
Oracle Commerce Guided Search
Assembler Application Developer's Guide

Version 11.1 • July 2014

Contents
Preface..9
About this guide..9
Who should use this guide...9
Conventions used in this guide..9
Contacting Oracle Support...10

Part I: About the Assembler..11

Chapter 1: Introduction to the Assembler...13
What is the Assembler?..13
Configuring Assembler applications in Experience Manager..16
Assembler Search and Guided Navigation Features..17

Chapter 2: Assembler Architectural Overview..19
The Assembler processing model...19
About serialization and de-serialization..22
The Assembler eventing framework...23
About Assembler error handling...24

Chapter 3: About cartridges and content items..25
About cartridges..25
Structure of cartridges...25

Part II: Designing an Assembler Application...27

Chapter 4: Planning an Assembler Application..29
About planning your application sitemap..29
About page types..30
About content folders..34
About sites..39

Chapter 5: Creating Experience Manager Templates.....................................43
About creating templates..43
Anatomy of a template..44
About the template XML schema..44
Template identifiers...45
About the type of a template...45
Specifying the description and thumbnail image for a template..46
Specifying the default name for a cartridge..47
About defining the content properties and editing interface..47
Structural properties..50
About multiple locales...53
Managing Experience Manager Templates..54

Part III: Developing an Assembler Application..59

Chapter 6: Deploying the Assembler...61
Assembler environment requirements..61
Assembler dependencies..62
About deploying the Assembler..62
Assembler configuration..63

iii

Chapter 7: Invoking the Assembler..69
Invoking the Assembler in Java..69
Querying the Assembler Service..71
About building an Assembler query string..73
About retrieving Assembler results using the packaged services...73
About handling the Assembler response..81

Chapter 8: Implementing Multichannel Applications.....................................85
Overview of multichannel applications with the Endeca Assembler...85
About creating templates for mobile channels..85

Chapter 9: Tuning an Assembler application..87
Setting up the preview application for Workbench..87
Configuring logging for an Assembler Application..95
Configuring cartridge performance logging...99
Understanding and debugging MDEX Engine query results...100

Part IV: Optimizing Application URLs..105

Chapter 10: About the URL optimization classes...107
Package contents..107
Introduction to URL optimization...107
Overview of URL optimization capabilities..107
About URL canonicalization..109

Chapter 11: Working with Application URLs...111
About application URLs...111
About Actions..111
About working with URL parameters..115
About URL configuration in the reference application...116
About working with canonical links...120

Chapter 12: Preparing your application...123
Preparing your dimensions...123
Preparing your properties...123
Handling images and external JavaScript files...124
URL transitioning...124

Chapter 13: Building optimized URLs..125
Core URL optimization classes...125
Overview of building URLs using the URL optimization classes...125
Parsing an incoming query and sending it to an MDEX Engine...126
Informing the UrlState of the navigation state...126
Creating link URLs from a UrlState...127

Chapter 14: Configuring URLs..129
Anatomy of an optimized Endeca URL ..129
About the URL configuration file...130
Creating a URL configuration file..131
About optimizing the misc-path...134
Configuring the path-param-separator..151
About optimizing the path-params and query string...152
Using the URL configuration file with your application..156

Chapter 15: Integrating with the Sitemap Generator....................................157
The Sitemap Generator urlconfig.xml file..157
Using the URL configuration file with the Sitemap Generator...157

Oracle Commerce Guided Searchiv

Part V: Extending the Assembler..159

Chapter 16: Extending and Developing Cartridges......................................161
Cartridge Basics..161
First steps with a new cartridge..161
Adding a basic renderer..165
Elements of the example cartridge...166
Overview of cartridge extension points...169
Customizing the Experience Manager interface...170
About Cartridge Handlers and the Assembler..174
About using event listeners to extend the navigation cartridges...178
Sample Cartridges..180

Chapter 17: Developing Editors for Workbench...207
Setting up the Experience Manager Editor SDK...207
Flex prerequisites and resources..207
About setting up a Flex development environment...208
Developing Editors With the Experience Manager Editor SDK...209
Specifying dependencies between editors..217

Appendix A: Template Property and Editor Reference.................................223
Editor property mapping reference...223
Editor label configuration reference...226
Basic content properties...226

Adding a string property..227
About numeric properties..233
Adding a Boolean property...236
Adding an item property..237

Adding a group label..238
Complex property editors...239

About the microbrowser..239
About the Select Records dialog...241
About the Dynamic Slot editor..242
Adding a Link Builder..245
About the Media editor..247
Adding a Boost-Bury Record editor..259
Adding a Guided Navigation editor...260
Adding a Dimension Selector..261
Adding a Dimension List editor...262
Adding a Dimension Value Boost-Bury editor...263
Adding a Dimension Value List editor...265
Adding an Image Preview...266
Adding a Record List editor...267
Adding a Record Stratification editor..270
Adding a Rich Text editor..271
Adding a Sort editor..272
Adding a Spotlight Selection editor...274

Application feature property reference...276
Adding a list property..279

Appendix B: Navigation Cartridge Configuration Reference.......................281
Navigation cartridge URL parameter reference...281

About this section..281
Core URL query parameters...282
Cartridge-specific URL query parameters...289

About the navigation cartridge configuration models...296
Overview of the navigation cartridge configuration models..296
Search cartridges..299
Guided Navigation cartridges..313
Results cartridges...318
Record details cartridges..322

v

Contents

Content and spotlighting cartridges..323
Dynamic triggering cartridges...326

Request Event Attributes..327
Base request event attributes...327
Navigation cartridge request event attributes...328

Oracle Commerce Guided Searchvi

Copyright and disclaimer

Copyright © 2003, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs,
including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, shall be subject to license terms and license restrictions applicable to the programs. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices.
UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim
all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

vii

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Oracle customers have access to electronic support through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Oracle Commerce Guided Searchviii

Preface

Oracle Commerce Guided Search is the most effective way for your customers to dynamically explore your
storefront and find relevant and desired items quickly. An industry-leading faceted search and Guided Navigation
solution, Guided Search enables businesses to influence customers in each step of their search experience.
At the core of Guided Search is the MDEX Engine™, a hybrid search-analytical database specifically designed
for high-performance exploration and discovery. The Oracle Commerce Content Acquisition System provides
a set of extensible mechanisms to bring both structured data and unstructured content into the MDEX Engine
from a variety of source systems. The Oracle Commerce Assembler dynamically assembles content from any
resource and seamlessly combines it into results that can be rendered for display.

Oracle Commerce Experience Manager enables non-technical users to create, manage, and deliver targeted,
relevant content to customers. With Experience Manager, you can combine unlimited variations of virtual
product and customer data into personalized assortments of relevant products, promotions, and other content
and display it to buyers in response to any search or facet refinement. Out-of-the-box templates and experience
cartridges are provided for the most common use cases; technical teams can also use a software developer's
kit to create custom cartridges.

About this guide
This guide provides an overview of Assembler application development. It covers the architecture of a typical
Assembler application, as well as the taskes required to enable configuration through the Experience Manager
or Rule Manager tools in Workbench.

Note: Rule Manager is deprecated in the Tools and Frameworks 11.0.0 release.

The Tools and Frameworks package includes a Java implementation of the Assembler, so examples in this
document are Java-based.

Who should use this guide
This guide is intended for developers who are building applications using the Assembler, and are supporting
business users who configure these applications using Workbench. You should familiarize yourself with the
concepts in the Oracle Commerce Guided Search Concepts Guide before reading this guide.

Conventions used in this guide
This guide uses the following typographical conventions:

Code examples, inline references to code elements, file names, and user input are set in monospace font. In
the case of long lines of code, or when inline monospace text occurs at the end of a line, the following symbol
is used to show that the content continues on to the next line: ¬

When copying and pasting such examples, ensure that any occurrences of the symbol and the corresponding
line break are deleted and any remaining space is closed up.

Contacting Oracle Support
Oracle Support provides registered users with answers to implementation questions, product and solution
help, and important news and updates about Guided Search software.

You can contact Oracle Support through the My Oracle Support site at https://support.oracle.com.

Oracle Commerce Guided Search Assembler Application Developer's Guide

| Preface10

https://support.oracle.com

Part 1

About the Assembler

• Introduction to the Assembler
• Assembler Architectural Overview
• About cartridges and content items

Chapter 1

Introduction to the Assembler

This section provides a conceptual overview of the Oracle Commerce Guided Search Assembler.

What is the Assembler?
The Assembler is an Oracle Commerce component that performs the following essential roles in any Oracle
Commerce application:

• It acts as the runtime component of Experience Manager, a tool that enables the business user to configure
the runtime appearance and behavior of the application.

• It accesses values from a variety of sources, including databases, Digital Asset Management systems,
social media feeds, and the MDEX engine.

• It creates view-ready application component models known as cartridges. A cartridge is a series of key
and values pairs known as a content item. The key and value pairs contain values accessed by the
Assembler. Your application renders these values visually, in the UI controls or other components that
compose the pages in your application.

Note: Some content items contain other content items rather than consumer information. These
content items represent different types of content and together form a hierarchical tree that can be
traversed by the application when rendering a page.

Assembler Libraries

The Assembler classes are organized into two Java libraries:

• Assembler Core, packaged as endeca_assembler_core-<version>.jar. This library provides the
core Assembler interfaces and a Spring implementation of the Assembler, along with the core facilities for
building Experience Manager driven applications.

• Assembler Navigation, packaged as endeca_assembler_navigation-<version>.jar. This library
provides the built-in cartridges and facilities for building applications with Search and Guided Navigation.

• A separate javadoc is provided for each JAR file.

The Role of the Assembler in an Oracle Commerce Application

The following diagram illustrates the role of the Assembler in an Oracle Commerce implementation:

As shown in the preceding diagram, the following things happen when customers request information through
your application page:

1. Your Endeca application invokes the assemble() method as follows:

ContentItem contentItem = new RedirectAwareContentInclude("/myUrl");

ContentItem responseContentItem = assembler.assemble(contentItem)

where /myUrl is the URL to a page that you are assembling in Experience Manager and responseCon¬
tentItem is a tree of other content items.

2. The assemble() method sends responseContentItem to the Assembler.
3. The Assembler passes the individual content items in responseContentItem to cartridge handlers, each

of which handles a different content type. Each content item specifies a request for information.
4. The cartridge handlers pass the requests on to the appropriate sources of information, such as an MDEX

Engine, a relational database system, a content management system, and so on.
5. The cartridge handlers receive and process information from their respective sources. The handlers contain

all the logic needed to process the information, though they may also process requests without requiring
input from an external data source.

6. Each cartridge handler returns to the Assembler a content item that contains the requested information.
7. The Assembler combines the content items that it receives from all of the cartridge handlers into a respon¬

seContentItem, which is structured as a tree that contains all of the information required by the front end
application.

8. The Assembler returns responseContentItem to the front end application.
9. Rendering code in the application converts the information in responseContentItem into a form that

can be displayed in the appropriate cartridges on your application page. Typically, a cartridge renderer (a
separate module of rendering code) processes and displays the information for each content item in the
responseContentItem tree.

Oracle Commerce Guided Search Assembler Application Developer's Guide

Introduction to the Assembler | What is the Assembler?14

Note: The Assembler can return XML or JSON representations of objects for consumption by a
variety of rendering engines, such as .NET, PHP, or Flash-based applications. It can also return
model objects as POJOs (plain old Java objects) when embedded in a native Java application.

The Tools and Frameworks package includes a Java Assembler implementation that uses Spring to resolve
cartridge handlers and services.

You can develop extensions to the framework to interact with your resources, centralizing runtime data retrieval
and manipulation in your application. For these reasons, the Assembler can be integrated with organizations
that use Service-Oriented Architecture.

Basic Assembler concepts
The Assembler stores and manipulates data as sets of key:value pairs known as content items. Content
items can represent cartridges, which map to front-end features in an application.

About Content Items

Some content items are structural components such as application pages that contain additional content items.
Other content items map to front-end components in an application, such as image banners.

For example, in the Discover Electronics reference implementation, the entire default "browse" page is
represented by a content item that contains the page template. Each section of the page is also a content item,
nested within the containing "three column page" content item. Within those sections are additional content
items that represent front-end features:

• ThreeColumnPage
• headerContent

• Search Box

• leftContent
• Breadcrumbs
• Guided Navigation

• mainContent
• SearchAdjustments
• ContentSlotMain

• ResultsList

• rightContent
• RecordSpotlight

Because the content items are organized as a tree, they are as a group easy to traverse for rendering.

About Cartridges and Cartridge Templates

A cartridge is a content item with a specific role in your application; for example, a cartridge can map to a GUI
component in the front-end application. The Assembler includes a number of cartridges that map to typical
GUI components – for example, a Breadcrumbs cartridge, a Search Box cartridge, and a Results List cartridge.
You can create other cartridges that map to other GUI components expected by your business users.

Every cartridge is defined by a template. A cartridge template defines:

Oracle Commerce Guided Search Assembler Application Developer's Guide

15Introduction to the Assembler | What is the Assembler?

• The structure and initial configuration for a content item.
• A set of configurable properties and the associated editors with which the business user can configure

them.

Experience Manager instantiates each content item from its cartridge template. This includes any configuration
made by the business user, and results in a content item with instance configuration that is passed to the
Assembler.

About Cartridge Handlers

A cartridge handler takes a content item as input, processes it, and returns a content item as output.

The input content item typically includes instance configuration, which consists of any properties specified by
a business user using the Experience Manager or Rule Manager tool in Endeca Workbench. The content item
is typically initialized by layering configuration from other sources: your application may include default values,
or URL parameters that represent end user selections in the front-end application.

A cartridge handler can optionally perform further processing, such as querying a search engine for data. When
processing is finished, the handler returns a completed content item to the application.

Note: Not all cartridges require cartridge handlers. In the case of a content item with no associated
cartridge handler, the Assembler returns the unmodified content item.

For detailed information regarding the CartridgeHandler interface, see About the CartridgeHandler interface
on page 174, or refer to the Assembler API Reference (Javadoc).

Example: The Results List Cartridge

Consider the Results List cartridge included with Tools and Frameworks in the Assembler Navigation JAR file.
The ResultsList object that backs the cartridge is a content item. The ResultsList cartridge template exposes
a subset of object properties for configuration in Experience Manager. The remaining properties are configurable
through the UI in the front-end application.

The Results List cartridge handler combines the default, instance, and URL configuration values to create a
query to send to the MDEX Engine. The values in the query response are used to populate the ResultsList
content item and return it to the application for rendering.

Configuring Assembler applications in Experience Manager
The Assembler interacts with the Experience Manager tool in Endeca Workbench to expose content configuration
to business users.

Experience Manager instantiates each content item from its content XML. In an unconfigured cartridge, this
XML is identical to the cartridge template (including any default values specified in the template). When a
business user opens and modifies a cartridge in Experience Manager, their settings are saved in the content
XML. In an authoring environment, this XML is stored in the Workbench. In a production environment, it is read
from the path configured using configurationPath property of FileStoreFactory.

At runtime, the Assembler deserializes the content XML to create the appropriate content item object, and
passes it to its corresponding cartridge handler for processing.

In addition to creating instances of front-end application components in this manner, the business user can
also use structural content item templates (such as the Three-Column Navigation Page template) to create
the organizational elements of a site. For example, your business user can create an "About Us" page, a

Oracle Commerce Guided Search Assembler Application Developer's Guide

Introduction to the Assembler | Configuring Assembler applications in Experience Manager16

"Frequently Asked Questions" page, and other static elements of a site by selecting and populating suitable
cartridge templates.

Assembler Search and Guided Navigation Features
The Assembler Navigation package provides a set of Search and Guided Navigation cartridges for use with
the MDEX Engine. These cartridges are included in the endeca_assembler_navigation-<version>.jar
file.

The reference application includes templates that use these navigation cartridges to enable configuration in
Experience Manager and render the resulting data in a front end application.

A navigation cartridge exposes MDEX engine features to an Assembler application. It also enables a business
user to configure powerful Guided Navigation features using UI components that can be customized by an
application developer to fit business needs.

The navigation cartridges include the following:
• Search Box
• Auto-Suggest Search Results
• Dimension Search Results
• Search Adjustments
• Refinement Menu
• Breadcrumbs
• Dimension Navigation
• Results List
• Record Details
• Media Banner
• Record Spotlight and Horizontal Record Spotlight

Example: The Results List cartridge
The Results List cartridge displays MDEX Engine search results for an end user query. It is backed by a
com.endeca.infront.cartridge.ResultsList content item object, which extends thecom.endeca.in¬
front.assembler.BasicContentItem interface.

The input to the Assembler consists of a configuration model -- a content item with MDEX Engine query
information such as the end user's search terms, selected search refinements, sorting options, and records
per page. These are passed in as a com.endeca.infront.cartridge.ResultsListConfig object.

The ResultsListHandler generates a query from the properties on ResultsListConfig, then sends
the query to the MDEX Engine. It instantiates a ResultsList content item using the query response, and
copies over some of the properties from the co nfiguration model (such as records per page and sorting)
directly. This view-friendly ResultsList object is then returned to the application for rendering.

Cartridge configuration comes from the following sources:
• Default configuration — For Spring-based Assembler implementations, this is specified in the Spring context

file.
• Instance configuration — Specified by the business user in the Results List cartridge in Experience Manager.
• Request-based configuration — Specified by the application end user; this includes any search terms or

selected dimension refinements, among other things.

Oracle Commerce Guided Search Assembler Application Developer's Guide

17Introduction to the Assembler | Assembler Search and Guided Navigation Features

Default Cartridge Configuration

This section illustrates the default cartridge configuration of a Spring-based Assembler, using the Discover
Electronics reference application as the example.

The default cartridge configuration is specified in the Spring context file, located at
ToolsAndFrameworks\<version>\reference\discover-electronics-authoring\WEB-INF\assembler-context.xml
for the authoring instance of the Discover Electronics reference application. This includes values for the following
properties on the ResultsListConfig content item:

• sortOption — The sorting options available to the end user when viewing the list of query results.
• relRankStrategy — The Relevance Ranking strategy applied to search results. For more information

about Relevance Ranking, see the MDEX Engine Developer's Guide.
• recordsPerPage — The number of records to display per page of results.

Note: The above list is a subset of configured properties and provided as an example.

Instance Configuration

This section illustrates a cartridge instance configuration for a Spring-based Assembler, using the Discover
Electronics reference application as the example.

The cartridge instance configuration comes from the values in the
ToolsAndFrameworks\<version>\reference\discover-data\import\templates\ResultsList\template.xml cartridge
template. The template exposes the following properties to the business user in Experience Manager:

• boostStrata — A list of records to elevate to the top of the Results List.
• buryStrata — A list of records to move to the bottom of the Results List.
• sortOption — The business user can override the default sorting options.
• relRankStrategy — The business user can override the default Relevance Ranking strategy.
• recordsPerPage — The business user can override the default number of records to display on each

page.

Request-Based Configuration

The application end user's configuration in Discover Electronics is passed to the ResultsListConfig object
as URL parameters, though you may choose to implement such functionality differently in your own application.

• offset— Controls the record offset of the displayed results in order to control record display while paging
through results.

• relRankTerms —The end user's search terms.
• sortOption — The end user can override the default values and the instance configuration.
• recordsPerPage — The end user can override the default values and the instance configuration.

The Results List cartridge handler combines the default, instance, and request-based values to create a query
to send to the MDEX Engine. The values are used to populated the ResultsList content item and return it
to the application for rendering.

Oracle Commerce Guided Search Assembler Application Developer's Guide

Introduction to the Assembler | Assembler Search and Guided Navigation Features18

Chapter 2

Assembler Architectural Overview

This section provides an architectural overview of the Endeca Assembler.

The Assembler processing model
The core of the Assembler is the assemble() method, which takes a content item representing a cartridge
instance configuration and invokes cartridge handlers to process it into a response content item.

The Assembler uses the visitor pattern to traverse the input content item and any child content items, and
invokes the appropriate cartridge handler (if any) for each of them.

The Assembler makes two passes over the input content item:

1. In the first pass, the Assembler calls CartridgeHandler.initialize() followed by CartridgeHan¬
dler.preprocess() on each content item in the tree. This is a pre-order traversal of the tree (working
from the top of the tree down through its children), so cartridge handlers may add or modify child content
items at this stage.

2. In the second pass, the Assembler calls CartridgeHandler.process() on each content item, which
returns the response content item for that cartridge. This is a post-order traversal of the tree (working from
the bottom up), so child content items are processed before the parent. The response object for the root
content item of the tree (the content item originally passed in as input to the first assemble() call) contains
the response objects for all its child cartridges.

The default implementation of the Assembler uses Spring to map each cartridge to the appropriate handler
based on its content type. This content type corresponds to the template identifier that was used to create the
content item object. If no cartridge handler is defined for a particular content type, the instance configuration
is passed through as the response model.

Example

For example, consider the following content item:
NestingDollContentItemSubclass nestingDoll

This content item represents a Russian Nesting Doll. It includes properties for its name, color, and its child
content item:
nestingDoll.name = "Nesting Doll"
nestingDoll.color = red
nestingDoll.child = secondNestingDoll

The secondNestingDoll contained within is green. It contains a thirdNestingDoll, which is blue.
Assuming there is no cartridge handler for NestingDollContentItemSubclass, an assemble(nesting¬
Doll) call executes the following:

1. The pre-order traversal starts. There is no cartridge handler for NestingDollContentItemSubclass,
so no initialize() or preprocess() calls are made for nestingDoll.

2. Similarly, no calls are made for secondNestingDoll or thirdNestingDoll. At this point, the pre-order
traversal is complete.

3. The post-order traversal starts. The thirdNestingDoll object is returned as-is, since there is no handler
to invoke a process() method.

4. Similarly, the secondNestingDoll and nestingDoll objects are returned, unmodified. Serialized to
JSON, the response looks like the following:
@type": "NestingDollTemplateType",
"name": "Nesting Doll",
"color": "red",
"child": [
 {
 @type": "NestingDollTemplateType",
 "name": "Second Nesting Doll",
 "color": "green"
 "child": [
 {
 @type": "NestingDollTemplateType",
 "name": "Third Nesting Doll",
 "color": "blue"
 "child": []
 }
],
 },
]

What if you create a cartridge handler for NestingDollContentItemSubclass that doesn't override the
initialize() or preprocess() methods, but implements logic to add a property colorType of value
warm or cool, based on the color property? Steps 1-2 above don't change, but Step 3 invokes the new
logic, and the property shows up in the response:
@type": "NestingDollTemplateType",
"name": "Nesting Doll",
"color": "red",
"colorType": "warm",
"child": [
 {
 @type": "NestingDollTemplateType",
 "name": "Second Nesting Doll",
 "color": "green",

"colorType": "cool",
 "child": [
 {
 @type": "NestingDollTemplateType",
 "name": "Third Nesting Doll",
 "color": "blue",

"colorType": "cool",
 }
],
 },
]

Oracle Commerce Guided Search Assembler Application Developer's Guide

Assembler Architectural Overview | The Assembler processing model20

About content items
A content item is a set of key:value pairs where the key is a property name and the value may be any
primitive type, or another content item. The com.endeca.infront.assembler ContentItem interface
extends java.util.Map.

Content items in the Assembler represent either structural components of an application page, or GUI
components on the page itself. A call to the Assembler.assemble(ContentItem) method takes a Con¬
tenItem containing configuration as input, and returns a content item as output. The response content item
can encompass an entire page in an application, with each sub-section of the page (such as the search box
or the search results list) represented as its own nested content item.

Note: In the default implementation of the Assembler, the ContentItem interface is implemented by
the com.endeca.infront.assembler.BasicContentItem class. The navigation cartridges in the
package extend this implementation for their individual use cases.

About ContentInclude and ContentSlotConfig objects
The default Assembler implementation typically takes a ContentInclude or ContentSlotConfig object
as input to the Assembler. The first specifies a content item by URI, while the second retrieves a content item
from a specified folder according to template type and ID restrictions, trigger criteria, and content item priority.

Both methods retrieve the associated configuration for the content item in Workbench.

Defining a ContentInclude object

A ContentInclude object defines a single content item to pass into the Assembler (though keep in mind
that a content item may contain additional content items as children). It resolves a URI to a content item within
a configured content source (typically the Endeca Configuration Repository).

Defining a ContentSlotConfig object

Unlike a ContentInclude object, which explicitly specifies a content item to pass as input to the Assembler,
the ContentSlotConfig object defines a set of criteria for dynamically retrieving one or more content items
at runtime. In most cases the content administrator creates and populates ContentSlotConfig objects
through editors in Experience Manager, although you can still programatically instantiate them if necessary.

The dynamic content slot is populated based on the following restrictions:
• Content paths — The path or paths to content folders in Experience Manager. Any content items within

the specified folders or within sub-folders are considered valid for retrieval.
• Template types (Optional) — The types of content item to retrieve, based on the type attribute of the

cartridge template used to create it. For example, a Record Spotlight slot in the Discover Electronics
reference application is restricted to content items created from a template with type="SecondaryCon¬
tent".

• Template IDs (Optional)— The template IDs to match against. This is a narrower restriction than restricting
by template type, and instead restricts based on a unique template id. For example, a Record Spotlight
slot in the Discover Electronics reference application is restricted to content items created from a template
with id="RecordSpotlight".

• Rule Limit— The number of matching content items to retrieve. This is applied after the above restrictions,
and after checking for triggered content items.

Once the list of possible content items has been narrowed down, the ContentSlotHandler issues a content
trigger request. This checks valid content items against any triggers defined in Experience Manager. Trigger
criteria can include:

Oracle Commerce Guided Search Assembler Application Developer's Guide

21Assembler Architectural Overview | The Assembler processing model

• The user's search terms or refinement selections, also referred to as their "navigation state."
• Characteristics of the user, such as past buying habits or geographical location. This information constitutes

the user's "user segment."
• The current date and time, referred to as "schedule triggers."

The list of results is limited to triggered content items and ordered by the priority assigned to each content item
in Experience Manager. The number of results is truncated to the value specified for the content slot (also
specified on ContentSlotConfig). The Assembler then processes the content items and returns them in
its response.

About nesting content items
Content items may contain other content items, which can include both ContentInclude references and
ContentSlotConfig definitions

For example, in Discover Electronics the /browse path corresponds to a page within the sitemap. The browse
page consists of a content slot that references the Web folder. Most of the pages within the Web Browse Pages
folder contain a mixture of static and dynamic content items. As the Assembler processes the query for
http://www.example.com/discover/browse (assuming no search terms or refinement selections), the
following steps occur:

1. The Assembler is invoked with a ContentInclude item with the URI /pages/browse.
2. The Assembler invokes the ContentIncludeHandler to retrieve the configuration for the browse page,

which is a ContentSlotConfig that specifies a single content item from the Three-Column Page collection.
3. The Assembler invokes the ContentSlotHandler to retrieve the highest priority content item within the

Three-Column Page collection. In this case, it is the Default Browse Page, which is a ThreeColumnPage.
4. There is no cartridge handler configured to process the ThreeColumnPage, but it contains child content

items, so the Assembler goes on to process the child content items:

a. It passes the configuration for the search box cartridge through to the response object.
b. It invokes the BreadcrumbsHandler to process the breadcrumbs cartridge.
c. It invokes the ContentSlotHandler to process the navigation slot, which in turn retrieves the Default

Guided Navigation configuration from the Guided Navigation collection and invokes DimensionNavi¬
gationHandler to process it.

d. It invokes the SearchAdjustmentsHandler to process the search adjustments cartridge.
e. It invokes the ContentSlotHandler to process the results list slot, which in turn retrieves the Default

Results List configuration from the Results List collection and invokes ResultsListHandler to process
it.

f. It invokes the RecordSpotlightHandler to process the spotlight records.

About serialization and de-serialization
The Assembler serializes content items, including any Workbench content, as XML in the Workbench (or on
a file system in a production environment). This XML is deserialized during an assemble() call when retrieving
a content item to pass it to its cartridge handler.

You can also use the included classes to serialize the Assembler response to a format that is more convenient
for use in your front end application. For example:
// Invoke the Assembler on myContentItem
ContentItem responseContentItem = assembler.assemble(myContentItem);
// Serialize the Assembler response to JSON
response.setCharacterEncoding("UTF-8");

Oracle Commerce Guided Search Assembler Application Developer's Guide

Assembler Architectural Overview | About serialization and de-serialization22

JsonSerializer serializer = new JsonSerializer(response.getWriter());
serializer.write(responseContentItem);

When Assembler is deployed as a service, the Assembler service web application needs to specify a serializer
that will be used for the response.

Note: The Assembler includes default implementations of a JSONResponseWriter and an XMLRe¬
sponseWriter. You can provide your own implementation if you need to output the Assembler response
to a different format (such as a different XML representation).

For detailed information, refer to the documentation for the com.endeca.infront.serialization package
in the Assembler Core API Reference (Javadoc).

The Assembler eventing framework
The Assembler includes an eventing framework that fires events at different points in an assemble() call.
Creating listeners for these events enables cartridge handlers to retrieve or modify data at more granular points
in the Assembly process.

Note: The logic included in an event listener is evaluated for every cartridge handler, and that event
listeners do not have access to the current Assembler request or to the navigation state.

Related Links
Creating an event listener on page 178

The Assembler provides an empty implementation of the AssemblerEventListener, Assem¬
blerEventAdapter. You can extend this implementation to create a listener that triggers on an
Assembler event.

Assembler event framework reference
The Assembler includes an AssemblerEventListener interface that you can use to create and register
event listeners.

The Assembler fires the following events:

ConditionEvent

Fires when an assemble() call starts.assemblyStarting

Fires when an assemble() call completes.assemblyComplete

Fires when an assemble()call is aborted due to an
unrecoverable error.

assemblyError

Fires when a cartridge handler calls the initial¬
ize() method.

cartridgeInitializeStarting

Fires when a call to the initialize() method
completes.

cartridgeInitializeComplete

Fires when a cartridge handler calls the prepro¬
cess() method.

cartridgePreprocessStarting

Oracle Commerce Guided Search Assembler Application Developer's Guide

23Assembler Architectural Overview | The Assembler eventing framework

ConditionEvent

Fires when a call to the preprocess() method
completes.

cartridgePreprocessComplete

Fires when a cartridge handler calls the process()
method.

cartridgeProcessStarting

Fires when a call to the process()method completes.cartridgeProcessComplete

Fires when a cartridge fails due to a local error. This
stops execution of the cartridge handler workflow, and
prevents any additional events from firing.

cartridgeError

Event payload

Each Assembler event has an AssemblerEvent payload consisting of three objects:
• Assembler — the Assembler object responsible for servicing the request.
• ContentItem — the content item currently undergoing processing within the assemble() call.
• CartridgeHandler — the cartridge handler associated with the event.

About Assembler error handling
In case of an error during processing, the Assembler API defines two kinds of exceptions: AssemblerExcep¬
tion and CartridgeHandlerException.

The exceptions are distinguished as follows:

DescriptionException

Indicates that an exception occurred while creating or processing an
Assembler request. Exceptions of this type indicate that the entire
assembly process was terminated.

AssemblerException

Indicates that an exception occurred while invoking a single cartridge
handler. Exceptions of this type do not terminate the entire assembly
process.

CartridgeHandlerException

Both types of exceptions are returned as part of the Assembler response.

Error handling in the Assembler service

The Assembler service returns an HTTP status code of 200 (OK) regardless of whether any exceptions occurred
during Assembler processing. Error conditions are serialized as exceptions in the Assembler response, as
with the following example:
{
 @error: "com.endeca.infront.assembler.CartridgeHandlerException"
 description: "Detailed cartridge handler error description"
}

Unchecked exceptions result in the Assembler service returning HTTP status code 500 (Internal Server Error).

Oracle Commerce Guided Search Assembler Application Developer's Guide

Assembler Architectural Overview | About Assembler error handling24

Chapter 3

About cartridges and content items

This section describes how cartridges expose content in an application.

About cartridges
The component model consists of configurable content items. Cartridges expose these content items in a
rendered format for the front-end application.

A content item is a map of properties or key-value pairs, where the key is a string representing the property
name and the value may be any primitive type (including String, Boolean, List, and Map) or another content
item. This allows for content items to be nested within other content items, forming a content tree that represents
the structure of a Web page and all its components.

There are generally two kinds of content items within an application:
• Container content items are primarily structural components. They define the logical (and sometimes

physical) structure of the content to be rendered by an application. The top-level container typically represents
a Web page with sections that can contain other content items (leaf content items or, occasionally, other
containers). In a Web application, these sections may correspond to areas on the page with certain
assumptions about layout and rendering. In other applications, they may represent logical groupings of
related components.

• Leaf content items are typically functional components. They contain information about content to be
displayed in the application, and typically encapsulate the configuration for a particular feature, such as a
Guided Navigation component, spotlight, or results list. Leaf content items are also referred to as cartridges.

A page may contain cartridges directly (in which case the configuration for the cartridges is triggered along
with the page) or the page can contain a dynamic slot, which serves as a placeholder for cartridges that can
be triggered independently of the page in which they display.

Structure of cartridges
A cartridge is a functional component that a content administrator can choose to display on a page.

The basic aspects of a cartridge are the following:
• The cartridge instance configuration, which consists of a content item created by a business user in

Experience Manager
• The cartridge handler, which is the Assembler component that contains the processing logic for the

associated feature

• The responsemodel, which is the content item returned from the Assembler to the application for rendering

The configuration model for a cartridge is defined by a cartridge template, which describes the properties that
can be configured as well as the interface through which the content administrator can specify their values in
Experience Manager. Cartridges typically have configuration options specific to the cartridge's function, such
as the number of refinements to display (and the order in which to display them) for a Dimension Navigation
cartridge; the records to promote for a Spotlight cartridge; or the sort options and records per page for a Results
List cartridge.

1. At query time, the configured values of the cartridge properties become an input to the Assembler.

The Discover Electronics reference application contains several sample templates or cartridges that
demonstrate core Endeca functionality. You can customize them for your own application or write your own
templates in order to add or remove configuration options or to pass additional information to the Assembler
or the front-end application.

2. At query time, the Assembler invokes the appropriate cartridge handler to process the cartridge configuration.

The core cartridge handlers also have access to information about the initial request context that triggered
the cartridge. The cartridge handler is responsible for generating a response model based on this
configuration. In most cases this involves fetching content from an ext ernal resource.

In the case where the configuration model is the same as the response model, no cartridge handler is
needed; the default behavior of the Assembler is to pass the configuration properties through to the response
model.

3. The Assembler passes the response model to the corresponding renderer in the application.

As a best practice, the application should contain several modular renderers, each intended to handle the
output model for a particular cartridge or cartridge type. The Discover Electronics application includes reference
JSP pages to render each cartridge. These renderers are intended to be updated for styling or otherwise
customized for your application.

Oracle Commerce Guided Search Assembler Application Developer's Guide

About cartridges and content items | Structure of cartridges26

Part 2

Designing an Assembler Application

• Planning an Assembler Application
• Creating Experience Manager Templates

Chapter 4

Planning an Assembler Application

This section covers considerations for designing your Assembler application.

About planning your application sitemap
An Assembler application consists of a combination of static pages and dynamic pages that contain content
related to an end user's navigation state. Your planned sitemap helps determine what pages and content
folders you should create for your application.

Consider a site with the following structure:

• about
• contact
• faq

• promotions
• christmas
• mothersDay

• browse
• details

In this case, each of the pages maps directly to a set of content. To separate most of the content out from the
site structure and support dynamic triggering, the organization of an Assembler application is divided into the
pages within an application, and the content that populates them:

• pages
• about

• contact
• faq

• browse
• details

• content

• guided navigation
• record details
• browse pages

default•
• christmas
• mothers day

• spotlights
• top rated
• best sellers

In the example above, the promotional Christmas and Mother's Day pages no longer exist as explicit pages.
Instead, the content associated with those promotions is stored as available "browse" page configurations that
each trigger during a specified date range.

You can refer to the Discover Electronics reference application for a further example of how content and pages
can be separated. When planning your own application, you should consider which locations in your site are
best represented as pages, and which locations consist of triggered content on an existing page.

About page types
A typical application has several types of pages that may display under different circumstances or contain
different content.

For example, a site may have the following three basic page types:

These pages may differ in the following ways:
• They are intended to display in different contexts. The home page displays before the user has made

any selections. The results page displays only when the user has performed some search or navigation
query. The record detail page displays only when a user has selected a specific product. These conditions
are configured in Experience Manager as triggering criteria.

• They display different types of content. A home page or category page typically displays high-level
promotions and merchandising. A results page displays a list of record results as well as additional controls
for the user to select additional facets or otherwise refine the search. A record detail page displays detailed
product information as well as controls for transactions (such as add to cart, wishlist, and so on). These
differences in content imply differences in layout, which is configured at the template level.

• They are accessed via different URLs. The home page is accessed at the base URL for the site. Search
results pages may be accessed at a URL that includes the path /browse/. Record details pages may be
accessed at a URL that includes the path /detail/. These URL mappings are typically achieved by
setting up individual services for each page type.

Oracle Commerce Guided Search Assembler Application Developer's Guide

Planning an Assembler Application | About page types30

The Discover Electronics reference application includes servlets for results pages and record details pages.

About page structure and content types
The logical structure of a page, including the types of content it can contain, is defined in an Experience
Manager template.

Every template defines a content item that can be processed by the Assembler. A content item describes the
logic of how to promote content for display to application users. Content items have several parts: the records
in a data set, the conditions that must be met for those records to display, and the templates that determine
how those records are rendered in the application.

A page template defines a container content item with sections that can be populated with other content items,
such as the following:

Typically, a section represents a physical area on the page, but it can also represent a functional grouping,
including content that may not be visible to an end user. Each section has an associated content type that
determines what kind of content items can be inserted in that section. An application may have multiple
cartridges of each type, providing greater flexibility for the content administrator to configure the content for a
specific page.

Oracle Commerce Guided Search Assembler Application Developer's Guide

31Planning an Assembler Application | About page types

You can create templates for different page types within your application and define which content types are
valid for each type of page. You can create templates for high-level page structures and different layouts for
a single page type. Each of the content items that can be inserted into a template is itself defined by a template,
and may be either another container content item or (more commonly) a leaf content item associated with a
front end feature.

About mapping pages to services
You can map the URL paths of pages in your application to specific services.

Services can be used to set attributes on the incoming request before it is processed by the Assembler
depending on the type of page being requested, which can control what content is triggered in response to
the request, and the format in which the response is returned.

The following is an example from the WEB-INF\web.xml file for the Discover Electronics reference application,
which maps end user requests to /services via a URL redirect and sends them to the application controller,
WEB-INF\services\assemble.jsp.
<!-- Services Definition. For reference, this is implemented as simple jsp pages,
 -->

Oracle Commerce Guided Search Assembler Application Developer's Guide

Planning an Assembler Application | About page types32

 <!-- but this could also be done with a web framework, such as Spring MVC -
->
 <servlet>
 <servlet-name>assemble</servlet-name>
 <jsp-file>/WEB-INF/services/assemble.jsp</jsp-file>
 </servlet>

 <servlet>
 <servlet-name>autosuggest.json</servlet-name>
 <jsp-file>/WEB-INF/services/autosuggest-json.jsp</jsp-file>
 </servlet>
 <servlet>
 <servlet-name>link</servlet-name>

<!-- link service content omitted for brevity -->
 </servlet>

 <servlet-mapping>
 <servlet-name>autosuggest.json</servlet-name>
 <url-pattern>/servlet/autosuggest.json/*</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>link</servlet-name>
 <url-pattern>/servlet/link.json/*</url-pattern>
 </servlet-mapping>

 <servlet-mapping>
 <servlet-name>assemble</servlet-name>
 <url-pattern>/servlet/*</url-pattern>
 </servlet-mapping>

When a content administrator defines a new application page in the reference application, requests on that
page are mapped to the /services servlet. Your application should include similar logic for mapping arbitrary
pages to a controller, though you may also choose to explicitly define additional services for certain pages
within your site. Additionally, your UI tier must be able to resolve whatever links you expect your content
administrators to create. For more information about handling application URLs, see "Working with Application
URLs."

Creating a page
The Content Tree in the left pane of Experience Manager is divided into two sections: Site Pages and Content.
You create pages within the Site Pages section.

You must deploy and provision your application with the EAC in order to modify it in Workbench.

To create a page, follow these steps:

1. Log in to Workbench and navigate to Experience Manager.
2. Mouse over the Site Pages heading in the Content Tree.

The drop-down menu arrow appears on the right.

3. Click the drop-down menu arrow and select Add Page.
The Add Page panel appears.

4. Enter a Name/Path for the new page.
This is the part of the URL path that uniquely identifies the page within your application.

5. Click Create.
The new page is added to your application.

Oracle Commerce Guided Search Assembler Application Developer's Guide

33Planning an Assembler Application | About page types

A page exists as a content item in Experience Manager. A content administrator can configure it directly by
selecting a template with included editors, or they can specify a template with a dynamic slot to populate the
page from one or more selected content folders.

About content folders
Before a content administrator can configure dynamic content items within an application, you must create
content folders to contain those items. Content items within the same folder are evaluated against each other
at runtime to determine which item (or items) should be returned to populate a defined section of the current
page.

In Experience Manager, content folders define the top-level organizational structure of an application, in which
the content administrator can browse for content. If a query satisfies the trigger criteria for multiple content
items within a folder, items with higher priority take precedence over those with lower priority. A single application
request may trigger content items from multiple folders

Content folders have the following properties:
• Template type — Specifies the type of content items that can be created in this collection, as defined by

the type attribute of the content template.
• Template ID — Specifies the type of content items that can be created in this collection, as defined by the
ID attribute of the content template. This is more restrictive than specifying by template type, as an ID is
unique to a single template.

Oracle recommends that you create at least one content folder for pages and one for each slot on the page
that can contain either shared or variable content. This provides a logical organization of content within
Experience Manager. It enables content to be triggered independently of the pages that contain them and also
enables content in one slot to be triggered independently of content in another slot.

For example, the Discover Electronics reference application includes the following content folders :
• Mobile \ Mobile Browse Pages — Top-level page configuration for pages viewed from a mobile device.

Mobile pages must be more streamlined than Web pages, so they require a different page template.
• Shared \ Auto-Suggest Panels — Configuration for the auto-suggest panel that displays when a user

starts to enter a search query. The Shared collections return the same response model for both the Mobile
and Web versions of the application, but the renderers vary based on the client.

• Shared \ Detail Pages — Configuration for record details pages within the application.
• Shared \ Guided Navigation — Configuration for the Guided Navigation menu.
• Shared \ Results List — Configuration for a list of search results.
• Web \ Spotlights — Category-specific product spotlights that display above the search results when a

user navigates to those products.
• Web \ General \ Pages — Top-level page configuration for Web pages. These templates are structural

and primarily consist of dynamic slots that pull in content items from other collections to populate the page.

Content folders example
Content folders determine which content items are evaluated and returned when populating a dynamic section
of an application page.

Suppose you have a site where a typical structure for a search and navigation page looks like the following:

Oracle Commerce Guided Search Assembler Application Developer's Guide

Planning an Assembler Application | About content folders34

Based on this template, the content administrator wants to configure a page for a specific trigger (for example,
Category > Cameras > Digital Cameras) using contextual, shared, and variable content as in this picture:

• The header and footer are populated as dynamic slots with default triggering criteria, in order to avoid
defining them multiple times for a large number of pages.

• The Guided Navigation and Results List cartridges are configured specifically for this page and do not need
to vary based on criteria other than the page triggers.

• The Banner area is configured to display a different image depending on the brand that the site visitor has
selected.

• The Spotlight area displays a mix of promotions based on triggers that are independent of the triggering
criteria for the page itself. For example, a "Holiday Specials" spotlight may display for the date range
between November 1 and January 2.

Oracle Commerce Guided Search Assembler Application Developer's Guide

35Planning an Assembler Application | About content folders

The configuration for the page (as specified in Experience Manager) looks like this:

The configuration for Guided Navigation (including which dimensions to display and which dimension values
to boost or bury within those dimensions) and for the Results List (including default sort options and record
boost and bury) are specified as part of the page configuration. The other slots on the page contain only
placeholders. The actual Header, Footer, Banner, and Spotlight content items that display when someone
visits the site are defined in their respective content folders.

The mechanism for populating these slots is the same regardless of whether the content that should display
in each slot is shared or variable content. The only difference between the two kinds of content is in the trigger
criteria on the content items within those collections: variable content, such as the Spotlight, has triggers that
are more specific than the page trigger. Reusable content, such as the generic header and footer, has triggers
that are more general than or orthogonal to the page trigger.

When the content administrator has created all the content needed to populate this page (and a few other
pages), the application may include the following content items in the following folders:

The content folders are configured as follows:
• The Browse Page folder contains all the content items representing search and navigation pages in the

site.

Oracle Commerce Guided Search Assembler Application Developer's Guide

Planning an Assembler Application | About content folders36

• The Brand Banner folder contains cartridges of type MediumBanner that are appropriate to display in the
Banner slot. This dynamic slot on the Browse page has an evaluation limit of 1, since the page is designed
to display only one banner at a time.

• The Spotlight folder contains cartridges of type SidebarItem because items created in this collection are
intended to display in the Spotlight slot in the right column. Because this space is intended to display several
independently triggered spotlight items, the evaluation limit for the dynamic slot on the Browse page is 3.

• The Header and Footer folders each contain cartridges of type FullWidthContent.
Each page or content item within these folders has an associated trigger and priority (relative to the other items
in the same folder) specified by the content administrator in Experience Manager.

When a site visitor refines on Category > Cameras > Digital Cameras and Brand > Sony, the following content
triggers:

• The Digital Cameras page is returned as a Page, which includes the content administrator's configuration
for Guided Navigation and for Results List. Note that the Default page (with a trigger of "Applies at all
locations") is also eligible to fire, but the Digital Cameras page has a higher priority, therefore it takes
precedence and the Default page does not fire.

• The Banner slot is populated by the highest priority content item in the Brand Banner folder that matches
the user's navigation state. In this case, it is the Sony cameras banner. Again, there is a Default banner
but it does not fire because it has a lower priority.

• The Spotlight slot is populated by the highest priority content items in the Spotlight folder that match the
user's navigation state. In this case, the Default spotlight does fire because there is room for three spotlights
in this slot and that item has a high enough priority (among those that satisfy the user's context) to be
included. These three content items display in the Spotlight area in order of priority.

• The Header and Footer folders have only one content item each, which is set to display at all locations,
therefore the same content is returned for this page as for all pages.

In this example, content is returned from five content folders. Priority between items is specified within each
folder. It does not make sense to prioritize the Sony cameras banner against the April spotlight cartridge, for
example, because they are not competing against each other to be displayed on the page. In general, content
items with more specific trigger criteria should have a higher priority than those with more general criteria,
especially if they are used in a dynamic slot with an evaluation limit of 1.

Oracle recommends that you create separate content folders for each area on the page, even if they have the
same content type. For example, if you want to have two banners on the page, each populated via dynamic
slots, they should reference two different folders, or else the same banner (the one with the highest priority for
the current navigation state) is returned for both sections of the page.

Oracle also recommends that you do not mix reusable and variable content within the same folder. For example,
if a slot (such as the Spotlight slot) can be populated with either reusable or variable content, create two different
folders, Reusable Spotlights and Variable Spotlights. The content administrator can configure a particular page
to populate the Spotlight slot from either folder as applicable. In order to populate the same slot with a mixture

Oracle Commerce Guided Search Assembler Application Developer's Guide

37Planning an Assembler Application | About content folders

of reusable and variable content, the content administrator can insert two (or more) placeholders in the Spotlight
slot, each referencing the corresponding folder for each type of content.

The final result for the site visitor who is looking at Sony cameras looks something like the following:

Creating a content folder
The Content Tree in the left pane of Experience Manager is divided into two sections: Site Pages and Content.
You create content folders within the Content section.

You must deploy and provision your application with the EAC in order to modify it in Workbench.

To create a content folder:

1. Log in to Workbench and navigate to Experience Manager.
2. Mouse over the Content heading in the Content Tree.

The drop-down menu arrow appears on the right.

3. Click the drop-down menu arrow and select Add Folder.
The Add Content Folder panel appears.

4. Enter the Name of the folder you wish to add.
5. Optionally, select a content type restriction.

The drop-down list is populated based on the available type values for the set of templates uploaded to
the application.
This selection restricts the content items within the folder to the specified type.

6. Click Add.
The new content folder is added to the Content Tree in Experience Manager.

About moving content folders
You can move and re-organize content folders in the Content Tree within Experience Manager.

Oracle Commerce Guided Search Assembler Application Developer's Guide

Planning an Assembler Application | About content folders38

If you move a content folder that includes dynamic content referenced elsewhere in the application, a warning
dialog appears with a list of content items that rely on the content you are moving. You must manually update
these content items if you proceed with the move.

About sites
Oracle Commerce Experience Manager enables you to build an application that can run multiple web sites
using a single index. Business users can use this application to create site-specific pages that use a single
index. Even if you are not building an application that supports multiple sites, your application must contain at
least one site.

You can create applications to support multiple web sites that share the same code base, templates, cartridges,
and search configuration. Each web site can have its own unique set of pages that display the site's unique
look or branding.

Note: If you are using Oracle Commerce Guided Search, applications have one site by default, and
Oracle does not support adding additional sites.

Site storage

Individual sites are stored directly under the pages node. This default site root path is configured in the assem¬
bler.properties file. For example, in the Discover reference application, the path looks like the one in the
following example:
preview.enabled=true
store.factory=ecrStoreFactory
user.state.ref=previewUserState
media.sources.ref=authoringMediaSources
repository.configuration.path=./repository/${workbench.app.name}
defaultSiteRootPath=/pages

In the following configuration, the Discover application contains three sites: DiscoverAll, DiscoverPrinters and
DiscoverCameras.
/pages
 /DiscoverAll
 /DiscoverCameras
 /DiscoverPrinters

Sites are the top-level content in this application. Each page within a site belongs to exactly one and only one
site. Each site node is a site definition and every application must have at least one site definition. The Assembler
uses properties in these site definitions to facilitate site-specific behavior. Site definitions are stored in the
pages node of the IFCR. Our sample configuration would have three site definitions: one each for DiscoverAll,
DiscoverCameras, and DiscoverPrinters.
/pages
 /DiscoverAll

_.json
 /DiscoverCameras

 _.json
 /DiscoverPrinters

_.json

Oracle Commerce Guided Search Assembler Application Developer's Guide

39Planning an Assembler Application | About sites

The following site definition for DiscoverAll shows a unique display name, DiscoverAll and description, as well
as a unique URL pattern, /DiscoverAll for this site:
{
 "ecr:type":"site-home",
"urlPattern" : "/DiscoverAll",

 "displayName" : "DiscoverAll"
 "description" : "This site shows all things that are Discover."
}

If only a subset of records within the index are relevant for a specific site, then you must specify site-based
filters. The site-based filter is applied to all queries performed on the site. The filter that is applied is determined
by site context. The following configuration has three site definitions and two sites with site-based filters. One
for DiscoverCameras and one for DiscoverPrinters. The filter for DiscoverCameras would filter out all records
except those that were relevant to cameras, while the DiscoverPrinters filter would filter out all records except
those that were relevant to printers. DiscoverAll includes every record in the index, so that site does not have
a filter.
ifcr/
 /pages
 /DiscoverAll
 _.json
 /DiscoverCameras
 _.json

filterState.xml
 /DiscoverPrinters
 _.json

filterState.xml

The following is an example of the filterState.xml file for DiscoverCameras:
<Item class="com.endeca.infront.navigation.model.FilterState" xmlns="http://ende¬
ca.com/schema/xavia/2010">
 <Property name="recordFilters">
 <List>
 <String>product.category: "Cameras"</String>
 </List>
 </Property>
</Item>

Note that Oracle does not support site-based filters in Oracle Commerce Guided Search.

Site Awareness

In a multiple site application, the Assembler must identify the site or the site state for incoming requests. This
identity is included in the request as part of a domain name, a URL, or a request parameter. Resolving this
site state gives the Assembler the ability to retrieve the relevant site definition, the site-based filter and other
site specific information.

The ActionPathProvider is an interface that you are free to implement as you see fit. Cartridge handlers
in applications built with Spring can use the ActionPathProvider to determine navigation or record detail
action paths. The content paths that prefix navigation and record states are configured as sets of key-value
pair mappings. In a multiple site application, the ActionPathProvider can define different mappings for
pages on different sites. The following example shows an ActionPathProvider in the assembler-con¬
text.xml file with new mappings for the DiscoverCameras site that has been added to navigationAc¬
tionUriMap and the recordActionUriMap:
<bean id="actionPathProvider" scope="request" class="com.endeca.infront.re¬
fapp.navigation.BasicActionPathProvider">
 <constructor-arg index="0" ref="contentSource"/>

Oracle Commerce Guided Search Assembler Application Developer's Guide

Planning an Assembler Application | About sites40

 <constructor-arg index="1" ref="httpServletRequest"/>
<!-- navigationActionUriMap -->
 <constructor-arg index="2">
 <map>

<entry key="^/pages/DiscoverCameras/.*$" value="/pages/DiscoverCameras/cam¬
erasbrowse" />
 <entry key="^/pages/[^/]*/mobile/detail$" value="/mobile/browse" />
 <entry key="^/pages/[^/]*/services/recorddetails/.*$" value="/services/guid¬
edsearch" />
 <entry key="^/pages/[^/]*/detail$" value="/browse" />
 <entry key="^/services/.*$" value="/services/guidedsearch" />
 </map>
 </constructor-arg>
<!-- recordActionUriMap -->
 <constructor-arg index="3">
 <map>

<entry key="^/pages/DiscoverCameras/.*$" value="/pages/DiscoverCameras/cam¬
erasdetail" />
 <entry key="^/pages/[^/]*/mobile/.*$" value="/mobile/detail" />
 <entry key="^/pages/[^/]*/services/.*$" value="/services/recorddetails" />
 <entry key="^/pages/[^/]*/.*$" value="/detail" />
 <entry key="^/services/.*$" value="/recorddetails" />
 </map>
 </constructor-arg>
 <constructor-arg index="4" ref="siteState"/>
 </bean>

Oracle Commerce Guided Search Assembler Application Developer's Guide

41Planning an Assembler Application | About sites

Chapter 5

Creating Experience Manager Templates

This section describes the process of creating templates that enable the configuration of content items in
Experience Manager.

About creating templates
Templates define the content structure of a content item as well as the editing interface that content
administrators can use to configure instances of content items in Experience Manager.

In general, you create one or more templates that define the high-level structure of the pages in your application.
These templates define sections that can be populated with other content items, or cartridges. Cartridge
templates specify the properties required to display the content for that component. This may include values
that the client application uses directly to render the information, or inputs into the Assembler for processing
(such as query parameters to the MDEX Engine).

While cartridges and template properties typically determine aspects of the visual appearance of the page,
keep in mind that they can also represent page elements that are not visible in the application. For example,
a property can contain meta keywords used for search engine optimization, or a cartridge can include embedded
code that does not render in the page but enables functionality such as Web analytics beaconing.

The Discover Electronics reference application provides sample page templates for some standard page types,
as well as templates that enable configuration of the core set of cartridges in Experience Manager. These
cartridges cover basic Endeca functionality, and are provided as a starting point for your application. You can
customize them to suit your needs.

Note: In some cases, the reference application includes more than one template for the same functional
cartridge. This is in order to enforce the proper constraints on which cartridges are available to insert in
specific template slots. The only difference between the different versions of these templates is the
template type.

This section concentrates on the basic template elements that enable you to create top-level page templates
appropriate to your application. Details about the template configuration for core cartridges are covered in the
"Feature Configuration" section. Reference information about the full range of properties and editors that can
be used in templates is provided in the appendix to this guide.

Anatomy of a template
Top-level templates, which define an entire page, and cartridge templates, which drive the content of individual
components, are both XML documents that share the same structure.

Templates can be broken down into three parts:
• General information such as the template type, description, and thumbnail image. This information is

used in Experience Manager to help the content administrator select the appropriate template for a page
or section.

• Content item definition. In this part of the template, you explicitly declare all the properties of the content
item that is described by this template. Property types can include Strings, Lists, and Booleans. You can
also specify the default values of properties here.

• Editor panel definition. These allow you to define the editing interface in Experience Manager for this
content item. Properties are generally associated with an editor that enables content administrators to
configure the content items that they create within the tool.

By defining the properties in the template along with how they can be configured in the tool, you ensure that
the content configured in Experience Manager provides the necessary properties to the corresponding cartridge
handler in the Assembler.

About the template XML schema
All templates share the same primary schema. In addition, there are several other namespaces that are
commonly used in templates.

The template schema

The template schema describes the overall structure of page and cartridge templates. It is also used for primitive
property types such as String and Boolean.

Oracle Commerce Guided Search Assembler Application Developer's Guide

Creating Experience Manager Templates | Anatomy of a template44

All templates must include the following schema declaration:
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 type="PageTemplate" >

The Xavia schema

The Xavia namespace is used for properties that are lists or items (collections of key-value pairs). Include the
following namespace declaration in templates that use these properties:
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
xmlns:xavia="http://endeca.com/schema/xavia/2010"

 type="PageTemplate" >

The editors schema

There is no formal schema for editor configuration, however, by convention, they are associated with an editors
namespace to distinguish these elements from the template schema. Include the following namespace
declaration in all templates:
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:xavia="http://endeca.com/schema/xavia/2010"
xmlns:editors="editors"

 type="PageTemplate" >

Template identifiers
Templates are saved as XML files named template.xml that are then uploaded to Experience Manager.
Each template is required to have a unique identifier.

The template identifier is the folder name where the template.xml file resides. For example, in
ThreeColumnNavigationPage\template.xml, the folder name, ThreeColumnNavigationPage, is
the template identifier. The identifier displays as the name of the cartridge in the cartridge selector in Experience
Manager. The value should be as descriptive as possible to help the user select the appropriate template, for
instance, "ThreeColumnWithLargeBanner" or "HolidaySalePromotion."

Template folder names cannot have spaces in them. Folder names must be unique within your application.
Templates with non-unique identifiers are not available in Experience Manager. Oracle recommends that you
treat templates as part of your application's configuration and store them in a version control system. It can
also be useful to include a template version number in a property for debugging purposes.

About the type of a template
Each template has a type that indicates where the template fits in an application page.

The type restriction serves two purposes. For top-level container templates, such as those that define a page,
a type restriction can be specified for each section of the page. This limits the cartridges that can be inserted
into that section. For example, if a template that includes a "HorizontalBanner" section, only cartridges of type
"HorizontalBanner" are available to insert into that section in Experience Manager.

Additionally, you can specify a template type in a dynamic slot to restrict the content that appears in that slot.
This restriction applies at runtime when content items are evaluated against each other and ranked by priority
for display in the application; any content items that do not match the specified template type for a dynamic
slot are removed from consideration.

Oracle Commerce Guided Search Assembler Application Developer's Guide

45Creating Experience Manager Templates | Template identifiers

Setting a template type

The template type is specified as a required attribute on the <ContentTemplate> element of the
template.xml. For example:
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:xavia="http://endeca.com/schema/xavia/2010"
 xmlns:editors="editors"
type="PageTemplate" >

Note: The type attribute is defined as type xs:Name in the template schema. This means that valid
values for these attributes must:

• be a single string token (no spaces or commas)
• begin with a letter, a colon (:), or an underscore (_)

Numbers are allowed as long as they do not appear at the beginning of the string.

Specifying the description and thumbnail image for a template
The description and thumbnail image for a template display in the template selector and cartridge selector
dialog boxes in Experience Manager. Adding a description and thumbnail image to a template is optional.

To specify the description and thumbnail image for a template:

Insert the following elements within <ContentTemplate>:
DescriptionElement

One or two brief sentences to help the content administrator identify the template in
Experience Manager. This can include information about the visual layout of the

<Description>

template ("Three-column layout with large top banner") or its intended purpose ("Back
to school promotion").

The absolute URL to a thumbnail image that shows a sample page or section that is
based on the template. The images must be hosted on a Web server accessible from

<ThumbnailUrl>

the Experience Manager server. Any URL without a protocol or leading slash will be
treated as relative to the root of the template structure.

If your thumbnail is in the same folder as your template.xml file, you can omit
the path altogether. For example, <ThumbnailUrl>thumbnail.png</Thumbnail¬
Url>.

Example
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:xavia="http://endeca.com/schema/xavia/2010"
 xmlns:editors="editors"
 type="PageTemplate" >
 <RuleInfo zone="NavigationPageZone" style="PageStyle"/>
<Description>A page layout with left and right sidebars intended for general

category pages.</Description>
<ThumbnailUrl>http://images.mycompany.com/thumbnails/PageTemplate/ThreeColumn¬

NavigationPage.png</ThumbnailUrl>
<!-- additional elements deleted from this example -->

</ContentTemplate>

Oracle Commerce Guided Search Assembler Application Developer's Guide

Creating Experience Manager Templates | Specifying the description and thumbnail image for a template46

About using thumbnail images in Experience Manager
Thumbnail images can help the content administrator identify the appropriate template to use for the pages
they create.

The suggested size for thumbnail images is 81 x 81 pixels; smaller images are stretched to fill this size and
larger images are cropped to show only the top left corner.

The images must be hosted on a Web server accessible from the Experience Manager server. If the thumbnail
image for a template is either not specified or not accessible, a default image displays in the dialog box.

Specifying the default name for a cartridge
The value of <Name> within the <ContentItem> displays as a label for the cartridge in the Content Tree in
Experience Manager.

To specify a default name for a cartridge:

Insert the <Name> element inside <ContentItem> as in the following example:
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:xavia="http://endeca.com/schema/xavia/2010"
 xmlns:editors="editors"
 type="PageTemplate">
 <RuleInfo zone="NavigationPageZone" style="PageStyle"/>
 <Description>A page layout with left and right sidebars intended for general
 category pages.</Description>
 <ThumbnailUrl>http://images.mycompany.com/thumbnails/PageTemplate/ThreeColumn¬
NavigationPage.png</ThumbnailUrl>
<ContentItem>

 <Name>New Three-Column Navigation Page</Name>
<!-- additional elements deleted from this example -->

</ContentItem>
<!-- additional elements deleted from this example -->

</ContentTemplate>

<Name> is a required element. The value you specify in the template becomes the default name when a
content adminstrator creates the page or adds a cartridge. If you insert an empty <Name/> element, an
empty text field displays in Experience Manager and the content administrator can supply a value.

About defining the content properties and editing interface
A template defines the properties of a content item and also the interface that enables a content administrator
to configure the properties.

You define properties within the <ContentItem> element in the template. For each property, you specify a
name and a property type. You can optionally specify a default value for a property.

You associate editors with properties to enable the content administrator to configure their values within
Experience Manager. Properties are generally primitive types such as Strings, Booleans, or Lists. Another
type of property is a section, which allows content administrators to insert and configure another content item.

You can choose not to expose a particular property in Experience Manager and simply specify a default value
to pass to the Assembler and ultimately to the client application. This is useful for values that do not need to

Oracle Commerce Guided Search Assembler Application Developer's Guide

47Creating Experience Manager Templates | Specifying the default name for a cartridge

be configured by the content administrator, but are needed by the Assembler for content processing or by the
client application to determine how to render the content.

About template properties
You can define the properties of a content item by nesting any number of <Property> elements within the
<ContentItem> element.

Cartridge properties are typically used for one of the following purposes:
• The property values may be intended to be used directly by the client application. For example, the content

administrator may be able to enter text to use a heading or link text, or she may supply a URL to an image.
Property values can also contain information such as meta keywords that are part of the page but do not
affect its display.

• The values may be intended for the relevant cartridge handler in the assembler to use for processing, for
example, parameters for a query to the MDEX Engine (or another external resource) to return the actual
content that the application should display.

• Occasionally, a cartridge has no properties (and therefore no configuration options in Experience Manager),
but exists only as a placeholder to indicate that a certain functional component should be included on a
page. The Assembler inserts the necessary information for this cartridge at query time.

Each property must have a name that is unique within the template. If the property is to be passed through
directly to the renderer, this can be any name that makes sense for your application. However, some properties
are part of the configuration model for the cartridge. In this case the associated cartridge handler depends on
the presence of specific properties in the template.

The property name is specified in the name attribute of the <Property> element.

Note: The name attribute is defined as type xs:Name in the template schema. This means that valid
values for these attributes must:

• be a single string token (no spaces or commas)
• begin with a letter, a colon (:), or a hyphen (-)

Numbers are allowed as long as they do not appear at the beginning of the string.

You specify the property type by adding a child element of <Property>. Properties can be one of two kinds:
• content properties (described by the template schema for primitive properties and Xavia for lists and items)
• structural properties (described by the template schema)

About defining the editing interface for properties
After you have defined the content properties in your template, you can define how those properties can be
configured by the content administrator in Experience Manager.

You add content editors inside the <EditorPanel> element in the template. The <BasicContentItemEd¬
itor> element enables you to specify individual property editors that display in Experience Manager and
associate them with a particular property.

For example, this excerpt from a sample template defines a configurable string property named title:
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
xmlns:editors="editors"
 type="ResultsPage">
<!-- additional elements deleted from this example -->

 <ContentItem>

Oracle Commerce Guided Search Assembler Application Developer's Guide

Creating Experience Manager Templates | About defining the content properties and editing interface48

 <Name>Three-Column Navigation Page</Name>
<!-- First define the content property -->

 <Property name="title">
 <String>Discover Electronics</String>
 </Property>

<!-- additional properties deleted from this example -->
 </ContentItem>
 <EditorPanel>
 <BasicContentItemEditor>

<!-- Define an editor for each property that should
 be configurable -->
 <StringEditor propertyName="title" label="Title"/>

<!-- additional editors deleted from this example -->
 </BasicContentItemEditor>
 </EditorPanel>
</ContentTemplate>

Editors are defined in templates with the editors namespace. By convention, the propertyName is a required
attribute and specifies the property that this editor is associated with. The property must be defined in the
<ContentItem> part of the template, and must be of the appropriate type for that editor. For example, an
<editors:StringEditor> cannot be associated with a <xavia:List> property. If you define a content
editor for a property that does not exist, or that is of the wrong type, a warning displays in Experience Manager
when a content administrator attempts to configure the content.

Property editors do not have to be defined in the same order as the properties in the template. The <Basic¬
ContentItemEditor> renders the editors in a vertical layout in Experience Manager, in the order in which
you define them in the template. If you do not want a property to be exposed in the Experience Manager
interface, do not define an editor associated with it.

It is possible to create more than one editor associated with the same property. However, be aware that all
editors that you define in the template are displayed in Experience Manager, which may be confusing to the
content administrator. When the value of a property is changed, any other editors associated with that property
are instantly updated with the new value.

Related Links
Editor property mapping reference on page 223

This section provides an overview of which property types are associated with the different Oracle
Commerce Suite editors.

About configuring editor default values
You can configure default values for Experience Manager editors across the entire application by modifying
the editor configuration file, or on a per-template basis by modifying cartridge templates directly.

