Adam and Eve, they get results for (Adam and Eve) or
Eve, causing the Adam part of the query to be ignored.

There are times when this behavior might be desirable (such as in an equivalency between George
Washington and Washington), but not always.

Do not use stop words such as and or the in single-word thesaurus forms.

For example, if the has been configured as a stop word, thesaurus equivalency between thee and the is
not useful.

You can use stop words in multi-word thesaurus forms, because multi-word thesaurus forms are handled
as phrases. In phrases, a stop word is treated as a literal word and not a stop word.

Avoid multi-word thesaurus forms where single-word forms are appropriate.

In particular, avoid multi-word forms that are not phrases that users are likely to type, or to which phrase
expansion is likely to provide relevant additional results. For example, the two-way thesaurus entry
Aethelstan, King Of England (D. 939) = Athelstan, King Of England (D. 939) should be replaced with the
single-word form Aethelstan = Athelstan.

Thesaurus forms should not use non-searchable characters. For example, the one-way thesaurus entry
Pikes Peak > Pike’s Peak should only be used if apostrophe (') is enabled as a search character.

Use —-thesaurus_multiword_nostem to specify that words in a multiple-word thesaurus form should
be treated like phrases and should not be stemmed. This may increase performance for some query loads.
Single-word terms will be subject to stemming regardless of whether this flag is specified.

This flag prevents the Dgraph from expanding multi-word thesaurus forms by stemming. Thesaurus entries
continue to match any stemmed form in the query, but multi-word expansions only include explicitly listed
forms. To get the multi-word stemmed thesaurus expansions, the various forms must be listed explicitly in
the thesaurus.

Record, phrase, and dimension search

This section discusses the performance impact of various kinds of search.

Oracle Commerce Guided Search Search Performance Tuning Guide

Dgraph Analysis and Tuning | Record, phrase, and dimension search 77

Record search

Because record search is an indexed feature, each property enabled for record search increases the size of
the Dgraph process. The specific size of the increase is related to the size of the unique word list generated
by the specific property in the data set.

Therefore, only properties that are needed by an application for record searching should be configured as
such.

Boolean search

The performance of Boolean search is a function of the number of terms and operators in the query and also
the number of records associated with each term in the query.

As the number of records increases and as the number of terms and operators increase, queries become more
expensive.

Proximity search impacts the system in various ways. The performance of proximity searches is as follows:

» Searches using the proximity operators will be slower than searches using the other Boolean operators.

» Proximity searches that operate on phrases will be slower than other proximity searches and slower than
normal phrase searches.

%
Note: If you notice unexpected behavior while using Boolean search, use the Dgraph -v flag when
starting the Dgraph. This flag prints detailed output to stderr describing the running Boolean query
process.

Phrase search

The cost of phrase search operations depends mostly on how frequently the query words appear in the data
and the number of words in the phrase. You can improve performance of phrase search by limiting the number
of words in a phrase with the --phrase_max <num> flag for the Dgraph.

Searches for phrases containing relatively infrequent words (such as proper names) are generally very rapid.

You can use the ——phrase_max <num> flag for the Dgraph to specify the maximum number of words in each
phrase for text search. Using this flag improves performance of text search with phrases. The default number
is 10. If the maximum number of words in a phrase is exceeded, the phrase is truncated to the maximum word
count and a warning is logged.

Wildcard search

The MDEX Engine uses a mechanism for wildcard search that simplifies user configuration. In most cases,
the size of the on-disk index is reduced considerably, and indexing performance is improved compared with
previous releases. This topic provides recommendations for optimizing your wildcard search performance.

To optimize performance of wildcard search, use the following recommendations:

» Account for increased time needed for indexing. In general, if wildcard search is enabled in the MDEX
Engine (even if it is not used by the users), it increases the time and disk space required for indexing.
Therefore, consider first the business requirements for your Guided Search application to decide whether
you need to use wildcard search.

Oracle Commerce Guided Search Search Performance Tuning Guide

78

Dgraph Analysis and Tuning | Record, phrase, and dimension search

Note: To optimize performance, the MDEX Engine performs wildcard indexing for words that are
shorter than 1024 characters. Words that are longer than 1024 characters are not indexed for wildcard
search.

* Do not use "low information" queries. For optimal performance, Oracle recommends using wildcard
search queries with at least 2-3 non-wildcarded characters in them, such as abc* and ab*de. Avoid
wildcard searches with one non-wildcarded character, such as a*, since they are more expensive to
process. Also be aware that the MDEX Engine ignores queries that contain only wildcards, such as *.
Similarly, wildcard queries that contain only punctuation symbols, spaces and wildcards, such as *., **,
or* * are ignored.

» Analyze the format of your typical wildcard query cases. This lets you be aware of performance
implications associated with one specific wildcard search pattern. Examine your queries to identify whether
you have queries that contain punctuation syntax in between strings of text, such as ab*c.def*. For
strings with punctuation, the MDEX Engine generates lists of words that match each of the
punctuation-separated wildcard expressions. In this case, the MDEX Engine uses the —-wi Idcard_max
<count> setting to optimize its performance. This setting does not affect wildcard searches for strings
which do not contain punctuation.

You enable wildcard search in Developer Studio.

Wildcard search with punctuation and performance

The number of terms to which the MDEX Engine matches the wildcard search strings is limited by the
—--wi ldcard_max <count> number (the default is 100). This flag lets you specify to the MDEX Engine the
maximum number of terms that can match a wildcard term in a wildcard search query that contains punctuation.

When a search reaches the —-wi ldcard_max limit, the verbose Dgraph error log records a message similar
to the following: Wildcard term 1*0*_.234* is too general: returns 1618 words, which is
greater than max of 100. Using the most frequent 100 terms, which took 46.2 ms.
to compute.

Increasing the ——wi ldcard_max <count>improves the completeness of results returned by wildcard search
for strings with punctuation, but negatively affects performance. Thus you may want to find the number that
provides a reasonable trade-off.

If your wildcard search queries contain punctuation, such as 1*0*.234*, the MDEX Engine generates lists
of words that match each of the punctuation-separated wildcard expressions, and uses these non-wildcard
terms to locate related results in the documents (records).

This means that if the corpus of data contains other possible matches beyond the --wi ldcard_max <count>
(and beyond the results that are already found), the MDEX Engine may not return them as results. Thus, the
list of results returned by the Engine in a wildcard search with punctuation may not be exhaustive. This creates
a trade-off situation in which you need to optimize performance cost versus business value of maximum
completeness of returned results.

To summarize, if the business requirements of your application require a nearly 100% compilete list of results
even on very "low-information" wildcard queries with punctuation, such as 1*0*.234%*, increase the value of
wi ldcard_max. Next, pay attention to the information returned in the search report. From it, you can estimate
whether it may make sense to increase the wi ldcard_max value further.

Gradually increase the --wi Ildcard_max value, while watching the performance of the MDEX Engine.

.
7~ Note: If search queries contain only wildcards and punctuation, such as *.*, the MDEX Engine rejects
them for performance reasons and returns no results.

Oracle Commerce Guided Search Search Performance Tuning Guide

Dgraph Analysis and Tuning | Record, phrase, and dimension search 79

Preventing expensive wildcard searches

Certain types of wildcard queries may cause the MDEX Engine to grow in memory footprint and take a long
time to complete. Even though these types of queries are legitimate searches that would eventually return,

they can cause the appearance of a timeout and potentially cause a site outage. As a best practice, Oracle
recommends preventing these types of wildcard queries in your front-end application code.

The behavior of such wildcard queries does not typically indicate an actual timeout of the MDEX Engine;
instead, it may indicate, for example, that the query search term is so broad that it takes a very long time to
compute results. For example, to process a search for *"a*"*, the MDEX Engine must return every record
containing any word beginning with a; this is a more time-intensive query for the Dgraph to compute.

The following types of wildcard queries are potentially very expensive to compute for the MDEX Engine:

» Wildcard queries with short search terms, such as *a*, */*, or * *,
» Wildcard queries with search terms that contain non-searchable characters, such as punctuation or dashes.
» Wildcard queries with search terms that have quoted phrases in them, such as *''pizza pie"*.

To prevent users from issuing such types of wildcard queries, utilize front-end application code to circumvent
these scenarios for all queries that contain a wildcard character (*).

>
7~ Note: If search queries contain only wildcards and punctuation, such as *.*, the MDEX Engine rejects
them for performance reasons and returns no results.

Use the following recommendations in the front-end application, by utilizing application code at query time:

1. Remove all non-searchable characters from each wildcard query before issuing it to the MDEX Engine.

Stripping non-searchable characters should make little difference in your search results because the MDEX
Engine treats non-searchable characters as white space both when indexing and when retrieving word
matches.

2. Parse the queries to calculate their search term length to avoid very low information queries, such as ""a*"".
For, example, you may want to prevent issuing to the MDEX Engine wildcarding queries that contain fewer
than 3 non-wildcarded characters.

Filtering out such queries should make no difference in your search results because wildcard search for
two characters or less would bring back an unusable results set in almost all instances.

3. Exclude wildcard queries with quoted phrase searches. This will not affect your search results because
when users issue quoted phrase search, most likely they expect exact matches and do not require wildcards
in this case.

You can accomplish these recommendations in the front-end application tier by programmatically analyzing
search terms entered by the users before issuing them to the MDEX Engine, determining whether a query will
be issued, and prompting the user to submit a better query (or using logic of your choice to handle this situation).

S
7~ Note: In the majority of cases, none of these changes should impact the user experience.

Dimension search

The runtime performance of dimension search directly corresponds to the number of dimension values and
the size of the resulting set of matching dimension values. In general, this feature performs at a much higher
number of operations per second than navigation requests.

Oracle Commerce Guided Search Search Performance Tuning Guide

80

Dgraph Analysis and Tuning | Precedence rules

The most common performance problem occurs when the resulting set of dimension values is exceptionally
large (greater than 1,000), thus creating a large results page. Always use the advanced dimension search and
query parameters to limit the number of results per request. For details, see “Using Dimension Search” in the
MDEX Engine Developer's Guide.

Compound dimension search requests are generally more expensive than non-compound requests, and are
comparable in performance to record search requests.

To summarize, if you submit a default dimension search query, the query is generally very fast. If you submit
a compound dimension search query, performance is not as fast as for the default dimension search. In both
cases, the query will be faster if you limit the results by using any of the advanced dimension search parameters.
For example, you can use the Di parameter to specify the specific dimension (in the case of the default
dimension search), or a list of dimension value IDs (in the case of compound dimension search) for which you
expect matches returned by the MDEX Engine.

%
Note: Do not confuse the Dgraph configuration for dimension search with the Dgraph configuration to
enable record search.

Precedence rules

This section discusses precedence rules and explains their performance impact.

About precedence rules

Precedence rules let you limit the presentation of certain Guided Navigation dimensions only to specified
navigation states.

You configure precedence rules in Developer Studio.

Each precedence rule lets you identify a trigger dimension value and a target dimension, and presents the
target dimension for Guided Navigation only in those query contexts in which:

» Users explicitly select the trigger dimension value as a refinement, or
» The trigger dimension value is assigned to all records in the current result set.

Example of a precedence rule

For example, suppose that an application includes a precedence rule linking the trigger dimension value “Part
Category > Passives > Resistors” to a target dimension “Resistance”, which might contain refinements such
as “10 ohms” and “22 ohms”.

In a navigation query where, for example, the user performs a search matching records tagged with a variety
of values from “Part Category” including “Resistors” and other values, and where the user does not explicitly
or implicitly select the dimension value “Part Category > Passives > Resistors”, the “Resistance” dimension is
not returned for Guided Navigation.

This prevents the presentation of a contextually irrelevant navigation dimension to the user. Before the user
has indicated some interest in resistors, presenting “Resistance” navigation choices may be unexpected, clutter
the presentation of more relevant navigation choices, and detract from the overall experience.

If the user subsequently selects the “Part Category > Passives > Resistors” dimension value as a refinement,
the “Resistance” dimension is presented for Guided Navigation (assuming that there are valid, available
navigation refinements available for “Resistance”). Similarly, if the user performs a search that triggered “Part

Oracle Commerce Guided Search Search Performance Tuning Guide

Dgraph Analysis and Tuning | Relevance ranking 81

Category > Passives > Resistors” as an implicit refinement, for example if the user performed a text search
for a manufacturer who only makes resistors, the “Resistance” dimension is returned for navigation.

This unique behavior provided by the MDEX Engine allows the contextual presentation of appropriate navigation
dimensions to be more automatic and adaptive, as the front-end application need not be aware that the user's
search has implied “Part Category > Passives > Resistors” for the “Resistance” dimension to be presented
automatically as a navigation dimension.

Relevance ranking

Relevance ranking can impose a significant computational cost in the context of affected search operations
(that is, operations where relevance ranking is enabled).

;"ﬁ'\ -
5 Important: The relevance ranking chapter in the MDEX Engine Developer's Guide outlines recommended

strategies for both retail catalogs and document repositories. If you are developing a Guided Search
application on your own, you should start with the recommended relevance ranking strategy. Later, if
the recommended strategy is not sufficient, you can experiment carefully with strategy tuning.

The set of modules that will provide acceptable performance depends heavily on the size and characteristics
of the application data set.

In general, Oracle recommends testing the set of modules used for relevance ranking in a staging environment
before using it in production. This is because the qualities of the data set may affect relevance ranking
performance in unexpected ways. The following characteristics of the data set may negatively affect performance:

» The data set is too large to fit into RAM

+ It contains large file content used in search

* |t uses stemming or thesaurus heavily

+ It has many dimensions or properties per record
+ It frequently produces large result set sizes

Minimizing the performance impact of relevance ranking

You can minimize the performance impact of relevance ranking in your implementation by making module
substitutions when appropriate, and ordering the modules you do select sensibly within your relevance ranking
strategy.

Making module substitutions

Because of the linear cost of relevance ranking in the size of the result set, the actual cost of relevance ranking
depends heavily on the set of ranking modules used. In general, modules that do not perform text evaluation
introduce significantly lower computational costs than text-matching-oriented modules.

Although the relative cost of the various ranking modules is dependent on the nature of your data and the
number of records, the modules can be roughly grouped into four tiers:

» Exact is very computationally expensive.

* Proximity, Phrase with Subphrase or Query Expansion options specified, and First are all high-cost modules,
presented in the order of decreasing cost.

* WFreq can also be costly in some situations.

» The remaining modules (Static, Phrase with no options specified, Freq, Spell, Glom, Nterms, Interp,
Numfields, Maxfields and Field) are generally relatively cheap.

Oracle Commerce Guided Search Search Performance Tuning Guide

82

Dgraph Analysis and Tuning | Dynamic business rules

In order to maximize the performance of your relevance ranking strategy, consider a less expensive way to
get similar results. For example, replacing Exact with Phrase may improve performance with relatively little
impact on results.

Note: Choose the set of modules used for relevance ranking most carefully when the data set is large
or contains large file content that is used for search operations.

Ordering modules sensibly

Relevance ranking modules are only evaluated as needed. When higher-priority modules determine the order
of records, lower-priority modules do not need to be calculated. This can have a dramatic impact on performance
when higher-cost modules have a lower priority than a lower-cost module.

To optimize performance, make sure that the cheaper modules are placed before the more expensive ones
in your strategy.

Dynamic business rules

Dynamic business rules (used in merchandising and content spotlighting) require very little data processing
or indexing, so they do not impact the Dgraph memory footprint.

However, because the MDEX Engine evaluates dynamic business rules at query time, the larger the number
of rules, the longer the evaluation and response time.

To improve query response-time performance of the Dgraph with dynamic business rules:

» Monitor and limit the number of rules that are evaluated for each request. Each rule that is evaluated for
a request impacts the response time for that request.

To do this, specify the number of records returned in the Maximum Records text box of the Styles editor

in Developer Studio. Setting the Maximum Records value prevents business rules from returning an entire
set of matching records, potentially overloading the network, memory, and page size limits for a request.
If the Maximum Records value is set to a large number, such as 1,000, then as many as 1,000 promoted
records could be returned with each navigation request, causing significant performance degradation.

» Use NmrT to specify the syntax for the rule filter. Rule filters restricts which rules can promote records for
a navigation query. The Nmr¥ query parameter controls the use of a rule filter. Nmr¥ has a corresponding
ENEQuery method and parameter.

» Set a rule limit for each rule zone.

» Configure triggers for all business rules. Business rules without triggers are evaluated for every navigation
query and negatively affect performance.

* Review how rule sorting is used. Rule sorting allows you to sort the rule’s promoted records by a specified
property or dimension value. Per-rule sorts can increase the performance cost of dynamic business rules.

Analytics performance considerations

This section explores issues related to optimizing performance of Analytics queries.

For more information about how to use Analytics functions, and for examples and best practices, see the MDEX
Engine Analytics Guide.

Each of the following considerations has an impact on the Analytics query performance:

Oracle Commerce Guided Search Search Performance Tuning Guide

Dgraph Analysis and Tuning | Analytics performance considerations 83

* Review existing Analytics queries to understand their processing order and Analytics statement
dependencies. For example, you may improve query performance if you narrow down the working record
set which Analytics statements must process.

When a query contains an Analytics query, the Analytics processing is one of the last steps in the overall
query processing order. The Analytics statements are calculated on the resulting record set (NavStateRe—-
cords) after any search, navigation, or filtering has been applied by the Endeca query. This has performance
benefits, since the fewer records the Analytics statements need to process, the better.

» Test Analytics queries that contain a GROUP BY operation to measure RAM footprint and query response
time. This will help identify the size of a result set that does not negatively affect performance.

GROUP BY operations result in a large number of aggregated records that are stored within the Dgraph
RAM. This may cause an increase in the RAM footprint and the Dgraph processing time. It may be necessary
to tune GROUP BY operations within Analytics statements in your queries.

+ Build Analytics queries in a way that lets them utilize the caching of Analytics statements used in more
than one query.

The Dgraph dynamic cache stores Analytics statements. If statement dependencies exist in your queries,
you can utilize previously computed data within other Analytics statements. If one Analytics query includes
multiple Analytics statements, each statement is cached separately, which results in a significant performance
gain in cases when specific Analytics statements are shared across multiple queries.

Oracle Commerce Guided Search Search Performance Tuning Guide

Appendix A
The MDEX Engine Request Log

This section describes the MDEX Engine (Dgraph) request log, which you can use to analyze Guided Search
application performance.

About the MDEX Engine request log

The MDEX Engine request log (also called the Dgraph request log) is the file that captures Web application
query information.

The MDEX Engine always generates a request log with a default name dgraph.reglog. You use the --1og
option when running the MDEX Engine to specify a different path to store the request log.

You can extract queries from this log file and use them with the Endeca Eneperf tool to analyze Web application
performance. You can also use Perl to extract useful information from Dgraph request logs.

In addition, depending upon the size of your log files, you can import them into a tool that allows you to
manipulate column-based data, such as Microsoft Excel.

Related Links

Extracting information from request logs on page 89
MDEX Engine request logs can be very large and difficult to read. You might find it useful to sort them
on fields you are interested in, such as Processing Time or Total Request Duration. You can then
look for a pattern or feature in the most time-consuming queries that might be the origin of the
performance issue.

Extracting information from request logs on page 89
MDEX Engine request logs can be very large and difficult to read. You might find it useful to sort them
on fields you are interested in, such as Processing Time or Total Request Duration. You can then
look for a pattern or feature in the most time-consuming queries that might be the origin of the
performance issue.

Request log file format

The content of the request log file varies slightly, depending upon whether it is treating Presentation API queries
or Web services invocations.

&
7~ Note: If afield is not relevant to the query in question, the request log entry for that query contains a
dash (-) in that location.

86 The MDEX Engine Request Log | Request log file format

Each entry has the following 14 columns:

[Timestamp] [Client IP Address]

[HTTP Exchange ID] [Response Size] [Total Request Time]

[Total Processing Time] [HTTP Return Code] [Number of Results]
[Queue Status] [Thread ID] [Query String] [Query Body]

[HTTP Headers]

These entries are listed in the order of the timestamp. Because of this, the entries are listed in the response
order, not in the request order. The following table describes the log entries in more detail:

Column Presentation APl | Description
Queries or Web
Services
Invocations
Timestamp Both Time stamp indicating the time the request was completed, in milliseconds,
since the epoch (January 1, 1970, 00:00:00 UTC). For example:

1208947882000=2008-04-23 10:51:22 AM GMT

The time is recorded in GMT (not the localized time of the server). You
can convert it using a UTC epoch converter utility, such as UTC.

Client IP Both IP address of the requesting client.
HTTP Both
Exchange ID Unique query identifier. This identifier allows you to correlate Dgraph

request log items with error messages in the Dgraph log. In addition, it is
used by the MDEX Server Statistics page to compose most expensive
query statistics.

%
Note: The identifier is only unique within a single Dgraph instance,
and is not persistent across Dgraph shutdown.

Response Both Number of bytes written to the client. May be less than or equal to the
Size intended result size, for example, due to a premature session end.

Total Request | Both The request lifetime, in milliseconds. Equal to the total amount of time
Time between when the Dgraph reads the request from the network and finishes

sending the result. May include queuing time, such as time spent waiting
for earlier requests to be completed.

4 Note: In previous releases, the request lifetime ended when the
connection was closed. If connection close did not time out, this
lifetime would include the time to transport the response to the client,
and the time for the client to read the response. Starting with 6.1.0,
the request lifetime ends when the response has been successfully
delivered to the socket layer.

Total Both N R
. Processing time, in milliseconds.
Processing
Time Equal to the total computation time required for the Dgraph to handle the

request, excluding network and wait time. This value gives an accurate
measure of how expensive the request was to compute, given current
system state. (That is, if the machine in question was busy with other

Oracle Commerce Guided Search Search Performance Tuning Guide

Column

HTTP Status
Code

Number of
Results

Presentation API
Queries or Web
Services
Invocations

Both

Presentation API
Queries

Queue Status | Both

Thread ID

Query String
Query Body

HTTP
Headers

Both
Both
Web Services

Invocations

Both

The MDEX Engine Request Log | Request log file format 87

Description

threads or processes, the time may be longer than on an otherwise unused
machine.)

For any given query, Processing Time is always smaller than Total Request
Time.

The HTTP return code. A status code of 200 (OK) is returned if the request
was successful. For details on other codes that can appear in this field,
see the table below.

Number of results from your query (or "-" if the HTTP request was not a
query).

4 Note: This number reflects the number of results, not necessarily
the number of results returned. That is, this is the number of results
from your query, not accounting for your nbins and offset
settings. nbins and offset are used to specify how many of the
results are actually returned.

The number of queries in the queue that have not started processing yet.
The number is calculated before the current query is enqueued, and
therefore the current query is not included.

4 Note: Starting with the MDEX Engine version 6.1.2, this column
does not report the number of query threads that are idle because
there is no longer a one-to-one relationship between threads and
queries. Specifically, when you specify the —-threads flag, the
number you specify determines the total number of threads available
to the MDEX Engine, which includes query processing threads and
other threads that support query processing. This means there is a
greater chance that a non-saturated Dgraph could experience minor
queuing, even in the case when the number of query requests in
the queue is less than the number of threads specified. For more
information, see the chapter in this guide about using the
multithreaded mode.