You can configure Experience Manager editors through the following methods:
• You can configure editors in the editor configuration file, editors.xml. This configuration applies to all

instances of a specific editor within an application.
• You can configure editors within a cartridge template. This configuration applies to all instances of a specific

editor created based on that template. In the case of shared properties, configuration in the cartridge
template overrides configuration in editors.xml.

For details about configuring the core editors packaged with Oracle Endeca Tools and Frameworks, see the
"Template Property and Editor Reference" Appendix.

Related Links
Template Property and Editor Reference on page 223

Oracle Commerce Guided Search Assembler Application Developer's Guide

49Creating Experience Manager Templates | About defining the content properties and editing interface

This section describes how to define basic content properties and associated editing interfaces in
Experience Manager templates.

About defining the editing interface for properties on page 48
After you have defined the content properties in your template, you can define how those properties
can be configured by the content administrator in Experience Manager.

Specifying editor-specific configuration
You can modify the editor configuration file to set configuration that is common to all instances of a specific
editor within an application. This can include basic values for the editor, or information used to communicate
with an external resource.

Note: Oracle recommends configuring a data service for cases where different editors all need to access
a common set of configuration for an external resource.

To add configuration information to the editor configuration file:

1. Navigate to the editor configuration file at <app
dir>\ifcr\tools\configuration\xmgr\editors.xml.

2. Insert an <EditorConfig> element directly inside the <Editor> tag of the editor you wish to modify.
3. Add your arbitrary configuration information.

The example below includes the configuration inside a nested element, but you can also specify the
information as attributes of the EditorConfig element:
<Editor name="editors:MyEditor">
<EditorConfig>

 <Arbitrary foo="bar" size="10" resizeable="false"/>
 </EditorConfig>
</Editor>

4. Save and close the file.
5. Navigate to the <app dir>\control directory.
6. Run the set_editors_config script to publish your changes to the Endeca Configuration Repository.

Structural properties
You can define a section within a template by inserting a <ContentItem> or <ContentItemList> element
within a <Property>.

Adding a content item property
A content item property defines a template section by creating a placeholder for a nested content item defined
by a cartridge template.

Content administrators can configure a section in Experience Manager by choosing a cartridge to insert in the
section then configuring the properties of the cartridge.

To add a content item property to a template:

1. Insert a <ContentItem> element inside a <Property> element.
2. Specify the section type.

Oracle Commerce Guided Search Assembler Application Developer's Guide

Creating Experience Manager Templates | Structural properties50

Only cartridge templates with a type that matches the section type are presented as options for the content
administrator to choose from in Experience Manager. For example, when a content administrator inserts
a cartridge in a RecommendedContent section, only templates of type RecommendedContent display
in the Select Cartridge dialog box. (Recall that the cartridge template is the part of a cartridge that is
exposed in Experience Manager). Because the type of the section property and cartridge templates must
match exactly, the type attribute is also defined as type xs:Name in the schema and all restrictions that
apply to template types also apply to section types.

The following example defines two sections within a template. Note that more than one section in a template
can have the same type, as long as your client application expects this kind of content.

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:xavia="http://endeca.com/schema/xavia/2010"
 xmlns:editors="editors"
 type="PageTemplate">
<!-- additional elements deleted from this example -->

 <ContentItem>
 <Name>New Three-Column Navigation Page</Name>

<!-- additional properties deleted from this example -->
 <Property name="leftColumn">
 <ContentItem type="SidebarItem" />
 </Property>
 <Property name="rightColumn">
 <ContentItem type="SidebarItem" />
 </Property>
 </ContentItem>
<!-- additional elements deleted from this example -->

</ContentTemplate>

Adding a content item list property
A content item list allows content administrators to add an arbitrary number of items to a section and to reorder
those items within the list using the Content Tree in Experience Manager.

Using content item properties to define the subsections of a cartridge restricts the number of subsections
available to the content administrator in Experience Manager. For example, the right column of this page
template can contain exactly four cartridges:
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:xavia="http://endeca.com/schema/xavia/2010"
 xmlns:editors="editors"
 type="PageTemplate">
<!-- additional elements deleted from this example -->

 <ContentItem>
 <Name>New Three-Column Navigation Page</Name>
<!-- additional elements deleted from this example -->
 <Property name="rightColumn1">
 <ContentItem type="SidebarItem" />
 </Property>
 <Property name="rightColumn2">
 <ContentItem type="SidebarItem" />
 </Property>
 <Property name="rightColumn3">
 <ContentItem type="SidebarItem" />
 </Property>
 <Property name="rightColumn4">
 <ContentItem type="SidebarItem" />

Oracle Commerce Guided Search Assembler Application Developer's Guide

51Creating Experience Manager Templates | Structural properties

 </Property>
 </ContentItem>
<!-- additional elements deleted from this example -->
</ContentTemplate>

Although some of the sections can be left empty, no more than four cartridges can be added to the right column.

Using a content item list removes the restriction and allows the content administrator to add an arbitrary number
of content items to the right column of the page:
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:xavia="http://endeca.com/schema/xavia/2010"
 xmlns:editors="editors"
 type="PageTemplate">
<!-- additional elements deleted from this example -->

 <ContentItem>
 <Name>New Three-Column Navigation Page</Name>
<!-- additional elements deleted from this example -->
 <Property name="rightColumn">
 <ContentItemList type="SidebarItem" />
 </Property>
 </ContentItem>
<!-- additional elements deleted from this example -->
</ContentTemplate>

To add a content item list to a template:

1. Insert a <ContentItemList> element inside a <Property> element.
2. Specify the template type.

Only cartridge templates with a type that matches the content item list type are presented as options for
the content administrator to choose from in Experience Manager. In the above example, when a content
administratorinserts a cartridge in a RightColumn section, only templates of type SidebarItem display
in the Select Cartridge dialog box.

3. Optionally, specify a maximum number of content items using the maxContentItems attribute.
For example:
 <Property name="RightColumn">
 <ContentItemList type="SidebarItem" maxContentItems="4"/>
 </Property>

By default, the value of maxContentItems is 0, which means that there is no limit to the number of
cartridges that can be added to a content item list.

About cartridge selectors
Unlike other types of content properties, section properties are always editable; you do not need to explicitly
specify an editor in the template.

In Experience Manager, content administrators can select cartridges to insert in sections either by clicking the
cartridge Add button in the content detail panel or by right-clicking the section in the Content Tree. Both options
bring up the cartridge selector dialog box and are enabled automatically when you define a section in the
template.

Oracle Commerce Guided Search Assembler Application Developer's Guide

Creating Experience Manager Templates | Structural properties52

About multiple locales
If your implementation supports multiple locales, you can localize your custom templates.

You can create resource property files for each locale for storing localized strings. Each resource property file
name must follow this format: Resources_<locale>.properties where <locale> is the ISO language
code. For example Resources_fr.properties indicates that French values are stored in it. Place these
files in a locales folder for your custom template: <app
dir>\config\import\templates\<template_identifier>\locales. You can specify values that
do not change for locale (thumbnail URLs for example) in the single Resources.properties file or directly
in the template.xml file.

In the template itself, you can use ${property.name} notation in element content and attributes to reference
a localized string in the Resources_<locale>.properties. Only content in the Description,
ThumbnailURL, and EditorPanel sections can reference localized strings in the resources properties files.

The following example shows a template that uses notation to reference strings in resource properties files
and two resource property files containing the stings that are being referenced.
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:editors="editors"
 type="Type">

<Description>${my.template.description}</Description>
<ThumbnailUrl>${my.template.thumbnailurl}</ThumbnailUrl>

 <ContentItem>
 <Name>Dimension Search Auto-Suggest</Name>
 <Property name="title">
 <String>Search Suggestions:</String>
 </Property>
 <Property name="displayImage">
 <Boolean>true</Boolean>
 </Property>
 </ContentItem>
 <EditorPanel>
 <BasicContentItemEditor>

<GroupLabel label="${my.template.displaySettingsLabel}"/>
 <editors:StringEditor propertyName="title" label="${my.template.title¬
Label}" enabled="true"/>
 <editors:BooleanEditor propertyName="displayImage"

label="${my.template.displayImageLabel}"
 enabled="true"/>
 <editors:NumericStepperEditor propertyName="maxResults"

label="${my.template.maxSearchSuggestionsLabel}"
 maxValue="100"
 enabled="true"/>
 </BasicContentItemEditor>
 </EditorPanel>
</ContentTemplate>

The English resources property file, Resources_en.properties, for this template contains the following:
Dimension Search Auto-Suggest
my.template.description = Display dimension matches as part of the auto-suggest
panel below the search box.
my.template.displaySettingsLabel = Display Settings
my.template.titleLabel = Title
my.template.displayImageLabel = Display Image

Oracle Commerce Guided Search Assembler Application Developer's Guide

53Creating Experience Manager Templates | About multiple locales

my.template.maxSearchSuggestionsLabel = Max Search Suggestions

In the template example, the thumbnail URL is the same for all locales, so the
${my.template.thumbnailurl} notation is only referenced in the Resources.properties file.
Dimension Search Auto-Suggest
my.template.thumbnailurl = /ifcr/tools/xmgr/img/template_thumb¬
nails/type_ahead_2.jpg

Managing Experience Manager Templates
You must upload templates to Endeca Workbench before they are available to users in Experience Manager.

Updating Experience Manager templates
All deployment template applications include a set_templates script in the control directory to update
Experience Manager templates. You run the script after you locally modify XML template files and you want
the templates available in Experience Manager.

This script requires that the templates you modify are stored locally in <app
dir\>config\import\templates.

To send updated templates to Experience Manager:

1. In a command prompt, navigate to the control directory of your deployed application.

This is located under your application directory. For example: C:\Endeca\apps\<app name>\control.

2. Run the set_templates script.
For example:
C:\Endeca\apps\Discover\control>set_templates.bat
Setting new cartridge templates for Discover
[06.05.13 10:46:52] INFO: Checking definition from AppConfig.xml against existing
 EAC provisioning.
[06.05.13 10:46:54] INFO: Updating provisioning for component 'DailyReportGen¬
erator'.
[06.05.13 10:46:54] INFO: Updating definition for component 'DailyReportGener¬
ator'.
[06.05.13 10:46:55] INFO: Definition updated.
[06.05.13 10:46:55] INFO: Packaging contents for upload...
[06.05.13 10:46:55] INFO: Finished packaging contents.
[06.05.13 10:46:55] INFO: Uploading contents to: http://local¬
host:8006/ifcr/sites/Discover/templates
[06.05.13 10:47:05] INFO: Finished uploading contents.
Finished setting templates

Troubleshooting problems with uploading templates
Template errors are detailed in the ifcr.log file.

The ifcr.log file is located in:
• %ENDECA_TOOLS_CONF%\logs on Windows
• $ENDECA_TOOLS_CONF/logs on UNIX

Oracle Commerce Guided Search Assembler Application Developer's Guide

Creating Experience Manager Templates | Managing Experience Manager Templates54

If any templates fail validation, the upload is canceled, and the previous templates remain in Workbench.

Schema validation

Schema validation failure issues an error similar to the following:
Setting new cartridge templates for Discover
[06.05.13 11:02:25] INFO: Checking definition from AppConfig.xml against existing
 EAC provisioning.
[06.05.13 11:02:26] INFO: Definition has not changed.
[06.05.13 11:02:26] INFO: Packaging contents for upload...
[06.05.13 11:02:26] INFO: Finished packaging contents.
[06.05.13 11:02:26] INFO: Uploading contents to: http://local¬
host:8006/ifcr/sites/Discover/templates
[06.05.13 11:02:28] SEVERE: Caught an exception while invoking method 'loadContent'
 on object 'IFCR'. Releasing locks.

Caused by java.lang.reflect.InvocationTargetException
sun.reflect.NativeMethodAccessorImpl invoke0 - null
Caused by com.endeca.soleng.eac.toolkit.utility.IFCRUtility$HttpStatusException
com.endeca.soleng.eac.toolkit.utility.IFCRUtility execute - Internal Server Error
 (500): com.endeca.ifcr.content.entity.ValidationFailureException:

The following 2 validation failures occurred:
 [/sites/Discover/templates/BadImage] Error reading template XML:
javax.xml.bind.UnmarshalException
 - with linked exception:
[org.xml.sax.SAXParseException: cvc-complex-type.4: Attribute 'type' must appear
 on element 'ContentTemplate'.]
 [/sites/Discover/templates/BadPageSlot] Error reading template XML:
javax.xml.bind.UnmarshalException
 - with linked exception:
[org.xml.sax.SAXParseException: cvc-complex-type.2.4.a: Invalid content was found
 starting with element 'EditorPanel'. One of '{"http://endeca.com/schema/content-
template/2008":ContentItem}' is expected.]

The errors are written to the ifcr.log file. The upload in the example has two errors:
• The BadImage template is missing its type attribute.
• The BadPageSlot template has no ContentItem element.

Troubleshooting invalid templates
Some templates may be successfully uploaded to Workbench, but still contain errors that lead to unexpected
behavior in Experience Manager.

The most common scenario is when a property is associated with an editor that has constraints, such as a
choice editor that can only accept certain string properties. If the default value of the property does not meet
the editor's constraints, the editor may discard the value and display the following messsage in the Content
Details Panel when a user adds the cartridge to a page:
Some fields or cartridges within this cartridge may have been
updated or removed. Your content has been converted to the new cartridge.
To accept these changes click OK and Save All Changes from the List View.
To reject these changes, click Cancel. For more information, see
"Troubleshooting pages" in the Oracle Workbench Help.

To avoid this message, ensure that all property defaults are valid options in the associated property editor.

Oracle Commerce Guided Search Assembler Application Developer's Guide

55Creating Experience Manager Templates | Managing Experience Manager Templates

About modifying templates that are used by existing pages
During the development and testing phase of your application deployment, you may need to make adjustments
to your templates and update them in Experience Manager.

When Experience Manager populates the Content Detail Panel for a content item, it checks the content
configuration of the loaded page against the template. If the template has been changed such that it is no
longer compatible with the content, Experience Manager displays a warning and attempts to upgrade existing
content to fit the new template definition.

Note: Existing configurations are not upgraded to the new template until a content administrator edits
and saves the affected content item in Experience Manager.

Experience Manager does the following to ensure that the content and template are in sync:

• If a property has not changed its name or type, the existing values are migrated to the new template.
• If new properties are added to a template, any corresponding property editors become available in

Experience Manager when a content administrator edits a content item based on the updated template. If
you specify default values for the new properties, they are applied when a content administrator edits and
saves the content item using the updated template.

• If properties are removed from a template, the corresponding property editors no longer display in Experience
Manager when a content administrator edits a content item based on the updated template. The properties
and their values are deleted from the page configuration.

• If the type of a property has changed (for example from string to list) within a template, the corresponding
property editor (if one is specified) becomes available in the Experience Manager when a content
administrator edits a content item based on the updated template. The existing value for the property does
not display in Experience Manager until the content administrator saves the new value, replacing the
previous value.

• If a content item or content item list property has changed to specify a different content type, then any
existing cartridge in that section is ejected and its configured properties deleted.

• If the default value of an existing property has changed, it is only applied to new content items that are
created based on the updated template. In existing pages, the previously saved value of the property (even
if it is an empty string) is preserved regardless of whether it was originally a default or user-specified value.

• Some editors may implement specific update-handling logic in cases where an existing value does not
meet the editor's constraints.

Note: Changing the name of a property is equivalent to removing the property with the old name and
adding a property with the new name. Avoid changing the names of properties that are being used by
existing pages. To change the display name of a property on Experience Manager, use the label
attribute instead.

Managing template changes

Because existing content is not automatically updated to the new templates, and default values are never
updated in existing pages, any changes that you make to your rendering code to reflect changes to a template
should be backward-compatible. You can trigger the content upgrade process manually by accessing all
affected content, but this approach is not recommended.

For this reason, you should avoid making changes to existing templates that are being used in production.
You should limit updates to templates to the early stages of application development when you have little or
no legacy content to support.

Oracle Commerce Guided Search Assembler Application Developer's Guide

Creating Experience Manager Templates | Managing Experience Manager Templates56

Retrieving the current templates from Experience Manager
If you need to view or edit an existing template on a local machine, you can run the get_templates script
to download templates from Experience Manager to the local <app dir>\config\import\templates
directory.

To get templates from Experience Manager:

1. In a command prompt, navigate to the control directory of your deployed application.

This is located under your application directory. For example: C:\Endeca\apps\<app dir>\control.

2. Run the get_templates script.

Oracle Commerce Guided Search Assembler Application Developer's Guide

57Creating Experience Manager Templates | Managing Experience Manager Templates

Part 3

Developing an Assembler Application

• Deploying the Assembler
• Invoking the Assembler
• Implementing Multichannel Applications
• Tuning an Assembler application

Chapter 6

Deploying the Assembler

The Assembler can run in process as part of a Java application, or it can be deployed as a standalone servlet.
This section covers both deployment options, as well as environment requirements and Assembler dependencies.

Assembler environment requirements
Review the requirements in this section before you deploy an Assembler.

Port usage

Before you begin your deployment, you might need to request an open port. You must assign a port for the
Assembler client port. If this port is set to -1, the system uses an ephemeral port. An ephemeral port is allocated
automatically for a short time and is only used for the duration of a communication session. When the session
ends, it is available for another request.

For a complete list of ports used by Oracle Commerce, see the Orace Endeca Commerce Administrator's
Guide.

Threads

The Assembler spawns threads to monitor and query various components for updates. This has an impact on
how you manage and prioritize threads.

About authoring and production environments
When designing your application and deploying the Assembler, consider the deployment requirements that
come with maintaining an authoring environment and a live environment.

You should monitor the performance of your application and make adjustments as necessary to handle the
expected load in a production situation.

Note: The Assembler has no dependencies on Workbench in a live environment; rule information is
published to the MDEX Engine, and content items are exported from Workbench and maintained in an
external location accessible from the live server(s). All live Assembler instances for a given application
access the same exported content.

For additional information, including the necessary steps for exporting conent from Workbench, see the Oracle
Commerce Administrator's Guide.

Assembler dependencies
Assembler dependencies are packaged in the %ENDECA_TOOLS_ROOT%\assembler\lib directory. You
must include them in any custom Assembler application that you build.

The Assembler relies on the following libraries:
• AOP Alliance 1.0
• Apache Commons Logging 1.1.1
• Endeca Navigation API 6.5.1
• Endeca Logging API 11.1.0
• Spring AOP 3.0.1
• Spring ASM 3.0.1
• Spring Beans 3.0.1
• Spring Context 3.0.1
• Spring Core 3.0.1
• Spring Expression 3.0.1
• Spring Web 3.0.1

About deploying the Assembler
The Assembler can run in process as part of a Java application that powers a Web site, or it can be deployed
as a standalone servlet. Non-Java applications must use the Assembler servlet.

The Tools and Frameworks package includes an example of each deployment mode in
/reference/discover-electronics (for the Assembler running in process) and
/reference/discover-service (for the standalone Assembler servlet). The standalone servlet, or
Assembler Service, provides a RESTful interface for Assembler queries that returns results in either JSON or
XML.

Both deployment modes depend on a Spring context file for application-specific configuration. The deployment
descriptor files for the reference implementations specify a context file located in
/WEB-INF/assembler-context.xml, as follows:
<listener>
 <listener-class>
 org.springframework.web.context.ContextLoaderListener
 </listener-class>
</listener>
<listener>
 <listener-class>
 org.springframework.web.context.request.RequestContextListener
 </listener-class>
</listener>
<context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>/WEB-INF/assembler-context.xml</param-value>
</context-param>

Oracle Commerce Guided Search Assembler Application Developer's Guide

Deploying the Assembler | Assembler dependencies62

Assembler configuration
The Assembler implementation included with Tools and Frameworks is configured through Spring. The
configuration in the Spring context file applies to both the in-process Assembler, and the Assembler Service.

This guide assumes an application based around the included Assembler implementations. You can provide
your own implementation if you wish to use an alternate means of configuring the Assembler.

In the reference implementations, application-specific Assembler configuration is specified in the Spring context
file located in WEB-INF\assembler-context.xml.

Assembler factory

The AssemblerFactory is an interface for creating a new Assembler. The reference implementation uses
SpringAssemblerFactory implementation and defines it as follows:
<bean id="assemblerFactory" class="com.endeca.infront.assembler.spring.SpringAssem¬
blerFactory"
 scope="singleton">
 <constructor-arg>
 <bean class="com.endeca.infront.assembler.AssemblerSettings">
 <property name="previewEnabled" value="${preview.enabled}" />
 <property name="previewModuleUrl" value="http://${work¬
bench.host}:${workbench.port}/ifcr" />
 </bean>
 </constructor-arg>
</bean>

For details about the AssemblerFactory interface and SpringAssemblerFactory implementation, see
the Assembler API Reference (Javadoc).

About configuring cartridge handlers
A cartridge handler is an Assembler component that takes the configuration model for a specific cartridge and
interacts with an external system to produce a response model. Cartridge handler configuration is a subset of
Assembler configuration.

HTTP servlet request access
The httpServletRequest bean provides access to the HTTPServletRequest object for the current
request.
<bean id="httpServletRequest" scope="request"
 factory-bean="springUtility"
 factory-method="getHttpServletRequest" />

Cartridge handlers that need access to the servlet request can specify a reference to this bean as follows:
<property name="httpServletRequest" ref="httpServletRequest" />

Search and navigation request configuration
The Assembler provides several utilities for parsing incoming requests and forming MDEX Engine queries.

Oracle Commerce Guided Search Assembler Application Developer's Guide

63Deploying the Assembler | Assembler configuration

MDEX resource configuration

The MDEX resource provides access to the MDEX Engine and manages information about the MDEX Engine
and its schema configuration. Cartridge handlers can request data from their MDEX resource during the course
of processing a cartridge.

The MDEX resource has the following properties:

DescriptionMDEX resource property

The hostname or IP address of your MDEX Engine server.host

The port on which the MDEX Engine server listens.port

The name of the property that serves as the record spec in your
data set.

recordSpecName

Navigation state builder configuration

The navigation state builder is responsible for parsing the request URL into a NavigationState object and
for generating Endeca URLs based on a NavigationState.

DescriptionNavigation state builder property

Specifies the UrlFormatter object to use for parsing the request
URL into a NavigationState object and for generating Endeca
URLs based on a NavigationState.

urlFormatter

Note: In the Discover Electronics application, this bean is
configured in endeca-url-config.xml.

The MdexRequestBuilder implementation to use for forming
MDEX Engine requests. For more information, see "About

mdexRequestBuilder

configuring cartridge handlers that make search and navigation
queries."

Specifies the ContentPathProvider implementation that
provides the URL path info for a navigation query or a record

contentPathProvider

query. A reference implementation, BasicContentPath¬
Provider, is included as part of Discover Electronics. As
configured in the example below, it returns /browse for navigation
queries and /detail for record detail queries.

The name of a property, dimension, or search interface against
which searches (using the Search Box cartridge) are performed.

defaultSearchKey

The match mode to use for text searches. Valid values for this
property follow the syntax of URL parameters for search mode,
without the mode+match prefix.

defaultMatchMode

Identifies the current site using the siteStateBuilder
configuration.

siteState

Reference to the siteManager component, which is used by
NavigationStateBuilder to look up the site definition for the
currently active site.

siteManager

Oracle Commerce Guided Search Assembler Application Developer's Guide

Deploying the Assembler | Assembler configuration64

DescriptionNavigation state builder property

These properties configure which URL parameters from the
request URL are preserved when generating action strings andremoveAlways

which ones are removed, depending on the type of transition the
action URL represents.

removeOnUpdateFilterState

removeOnClearFilterState

A list of dimensions whose dimension values should be applied
to the navigation state for a record query based on the values that

recordDetailsDimensionNames

are tagged on that record. This navigation state can be used for
triggering configuration for the associated record detail page or
for a spotlight cartridge that has the "restrict to refinement state"
option enabled.

DescriptionFilter state property

A rollup key (used for aggregated records) to apply to all queries
made with the default filter state.

rollupKey

Specifies whether to apply automatic phrasing to text search
queries. By default, automatic phrasing is enabled. For more

autoPhraseEnabled

information about automatic phrasing configuration, see "About
implementing automatic phrasing" in this guide.

A default record filter to apply to MDEX Engine queries. For
information about the record filter syntax, refer to theMDEXEngine
Development Guide.

securityFilter

The language ID (as a valid RFC-3066 or ISO-639 code) to specify
for MDEX Engine queries. For information about working with

languageId

internationalized data, refer to the MDEX Engine Development
Guide.

Filtering requests

The NavigationState object contains two filter states:

• getUrlFilterState - The filter state used for generating URL actions.
• getFilterState - The filter state used for combining the site-based filter (filterState.xml) and the

filter for generating URL actions. See Combining site-based filters and URL filters.

For more information about filtering syntax, refer to the Assembler API Reference(Javadoc) content for the
NavigationState interface.

Combining site-based filters and URL filters

Usingcom.endeca.infront.navigation.NavigationState.getFilterState() combines site-based
filters and URL filters.

Filter resultsFilterState feature

Site and URLSearch (Ntt, Ntk, Ntx)

SiteSecurity (Cannot be security filter with a URL)

URLNav (N)

Oracle Commerce Guided Search Assembler Application Developer's Guide

65Deploying the Assembler | Assembler configuration

Filter resultsFilterState feature

Site and URLRecord (Nr)

Site and URLRange (Nf)

URLGeo (Nfg)

Site and URLFeatured Records (Rsel)

URLEQL Filter (Nrs)

SiteRollup Key (Cannot be specified in a URL)

URLLanguage ID (Ntl)

URLAutophrase Enabled (Ntp)

Site state builder configuration

The site state builder is responsible for identifying the current site or SiteState object. The site state builder
iterates through all siteStateParsers and determines the current site or site state. Site state is referenced
in Assembler components that must know the current site, for example, NavigationCartridgeHandler
and NavigationStateBuilder.

SiteStateBuilder has the following properties:

DescritptionSite state builder property

Retrieves site definitions.siteManager

A list of site state parsers that are run in the configured
order to resolve siteState. Oracle provides the Re¬
questParamParser and URLPatternParser.

RequestParamParser returns SiteState if site id
is provided by a request parameter called siteID.

siteStateParsers

URLPatternParser returns SiteState by matching
patterns configured on each site with the incoming
request.

Returns the default site for an application. This is only
used if siteStateParsers fails to return a SiteS¬
tate.

defaultSiteStateParser

Retrieves the page contentPath from a request, for
example, /browse.

contentPathTranslator

About configuring cartridge handlers that make search and navigation queries
Cartridge handlers that need to make MDEX Engine queries can reference the navigation state, record state,
site state, and MDEX request builder beans configured in the cartridge support section of the Spring context
file.

The navigation state and record state represent the query parameters for each type of MDEX Engine query.
The MDEX request builder consolidates requests from all the cartridge handlers in a single Assembler processing
cycle into as few MDEX queries as possible. These beans are defined in terms of previously configured beans;
their configuration should not need to vary between applications.

Oracle Commerce Guided Search Assembler Application Developer's Guide

Deploying the Assembler | Assembler configuration66

The NavigationCartridgeHandler references the navigationState, mdexRequestBuilder and
siteState beans for making navigation queries. The RecordDetailsHandler references the recordState
for record detail queries. Cartridge handlers (including many of the core cartridges) that need access to the
navigation state, record state, site state or the MDEX request builder typically extend one of these handlers.
Note that RecordDetailsHandler itself extends NavigationCartridgeHandler as shown below,
thereby inheriting the references to the navigation state and MDEX request builder specified in the Naviga¬
tionCartridgeHandler bean.
<bean id="NavigationCartridgeHandler" abstract="true">
 <property name="navigationState" ref="navigationState" />
 <property name="mdexRequestBuilder" ref="mdexRequestBuilder" />
 <property name="siteState" ref="siteState"/>
</bean>

<bean id="CartridgeHandler_RecordDetails"
 class="com.endeca.infront.cartridge.RecordDetailsHandler"
parent="NavigationCartridgeHandler" scope="prototype" >

 <property name="recordState" ref="recordState" />
</bean>

About configuring cartridges to retrieve dynamic content
Cartridge handlers that retrieve dynamic content based on trigger criteria can reference the content manager
bean configured in the cartridge support section of the Spring context file.

The content manager depends on the content trigger state builder and its associated content trigger state,
which perform similar functions to the navigation state builder and navigation state, only for the trigger query
that retrieves dynamic content configuration, rather than the main navigation query.

Application-specific configuration for these beans relates to preview and auditing functionality. For more
information about configuring preview, see "Setting up the Preview Application for Workbench."

The ContentSlotHandler references the content manager to make dynamic content queries. Other handlers
that need to retrieve content items from a folder in Experience Manager should extend from this handler.
<bean id="CartridgeHandler_ContentSlot"
 class="com.endeca.infront.content.ContentSlotHandler"
 scope="prototype">
 <property name="contentManager" ref="contentManager" />
</bean>

About configuring the Assembler servlet
The Spring Assembler servlet extends the AbstractAssemblerServlet class, which requires a method
for retrieving an AssemblerFactory, and another for retrieving a ResponseWriter that processes Assembler
output.

The Assembler servlet references the same Spring configuration as the rest of the Assembler, with an additional
dependency on response writer configuration.

Response writers

The Assembler servlet uses JSON or XML response writers to serialize the results of a query. The Assembler
includes default implementations of a JSONResponseWriter and an XMLResponseWriter. You can provide

Oracle Commerce Guided Search Assembler Application Developer's Guide

67Deploying the Assembler | Assembler configuration

your own implementation if you need to output the Assembler response to a different format (such as a different
XML representation).
<bean id="jsonResponseWriter"
 class="com.endeca.infront.assembler.servlet.JsonResponseWriter"
 scope="singleton"/>

<bean id="xmlResponseWriter"
 class="com.endeca.infront.assembler.servlet.XmlResponseWriter"
 scope="singleton"/>

Reference implementations

The reference content includes two Web applications that run the Spring Assembler servlet with the appropriate
configuration for Discover Electronics in either an authoring or a live environment:

• The implementation for an authoring environment is located at
reference\discover-service-authoring.

• The implementation for a live environment is located at reference\discover-service.

Oracle Commerce Guided Search Assembler Application Developer's Guide

Deploying the Assembler | Assembler configuration68

Chapter 7

Invoking the Assembler

This section describes how to invoke the Assembler in process or as a service.

Invoking the Assembler in Java
You invoke the Assembler by passing in a content item object for assembly.

If a cartridge handler exists for the input content item, the Assembler invokes that handler to process it. If not,
the content item is passed through as output. Upon invoking the cartridge handler, the Assembler might in turn
invoke additional cartridge handlers to process child content items. The end result of the processing cycle is
an output content item representing the Assembler response.

Note: If you have purchased Oracle Guided Search, you typically query the Assembler using one of the
packaged services, either with a ContentInclude item or via the Assembler service.

The examples in this topic are specific to a Spring implementation of the Assembler.

To invoke the Assembler in Java:

1. Create an AssemblerFactory object.
Note that the example implementation below first fetches configuration via the WebApplicationContext
in the Spring framework:
// Get the Spring Web Application Context
 ServletContext servletCtx = this.getServletContext();
 WebApplicationContext webappCtx =
 WebApplicationContextUtils.getRequiredWebApplicationContext(servletCtx);

 // Get an assembler factory and create an assembler
 AssemblerFactory assemblerFactory =
 (AssemblerFactory)webappCtx.getBean("assemblerFactory", AssemblerFacto¬
ry.class);

2. Use the AssemblerFactory to create an Assembler:
Assembler assembler = assemblerFactory.createAssembler();

3. Optionally, add event listeners to the newly-created Assembler:
assembler.addAssemblerEventListener(new MyLogger());

4. Pass in the content item object to assemble:
 ContentItem responseContentItem = assembler.assemble(myContentItem);

Note: You can instantiate any content item programmatically and pass it to the Assembler, but
typically an assembly cycle begins with a ContentInclude or ContentSlotConfig item. Both
of these methods retrieve content items created in Workbench, the former by URI, and the latter by
triggering content from a folder populated either in Experience Manager or Rule Manager.

After invoking the Assembler, you may wish to serialize the response:
// Serialize the results to JSON
 response.setCharacterEncoding("UTF-8");
 JsonSerializer serializer = new JsonSerializer(response.getWriter());
 serializer.write(responseContentItem);

The Assembler implementation included with Tools and Frameworks comes with two classes for this purpose,
JsonSerializer and XmlSerializer. See the Assembler API Reference (Javadoc) for details.

Related Links
About retrieving Assembler results using the packaged services on page 73

If you have purchased Oracle Commerce Guided Search (without Oracle Commerce Experience
Manager), you must retrieve Assembler results via the packaged services.

Invoking the Assembler with a ContentInclude item
A ContentInclude object specifies the URI from which to retrieve a content item.

In an authoring instance the content configuration is stored in the Endeca Configuration Repository. In a live
instance, the Assembler retrieves content configuration from the live content source, specified in the configuration
for the ContentIncludeHandler.

• In Oracle Experience Manager implementations, the URI begins with the path info from the request URL.
• In Oracle Guided Search implementations, the URI must begin with /services and specify one of the

packaged Assembler services.

The ContentIncludeHandler retrieves the content that matches the deepest path in the URI. For example,
if the request URL is http://www.example.com/browse/electronics/Cameras, the URI passed to
the Assembler is /browse/electronics/Cameras. Suppose that the sitemap for this site looks like the
following:

The cartridge handler first tries to retrieve the content at the exact URI. There is no content at that location, so
it attempts to find the deepest matching path, which in this case is the content configuration at
/browse/electronics. The Assembler then processes the content item at that location and returns the
response for rendering.

Oracle Commerce Guided Search Assembler Application Developer's Guide

Invoking the Assembler | Invoking the Assembler in Java70

Example

The following example of a content include query retrieves page content for the Discover Electronics application
with Experience Manager:
// Construct a content include to query the content source
// for content, given the path info of the request
ContentItem contentItem =
 new ContentInclude(request.getPathInfo());

Invoking the Assembler with a ContentSlotConfig item
A ContentSlotConfig object specifies one or more paths to a content folder in Experience Manager. The
Assembler dynamically retrieves content items from the folder based on the trigger criteria and priorities set
by the content administrator. It returns a number of content items equal to the evaluation limit configured for
the specified content folder.

The Endeca Configuration Repository stores all Workbench content configuration for a given application within
a content node. For example, the path to a Web > Spotlights content folder in the Discover Electronics
reference application would be content/Web/Spotlights.

Example

The following example creates a ContentSlotConfig object that is intended to populate the sidebar of an
application page with three content items pulled from a Web > Spotlights content folder in Experience
Manager:
ContentItem dynamicContentItem = new ContentSlotConfig();
dynamicContentItem.setContentPaths("/content/Web/Spotlights");
dynamicContentItem.setTemplateTypes("SecondaryContent");
dynamicContentItem.setRuleLimit(3);

It specifies a template type restriction to retrieve only "SecondaryContent" for the sidebar, but does not restrict
results by template ID. This allows the query to pull in content items created from multiple cartridge templates,
as long as those templates have the correct type; for example, it might return a Breadcrumbs cartridge, a
Record Spotlight cartridge, and a Rich Text cartridge.

The call to the Assembler is the same as for any other content item:
 ContentItem responseContentItem = assembler.assemble(dynamicContentItem);

Querying the Assembler Service
The Assembler Service provides a RESTful interface for making Assembler queries and retrieving results in
either JSON or XML.

You query the Assembler Service by making a GET request to a URL that specifies the location of a content
item that you wish to assemble. The URL should be of the following form:
http://[hostname:port]/[servlet-path]/[content-URI]?[query-params]

In the reference deployment of the Assembler Service, the servlet path determines the format of the Assembler
response. The deployment descriptor file (web.xml) in the reference deployment defines two servlets:

Oracle Commerce Guided Search Assembler Application Developer's Guide

71Invoking the Assembler | Querying the Assembler Service

Servlet descriptionServlet path

Returns the Assembler response as JSON./json

Returns the Assembler response as XML./xml

The difference between the servlets is in the ResponseWriter implementation that they use. It is also possible
to write an Assembler response writer that forwards the results to another servlet rather than serializing them.

The content-URI is the path to the content item to be assembled.
• In Experience Manager implementations, the URI begins with the path info from the request URL.
• In Oracle Guided Search-only implementations, the URI must begin with /services and specify one of

the Assembler packaged services.

The Assembler servlet request URL http://www.example.com/json/browse is equivalent to passing a
ContentInclude item to the Assembler assemble() method with the URI /pages/[site-ID]/browse
and retrieving the results in JSON format.

Query parameters in an Assembler servlet request URL are processed the same way as in the embedded
Java Assembler. For example, the URL http://www.example.com/json/browse?N=101022 with the
reference Assembler servlet deployment returns the same results as
http://www.example.com/discover/browse?N=101022 in the reference Java application.

Querying the Assembler Service in a multiple site deployment

If your Experience Manager implementation has multiple sites within an application, you must use a domain
or URL pattern in your Assembler servlet request URL or pass a site ID parameter. For example, if your site
uses a domain pattern for a cameras site, your request URL could be
http://cameras.discover.com/json/browse. If your site uses a URL pattern for a cameras site, your
request URL could be http://localhost:8006/json/cameras/browse where /cameras is the URL
pattern.

To pass a site ID parameter, you can use this format
http://localhost:8006/json/browse?siteId=/DiscoverCameras for a DiscoverCameras site.

Making dynamic content queries to the Assembler servlet

Unlike the Assembler in embedded mode, which allows assembly of any configuration content item, all queries
to the Assembler servlet are treated as content include queries. To request content dynamically from a content
folder based on a set of trigger criteria, you can create a content slot at a location in the sitemap that you can
then specify in your Assembler request URL. In the reference implementation, the browse page is one example
of a content item that is addressable by URI that then references content items within a specified folder path.

Related Links
Invoking the Assembler with a ContentInclude item on page 70

A ContentInclude object specifies the URI from which to retrieve a content item.

The Assembler servlet response format
The Assembler provides response writer implementations that serialize the Assembler response to JSON or
XML.

The Assembler response takes the form of a content item (that is, a map of properties). The properties are
key-value pairs where the key is a string and the value may be one of the following types:

• String

Oracle Commerce Guided Search Assembler Application Developer's Guide

Invoking the Assembler | Querying the Assembler Service72

• Boolean
• Integer
• List (of any property type)
• Item (a nested map of properties)

This structure makes it straightforward to serialize the response to JSON.

The XML output of the Assembler (using the default XmlResponseWriter) is not SOAP-compliant. The
default XML format has the following characteristics:

• The root element of the response is <Item>.
• <Item> may have either a type attribute whose value is equivalent to the template id that defined the

content item, or a class attribute in the case of a strongly typed reponse model for a content item.
• The child elements of <Item> are <Property> elements.
• Each <Property> element has a name attribute whose value is the property key, and contains either a
<String>, <Boolean>, <Integer>, <List>, or <Item> element whose contents represent the property
value.

For convenience, the Discover Electronics reference application provides links to the JSON and XML
representations of the Assembler response, which are identical to the output of the Assembler servlet. This
link can be useful for debugging purposes, but it is not recommended as a primary means of querying the
Assembler for JSON or XML-formatted results.

About building an Assembler query string
Whether you invoke the Assembler programatically in Java or as a service, the content URI that you pass into
the Assembler includes any MDEX Engine query parameters.

For more information about MDEX Engine query parameter syntax, refer to the Assembler API Reference
(Javadoc) content for the UrlNavigationStateBuilder class.

About retrieving Assembler results using the packaged services
If you have purchased Oracle Commerce Guided Search (without Oracle Commerce Experience Manager),
you must retrieve Assembler results via the packaged services.

These services are also available for Experience Manager implementations. In an Experience Manager
implementation, the services must be located in the /pages/<Default Site>/services/ directory. The
packaged services include the following:

DescriptionService URI

Returns dimension search results based on a text search./services/dimensionsearch

Returns record detail information for a given record./services/recorddetails

Returns search and navigation results including core Endeca features
such as Guided Navigation, along with dynamic content returned from
content folders.

/services/guidedsearch

You query the services by passing a ContentInclude item to the Assembler with the relevant service URI
or making an Assembler servlet request specifying the service URI. The services are configured to return
results for a specific cartridge or set of cartridges.

Oracle Commerce Guided Search Assembler Application Developer's Guide

73Invoking the Assembler | About building an Assembler query string

The cartridges that are returned by the services cannot be configured on a per-instance basis in Rule Manager
or Experience Manager, but application-wide default configuration for the cartridges can be specified based
on your configuration framework (such as Spring). The exception is the dynamic content that can be configured
in content folders and that is returned by the Guided Search Service, which can be configured in Rule Manager
or Experience Manager.

The services are populated in the Endeca Configuration Repository (for use by the authoring instance) when
you run initialize_services after deploying an application. They are promoted to the live content source
when you promote the site configuration for the live instance.

The Dimension Search Service
The Dimension Search Service returns dimension search results for a keyword search.

The service returns a single DimensionSearchResults object in a dimensionSearchResults property,
representing the list of dimensions that match the search term.

The default behavior of this cartridge is configured as part of the CartridgeHandler_DimensionSearchRe¬
sults bean in the Spring context file for the Assembler. For information about the configuration options for
the Dimension Search Results cartridge, refer to the Assembler API Reference (Javadoc) for the Dimension¬
SearchResultsConfig class.

This service exists for cases where you want to retrieve dimension search results only (such as in the case of
an auto-suggest dimension search feature). Dimension search results are also returned as part of the response
from the Guided Search Service.

The following is an example of the results of a Dimension Search Service query for the URI http://local¬
host:8006/assembler-authoring/json/services/dimensionsearch?Ntt=fla*&Dy=1, serialized
to JSON:
{
 "@type": "DimensionSearchService",
 "name": "Dimension Search Service",
 "dimensionSearchResults": {
 "@type": "DimensionSearchResults",
 "totalNumResults": 13,
 "dimensionSearchGroups": [
 {
 "@class": "com.endeca.infront.cartridge.model.DimensionSearch¬
Group",
 "dimensionSearchValues": […],
 "dimensionName": "camera.flash"
 },
 {
 "@class": "com.endeca.infront.cartridge.model.DimensionSearch¬
Group",
 "dimensionSearchValues": […],
 "dimensionName": "product.features"
 },
 {
 "@class": "com.endeca.infront.cartridge.model.DimensionSearch¬
Group",
 "dimensionSearchValues": […],
 "dimensionName": "product.category"
 }
]
 },
 "endeca:contentPath": "/services/dimensionsearch",

Oracle Commerce Guided Search Assembler Application Developer's Guide

Invoking the Assembler | About retrieving Assembler results using the packaged services74

 "previewModuleUrl": "http://localhost:8006/preview"
}

The Record Details Service
The Record Details Service returns record detail information for a given record.

The service returns a single RecordDetails object in a recordDetails property, representing the details
for a single record or an aggregate record.

The default behavior of this cartridge is configured as part of the CartridgeHandler_RecordDetails
bean in the Spring context file for the Assembler. For information about the configuration options for the Record
Details cartridge, refer to the Assembler API Reference (Javadoc) for the RecordDetailsConfig class.

The following is an Experience Manager example of the results of a record details service query for the URI
http://localhost:8006/assembler-authoring/json/services/recorddetails/Canon/Prima-
Super-130U-Date/_/A-266556, serialized to JSON:
{
 "@type": "RecordDetailsService",
 "name": "Record Details Service",
 "recordDetails": {
 "@type": "ProductDetail",
 "record": {
 "@class": "com.endeca.infront.cartridge.model.Record",
 "numRecords": 1,
 "attributes": { … },
 "records": [
 {
 "@class": "com.endeca.infront.cartridge.model.Record",
 "numRecords": 0,
 "attributes": { … }
 }
]
 }
 },
 "endeca:siteRootPath": "/pages",
 "endeca:contentPath": "/services/recorddetails",
 "previewModuleUrl": "http://localhost:8006/preview",
 "endeca:assemblerRequestInformation": { … }
}

In a Guided Search implementation without Experience Manager, the site root path would be /services.
"endeca:siteRootPath": "/services",
"endeca:contentPath": "/recorddetails"

The Guided Search Service
The Guided Search Service returns search and navigation results including core Endeca features such as
Guided Navigation, along with dynamic content returned for content slots.

The properties returned as part of the response model, as well as their associated configuration, are listed
below:

Oracle Commerce Guided Search Assembler Application Developer's Guide

75Invoking the Assembler | About retrieving Assembler results using the packaged services

Configuration modelConfiguration beanResponse modelProperty name

GuidedNavigationCon¬
fig

CartridgeHan¬
dler_GuidedNaviga¬
tion

GuidedNavigationnavigation

BreadcrumbsConfigCartridgeHan¬
dler_Breadcrumbs

Breadcrumbsbreadcrumbs

ResultsListConfigCartridgeHandler_Re¬
sultsList

ResultsListresultsList

SearchAdjust¬
mentsConfig

CartridgeHan¬
dler_SearchAdjust¬
ments

SearchAdjustmentssearchAdjustments

DimensionSearchRe¬
sultsConfig

CartridgeHandler_Di¬
mensionSearchRe¬
sults

DimensionSearchRe¬
sults

dimensionSearchRe¬
sults

ContentSlotConfigCartridgeHan¬
dler_Con¬
tentSlotList

Depends on contents of
referenced content folders.

zones

The following is an example of the results of a guided search service query for the URI http://local¬
host:8006/assembler-authoring/json/services/guidedsearch?Ntt=pink+camera, serialized
to JSON:
{
 "@type": "GuidedSearchService",
 "name": "Guided Search Service",
 "navigation": {
 "@type": "GuidedNavigation"
 },
 "breadcrumbs": {
 "@type": "Breadcrumbs",
 "removeAllAction": "/services/guidedsearch",
 "refinementCrumbs": [],
 "searchCrumbs": […],
 "rangeFilterCrumbs": []
 },
 "resultsList": {
 "@type": "ResultsList",
 "totalNumRecs": 213,
 "sortOptions": […],
 "firstRecNum": 1,
 "lastRecNum": 10,
 "pagingActionTemplate": "/services/guidedsearch?No=%7Boff¬
set%7D&Nrpp=%7BrecordsPerPage%7D&Ntt=pink+camera",
 "recsPerPage": 10,
 "records": […]
 },
 "searchAdjustments": {
 "@type": "SearchAdjustments",
 "originalTerms": [
 "pink camera"
]
 },
 "zones": {

Oracle Commerce Guided Search Assembler Application Developer's Guide

Invoking the Assembler | About retrieving Assembler results using the packaged services76

 "@type": "ContentSlotList"
 },
 "endeca:contentPath": "/services/guidedsearch",
 "previewModuleUrl": "http://localhost:8006/preview"
}

Note:

For details about the contents of the zones property, see "About dynamic content and the Guided Search
Service."

Configuring dynamic content for the Guided Search Service
For each dynamic slot that you wish to populate as part of the response from the Guided Search Service, you
must configure a ContentSlotConfig object. Each of these objects is set as a property of the default input
content item for the ContentSlotHandler.

Specify the following properties for each instance of ContentSlotConfig:

ValueProperty name

A List of String typed paths to the content folders from which you want to return
results.

contentPaths

(Optional) A List of String typed template type restrictions for the dynamic
slot.

templateTypes

(Optional) A List of String typed template ID restrictions for the dynamic
slot.

templateIds

The maximum number of content items to return from this collection. The
Assembler returns up to this number of items that match the trigger criteria,
based on priority.

ruleLimit

Note: The content within a folder depends on the template type or ID restrictions configured for that
folder in Experience Manager. While it is possible to configure your default ContentSlotConfig objects
with any restrictions you wish, you should ensure that the type and ID restrictions you enter match those
in Experience Manager. For example, it is possible to create a ContentSlotConfig object that is
restricted by template type "MainContent," while the contentPaths property points to folders in
Experience Manager that are restricted to "SecondaryContent" (and thus will never contain any
"MainContent" content items).

Example

In the example below, the input content item to the ContentSlotHandler is a ContentSlotListConfig
object. It is instantiated as "contentSlotList," and contains a ContentSlotConfig object for each dynamic
slot in the application. The contentSlotList is passed in to the ConfigInitializer that instantiates it
as the input content item for the cartridge handler.

The contentSlotList for the Discover Electronics reference application is configured in the Cartridge¬
Handler_ContentSlotList bean in the Spring context file, assembler-context.xml. For each content
folder that is enabled for the Guided Search Service, a ContentSlotConfig bean appears in the con¬
tentSlotList as in the example below:
<bean id="CartridgeHandler_ContentSlotList" class="com.endeca.infront.content.Con¬
tentSlotListHandler"

Oracle Commerce Guided Search Assembler Application Developer's Guide

77Invoking the Assembler | About retrieving Assembler results using the packaged services

 scope="prototype">
 <property name="contentItemInitializer">
 <bean class="com.endeca.infront.cartridge.ConfigInitializer" scope="re¬
quest">
 <property name="defaults">
 <bean class="com.endeca.infront.content.ContentSlotListConfig"
scope="singleton">
 <property name="contentSlotList">
 <list>

<bean class="com.endeca.infront.content.ContentSlotConfig"
 scope="singleton">
 <property name="contentPaths">
 <list>
 <value>/content/Right Column Spotlights</value>

 </list>
 </property>
 <property name="templateTypes">
 <list>
 <value>SecondaryContent</value>
 </list>
 </property>
 <property name="templateIds">
 <list>
 <value>RecordSpotlight</value>
 <value>RichTextSecondary</value>
 </list>
 </property>
 <property name="ruleLimit" value="3"/>
 </bean>
 </list>
 </property>
 </bean>
 </property>
 </bean>
 </property>
</bean>

For detailed information about the ContentSlotConfig configuration model and its included properties,
see the Assembler API Reference (Javadoc).

Handling the Guided Search Service response

The Assembler returns the matching content items for each configured ContentSlotConfig, so the response
consists of a list of lists of content items:

• ContentSlotList response content item
• 1st content item, returned from a ContentSlotConfig with a ruleLimit of 3

• Highest priority matching content item
• Second highest priority matching content item
• Third highest priority matching content item

• 2nd content item, returned from a ContentSlotConfig with a ruleLimit of 2
• Highest priority matching content item
• Second highest priority matching content item

Oracle Commerce Guided Search Assembler Application Developer's Guide

Invoking the Assembler | About retrieving Assembler results using the packaged services78

Note that the Guided Search Service response is not view-friendly. You must parse it in your application logic
to determine if any of the content items returned in the tree correspond to page sections you wish to populate
for the end user's current location in the application.

Below is a sample JSON response from the Guided Search Service in the Discover Electronics reference
application when the user selects the "Cameras" category:
"zones": {
 "@type": "ContentSlotList",
 "contentSlotList": [
 {
 "@type": "ContentSlot",
 "templateTypes": [
 "RecordSpotlight"
],
 "contents": [
 {
 "@type": "RecordSpotlight",
 "title": "Most Popular Cameras",
 "name": "Spotlight Records",
 "records": [
 { … },
 { … },
 { … },
 { … }
]
 },
 {
 "@type": "RecordSpotlight",
 "title": "Top Rated Products",
 "name": "Spotlight Records",
 "records": [
 { … },
 { … },
 { … }
]
 }
],
 "contentPaths": [
 "/content/Right Column Spotlights"
],
 "ruleLimit": 3,
 "templateIds": []
 }
]
},

It populates two sidebar Record Spotlight cartridges, the first with four records, and the second with three.

About retrieving content item properties from packaged services
This topic outlines the logic required for retrieving properties from the Assembler response model for the
included Guided Search Service.

The example below includes processing logic within a renderer JSP file. Oracle recommends including most
of your logic for handling Assembler responses in your cartridge handlers, as this minimizes the amount of
duplicate code required across multiple renderers.

Note: API documentation for the Assembler packages is available in the
assembler\apidoc\assembler directory of your Tools and Frameworks installation.

Oracle Commerce Guided Search Assembler Application Developer's Guide

79Invoking the Assembler | About retrieving Assembler results using the packaged services

Retrieving information from the Assembler response

Recall the serialized Assembler response for the URI http://localhost:8006/assembler-author¬
ing/json/services/guidedsearch?Ntt=pink+camera:
{
 "@type": "GuidedSearchService",
 "name": "Guided Search Service",
 "navigation": {
 "@type": "GuidedNavigation"
 },
 "breadcrumbs": {
 "@type": "Breadcrumbs",
 "removeAllAction": "/services/guidedsearch",
 "refinementCrumbs": [],
 "searchCrumbs": […],
 "rangeFilterCrumbs": []
 },
 "resultsList": {
 "@type": "ResultsList",
 "totalNumRecs": 213,
 "sortOptions": […],
 "firstRecNum": 1,
 "lastRecNum": 10,
 "pagingActionTemplate": "/services/guidedsearch?No=%7Boff¬
set%7D&Nrpp=%7BrecordsPerPage%7D&Ntt=pink+camera",
 "recsPerPage": 10,
 "records": […]
 },
 "searchAdjustments": {
 "@type": "SearchAdjustments",
 "originalTerms": [
 "pink camera"
]
 },
 "zones": {
 "@type": "ContentSlotList"
 },
 "endeca:contentPath": "/services/guidedsearch",
 "previewModuleUrl": "http://localhost:8006/preview"
}

To create a sample JSP file that invokes the Assembler:

1. Import the required packages and create the necessary objects for supporting the Assembler:
<%@page language="java" contentType="text/html; charset=UTF-8" %>
<%@page import="com.endeca.infront.assembler.Assembler"%>
<%@page import="com.endeca.infront.assembler.AssemblerFactory"%>
<%-- additional imports removed from this example --%>
<%@page import="org.springframework.web.context.WebApplicationContext"%>
<%@taglib prefix="discover" tagdir="/WEB-INF/tags/discover" %>
<%
 // Create the Web Application Context object
 WebApplicationContext webappCtx = WebApplicationContextUtils.getRequiredWe¬
bApplicationContext(application);

 // Get the AssemblerFactory from the Spring context file
 AssemblerFactory assemblerFactory = (AssemblerFactory)webappCtx.getBean("as¬
semblerFactory");

Oracle Commerce Guided Search Assembler Application Developer's Guide

Invoking the Assembler | About retrieving Assembler results using the packaged services80

2. Recall that the packaged services invoke the Assembler with a ContentInclude item. Create the assem¬
bler object and the ContentInclude item, and pass it into the Assembler as the configuration model:
 // Create an Assembler object
 Assembler assembler = assemblerFactory.createAssembler();

 // Construct a content include item for the Guided Search service
 ContentItem contentItem = new ContentInclude("/services/guidedsearch");

 // Assemble the content
ContentItem responseContentItem = assembler.assemble(contentItem);

The Assembler returns a com.endeca.infront.assembler.ContentItem interface as the response
model; this extends the Java Map interface. Assign this response to a responseContentItem object.

3. get the resultsList object from the responseContentItem:
 ContentItem resultsListItem = (ContentItem) responseContentItem.get("result¬
sList");

This retrieves the top-level resultsList object, which is itself an extension of BasicContentItem, from
the Assembler response.

4. You can now retrieve and use the individual values stored on the resultsList object, for example, the
total number of records:
 String totalNumRecs = resultsListItem.get("totalNumRecs");

This assigns a value of "213" to the totalNumRecs variable (based on the sample response presented
at the start of this topic). Similarly, you could retrieve any other value from the key/value pairs that comprise
resultsList, including other objects that extend the Map interface and are themselves made up of
key/value pairs.

Refer to the Assembler API documentation for additional information about available Assembler interfaces,
implementations, and methods. Following the pattern described in Steps 3-4, you can continue to retrieve
values from the Assembler response by calling the get method on the response model object to traverse the
nested values.

About handling the Assembler response
As a best practice, your application should have modular renderers to handle the response model for each
content item.

A typical page consists of a content item that contains several child content items representing the individual
feature cartridges. The Discover Electronics application maps each response model to the proper renderer by
convention, based on the @type. The model @type corresponds to the template identifier (the directory name)
of the template that was used to configure it. (Recall that the template type determines where a cartridge can
be placed in another content item, while the template ID uniquely identifies the cartridge and its associated
content definition.) For each cartridge, the associated renderer is located in
WEB-INF/views/<channel>/<TemplateID>/<TemplateID>.jsp. For example, the renderer for the
Breadcrumbs cartridge is located in WEB-INF/views/desktop/Breadcrumbs/Breadcrumbs.jsp.

In the Discover Electronics application, this logic is implemented in include.tag. Your application should
implement a similar mapping of response models to their corresponding rendering code.

Source code for the renderers in the Discover Electronics application is provided as an example of how to
work with the model objects returned by the Assembler in Java. The sample rendering code is intentionally

Oracle Commerce Guided Search Assembler Application Developer's Guide

81Invoking the Assembler | About handling the Assembler response

lightweight, enabling it to be more easily customized for your own site. For information about the response
models for the core cartridges, refer to the Assembler API Reference (Javadoc).

Some features in the Discover Electronics application are designed with certain assumptions about the data
set, such as property and dimension names. Mirroring the Discover Electronics data schema for your own data
can facilitate reuse of the reference cartridges, reducing the need to update rendering logic and Assembler
configuration for your data set.

About rendering the Assembler response
As soon as you have retrieved the necessary information for your page, Oracle recommends subdividing your
view logic to correspond to the hierarchy of content items returned by the Assembler.

The renderer for the Three Column Navigation Page content item in Discover Electronics provides an example
of the page rendering process as implemented in the reference application. It is located in your Tools and
Frameworks installation directory under
reference\discover-electronics-authoring\WEB-INF\views\desktop\ThreeColumnPage\ThreeColumnPage.jsp.
You can use this JSP file as a point of reference for developing your own application pages. While the details
are specific to the Discover Electronics implementation of the Assembler API, your general approach should
be similar.

Recall that each of the <div> elements that make up the page uses a custom <discover:include> tag,
defined in WEB-INF\tags\discover\include.jsp, to include the rendering code for the associated page
component:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>

<!-- Additional elements removed from this sample -->
</head>
<body>
 <endeca:pageBody rootContentItem="${rootComponent}">
 <div class="PageContent">
 <%--include user panel --%>
 <%@ include file="/WEB-INF/views/userPanel.jsp" %>
 <%--include user page logo --%>
 <%@ include file="/WEB-INF/views/pageLogo.jsp" %>
 <div class="PageHeader">
 <c:forEach var="element" items="${component.headerContent}">

<discover:include component="${element}"/>
 </c:forEach>
 </div>
 <div class="PageLeftColumn">
 <c:forEach var="element" items="${component.leftContent}">
 <discover:include component="${element}"/>
 </c:forEach>
 </div>
 <div class="PageCenterColumn">
 <c:forEach var="element" items="${component.mainContent}">
 <discover:include component="${element}"/>
 </c:forEach>
 </div>
 <div class="PageRightColumn">
 <c:forEach var="element" items="${component.rightContent}">
 <discover:include component="${element}"/>
 </c:forEach>
 </div>
 <div class="PageFooter">

Oracle Commerce Guided Search Assembler Application Developer's Guide

Invoking the Assembler | About handling the Assembler response82

 <%--include copyright --%>
 <%@include file="/WEB-INF/views/copyright.jsp" %>
 </div>
 </div>
 </endeca:pageBody>
</body>
</html>

For the example above, the JSP is composed as follows:

1. The static <div class="UserPanel"> and <div class="PageLogo"> elements are included from
the specified JSP files.

2. The <div class="PageHeader"> element retrieves the list of headerContent content items from the
component.

• In an Oracle Experience Manager installation, this is the list of content items defined by the content
administrator in Experience Manager:

• In an Oracle Guided Search installation, this is the list of content items specified application-wide under
WEB-INF\services\browse.jsp:
<div class="PageContent">
 <%--include user panel --%>
 <%@ include file="/WEB-INF/views/userPanel.jsp" %>
 <%@ include file="/WEB-INF/views/pageLogo.jsp" %>

 <div class="PageHeader">
<discover:include component="${searchBox}"/>

 </div>
 <div class="PageLeftColumn">
 <discover:include component="${component.breadcrumbs}"/>
 <discover:include component="${component.navigation}"/>
 </div>
 ...

3. For each of the included content items, the JSP includes the output of the associated renderer.
4. The <div class="PageLeftColumn">, <div class="PageCenterColumn">, and <div

class="PageRightColumn"> elements are included in the same fashion.

Oracle Commerce Guided Search Assembler Application Developer's Guide

83Invoking the Assembler | About handling the Assembler response

5. The static <div class="Copyright"> element is included from the specified JSP file.

Oracle Commerce Guided Search Assembler Application Developer's Guide

Invoking the Assembler | About handling the Assembler response84

Chapter 8

Implementing Multichannel Applications

This section covers how to design and implement multichannel applications built on the Assembler and managed
using Workbench with Experience Manager.

Overview of multichannel applications with the Endeca
Assembler

The Assembler provides an API for delivering content across an entire site, allowing content configuration to
be shared between channels when appropriate, and also enabling a more targeted channel-specific experience
where desired.

Enabling the full flexibility of the cross-channel experience involves the following:
• Creating channel-specific templates. Content administrators may wish to configure different features or

cartridges for different channels. For example, pages designed for mobile devices typically have a simpler
structure and present fewer options than pages designed for desktop Web.

• Writing channel-specific rendering code.Due to the limitations of mobile browsers and device bandwidth,
renderers for mobile Web applications are typically more lightweight than those for desktop Web, while
native applications for mobile devices require platform-specific client code.

• Enabling device detection. The UI tier of your Assembler application should include logic for handling
device detection. Typically, this also includes redirecting a client to the appropriate service for their user
agent.

Note: Endeca for Mobile is licensed separately from Oracle Guided Search and Oracle Experience
Manager. It requires an additional software license.

About creating templates for mobile channels
Templates for mobile-specific content in a multichannel application can give content administrators the flexibility
to manage channel-specific content in Experience Manager. However, when planning the set of templates for
your application, it is a good idea to use more general templates where possible in order to share configuration
across multiple channels.

The following general practices help enable this combination of flexibility and consistency:
• Create different top-level page templates for channels that have a different high-level structure. For example,

the same range of cartridges may not be appropriate to a page designed to display on a mobile device as

opposed to a page designed to display on a desktop computer. Native applications for mobile devices may
display content in simplified "pages" that differ from those intended for Web browsers.

• Use dynamic slots for configuration that should be shared across channels, since they enable reuse of
content between pages. For example, if the same refinement configuration (such as overall dimension
order, refinement ordering, and boost and bury options) should apply at a specific navigation state regardless
of channel, it may make sense to configure it within a separate content folder and reference it from the
appropriate pages for each channel.

To enable the greatest flexibility in Experience Manager while ensuring that content administrators create
configurations that are appropriate to each channel, you can restrict the cartridges that can be placed on a
page or in a content folder by content type. These content types may vary depending on the intended purpose
of a page or dynamic slot. For example, you may have the following in your application:

• Page templates for desktop Web, which may define a section of type SecondaryContent. This section
may be populated with Guided Navigation cartridges, Spotlight cartridges, or dynamic slots serving as a
placeholder for either type.

• A content folder designed for Guided Navigation cartridges. This is similar to the Navigation section of the
mobile page, but it should not allow a content administrator to create a dynamic slot within a dynamic slot,
so it should have a third content type (such as Navigation) to enforce this restriction.

In most cases, the set of Dimension Navigation cartridges in an application should be identical. Variance
between different output channels tends to manifest at the page design level, rather than at the level of the
individual components of a page.

Oracle Commerce Guided Search Assembler Application Developer's Guide

Implementing Multichannel Applications | About creating templates for mobile channels86

Chapter 9

Tuning an Assembler application

The Assembler and the MDEX Engine both include logging functionality that you can use to debug and fine
tune your application. In addition, Workbench includes Preview functionality that your Content Administrator
can use to evaluate the results of their changes.

Setting up the preview application for Workbench
If you are using Experience Manager, you can use a preview application to simulate sets of trigger conditions,
such as time-based triggers, in order to determine which content items display when specific conditions are
met. This section describes how to set up a custom Endeca application to function as the preview application
in Workbench.

About the preview application
The preview application allows content administrators to determine why each content item does or does not
fire for specified navigation query and trigger combinations. This chapter describes how to set up your own
custom application as the Workbench preview application.

You can start the preview application for a specific page, or for an individual cartridge. A selected cartridge
displays in the context of a page that includes it.

It is not necessary for the preview application to be an exact representation of your final front-end application,
as long as it is using the correct data. The business logic that is built into Workbench is not tied to the physical
representation of the front-end application. It is good practice, however, to make sure that your preview
application represents your final application closely enough so that business users know if their changes are
correct.

By default, Workbench is configured to use the Discover Electronics reference application as the preview
application. This application is located under %ENDECA_TOOLS_ROOT%\reference\discover-electron¬
ics-authoring ($ENDECA_TOOLS_ROOT/reference/discover-electronics-authoring on UNIX).

Workbench communicates with the preview application via settings you specify in the Preview Settings tool.
The Preview URL field lets you specify the preview application URL.

Note: The preview application must not use frames, because they are likely to collide with the frames
of the Workbench preview toolbar.

About instrumenting your Java application for preview
In order to enable auditing and editing in your custom preview application, your JSP file rendering code must
include logic for adding preview frames and buttons for auditing and editing content items.

Your custom preview application should include tags that specify paths to the required JavaScript and CSS
resources, as well as tags for enabling audit and edit functionality. These are provided in the endeca tag
library.

These requirements assume an application that uses JSP files for cartridge renderers (as in the case of the
Discover Electronics reference application). If you are using a different technology stack to implement your
Assembler application, you must write your own auditing functionality. See Instrumenting non-Java applications
for preview on page 89.

Adding Preview resources

All JSP files must include the endeca tag library, as shown below:
<%@ taglib prefix="endeca" uri="/endeca-infront-assembler/utilityTags"%>

Each <head> tag must contain a reference to the pageHead tag. This includes paths to the Preview JavaScript
and CCS files:
<head>

<endeca:pageHead rootContentItem="${rootComponent}"/>
 <title><c:out value="${component.title}"/></title>
 <meta name="keywords" content="${component.metaKeywords}" />
 <meta name="description" content="${component.metaDescription}" />
</head>

Enabling auditing and editing

All slots and content items must include a PreviewAnchor tag that wraps them in a div class that contains
preview information. This tag requires the current content item element and enables audit and edit functionality.
Oracle recommends that instead of including this in every renderer, have a centralized place where content
items are dispatched. In the Discover reference application, this is done in the include.tag.
<%-- save the parent's component currently in request scope into page scope --%>
<c:set var="parentComponent" scope="page" value="${requestScope['component']}"/>
<%-- set the content item the child will use as this one (the one passed in the
tag) --%>
<c:set var="component" scope="request" value="${component}"/>
<c:catch var="importException">

<endeca:previewAnchor contentItem="${component}">
 <c:import url="${resourcePath}" charEncoding="UTF-8"/>
 </endeca:previewAnchor>
</c:catch>

Each <body> tag must contain a reference to the pageBody tag. This tag requires the root and current content
item elements and enables audit and edit functionality:
<script type="text/javascript" src="<c:url value='/js/global.js'/>"></script>
</head>
<body>

<endeca:pageBody rootContentItem="${rootComponent}" contentItem="${component}">

 <div class="PageContent">
 <%--include user panel --%>
 <%@ include file="/WEB-INF/views/userPanel.jsp" %>

Oracle Commerce Guided Search Assembler Application Developer's Guide

Tuning an Assembler application | Setting up the preview application for Workbench88

Device-specific auditing and editing

In order to handle preview for different devices, you must implement conditional rendering logic for different
user agent strings. The rendering code should include the tags described in the previous section.