The thread ID of the thread that was assigned the request (or “~” in

single-threaded mode).
The URL of the Presentation API query or of the Web service.

The URL-encoded POST body of the query. The actual entry in the request
log is a single token, even though POST body can contain multiple lines
of text.

The URL-encoded HTTP headers that were sent with the query.

Oracle Commerce Guided Search Search Performance Tuning Guide

88 The MDEX Engine Request Log | Request log file format

Column

Presentation APl | Description

Queries or Web

Services
Invocations

Non-OK HTTP Status Codes
This table details the non-OK HTTP Status Codes that might appear in the Request Log.

Status Code 'Name

100
400
400

400
400
400
400

400
400
400
403

404
404

404

404
408

410
411

412

415

Continue
Bad Request
Bad Request

Bad Request
Bad Request
Bad Request
Bad Request

Bad Request
Bad Request
Bad Request
Forbidden

Not Found
Not Found

Not Found

Not Found

Request
Time-out

Gone

Length Required

Precondition
Failed

Unsupported
Media Type

The actual entry in the request log is a single token, even though HTTP
headers can contain multiple lines of text.

Condition
In response to HTTP request header Expect: 100-continue (not an error)
Admin or config request with unsupported op

HTTP request line parse error, or HTTP request header parse error, or HTTP
request Transfer-Encoding other than chunked

HTTP request with invalid chunk size or missing chunk terminator
HTTP request with invalid trailing header format
HTTP request with wildcard URL ("*") not valid for METHOD

HTTP request URL includes protocol other than "http", or protocol but no
host, or neither protocol nor host and path does not start with "/"

HTTP request with version 1.1 but no Host
HTTP request with more data than expected
Conversion of POST body to string failed for web service request

Admin ops are disabled for the Dgraph, and admin?op=exit or ad-
min?op=restart is requested

Presentation API request with URI parse error or processing error

Request has empty path, or admin or config request has additional path
steps

File server request for non-existent file or for a directory, or file outside of
allowed root directory

Web service request for unknown Web service

Queue timeout exceeded for the request, or I/0O timeout reading HTTP request

Presentation API request for unsupported feature

HTTP POST request with Content-Length missing or empty or not a
non-negative integer

HTTP request with "If-None-Match" header

Content-Type parse error in Web service request

Oracle Commerce Guided Search Search Performance Tuning Guide

The MDEX Engine Request Log | Extracting information from request logs 89

Status Code 'Name Condition
500 Internal Server | Attempt to return informational status code to HTTP 1.0 client
Error
500 Internal Server |Exception from XQuery evaluation in Web service request
Error
500 Internal Server | Unhandled exception during request processing
Error
500 Internal Server |admin?op=update is requested and no update directory was specified for
Error the Dgraph
501 Not HTTP request for unsupported Method (such as PUT)
Implemented
501 Not HTTP request includes an unsupported header that must not be ignored:

Implemented ("Authorization", "Content-Encoding”, "Content-Transfer-Encoding", "Range",
"Content-Range", "If-Range")

501 Not Presentation API request for disabled feature
Implemented

503 Service HTTP request to server that is closed (in the process of shutting down)
Unavailable

505 HTTP Version , . WA An WA an
Not Supported HTTP request with version not "1.0" and not "1.1

Related Links
List of request log parameters on page 96
This section lists request log parameters.

List of request log parameters on page 96
This section lists request log parameters.

Extracting information from request logs

MDEX Engine request logs can be very large and difficult to read. You might find it useful to sort them on fields
you are interested in, such as Processing Time or Total Request Duration. You can then look for a pattern or
feature in the most time-consuming queries that might be the origin of the performance issue.

Here are two approaches to extract information from request logs:

* Run the Request Log Analyzer.
» Write your own Perl code.

The Request Log Analyzer reads one or more MDEX Engine logs and reports on the nature and performance
of the queries recorded in those logs. This report provides information on what actually happened in the past,
instead of reporting on potential performance or capacity planning for the future. This script can be run manually
in order to debug performance problems, and should also be run on a regular basis to continually monitor
performance and call out trends in Dgraph traffic load, latency, throughput, and application behavior.

If you write Perl to extract, manipulate, and analyze the information in a request log, you may find the following
setting useful in Perl scripts:

perl -nae

Oracle Commerce Guided Search Search Performance Tuning Guide

90 The MDEX Engine Request Log | Storing logs on a separate physical drive

where:

* nindicates that it is a loop processing each line of the input file(s) in turn
+ aturns on autosplit
* e indicates that it should execute the next argument, which should be Perl code

This script shows how many queries took more than five seconds. It splits the line on whitespace into an array

called F. The sixth element in the array ([5]) corresponds to the Total Request Time and represents the amount
of time the query took.

perl -nae "print if $F[5] > 5000" logfile

If you are tracking system trends by time, you may find it useful to correlate the epochal time that the log
displays with human-readable time. This script is used to convert the time stamps into a more readable form.

perl -nae "“print scalar localtime $F[0]," $ "~

&
7 Note: In this script, Localtime is set to the location where you are doing analysis, so if you are looking
at a log from a different time zone, you may want to change the time zone. On UNIX systems the TZ
environment variable can be set to effect this change. For example, TZ=US/Pacific.

Storing logs on a separate physical drive

There can be disk contention between MDEX logging and update processing that can cause sporadic increases
in query processing latencies. Update processing includes both partial update processing and merging
generations. One way to minimize disk contention is to store MDEX logs, such as the error log, request log,
and update log on a separate physical drive from where the MDEX indices are stored.

To store logs on a separate physical drive:

» For the error log, specify the —-out <stdout/stderrfile> flag to the Dgraph with a path to a different
physical drive from the MDEX indices.

 For the request log, specify the —-10g flag to the Dgraph with a path to a different physical drive from the
MDEX indices.

 For the update log, specify the -—updatelog flag to the Dgraph with a path to a different physical drive
from the MDEX indices.

Request log rolling

The MDEX Engine request log is subject to log rotation when it goes over one gigabyte. You can issue the
admin?op=logroll command to force a rotation.

When the request log rotates, the existing logfile is renamed from, say, dgraph.reqlog to
dgraph.reqlog.PID.N, where:

» PID is the Dgraph process ID

* Nis the number of logs that this Dgraph has already rotated. N=0 the first time the Dgraph does log rotation,
and then goes up by 1 each time.

To force a log roll, issue the following command:
http://<host>:<port>/admin?op=logroll

Oracle Commerce Guided Search Search Performance Tuning Guide

The MDEX Engine Request Log | Request log rolling 91

To roll the MDEX Engine log on a fixed schedule, you can create a Windows Scheduler task on Windows or
a Cron job on UNIX to issue the admin?op=logroll command.

Oracle Commerce Guided Search Search Performance Tuning Guide

Appendix B
The MDEX Engine Parameter Listing

This section describes the parameters in the MDEX Engine request logs and provides mappings between the
URL that is sent from the application to the Endeca Presentation API, and the URL that is sent from the API
to the MDEX Engine.

Understanding the URL parameter mapping

Typically, when you analyze the MDEX Engine request query logs for troubleshooting purposes, you investigate
a log entry for a query in question, and identify an MDEX Engine parameter in the query’s log entry.

Next, you want to trace this log parameter to its corresponding settings in the user-visible URL that is sent
from the application to the Endeca Presentation APl and the URL that is sent from the API to the MDEX Engine.
There is not a one-to-one correlation between the two URLSs.

The Presentation API transforms the URL it receives from the application into an MDEX Engine-specific URL
before sending it to the MDEX Engine.

MOEX

Request Engine-
Your URL Endeca specific Endeca
Applicatian .ﬁ Prseantation ﬁ MDEK
APl Engine

Mappings between request log and UrlIENEQuery URL parameters

This explains a mapping between the URL that is sent from the application to the Endeca Presentation API,
and the URL that is sent from the API to the MDEX Engine.

It helps you translate the MDEX Engine request log file, which tells you exactly which URLs the MDEX Engine
has processed. By extension, these are the URLs that the Presentation API has sent to the MDEX Engine. If
the API has sent an incorrect URL to the MDEX Engine, it is a good indication that the API received an incorrect
URL from the Web application in the first place.

&
7 Note: Foracomplete description of the ENE URL query parameters, see the MDEX Engine Developer's
Guide.

Example mappings

Here are some sample mappings:

94 The MDEX Engine Parameter Listing | Understanding the URL parameter mapping

Web Application to API API to MDEX Engine
/controller. jsp?N=0 /graph?node=0
/controller. jsp?N=0&Ntk=DESC& Ntt=merlot |/graph?node=0+attrs=DESC+merlot

Mapping parameters

The table in this section establishes a mapping between those MDEX Engine request log parameters that
have corresponding Ur IENEQuery URL parameters, such as N and Ntt.

Not all request log parameters have corresponding Ur IENEQuery URL parameters. This table does not list
those MDEX Engine request log parameters that do not have directly corresponding end-user parameters. It
also does not indicate which methods or properties of the ENEQuery objects can be used to produce the
specified request log parameters.

In this table, the ENE parameters in bold are the primary parameters, while those in non-bold are secondary

parameters.

MDEX Engine parameter Description Maps to...

graph? Navigation query N

node Navigation query parameter, N
navigation descriptors

offset Navigation query parameter, record | No
offset

offset Navigation query parameter, Nao
aggregated record offset

group Navigation query parameter, Ne
exposed refinements

allbins Navigation query parameter, records | Np
per aggregated record

analytics Navigation query parameter, Na
analytics expression to apply to a
query

sort Navigation query parameter, sort | Ns

sort Navigation query parameter, sort | Nso
order

groupby Navigation query parameter, rollup | Nu

attrs Navigation query parameter, record | Ntk, Ntt, Ntx
search key, terms, and options

relrank Navigation query parameter, search | Nrk, Nrt, Nrr, Nrm
interface, relevance ranking terms,
relevance ranking strategy and
match mode

dym Navigation query parameter, Did Nty
You Mean

Oracle Commerce Guided Search Search Performance Tuning Guide

MDEX Engine parameter

autophrase

autophrasedwim

merchpreviewtime

merchrulefilter

pred

filter

structured

refinement

search?

terms

options

node

model

num

offset

rank

pred

filter

structured

abin?

id

The MDEX Engine Parameter Listing | Understanding the URL parameter mapping

Description

Navigation query parameter,
compute phrasings

Navigation query parameter, rewrite

query

Navigation query parameter,
merchandising preview time

Navigation query parameter,
merchandising rule filter

Navigation query parameter, range

filters

Navigation query parameter, record

filters

Navigation query parameter,
Endeca Query Language

Navigation query parameter,
dynamic refinement ranking

Dimension search query

Maps to...
Ntpc

Ntpr

Nmpt

Nmrf

Nf

Nr

Nrs

Nrc

Dimension search query parameter, | D

search terms

Dimension search query parameter,

options

Dimension search query parameter,

dimension search scope

Dimension search query parameter,

search dimension

Dimension search query parameter,

number of results

Dimension search query parameter,

offset

Dimension search query parameter,

rank

Dimension search query parameter,

range filters

Dimension search query parameter,

record filters

Dimension search query parameter,

Endeca Query Language

Aggregated record query

Aggregated record query parameter,

record ID

Dx

Dn

Di

Dp

Do

Dk

Df

Dr

Drs

95

Oracle Commerce Guided Search Search Performance Tuning Guide

96 The MDEX Engine Parameter Listing | Understanding the URL parameter mapping

MDEX Engine parameter Description Maps to...

node Aggregated record query parameter, | An
descriptors

groupby Aggregated record query parameter, | Au
rollup

pred Aggregated record query parameter, | Af
range filters

filter Aggregated record query parameter, | Ar
record filters

structured Aggregated record query parameter, | Ars
Endeca Query Language

bin? Record query R

id Record query parameter, record ID |R

List of request log parameters

This section lists request log parameters.
It provides the following information:

+ Lists the request log parameters and explains what they do.

+ Identifies how the request log parameters correspond with the end user visible URL parameters. In other
words, a mapping is established between the parameters that are visible in the end-user URL, known as
the Ur IENEQuery URL parameters, such as N and Ntt, and the parameters that are present in the request
log, such as node and attrs.

+ Lists those request log parameters that do not have directly corresponding end-user parameters, such as
allgroups and nbins.

+ Indicates which methods or properties of the ENEQuery objects can be used to produce the specified
request log parameters.

In general, in your application, you use either the Ur IENEQuery URL parameters, such as N and Ntt, or
the methods or properties of the ENEQuery object class. In either case, both methods produce the MDEX
request log parameters described in this section.

Example: interpreting error log messages
This example illustrates how to interpret the messages found in the MDEX Engine error log.

Suppose the following messages appear in your MDEX Engine error log:

ERROR 06/04/08 18:13:33.250 UTC DGRAPH {dgraph}: Bad dimension or property name
[WineType] in select

To troubleshoot, look through the corresponding MDEX request log for entries that contain “select” and
“WineType”. The results are as follows:
1212603213 127.0.0.1 - 3378 105.54 7.49 200 56300 -2 10

/graph?node=0&select=P_Name+P_Score+WineType&group=0&offset=0&nbins=10&pred=
P_Score%7CGTEQ+70&irversion=510

Oracle Commerce Guided Search Search Performance Tuning Guide

The MDEX Engine Parameter Listing | Description of query types 97

Check the documentation in this section for the select parameter that appears in the MDEX Engine URL, in
the request log. You will find that it corresponds to the Java APl ENEQuery . setSelection() method; there
is no corresponding Ur IENEQuery URL parameter. This means that the incorrect value is set through this
method. You can now look through the application code and find the setSelection() call to try to determine
why it is specifying an incorrect property or dimension name as part of the value for this method. In this example,
it is because the code is specifying "WineType" rather than "Wine Type" with a space.

Description of query types

The parameters in the MDEX request log use the query type names that correspond to the types of user
queries. This section and the table below list the query types and maps them to user queries.

Query type as indicated in the request log Description of the corresponding user query type

admin, config
bin, abin
graph

search

allbins

Description

Valid in query types
ENEQuery method or property

UrlIENEQuery URL parameters
Format

Values (order)

Example

Administrative query

Record query

Navigation and record search queries that return navigation data

Dimension search queries only

Specifies the number of representative records returned
with each aggregated record.

graph

Java: ENEQuery .setNavErecsPerAggrERec()
.NET: ENEQuery .NavERecsPerAggrERec

Np

Numeric value

0 (no representative records),
1 (one representative record),
2 (all records associated with aggregated record).

Value "0" equates to API constant
ENEQuery.ZERO_ERECS_PER_AGGR,

"1" to ENEQuery .ONE_EREC_PER_AGGR
"2" to ENEQuery.ALL_ERECS PER_AGGR

N/A

Oracle Commerce Guided Search Search Performance Tuning Guide

98 The MDEX Engine Parameter Listing | Description of query types

allgroups

Description Specifies whether child refinements are exposed for

all dimension values. Takes precedence over group if
both are specified. The APl includes one parameter or
the other.

4 Note: allgroups=1 in the Dgraph URL can cause
significant impact on performance of the MDEX
Engine and indicates that all refinements are
exposed for navigation. If you notice this setting
in the queries check the validity of this setting for
the application.

Valid in query types graph

ENEQuery method or property Java: ENEQuery.setNavAllRefinements()

.NET: ENEQuery._NavAl IRefinements

UrlENEQuery URL parameters N/A
Format Numeric Boolean value
Values (order) 0 (false), 1 (true)
Example N/A
analytics
Description Specifies an analytics expression to apply to a query.
Valid in query types graph

ENEQuery method or property Java: ENEQuery.setAnalyticsQuery()

.NET: ENEQuery .AnalyticsQuery

UrlIENEQuery URL parameters Na

Format String analytics expression

Values (order) N/A

Example analytics=Q%28A%28Test%28T%29SL

%28S%28%28V intage%29KEY%28Vin-
tage%29%29%29%29%29

attrs

Description Specifies search key, terms, and options for record
searches

Oracle Commerce Guided Search Search Performance Tuning Guide

Valid in query types
ENEQuery method or property

UrlENEQuery URL parameters

Format

Values (order)

Example

autophrase

Description

Valid in query types
ENEQuery method or property

UrlIENEQuery URL parameters
Format
Values (order)

Example

autophrasedwim

Description

Valid in query types
ENEQuery method or property

The MDEX Engine Parameter Listing | Description of query types 99

graph

Java: ENEQuery .setNavERecSearches()
.NET: ENEQuery .NavERecSearches

Ntk, Ntt, Ntx

Space-separated string values for search key, literal
plus character separator, space-separated string values
for search terms, pipe character separator,
space-separated string values for search options
(mode, rel, and autoforce).

See above

attrs=Inter-
face+search+terms|mode+matchal I+rel+ex-
act+autoforce+correction

Specifies whether the MDEX Engine computes
autophrase matches for search terms.

graph

Java: ENEQuery.setNavERecSearchComputeAl-
ternativePhrasings(Q

.NET: ENEQuery .NavERecSearchComputeAlter-
nativePhrasings

Ntpc

Numeric Boolean value

0 (false), 1 (true)

N/A

Specifies whether the MDEX Engine replaces phrases
found in search terms with computed autophrase
matches. Is functional only if the autophrase parameter
is also set to 1 (true).

graph

Java: ENEQuery .setNavERecSearchRewrite-
QueryWithAnAlternativePhrasing()

Oracle Commerce Guided Search Search Performance Tuning Guide

100

The MDEX Engine Parameter Listing | Description of query types

UrIENEQuery URL parameters
Format
Values (order)

Example

compound

Description

Valid in query types
ENEQuery method or property

UrIENEQuery URL parameters
Format
Values (order)

Example

dym

Description

Valid in query types
ENEQuery method or property

UrIENEQuery URL parameters
Format
Values (order)

Example

filter

Description

Oracle Commerce Guided Search Search Performance Tuning Guide

.NET: ENEQuery .NavERecSearchRewriteQuery-
WithAnAlternativePhrasing

Ntpr

Numeric Boolean value

0 (false), 1 (true)

N/A

Specifies whether dimension search is performed as
a compound dimension search.

search

Java: ENEQuery.setDimSearchCompound()
.NET: ENEQuery .DimSearchCompound

N/A

Numeric Boolean value
0 (false), 1 (true)

N/A

Specifies whether "did you mean" (DYM) spelling
correction is enabled for a record search.

graph

Java: ENEQuery.setNavERecSearchDidY—-
ouMean()

.NET: ENEQuery.NavERecSearchDidYouMean

Nty
Numeric Boolean value
(order) 0O (false), 1 (true)
N/A

Specifies record filter to apply for navigation,
dimension-search, or aggregated-record (abin) queries.

Valid in query types
ENEQuery method or property

UrlENEQuery URL parameters

Format
Values (order)

Example

format

Description

Valid in query types
ENEQuery method or property
UrlENEQuery URL parameters
Format

Values (order)

Example

The MDEX Engine Parameter Listing | Description of query types 101

graph, search, abin

(graph)

Java: ENEQuery.setNavRecordFilter()
.NET: ENEQuery .NavRecordFilter
(search)

Java: ENEQuery.setDimSearchNavRecordFil-
terQ

.NET: ENEQuery.DimSearchNavRecordFilter
(abin)

Java: ENEQuery .setAggrERecNavRecordFil-
terQ

.NET: ENEQuery .AggrERecNavRecordFilter

Nr (graph), or
Dr (search), or

Ar (abin)

String values separated by plus signs
String values

filter=P_Region%3aPortugal, filter=8021

Description Specifies result object return format for a
query.

)
7" Note: Format can only be set by hand. XML
schema is unsupported and is subject to change.

graph, search, bin, abin
N/A

N/A

String value

binary (default) or XML
N/A

Oracle Commerce Guided Search Search Performance Tuning Guide

102

The MDEX Engine Parameter Listing | Description of query types

group

Description

Valid in query types
ENEQuery method or property

UrIENEQuery URL parameters
Format
Values (order)

Example

groupby

Description

Valid in query types
ENEQuery method or property

UrlENEQuery URL parameters

Format
Values (order)

Example

Oracle Commerce Guided Search Search Performance Tuning Guide

Specifies dimension values for which child refinements
should be exposed; Overridden by allgroups if both are
specified. The APl includes one parameter or the other.
Only a single dimval from any given dimension can be
specified (even if the dimension is configured for
multiselect).

graph

Java: ENEQuery . setNavExposedRefinements()
.NET: ENEQuery .NavExposedRefinements

Ne
Space-separated numeric dimval IDs
Numeric dimval IDs

group=123+3893+1232123

Specifies rollup (aggregation) key to apply for
navigation or aggregated-record queries.

graph, abin

(graph)

Java: ENEQuery.setNavRol lupKey ()

.NET: ENEQuery .NavRol lupKey

(abin)

Java: ENEQuery.setAggrERecRol lupKey ()
.NET: ENEQuery .AggrERecRol lupKey

Nu (graph), or
Au (abin)

Space-separated string property or dimension names
String property or dimension names

groupby=My+DimName, groupby=P_Winery

id

Description

Valid in query types
ENEQuery method or property

UrlENEQuery URL parameters

Format
Values (order)

Example

ignore

Description

Valid in query types
ENEQuery method or property
UrIENEQuery URL parameters
Format

Values (order)

Example

The MDEX Engine Parameter Listing | Description of query types 103

Specifies a record to return (by record spec value or
other identifier).

»
<~ Note: Aggregated-record (abin) queries only
support a single record identifier, not a
space-separated list.

bin, abin

(bin)

Java: ENEQuery.setERecs()

.NET: ENEQuery .ERecs

(abin)

Java: ENEQuery .setAggrERecSpec()
.NET: ENEQuery .AggrERecSpec

R (bin), or
A (abin)

Space-separated string values
String values
1d=18114, id=Record+23, id=2+73

Specifies whether the Dgraph ignores missing
dimension value IDs in a query. When set to false,
queries with missing dimval IDs fail with "Invalid
category id... in query" errors; when set to true, such
queries return successfully with "Detected missing
category... (query will return zero results)" messages.

graph

N/A

N/A

Numeric Boolean value
0 (false), 1 (true, default)
N/A

Oracle Commerce Guided Search Search Performance Tuning Guide

104 The MDEX Engine Parameter Listing | Description of query types

irversion
Description Specifies a major version of API; set automatically by
API and should not be changed.
Valid in query types graph, search, bin, abin
ENEQuery method or property N/A
UrlENEQuery URL parameters N/A
Format Three-digit numeric value
Values (order) N/A
Example irversion=500 (5.0.x), irversion=510 (5.1.x),
irversion=601 (6.0.1)
keyprops
Description Specifies whether to return key properties with the
query results.
Valid in query types graph

ENEQuery method or property Java: ENEQuery .setNavKeyProperties()

.NET: ENEQuery .NavKeyProperties

UrlENEQuery URL parameters Nk
Format String value

Values (order) none (default), all

“All” equates to API constant ENE—
Query.KEY_PROPS_ALL

“None” equates to ENEQuery .KEY_PROPS_NONE

Example N/A

lang
Description Specifies a language to use for a query.
Valid in query types graph, search

ENEQuery method or property Java: ENEQuery.setlLanguageld()

.NET: ENEQuery.Languageld

UrlENEQuery URL parameters Languageld
Format N/A

Oracle Commerce Guided Search Search Performance Tuning Guide

log

Values (order)

Example

Description
Valid in query types
ENEQuery method or property

UrIENEQuery URL parameters

Format

Values (order)

Example

merchdebug

Description

Valid in query types
ENEQuery method or property

UrlENEQuery URL parameters
Format
Values (order)

Example

merchpreviewtime

Description
Valid in query types
ENEQuery method or property

The MDEX Engine Parameter Listing | Description of query types 105

Standard language code string value

lang=en for English, lang=zn_CH for simplified
Chinese

Specifies session and query ID values.

graph, search, bin, abin

Java: ENEQuery.setQueryIlnfo()
.NET: ENEQuery .Querylnfo

N/A

String containing one or more URL-encoded key=value
pairs, separated by ampersands.

key=value pairs

1og=sid%3d11586B%26rid%3d11586

Specifies debugging output for business rule evaluation
in the Dgraph error log. Configured by the
--merch_debug flag.

graph

Java: ENEQuery.setMerchDebugOn()
.NET: ENEQuery .MerchDebugOn

N/A

Numeric Boolean value
0 (false), 1 (true)

N/A

Specifies preview time to use for business rules.

graph

Java: ENEQuery.setNavMerchPreviewTime()

.NET: ENEQuery _NavMerchPreviewTime

Oracle Commerce Guided Search Search Performance Tuning Guide

106 The MDEX Engine Parameter Listing | Description of query types

UrlENEQuery URL parameters
Format

Values (order)

Example

merchrulefilter

Description
Valid in query types
ENEQuery method or property

UrlIENEQuery URL parameters
Format
Values (order)

Example

model

Description

Valid in query types
ENEQuery method or property

Oracle Commerce Guided Search Search Performance Tuning Guide

Nmpt
String value

now (current time), or a date expressed in
yyyy-mm-ddTmm:ss format (such as,
2007-07-12T08%3a15 for 8:15am, 12 July 2007).

merchpreviewtime=now, merchpreview-
time=2007-08-28T12%3a51

Specifies the filter for business rules.

graph

Java: ENEQuery.setNavMerchRuleFilter()
.NET: ENEQuery .NavMerchRuleFilter

Nmrf
String value, formatted per record filters.
N/A

merchrulefilter=endeca. internal .work-
flow.state%3aACTIVE

Specifies dimension(s) to which dimension search will
be restricted.

Multiple values are only usable for compound
dimension searches (such as, search for "ford tempo
against intersection of Make and Model dimensions).

Simple dimension searches are restricted to a single
dimension only, and return O results if multiple dimval
IDs are specified.

search

(search, simple)

Java: ENEQuery.setDimSearchDimension()
.NET: ENEQuery.DimSearchDimension
(search, compound)

Java: ENEQuery.setDimSearchDimensions()

.NET: ENEQuery.DimSearchDimensions

UrlENEQuery URL parameters

Format

Values (order)

Example

nbins

Description

Valid in query types
ENEQuery method or property

UrlENEQuery URL parameters
Format
Values (order)

Example

nbulkbins

Description

Valid in query types
ENEQuery method or property

The MDEX Engine Parameter Listing | Description of query types 107

Di

Numeric dimval ID (simple dimension search), or
space-separated list of numeric dimval IDs (compound
dimension search).

N/A

mode 1=2344 (simple dimension search), mod-
el=1+18+25 (compound dimension search)

Specifies maximum number of ERec objects to return for a navigation
query, assuming that a query can be on non-aggregated records and on
aggregated records. Does not map to any Ur IENEQuery URL parameter.

graph

* In non-aggregated navigation queries:
Java: ENEQuery.setNavNumERecs()
.NET: ENEQuery .NavNumERecs

* In aggregated navigation queries:
Java: ENEQuery .setNavNumAggrERecs()
.NET: ENEQuery .NavNumAggrERecs

N/A

Numeric value

10 (default)

nbins=10 (default), nbins=500

Specifies maximum number of ERec objects to be
returned via bulk export.

This parameter corresponds to different methods when
querying aggregated records, that is, when a rollup key
is applied.

graph

(graph)
Java: ENEQuery.setNavNumBulkERecs ()
.NET: ENEQuery.NavNumBulKkERecs

Oracle Commerce Guided Search Search Performance Tuning Guide

108 The MDEX Engine Parameter Listing | Description of query types

UrIENEQuery URL parameters
Format

Values (order)

Example

node

Description
Valid in query types
ENEQuery method or property

UrlENEQuery URL parameters
Format
Values (order)

Example

Oracle Commerce Guided Search Search Performance Tuning Guide

(graph, aggregated records)
Java: ENEQuery .setNavNumBul kAggrERecs()
.NET: ENEQuery .NavNumBulkAggrERecs

N/A
Numeric value
Values (order) 0 (default), positive values, -1 (all

records, or ENEQuery .MAX_BULK_ERECS_AVAIL-
ABLE)

&
" Note: "-1"is equivalent to all records, or to

setting ENEQuery .MAX_BULK_ERECS_AVAIL~-
ABLE (that is, bulk-exporting all records matching

the query) for the relevant methods.

N/A

Specifies selected (descriptor) dimension values.

graph, search, abin

(graph)

Java: ENEQuery.setNavDescriptors()
.NET: ENEQuery .NavDescriptors
(search)

Java: ENEQuery.setDimSearchNavDescrip-
tors()

.NET: ENEQuery.DimSearchNavDescriptors
(abin)

Java: ENEQuery.setAggrERecNavDescriptors()
.NET: ENEQuery .AggrERecNavDescriptors

N (graph), Dn (search), An (abin)
Space-separated numeric dimval IDs.
N/A

node=0, node=125+234423+87

num

Description

Valid in query types
ENEQuery method or property

UrIENEQuery URL parameters
Format
Values (order)

Example

offset

Description

Valid in query types
ENEQuery method or property

UrIENEQuery URL parameters

Format
Values (order)

Example

The MDEX Engine Parameter Listing | Description of query types 109

Specifies the number of dimension value matches to
return from each dimension as results of dimension
search, per dimension.

search

Java: ENEQuery.setDimSearchNumDimvValues()
.NET: ENEQuery.DimSearchNumDimValues

Dp
Numeric value
N/A

num=5

Specifies the number of values to skip before beginning
to return record objects (for record search), or
dimension value objects (for dimension search).

graph, search

(graph)

Java: ENEQuery .setNavERecsOffset()

.NET: ENEQuery .NavERecsOffset

(graph, aggregated records)

Java: ENEQuery.setNavAggrERecsOffset()
.NET: ENEQuery .NavAggrERecsOffset

(search)

Java: ENEQuery.setDimSearchResultsOffset()
.NET: ENEQuery.DimSearchResultsOffset

No (graph) or
Nao (graph, aggregated records), or

Do (search)

Numeric value
N/A

offset=20 (begins returning objects from record or
dimension value starting with 21 and onward).

Oracle Commerce Guided Search Search Performance Tuning Guide

110

op

The MDEX Engine Parameter Listing | Description of query types

Description

Valid in query types
ENEQuery method or property
UrlENEQuery URL parameters
Format

Values (order)

Examples

opts

Description

Valid in query types
ENEQuery method or property

UrlIENEQuery URL parameters
Format
Values (order)

Example

pred

Description

Specifies an operation to perform for command-type (non-query)
URLs.

admin, config

N/A

N/A

String value

The following admin operations are supported: audit, auditre-

set, exit, Flush, help, logroll, ping, restart, update,
updatehistory, reload-services, stats, and statsreset.

The following config operations are supported: help, log-dis-
able, log-enable, log-status, and update.

4 Note: The config log-enable and log-disable
operations can take several logging variables, which are
documented in the MDEX Engine Logging Variables appendix
to the MDEX Engine Developer's Guide.

admin?op=update, admin?op=stats, config?op=update

Specifies options, such as match mode, for dimension
search.

Also specifies a spel 1+nospel I option for disabling
spelling correction and DYM suggestions on individual
queries.

search

Java: ENEQuery.setDimSearchOpts()
.NET: ENEQuery _DimSearchOpts

Dx

Space-separated string values
N/A

opts=mode+matchal l+spell+nospell

Specifies a range filter expression for a query.

Oracle Commerce Guided Search Search Performance Tuning Guide

Valid in query types
ENEQuery method or property

UrlENEQuery URL parameters

Format

Values (order)

Example

pretendtime

Description

Valid in query types
ENEQuery method or property
UrlENEQuery URL parameters
Format

Values (order)

Example

profiles

Description

The MDEX Engine Parameter Listing | Description of query types 111

graph, search, abin

(graph)

Java: ENEQuery.setNavRangeFilters()
.NET: ENEQuery .NavRangeFilters
(search)

Java: ENEQuery.setDimSearchNavRange-
FiltersQ

.NET: ENEQuery .DimSearchNavRangeFilters
(abin)

Java: ENEQuery.setAggrERecNavRange-
FiltersQ

.NET: ENEQuery .AggrERecNavRangeFilters

NF (graph), or
Df (search), or
AT (abin)

Space-separated string value

property or dimension name key, pipe character
separator, operator (such as BTWN, GT), values.

pred=P%5FPrice%7CBTWN+8+12 (restricts query to
records where P_Price value is between 8 and 12).

Specifies time value to use for time-triggered business
rules.

graph

N/A

N/A

String time value (m/ d/ yyyy hh:mm)

Value is the time of the Dgraph query.
pretendtime=+2%2F+1%2F2007+11%3A49

Specifies user profiles to apply to a query (used to
restrict triggering of business rules).

Oracle Commerce Guided Search Search Performance Tuning Guide

112

The MDEX Engine Parameter Listing | Description of query types

Valid in query types
ENEQuery method or property

UrlENEQuery URL parameters
Format
Values (order)

Example

rank

Description

Valid in query types
ENEQuery method or property

UrIENEQuery URL parameters
Format

Values (order)

Example

refinement

Description

Valid in query types
ENEQuery method or property

UrlENEQuery URL parameters
Format
Values (order)

Example

Oracle Commerce Guided Search Search Performance Tuning Guide

graph

Java: ENEQuery.setProfiles()
.NET: ENEQuery.Profiles

N/A
Space-separated list of string profile names
String profile names

profiles=free_shipping+USA

Specifies whether to use relevance ranking to order
dimension values returned by dimension search.

search

Java: ENEQuery .setDimSearchRankResults()
.NET: ENEQuery.DimSearchRankResults

Dk
Numeric Boolean value

0 (default dimension value ranking), 1 (relevance
ranking)

N/A

Specifies query-time dynamic refinement ranking
settings.

graph

Java: ENEQuery.setNavRefinementConfigs()
.NET: ENEQuery .NavRefinementConfigs

Nrc
Colon-separated list of space-separated values
string, number key, value pairs.

refinement=dimval id:6300+dynrank:1+ ex-
posed:1+dynorder:0+dyncount:4

relrank

Description
Valid in query types
ENEQuery method or property

UrlENEQuery URL parameters
Format

Values (order)

Example

select

Description

Valid in query types
ENEQuery method or property

UrIENEQuery URL parameters

Format

Values (order)

Example

Description

The MDEX Engine Parameter Listing | Description of query types 113

Specifies query-time relevance ranking settings.

graph

* Through IAP 5.1.1:

Java: ENEQuery.setNavRelRankERec—
Search()

.NET: ENEQuery .NavRelRankERecSearch

* IAP 5.1.2 and later:
Java: ENEQuery . setNavRelRankERecRank()
.NET: ENEQuery .NavRelRankERecRank

Nrk Nrt Nrr Nrm
Pipe-separated list of space-separated values

search key, search terms, relevance-ranking strategy,
search mode

relrank=All]napat+valley]exact|matchall

Specifies fields (properties and dimensions) to return
on ERec objects from navigation query.

graph

Java: ENEQuery.setSelection()
.NET: ENEQuery.Selection

N/A

Space-separated list of string property/dimension name
values

String property/dimension name values

select=P_Name+Vintage

Description Specifies sort key(s) and order to use for
records returned by a query.

5.3
Note: Current version only uses the Ns
parameter (Nso is deprecated).

Oracle Commerce Guided Search Search Performance Tuning Guide

114

The MDEX Engine Parameter Listing | Description of query types

Valid in query types

ENEQuery method or property

UrIENEQuery URL parameters

Format

Values (order)

Example

structured

Description

Valid in query types
ENEQuery method or property

UrlENEQuery URL parameters

Format
Values (order)

Example

Oracle Commerce Guided Search Search Performance Tuning Guide

graph

Java: ENEQuery.setNavActiveSortKeys()
.NET: ENEQuery .NavActiveSortKeys

Ns

Nso (deprecated)

Pipe-separated list of string key| order value pairs (two
pipes between pairs)

asc (ascending), desc (descending)

sort=P_Price]asc]|Vintage]desc

Specifies an Endeca Query Language (EQL)
expression to apply to a query.

graph, search, abins

(graph)

Java: ENEQuery.setNavRecordStructureExpr(
.NET: ENEQuery .NavRecordStructureExpr
(search)

Java: ENEQuery.setDimSearchNavRecordStruc—
turekExprQ

.NET: ENEQuery .DimSearchNavRecordStructure-
Expr

(abin)
Java: ENEQuery.setAggrERecStructureExpr()
.NET: ENEQuery .AggrERecStructureExpr

Nrs (graph),
Drs (search)
Ars (abin)

String EQL expression
EQL expression

structured=collec-
tion%28%29%2Ffrecord%5bP_Region%3d%22Sono—
ma%22%5d

The MDEX Engine Parameter Listing | Description of query types 115

terms
Description Specifies search terms for dimension search.
Valid in query types search

ENEQuery method or property Java: ENEQuery.setDimSearchTerms()

.NET: ENEQuery.DimSearchTerms

UrIENEQuery URL parameters D

Format Space-separated list

Values (order) String values for terms
Example terms=my+search+terms

Oracle Commerce Guided Search Search Performance Tuning Guide

Appendix C

Creating Eneperf input files with the Request Log
Parser

The Request Log Parser is a lightweight tool that parses the MDEX Engine’s request log and creates an input
file, containing a list of query URLs, for use with the Eneperf load testing tool.

Installation location

The Request Log Parser is installed as $SENDECA_MDEX_ROOT/bin/reqlogparser (UNIX) and
%ENDECA_ MDEX_ROOT%\bin\reqlogparser.exe (Windows).

Log format requirements

The Request Log Parser supports request logs generated by IAP 4.x, IAP 5.x and MDEX Engine 6.x.

Invoking the Request Log Parser

The Request Log Parser is invoked as follows:

reqlogparser [--flags] request.log [request2._log...]

where request. log is a relative or absolute path to the MDEX Engine request log file to analyze. Multiple
log files may be analyzed in a single run by specifying filenames in space-separated list form.

The Request Log Parser will write resulting parsed entries to standard output. To save results to a file, simply
redirect standard output to a file.

If a filename is "-", then the request log is read from stdin. The "-" can be used in combination with other
filenames but only one filename may be "-".

Per-file progress messages and a post-analysis summary message will be written to standard error unless the
--silent flag is specified.

The Request Log Parser supports the following flags:
+ ——help: displays this message.

118 Creating Eneperf input files with the Request Log Parser | Example output from the Request Log Parser

+ ——Ffilter <parameter_list>: strip the specified query parameters and their values out of log entries.
Parameters must be specified as a comma-separated list (e.g., "nbins,offset").

* ——input <number>: specifies the number of entries to process. If not specified, the Request Log Parser
will process all entries in the specified input files.

+ —-keep-content-1length: if specified, will retain any “Content-Length” HTTP headers in MDEX Engine
6.x entries. These entries are removed by default.

» ——keep-ir: if specified, will retain any irversion parameters found in entries. The irversion is an optional
parameter sometimes specified by queries to indicate a particular version of the Endeca IAP. But this
parameter often makes log entries less portable across versions, so by default the Request Log Parser
removes it.

* ——noerrors: removes entries with HTTP status codes 4xx (client errors) or 5xx (server errors). Equivalent
to using both the --no-client-errors and --no-server-errors flags (both described below).

* ——-no-client-errors: removes entries with HTTP status codes 4xx (client errors).

* ——no-server-errors: removes entries with HTTP status codes 5xx (server errors).

+ ——output <number>: specifies the number of valid entries to output. If not specified, the Request Log
Parser will output all entries that have been processed.

+ ——query-types <types>: specifies which types of log entries to output. If not specified, the Request
Log Parser will only output /graph, /search, /bin, /abin, and /ws queries (equivalent to --query-
types gsbaw). Types include the following:

g: /graph Navigation and search requests
s: /search Dimension search request

b: /bin Record request

a: /abin Aggregate record request

w: /ws Web Services queries

t: J/admin?op=stats Admin stats request

p: /admin?op=ping Admin ping query

u: /admin?op=update Admin update request

r: ladmin?op=reload-services Admin service reload request
d: /admin?op=updateaspell Admin aspell-update request

» ——show-unrecognized: causes the parser to write all unrecognized queries to standard error. Primarily
useful for debugging.

+ ——silent: causes the parser to suppress display of per-file progress messages and post-parsing activity
summary.

* ——version: Print version information and exit.

+ —-web-services: causes the parser to display a breakdown of Web Services query subtypes (e.g.,
rad_query for /ws/rad_query entries) in the post-parsing activity summary report. This breakdown is in
alphabetical order and shows the number of queries of each Web Services subtype parsed.

Example output from the Request Log Parser

By default, with no flags specified, the Request Log Parser generates the following output:

-- reglogparser: Parsing "my/path/dgraph.log”...

Oracle Commerce Guided Search Search Performance Tuning Guide

Creating Eneperf input files with the Request Log Parser | Example output from the Request Log Parser 119

/search?terms=pinot+noir&opts=mode+matchal l&rank=0&offset=0&compound=1
/graph?node=8024&group=0&offset=0&nbins=10 - -

/bin?id=37614 - -

/graph?node=8038&group=0&offset=0&nbins=10 - -

[...]

== SUMMARY OF PARSER ACTIVITY

Total parsing time (seconds): 5

Total log files read: 1

Total entries parsed: 100,000
Log file(s): entries
- my/path/dgraph.log 100,000

Total entries cleaned and retained: 99,994
- Navigation/record-search queries (/graph) 99,200
- Dimension-search queries (/search) 790
- Record-detail queries (/bin) 4

Total entries discarded: 6
- Admin stats commands (/admin?op=stats) 4
- Startup messages ('DGRAPH STARTUP™) 2

Header Information

By default, the Request Log Parser outputs header information to standard error before each file is processed.
For example:

/search?terms=pinot+noir&opts=mode+matchal 1&rank=0&offset=0&compound=1
/graph?node=8024&group=0&offset=0&nbins=10

[..]

/search?terms=pinot+noir&opts=mode+matchal l&rank=0&offset=0&compound=1
/graph?node=8024&group=0&offset=0&nbins=10

[..]

Using the —--si lent flag will suppress this information.

Summary Information

By default, the Request Log Parser outputs a summary report to standard error after all files are processed.
Even if multiple input files are specified, a single summary report is created.

The following metrics can be found in the summary report:

+ Total parsing time (seconds): Amount of time it took for Request Log Parser script to complete.

Oracle Commerce Guided Search Search Performance Tuning Guide

120 Creating Eneperf input files with the Request Log Parser | Using the Request Log Parser with Eneperf

* Total log files parsed: Number of raw log files specified as input.
 Total entries parsed: Number of raw input log entries across all input log files.
* Log file(s)/entries: Number of raw input log entries broken down by file.

 Total entries cleaned and retained: Total number of log entries that were parsed and output, as well as
a breakdown by entry type (such as navigation/record search, dimension search, and record detail.)

+ Total entries discarded: Total number of log entries that were discarded, as well as a breakdown by entry
type (such as admin stats queries, admin exit commands, and startup/shutdown messages.)

* Query parameters filtered/count: List of query parameters specified for filtering, and a count of filtered
occurrences for each. This entry is only displayed if the —-Fi I'ter flag is specified.

» Web Services query subtype breakdown (alphabetical): List of Web Services query subtypes encountered
by the parser, with a count of occurrences for each. This entry is only displayed if the —-web-services
flag is specified.

Using the --si lent flag will suppress display of this summary information.

Using the Request Log Parser with Eneperf

The Request Log Parser processes raw Dgraph logs into properly formatted input for Eneperf.

Eneperfis a performance debugging tool that can measure throughput to help you identify system bottlenecks.
Eneperf drives a substantial load at the MDEX Engine and reveals how many operations per second the MDEX
Engine responds with. You specify a log file as input and tell Eneperf how many times to run through it, as well
as the number of client connections to simulate.

Eneperf is an executable that is included in the MDEX Engine package. It is located at
$ENDECA_MDEX_ROOT/bin/eneperf (UNIX) and YENDECA_MDEX_ROOT%\bin\eneperf.exe (Windows).
A Dgraph process (version 5.1) generates request logs in the following format:

1146617085 10.0.18.19 — - 15805 15.66 2.49 200 5000 0 - /graph?node=0

But as input, the Endeca IAP 5.1 version of Eneperf requires a single log file with URL-only entries in the
following format:

/graph?node=0
MDEX Engine 6.x request log entries include two additional fields after this URL, for post body and HTTP

headers. These do not appear in dgraph logs from earlier versions. The Request Log Parser will retain these
additional fields when processing 6.x request log entries, as they are used by 6.x versions of Eneperf.

The following is an example of how the Request Log Parser can be used in conjunction with Eneperf to replay
two separate dgraph.log files against an index running on 10.0.0.1:8000. In this example, the log file will be
replayed ten times using a five simultaneous connection.

reqlogparser dgraphl.log dgraph2.log > dgraph_parsed.log
eneperf 10.0.0.1 8000 dgraph_parsed.log 5 10

Oracle Commerce Guided Search Search Performance Tuning Guide

Appendix D
Using the Eneperf Tool

Eneperfis a performance testing tool that is included in your Guided Search installation. This section describes
how to use Eneperf.

About Eneperf

Eneperf is a performance, analytics and debugging tool that can measure throughput to help you identify
system bottlenecks. Eneperf makes HTTP queries against the MDEX Engine (Dgraph) based on your MDEX
Engine request logs and gathers the resulting statistics, without processing the results in any way.

Because Eneperf is lightweight, it has a very slight impact on performance. In most cases, it can be run on the
same machine as the Dgraph being tested. It can also be run on a remote machine.

Eneperf drives a substantial load at the MDEX Engine and reveals how many operations per second the MDEX
Engine responds with. Eneperf lets you measure both query latency and throughput. You specify the log file
and specify to Eneperf how many times to run through it, as well as the number of client connections to simulate.

Eneperf understands MDEX Engine URLs, which use the pipe symbol (]). Because the pipe symbol is not a
legal character in the URL/URI standards, other programs, such as wget, may transform it inappropriately.