You can retrieve the user agent String by getting a reference to the UserState object and calling getUser¬
Agent() on it. The UserState class is documented in the Javadoc for the com.endeca.infront.navi¬
gation package.

For example, the Discover Electronics reference application includes the following logic in the
WEB-INF\services\assemble.jsp page:

UserState userState = webappCtx.getBean(properties.getProperty("user.state.ref"),
 UserState.class);

String userAgent = userState.getUserAgent();

//If the userAgent is null, then no user-agent was specified and we need to get
the user agent from the request header.
if(userAgent == null){
 userAgent = request.getHeader("user-agent");
}

Decorating the page

Preview requires a request attribute to decorate the page. For example, the Discover Electronics reference
application includes the following logic in the WEB-INF\services\assemble.jsp page. The last line
retrieves the value of the preview.enabled property from the assembler.properties file. The value of
the constant PreviewAnchor.ENDECA_PREVIEW_ENABLED is endeca:previewAnchorsEnabled.
//If the userState has no specified userAgent, use the one from the request
header.
 if(userAgent == null){
 userAgent = request.getHeader("user-agent");
 }

request.setAttribute(PreviewAnchor.ENDECA_PREVIEW_ENABLED, Boolean.valueOf(prop¬
erties.getProperty("preview.enabled")));
##

Instrumenting non-Java applications for preview
This section describes how to enable auditing and editing in a non-Java application that does not use JSP files
in its rendering code.

The Experience Manager preview framework automatically loads any tag that includes the data-oc-audit-
info attribute. The expected contents of the data-oc-audit-info attribute are shown in the following
sample. All of the expected properties are included inside the endeca:auditInfo object in the assembler
response. Clients would only be expected to serialize the contents and add them to the container tag of the
content item.
<div data-oc-audit-info="
 {
 ecr:resourcePath: "content/Web/General/Pages/Home",
 ecr:resourceInnerPath: "secondaryContent[1]",
 ecr:contentSlotRuleFireData: [
 {
 endeca.internal.created.by: "admin",
 rule.msg: "Fired",
 endeca.internal.templateType: "SecondaryContent",

Oracle Commerce Guided Search Assembler Application Developer's Guide

89Tuning an Assembler application | Setting up the preview application for Workbench

 endeca.internal.templateId: "GuidedNavigation",
 endeca.internal.last.modified.by: "admin",
 rule.msgcode: "13",
 rule.state: "fired",
 endeca.internal.resource.path: "/content/Shared/Guided Naviga¬
tion/Default Guided Navigation",
 endeca.internal.workflow.state: "ACTIVE",
 type: "DGraph.MerchDebug",
 Title: "Default Guided Navigation",
 endeca.internal.priority: "30",
 rule.id: "12",
 endeca.internal.last.modified: "2014-07-16T12:01",
 endeca.internal.date.created: "2014-07-16T12:01",
 Zone: "xmgr_zone"
 }
],
 ecr:name: "Guided Navigation Slot",
 ecr:contentSlotContentPaths: ["/content/Shared/Guided Navigation"],
 ecr:contentSlotTemplateTypes: ["SecondaryContent"],
 ecr:contentSlotTemplateIds: [],
 }">
</div>

Each head tag must include the following:
<head>
 <!-- beginning imports from PageHead tag -->
 <script type="text/javascript" src="http://@@WORKBENCH_HOST@@:@@WORK¬
BENCH_PORT@@/ifcr/tools/xmgr/app/preview/js/jquery-1.6.2.min.js"></script>
 <script type="text/javascript">
 if (typeof(Endeca) == "undefined") Endeca = {};
 Endeca.jQuery = jQuery.noConflict(true);
 </script>
 <script type="text/javascript" src="http://@@WORKBENCH_HOST@@:@@WORK¬
BENCH_PORT@@/ifcr/tools/xmgr/app/preview/js/util/util.js"></script>
 <script type="text/javascript" src="http://@@WORKBENCH_HOST@@:@@WORK¬
BENCH_PORT@@/ifcr/tools/xmgr/app/preview/js/util/json.js"></script>
 <script type="text/javascript" src="http://@@WORKBENCH_HOST@@:@@WORK¬
BENCH_PORT@@/ifcr/tools/xmgr/app/preview/js/urlgen/urlgen.js"></script>
 <script type="text/javascript" src="http://@@WORKBENCH_HOST@@:@@WORK¬
BENCH_PORT@@/ifcr/tools/xmgr/app/preview/js/iframe-site/iframe-site.js"></script>

 <script type="text/javascript" src="http://@@WORKBENCH_HOST@@:@@WORK¬
BENCH_PORT@@/ifcr/tools/xmgr/app/preview/js/framework/framework.js"></script>
 <script type="text/javascript" src="http://@@WORKBENCH_HOST@@:@@WORK¬
BENCH_PORT@@/ifcr/tools/xmgr/app/preview/js/plugins/endeca/endeca.js"></script>
 <link rel="stylesheet" href="http://@@WORKBENCH_HOST@@:@@WORK¬
BENCH_PORT@@/ifcr/tools/xmgr/app/preview/css/audit-site.css">
 <!-- end of imports from PageHead tag -->
 <!-- Setting the page content URI for the audit rules -->
 <script type="text/javascript">
 if(Endeca.Site) {
 Endeca.Site.Iframe.setContentUri(@@CONTENT_PATH@@, @@SITE_NAME@@);
 Endeca.Framework.configure('ecr', 'contentUri', @@CONTENT_PATH@@);
 }
 </script>
 <!-- End of setting the content URI -->
</head>

Where:
• @@CONTENT_PATH@@ is the location of the content, for example/pages/DiscoverElectronics/browse.

Oracle Commerce Guided Search Assembler Application Developer's Guide

Tuning an Assembler application | Setting up the preview application for Workbench90

• @@SITE_NAME@@ is the name of the site, for example DiscoverElectronics.
• @@WORKBENCH_HOST@@is the hostname where workbench resides.
• @@WORKBENCH_POST@@ is the port where workbench resides.

Enabling your preview application
After you have finished instrumenting your preview application, you can enable it for use in Workbench.

Ensure that your application has been correctly instrumented before enabling it for preview in Workbench. See
About instrumenting your Java application for preview on page 88.

All examples shown below are taken from the configuration files for the Discover Electronics authoring
application, located in %ENDECA_TOOLS_ROOT%\reference\discover-electronics-authoring (on
Windows) or $ENDECA_TOOLS_ROOT/reference/discover-electronics-authoring (on UNIX). The
exact mechanisms used for configuring your Assembler and content sources will vary depending on your
implementation details.

For a full description of the properties described below, see the Assembler API Javadoc for the Assembler¬
Factory and ContentSource interfaces and their corresponding implementations.

To enable your custom preview application:

1. In the constructor arguments for your AssemblerSettings, set the following:
ValueProperty

truepreviewEnabled

http://localhost:8006/ifcrpreviewModuleUrl

In the Discover Electronics reference implementation, these are configured as properties in
WEB-INF\assembler.properties:
workbench.host=localhost
workbench.port=8006

... Additional settings removed from this example ...

preview.enabled=true

These properties are then included in the Assembler context file, WEB-INF\assembler-context.xml:
<!--
 ##
 # ASSEMBLER FACTORY
 #
 # Required.
 #
-->
<bean id="assemblerFactory"
class="com.endeca.infront.assembler.spring.SpringAssemblerFactory"
scope="singleton">
 <constructor-arg>
 <bean class="com.endeca.infront.assembler.AssemblerSettings">

<property name="previewEnabled" value="${preview.enabled}" />
 <property name="previewModuleUrl" value="http://${work¬
bench.host}:${workbench.port}/ifcr" />
 </bean>
 </constructor-arg>
 <constructor-arg>
 <list>
 <bean class="com.endeca.infront.logger.SLF4JAssemblerEventLogger"

Oracle Commerce Guided Search Assembler Application Developer's Guide

91Tuning an Assembler application | Setting up the preview application for Workbench

 />
 </list>
 </constructor-arg>
</bean>

2. In the constructor arguments for your ecrStoreFactocy, set isAuthoring to true.
In the Discover Electronics reference implementation, isAuthoring takes the value of the is.authoring
property:
<bean id="ecrStoreFactory" class="com.endeca.infront.content.source.EcrStoreFac¬
tory" init-method="init" destroy-method="destroy">

<property name="isAuthoring" value="true"/>
 <property name="appName" value="${workbench.app.name}" />
 <property name="host" value="${workbench.host}" />
 <property name="clientPort" value="${workbench.publishing.clientPort}"/>

 <property name="serverPort" value="${workbench.publishing.serverPort}"/>
</bean>

3. Configure a link service for your application that returns a preview link as a JSONP response.

This service must construct a link to the page selected for preview; for example, if a content administrator
previews the Brand - Canon Web Browse page in the reference application, the service returns
"/browse/_/N-25y6". Additionally, the response from the service is used to construct the links in the
Audit Panel.

In Discover Electronics, the link service is configured as a link servlet that uses the com.endeca.in¬
front.web.spring.PreviewLinkServlet class. The servlet is defined in WEB-INF\web.xml:
<servlet>
 <servlet-name>link</servlet-name>
 <servlet-class>
 com.endeca.infront.assembler.servlet.spring.SpringPreviewLinkServlet
 </servlet-class>
 <init-param>
 <description>
 The ID of the NavigationStateBuilder in the spring
 contextConfig file
 </description>
 <param-name>navigationStateBuilderBeanId</param-name>
 <param-value>navigationStateBuilder</param-value>
 </init-param>
 <init-param>
 <description>
 The ID of the MdexResource in the spring
 contextConfig file
 </description>
 <param-name>mdexResourceBeanId</param-name>
 <param-value>mdexResource</param-value>
 </init-param>
</servlet>

Changing the preview link service
If you have implemented your own link service for use with preview, you can specify the path to the service.

After you have created your own preview link service, you can specify it for use with preview instead of the
default link service included with the Discover Electronics reference application.

Oracle Commerce Guided Search Assembler Application Developer's Guide

Tuning an Assembler application | Setting up the preview application for Workbench92

Note: For information about the required inputs and outputs for a link service, see the Javadoc for the
AbstractPreviewLinkServlet class in thecom.endeca.infront.assembler.servlet package.

To change the preview link service:

1. Stop the Endeca Tools Service.
2. Open your application's deployment descriptor file, web.xml.

For the Discover Electronics reference application, this file is located at
%ENDECA_TOOLS_ROOT%\reference\discover-electronics-authoring\WEB-INF\web.xml.

3. Define the link servlet.
The servlet definition for the Discover Electronics reference application is shown below:
<servlet>
 <servlet-name>link</servlet-name>
 <servlet-class>
 com.endeca.infront.assembler.servlet.spring.SpringPreviewLinkServlet
 </servlet-class>
 <init-param>
 <description>
 The ID of the NavigationStateBuilder in the spring
 contextConfig file
 </description>
 <param-name>navigationStateBuilderBeanId</param-name>
 <param-value>navigationStateBuilder</param-value>
 </init-param>
 <init-param>
 <description>
 The ID of the ContentSource in the spring
 contextConfig file
 </description>
 <param-name>contentSourceBeanId</param-name>
 <param-value>contentSource</param-value>
 </init-param>
</servlet>

4. Define the link servlet mapping.
For example:
<servlet-mapping>
 <servlet-name>link</servlet-name>
 <url-pattern>/servlet/link.json/*</url-pattern>
</servlet-mapping>

5. Save and close the file.
6. Start the Endeca Tools Service.

Managing the preview application and sites in Workbench
You can manage the preview URL configuration for the default preview application in Workbench by using the
Preview Settings tool.

After you have instrumented and enabled your application for preview, it becomes the default preview application
for your initial site or any sites that you add to your application. You can change the default preview application
in Workbench or site-specific preview URLs.

To change the default preview URL or the site preview URLs in Workbench:

Oracle Commerce Guided Search Assembler Application Developer's Guide

93Tuning an Assembler application | Setting up the preview application for Workbench

1. Navigate to the Application Settings > Preview Settings tool.
The default preview URL that you set up in Enabling your preview application on page 91 appears in the
Default Preview URL field. The link service URL that you set up in Changing the preview link service on
page 92displays in the Default Link Service URL field. These URLs display also by default for the sites
in the Preview URLs section.

2. To change the default preview application follow these steps:
a) Click Edit next to the Default Preview URL field, and enter the fully qualified preview URL of the default

preview application, then click Save.
b) Click Edit next to the Default Link Service URL, and enter the URL of the service within the application

that constructs links for preview.

3. To update the preview URLs and link service URLs for a site follow these steps. then click Save.
a) In the Preview URL field of the site, enter the fully qualified preview URL of the site that you want to

preview .

Caution: The site URI pattern cannot be the same as a top level page name in the application.
A siteId parameter is automatically appended to the preview URL to identify the site context.

b) In the Link Service URL of the site, enter the URL of the service within the site that constructs links for
preview.

4. Click Save.
The sites at the specified URLs are now used for preview.

Testing your preview application
After instrumenting and enabling your preview application, you can test the preview and audit functionality in
Workbench.

Your custom preview application must be fully instrumented and enabled in Workbench in order for the preview
option to display.

To test your custom preview application:

1. In Workbench, navigate to the Experience Manager tool.
2. Navigate to a content item of your choosing.
3. Hove the mouse over the content item.

The Action menu button appears.
4. Select Preview from the Action dropdown.
5. Optionally, specify the preview time instead of using the default indicated by the system clock for the MDEX

Engine:
a) Click the arrow beside the selected device in the Preview Toolbar:

The Preview Toolbar expands to show configuration options.
b) Select a device from the Device list and click Apply.
Specifying a preview device lets you see how the application renders on that device.

6. To test audit functionality:
a) Hove the mouse over the cartridge you wish to audit.
b) Click the gear button and select Audit

The Audit Panel appears with a list of all content items considered for the specified content slot.
c) Click any of the listed Locations to navigate to that location in the preview application.
d) Click the name of any of the listed content items and confirm that you return to that item in Experience

Manager.

Oracle Commerce Guided Search Assembler Application Developer's Guide

Tuning an Assembler application | Setting up the preview application for Workbench94

Configuring logging for an Assembler Application
The Assembler logs information to the Platform Services Log Server component. In order to implement this
feature in an application, you must instantiate a LogServerAdapater and pass it in to the AssemblerFac¬
tory, along with any other Event Listeners. To log front-end information, you must also register a Con¬
tentItemAugmentAdapter.

Instantiating a LogServerAdapter

The LogServerAdapter logs server-side information. It takes three constructor arguments:
• An instance of an object that implements the com.endeca.infront.assembler.event.request.Ses¬
sionIdProviderinterface , which requires a String getSessionId() method that returns a user's
session ID.

• The Log Server host
• The Log Server port

In the Spring implementation, it is configured in the assembler-context.xml file as follows:
<bean class="com.endeca.infront.navigation.event.LogServerAdapter">

 <constructor-arg ref="springUtility"/>
 <constructor-arg value="${logserver.host}"/>
 <constructor-arg value="${logserver.port}"/>
</bean>

The referenced bean is configured as follows:
<bean id="springUtility" class="com.endeca.infront.web.spring.SpringUtility"
scope="singleton"/>

Instantiating a ContentItemAugmentAdapter

The ContentItemAugmentAdapter augments content items with front-end application information, such
as a user's search and navigation state. As a result, the response content item returned from an assemble()
call includes cartridge logging information.

The ContentItemAugmentAdapter takes a single constructor argument, an instance of a SessionId¬
Provider.

In the Spring implementation, it is configured in the assembler-context.xml file as follows:
<bean class="com.endeca.infront.assembler.event.request.ContentItemAugmentAdapter">

 <constructor-arg ref="springUtility"/>
</bean>

Customizing session ID information

Depending on the information you wish to include in a session ID object, you may choose to create a custom
implementation of the SessionIdProvider interface. For additional information, refer to the Assembler API
Reference (Javadoc).

Configuring the Log4J logger

The logging implementation in the Discover Electronics reference application uses the Log4J logger. Log level
settings are configurable through the properties file located at ToolsAndFrameworks\<version>\refer¬
ence\discover-electronics-[authoring|live]\WEB_INF\classes\log4j.properties. If you

Oracle Commerce Guided Search Assembler Application Developer's Guide

95Tuning an Assembler application | Configuring logging for an Assembler Application

choose to use this implementation in your own application, you can configure the log level by opening the
corresponding file.

Locate and uncomment the following line:
Uncomment to see Oracle Commerce Assembler debug info.
log4j.logger.com.endeca.infront.logger=DEBUG

At the DEBUG level, Assembler and cartridge handler entrances and exits are logged, although the details of
the navigation context passed in to the cartridge handler do not appear.

Configuring logging for custom events
You can create custom cartridge handlers to collect and act on any information that is important to your
application.

About request events
Each invocation of the Assembler creates an associated RequestEvent object that tracks request information.

Information on a RequestEvent is stored as key/value pairs. You can include arbitrary information about an
Assembler request by extending the RequestEvent object in a cartridge handler's process method. For
example:
/**
 * Cartridge Handler process method
 */
public void process(ConfigType pContentType) {

 // Create a new RequestEvent from the global RequestEvent object
 RequestEvent event = RequestEventFactory.getEvent();

 // Store arbitrary information
 event.put("myKey","my arbitrary value");

 ...
}

The NavigationEventWrapper class

The NavigationEventWrapper class provides convenience methods for getting and setting common search
and navigation information about a request event. It modifies the RequestEvent object specified in the
constructor, as in the example below:
/**
 * Cartridge Handler process method
 */
public void process(ConfigType pContentType) {

 // Create a new NavigationEventWrapper around the global RequestEvent object
 NavigationEventWrapper navigationEvent = new NavigationEventWrapper(RequestEvent¬
Factory.getEvent());

 // Store navigation event information
 navigationEvent.setAutocorrectTo("autocorrected term");

 ...
}

Oracle Commerce Guided Search Assembler Application Developer's Guide

Tuning an Assembler application | Configuring logging for an Assembler Application96

For additional information about the RequestEvent and NavigationEventWrapper classes, including a
full list of the convenience methods available for the NavigationEventWrapper, see the Assembler API
Reference (Javadoc).

About request event adapters
Request event adapter classes perform some action based on information included with a request event.

A request event adapter class implements the handleAssemblerRequest() method in the abstract Re¬
questEventListener class. This method is invoked at the end of the Assembler's assemble() method.

The following is an example of a simple request event adapter:
/**
 * Add log information to root content item
 */
public class SampleRequestEventAdapter extends RequestEventListener {

 /**
 * Constructor
 * @param sessionIdProvider provides an ID for the current user session
 */
 public SampleRequestEventAdapter(SessionIdProvider sessionIdProvider) {
 super(sessionIdProvider);
 }

 /**
 * Prints the request event's session id and search term (if present) to the
 console
 * @param assemblerRequestEvent the event containing all of the
 * information about the Assembler request
 * @param rootContentItem the Assembler output
 */

public void handleAssemblerRequestEvent(RequestEvent event, ContentItem
rootContentItem) {
 NavigationEventWrapper navigationEvent = new NavigationEventWrapper(assem¬
blerRequestEvent);
 // Print Session ID - Note that the session Id has already been determined
 and set in the event object
 System.out.println("The current session is: "+event.getSessionId());

 // Print Search Term
 if (navigationEvent.getSearchTerms() != null && !navigationEvent.get¬
SearchTerms().trim().isEmpty()) {
 System.out.println("The current search terms are: "+navigationEvent.get¬
SearchTerms());
 } else {
 System.out.println("There were no search terms in the current re¬
quest");
 }
 }
}

The SessionIdProvider interface

The example request event adapter above registers an implementation of SessionIdProvider in the
constructor. This enables it to retrieve the server session ID.

Oracle Commerce Guided Search Assembler Application Developer's Guide

97Tuning an Assembler application | Configuring logging for an Assembler Application

The Oracle Tools and Frameworks installation implements this interface in the included SpringUtility
class. You can create your own SessionIdProvider class by extending the SessionIdProvider interface
and implementing the getSessionID() method.

Request event adapters in the reference application

The Discover Electronics reference application includes the following implementations of the Assem¬
blerEventListener interface:

• AssemblerEventAdapter
• ContentItemAugmentAdapter
• LogServerAdapter
• RequestEventListener

For additional information about these classes, see the Assembler API Reference (Javadoc).

About registering a request event adapter
To use a request event adapter, you must register it with your AssemblerFactory.

You can disable request event adapters by removing them from the AssemblerFactory configuration.

Request event adapter configuration in the reference application

In the reference application, the AssemblerFactory interface is implemented as SpringAssemblerFac¬
tory, and the AssemblerEventListener objects are specified as constructor arguments in the Assembler
context file:
<!--
 ##
 # ASSEMBLER FACTORY
 #
 # Required.
 #
-->
<bean id="assemblerFactory" class="com.endeca.infront.assembler.spring.SpringAssem¬
blerFactory"
 scope="singleton">
 <constructor-arg>
 <bean class="com.endeca.infront.assembler.AssemblerSettings">
 <property name="previewEnabled" value="${preview.enabled}" />
 <property name="previewModuleUrl" value="http://${work¬
bench.host}:${workbench.port}/preview" />
 </bean>
 </constructor-arg>
 <constructor-arg>
 <list>
 <bean class="com.endeca.infront.logger.SLF4JAssemblerEventLogger" />

<bean class="com.endeca.infront.assembler.event.request.ContentItemAug¬
mentAdapter">
 <constructor-arg ref="springUtility"/>
 </bean>
 <bean class="com.endeca.infront.navigation.event.LogServerAdapter">
 <constructor-arg ref="springUtility"/>
 <constructor-arg value="${logserver.host}"/>
 <constructor-arg value="${logserver.port}"/>
 </bean>
 </list>
 </constructor-arg>
</bean>

Oracle Commerce Guided Search Assembler Application Developer's Guide

Tuning an Assembler application | Configuring logging for an Assembler Application98

Request event adapters in the reference application
The Discover Electronics reference application includes two request event adapters, ContentItemAugmen¬
tAdapter and LogServerAdapater.

DescriptionAdapter

Appends request event information to the Content Item returned by
the assemble()method. Information is included as a nested Content

com.endeca.infront.assem¬
bler.request.ContentItemAug¬
mentAdapter Item of type AssemblerRequestEvent, with the key endeca:as¬

semblerRequestInformation. For a list of attributes that are
available out-of-the-box, see Request Event Attributes on page 327.

Formats data from the request event and sends it to the Oracle Endeca
Log Server, which allows Workbench users to generate reports using
the Report Generator.

com.endeca.infront.naviga¬
tion.event.LogServerAdapter

The adapter must be configured with the host and port of the log server.
In the reference application, these values are configured in the
WEB-INF\assembler.properties file.

Client side click events
The Oracle log server tracks the following click events from the client side of an Assembler application:

DescriptionTypeAttribute Key

Did the user select a dimension search result.BooleanIN_DIM_SEARCH

Did the user select the "did-you-mean" value.BooleanIN_DYM

Did the user select a merch rule (spotlight).BooleanIN_MERCH

Did an action cause a conversion.BooleanCONVERTED

You can include the information collected from these events in your application reports. For more information
about the Log Server and Report Generator components, refer to the Platform Services Log Server and Report
Generator Guide.

Configuring cartridge performance logging
The Assembler tracks performance statistics for registered events; this information is available from the
administrative servlet at http://<workbench host>:<workbench port>/<application>/admin
using the /admin?op=stats operation.

For example, you can view the performance statistics for the default Discover Electronics application by
navigating to http://localhost:8006/discover-authoring/admin?op=stats. For more information
about the administrative servlet, see the Oracle Commerce Administrator's Guide.

Oracle Commerce Guided Search Assembler Application Developer's Guide

99Tuning an Assembler application | Configuring cartridge performance logging

Performance logging is enabled for the core cartridges included with Tools and Frameworks. If you create a
custom cartridge handler and wish to track its processing time, you must use the static PerfUtil.start()
method to create a corresponding Event.

Example

For example:
Event event = PerfUtil.start("com.example.ClassName_MyMethod");
try {
 /* cartridge handler logic */
 event.succeed();
} finally {
 event.failIfNotCompleted();
}

Note: A call to PerfUtil.start must include a corresponding call to either the Event.succeed()
or Event.fail() method of the returned Event instance. Oracle recommends using the
Event.failIfNotCompleted() helper method within a finally{} block to ensure proper resolution.

For more information about the com.endeca.infront.perf package, see the Assembler API Reference
(Javadoc).

Understanding and debugging MDEX Engine query results
The MDEX Engine provides several methods for understanding why certain results were returned for a query
so that you can determine how to tune search features to provide the desired results.

About the query debugging features
The MDEX Engine query debugging features include Why Match, Word Interpretation, Why Rank, and Why
Precedence Rule Fired. Each feature provides information about a different aspect of search results.

DescriptionFeature

Augments record results with information about which record properties were
involved in search matching.

Why Match

Augments record results with information about which relevance ranking
modules ordered the results and why a particular record was ranked in the
way that it was.

Why Rank

Augments root dimension values with information about how the precedence
rule was triggered (explicitly or implicitly), which dimension ID and name

Why Precedence Rule Fired

triggered the precedence rule, and the type of precedence rule (standard, leaf,
or default).

Reports word or phrase substitutions made during text search processing due
to stemming, thesaurus expansion, or spelling correction.

Word Interpretation

Oracle Commerce Guided Search Assembler Application Developer's Guide

Tuning an Assembler application | Understanding and debugging MDEX Engine query results100

About enabling query debugging features
You enable the query debugging features on an Assembler application via the debugEnabled constructor
argument on your MdexRequestBroker object. In the Discover Electronics reference application, this is
configured in the MDEX Resource section of the Spring context file for the Assembler.

When debugEnabled is set to true, it enables query debugging features to be applied to an Assembler
request. When set to false, debugging features are turned off for every request. Debugging features are
disabled by default.

Important: Query debugging features are not optimized for performance and can be very expensive to
process. For both performance and security reasons, the debug constructor argument should always be
set to false in a production environment.

In addition to the corresponding object configuration, Word Interpretation must be enabled via the
--wordInterp Dgraph flag.

The following shows the default MDEX resource configuration in the Discover Electronics application:
<bean id="mdexRequestBuilder" scope="request" class="com.endeca.infront.naviga¬
tion.request.MdexRequestBroker">
 <constructor-arg ref="mdexResource" />
 <!-- Debug Enabled Parameter. When set to true, allows debug information to
be returned from the Assembler -->

<constructor-arg value="false"/>
</bean>

URL parameters for query debugging features
All query debugging features except for Word Interpretation may be enabled on a per-query basis via URL
parameters.

The following parameters take a value of 1 (for enabled) or 0 (for disabled):
• whymatch

• whyrank

• whyprecedencerulefired

The Word Interpretation feature can only be enabled at the level of an individual cartridge handler.

Note: If the debug constructor argument on the MDEX resource bean is set to false, all debugging
features are disabled on every request regardless of URL parameters.

About query debugging results in the reference application
In Discover Electronics, query debugging results can be returned as part of the response model for the Results
List, Search Adjustments, and Refinement Menu cartridges as appropriate. In the Discover Electronics reference
application, these results can be enabled by un-commenting the corresponding properties in each cartridge
handler.

The debugging results are returned as properties on returned records:

Oracle Commerce Guided Search Assembler Application Developer's Guide

101Tuning an Assembler application | Understanding and debugging MDEX Engine query results

ResultsFeature

Returns information about why each record matched the query in a
Dgraph.WhyMatch property on the record.

Why Match

Returns information about why each record was ranked the way it was in a
Dgraph.WhyRank property on the record.

Why Rank

Returns information about precedence rules that fired on a query in a
DGraph.WhyPrecedenceRuleFired property on each root dimension value.

Why Precedence Rule Fired

Returns information about word or phrase substitutions as a map that can be
accessed via getInterpretedTerms() on the SearchAdjustments
model.

Word Interpretation

For details about the format of the debugging results, refer to the MDEX Engine Developer's Guide.

Note: The renderers in the Discover Electronics application do not include rendering logic to display the
query debugging properties, but the information is available from the JSON or XML view.

The relevant configuration for the individual cartridge handlers in the Discover Electronics reference application
is shown below:

• Results List — Why Match, Why Rank
<bean class="com.endeca.infront.cartridge.ResultsListConfig" scope="singleton">

<!-- <property name="whyMatchEnabled" value="true"/> -->
 <!-- <property name="whyRankEnabled" value="true"/> -->

<!-- additional elements omitted from this example -->
</bean>

Enabling these settings overrides the default values specified for the setWhyMatchEnabled and
setWhyRankEnabled methods on the com.endeca.infront.cartridge.ResultsListConfig
object when the Endeca Tools Service is initialized.

• Refinement Menu — Why Precedence Rule Fired
<bean class="com.endeca.infront.cartridge.RefinementMenuConfig" scope="single¬
ton">
 <property name="moreLinkText" value="More..."/>
 <!-- <property name="whyPrecedenceRuleFired" value="true"/> -->
</bean>

Enabling this setting overrides the default value specified for the setWhyPrecedenceRuleFiredmethod
on the com.endeca.infront.cartridge.RefinementMenuConfig object when the Endeca Tools
Service is initialized.

• Search Adjustments — Word Interpretation
<bean class="com.endeca.infront.cartridge.SearchAdjustmentsConfig" scope="sin¬
gleton">

<!-- <property name="showWordInterp" value="true"/> -->
</bean>

Enabling this setting overrides the default value specified for the setShowWordInterp method on the
com.endeca.infront.cartridge.SearchAdjustmentsConfig object when the Endeca Tools
Service is initialized.

Oracle Commerce Guided Search Assembler Application Developer's Guide

Tuning an Assembler application | Understanding and debugging MDEX Engine query results102

Important: In order for interpreted word information to be available, you must start your Dgraph with
the --wordInterp flag. This flag is not enabled in the deployment descriptor file for the Discover
Electronics reference application.

Oracle Commerce Guided Search Assembler Application Developer's Guide

103Tuning an Assembler application | Understanding and debugging MDEX Engine query results

Part 4

Optimizing Application URLs

• About the URL optimization classes
• Working with Application URLs
• Preparing your application
• Building optimized URLs
• Configuring URLs
• Integrating with the Sitemap Generator

Chapter 10

About the URL optimization classes

This section provides an introduction to the URL optimization classes in the Assembler API.

Package contents
The com.endeca.soleng.urlformatter package within
ToolsAndFrameworks\<version>\assembler\lib\endeca_assembler-<version>.jar contains
the classes and dependencies necessary for generating optimized URLs and canoncial links in your application.

To enable the API for the Discover Electronics reference application, the endeca_assembler-<version>.jar
file is also included under the
ToolsAndFrameworks\<version>\reference\discover-electronics-authoring\WEB-INF\lib
directory.

Introduction to URL optimization
Dynamically created URLs that are composed of meaningless, randomly generated strings can lower your
site's search engine ranking and make it harder for users to recognize your site. The Assembler API includes
classes that enable you to create site links using directory-style URLs. These URLs include keywords and
store the dynamic information in the base URL rather than in the query string.

The resulting URLs do not contain any URL query parameters. Instead, all of the necessary Endeca values
are stored in the URL path, resulting in search engine-friendly URLs.

Note: The examples in this guide assume a sample Web application running on
http://localhost:8888 against a wine data set.

Overview of URL optimization capabilities
The URL optimization classes are designed to increase your search engine rankings by enabling you to create
search engine-friendly URLs.

Integration of keywords into the URL string

Many search engines evaluate URL strings as part of their relevancy ranking strategy. Generating URLs that
include keywords can increase your natural search engine ranking as well as create visitor-friendly URLs that
are easier for front-end users to understand.

Using the URL optimization classes, you can configure the following strings to appear in the URL:
• Dimensions
• Dimension values
• Dimension ancestors
• Record properties
• Text search queries

For example, the base URL for a Merlot page in a wine application configured to include ancestors in the string
could appear as:

http://localhost/ContentAssemblerRefApp/Content.aspx/Wine-Red-Merlot/

The optimized URL is more comprehensible to users and more search-engine friendly than the traditional URL,
which contains no keywords:

http://localhost:8888/endeca_jspref/con¬
troller.jsp?sid=122C7EA4C912&Ne=6200&enePort=15000&eneHost=localhost&N=8025

Canonicalizing the URL string

Dynamic sites often produce syntactically different URLs for the same page. Multiple variant URLs result in
duplicate content and lower search engine ranking.

For example, users might be able to reach a Napa white wine page by first clicking on “Napa” and then clicking
on “White”, or by first clicking on “White” and then “Napa.” This creates two syntactically unique links pointing
to the same Napa White page:

• http://localhost:8888/urlformatter_jspref/controller/Wine-White/Region-Ger¬
many/_/N-1z141vcZ66t

• http://localhost:8888/urlformatter_jspref/controller/Region-Germany/Wine-
White/_/N-1z141vcZ66t

To ensure that only one version of the URL per page is used in links throughout the site, the com.ende¬
ca.soleng.urlformatter .NavStateCanonicalizer interface provides options for creating a single
"canonical" URL for a given location.

Configuring the word separator string

It is possible to customize the word separator for each keyword string in the URLs. By default, the word separator
is the dash character "-":

http://localhost:8888/urlformatter_jspref/controller/Wine-White/Region-Germany/_/N-
1z141vcZ66t

Moving Endeca URL parameters out of the query string

In order to create directory-style URLs, you can limit the number of Endeca parameters in the query string by
moving them from the query string and into the path-params section of the URL.

For example, the following URL has the Endeca parameters N, Ntk, Ntt, and Ntx in the query string:

http://localhost/ContentAssemblerRefApp/Content.aspx/Bordeaux?N=4294966952&from¬
search=false&Ntk=All&Ntt=red&Ntx=mode%2bmatchallpartial

Oracle Commerce Guided Search Assembler Application Developer's Guide

About the URL optimization classes | Overview of URL optimization capabilities108

To optimize the URL, you can move Endeca parameters into the path-params section of the URL. For example,
the following URL includes the N and Ntt parameters in the base URL:

http://localhost/ContentAssemblerRefApp/Content.aspx/Bordeaux/_/N-4294966952/Ntt-
red?fromsearch=false&Ntk=All&Ntx=mode%2bmatchallpartial

Encoding Endeca Parameters

In order to shorten URLs, the URL optimization classes allow base-36 encoding of Endeca parameters.

For example, the following URL for Vintage > 1996 contains the dimension value ID for 1996 (4294962059):

http://localhost/ContentAssemblerRefApp/Content.aspx/_/N-4294962059

By base-36 encoding the N parameter, you can shorten the URL:

http://localhost/ContentAssemblerRefApp/Content.aspx/_/N-1z13xxn

About URL canonicalization
Dynamic sites often produce syntactically different URLs for the same page. Multiple variant URLs can lower
the search engine ranking of a page. Canonicalizing URLs reduces the duplicate content and improves search
engine ranking.

Many search engines base their relevancy ranking algorithms on the number and quality of links that point to
a particular page. The more links there are that point to a particular page, the higher the page rank. Multiple
URLs generated by a dynamic site can lower the ranking of a page because, to the search engine, each version
of the URL appears to point to a different page.

For example, users might be able to reach a Napa Red wine page by first clicking on “Napa” and then clicking
on “Red”, or by first clicking on “Red” and then “Napa.” This creates two syntactically unique links pointing to
the same Napa Red page:

• http://localhost:8888/urlformatter_jspref/controller/Wine-Red/Region-Napa/_/N-
1z141vcZ66t

• http://localhost:8888/urlformatter_jspref/controller/Region-Napa/Wine-Red/_/N-
1z141vcZ66t

To the search engine, each version of the URL appears to be its own unique page with identical or near-identical
content, and each page takes a portion of the link references.

To improve quality, search engines try to minimize the appearance of largely similar pages within results sets.
Among other strategies, all indexed pages are evaluated for duplicates and near-duplicates before a page is
selected to be displayed in the search results. In the case of the Napa Red page, only one of the two URLs
would be selected -- and therefore only half of the link references are evaluated. This link dilution of the Napa
Red page may result in a lower position within search results. Multiple parameters in URLs have the same
effect.

In order to avoid multiple versions of URLs per page, links throughout the site should be standardized
(canonicalized), and requests for a non-standard version of the URL should be redirected to the canonical
version via a "301" (permanent) redirect.

By design, the URL optimization classes prevent the creation of syntactically different URLs by canonicalizing
keywords, ensuring that equivalent pages have URLs with the same syntax even if they can be navigated to
through different paths. You can choose from a number of configuration options to control the arrangement of
keywords. For example, you can configure your UrlFormatter object to arrange dimensions alphabetically
in an ascending order:

Oracle Commerce Guided Search Assembler Application Developer's Guide

109About the URL optimization classes | About URL canonicalization

• http://localhost:8888/urlformatter_jspref/controller/Region-Napa/Wine-Red/_/N-
1z141vcZ66t

Now even if a user navigates to "Red" before "Napa", the link still appears as /Region-Napa/Wine-Red.

Related Links
Canonicalization configuration options on page 141

You can customize the canonicalization of URLs for navigation pages by choosing a sort method, for
example by dimension name or dimension ID, and then a sort direction.

Oracle Commerce Guided Search Assembler Application Developer's Guide

About the URL optimization classes | About URL canonicalization110

Chapter 11

Working with Application URLs

Each of the user-facing pages in an Assembler application exists as a page with a corresponding navigation
or record state; the combination of the page and its state results in a specific set of results or a set of record
details. The Assembler API includes an Action class for storing these URL components and returning them
as part of the output model produced by a cartridge handler.

About application URLs
Features in a front-end application can provide one or more links to other locations within a site. The information
required for constructing these links is provided on the cartridge response model as an Action object that
includes the components of a destination URL.

For example, a dimension refinement in a Refinement Menu cartridge has an associated action to select the
refinement and add it to the end user's navigation state. A record in a Results List cartridge has an action to
view the corresponding record detail page.

The Assembler API includes an ActionPathProvider interface that returns components of an application
URL. For the Discover Electronics reference application, an implementation of this interface is configured in
the NavigationCartridgeHandler.

Cartridge handlers in the reference application use this implementation to create NavigationAction paths
to a certain navigation state (like the modified navigation state created when a user selects a dimension
refinement), or RecordAction paths to specified records (such as a record select from the results list).

About Actions
An Action object allows you to construct a link that represents a decision by an end user. The included fields
and values depend on the action that the user wishes to take; they can include the action label, the root site
path, the path to the destination content within the site, and the site state.

The Action class does not include a complete URL to the resulting navigation state or record; instead, the
URL resulting from an Action is generally created by combining fields. For details, see "Action fields."

The Assembler splits the class into three subclasses:
• NavigationAction — An Action that represents changing the current navigation state, such as through

a search query or the addition of a dimension refinement. For example, the "See All" link on a
RecordSpotlight object includes a NavigationAction for navigating to the refinement state
represented by the spotlight.

• RecordAction— An Action that represents selecting a record or aggregate record. The individual records
in a RecordSpotlight each include a RecordAction for selecting that record.

• UrlAction — An Action that represents following an arbitrary URL. The Media Banner cartridge includes
a UrlAction for URLs that are manually specified in Experience Manager.

Note: For information about the Actions associated with each output model, refer to the Assembler API
Reference (Javadoc) for the corresponding class.

Action fields
All Actions include the following fields:

DescriptionField

The label that displays to the application end-user for the specified action. For example,
you might set this to a product name for a link from a results list to a record detail page, or

Label

it you might set it to a dimension refinement name when displaying a breadcrumb with an
associated Action to remove the refinement and adjust the user's navigation state.

The path that identifies the EAC application associated with the Action, such as
/sites/Discover.

Site root path

The path that identifies the content associated with the Action within the containing site. In
the Discover Electronics reference application, this is the servlet that handles the specified
content type, such as /browse or /detail.

Content path

Site State is an object that contains the siteId, matchedUrlPattern, and contentPath
used to query the Assembler.

Site state

Additionally, certain types of Actions may include additional fields. A NavigationAction includes a field for
the navigation state represented by the Action, while a RecordAction action includes a field for the
corresponding record state.

Using action fields

To construct a useable link from an Action, the UI tier of your application (the cartridge renderers in the Discover
Electronics reference application) must include logic for combining the Action fields. A typical use case consists
of directly concatenating fields, depending on the type of page you wish to link to.

In the reference application, a link to a navigation state typically combines the content path and the desired
navigation state:
String href = action.getContentPath() + action.getNavigationState();

A link to a record details page combines the content path with the appropriate record state:
String href = action.getContentPath() + action.getRecordState();

In an application with multiple sites where your site definition specifies URL pattern matching, a link to a
navigation state combines the site state, the content path and the desired navigation state. In this example,
getMatchedUrlPattern returns the portion of URL from the incoming request that matches with a pattern
configured on a site.
String href = action.getSiteState().getMatchedUrlPattern() + action.getContent¬
Path() + action.getNavigationState();

Oracle Commerce Guided Search Assembler Application Developer's Guide

Working with Application URLs | About Actions112

If the site definition in this application specifies domain pattern matching, then the link would be:
String href = action.getContentPath() + action.getNavigationState();

If it matches a domain pattern, getMatchedUrlPattern() is blank so you can use the following for either
domain or URL pattern matching:
String href = action.getSiteState().getMatchedUrlPattern() + action.getContent¬
Path() + action.getNavigationState();

This does not handle the case where the site ID is passed, such as preview passing the site ID. To handle all
these cases, you can add com.endeca.infront.site.SiteUtils.getSiteUrl to return a site-specific
URL.

For example:
SiteUtils.getSiteUrl(action.getSiteState(), action.getContentPath() + action.get¬
NavigationState())

FunctionTags also has a getSiteUrl method so you can call this from a JSP file as well. For example, in
the userPanel.jsp file:
<a href='<c:url value="${util:getSiteUrl(siteState, '/about-us')}" />'>
 About Us

A link to an arbitrary URL does not require combining fields, since the UrlAction object includes a method
for directly retrieving a configured URL:
String href = action.getUrl();

Most of the Discover Electronics cartridge renderers use the <discover:link> tag, defined in
WEB-INF\tags\discover\link.tag. The tag makes use of the getUrlForAction function declared in
WEB-INF\tlds\functions.tld and defined in
WEB-INF\classes\com\endeca\infront\refapp\support\FunctionTags.java.

About using Actions with the packaged services
The packaged services in Oracle Tools and Frameworks return specific actions for the included cartridges.

The following is an Experience Manager example of the results of a guided search service query for the URI
http://localhost:8006/assembler-authoring/json/services/guidedsearch?Ntt=pink+cam¬
era, serialized to JSON:
{
 "@type": "GuidedSearchService",
 "name": "Guided Search Service",
 "navigation": { … },
 "breadcrumbs": { … },
 "resultsList": {
 "@type":"ResultsList",
 "totalNumRecs":228,
 "sortOptions":[
 {
 "@class":"com.endeca.infront.cartridge.model.SortOptionLabel",
 "selected":true,

"navigationState":"?Ntt=pink+camera",
 "contentPath":"\/services\/guidedsearch",
 "siteRootPath":"\/pages",
 "siteState":{
 "@class":"com.endeca.infront.site.model.SiteState",
 "contentPath":"\/services\/guidedsearch",

Oracle Commerce Guided Search Assembler Application Developer's Guide

113Working with Application URLs | About Actions

 "siteId":"\/DiscoverElectronics",
 "properties":{
 }
 },
 "label":"Relevance"
 },
 { … }
],
 "firstRecNum":1,
 "lastRecNum":12,
 "pagingActionTemplate":{ ... },
 "recsPerPage":12,
 "records":[
 {
 "@class":"com.endeca.infront.cartridge.model.Record",
 "detailsAction":{
 "@class":"com.endeca.infront.cartridge.model.RecordAction",

"recordState":"\/Canon\/Digital-IXUS-80-IS\/_\/A-1439032",
 "contentPath":"\/services\/recorddetails",
 "siteRootPath":"\/pages",
 "siteState":{
 "@class":"com.endeca.infront.site.model.SiteState",
 "contentPath":"\/services\/guidedsearch",
 "siteId":"\/DiscoverElectronics",
 "properties":{
 }
 }
 },
 "numRecords":3,
 "attributes":{},
 "records":[...]
 },

{ content removed from this example }
]
 },

"content removed from this example"
}

Note that the sortOptions returned for the Results List cartridge include the Action fields required to create
a URL for the navigation state resulting from modifying the sort order. Sorting by Price (Ascending) requires
constructing a URL with the appropriate navigationState and siteState, resulting in http://local¬
host:8006/assembler-authoring/json/services/guidedsearch?Ns=prod¬
uct.price|0&Ntt=pink+camera. Querying this URL returns the JSON response for the re-ordered results.

Similarly, each of the records returned in the Results List includes the Action fields for an associated record
details page. Using the /services/recorddetails content root and the recordState for the Slim Camera
Case results in the URL http://localhost:8006/assembler-authoring/json/services/record¬
details/Kodak/Slim-Camera-Case/_/A-2707821. Querying this URL returns the record details for the
Slim Camera Case.

The following is an Oracle Commerce Guided Search (without Experience Manager) example of the results
of the same guided search service query for the URI http://localhost:8006/assembler-author¬
ing/json/services/guidedsearch?Ntt=pink+camera, serialized to JSON:
{
 "@type": "GuidedSearchService",
 "name": "Guided Search Service",
 "navigation": { … },
 "breadcrumbs": { … },
 "resultsList": {

Oracle Commerce Guided Search Assembler Application Developer's Guide

Working with Application URLs | About Actions114

 "@type":"ResultsList",
 "totalNumRecs":228,
 "sortOptions":[
 {
 "@class":"com.endeca.infront.cartridge.model.SortOptionLabel",
 "selected":true,

"navigationState":"?Ntt=pink+camera",
 "contentPath":"\/guidedsearch",
 "siteRootPath":"\/services",
 "siteState":{
 "@class":"com.endeca.infront.site.model.SiteState",
 "contentPath":"\/guidedsearch",
 "siteId":"\/DiscoverElectronics",
 "properties":{
 }
 },
 "label":"Relevance"
 },
 { … }
],
 "firstRecNum":1,
 "lastRecNum":12,
 "pagingActionTemplate":{ ... },
 "recsPerPage":12,
 "records":[
 {
 "@class":"com.endeca.infront.cartridge.model.Record",
 "detailsAction":{
 "@class":"com.endeca.infront.cartridge.model.RecordAction",

"recordState":"\/Canon\/Digital-IXUS-80-IS\/_\/A-1439032",
 "contentPath":"\/recorddetails",
 "siteRootPath":"\/services",
 "siteState":{
 "@class":"com.endeca.infront.site.model.SiteState",
 "contentPath":"\/guidedsearch",
 "siteId":"\/DiscoverElectronics",
 "properties":{
 }
 }
 },
 "numRecords":3,
 "attributes":{},
 "records":[...]
 },

{ content removed from this example }
]
 },

"content removed from this example"
}

Note the differences from the Experience Manager example for the contentPath and siteRootPath values.

About working with URL parameters
The navigationStateBuilder handles both Endeca-specific and non-Endeca URL parameters.

All URL parameters are parsed into the parameters map in the NavigationState object that represents the
user's current navigation state. Endeca-specific parameters are used in constructing MDEX Engine queries.

Oracle Commerce Guided Search Assembler Application Developer's Guide

115Working with Application URLs | About working with URL parameters

All other parameters are included in the navigation state or record state fields on the Action object in the output
model. You can change this default behavior by specifying which parameters to remove when generating
Actions:

DescriptionProperty

A list of URL parameters that should be removed from
all Actions.

removeAlways

A list of URL parameters that should be removed from
an Action when the Action represents a change in the
filter (search or navigation) state.

removeOnUpdateFilterState

A list of URL parameters that should be removed from
an Action when the user clears the filter state of all
search and navigation selections.

removeOnClearFilterState

About URL configuration in the reference application
URL configuration in the Discover Electronics reference application is located in the Assembler context file,
WEB-INF\assembler-context.xml. Configuration is divided between the navigationStateBuilder
and the NavigationCartridgeHandler.

The configuration for the navigationStateBuilder specifies a urlFormatter to use when serializing a
NavigationState:
<!--
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    ~ Navigation state (including record state) and related config
-->

<bean id="navigationStateBuilder" scope="request"
      class="com.endeca.infront.navigation.url.UrlNavigationStateBuilder">

<property name="urlFormatter" ref="seoUrlFormatter" />
    <property name="mdexRequestBroker" ref="mdexRequestBroker"/>
    <property name="defaultSearchKey" value="All" />
    <property name="defaultMatchMode" value="ALLPARTIAL" />
    <property name="defaultFilterState">

<!-- Filter state properties removed from this example -->
    </property>

Note: The seoUrlFormatter bean is defined in the imported endeca-seo-url-config file.

Configuring URL parameters

The configuration for the navigationStateBuilder also lets you specify the URL parameters to remove
from the request URL when serializing a NavigationState or RecordState:

    <property name="removeAlways">
        <list>
            <value>contentText</value>
            <value>Nty</value>
            <value>Dy</value>
            <value>collection</value>
        </list>

Oracle Commerce Guided Search Assembler Application Developer's Guide

Working with Application URLs | About URL configuration in the reference application116



</property>
    <property name="removeOnUpdateFilterState">
        <list>
            <value>No</value>
        </list>
    </property>

<property name="removeOnClearFilterState">
        <list>
            <value>Ns</value>
            <value>Nrpp</value>
            <value>more</value>
        </list>

</property>
</bean>

Configuration for navigation and record paths

The content paths that prefix navigation and record states when creating Action URLs are configured in the
actionPathProvider of the NavigationCartridgeHandler as sets of key-value pairs:
<bean id="NavigationCartridgeHandler" abstract="true">
        <property name="navigationState" ref="navigationState" />
        <property name="mdexRequestBroker" ref="mdexRequestBroker" />
        <property name="actionPathProvider" ref="actionPathProvider"/>
        <property name="siteState" ref="siteState"/>
    <bean id="actionPathProvider" scope="request" class="com.endeca.infront.re¬
fapp.navigation.BasicActionPathProvider">
    <constructor-arg index="0" ref="contentSource"/>
    <constructor-arg index="1" ref="httpServletRequest"/>

<!-- navigationActionUriMap -->
    <constructor-arg index="2">
        <map>
            <entry key="^/pages/[^/]*/mobile/detail$"value="/mobile/browse"/>
            <entry key="^/pages/[^/]*/services/recorddetails/.*$"value="/ser¬
vices/guidedsearch"/>
            <entry key="^/pages/[^/]*/detail$"value="/browse"/>
            <entry key="^/services/.*$"value="/services/guidedsearch"/>
        </map>
    </constructor-arg>
    <!-- recordActionUriMap -->
    <constructor-arg index="3">
        <map>
            <entry key="^/pages/[^/]*/mobile/.*$"value="/mobile/detail"/>
            <entry key="^/pages/[^/]*/services/.*$"value="/services/recordde¬
tails"/>
            <entry key="^/pages/[^/]*/.*$"value="/detail"/>
            <entry key="^/services/.*$"value="/recorddetails"/>
        </map>
    </constructor-arg>
    <constructor-arg index="4" ref="siteState"/>
</bean>

URL formatter configuration
The Discover Electronics reference application serializes NavigationState objects through the use of a
UrlNavigationStateBuilder configured with a UrlFormatter. By default, the application is configured
for search engine optimized (SEO) URLs using the SeoUrlFormatter class, but it also includes a BasicUrl¬
Formatter for creating basic Endeca URLs.

Oracle Commerce Guided Search Assembler Application Developer's Guide

117Working with Application URLs | About URL configuration in the reference application



The basic URL formatter

The following properties can be set on the basicUrlFormatter bean:

DescriptionProperty

Specifies the default query encoding, for example, UTF-8.defaultEncoding

Specifies whether a question mark is prepended to the URL
parameter portion of the URL, after the servlet path.

prependQuestionMark

The configuration in WEB-INF\endeca-url-config is shown below:
<!--
    ########################################################################
    # BEAN: basicUrlFormatter
    #
    # This is an UrlFormatter that generates "classic" Endeca URLs.
    #
-->

<bean id="basicUrlFormatter" class="com.endeca.soleng.urlformatter.basic.BasicUrl¬
Formatter">
    <property name="defaultEncoding">
        <value>UTF-8</value>
    </property>

    <property name="prependQuestionMark">
        <value>true</value>
    </property>
</bean>

The SEO URL formatter

The following properties can be set on the seoUrlFormatter bean:

DescriptionProperty

Specifies the default query encoding, for example, UTF-8.defaultEncoding

The separator token used to separate the path section of the URL from the
parameter section.

pathSeparatorToken

The character used to separate key/value pairs in the parameter section of
the URL.

pathKeyValueSeparator

Specifies the URL parameter keys for the following:pathParamKeys

• The parameter key used for record detail links. The default value is R.
• The parameter key used for aggregate record detail links. The default

value is A.
• The parameter key used for navigation state. The default value is N.

The NavStateFormatter that maps navigation state information to URL
path keywords.

navStateFormatter

The ERecFormatterthat maps Endeca record attributes to URL path
keywords.

ERecFormatter

The AggrERecFormatter that maps aggregate record attributes to URL
path keywords.

aggrERecFormatter

Oracle Commerce Guided Search Assembler Application Developer's Guide

Working with Application URLs | About URL configuration in the reference application118



DescriptionProperty

Specifies the canonicalizer used to sort URL parameters to ensure that
included parameters are arranged a specific order.

navStateCanonicalizer

Determines whether or not the canonicalizer specified in navStateCanon¬
icalizer is used. The default value is true. This value is ignored if the
canonicalLinkBuilder enables canonical links.

useNavStateCanonicalizer

A list of UrlParamEncoder objects to use for encoding URL parameters.urlParamEncoders

The configuration in WEB-INF\endeca-seo-url-config is shown below:
<!--
    ########################################################################
    # BEAN: seoUrlFormatter
    #
    # This is the SEO URL formatter, which is responsible for
    # transforming UrlState objects into URL strings. 
    #
-->
    <bean id="seoUrlFormatter" class="com.endeca.soleng.urlformatter.seo.SeoUrl¬
Formatter">

    <property name="defaultEncoding">
        <value>UTF-8</value>
    </property>

    <property name="pathSeparatorToken">
        <value>_</value>
    </property>

    <property name="pathKeyValueSeparator">
        <value>-</value>
    </property>

    <property name="pathParamKeys">
        <list>
            <value>R</value>
            <value>A</value>
            <value>N</value>
        </list>
    </property>

    <property name="navStateFormatter">
        <ref bean="navStateFormatter"/>
    </property>

    <property name="ERecFormatter">
        <ref bean="erecFormatter"/>
    </property>

    <property name="aggrERecFormatter">
        <ref bean="aggrERecFormatter"/>
    </property>

    <property name="navStateCanonicalizer">
        <ref bean="navStateCanonicalizer"/>
    </property>

    <property name="useNavStateCanonicalizer">

Oracle Commerce Guided Search Assembler Application Developer's Guide

119Working with Application URLs | About URL configuration in the reference application



        <value>false</value>
    </property>

    <property name="urlParamEncoders">
        <list>
            <ref bean="N-paramEncoder"/>
        </list>
    </property>
</bean>

About working with canonical links
Configure the Assembler to add canonical link support to the root content item.

The canonical link configuration in the Discover Electronics reference application is located in the Assembler
context file, WEB-INF\assembler-context.xml. Configuration is handled by the canonicalLinkBuilder
which constructs links for navigation state and record state URLs that include the canonical link element.

The Canonical Link Builder

The following properties can be set on the canonicalLinkBuilder:

DescriptionProperty

Allows the retrieval of services without explicit injection.
In this case, it is used to reference the framework for

objectLocator

retrieving the recordState and navigationState
for the current request.

The ID of the recordState being retrieved, not the
actual recordState.

recordStateId

The ID of the navigationState being retrieved, not
the actual navigationState.

navigationStateId

The ID of the siteState being retrieved, not the
actual siteState.

siteStateId

The list of URL parameters that are included in the
canonical link.

includedParameters

The configuration for the canonicalLinkBuilder specifies an objectLocator to use when creating
canonical links:
<bean id="assemblerFactory" class="com.endeca.infront.assembler.spring.SpringAssem¬
blerFactory">
...
    <constructor-arg>
        <list>
            ...
            <bean class="com.endeca.infront.navigation.url.event.CanonicalL¬
inkBuilder">
                <property name="objectLocator" ref="springUtility"/>
                <property name="recordStateId" value="recordState"/>
                <property name="navigationStateId" value="navigationState"/>
                <property name="siteStateId" value="siteState"/>                

                <property name="includedParameters">

Oracle Commerce Guided Search Assembler Application Developer's Guide

Working with Application URLs | About working with canonical links120



                    <list>
                        <value>R</value>
                        <value>A</value>
                        <value>N</value>
                        <value>Ntt</value>
                    </list>
                </property>
            </bean>
        </list>
    </constructor-arg>
</bean>

Output content items

The Assembler API returns navigation state, record state, and site state content items as output from the
CanaonicalLinkBuilder. The following examples are JSON representations of the output.

NavigationState
{
    name: "Static Page Slot",
    ...,
    canonicalLink: {
        @class: "com.endeca.infront.cartridge.model.NavigationAction",
        navigationState: "/Canon/cameras/_/N-1z141xuZ1z141yaZ25y6Zej4?format=json",

        contentPath: "/browse",
        siteRootPath: "/pages",
        label: ""
    }
}

RecordState
{
    name: "Static Page Slot",
    ...,
    canonicalLink: {
        @class: "com.endeca.infront.cartridge.model.RecordAction",
        recordState: "/_/A-1318562?format=json",
        contentPath: "/detail",
        siteRootPath: "/pages",
        label: ""
    }
}

SiteState
canonicalLink:{
     @class":"com.endeca.infront.cartridge.model.NavigationAction",
     navigationState:"\/cameras\/_\/N-25y6",
     contentPath:"\/browse",
     siteRootPath:"\/pages",
     siteState":{"@class":"com.endeca.infront.site.model.SiteState",
     contentPath":"\/browse\/cameras\/_\/N-25y6",
     siteId:"\/DiscoverElectronics",
     properties:{}
     }
  label:""}
  }
}

Oracle Commerce Guided Search Assembler Application Developer's Guide

121Working with Application URLs | About working with canonical links



For each of the content items, a JSP file can render output as in this example:
<link rel="canonical" href="<c:url value='${util:getUrlForAction(rootCompo¬
nent.canonicalLink)}'/>"/>

Oracle Commerce Guided Search Assembler Application Developer's Guide

Working with Application URLs | About working with canonical links122



Chapter 12

Preparing your application

This section describes the basic requirements and recommendations for writing your application.

Preparing your dimensions
If you intend to display dimensions or dimension values in your URLs, you must configure each of the dimensions
to Show with record and Show with record list.

You only need to configure the dimensions you intend to include in URLs. Configuring all dimensions to Show
with record and Show with record list may have performance implications.

To configure a dimension to Show with record and Show with record list:

1. Open your project in Endeca Developer Studio.
2. From the Project Explorer on the left, click Dimensions.

The Dimensions dialog displays.
3. Select the dimension you need to edit.
4. Select the Show with record list checkbox.
5. Select the Show with record checkbox.
6. Click OK.
7. Save your changes.

For more information, please refer to the Oracle Developer Studio Help.

Preparing your properties
If you intend to display record properties in your URLs, you must configure each property to Showwith record
and Show with record list.

You only need to configure the properties you intend to include in URLs. Configuring all properties to Show
with record and Show with record list may have performance implications.

To configure a property to Show with record and Show with record list:

1. Open your project in Endeca Developer Studio.
2. From the Project Explorer on the left, click Dimensions.

The Dimensions dialog displays.



3. Select the dimension you need to edit.
4. Select the Show with record list checkbox.
5. Select the Show with record checkbox.
6. Click OK.
7. Save your changes.

For more information, please refer to the Oracle Developer Studio Help.

Handling images and external JavaScript files
When you modify your application to produce optimized URLs, it is important to ensure that the server can still
locate resources requested by the application, such as image files, JavaScript files, and CSS files.

Relative URLs are partial URLs that omit host and port information. There are two types of relative URLs:
• "Site-relative" URLs are relative to the root directory on the site that hosts the Web page, for example:
/sitemap.htm

• "Non-site-relative" URLs are relative to their parent pages, for example: ../sitemap.htm

Because relative paths are relative to the URL that is requested, not the URL that is ultimately resolved,
optimized URLs may create unresolved links when external resources are referenced. When using optimized
URLs, Endeca recommends replacing non-site-relative URLs with site-relative URLs to ensure that links resolve
properly.

URL transitioning
Managing redirects is an important aspect of search engine optimization. In order to maintain page rank for
resources within your website, you need an effective strategy to manage URL changes.

As you transition from traditional URLs to optimized URLs, or when you change the configuration of your
optimized URLs, it is important to ensure that:

• Links throughout your Web site are updated
• Links to external resources (such as image files, CSS, or Javascript files) are updated
• External links to your Web site are permanently redirected to the new URLs

Links throughout your own Web site and to your own external resources can simply be updated to the new
URLs. However, external references to your site must be redirected in order to prevent unresolved links.

The URL optimization classes are responsible for transforming URLs into Endeca search and navigation
queries, and vice-versa. They do not implement redirect logic. In order to redirect incoming requests, you must
include the appropriate logic in your application controller. By comparing an inbound URL to the canonical
(optimized) form, you can redirect to the canonical URL in cases where the inbound URL is different.

Oracle recommends including HTTP 301 redirects. Unlike HTTP 302 redirects, which collect ranking information
and index content on a site against the source URL, 301 redirects apply this information to the destination
URL.

Oracle Commerce Guided Search Assembler Application Developer's Guide

Preparing your application | Handling images and external JavaScript files124



Chapter 13

Building optimized URLs

This section describes the basic tasks for using the URL optimization classes to build search engine-optimized
URLs.

Core URL optimization classes
The primary classes and interfaces of the URL Optimization API are UrlState, UrlFormatter, and
QueryBuilder.

UrlState

A UrlState instance represents the URL, including any parameters, for a particular navigation state in your
Endeca application. You typically create a UrlState by using a UrlFormatter to parse a URL string. You
then inform the UrlState of the navigation state that it represents by passing it a set of Endeca query results.
When the UrlState is informed, you can modify it in order to generate URLs representing links to other states
in your application, such as selecting refinements.

UrlFormatter

A UrlFormatter is responsible for parsing URL strings into UrlState objects and transforming UrlState
objects back into URLs. The SeoUrlFormatter is a highly configurable implementation of UrlFormatter
that parses and generates search engine-optimized URLs.

QueryBuilder

A QueryBuilder marshals UrlState objects into MDEX Engine queries. The BasicQueryBuilder is an
implementation of QueryBuilder that creates ENEQuery objects from a given UrlState.

For more information about these and other classes, refer to the Assembler API Reference (Javadoc).

Overview of building URLs using the URL optimization classes
Building optimized URLs with the Assembler API requires passing in the necessary configuration and instantiating
the required objects.

The high-level process is as follows:

1. Set up your basic application configuration with a BasicQueryBuilder and SeoUrlFormatter.



How you create and configure the QueryBuilder and UrlFormatter may vary depending on your
application, but they should be should be scoped at a global or application level.

2. Handle requests by parsing the incoming query and sending it to an MDEX Engine.
3. Inform a UrlState object of the navigation state.
4. Modify the UrlState object by adding or removing URL parameters.
5. Generate a URL from the UrlState.

Parsing an incoming query and sending it to an MDEX Engine
Because it is possible for optimized URLs not to contain query string parameters (these parameters can be
stored in the path), you cannot rely on the UrlENEQuery class to create an ENEQuery object from a URL.

Instead, use a UrlFormatter to parse the incoming request URL in order to populate the UrlState with
the current URL query parameters, then use a QueryBuilder to create the ENEQuery from the UrlState.

To parse an incoming request and query an MDEX Engine, follow these steps:

1. Parse the request into a UrlState instance.

For example:
  UrlState requestUrlState = urlFormatter.parseRequest(request);

2. Build an ENEQuery based on the UrlState.

For example:
  ENEQuery eneQuery = queryBuilder.buildQuery(requestUrlState);

3. Execute the request and retrieve the results.

For example:
  HttpENEConnection conn = new HttpENEConnection(mdexHost, mdexPort); 
  ENEQueryResults eneQueryResults = conn.query(eneQuery);

Informing the UrlState of the navigation state
Informing is the process of providing the UrlState object with information about the current query results.

From this information, the UrlState object creates either a NavStateUrlParam if the query results are from
a navigation query, an ERecUrlParam if the query results are from a record detail query, or an AggrERecUrl¬
Param if the query results are from an aggregated record detail query.

The SeoUrlFormatter can use the extra information in these objects to generate customized URLs based
on the current navigation state or properties and dimensions associated with these results.

To inform a UrlState of the current navigation state:

Add code similar to the following:
  urlState.inform(eneQueryResults);

Oracle Commerce Guided Search Assembler Application Developer's Guide

Building optimized URLs | Parsing an incoming query and sending it to an MDEX Engine126



You can generate properly formatted URLs representing either the current navigation state, a record detail
link, or an aggregated record detail link. Note that of these three possiblities, only the record detail link is
guaranteed to be complete when calling inform on an empty UrlState. A navigation URL would be correct
but, without further modification, only reflects the selected dimension values (the N parameter values). An
aggregated record detail URL would not work without adding the required An and Au parameters.

The intent of the inform() method is to give the UrlFormatter and UrlState access to property and
dimension information, not to copy your query. In some cases a complete query URL can only be created
through a combination of using UrlFormatter.parseRequest() on the initial request and calling Url¬
State.setParam() as needed in addition to using inform().

Creating link URLs from a UrlState
To create link URLs on a particular page to different navigation states within your application, modify the
UrlState and then transform the modified UrlState to a URL string.

This procedure requires that you have an informed UrlState representing the current navigation state of
your page.

To create a link URL, follow these steps:

1. Modify the UrlState to reflect a different navigation state in your application.

For example, the following statement creates a refinement link for a Guided Navigation component in your
application:
  UrlState refinedUrlState =
         informedUrlState.selectRefinement(refDim, refDimVal, true);

The final parameter indicates whether the modification should be performed on a cloned version of the
current UrlState, and should typically be true. For instance, in the case of a Guided Navigation
component, you would loop through the possible refinements and create a modified UrlState based on
the current UrlState for each refinement link. If you wanted to select several refinements in the same
URL, you would pass false as the value of this parameter.

For further details about additional methods that can be used to modify a UrlState, please refer to the
Assembler API Reference (Javadoc).

2. Generate the URL string from the modified UrlState.
  String refinedUrl = refinedUrlState.toString();

The UrlState.toString() method calls the formatString() method of the UrlFormatter that
constructed the UrlState instance.

Oracle Commerce Guided Search Assembler Application Developer's Guide

127Building optimized URLs | Creating link URLs from a UrlState





Chapter 14

Configuring URLs

The following sections provide information about creating and using a URL configuration file to optimize your
URLs. The information and examples provided in this section relate to basic URL configuration tasks, and do
not cover the entire breadth of URL optimization capabilities. Endeca recommends consulting the API
documentation as you develop your application.

Anatomy of an optimized Endeca URL
An optimized Endeca URL is made up of four configurable sections.

General URL References

When referring to URLs in general, the API documentation may use the terms "base URL" and "URL query
parameters." The "base URL" is the part of the URL that precedes the question mark.

For example, in the URL:

http://www.example.com/pathparam1/pathparam2/pathparam3/results?queryparam=123

the base URL is the string that appears before the question mark:

http://www.example.com/pathparam1/pathparam2/pathparam3/results

Optimized Endeca URLs

For reference purposes, the documentation identifies four distinct sections of optimized Endeca URLs:
• misc-path
• path-param-separator
• path-params
• query string

For example, the following URL is broken down into subsections:

http://localhost:8888/controller[/Wine-Red-Merlot/Napa/Pine-Ridge/_/N-12ZafZfd?Ne=123]

The sections of the URL encased in square brackets can be broken down into the following components:

[/<misc-path>][/<path-param-separator>][/<path-params>][?<query-string>]

The components correspond to the following strings:



StringSection

Wine-Red-Merlot/Napa/Pine-Ridgemisc-path

_path-param-separator

N-12ZafZfdpath-params

Ne=123query string

misc-path

This section of the URL incorporates keywords into the URL in order to create user-friendly and search
engine-optimized URLs. The misc-path section of the optimized URL can be generated based on dimension
names, dimension values, ancestor names, and record properties. The misc-path component is largely ignored
by the application.

path-param-separator

The path-param-separator component is used to identify the end of the misc-path and the starting point for
path parameters. This string is configurable.

path-params

Together with the query string, the path-params segment of the URL represents the current state of the
application. This may include the numerical representation of the navigation state or a specific record, as well
as any other parameter key-value pairs that have an effect on the displayed content. This component can be
configured to contain several parameters that would typically be included as part of the query string in traditional
Endeca URLs, such as the N, Ne, Ntt, and R parameters.

query string

The query string component of the URL follows the question mark character. The combination of the path-params
and query string represents the current state of the application. Endeca parameters that are not configured to
appear in the path-params section of the URL – such as N, Ne, Ntt, and R – appear in the query string.

About the URL configuration file
The example application uses an XML file named urlconfig.xml to configure the format of the URLs that
it generates.

The reference application uses the Spring Framework for this configuration file. Although the Assembler API
does not require the Spring Framework, it supplies a convenient and flexible configuration mechanism. In
addition, if you plan to use the Sitemap Generator with your application, Endeca strongly recommends using
a urlconfig.xml file to configure your optimized URLs, because the Sitemap Generator relies on the same
format for configuration. If you need further information about the Spring Framework syntax, please consult
the documentation provided with the Spring Framework.

The URL configuration file contains basic configurations for the following objects:
• A BasicQueryBuilder to transform UrlState objects into ENEQuery objects
• An SeoUrlFormatter to transform UrlState objects into optimized URL strings

By specifying settings for additional components in the configuration file, you can configure the following aspects
of your URLs:

Oracle Commerce Guided Search Assembler Application Developer's Guide

Configuring URLs | About the URL configuration file130



• the dimension values and properties to include in the misc-path
• canonicalization options for dimensions in the misc-path
• the path-param-separator
• Endeca parameters to be included in the path-params instead of the query string
• base-36 encoding for numeric Endeca parameters

Creating a URL configuration file
A URL configuration file defines a BasicQueryBuilder and a top-level SeoUrlFormatter.

To create a URL configuration file, follow these steps:

1. Create a basic query builder that invokes the com.endeca.soleng.urlformatter.basic.Basic¬
QueryBuilder class:
For example:
  <bean id="queryBuilder" class="com.endeca.soleng.urlformatter.basic.Basic¬
QueryBuilder">
  </bean>

2. Add the following properties:
DescriptionOption

Specifies the query encoding. For example: <value>UTF-8</value>queryEncoding

Sets the baseUrLENEQuery. This query is used to create the UrlENEQuery
if the UrlState is not associated with a record or navigation state. If this
value is <null/>, a new query is created.

baseUrlENEQuery

Sets the baseNavigationUrlENEQuery. This query is used to create the
UrlENEQuery if the UrlState is associated with a navigation state (but

baseNavigationUrlENE¬
Query

not a record or aggregate record). If this value is <null/>, a new query is
created.

Sets the baseERecUrlENEQuery. This query is used to create the
UrlENEQuery if the UrlState is associated with a record (but not an
aggregate record). If this value is <null/>, a new query is created.

baseERecUrlENEQuery

Sets the baseAggrERecUrlENEQuery. This query is used to create the
UrlENEQuery if the UrlState is associated with an aggregate record. If
this value is <null/>, a new query is created.

baseAggrERecUrlENE¬
Query

Sets the detaultUrlENEQuery. This query is used to create the UrlENE¬
Query if the UrlState contains no parameters.

defaultUrlENEQuery

For example:
  <bean id="queryBuilder" class="com.endeca.soleng.urlformatter.basic.Basic¬
QueryBuilder">

    <property name="queryEncoding">
      <value>UTF-8</value>
    </property>

    <property name="baseUrlENEQuery">
      <value><![CDATA[N=0&Ns=P_Price|1&Nr=8020]]></value>
    </property>

Oracle Commerce Guided Search Assembler Application Developer's Guide

131Configuring URLs | Creating a URL configuration file



    <property name="baseNavigationUrlENEQuery">
      <value><![CDATA[N=0&Ns=P_Price|1&Nr=8020]]></value>
    </property>

    <property name="baseERecUrlENEQuery">
      <null/>
    </property>

    <property name="baseAggrERecUrlENEQuery">
      <value>An=0</value>
      <null/>
    </property>

    <property name="defaultUrlENEQuery">
      <value>N=0</value>
    </property>

  </bean>

3. Create a top-level seoUrlFormatter bean to invoke the com.endeca.soleng.urlformat¬
ter.seo.SeoUrlFormatter class:
For example:
  <bean id="seoUrlFormatter" class="com.endeca.soleng.urlformatter.seo.SeoUrl¬
Formatter">
  </bean>

4. Add the following properties:
DescriptionOption

Specifies the default query encoding. For example: <value>UTF-
8</value>

defaultEncoding

Specifies the character used to separate the misc-path from the
path-params section in URLs.

pathSeparatorToken

Specifies the character used to separate key-value pairs in the path
parameter section of the URL.

pathKeyValueSeparator

For example:
  <bean id="seoUrlFormatter" class="com.endeca.soleng.urlformatter.seo.SeoUrl¬
Formatter">

    <property name="defaultEncoding">
      <value>UTF-8</value>
    </property>

    <property name="pathSeparatorToken">
      <value>_</value>
    </property>

    <property name="pathKeyValueSeparator">
      <value>-</value>
    </property>

<!-- additional elements deleted from this example --!>

  </bean>

Oracle Commerce Guided Search Assembler Application Developer's Guide

Configuring URLs | Creating a URL configuration file132



5. Set any required properties to specify configuration beans.

Note: The instructions in this chapter explain which of beans are required for each task. You can set
these properties on your SeoUrlProvider object as you work through the chapter.

For example:
  <bean id="seoUrlFormatter" class="com.endeca.soleng.urlformatter.seo.SeoUrl¬
Formatter">

    <property name="pathParamKeys">
      <list>
        <value>R</value>
        <value>A</value>
        <value>An</value>
        <value>Au</value>
        <value>N</value>
        <value>No</value>
        <value>Np</value>
        <value>Nu</value>
        <value>D</value>
        <value>Ntt</value>
        <value>Ne</value>
      </list>
    </property>

    <property name="navStateFormatter">
      <ref bean="navStateFormatter"/>
    </property>

    <property name="ERecFormatter">
      <ref bean="erecFormatter"/>
    </property>

    <property name="aggrERecFormatter">
      <ref bean="aggrERecFormatter"/>
    </property>

    <property name="navStateCanonicalizer">
      <ref bean="navStateCanonicalizer"/>
    </property>

    <property name="urlParamEncoders">
      <list>
        <ref bean="N-paramEncoder"/>
        <ref bean="Ne-paramEncoder"/>
        <ref bean="An-paramEncoder"/>
      </list>
    </property>

  </bean>

After you have created the basic URL configuration file, you create additional beans to specify further
configuration for the misc-path and path-params. Follow the procedures in the sections below to complete
your URL configuration.

Related Links
Using the URL configuration file with your application on page 156

Oracle Commerce Guided Search Assembler Application Developer's Guide

133Configuring URLs | Creating a URL configuration file



Before you can create optimized URLs with your own application, you need to include the URL
configuration file in your application's classpath.

About optimizing the misc-path
You can configure dimensions, dimension values, record properties, and aggregate record properties to display
in the misc-path of URLs. You can also specify the order in which dimension and dimension values display.
The urlconfig.xml file provides a simple and convenient method for configuring these options.

navStateFormatter

The navStateFormatter bean invokes the com.endeca.soleng.urlformatter.seo.SeoNavState¬
Formatter class to define dimLocationFormatters for each dimension that you want to configure.

Using the dimLocationFormatters defined in the navStateFormatter bean, you can configure URLs
for navigation pages to include dimension names, roots, ancestors, and dimension value names in the misc-path
of URLs for navigation pages.

For example, the following URL is for the navigation state Region > Napa:

http://localhost:8888/endeca_jspref/controller.jsp?&Ne=8&N=4294967160

By optimizing the URL, it can be formatted as follows:

http://localhost:8888/urlformatter_jspref/controller/Napa/_/N-1z141vc/Ne-8

navStateCanonicalizer

The navStateCanonicalizer bean invokes the com.endeca.soleng.urlformatter.seo.SeoNavS¬
tateCanonicalizer to order the dimension and dimension value names included in the misc-path for
navigation pages. For example, an end user can reach the Wine Type > Red, Region > Napa page by navigating
first to Wine Type > Red and then to Region > Napa, or by navigating to Region > Napa and then Wine Type
> Red. To avoid two syntactically different URLs for the same Wine Type > Red, Region > Napa page, you
can use the navStateCanonicalizer to standardize the order of dimension and dimension values in the
misc-path.

Note: By design, the URL optimization classes prevent the creation of syntactically different URLs by
canonicalizing keywords. You can choose from a number of configuration options to control the
arrangement of keywords, but the URLs are always canonicalized.

erecFormatter

URL optimization for record detail pages is configured separately from navigation pages and aggregate record
details pages. The erecFormatter bean invokes the com.endeca.soleng.urlformatter.seo.Seo¬
ERecFormatter class to define dimLocationFormatters for each dimension that you want to configure.

The same options for including dimension names, roots, ancestors, and dimension value names are available
for record detail pages as are available for navigation pages. While the urlconfig.xml configuration file
uses the same dimLocationFormatters for the erecFormatter and the aggErecFormatter as are
used for the navStateFormatter, this is not a requirement. You can create separate dimLocationFor¬
matters for navigation pages, record detail pages, and aggregate record detail pages.

Oracle Commerce Guided Search Assembler Application Developer's Guide

Configuring URLs | About optimizing the misc-path134



aggrERecFormatter

URL optimization for aggregate record detail pages is configured separately from navigation pages and record
details pages as are available for navigation pages. The aggrERecFormatter bean invokes the com.ende¬
ca.soleng.urlformatter.seo.SeoAggrERecFormatter class to define dimLocationFormatters
for each dimension that you want to configure. The same options for including dimension names, roots,
ancestors, a nd dimension value names are available for aggregate record detail pages. While the
urlconfig.xml configuration file uses the same dimLocationFormatters for the aggrERecFormatter
and the erecFormatter as are used for the navStateFormatter, this is not a requirement. You can create
separate dimLocationFormatters for navigation pages, record detail pages, and aggregate record detail
pages.

Formatting misc-path strings in optimized URLs
TheSeoNavStateFormatter,SeoERecFormatter, andSeoAggrERecFormatter useStringFormatter
objects to format dimension and record property strings that display in URLs.

You can format the strings in the misc-path section of a URL by using string formatters that are predefined in
the Assembler API. Formatting may include changing capitalization or applying a regular expression to replace
portions of the string.

There are several StringFormatter objects in the Assembler API:
• LowerCaseStringFormatter — formats path-keyword data into lower case.
• UpperCaseStringFormatter— formats path-keyword data into upper case.
• UrlEncodedStringFormatter — URL-encodes strings.
• RegexStringFormatter — You can create a new RegexStringFormatter object and customize the
pattern, replacement, and replaceAll properties to perform custom string formatting. For more
information about the properties, please refer to the Assembler API Reference (Javadoc).

To define StringFormatter objects in the urlconfig.xml file:

1. Create a bean to invoke a StringFormatter class.
This example shows the configuration for a RegexStringFormatter that replaces all non-word character
sequences with a single "-" character:
        <bean class="com.endeca.soleng.urlformatter.seo.RegexStringFormatter">

          <property name="pattern">
            <value><![CDATA[[\W_&&[^\u00C0-\u00FF]]+]]></value>
          </property>

          <property name="replacement">
            <value>-</value>
          </property>

          <property name="replaceAll">
            <value>true</value>
          </property>
        </bean>

2. Optionally, you can build a StringFormatterChain to apply more than one StringFormatter to a
string in series.
The following example shows the defaultStringFormatterChain that is used throughout the sample
urlconfig.xml file.
  <bean name="defaultStringFormatterChain"
      class="com.endeca.soleng.urlformatter.seo.StringFormatterChain">

Oracle Commerce Guided Search Assembler Application Developer's Guide

135Configuring URLs | About optimizing the misc-path



    <property name="stringFormatters">
      <list>
        <!--
          ##############################################################
          # replace all non-word character sequences with a single '-'
          #
        -->
        <bean class="com.endeca.soleng.urlformatter.seo.RegexStringFormatter">

          <property name="pattern">
            <value><![CDATA[[\W_&&[^\u00C0-\u00FF]]+]]></value>
          </property>

          <property name="replacement">
            <value>-</value>
          </property>

          <property name="replaceAll">
            <value>true</value>
          </property>
        </bean>

        <!--
          ##############################################################
          # trim leading and trailing '-' characters (if any)
          #
        -->
        <bean class="com.endeca.soleng.urlformatter.seo.RegexStringFormatter">

          <property name="pattern">
            <value><![CDATA[^-?([\w\u00C0-\u00FF][\w-\u00C0-\u00FF]*[\w\u00C0-
\u00FF])-?$]]></value>
          </property>

          <property name="replacement">
            <value>$1</value>
          </property>

          <property name="replaceAll">
            <value>false</value>
          </property>
        </bean>

      </list>
    </property>
  </bean>

Note that because StringFormatterChain implements StringFormatter, you can nest chains. For
example:
      <bean class="com.endeca.soleng.urlformatter.seo.StringFormatterChain">
        <property name="stringFormatters">
          <list>

            <!-- replace 'Wine Type' with 'Wine' -->

            <bean class="com.endeca.soleng.urlformatter.seo.RegexStringFormatter">

Oracle Commerce Guided Search Assembler Application Developer's Guide

Configuring URLs | About optimizing the misc-path136



              <property name="pattern">
                <value>Wine Type</value>
              </property>

              <property name="replacement">
                <value>Wine</value>
              </property>

              <property name="replaceAll">
                <value>false</value>
              </property>
            </bean>

            <!-- execute the default string formatter chain -->

            <ref bean="defaultStringFormatterChain"/>

          </list>
        </property>
      </bean>

Optimizing URLs for navigation pages
Using URL optimization, you can include dimension and dimension value names in the misc-path of URLs.
You can also choose to canonicalize these dimension and dimension value names in order to avoid duplicate
content and to increase your natural search rankings.

Note: For dimensions to display properly in the URL, they must be enabled for display with the record
list.

You must create a URL configuration file before completing this procedure.

To optimize URLs for navigation pages:

1. Open your URL configuration file.
2. Create a navStateFormatter bean to invoke the com.endeca.soleng.urlformatter.seo.SeoN¬

avStateFormatter:
For example:
  <bean id="navStateFormatter" class="com.endeca.soleng.urlformatter.seo.SeoN¬
avStateFormatter">
  </bean>

3. Add a navStateFormatter property to your top-level seoUrlFormatter bean.
For example:
  <bean id="seoUrlFormatter" class="com.endeca.soleng.urlformatter.seo.SeoUrl¬
Formatter">

<!-- additional elements deleted from this example --!>

    <property name="navStateFormatter">
      <ref bean="navStateFormatter"/>
    </property>

  </bean>

Oracle Commerce Guided Search Assembler Application Developer's Guide

137Configuring URLs | About optimizing the misc-path



4. Add a useDimensionNameAsKey property on the navStateFormatter.
For example:
  <bean id="navStateFormatter" class="com.endeca.soleng.urlformatter.seo.SeoN¬
avStateFormatter">

    <property name="useDimensionNameAsKey">
      <value>true</value>
    </property>
  </bean>

Setting the useDimensionNameAsKey to false creates a key on the dimension ID numbers.

5. Add a dimLocationFormatters property and list each dimLocationFormatter bean you plan to
define.
For example:
  <bean id="navStateFormatter" class="com.endeca.soleng.urlformatter.seo.SeoN¬
avStateFormatter">

    <property name="useDimensionNameAsKey">
      <value>true</value>
    </property>

    <property name="dimLocationFormatters">
      <list>
        <ref bean="wineTypeFormatter"/>
        <ref bean="regionFormatter"/>
        <ref bean="wineryFormatter"/>
        <ref bean="flavorsFormatter"/>
      </list>
    </property>

  </bean>

6. Create a dimLocationFormatter for each of the dimensions in the dimLocationFormatters list.
For example:
  <bean id="regionFormatter"
      class="com.endeca.soleng.urlformatter.seo.SeoDimLocationFormatter">
  </bean>

Note: The sample urlconfig.xml file uses the same dimLocationFormatter for navigation
pages, record detail pages, and aggregate record detail pages. You can choose to create unique
dimLocationFormatters for each page type.

7. Add the following properties to each dimLocationFormatter:
DescriptionProperty

In the navStateFormatter bean, the useDimensionNameAsKey property
sets the key type. If you set the useDimensionNameAsKey to true, then use

key

the dimension name as the value for this property (for example <value>Re¬
gion</value>). If you set the useDimensionNameAsKey to false, use the
dimension ID number.

Specifies whether or not to append root dimension values to the URL. Set to
true to append root dimension values.

appendRoot

Specifices whether or not to append ancestor dimension values to the URL. Set
to true to append ancestor dimension values.

appendAncestors

Oracle Commerce Guided Search Assembler Application Developer's Guide

Configuring URLs | About optimizing the misc-path138



DescriptionProperty

Specifies whether or not to append the selected or descriptor dimension values
to the URL. Set to true to append selected or descriptor dimension values.

appendDescriptor

Specifies the character used to separate dimension roots, ancestors, and
descriptor values.

separator

Specifies the bean to format the dimension name. The reference application uses
a defaultStringFormatterChain bean to invoke the com.ende¬
ca.soleng.urlformatter.seo.StringFormatterChain.

rootStringFormat¬
ter

Specifies the bean to format the dimension value names. The reference application
uses a defaultStringFormatterChain bean to invoke the com.ende¬

dimValStringFormat¬
ter

ca.soleng.urlformatter.seo.StringFormatterChain. The examples
below also use a defaultStringFormatterChain bean.

For example:
  <bean id="regionFormatter"
      class="com.endeca.soleng.urlformatter.seo.SeoDimLocationFormatter">

    <property name="key">
      <value>Region</value>
    </property>

    <property name="appendRoot">
      <value>false</value>
    </property>

    <property name="appendAncestors">
      <value>false</value>
    </property>

    <property name="appendDescriptor">
      <value>true</value>
    </property>

    <property name="separator">
      <value>-</value>
    </property>

    <property name="rootStringFormatter">
      <ref bean="defaultStringFormatterChain"/>
    </property>

    <property name="dimValStringFormatter">
      <ref bean="defaultStringFormatterChain"/>
    </property>

  </bean>

8. Create a navStateCanonicalizer bean to invoke the com.endeca.soleng.urlformat¬
ter.seo.SeoNavStateCanonicalizer class.
For example:
  <bean name="navStateCanonicalizer" class="com.endeca.soleng.urlformat¬
ter.seo.SeoNavStateCanonicalizer">
  </bean>

Oracle Commerce Guided Search Assembler Application Developer's Guide

139Configuring URLs | About optimizing the misc-path



Note: Canonicalizing the dimension and dimension value names in the misc-path also changes the
order in which they appear in the path-params section of the URL. For example, if Napa is configured
to display before Red in the misc-path, the Napa dimension value ID displays before the Red dimension
value ID in the path-params section.

9. Add a navStateCanonicalizer property to your top-level seoUrlFormatter bean.
For example:
  <bean id="seoUrlFormatter" class="com.endeca.soleng.urlformatter.seo.SeoUrl¬
Formatter">

<!-- additional elements deleted from this example --!>

    <property name="navStateCanonicalizer">
      <ref bean="navStateCanonicalizer"/>
    </property>

  </bean>

10. Configure the navStateCanonicalizer.
For example, the following configuration creates URLs sorted by dimension ID in descending order:
  <bean name="navStateCanonicalizer" class="com.endeca.soleng.urlformat¬
ter.seo.SeoNavStateCanonicalizer">

    <property name="sortByName">
      <value>false</value>
    </property>

    <property name="sortByDimension">
      <value>true</value>
    </property>

    <property name="ascending">
      <value>false</value>
    </property>

  </bean>

Note: There a number of possible configuration options for canonicalization.

11. Save and close the file.

Related Links
Preparing your properties on page 123

If you intend to display record properties in your URLs, you must configure each property to Show
with record and Show with record list.

Preparing your dimensions on page 123
If you intend to display dimensions or dimension values in your URLs, you must configure each of
the dimensions to Show with record and Show with record list.

About URL canonicalization on page 109
Dynamic sites often produce syntactically different URLs for the same page. Multiple variant URLs
can lower the search engine ranking of a page. Canonicalizing URLs reduces the duplicate content
and improves search engine ranking.

Formatting misc-path strings in optimized URLs on page 135

Oracle Commerce Guided Search Assembler Application Developer's Guide

Configuring URLs | About optimizing the misc-path140



The SeoNavStateFormatter, SeoERecFormatter, and SeoAggrERecFormatter use
StringFormatter objects to format dimension and record property strings that display in URLs.

Canonicalization configuration options
You can customize the canonicalization of URLs for navigation pages by choosing a sort method, for example
by dimension name or dimension ID, and then a sort direction.

The following example configurations use the dimensions:
• Wine Type (dimension ID: 6200)
• region (dimension ID: 8)

and the dimension values:
• red (dimension value ID: 8021)
• Napa (dimension value ID: 4294967160)

Oracle Commerce Guided Search Assembler Application Developer's Guide

141Configuring URLs | About optimizing the misc-path



Sort direction

Example base URL (sorted by dimension
ID)

ConfigurationSort
Direction

http://localhost/urlformat¬
ter_jspref/controller/region-Na¬
pa/Wine-red/

<property name="ascending">
  <value>true</value>
</property>

Ascending

http://localhost/urlformat¬
ter_jspref/controller/Wine-
red/region-Napa/

<property name="ascending">
  <value>false</value>
</property>

Descending

Sort method

Example base URL (sort direction
ascending)

ConfigurationSort by

http://localhost/urlformat¬
ter_jspref/controller/Wine-
red/region-Napa/

<property name="sortByName">
  <value>true</value>
</property>

Dimension
name, case
sensitive

<property name="sortByDimension">
  <value>true</value>
</property>

<property name="ignoreCase">
  <value>false</value>
</property>

http://localhost/urlformat¬
ter_jspref/controller/region-Na¬
pa/Wine-red/

<property name="sortByName">
  <value>true</value>
</property>

Dimension
name, case
insensitive

<property name="sortByDimension">
  <value>true</value>
</property>

<property name="ignoreCase">
  <value>true</value>
</property>

http://localhost/urlformat¬
ter_jspref/controller/region-Na¬
pa/Wine-red/

<property name="sortByName">
  <value>false</value>
</property>

Dimension ID

<property name="sortByDimension">
  <value>true</value>
</property>

http://localhost/urlformat¬
ter_jspref/controller/region-Na¬
pa/Wine-red/

<property name="sortByName">
  <value>true</value>
</property>

Dimension
value name,

Oracle Commerce Guided Search Assembler Application Developer's Guide

Configuring URLs | About optimizing the misc-path142



Example base URL (sort direction
ascending)

ConfigurationSort by

case
sensitive

<property name="sortByDimension">
  <value>false</value>
</property>

<property name="ignoreCase">
  <value>false</value>
</property>

http://localhost/urlformat¬
ter_jspref/controller/region-Na¬
pa/Wine-red/

<property name="sortByName">
  <value>true</value>
</property>

Dimension
value name,
case
insensitive

<property name="sortByDimension">
  <value>false</value>
</property>

<property name="ignoreCase">
  <value>true</value>
</property>

http://localhost/urlformat¬
ter_jspref/controller/Wine-
red/region-Napa/

<property name="sortByName">
  <value>false</value>
</property>

Dimension
value ID

<property name="sortByDimension">
  <value>false</value>
</property>

Example 1: the following code sample creates a canonicalized URL that sorts by dimension name, case
sensitive, in an ascending order:
<bean name="navStateCanonicalizer" class="com.endeca.soleng.urlformatter.seo.SeoN¬
avStateCanonicalizer">

    <property name="sortByName">
      <value>true</value>
    </property>

    <property name="sortByDimension">
      <value>true</value>
    </property>

    <property name="ascending">
      <value>true</value>
    </property>

    <property name="ignoreCase">
      <value>false</value>
    </property>

  </bean>

The resulting base URL:http://localhost/urlformatter_jspref/controller/Wine-red/region-
Napa/

Oracle Commerce Guided Search Assembler Application Developer's Guide

143Configuring URLs | About optimizing the misc-path



Example 2: the following code sample creates a canonicalized URL that sorts by dimension value ID in a
descending order:
<bean name="navStateCanonicalizer" class="com.endeca.soleng.urlformatter.seo.SeoN¬
avStateCanonicalizer">

    <property name="sortByName">
      <value>false</value>
    </property>

    <property name="sortByDimension">
      <value>true</value>
    </property>

    <property name="ascending">
      <value>false</value>
    </property>

  </bean>

The resulting base URL:http://localhost/urlformatter_jspref/controller/region-Napa/Wine-
red/

Note: Canonicalizing the dimension and dimension value names in the misc-path changes the order in
which they appear in the path-params section of the URL. For example, if Napa is configured to display
before Red in the misc-path, the Napa dimension value ID displays before the Red dimension value ID
in the path-params section.

Optimizing URLs for record detail pages
Using the URL optimization classes, you can include dimension names, dimension value names, and record
properties in the misc-path of URLs for record detail pages.

Note: For dimensions to display properly in the URL, they must be enabled for display with the record
list.

You must create a URL configuration file before completing this procedure.

To optimize URLs for record detail pages:

1. Open your URL configuration file.
2. Create an erecFormatter bean to invoke the com.endeca.soleng.urlformatter.seo.SeoERec¬

Formatter:
For example:
  <bean id="erecFormatter" class="com.endeca.soleng.urlformatter.seo.SeoERec¬
Formatter">
  </bean>

3. Add an ERecFormatter property to your top-level seoUrlFormatter bean.
For example:
  <bean id="seoUrlFormatter" class="com.endeca.soleng.urlformatter.seo.SeoUrl¬
Formatter">

<!-- additional elements deleted from this example --!>

Oracle Commerce Guided Search Assembler Application Developer's Guide

Configuring URLs | About optimizing the misc-path144



    <property name="ERecFormatter">
      <ref bean="erecFormatter"/>
    </property>

  </bean>

4. Add a useDimensionNameAsKey property on the erecFormatter.
For example:
  <bean id="erecFormatter" class="com.endeca.soleng.urlformatter.seo.SeoERec¬
Formatter">

    <property name="useDimensionNameAsKey">
      <value>true</value>
    </property>

  </bean>

Setting useDimensionNameAsKey to false creates a key on the dimension ID numbers.

5. Add a propertyKeys property to include record properties in the URLs of record details pages.
For example:
  <bean id="erecFormatter" class="com.endeca.soleng.urlformatter.seo.SeoERec¬
Formatter">

    <property name="useDimensionNameAsKey">
      <value>true</value>
    </property>

    <property name="propertyKeys">
      <list>
        <value>P_Name</value>
      </list>
    </property>

  </bean>

6. Add a propertyFormatter property to format record properties included in the URLs of record details
pages.
For example:
  <bean id="erecFormatter" class="com.endeca.soleng.urlformatter.seo.SeoERec¬
Formatter">

    <property name="useDimensionNameAsKey">
      <value>true</value>
    </property>

    <property name="propertyKeys">
      <list>
        <value>P_Name</value>
      </list>
    </property>

    <property name="propertyFormatter">
      <ref bean="defaultStringFormatterChain"/>
    </property>

  </bean>

Oracle Commerce Guided Search Assembler Application Developer's Guide

145Configuring URLs | About optimizing the misc-path



7. Add a dimLocationFormatters property and list each dimLocationFormatter bean you plan to
define.
For example:
  <bean id="erecFormatter" class="com.endeca.soleng.urlformatter.seo.SeoERec¬
Formatter">

    <property name="useDimensionNameAsKey">
      <value>true</value>
    </property>

    <property name="dimLocationFormatters">
      <list>
        <ref bean="regionFormatter"/>
        <ref bean="wineryFormatter"/>
        <ref bean="wineTypeFormatter"/>
        <ref bean="vintageFormatter"/>
      </list>
    </property>

    <property name="propertyKeys">
      <list>
        <value>P_Name</value>
      </list>
    </property>

    <property name="propertyFormatter">
      <ref bean="defaultStringFormatterChain"/>
    </property>

  </bean>

8. Create a dimLocationFormatter for each of the dimensions in the dimLocationFormatters list.
For example:
  <bean id="regionFormatter"
      class="com.endeca.soleng.urlformatter.seo.SeoDimLocationFormatter">
  </bean>

Note: The sample urlconfig.xml file uses the same dimLocationFormatter for navigation
pages, record detail pages, and aggregate record detail pages. You can choose to create unique
dimLocationFormatters for each page type.

9. Add the following properties to each dimLocationFormatter:
DescriptionProperty

In the navStateFormatter bean, the useDimensionNameAsKey property
sets the key type. If you set the useDimensionNameAsKey to true, then use

key

the dimension name as the value for this property (for example <value>Re¬
gion</value>). If you set the useDimensionNameAsKey to false, use the
dimension ID number.

Specifies whether or not to append root dimension values to the URL. Set to
true to append root dimension values.

appendRoot

Specifices whether or not to append ancestor dimension values to the URL. Set
to true to append ancestor dimension values.

appendAncestors

Oracle Commerce Guided Search Assembler Application Developer's Guide

Configuring URLs | About optimizing the misc-path146



DescriptionProperty

Specifies whether or not to append the selected or descriptor dimension values
to the URL. Set to true to append selected or descriptor dimension values.

appendDescriptor

Specifies the character used to separate dimension roots, ancestors, and
descriptor values.

separator

Specifies the bean to format the dimension name. The reference application uses
a defaultStringFormatterChain bean to invoke the com.ende¬
ca.soleng.urlformatter.seo.StringFormatterChain.

rootStringFormat¬
ter

Specifies the bean to format the dimension value names. The reference application
uses a defaultStringFormatterChain bean to invoke the com.ende¬

dimValStringFormat¬
ter

ca.soleng.urlformatter.seo.StringFormatterChain. The examples
below also use a defaultStringFormatterChain bean.

For example:
  <bean id="regionFormatter"
      class="com.endeca.soleng.urlformatter.seo.SeoDimLocationFormatter">

    <property name="key">
      <value>Region</value>
    </property>

    <property name="appendRoot">
      <value>false</value>
    </property>

    <property name="appendAncestors">
      <value>false</value>
    </property>

    <property name="appendDescriptor">
      <value>true</value>
    </property>

    <property name="separator">
      <value>-</value>
    </property>

    <property name="rootStringFormatter">
      <ref bean="defaultStringFormatterChain"/>
    </property>

    <property name="dimValStringFormatter">
      <ref bean="defaultStringFormatterChain"/>
    </property>

  </bean>

10. Save and close the file.

Related Links
Preparing your properties on page 123

If you intend to display record properties in your URLs, you must configure each property to Show
with record and Show with record list.

Preparing your dimensions on page 123

Oracle Commerce Guided Search Assembler Application Developer's Guide

147Configuring URLs | About optimizing the misc-path



If you intend to display dimensions or dimension values in your URLs, you must configure each of
the dimensions to Show with record and Show with record list.

Formatting misc-path strings in optimized URLs on page 135
The SeoNavStateFormatter, SeoERecFormatter, and SeoAggrERecFormatter use
StringFormatter objects to format dimension and record property strings that display in URLs.

Optimizing URLs for aggregate record detail pages
Using the URL optimization classes, you can include dimension names, dimension value names, and record
properties in the misc-path of URLs for aggregate record detail pages. These are configured separately from
the optimizations for navigation pages.

Note: For dimensions to display properly in the URL, they must be enabled for display with the record
list.

You must create a URL configuration file before completing this procedure.

To optimize URLs for aggregate record detail pages:

1. Open your URL configuration file.
2. Create an aggrERecFormatter bean to invoke the com.endeca.soleng.urlformatter.seo.SeoAg¬

grERecFormatter class:
For example:
  <bean id="aggrERecFormatter" class="com.endeca.soleng.urlformatter.seo.SeoAg¬
grERecFormatter">
  </bean>

3. Add an aggrERecFormatter property to your top-level seoUrlFormatter bean.
For example:
  <bean id="seoUrlFormatter" class="com.endeca.soleng.urlformatter.seo.SeoUrl¬
Formatter">

<!-- additional elements deleted from this example --!>

    <property name="aggrERecFormatter">
      <ref bean="aggrERecFormatter"/>
    </property>

  </bean>

4. Add a useDimensionNameAsKey property on the aggrERecFormatter.
For example:
  <bean id="aggrERecFormatter" class="com.endeca.soleng.urlformatter.seo.SeoAg¬
grERecFormatter">

    <property name="useDimensionNameAsKey">
      <value>true</value>
    </property>
  </bean>

Setting the useDimensionNameAsKey to false creates a key on the dimension ID numbers.

5. Add a propertyKeys property to include record properties in the URLs of record details pages.

Oracle Commerce Guided Search Assembler Application Developer's Guide

Configuring URLs | About optimizing the misc-path148



For example:
  <bean id="aggrERecFormatter" class="com.endeca.soleng.urlformatter.seo.SeoAg¬
grERecFormatter">

    <property name="useDimensionNameAsKey">
      <value>true</value>
    </property>

    <property name="propertyKeys">
      <list>
        <value>P_Name</value>
      </list>
    </property>

  </bean>

6. Add a propertyFormatter property to format record properties included in the URLs of record details
pages.
For example:
  <bean id="aggrERecFormatter" class="com.endeca.soleng.urlformatter.seo.SeoAg¬
grERecFormatter">

    <property name="useDimensionNameAsKey">
      <value>true</value>
    </property>

    <property name="propertyKeys">
      <list>
        <value>P_Name</value>
      </list>
    </property>
    <!-- use default string formatter chain -->

    <property name="propertyFormatter">
      <ref bean="defaultStringFormatterChain"/>
    </property>

  </bean>

7. Add a dimLocationFormatters property and list each dimLocationFormatter bean you plan to
define.
For example:
  <bean id="aggrERecFormatter" class="com.endeca.soleng.urlformatter.seo.SeoAg¬
grERecFormatter">

    <property name="useDimensionNameAsKey">
      <value>true</value>
    </property>

    <property name="dimLocationFormatters">
      <list>
        <ref bean="regionFormatter"/>
        <ref bean="wineryFormatter"/>
      </list>
    </property>

    <property name="propertyKeys">
      <list>

Oracle Commerce Guided Search Assembler Application Developer's Guide

149Configuring URLs | About optimizing the misc-path



        <value>P_Name</value>
      </list>
    </property>

    <property name="propertyFormatter">
      <ref bean="defaultStringFormatterChain"/>
    </property>

  </bean>

Note: The sample urlconfig.xml file uses the same dimLocationFormatter for navigation
pages, record detail pages, and aggregate record detail pages. You can choose to create unique
dimLocationFormatters for each page type.

8. Create a dimLocationFormatter for each of the dimensions in the dimLocationFormatters list.
For example:
  <bean id="regionFormatter"
      class="com.endeca.soleng.urlformatter.seo.SeoDimLocationFormatter">
  </bean>

9. Add the following properties to each dimLocationFormatter:
DescriptionProperty

In the navStateFormatter bean, the useDimensionNameAsKey property
sets the key type. If you set the useDimensionNameAsKey to true, then use

key

the dimension name as the value for this property (for example <value>Re¬
gion</value>). If you set the useDimensionNameAsKey to false, use the
dimension ID number.

Specifies whether or not to append root dimension values to the URL. Set to
true to append root dimension values.

appendRoot

Specifices whether or not to append ancestor dimension values to the URL. Set
to true to append ancestor dimension values.

appendAncestors

Specifies whether or not to append the selected or descriptor dimension values
to the URL. Set to true to append selected or descriptor dimension values.

appendDescriptor

Specifies the character used to separate dimension roots, ancestors, and
descriptor values.

separator

Specifies the bean to format the dimension name. The reference application uses
a defaultStringFormatterChain bean to invoke the com.ende¬
ca.soleng.urlformatter.seo.StringFormatterChain.

rootStringFormat¬
ter

Specifies the bean to format the dimension value names. The reference application
uses a defaultStringFormatterChain bean to invoke the com.ende¬

dimValStringFormat¬
ter

ca.soleng.urlformatter.seo.StringFormatterChain. The examples
below also use a defaultStringFormatterChain bean.

For example:
  <bean id="regionFormatter"
      class="com.endeca.soleng.urlformatter.seo.SeoDimLocationFormatter">

    <property name="key">
      <value>Region</value>
    </property>

Oracle Commerce Guided Search Assembler Application Developer's Guide

Configuring URLs | About optimizing the misc-path150



    <property name="appendRoot">
      <value>false</value>
    </property>

    <property name="appendAncestors">
      <value>false</value>
    </property>

    <property name="appendDescriptor">
      <value>true</value>
    </property>

    <property name="separator">
      <value>-</value>
    </property>

    <property name="rootStringFormatter">
      <ref bean="defaultStringFormatterChain"/>
    </property>

    <property name="dimValStringFormatter">
      <ref bean="defaultStringFormatterChain"/>
    </property>

  </bean>

10. Save and close the file.

Related Links
Preparing your properties on page 123

If you intend to display record properties in your URLs, you must configure each property to Show
with record and Show with record list.

Preparing your dimensions on page 123
If you intend to display dimensions or dimension values in your URLs, you must configure each of
the dimensions to Show with record and Show with record list.

Formatting misc-path strings in optimized URLs on page 135
The SeoNavStateFormatter, SeoERecFormatter, and SeoAggrERecFormatter use
StringFormatter objects to format dimension and record property strings that display in URLs.

Configuring the path-param-separator
You can customize the string that displays between the misc-path and the path-params components of URLs.

The sample urlconfig.xml file uses an underscore to separate the misc-path from the path-params in
URLs. For example: http://localhost/urlformatter_jspref/controller/Wine-Red-Pinot-
Noir/_/N-66w

You must create a URL configuration file before completing this procedure.

To change the path-param-separator string:

1. Locate the top-level URL formatter bean in your URL configuration file.

Oracle Commerce Guided Search Assembler Application Developer's Guide

151Configuring URLs | Configuring the path-param-separator



For example:
  <bean id="seoUrlFormatter" class="com.endeca.soleng.urlformatter.seo.SeoUrl¬
Formatter">
  </bean>

2. Customize the value of the pathSeparatorToken property:
For example:
  <bean id="seoUrlFormatter" class="com.endeca.soleng.urlformatter.seo.SeoUrl¬
Formatter">
    <property name="pathSeparatorToken">
      <value>separator</value>
    </property>
  </bean>

The new URL displays as:http://localhost/urlformatter_jspref/controller/Wine-Red-Pinot-
Noir/separator/N-66w

About optimizing the path-params and query string
The URL optimization classes provide functionality for encoding path parameters and moving Endeca path
parameters from the query string into the path-params section of the URL.

Moving Endeca parameters out of the query string

In order to create directory-style URLs, you can limit the number of parameters in the query string by configuring
a list of Endeca parameters to move from the query string and into the path-params section of the URL. For
example, the following URL has the Endeca parameters N, Ntk, Ntt, and Ntx in the query string:

http://localhost/ContentAssemblerRefApp/Content.aspx/Bordeaux?N=4294966952&from¬
search=false&Ntk=All&Ntt=red&Ntx=mode%2bmatchallpartial

Using the URL Optimization API, you can move Endeca parameters into the path-params section of the URL.
For example, the following URL includes the N and Ntt parameters in the base URL:

http://localhost/ContentAssemblerRefApp/Content.aspx/Bordeaux/_/N-4294966952/Ntt-
red?fromsearch=false&Ntk=All&Ntx=mode%2bmatchallpartial

Note: To ensure the best possible natural search-engine ranking, it is recommended that you limit the
number of parameters you include in the path-params section.

Encoding Endeca parameters

In order to shorten URLs, the Assembler API allows base-36 encoding of Endeca parameters.

For example, the following URL for Region > Napa contains the dimension value ID for Napa (4294966952):

http://localhost/ContentAssemblerRefApp/Content.aspx/Napa/_/N-4294966952

By base-36 encoding the N parameter, you can shorten the URL:

http://localhost/ContentAssemblerRefApp/Content.aspx/Napa/_/N-1z141pk

Note: Only the numeric Endeca parameters can be encoded:
• N

Oracle Commerce Guided Search Assembler Application Developer's Guide

Configuring URLs | About optimizing the path-params and query string152



• Ne

• An

• Dn

Removing session-scope parameters

In order to simplify the URLs, session-scope parameters should be removed from the URL string and stored
as session objects. This might include any parameters that do not change value during the session, such as
the session ID or MDEX host and port values.

Passing non-Endeca parameters to the API

You can add non-Endeca parameters to URLs by passing them through the API.

Moving Endeca parameters out of the query string
In order to create directory-style URLs, you can limit the number of parameters in the query string by configuring
a list of Endeca parameters to move from the query string and into the path-params section of the URL.

You must create a URL configuration file before completing this procedure.

To move Endeca parameters out of the query string and into the path-params section of the URL:

1. In your URL configuration file, locate the top-level URL formatter.
For example:
  <bean id="seoUrlFormatter" class="com.endeca.soleng.urlformatter.seo.SeoUrl¬
Formatter">

    <property name="defaultEncoding">
      <value>UTF-8</value>
    </property>

    <property name="pathSeparatorToken">
      <value>_</value>
    </property>

    <!-- additional elements deleted from this example --!>

  </bean>

2. Add a pathParamKeys property.
For example:
  <bean id="seoUrlFormatter" class="com.endeca.soleng.urlformatter.seo.SeoUrl¬
Formatter">

    <property name="pathParamKeys">
    </property>

  </bean>

3. Add a list attribute containing all of the Endeca parameters you want moved from the query string.
For example:
  <bean id="seoUrlFormatter" class="com.endeca.soleng.urlformatter.seo.SeoUrl¬
Formatter">

Oracle Commerce Guided Search Assembler Application Developer's Guide

153Configuring URLs | About optimizing the path-params and query string



    <property name="pathParamKeys">
      <list>
        <value>R</value>
        <value>A</value>
        <value>An</value>
      </list>
    </property>

  </bean>

Encoding Endeca parameters
You can apply base-36 encoding to numeric Endeca parameters.

You must create a URL configuration file before completing this procedure.

Only the numeric Endeca parameters can be encoded:
• N

• Ne

• An

• Dn

The following procedure provides instructions for applying base-36 encoding to the An parameter. You can
apply base-36 encoding to any numeric Endeca parameter, but each parameter requires a separately configured
paramEncoder bean.

To encode numeric Endeca parameters:

1. Open your URL configuration file.
2. Create a paramEncoder bean to invoke the com.endeca.soleng.urlformatter.seo.SeoNavSta¬

teEncoder:
For example:
  <bean name="An-paramEncoder" class="com.endeca.soleng.urlformatter.seo.SeoN¬
avStateEncoder">
  </bean>

Remember: You need to create a separate paramEncoder bean for each numeric Endeca parameter
you want to encode.

3. Add a paramKey property to specify which numeric Endeca parameter to encode.
For example:
  <bean name="An-paramEncoder" class="com.endeca.soleng.urlformatter.seo.SeoN¬
avStateEncoder">
    <property name="paramKey">
      <value>An</value>
    </property>
  </bean>

4. Repeat steps one and two for each Endeca parameter you want to encode.
5. Locate the top-level URL formatter bean in your URL configuration file.

For example:
  <bean id="seoUrlFormatter" class="com.endeca.soleng.urlformatter.seo.SeoUrl¬
Formatter">
  </bean>

Oracle Commerce Guided Search Assembler Application Developer's Guide

Configuring URLs | About optimizing the path-params and query string154



6. Add a urlParamEncoders property:
  <bean id="seoUrlFormatter" class="com.endeca.soleng.urlformatter.seo.SeoUrl¬
Formatter">
    <property name="urlParamEncoders">
    </property>
  </bean>

7. Add a list attribute and specify each of the parameter encoder beans.
For example:
  <bean id="seoUrlFormatter" class="com.endeca.soleng.urlformatter.seo.SeoUrl¬
Formatter">
    <property name="urlParamEncoders">
      <list>
        <ref bean="N-paramEncoder"/>
        <ref bean="Ne-paramEncoder"/>
        <ref bean="An-paramEncoder"/>
      </list>
    </property>
  </bean>

8. Save and close the file.

Removing session-scope parameters
In order to simplify the URLs, session-scope parameters should be removed from the URL string and stored
as session objects.

This might include any parameters that do not change value during the session, such as the session ID or
MDEX host and port values. For example, the following URL contains information about the MDEX host and
port:

http://localhost:8888/endeca_jspref/controller.jsp?N=0&eneHost=local¬
host&enePort=15002

You can remove the MDEX host and port values from the URL and store them as session objects. The resulting
URL is simplified:

http://localhost:8888/endeca_jspref/controller.jsp

The following procedure provides instructions for removing the MDEX host and port values from the URL, but
this procedure can be adapted as necessary to remove other session-scope parameters.

To remove the MDEX host and port values from the URL and store them as session attribute values:

1. To set the attribute, use the following code:
 session.setAttribute("eneHost", eneHost);

2. To retrieve the attribute value, use the following code:
 eneHost = (String)session.getAttribute("eneHost");

About passing non-Endeca parameters to the API
You can add non-Endeca parameters to URLs by passing them through the API.

For example, you could add information about how many records per page should display in each results set:

Oracle Commerce Guided Search Assembler Application Developer's Guide

155Configuring URLs | About optimizing the path-params and query string



In the reference application's controller.jsp file, find the following section:
  UrlState baseUrlState = urlFormatter.parseRequest(request);

  ENEQuery usq = queryBuilder.buildQuery(baseUrlState);

and add code similar to the following:
  baseUrlState.setParam("records_per_page", "25");

Note: Endeca recommends limiting the number of parameters that display in URLs. It is recommended
that session-scope parameters be removed from the URL and stored as session objects.

Using the URL configuration file with your application
Before you can create optimized URLs with your own application, you need to include the URL configuration
file in your application's classpath.

To use the URL configuration file with your application:

1. Stop the Endeca HTTP service.
2. Locate your URL configuration file.
3. Copy the URL configuration file into the WEB-INF subdirectory of your Web application directory.

For example:
C:\Endeca\ToolsAndFrameworks\<version>\reference\discover-electronics-authoring\WEB-INF

4. Start the Endeca HTTP service.

To verify that the URL configurations are working properly, open a Web browser and navigate to your Web
application. Check that the URLs display as you configured them with the URL configuration file.

Related Links
Creating a URL configuration file on page 131

A URL configuration file defines a BasicQueryBuilder and a top-level SeoUrlFormatter.
Creating a URL configuration file on page 131

A URL configuration file defines a BasicQueryBuilder and a top-level SeoUrlFormatter.

Oracle Commerce Guided Search Assembler Application Developer's Guide

Configuring URLs | Using the URL configuration file with your application156



Chapter 15

Integrating with the Sitemap Generator

The Sitemap Generator creates an index of your Web site based on information stored in your MDEX Engine,
not information stored on your application server. Because of this, you need to ensure that the URLs produced
by the Sitemap Generator match the URLs in your application. To make certain that the URLs match, you need
to configure the Sitemap Generator's urlconfig.xml file to make the same customizations to URLs as those
configured for the Assembler API.

The Sitemap Generator urlconfig.xml file
The Sitemap Generator uses a URL configuration file that must mirror your URL configurations in order to
output a sitemap that matches your Web application.

The Sitemap Generator creates a site map by issuing a single bulk query against the MDEX Engine to retrieve
the necessary record, dimension, and dimension value data. It uses this information to build an index of pages.
The formatting of the URLs it creates is controlled by the urlconfig.xml file located in the conf subdirectory
of your Sitemap Generator installation directory. For example:
C:\Endeca\SEM\SitemapGenerator\<version>\conf

To ensure that the URLs in the sitemap are consistent with the URLs produced by the Assembler, configuration
in the URL configuration file must correspond to the Sitemap Generator's urlconfig.xml file.

Because the urlconfig.xml file included with the Sitemap Generator uses the same format as the sample
urlconfig.xml file for the Assembler API, you can copy the urlconfig.xml file for sitemap generation.

Using the URL configuration file with the Sitemap Generator
You can use the same urlconfig.xml file you created for URL optimization as the URL configuration file
for sitemap generation.

To use the URL configuration file with the Sitemap Generator:

1. Open the conf.xml file located in the conf subdirectory of your Sitemap Generator installation directory.
For example: ToolsAndFrameworks\<version>\sitemap_generator\conf

2. Locate the URL_FORMAT_FILE:
For example:
<URL_FORMAT_FILE>urlconfig.xml</URL_FORMAT_FILE>



3. Edit the <URL_FORMAT_FILE> value so that it points to the urlconfig.xml file you created with the URL
Optimization API.
For example:
<URL_FORMAT_FILE>C:\Endeca\ToolsAndFrameworks\<version>\reference\discover-
electronics-authoring\WEB-INF\urlconfig.xml</URL_FORMAT_FILE>

4. Save and close the conf.xml file.

Related Links
Creating a URL configuration file on page 131

A URL configuration file defines a BasicQueryBuilder and a top-level SeoUrlFormatter.
About the URL configuration file on page 130

The example application uses an XML file named urlconfig.xml to configure the format of the
URLs that it generates.

Oracle Commerce Guided Search Assembler Application Developer's Guide

Integrating with the Sitemap Generator | Using the URL configuration file with the Sitemap Generator158



Part 5

Extending the Assembler

• Extending and Developing Cartridges
• Developing Editors for Workbench





Chapter 16

Extending and Developing Cartridges

If your application requires functionality that is not covered by the core cartridges and navigation cartridges
included in Tools and Frameworks, you can extend the existing cartridges or develop your own.

Cartridge Basics
This section introduces the basic components of a cartridge by examining how they work together in a "Hello,
World" example cartridge.

First steps with a new cartridge
This section describes how to define a new cartridge and use Workbench to configure it to appear on a page.

To create and configure a basic "Hello, World" cartridge, follow these steps:

1. Navigate to the templates directory of your application, and create a subdirectory named "HelloWorld." This
directory name is the template ID for your template.
For example: C:\Endeca\apps\Discover\config\cartridge\import\templates\HelloWorld.

2. Create a cartridge template.
a) Open a new plain text or XML file.
b) Type or copy the following into the contents of the file:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
                 xmlns:editors="editors" 
                 type="SecondaryContent">
  <Description>A sample cartridge that can display a simple 
    message.</Description>
  <ThumbnailUrl>/ifcr/tools/xmgr/img/template_thumbnails/sidebar_con¬
tent.jpg</ThumbnailUrl>
  <ContentItem>
    <Name>Hello cartridge</Name>
    <Property name="message">
      <String/>
    </Property>
    <Property name="messageColor">
      <String/>
    </Property>
  </ContentItem>



  <EditorPanel>
    <BasicContentItemEditor>
      <editors:StringEditor propertyName="message" label="Message"/>
      <editors:StringEditor propertyName="messageColor" 
        label="Color"/>
    </BasicContentItemEditor>
  </EditorPanel>
</ContentTemplate>

c) Save the file with the name template.xml in the HelloWorld directory of your Discover Electronics
application, for example: C:\Endeca\apps\Discover\config\import\templates\HelloWorld.

3. Upload the template to Endeca Workbench.
a) Open a command prompt and navigate to the control directory of your deployed application, for

example, C:\Endeca\apps\Discover\control.
b) Run the set_templates command.

C:\Endeca\apps\Discover\control>set_templates.bat
Removing existing cartridge templates for Discover
Setting new cartridge templates for Discover
Finished setting templates

C:\Endeca\apps\Discover\control>

4. Add the cartridge to a page.
a) Open Endeca Workbench in a Web browser.

The default URL for Workbench is http://<workbench-host>:8006. The default Username is
admin and the default Password is admin.

b) From the launch page, select Experience Manager.
c) In the tree on the left, select Search and Navigation Pages under the Content section, then select the

Default Page.
d) In the Edit Pane on the right, select the right column section from the Content Tree in the bottom left.

e) Click Add.
The cartridge selector dialog displays.

Oracle Commerce Guided Search Assembler Application Developer's Guide

Extending and Developing Cartridges | First steps with a new cartridge162



f) Select the Hello cartridge and click OK.
g) Select the new Hello cartridge from the Content Tree on the left and configure it as shown:

h) Click Save Changes in the upper right of the page.

5. Try to view the cartridge in the Discover Electronics application.
a) In a Web browser, navigate to http://<workbench-host>:8006/discover-authoring/.

Oracle Commerce Guided Search Assembler Application Developer's Guide

163Extending and Developing Cartridges | First steps with a new cartridge



The error displays because we have not yet created a renderer for the Hello cartridge.
b) Scroll down to the bottom of the page and click the json link to view the serialized Assembler response

model that represents the current page.

Oracle recommends that you use a browser or install a plugin that supports native JSON display.
Otherwise, you can download the JSON response as a file.

Alternatively, you can click the xml link to view the same response in XML. In this guide, we use the
JSON format when examining the Assembler response.

The following shows the JSON representation of the page with most of the tree collapsed, highlighting the data
for the cartridge that we just added.
{

    "@type": "ResultsPageSlot",
    "name": "Browse Page",
    "contentCollection": "Search And Navigation Pages",
    "ruleLimit": "1",
    "contents": [
        {
            "@type": "ThreeColumnNavigationPage",
            "name": "Default Page",
            "title": "Discover Electronics",
            "metaKeywords": "camera cameras electronics",
            "metaDescription": "Endeca eBusiness reference application.",
            "links": [ ],
            "header": [ … ],
            "leftColumn": [ … ],
            "main": [ … ],
            "rightColumn": [
                { … },

Oracle Commerce Guided Search Assembler Application Developer's Guide

Extending and Developing Cartridges | First steps with a new cartridge164



                { … },
                {

"@type": "Hello",
                    "name": "Hello cartridge",
                    "message": "Hello, World!",
                    "messageColor": "#FF0000"
                }
            ]
        }
    ],
    …

}

In the next section, we'll create a simple renderer that displays the message based on the values configured
in Experience Manager.

Adding a basic renderer
While there is no one way to write rendering code for an application, in this example we'll write a simple JSP
renderer for our basic cartridge.

To write a basic "Hello, World" renderer:

1. Create a new JSP page and type or copy the following:
<%@page language="java" pageEncoding="UTF-8" 
  contentType="text/html;charset=UTF-8"%>

<%@include file="/WEB-INF/views/include.jsp"%>
<div style="border-style: dotted; border-width: 1px;
  border-color: #999999; padding: 10px 10px">
  <div style="font-size: 150%; 
    color: ${component.messageColor}">${component.message}
  </div>
</div>

2. Save the renderer to
discover-electronics-authoring/WEB-INF/views/desktop/Hello/Hello.jsp.

3. Refresh the Discover Electronics authoring application at
http://<workbench-host>:8006/discover-authoring/ to see the result.

Oracle Commerce Guided Search Assembler Application Developer's Guide

165Extending and Developing Cartridges | Adding a basic renderer



Elements of the example cartridge
As we have seen, the high-level workflow for creating a basic cartridge is:

1. Create a cartridge template and upload it to Endeca Workbench.
2. Use Experience Manager to create and configure and instance of the cartridge.
3. Add a renderer to the front-end application.

Step 2 is necessary during development in order to have a cartridge instance with which to test. However,
once the cartridge is complete, the business user is typically responsible for creating and maintaining cartridge
instances in Experience Manager.

In the following sections, we'll describe each of these elements of the cartridge in greater detail.

The cartridge template
The template defines the configuration that the business user can specify in Endeca Workbench using
Experience Manager.

The template contains two main sections: the <ContentItem> element and the <EditorPanel> element.

The content item is a core concept in Assembler applications that can represent both the configuration model
for a cartridge and the response model that the Assembler returns to the client application. A content item is
a map of properties, or key-value pairs. The <ContentItem> element in the template defines the prototypical
content item and its properties, similar to a class or type definition.

The <EditorPanel> defines the interface that can be used in Experience Manager to configure the properties
of the content item. The editor panel is composed of a number of editors. The editors provide the UI controls
that the business user can use to specify the property values for a particular instance of that cartridge.

Oracle Commerce Guided Search Assembler Application Developer's Guide

Extending and Developing Cartridges | Elements of the example cartridge166



In our example template, we defined two string properties named message and messageColor and attached
two simple string editors to those properties. The result looks like this in Experience Manager:

For more information about creating and managing cartridge templates, see About creating templates on page
43.

The cartridge instance configuration
The business user creates and configures instances of cartridges in Experience Manager based on a template.
During cartridge development you need to create at least one instance of a cartridge for testing.

Experience Manager writes this cartridge instance configuration as XML. You can view the XML representation
of the configuration using the XML View tab in Experience Manager. The following shows the XML that
corresponds to the configured instance of our example cartridge:

Oracle Commerce Guided Search Assembler Application Developer's Guide

167Extending and Developing Cartridges | Elements of the example cartridge



Note the similarities to the <ContentItem> portion of the template that we created. At this stage, the values
of the string properties have been filled in based in the input in the Content Editor pane.

The Assembler retrieves this configuration at runtime and uses it to build the response model that it returns to
the client application.

For any given cartridge, the default behavior is for the Assembler to do no processing on the configuration and
simply return the configuration content item as a map of properties. That is, the response object is the same
as the configuration object unless specific processing logic is defined in the Assembler for that cartridge.

The cartridge renderer
As a best practice, the client application should be composed of modular rendering components, each
corresponding to a particular cartridge.

Recall the contents of the Assembler response object corresponding to the example cartridge:
{
    "@type": "Hello",
    "name": "Hello cartridge",
    "message": "Hello, World!",
    "messageColor": "#FF0000"
}

For each cartridge, the @type of the response object corresponds to the id of the template that was used to
create it. The Discover Electronics application uses this type to identify the appropriate renderer to use for this
content item.

Oracle Commerce Guided Search Assembler Application Developer's Guide

Extending and Developing Cartridges | Elements of the example cartridge168



The logic for mapping response objects to the appropriate renderer is contained in include.tag in the
reference application.

Overview of cartridge extension points
Cartridges are made up of several components that may be customized for specific purposes.

The following diagram shows the parts of a cartridge and where they fit within the overall architecture:

The cartridge template defines the configuration options that are available to the business user in Workbench.
The Experience Manager interface is composed of editors, or Flex components that provide UI controls for
specifying property values. Experience Manager produces the cartridge instance configuration that is consumed
by the Assembler. During the processing of a query, the Assembler may invoke cartridge handlers that define
specific processing logic for particular cartridges. Using these cartridge handlers, the Assembler produces the
response object that it returns to the client application. Typically, the client application includes modular
renderers that are intended to handle a particular cartridge.

We created a basic template and renderer in the example cartridge. We also inspected the cartridge instance
configuration generated in Workbench and the response returned by the Assembler. In the example cartridge,
both the configuration and the response model were generic content items that are simple maps of properties.
Many of the core Endeca cartridges have strongly typed configuration models and response objects associated
with them that extend from the basic content item. This makes it easier to understand the expected input to
and output from the core cartridge handlers, and also enables reuse of the models for the core cartridges.
Strongly typed configuration beans also make it possible to configure default values for cartridge properties

Oracle Commerce Guided Search Assembler Application Developer's Guide

169Extending and Developing Cartridges | Overview of cartridge extension points



via Spring. Creating strongly typed model objects for the Assembler configuration and response is not required
when developing cartridges.

In the following sections, we discuss how to customize the Experience Manager interface using editors, and
how to define custom processing logic in the Assembler using cartridge handlers.

Customizing the Experience Manager interface
Experience Manager provides a set of standard editors that you can use in cartridge templates as well as the
ability to develop custom editors.

Adding embedded user assistance to a cartridge
You can provide embedded assistance for the business user in the Experience Manager interface by specifying
it in the cartridge template.

In our example cartridge, we provided two simple text fields for the business user to enter a message and the
desired color. This user interface makes it unclear what values are allowed or expected for those fields. The
template schema for configuring editors allows you to supply a short descriptive label for each field, but
sometimes additional context can be helpful. For such cases, you can use the bottomLabel attribute to
provide further information.

To add additional guidance for the business user to the example cartridge:

1. Open the template file (HelloWorld\template.xml) that you previously created.
2. Add a bottomLabel attribute to each editor in the <EditorPanel>, as in the example below:

  <EditorPanel>
    <BasicContentItemEditor>
      <editors:StringEditor propertyName="message" label="Message"

bottomLabel="Enter a message to display. HTML is allowed."/>
      <editors:StringEditor propertyName="messageColor"
        label="Color" bottomLabel="Enter the color as a hex code, such 
        as #FF0000."/>
    </BasicContentItemEditor>

This additional label text can be configured for all editors built using the Experience Manager SDK, including
all the standard editors. For the full content of the updated template, see the example below. If your
implementation uses multiple locales, see About multiple locales on page 53 for information about localizing
strings.

3. Save and close the template.
4. Upload the template by running the set_templates script.

The resulting user interface in Experience Manager looks like the following:

Oracle Commerce Guided Search Assembler Application Developer's Guide

Extending and Developing Cartridges | Customizing the Experience Manager interface170



The following shows the complete content of the updated template:
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
                 xmlns:editors="editors" 
                 type="SecondaryContent">
  <Description>A sample cartridge that can display a simple
    message.</Description>
  <ThumbnailUrl>/ifcr/tools/xmgr/img/template_thumbnails/sidebar_content.jpg</Thumb¬
nailUrl>
  <ContentItem>
    <Name>Hello cartridge</Name>
    <Property name="message">
      <String/>
    </Property>
    <Property name="messageColor">
      <String/>
    </Property>
  </ContentItem>
  <EditorPanel>
    <BasicContentItemEditor>
      <editors:StringEditor propertyName="message" label="Message"
        bottomLabel="Enter a message to display. HTML is allowed."/>
      <editors:StringEditor propertyName="messageColor"
        label="Color" bottomLabel="Enter the color as a hex code, such as 
#FF0000."/>
    </BasicContentItemEditor>
  </EditorPanel>
</ContentTemplate>

For more information about label options for Experience Manager editors, see the Editor label configuration
reference on page 226.

Oracle Commerce Guided Search Assembler Application Developer's Guide

171Extending and Developing Cartridges | Customizing the Experience Manager interface



Using the core Experience Manager editors
Experience Manager provides a set of editors that can configure primitive property types as well as
Endeca-specific features. You specify which editor to use to configure which properties in the <EditorPanel>
portion of the template.

Even with additional user assistance text, asking the business user to type a hex code into a text field does
not provide a very user-friendly experience. One of the standard editors included with Experience Manager is
a combo box that can be used to specify a set of valid values for a string property. In this example, we provide
a set of colors from which the business user can choose. This not only relieves the business user from typing
in a hex code, but it can also ensure that the selected color matches the site's color scheme.

To update the example cartridge to use a combo box editor:

1. Open the template file, HelloWorld\template.xml, that you previously created.
2. Replace the string editor configuration for the messageColor property with the following:

  <EditorPanel>
    <BasicContentItemEditor>
      <editors:StringEditor propertyName="message" label="Message"
        bottomLabel="Enter a message to display. HTML is allowed."/>

<editors:ChoiceEditor propertyName="messageColor" label="Color">
        <choice label="Red" value="#FF0000"/>
        <choice label="Green" value="#00FF00"/>
        <choice label="Blue" value="#0000FF"/>
      </editors:ChoiceEditor>
    </BasicContentItemEditor>
  </EditorPanel>

For the full content of the updated template, see the example below.

3. Upload the template by running the set_templates script.

The resulting user interface in Experience Manager looks like the following:

Depending on the option that the business user selects, the value of the property is set to the appropriate hex
code. You can change the value and refresh the application to see the change.

Oracle Commerce Guided Search Assembler Application Developer's Guide

Extending and Developing Cartridges | Customizing the Experience Manager interface172



The following shows the complete content of the updated template:
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
                 xmlns:editors="editors" 
                 type="SecondaryContent">
<Description>A sample cartridge that can display a simple 
  message.</Description>
<ThumbnailUrl>/ifcr/tools/xmgr/img/template_thumbnails/sidebar_content.jpg</Thumb¬
nailUrl>
<ContentItem>
    <Name>Hello cartridge</Name>
    <Property name="message">
        <String/>
    </Property>
    <Property name="messageColor">
        <String/>
    </Property>
</ContentItem>
<EditorPanel>
    <BasicContentItemEditor>
      <editors:StringEditor propertyName="message" label="Message"
        bottomLabel="Enter a message to display. HTML is allowed."/>
        <editors:ChoiceEditor propertyName="messageColor" label="Color">
            <choice label="Red" value="#FF0000"/>
            <choice label="Green" value="#00FF00"/>
            <choice label="Blue" value="#0000FF"/>
        </editors:ChoiceEditor>
    </BasicContentItemEditor>
</EditorPanel>
</ContentTemplate>

For more information about the standard Experience Manager editors and their configuration, refer to the
Template Property and Editor Reference on page 223.