Using Eneperf

Eneperf is installed in the MDEX Engine bin directory. It has the following usage.

usage: eneperf [-V]
[--header <header file path>]
[--help] [--g9zip]
[--list] [--nreq <n>]
[--nodnscache>] [--msec-between-updates]
[--progress] [--pidcheck <pid>]
[--prelude <log file path>] [--postlude <log file path>]
[--quitonerror] [--rcvbuf <size bytes>]
[--record <recording file prefix>] [--record_hdr]
[--record_ord] [--record roll <max KB per recording file>]
[--regstats] [--regtimeout <secs>]
[--runtime <max runtime (minutes)>]
[--seek <n>] [--seekrepeat] [--sleeponerror <secs>]
[--stats <num reqgs>] [--throttle <max reqg/sec>]
[--updates-log] [--version]

122 Using the Eneperf Tool | Using Eneperf
[--warn <max req time warning threshold (msecs)>]
<host> <port> <log> <num connections> <num iterations>

Eneperf has both required and optional settings.

Required settings

The required settings (shown in order) are as follows.

<host> <port> <log> <num connections> <num iterations>

Their usage is as follows.

Setting Description

<host> Target host for requests.

<port> Port on which the target host is listening for requests.
<log>

Log file of the query portion of the MDEX Engine URLs
and optional associated information (that is, the portion
that resides in the last three columns of the MDEX
Engine request log).

This log file is used for HTTP request generation. URLs
and associated information from the <log> file are
replayed in order.

Each line of the <log> file contains three columns:

* A URL (required)
+ A POST body (URL-encoded and optional)
* HTTP headers (URL-encoded and optional).

If a dash (-) is found in an optional column, the column
is ignored.

<num connections> Maximum number of outstanding requests to allow
before waiting for replies. In other words, the number
of simultaneous HTTP connection streams to keep
open at all times. This number emulates multiple clients
for the target server. For example, using <num
connections> of 16 emulates 16 concurrent clients
querying the target server at all times.

<num rterations> Number of times to replay the URL query log.
All outstanding requests are processed before a new
iteration is started.

Host and port settings for running Eneperf locally or remotely
You can run Eneperf locally or from a remote machine.

* Running Eneperf locally. Eneperf is lightweight and has a very slight impact on performance. It can usually
be run on the same machine as the Dgraph being tested with no impact on results.

Oracle Commerce Guided Search Search Performance Tuning Guide

Using the Eneperf Tool | Using Eneperf 123

To run Eneperf on the same machine as the Dgraph, you point it to localhost and <port>. This
configuration is useful for isolating MDEX Engine performance from any potential networking issues.

* Running Eneperf on a remote host. Eneperf can also be run from a remote host. Using Eneperf to test the
same MDEX Engine from the local machine and from across the network can expose networking problems
if the throughputs are significantly different.

&
7~ Note: Eneperf can be run on a machine with a different architecture than one you are testing.

Log file settings suitable for Eneperf input
MDEX Engine request logs can be used as Eneperf input with some modifications.

URLs in the log should not include any machine connection parameters such as protocol, host, or port. These
are added automatically. For example, a log entry of the following form is valid:

/graph?node=0

But a log entry of the following form is not valid:
http://myhost:5555/graph?node=0

You can achieve higher concurrent load by using a single large request log file (which might simply be repeated
concatenations of a smaller log file) than by using multiple iterations of a small log file. The log file should
preferably be at least 100 lines, even if it consists of the same query repeated over and over. Because Eneperf
drains all connections between each iteration, running a one-line log file through Eneperf 100 times results in
skewed throughput statistics.

If you are planning to measure performance of partial updates with Eneperf, (as opposed to measuring
performance of regular queries), create a separate updates log based on your existing request log.

That is, suppose your MDEX Engine request log contains both regular queries and updates operations. Then
your updates log should contain only config?op=update operations. You can create this updates log
manually, by extracting these operations from a regular log. You can then run Eneperf against the updates log
and the regular log, to measure the performance of your updates, by using the --updates-1og and the
—--1log settings together.

Note: This is only one way to measure performance of updates and should only be used in cases when
you care about the time between the updates. (If you do not care about the timing between updates, you
can use the regular log for your testing.)

About the number of connections and iterations

Eneperf load is driven by the num connections setting, which indicates the number of simultaneous
connections Eneperf tries to maintain at a time.

For example, if num connections is set to 4, it sends four requests to the MDEX Engine. When one returns,
another is sent out to replace it.

To adequately measure performance of the MDEX Engine, you need to identify the number of connections for
Eneperf that saturates the MDEX Engine thread pool.

The number of connections needed to saturate the MDEX Engine depends on the MDEX Engine threading
configuration and the server characteristics, and generally correlates with the number of the MDEX Engine
threads in use, (assuming the MDEX Engine is configured with enough threads). However, an MDEX Engine
with four threads might be saturated by only three connections if the queries are complex and all CPUs are
being fully utilized.

Oracle Commerce Guided Search Search Performance Tuning Guide

124 Using the Eneperf Tool | Using Eneperf

To identify an appropriate setting for num connections, Oracle recommends running tests with the following
settings:

» For debugging, run a test with num connections set to one. This test sends only one request to the
MDEX Engine at a time. Each query is processed alone; no other query computations are contending for
the machine’s resources. This test generates an MDEX Engine request log showing the canonical time for
each query. You can examine the request log to identify slow queries without the concern that they happened
to be slow because other queries were processed simultaneously. Note that using a log file with just one
entry limits num connections to one.

* For stress testing, run a test with num connections set to the number of threads for the MDEX Engine.
In this test, no requests are waiting in the queue. This lets you obtain an estimate of the maximum expected
MDEX Engine performance. Because no queuing occurs, this test offers a conservative bias for throughput.

In addition, you can run a test with num connections set to the “number of threads + one”. In this test
case, a minimal waiting in the queue for the MDEX Engine request may occur. This also lets you obtain
an estimate of the maximum expected MDEX Engine performance. Because queuing does not occur, this
test offers an aggressive bias for throughput.

» Do not use a small log with a large number of num connections. Also, do not run a small log many times
to simulate a large log.

Example: Selecting the number of connections

Commonly, you will wish to perform the load testing of the MDEX Engine to a level below saturation. Use the
following examples to help you select an appropriate number of connections for Eneperf that will saturate
MDEX Engine performance to the desired levels.

Typically, front-end applications have different requirements for response times and peak loads. Such as:

» An application that is used steadily across the year. For applications of this type, MDEX Engine performance
must support average query response time under average loads. Occasional slowdowns under peak load
are acceptable. Therefore, you need to measure average response time under average load.

» An application that is used during the peak seasons. For applications of this type, MDEX Engine performance
must support peak response time under peak loads. It is acceptable for this application to have extra
performance capacity during non-peak seasons.

To identify the projected throughput for the MDEX Engine, use the following formulas.

These formulas represent a highly simplified approach to calculating throughput. Although you can use more
thorough methods, these formulas provide reasonable estimates, and can be used for initial assessment:

concurrent users / (expected page latency + think time) = page views/sec
page views / second x MDEX queries/page = ops/second for the MDEX Engine

Where:

» The number of concurrent users is the estimated number of users currently logged in to the application

» The number of simultaneous requests is the number of users currently making a request to the application.
Typically, it is 20-30% of the number of concurrent users.

* Peak load is the expected maximum number of simultaneous requests, such as during a specific time
period

» Think time is the time between requests issued by a single user. It is used to calculate simultaneous
requests based on the estimated number of concurrent users.

For example, 100 concurrent users with a 5 second think time and a 1 second expected page latency will yield
17 pages/sec. 17 pages/second with 2 MDEX Engine queries per page will yield 34 ops/sec for the expected
performance of the MDEX Engine. This means that to support 100 concurrent users in this application, the
MDEX Engine must perform at 34 ops/sec.

Oracle Commerce Guided Search Search Performance Tuning Guide

Using the Eneperf Tool | Using Eneperf 125

In another example, if your implementation includes a load balancer serving four application servers, and two
MDEX Engines with another load balancer, the following calculations provide you with the estimated performance

for each of the MDEX Engines:

» 600 concurrent users are distributed across 4 application servers. This means 150 users per server.
» 150 users divided by 5 (4 sec think time and 1 sec expected page latency) yields 30 simultaneous page

views per server.

» 30 page views with 2 MDEX Engine queries per page yield 60 MDEX Engine queries per server.
» 60 queries per server multiplied by 4 application servers yield 240 queries total.
» 240 queries are sent to the load balancer that distributes them across two MDEX Engines. Each MDEX

Engine serves 120 queries.

This means that to support 100 concurrent users in this application, each MDEX Engine must perform at 120

ops/sec.

To summarize, you can use these recommendations to identify the number of connections (equal to the number
of simultaneous requests in these examples) that you need to provide to Eneperf to achieve the desired MDEX

Engine performance.

Optional settings

Eneperf contains the following optional settings.

Setting

-v

--gzip

--header <header_file_path>

--help
--list

--msec-between-updates

Description
Verbose mode. Print query URLs as they are requested.
Add Accept-encoding: gzip to the HTTP request header.

Specify path of file containing HTTP header text, one header field per
line. This setting, if used, overrides headers from the log file (which
you can also specify).

Print the help usage and exit.

Treat the <log> parameter as the name of a file containing the names
of a sequence of request logs, rather than directly naming a single
request log. As a result, Eneperf iterates over the sequence of logs.

Each line in the <log> names a request log file to be replayed against
Eneperf in sequence, during each iteration.

If you use this setting with ——updates-10g, it specifies the minimum
time interval between sending partial update requests, in milliseconds.
Before sending a new update request, Eneperf waits for a free
connection (after the specified time interval expires).

This setting must not be used together with --1ist, --seek,
--seekrepeat, --prelude,--postlude, and --throttle.

4 Note: The --msec-between-updates setting is optional. If
you use only the -—updates-1o0g setting, Eneperf processes
updates one after another. Eneperf waits for the current update
to finish and immediately sends another update. It does not wait
for any period of time between sending individual updates to the
Dgraph.

Oracle Commerce Guided Search Search Performance Tuning Guide

126 Using the Eneperf Tool | Using Eneperf

Setting
--nreq <n>

--nodnscache

--pidcheck <pid>

--prelude <log_file_ path>

--postlude <log_file_ path>

--progress

—-—quitonerror

--rcvbuf <size bytes>

--record <rec_file_prefix>

--record_hdr

--record_ord

--record_roll <max_KB>

--regstats

--reqtimeout

Description
Stop after n requests.

Disable caching of DNS hostname lookups. By default, Eneperf caches
these lookups to improve performance.

On a connection error, check the specified Dgraph process to see if it
is running. If the process is not running, terminate Eneperf.

Specify a <log_Tile_path> of the file with URLs to replay before
those of the <log> parameter, for each iteration.

Use this flag together with the —-1ist flag to avoid repetition of
requests in the several log files named in the <log> parameter.

Specify a <log_File_path> of the file with URLs to replay after
those of the <log> parameter, for each iteration.

Use this flag together with the —-11st flag to avoid repetition of
requests in the several log files named in the <log> parameter.

Display the percentage of the query log file processed.

»
7~ Note: If you run Eneperf in the two-stream mode for testing
updates performance, it displays the progress only for the regular
queries log, not for the updates log.

Terminate the Eneperf process if it encounters a fatal HTTP connection
error. By default, errors are ignored and do not stop the Eneperf run.

Override the default TCP receive buffer size, set with the SO_RCVBUF
socket option.

Record a log of all HTTP responses. Recorded data is placed in output
files with the prefix <rec_File_prefix>. Data files are given the
suffixes .dat1, .dat2, and so on. An index file with the suffix .idx is also
produced.

In ——-record mode, record HTTP header information along with page
content.

In ——record mode, ensure that log entries are recorded in the same
order that they are listed in the <log> file, even if they are processed
out of order.

Set the maximum number of KB per recording file. Default is 1024 KB.
Maintain and report per-request timing statistics.

»
<~ Note: This option produces accurate results only if you specify
<num connections> as 1.

Places a limit on the time for any individual request. Default is 600
seconds.

Oracle Commerce Guided Search Search Performance Tuning Guide

Setting

--runtime <max_runtime>

--seek <n>

--seekrepeat

——sleeponerror <secs>

--stats <num_reqs>

--throttle <max_req/sec>

--updates-log

Using the Eneperf Tool | Using Eneperf 127

Description

Place a limit on the run time for Eneperf. Eneperf exits after
<max_runtime> minutes. Minutes are the default unit.

Skip a specified number of requests in the specified log file and start
with log entry n. For example, in a log containing 100 requests, if you
run Eneperf with --seek 50, it issues 50 requests from 50 to 100.

Use in conjunction with —-seek. Start each iteration with the log entry
specified by --seek. —-seekrepeat has an impact only if the number
of iterations specified is greater than one. If it is so, when Eneperf
reaches the end of the log file, -—seekrepeat indicates that it should
start the next iteration from the log entry specified as a value to —-seek
(50 in the example above).

The behavior without --seekrepeat and with —--seek specified is
to seek only on the first iteration and restart from the beginning of the
file on subsequent iterations.

Sleep for a specified number of seconds before sending any new
requests after a connection error occurs.

Print statistics after the specified <num reqs> are processed (sent
and received).

Place an approximate limit on the number of requests per second that
Eneperf generates.

Specifying the updates log allows running Eneperf in a two-stream
mode with two logs: regular query request logs and update request
logs. In this mode, Eneperf sends update requests from the updates
log at regular intervals while sending queries from the query log.

This setting can be used either together with the --msec-between-
updates setting, or without it:

« If this setting is used together with --msec-between-updates,
it specifies the updates log file that contains partial update requests.
These requests are replayed at every interval in milliseconds
specified with --msec-between-updates.

« If this setting is used without --msec-between-updates,
updates are sent to the Dgraph one after another, that is, Eneperf
waits for the current update to finish and immediately sends another
update. It does not wait for any period of time between sending
individual updates to the Dgraph.

This setting must not be used together with --list, --seek,
--seekrepeat, --prelude,--postlude, and --throttle.

Before running Eneperf in the two-stream mode, you need to create
a separate log that contains only partial update requests. You should
create such a log with several partial update requests pointing to a
single update file using the admin?op=update&updatefile=File-
name command. For more information on running partial updates on
a single file, see the Partial Updates Guide.

Oracle Commerce Guided Search Search Performance Tuning Guide

128 Using the Eneperf Tool | Example of Eneperf output

Setting Description

—-version Add the version of Eneperf that is used for this iteration.

The version information is always displayed at the beginning of Eneperf
output, as follows: Endeca eneperf version <number>.

--warn <max_req_threshold> | Print a warning message for any requests that take longer than the
specified threshold time limit to return (useful for finding the “slow”
requests in a log file). The threshold time limit is specified in
milliseconds.

About generating incremental statistics
You use the —--stats setting to specify how many queries you want to see statistics reported on.

Typical values are 500 or 100. The --reqstats setting provides a finer level of detail.

Generating statistics on the fly

Eneperf can run for hours. If you neglected to set —-stats yet want to obtain a statistics printout without
stopping the process, you can send Eneperf a usrl signal.

For example, on UNIX, you could use the kill command to send a signal like this:
kill -usrl pid

About setting the number of queries sent to the Dgraph

By default, Eneperf drives load as fast as the MDEX Engine can handle it. However, there is a setting,
-—throttle, that allows you to place an approximate limit on the number of queries per second sent to the
MDEX Engine. That means you can drive load at a rate you select.

The --throttle setting is useful when you want to approximate a special case. For example, imagine you
expect high-traffic load during the holiday season. You want to calculate maximum load, while maintaining a
comfortable margin of error for the MDEX Engine by running it at 80% utilization.

You might prepare an estimate by multiplying the maximum load by 0.8. Alternatively, you could use
—-—throttle to try different numbers of queries per second and to capture the CPU performance on the MDEX
Engine machine, using a tool such as vmstat on Solaris. You could then calculate the average CPU utilization
from these numbers, or plot a chart of utilization over time in Microsoft Excel.

The mapping of the -—throttle setting to queries per second is not exact. Eneperf uses a simple method
to calculate the waiting times to insert between queries. You get a real number of operations per second but
it might be significantly lower than you want or expect. The —-throttle setting to Eneperf can generate
performance results that exceed the maximum throughput of the MDEX Engine and still result in throughput
results for the MDEX Engine that are less than its maximum. Experiment with this setting to identify the best
strategy for your situation.

Example of Eneperf output

This topic contains an example of Eneperf output and describes it briefly.

Running iteration 1.._.
Done:

Oracle Commerce Guided Search Search Performance Tuning Guide

58881 sent, 58881 received, 0 errors.

Using the Eneperf Tool | Example of Eneperf output 129

22 minutes, 42.63 seconds for iteration 1, 43.2112 req/sec.

22 minutes, 42.63 seconds elapsed (user: 6.20 seconds, system: 15.24

Net: 1.18389e+06 KB (868.829 KB/sec).

Page Size: avg=91.34 KB, std dev=142.81 KB, max=1238.37 KB, min=0.16

Latency: avg=92.36 ms, std dev=238.27 ms,
longer than 1s.

Eneperf completed:

58881 sent, 58881 received, O errors.

22 minutes, 42.63 seconds elapsed (user: 6.20 seconds, system: 15.24

Net: 1.18389e+06 KB (868.829 KB/sec).

Page Size: avg=91.34 KB, std dev=142.81 KB, max=1238.37 KB, min=0.16

Latency: avg=92.36 ms, std dev=238.27 ms,
longer than 1s.

Best iteration time: 22 minutes,

Peak rate: 43.2112 reqg/sec.

seconds).

KB.

max=13441.11 ms, min=0.18 ms. 250 queries

seconds).

KB.

max=13441_.11 ms, min=0.18 ms. 250 queries

42 .63 seconds.

Avg iteration time: 22 minutes, 42.63 seconds.

Avg rate: 43.2112 req/sec.
Total rate: 43.2112 reqg/sec.

The entries from Eneperf output are described in the following table:

Sample Eneperf output entry

Running iteration 1...

done:

58881 sent, 58881 received, O errors.

22 minutes, 42.63 seconds for iteration
1, 43.2112 reg/sec.

22 minutes, 42.63 seconds elapsed (user:
6.20 seconds, system: 15.24 seconds).

Net: 1.18389e+06 KB (868.829 KB/sec).

Description

Is printed as each iteration begins.

The numbers following this line, until "Eneperf
completed:" occur for each iteration requested. The
number of iterations requested is the last Eneperf
parameter.

Is printed once the iteration finishes.

“Sent” is the number of queries sent. It is the sum of
“Received” and “Errors” and the number of errors,
where errors is the number of 404 or 400 HTTP codes
that the Dgraph returns, (rather than errors in the
Dgraph log).

“Received” is the number of queries with a 200 HTTP
status code that the Dgraph returns.

“Errors” is the number of queries with 404 or 400 HTTP
status code that the Dgraph returns, rather than errors
in the Dgraph log.

The time for the specific iteration, and the throughput
for this iteration.
The total runtime up until this point.

System time is the time spent in the operating system
on behalf of the Dgraph.

User time is the time spent in the Dgraph itself.

The total amount of data returned for the entire test
(not just for one iteration).

Oracle Commerce Guided Search Search Performance Tuning Guide

130 Using the Eneperf Tool | About the format of logs for use with Eneperf

Sample Eneperf output entry Description

Page Size: avg=91.34 KB, std dev=142.81 | Cumulative statistics on the amount of data returned
KB, max=1238.37 KB, min=0.16 KB. for each query.

Latency: avg=92.36 ms, std dev=238.27
ms, max=13441.11 ms, min=0.18 ms. 250
queries longer than 1s.

Cumulative statistics on the latencies. The statistics
include previous iterations.

Latency information may be inaccurate when multiple
connections are in use, particularly if the network is
slow. If accuracy is critical, consider obtaining latency
information from the Dgraph request log.

Peak rate: 43.2112 req/sec. The processing rate of the iteration in the test with the

best performance, but should not be confused with
"peak" performance in the sense of a single second
that showed the highest throughput. It is the total
number of requests processed in that iteration divided
by the time of the iteration in seconds.

If the test includes only one iteration, peak rate is the
processing rate for that iteration.

Avg iteration time: 22 minutes, 42.63

The average time of the iterations in the test.
seconds.

Avg rate: 43.2112 req/sec. The average rate of the iterations in the test, in

requests processed per second.

Total rate: 43.2112 req/sec. The total of requests processed for all of the iterations

in the test, divided by the total time of all of the
iterations in the test.

Eneperf completed: All information after this statement is cumulative over
the entire run. This line is printed once all iterations
have completed.

About the format of logs for use with Eneperf

In order to use Eneperf, you need a log of URLs in the correct format. The lines in the log file you use with
Eneperf should not specify the run-time statistics, hostname and the port.

There are numerous ways that you can obtain such logs; this section provides you with guidelines and a few
examples.

The Request Log Parser

In order to use Eneperf, you need a log of URLs in the correct format. The Request Log Parser is an Endeca
utility that converts the MDEX Engine log format into Eneperf log format.

Oracle Commerce Guided Search Search Performance Tuning Guide

Using the Eneperf Tool | About the format of logs for use with Eneperf 131

Alternatively, you can convert URLs yourself. For more information, see Converting a MDEX Engine request
log file for Eneperf.

Recommendations for generating a representative log for Eneperf

The test log that you will use with Eneperf determines the contents and the results of your performance testing.
Because the test log serves as input to Eneperf, it should be representative of those aspects of the MDEX
Engine performance you want to test.

Use these recommendations to create a representative log:

Add queries of various types to your log to account for a variety of queries. Depending on the query type,
some queries are processed much faster than others.

For example, dimension and record search queries are the fastest, queries on aggregate records, or
navigation and search queries take longer, whereas navigation with Analytics, or navigation queries with
RRN may take more time. Even within queries of the same type, individual queries can have large
performance differences, depending on the query parameters.

If you want to test a particular feature configuration for performance, ensure that your query log contains
a fair percentage of queries of this type.

If you are planning to test updates that run at regular intervals, create a separate updates log from your
regular log that contains only config?op=update operations, and run Eneperf against this updates log
and the regular log at the same time. Use the --updates-1og setting together with 1og and --msec-
between-updates settings.

If queries are repeated in the log, or parts of them are repeated, this makes the log less useful for
performance testing, since a large percentage of queries may be served entirely from the MDEX Engine
cache. Therefore, do not replay a short query log multiple times.

For a full-scale performance test, generate a log that runs for 30 minutes or more. In addition, you may
want to create a smaller log that runs for 5-10 minutes to use it as a quick test.

To create a representative log, use the existing MDEX Engine logs from the production system. Use the
Request Log Parser to strip undesired columns and queries. For information, see “The Request Log Parser”.
Translate existing Web application logs into the MDEX Engine format. For example:

/results._jsp?searchterm=ipod

turns into:
graph?node=0&group=0&offset=0&nbins=10&attrs=All+ipod|mode+matchal 1&dym=1

Translate existing traffic reports, such as a list of top search terms, into the MDEX Engine format by
programmatically generating URLs as produced by the MDEX Engine. For example, for the term “iron
man”, generate:

graph?node=0&group=0&offset=0&nbins=10&attrs=Al l+iron+man|mode+matchal 1&dym=1

Use the Request Log Parser to remove all admin queries from a request log (use the default or -q gb
options for the parser). Typically, process health requests of type Zadmin?op=ping can run every few
seconds, are typically very fast and not generated by end users. However, requests of type
/admin?op=exit stop and restart the process and will impact your log.

Remove dimension search queries from your Eneperflog. This is because a single API request that includes
a dimension search is turned into two MDEX Engine requests. For example, the following request:

2N=0&Ntk=Al 1&Ntt=plum&\ty=1&D=plum

turns into:

/graph?node=0&group=0&offset=0&nbins=10&attrs=All+plum
/search?terms=plum&rank=0&offset=0&compound=1

Oracle Commerce Guided Search Search Performance Tuning Guide

132 Using the Eneperf Tool | About the format of logs for use with Eneperf

From the application perspective, this request constitutes one query, since the presentation API waits for
both responses and recombines them into a single response object to the front-end application. However,
the MDEX Engine and performance tools, such as Eneperf and the Request Log Analyzer, treat such
dimension search requests as two queries.

If you remove these dimension search queries, which are known to be fast, from the Eneperf log and
replace them with other queries, you can use Eneperf to measure the MDEX Engine performance against
this log. If the desired level of performance is achieved with such a log, you will achieve or exceed that
performance when dimension searches are included again.

Running Eneperf in two-stream mode: regular logs and logs with updates

You can run Eneperf in a two-stream mode using two streams of request logs — regular query request logs
and logs that contain partial update requests. This lets you test MDEX Engine performance with partial updates
applied at regular intervals while running a regular query load.

To run Eneperf in the two-stream mode, use the following Eneperf settings together:

+ ——updates-log
+ ——msec-between-updates
« ——log

When used in this mode, Eneperf sends update requests from the updates log at regular intervals while sending
queries from the query log.

In more detail, Eneperf runs in the following way:

1. Ituses the log file (specified with —-10g) and sends requests from this file for the duration that you specify
by the --msec-between-updates setting.

2. Atthe specified time interval, it sends an update request from the updates log file (specified with --updates-
log) and uses one of its connections for this request.

3. It continues to send query requests from the query log (--10g), using the other connections.

Note: This behavior assumes that you are running Eneperf with the number of connections set to
more than one. If you use only one connection, Eneperf will switch between update and regular query
requests.

4. This process continues until either the regular query log or the updates log has been completely processed.
For example:

* If Eneperf sends the last update request from the updates log, but the query log still contains queries,
Eneperf will send additional queries for the time interval specified with --msec-between-updates
and then stop. (Since the two-stream mode is designed specifically to test updates performance, Eneperf
does not process regular queries after the last update in the updates log has been processed.)

« If Eneperf sends the last query from the regular log, but the updates log still contains additional update
requests, it will not send these updates to the Dgraph. Therefore, ensure that the regular query log
contains sufficient number of requests to last for the duration of your two-stream Eneperf testing session.

The format of the updates request log is the same as the format of a regular query log for Eneperf, except that
the updates log should contain only config?op=update operations in order to provide meaningful performance
results. (If your updates log contains regular queries, Eneperf still processes this log successfully. However,
the results are not meaningful for measuring updates performance.)

Using --updates-1og and --10g settings is useful to measure performance of those updates that run at
regular intervals. To test updates that run at random times, you can continue using your regular log with Eneperf.

Oracle Commerce Guided Search Search Performance Tuning Guide

Using the Eneperf Tool | About the format of logs for use with Eneperf 133

Note: The actual time interval between sending update requests may be equal to or greater than the
time specified with --msec-between-updates. This is because Eneperf uses the same num connec-
tions setting while processing the regular query log and updates log. This causes Eneperf to wait for
a preceding request to complete before it can process the next updates log request.

Before running Eneperf in the two-stream mode, you need to create a separate log that contains only partial
update requests. You should create such a log with several partial update requests pointing to a single update
file using the admin?op=update&updatefile=Filename command. For more information on running
partial updates on a single file, see the Partial Updates Guide.

4 Note: The --msec-between-updates flag is optional. In other words, if you only specify the -—-up-
dates-1og flag, the updates are sent to the Dgraph one after another. Eneperf waits for the current
update to finish and immediately sends another update. It does not wait for any period of time between
sending individual updates to the Dgraph.

Converting an MDEX Engine request log file for Eneperf

In order to use Eneperf, you need a log of URLs in the correct format. You can manually convert the log to the
desired format, or use the Request Log Parser.

The lines in the log file you use with Eneperf should not specify the run-time statistics, hosthame and the port.
For example, raw URL requests could be formatted like these:

/search?terms=blackberry&rank=0&opts=mode+matchal 1&offset=0&compound=1

&irversion=510
/graph?node=0&group=10&offset=0&nbins=10&attrs=Al l+berry|mode+matchall
&dym=1&irversion=510

To convert a complete MDEX Engine request log file for Eneperf use:

Run the following command:

sed -e "/DGRAPH STARTUP/d*® <logfile> |
sed -e "/\/admin.*$/d" |
cut -d * * -F 12-

This does the following:

+ It deletes DGRAPH STARTUP lines, because these lines contain no commands.

* It removes admin requests, such as admin?op=stats or admin?op=exit, that can cause problems in
an Eneperf run.

* It obtains the last three columns in the log (the URL, POST body, and HTTP headers).

Performance testing .NET 2.0 applications that contain long or complex queries

In rare cases, if your .NET 2.0 (or later) application uses very complex record filters or Analytics statements,
you may find that your Eneperf results differ from what is seen in production.

This discrepancy results from the way the .NET 2.0 API to the MDEX Engine handles very long or complex
queries. Instead of the usual HTTP GET request to the MDEX Engine, it uses an HTTP POST request. However,
the MDEX Engine logs the query as if it were a GET request. The different processing and validation that
occurs for POST requests may result in performance differences.

Oracle Commerce Guided Search Search Performance Tuning Guide

134 Using the Eneperf Tool | Debugging Eneperf

To better simulate the performance of applications that contain such queries, you can use the Request Log
Parser to pre-process the logs used to run the Eneperf test. For each request in the log that is longer than
65,000 characters, prepend “/graph” with a space after it to the request. Use the subsequent log as the
input to Eneperf.

Note: This behavior only manifests itself in the case of very long or complex queries. Most applications
never use queries of this sort.

Creating a log file by hand using substitute search terms

You can also approximate a log file to be used with Eneperf. This method is useful when you do not have a
running MDEX Engine and archives of logs to work with.

For example, you may want to test the performance of search terms culled from some other system.
To create a log file by hand:
1. Create a list of search terms that you want to test.

2. Copy or create a URL and optional HTTP POST body in the appropriate format.
3. Compose a new log file by substituting your search terms into URL requests containing suitable options.

Debugging Eneperf

Eneperf generates error messages in various error conditions.

« If you make an error while typing the command line argument, Eneperf returns its help message.

« if you accidentally mistype the MDEX Engine port, Eneperf generates numerous failed connection error
messages.

« If Eneperf encounters socket connection errors, it reports error messages.

It is also possible for error messages to be displayed during normal operation. For example, if the log file
contains a request to retrieve a record that is not present in the MDEX Engine data set, Eneperf (as expected)
presents a 404 (file not found) message.

&
7 Note: Queries that cause HTTP errors are not counted towards ops/sec performance results displayed
by Eneperf.

Oracle Commerce Guided Search Search Performance Tuning Guide

Appendix E
Using the Request Log Analyzer

The Request Log Analyzer is a performance testing tool that is included in your Guided Search installation.

About the Request Log Analyzer

This tool simplifies and standardizes forensic analysis of Endeca MDEX Engine performance. The Request
Log Analyzer reads one or more MDEX Engine logs and reports on the nature and performance of the queries
recorded in those logs. This kind of analysis is called "forensic" because it reports on what actually happened
in the past, instead of reporting on potential performance or capacity planning for the future.

There are two main applications for this script. First, it can and should be run manually in order to debug
performance problems. Second, it can and should be run on a regular basis, either standalone or as part of a
control script, in order to continually monitor performance and call out trends in Dgraph traffic load, latency,
throughput, and application behavior. The default behavior of this script (without flags) is meant to be sufficient
for daily or weekly reports, while the options available to the developer via flags are meant to give enough
flexibility and power to perform serious debugging.

Installation location

The Request Log Analyzer is installed as $ENDECA_MDEX_ROOT/bin/reqgloganalyzer (UNIX) and
%ENDECA_MDEX_ROOT%\bin\reqgloganalyzer .exe (Windows).

Log format requirements

The Request Log Analyzer supports request logs generated by IAP 4.x, IAP 5.x and MDEX Engine 6.x.

In order to efficiently process large volumes of log files, supply log files (and the entries they contain) to its
command-line in date-time increasing order without overlap.

136 Using the Request Log Analyzer | Invoking the Request Log Analyzer

Invoking the Request Log Analyzer

The Request Log Analyzer is invoked as follows:
regloganalyzer [--flags] dgraph.log|- [dgraph2.log ...]

where dgraph. log is a relative or absolute path to the dgraph log file to analyze. Multiple Dgraph logs may
be analyzed by listing all logs, separated by spaces. To process log file data from the standard input, specify
the file name as a single hypen: -.

The Request Log Analyzer will write its results to standard output. To save results to a file, simply redirect
standard output to a file.

The available flags for the Request Log Analyzer are detailed in the following topics. The flags are:

Show Flags:
--showHourly
--showProfiles
--showResponseCodes
--showRequestTypes
--showExtendedTypes
--showThreading
--showWorstEngines
--showWorstResponses
--showAll
--verbose
--numWorstEngines
-—-numWorstResponses

Threshold Flags:
-—threshEngine
-—threshResponse
-—threshResponseDiff
--threshResponseSize
-—threshQueuelLength
-—threshBinsRequested
-—threshAggrBinsRequested
--threshBinsReturned
-—threshAggrBinsReturned
-—threshOffset
-—threshNumNavDescriptors
-—threshNumExposedRefinements
-—threshNumSortKeys
--threshNumSearchTerms
-—threshNumSearchKeys

Ignore Flags:
—--ignoreAdmin
--ignorelnvalid
—-—ighoreEmpty
—-—ignoreErrors
-—ignore

Timeframe Flags:
-—timelLower
-—timeUpper
--hourOffset

Miscellaneous Flags:
—-—precision
--help,-?

Oracle Commerce Guided Search Search Performance Tuning Guide

Using the Request Log Analyzer | Invoking the Request Log Analyzer 137

Show flags

By default, the Request Log Analyzer outputs a small number of widely applicable metrics, such as the average
response time for all requests. There are additional metrics possible to display using the Request Log Analyzer;
these flags toggle the calculation and display of these additional metrics. Note that enabling additional metrics
can slow analysis time.

» ——showHour ly: calculates and outputs running statistics for each hour time span within the log as well
as tracking the best-performing hour. This flag is useful for its statistics as well as for providing visual
feedback that the script is actively running.

» ——showProfi les: calculates and outputs detailed statistics about the nature of the request and response,
such as the number of search terms or the number of sort keys. This flag is especially calculation-intensive
and will notably slow analysis time.

+ —-—showResponseCodes: calculates and outputs information about the performance of queries categorized
by their HTTP response codes.

+ ——showRequestTypes: calculates and outputs statistics about the performance of queries categorized
by their query type (search, navigation, record request, etc.)

+ ——showExtendedTypes: calculates and outputs statistics about the performance of queries categorized
by their utilization of specific query features, such as wildcard searches, boolean matchmode, record filters,
geocode filters, etc.

+ ——showThreading: calculates and outputs statistics about the behavior of a multithreaded MDEX Engine,
such as average request queue length, average number of idle threads, and performance analysis of
queued vs. unqueued queries.

+ ——showWorstResponses: calculates and outputs the N longest-running queries, based on round-trip
response time. By default, N is 10 but is configurable using --numWorstRequests.

+ ——showWorstEngines: calculates and outputs the N longest-running queries, based on engine-only
processing time. By default, N is 10 but is configurable using -—-numWorstDgraphs.

» —-verbose: calculates and outputs all available statistics except request/response profiling. This flag is
a shortcut and is equivalent to specifying --showHourly --showResponseCodes --showRequest-
Types --showSpecialSearches --showThreading --showWorstRequests --showWorstD-
graphs.

+ ——showAl I: calculates and outputs all available statistics. This flag is a shortcut and is equivalent to
specifying --showHourly --showProfiles --showResponseCodes --showRequestTypes --
showSpecialSearches --showThreading --showWorstRequests --showWorstDgraphs. Since
this flag includes --showProfiles, it is especially calculation-intensive and will notably slow analysis time.

+ ——numWorstResponses: specifies the number of longest-running queries to calculate and output, based
on round-trip response time. This flag is only useful when --showWorstRequests is also enabled.

+ ——numWorstEngines: specifies the number of longest-running queries to calculate and output, based
on engine-only processing time. This flag is only useful when —-showWorstDgraphs is also enabled.

Threshold flags

The Request Log Analyzer includes functionality to report on the number of requests that exceed a threshold.
For instance, by default the Request Log Analyzer reports the number of requests that took longer than 1.25
seconds total round-trip response time. The following threshold flags allow the user to specify the exact setting
to use as a threshold for many metrics.

+ ——threshEngine: specifies the threshold for engine-only processing time, in milliseconds. The default
is 500.

» ——threshResponse: specifies the threshold for round-trip response time, in milliseconds. The default is
1250.

Oracle Commerce Guided Search Search Performance Tuning Guide

138 Using the Request Log Analyzer | Invoking the Request Log Analyzer

+ ——threshResponseDi fF: specifies the threshold for response differential time (the difference between
round-trip response time and engine-only processing time), in milliseconds. The default is 500.

+ ——threshResponseSize: specifies the threshold for response size, in bytes. The default is 393216,
which is equivalent to 384K.

+ ——threshQueuelLength: specifies the threshold for the number of queued requests. This metric is only
calculated when --showThreading is enabled and is only valid for multithreaded MDEX Engines. The
default is 5.

+ ——threshBinsRequested: specifies the threshold for the number of base records requested by the
Endeca Presentation API. This metric is only calculated when --showProfiles is enabled. The default
is 50.

+ ——threshAggrBinsRequested: specifies the threshold for the number of aggregate records requested
by the Endeca PresentationAPI. This metric is only calculated when --showProfiles is enabled. The
default is 50.

+ ——threshBinsReturned: specifies the threshold for the total number of base records found by the MDEX
Engine (not the number returned in a single page). This metric is only calculated when —-showProfiles
is enabled. There is no default.

+ ——threshAggrBinsReturned: specifies the threshold for the total number of aggregate records found
by the MDEX Engine (not the number returned in a single page). This metric is only calculated when
--showProfi les is enabled. There is no default.

+ ——threshOffset: specifies the threshold for the pagination offset requested by the Endeca Presentation
API. This metric is only calculated when —-showProfi les is enabled. The default is 100.

+ ——threshNumNavDescriptors: specifies the threshold for the number of dimension values specified
as descriptors by the Endeca API, not including the default root node (N=0). This metric is only calculated
when --showProfiles is enabled. There is no default.

+ ——threshNumExposedRefinements: specifies the threshold for the number of open refinement
dimensions specified by the Endeca Presentation API, not including requests for no open refinements or
all open refinements. This metric is only calculated when --showProfi les is enabled. There is no default.

+ ——threshNumSortKeys: specifies the threshold for the number of explicit sort keys specified by the
Endeca Presentation API. This metric is only calculated when --showProfi les is enabled. The default
is 2.

+ ——threshNumSearchTerms: specifies the threshold for the total number of search terms specified the
Endeca Presentation API, across all search keys. Note that this metric is approximate because of the
variety of punctuation and search characters possible. This metric is only calculated when --showProfiles
is enabled. The default is 6.

+ ——threshNumSearchKeys: specifies the threshold for the total number of search keys specified the
Endeca Presentation API. This metric is only calculated when --showProfiles is enabled. The default
is 3.

Ignore flags

By default, the Request Log Analyzer reports on all requests within a logfile. When performing analysis, it is
sometimes useful to only report on certain types of requests. Excluding some requests provides a truer overall
picture of the performance of the remaining queries, but can skew overall statistics. For instance, by excluding
admin requests, the reports on average response size are more useful when analyzing application-level query
tuning. However, the reports on queue length can be misleading, since admin requests utilize a thread and
contribute to queue length.

+ ——ignoreAdmin: excludes administrative and configuration requests (/admin and /config) from statistical
analysis, though the Request Log Analyzer will still report on the number of admin requests found.
Administrative requests signal the MDEX Engine to load partial updates, load new thesaurus entries or

Oracle Commerce Guided Search Search Performance Tuning Guide

Using the Request Log Analyzer | Invoking the Request Log Analyzer 139

dynamic business rules, output the MDEX Engine's internal stats page, execute a health check against
the ping page, and perform other administrative functions.

+ ——ignorelnvalid: excludes invalid requests from statistical analysis, though the Request Log Analyzer
will still report on the number of invalid requests found. Invalid requests are those requests that cannot be
handled by the MDEX Engine, such as a request for "/foo", but do not include empty requests (see --ig-
noreEmpty).

» ——ignoreEmpty: excludes empty requests from statistical analysis, though the Request Log Analyzer
will still report on the number of empty requests found. Empty requests are those requests for the URL ™
(the empty string). Empty requests are sometimes generated by load balancer health-checks and can also
be generated by telnet-ing directly to the MDEX Engine's port without issuing any further commands.

* ——ignoreErrors: excludes error requests from statistical analysis, though the Request Log Analyzer
will still report on the number of error requests found. Error requests are those that resulted in anything
other than a 200 (OK) HTTP status code. These can be generated by a request for an unknown dimension
value (HTTP status code 404) or by a request whose client was disconnected before the response could
be written (HTTP status code 408).

* ——ignore: excludes admin requests, invalid requests, empty requests, and error requests from statistical
analysis. This flag is a shortcut and is equivalent to specifying --ignoreAdmin --ignorelnvalid -
—-ignoreEmpty --ignhoreErrors.

Timeframe flags

By default, the Request Log Analyzer reports on all requests within a logfile, and all time-based calculations
such as operations per second are based on the time period between the first request in the log and the last
request in the log. It is often useful to only analyze a certain time period within the log. This allows targeted
analysis of specific events such as a load test or a traffic spike. Furthermore, it allows outlying requests such
as developer-initiated requests before an MDEX Engine is released to production traffic to be excluded from
calculation.

+ ——timeLower: the earliest datetime that should be analyzed. Requests that occurred before this datetime
will be silently ignored. This datetime can be specified as in epoch time or in YYYY-MM-DD-HH-MM-SS
format. Note that hours must be specified in 24-hour military time. To specify a lower time bound of December
14, 2005, 5:26:38 PM, use ——-timeLower 1134599198 or --timeLower 2005-12-14-17-26-38.

+ ——timeUpper: the latest datetime that should be analyzed. Requests that occurred after this datetime will
be silently ignored. This datetime can be specified as in epoch time or in YYYY-MM-DD-HH-MM-SS format.
Note that hours must be specified in 24-hour military time. To specify an upper time bound of December
14, 2005, 5:26:38 PM, use —-timeUpper 1134599198 or --timeUpper 2005-12-14-17-26-38.

+ ——-hourOffset: the difference, in hours, between the timezone of the server that created the MDEX
Engine log and the server running the Request Log Analyzer. This timezone difference is important because
the Request Log Analyzer will output time information in human-readable format even though the MDEX
Engine logs times in epoch format. The translation of epoch to human-readable time honors the timezone
of the server running the Request Log Analyzer. The -—hourOffset flag allows human-readable times
to honor the timezone of the server that wrote the log. If the server running the Request Log Analyzer is
in EST (GMT-5) and the server that wrote the log is in PST (GMT-8), specify ——hourOffset -3. This
flag also affects the translation of human-readable time to epoch time, when specifying -—timeLower or
—-—timeUpper in YYYY-MM-DD-HH-MM-SS format.

Miscellaneous Flags

* ——precision: controls the number of significant decimal digits displayed in calculated statistics. The
default is 3.

» ——help: outputs help and usage information and then exits without performing any analysis.

Oracle Commerce Guided Search Search Performance Tuning Guide

140 Using the Request Log Analyzer | Interpreting reports

Interpreting reports

Achieved vs. Potential Performance

The Request Log Analyzer measures the performance actually achieved by an MDEX Engine according to
that engine's request logs. This "achieved performance” is completely dependent on the amount and nature
of traffic sent to the MDEX Engine, and does not measure the capacity or upper bounds of performance that
the MDEX Engine is actually capable of - the "potential performance”.

For instance, consider an MDEX Engine running the reference sample wine dataset on a modern server and
the latest release of Oracle Endeca Guided Search. This MDEX Engine is capable of handling well over 100
ops/second throughput at sub-second response times. Now consider that a single user leisurely clicks through
the dataset, stopping to read about the descriptions and flavors of the featured wines. This user will generate
a total of 45 requests over a 15 minute time span. When the Request Log Analyzer analyzes the logfile for this
single user, it will report an achieved throughput of 0.05 operations per second (45 requests / (15 minutes *
60 seconds)), compared to the known potential throughput of 100+ operations per second.

Because of the possible large differences in achieved vs. potential performance, the Request Log Analyzer,
as a standalone tool, is more suited to forensic analysis and behavior profiling than load testing and capacity
planning. However, the Request Log Analyzer does work well in concert with other load testing tools such as
Eneperf to analyze the performance characteristics of an MDEX Engine under load.

Expensive Features

Usage of expensive features such as wildcard search, Boolean search, exposure of all refinements, or large
numbers of records per page is a common cause of performance problems.

The Request Log Analyzer can be used to measure the performance of queries utilizing expensive features
against "standard" queries. Because the Request Log Analyzer can segment performance numbers based on
these features (see Extended Query Types and Request Profiling), it is trivial to compare statistics. However,
beware that statistics from a single MDEX Engine necessarily are inter-dependent. A standard query may be
stuck in the request queue behind an expensive query, thus inflating its response time. Similarly, a standard
query may be executing on a thread simultaneously with an expensive query on a parallel thread. If the
expensive query causes resource (CPU, disk) contention, the standard query will see an inflated engine time.

Request Queuing and Multithreading

Excessive request queuing is another common cause of performance problems. The Request Log Analyzer
can be used to detect the presence of excessive request queuing and can report on the performance of queued
requests vs. requests that encountered no queue.

Request queuing is, in and of itself, not necessarily a bad thing. MDEX Engines are often more efficient at
processing a small number of simultaneous requests quickly and then moving on to process requests that
have been waiting in queue. In this model, because each individual request is processed quickly, requests are
only in the queue for a very short time, and overall performance is good.

When the request queue gets very long, or when requests have to wait a long time in queue, the queue is a
problem. In this situation, additional engine threads can help if the server has enough available resources
(CPU, RAM, disk). Additional MDEX Engines in a load-balanced configuration will also help.

Note that the response differential metric - the difference between round-trip response time and engine-only
processing time - includes time spent in both the request queue (waiting to be processed) and the response
queue (waiting to be written back to the client). It is not possible to determine from the request logs exactly
how long requests spend in the request queue alone.

Oracle Commerce Guided Search Search Performance Tuning Guide

Using the Request Log Analyzer | Statistics 141

Statistics

The Request Log Analyzer outputs a large amount of statistics for analysis. The types of statistics are explained
in the following topics.