About custom editors
If none of the standard editors meet your needs, you can develop your own editors using the Experience
Manager Editor SDK.

You may want to develop an editor if:
• You want to allow the business user to configure more advanced properties such as lists or maps of

key-value pairs.
• You want to provide a more advanced interface for the business user, such as a list that enables

drag-and-drop.
• You want the editor options to be populated dynamically from an external system rather than configured

in the template.
• You want the behavior of one editor or UI control to be linked to the state of another.

For more information about the Experience Manager Editor SDK and developing Experience Manager editors,
see Developing EditorsThis part contains the following sections: .

Oracle Commerce Guided Search Assembler Application Developer's Guide

173Extending and Developing Cartridges | Customizing the Experience Manager interface



About Cartridge Handlers and the Assembler
This section provides an overview of the Assembler. It describes the Assembler processing model and core
interfaces as well as how to implement a cartridge handler.

About the CartridgeHandler interface
A cartridge handler takes a content item representing the cartridge instance configuration as input and is
responsible for returning the response as a content item.

The CartridgeHandler interface defines three methods: initialize(), preprocess(), and process().

The initialize()method provides an opportunity for the cartridge handler to augment the cartridge instance
configuration specified in Experience Manager with configuration from other sources. This can be used to
define default behavior for a cartridge in the case where there is no Experience Manager configuration, or to
override the Experience Manager configuration for the current query. The initialize() method should
return a content item containing the complete configuration for the cartridge from all possible configuration
sources. This augmented configuration item can either be the mutated input content item or a new instance
of ContentItem, and is used as input to both the preprocess() and process() methods.

Because the preprocess() method is called on all cartridges before process() is called on any cartridges,
it provides an opportunity to coordinate processing between cartridges. Many of the core Endeca cartridges
make use of this mechanism in order to consoldiate queries to an MDEX Engine among several cartridges
during the course of a single assembly cycle.

The process() method is responsible for returning a ContentItem that represents the cartridge response.

A cartridge handler need not define any behavior for initialize() or preprocess(). The AbstractCar¬
tridgeHandler class exists to simplify the task of implementing the CartridgeHandler interface. It
provides empty implementations for initialize() and preprocess(). Subclasses of AbstractCar¬
tridgeHandler need only implement the process() method to return the response object. They can
optionally override the initialize() and preprocess() methods.

About initializing the cartridge configuration
The initialize() phase in the cartridge processing life cycle enables the cartridge handler to synthesize
the complete configuration for the cartridge from several sources.

The configuration content item that is passed in to the assembly process is the cartridge instance configuration
from Experience Manager, however, any given cartridge may also have other configuration sources.

In a typical scenario, a cartridge has some default behavior that can be specified as a property value in a
Spring context file. A business user can specify a value for a specific instance of a cartridge using Experience
Manager. The site visitor may also have the ability to override either the default or the cartridge instance setting
from the client application. For example, in the Results List cartridge, the default value for records per page is

Oracle Commerce Guided Search Assembler Application Developer's Guide

Extending and Developing Cartridges | About Cartridge Handlers and the Assembler174



10. The business user can set this value to 25 in Experience Manager, and the site visitor can choose to display
50 records by selecting the appropriate option on the site.

The Assembler API includes the ConfigInitializer utility class with the method initialize(). The
default implementation of initialize() layers the cartridge configuration in the following order (from lowest
to highest):

1. Default configuration, typically defined in the Spring configuration for the cartridge handler
2. Cartridge instance configuration, typically created in Experience Manager and passed in as the

configuration content item
3. Request-based configuration parsed from the HTTP request parameters, using the RequestParamMar¬

shaller helper class

The ConfigInitializer class also provides methods for additional layering of configuration. Subclasses
can override ConfigInitializer to define custom layering behavior, for example, to incorporate configuration
saved in the session state.

About the NavigationCartridgeHandler class
The core Endeca cartridges that make queries to an MDEX Engine use cartridge handlers that extend from
NavigationCartridgeHandler.

The NavigationCartridgeHandlermakes use of the two-pass Assembler processing model to consolidate
MDEX Engine queries across cartridges.

In the preprocess() phase, the cartridge handler calls createMdexRequest() but does not execute the
request. In subsequent calls to createMdexRequest() by other handlers, the MDEX resource broker
determines whether the new request can be consolidated with an existing request in order to minimize the
number of queries to the MDEX Engine for a single assembly cycle.

During the process() phase, the handler calls executeMdexRequest() to retrieve the results. The actual
query to the MDEX Engine is executed when the first handler in the assembly cycle calls executeMdexRe¬
quest() and the results are cached for all subsequent handlers that try to execute the same request.

You can use a similar approach if you have multiple cartridges that need to make requests to the same external
resource and can achieve efficiencies by consolidating requests across cartridges.

For further information about the NavigationCartridgeHandler class, refer to theAssembler API Reference
(Javadoc).

Implementing a cartridge handler
You add a cartridge handler by writing a Java class that implements the CartridgeHandler interface and
configuring the Assembler to use the new handler in the Spring context file.

In this example, we update our "Hello, World" cartridge to do some simple string manipulation on the message
that was specified in Experience Manager. Because this cartridge does not use any configuration other than
the cartridge instance configuration from Experience Manager and does not need to do any preprocessing,
we can extend AbstractCartridgeHandler.

To add a cartridge handler to the example cartridge:

1. Create a new Java class in the package com.endeca.sample.cartridges and type or copy the following:
 package com.endeca.sample.cartridges;

 import com.endeca.infront.assembler.AbstractCartridgeHandler;
 import com.endeca.infront.assembler.CartridgeHandlerException;

Oracle Commerce Guided Search Assembler Application Developer's Guide

175Extending and Developing Cartridges | About Cartridge Handlers and the Assembler



 import com.endeca.infront.assembler.ContentItem;

 public class UppercaseCartridgeHandler extends AbstractCartridgeHandler
 {
   //====================================================================
   // The cartridge handler 'process' method
   public ContentItem process(ContentItem pContentItem) throws CartridgeHan¬
dlerException
   {
     // Get the message property off of the content item.
     final String message = (String) pContentItem.get("message");
     // If the message is non-null, uppercase it.
     if (null != message) {
        pContentItem.put("message", message.toUpperCase());
     }
     return pContentItem;
   }
 }

2. Compile the cartridge handler and add the compiled class to your application, for example, by saving it in
%ENDECA_TOOLS_ROOT%\reference\discover-electronics-authoring\WEB-INF\classes.

3. Configure the Assembler to use the UppercaseCartridgeHandler for the Hello cartridge.
a) Navigate to the WEB-INF directory of your application, for example,

%ENDECA_TOOLS_ROOT%\reference\discover-electronics-authoring\WEB-INF.
b) Open the assembler-context.xml file.
c) Add the following in the CARTRIDGE HANDLERS section:

    <!-- 
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 ~ BEAN: CartridgeHandler_Hello
 -->
 <bean id="CartridgeHandler_Hello"
 class="com.endeca.sample.cartridges.UppercaseCartridgeHandler"
 scope="prototype" />

d) Save and close the file.

4. Restart the Endeca Tools Service.
5. Refresh the authoring instance of the application.

The message now displays in all-uppercase letters.

Oracle Commerce Guided Search Assembler Application Developer's Guide

Extending and Developing Cartridges | About Cartridge Handlers and the Assembler176

Cartridge handler development scenarios
You should write a cartridge handler in cases where you need to perform some processing on the cartridge
instance configuration before sending the response to the client application.

It is always possible to do processing in the client application, but encapsulating the business logic in an
extension to the Assembler provides several advantages:

• It makes the rendering code cleaner and easier to maintain.
• It centralizes the processing in one place so that the results can be consumed by multiple client applications

including across multiple channels such as desktop, mobile, and others.
• It provides an opportunity for coordinating processing across multiple cartridges before returning the

response to the client application.

Depending on what the cartridge handler needs to accomplish, your implementation approach may vary.
Cartridge handlers must always implement the process() method to return the response model.

Example cartridgeImplementation approachScenario

"Hello, World" with
UppercaseCartridgeHandler

Extend AbstractCartridgeHandler
and override process() to update the
property values in the input content item

Update properties from the cartridge
instance configuration in place (data
cleansing or manipulation scenario)

RSS Feed cartridgeExtend AbstractCartridgeHandler
and override process() to query the

Use information from the cartridge
instance configuration to query an
external resource for the information
to display

resource and insert the results in the output
content item

NavigationCartridgeHandlerTake advantage of the two-pass assembly
model with preprocess() and pro¬

Query an external resource,
consolidating queries between
cartridges within a single assembly
cycle for improved performance

cess() and implement a resource broker
that can consolidate queries and manage
their execution

Oracle Commerce Guided Search Assembler Application Developer's Guide

177Extending and Developing Cartridges | About Cartridge Handlers and the Assembler

Example cartridgeImplementation approachScenario

Custom Record Details with
availability information

Extend the core cartridge and override
process() to query the resource and add
additional properties to the MDEX query
results before returning the response

Augment the results from a core
Endeca cartridge with additional
information from a non-MDEX
resource

Custom Results List with
recommendations

Extend the core cartridge and override
either initialize() or preprocess()
to modify the query before it is executed

Customize a core Endeca cartridge
to modify the MDEX Engine query
parameters

"Hello, World" with layered
color configuration

Extend AbstractCartridgeHandler or
implement the CartridgeHandler
interface and override initialize(),

Combine multiple sources of
cartridge configuration before
processing results

making use of the ConfigInitializer
and RequestParamMarshaller helper
classes to generate the complete
configuration model

About using event listeners to extend the navigation cartridges
You can use the Assembler eventing framework as an extension point for navigation cartridges in cases where
extending an existing cartridge handler is insufficient.

If you are making modifications to the navigation cartridges, you can trigger processing logic based on Assembler
events instead of subclassing the core cartridge handlers.

Using an event listener instead of extending a cartridge handler introduces the following considerations:
• Unlike extending a cartridge handler, logic included in an event listener is evaluated for every cartridge

handler.
• Event listeners do not have access to the current Assembler request or to the navigation state.
• Event listeners must be thread safe.

Related Links
Assembler event framework reference on page 23

The Assembler includes an AssemblerEventListener interface that you can use to create and
register event listeners.

Creating an event listener
The Assembler provides an empty implementation of the AssemblerEventListener, AssemblerEven¬
tAdapter. You can extend this implementation to create a listener that triggers on an Assembler event.

To create an event listener:

1. Create a new Java class that extends the AssemblerEventAdapter.
For example:
public class ResultsListListener extends AssemblerEventAdapter {
}

Oracle Commerce Guided Search Assembler Application Developer's Guide

Extending and Developing Cartridges | About using event listeners to extend the navigation cartridges178

2. Override the methods that correspond to the events for which you wish to trigger custom processing logic:
public class ResultsListListener extends AssemblerEventAdapter {

@Override
 public void cartridgePreprocessStarting(AssemblerEvent event){
 ...
 }

 @Override
 public void cartridgeProcessComplete(AssemblerEvent event){
 ...
 }
}

For a list of Assembler events, see the Assembler event framework reference on page 23 or refer to the
Assembler API Reference (Javadoc).

3. Add conditional logic to restrict processing to a specific cartridge handler:
public class ResultsListListener extends AssemblerEventAdapter {
 ...

 @Override
 public void cartridgeProcessComplete(AssemblerEvent event){

if(event.getContentItem() != null && "ResultsList".equals(event.getCon¬
tentItem().getType()){

 ...
 }
 }
}

4. Add processing logic.
The example below prefixes the max_price property on a record with a dollar sign:
public class ResultsListListener extends AssemblerEventAdapter {

 ...

 @Override
 public void cartridgeProcessComplete(AssemblerEvent event){
 if(event.getContentItem() != null && "ResultsList".equals(event.getCon¬
tentItem().getType()){

ResultsList resultsList = (ResultsList) event.getContentItem();
 for(Record record : resultsList.getRecords()){
 Attribute price = record.getAttributes().get("prod¬
uct.max_price");
 if(price != null){
 for(int i = 0 ; i < price.size(); i++){
 price.set(i, "$" + price.get(i).toString());
 }
 }
 }
 }
 }
}

After creating a new listener, you must register it by including it in the list of listeners for the assemblerFac¬
tory object.

Oracle Commerce Guided Search Assembler Application Developer's Guide

179Extending and Developing Cartridges | About using event listeners to extend the navigation cartridges

About registering an event listener
You must register all event listeners with the AssemblerFactory object.

The AssemblerFactory takes event listeners as constructor arguments. These listeners are instantiated
with each Assembler object created by the factory class.

Optionally, you may also choose to use the Assembler.addAssemblerEventListener() method to add
a listener for a single assembly request.

Example

The example below uses the ResultsListListener defined in the previous topic, registered in the Discover
Electronics reference application.

The reference application uses the Assembler context file to configure global application properties. The
configuration bean for the AssemblerFactory includes a list of listeners as constructor arguments:
<bean id="assemblerFactory" class="com.endeca.infront.assembler.spring.SpringAssem¬
blerFactory"
 scope="singleton">
 <constructor-arg>
 ...
 </constructor-arg>
 <constructor-arg>
 <!-- List of listeners registered in the assembler -->
 <list>

<bean class="com.endeca.infront.ResultsListListener" />
 <bean class="com.endeca.infront.logger.SLF4JAssemblerEventLogger" />

 <bean class="com.endeca.infront.assembler.event.request.ContentItemAug¬
mentAdapter">
 <constructor-arg ref="springUtility"/>
 </bean>
 ...
 </list>
 </constructor-arg>
</bean>

Sample Cartridges
This section contains sample cartridge customizations that demonstrate how to use the various cartridge
extension mechanisms to address different use cases.

About using the sample cartridges
The sample cartridges are intended to demonstrate the cartridge extension mechanisms and provide a model
for your own cartridge customizations.

The sample code provided is written to be generic and easy to follow, rather than production-quality code.
Oracle recommends that you follow a few best practices when working with the examples:

• Set up a new instance of the Discover Electronics application to use as a sandbox for deploying the sample
cartridges. This isolates the samples from the out-of-the-box configuration for Discover Electronics as well
as your own application.

Oracle Commerce Guided Search Assembler Application Developer's Guide

Extending and Developing Cartridges | Sample Cartridges180

• Within your sandbox application, create a separate Spring context file for the custom cartridge handlers
described in this guide.

• When copying and pasting examples from this guide, pay attention to the end-of-line marker (¬) that
indicates that a long line of text has been wrapped. Ensure that any occurrences of the symbol and the
corresponding line break are deleted and any remaining space is closed up.

The steps described for creating and deploying the components of the sample cartridges correspond to the
steps described in previous sections for the "Hello, World" cartridge. If you need additional information to
complete a particular step in deploying one of the sample cartridges, refer to the more detailed procedures for
the "Hello, World" example.

Setting up a test application based on Discover Electronics
Oracle recommends that you use a test application to test the sample cartridges instead of deploying them in
Discover Electronics or your own application.

Because a test application is for development use only, we do not need to deploy a live instance of the
application.

To deploy a copy of Discover Electronics to use as a test for the sample cartridges:

1. Deploy a new test application using the Deployment Template.
a) From a command prompt, navigate to %ENDECA_TOOLS_ROOT%\deployment_template\bin (on

Windows) or $ENDECA_TOOLS_ROOT/deployment_template/bin (on UNIX).
b) Run the deploy script:

• On Windows: deploy.bat --app ..\..\reference\discover-data\deploy.xml
• On UNIX: deploy.sh --app ../../reference/discover-data/deploy.xml

c) Specify the application name Test and specify the following ports when prompted:

Recommended valuePort

15100Live Dgraph

15102Authoring Dgraph

15110LogServer

2. Provision the test application.
a) Ensure that the Endeca HTTP Service and Endeca Tools Service are running.
b) From a command prompt, navigate to <APP-DIR>\control (on Windows) or <APP-DIR>/control

(on UNIX).
c) Run initialize_services.
d) Run load_baseline_test_data.
e) Run baseline_update.

3. Deploy a copy of the authoring instance of the Discover Electronics application.
a) Navigate to %ENDECA_TOOLS_ROOT%\reference (on Windows) or

$ENDECA_TOOLS_ROOT/reference (on UNIX).
b) Make a copy of the directory discover-electronics-authoring and save the copy with the name

sandbox in the same parent directory.
c) Navigate to the test directory and then to the WEB-INF subdirectory.
d) Open assembler-context.xml in a text editor.

Oracle Commerce Guided Search Assembler Application Developer's Guide

181Extending and Developing Cartridges | Sample Cartridges

e) Locate the CARTRIDGE SUPPORT section:
<!--
 ##

 # CARTRIDGE SUPPORT
 #
 # The following section configures managers and other supporting objects.

 #
-->

f) In the mdexResource bean, update the Dgraph port:
<bean id="mdexResource" scope="request"
class="com.endeca.infront.navigation.model.MdexResource">
 <property name="host" value="localhost" />
 <property name="port" value="15102" />
 <property name="recordSpecName" value="common.id" />
</bean>

g) Locate the Content Sources section:
<!--
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~ Content Sources
-->

h) In the authoringContentSource bean, update the application name:
<bean id="authoringContentSource"" class="com.endeca.infront.content.source.Au¬
thoringContentSource"
scope="singleton" lazy-init="true">
    <property name="sitePath" value="/sites/Test"/>
    <property name="rootUrl" value="/ifcr"/>
    <property name="host" value="localhost"/>
    <property name="port" value="8006"/>
    <property name="serviceUrl" value="/ifcr/system/endeca/contentResolver"/>

    <property name="user" value="admin"/>
    <property name="password" value="admin"/>
</bean>

i) In the authoringMediaSources bean, update the application name:
<bean id="authoringMediaSources" class="java.util.ArrayList" lazy-init="true">

    <constructor-arg>
        <list>
            <bean class="com.endeca.infront.cartridge.model.MediaSourceCon¬
fig">
                <property name="sourceName" value="IFCRSource" />
                <property name="sourceValue" value="http://local¬
host:8006/ifcr/sites/Test/media/" />
            </bean>
            <bean class="com.endeca.infront.cartridge.model.MediaSourceCon¬
fig">
                <property name="sourceName" value="default" />
                <property name="sourceValue" value="http://local¬
host:8006/ifcr/sites/Test/media/" />
            </bean>
        </list>

Oracle Commerce Guided Search Assembler Application Developer's Guide

Extending and Developing Cartridges | Sample Cartridges182



    </constructor-arg>
</bean>

j) Save and close the file.
k) Navigate to %ENDECA_TOOLS_CONF%\conf\Standalone\localhost (on Windows) or

$ENDECA_TOOLS_CONF/conf/Standalone/localhost (on UNIX).
l) Make a copy of discover-authoring.xml and save the copy with the name test in the same

directory.
m) Open test.xml in a text editor.
n) Change the value of docBase as follows:

docBase="${catalina.base}/../../reference/test"

o) Restart the Endeca Tools Service.

4. Validate your new sandbox application:
a) Navigate to http://<WorkbenchHost>:8006/login and verify that Test displays as an option in

the Application drop-down.
b) Select the Test application and verify that the sample page content from Discover Electronics is available

in Experience Manager.
c) In a separate browser window, navigate to the newly deployed sandbox application, at

http://<WorkbenchHost>:8006/test and verify that it displays.

5. Optionally, update the Workbench configuration to use the test Web application for preview.
a) Ensure that you are logged in to the Test application in Workbench.
b) Select Application Configuration.
c) Specify the URL to the sandbox application (for example, http://<WorkbenchHost>:8006/test)

as the Preview URL.
d) Preview a page from Experience Manager by selecting a page or content item and clicking Preview in

the upper right.

Creating a Spring context file for sample cartridges
Oracle recommends that you specify the configuration for the sample cartridges in a separate Spring context
file from the core Endeca cartridges.

To create a Spring context file for the sample cartridges:

1. Navigate to %ENDECA_TOOLS_ROOT%\reference\sandbox\WEB-INF (on Windows) or
$ENDECA_TOOLS_ROOT/reference/sandbox/WEB-INF (on UNIX).

2. Open assembler-context.xml in a text editor.
3. At the top of the file, add the following import:

<beans xmlns="http://www.springframework.org/schema/beans" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
    http://www.springframework.org/schema/beans
    http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
">
    <bean class="org.springframework.beans.factory.config.PropertyPlaceholder¬
Configurer">
        <property name="locations">
            <list>
                <value>WEB-INF/assembler.properties</value>
            </list>
        </property>

Oracle Commerce Guided Search Assembler Application Developer's Guide

183Extending and Developing Cartridges | Sample Cartridges



    </bean>

    <import resource="endeca-url-config.xml"/>
    <import resource="perf-logging-config.xml"/>
<import resource="sample-cartridge-config.xml" />

4. Delete the configuration for the "Hello, World" sample cartridge that we added in an earlier example.
    <!--
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 ~ BEAN: CartridgeHandler_Hello
 -->
 <bean id="CartridgeHandler_Hello"
 class="com.endeca.sample.cartridges.UppercaseCartridgeHandler"
 scope="prototype" />

5. Save and close the file.
6. Create a new file named sample-cartridge-config.xml in the same directory with the following

contents:
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

 <!--
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    ~ BEAN: CartridgeHandler_Hello
    -->
    <bean id="CartridgeHandler_Hello" 
    class="com.endeca.sample.cartridges.UppercaseCartridgeHandler"
    scope="prototype" />

</beans>

7. Save and close the file.
8. Validate the new configuration by adding the "Hello, World" cartridge to your new sandbox application.

a) Copy the "Hello, World" directory and its contents (HelloWorld\) from the Discover Electronics
application (<APP-DIR>\config\import\templates) to the sandbox application.

b) Upload the template to Workbench using the set_templates script.
c) Using Experience Manager, add the cartridge to the default page of the sandbox application and save

your changes.
d) Verify that the Hello.jsp renderer and UppercaseCartridgeHandler are present in the sandbox

Web application. (These should have been included when you copied the Discover Electronics authoring
application.)

e) Refresh the sandbox application (http://<WorkbenchHost>:8006/sandbox) and verify that the
text you entered in Experience Manager displays, and has been converted to all-uppercase letters.

RSS Feed cartridge
In this example, we build a cartridge that displays items from an RSS feed.

This cartridge enables a business user to specify some basic information about an existing RSS feed in
Experience Manager. The cartridge handler fetches the RSS results and returns an output model to the client
suitable for rendering.

It demonstrates the following use cases:

Oracle Commerce Guided Search Assembler Application Developer's Guide

Extending and Developing Cartridges | Sample Cartridges184



• Using a cartridge handler to fetch information from a source other than an MDEX Engine.
• Using the business user configuration from Experience Manager as input into the assembly process and

returning a different output model from the configuration model.

In this cartridge, we create the following components:

DescriptionComponent

Enables the business user to specify the URL to an RSS feed and the number of
entries to display.

cartridge template

Fetches results from the RSS feed and returns a number of entries up to the value
specified by the business user or the number of entries in the feed, whichever is
lower.

cartridge handler

Displays the name of the feed with a link to the channel URL, and the title and
description of each entry with a link to the entry on the original site.

cartridge renderer

Creating the cartridge template
The business user needs to be able to configure the RSS Feed with a URL and the number of entries to display.

To create the RSS Feed template and add it to your application:

1. Create a new template based on the example below.
Since the number of entries is expected to be an integer, the example uses a NumericStepperEditor
for this property. It could also use a SliderEditor — both options guarantee that the value of the string
property is an integer. In the example, we specify a default value of 5 for the number of entries.

2. Create a directory with the name RssFeed in the templates directory of your application.
3. Save the template with the name template.xml to the RssFeed directory of your application.
4. Upload the template using the set_templates script.
5. Add the cartridge to the default search and navigation page as in the example below.

Note: The sample renderer for this cartridge works best with RSS feeds that have brief descriptions
with no images or advertisements in the description field. A possible enhancement to this cartridge
would be to make displaying the description configurable.

Oracle Commerce Guided Search Assembler Application Developer's Guide

185Extending and Developing Cartridges | Sample Cartridges



6. Save your changes to the page.

The cartridge instance configuration is saved as XML. At this point, because there is no cartridge handler
specified for this cartridge, the same configuration is passed to the client as the response from the Assembler.
      <ContentItem type="SecondaryContent">
        <Name>RSS cartridge</Name>
        <Property name="feedUrl">
          <String>http://www.wired.com/reviews/feed/</String>
        </Property>
        <Property name="numEntries">
          <String>5</String>
        </Property>
      </ContentItem>

The following shows the sample template for the RSS Feed cartridge:
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
                 xmlns:editors="editors" 
                 type="SecondaryContent">
  <Description>A cartridge that displays entries from an RSS feed.</Description>

  <ThumbnailUrl>/ifcr/tools/xmgr/img/template_thumbnails/sidebar_content.jpg</Thumb¬
nailUrl>
  <ContentItem>
    <Name>RSS cartridge</Name>
    <Property name="feedUrl">
      <String/>
    </Property>
    <Property name="numEntries">
      <String>5</String>
    </Property>
  </ContentItem>
  <EditorPanel>
    <BasicContentItemEditor>
      <editors:StringEditor propertyName="feedUrl" label="Feed URL"
        bottomLabel="The address of the RSS feed, such as http://www.ora¬
cle.com/us/corporate/press/rss/rss-pr.xml"/>
      <editors:NumericStepperEditor propertyName="numEntries" 
        label="Number of entries to display" minValue="1" maxValue="15"/>
    </BasicContentItemEditor>
  </EditorPanel>
</ContentTemplate>

Creating the cartridge handler
The cartridge handler fetches the RSS results and returns an output model to the client suitable for rendering.

To create the RSS Feed cartridge handler and add it to the application:

1. Create a new Java class in the package com.endeca.sample.cartridges based on the example
below, which extends AbstractCartridgeHandler.

2. Compile the cartridge handler and add the compiled class to your application.
3. Configure the Assembler to use the RssFeedHandler for the RSS Feed cartridge by adding the following

to the Spring context file:
    <!--
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 ~ BEAN: CartridgeHandler_RssFeed

Oracle Commerce Guided Search Assembler Application Developer's Guide

Extending and Developing Cartridges | Sample Cartridges186

 -->
 <bean id="CartridgeHandler_RssFeed"
 class="com.endeca.sample.cartridges.RssFeedHandler"
 scope="prototype" />

4. Restart the Endeca Tools Service.
5. Refresh the application.

The RSS feed does not display yet because we have not created the renderer, but you can validate that the
response model has been populated with the information that we want to display via the JSON view:
{

 "@type": "RssFeed",
 "name": "RSS cartridge",
 "feedUrl": "http://www.wired.com/reviews/feed/",
 "numEntries": "5",
 "chanTitle": "Product Reviews",
 "chanUrl": "http://www.wired.com/reviews",
 "entries": [
 {
 "@type": "rssEntry",
 "itemDesc": "(description text omitted from this example)",
 "itemTitle": "(title text omitted from this example)",
 "itemUrl": "(url omitted from this example)"
 },
 {
 "@type": "rssEntry",
 "itemDesc": "(description text omitted from this example)",
 "itemTitle": "(title text omitted from this example)",
 "itemUrl": "(url omitted from this example)"
 },
 {
 "@type": "rssEntry",
 "itemDesc": "(description text omitted from this example)",
 "itemTitle": "(title text omitted from this example)",
 "itemUrl": "(url omitted from this example)"
 },
 {
 "@type": "rssEntry",
 "itemDesc": "(description text omitted from this example)",
 "itemTitle": "(title text omitted from this example)",
 "itemUrl": "(url omitted from this example)"
 },
 {
 "@type": "rssEntry",
 "itemDesc": "(description text omitted from this example)",
 "itemTitle": "(title text omitted from this example)",
 "itemUrl": "(url omitted from this example)"
 }
]

}

The following shows the code for the sample RSS Feed cartridge handler:
package com.endeca.sample.cartridges;

import com.endeca.infront.assembler.AbstractCartridgeHandler;
import com.endeca.infront.assembler.CartridgeHandlerException;

Oracle Commerce Guided Search Assembler Application Developer's Guide

187Extending and Developing Cartridges | Sample Cartridges

import com.endeca.infront.assembler.ContentItem;
import com.endeca.infront.assembler.BasicContentItem;
import java.net.URL;
import java.util.ArrayList;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.DocumentBuilder;
import org.w3c.dom.CharacterData;
import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.NodeList;
import org.w3c.dom.Node;

public class RssFeedHandler extends AbstractCartridgeHandler {

 public ContentItem process(ContentItem pContentItem)
 throws CartridgeHandlerException {

 final String urlString = (String) pContentItem.get("feedUrl");
 final int numEntries =
 Integer.parseInt((String)pContentItem.get("numEntries"));

 try {
 URL url = new URL(urlString);
 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
 DocumentBuilder docBuilder = factory.newDocumentBuilder();
 Document RssContents = docBuilder.parse(url.openStream());

 // get the channel info
 Element channel =
 (Element)RssContents.getElementsByTagName("channel").item(0);
 pContentItem.put("chanTitle", getElementValue(channel, "title"));
 pContentItem.put("chanUrl", getElementValue(channel, "link"));

 // get the entries and add them to a list
 ArrayList<ContentItem> entries = new ArrayList<ContentItem>(numEntries);
 NodeList nodes = RssContents.getElementsByTagName("item");
 for(int i=0; i<numEntries; i++) {
 Element element = (Element)nodes.item(i);
 if (element!=null) {
 ContentItem entry = new BasicContentItem("rssEntry");
 entry.put("itemTitle", getElementValue(element, "title"));
 entry.put("itemUrl", getElementValue(element, "link"));
 entry.put("itemDesc", getElementValue(element, "description"));
 entries.add(entry);
 }
 }
 pContentItem.put("entries", entries);
 }
 catch (Exception e) {
 throw new CartridgeHandlerException(e);
 }

 return pContentItem;
 }

 private static String getCharacterDataFromElement(Element e) {
 try {
 Node child = e.getFirstChild();
 if(child instanceof CharacterData) {
 CharacterData cd = (CharacterData) child;

Oracle Commerce Guided Search Assembler Application Developer's Guide

Extending and Developing Cartridges | Sample Cartridges188

 return cd.getData();
 }
 }
 catch(Exception ex) {
 }
 return "";
 }

 private static String getElementValue(Element parent, String label) {
 return getCharacterDataFromElement(
 (Element)parent.getElementsByTagName(label).item(0));
 }

}

Creating the cartridge renderer
The renderer displays a summary of the results with links that take the site visitor to the site that originated the
RSS feed.

To create a renderer for the RSS feed:

1. Create a new JSP page based on the example below.
2. Save the renderer to /WEB-INF/views/desktop/RssFeed/RssFeed.jsp.
3. Refresh the application to see the result.

The results from the RSS feed display in the right sidebar.

Oracle Commerce Guided Search Assembler Application Developer's Guide

189Extending and Developing Cartridges | Sample Cartridges

The following shows the code for the sample RSS Feed renderer in JSP:
<%@page language="java" pageEncoding="UTF-8"
contentType="text/html;charset=UTF-8"%>

<%@include file="/WEB-INF/views/include.jsp"%>

<div style="padding:2ex 0">
${component.chanTitle}
<c:forEach var="rssEntry" items="${component.entries}">
 <p>${rssEntry.itemTitle}

 ${rssEntry.itemDesc}</p>
</c:forEach>
</div>

Custom Record Details cartridge with availability information
In this example, we extend the Record Details cartridge to display information about the availability of a product.

It demonstrates the following use cases:
• Extending one of the core Endeca cartridges

Oracle Commerce Guided Search Assembler Application Developer's Guide

Extending and Developing Cartridges | Sample Cartridges190

• Combining results from the MDEX Engine with information from another source during the process()
phase of the assembly cycle

• Configuring a third-party service through Spring

In this cartridge, we create the following components:

DescriptionComponent

Extends the RecordDetailsHandler to add a property to the response model
containing availability information.

cartridge handler

Stands in for a real source of availability information such as an inventory system.mock "availability service"

Because this cartridge does not introduce any change in the configuration options for the business user, there
are no template changes for this cartridge. To enable the full functionality of this cartridge, the renderer should
be updated to display the availability information, however that is not demonstrated in this guide.

Creating the cartridge handler and supporting classes
The AvailabilityRecordDetailsHandler extends the core RecordDetailsHandler to call a simple
mock availability service to retrieve availability information about a particular record.

To create a cartridge handler that calls an availability service:

1. Create the following classes: Availability, AvailabilityService, and FixedAvailabilitySer¬
vice based on the examples below.
The AvailabilityService defines an interface that returns availability information based on a record
identifier, and FixedAvailabilityService provides a basic implementation of the interface.

2. Create a new Java class in the package com.endeca.sample.cartridges based on the example
below, which extends RecordDetailsHandler.
The handler takes the results of the MDEX Engine query and adds an additional property that represents
the product availability.

3. Compile the classes and add them to your application.
4. Configure the Assembler to use the AvailabilityRecordDetailsHandler for the Record Details

cartridge by editing the Spring context file as in the following example.

Note: If you have created a sample-cartridge-config.xml file for configuring the example
cartridges, copy the CartridgeHandler_ResultsList bean from assembler-context.xml
to your sample context file, comment out the version in assembler-context.xml, and then modify
the version in your sample context file as indicated below.

<bean id="CartridgeHandler_RecordDetails"
 class="com.endeca.sample.cartridges.AvailabilityRecordDetailsHandler"
 parent="NavigationCartridgeHandler" scope="prototype" >
 <property name="recordState" ref="recordState" />
 <property name="availabilityService" ref="availabilityService" />
 <property name="recordSpec" value="common.id" />
 <property name="availabilityPropertyName"
 value="product.availability" />
</bean>

<bean id="availabilityService"
 class="com.endeca.sample.cartridges.FixedAvailabilityService"
 scope="singleton" >
<!-- Implementation-specific configuration for the service

Oracle Commerce Guided Search Assembler Application Developer's Guide

191Extending and Developing Cartridges | Sample Cartridges

 could be specified here -->
</bean>

5. Restart the Endeca Tools Service.
6. Refresh the application and then click on any record to view its details page.

The availability property is now returned as part of the record details information:
{
 "@type": "RecordDetailsPageSlot",
 "name": "Record Details Page",
 "contentCollection": "Record Details Pages",
 "ruleLimit": "1",
 "contents": [
 {
 …
 },
 "recordDetails": {
 "@type": "RecordDetails",
 "record": {
 "@class": "com.endeca.infront.cartridge.model.Record",
 "numRecords": 1,
 "attributes": {
 …
 "product.availability": [
 "BACKORDER"
],
 …
 },
 "records": […]
 },
 "name": "Record Details"
 }
 }
],
 …
}

The renderer can now be updated to display availability information based on the value of this property.

The following shows the code for the availability service and its supporting classes:
package com.endeca.sample.cartridges;

public enum Availability {
 IMMEDIATE,
 WEEK,
 DROP_SHIP,
 BACKORDER;

}

package com.endeca.sample.cartridges;

public interface AvailabilityService {

 Availability getAvailabilityFor(String identifier);
}

package com.endeca.sample.cartridges;

Oracle Commerce Guided Search Assembler Application Developer's Guide

Extending and Developing Cartridges | Sample Cartridges192

public class FixedAvailabilityService implements AvailabilityService {

 public Availability getAvailabilityFor(String identifier) {
 try {
 return Availability.valueOf(identifier);
 } catch (IllegalArgumentException e) {
 return Availability.BACKORDER;
 }
 }
}

The following shows the code for the custom cartridge handler:
package com.endeca.sample.cartridges;

import com.endeca.infront.assembler.CartridgeHandlerException;
import com.endeca.infront.cartridge.RecordDetails;
import com.endeca.infront.cartridge.RecordDetailsConfig;
import com.endeca.infront.cartridge.RecordDetailsHandler;
import com.endeca.infront.cartridge.model.Attribute;
import org.springframework.beans.factory.annotation.Required;

public class AvailabilityRecordDetailsHandler extends RecordDetailsHandler {

 private AvailabilityService availabilityService;
 private String recordSpec;
 private String availabilityPropertyName;

 @Required
 public void setAvailabilityService(
 AvailabilityService availabilityService_) {
 availabilityService = availabilityService_;
 }

 @Required
 public void setRecordSpec(String recordSpec_) {
 recordSpec = recordSpec_;
 }

 @Required
 public void setAvailabilityPropertyName(
 String availabilityPropertyName_) {
 availabilityPropertyName = availabilityPropertyName_;
 }

 @Override
 public RecordDetails process(RecordDetailsConfig detailsConfig)
 throws CartridgeHandlerException {
 RecordDetails details = super.process(detailsConfig);
 if (null == details) return null;
 Attribute attr =
 details.getRecord().getAttributes().get(recordSpec);
 if (null == attr || 1 != attr.size()) {
 throw new CartridgeHandlerException("No record spec
 available on record, or spec is multiassign");
 }
 Attribute<Availability> availability =
 new Attribute<Availability>();
 availability.add(
 availabilityService.getAvailabilityFor(attr.toString()));
 details.getRecord().getAttributes().put(availabilityPropertyName,

Oracle Commerce Guided Search Assembler Application Developer's Guide

193Extending and Developing Cartridges | Sample Cartridges

 availability);
 return details;
 }

}

Custom Results List with recommendations
In this example, we extend the Results List cartridge to boost certain products based on information from a
recommendation engine.

It demonstrates the following use cases:
• Extending one of the core Endeca cartridges
• Using data from another source to modify the query to the MDEX Engine created during the preprocess()

phase of the assembly cycle
• Configuring a third-party service through Spring

In this cartridge, we create the following components:

DescriptionComponent

Extends the ResultsListHandler to retrieve a set of items to boost from a
recommendations engine and add a boost stratum to the MDEX Engine query.

cartridge handler

Stands in for a real source of recommendations.mock recommendations
service

Because this cartridge does not introduce any change in the configuration options for the business user, there
are no template changes for this cartridge. Additionally, the response model for the customized cartridge is
the same as the default Results List (only with the records in a different order), so there is no need for changes
to the default renderer.

Creating the cartridge handler and supporting classes
The RecommendationsResultsListHandler extends the core ResultsListHandler to call a simple
mock recommendations service and boosts the recommended products.

To create a cartridge handler that boosts recommended records:

1. Create the interface RecommendationService and the concrete implementation TestRecommendation¬
Service based on the examples below.
As a proof of concept, the recommendations service always returns the same recommendations from the
Discover Electronics data set.

2. Create a new Java class in the package com.endeca.sample.cartridges based on the example
below, which extends ResultsListHandler.
The handler retrieves a list of recommended records from the service and adds them to a boost stratum
for the MDEX Engine query. If the records are present in the results set, they are boosted to the top of the
results list.

3. Compile the classes and add them to your application.
4. Configure the Assembler to use the RecommendationsResultsListHandler for the Results List

cartridge by editing the Spring context file as follows:

Oracle Commerce Guided Search Assembler Application Developer's Guide

Extending and Developing Cartridges | Sample Cartridges194

Note: If you have created a sample-cartridge-config.xml file for configuring the example
cartridges, copy the CartridgeHandler_ResultsList bean from assembler-context.xml
to your sample context file, comment out the version in assembler-context.xml, and then modify
the version in your sample context file as indicated below.

<bean id="CartridgeHandler_ResultsList"
 class="com.endeca.sample.cartridges.RecommendationsResultsListHandler"
 parent="NavigationCartridgeHandler" scope="prototype">
 <property name="contentItemInitializer">

<!-- additional elements omitted from this example -->
 </property>
 <property name="sortOptions">

<!-- additional elements omitted from this example -->
 </property>
 <property name="recommendationService" ref="recommendationService" />
 <property name="recordSpec" value="common.id"/>
</bean>

<bean id="recommendationService"
 class="com.endeca.sample.cartridges.TestRecommendationService"
 scope="singleton" >
<!-- Implementation-specific configuration for the service

 could be specified here -->
</bean>

5. Restart the Endeca Tools Service.
6. Refresh the application.

The recommended records are boosted to the top of the results:

Oracle Commerce Guided Search Assembler Application Developer's Guide

195Extending and Developing Cartridges | Sample Cartridges

Oracle Commerce Guided Search Assembler Application Developer's Guide

Extending and Developing Cartridges | Sample Cartridges196

The following shows the code for the recommendations service interface and concrete implementation:
package com.endeca.sample.cartridges;

import java.util.List;

public interface RecommendationService {
 public List<String> getRecommendedProductIds();
}

package com.endeca.sample.cartridges;

import java.util.Arrays;
import java.util.List;

public class TestRecommendationService
 implements RecommendationService {
 public static final List<String> IDS =
 Arrays.asList("5891932", "6001963", "1438066", "1581692",
 "2708142", "1235424", "3422480");

 public List<String> getRecommendedProductIds() {
 return IDS;
 }

}

The following shows the code for the custom cartridge handler:
package com.endeca.sample.cartridges;

import java.util.ArrayList;
import java.util.List;

import com.endeca.infront.assembler.CartridgeHandlerException;
import com.endeca.infront.cartridge.ResultsListConfig;
import com.endeca.infront.cartridge.ResultsListHandler;
import com.endeca.infront.navigation.model.CollectionFilter;
import com.endeca.infront.navigation.model.PropertyFilter;

public class RecommendationsResultsListHandler extends ResultsListHandler {
 private RecommendationService recommendationService;
 private String recordSpec;

 public String getRecordSpec() {
 return recordSpec;
 }

 public void setRecordSpec(String recordSpec_) {
 this.recordSpec = recordSpec_;
 }

 public void setRecommendationService(
 RecommendationService recommendationService_) {
 recommendationService = recommendationService_;
 }

 /**
 * This cartridge will get the list of recommended products
 * (by record spec) and explicitly boost each one of them using
 * a PropertyFilter.

Oracle Commerce Guided Search Assembler Application Developer's Guide

197Extending and Developing Cartridges | Sample Cartridges

 */
 @Override
 public void preprocess(ResultsListConfig pContentItem)
 throws CartridgeHandlerException {
 List<String> ids =
 recommendationService.getRecommendedProductIds();
 List<CollectionFilter> boostFilters =
 new ArrayList<CollectionFilter>(
 ids.size());
 for (String s : ids) {
 boostFilters.add(new CollectionFilter(new PropertyFilter(
 recordSpec, s)));
 }

 pContentItem.setBoostStrata(boostFilters);
 super.preprocess(pContentItem);
 }

}

"Hello, World" cartridge with layered color configuration
In this example, we extend the "Hello, World" example cartridge to demonstrate the layering of configuration
from several sources.

In this scenario, we can define a default color for the message in our "Hello, World" cartridge, which the business
user can override on a per-instance basis in Experience Manager. The site visitor can also select a preferred
color from the client application.

It demonstrates the following use cases:
• Combining the default cartridge configuration, cartridge instance configuration, and request-based

configuration using the ConfigInitializer and RequestParamMarshaller helper classes
• Using a cartridge configuration bean

In this cartridge, we create the following components:

DescriptionComponent

Uses the ColorConfigInitializer to layer multiple sources of configuration
for message color.

cartridge handler

Provides a means of specifying default values for this cartridge via Spring.cartridge configuration
bean

Provides a drop-down list from which the site visitor can choose a color for the
message.

cartridge renderer

Because this cartridge does not introduce any change in the configuration options for the business user, there
are no template changes for this cartridge.

Creating the cartridge handler and supporting classes
The cartridge handler combines the various sources of configuration for message color using the ConfigIni¬
tializer and RequestParamMarshaller helper classes.

To create the "Hello, World" cartridge handler with color configuration and add it to the application:

Oracle Commerce Guided Search Assembler Application Developer's Guide

Extending and Developing Cartridges | Sample Cartridges198

1. Create a new Java class in the package com.endeca.sample.cartridges based on the example
below, which extends AbstractCartridgeHandler.

2. Create a configuration bean for this cartridge based on the example below. This enables us to define default
values for the cartridge properties in the Spring context file.

3. Compile the cartridge handler and configuration bean and add them to your application.
4. Configure the Assembler to use the ColorConfigHandler for the "Hello, World" cartridge by editing the

Spring context file as follows:
<bean id="CartridgeHandler_Hello"
 class="com.endeca.sample.cartridges.ColorConfigHandler"
 scope="prototype">
 <property name="contentItemInitializer">
 <bean class="com.endeca.infront.cartridge.ConfigInitializer"
 scope="singleton">
 <property name="defaults">
 <bean class="com.endeca.sample.cartridges.ColorConfig"
 scope="singleton">
 <property name="messageColor" value="#FF6600"/>
 </bean>
 </property>
 <property name="requestParamMarshaller">
 <bean
 class="com.endeca.infront.cartridge.RequestParamMarshaller"
 scope="singleton">
 <property name="httpServletRequest" ref="httpServletRequest"/>
 <property name="requestMap">
 <map>
 <entry key="color" value="messageColor"/>
 </map>
 </property>
 </bean>
 </property>
 </bean>
 </property>
 <property name="colorOptions">
 <map>
 <entry key="Red" value="#FF0000"/>
 <entry key="Green" value="#00FF00"/>
 <entry key="Blue" value="#0000FF"/>
 <entry key="Black" value="#000000"/>
 </map>
 </property>
</bean>

5. Restart the Endeca Tools Service.
6. Refresh the application.

The color options do not display yet because we have not updated the renderer, but you can validate that the
response model has been populated with the information that we want the renderer to use via the JSON view:
{

 "@type": "Hello",
 "name": "Hello cartridge",
 "message": "Hello, color world!",
 "messageColor": "#0000FF",
 "colorOptions": [
 {
 "@type": "colorOption",

Oracle Commerce Guided Search Assembler Application Developer's Guide

199Extending and Developing Cartridges | Sample Cartridges

 "hexCode": "#FF0000",
 "label": "Red"
 },
 {
 "@type": "colorOption",
 "hexCode": "#00FF00",
 "label": "Green"
 },
 {
 "@type": "colorOption",
 "hexCode": "#0000FF",
 "label": "Blue"
 },
 {
 "@type": "colorOption",
 "hexCode": "#000000",
 "label": "Black"
 }
]

}

The following shows the code for the sample "Hello, World" cartridge handler with color configuration:
package com.endeca.sample.cartridges;

import com.endeca.infront.assembler.AbstractCartridgeHandler;
import com.endeca.infront.assembler.CartridgeHandlerException;
import com.endeca.infront.assembler.ContentItem;
import com.endeca.infront.assembler.BasicContentItem;
import com.endeca.infront.assembler.ContentItemInitializer;
import com.endeca.sample.cartridges.ColorConfig;
import java.util.ArrayList;
import java.util.Map;

public class ColorConfigHandler extends AbstractCartridgeHandler {

 private ContentItemInitializer mInitializer;
 private Map<String, String> mColorOptions;

 public void setContentItemInitializer(ContentItemInitializer initializer) {
 mInitializer = initializer;
 }

 public void setColorOptions(Map<String, String> colorOptions) {
 mColorOptions = colorOptions;
 }

 /**
 * Returns the merged configuration based on Spring defaults,
 * Experience Manager configuration, and request parameters
 */
 @Override
 public ContentItem initialize(ContentItem pContentItem) {
 // If any configuration from Experience Manager is empty, remove
 // that property so we can use the default value
 for (String key: pContentItem.keySet()) {
 if (((String)pContentItem.get(key)).isEmpty())
 pContentItem.remove(key);
 }

Oracle Commerce Guided Search Assembler Application Developer's Guide

Extending and Developing Cartridges | Sample Cartridges200

 return mInitializer == null ? new ColorConfig(pContentItem) :
 mInitializer.initialize(pContentItem);
 }

 /**
 * Returns the merged configuration and information about the color options
 * available to the site visitor.
 */
 @Override
 public ContentItem process(ContentItem pContentItem)
 throws CartridgeHandlerException {
 int numColors = mColorOptions.size();
 ArrayList<ContentItem> colors =
 new ArrayList<ContentItem>(numColors);
 if (mColorOptions != null && !mColorOptions.isEmpty()) {
 for (String key: mColorOptions.keySet()) {
 ContentItem color = new BasicContentItem("colorOption");
 color.put("label", key);
 color.put("hexCode", mColorOptions.get(key));
 colors.add(color);
 }
 pContentItem.put("colorOptions", colors);
 }
 return pContentItem;
 }
}

The following code implements a basic bean that enables us to specify a default value for the message color
in the Spring configuration:
package com.endeca.sample.cartridges;

import com.endeca.infront.assembler.BasicContentItem;
import com.endeca.infront.assembler.ContentItem;

public class ColorConfig extends BasicContentItem {

 public ColorConfig() {
 super();
 }

 public ColorConfig(final String pType) {
 super(pType);
 }

 public ColorConfig(ContentItem pContentItem) {
 super(pContentItem);
 }

 public String getMessageColor() {
 return getTypedProperty("messageColor");
 }

 public void setMessageColor(String color) {
 this.put("messageColor", color);

Oracle Commerce Guided Search Assembler Application Developer's Guide

201Extending and Developing Cartridges | Sample Cartridges

 }
}

Creating the cartridge renderer
In this example we update the "Hello, World" renderer to add a control for the site visitor to select a color for
the message.

To add a drop-down for the site visitor to select a message color based on the options configured for this
cartridge:

1. Create a new JSP page based on the example below, or update the renderer you previously created by
adding the section in bold.

2. Save the renderer to /WEB-INF/views/desktop/Hello/Hello.jsp.
3. Refresh the application to verify that the drop-down menu displays.

The following shows the code for the sample "Hello, World" renderer with color choice drop-down in JSP:
<%@page language="java" pageEncoding="UTF-8"
contentType="text/html;charset=UTF-8"%>

<%@include file="/WEB-INF/views/include.jsp"%>
<div style="border-style: dotted; border-width: 1px;
border-color: #999999; padding: 10px 10px">
 <div style="font-size: 150%;
 color: ${component.messageColor}">${component.message}
 </div>
<div style="font-size: 80%; padding: 5px 0px">

 <select onchange="location = this.options[this.selectedIndex].value">
 <option value="">Select a color</option>
 <c:forEach var="colorOption" items="${component.colorOptions}">
 <c:url value="<%= request.getPathInfo() %>" var="colorAction">
 <c:param name="color" value="${colorOption.hexCode}" />
 </c:url>
 <option value="${colorAction}">${colorOption.label}</option>
 </c:forEach>
 </select>
 </div>
</div>

Testing the "Hello, World" cartridge with layered color configuration
We can validate that the cartridge handler applies the different sources of configuration properly by incrementally
populating each source of the configuration.

To test the "Hello, World" cartridge:

1. In Experience Manager, remove any previously created instance of the Hello cartridge.

Oracle Commerce Guided Search Assembler Application Developer's Guide

Extending and Developing Cartridges | Sample Cartridges202

2. Insert a new instance of the cartridge on the default page and specify a message string, but do not select
a color.

3. Save the page.
4. Refresh the application.

The message displays using the default color, orange.

5. Going back to Experience Manager, now select a message color for this instance of the cartridge.

Oracle Commerce Guided Search Assembler Application Developer's Guide

203Extending and Developing Cartridges | Sample Cartridges

6. Refresh the application.
The message displays using the color configured in Experience Manager.

7. Using the drop-down list on the cartridge, select another color.
The drop-down control adds a color parameter to the URL, which is parsed by the RequestParamMar¬
shaller into the messageColor property.

Oracle Commerce Guided Search Assembler Application Developer's Guide

Extending and Developing Cartridges | Sample Cartridges204

Oracle Commerce Guided Search Assembler Application Developer's Guide

205Extending and Developing Cartridges | Sample Cartridges

Chapter 17

Developing Editors for Workbench

If you wish to expose configuration to your Content Administrator in Workbench, you should first check whether
the existing set of editors supports your requirements. If not, you may wish to develop a custom editor to suit
your needs.

Setting up the Experience Manager Editor SDK
The Experience Manager Editor SDK is included with your Tools and Frameworks installation. This section
provides instructions for setting up a development environment for developing custom editors.

Important: The Experience Manager Editor SDK is deprecated in the Tools and Frameworks 11.0.0
release. Consult your support representative for guidance if you wish to develop custom editors for your
applications.

Flex prerequisites and resources
To develop editors with the Experience Manager Editor SDK, you must have the following components:

Flex development requirements

• Flex SDK 4.5.x or Flash Builder — Flash Builder is an integrated editing and debugging environment
offered by Adobe. It requires a developer license. The raw SDK is open source and also available from
Adobe. You can consult the wiki at http://sourceforge.net/adobe/flexsdk/wiki/About/ for additional information.

Additionally, Oracle recommends using Apache Maven 3.0.4 to build your projects. Apache Maven is an open
source project hosted at http://maven.apache.org/.

Flex resources

Flex is an open source development framework created and maintained by Adobe. It supports common design
patterns and is based on MXML and ActionScript 3. If you are unfamiliar with Flex, you may find the following
resources helpful:

• http://www.adobe.com/products/flex.html — The Adobe Flex Web site provides an overview of the Flex
development framework and includes download links to the Flex SDK.

http://sourceforge.net/adobe/flexsdk/wiki/About/
http://maven.apache.org/
http://www.adobe.com/products/flex.html

• http://help.adobe.com/en_US/Flex/4.0/UsingSDK/index.html— The Adobe Flex 4 resources page contains
links to Flex documentation, including the ActionScript 3.0 Reference and ActionScript 3.0 Developer's
Guide.

About setting up a Flex development environment
Oracle recommends setting up a Flex development environment for creating your custom editors.

You can use a standalone installation of Flash Builder, or set up your development environment in Eclipse.
Setting up an Experience Manager SDK project in Eclipse requires the Flash Builder 4 plugin.

Configuring a Flash Builder 4.0 development environment
If you choose to develop using Flash Builder, you must use Flash Builder 4.0. In addition, the version of the
Flex SDK that Flash Builder uses to compile must be 4.5.0 or higher. You should compile your editors using
the Halo theme for visual consistency.

To configure a Flash Builder development environment:

1. Confirm that you are running version 4.0 with the Flex 4.5 SDK:
a) Start Flash Builder 4.0.
b) Navigate to Window > Preferences.
c) In the tree control on the left, navigate to Flash Builder > Installed Flex SDKs.
d) Verify that the Flex 4.5 entry appears and is selected in the list of Installed SDKs.

2. Update your project to use the Halo visual theme:
a) In Flash Builder, navigate to Project > Properties > Flex Theme.
b) Select Halo.
c) Click OK to save your changes.

Configuring Flex Framework dependencies as Runtime Shared Libraries
(RSLs)

Experience Manager includes Flex Framework dependencies as Runtime Shared Libraries. Configure your
editors to use these same dependencies in order to avoid version conflicts.

The following dependencies ship with Tools and Frameworks and are included within the Endeca Configuration
Repository at ifcr/tools/xmgr. You should configure the resources below as Runtime Shared Libraries if
they are dependencies of your editor module:

• com.adobe.flex.framework.rpc-4.5.1.21328.swc

• com.adobe.flex.framework.framework-4.5.1.21328.swc

• com.adobe.flex.framework.textLayout-4.5.1.21328.swc

• com.adobe.flex.framework.spark-4.5.1.21328.swc

• com.adobe.flex.framework.sparkskins-4.5.1.21328.swc

• com.adobe.flex.framework.charts-4.5.1.21328.swc

• com.adobe.flex.framework.spark_dmv-4.5.1.21328.swc

• com.adobe.flex.framework.osmf-4.5.1.21328.swc

• com.adobe.flex.framework.mx-4.5.1.21328.swc

Oracle Commerce Guided Search Assembler Application Developer's Guide

Developing Editors for Workbench | About setting up a Flex development environment208

http://help.adobe.com/en_US/Flex/4.0/UsingSDK/index.html

• com.adobe.flex.framework.advancedgrids-4.5.1.21328.swc

• com.adobe.flex.framework.textLayout-4.5.1.21328.swc

• com.endeca.ExperienceManagerAPI-4.0.0.swf

To configure a dependency as a Runtime Shared Library:

Update your project to use the ExperienceManagerAPI-4.0.0.swc and the Halo theme:
a) In Flash Builder, navigate to Project > Properties > Flex Build Path.
b) Add the dependency..

For example,
ToolsAndFrameworks\4.0.0\editor_sdk\libs\ExperienceManagerAPI-4.0.0.swc.

c) Beneath the new SWC in the tree view, select Link Type: and click Edit....
d) Select Runtime shared library (RSL).
e) For the Deployment Path/URL:, enter the location of the dependency in the Endeca Configuration

Repository.
For example, /ifcr/tools/xmgr/com.endeca.ExperienceManagerAPI-4.0.0.swf.

f) Click OK.
g) Click OK to save your changes.

Installing the Experience Manager API to a Maven repository
The Experience Manager Editor SDK includes a Maven script for installing the included API package into a
Maven repository.

These steps assume you have Maven 3.0.4 installed as part of your development environment.

To install the Experience Manager API package:

1. Navigate to the %ENDECA_TOOLS_ROOT%\editor_sdk\reference\build\maven directory.
2. Open a command prompt.
3. Run the install-api profile in the Maven POM file using the following command:

mvn -Pinstall-api

This installs ExperienceManagerAPI-4.0.0.swc to your Maven repository.

Developing Editors With the Experience Manager Editor SDK
This chapter covers steps for developing your own editors using the Experience Manager Editor SDK.

About developing custom editors
As soon as you have set up your development environment, creating and using new editors consists of the
following general steps:

1. Configure external Flex Framework and Experience Manager API dependencies as Runtime Shared Libraries
(RSLs).

2. Build your editor module and copy the SWF file to your <app
dir>\config\ifcr\tools\configuration\xmgr\modules directory.

Oracle Commerce Guided Search Assembler Application Developer's Guide

209Developing Editors for Workbench | Developing Editors With the Experience Manager Editor SDK

3. Register your custom editor module and the included editors within your application's editor configuration
file.

4. Upload the editor module and editor configuration file to your deployed application by using the <app
dir>\control\set_editors_config script.

5. Add your editors to an existing cartridge template or create a new cartridge template that includes them.

Note: If you make changes to an existing cartridge, any saved cartridges that use the old template
are unchanged until you access them in Experience Manager. When accessed, they are updated
with default values specified in the cartridge template. For this reason, Oracle does not recommend
updating cartridges that are in widespread use throughout your application.

6. Upload the cartridge template to your deployed application by using the <app
dir>\control\set_templates script.

Note: When naming your editors, note that the package names com.xmgr and com.endeca.xmgr
are reserved for the Experience Manager product. Do not use them for custom editors.

Creating an editor module for custom editors
You must create an editor module to contain your custom editors. Oracle Experience Manager Extensions
includes a sample editor module that you can use as a reference.

In order to add your editors to the sample_editors.swf file, you must modify the sample_editors.mxml
editor registry to include them.

To create an editor module for custom editors:

1. Create an MXML registry file for your editor module.
For the sample editor project, this is
editor_sdk\reference\build\maven\src\main\flex\sample_editors.mxml.

2. Define the editor namespace within a root <editor:EditorModule> element:
<editor:EditorModule xmlns:mx="http://www.adobe.com/2006/mxml"
xmlns:editor="com.endeca.tools.pagebuilder.editor.*">

</editor:EditorModule>

3. Within the root <editor:EditorModule> element, add a <editor:registeredEditors> element
that contains an <mx:Array>:
<editor:EditorModule xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:editor="com.endeca.tools.pagebuilder.editor.*">
<editor:registeredEditors>

 <mx:Array>

 </mx:Array>
 </editor:registeredEditors>
</editor:EditorModule>

4. Within the <mx:Array> element, add an <editor:EditorEntry > element for each of your custom
editors:
<editor:EditorModule xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:editor="com.endeca.tools.pagebuilder.editor.*">
 <editor:registeredEditors>
 <mx:Array>

Oracle Commerce Guided Search Assembler Application Developer's Guide

Developing Editors for Workbench | Developing Editors With the Experience Manager Editor SDK210

<editor:EditorEntry/>
 </mx:Array>
 </editor:registeredEditors>
</editor:EditorModule>

5. Specify the following attributes:
ValueAttribute

The editor namespace. This is used in your cartridge templates and in the
editor configuration file.

uri

The name to use for the editor in your cartridge templates.localName

The fully qualified name of your editor.editor

<editor:EditorModule xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:editor="com.endeca.tools.pagebuilder.editor.*">
 <editor:registeredEditors>
 <mx:Array>

<editor:EditorEntry
 uri="http://endeca.com/sample/2010"
 localName="MyCustomEditor"
 editor="com.endeca.tools.pagebuilder.samples.editors.MyCustomEditor"
/>
 </mx:Array>
 </editor:registeredEditors>
</editor:EditorModule>

6. Repeat Steps 4-5 for each editor you wish to register.
7. Save and close the file.
8. Build the editor module.

For the sample editor module, this consists of the following steps:
a) Navigate to the %ENDECA_TOOLS_ROOT%\editor_sdk\reference\build\maven directory.
b) Build the sample editor module using the following command:

mvn clean install

The sample_editors.swf file is output to the target subdirectory.

9. Upload the editor module to your application:
a) Navigate to your build output directory.

For example, %ENDECA_TOOLS_ROOT%\editor_sdk\reference\build\maven\target.
b) Copy the editor SWF file to the config\ifcr\tools\configuration\xmgrmodules directory of

your deployed application.
If this directory does not exist, you must create it.

c) Navigate to the control directory of your deployed application.
d) Run the set_editors_config script.

Registering custom editors
You must modify the editor configuration file to register new editors with Experience Manager. The file,
editors.xml, is maintained in the Endeca Configuration Repository and stored locally within the <app
dir>\config\ifcr\tools\configuration\xmgr directory.

Oracle Commerce Guided Search Assembler Application Developer's Guide

211Developing Editors for Workbench | Developing Editors With the Experience Manager Editor SDK

Note: The steps below assume a default installation, with Workbench running on port 8006 of your local
machine.

To register a custom editor:

1. Navigate to the <app dir>\config\ifcr\tools\configuration\xmgr directory of your deployed
application.
For the default Discover Electronics reference application, this is
C:\Endeca\apps\Discover\config\ifcr\tools\configuration\xmgr on Windows, or
/usr/local/endeca/apps/Discover/config/ifcr/tools/configuration/xmgr on UNIX.

2. Open the editors.xml file.
3. Add an <EditorModule> element within the closing </EditorConfig> tag, and set the url attribute

to your custom editor module.

For example:
 ...

<EditorModule url="/ifcr/sites/Discover/configuration/tools/xmgr/modules/sam¬
ple_editors.swf">
 </EditorModule>
</EditorConfig>

4. To add additional editors, insert an <Editor> element inside the <EditorModule> element for each new
editor that you wish to include.

For example:
 ...
 <EditorModule url="/ifcr/sites/Discover/configuration/tools/xmgr/modules/sam¬
ple_editors.swf">

<Editor name="http://endeca.com/sample/2010:RichTextEditor">
 </Editor>
 </EditorModule>
</EditorConfig>

5. To set default editor configuration, add an <EditorConfig> element within each <Editor> element:

For example:
 ...
 <EditorModule url="/ifcr/sites/Discover/configuration/tools/xmgr/modules/sam¬
ple_editors.swf">
 <Editor name="http://endeca.com/sample/2010:RichTextEditor">

<EditorConfig sample="customAttribute">
 <ExampleCustomEditorXML foo="bar" size="10" resizeable="false"
 />
 </EditorConfig>
 </Editor>
 </EditorModule>
</EditorConfig>

6. Save and close the file.
7. Navigate to the <app dir>\control directory of your deployed application.
8. Run the set_editors_config batch or shell script.

This script uploads the updated editors.xml file and any editor modules in the <app
dir>\config\ifcr\tools\configuration\xmgr\modules directory to the Endeca Configuration
Repository.

Oracle Commerce Guided Search Assembler Application Developer's Guide

Developing Editors for Workbench | Developing Editors With the Experience Manager Editor SDK212

About creating and uploading a cartridge template
To use your custom editors in Experience Manager, you need to create and upload a cartridge template that
includes the new editors. You can choose to create a new cartridge, or to modify an existing cartridge template.

After creating or modifying a cartridge to include your custom editors, you must upload it to your application..
You can accomplish this by moving the template to your deployed application's config\import\templates
directory and running the control\set_templates batch or shell script.

Example: The sample RichTextEditor
The Experience Manager editor SDK includes a sample RichTextEditor and associated cartridge template
that you can use as a reference when developing your own editors.

The source code for the RichTextEditor is available under editor_sdk\refer¬
ence\build\maven\src\main\flex\com\endeca\tools\pagebuilder\samples\editors\Rich¬
TextEditor.mxml.

The sample Rich Text Box cartridge template
The Rich Text Box cartridge is provided as a sample cartridge that makes use of the RichTextEditor. The
associated cartridge template is included with the Experience Manager Editor SDK.

The cartridge template is available under
editor_sdk\reference\cartridge_templates\SampleEditor\template.xml. The cartridge uses
a basic StringEditor for the title box, and the RichTextEditor to enter and configure body text:
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type="SecondaryContent">
 <Description>Displays rich text.</Description>
 <ThumbnailUrl>/thumbnails/PageTemplate/TextBoxSidebar.png</ThumbnailUrl>
 <ContentItem>
 <Name>New Rich Text Box</Name>
 <Property name="title">
 <String/>
 </Property>
 <Property name="rich_text">
 <String/>
 </Property>
 </ContentItem>

 <EditorPanel>
 <BasicContentItemEditor>
 <StringEditor propertyName="title" label="Title" enabled="true" xmlns="edi¬
tors"/>
 <!-- default value for the optional height attribute for RichTextEditor is
 400px -->
 <!-- make sure not to make it any smaller or it will not render well -->
 <RichTextEditor propertyName="rich_text" xmlns="http://endeca.com/sam¬
ple/2010" label="Custom Editor" />
 </BasicContentItemEditor>
 </EditorPanel>
</ContentTemplate>

Oracle Commerce Guided Search Assembler Application Developer's Guide

213Developing Editors for Workbench | Developing Editors With the Experience Manager Editor SDK

Installing the sample editor module and cartridge template
The Experience Manager Editor SDK includes a sample editor module with a Rich Text editor that you can
install in your application.

Note: For example purposes this guide assumes that you are extending the default Discover Electronics
reference application, with Workbench running on port 8006 of your local machine.

To install the sample editor module and cartridge template:

1. Create a directory for custom editor modules:
a) Navigate to the <app dir>\config\ifcr\tools\configuration\xmgr directory.