Common metrics

The following metrics are found in multiple sections of the Request Log Analyzer output:

» Ops/Sec: operations per second; the number of requests processed in a time period, divided by the number
of seconds in that time period. This metric provides a sense of achieved throughput. In other words, this
metric shows how well the MDEX Engine is servicing simultaneous clients. Note that this is achieved
performance, not potential performance; see Result Interpretation.

* Round-Trip Response Time or Response Time: the total time required for the Endeca API to receive a
response back from an MDEX Engine. This includes time spent in the request queue, time spent processing
in the engine, and time spent writing the response back to the API. The round-trip response time is the
time seen by end users of the system.

* Response Times Over [threshold]: the number of requests that took longer than [threshold] to complete,
measured by round-trip response time. The [threshold] value is configurable with the --threshResponse
flag. Typically, this metric is followed by the percentage of over-threshold requests compared to all requests.

* Engine-Only Processing Time or Engine Time: the total time required for the Endeca MDEX Engine to
calculate the results of a query. This includes only the time spent processing in the engine, excluding time
spent in the request queue and time spent writing the response back to the API. The engine-only processing
time is a measure of the expensiveness of any particular query.

* Engine Times Over [threshold]: the number of requests that took longer than [threshold] to complete,
measured by engine-only processing time. The [threshold] value is configurable with the —-threshEngine
flag. Typically, this metric is followed by the percentage of over-threshold requests compared to all requests.

* Response Size: the size of the data packet returned by the MDEX Engine to the API. As data packet sizes
grow larger, more network resources are required to move the data. Additionally, larger data packets
typically require more computing resources in the MDEX Engine and the Endeca API to pack and unpack
the data.

» Number of Requests: when categorizing metrics by type, such as when using --showResponseCodes
to display 404 Not Found responses, Number of Requests denotes the total quantity of requests in the
category. This metric is typically followed by the percentage of these requests compared to all requests.

* Requests Analyzed: when calculating individual metrics, such as when using --showProfi les to display
the number of base records requested, Requests Analyzed denotes the number of requests polled to
calculate the metric.

Hourly results
These statistics are only available when the —-showHour ly flag is enabled.

The following sample may be line-wrapped:

DATE NUM REQUESTS OPS/SEC AVG ROUND-TRIP TIME

ROUND-TRIP OVER 1250 AVG ENGINE TIME ENGINE TIME OVER 750

2005-12-19 14:00-15:00 1 / 1 1.000 / 0.000 0.000 / 0.000 0
(0.00%) / (0.00%) 0.000 / 0.000 0 (0.00%) /7 (0.00%)

2005-12-19 15:00-16:00 12890 / 12891 3.786 / 0.000 303.924 / 303.900

325 (2.52%) / 325 (2.52%) 109.311 / 109.303 343 (2.66%) / 343 (2.66%)

2005-12-19 16:00-17:00 14169 / 27060 3.936 / 0.000 304.759 / 304.350

Oracle Commerce Guided Search Search Performance Tuning Guide

142

Using the Request Log Analyzer | Statistics

375 (2.65%) / 700 (2.59%) 107.894 / 108.565 327 (2.31%) / 670 (2.48%)
2005-12-19 17:00-18:00 12182 / 39242 3.384 / 0.000 295.993 / 301.756
292 (2.40%) / 992 (2.53%) 92.452 / 103.563 232 (1.90%) / 902 (2.30%)
2005-12-19 18:00-19:00 11189 / 50431 3.108 / 0.000 291.157 / 299.404
286 (2.56%) / 1278 (2.53%) 86.383 / 99.751 164 (1.47%) / 1066 (2.11%)

Hourly statistics, when enabled, are output as they are calculated by the Request Log Analyzer. This is the
only statistic to be output in this manner; all other statistics are only output when the Request Log Analyzer
has finished processing all logs. For this reason, hourly statistics are useful to know that the Request Log
Analyzer is continuing to run properly.

The metrics output by hourly statistics are:

1. Date: The timespan of the current hour. The Request Log Analyzers hourly statistics are measured by
single hour boundaries; this is not configurable.

2. Num Requests: The number of requests found in the current hour, followed by the number of requests
processed so far.

3. Ops/Sec: the achieved throughput for the current hour, followed by the achieved throughput for all requests
processed so far.

4. Avg Round-Trip Time: the average round-trip response time for the current hour, followed by the round-trip
response time for all requests processed so far.

5. Round Trip Over [threshold]: the number of requests in the current hour requiring longer than [threshold]
to complete, based on round-trip response time, followed by the number of requests over [threshold] for all
requests processed so far.

6. Avg Engine Time: the average engine-only processing time for the current hour, followed by the engine-only
processing time for all requests processed so far.

7. Engine Time Over [threshold]: the number of requests in the current hour requiring longer than [threshold]
to complete, based on engine-only processing time, followed by the number of requests over [threshold]
for all requests processed so far.

Longest-running requests by round-trip response time

These statistics are only available when the --showWorstResponses flag is enabled. The -—numWorstRe-
sponses flag controls the number of requests listed.

The following sample may be line-wrapped:

== Longest-Running Requests

1. 1733.90 ms: 1129914655 127.0.0.1 33868 1733.90 1711.04 200 29983 2 6
/graph?node=0&al Igroups=1&groupby=Rol lupKey&offset=0&nbins=15&al Ibins=2&attrs=Key-
words+COV+HD%2FBT+E%2FW+BLUE+2X+25%2FCS | mode%2bmatchany&dym=1&Fi I ter=4&irver-
sion=460

2. 716.56 ms: 1129914664 127.0.0.1 132043 716.56 344.80 200 468 3 6
/graph?node=0&al Igroups=1&groupby=Rol lupKey&offset=0&nbins=15&al lbins=2&at-
trs=All+reinforced+silicon+tubing]|mode%2bmatchpartialmax&dym=1&Filter=4&irver-
sion=460

3. 698.01 ms: 1129914658 127.0.0.1 312 698.01 4.38 200 0 2 6
/search?terms=Black+&Filter=4&rank=0&num=5&offset=0&mode lI=1&irversion=460

This section lists the N longest-running requests, measured by the round-trip response time. The rank and
round-trip response time are listed, followed by the request in the raw format found in the MDEX Engine logs.
This raw format includes all request information request in context, which can be helpful to understand why
the request may have been long-running.

Oracle Commerce Guided Search Search Performance Tuning Guide

Using the Request Log Analyzer | Statistics 143

Longest-running requests by engine-only processing time

These statistics are only available when the --showWorstEngines flag is enabled. The number of requests
listed is controlled by the ——numWorstEngines flag.

The following sample may be line-wrapped:

== Longest-Running Dgraphs

1. 525.09 ms: 1129914645 127.0.0.1 32426 545.12 525.09 200 2564 2 5
/graph?node=0&al lgroups=1&groupby=Rol lupKey&offset=0&nbins=15&al Ibins=2&attrs=Pro-
ductDescription+Thermometers|mode%2bmatchpartialmax&dym=1&Ffilter=4&irversion=460
2. 481.29 ms: 1129914646 127.0.0.1 61133 510.62 481.29 200 17903 2 6
/graph?node=0&al lgroups=1&groupby=Rol lupKey&offset=0&nbins=15&al Ibins=2&at-
trs=All+glass|mode%2bmatchpartialmax&dym=1&Filter=4&irversion=460

3. 457.31 ms: 1129914655 127.0.0.1 34035 519.63 457.31 200 1024 2 5
/graph?node=0&al Igroups=1&groupby=Rol lupKeyé&offset=0&nbins=15&al Ibins=2&at-
trs=All1+Windows | mode%2bmatchpartialmax&dym=1&Filter=4&irversion=460

This section lists the N longest-running requests, measured by the engine-only processing time. The rank and
engine-only processing time are listed, followed by the request in the raw format found in the MDEX Engine

logs. This raw format includes all request information in context, which can be helpful to understand why the
request may have been long-running

Query types

These statistics are only available when the —-showQueryTypes flag is enabled.

== Query Types

————— Navigation Requests -----
Number of Requests:

Avg Response Time (ms):

Avg Engine Time (ms):

Avg Response Size (bytes):
Request Times over 1250 ms:
Engine Times over 750 ms:

————— Search Requests ----—-
Number of Requests:

Avg Response Time (ms):

Avg Engine Time (ms):

Avg Response Size (bytes):
Request Times over 1250 ms:
Engine Times over 750 ms:

169 (12.793%)
54_633

23.086

14474 .402

0 (0.000%)

0 (0.000%)

666 (50.416%)
108.178
58.701
28186.752

1 (0.150%)

2 (0.300%)

This section displays statistics categorized by the type of query processed by the MDEX Engine. The sum of
the percentages of each query type should equal 100% (accounting for rounding), since any one query can
only be of a single type.

The following query types are output within this section:

* Web Service Requests: requests that arrive via Web Services.

» Navigation Requests: requests that specify a navigation state, but do not include any text search terms,
typically using the N URL parameter or the setNavDescriptors() API method.

» Search Requests: requests that specify text search terms, typically using the Ntt URL parameter or the
setNavERecSearches() API method.

Oracle Commerce Guided Search Search Performance Tuning Guide

144

Using the Request Log Analyzer | Statistics

* Record Requests: requests that return one or more base records by specifying record specs, typically
using the R URL parameter or the setERecSpec() or setERecs() API methods.

» Aggregate Record Requests: requests that return one or more aggregate records by specifying record
specs, typically using the A URL parameter or the setAggrERecSpec() APl method.

+ Dimension Search Requests: requests that perform dimension search, typically using the D parameter
or the setDimSearchTerms() APl method. Note that even though the Endeca Presentation API treats
dimension search as an additional feature of a navigation or search query, the MDEX Engine treats it as
a separate query. Thus, the Request Log Analyzer reports dimension search requests as distinct queries.

» Admin Ping Page Requests: requests for the /admin?op=ping built-in MDEX Engine Ping page. This URL
is used as a health check page by load balancers and other monitoring tools.

+ Admin Stats Page Requests: requests for the /admin?op=stats built-in MDEX Engine Server Statistics
page. This URL is used to monitor performance and characteristics of a running engine.

+ Admin Partial Update Requests: requests for the /admin?op=update built-in partial update command.
This URL is used to signal an MDEX Engine to look for and process any available partial update files.

» Other Admin Requests: requests for all other /admin? URLs. Note that since this is a catchall category,
it would include requests for such nonexistent URLs as /admin?nothing that result in 404s.

» Configuration Requests: requests for all /config? URLs, such as the built-in command to signal a MDEX
Engine to look for and process new thesaurus entries and dynamic business rules. Note that since this is
a catchall category, it would include requests for such nonexistent URLs as /config?nothing that result in
404s.

» Browser Requests: when a web browser requests a MDEX Engine URL, it may request a favorites icon
from /favicon.ico. Similarly, if a browser requests the Admin Stats Page, it may also request an accompanying
XSLT from /stats.xslt for formatting. These two URLSs are tracked together as Browser Requests. Note that
the Endeca Navigation API never requests these URLSs.

+ Empty Requests: requests for the URL ™ (the empty string). Empty requests are generated by telnet-ing
directly to a MDEX Engine's port without issuing any further commands. Empty requests are sometimes
generated by misconfigured load balancer health-checks. In MDEX Engine versions prior to 5.1, these
requests are represented by the empty string in the request log; in versions 5.1 and later, these requests
are represented in the request log as "-" (the dash character).

* Invalid/Undecipherable Requests: requests for any URL not included above, such as a request for
"/lindex.html" or a request for "xyxyx".

Extended query types

These statistics are only available when the --showExtendedTypes flag is enabled.

== Extended Query Types

————— Did-You-Mean Enabled Searches -----

Number of Requests: 663 (50.189%)
Avg Response Time (ms): 107.990

Avg Engine Time (ms): 58.926

Avg Response Size (bytes): 28302.454
Request Times over 1250 ms: 1 (0.151%)
Engine Times over 750 ms: 2 (0.302%)

————— Searches Including Wildcards -----
Number of Requests: 0 (0.000%)

This section displays statistics categorized by the features enabled on each query processed by the MDEX
Engine. (The output in this section does not include Web Service queries.) The sum of the percentages of
each extended query type can be more or less than 100%, since any one query can enable none, one, or more
than one of these features. The total may also be less than 100% because the percentages do not include

Oracle Commerce Guided Search Search Performance Tuning Guide

Using the Request Log Analyzer | Statistics 145

Web Service queries. (For example, if most of the Dgraph queries are Web Service queries, then the totals in
this section will likely add up to much less than 100%.)

The following extended query types are output within this section:

» Did-You-Mean Enabled Searches: search queries that enable the "Did you mean?" feature, typically
using the Nty=1 URL parameter or the setNavERecSearchDidYouMean() APl method.

» Searches Including Wildcards: search queries that include a wildcard character (*) within the search
terms. Note that the inclusion of a wildcard character does not necessarily mean that the MDEX Engine
performed a wildcard search, since it is not necessarily true that the target search interface was enabled
for wildcarding. Wildcard searches are more expensive than standard searches.

» Boolean Searches: search queries that specified the matchboolean matchmode, typically using the Ntx
URL parameter or by specifying the mode within the ERecSearch object's constructor in the Endeca
Presentation API. Boolean searches can be more expensive than standard searches.

* Requests Including a Record Filter: navigation, search, dimension search, or aggregate record queries
that specify a record filter, typically using the Nr URL parameter or the setNavRecordFilter() API
method.

* Requests Including a Range Filter: navigation, search, dimension search, or aggregate record queries
that specify a range filter, typically using the Nf URL parameter or the setNavRangeFilters() API
method. This category does not include geocode filters, even though geocode filters use the same URL
parameters and APl methods.

* Requests Including a Geocode Filter: navigation, search, dimension search, or aggregate record queries
that specify a geocode filter, typically using the Nf URL parameter or the setNavRangeFilters() API
method. This category does not include other range filters, even though other range filters use the same
URL parameters and APl methods.

» Aggregate requests: navigation or search requests that specify an aggregate record rollup key, typically
using the Nu URL parameter or the setNavRol lupKey () APl method.

+ Base requests: navigation or search requests that do not specify an aggregate record rollup key.

* Requests Exposing All Refinements (allgroups): navigation or search requests that open all available
dimension refinements by using the setNavAl IRefinements(true) API method (there is no
corresponding URL parameter). This can be an expensive configuration because it increases both MDEX
Engine calculation requirements and response packet size.

* Requests with an Explicit Sort Order: navigation or search requests that specify one or more keys by
which to sort results, typically using the Ns URL parameter or the setNavActiveSortKeys() APl method.
This does not include requests that use the default sort order specified in Dgidx, nor does it include search
requests that are sorted by relevancy (the default for searches).

» Multi-Key Search Requests: search requests that specify more than one search key, even if the multiple
searches utilize the same interface, typically by pipe-delimiting the Ntt and Ntk URL parameters or by
specifying more than one ERecSearch in an ERecSearchList within the API. Multi-key searches are
typically generated by search-within functionality or on advanced search pages that include parametric
search functionality.

Response codes

These statistics are only available when the --showResponseCodes flag is enabled.

== Response Codes

————— Response Code: 200 ----—-

Number of Requests: 929698 (99.948%)
Avg Response Time (ms): 362.699

Avg Engine Time (ms): 44 .742

Avg Response Size (bytes): 507214 .896

Oracle Commerce Guided Search Search Performance Tuning Guide

146 Using the Request Log Analyzer | Statistics

Request Times over 1250 ms: 34070 (3.665%)
Engine Times over 750 ms: 1213 (0.130%)
————— Response Code: 404 ----—-

Number of Requests: 484 (0.052%)
Avg Response Time (ms): 902.004

Avg Engine Time (ms): 2.147

Avg Response Size (bytes): 10723.893
Request Times over 1250 ms: 150 (30.992%)
Engine Times over 750 ms: 0 (0.000%)

This section displays statistics categorized by the HTTP response code returned by the MDEX Engine for each
query. The sum of the percentages of each response code should equal 100% (accounting for rounding), since
any one query can only produce a single response code.

The following are the most common response codes produced by an MDEX Engine:

» 200: OK. The MDEX Engine successfully processed the query.

* 404: Not Found. The query sent to the MDEX Engine was in an incomprehensible format (e.g. "/favicon.ico"),
or the query specified a navigation descriptor that does not exist. The most common causes of 404s are
browser bookmarks/favorites that are no longer valid, direct browser queries to the MDEX Engine that
produce favicon requests, and typos.

» 408: Request Timeout. The client that produced the request (typically the Endeca API) went away before
the MDEX Engine could write the response to it. Typically this means that the request took a very long
time to complete and the requesting application timed out before the MDEX Engine returned a response.
Empty requests also often generate 408 codes.

For more information on HTTP response codes, see RFC2616 (Hypertext Transfer Protocol) and elsewhere.

Request profiling

These statistics are only available when the --showProfiles flag is enabled.

== Request Profiling

————— Number of Base Records Requested -----

Requests Analyzed: 169
Average: 14.734
Standard Deviation: 1.119

Max imum: 15
Minimum: 10

Over Threshold (50): 0 (0.000%)
————— Number of Aggregate Records Requested -----
Requests Analyzed: 666
Average: 14.932
Standard Deviation: 1.004
Maximum: 15
Minimum: 0]

Over Threshold (50): 0 (0.000%)

This section displays metrics for the individual feature configuration specified for each request processed by
the MDEX Engine. Because request profiling requires deeper analysis of request URLs, enabling profiling
slows down the Request Log Analyzer's processing.

The output in this section does not include Web Service queries. Because of this, the percentages may add
up to less than 100%. (For example, if 80% of all queries are Web Service queries, then the total of all
percentages in this section will add up to 20%.)

Oracle Commerce Guided Search Search Performance Tuning Guide

Using the Request Log Analyzer | Statistics 147

The following metrics are output within this section:

Number of Base Records Requested: for base navigation or search queries, the number of base records
that the Endeca Presentation API specified should be returned in detail. The MDEX Engine response
includes the full content of a certain number of records (the "current page" of records) as well as available
navigation and other meta information about the remaining records. This metric measures the number of
records included in the current page; the more records, the larger the resulting data packet.

Number of Aggregate Records Requested: for aggregate navigation or search queries, the number of
aggregate records that the Endeca Presentation API specified should be returned in detail. The MDEX
Engine response includes the full content of a certain number of records (the "current page" of records)
as well as available navigation and other meta information about the remaining records. This metric
measures the number of records included in the current page; the more records, the larger the resulting
data packet.

Pagination Offset: for navigation or search queries, the pagination offset specified by the query. When
paginating through result sets, the pagination offset sets which page of results should be the current page.
Higher pagination offsets are more expensive for the MDEX Engine to compute.

Number of Navigation Descriptors (not including N=0): for navigation or search queries, this metric
measures the number of navigation nodes specified as descriptors by the query. This metric ignores queries
that only specify the root node (N=0).

Number of Exposed Dimensions (not including none or allgroups): for navigation or search queries,
this metric measures the number of refinement dimensions opened by the query. This metric ignores
queries that open no dimensions and queries that open all dimensions.

Number of Explicit Sort Keys: for navigation or search queries, this metric measures the number of
record sort orders specified for the query. This metric ignores queries do not specify a sort order, such as
those queries that sort by search relevance or by the default sort order specified in dgidx.

Number of Search Terms: for search queries, this metric measures the number of search terms specified
in the query. The number of terms is calculated by splitting the entire search string on whitespace. This is
an approximation; the MDEX Engine can also split terms on punctuation characters.

Number of Search Keys: for search queries, this metric measures the number of search keys (interfaces)
specified in the query. If the same key is specified twice, it counts as two keys.

Response profiling

These statistics are only available when the —-showProfi les flag is enabled.

Response Profiling

————— Requests that Returned Zero Results -----

Number of Requests: 0 (0.000%)
————— Number of Base Records in Result Set --—--
Requests Analyzed: 169

Average: 19562 .497
Standard Deviation: 107058.210
Maximum: 654243
Minimum: 0

————— Number of Aggregate Records in Result Set -----

Requests Analyzed: 666
Average: 3874 .508
Standard Deviation: 36769.412
Maximum: 546747
Minimum: 0

Oracle Commerce Guided Search Search Performance Tuning Guide

148

Using the Request Log Analyzer | Statistics

This section displays information about the individual aspects of the responses returned by the MDEX Engine.
Because response profiling requires deeper analysis of request URLs, enabling profiling slows down Request
Log Analyzer processing.

The output in this section does not include Web Service queries. Because of this, the percentages may add
up to less than 100%. (For example, if 80% of all queries are Web Service queries, then the total of all
percentages in this section will add up to 20%.)

The following statistics are output within this section:

* Requests that Returned Zero Results: for base navigation or search queries, the number of queries that
resulted in no records being found for the main result set of that query. Note that records may have been
returned as supplements by dynamic business rules for the query.

* Number of Base Records in Result Set: for base navigation or search queries, the number of records
found by the query. This is the total number of records found, not the number specified by the API to be
returned in detail for the current page. The minimum and maximum metrics for this statistic will typically
be 0 and the full number of records in the index and are therefore not particularly interesting.

* Number of Aggregate Records in Result Set: for aggregate navigation or search queries, the number
of records found by the query. This is the total number of records found, not the number specified by the
API to be returned in detail for the current page. The minimum and maximum metrics for this statistic will
typically be 0 and the full number of records in the index and are therefore not particularly interesting.

* No Children Per Aggregate: for aggregate navigation or search queries, this statistic measures the
performance of those queries specifying that no base child should be returned for each aggregate record.

» One Child Per Aggregate: for aggregate navigation or search queries, this statistic measures the
performance of those queries specifying that one base child should be returned for each aggregate record
(this is the default configuration).

+ All Children Per Aggregate: for aggregate navigation or search queries, this statistic measures the
performance of those queries specifying that all base children should be returned for each aggregate
record. This can be an expensive configuration because it increases both MDEX Engine calculation
requirements and response packet size.

Peak performance

These statistics are only available when the —-—showHour ly flag is enabled.

== Peak Performance

————— testlogs/P_US product hot.log Fri Oct 21 12:11:05 2005:00-Fri Oct 21 13:11:05
2005 (1129914643-1129914665) -----

Number of Requests: 1321 (100.000%)
Avg Response Time (ms): 87.527

Avg Engine Time (ms): 34.816

Avg Response Size (bytes): 16274.311
Request Times over 1250 ms: 1 (0.076%)
Engine Times over 750 ms: 2 (0.151%)
ops/sec: 57.435

This section displays the single hour time slice from all logfiles that contained the most requests. While other
statistics report against the entire set of requests, viewing the peak performance gives a closer approximation
of potential performance vs. achieved performance (see Result Interpretation).

Oracle Commerce Guided Search Search Performance Tuning Guide

Using the Request Log Analyzer | Statistics

Threading and queueing information

These statistics are only available when the —-showThreading flag is enabled.