For the default Discover Electronics reference application, this is
C:\Endeca\apps\Discover\config\ifcr\tools\configuration\xmgr on Windows, or
/usr/local/endeca/apps/Discover/config/ifcr/tools/configuration/xmgr on UNIX.

b) Create a modules directory.

2. Build the sample editor module:
a) Navigate to the %ENDECA_TOOLS_ROOT%\editor_sdk\reference\build\maven directory.
b) Build the sample editor module using the following command:

mvn clean install

The sample_editors.swf file is output to the target subdirectory.
c) Navigate to the%ENDECA_TOOLS_ROOT%\editor_sdk\reference\build\maven\target directory.
d) Copy the sample_editors.swf file to the <app

dir>\config\ifcr\tools\configuration\xmgr\modules directory you created in Step 1.

3. Register the sample editors:
a) Open the sample editor configuration file,

editor_sdk\reference\editors_config\sample_editors.xml.
b) Open the editor configuration file for your application.

For the default Discover Electronics reference application, this is
C:\Endeca\apps\Discover\config\ifcr\tools\configuration\xmgr\editors.xml on
Windows, or
/usr/local/endeca/apps/Discover/config/ifcr/tools/configuration/xmgr/editors.xml
on UNIX. .

c) Copy the <EditorModule> element from the sample_editors.xml file to the editor registry file:
<EditorModule url="/ifcr/sites/[site name]/configuration/tools/xmgr/mod¬
ules/sample_editors.swf">
 <Editor name="http://endeca.com/sample/2010:RichTextEditor">
 <EditorConfig sample="customAttribute">
 <ExampleCustomEditorXML foo="bar" size="10" resizeable="false"
/>
 </EditorConfig>
 </Editor>
</EditorModule>

The element should be parallel to the existing <EditorModule> element.
d) Replace [site name] with the name of your application:

<EditorModule url="/ifcr/sites/[site name]/configuration/tools/xmgr/mod¬
ules/sample_editors.swf">

For the default Discover Electronics reference application, this is Discover.

Oracle Commerce Guided Search Assembler Application Developer's Guide

Developing Editors for Workbench | Developing Editors With the Experience Manager Editor SDK214

e) Save and close the file.

4. Upload your custom content:
a) Navigate to the <app dir>\control directory.
b) Run the set_editors_config batch or shell script.

This uploads the sample_editors.swf and editors.xml files to the Endeca Configuration Repository.

5. Upload a template that includes the custom editor:
a) Copy editor_sdk\reference\cartridge_templates\SampleEditor directory to your <app

dir>\config\import\templates directory.
b) Navigate to the <app dir>\control directory.
c) Run the set_templates batch or shell script.

This uploads the template files to the Endeca Configuration Repository.

About custom editors in multiple locales
If your implementation supports multiple locales, you can localize your custom editors.

You must do the following:
• Modify your editor's pom.xml file
• Create resource properties files that contain localized strings
• Modify the editor module
• Add the getMessage() function to your custom editors to retrieve the localized strings

Modifying the POM file to support multiple locales
You need to pass a list of locales and a directive to the compiler to retain the declarations of embedded resource
bundles to the compiler. The following task uses a POM file for passing this information.

1. Open the pom.xml file in an editor.

For the sample editor project, this is under editor_sdk\reference\build\maven

2. Within the <configuration> element add a <localesCompiled> element with a list of locales:
<configuration>

<localesCompiled>
 <locale>en_US</locale>
 <locale>fr_FR</locale>
 <locale>de_DE</locale>
 </localesCompiled>
</configuration>

This example includes US, French, and German locales.

3. Specify a <keepAs3Metadatas> element to a declare embedded resources bundles. This allows the editor
container to detect the embedded resources automatically.
<configuration>
 <localesCompiled>
 <locale>en_US</locale>
 <locale>fr_FR</locale>
 <locale>de_DE</locale>
 </localesCompiled>

<keepAs3Metadatas>
 <keepAs3Metadata>ResourceBundle</keepAs3Metadata>

Oracle Commerce Guided Search Assembler Application Developer's Guide

215Developing Editors for Workbench | Developing Editors With the Experience Manager Editor SDK

 </keepAs3Metadatas>
</configuration>

4. Save and close the file.

Resources properties files
You must create resource property files for each locale for storing localized strings.

Each locale is required to reside in its own directory. The default location is src/main/locales/<locale>
where <locale> is the ISO language and region code combination. For example
src/main/locales/en_US/com/endeca/tools/pagebuilders/samples/SampleResources.properties
indicates that US values are stored in the properties file.

Here is an example of SampleResources.properties file contents:
editor.sample.message=Enter your message in the following box.

This localized content can be obtained by the custom editor using the getMessage() function to retrieve the
string from the properties file. See the following example:
<ext:Editor>
 <!-- ... -->
 <mx:FormItem id="propertyItem"
 label="{info.templateConfig.@label}"
 labelWidth="135"
 labelStyleName="leftColumnLabel"
 required="false">

<mx:Label text="{locale.getMessage('editor.sample.message')}" />
 <mx:RichTextEditor id="propertyValueTextInput"
 htmlText="{property.string}"
 change="property.string = propertyValueTextInput.htmlText;"
 borderThickness="3"
 fontFamily="Verdana"/>
 </mx:FormItem>
</ext:Editor>

Modifying an editor module for muliple locales.
You must modify your editor module for custom editors to add locale support for to your SWF file.

To modify your editor module:

1. Open the MXML registry file for your editor module.
For the sample editor project, open
editor_sdk\reference\build\maven\src\main\flex\sample_editors.mxml.

2. Within the <editor:EditorModule> element, add a <mx:Metadata> declaration of one or more resource
bundles to be included in the SWF.
For example:
<editor:EditorModule xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:editor="com.endeca.tools.pagebuilder.editor.*">
<mx:Metadata>

 [ResourceBundle("com.endeca.tools.pagebuilder.samples:SampleResources")]
 </mx:Metadata>
 <editor:registeredEditors>
 <mx:Array>
 <editor:EditorEntry
 uri="http://endeca.com/sample/2010"
 localName="RichTextEditor"

Oracle Commerce Guided Search Assembler Application Developer's Guide

Developing Editors for Workbench | Developing Editors With the Experience Manager Editor SDK216

 editor="com.endeca.tools.pagebuilder.samples.editors.RichTextEditor"
/>
 </mx:Array>
 </editor:registeredEditors>
</editor:EditorModule>

3. Save and close the file.
4. Rebuild the editor module.

For the sample editor module, this consists of the following steps:
a) Navigate to the %ENDECA_TOOLS_ROOT%\editor_sdk\reference\build\maven directory.
b) Build the sample editor module using the following command:

mvn clean install

The sample_editors.swf file is output to the target subdirectory.

5. Upload the editor module to your application:
a) Navigate to your build output directory.

For example, %ENDECA_TOOLS_ROOT%\editor_sdk\reference\build\maven\target.
b) Copy the editor SWF file to the \config\ifcr\tools\configuration\xmgr\modules directory

of your deployed application.
If this directory does not exist, you must create it.

c) Navigate to the control directory of your deployed application.
d) Run the set_editors_config script.

Specifying dependencies between editors
You can set up dependencies between editors in the same cartridge such that the behavior of one editor is
dependent upon a property that is bound to another editor in the cartridge.

In a typical editor definition you can specify whether the editor is enabled via the enabled attribute. Editors
are enabled by default. You can disable the editor by setting the value of enabled to false as follows:
<StringEditor propertyName="moreLinkText" label="Title" enabled="false"/>

In this case, the value of the associated property (in this case, moreLinkText) displays in the Content Details
Panel but cannot be updated by the user.

The enabled status of an editor can be updated dynamically based on the value of another property by replacing
the literal value of the enabled attribute (either true or false) with an expression that is evaluated to
determine the editor's behavior. For example:
<StringEditor propertyName="moreLinkText" label="Title" enabled="{showMoreLink
== true}"/>

In this case, the string editor that enables editing of the text for the "More" link is not enabled unless the property
showMoreLink (which is bound to another editor) is set to true. This kind of dependency enables you to
assemble complex editing interfaces out of simple property editors, without writing custom editors that contain
the dependency logic.

The following example shows a template with two editors, where the enabled state of one editor depends on
the value of the property bound to the other editor. In this case, the string editor is disabled by default (because

Oracle Commerce Guided Search Assembler Application Developer's Guide

217Developing Editors for Workbench | Specifying dependencies between editors

the value of showMoreLink is false by default) and is not enabled until the user selects the "Enable 'More'
link" option in the Boolean editor.
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:xavia="http://endeca.com/schema/xavia/2010"
 xmlns:editors="editors"
 type="SidebarItem" id="FlatDimension">

<!-- additional elements deleted from this example -->
 <ContentItem>
 <Name>Flat Dimension Example</Name>
 <Property name="showMoreLink">
 <Boolean>false</Boolean>
 </Property>
 <Property name="moreLinkText">
 <String>Show More Refinements...</String>
 </Property>
 </ContentItem>
 <EditorPanel>
 <BasicContentItemEditor>
 <editors:BooleanEditor propertyName="showMoreLink"
 label="Enable 'More' link" enabled="true"/>
 <StringEditor propertyName="moreLinkText"
 label="'More' link text" enabled="{showMoreLink == true}"/>
 </BasicContentItemEditor>
 </EditorPanel>
</ContentTemplate>

The editor dependency expression language
The value of an attribute is treated as an expression if it is contained within {curly braces}, otherwise it is treated
as a literal value.

There is no validation for editor dependency expressions within a template, however, if an expression contains
syntax errors, an InvalidExpressionError is thrown upon initialization of the editor. Currently, the only
attribute for which expressions are evaluated is the enabled attribute.

Allowed operands

The expression language enables you to evaluate an expression based on the value of a particular property
in the same cartridge by comparing it to either a Boolean or string literal.

Example expressionDescriptionOperand

{sort == 'static'}The name of the property that the
editor depends on. The value of this

property name

property is used during the
evaluation of the expression.

The property is treated as a Boolean
if it is specified as the <Boolean>
type, otherwise it is treated as a
string.

{showMoreLink == true}Treated as a Boolean literal.true

{showMoreLink == false}Treated as a Boolean literal.false

Oracle Commerce Guided Search Assembler Application Developer's Guide

Developing Editors for Workbench | Specifying dependencies between editors218

Example expressionDescriptionOperand

{sort == 'static'}Treated as a string literal.'string in single quotes'

Allowed operators

The expression language provides the following comparison operators for use in editor dependency expressions.
Order of operations are respected in editor dependency expressions.

Example expressionDescriptionOperator

{sort == 'static'}Equality==

{sort != 'static'}Inequality!=

{sort == 'static' || sort
== 'default'}

Logical OR||

{sort == 'price' && order
== 'desc'}

Logical AND&&

{showMoreLink}If the expression is a property name,
it evaluates to the value of the
property.

no operator

{!showMoreLink}Logical NOT!

{showMoreLink == true &&
(sort == 'static' || sort
== 'default')}

Groups expressions in order to
enforce a particular evaluation
order.

(and)

Escaping characters when specifying editor dependencies
Because the editor dependency expressions are embedded in XML, it is important to apply the appropriate
escaping to special characters within expressions.

The editor dependency language supports two different ways to escape special characters.

XML escaping

Use this style of escaping for handling characters that may lead to invalid XML.

NoteEscape sequenceCharacter representationName

Required, otherwise the
XML document is invalid.

&&ersand

Required, otherwise the
XML document is invalid.

<<less than sign

Required. Quotation marks
designate the attribute

""quotation mark

value in XML. Since the
editor dependency
expression is defined in an
attribute value, the
quotation mark must be

Oracle Commerce Guided Search Assembler Application Developer's Guide

219Developing Editors for Workbench | Specifying dependencies between editors

NoteEscape sequenceCharacter representationName

escaped or the XML
document is invalid.

Optional. While escaping
this character is not

>>greater than sign

required to ensure that the
XML is valid, Oracle
recommends that you
escape the greater than
sign as with the less than
sign.

Optional. Since single
quotes are also used to

''apostrophe or single
quotation mark

designate string literals,
you must escape single
quotation marks within a
string literal. However, for
readability, Oracle
recommends that you
escape single quotes using
the alternative sequence
\' instead.

Non-XML escaping

Use this style of escaping for an alternate method of escaping the single quotation mark or for handling other
special characters.

Escape sequenceCharacter name

\'single quotation mark

\\backslash

\bbackspace

\thorizontal tab

\nline feed (new line)

\vvertical tab

\fform feed

\rcarriage return

The following examples show editor dependency expressions and their escaped forms.

Escaped formatUnescaped expression

{sort == 'price' && order ==
'desc'}

{sort == 'price' && order == 'desc'}

{generateMetadata == 'Don\'t generate'}{generateMetadata == 'Don't generate'}

Oracle Commerce Guided Search Assembler Application Developer's Guide

Developing Editors for Workbench | Specifying dependencies between editors220

Escaped formatUnescaped expression

{welcomeMessage == 'Hello,
<name>!'}

{welcomeMessage == 'Hello, <name>!'}

Enforcing a specific value when the editor is disabled
In some cases, when an editor is dynamically enabled based on the value of another property, you want to
ensure that the associated property has a specific value when the editor is disabled.

Specifying a "disabled value" for an editor ensures that whenever the enabled expression evaluates to false
(that is, the editor is dynamically disabled), the associated property is set to the specified value. This can be
useful in the case where the value of the property associated with the editor should be set to a default value
whenever the editor is disabled.

The disabled value for an editor is optional. If no value is specified and an editor is disabled, then its property
retains its most recently set value (whether this was originally a default value or specified by the content
administrator in Experience Manager). The content administrator cannot update the value while the editor is
disabled, but it preserves the latest setting in the case that the content administrator re-enables the editor at
a later point.

To specify a default value for an editor:

Specify a disabledValue attribute in the editor definition.
 <editors:RadioGroupEditor propertyName="showDisabledRefinements"
 label="Show 'Disabled Refinements'"
 enabled="{sort == 'static'}"
 disabledValue="false"/>

As with default property values, ensure that the disabled value for the property meets the constraints defined
by the editor. For a choice editor or radio group editor, is must be one of the options defined for the editor
in a <choice> element. For a numeric editor, it must be between the minimum and maximum values for
the editor.

The following example shows a radio group editor configured with a disabled value.
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:xavia="http://endeca.com/schema/xavia/2010"
 xmlns:editors="editors"
 type="SidebarItem" id="FlatDimension">

<!-- additional elements deleted from this example -->
 <ContentItem>
 <Name>New Text Link Flat Dimension</Name>

<!-- additional elements deleted from this example -->
 <Property name="sort">
 <String>default</String>
 </Property>
 <Property name="showDisabledRefinements">
 <String>false</String>
 </Property>

<!-- additional elements deleted from this example -->
 </ContentItem>
 <EditorPanel>
 <BasicContentItemEditor>

<!-- additional elements deleted from this example -->
 <editors:ChoiceEditor label="Sorting Options" propertyName="sort">

Oracle Commerce Guided Search Assembler Application Developer's Guide

221Developing Editors for Workbench | Specifying dependencies between editors

 <choice label="Dimension default" value="default"/>
 <choice label="Alphanumeric" value="static"/>
 <choice label="By frequency" value="dynRank"/>
 </editors:ChoiceEditor>
 <editors:RadioGroupEditor propertyName="showDisabledRefinements"
 label="Show 'Disabled Refinements'"
 enabled="{sort == 'static'}"
 disabledValue="false">
 <choice label="Yes" value="true"/>
 <choice label="No" value="false"/>
 </editors:RadioGroupEditor>

<!-- additional elements deleted from this example -->
 </BasicContentItemEditor>
 </EditorPanel>
</ContentTemplate>

When the Content Details Panel is first instantiated, the selected value for the radio group editor is false,
which displays with the label "No," and the editor is disabled, because the default value of the sort property
is not equal to static. If the content administrator selects "Alphanumeric" from the choice editor, the radio
group editor is enabled, and the content administrator can change the value of showDisabledRefinements
to true. However, if the content administrator later selects a different value from the choice editor (either
"Dimension default" or "By frequency"), the radio group editor is once again disabled and the value of
showDisabledRefinements set to false.

Oracle Commerce Guided Search Assembler Application Developer's Guide

Developing Editors for Workbench | Specifying dependencies between editors222

Appendix A

Template Property and Editor Reference

This section describes how to define basic content properties and associated editing interfaces in Experience
Manager templates.

Editor property mapping reference
This section provides an overview of which property types are associated with the different Oracle Commerce
Suite editors.

Oracle Commerce Core Editors

The following core editors are included with all installations of Oracle Commerce:

FunctionalityProperty TypeEditor

Displays as a checkbox that the content administrator selects or
de-selects. Optionally, the editor may be set to a read-only state.

<Boolean>BooleanEditor

Displays as a dropdown with an optional default value. The
content administrator selects from a set of pre-defined values.

<String>ChoiceEditor

Displays as a drop-down list for specifying a valid content
collection, and a numeric stepper for setting the evaluation limit
for that collection.

<String>DynamicSlot Editor

Displays an image from a specified URL.(None)ImagePreview

Displays as a one-line text field with a pair of arrow buttons for
increasing or decreasing the value by a set amount. The content

<String>NumericStepperEditor

administrator inputs or adjusts the value to any number within
the minimum and maximum boundaries defined in the editor.

Displays as a series of radio buttons with an optional default
value. The content administrator selects from a set of pre-defined
values.

<String>RadioGroupEditor

FunctionalityProperty TypeEditor

<xavia:List>RecordListEditor
Important: This editor is deprecated. Use the Spotlight¬
SelectionEditor instead.

Displays as a button that launches the microbrowser and allows
the content administrator to select the list of records that
populates a <xavia:Item class="com.endeca.in¬
front.cartridge.RecordSpotlightSelection"/> record
selection property.

Displays as a slider bar. The content administrator selects a value
by moving the slider along specified intervals within the minimum
and maximum boundaries defined in the editor.

<String>SliderEditor

Displays as a button that launches the Select Records dialog
and allows the content administrator to select the navigation state

<xavia:Item>SpotlightSelectionEd¬
itor

or list of records that populates a <xavia:Item
class="com.endeca.infront.cartridge.RecordSpot¬
lightSelection"/> record selection property.

Displays as a text field or text area. The content administrator
enters arbitrary string values. Optionally, the editor may be set
to a read-only state to display a fixed, default value.

<String>StringEditor

Oracle Experience Manager Editors

The following editors are included in the Oracle Experience Manager package:

FunctionalityProperty TypeEditor

Displays as a three-pane, drag-and-drop interface consisting of
a central pane that lists available dimension refinements, a left

<xavia:List>BoostBuryEditor

pane for boosted refinements, and a right pane for buried
refinements. The content administrator can filter the list of
available dimensions by searching against a text string.

The editor populates two <xavia:List> properties, one for
boosted dimension refinements and one for buried dimension
refinements.

Displays as two panes,Boosted Records andBuried Records,
each with an Edit List button that launches the Select Records

<xavia:List>BoostBuryRecordEdi¬
tor

dialog. The content administrator uses the Select Records dialog
to populate the lists of boosted and buried records.

The editor populates two <xavia:List> properties, one for
boosted records and one for buried records.

Oracle Commerce Guided Search Assembler Application Developer's Guide

Template Property and Editor Reference | Editor property mapping reference224

FunctionalityProperty TypeEditor

Displays as two panels, one with a list of available dimensions
and one with a list of selected dimensions. The content

<xavia:List>DimensionListEditor

administrator can drag values back and forth between the two
lists.

Displays as a dropdown. The content administrator selects a
value from the list of available dimensions retrieved from the
MDEX Engine.

<String>DimensionSelectorEd¬
itor

The editor populates two <xavia:String> properties, one for
the dimension name and one for the ID.

Displays as two panels, one with a list of available dimension
refinements and one with a list of selected refinements. The

<xavia:List>DimvalListEditor

content administrator can drag values back and forth between
the two lists. Additionally, the list of available refinements includes
a search box for finding specific refinements in a large data set.

Displays as a button for launching the Generate Guided
Navigation wizard, which allows a content administrator to select

<Con¬
tentItem¬
List>

GuidedNavigationEdi¬
tor

and order a set of dimensions in order to create multiple
Refinement Menu cartridges at once.

Displays two radio buttons, one for specifying an External link
via a text field, and one for specifying an Internal (Relative) link.

<xavia:Item>LinkBuilderEditor

The content administrator specifies a relative link by selecting a
servlet from a dropdown list, then launching the Select Records
dialog to navigate to a specific record or a navigation state.

The editor populates a<xavia:Item class=com.endeca.in¬
front.cartridge.model.LinkBuilder/> item property.
For more information, see "Adding a Link Builder."

Displays as a Media URL field, with an associated preview box
and Select and Clear buttons for launching the media editor or

<xavia:Item>MediaEditor

clearing the current URL. The content administrator can browse
through media in the configured source repository, and generate
a link to a selected asset.

<xavia:List>RecordStratifica¬
tionEditor Important: This editor is deprecated. Use the Boost¬

BuryRecordEditor instead.

Displays as two panes,Boosted Records andBuried Records,
each with an Edit List button that launches the microbrowser.
The content administrator uses the microbrowser to populate the
lists of boosted and buried records.

Oracle Commerce Guided Search Assembler Application Developer's Guide

225Template Property and Editor Reference | Editor property mapping reference

FunctionalityProperty TypeEditor

The editor populates two <xavia:List> properties, one for
boosted records and one for buried records.

Displays as a text area with a configurable formatting toolbar.
The content administrator enters arbitrary string values and can
include markup to add text formatting and hyperlinks.

<String>RichTextEditor

Displays as a dropdown. The content administrator selects a sort
order from those configured in the editor.

<xavia:Item>SortEditor

The editor includes multiple <xavia:Item class="com.en¬
deca.infront.navigation.model.SortOption"/> item
properties that each specify an available sort option. For more
information, see "Adding a Sort editor."

Related Links
Basic content properties on page 226

Content items properties must be one of several basic types. All configuration models are composed
of the same primitive property types.

Complex property editors on page 239
This section describes editors that are designed for specific aspects of Endeca feature configuration.

Editor label configuration reference
All editors share a set of common attributes that can be used to configure the appearance of the editor in
Experience Manager.

When adding an editor to a template, you can configure its appearance by setting the following attributes:

DescriptionAttribute

This attribute enables you to specify a more descriptive label for the editor in
Experience Manager. If no label is specified, the value of the associated
propertyName is used by default.

label

The position of the label text. Valid values are "left" (the default) and "top".labelPosition

This attribute allows you to specify a descriptive label that appears below the
editor.

bottomLabel

This attribute allows you to specify mouseover text for the editor.tooltip

Basic content properties
Content items properties must be one of several basic types. All configuration models are composed of the
same primitive property types.

The basic content property types are:

Oracle Commerce Guided Search Assembler Application Developer's Guide

Template Property and Editor Reference | Editor label configuration reference226

• <String>

• <Boolean>

• <xavia:List>

• <xavia:Item>

The following example shows a several properties of various types.
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:editors="editors"
 xmlns:xavia="http://endeca.com/schema/xavia/2010"
 type="MainContent">

<!-- additional elements omitted from this example -->

 <ContentItem>
 <Name>Results List</Name>
 <Property name="boostStrata">
 <xavia:List/>
 </Property>
 <Property name="buryStrata">
 <xavia:List/>
 </Property>
 <Property name="sortOption">
 <xavia:Item class="com.endeca.infront.navigation.model.SortOption">
 <xavia:Property name="label">Most Sales</xavia:Property>
 <xavia:Property name="sorts">
 <xavia:List>
 <xavia:Item class="com.endeca.infront.navigation.model.Sort¬
Spec">
 <xavia:Property name="key">product.analytics.to¬
tal_sales</xavia:Property>
 <xavia:Property name="descending">false</xavia:Property>

 </xavia:Item>
 </xavia:List>
 </xavia:Property>
 </xavia:Item>
 </Property>
 <Property name="relRank">
 <!-- Margin Bias -->
 <String>nterms,maxfield,exact,static(product.analytics.conversion_rate,de¬
scending)</String>
 </Property>
 <Property name="recordsPerPage">
 <String>10</String>
 </Property>
 </ContentItem>
<!-- additional elements omitted from this example -->

</ContentTemplate>

Adding a string property
String properties are very flexible and can be used to specify information such as text to display on a page,
URLs for banner images, or meta keywords for search engine optimization.

To add a string property to a template:

Oracle Commerce Guided Search Assembler Application Developer's Guide

227Template Property and Editor Reference | Basic content properties

1. Insert a <String> element inside a <Property> element.
2. Optionally, specify the default value for the property as the content of the <String> element.

The following example shows a variety of string properties:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:xavia="http://endeca.com/schema/xavia/2010"
 xmlns:editors="editors"
 type="SidebarContent">

<!-- additional elements omitted from this example -->
 <ContentItem>
 <Name>Dimension Navigation</Name>
 <Property name="dimensionName">
 <String/>
 </Property>
 <Property name="dimensionId">
 <String/>
 </Property>
 <Property name="sort">
 <String>default</String>
 </Property>
 <Property name="showMoreLink">
 <Boolean>false</Boolean>
 </Property>
 <Property name="moreLinkText">
 <String>Show More Refinements...</String>
 </Property>
 <Property name="numRefinements">
 <String>10</String>
 </Property>
 <Property name="maxNumRefinements">
 <String>200</String>
 </Property>

<!-- additional elements omitted from this example -->
 </ContentItem>

<!-- additional elements omitted from this example -->
</ContentTemplate>

Adding a string editor
You add a string editor to enable configuration of string properties. The string editor displays in the Experience
Manager interface as a text field or text area depending on the configuration.

String editors enable content administrators to supply arbitrary values for a string property. If you want to
constrain the input to a specific enumeration of values, use a choice editor.

To add a string editor to a template:

1. Insert an <StringEditor> element within <BasicContentItemEditor>.
2. Specify label attributes and additional attributes for the editor:

DescriptionAttribute

Required. The name of the string property that this editor is associated with. This
property must be declared in the same template as the string editor.

propertyName

If set to false, this attribute makes the property read-only so that the value of the
property displays in the Content Details Panel in Experience Manager, but cannot be

enabled

Oracle Commerce Guided Search Assembler Application Developer's Guide

Template Property and Editor Reference | Basic content properties228

DescriptionAttribute

edited. Set this to false only if you specify a default value in the definition of the string
property. Editors are enabled by default.

The width in pixels of the text field presented in the Experience Manager interface. The
default width is 100% and scales with the screen width.

width

Note: You cannot specify a percent value in your editor configuration. You must
specify the editor width in pixels.

The height in pixels of the text field presented in the Experience Manager interface.
The default height for a single-row field is 24 pixels. Setting the value to 34 pixels or
higher creates a multiline text area with word wrap enabled.

height

The following example shows a variety of editing options for string properties:
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
xmlns:editors="editors"
 type="ResultsPage">
<!-- additional elements omitted from this example -->

 <ContentItem>
 <Name>Three-Column Navigation Page</Name>
 <Property name="title">
 <String>Discover Electronics</String>
 </Property>
 <Property name="metaKeywords">
 <String>camera cameras electronics</String>
 </Property>
 <Property name="metaDescription">
 <String>Endeca eBusiness reference application.</String>
 </Property>

<!-- additional elements omitted from this example -->
 </ContentItem>

 <EditorPanel>
 <BasicContentItemEditor>
 <GroupLabel label="Page metadata"/>
 <editors:StringEditor propertyName="title" label="Title" enabled="true"/>
 <editors:StringEditor propertyName="metaKeywords" label="Meta keywords"
 enabled="true" height="72"/>
 <editors:StringEditor propertyName="metaDescription" label="Meta description"

 enabled="true" height="72"/>
 </BasicContentItemEditor>
 </EditorPanel>
</ContentTemplate>

Note: Neither Experience Manager nor the Assembler applies HTML escaping to strings. This enables
content administrators to specify HTML formatted text in Experience Manager and have it rendered
appropriately. If you intend to treat a string property as plain text, be sure to add HTML escaping to your
application logic in order to avoid invalid characters and non-standards-compliant HTML.

Oracle Commerce Guided Search Assembler Application Developer's Guide

229Template Property and Editor Reference | Basic content properties

Adding a choice editor
A choice editor enables the user to select from predefined string values for a property that are presented in a
drop-down list.

Choice editors affect the value of a string property. For example, you might use a choice editor to provide
sorting options for dimension values in a Guided Navigation cartridge:

To add a choice editor:

1. Insert an <editors:ChoiceEditor> element within <BasicContentItemEditor>.
2. Specify additional attributes for the editor:

DescriptionAttribute

Required. The name of the string property that this editor is associated with. This
property must be declared in the same template as the choice editor.

propertyName

If set to true, this attribute allows Experience Manager users to specify custom
string values. By default, choice editors are not editable.

editable

If set to false, the choice editor displays in Experience Manager but the value
cannot be changed by the user. By default, choice editors are enabled.

enabled

Specifies a custom prompt. The default prompt is an empty string.prompt

If present, specifies optional help text to display in a tool tip window. The default
behavior is no tool tip.

tooltip

The width, in pixels, of the choice editor. By default, the width of the editor adjusts
to fit the longest choice in the editor. Use this attribute if you want to set a fixed
width for the editor.

width

3. Specify one or more menu options for the choice editor by adding <choice> elements. <choice> takes
the following attributes:

DescriptionAttribute

Required. The string value to assign to the associated property if this <choice> is selected.value

Oracle Commerce Guided Search Assembler Application Developer's Guide

Template Property and Editor Reference | Basic content properties230

DescriptionAttribute

This attribute allows you to specify a more descriptive label for this option in the drop down
list. If no label is specified, the value is used by default. You must either specify a label

label

for all of the choices or none of them. You cannot have labels for some choices and not
others.

Note: If you choose to make a choice editor editable (so that users can enter arbitrary
strings), you should not use the label attribute for choices. Instead, the choice
editor should display the raw value of the string so that users entering custom values
can see the expected format of the string property.

4. Optionally, set a default value in the corresponding <ContentItem> property.
For example, to specify the default sort order for a dimension as the default choice for a choice editor with
propertyName="sort":
<Property name="relrank">
 <!-- Margin Bias -->
 <String>nterms,maxfield,exact,static(product.analytics.conversion_rate,de¬
scending)</String>
 </Property>

Note: Ensure that the default value for the property is one of the options defined for the choice editor
in a <choice> element.

The following example shows a choice editor configured with a default value. The selected value when the
editor is first instantiated is nterms,maxfield,exact,static(product.analytics.conver¬
sion_rate,descending), which displays with the label "Margin Bias" in the drop-down menu. Content
administrators can select a different sort order.
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:editors="editors"
 xmlns:xavia="http://endeca.com/schema/xavia/2010"
 type="MainContent">

<!-- additional elements omitted from this example -->
 <ContentItem>
 <Name>Results List</Name>

<!-- additional elements omitted from this example -->
 <Property name="relrank">
 <!-- Margin Bias -->
 <String>nterms,maxfield,exact,static(product.analytics.conversion_rate,de¬
scending)</String>
 </Property>

<!-- additional elements omitted from this example -->
 </ContentItem>

 <EditorPanel>
 <BasicContentItemEditor>

<!-- additional elements omitted from this example -->
 <GroupLabel label="Search Result Settings (apply when user provides search
 terms)"/>
 <editors:ChoiceEditor propertyName="relrank" label="Relevance ranking">
 <choice label="Margin Bias" value="nterms,maxfield,exact,static(prod¬
uct.analytics.conversion_rate,descending)" />
 <choice label="Inventory Bias" value="nterms,maxfield,exact,static(prod¬

Oracle Commerce Guided Search Assembler Application Developer's Guide

231Template Property and Editor Reference | Basic content properties

uct.inventory.count,descending)" />
 <choice label="First" value="first" />
 <choice label="By Price (Static)" value="static(product.price)" />
 <choice label="Frequency" value="freq" />
 </editors:ChoiceEditor>

<!-- additional elements omitted from this example -->
 </BasicContentItemEditor>
 </EditorPanel>
</ContentTemplate>

Adding a radio group editor
A radio group editor is similar to the choice editor in that it enables the user to select from predefined string
values for a property. The choices are presented as a set of radio button controls.

Although radio buttons are often used for binary choices such as yes/no, the radio group editor can be used
for any scenario where the user must specify exactly one value out of a number of options. In order to enable
the more general use case, the radio group editor affects the value of a string property.

To add a radio group editor:

1. Insert an <editors:RadioGroupEditor> element within <BasicContentItemEditor>.
2. Specify label attributes and the additional attributes for the editor:

DescriptionAttribute

Required. The name of the string property that this editor is associated with. This
property must be declared in the same template as the choice editor.

propertyName

If set to false, the radio group editor displays in Experience Manager but the
value cannot be changed by the user. By default, radio group editors are enabled.

enabled

3. Specify one or more radio button options by adding <choice> elements. <choice> takes the following
attributes:

DescriptionAttribute

Required. The string value to assign to the associated property if this <choice>
is selected.

value

This attribute allows you to specify a more descriptive label for the radio button
associated with this option. If no label is specified, the value is used by default.

label

4. Optionally, set a default value in the corresponding <ContentItem> property.
For example, to specify the default value for a radio group editor with propertyName="showDisable¬
dRefinements":
 <Property name="showDisabledRefinements">
 <String>false</String>
 </Property>

Note: Ensure that the default value for the property is one of the options defined for the editor in a
<choice> element.

Oracle Commerce Guided Search Assembler Application Developer's Guide

Template Property and Editor Reference | Basic content properties232

The following example shows a radio group editor configured with a default value. The selected value when
the editor is first instantiated is false, which displays with the label "No."
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:xavia="http://endeca.com/schema/xavia/2010"
 xmlns:editors="editors"
 type="SidebarItem">

<!-- additional elements omitted from this example -->
 <ContentItem>

<!-- additional elements omitted from this example -->
 <Property name="showDisabledRefinements">
 <String>false</String>
 </Property>

<!-- additional elements omitted from this example -->
 </ContentItem>
 <EditorPanel>
 <BasicContentItemEditor>

<!-- additional elements omitted from this example -->
 <editors:RadioGroupEditor propertyName="showDisabledRefinements"
 label="Show 'Disabled Refinements'" enabled="true">
 <choice label="Yes" value="true"/>
 <choice label="No" value="false"/>
 </editors:RadioGroupEditor>

<!-- additional elements omitted from this example -->
 </BasicContentItemEditor>
 </EditorPanel>
</ContentTemplate>

About numeric properties
Numeric properties should be specified as string properties in the template.

Properties that are expected to have numeric values can be associated with editors that are designed to work
with numbers. These editors guarantee that the property is assigned a numeric value.

Adding a numeric stepper
A numeric stepper enables content administrators to select a numeric value from a set of possible values by
stepping through values or typing into an input field.

The numeric stepper provides a single-line input text field and a pair of arrow buttons for stepping through
values. If a user enters number that is not a multiple of the stepSize property or is not in the range between
the maximum and minimum properties, this property is set to the nearest valid value.

To add a numeric stepper to a template:

1. Insert an <editors:NumericStepperEditor> element within <BasicContentItemEditor>.
2. Specify additional attributes for the editor:

DescriptionAttribute

Required. The name of the string property that this editor is associated with. This
property must be declared in the same template as the string editor.

propertyName

The width, in pixels, of the editor. The default width is 60.width

The height, in pixels, of the editor. The default height is 24.height

Oracle Commerce Guided Search Assembler Application Developer's Guide

233Template Property and Editor Reference | Basic content properties

DescriptionAttribute

The minimum value of the property bound to this editor. The minValue can be
any number, including a fractional value. The default minimum value is 0.

minValue

The maximum value of the property bound to this editor. The maxValue can be
any number, including a fractional value. The default maximum value is 10.

maxValue

The increment by which the property value is increased or decreased when a user
clicks on the up or down arrows. The value must be a multiple of this number.
The default step size is 1.

stepSize

The following example shows the configuration for a numeric stepper:
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:xavia="http://endeca.com/schema/xavia/2010"
 xmlns:editors="editors"
 type="SidebarContent">

<!-- additional elements omitted from this example -->
 <ContentItem>
 <Name>Dimension Navigation</Name>

<!-- additional elements omitted from this example -->
 <Property name="numRefinements">
 <String>10</String>
 </Property>
 <Property name="maxNumRefinements">
 <String>200</String>
 </Property>

<!-- additional elements omitted from this example -->
 </ContentItem>
 <EditorPanel>
 <BasicContentItemEditor>

<!-- additional elements omitted from this example -->
 <editors:NumericStepperEditor propertyName="numRefinements"
 label="Max. Refinements" maxValue="10000" enabled="true"/>

<!-- additional elements omitted from this example -->
 <editors:NumericStepperEditor propertyName="maxNumRefinements"
 label="'More' Max. Refinements" maxValue="100000" enabled="true"/>

 </BasicContentItemEditor>
 </EditorPanel>
</ContentTemplate>

Adding a slider
A slider enables content administrators to select a numeric value by moving a slider between predefined
endpoint values.

The current value of the slider is determined by the relative location of the thumb between the end points of
the slider, corresponding to the slider's minimum and maximum values.

To add a slider to a template:

1. Insert an <editors:SliderEditor> element within <BasicContentItemEditor>.
2. Specify label attributes and additional attributes for the editor:

Oracle Commerce Guided Search Assembler Application Developer's Guide

Template Property and Editor Reference | Basic content properties234

DescriptionAttribute

Required. The name of the string property that this editor is associated with. This
property must be declared in the same template as the string editor.

propertyName

The width, in pixels, of the editor. The default width is 160.width

The height, in pixels, of the editor. The default height is 36.height

The default position of the slider thumb. By default, the thumb is set to 0.default

The minimum value of the property bound to this editor. The minValue can be
any number, including a fractional value. The default minimum value is 0.

minValue

The maximum value of the property bound to this editor. The maxValue can be
any number, including a fractional value. The default maximum value is 10.

maxValue

Specifies the increment value of the slider thumb as the user moves the thumb. A
value of 0 means that the slider moves continuously between the minimum and
maximum values. The default value is 0.

snapInterval

The spacing of the tick marks. A value of 0 displays no tick marks. The default
value is 0.

tickInterval

Number of decimal places to use for the property value and data tip text. A value
of 0 means all values are rounded to the nearest integer. The default value is 0.

precision

An array of strings to use for the slider labels. These labels display at the beginning
and end of the track and, if there are more than two values, spaced evenly between

labels

the two ends. By default, the beginning and end of the slider track are labeled in
Experience Manager with the minimum and maximum values.

The following example shows the configuration for a slider:
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:editors="editors" type="SidebarItem">
<!-- additional elements omitted from this example -->
<!-- Define the content properties -->

 <ContentItem>
<!-- additional elements omitted from this example -->
<!-- define numeric properties as simple string properties -->

 <Property name="numRefinements">
 <String>10</String>
 </Property>
 </ContentItem>
<!-- Define editors for numeric properties -->

 <EditorPanel>
 <BasicContentItemEditor>

<!-- additional elements omitted from this example -->
 <editors:SliderEditor propertyName="numRefinements"
 label="Number of refinements" minValue="10" maxValue="30"
 snapInterval="5" tickInterval="5" labels="10,15,20,25,30"/>
 </BasicContentItemEditor>
 </EditorPanel>
</ContentTemplate>

Oracle Commerce Guided Search Assembler Application Developer's Guide

235Template Property and Editor Reference | Basic content properties

Adding a Boolean property
Boolean properties represent a true or false value and can be used to enable or disable features in your
application.

To add a Boolean property to a template:

1. Insert a <Boolean> element inside a <Property> element.
2. Optionally, you can specify the default value for the property.

 <Property name="eligibleFreeShipping">
 <Boolean>true</Boolean>
 </Property>

Any value other than the string "true" (case insensitive) defaults to a value of false.

The following example shows the configuration of a Boolean property:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:editors="editors"
 type="HeaderContent">

<!-- additional elements omitted from this example -->
 <ContentItem>
 <Name>Search Box</Name>
 <Property name="autoSuggestEnabled">
 <Boolean>false</Boolean>
 </Property>

<!-- additional elements omitted from this example -->
 </ContentItem>

<!-- additional elements omitted from this example -->
</ContentTemplate>

Adding a Boolean editor
A Boolean editor provides a checkbox for Experience Manager users to specify the value of a Boolean property.

To add a Boolean editor:

1. Insert a <editors:BooleanEditor> element within <BasicContentItemEditor>.
2. Specify additional attributes for the editor:

DescriptionAttribute

Required. The name of the Boolean property that this editor is associated with.
This property must be declared in the same template as the Boolean editor.

propertyName

If set to false, the checkbox displays in Experience Manager but the value
cannot be changed by the user. By default, checkboxes are enabled.

enabled

The following example illustrates a checkbox for specifying whether auto-suggest search results should be
enabled, with a default value of false:
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:editors="editors"
 type="HeaderContent">

<!-- additional elements omitted from this example -->
 <ContentItem>
 <Name>Search Box</Name>

Oracle Commerce Guided Search Assembler Application Developer's Guide

Template Property and Editor Reference | Basic content properties236

 <Property name="autoSuggestEnabled">
 <Boolean>false</Boolean>
 </Property>

<!-- additional elements omitted from this example -->
 </ContentItem>
 <EditorPanel>
 <BasicContentItemEditor>
 <GroupLabel label="Auto-Suggest Configuration"/>
 <editors:BooleanEditor propertyName="autoSuggestEnabled"
 label="Enable Auto-Suggest"
 enabled="true"/>

<!-- additional elements omitted from this example -->
 </BasicContentItemEditor>
 </EditorPanel>
</ContentTemplate>

Adding an item property
A property can consist of a collection of properties (key-value pairs) of any valid type.

Because item properties can be used for a variety of purposes, InFront does not include any generic editors
for working with items. However, editors intended for specific purposes may store their values in item properties.

To add an item property to a template:

1. Insert a <xavia:Item> element inside a <Property> element.
2. Specify the class attribute with the fully qualified class name of the configuration model class that

corresponding to this item property.
3. Optionally, specify a default value by inserting a <xavia:Property> of type <String>, <Boolean>,

<xavia:List>, or <xavia:Item>. (A <Property>with no type specified is treated as a string by default.)

Note: Properties defined within <xavia:Item> must declare the Xavia namespace (i.e.,
<xavia:Property> instead of <Property>.

Following is an example of a template that uses an item with a default value:
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:editors="editors"
 xmlns:xavia="http://endeca.com/schema/xavia/2010"
 type="MainContent">
<!-- additional elements omitted from this example -->

 <ContentItem>
 <Name>Results List</Name>

<!-- additional elements omitted from this example -->
 <Property name="sortOption">
 <xavia:Item class="com.endeca.infront.navigation.model.SortOption">
 <xavia:Property name="label">Most Sales</xavia:Property>
 <xavia:Property name="sorts">
 <xavia:List>
 <xavia:Item class="com.endeca.infront.navigation.model.SortSpec">
 <xavia:Property name="key">product.analytics.total_sales</xavia:Prop¬
erty>
 <xavia:Property name="ascending">true</xavia:Property>
 </xavia:Item>
 </xavia:List>

Oracle Commerce Guided Search Assembler Application Developer's Guide

237Template Property and Editor Reference | Basic content properties

 </xavia:Property>
 </xavia:Item>
 </Property>

<!-- additional elements omitted from this example -->
 </ContentItem>
<!-- additional elements omitted from this example -->

</ContentTemplate>

Following is an example of a template that uses an item without a default value:
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:editors="editors"
 xmlns:xavia="http://endeca.com/schema/xavia/2010"
 type="SidebarContent">

<!-- additional elements omitted from this example -->
 <ContentItem>

<!-- additional elements omitted from this example -->
 <Property name="recordSelection">
 <xavia:Item class="com.endeca.infront.cartridge.RecordSpotlightSelec¬
tion" />
 </Property>

<!-- additional elements omitted from this example -->
 </ContentItem>

<!-- additional elements omitted from this example -->
</ContentTemplate>

Adding a group label
In the Experience Manager interface, group labels can serve as a visual cue that several properties are related.

Group labels are only used to provide additional context in the editing interface of Experience Manager and
do not affect rendering in the front-end application. Group labels are optional.

One use of group labels is to give the content administrator information about properties that they need to
configure the cartridge. For example, if a template defines properties that are required in order to render the
content properly, you can indicate these with a descriptive group label so that the content administrator can
easily identify the required fields in Experience Manager.

The editor panel in Experience Manager includes a default heading of "Section settings." This heading includes
the required Name field and the read-only type of a template, as well as any properties that are defined before
the first group label.

To add a group label to the editor panel:

Insert the <GroupLabel> element inside <BasicContentItemEditor> as in the following example:
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:editors="editors"
 xmlns:xavia="http://endeca.com/schema/xavia/2010"
 type="SidebarContent">

<!-- additional elements omitted from this example -->
 <EditorPanel>
 <BasicContentItemEditor>
 <GroupLabel label="Define Spotlight"/>
 <editors:StringEditor propertyName="title" label="Spotlight Title"
 enabled="true"/>
 <editors:StringEditor propertyName="maxNumRecords" label="Max Number
 Of Records" enabled="false"/>

Oracle Commerce Guided Search Assembler Application Developer's Guide

Template Property and Editor Reference | Adding a group label238

 <editors:RecordListEditor propertyName="recordSelection" label="Spot¬
light Records">
 <PreviewProperty name="product.name"/>
 </editors:RecordListEditor>
 <editors:StringEditor propertyName="seeAllLink" label="See All
Link" enabled="true"/>
 </BasicContentItemEditor>
 </EditorPanel>
</ContentTemplate>

<GroupLabel> is an empty tag that allows you to specify the label text with the label attribute.

Complex property editors
This section describes editors that are designed for specific aspects of Endeca feature configuration.

About the microbrowser
The microbrowser is used in several editors in the core cartridges to enable a content administrator to specify
a set of records. It is deprecated in this release; use the Select Records dialog instead.

Important: The microbrowser is deprecated. Use the Select Records dialog instead.

The microbrowser is a lightweight search and Guided Navigation application that enables a content administrator
to browse to a particular location in the data set (which may include search terms, dimension refinements, or
a combination of both). The content administrator can then do one of two things:

• Save the current filter state to designate a dynamic set of records.
• Select specific records from that filter state (or other filter states) to designate a set of specific featured

records.
An instance of a microbrowser is usually bound to a list property, which contains items that represent either
refinements or record IDs.

The microbrowser communicates with the MDEX Engine to retrieve search and navigation results.

Note: In order to enable the microbrowser, ensure that you have enabled communication between
Experience Manager and the MDEX Engine. For instructions, see "Communicating with the MDEX
Engine" in the Tools and Frameworks Installation Guide.

Data service configuration reference
The microbrowser uses a data service to access MDEX Engine information. By default, the service is configured
to provide relevant record properties for the Discover Electronics reference application.

Important: The microbrowser is deprecated. Use the Select Records dialog instead.

The data service configuration file, <app
dir>\config\ifcr\tools\configuration\xmgr\services\dataservice.json, is shown below:
{
 "jcr:primaryType": "endeca:unstructured",
 "host": "myhost.mydomain.com",

Oracle Commerce Guided Search Assembler Application Developer's Guide

239Template Property and Editor Reference | Complex property editors

 "port": "15002",
 "recordSpecName": "common.id",
 "aggregationKey": "product.code",
 "recordFilter": "",
 "wildcardSearchEnabled": false,
 "recordNameField": "",
 "fields": {
 "product.id": "",
 "product.name": "plain",
 "product.price": "currency",
 "product.short_desc": ""
 }
}

It specifies the following:

ValueKey

The hostname or IP address of your MDEX Engine server. By default, this is populated
with the same host as the authoring MDEX Engine when you deploy the Discover
Electronics reference application and run the initialize_services script.

host

The port that the MDEX Engine server listens on. By default, this is populated with the
same port as the authoring MDEX Engine.

port

The dimension used as the record specifier. This must be a unique identifier.recordSpecName

Optional. Enables aggregated records mode in the microbrowser, using the specified
property or dimension as the aggregation key when displaying and sorting records. All

aggregationKey

records with the same value in the selected dimension or property are treated as a
single record.

Optional. The property used to filter records for record boost and bury.recordFilter

Optional. Wildcard search is enabled by default. If your configuration does not index
dimensions by wildcard index, you must explicitly set this property to false.

wildcard¬
SearchEnabled

Optional. The property that should be used to represent the name of a record.recordNameField

Each key in the array of key/value pairs specifies a property or dimension to display as
a column in the microbrowser. Optionally, you may specify a formatting value from
among the following:

fields

• plain — no formatting. Used as the default if no format value is present.
• currency — adds a dollar ($) symbol before the value.
• integer— removes the decimal point and any trailing digits, if present. This setting

does not round the integer value.
• html— attempts to handle markup tags within the content returned from the MDEX

Engine.

Oracle Commerce Guided Search Assembler Application Developer's Guide

Template Property and Editor Reference | Complex property editors240

Running <app dir>\control\set_editors_config pushes changes to the Discover Electronics reference
application.

About the Select Records dialog
The Select Records dialog is used in several editors in the core cartridges to enable a content administrator
to specify a set of records.

The Select Records dialog is a lightweight search and Guided Navigation application that enables a content
administrator to browse to a particular location in the data set (which may include search terms, dimension
refinements, or a combination of both). The content administrator can then do one of two things:

• Save the current filter state to designate a dynamic set of records.
• Select specific records from that filter state (or other filter states) to designate a set of specific featured

records.

An instance of a Select Records dialog is usually bound to a <List> property in a cartridge template, which
contains <Item> properties that represent either dimension refinements or record IDs. The dialog communicates
with the MDEX Engine to retrieve search and navigation results.

Note: In order to enable the Select Records dialog, ensure that you have enabled communication
between Experience Manager and the MDEX Engine. For instructions, see "Communicating with the
MDEX Engine" in the Tools and Frameworks Installation Guide.

The following editors launch the Select Records dialog:
• Link Builder editor
• Boost-Bury Record editor
• Spotlight Selection editor

Select Records data service configuration reference
The Select Records dialog in Experience Manager communicates with the MDEX Engine through a configurable
data service. By default, the service is configured to provide relevant record properties for the Discover
Electronics reference application.

The configuration file, <app
dir>\\config\ifcr\tools\configuration\xmgr\services\endecaBrowserService.json, is
shown below:
{
 "host": "myhost.mydomain.com",
 "port": "15002",
 "recDisplayNameProp" : "product.name",
 "recSpecProp": "common.id",
 "recAggregationKey": "product.code",
 "recFilter": "",
 "recImgUrlProp" : "product.img_url_thumbnail",
 "recDisplayProps": ["product.name", "product.price", "product.short_desc"
],
 "textSearchKey": "All",
 "textSearchMatchMode" : "ALLPARTIAL"
}

It specifies the following:

Oracle Commerce Guided Search Assembler Application Developer's Guide

241Template Property and Editor Reference | Complex property editors

ValueKey

The hostname or IP address of your MDEX Engine server. By default, this is populated
with the same host as the authoring MDEX Engine when you deploy the Discover
Electronics reference application and run the initialize_services script.

host

The port that the MDEX Engine server listens on. By default, this is populated with
the same port as the authoring MDEX Engine.

port

The dimension used as the record display name in the editor that launches the dialog.recDisplayName¬
Prop

The dimension used as the record specifier. This must be a unique identifier.recSpecProp

Optional. Enables aggregated records mode in the Select Records dialog using the
specified property or dimension as the aggregation key when displaying and sorting

recAggregationKey

records. All records with the same value in the selected dimension or property are
treated as a single record.

Optional. The property used to filter records for record boost and bury.recFilter

Optional. The property used to retrieve the URL for the record thumbnail image.recImgUrlProp

An array of record properties to display in the dialog.recDisplayProps

Optional. Specifies the search key to apply to text searches in the Select Records
dialog.

textSearchKey

Optional. Specifies the match mode to apply to text searches in the Select Records
dialog.

textSearchMatch¬
Mode

You can modify these values as necessary for your own application. Running <app
dir>\control\set_editors_config pushes changes to the Discover Electronics reference application.

About the Dynamic Slot editor
The Dynamic Slot editor enables the content administrator to configure a section of an application page at
query time by specifying one or more content folders from which to return content.

The editor has no associated template configuration, although it launches a configuration dialog in Experience
Manager. When the content administrator edits the cartridge in Experience Manager, the editor queries the
Endeca Configuration Repository for a list of content folders. These results are refined based on the template
type or template ID restrictions entered by the content administrator.

Creating a cartridge template with a dynamic slot
You should configure a separate cartridge template for each template type that requires dynamic slot
functionality.

Oracle Commerce Guided Search Assembler Application Developer's Guide

Template Property and Editor Reference | Complex property editors242

To create a cartridge template with a dynamic slot:

1. Insert a ContentItem that includes the following properties:
• ruleLimit

• contentPaths — Include a nested <xavia:List/> element.
• templateTypes — Include a nested <xavia:List/> element.
• templateIds — Include a nested <xavia:List/> element.

For example:
<ContentItem>
 <Name>Sidebar Slot</Name>
 <Property name="ruleLimit"/>
 <Property name="contentPaths"><xavia:List/></Property>
 <Property name="templateTypes"><xavia:List/></Property>
 <Property name="templateIds"><xavia:List/></Property>
</ContentItem>

These properties are sent in as configuration to a ContentSlotConfig object that dynamically populates
the page with a suitable content item. For more information, seeAbout ContentInclude and ContentSlotConfig
objects on page 21.

2. Add any default values.

For example:
<ContentItem>
 <Name>Sidebar Slot</Name>

<Property name="ruleLimit"><String>1</String></Property>
 <Property name="contentPaths"><xavia:List/></Property>

<Property name="templateTypes">
 <xavia:List>
 <xavia:String>SecondaryContent</xavia:String>
 </xavia:List>
 <Property name="templateIds"><xavia:List/></Property>
</ContentItem>

3. In the EditorPanel, insert an <editors:DynamicSlotEditor> element within a <BasicCon¬
tentItemEditor>:
<EditorPanel>
 <BasicContentItemEditor>
 <editors:DynamicSlotEditor/>
 </BasicContentItemEditor>
</EditorPanel>

4. Save and close the template.
5. Upload the template to your application:

a) Navigate to your <app dir>\control directory.
For the Discover Electronics reference application, this is C:\Endeca\apps\Discover\control on
Windows, or /usr/local/endeca/apps/discover/control on UNIX.

b) Run the set_templates batch or shell script.

Note: You must configure a cartridge handler for your template in order to use it in Experience
Manager.

Oracle Commerce Guided Search Assembler Application Developer's Guide

243Template Property and Editor Reference | Complex property editors

The following shows the sample template in the Discover Electronics application for a sidebar dynamic slot
cartridge. The slot is restricted to cartridges of type SecondaryContent.
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:xavia="http://endeca.com/schema/xavia/2010"
 xmlns:editors="editors"
 type="SecondaryContent">

 <Description>${template.description}</Description>
 <ThumbnailUrl>thumbnail.png</ThumbnailUrl>

 <ContentItem>
 <Name>Secondary Content Slot</Name>
 <Property name="contentPaths"><xavia:List/></Property>
 <Property name="templateTypes">
 <xavia:List>
 <xavia:String>SecondaryContent</xavia:String>
 </xavia:List>
 </Property>
 <Property name="templateIds"><xavia:List/></Property>
 <Property name="ruleLimit"><String>1</String></Property>
 </ContentItem>

 <EditorPanel>
 <BasicContentItemEditor>
 <editors:DynamicSlotEditor/>
 </BasicContentItemEditor>
 </EditorPanel>
</ContentTemplate>

You must specify a cartridge handler for each cartridge template that you configure as a dynamic slot.

Specifying a cartridge handler for a dynamic slot template
All dynamic slot cartridges can share the same cartridge handler, but each unique cartridge must be explicitly
configured to do so.

As soon as you have created a cartridge template that uses a dynamic slot, you must register a cartridge
handler for that template. This cartridge handler should inherit the CartridgeHandler_ContentSlot
handler.

To specify a cartridge handler for a dynamic slot template:

1. Open the configuration file for your application framework.
In the Discover Electronics reference application, this is the Spring context configuration file located in
%ENDECA_TOOLS_ROOT%\reference\discover-electronics-authoring\WEB-INF\assembler-context.xml.

2. Configure a cartridge handler for your template that inherits or extends the ContentSlotHandler.
In the Spring implementation of the Assembler, this consists of adding a new CartridgeHandler bean
for your dynamic slot cartridge:
a) Set the id attribute to CartridgeHandler_<template_id>.
b) Set the parent attribute to the CartridgeHandler_ContentSlot handler.
c) Set the scope attribute to prototype to instantiate a new handler each time one is required.
This results in configuration similar to the following:
<bean id="CartridgeHandler_MyPageSlot" parent="CartridgeHandler_ContentSlot"
 scope="prototype"/>

Oracle Commerce Guided Search Assembler Application Developer's Guide

Template Property and Editor Reference | Complex property editors244

3. Repeate as necessary for any other dynamic slot templates in your application.
4. Save and close the file.

Adding a Link Builder
The Link Builder editor allows the content administrator to specify a link to a static page, a single selected
record, or a navigation state.

The Link Builder uses the Select Records dialog to enable the content administrator to browse to a single
record or a particular navigation state in the data set (which may include search terms, dimension refinements,
or a combination of both). Alternately, the Link Builder also supports entering an absolute URL to a static
resource.

To add a Link Builder to a template:

1. Insert anItem property namedlink, of classcom.endeca.infront.cartridge.model.LinkBuilder,
as in the following example:
<Property name="link">
 <Item class="com.endeca.infront.cartridge.model.LinkBuilder"
xmlns="http://endeca.com/schema/xavia/2010">
 </Item>
</Property>

2. Within the Item property, insert three empty Property elements named path, linkType, and
queryString:
<Property name="link">
 <Item class="com.endeca.infront.cartridge.model.LinkBuilder"
xmlns="http://endeca.com/schema/xavia/2010">

<Property name="path"></Property>
 <Property name="linkType"></Property>
 <Property name="queryString"></Property>
 </Item>
</Property>

These properties are populated by the Select Records dialog and processed by the cartridge handler into
an action string.

3. Insert a corresponding <editors:LinkBuilderEditor> element within <BasicContentItemEditor>.
4. Specify the propertyName attribute for the editor:

<editors:LinkBuilderEditor propertyName="link" enabled="true"/>

5. Specify any additional label attributes for the editor:
<editors:LinkBuilderEditor propertyName="link" label="Link Destination" en¬
abled="true"/>

The following shows an example of a template that includes a link builder editor:
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:editors="editors"
 xmlns:xavia="http://endeca.com/schema/xavia/2010"
 type="MainContent">

<!-- additional elements omitted from this example -->
 <ContentItem>
 <Name>Media banner</Name>

<!-- additional elements omitted from this example -->

Oracle Commerce Guided Search Assembler Application Developer's Guide

245Template Property and Editor Reference | Complex property editors

<Property name="link">
 <Item class="com.endeca.infront.cartridge.model.LinkBuilder"
xmlns="http://endeca.com/schema/xavia/2010">
 <Property name="path"></Property>
 <Property name="linkType"></Property>
 <Property name="queryString"></Property>
 </Item>
 </Property>

<!-- additional elements omitted from this example -->
 </ContentItem>

 <EditorPanel>
 <BasicContentItemEditor>

<!-- additional elements omitted from this example -->
 <GroupLabel label="Link Settings"/>

<editors:LinkBuilderEditor propertyName="link" label="Link Destination"
 enabled="true"/>

<!-- additional elements omitted from this example -->
 </BasicContentItemEditor>
 </EditorPanel>
</ContentTemplate>

About configuring the Link Builder
The Link Builder must be configured with a path to a data service in order to display the Select Records dialog.

Below is the configuration for the Link Builder in the editor configuration file for the Discover Electronics reference
application, located at <app dir>\config\ifcr\tools\configuration\xmgr\editors.xml:
<?xml version="1.0" encoding="UTF-8"?>
<!-- additional elements removed from this example -->
<EditorConfig xmlns="http://endeca.com/schema/editor-config/2010">
 <EditorModule url="/ifcr/tools/pbx/modules/editors.swf">

<!-- additional elements removed from this example -->
<Editor name="editors:LinkBuilderEditor">

 <EditorConfig resourcePath="/configuration/tools/xmgr/services/ende¬
caBrowserService.json" />
 </Editor>

<!-- additional elements removed from this example -->
 </EditorModule>
 <GlobalEditorConfig></GlobalEditorConfig>
</EditorConfig>

To publish and view changes to the editor configuration file, run the <app
dir>\control\set_editors_config script and clear your browser cache.

Deprecated configuration

The Link Builder formerly supported multiple nested configuration properties that applied to all instances of
the editor in an application. This configuration model is deprecated in the current release:

DescriptionProperty

The hostname or IP address of the MDEX Engine server to use for the Select Records
dialog.

host

The port on which the specified MDEX Engine server listens.port

Oracle Commerce Guided Search Assembler Application Developer's Guide

Template Property and Editor Reference | Complex property editors246

DescriptionProperty

The name of the property that serves as the record spec in the data set. This must
be a unique identifier.

spec

The name of a property, dimension, or search interface against which searches are
performed.

searchKey

The rollup key (used for aggregated records) to apply to all queries made via this
MDEX.

rollupKey

The match mode to use for text searches. Valid values for this property follow the
syntax of URL parameters for search mode, without the mode+match prefix.

matchMode

The property that specifies the location of the thumbnail image for a record.imgUrlProperty

A comma separated list of record properties that display for each record returned by
the content administrator's search and navigation state in the link builder Assembler
application.

properties

Specifying a path to a data service overrides these settings.

Related Links
Select Records data service configuration reference on page 241

The Select Records dialog in Experience Manager communicates with the MDEX Engine through a
configurable data service. By default, the service is configured to provide relevant record properties
for the Discover Electronics reference application.

About the Select Records dialog on page 241
The Select Records dialog is used in several editors in the core cartridges to enable a content
administrator to specify a set of records.

About the Media editor
The Media editor allows the content administrator to select and link to media assets stored in a content
repository.

The media editor consists of an Experience Manager editor and a lightweight Web application that enables
the content administrator to browse and navigate across a set of media assets in order to more easily find
specific files.

The default Discover Electronics reference application stores media directly in the Endeca Configuration
Repository and uses a built-in asset browser to present these assets to the content administrator. You may
also initialize an MDEX Engine to index media asset metadata and URIs as records, making them available
for Guided Navigation in an enhanced Media Browser.

Note: The configuration repository provides an acceptable store for media files when used for preview
purposes in an authoring environment, but Oracle recommends serving media assets from a media or
content delivery server for production environments.

About the Media Browser
The default asset browser for the Media editor can only be configured to browse media assets in the Endeca
Configuration Repository. If you are using another system for managing media assets, you must stand up a
corresponding media MDEX Engine and enable the Media Browser in the editor configuration file.

Oracle Commerce Guided Search Assembler Application Developer's Guide

247Template Property and Editor Reference | Complex property editors

Adding a Media editor
A Media editor allows a content administrator to link media into a cartridge. It can be combined with the Link
Builder in order to create images that link to destinations in your application, such as those used in site banners.

To add a Media editor to a template:

1. Insert an Item property named media, of class com.endeca.infront.cartridge.model.MediaOb¬
ject, as in the following example:
<Property name="media">
 <Item class="com.endeca.infront.cartridge.model.MediaObject"
xmlns="http://endeca.com/schema/xavia/2010">
 </Item>
</Property>

2. Within the Item property, insert six empty Property elements:

• uri

• contentWidth

• contentHeight

• contentBytes

• contentType

• contentSrcKey

<Property name="media">
 <Item class="com.endeca.infront.cartridge.model.MediaObject"
xmlns="http://endeca.com/schema/xavia/2010">

<Property name="uri"></Property>
 <Property name="contentWidth"></Property>
 <Property name="contentHeight"></Property>
 <Property name="contentBytes"></Property>
 <Property name="contentType"></Property>
 <Property name="contentSrcKey"></Property>
 </Item>
</Property>

These properties are populated by the Select Records dialog and processed by the cartridge handler.

3. Insert a corresponding <editors:MediaEditor> element within <BasicContentItemEditor>.
4. Specify the propertyName attribute for the editor:

<editors:MediaEditor propertyName="media" enabled="true"/>

5. Specify any additional label attributes for the editor:
<editors:MediaEditor propertyName="media" label="Media Url" enabled="true"/>

The following shows an example of a template that includes a media editor as part of a media banner cartridge:
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 xmlns:editors="editors"
 xmlns:xavia="http://endeca.com/schema/xavia/2010"
 type="MainContent">
<!-- additional elements omitted from this example -->

 <ContentItem>
 <Name>Media banner</Name>

<!-- additional elements omitted from this example -->
 <Property name="media">
 <Item class="com.endeca.infront.cartridge.model.MediaObject"

Oracle Commerce Guided Search Assembler Application Developer's Guide

Template Property and Editor Reference | Complex property editors248

xmlns="http://endeca.com/schema/xavia/2010">
 <Property name="uri">/</Property>
 <Property name="contentWidth"></Property>
 <Property name="contentHeight"></Property>
 <Property name="contentBytes"></Property>
 <Property name="contentType"></Property>
 <Property name="contentSrcKey"></Property>
 </Item>
 </Property>
 </ContentItem>

 <EditorPanel>
 <BasicContentItemEditor>

<!-- additional elements omitted from this example -->
 <GroupLabel label="Media"/>
 <editors:MediaEditor propertyName="media" label="Media Url" en¬
abled="true"/>
 </BasicContentItemEditor>
 </EditorPanel>
</ContentTemplate>

In order to use the Media editor, if you are using the Endeca Configuration Repository as your media store,
you must upload any media files to the repository. If you are using an external digital asset management system
with a corresponding MDEX Engine, the matching Endeca application must be configured and running and
the Media Browser must be enabled.

Related Links
Uploading media to the Endeca Configuration Repository on page 250

If you wish to use the ECR as your media content source, you can upload assets directly to Experience
Manager. This is required if you aren't using the Media Browser and are instead using the default
Flex-based asset navigator for the media editor. It can also be useful in a development environment,
where a separate media server may not be worth the effort of maintaining.

About Media editor configuration
You can specify allowable media formats in the editor configuration file. You can also enable or disable the
Media Browser, and specify the MDEX Engine that it should query for media records.

The Discover Electronics reference application uses the Endeca Configuration Repository to store media and
accesses these resources through a default asset browser, rather than relying on the Media Browser and an
accompanying media MDEX Engine.