== Threading/Queueing Information

Queued Requests
Number of Requests:
Avg Response Time (ms):

Avg Engine Time (ms):

Avg Response Size (bytes):
Request Times over 1250 ms:
Engine Times over 750 ms:
————— Requests that encountered no
Number of Requests:

Avg Response Time (ms):

Avg Engine Time (ms):

Avg Response Size (bytes):

Request Times over 1250 ms:

Engine Times over 750 ms:

Engine Queue Length
Requests Analyzed:
Average:

Standard Deviation:
Maximum:

Minimum:

Over Threshold (5):

————— Idle Engine Threads
Requests Analyzed:
Average:
Standard
Max imum:
Minimum:

Deviation:

3 (0.040%)
8598690
0.000

0.000

2 (66.667%)
0 (0.000%)
queue -----
7513 (99.960%)
313.060
144244
19739.288

258 (3.434%)
240 (3.194%)

7516
3.991
1.734

8

0

3 (0.040%)

7516
1.996
0.075
2

0

149

This section displays information about the performance and behavior of a multithreaded MDEX Engine. A
multithreaded MDEX Engine is able to process N requests simultaneously, where N is the number of threads
specified using the —-threads dgraph flag. As requests are received by the MDEX Engine, they are either
handled immediately by an available engine thread or placed into the request queue and handled on a
first-come-first-serve basis as MDEX Engine threads become available.

This section is only valid for multithreaded MDEX Engines. MDEX Engines that do not specify the --threads
flag do not record the appropriate information to their logs and therefore will not produce usable statistics for

this section.

The following statistics are output within this section:

* Queued Requests: this statistic measures performance of those requests that were placed into the request

queue before being processed.

* Requests that encountered no queue: this statistic measures performance of those requests that were
handled immediately by an available thread and were not placed into the request queue.
* Engine Queue Length: this metric measures the length of the request queue. When engine threads are
available, the queue length is 0. When all threads are in use, the queue length is equivalent to the number
of requests already in the queue ahead of the current request. The minimum value for this metric should
always be zero and is therefore not interesting.

Oracle Commerce Guided Search Search Performance Tuning Guide

150 Using the Request Log Analyzer | Statistics

+ Idle Engine Threads: this metric measures the number of available engine threads. When engine threads
are available, this number is equivalent to the number of available threads. When all threads are in use,
this number is 0. The maximum value for this metric should always be equivalent to the total number of
threads specified with the --threads flag and is therefore not interesting. If at any point a request encounters
a queue, the minimum value for this metric will be zero.

Note that requests to the MDEX Engine that generate a 404 error code arbitrarily write the value 10000 to the
MDEX Engine log as their queue length. The Request Log Analyzer always completely ignores these requests
when calculating queue lengths, though for other metrics these requests are controlled by the --ignore* flags.
Because the Request Log Analyzer always ignores these requests, the statistics that track queued and unqueued
requests will not add up to 100% in certain circumstances: if the appropriate --ignore* flags are not specified,
the percentages will represent only the subset of those requests that did not contain a 10000 as their queue

length.

Summary information

These statistics are always output.

== Summary information

First date analyzed: Thu Nov 3 14:12:20 2005
Last date analyzed: Thu Dec 15 16:04:52 2005
Time period analyzed: 42d 1h 52m 32s

Lines analyzed, total: 383545

Valid requests in time period: 383391

Avg ops/sec: 0.105

Bytes/sec: 2238.883

Mb/sec: 0.017

Max ops in one second: 22

Max ops in five seconds: 75 (15.000 ops/sec)
Interpolated one-second ops avg: 1.796 ops/sec

Interpolated five-second ops avg: 1.110 ops/sec

————— Round-trip Response Time, ms -—---

Requests Analyzed: 383391
Average: 345.183
Standard Deviation: 561.897

Max imum: 40077 .56
MEinimum: 1.55

Over Threshold (1250): 11269 (2-939%)
————— MDEX Engine-only Processing Time, ms ---—-
Requests Analyzed: 383391
Average: 48.861
Standard Deviation: 132.229

Max imum: 15475.75
Minimum: 0.00

Over Threshold (750): 1325 (0.346%)
————— Response Differential, ms (round-trip minus engine-only) -----
Requests Analyzed: 383391
Average: 296.321
Standard Deviation: 544 _660

Oracle Commerce Guided Search Search Performance Tuning Guide

Using the Request Log Analyzer | Statistics 151

Maximum: 40003.33
Minimum: 1.3

Over Threshold (500): 42730 (11.145%)
————— Response Size, bytes --—---

Requests Analyzed: 383391

Average: 21230.479
Standard Deviation: 49118.382
Maximum: 895065

Minimum: 0

Over Threshold (393216): 456 (0.119%)

This section outputs information about the performance and characteristics of the MDEX Engine as a whole.

The following statistics are output in this section:

First date analyzed: the timestamp of the earliest request analyzed within the logs. Translation of the time
recorded in the log to human-readable time is controlled with the --hourOffset flag.

Last date analyzed: the timestamp of the latest request analyzed within the logs. Translation of the time
recorded in the log to human-readable time is controlled with the --hourOffset flag.

Time period analyzed: the timespan between the earliest analyzed request and the latest analyzed request.
Lines analyzed, total: the number of requests inspected by the Request Log Analyzer within this set of
logfiles. Not all of these requests will have been analyzed. MDEX Engine startup and shutdown status
messages write a line to the logfile and thus contribute to this metric but are otherwise ignored by the
Request Log Analyzer. Other lines are controlled by the --ignore* flags.

Valid requests in time period: the number of requests actually analyzed by the Request Log Analyzer
within this set of lodfiles.

Avg ops/sec: the achieved throughput, in operations (queries) per second. This metric is calculated by
dividing the number of requests analyzed by the number of seconds in the time period analyzed. Note that
this metric can be heavily skewed by large stretches of time that contain no requests.

Bytes/sec: the achieved network bandwidth usage, in bytes. This metric is calculated by dividing the sum
of all data packet sizes analyzed by the number of seconds in the time period analyzed. Note that this
metric can be heavily skewed by large stretches of time that contain no requests.

Mb/sec: the achieved network bandwidth usage, in megabytes.

Max ops in one second: the highest achieved throughput metric for a one-second timespan. The Request
Log Analyzer slices each logfile into one-second pieces, finds the one-second timespan that contains the
most analyzed requests, and reports that number here.

Max ops in five seconds: the highest achieved throughput metric for a five-second timespan. The Request
Log Analyzer slices each lodfile into five-second pieces, finds the five-second timespan that contains the
most analyzed requests, and reports the throughput of that timespan here. Note that the slicing algorithm
is arbitrary; it is possible that the last two seconds of a slice plus the next three seconds of the following
consecutive slice contain more requests than any of the arbitrary slices.

Interpolated one-second ops avg: a version of achieved throughput that attempts to address the
weaknesses of the previous achieved throughput measurement. This metric is calculated by dividing the
number of requests analyzed by the number of seconds in the logs that actually contain requests. For most
logfiles this metric will be a more accurate achieved throughput. For logfiles containing a large number of
requests that required more than one second to process, this metric will be inaccurate.

Interpolated five-second ops avg: a version of achieved throughput that attempts to address the
weaknesses of the previous achieved throughput measurement. This metric is calculated by dividing the
number of requests analyzed by the number of five-second time slices in the logs that actually contain
requests, then adjusting by 5. For most lodfiles this metric will be a more accurate achieved throughput.
For logfiles containing a large number of requests that required more than one second to process, this
metric will be inaccurate.

Round-trip Response Time, ms: The round-trip response time for all analyzed requests. See Common
Metrics for an explanation of round-trip response time.

Oracle Commerce Guided Search Search Performance Tuning Guide

152 Using the Request Log Analyzer | Statistics

+ MDEX Engine-only Processing Time, ms: The engine-only processing time for all analyzed requests.
See Common Metrics for an explanation of engine-only processing time.

* Response Differential, ms (round-trip minus engine-only): The response differential for all analyzed
requests. The response differential is measured as the difference between the round-trip response time
and the engine-only processing time. This metric measures how long requests spend in the request queue
and the response queue combined.

* Response Size, bytes: The response size for all analyzed requests. See Common Metrics for an explanation
of round-trip response size.

Oracle Commerce Guided Search Search Performance Tuning Guide

Appendix F
MDEX Engine Statistics and Auditing

The MDEX Engine Statistics page displays MDEX Engine (Dgraph) performance statistics. The MDEX Engine
Auditing page tracks usage for licensing and performance purposes. This section describes these pages.

About the MDEX Engine Statistics page

The MDEX Engine Statistics page provides a detailed breakdown of what the Dgraph is doing, and is a useful
source of information about your Guided Search implementation’s configuration and performance.

The statistics page is also called the Dgraph Stats page or Admin Stats page.

It provides information such as startup time, last data indexing time, and indexing data path. This allows you
to focus your tuning and load-balancing efforts. By examining this page, you can see where the Dgraph is
spending its time. Begin your tuning efforts by identifying the features in the Hot Spot Analysis section with
the highest totals.

Viewing the MDEX Engine Statistics page
You can request the MDEX Engine Statistics page for the Dgraph with the URL listed below.

http://DgraphServerNameOrIP:DgraphPort/admin?op=stats

For example, if your Dgraph is running on your local machine and listening on port 8000, specify this:
http://localhost:8000/admin?op=stats

You can determine the host and port on the EAC Admin Console of Endeca Workbench by opening the MDEX
Engine component or by exploring your Deployment Template AppConfig.xml file.

To reset the statistics, make the following request:
http://DgraphServerNameOr1P:DgraphPort/admin?op=statsreset

To view the statistics information for a single request, clear statistics, issue a request and inspect statistics
again.

The statistics page information is valid as long as the MDEX Engine keeps running; it is cleared upon the
MDEX Engine restart.

154 MDEX Engine Statistics and Auditing | Sections of the MDEX Engine Statistics page

The source data for the Dgraph statistics is stored in XML. By default, the MDEX Engine Statistics page is
rendered into HTML through an XSLT stylesheet, stats.xslt, that is installed in the
ENDECA MDEX_ROOT/conf/dtd/xform directory.

If your browser supports XSLT transformations (for example, Internet Explorer 6 and later), you can view the
statistics as transformed by stats.xslt, or you can modify the shipped stats.xslt stylesheet to provide a
different transformation of the data.

If your browser does not support XSLT transformations, or if you want to see the raw XML, rename or remove
ENDECA MDEX_ROOT/conf/dtd/xform/stats.xslt.

To ensure that the statistics page displays properly in your browser, JavaScript must be enabled, as part of
the settings for the browser. (If your browser’s security setting is set to high, this may disable JavaScript.)

Sections of the MDEX Engine Statistics page

The MDEX Engine Statistics page for the Dgraph is divided into tabs. Information on all of the tabs is presented
through the URL of the statistics page as described in the following sections.

The Performance Summary tab

The Performance Summary tab contains the highest level statistics. They reflect and help to monitor those
characteristics that are external to the actual processing of queries, such as the queue of incoming queries,
the thread pool, and the overall throughput of the process.

The Performance Summary tab contains the following sections:

Section Description

Performance Various statistics (average, standard deviation, minimum, maximum,
and total) on:
* The total number of requests received

» Total CPU usage (in seconds of total user time and total system
time).

» The memory resource usage.

* Resident Set Size (RSS) statistics.

Throughput (req/sec) Five-minute, one-minute, and ten-second average throughput statistics
(only for multithreaded mode). When thread becomes available, the
throughput statistics is measured.

The General Information tab

The General Information tab contains the following sections.

Section Description

Information Basic connection and machine details, such as process ID, parent process ID, user ID,
user name, effective user ID, group ID, effective group ID, current working directory,

Oracle Commerce Guided Search Search Performance Tuning Guide

MDEX Engine Statistics and Auditing | Sections of the MDEX Engine Statistics page 155

Section Description

hostname, server port for the Dgraph, start time, information about the data (path, tag
and date), and the number of index generations.

Arguments A list of all arguments the Dgraph was started with.

The Index Preparation tab
The Index tab tracks index preparation and precomputed sorts statistics, including timing.

It contains the following sections:

Section Description

Update Totals The number of non-XQuery updates run against the Dgraph, and performance of
updates (count, average, standard deviation, min, max and total), on the following
items:

» Record changes, including the number of adds, updates, deletes and
replacements

* Dimension changes

* Record change errors

+ Dimension change errors

+ Update latency, including various finer-grained performance statistics of indexing
processing.

XQuery Update Totals | The number of XQuery updates run against the Dgraph, and performance of updates
(count, average, standard deviation, min, max and total), on the following items:

* Record changes, including the number of adds, updates, deletes and
replacements

* Dimension changes

» Record change errors

« Dimension change errors

» Update latency, including various finer-grained performance statistics of indexing
processing.

5]
Note: The XQuery update feature is Early Access in this release. For details,
see the Web Services and XQuery Developer's Guide.

Precomputed Sorts Displays how much time the Dgraph has spent computing sorts, including computing
sorts and incremental sort updates.

%
Note: For some of the statistics on this page, it is possible to drill down for further information by clicking
on the black arrow that appears outside the rightmost column.

The Cache tab

The Cache tab contains information about the MDEX Engine cache.

Oracle Commerce Guided Search Search Performance Tuning Guide

156 MDEX Engine Statistics and Auditing | Sections of the MDEX Engine Statistics page

Section

Main Cache

The Details tab

Description

Provides details on totals, including number of entries in the cache, size of entries,
number or lookups in the cache, number of rejections, percentage of hit rate and miss
rate, number and size of evictions from the cache, number of reinsertions, total reinsertion
time and average creation and eviction times.

In particular, if you need to analyze the MDEX Engine cache, examine the results in the
following columns. Analyzing these results may help you tune your cache and re-design
your front-end application to improve performance of the MDEX Engine.

» Number of rejections. Counts greater than zero in this column indicate that the cache
is undersized and you may want to increase it.

» Number of reinsertions. Large counts in this column indicate that simultaneous
queries are computing the same values, and it may be possible to improve
performance by sequencing queries, if the application design permits.

* Total reinsertion time. Examining this column is useful for quantifying the overall
performance impact of queries that contribute to the "Number of reinsertions" column.
This column represents the aggregated time that has been spent calculating identical
results in parallel with other queries. This is the amount of compute time that
potentially can be saved by sequencing queries in a re-design of the front-end
application.

The Details tab contains the following sections:

Section

Most Expensive
Queries

Description

The URL and total time in milliseconds for the ten queries with the largest total
computation time (that is, queue time plus Dgraph processing time plus write time)
made in the session. The queries are ordered by processing time.

Each time a new Dgraph transaction that yields results is completed, this tab may
become updated with a new query, if it makes the list of current top ten most expensive
queries.

Each query is described with these characteristics:

* Query rank
» Computation processing time (in milliseconds)
» URL

Unlike in Presentation APl mode, where the URL contains all of the information about
the query, in Web services mode the URL only contains the service name. The bulk
of the query is contained in the POST body. Therefore, if the Dgraph is running in
Web services mode, a serial number is appended to the URL, as in the following
example:/ws/myservice:57.

This serial number corresponds to the HTTP Exchange ID in the MDEX Engine
Request Log. You can use it to retrieve additional information about the contents of
the query from the Request Log’s Query Body field.

Oracle Commerce Guided Search Search Performance Tuning Guide

Section

Hotspots

Results

Server

MDEX Engine Statistics and Auditing | Sections of the MDEX Engine Statistics page 157

Description

Details on the performance of specific features, such as clustering, record search,
record filter, range filter, content spotlighting and snippeting.

This section also contains the following page render and record sorting statistics:

» Page render total. After the MDEX Engine knows which records and values must

be returned, this time represents the total time spent generating and returning
those results to the Presentation API. This time includes retrieving records from
memory or disk, ordering them based on the specified sort or relevance ranking
strategies, as well as other information returned to the API, such as content
spotlighting results.

Prefetching horizontal record. The cost to retrieve records from the data layer
of the MDEX Engine.

Statistics related to various sorting strategies. The MDEX Engine examines
information about the data being returned and selects the best sorting strategy.

)
7~ Note: These statistics may change. They are used for internal debugging
and tuning of the MDEX Engine sorting selection strategy and are not useful
to the end user.

The following items are listed in the Results section. The statistics includes count,
average, standard deviation, min, max and total, where applicable:

* Number of records in result set
* Result page size in bytes
* Result page format performance in milliseconds

Statistical information for the MDEX Engine server:

HTTP: Total request time

HTTP: Time reading request

HTTP: Time in scheduler

HTTP: Time writing response

HTTP: Request bytes read (including HTTP overhead)
HTTP: Response body size (including HTTP overhead)
Scheduler: Queue time before processing

Scheduler: Processing time

Scheduler: Queue time after processing

Scheduler: Queries queued

This metric describes the queue length.
Scheduler: Queries in process
This metric describes the number of queries that are in process.

Scheduler: Update queue time
XQuery: Total time in XQuery engine
XQuery: Total time in XQuery external functions

Oracle Commerce Guided Search Search Performance Tuning Guide

158 MDEX Engine Statistics and Auditing | About the MDEX Engine Auditing page

Section Description

»
"~ Note: This statistic only includes the time spent in the following functions:
internal :query(), mdex:dimension-value-id-from-path(),

and mdex:add-navigation-descriptors().

» XQuery: Time retrieving documents with fn:doc()
» XQuery: Time storing documents with fn:put()

» XQuery: Result serialization time

* Most expensive MAX invocations

+ Custom timing list

This metric, which can list things like expensive queries, only appears when you
implement custom metric gathering with the ep:stats-timing pragma. See
the Web Services and XQuery Developer’s Guide for more information.

Navigation Information about the number of navigation pages, as well as navigation performance,
query size, and result size by average, standard deviation, minimum, maximum, and
total.

Record Sorting The number and type of sorts performed (does not include timing), and the percentage
of those sorts for each sort type.

Analytics Information pertaining to the analytics features in Endeca Analytics, such as total
processing time, query parsing, time checking and evaluation times.

Disk usage Disk usage statistics for the indices:

+ current total disk usage value (MB)
+ disk usage high water mark value (MB)

Search A finer-grained analysis of the performance of individual features. This information is
used for internal analysis by Oracle.

Data Layer Statistical information about the data layer performance. This information is used for

Performance internal analysis by Oracle.

Note: For some of the statistics on this page, it is possible to drill down for further information by clicking
the black arrow that appears outside the rightmost column.

»
7 Note: If you modified the stats.xslt style sheet that is included in the installation, the information
might display differently.

About the MDEX Engine Auditing page

The MDEX Engine Auditing page lets you view the aggregate MDEX Engine metrics over time. It provides the
output of XML reports that track ongoing usage statistics.

These statistics persist through process restarts.

This data can be used to verify compliance with licensing terms, and is also useful for tracking product usage.

Oracle Commerce Guided Search Search Performance Tuning Guide

MDEX Engine Statistics and Auditing | Sections of the MDEX Engine Auditing page 159

&
7" Note: Each Dgraph in an implementation is audited separately.

Viewing the MDEX Engine Auditing page
You can request the MDEX Engine Auditing page with the URL below.
To view the MDEX Engine Auditing page:

Access the following URL:
http://DgraphServerNameOrIP:DgraphPort/admin?op=audit

For example, if your Dgraph is running on your local machine and listening on port 8000, specify this:
http://localhost:8000/admin?op=audit

The information on the MDEX Engine Auditing page is persistent and is valid across the MDEX Engine restarts.

The source data for the auditing reports is stored in XML. By default, the MDEX Engine Auditing page is
rendered into HTML through an XSLT stylesheet, audit.xslt, that is installed in the
ENDECA_MDEX_ROOT/conf/dtd/xform directory.

Audit persistence file details

The naming convention for the audit persistence file is:
audit-<data_prefix>-<persistence_number>_xml.

For example, an audit persistence file on the sample wine implementation might look like this:
audit-wine-0.xml.

This convention ensures that each Dgraph creates a unique file. It makes it possible to maintain the audit
persistence files for numerous Dgraphs in an application in the same directory without contention.

By default, the audit persistence file is written to a directory called persist that is located in the application’s
working directory. To direct it elsewhere, use the Dgraph flag --persistdi r when you first create the Dgraph.
Do not move or rename this directory after it has been created.

You should not delete the audit persistence file or attempt to edit it manually. Upon startup, the Dgraph checks
for the presence of this file, and if it cannot find it or read it, it issues a warning message and creates a new
one. However, if you see such a warning message when you first create a Dgraph, you can safely disregard
it.

&
7~ Note: The auditing function adds information prefixed by the word Endeca.* to records. This namespace
is reserved for administrative use and should not be used for other purposes.

Sections of the MDEX Engine Auditing page

The MDEX Engine Auditing page consists of two tabs: Audit Stats and General Information.
Auditing statistics are gathered in one of two ways:

» The Query Load statistic tracks the hour with the most queries in each calendar week, starting when you
first run the Dgraph and persisting through process restarts.

Oracle Commerce Guided Search Search Performance Tuning Guide

160 MDEX Engine Statistics and Auditing | Sections of the MDEX Engine Auditing page

+ All other auditing statistics constantly monitor the peak value over the course of a calendar week, and
report the exact time when a value greater than the current peak value appears, starting when you first
run the Dgraph and persisting through process restarts.

Because these metrics are calculated over the course of a week, a change such as a deleted record is not
reflected until the following week, when the peak value count is reset.

The Audit Stats tab

The Audit Stats tab contains the following information.

Section

Query Load

Net Query Load

WS Query Load

Number of Records

Number of Columns

Number of Words

Number of Assignments

Size of Data

Description

The peak number, in the week beginning at the displayed time, of queries that the
Dgraph has received in any single hour, plus the time at which that peak occurred.

This field contains the sum of the next two fields, Net Query Load and WS Query
Load. Depending on the modes in which you run your Dgraph, there may be values
in both of these fields or only one of them.

The peak number, in the week beginning at the displayed time, of queries that the
Dgraph has received in any single hour while running in Presentation APl mode,
plus the time at which that peak occurred.

The peak number, in the week beginning at the displayed time, of queries that the
Dgraph has received in any single hour while running in Web services mode, plus
the time at which that peak occurred.

The peak number, in the week beginning at the displayed time, of records, plus the
time at which that peak was reached.

The peak value, in the week beginning at the displayed time, for the total number
of properties and dimensions across all records, plus the time at which that peak
was reached.

The peak value, in the week beginning at the displayed time, for the total number
of words (counting multiple occurrences of the same word) across all records, plus
the time at which that peak was reached.

The peak value, in the week beginning at the displayed time, for the total number
of populated dimension and property values across all records, plus the time at
which that peak was reached.

The peak value, in the week beginning at the displayed time, for the total size
occupied by all records, plus the time at which that peak was reached.

b
Note: This may vary, depending on operating system platform.

The General Information tab

The General Information tab contains the following sections.

Oracle Commerce Guided Search Search Performance Tuning Guide

MDEX Engine Statistics and Auditing | Sections of the MDEX Engine Auditing page 161

Section Description
Information Basic connection and machine details.
Arguments A list of all arguments the Dgraph was started with.

S
7~ Note: This tab is identical to the one of the same name on the MDEX Engine Server Statistics page.

Oracle Commerce Guided Search Search Performance Tuning Guide

Appendix G
Useful Third-Party Tools

This section lists some third-party tools that you may find useful during the Guided Search performance
monitoring process. The tools listed here are not supported by Oracle and are subject to change. In addition,
these suggestions are not meant to overrule your choice of other tools.

Cross-platform tools

The following tools are available in both UNIX and Windows versions.

Tool Description
Wireshark Wireshark is an open source network protocol analyzer for both UNIX and Windows.
It allows you to examine data from a live network or a capture file on disk.

For information and downloads, see http.//www.wireshark.org/download. html.

Tepdump/Windump Tcpdump (and its Windows version, Windump) are network traffic analysis tools.

These tools can be used to watch and diagnose network traffic according to various
complex rules.

You can download Tcpdump from http.//www.tcpdump.org.

You can download Windump from http://www.winpcap.org/windump.

5.3
Note: Tcpdump comes with most Linux distributions by default.

Solaris and Linux tools

The following tools are available for both Solaris and Linux.

Tool Description
Netperf . .

Netperf is a network benchmarking tool that can be used to measure the throughput
of many different types of TCP and UDP connections. Netperf provides tests for both
unidirectional throughput, and end-to-end latency.

http://www.wireshark.org/download.html
http://www.tcpdump.org
http://www.winpcap.org/windump

164 Useful Third-Party Tools | Solaris-specific tools

Tool

Top

Sar

iostat

Description
Note: Be sure to compile netperf with histogram support.

To simulate the network traffic to a MDEX Engine with average result pages of 50,000
bytes, run netperf like this:

netperf -1 600 -v 2 -H remotehost -p 8899
-t TCP_CRR -- -r 200, 50000

where:

» —1 is the length of the test in seconds

» -V specifies verbose output level

* —H indicates the host where netserver is running

* —p indicates the port that was given to the netserver process

» —tindicates the test to run. TCP_CRR is the TCP test that opens a new TCP
connection for each request/response

» —r specifies the request/response characteristics, in this case a 200 byte request
(approximately the size of a URL) and a 50K result

For information and downloads, see http.//www.netperf.org.

Top is a UNIX utility you can use to quickly identify top CPU-using processes. It is a
popular and common tool for monitoring system-wide process activity.

For information and downloads, see http://www.groupsys.com/top.

Sar reports system activity on single processor systems. It reports the status of counters
in the operating system that are incremented as the system performs various activities.
These include counters for CPU utilization, buffer usage, disk 1/0 activity, TTY device
activity, switching and system-call activity, file access, queue activity, inter-process
communications, swapping and paging.

On Solaris, sar is part of the system activity reporter package. On Linux, it is part of
the downloadable sysstat package.

The iostat utility iteratively reports terminal, disk, and tape 1/O activity, as well as CPU
utilization.

On Solaris, iostat is built in to the operating system. On Linux, it is part of the
downloadable sysstat package.

Solaris-specific tools

The following utilities are built into Solaris.

Tool

prstat

Description

On Solaris the prstat command displays information about active processes on the
system. By default, prstat displays information about all processes sorted by CPU
usage.

Oracle Commerce Guided Search Search Performance Tuning Guide

http://www.netperf.org
http://www.groupsys.com/top

Tool

cpusar and mpsar

Kstat

lockstat

SE Toolkit

Useful Third-Party Tools | Linux-specific tools 165

Description

On multiprocessor machines, cpusar reports per-CPU statistics, and mpsar reports
system-wide statistics.

Kstat reports many kernel parameters and statistics.

The lockstat utility gathers and displays kernel locking and profiling statistics. It
allows you to identify what are the processes and kernel really doing. Lockstat allows
you to specify which events to watch, how much data to gather for each event, and
how to display the data.

The SE Toolkit is a collection of scripts for performance analysis that gives advice
on performance improvements.

Linux-specific tools

The following tools are available for Linux.

Tool

sysstat

Mpstat

Windows tools

Description

The sysstat utilities package is a download for Linux that contains performance
monitoring tools such as iostat, sar, and mpstat. lostat and sar are described in “Solaris
and Linux tools”.

For information and downloads, see http:/perso.wanadoo.fr/sebastien.godard.

Mpstat is the Linux multiprocessor load display utility. It displays system processor
activity information on your screen for each of the processors serialized on your system.

The following tools are available for Windows.

Tool

Task Manager

Performance Monitor

Description

The Windows Task Manager provides information about programs and processes
running on your computer. It also displays the most commonly used performance
measures for processes.

You can access the Task Manager by right-clicking an empty area on the task
bar on your Windows machine.

The Performance Monitor provides details about the resources used by specific
components of the operating system and by programs that have been designed
to collect performance data.

You can access the Performance Monitor from the Control Panel by selecting
Administrative Tools > Performance.

Oracle Commerce Guided Search Search Performance Tuning Guide

http://perso.wanadoo.fr/sebastien.godard

166 Useful Third-Party Tools | Windows tools

Tool Description
Other performance tools .) . . .

Sysinternals (http.//www.sysinternals.com) offers useful freeware tools, including
the following:

* Process Explorer, which shows you information about which handles and
DLL processes have opened or loaded.

« TCPView, which shows you detailed listings of all TCP and UDP endpoints
on your system, including the local and remote addresses and state of TCP
connections. On Windows NT, 2000, and XP TCPView also reports the name
of the process that owns the endpoint.

Oracle Commerce Guided Search Search Performance Tuning Guide

http://www.sysinternals.com

Appendix H
Tuning the Network Performance

You only need to perform the procedures described in this appendix if you are installing in a production
environment—they are not required for a typical developer installation. You will not see the benefits of this
tuning until the Guided Search server is placed under very heavy load.

Tuning network performance on Windows

Oracle provides two registry scripts that you can use, singly or in combination, to tune your server’s network
performance.

» The tcp_time_wait_tune.reg script tunes the server’s network performance by changing the default time
wait interval from 240,000 to 60,000 milliseconds. This change accelerates the rate at which the server
re-uses ports when establishing TCP connections.

To determine if you need to run the tuning script, open the Registry Editor and look for the following key:

HKEY LOCAL_MACHINENSYSTEM\CurrentControlSet\
Services\Tcpip\Parameters\TcpTimedWaitDelay

»
7~ Note: In the Registry Editor Explorer pane, expand the folders until you reach Parameters. Then
click on the Parameters folder and look for the TcpTimedWaitDelay setting in the right pane.

If this key does not exist, that means that the system is using the default time-out of 240,000 milliseconds.
» The tcp_max_ports_tune.reg script increases the number of ports available for TCP connections from 5,000
to 65,534. The affected key appears in the Registry Editor as follows:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\
Services\Tcpip\Parameters\MaxUserPort

To tune network performance on Windows:

1. In the %YENDECA_MDEX_ROOT%\bin directory, double-click one of the following scripts:

» tcp_time_wait_tune.reg
» tcp_max_ports_tune.reg

2. When the information box reading “Are you sure you want to add the information in script name to the
registry?” appears, click Yes.

3. The system displays a confirmation message that reads “Information in script name has been successfully
added to the registry.” Click OK.

168 Tuning the Network Performance | Tuning network performance on Solaris

4. Optionally, repeat these steps for the other tuning script.
5. Reboot the server for the registry changes to take effect.

Tuning network performance on Solaris

This section applies only to Solaris installations, not to Linux installations.

The Guided Search installation includes a script that tunes the server’s network performance by changing the
default time wait interval from 240,000 to 30,000 milliseconds. This change accelerates the rate at which the
server re-uses ports when establishing TCP connections.

To determine if you need to run the tuning script, run the following command:

netstat -an | grep TIME_WAIT | wc -1

If the resulting number is consistently greater than 5,000, apply the tuning script and wait 4 minutes. The

number of connections in a time wait state will drain off and you should find that the 5,000+ number drops by
at least a factor of two.

To run the tuning script:

1. Change directories to the $ENDECA_ MDEX_ROOT/bin directory.
2. As root, type the following at the prompt:
./tcp_time_wait _tune.sh

3. Press Enter.

A message appears indicating that the tcp_time_wait_interval has been set to 30,000.

Configuring the FIN_WAIT_2 timeout interval

The FIN_WAIT_2 timeout interval is the number of seconds that the HTTP server waits after sending the
response for the client to close down its end of the socket. If this timeout expires, the server forcibly shuts
down the connection.

This timeout interval is important for two reasons:

» Waiting for some time before shutting down the socket ensures that clients get complete responses.

» Timing out after certain period protects against buggy clients, which may never close their end of the socket.
This can tie up resources on the server machine, leading to performance degradation and, in the extreme
case, denial of service.

When the MDEX Engine finishes sending a response to a client, it does a "soft close" of the socket. This allows
the client to finish reading data, and to close its end of the socket whenever it is ready. The state of the
server-side socket during the interval between the server closing one end, and the client closing the other, is
known as FIN_WAIT_2. All operating systems supported in this release automatically clean up sockets that
stay in FIN_WAIT_2 for too long.

In general, you should not need to change this from the default value. If you do need to change the setting,
follow the instructions below for your operating system.

Oracle Commerce Guided Search Search Performance Tuning Guide

Tuning the Network Performance | Configuring the FIN_WAIT_2 timeout interval 169

Configuring FIN_WAIT_2 timeout on Linux
On Linux systems, the tcp_fin_wait timeout is stored in /proc/sys/net/ipv4/tcp_fin_timeout.
You can change the value of this parameter using the sysctl command.

To get the value, issue the following command:
/sbin/sysctl net.ipv4.tcp fin_timeout

To set the value, issue the following command:
/sbin/sysctl -w net.ipv4.tcp_fin_timeout=30

%
Note: Root permissions are typically required to set this value.

Configuring FIN_WAIT_2 timeout on Solaris
On Solaris systems, you can modify the FIN_WAIT_2 timeout interval in /dev/tcp.
The default value is 675000ms.
To get the value, issue the following command:

ndd -get /dev/tcp tcp_fin_wait 2 flush_interval

To set the value, issue the following command:
ndd -set /dev/tcp tcp_fin_wait 2 Fflush_interval 30000

%
Note: Root permissions are typically required to set this value.

Configuring FIN_WAIT_2 timeout on Windows

On Windows systems, the variable to control the FIN_WAIT_2 timeout interval can be modified in the Windows
Registry.

The Registry entry that controls this setting is HKEY LOCAL_MACHINE\SYSTEM\CurrentControlSet\Ser-
vices\Tcpip\Parameters. You need to specify the TcpFinWait2Delay value for the above entry in the
registry. The default value is 240s.

]
7~ Note: Administrator privileges are required to set this value.

1. In the Windows Registry, go to HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Ser-
vices\Tcpip\Parameters

2. If the TcpFinWait2Delay value already appears in the details window, tune the value. The valid range
is between 30s and 300s.

3. Ifthe value does not exist, right click and select Add a new DWORD value. Add TcpFinWait2Delay and
set its value.

4. Restart your system for the change to take effect.

Oracle Commerce Guided Search Search Performance Tuning Guide

Index

64-bit architecture 25

A

partial updates 44

allbins query type 97

allgroups query type 98
analytics query type 98
application server issues 54
attrs query type 98

Auditing page 49

autophrase query type 99
autophrasedwim query type 99

B

bandwidth
defined 22
Boolean search 77

Cc

cache
examining 156
Cheetah utility 49
compound query type 100
concurrent users
defined 22
connection setting for Eneperf 123
CPU considerations 53
Cpusar performance analysis tool 165

D

Dgidx
hardware performance recommendations 35
Dgraph
introduced 21
Dgraph cache
about 29
defined 22
impact on virtual process size 32
performance recommendations 30
Dgraph memory usage
performance impact of 26
Dgraph request log file 85
Dgraph warming 51
dictionary pruning 74
dimension search 80
dimension values
displaying refinements 62
dynamic statistics on 62

disabled refinements
performance impact 63
disk access considerations 53
displaying
multi-select dimensions 61
refinement dimension values 62
dym query type 100
dynamic business rules 82
dynamic refinement ranking
improving 63
dynamic statistics on dimension values 62

E

Eneperf
introduced 121
logs for use with 130
optional settings 128
required settings 122
running locally 123
running remotely 123
setting the number of queries 128
usage 121
two-stream mode 132
Eneperf, about 50
ephemeral port 54
EQL filters
troubleshooting 72
typical errors 73
Ethereal performance analysis tool 163
expression evaluation of record filters 66

F

feature performance

overview 59
file system (FS) cache

about 30
filter query type 100
flat dimension hierarchy 61
format query type 101
front-end application

coding recommendations for 54
full-duplex

recommended for NICs 35

G

gathering performance information
guidelines for 47

Gigabit Ethernet 35

group query type 102

groupby query type 102

Index

H

hidden dimensions 61

id query type 103

ignore query type 103

lostat performance analysis tool 164
irversion query type 104

iteration setting for Eneperf 123

K
keyprops query type 104

L

lang query type 104
large OR filter performance 67
large scale negation 67
latency and maximum latency
defined 21
Linux
performance tools 165
sysstat package 165
tuning 37
load balancers
recommendations 39
load balancing 39
Lockstat performance analysis tool 165
log file (eneperf)
about 130
converting Dgraph request log 133
settings 123
with updates 132
log query type 105

MDEX Engine architecture
optimized for performance 23
MDEX Engine request log
converting for use with Eneperf 133
MDEX Engine Statistics page
about 153
presentation transformed with XSLT 153
viewing 153
memory usage
costs of record filters 66
impact on performance 26
recommendations 27
merchdebug query type 105
merchpreviewtime query type 105
merchrulefilter query type 106
model query type 106
Mpsar performance analysis tool 165
Mpstat performance analysis tool 165

172

multi-select dimensions
displaying 61
multithreaded mode
associated costs 43
introduced 41
Solaris 45
Linux 45
VMware 45
Windows 45

N

nbins query type 107

nbulkbins query type 107

Netperf performance analysis tool 163
network recommendations 35

node query type 108

num query type 109

0

offline query type 109
op query type 110
operation
defined 21
opts query type 110
out-of-memory situations
Dgraph 28
solutions 28

P

part list performance 67
performance impact
disabled refinements 63
wildcard search 77
performance in multithreaded mode 44
Perl guidelines
for MDEX Engine request log 89
port setting for Eneperf 122
precedence rules
defined 80
pred query type 110
pretendtime query type 111

Process Explorer performance analysis tool 166

profiles query type 111
Prstat performance analysis tool 164

R

RAID recommendations 25
RAM estimates

for the MDEX Engine 32
rank query type 112

read_ahead_kb parameter for tuning on Linux 37

record counts for refinements
aggregated records 63

Oracle Commerce Guided Search

record filters
expression evaluation 66
large scale negation 67
memory costs 66
Record Relationship Navigation
performance impact 70
record search 77
records
sorting by dimension or property 65
refinement dimension values
displaying 62
refinement query type 112
relevance ranking
performance impact 81
relrank query type 113
Request Log Analyzer, about 135
Request Log Parser
modifying, for long or complex queries 133
resident set size (RSS)
defined 22
RSS
defined 22

S

SAN-backed storage recommendations 26
Sar performance analysis tool 164
select query type 113
snippeting
performance impact 73
socket timeout interval
configuring 168
Solaris performance tools 165
sort query type 113
spelling correction 74
stat-abins
aggregated record counts per refinement 63
statistics
viewing for MDEX Engine 153
stats.xslt file 153
stemming and thesaurus 75
structured query type 114
sustained throughput for Dgraph
defined 21

T

Task Manager performance analysis tool 165
Tcpdump performance analysis tool 163
TCPView performance analysis tool 166
terms query type 115

Index

thesaurus development

guidelines for 76
threaded Dgraph 52
throttle setting to Eneperf 128
throughput

defined 21
Top performance analysis tool 164
tuning

cache 156

wildcard search 78

U

uncovering network problems 55
update logs and Eneperf 132
updates performance, testing with Eneperf 132
utilization
defined 22

\"

virtual process size
defined 22

w

warming
effect on performance 51
warming for the Dgraph process 22
performance 44
wildcard search
performance impact 77
preventing expensive queries 79
with punctuation 78
wildcard_max setting 78
Windows
Task Manager 165
Windows 2008
support 35
Windows performance tools 166
Windump performance analysis tool 163
working set size
defined 22
WSS
defined 22

X

XSLT
transforming MDEX Engine statistics 153

173

	Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Oracle Support

	Assembler Performance Tuning
	Hardware and Memory Requirements for Best Assembler Performance
	Latency
	Assembler Deployment Models

	MDEX Engine Performance Tuning
	Before You Begin
	About the Dgraph
	Important concepts

	System Characteristics and Hardware
	MDEX Engine architecture and performance
	Storage considerations
	Locally attached RAID storage (RAID 5/6, RAID 10, or RAID 0)
	SAN-backed network-attached storage

	Memory considerations
	About Dgraph process memory usage
	Memory usage recommendations for optimizing performance
	Dgraph virtual memory vs. RAM: use cases
	Solutions for memory-based Dgraph performance problems
	About the Dgraph cache
	About the File System Cache
	Some recommended ways to tune cache for best performance
	Warming the Dgraph cache after an update
	The Dgraph cache and its impact on virtual process size
	Estimating the MDEX Engine RAM requirements

	Network considerations
	Dgidx performance recommendations
	Operating system considerations
	Windows 2008 performance considerations
	VMware performance considerations
	Linux considerations
	Tuning the read_ahead_kb kernel parameter
	Changing the I/O scheduler on RHEL 5
	Disabling the swap token timeout on RHEL 5

	Load balancer considerations
	Load balancing and session affinity

	High availability considerations

	Using Multithreaded Mode
	About multithreaded mode
	Benefits of multithreaded MDEX Engine
	The MDEX Engine threading pool
	Configuring the number of MDEX Engine threads
	When to increase the number of threads
	Multithreaded MDEX Engine performance
	Recommended threading strategies and OS platform

	Diagnosing Dgraph Problems
	Information you need
	System state characteristics
	Performance tools overview
	The MDEX Engine request log
	The MDEX Engine Statistics page
	The MDEX Engine Auditing page
	The Request Log Analyzer
	Eneperf

	Dgraph performance issues
	Improving the speed of Dgraph startup
	Tips for troubleshooting long processing time
	Warming performance vs. steady state performance
	About planning for peak Dgraph load
	About tuning the number of threads
	Multithreaded Dgraphs on machines with multithreaded processors
	Multiple Dgraphs on one machine vs. multithreaded Dgraphs
	Disk access recommendations for optimizing performance
	CPU recommendations for optimizing performance
	I/O recommendations for optimizing performance

	Identifying problems with resource usage by the application
	Coding practices for the front-end application
	Web application ephemeral port contention

	Recommendations for identifying network problems
	Troubleshooting connection errors

	Next steps

	Dgraph Analysis and Tuning
	Feature performance overview
	Endeca record configuration
	Record select
	Aggregated records

	Dimensions and dimension values
	Hidden dimensions
	Dimensions and dimension values with high record coverage
	Flat dimension hierarchy
	Displaying multiselect dimensions
	Multi-assign dimensions
	Displaying refinement dimension values
	Dynamic statistics on dimension values
	Aggregated refinement counts
	Dynamic refinement ranking and performance
	Disabled refinements
	Displaying dimension value properties
	Collapsible dimension values
	Mapping source properties
	Indexing all properties with Dgidx

	Record sorting and filtering
	Sorting records by dimension or property
	Geospatial sorting and filtering
	Range filters
	Record filters
	Optimizing URL record filters that use complex logic

	EQL expressions and Record Relationship Navigation
	When to use EQL-based filters vs. other filter types
	Performance impact of EQL-based filters
	Performance impact of RRN
	Tips for troubleshooting EQL filters
	Typical causes of EQL filter errors

	Snippeting
	Spelling auto-correction and Did You Mean
	Spelling auto-correction
	Did You Mean

	Stemming and thesaurus
	Guidelines for thesaurus development

	Record, phrase, and dimension search
	Record search
	Boolean search
	Phrase search
	Wildcard search
	Wildcard search with punctuation and performance
	Preventing expensive wildcard searches

	Dimension search

	Precedence rules
	About precedence rules

	Relevance ranking
	Minimizing the performance impact of relevance ranking

	Dynamic business rules
	Analytics performance considerations

	The MDEX Engine Request Log
	About the MDEX Engine request log
	Request log file format
	Extracting information from request logs
	Storing logs on a separate physical drive
	Request log rolling

	The MDEX Engine Parameter Listing
	Understanding the URL parameter mapping
	Mappings between request log and UrlENEQuery URL parameters
	List of request log parameters
	Example: interpreting error log messages

	Description of query types
	allbins
	allgroups
	analytics
	attrs
	autophrase
	autophrasedwim
	compound
	dym
	filter
	format
	group
	groupby
	id
	ignore
	irversion
	keyprops
	lang
	log
	merchdebug
	merchpreviewtime
	merchrulefilter
	model
	nbins
	nbulkbins
	node
	num
	offset
	op
	opts
	pred
	pretendtime
	profiles
	rank
	refinement
	relrank
	select
	sort
	structured
	terms

	Creating Eneperf input files with the Request Log Parser
	Installation location
	Log format requirements
	Invoking the Request Log Parser
	Example output from the Request Log Parser
	Using the Request Log Parser with Eneperf

	Using the Eneperf Tool
	About Eneperf
	Using Eneperf
	Required settings
	Host and port settings for running Eneperf locally or remotely
	Log file settings suitable for Eneperf input
	About the number of connections and iterations
	Example: Selecting the number of connections

	Optional settings
	About generating incremental statistics
	About setting the number of queries sent to the Dgraph

	Example of Eneperf output
	About the format of logs for use with Eneperf
	The Request Log Parser
	Recommendations for generating a representative log for Eneperf
	Running Eneperf in two-stream mode: regular logs and logs with updates
	Converting an MDEX Engine request log file for Eneperf
	Performance testing .NET 2.0 applications that contain long or complex queries
	Creating a log file by hand using substitute search terms

	Debugging Eneperf

	Using the Request Log Analyzer
	About the Request Log Analyzer
	Installation location
	Log format requirements
	Invoking the Request Log Analyzer
	Show flags
	Threshold flags
	Ignore flags
	Timeframe flags

	Interpreting reports
	Statistics
	Common metrics
	Hourly results
	Longest-running requests by round-trip response time
	Longest-running requests by engine-only processing time
	Query types
	Extended query types
	Response codes
	Request profiling
	Response profiling
	Peak performance
	Threading and queueing information
	Summary information

	MDEX Engine Statistics and Auditing
	About the MDEX Engine Statistics page
	Viewing the MDEX Engine Statistics page
	Sections of the MDEX Engine Statistics page
	The Performance Summary tab
	The General Information tab
	The Index Preparation tab
	The Cache tab
	The Details tab

	About the MDEX Engine Auditing page
	Viewing the MDEX Engine Auditing page
	Audit persistence file details

	Sections of the MDEX Engine Auditing page
	The Audit Stats tab
	The General Information tab

	Useful Third-Party Tools
	Cross-platform tools
	Solaris and Linux tools
	Solaris-specific tools
	Linux-specific tools
	Windows tools

	Tuning the Network Performance
	Tuning network performance on Windows
	Tuning network performance on Solaris
	Configuring the FIN_WAIT_2 timeout interval
	Configuring FIN_WAIT_2 timeout on Linux
	Configuring FIN_WAIT_2 timeout on Solaris
	Configuring FIN_WAIT_2 timeout on Windows

	Index