Below is the configuration for the Media editor in the editor configuration file, located at <app
dir>\config\ifcr\tools\configuration\xmgr\editors.xml:
<?xml version="1.0" encoding="UTF-8"?>
<!-- additional text removed from this example -->
<EditorConfig xmlns="http://endeca.com/schema/editor-config/2010">
 <EditorModule url="/ifcr/tools/pbx/modules/editors.swf">

<!-- additional elements removed from this example -->
 <Editor name="editors:MediaEditor">
 <EditorConfig>
 <useMediaBrowser>false</useMediaBrowser>
 <mediaRoots>
 <default>http://myhost.mydomain.com:8006/ifcr/sites/Discov¬
er/media/</default>
 <mediaSource>http://myhost.mydomain.com:8006/ifcr/sites/Dis¬
cover/media/</mediaSource>
 </mediaRoots>
 <mdexPort>17000</mdexPort>

Oracle Commerce Guided Search Assembler Application Developer's Guide

249Template Property and Editor Reference | Complex property editors

 <mdexHost>myhost.mydomain.com</mdexHost>
 <videoFormats>flv|f4v|3pg|mov|mp4</videoFormats>
 <imageFormats>jpg|jpeg|png|gif</imageFormats>
 <mediaURI>/ifcr/sites/Discover/media/</mediaURI>
 </EditorConfig>
 </Editor>

<!-- additional elements removed from this example -->
 </EditorModule>
 <GlobalEditorConfig></GlobalEditorConfig>
</EditorConfig>

This sets the following properties across all instances of the media editor in the application:

DescriptionProperty

This property enables or disables the media browser. By default, it is set to false.useMediaBrowser

This property specifies the absolute URLs to available media repositories. It includes
a nested default property that points to the Endeca Configuration Repository, and

mediaRoot

an additional property for each repository indexed by the media MDEX Engine. For
more information, see "About resolving media paths in content items."

The absolute URL to the Endeca Configuration Repository, used by the default asset
browser. The specified host and port should match those used by Endeca Workbench.

default

An absolute URL to a media content source. In the reference data application, records
are assigned a media.repository_id property with a value of mediaSource.

Your own data ingest process may assign different values for media served from
varying locations. In this case, each media.repository_id value should have a

content source(media¬
Source)

corresponding element in the editor configuration file that identifies the URL for that
content source.

For applications using the Media Browser, this is the hostname or IP address of the
media MDEX Engine server.

mdexPort

For applications using the Media Browser, this is the port on which the specified media
MDEX Engine server listens.

mdexHost

A pipe-delineated list of valid video formats. Any videos not matching a listed format
do not display in either the default asset browser or Media Browser.

videoFormats

A pipe-delineated list of valid image formats. Any images not matching a listed format
do not display in either the default asset browser or Media Browser.

imageFormats

The location of the media node within the Endeca Configuration Repository. This is
only used by the default asset browser.

mediaURI

Note: The default list of video and image formats includes only those that are supported by the included
renderers for the Discover Electronics reference application. If you wish to extend this list for your own
application, ensure that your cartridge renderers can handle additional formats, and that your application
includes logic for displaying them.

Uploading media to the Endeca Configuration Repository
If you wish to use the ECR as your media content source, you can upload assets directly to Experience Manager.
This is required if you aren't using the Media Browser and are instead using the default Flex-based asset

Oracle Commerce Guided Search Assembler Application Developer's Guide

Template Property and Editor Reference | Complex property editors250

navigator for the media editor. It can also be useful in a development environment, where a separate media
server may not be worth the effort of maintaining.

All applications created using the Deployment Template include a set_media script in the <app
dir>\control directory. This script uploads media content from the <app dir>\config\media directory
to the Endeca Configuration Repository. After uploading content, it becomes available for use in Experience
Manager.

In general, you can store moderate amounts of media content in the Endeca Configuration Repository. Very
roughly speaking, a moderate amount of media content is approximately thousands of media files but not tens
of thousands of media files. This storage mechanism is intended as a convenience when you build an application
in a development environment.

If you have larger amounts of media content, Oracle recommends employing a digital asset management
system rather than uploading the media content into the Endeca Configuration Repository.

Here are a few specific guidelines to keep in mind before you upload media content to the Endeca Configuration
Repository:

• Do not upload more than approximately 1 GB of media content per transaction. In this context, a transaction
is one run of set_media.

• Do not upload more than approximately 5000 files in one transaction. This guideline essentially means you
should not have more than approximately 5000 files stored in <app dir>\config\media and its
subdirectories.

• If you have more than approximately 1000 files to upload, create subdirectories under <app
dir>\config\media and distribute the media files among the subdirectories. (One run of set_media
uploads all content in all subdirectories.)

To upload media content for use in Experience Manager:

1. Ensure any new media content is stored locally in <app dir>\config\media.
This may include image files, video files, and so on.

2. In a command prompt, navigate to the <app dir>\control directory of your deployed application.

This is located under your application directory. For example: C:\Endeca\apps\Discover\control.

3. Run the set_media script.
4. To verify that your media assets are available:

a) Log in to Workbench.
b) Open Experience Manager.
c) Select a cartridge that includes the Media editor.
d) Click the Select button to launch the Media editor and confirm that your media assets display.

About resolving media paths in content items
Links to media assets are resolved in the Media editor by combining configuration in the editor configuration
file with the media.path property on the selected record. At runtime, these links are resolved against the
media sources specified in the Assembler context file.

About media root elements

You identify authoring content sources as nested elements within the <mediaRoots> element in the editor
configuration file. The name of each such element corresponds to the value of the media.repository_id
property assigned to each record in your media MDEX Engine. The value of each element identifies the root
location of the authoring content source.

Oracle Commerce Guided Search Assembler Application Developer's Guide

251Template Property and Editor Reference | Complex property editors

When a content administrator opens the Media Browser in Experience Manager, media assets are retrieved
for preview by appending the value of the media.path property on the record to the corresponding content
source element within <mediaRoots>. The media.path is then saved to the content item when the content
administrator saves the cartridge configuration.

By keeping the relative location of your media assets consistent across environments, you can maintain
separate content sources for authoring and live environments without requiring content administrators to
reconfigure content items.

For example, assume the following element within <mediaRoots> in the editor configuration file:
<myMediaSource>http://myhost.mydomain.com:8006/myCMS/Discover/media/</myMedia¬
Source>

A media record with a media.repository_id value of "myMediaSource" and a media.path value of
"images/foo.jpg" would resolve to:
http://myhost.mydomain.com:8006/myCMS/Discover/media/images/foo.jpg

At runtime, the value of the media.path property is instead appended to the appropriate media source
configured in assembler-context.xml:
<!--
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    ~ Media Sources
-->

<bean id="authoringMediaSources" class="java.util.ArrayList" lazy-init="true">
    <constructor-arg>
        <list>
            <bean class="com.endeca.infront.cartridge.model.MediaSourceConfig">

<property name="sourceName" value="MyMediaSource" />
                <property name="sourceValue" value="http://myhost.mydo¬
main.com:8006/myCMS/Discover/media/" />
            </bean>
            <bean class="com.endeca.infront.cartridge.model.MediaSourceConfig">
                <property name="sourceName" value="default" />
                <property name="sourceValue" value="http://myhost.mydo¬
main.com:8006/myCMS/Discover/media/" />
            </bean>
        </list>
    </constructor-arg>
</bean>

<bean id="liveMediaSources" class="java.util.ArrayList" lazy-init="true">
    <constructor-arg>
        <list>
            <bean class="com.endeca.infront.cartridge.model.MediaSourceConfig">

<property name="sourceName" value="MyMediaSource" />
                <property name="sourceValue" value="http://myhost.mydo¬
main.com:8006/myBiggerFasterCMS/Discover/media/assets/" />
            </bean>
            <bean class="com.endeca.infront.cartridge.model.MediaSourceConfig">
                <property name="sourceName" value="default" />
                <property name="sourceValue" value="http://myhost.mydo¬
main.com:8006/myBiggerFasterCMS/Discover/media/assets/" />
            </bean>
        </list>
    </constructor-arg>
</bean>

Oracle Commerce Guided Search Assembler Application Developer's Guide

Template Property and Editor Reference | Complex property editors252



In a live environment, the aforementioned media record would resolve to:
http://myhost.mydomain.com:8006/myBiggerFasterCMS/Discover/media/assets/im¬
ages/foo.jpg

Note: While the tooling, authoring, and live content sources can all differ, Oracle recommends configuring
the Media Browser to use the authoring content source.

Enabling the Media Browser
The default browser for the Media editor can only be configured to browse media assets in the Endeca
Configuration Repository. If you are serving media assets from an external content source, you must enable
the Media Browser and configure it to use your media MDEX Engine.

You can enable and configure the Media Browser by modifying the editor configuration file for your application.

To enable the Media Browser in the Media editor:

1. Navigate to the editor configuration file at <app
dir>\config\ifcr\tools\configuration\xmgr\editors.xml.

2. Locate the <EditorConfig> element for the Media editor:

<Editor name="editors:MediaEditor">
    <EditorConfig>
        <useMediaBrowser>false</useMediaBrowser>
        <mediaRoots>
            <default>http://myhost.mydomain.com:8006/ifcr/sites/Discover/me¬
dia/</default>
            <mediaSource>http://myhost.mydomain.com:8006/ifcr/sites/Discover/me¬
dia/</mediaSource>
        </mediaRoots>
        <mdexPort>17000</mdexPort>
        <mdexHost>mymediahost.mydomain.com</mdexHost>
        <videoFormats>flv|f4v|3pg|mov|mp4</videoFormats>
        <imageFormats>jpg|jpeg|png|gif</imageFormats>
        <mediaURI>/ifcr/sites/Discover/media/</mediaURI>

</EditorConfig>
</Editor>

3. Within the <EditorConfig> element, change the value of the <useMediaBrowser> property to true:
<useMediaBrowser>true</useMediaBrowser>

4. Include a content source element under <mediaRoots>that points to your media host.
The element name is a unique key that identifies a media host. Each record has a corresponding me¬
dia.repository_id property that identifies its content source. The relevant content source property
maps that source to a URL.
For example, in the CAS crawl configuration for the reference data application, each record is assigned a
media.repository_id property with a value of mediaSource. The mediaSource property in the editor
configuration file specifies the URL:
<mediaRoots>
    <default>http://myhost.mydomain.com:8006/ifcr/sites/Discover/media/</default>

<mediaSource>http://myhost.mydomain.com:8006/ifcr/sites/Discover/media/</me¬
diaSource>
</mediaRoots>

Oracle Commerce Guided Search Assembler Application Developer's Guide

253Template Property and Editor Reference | Complex property editors



Note: The <default> value is only used by the default asset browser. For more information, see
"About Media editor configuration" and "Media MDEX Engine schema definition."

5. Modify the <mdexPort> and <mdexHost> elements to point to the host and port of the MDEX Engine
backing your media host.

6. Save and close the file.
7. Navigate to the <app dir>\control directory.
8. Run the set_editors_config script to publish your changes to the Endeca Configuration Repository.

Related Links
Using an MDEX Engine to index media assets on page 254

If you are storing media resources in an independent content store, you can set up an MDEX Engine
where records represent media assets and include asset metadata and URIs. Storing this information
as records allows content administrators to navigate assets based on image size, modification date,
or other attributes when selecting media assets for a content item.

Using an MDEX Engine to index media assets
If you are storing media resources in an independent content store, you can set up an MDEX Engine where
records represent media assets and include asset metadata and URIs. Storing this information as records
allows content administrators to navigate assets based on image size, modification date, or other attributes
when selecting media assets for a content item.

Tools and Frameworks includes a reference media MDEX application, including a CAS pipeline and Deployment
Template configuration.

Interaction between Experience Manager and the media MDEX Engine
The interactions between a media MDEX Engine, Experience Manager, and an Assembler application are
summarized below.

Interaction between a media MDEX Engine and Experience Manager

Experience Manager retrieves media asset information as follows:

Assuming that an MDEX Engine exists with media records that adhere to the required data schema:

Oracle Commerce Guided Search Assembler Application Developer's Guide

Template Property and Editor Reference | Complex property editors254



1. In Experience Manager, the Media Browser queries the media MDEX Engine for media records. This allows
the content administrator to select media assets by navigating across them with Guided Navigation.

2. The content administrator's configuration changes are published to the Endeca application each time a
content item is saved.

Interaction between the media content source and an Assembler application

In a production environment, the Assembler application can be configured to retrieve media assets from a
content delivery network or another media delivery server:

1. Media assets are uploaded from the media content source to the runtime content delivery network.
2. The application retrieves media from this content delivery network.

Note: The server hosting media assets can differ between authoring and live environments, as long as
the media path relative to the media root is consistent. In the case of the reference pipeline, the authoring
Discover Electronics Web application serves as the content source. For more information on configuring
content sources, see About Media editor configuration on page 249.

Overview of the reference data application
The Tools and Frameworks package includes a reference implementation of a media MDEX Engine that
includes a CAS crawl and Forge pipeline for crawling resources on the file system and indexing the
corresponding metadata and URIs. The Experience Manager can then query the MDEX Engine for record
information.

The reference media application illustrates the schema requirements and configuration that you should use
when building your own media pipeline.

Oracle Commerce Guided Search Assembler Application Developer's Guide

255Template Property and Editor Reference | Complex property editors



Endeca software requirements

In addition to the hardware and software required for Oracle Tools and Frameworks, the data ingest process
for the reference data application requires the Oracle Content Acquisition System. You must have CAS installed
on the machine on which you are running the ITL process for the data application.

Reference CAS crawl

The crawl uses the following manipulators:

1. Directory Filter: Filters out directory records, so that only media files are output to the MDEX Engine.
2. Image Property Generator: Analyzes image binaries to determine their width and height. It adds

corresponding image.width and image.height properties to each record.
3. Application Property Generator: Assigns a media.application property based on the application

specified when running the Deployment Template. This allows the Media Browser to display only those
media assets that are relevant to the application that the content administrator is currently modifying in
Workbench.

4. Path Manipulator: Creates a media.path property that contains the path to given asset with respect to
the media root.

Media MDEX Forge pipeline

The Forge pipeline for the reference data application reads data from the Endeca Record Store populated by
the CAS crawl and runs manipulators against the data to generate the required MDEX Engine schema.

Important: The reference media MDEX Engine and data application are provided as example
implementations. If you wish to connect to an external data source, you must configure a CAS crawl
specific to your data set, including customizing the record manipulators as necessary. Additionally, your
MDEX Engine configuration must include certain properties in order to function correctly with the Media
editor in Experience Manager. See Pipeline configuration for a media crawl on page 258 for details.

Deploying the reference data application for Discover Electronics
The reference media MDEX Engine data application assumes an environment where all required Oracle
components are running on the same machine.

You must have the Oracle Content Acquisition System and Oracle Tools and Frameworks installed on the
machine onto which you wish to deploy th e media MDEX Engine.

The reference data application runs an MDEX Engine with indexed media resources, and integrates with the
Discover Electronics reference application to expose the media records to a business user in the Media editor
in Experience Manager. The records include properties for metadata, such as image dimensions, making it
easier to narrow down a large quantity of media assets to those that fit the requirements for a cartridge in the
front-end application.

To deploy the reference data application:

1. Include the CAS manipulators for the reference data application as server plugins:
a) Navigate to the %CAS_ROOT%\lib\cas-server-plugins.
b) Create a directory named mediaMDEX.
c) Navigate to the

%ENDECA_TOOLS_ROOT%\reference\media-mdex-cas\cas\media-mdex-manipulators
directory.

d) Copy the following JAR files to the %CAS_ROOT%\lib\cas-server-plugins\mediaMDEX directory
you created in step 1b:

• media-mdex-manipulators-<version>.jar

Oracle Commerce Guided Search Assembler Application Developer's Guide

Template Property and Editor Reference | Complex property editors256



• guava-14.0.jar

2. Restart the Endeca CAS Service.
3. Deploy the reference data application:

a) Open a command prompt or command shell.

Note: If you are running the Tools and Frameworks from the included batch files, you must run
ToolsAndFrameworks/<version>/server/bin/setenv.bat to set the environment variables
for the current command window.

b) Navigate to the ToolsAndFrameworks\<version>\deployment_template\bin directory.
c) Run deploy.bat or deploy.sh with the following options:

deploy --app <Endeca Directory>/ToolsAndFrameworks/<version>/reference/media-
mdex-cas/deploy.xml

d) Confirm the Platform Services installation directory.
e) Enter n to skip installation of a base application.
f) Specify media as the application name.
g) Specify the Endeca application directory.

Typically, this is C:\Endeca\apps on Windows, or /usr/local/endeca/apps on UNIX.
h) Specify the EAC port previously used for the Discover Electronics reference application.

By default, this is port 8888.
i) Specify the port that Workbench runs on.

By default, this is port 8006.
j) Specify a Dgraph port.

Note: This must be a different port from any other Dgraphs used for other applications.

By default, this is port 17000. If you change this value, you must also update the configuration for the
MediaEditor in the \config\ifcr\tools\configuration\xmgr\editors.xml file after
deploying the application.

k) Specify the CAS installation directory.
l) Specify the CAS version.
m) Enter the port that CAS runs on.

By default, this is port 8500.
n) Enter the name of the application in which you wish to enable media browsing.

For the Discover Electronics reference application this should be Discover.
o) Enter the absolute path to the location on disk where media assets are stored.

This is the file path that the Content Acquisition System crawls to index the files. In a default Discover
Electronics deployment it is C:\Endeca\apps\Discover\config\media on Windows, or
usr/local/endeca/apps/Discover/config/media on Unix.

4. Provision the application with the EAC and run a baseline update:
a) Navigate to the control directory of the deployed media application.
b) Run the initialize_services script to provision the application in the EAC.
c) Run the baseline_update script to crawl the directory specified in Step 4 and index the assets in the

MDEX Engine.

Oracle Commerce Guided Search Assembler Application Developer's Guide

257Template Property and Editor Reference | Complex property editors



Pipeline configuration for a media crawl
In order for the Media Browser in Experience Manager to have sufficient information for forming content XML,
any pipeline that you configure for a media MDEX Engine must define specific properties and dimensions.

Required properties

The following properties are required for the Media Browser to function correctly:

DescriptionField

A unique identifier for each of the media items.record.id

The filename of the media asset.media.name

The file path, relative to the root of the content source.media.path

The logical host of the content source. The value of this property is mapped to
configuration elements for the Media editor in the editor configuration file, which

media.repository_id

in turn contain the path to the content source. For additional information, see
"About Media editor configuration."

The EAC application that the specified media asset is associated with. The
Media editor in Experience Manager filters entries in the Media Browser based
on which application the content administrator is currently editing.

media.application

The binary size of the media asset, in bytes.media.size

The height of the media asset, if it is an image. The renderer for the Media editor
uses this information to scale images appropriately.

image.height

The width of the media asset, if it is an image. The renderer for the Media editor
uses this information to scale images appropriately.

image.width

Properties and dimensions provided in the reference data application

Optionally, additional properties and dimensions can be displayed in the Media Browser. The reference
implementation of a media MDEX Engine includes the following such fields:

DescriptionTypeField

The MIME type of the media asset. This enables filtering by
media type and file extension in the Media Browser.

Propertymedia.file_type

The date and time that the file was last modified prior to being
crawled by the Content Acquisition System.

Propertymedia.last_modifica¬
tion_date

A searchable dimension based on media.file_type values.DimensionfileType

Searchable dimensions based on image.height and im¬
age.width values.

Dimensionheight, width

A searchable dimension based on media.application
values.

Dimensionapplication

If you configure your own media MDEX Engine that includes properties or dimensions not listed above, they
become available for Guided Navigation in the Media Browser. However, any such properties are not saved
to content XML once a media asset has been selected.

Oracle Commerce Guided Search Assembler Application Developer's Guide

Template Property and Editor Reference | Complex property editors258



Search interface requirements

The Media Browser requires a defined search interface named "All" that includes all searchable properties
and dimensions in the data set. Additionally, the Media Browser in the reference application uses the
"MatchAllPartial" search mode.

Adding a Boost-Bury Record editor
The Boost-Bury Record editor enables a content administrator to specify certain records to display either at
the top or bottom of the list of results for a page.

The Boost-Bury Record editor uses the Select Records dialog to enable the content administrator to specify
either an ordered list of record IDs or a set of refinements that define the set of records to be boosted or buried.

Note: The Boost-Bury Record editor communicates with the MDEX Engine. In order to enable the editor,
ensure that you have enabled communication between Experience Manager and the MDEX Engine.

To add a Boost-Bury Record editor:

1. Insert an <editors:BoostBuryRecordEditor> element within <BasicContentItemEditor>.
2. Specify additional attributes for the editor:

DescriptionAttribute

Required. The name of the item property that represents the records to be boosted
to the top of the results. This property must be declared in the same template as
the Record Stratification editor.

propertyName

Required. The name of the list property that represents the records to be buried
at the bottom of the results. This property must be declared in the same template
as the Record Stratification editor.

buryProperty

The following shows an example of a template that includes a Boost-Bury Record editor:
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008" 
    xmlns:editors="editors"
    xmlns:xavia="http://endeca.com/schema/xavia/2010"
    type="MainContent">
<!-- additional elements omitted from this example -->

  <ContentItem>  
    <Name>Results List</Name>    

<Property name="boostStrata">
        <xavia:List/>
    </Property>
    <Property name="buryStrata">
        <xavia:List/>
    </Property>

<!-- additional elements omitted from this example -->
  </ContentItem>

  <EditorPanel>
    <BasicContentItemEditor>

<!-- additional elements omitted from this example -->
<editors:editors:BoostBuryRecordEditor propertyName="boostStrata" 

        buryProperty="buryStrata" label="Customize Results List" />
<!-- additional elements omitted from this example -->

    </BasicContentItemEditor>

Oracle Commerce Guided Search Assembler Application Developer's Guide

259Template Property and Editor Reference | Complex property editors



  </EditorPanel>
</ContentTemplate>

Related Links
Select Records data service configuration reference on page 241

The Select Records dialog in Experience Manager communicates with the MDEX Engine through a
configurable data service. By default, the service is configured to provide relevant record properties
for the Discover Electronics reference application.

About the Select Records dialog on page 241
The Select Records dialog is used in several editors in the core cartridges to enable a content
administrator to specify a set of records.

Adding a Guided Navigation editor
The Guided Navigation editor enables a content administrator to quickly create a navigation menu through the
use of the Generate Guided Navigation wizard.

Note: The Guided Navigation editor communicates with the MDEX Engine. In order to enable the editor,
ensure that you have enabled communication between Experience Manager and the MDEX Engine.

A content administrator can use the Generate Guided Navigation button to trigger the Generate Guided
Navigation wizard. The wizard allows them to select and order a set of dimensions to add as Refinement Menu
cartridges. Alternately, they can choose to add, order, and configure the cartridges manually.

To add a Guided Navigation editor:

1. Insert an <editors:GuidedNavigationEditor> element within <BasicContentItemEditor>.
2. Set a propertyName attribute on the <editors:GuidedNavigationEditor> element.

This must be set to the name of the ContentItemList property that represents the list of Refinement
Menu content items. The property must be declared in the same template.

3. Insert an <editors:ContentItemMapping> element within the editor.
4. Map the content item name to the dimension property that should populate it.

This determines the name of the Refinement Menu content items created by the Generate Guided Navigation
wizard.
a) Include an <endeca:Name/> element within </endeca:ContentItemMapping>:

<endeca:ContentItemMapping>
    <endeca:Name/>
</endeca:ContentItemMapping>

b) Specify the dimension property to use for the content item name in a dimensionProperty attribute:
<endeca:ContentItemMapping>
    <endeca:Name dimensionProperty="display_name" />
</endeca:ContentItemMapping>

c) Specify the dimension name as a fallback value.
The Generate Guided Navigation wizard uses the first non-null value when naming a newly-created
content item.
<endeca:ContentItemMapping>
    <endeca:Name dimensionProperty="display_name" />
    <endeca:Name dimensionProperty="endeca:name" />
</endeca:ContentItemMapping>

Oracle Commerce Guided Search Assembler Application Developer's Guide

Template Property and Editor Reference | Complex property editors260



5. Map the dimensionName and dimensionID properties to the dimension properties that populate them:
<endeca:ContentItemMapping>
    <endeca:Name dimensionProperty="display_name" />
    <endeca:Name dimensionProperty="endeca:name" />
    <endeca:Property name="dimensionName" dimensionProperty="endeca:name" />
    <endeca:Property name="dimensionId" dimensionProperty="endeca:identifier"
 />
</endeca:ContentItemMapping>

The following shows an example of a template that includes a guided navigation editor:
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
    xmlns:endeca="editors" type="SecondaryContent">
    <Description>Creates a container for navigation cartridges.</Description>
    <ThumbnailUrl>/ifcr/tools/xmgr/img/template_thumbnails/Secondary_Guided¬
Nav.png</ThumbnailUrl>

    <ContentItem>
        <Name>Navigation Container</Name>

<Property name="navigation">
            <ContentItemList type="Navigation" />
        </Property>
    </ContentItem>

    <EditorPanel>
        <BasicContentItemEditor>

<endeca:GuidedNavigationEditor propertyName="navigation"
                label="">
                <endeca:ContentItemMapping>

<!-- additional elements omitted from this example -->
                    <endeca:Name dimensionProperty="display_name" />
                    <endeca:Name dimensionProperty="endeca:name" />
                    <endeca:Property name="dimensionName" dimensionProperty="en¬
deca:name" />
                    <endeca:Property name="dimensionId" dimensionProperty="ende¬
ca:identifier" />
                </endeca:ContentItemMapping>
            </endeca:GuidedNavigationEditor>
        </BasicContentItemEditor>
    </EditorPanel>
</ContentTemplate>

Adding a Dimension Selector
A Dimension Selector enables a content administrator to specify a dimension by name.

Note: The Dimension Selector communicates with the MDEX Engine. In order to enable the Dimension
Selector, ensure that you have enabled communication between Experience Manager and the MDEX
Engine.

To add a Dimension Selector:

1. Insert an <editors:DimensionSelectorEditor> element within <BasicContentItemEditor>.
2. Specify additional attributes for the editor:

Oracle Commerce Guided Search Assembler Application Developer's Guide

261Template Property and Editor Reference | Complex property editors



DescriptionAttribute

Required. The name of the string property that represents the dimension name. This
property must be declared in the same template as the Dimension Selector.

propertyName

Required. The name of the string property that represents the dimension id. This
property must be declared in the same template as the Dimension Selector.

idProperty

If set to false, this attribute makes the property read-only so that the value of the
property displays in the Content Details Panel in Experience Manager, but cannot

enabled

be edited. Use this option only if you specify a default value in the definition of the
dimension name and dimension ID properties. Editors are enabled by default.

The following shows an example of a template that includes a dimension selector:
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
                 xmlns:xavia="http://endeca.com/schema/xavia/2010"
                 xmlns:editors="editors"
                 type="Navigation">
    <Description>Displays Endeca Facet Navigation in a Text Link Rendering. For
 Flat Dimensions only.</Description>
    <ThumbnailUrl>/ifcr/tools/xmgr/img/template_thumbnails/dimension_naviga¬
tion.jpg</ThumbnailUrl>
    <ContentItem>
        <Name>Dimension Navigation</Name>

<Property name="dimensionName">
            <String/>
        </Property>

<!-- additional elements omitted from this example -->
    </ContentItem>
    <EditorPanel>
        <BasicContentItemEditor>

<editors:DimensionSelectorEditor propertyName="dimensionName" idProp¬
erty="dimensionId" 
             label="Dimension Name" enabled="true"/>

<!-- additional elements omitted from this example -->
        </BasicContentItemEditor>
    </EditorPanel>
</ContentTemplate>

Related Links
Select Records data service configuration reference on page 241

The Select Records dialog in Experience Manager communicates with the MDEX Engine through a
configurable data service. By default, the service is configured to provide relevant record properties
for the Discover Electronics reference application.

About the Select Records dialog on page 241
The Select Records dialog is used in several editors in the core cartridges to enable a content
administrator to specify a set of records.

Adding a Dimension List editor
The Dimension List editor enables a content administrator to select a list of dimensions from the application
data set. The templates included with the reference application use this editor to specify which dimensions
should be available for display in a dimension search auto-suggest panel or a dimension search results panel.

Oracle Commerce Guided Search Assembler Application Developer's Guide

Template Property and Editor Reference | Complex property editors262



Note: The Dimension List editor communicates with the MDEX Engine. In order to enable the editor,
ensure that you have enabled communication between Experience Manager and the MDEX Engine.

To add a Dimension List editor:

1. Insert an <editors:DimensionListEditor> element within <BasicContentItemEditor>.
2. Specify additional attributes for the editor:

DescriptionAttribute

Required. The name of the List property that represents the selected
dimension values. The property must be declared in the same template.

propertyName

The following shows an example of a template that includes a dimension list editor:
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
     xmlns:xavia="http://endeca.com/schema/xavia/2010"
     xmlns:editors="editors" type="MainContent">
    <Description>Displays dimension search results.</Description>
    <ThumbnailUrl>/ifcr/tools/xmgr/img/template_thumbnails/Main_DimensionSearchRe¬
sults.png</ThumbnailUrl>
    <ContentItem>
        <Name>Dimension Search Results</Name>

<!-- additional elements omitted from this example -->
<Property name="dimensionList">

            <xavia:List/>
        </Property>

<!-- additional elements omitted from this example -->
    </ContentItem>

    <EditorPanel>
        <BasicContentItemEditor>

<!-- additional elements omitted from this example -->
<editors:DimensionListEditor propertyName="dimensionList"

                label="Dimensions Searched"
                enabled="true"/>

<!-- additional elements omitted from this example -->
        </BasicContentItemEditor>
    </EditorPanel>
</ContentTemplate>

Adding a Dimension Value Boost-Bury editor
The boost-bury editor enables a content administrator to specify certain dimension values to display either at
the top or bottom of the list of refinements for a particular dimension.

In order to enable a Dimension Value Boost-Bury editor, the cartridge template must include a dimensionId
property with an associated editor or a default value. This specifies the dimension to which the boost-bury
editor applies.

Note: The Dimension Value Boost-Bury editor makes use of an auto-suggest dimension search
component to enable the content administrator to quickly find the relevant dimension values. In order for
this component to display partial matches as the user types in the search box, ensure that wildcard
search is enabled for dimension searches in your MDEX Engine configuration.

Oracle Commerce Guided Search Assembler Application Developer's Guide

263Template Property and Editor Reference | Complex property editors



To add a Dimension Value Boost-Bury editor:

1. Insert an <editors:BoostBuryEditor> element within <BasicContentItemEditor>.
2. Specify additional attributes for the editor:

DescriptionAttribute

Required. The name of the list property that represents the list of dimension values
to be boosted to the top of the list of refinements. This property must be declared
in the same template as the boost-bury editor.

propertyName

Required. The ID of the dimension that contains the dimension refinements to boost
or bury.

dimensionId

Required. The name of the list property that represents the list of dimension values
to be boosted to the top of the refinement list. This property must be declared in the
same template as the boost-bury editor.

boostProperty

Required. The name of the list property that represents the list of dimension values
to be buried at the bottom of the list of refinements. This property must be declared
in the same template as the boost-bury editor.

buryProperty

If set to false, this attribute makes the property read-only so that the value of the
property displays in the Content Details Panel in Experience Manager, but cannot

enabled

be edited. Use this option only if you specify a default value for the boostList
and buryList properties. Editors are enabled by default.

The following shows an example of a template that includes a dimension value boost-bury editor:
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
                 xmlns:xavia="http://endeca.com/schema/xavia/2010"
                 xmlns:editors="editors"
                 type="Navigation">
    <Description>Displays Endeca Facet Navigation in a Text Link Rendering. For
 Flat Dimensions only.</Description>
    <ThumbnailUrl>/ifcr/tools/xmgr/img/template_thumbnails/dimension_naviga¬
tion.jpg</ThumbnailUrl>
    <ContentItem>
        <Name>Dimension Navigation</Name>
        <Property name="dimensionName">
            <String/>
        </Property>

<Property name="dimensionId">
            <String/>
        </Property>

<!-- additional elements omitted from this example -->
<Property name="boostRefinements">

            <xavia:List/>
        </Property>
        <Property name="buryRefinements">
            <xavia:List/>
        </Property>
    </ContentItem>
    <EditorPanel>
        <BasicContentItemEditor>

<!-- additional elements omitted from this example -->
<editors:BoostBuryEditor propertyName="boostRefinements" buryProper¬

ty="buryRefinements" 
             label="Boost and Bury" dimensionIdProperty="dimensionId" en¬

Oracle Commerce Guided Search Assembler Application Developer's Guide

Template Property and Editor Reference | Complex property editors264



abled="true"/>
<!-- additional elements omitted from this example -->

        </BasicContentItemEditor>
    </EditorPanel>
</ContentTemplate>

Adding a Dimension Value List editor
The Dimension Value List editor enables a content administrator to select a list of dimension values from the
application data set.

Note: The Dimension Value List editor communicates with the MDEX Engine. In order to enable the
editor, ensure that you have enabled communication between Experience Manager and the MDEX
Engine.

To add a Dimension Value List editor:

1. Insert an <editors:DimvalListEditor> element within <BasicContentItemEditor>.
2. Specify additional attributes for the editor:

DescriptionAttribute

Required. The name of the List property that represents the selected
dimension values. The property must be declared in the same template.

propertyName

Required. The ID of the dimension that the editor applies to.dimensionId

The following shows an example of a Refinement Menu template that uses two Dimension Value List editors
to specify boosted and buried refinements, instead of a Dimension Value Boost-Bury editor:
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
                 xmlns:xavia="http://endeca.com/schema/xavia/2010"
                 xmlns:editors="editors"
                 type="Navigation">
    <Description>Displays Endeca Facet Navigation in a Text Link Rendering. For
 Flat Dimensions only.</Description>
    <ThumbnailUrl>/ifcr/tools/xmgr/img/template_thumbnails/dimension_naviga¬
tion.jpg</ThumbnailUrl>
    <ContentItem>
        <Name>Dimension Navigation</Name>

<!-- additional elements omitted from this example -->
<Property name="dimensionId">

            <String/>
        </Property>

<!-- additional elements omitted from this example -->
<Property name="boostRefinements">

            <xavia:List/>
        </Property>
        <Property name="buryRefinements">
            <xavia:List/>
        </Property>
    </ContentItem>
    <EditorPanel>
        <BasicContentItemEditor>

<!-- additional elements omitted from this example -->

Oracle Commerce Guided Search Assembler Application Developer's Guide

265Template Property and Editor Reference | Complex property editors



            <GroupLabel label="Boost and Bury Dimension Refinements"/>
<editors:DimvalListEditor dimensionIdProperty="dimensionId" 

             propertyName="boostRefinements" label = "Boost Records"/>
            <editors:DimvalListEditor dimensionIdProperty="dimensionId" 
             propertyName="buryRefinements" label = "Bury Records"/>

<!-- additional elements omitted from this example -->
        </BasicContentItemEditor>
    </EditorPanel>
</ContentTemplate>

Adding an Image Preview
An image preview retrieves an image from a URL and displays it in the Experience Manager interface.

You can construct an image preview URL from a hard-coded value, or from any number of String properties.
Image preview supports JPEG, GIF, and PNG image formats.

Note: If images are hosted on a different server from Workbench, you may have to configure a
cross-domain policy file to enable Flash player to access those resources.

To add an image preview to a template:

1. Insert an <ImagePreview> element within <BasicContentItemEditor>.
2. Specify attributes for the image preview:

DescriptionAttribute

Required. The source of the image URL. You can construct urlExpression
from any number of string properties, or you can enter a static value.

urlExpression

The height in pixels of the image preview presented in the Experience Manager
interface. The default value is 100.

maxHeight

The width in pixels of the image preview presented in the Experience Manager
interface. The default value is 300.

maxWidth

A Boolean indicating whether to display the resolved URL. The default value
is true.

displayUrl

If you are using more than one string property to compose the URL, you may want to use a <GroupLabel>
to indicate to Experience Manager users that these properties are related.

The following examples show options for constructing an image preview.

Example: Specifying the URL by using a configurable String property

Add an <ImagePreview> to the cartridge template:
<ContentTemplate ... >
    <ContentItem>
        <Name>Dimension Navigation</Name>
        ...
    </ContentItem>
    <EditorPanel>
        <BasicContentItemEditor>
            ...

<ImagePreview
              urlExpression=""

Oracle Commerce Guided Search Assembler Application Developer's Guide

Template Property and Editor Reference | Complex property editors266



              label="Banner Image"
              maxWidth="200"
              maxHeight="100" />
            ...
        </BasicContentItemEditor>
    </EditorPanel>
</ContentTemplate>

Add an image_src String property to the template:
<ContentTemplate ... >
    <ContentItem>
        <Name>Dimension Navigation</Name>

<Property name="image_src">
            <String/>
        </Property>
    </ContentItem>
    <EditorPanel>
        <BasicContentItemEditor>
            ...
            <ImagePreview
              urlExpression=""
              label="Banner Image"
              maxWidth="200"
              maxHeight="100" />
            ...
        </BasicContentItemEditor>
    </EditorPanel>
</ContentTemplate>

Add a corresponding <StringEditor> to the <EditorPanel>, and set the value of urlExpression to
the image_src property:
<ContentTemplate ... >
    <ContentItem>
        <Name>Dimension Navigation</Name>
        <Property name="image_src">
            <String/>
        </Property>
    </ContentItem>
    <EditorPanel>
        <BasicContentItemEditor>
            ...

<StringEditor propertyName="image_src" label="Image name" en¬
abled="true"/>
            <ImagePreview

urlExpression="http://localhost:8006/Discover/{image_src}"
              label="Banner Image"
              maxWidth="200"
              maxHeight="100" />
            ...
        </BasicContentItemEditor>
    </EditorPanel>
</ContentTemplate>

Adding a Record List editor
The Record List editor uses the microbrowser to enable a content administrator to designate specific records
to spotlight in a section, or to specify a query to return a dynamic list of records. This editor is deprecated.

Oracle Commerce Guided Search Assembler Application Developer's Guide

267Template Property and Editor Reference | Complex property editors



Important: This editor is deprecated. Use the SpotlightSelectionEditor instead.

Note: The Record List editor communicates with the MDEX Engine. In order to enable the editor, ensure
that you have enabled communication between Experience Manager and the MDEX Engine.

A Record List editor is bound to a RecordSpotlightSelection property, which can contain either a list of
record IDs (for featured records) or a set of refinements (for dynamic records).

To add a Record List editor to a template:

1. Insert an Item property of class com.endeca.infront.cartridge.RecordSpotlightSelection
named recordSelection as in the following example:
<Property name="recordSelection">
  <xavia:Item class="com.endeca.infront.cartridge.RecordSpotlightSelection" />
</Property>

2. Insert an <editors:RecordListEditor> element within <BasicContentItemEditor>.
3. Specify label attributes and the additional attributes for the editor:

DescriptionAttribute

Required. The name of the record selection property that represents the records
to be spotlighted. This property must be declared in the same template as the
Record Stratification editor.

propertyName

4. Insert a <PreviewProperty> element within <editors:RecordStratificationEditor> with the
following attribute:

DescriptionAttribute

The name of the record property to display in the Content Details Panel indicating
which records have been selected for boost or bury.

name

The following shows an example of a template that includes a record list editor:
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
                 xmlns:editors="editors"
                 xmlns:xavia="http://endeca.com/schema/xavia/2010"
                 type="SidebarContent">

<!-- additional elements omitted from this example -->
    <ContentItem>
        <Name>Spotlight records</Name>

<!-- additional elements omitted from this example -->
<Property name="recordSelection">

            <xavia:Item class="com.endeca.infront.cartridge.RecordSpotlightSelec¬
tion" />
        </Property>

<!-- additional elements omitted from this example -->
    </ContentItem>

    <EditorPanel>
        <BasicContentItemEditor>
            <GroupLabel label="Define Spotlight"/>

<!-- additional elements omitted from this example -->
<editors:RecordListEditor propertyName="recordSelection" 

              label="Spotlight Records">
                <PreviewProperty name="product.name"/>

Oracle Commerce Guided Search Assembler Application Developer's Guide

Template Property and Editor Reference | Complex property editors268



            </editors:RecordListEditor>
<!-- additional elements omitted from this example -->

        </BasicContentItemEditor>
    </EditorPanel>
</ContentTemplate>

Specifying record sort options
The sortOption property of the results list cartridge enables the content administrator to specify a default
sort order to apply to the results list when a site visitor reaches the page via navigation.

The available default sort options are defined in the Sort editor definition, which enables the content administrator
to select from a predefined set of sort orders. The sort options that are available to the site visitor to apply to
the results list are configured in the cartridge handler for this cartridge.

To specify sort options for the record list:

1. Insert an item property of class com.endeca.infront.navigation.model.SortOption named
sortOption:
    <Property name="sortOption">
      <xavia:Item class="com.endeca.infront.navigation.model.SortOption"/>
    </Property>

2. Optionally, specify a default value for the property. The SortOptionmodel includes the following properties:
DescriptionProperty Name

A descriptive label that displays in a drop-down menu in Experience Manager.label

A list of one or more items of class com.endeca.infront.navigation.mod¬
el.SortSpec. Each SortSpec has two properties:

sorts

• key — A string representing the name of an Endeca property or dimension on
which to sort

• descending — A Boolean value representing the sort direction

The following shows an example of a template that specifies a default sort option:
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008" 
    xmlns:editors="editors"
    xmlns:xavia="http://endeca.com/schema/xavia/2010"
    type="MainContent">
<!-- additional elements omitted from this example -->

  <ContentItem>  
    <Name>Results List</Name>    

<!-- additional elements omitted from this example -->
    <Property name="sortOption">
      <xavia:Item class="com.endeca.infront.navigation.model.SortOption">
        <xavia:Property name="label">Most Sales</xavia:Property>
        <xavia:Property name="sorts">
          <xavia:List>
            <xavia:Item class="com.endeca.infront.navigation.model.SortSpec">
              <xavia:Property name="key">product.analytics.total_sales</xavia:Prop¬
erty>
              <xavia:Property name="ascending">true</xavia:Property>
            </xavia:Item>
          </xavia:List>
        </xavia:Property>

Oracle Commerce Guided Search Assembler Application Developer's Guide

269Template Property and Editor Reference | Complex property editors



      </xavia:Item>
    </Property>

<!-- additional elements omitted from this example -->
  </ContentItem>
<!-- additional elements omitted from this example -->

</ContentTemplate>

Adding a Record Stratification editor
The Record Stratification editor enables a content administrator to specify certain records to display either at
the top or bottom of the list of results for a page.

Important: This editor is deprecated. Use the BoostBuryRecordEditor instead.

The Record Stratification editor uses the microbrowser to enable the content administrator to specify either an
ordered list of record IDs or a set of refinements that define the set of records to be boosted or buried.

Note: The Record Stratification editor communicates with the MDEX Engine. In order to enable the
editor, ensure that you have enabled communication between Experience Manager and the MDEX
Engine.

To add a Record Stratification editor:

1. Insert an <editors:RecordStratificationEditor> element within <BasicContentItemEditor>.
2. Specify additional attributes for the editor:

DescriptionAttribute

Required. The name of the item property that represents the records to be boosted
to the top of the results. This property must be declared in the same template as
the Record Stratification editor.

propertyName

Required. The name of the list property that represents the records to be buried
at the bottom of the results. This property must be declared in the same template
as the Record Stratification editor.

buryProperty

The following shows an example of a template that includes a record stratification editor:
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008" 
    xmlns:editors="editors"
    xmlns:xavia="http://endeca.com/schema/xavia/2010"
    type="MainContent">
<!-- additional elements omitted from this example -->

  <ContentItem>  
    <Name>Results List</Name>    

<Property name="boostStrata">
        <xavia:List/>
    </Property>
    <Property name="buryStrata">
        <xavia:List/>
    </Property>

<!-- additional elements omitted from this example -->
  </ContentItem>

  <EditorPanel>

Oracle Commerce Guided Search Assembler Application Developer's Guide

Template Property and Editor Reference | Complex property editors270



    <BasicContentItemEditor>
<!-- additional elements omitted from this example -->
<editors:RecordStratificationEditor propertyName="boostStrata" 

        buryProperty="buryStrata" label="Customize Results List" />
<!-- additional elements omitted from this example -->

    </BasicContentItemEditor>
  </EditorPanel>
</ContentTemplate>

Adding a Rich Text editor
The Rich Text editor provides a text field and formatting toolbar that allows a content administrator to include
formatted text and hyperlinks in a content item.

Important: The Rich Text editor UI includes a Source button that allows you to view editor content as
HTML. This view is for reference purposes only; the editor does not support full HTML editing, and any
unsupported elements added in this view are not saved in the content item XML.

To add a Rich Text editor to a template:

1. Insert a <String> element inside a <Property> element.
2. Optionally, specify the default value for the property as the content of the <String> element.
3. Insert a corresponding <editors:RichTextEditor> element within <BasicContentItemEditor>.
4. Specify the propertyName attribute for the editor:

<editors:RichTextEditor propertyName="description" enabled="true"/>

5. Specify any additional label attributes for the editor:
<editors:RichTextEditor propertyName="description" label="Description" en¬
abled="true"/>

6. Specify the height and toolbar configuration for the editor:
<editors:RichTextEditor propertyName="description" label="Description" en¬
abled="true" height="200" toolbar="[
  { name: 'document',    items : [ 'Source'] },
  { name: 'clipboard',   items : [ 'Cut','Copy','Paste','PasteText','PasteFrom¬
Word','-','Undo','Redo' ] },
  { name: 'insert',      items : [ 'Image','Table','HorizontalRule','Spe¬
cialChar'] },
  { name: 'paragraph',   items : [ 'NumberedList','BulletedList','-','Out¬
dent','Indent','-','JustifyLeft',
                                   'JustifyCenter','JustifyRight','JustifyBlock'
 ] },
  { name: 'links',       items : [ 'Link','Unlink','Anchor' ] },
  '/',
  { name: 'basicstyles', items : [ 'Bold','Italic','Underline','Strike','Sub¬
script','Superscript' ] },
  { name: 'styles',      items : [ 'Styles','Format','Font','FontSize' ] },
  { name: 'colors',      items : [ 'TextColor'] }
]"/>

Note: The Rich Text editor is an implementation of the open source CKEditor WYSIWYG Rich Text
editor. For more information about toolbar buttons and their functionality, see the documentation for
version 4.x of the CKEditor at http://docs.ckeditor.com/#!/guide/dev_toolbar.

Oracle Commerce Guided Search Assembler Application Developer's Guide

271Template Property and Editor Reference | Complex property editors



The following shows an example of a template that includes a rich text editor:
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
  xmlns:editors="editors"
  xmlns:xavia="http://endeca.com/schema/xavia/2010"
  type="MainContent">

<!-- additional elements omitted from this example -->
    <ContentItem>
        <Name>CategoryDescription</Name>

<Property name="description">
            <String></String>
        </Property>
    </ContentItem>

    <EditorPanel>
      <BasicContentItemEditor>
          <GroupLabel label="Contents"/>

<editors:RichTextEditor propertyName="description" label="Descrip¬
tion" enabled="true" height="200" 
                toolbar="[
                { name: 'document',    items : [ 'Source'] },
                { name: 'clipboard',   items : [ 'Cut','Copy','Paste','Paste¬
Text','PasteFromWord','-','Undo','Redo' ] },
                { name: 'insert',      items : [ 'Image','Table','Horizontal¬
Rule','SpecialChar'] },
                { name: 'paragraph',   items : [ 'NumberedList','BulletedList','-
','Outdent','Indent','-',
                                                 'JustifyLeft','JustifyCenter','Jus¬
tifyRight','JustifyBlock' ] },
                { name: 'links',       items : [ 'Link','Unlink','Anchor' ] },
                '/',
                { name: 'basicstyles', items : [ 'Bold','Italic','Under¬
line','Strike','Subscript','Superscript' ] },
                { name: 'styles',      items : [ 'Styles','Format','Font','Font¬
Size' ] },
                { name: 'colors',      items : [ 'TextColor'] }
              ]"/>
        </BasicContentItemEditor>
    </EditorPanel>
</ContentTemplate>

Adding a Sort editor
A Sort editor enables the content administrator to choose a sort order (sort key and direction) to apply to a list
of records.

Within the results list cartridge, this sort order (along with any boost/bury that is configured for the page) is
applied to the results list by default when the end user first arrives at a page. If additional sort options are
specified for this cartridge, the end user can select an alternate sort order and later return to the default ordering
as specified by the content administrator.

To add a Sort editor:

1. Insert an <editors:SortEditor> element within <BasicContentItemEditor>.
2. Specify additional attributes for the editor:

Oracle Commerce Guided Search Assembler Application Developer's Guide

Template Property and Editor Reference | Complex property editors272



DescriptionAttribute

Required. The name of the item property that represents the default sort
option. This property must be declared in the same template as the Sort
editor.

propertyName

3. Specify one or more items of class com.endeca.infront.navigation.model.SortOption from
which the content administrator can select.

The following shows an example of a template that includes a sort editor:
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008" 
    xmlns:editors="editors"
    xmlns:xavia="http://endeca.com/schema/xavia/2010"
    type="MainContent">
<!-- additional elements omitted from this example -->

  <ContentItem>  
    <Name>Results List</Name>    

<!-- additional elements omitted from this example -->
    <Property name="sortOption">
      <xavia:Item class="com.endeca.infront.navigation.model.SortOption">
        <xavia:Property name="label">Most Sales</xavia:Property>
        <xavia:Property name="sorts">
          <xavia:List>
            <xavia:Item class="com.endeca.infront.navigation.model.SortSpec">
              <xavia:Property name="key">product.analytics.total_sales</xavia:Prop¬
erty>
              <xavia:Property name="ascending">true</xavia:Property>
            </xavia:Item>
          </xavia:List>
        </xavia:Property>
      </xavia:Item>
    </Property>

<!-- additional elements omitted from this example -->
  </ContentItem>

  <EditorPanel>
    <BasicContentItemEditor>

<!-- additional elements omitted from this example -->
      <GroupLabel label="Navigation Result Settings (apply when user does not 
provide search terms)"/>
      <editors:SortEditor propertyName="sortOption" label="Default Sort">
        <xavia:Item class="com.endeca.infront.navigation.model.SortOption">
          <xavia:Property name="label">Default</xavia:Property>
          <xavia:Property name="sorts">
            <xavia:List />
          </xavia:Property>
        </xavia:Item>
        <xavia:Item class="com.endeca.infront.navigation.model.SortOption">
          <xavia:Property name="label">Most Sales</xavia:Property>
          <xavia:Property name="sorts">
            <xavia:List>
              <xavia:Item class="com.endeca.infront.navigation.model.SortSpec">
                <xavia:Property name="key">product.analytics.to¬
tal_sales</xavia:Property>
                <xavia:Property name="ascending">true</xavia:Property>
              </xavia:Item>
            </xavia:List>
          </xavia:Property>

Oracle Commerce Guided Search Assembler Application Developer's Guide

273Template Property and Editor Reference | Complex property editors



        </xavia:Item>
        <xavia:Item class="com.endeca.infront.navigation.model.SortOption">
          <xavia:Property name="label">Best Conversion Rate</xavia:Property>
          <xavia:Property name="sorts">
            <xavia:List>
              <xavia:Item class="com.endeca.infront.navigation.model.SortSpec">
                <xavia:Property name="key">product.analytics.conver¬
sion_rate</xavia:Property>
                <xavia:Property name="ascending">true</xavia:Property>
              </xavia:Item>
            </xavia:List>
          </xavia:Property>
        </xavia:Item>
        <xavia:Item class="com.endeca.infront.navigation.model.SortOption">
          <xavia:Property name="label">Price (Ascending)</xavia:Property>
          <xavia:Property name="sorts">
            <xavia:List>
              <xavia:Item class="com.endeca.infront.navigation.model.SortSpec">
                <xavia:Property name="key">product.price</xavia:Property>
                <xavia:Property name="ascending">true</xavia:Property>
              </xavia:Item>
            </xavia:List>
          </xavia:Property>
        </xavia:Item>
        <xavia:Item class="com.endeca.infront.navigation.model.SortOption">
          <xavia:Property name="label">Price (Descending)</xavia:Property>
          <xavia:Property name="sorts">
            <xavia:List>
              <xavia:Item class="com.endeca.infront.navigation.model.SortSpec">
                <xavia:Property name="key">product.price</xavia:Property>
                <xavia:Property name="ascending">false</xavia:Property>
              </xavia:Item>
            </xavia:List>
          </xavia:Property>
        </xavia:Item>
      </editors:SortEditor>
    </BasicContentItemEditor>
  </EditorPanel>
</ContentTemplate>

Adding a Spotlight Selection editor
The Spotlight Selection editor uses the Select Records dialog to enable a content administrator to designate
specific records to spotlight in a section, or to specify a query to return a dynamic list of records.

Note: The Spotlight Selection editor communicates with the MDEX Engine. In order to enable the editor,
ensure that you have enabled communication between Experience Manager and the MDEX Engine.

A Spotlight Selection editor is bound to a RecordSpotlightSelection property, which can contain either
a list of record IDs (for featured records) or a set of dimension refinements (for dynamic records).

To add a Spotlight Selection editor to a template:

1. Insert an Item property of class com.endeca.infront.cartridge.RecordSpotlightSelection.
In the following example, this is the recordSelection property:
<Property name="recordSelection">
    <xavia:Item class="com.endeca.infront.cartridge.RecordSpotlightSelection"

Oracle Commerce Guided Search Assembler Application Developer's Guide

Template Property and Editor Reference | Complex property editors274



 />
</Property>

2. Insert a String property that stores the maximum number of records to display in the spotlight.
In the following example, this is the maxNumRecords property:
<Property name="maxNumRecords">
    <String>10</String>
</Property>

3. Insert a Boolean property that controls the display of the "See All" link.
In the following example, this is the showSeeAllLink property:
<Property name="showSeeAllLink">
    <Boolean>false</Boolean>
</Property>

4. Insert a String property to contain the text for the "See All" link.
In the following example, this is the seeAllLinkText property:
<Property name="seeAllLinkText">
    <String />
</Property>

5. Insert an <editors:RecordSpotlightSelectionEditor> element within <BasicContentItemEd¬
itor>.

6. Specify label attributes and map the editor to the associated properties:
DescriptionAttribute

Required. The name of the record selection property that represents the
selected records or navigation state. This property must be declared in
the same template as the record selection editor.

propertyName

Required. Specifies the maximum number of records to display in the
spotlight.

maxNumRecords

Required. Controls the display of the "See All" link.showSeeAllLink

Required. Specifies the text for the "See All" link.seeAllLinkText

The following shows an example of a template that includes a spotlight selection editor:
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
                 xmlns:editors="editors"
                 xmlns:xavia="http://endeca.com/schema/xavia/2010"
                 type="SecondaryContent">
    <Description>Displays selected records in seconday content area.</Description>

    <ThumbnailUrl>/ifcr/tools/xmgr/img/template_thumbnails/Secondary_RecordSpot¬
light.png</ThumbnailUrl>
    <ContentItem>
        <Name>Spotlight Records</Name>
        <Property name="title">
            <String>Featured Cameras</String>
        </Property>

<Property name="maxNumRecords">
            <String>10</String>
        </Property>
        <Property name="recordSelection">
            <xavia:Item class="com.endeca.infront.cartridge.RecordSpotlightSelec¬

Oracle Commerce Guided Search Assembler Application Developer's Guide

275Template Property and Editor Reference | Complex property editors



tion" />
        </Property>
        <Property name="showSeeAllLink">
          <Boolean>false</Boolean>
        </Property>
        <Property name="seeAllLinkText">
          <String />
        </Property>
    </ContentItem>

    <EditorPanel>
        <BasicContentItemEditor>
            <GroupLabel label="Define Spotlight"/>
            <editors:StringEditor propertyName="title" label="Spotlight Title" 
enabled="true"/>

<editors:SpotlightSelectionEditor propertyName="recordSelection" la¬
bel="Spotlight Records"
                maxNumRecords="maxNumRecords" showSeeAllLink="showSeeAllLink" 
seeAllLinkText="seeAllLinkText" />
        </BasicContentItemEditor>
    </EditorPanel>
</ContentTemplate>

Related Links
Select Records data service configuration reference on page 241

The Select Records dialog in Experience Manager communicates with the MDEX Engine through a
configurable data service. By default, the service is configured to provide relevant record properties
for the Discover Electronics reference application.

About the Select Records dialog on page 241
The Select Records dialog is used in several editors in the core cartridges to enable a content
administrator to specify a set of records.

Application feature property reference
This is an overview of the mappings between features in a front-end application and their associated configuration
properties.

Query configuration mappings

Global configuration for the features below is typically set in the Assembler context file on the class and property
specified in the table.

Cartridge Handler(s)Global Configuration
<class>.<property>

URL
Parameter

Feature

UrlNavigationStateBuilderFilterState.navigationFil¬
ters

NNavigation query

RefinementMenuRefinementMenuConfig.re¬
finementsShown

NrmcRefinement display in
menu

RefinementMenuRefinementMenuConfig.show¬
More

Enable "Show More
Refinements" link

Oracle Commerce Guided Search Assembler Application Developer's Guide

Template Property and Editor Reference | Application feature property reference276



Cartridge Handler(s)Global Configuration
<class>.<property>

URL
Parameter

Feature

NavigationContainerNavigationContainer.show¬
MoreIds

"Show More"
dimension IDs

UrlNavigationStateBuilderDefaultResultsListConfigRRecord details

ResultsListResultsListConfig.offsetNoRecord offset

ResultsListResultsListConfig.sub¬
RecordsPerAggregatRecord

- -Records to show per
aggregate record

UrlNavigationStateBuilderFilterState.recordFiltersNrRecord filter

ResultsListResultsListCon¬
fig.recordsPerPage

NrppRecords per page

ResultsList, Dimension¬
SearchResult

FilterState.SearchFil¬
ters.key

NtkRecord search key

UrlNavigationStateBuilder- -AAggregate record
selection

ResultsListResultsListConfig.offsetNaoAggregate record
offset

UrlNavigationStateBuilderFilterState.rollupKey- -Aggregate record
rollup key

ResultsListResultsListCon¬
fig.whyRankEnabled

whyrankWhy Rank

ResultsListResultsListConfig.why¬
MatchEnabled

whymatchWhy Match

RefinementMenu,Navigation¬
Container

RefinementMenu.whyPrece¬
denceRuleFired, Navigation¬
Container.whyPrece¬
denceRuleFired

whyprece¬
dencerule¬
fired

Why Precedence Rule
Fired

UrlNavigationStateBuilderFilterState.rangeFiltersNfRange filter

UrlNavigationStateBuilderFilterState.rangeFiltersNfgGeocode range filter

- -UserState.dateEnde¬
ca_Time

Set preview time

ResultsListFilterState.SearchFil¬
ters.MatchMode

NrmRelevance ranking
Match Mode

ResultsListResultsListConfig.rel¬
RankStrategy, Dimension¬

- -Relevance ranking
strategy

SearchResultsConfig.rel¬
RankStrategy

- -- -NrtRelevance ranking
search terms

Oracle Commerce Guided Search Assembler Application Developer's Guide

277Template Property and Editor Reference | Application feature property reference



Cartridge Handler(s)Global Configuration
<class>.<property>

URL
Parameter

Feature

ResultsList- -NrkRelevance ranking
search key

UrlNavigationStateBuilderFilterState.eqlFilterNrsEQL filter

ResultsList, Refinement¬
Menu

ResultsListConfig.sortOp¬
tion, RefinementMenu.sort

NsSort key

Sort order

UrlNavigationStateBuilderSearchAdjustmentsCon¬
fig.phraseSuggestionEn¬
abled

NtpCompute phrasings

Rewrite query with
alternate phrasing

UrlNavigationStateBuilderFilterState.SearchFil¬
ters.terms

NttSearch terms

UrlNavigationStateBuilderFilterState.SearchFil¬
ters.matchMode

NtxSearch mode

UrlNavigationStateBuilderSearchAdjustmentsCon¬
fig.spellSuggestionEnabled

Nty"Did You Mean"

DySignal dimension
search

See NttSee NttNtt with
Dy=1

Dimension search term

See NfSee NfNf with
Dy=1

Dimension search
range filter

DimensionSearchRe¬
sultHandler

DimensionSearchResultCon¬
fig.relRank

- -Enable dimension
search relevance
ranking

See NSee NN with Dy=1Dimension search
scope

- -- -- -Dimension search
result offset

DimensionSearchRe¬
sultHandler

DimensionSearchResultCon¬
fig.maxResultsPerDimension

- -Dimension search
dimVal count

See NrSee NrNr with
Dy=1

Dimension search
record filter

DimensionSearchRe¬
sultHandler

DimensionSearchResultCon¬
fig.showCountsEnabled

- -Dimension search
refinement
configuration

See NrsSee NrsNrs with
Dy=1

Dimension search EQL
filter

- -- -- -Dimension search
options

Oracle Commerce Guided Search Assembler Application Developer's Guide

Template Property and Editor Reference | Application feature property reference278



Adding a list property
A property can consist of an ordered list of strings, Booleans, items, or other lists.

Because lists can be used for a variety of purposes, Oracle Guided Search does not include any generic editors
for working with lists. However, editors intended for specific purposes may store their values in list properties.

To add a list property to a template:

1. Insert a <xavia:List> element inside a <Property> element.
2. Optionally, specify a default value by inserting either <String>, <Boolean>, <xavia:List>, or

<xavia:Item> elements.

Following is an example of a template that uses lists both with and without default values:
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008" 
    xmlns:editors="editors"
    xmlns:xavia="http://endeca.com/schema/xavia/2010"
    type="MainContent">
<!-- additional elements omitted from this example -->

  <ContentItem>  
    <Name>Results List</Name>    
    <Property name="boostStrata">
        <xavia:List/>
    </Property>
    <Property name="buryStrata">
        <xavia:List/>
    </Property>
    <Property name="sortOption">
      <xavia:Item class="com.endeca.infront.navigation.model.SortOption">
        <xavia:Property name="label">Most Sales</xavia:Property>
        <xavia:Property name="sorts">
          <xavia:List>
            <xavia:Item class="com.endeca.infront.navigation.model.SortSpec">
              <xavia:Property name="key">product.analytics.total_sales</xavia:Prop¬
erty>
              <xavia:Property name="ascending">true</xavia:Property>
            </xavia:Item>
          </xavia:List>
        </xavia:Property>
      </xavia:Item>
    </Property>

<!-- additional elements omitted from this example -->
  </ContentItem>
<!-- additional elements omitted from this example -->

</ContentTemplate>

Oracle Commerce Guided Search Assembler Application Developer's Guide

279Template Property and Editor Reference | Adding a list property





Appendix B

Navigation Cartridge Configuration Reference

This appendix provides an overview of the configuration models for the included navigation cartridges. You
should review this information if you use these cartridges in your Assembler application to communicate with
an MDEX Engine.

Navigation cartridge URL parameter reference
This section provides a reference to URL parameters in the navigation cartridges. The documented parameter
names are configured in the Assembler, and your application can include additional parameters if you choose
to extend the RequestParamMarshaller class or its cartridge-specific subclasses.

Related Links
Navigation Cartridge Configuration Reference on page 281

This appendix provides an overview of the configuration models for the included navigation cartridges.
You should review this information if you use these cartridges in your Assembler application to
communicate with an MDEX Engine.

About this section on page 281
The tables in this section describe the Endeca navigation cartridge query parameters. They include
the following information:

Core URL query parameters on page 282
The URL query parameters that define the search and navigation objects passed into the MDEX
Engine Navigation API are configured on the UrlNavigationStateBuilder object. By default,
the Assembler is configured to use the following parameters:

Cartridge-specific URL query parameters on page 289
For some cartridges, it is appropriate for aspects of their configuration to be overridden at query time.
Typically, request-based configuration is specified as URL query parameters. This section covers the
URL query parameters for the core cartridges included with Tools and Frameworks.

About this section
The tables in this section describe the Endeca navigation cartridge query parameters. They include the following
information:



URL parameter description format

The query parameter, which is case-sensitive.Parameter

The common name for the query parameter.Name

The valid value type for the query parameter, as well as the format for listing multiple
parameters, if applicable.

Type and format

The associated object in the Assembler API.Object

A description of the parameter's functionality.Description

Additional query parameters that are required to give this parameter context.Dependencies

Core URL query parameters
The URL query parameters that define the search and navigation objects passed into the MDEX Engine
Navigation API are configured on the UrlNavigationStateBuilder object. By default, the Assembler is
configured to use the following parameters:

FeatureURL Parameter

Navigation filterN

Record search termsNtt

Record search keyNtk

Record search match modeNtx

Range filterNf

Geocode filterNfg

Record filterNr

EQL filterNrs

Featured Records selectorRsel

RecordR

Aggregate recordA

Auto-phrasingNtp

Language IDNtl

Note: To execute an aggregate record query using the A parameter, you must specify an aggregated
record rollup key. Oracle recommends setting this key in your global application configuration; for example,
in the Discover Electronics reference application, it is configured in the Assembler context file.

These parameters are described in detail in the following sections. The examples provided are for the Discover
Electronics reference application.

N (Navigation)
The N parameter sets the navigation field for a query.

Oracle Commerce Guided Search Assembler Application Developer's Guide

Navigation Cartridge Configuration Reference | Navigation cartridge URL parameter reference282



NParameter

NavigationName

<dimension value id>+<dimension value id>+<dimension value id>...Type and format

FilterStateObject

A unique combination of dimension value IDs. A value of zero indicates the root
navigation object.

Description

(none)Dependencies

Examples

The following example is for an all-inclusive search, as it does not refine the results by any dimension value:
N=0

The following example returns products with an average review rating of 5:
N=100021

Note: The Discover Electronics reference application has Search Engine Optimization enabled by
default, which encodes the above URL value to N-256d. For more information about creating optimized
URLs, see Building optimized URLs on page 125and the Sitemap Generator Developer's Guide.

Ntt (Record Search Terms)
The Ntt parameter sets the actual terms of a record search for a navigation query.

NttParameter

Record Search TermsName

<string>+<string> | <string> | <string>+<string>+<string>...Type and format

FilterState.SearchFilterObject

Sets the terms of the record search for a navigation query. Each term is delimited by
a plus sign (+). Each set of terms is delimited by a pipe (|).

Description

Note: There is no explicit text search descriptor API object, so your application
logic must extract search terms from the query if you wish to display them in
Breadcrumbs or a similar search tracker.

N,Ntk; Ntt should have the same number of terms as Ntk has keys.Dependencies

Examples

The following example returns records with a match for the term "zoom":
N=0&Ntt=zoom

Oracle Commerce Guided Search Assembler Application Developer's Guide

283Navigation Cartridge Configuration Reference | Navigation cartridge URL parameter reference



The following example returns records with a match for the terms "cameras" and "silver" in the product.de¬
scription record property. Note that the combined terms count as a single "search term" for the purposes
of query syntax:
N=0&Ntk=product.description&Ntt=cameras+silver

Note: The Discover Electronics reference application is configured to use a default search key of "All"
in the Spring context definition file for the Assembler, so it will accept a Record Search terms URL
parameter (Ntt) without an accompanying Record Search key (Ntk) parameter.

Ntk (Record Search Key)
The Ntk parameter sets which dimension, property, or search interface is evaluated for a record search query.

NtkParameter

Record Search KeyName

<search key> | <search key>...Type and format

FilterState.SearchFilterObject

Sets the keys of the record search for the navigation query. Multiple keys are delimited
by a vertical pipe (|). A search key can be a search interface defined in the MDEX

Description

Engine, a valid dimension name, or the name of a property enabled for record search
in the data set.

N, Ntt; Ntk should have the same number of keys as Ntt has terms.Dependencies

Examples

The following example returns records with a match for the terms "cameras" and "silver" in the product.de¬
scription record property. Note that the combined terms count as a single "search term" for the purposes
of query syntax:
N=0&Ntk=product.description&Ntt=cameras+silver

The following example returns records with a match for the term "cameras" in the product.description
record property OR a match for the term "silver" in the camera.color record property. Note that these are
evaluated as separate terms, and that each search term is associated with the search key that appears in the
same location in the sequence:
N=0&Ntk=product.description|camera.color&Ntt=cameras|silver

Note: The Discover Electronics reference application is configured to use a default search key of "All"
in the Spring context definition file for the Assembler, so it will accept a Record Search terms URL
parameter (Ntt) without an accompanying Record Search key (Ntk) parameter.

Ntx (Record Search Match Mode)
The Ntx parameter sets the options for record search in the navigation query.

NtxParameter

Record Search ModeName

Oracle Commerce Guided Search Assembler Application Developer's Guide

Navigation Cartridge Configuration Reference | Navigation cartridge URL parameter reference284



<string> | <string>...Type and format

FilterState.SearchFilterObject

Sets the options for record search in the navigation query. Multiple values are separated
with a vertical pipe (|) character.

Description

N, Ntt, NtkDependencies

Examples

The following example returns records with a match for the terms "cameras" and "silver" in the product.de¬
scription record property. It overrides the default match mode with "MatchAllAny":
N=0&Ntk=product.description&Ntt=cameras+silver&Ntx=matchallany

Nf (Range Filter)
The Nf parameter sets the range filters for the navigation query.

NfParameter

Range FilterName

<search key>|[LT|LTEQ|GT|GTEQ]+<numeric value> ||[Another range
filter]...

Type and format

<search key>|BTWN+<numeric value>+<numeric value>...

FilterState.RangeFilterObject

Sets the range filters for the navigation query on properties or on dimensions. Multiple
range filters are separated with a double vertical pipe (||) delimiter.

Description

Accepts property and dimension values of Numeric type (Integer, Floating point,
DateTime). For values of type Floating point, you can specify values using both decimal
(0.00...68), and scientific notation (6.8e-10).

NDependencies

Examples

The following example returns products with a price below $25:
N=0?Nf=product.price|LT+25

The following example returns products with a price between $50 and $100 (inclusive):
N=0?Nf=product.price|BTWN+50+100

It is equivalent to specifying a "greater than or equal to" filter in combination with a "less than or equal to" filter:
N=0?Nf=product.price|GTEQ+50||product.price|LTEQ+100

Nfg (Geocode Filter)
The Nfg parameter sets a geocode filter for the navigation query, with radius in kilometers.

Oracle Commerce Guided Search Assembler Application Developer's Guide

285Navigation Cartridge Configuration Reference | Navigation cartridge URL parameter reference



NfgParameter

Geocode FilterName

<key>|<latitude>|<longitude>|<radius>Type and format

FilterState.GeoFilterObject

Filters records by evaluating the geocode location contained in the key property to
see if it falls within the circular area defined by a central point at latitude, longi¬
tude with the specified radius in kilometers.

Positive latitude values are interpreted as °N of the equator, and positive longi¬
tude values are interpreted as °E of the Prime Meridian.

Description

NDependencies

Examples

The following example checks store geocodes within 10 km of the Statue of Liberty in NYC, NY:
N=0&Nfg=store.geocode|40.6893|-74.0446|10

Nr (Record Filter)
The Nr parameter sets a record filter on a navigation query.

NrParameter

Record FilterName

<string>Type and format

FilterState.RangeFilterObject

This parameter can be used to specify a record filter expression that restricts the
results of a navigation query. Record filter syntax is described in the MDEX Engine
Development Guide.

Description

NDependencies

Examples

A general syntax example is given below:
N=0&Nr=AND(132831,propertyA:valueX,OR(propertyB:valueY,propertyC:valueZ))

The following example only includes records that are tagged as products, and it excludes any products that
are not in stock:
N=0&Nr=AND((common.record_type:product),NOT(product.inventory.count:0))

Nrs (Endeca Query Language Filter)
The Nrs parameter sets an EQL record filter on a navigation query. Using EQL enables you to specify multiple
filters (such as a geocode range filter, a dimension value filter, and a record search filter) as part of the same
query parameter.

NrsParameter

Oracle Commerce Guided Search Assembler Application Developer's Guide

Navigation Cartridge Configuration Reference | Navigation cartridge URL parameter reference286



Endeca Query Language FilterName

<string>Type and format

FilterState.RangeFilterObject

Sets the Endeca Query Language expression for the navigation query. The expression
acts as a filter to restrict the results of the query. Endeca Query Language syntax is
documented in the MDEX Engine Development Guide.

Description

Note: The Nrs parameter must be URL-encoded. For clarity’s sake, however,
the examples below are not URL-encoded.

NDependencies

Examples

Consider the sample Geocode Filter discussed earlier, which matches records at stores within 10 km of the
Statue of Liberty in NYC, NY:
N=0&Nfg=store.geocode|40.6893|-74.0446|10

Combining the above with a record filter that excludes out-of-stock records results in the following:
N=0&Nfg=store.geocode|40.6893|-74.0446|10&Nr=NOT(product.inventory.count:0))

The above functionality can be duplicated with a single EQL query parameter by using the following expression:
N=0&Nrs=collection()/record[product.inventory.count!=0 and endeca:dis¬
tance(store.geocode,endeca:geocode(40.6893,-74.0446))<10]

R (Record)
The R parameter specifies a single Endeca record to return from the MDEX Engine.

RParameter

RecordName

<record id>Type and format

RecordStateObject

Query to obtain a single record from the MDEX Engine.Description

(none)Dependencies

Examples

The following example specifies the IXUS 85 IS camera in the Discover Electronics data set; however, because
the application is configured with a global aggregate record rollup key, all records are treated as aggregated
records, so the R URL query parameter has no effect:
R=1469273

Rsel (Featured Records Selector)
The Rsel parameter restricts the search results list to a set of records specified by record ID.

Oracle Commerce Guided Search Assembler Application Developer's Guide

287Navigation Cartridge Configuration Reference | Navigation cartridge URL parameter reference



RselParameter

Featured Records SelectorName

<record ID>,<record ID>,<record ID>...Type and format

FilterStateObject

A comma-delineated list of record IDs. Search results are restricted to only those
records specified as values for this query parameter.

Description

RDependencies

Examples

The following example restricts the results list to the Z980 and Digital IXUS 85 IS cameras:
R=0?Rsel=1469273,1980692

A (Aggregated Record)
The A parameter specifies a single aggregated record to return from the MDEX Engine.

AParameter

Aggregated RecordName

<aggregated record id>Type and format

RecordStateObject

Query to obtain a single aggregated record from the MDEX Engine.Description

(none)Dependencies

Example

The following example specifies the IXUS 85 IS camera in the Discover Electronics data set; however, because
the application serves record detail pages using the /detail servlet with a record-specific path, it has no
effect:
A=1469273

Ntp (Auto-Phrasing)
The Ntp parameter sets whether the MDEX Engine applies computed alternative phrasings for the current
query.

NtpParameter

Auto-PhrasingName

[0|1]Type and format

FilterStateObject

Set to 1 to enable auto-phrasing, or 0 to disable it. If enabled, the MDEX Engine both
computes and applies alternate query phrasings. If disabled, the MDEX Engine does

Description

not apply alternate query phrasings, but may compute them if SearchSuggestion¬
MdexQuery.phraseSuggestionEnabled=true.

Oracle Commerce Guided Search Assembler Application Developer's Guide

Navigation Cartridge Configuration Reference | Navigation cartridge URL parameter reference288



N ,Ntt,NtkDependencies

Examples

The following example searches the product description field for "auto focus" as a phrase, rather than searching
the terms "auto" and "focus":
N=0?Ntk=product.description&Ntt=auto+focus&Ntp=1

Ntl (Language ID)
The Ntl parameter sets the language ID to pass in to the MDEX Engine.

NtlParameter

Language IDName

<ISO-639 language code>Type and format

FilterStateObject

Specifies a language to cause the MDEX Engine to perform language-specific
operations, such as invoking the correct stemming and phrasing dictionaries. For a
list of supported languages, see the MDEX Engine Development Guide.

Description

NDependencies

Examples

The following example specifies British English:
Ntl=en-GB

Cartridge-specific URL query parameters
For some cartridges, it is appropriate for aspects of their configuration to be overridden at query time. Typically,
request-based configuration is specified as URL query parameters. This section covers the URL query
parameters for the core cartridges included with Tools and Frameworks.

By default, the Assembler is configured to use the following parameters:

FeatureCartridgeURL
Parameter

Enables or disables the display of returned dimension refinements.Dimension Search ResultsDy

Specifies whether to display automatic phrasing; core parameter,
see Ntp (Auto-Phrasing) on page 288.

Search AdjustmentsNtp

Specifies whether to display automatic spelling correction / "Did
You Mean"

Search AdjustmentsNty

The Nrmc parameter takes multiple arguments allow you to
configure dimension refinement behavior in a cartridge.

Refinement Menu,
Navigation Container

Nrmc

Records per pageResults ListNrpp

Sort key and sort orderResults ListNs

Record offset (used for paging)Results ListNo

Oracle Commerce Guided Search Assembler Application Developer's Guide

289Navigation Cartridge Configuration Reference | Navigation cartridge URL parameter reference



FeatureCartridgeURL
Parameter

Relevance Ranking search termsResults ListNrt

Relevance Ranking search keyResults ListNrk

Relevance Ranking strategyResults ListNrm

Includes record matching information if query debugging is enabledResults Listwhymatch

Includes record ranking information if query debugging is enabledResults Listwhyrank

These parameters are described in detail in the following sections. For additional information about the URL
query parameters for the core cartridges, refer to the Assembler API Reference (Javadoc) for the relevant
RequestParamMarshaller subclass. These classes define the URL parameters that each cartridge accepts,
and their mappings to properties on the cartridge configuration model.

Dy (Dimension Search)
The Dy parameter controls the display of the Dimension Search Results cartridge.

DyParameter

Dimension SearchName

[0|1]Type and format

DimensionSearchResultsConfigObject

Set to 1 to enable cartridge display, or 0 to disable it.Description

N,NttDependencies

Examples

The following example returns records with a match for the term "Silver," with the Dimension Search Results
cartridge enabled:
N=0&Ntt=Silver&Dy=1

Nty (Auto-Correct / DYM)
The Nty parameter controls the display of auto-correct and "Did You Mean" results in the Search Adjustments
cartridge.

NtyParameter

Auto-Correct / "Did You Mean"Name

[0|1]Type and format

SearchAdjustmentsConfigObject

Set to 1 to enable display, or 0 to disable it.Description

N,NttDependencies

Oracle Commerce Guided Search Assembler Application Developer's Guide

Navigation Cartridge Configuration Reference | Navigation cartridge URL parameter reference290



Examples

The following example returns records with a match for the term "Sliver," with auto-correct enabled to correct
the query to "silver":
N=0&Ntt=Sliver&Nty=1

Nrmc (Refinement Menu Config)
The Nrmc parameter takes multiple arguments that configure dimension refinement behavior in the Refinement
Menu cartridge.

Because the Navigation Container cartridge returns a list of RefinementMenu objects, it takes the same Nrmc
URL parameter as the Refinement Menu cartridge.

NrmcParameter

Refinement Menu ConfigName

<Dimension ID>+show:[all|some|none] | <dimension
ID>+show:[all|some|none]...

Type and format

RefinementMenuConfigObject

The Nrmc parameter takes the following values:Description

• <Dimension ID> — Required. The ID of the dimension you wish to configure.
• +show:[all|some|none] — Required; the value is passed to the refine¬
mentsShown property on the RefinementMenuConfig object, and controls
how many dimension refinements to display.

Configuration for multiple dimensions is separated with a vertical pipe (|) character.

NDependencies

Examples

The following modifies the Refinement Menu to display all of the dimension refinements for the "Features"
dimension, and hides all refinements for the "Color" dimension:
N=0?Nrmc=100031+show:all||101908+show:none

Results List cartridge URL query parameters
The following URL query parameters determine the display of search results in the Results List cartridge. They
are typically set in the front-end application by the end user.
Nrpp (Records Per Page)
The Nrpp parameter limits the records returned from the MDEX Engine.

NrppParameter

Records Per PageName

<integer>Type and format

ResultsListConfigObject

Sets the maximum number of records to include in the ResultsList object.Description

Oracle Commerce Guided Search Assembler Application Developer's Guide

291Navigation Cartridge Configuration Reference | Navigation cartridge URL parameter reference



NDependencies

Examples

The following example shows ten records per page:
N=0&Nrpp=10

Ns (Sort Key and Sort Order)
The Ns parameter controls sorting options for the current query. It enables the end user to override default
sorting behavior on a per-query basis.

NsParameter

Sort Key and Sort OrderName

<sort key>[<geocode reference>]|[0|1] || <sort key>|[0|1]...Type and format

ResultsListConfigObject

The <sort key> specifies the property or dimension to sort by. Optionally, each key
can be followed by a suffix of "|1" to indicate descending sort order, or "|0" to indicate
ascending order (the default).

Description

Multiple entries are separated with a double vertical pipe (||), and each entry after
the first applies its sorting within the strata created by preceding entries.

To sort records by a geocode property, add the optional geocode argument to the
parameter (the <sort key> must be a geocode property). Records are sorted by
the distance from the geocode reference point to the geocode point indicated by the
<sort key> value.

NDependencies

Examples

The following settings sort query results by product rating in descending order (higher rated products first).
For each rating, it then sorts by price in ascending order (cheaper products first):
N=0&Ns=product.rating|0||product.price

The following example sorts records with a store.geocode property based on proximity to the Statue of
Liberty in NYC, NY:
N=0&Ns=store.geocode|40.6893,-74.0446

No (Record Offset)
The No parameter sets the record offset in the query results list.

NoParameter

Record OffsetName

<integer>Type and format

ResultsListConfigObject

Offsets the results set by the number of records specified. The offset is applied to a
zero-based index; If No=20, the list of records starts at record 21. If an offset is greater

Description

than the number of items in a navigation object’s record list, an empty record list is
returned.

Oracle Commerce Guided Search Assembler Application Developer's Guide

Navigation Cartridge Configuration Reference | Navigation cartridge URL parameter reference292



N,NrppDependencies

Examples

The following example displays the second page of a results set (since the results list is configured to display
36 records per page, and is offset by that amount to start at the 37th record):
N=0&Nrpp=36&No=36

Nrt (Relevance Ranking Search Terms)
The Nrt parameter optionally sets search terms for a Relevance Ranking enabled record search query.

You can apply Relevance Ranking to a subset of your MDEX Engine query by specifying the desired terms in
the Nrt parameter.

Note: If you specify a Relevance Ranking strategy on the cartridge without specifying Relevance Ranking
search terms and a search key (Nrt and Nrk), the MDEX Engine evaluates the query using the Record
Search Terms and Record Search Key (Ntt and Ntk) parameters. For additional information about
relevance ranking strategies, see the MDEX Engine Development Guide.

NrtParameter

Relevance Ranking Search TermsName

<string>+<string>+<string>...Type and format

ResultsListConfigObject

Sets the terms of the record search for a navigation query with relevance ranking.
Each term is delimited by a plus sign (+).

Description

Note: Unlike the Ntt parameter, Nrt does not support using multiple sets of
terms.

N, Nrk. Additionally, you must set the relRankStrategy on the cartridge.Dependencies

Examples

Because the Discover Electronics application uses Spring as a configuration mechanism, the cartridge-wide
default values for Relevance Ranking in the Results List cartridge are specified in the
reference\discover-electronics-authoring\WEB-INF\assembler-context.xml file:
<bean id="CartridgeHandler_ResultsList" class="com.endeca.infront.cartridge.Re¬
sultsListHandler"
          parent="NavigationCartridgeHandler" scope="prototype">
    <property name="contentItemInitializer">
        <bean class="com.endeca.infront.cartridge.ConfigInitializer" scope="re¬
quest">
            <property name="defaults">
                <bean class="com.endeca.infront.cartridge.ResultsListConfig" 
scope="singleton">

<!-- additional configuration omitted from this example -->
<property name="relRankKey" value="All" />

                    <property name="relRankMatchMode" value="ALLPARTIAL" />
                    <property name="relRankStrategy" value="nterms,maxfield,ex¬
act,static(product.analytics.conversion_rate,descending)" />

<!-- additional configuration omitted from this example -->
                </bean>

Oracle Commerce Guided Search Assembler Application Developer's Guide

293Navigation Cartridge Configuration Reference | Navigation cartridge URL parameter reference



            </property>
<!-- additional configuration omitted from this example -->

        </bean>
    </property>

<!-- additional configuration omitted from this example -->
</bean>

The following example returns records with a match for the terms "cameras" and "silver" in the product.de¬
scription record property, and applies the Relevance Ranking strategy specified at the cartridge level:
N=0&Ntk=product.description&Ntt=cameras+silver

Nrk (Relevance Ranking Search Key)
The Nrk parameter sets which dimension, property, or search interface is evaluated for a Relevance Ranking
enabled record search query.

Note: If you specify a Relevance Ranking strategy on the cartridge without specifying Relevance Ranking
search terms and a search key (Nrt and Nrk), the MDEX Engine evaluates the query using the Record
Search Terms and Record Search Key (Ntt and Ntk) parameters. For additional information about
relevance ranking strategies, see the MDEX Engine Development Guide.

NrkParameter

Relevance Ranking Search KeyName

<search key>Type and format

ResultsListConfigObject

Sets the search key for the record search query. This must be a navigable dimension,
property name, or search interface defined in the MDEX Engine.

Description

N, Nrt. Additionally, you must set the relRankStrategy on the cartridge.Dependencies

Examples

The following example returns records with a match for the terms "cameras" and "silver" in the product.de¬
scription record property, and applies the Relevance Ranking strategy specified at the cartridge level:
N=0&Ntk=product.description&Ntt=cameras+silver

Nrm (Relevance Ranking Match Mode)
The Nrm parameter sets the relevance ranking strategy for ranking the results of the record search.

You can override the default Relevance Ranking strategy on a per-query basis by using the Nrm parameter.
For additional information about match modes, see the MDEX Engine Basic Development Guide.

NrmParameter

Relevance Ranking StrategyName

<string>Type and format

ResultsListConfigObject

Sets the options for record search in a relevance ranking enabled query.Description

Note: Unlike the Ntx parameter, Nrm does not support using multiple match
modes.

Oracle Commerce Guided Search Assembler Application Developer's Guide

Navigation Cartridge Configuration Reference | Navigation cartridge URL parameter reference294



N, both Nrt and Nrk, OR both Ntt and Ntk. Additionally, you must set the rel¬
RankStrategy on the cartridge.

Dependencies

Examples

The following example returns records with a match for the terms "cameras" and "silver" in the product.de¬
scription record property, and applies the Relevance Ranking strategy specified at the cartridge level. It
overrides the default "MatchAllPartial" match mode with "MatchAllAny":
N=0&Ntk=product.description&Ntt=cameras+silver&Nrm=matchallany

whymatch (Record Match Info)
The whymatch parameter controls the logging of record match information about a per-query basis.

This property enables you to include record matching information about a per-query basis, rather than at the
cartridge handler level.

whymatchParameter

Record match debugging informationName

[0|1]Type and format

ResultsListConfigObject

Set to 1 to include record matching information, or 0 to disable it.Description

N, as well as either Ntt and Ntk or Nrt and Nrk.

Additionally, you must have query debugging enabled in your application.

Dependencies

Examples

The following example returns record matching information for a search against "silver cameras.":
 N=0&Ntk=product.description&Ntt=silver+cameras&whymatch=1

A portion of the response (serialized to JSON) is shown below. The DGraph.WhyDidItMatch key contains
the relevant debugging information:
"DGraph.WhyDidItMatch": [
    "product.long_desc: <b>The high-quality 10.0 Megapixel Digital IXUS 870 IS 
- finished in gold or silver - 
     commands attention. 
     ... 
     Advanced compression technologies reduce file size, to free up valuable extra
 memory. (Stemming)"
],

whyrank (Record Rank Info)
The whyrank parameter controls the logging of relevance ranking information about a per-query basis.

This property enables you to include record relevance ranking information about a per-query basis, rather than
at the cartridge handler level.

whyrankParameter

Record ranking debugging informationName

[0|1]Type and format

ResultsListConfigObject

Oracle Commerce Guided Search Assembler Application Developer's Guide

295Navigation Cartridge Configuration Reference | Navigation cartridge URL parameter reference



Set to 1 to include record ranking information, or 0 to disable it.Description

N, as well as either Ntt and Ntk or Nrt and Nrk.

Additionally, you must have query debugging enabled in your application.

Dependencies

Examples

The following example returns record ranking information for a search against "silver cameras.":
 N=0&Ntk=product.description&Ntt=silver+cameras&whyrank=1

A portion of the response (serialized to JSON) is shown below. The DGraph.WhyRank key contains the
relevant debugging information:
"DGraph.WhyRank": [
    "stratify": [
      evaluationTime: "0.00048828125"
      stratumRank: "3"
      stratumDesc: "no match"
   ]
],

About the navigation cartridge configuration models
This section describes the configuration models for the navigation cartridges.

You can use these models as a reference when developing your own cartridges and cartridge handlers.
Generally, Oracle recommends adhering to a similar approach and dividing configuration inputs to a cartridge
across the following categories (ordered from lowest to highest priority):

• Application-wide default configuration — For the navigation cartridges, these values are configured in
the Spring context file.

• Template-specific default configuration — These values are included in the cartridge template XML.
• Instance configuration — These values are configured by the business user in Experience Manager or

Rule Manager.
• End user inputs — For the navigation cartridges, these values are passed in as URL parameters.

Overview of the navigation cartridge configuration models
The behavior of the navigation cartridges depends on multiple sources of configuration. The data from these
source is combined into a configuration model within the initialize() method of each associated cartridge
handler in the Assembler.

Navigation cartridge configuration falls into the following categories, in ascending order of priority:
• Default cartridge configuration, which is specified in the Spring context file for the Assembler application
• Cartridge instance configuration, which is specified by the content administrator in Experience Manager

or Rule Manager
• Request-based configuration, which is specified by the end user in the client application

Additionally, while it is not represented in the cartridge configuration model, configuration in the MDEX Engine
impacts the behavior of the navigation cartridges.

Oracle Commerce Guided Search Assembler Application Developer's Guide

Navigation Cartridge Configuration Reference | About the navigation cartridge configuration models296



Request-based configuration overrides the cartridge instance configuration, which overrides the cartridge-level
defaults, which override default feature behavior configured in the MDEX Engine.

The core cartridges typically consist of a strongly typed configuration model, a response model, and a cartridge
handler that processes the configuration model into the response model. By convention, they are named as
follows:

DescriptionClass name

The configuration model for the cartridge. For the core cartridges, the
properties of this class represent all the configuration parameters that the

<CartridgeName>Config

cartridge handler needs to do its processing. It does not include
configuration that can only be specified in the MDEX Engine or
pass-through properties that are used by the reference application
renderers without any modification by the cartridge handler.

The handler that processes a cartridge. The core cartridge handlers are
responsible for layering the default configuration, instance configuration,
and request-based configuration during processing.

<CartridgeName>Handler

The response model produced by the cartridge handler. Cartridge
response models may include objects that are reused among cartridges.

<CartridgeName>

For example, the ResultsList and RecordSpotlight both contain
Record objects.

For details about the implementations of these classes for specific cartridges, refer to the Assembler API
Reference (Javadoc).

Default cartridge configuration
You can specify default configuration settings for the navigation cartridges in the reference implementation by
adding values to the cartridge handler configuration in the Spring context file.

Cartridge handler configuration (including default configuration values) is specified as part of the Spring context
file for the Assembler. In the Discover Electronics application, this is defined in
WEB-INF/assembler-context.xml.

You specify the cartridge handler for a specific cartridge by defining a bean whose ID follows the format Car¬
tridgeHandler_<CartridgeType>, where the <CartridgeType> is the id of the corresponding cartridge
template. For example, the cartridge handler for the Breadcrumbs cartridge is defined in the CartridgeHan¬
dler_Breadcrumbs bean. You can map more than one cartridge to the same cartridge handler.

Typically, you specify the default configuration for a cartridge by defining a contentItemInitializer
property within the cartridge handler. The value of this property is a bean whose class implements the Con¬
tentItemInitializer interface. The core cartridges use the ConfigInitializer class, which provides
a default implementation for merging the default, instance, and request-based configuration for a cartridge.
Within the contentItemInitializer bean, the defaults property (if defined) must be a bean whose
class is a ContentItem representing the cartridge configuration model to use as a default.

For information about the properties available in the configuration model for the core cartridges, refer to the
Assembler API Reference (Javadoc) for the relevant configuration model class.

The following shows an example of default configuration for a Record Spotlight cartridge. The defaults
property of the ConfigInitializer bean is an instance of RecordSpotlightConfig that has been
initialized with a set of default values for the fieldNames property.
<bean id="CartridgeHandler_RecordSpotlight" 
    class="com.endeca.infront.cartridge.RecordSpotlightHandler"

Oracle Commerce Guided Search Assembler Application Developer's Guide

297Navigation Cartridge Configuration Reference | About the navigation cartridge configuration models



    parent="NavigationCartridgeHandler" 
    scope="prototype">
    <property name="contentItemInitializer">
        <bean class="com.endeca.infront.cartridge.ConfigInitializer" scope="re¬
quest">
            <property name="defaults">
                <bean class="com.endeca.infront.cartridge.RecordSpotlightConfig"
 scope="singleton">
                    <property name="fieldNames">
                        <list>
                            <value>product.name</value>
                            <value>product.brand.name</value>
                            <value>product.price</value>
                            <value>product.min_price</value>
                            <value>product.max_price</value>
                            <value>product.img_url_thumbnail</value>
                            <value>product.review.avg_rating</value>
                        </list>
                    </property>
                </bean>
            </property>
        </bean>
    </property>
</bean>

Feature configuration in the MDEX Engine
There are two subcategories of MDEX Engine–level feature configuration: dynamic configuration that can be
updated in a running MDEX Engine without re-indexing, and static configuration that must be specified at index
time.

Dynamic configuration includes search interfaces, thesaurus, and automatic phrasing. Static configuration
includes features such as such as stop words or precedence rules. Updating static configuration requires that
you re-run the data ingest process before the changes can take effect. For detailed information about feature
configuration in the MDEX Engine, refer to the MDEX Engine Basic Development Guide and the MDEX Engine
Development Guide.

In addition, some features depend on certain Dgraph and Dgidx flags to enable or configure their functionality.
For information about Dgraph and Dgidx flags, refer to the Oracle Commerce Administrator's Guide.

Cartridge instance configuration
The content administrator can configure each instance of a cartridge using Experience Manager in Endeca
Workbench. The cartridge instance configuration is passed in as the argument to the initialize() method
of the cartridge handler.

You define which aspects of a cartridge are configurable in Workbench via the cartridge template. Typically
this is a subset of the properties in the configuration model. The sample templates provided as part of the
Discover Electronics application are intended to cover the majority of use cases.

Cartridge templates for the reference application are included in the
reference\discover-data\cartridge_templates directory, or <app
dir>\config\import\templates directory for a deployed application.

You can customize the templates for the core cartridges by adding properties to a template in addition to those
required by the configuration model. These additional properties can either be processed by a custom cartridge
handler implementation or passed through directly to the response model. Some of the templates in the Discover
Electronics application define pass-through properties; these are described in the sections on the specific
cartridges.

Oracle Commerce Guided Search Assembler Application Developer's Guide

Navigation Cartridge Configuration Reference | About the navigation cartridge configuration models298



For details about configuring properties and editors in a cartridge template, refer to the "Template Property
and Editor Reference" appendix in this guide.

Note: If you have purchased Oracle Guided Search only and do not have Oracle Experience Manager,
most of the core cartridges are not available for configuration in Workbench. Of the core cartridges, only
the Record Spotlight cartridge is available in Rule Manager. Custom cartridges that use primitive properties
only (typically as pass-through properties) can also be configured in Rule Manager. The remaining
cartridges can be configured with application-wide default values in the Spring context file for the
Assembler.

Related Links
Template Property and Editor Reference on page 223

This section describes how to define basic content properties and associated editing interfaces in
Experience Manager templates.

Request-based configuration
For some cartridges, it is appropriate for aspects of their configuration to be overridden at query time. Typically,
request-based configuration is specified as URL query parameters.

To enable per-request configuration based on URL parameters, the contentItemInitializer bean of the
cartridge handler can specify a requestParamMarshaller bean whose class is RequestParamMarshaller
or a subclass. RequestParamMarshaller is a helper class that parses request parameters into properties
of the cartridge configuration model.

For information about the URL query parameters that apply to the core cartridges, refer to the Assembler API
Reference (Javadoc) for the relevant RequestParamMarshaller subclass. These classes define the URL
parameters that the cartridge accepts and their mappings to properties on the configuration model.

Search cartridges
The Discover Electronics application includes reference implementations of several commonly-used search
features. The configuration models for these features are described in the following section.

Search box
The Search Box cartridge enables the site visitor to enter search terms and view record results. If dimension
search is enabled, dimension search results may also be displayed. A content administrator can configure
Search Box behavior such as whether to apply search adjustments or display auto-suggest search results.

The response model for this cartridge is SearchBox.

The Search Box cartridge does not make use of a configuration model or a cartridge handler; properties
specified in the cartridge template and in the end user's search request are passed through to the renderer.

The renderer for this cartridge makes use of a JavaScript module, endeca-auto-suggest.js, to display
the auto-suggest panel for search suggestions.

MDEX Engine configuration for the Search Box cartridge
Because the Search Box enables keyword search for records and dimension values, most search configuration
affects the behavior of this cartridge. This section focuses on record search configuration.

Oracle Commerce Guided Search Assembler Application Developer's Guide

299Navigation Cartridge Configuration Reference | About the navigation cartridge configuration models



Dynamic configuration

The main aspects of search-related configuration that can be updated without re-indexing are the search
interfaces for an application. Search interfaces specify a collection of properties and dimensions against which
text searches are performed, and may also specify a default relevance ranking strategy. For information about
creating search interfaces, refer to the MDEX Engine Basic Development Guide.

The properties and dimensions within a search interface must be enabled for record search as part of the data
ingest process. For information about enabling properties and dimensions for search, refer to the Developer
Studio Help.

Search results are also affected by thesaurus configuration that a content administrator can specify in
Workbench.

Static configuration

Aspects of search behavior that must be specified at index time include stop words, stemming, and search
characters.

• stop words are commonly occurring words (like "the") that are ignored for keyword search.
• stemming broadens search results to include root words and variants of root words.
• search characters configuration enables you to designate certain non-alphanumeric characters as significant

for search.

For information about configuring these features, refer to the MDEX Engine Basic Development Guide.

Template configuration for the Search Box cartridge
The Search Box cartridge does not include a configuration model or a cartridge handler; instead, template
configuration is passed through to the cartridge renderer.

The Search Box cartridge template includes properties that impact auto-suggest behavior. The auto-suggest
panel itself is implemented as a configurable dynamic slot, and is configured separately.

The Search Box cartridge template includes the following configurable pass-through properties:

DescriptionProperty name

This property specifies the content collection that should be used to
populate the dynamic slot for the auto-suggest panel.

contentCollection

This property specifies how many characters a user must type before the
auto-suggest panel displays.

minAutoSuggestInputLength

This property sets the number of content items to return when populating
the auto-suggest panel dynamic slot. It is limited by the evaluation limit

ruleLimit

of the specified contentCollection. The actual number of
auto-suggest content items displayed is also limited by the rendering
code, which only supports rendering a single auto-suggest panel by
default.

Note: If you do not want to provide the option of enabling auto-suggest search results in Experience
Manager, remove the properties and editors from the template, and remove the JavaScript module from
the component.

Related Links
Auto-suggest search results on page 301

Auto-suggest search results display as the site visitor types in the search box, rather than displaying
after the visitor has completed the search. In the Discover Electronics reference application, the

Oracle Commerce Guided Search Assembler Application Developer's Guide

Navigation Cartridge Configuration Reference | About the navigation cartridge configuration models300



auto-suggest panel is implemented as a content item that populates a dynamic slot in the Search
Box cartridge.

Auto-suggest search results
Auto-suggest search results display as the site visitor types in the search box, rather than displaying after the
visitor has completed the search. In the Discover Electronics reference application, the auto-suggest panel is
implemented as a content item that populates a dynamic slot in the Search Box cartridge.

In addition to configuring the auto-suggest feature on the Search Box cartridge, a content administrator must
also configure the display of different types of search suggestions. This section describes the cartridges that
can be configured within the auto-suggest panel.

Currently, the only auto-suggest cartridge in the Discover Electronics reference application is one that displays
dimension search results. It returns the same response model as the Dimension Search cartridge. Other
possible uses for auto-suggest cartridges include those for Popular Searches, Featured Categories, and
Product Search.

MDEX Engine configuration that impacts search results also applies to auto-suggest results. For example,
enabling or disabling wildcard search on dimension search will affect the dimensions returned for a dimension
search auto-suggest panel.

The JavaScript component of the Search Box in the Discover Electronics application acts as the renderer for
the auto-suggest panel.

Template configuration for the auto-suggest panel
The cartridge template for the auto-suggest panel itself includes a dynamic content slot, with no other
configuration.

Configuration model for the Auto-Suggest Dimension Search Results cartridge
The Auto-Suggest Dimension Search Results cartridge uses the same configuration model as the Dimension
Search Results cartridge.

The configuration model for this cartridge is DimensionSearchResultsConfig. For an overview of this
model, see "Configuration model for the Dimension Search Results cartridge" or refer to the Assembler API
documentation (Javadoc).

Related Links
Configuration model for the Dimension Search Results cartridge on page 302

The Dimension Search Results cartridge configuration model controls the number, ranking, and
display of returned results.

Cartridge handler configuration for the Auto-Suggest Search Results cartridge
Because the Auto-Suggest Dimension Search Results cartridge uses the same configuration model as the
Dimension Search Results cartridge, it also shares the same cartridge handler.

The cartridge handler configuration maps the Dimension Search Auto-Suggest cartridge to the Dimension¬
SearchResultsHandler. There are no application-wide default values set for this cartridge.

Related Links
Search box on page 299

The Search Box cartridge enables the site visitor to enter search terms and view record results. If
dimension search is enabled, dimension search results may also be displayed. A content administrator
can configure Search Box behavior such as whether to apply search adjustments or display
auto-suggest search results.

Oracle Commerce Guided Search Assembler Application Developer's Guide

301Navigation Cartridge Configuration Reference | About the navigation cartridge configuration models



Template configuration for the Auto-Suggest Dimension Search Results cartridge
The Auto-Suggest Dimension Search Results cartridge populates the dynamic slot in the Auto-Suggest panel.
The cartridge template is similar to the Dimension Search Results template.

The Auto-Suggest Dimension Search Results cartridge template allows a content administrator to configure
the following properties on the configuration model:

• maxResults

• dimensionList

• maxResultsPerDimension

• showCountsEnabled

In addition, the cartridge template includes the following pass-through properties:

DescriptionProperty name

Optional. A header that displays above the dimension search results.title

If set to true, a thumbnail image displays next to each dimension value.
The URL of the image must be the value of a dimension value property
named img_thumbnail_url.

displayImage

Note: If there is no such property on dimension values in the data
set, remove this option and its associated editor from the template
to disable this feature.

Dimension search results
The Dimension Search Results cartridge displays refinement links based on the names of dimension values
that match the search keywords entered by the site visitor.

The dimension search results display in a panel after the site visitor performs the search. These results provide
suggestions for additional navigation refinements based on the search terms.

The response model for this cartridge is DimensionSearchResults. It contains a list of DimensionSearch¬
Group objects that in turn contain dimensionSearchValues that provide refinement links.

Configuration model for the Dimension Search Results cartridge
The Dimension Search Results cartridge configuration model controls the number, ranking, and display of
returned results.

The configuration model for this cartridge is DimensionSearchResultsConfig. It includes the following
properties:

DescriptionProperty name

Enables or disables the display of returned dimension refinements. By
default, this property is false. It is enabled via URL request by setting
the Dy URL parameter to 1.

enabled

Specifies the maximum number of dimension value results across all
dimensions to display.

maxResults

Specifies the maximum number of dimension values to display per
dimension.

maxResultsPerDimension

Oracle Commerce Guided Search Assembler Application Developer's Guide

Navigation Cartridge Configuration Reference | About the navigation cartridge configuration models302



DescriptionProperty name

Specifies the dimensions on which to perform dimension search. The
results display based on the order in which the dimensions are specified,
up to the maximum number of suggestions.

dimensionList

Specifies whether to display refinement counts in dimension search
results.

showCountsEnabled

Optional. Specifies a relevance ranking string to use for dimension search,
such as "first,static(nbins,desc)". If you do not set this property, dimension

relRank

value relevance ranking is set to the default (alpha, numeric, or manual)
defined in Developer Studio.

MDEX Engine configuration for dimension search results
Different aspects of dimension search can be configured on a global or per-dimension basis.

Dynamic configuration

You can specify global dimension search behavior in the Dimension Search Configuration editor in Developer
Studio. Oracle recommends enabling wildcard search for dimensions, especially if you are using the
Auto-Suggest Dimension Search cartridge or the Dimension Value Boost-Bury editor. Wildcard search enables
partial matches to be returned for searches in addition to full word matches (for example, a search for "pink"
would also return "gray/pink") which is useful for displaying suggestions while the user is typing search terms.

Additional options include whether to return only the highest ancestor dimension value, and whether to return
inert dimension values in dimension search results. For more information about global dimension configuration,
refer to the Developer Studio Help.

Static configuration

You can configure dimension-specific search behavior in the Dimension editor in Developer Studio. This
includes whether to search across the entire dimension hierarchy rather than only individual dimension values
and also enables you to specify dimension value synonyms to be used for search. For more information about
per-dimension configuration, refer to the Developer Studio Help.

Cartridge handler configuration for Dimension Search Results
The Dimension Search Results cartridge handler extends the NavigationCartridgeHandler.

The cartridge handler uses the DimensionSearchResultsConfigInitializer to merge the layered
configuration. The included requestParamMarshaller bean enables URL request-based configuration for
the cartridge, which is required for dynamically enabling the feature.
Template configuration for the Dimension Search Results cartridge
The Dimension Search Results cartridge template allows a content administrator to configure how many results
should be displayed to the end user, and how they should display. The cartridge template also includes two
pass-through properties that are passed directly to the cartridge renderer.

The Dimension Search Results cartridge template allows a content administrator to configure the following
properties on the configuration model:

• maxResults

• dimensionList

• maxResultsPerDimension

• showCountsEnabled

In addition, the cartridge template includes the following pass-through properties:

Oracle Commerce Guided Search Assembler Application Developer's Guide

303Navigation Cartridge Configuration Reference | About the navigation cartridge configuration models



DescriptionProperty name

Optional. A header that displays above the dimension search results.title

If set to true, a thumbnail image displays next to each dimension value.
The URL of the image must be the value of a dimension value property
named img_thumbnail_url.

displayImage

Note: If there is no such property on dimension values in the data
set, remove this option and its associated editor from the template
to disable this feature.

URL request parameters for the Dimension Search Results cartridge
The display of the Dimension Search Results cartridge on a page is controlled by setting the value of the en¬
abled property on the cartridge configuration model at runtime via the Dy URL parameter.

The cartridge renderer in the reference implementation sets the Dy parameter to 1 in all cases. While this is
equivalent to setting the property to true in the cartridge handler configuration, or as a non-editable property
in the cartridge template, the intent is to demonstrate where the logic belongs in the application.

DescriptionURL
Parameter

Property name

Enables or disables the display of returned dimension refinements. Setting
Dy=1 sets the property to true.

Dyenabled

Search adjustments
Search adjustments include automatic spelling correction, automatic phrasing, and Did You Mean functionality.

The response model for this cartridge is SearchAdjustments.

The behavior of the spelling correction and Did You Mean features are configured at the MDEX Engine level.
The Search Adjustments cartridge enables content administrators to specify whether or not search adjustments
messaging displays on a page; it does not have any configuration options in Experience Manager.

Configuration model for the Search Adjustments cartridge
The Search Adjustments cartridge configuration model enables you to enable or disable automatic phrasing
and automatic spelling correction. If query debugging features are enabled in your application, you can also
enable or disable debugging information about Word Interpretation.

The configuration model for this cartridge is SearchAdjustemntsConfig. It includes the following properties:

DescriptionProperty name

Specifies whether to enable automatic phrasing. Defaults to true. Set via URL
request by setting the Ntp URL parameter to 1.

phraseSuggestionEn¬
abled

Specifies whether to enable automatic spelling correction. Defaults to false. Set
via URL request by setting the Nty URL parameter to 1.

spellSuggestionEn¬
abled

If query debugging features are enabled, this property enables debugging information
about word or phrase subsitutions as a map that can be accessed via SearchAd¬

showWordInterp

justments.getInterpretedTerms(). For additional information, see "About
query debugging results in the reference application."

Oracle Commerce Guided Search Assembler Application Developer's Guide

Navigation Cartridge Configuration Reference | About the navigation cartridge configuration models304



MDEX Engine configuration for the Search Adjustments cartridge
Search adjustments features are configured at indexing and at Dgraph startup.

Dynamic configuration

You can specify a list of phrases to be automatically applied to text search queries in Developer Studio. For
more information about configuring automatic phrasing, refer to the MDEX Engine Development Guide.

Static configuration

You can configure the constraints on the spelling dictionaries for record search and dimension search in the
Spelling editor in Developer Studio. These settings determine the size of the spelling dictionary that is generated
at indexing time. Larger spelling dictionaries lead to slower performance of spelling correction at query time;
setting more restrictive constraints on the contents of the spelling dictionary can lead to improved query
performance. For more information about tuning the size of the spelling dictionary, refer to the Performance
Tuning Guide.

Dgidx flags

You specify the spelling mode as a flag to Dgidx. Generally, applications that only need to correct normal
English words can enable just the default Aspell module. Applications that need to correct international words,
or other non-English/non-word terms (such as part numbers) should enable the Espell module. For more
information about spelling modes and the associated Dgidx flags, refer to the MDEX Engine Development
Guide.

The Deployment Template application configuration for the Discover Electronics reference application has
spelling correction and Did You Mean enabled as in the following example:
<!--
  ########################################################################
  # Dgidx
  #
-->
<dgidx id="Dgidx" host-id="ITLHost">
  <properties>
    <property name="numLogBackups" value="10" />
    <property name="numIndexBackups" value="3" />
  </properties>
  <args>
    <arg>-v</arg>
    <arg>--compoundDimSearch</arg>
  </args>
  <log-dir>./logs/dgidxs/Dgidx</log-dir>
  <input-dir>./data/forge_output</input-dir>
  <output-dir>./data/dgidx_output</output-dir>
  <temp-dir>./data/temp</temp-dir>
<run-aspell>true</run-aspell>

</dgidx>

Dgraph flags

You enable spelling correction and Did You Mean through Dgraph flags. Additional Dgraph flags provide
advanced tuning options for the spelling adjustment features that affect performance and behavioral
characteristics, such as the threshold for the number of hits at or above which spelling corrections or Did You
Mean suggestions are not generated. For more information on Dgraph flags for search adjustment tuning,
refer to the MDEX Engine Development Guide.

Oracle Commerce Guided Search Assembler Application Developer's Guide

305Navigation Cartridge Configuration Reference | About the navigation cartridge configuration models



Note: Auto-correct should be relatively conservative. You only want the engine to complete the correction
when there is a high degree of confidence. For more aggressive suggestions, it is best to use Did You
Mean.

The Deployment Template application configuration for the Discover Electronics reference application has
spelling correction and Did You Mean enabled as in the following example:
<!--
  ########################################################################
  # Global Dgraph Settings - inherited by all dgraph components.
  #
-->
<dgraph-defaults>
  <properties>

<!-- additional elements removed from this example -->
  </properties>
  <directories>

<!-- additional elements removed from this example -->
  </directories>
  <args>
    <arg>--threads</arg>
    <arg>2</arg>
    <arg>--whymatch</arg>

<arg>--spl</arg>
    <arg>--dym</arg>
    <arg>--dym_hthresh</arg>
    <arg>5</arg>
    <arg>--dym_nsug</arg>
    <arg>3</arg>
    <arg>--stat-abins</arg>
  </args>
  <startup-timeout>120</startup-timeout>
</dgraph-defaults>

Cartridge handler configuration for Search Adjustments
The Search Adjustments cartridge handler extends the NavigationCartridgeHandler. The application-wide
default configuration in the Assembler context file allows you to enable or disable the word interpretation
debugging feature.

The cartridge handler uses a contentItemInitializer to merge the layered configuration. The included
requestParamMarshaller bean enables URL request-based configuration for the cartridge, which is
required for dynamically disabling or enabling automatic phrase suggestions and spelling correction.

Related Links
About implementing automatic phrasing on page 307

You can configure the MDEX Engine to consider certain combinations of words in a text search as a
phrase search and specify whether to apply phrasing automatically to a site visitor's text search
queries.

Template configuration for the Search Adjustments cartridge
The cartridge template for the Search Adjustments cartridge does not include any configurable properties. A
content administrator can add the cartridge to a page in order to enable the display of Search Adjustments,
but cannot otherwise configure cartridge behavior.

URL request parameters for the Search Adjustments cartridge
Automatic phrasing and spelling correction are controlled by setting the value of their respective properties on
the cartridge configuration model at runtime via the Ntp and Nty URL parameters.

Oracle Commerce Guided Search Assembler Application Developer's Guide

Navigation Cartridge Configuration Reference | About the navigation cartridge configuration models306



The cartridge renderer in the reference implementation sets both parameters to 1 in all cases. While this is
equivalent to setting the properties in the cartridge handler configuration, or in the cartridge template, the intent
is to demonstrate where the logic belongs in the application.

DescriptionURL
Parameter

Property name

Specifies whether to enable automatic phrasing.NtpphraseSuggestio¬
nEnabled

Specifies whether to enable automatic spelling correction.NtyspellSuggestio¬
nEnabled

About implementing automatic phrasing
You can configure the MDEX Engine to consider certain combinations of words in a text search as a phrase
search and specify whether to apply phrasing automatically to a site visitor's text search queries.

The high level steps for enabling automatic phrasing are:
• Enabling the MDEX Engine to compute phrases
• Configuring the default behavior of the Assembler application as to whether or not to automatically apply

computed phrases
• Adding application logic to enable Did You Mean suggestions or override the default automatic phrasing

behavior in certain situations

You enable the MDEX Engine to compute phrases that can be applied to a site visitor's text search by creating
a phrase dictionary. For information about creating a phrase dictionary, refer to the section on Automatic
Phrasing in the MDEX Engine Developer's Guide.

You can configure the default behavior of the Assembler application as to whether to automatically rewrite a
text search as a phrase search or keep it as a search for individual keywords using the following property on
the Filter State object:

DescriptionProperty

If set to true, instructs the MDEX Engine to compute phrases that can
be applied to a text search and automatically rewrite the query using the
phrased version. Automatic phrasing is enabled by default.

autoPhraseEnabled

The autoPhraseEnabled setting on the default Filter State can be overridden at query time using the URL
parameter autophrase. If the value of autophrase is 1, then computed phrases are automatically applied
to the query. If the value is 0 then phrases may still be computed, but are not automatically applied to the
query.

The Filter State configuration in the Assembler context file for the Discover Electronics reference application
is shown below:
<bean id="navigationStateBuilder" scope="request"
    class="com.endeca.infront.navigation.url.UrlNavigationStateBuilder">

<!-- additional elements removed from this example -->
<property name="defaultFilterState">

        <bean scope="singleton" class="com.endeca.infront.navigation.model.Filter¬
State">
            <property name="rollupKey" value="product.code" />

<property name="autoPhraseEnabled" value="true" />
            <!-- <property name="securityFilter" value="" /> -->
            <!-- <property name="languageId" value="en" /> -->
        </bean>
    </property>

Oracle Commerce Guided Search Assembler Application Developer's Guide

307Navigation Cartridge Configuration Reference | About the navigation cartridge configuration models



<!-- additional elements removed from this example -->
</bean>

For Oracle Commerce Experience Manager, if your application contains multiple sites, Oracle recommends
using a filterState.xml file instead of the Filter State configuration in the Assembler context file. For
example, a filterState.xml file in /pages/DiscoverElectronics/ might contain the following autophrase
property:
<Item class="com.endeca.infront.navigation.model.FilterState" xmlns="http://ende¬
ca.com/schema/xavia/2010">
 <Property name="autoPhraseEnabled">
     <Boolean>true</Boolean >
 </Property>
</Item>

Interaction with the Did You Mean feature

Whether automatic phrasing is applied or not, you can specify whether to return a "Did You Mean" link for the
alternate version using the Nty URL parameter. For example, if phrasing was automatically applied, the Did
You Mean suggestion would provide a link to the unphrased version of the query, and vice versa. If the value
of Nty is 1, then the Assembler returns suggestions for the alternate form of the query. If the value is 0, no
suggestions are returned.

Note: The Nty parameter controls Did You Mean suggestions for regular text search as well as for
automatic phrasing.

Phrase search scenario: Automatically applying phrases
In the Discover Electronics application, the default behavior is to automatically apply phrases to text search
queries and to return the unphrased version as a search suggestion.

In this scenario, autoPhraseEnabled is set to true on the default Filter State object, and the Search Box
cartridge sets Nty=1 on the text search query. The user has two choices:

• Select the Did You Mean suggestion to search for the keywords separately, rather than as a phrase. This
link sends the same query with the URL parameter Ntp=0 to override the Filter State configuration, and
also sets Nty=0 since we do not need to suggest the phrased version of the query after the user has
decided to use the unphrased version.

• Make another selection on the page, such as clicking on a refinement or advancing to the next page of
results. This signifies acceptance of the automatically applied phrase, so we keep autoPhraseEn¬
abled=true from the Default Filter State and suppress further suggestions by setting Nty=0.

These outcomes are summarized in the following table:

ResultDid You Mean
setting (Nty)

Autophrase
setting (Ntp)

User action

Phrase is automatically applied to the text
search. A Did You Mean suggestion is
offered for the unphrased version.

Nty=1trueInitial search

Oracle Commerce Guided Search Assembler Application Developer's Guide

Navigation Cartridge Configuration Reference | About the navigation cartridge configuration models308



ResultDid You Mean
setting (Nty)

Autophrase
setting (Ntp)

User action

Phrase is not applied to the search. No
suggestion is offered.

Nty=0Ntp=0Select Did You Mean
suggestion

Phrase continues to be automatically
applied. Suggestions are no longer offered.

Nty=0trueMake another follow-on
selection

Phrase search scenario: Phrases as a search suggestion
You can configure the application not to apply phrases by default, but to return phrases as a search suggestion.

In this scenario, autoPhraseEnabled is set to false on the default Filter State object, and the Search Box
cartridge sets Nty=1 on the text search query. The user has two choices:

• Select the Did You Mean suggestion to consider the text search as a phrase. This link sends the same
query with the URL parameter Ntp=1 to override the default Filter State configuration, and also sets Nty=0
since we do not need to suggest the unphrased version of the query after the user has decided to use the
phrased version.

• Make another selection on the page, such as clicking on a refinement or advancing to the next page of
results. This signifies acceptance of the unphrased query, so we keep autoPhraseEnabled set to false
and suppress further suggestions by setting Nty=0.

These outcomes are summarized in the following table:

ResultDid You Mean setting
(Nty)

Autophrase setting
(Ntp)

User action

Phrase is not applied to the text
search. A Did You Mean suggestion
is offered for the phrased version.

Nty=1falseInitial search

Phrase is automatically applied to
the search. No suggestion is offered.

Nty=0Ntp=1Select Did You Mean
suggestion

Text search continues to be treated
as individual keywords instead of as

Nty=0falseMake another follow-on
selection

a phrase. Suggestions are no longer
offered.

Keyword redirects
Content administrators can configure keyword redirects that redirect a front-end user to a new page if the
user's search terms match the set keyword.

When an end user enters a search term that matches a keyword redirect, the Assembler returns the redirect
URI with the response model. The Assembler response can be limited to the redirect URI, or it can also return
the results for the user's search term.

The content administrator specifies a search term, match mode, and redirect URI on the Keyword Redirects
page in Workbench.

Oracle Commerce Guided Search Assembler Application Developer's Guide

309Navigation Cartridge Configuration Reference | About the navigation cartridge configuration models



Cartridge handler configuration for keyword redirects
The Assembler API includes a RedirectAwareContentIncludeHandler that implements keyword redirect
functionality.

The cartridge handler takes the following two properties:
• defaultFullAssembleOnRedirect — A Boolean that specifies whether to return search results in

addition to the redirect URI when making an assemble() call. Defaults to false. If you do not necessarily
wish to execute a redirect (for cases where the redirect URI is displayed as a link, or may be skipped
entirely if the user is not on a specific device), you must set this property to true.

• defaultRedirectCollection — A string that contains the name of the keyword redirect collection in
the Endeca Configuration Repository. Setting a null or empty value for this property disables keyword
redirect functionality.

The cartridge handler configuration in the Assembler context file for Discover Electronics is shown below:
<!--
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 ~ BEAN: CartridgeHandler_ContentInclude
 ~ Used by the assembler service when keyword redirects are not enabled
-->
<bean id="CartridgeHandler_ContentInclude"
 class="com.endeca.infront.content.ContentIncludeHandler"
 scope="prototype">
 <property name="contentSource" ref="contentSource" />
 <property name="siteStateId" value="siteState"/>
</bean>

<!--
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    ~ BEAN: CartridgeHandler_RedirectAwareContentInclude
    ~ For root calls to the assembler when keyword redirects are desired
-->
<bean id="CartridgeHandler_RedirectAwareContentInclude" 
  class="com.endeca.infront.cartridge.RedirectAwareContentIncludeHandler"
  scope="prototype">
    <property name="contentSource" ref="contentSource" />
    <property name="contentBroker" ref="contentRequestBroker" />
    <property name="navigationState" ref="navigationState" />

<property name="defaultFullAssembleOnRedirect" value="false"/>
    <property name="siteStateId" value="siteState"/>
</bean>

Note: The redirect-aware version of the cartridge is included in the Navigation JAR rather than the core
Assembler JAR because it relies on keyword redirects, which are interpreted by the MDEX Engine. The
standard Content Include cartridge and classes do not have this dependency, and are packaged with
the core JAR file.

Content XML for keyword redirects
You can override the default settings for the fullAssembleOnRedirect or redirectCollection properties
by setting new values in the content XML that is retrieved by the RedirectAwareContentIncludeHandler.

The primary use case for setting these properties on content XML is for deployments running the Assembler
service. Keyword redirects are programatically enabled in the service, so by default the feature is explicitly
disabled for services where it does not apply (Dimension Search and Record Details) by including an element
in the content XML that sets redirectCollection to a null value.

Oracle Commerce Guided Search Assembler Application Developer's Guide

Navigation Cartridge Configuration Reference | About the navigation cartridge configuration models310



Note: If you are creating your Assembler application in Java, you can disable keyword redirects by using
the ContentInclude class instead of RedirectAwareContentInclude for those services where
you wish to disable the feature.

About using keyword redirects with the Assembler service
The Assembler service in the Discover Electronics application implements the com.endeca.infront.as¬
sembler.servlet.AbstractAssemblerServlet abstract class. Keyword redirect configuration is
configured in the application's web.xml file.

The JSON and XML servlets in the Discover Electronics reference application are configured in
reference\discover-service\WEB-INF\web.xml:
<servlet>
    <servlet-name>JsonAssemblerServiceServlet</servlet-name>
    <servlet-class>com.endeca.infront.assembler.servlet.spring.SpringAssem¬
blerServlet</servlet-class>
    <init-param>
         <param-name>assemblerFactoryID</param-name>
         <param-value>assemblerFactory</param-value>
    </init-param>
    <init-param>
         <param-name>responseWriterID</param-name>
         <param-value>jsonResponseWriter</param-value>
    </init-param>

<init-param>
        <param-name>enableKeywordRedirects</param-name>
        <param-value>true</param-value>
    </init-param>
</servlet>

When the application queries the Assembler service, the redirect URI is returned as part of the response.

About handling keyword redirects in an application
In order to execute a redirect, an application must include logic for handling the URI components returned from
the Assembler. You must use the RedirectAwareContentInclude class for any content items that require
keyword redirect functionality.

The assemble.jsp service uses the RedirectAwareContentInclude class to enable keyword redirects,
as shown below:

<%@page import="com.endeca.infront.cartridge.RedirectAwareContentInclude"%>

...

AssemblerFactory assemblerFactory = (AssemblerFactory)webappCtx.getBean("assem¬
blerFactory");
Assembler assembler = assemblerFactory.createAssembler();

//Retrieve the content for the given content uri
ContentItem contentItem = new RedirectAwareContentInclude("/browse" + contentUri);

// Assemble the content
ContentItem responseContentItem = assembler.assemble(contentItem);

The Assembler response

When an end user enters a search term that matches a keyword redirect configured in Workbench, the
Assembler response includes a ContentItem with the necessary information for creating a destination URI.

Oracle Commerce Guided Search Assembler Application Developer's Guide

311Navigation Cartridge Configuration Reference | About the navigation cartridge configuration models



The following example shows a JSON response in an Experience Manager implementation from the Guided
Search service when fullAssembleOnRedirect is false:
{
    endeca:siteRootPath: "/pages",
    endeca:contentPath: "/services/guidedsearch",
    endeca:assemblerRequestInformation:
    {
        @type: "AssemblerRequestEvent",
        endeca:assemblyStartTimestamp: 1341943119538,
        endeca:assemblyFinishTimestamp: 1341943119546,
        endeca:contentPath: "/guidedsearch",
        endeca:sessionId: "FF9D21355A3CBB9DFF75614DD7D2948D",
        endeca:siteRootPath: "/services"
    },

endeca:redirect:
    {
        @type: "Redirect",
        link: {
            @class: "com.endeca.infront.cartridge.model.UrlAction",
            url: "/browse/cameras/_/N-25y6"
        }
    }
}

The keyword redirect information is included in the ContentItemwith the key endeca:redirect. The value
specifies an Action object with the destination URI, which may be either relative or absolute.

In an Oracle Commerce Guided Search implementation (without Experience Manager), the site root path and
content path in the JSON response would be the following:
endeca:siteRootPath: "/services",
    endeca:contentPath: "/guidedsearch",

Using the Assembler response

You must retrieve and use the information from the Assembler response in your application to execute a
keyword redirect. In the Discover Electronics reference application, this is accomplished in the assemble.jsp
service:

<%@ taglib prefix="util" uri="/WEB-INF/tlds/functions.tld"  %> 
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

...

// Assemble the content
ContentItem responseContentItem = assembler.assemble(contentItem);

request.setAttribute("component", responseContentItem);
request.setAttribute("rootComponent", responseContentItem);

Map map = (Map) request.getAttribute("component");
if (map.containsKey("endeca:redirect")) {
    request.setAttribute("action", ((ContentItem) map.get("endeca:redi¬
rect")).get("link"));
    %>
    <c:redirect url="${util:getUrlForAction(action)}"/>
    <%
}
...

Oracle Commerce Guided Search Assembler Application Developer's Guide

Navigation Cartridge Configuration Reference | About the navigation cartridge configuration models312



For more information about Action objects in an Assembler application, see "Working with Application URLs,"
or consult the Assembler API Reference (Javadoc).

Guided Navigation cartridges
The following sections provide an overview of the configuration models for Guided Navigation features included
with Tools and Frameworks and implemented in Discover Electronics.

Refinement menu
The Refinement Menu cartridge displays dimension values within a single dimension for Guided Navigation.
It supports dimension value boost and bury.

The response model for this cartridge is RefinementMenu, which contains a list of Refinement objects.

Dimension value boost and bury

Dimension value boost and bury is a feature that enables re-ordering of dimension values within a particular
dimension for Guided Navigation. With dimension value boost, you can assign specific dimension values to
ranked strata, with those in the highest stratum being shown first, those in the second-ranked stratum shown
next, and so on. With dimension value bury, you can assign specific dimension values to strata that are ranked
much lower relative to others. This boost/bury mechanism therefore lets you manipulate ranking of returned
dimension values in order to promote or push certain refinements to the top or bottom of the navigation menu.

The Refinement Menu cartridge enables the content administrator to specify an ordered list of dimension values
to boost and an ordered list of dimension values to bury. Each dimension value is translated into its own stratum
in the query that returns refinements so as to preserve the exact order of refinements specified by the content
administrator.

For more information about dimension value boost and bury, refer to the MDEX Engine Basic Development
Guide.

Configuration model for the Refinement Menu cartridge
The Refinement Menu cartridge configuration model allows you to configure sorting, "Show More..." link
behavior, and boosted and buried refinements. Additionally, it includes a whyPrecedenceRuleFired property
that can be used for debugging precedence rule behavior in your application.

The configuration model for this cartridge is RefinementMenuConfig. It includes the following properties:

DescriptionProperty name

A string representing the id of the dimension being configured.dimensionId

An ordered list of dimension value refinements to display at the top of the list.boostRefine¬
ments

An ordered list of dimension value refinements to display at the bottom of the list.buryRefinements

The base sort order of dimension values within this dimension. This property should have
one of the following values:

sort

• default — Sort dimension values according to the application configuration for this
dimension.

• static — Sort dimension values in alphabetic or numeric order, depending on the
dimension configuration.

• dynRank — Sort dimension values so that the refinements with the highest number
of records display first.

Oracle Commerce Guided Search Assembler Application Developer's Guide

313Navigation Cartridge Configuration Reference | About the navigation cartridge configuration models



DescriptionProperty name

A Boolean indicating whether to enable a link to show more refinements than are displayed
by default.

showMoreLink

A string representing the text to use for the "show more refinements" link.moreLinkText

A string representing the text to use for the "show fewer refinements" link.lessLinkText

A string representing the number of refinements to display by default, or when a user
clicks the "show fewer refinements" link.

numRefinements

A string representing the maximum number of refinements to display when a user clicks
the "show more refinements" link.

maxNumRefine¬
ments

A string that sets the amount of refinements to return, from the following values:refine¬
mentsShown • none — returns no refinements.

• some — returns numRefinements refinements.
• all — returns maxNumRefinements refinements.

(Deprecated) A Boolean indicating whether to display the maxNumRefinements number
of menu items. When this value is false, the number of menu items generated is limited

showMore

by numRefinements, and a "show more refinements" link is generated. This value
should be set using showMoreIds URL parameter when the "show more refinements"
link is selected.

(Deprecated) A Boolean that sets whether to use the showMoreIds URL parameter
when determining how many refinements to display. If false, the showMore property

useShowMoreI¬
dsParam

on the RefinementMenuConfig object is used instead. If this property is set to true,
refinements cannot be collapsed. Defaults to true.

If query debugging features are enabled, this property enables debugging information
about why precedence rules fired on a query in a DGraph.WhyPrecedenceRuleFired

whyPrece¬
denceRuleFired

property for each root dimension value. For additional information, see "About query
debugging results in the reference application."

Important: The useShowMoreIdsParam property and associated showMoreIds URL parameter are
included in this release for backwards compatibility. Use the refinementsShown property if you are
refactoring your code or developing a new application.

Notes on sorting

The static sort option is described as "Alphanumeric" sorting in the Experience Manager user interface for
the default Refinement Menu cartridge. Dimension values are ordered alphanumerically within a dimension
by default, however it is possible to manually specify a dimension order (for example, using the Dimension
Values editor in Developer Studio). This custom dimension value order is used when static sorting is specified.
To ensure alphanumeric sorting of dimension values, do not specify a custom dimension value order.

Dynamic refinement ranking is incompatible with displaying disabled refinements for a dimension. In the default
Refinement Menu cartridge, the option to show disabled refinements is not available unless the content
administrator has explicitly selected static sorting.

MDEX Engine configuration for Guided Navigation
No special configuration is necessary to enable Guided Navigation, however, there is some static configuration
that affects the display of refinements.

Oracle Commerce Guided Search Assembler Application Developer's Guide

Navigation Cartridge Configuration Reference | About the navigation cartridge configuration models314



Static configuration

In the Dimension editor in Developer Studio, you can configure dimensions to be:
• multiselect — A multiselect dimension enables a user to select more than one refinement at the same time.

You can specify whether the navigation results when multiple refinements are selected are treated as a
Boolean AND or Boolean OR on a per-dimension basis.

• hidden — A hidden dimension does not display in Guided Navigation; however, users can still search for
records based on their dimension values in a hidden dimension.

You can also configure the following refinement behavior on a per-dimension basis:
• dynamic refinement ranking — Dynamic ranking returns refinements based on their popularity (number of

associated record results for each refinement). This is a default setting that can be overridden by the content
administrator in Experience Manager.

• refinement statistics — Enabling refinement statistics returns the number records (or aggregated records)
are associated with each refinement so that this information can be displayed in the application.

Additionally, you can designate specific dimension values as inert. For more information about these configuration
options, refer to the MDEX Engine Basic Development Guide.

Cartridge handler configuration for the Refinement Menu cartridge
The Refinement Menu cartridge handler extends the NavigationCartridgeHandler. The application-wide
default configuration in the Assembler context file determines the behavior of collapsed dimensions and "show
more" and "show less" links, and can be set to enable or disable the precedence rule debugging feature if
query debugging features are enabled.

The cartridge handler uses a contentItemInitializer to merge the layered configuration. The included
requestParamMarshaller bean enables URL request-based configuration for the cartridge, which is
required for disabling or enabling the full list of refinement results returned when the end user clicks the "show
more refinements" link.
Template configuration for the Refinement Menu cartridge
The Refinement Menu cartridge template allows a content administrator to configure which dimension to query
for the cartridge and how many results should display. It also allows control over boosted and buried dimension
refinements, in order to modify the order in which dimensions display to the end user.

The Refinement Menu cartridge template allows a content administrator to configure the following properties
on the configuration model:

• dimensionId

• sort

• showMoreLink

• moreLinkText

• lessLinkText

• numRefinements

• maxNumRefinements

• boostRefinements

• buryRefinements

In addition, the cartridge template includes the following pass-through property:

DescriptionProperty name

The name of the string property that represents the dimension name. This is
required by the Dimension Selector editor to enable a content administrator
to select a dimension by name, rather than by ID.

dimensionName

Oracle Commerce Guided Search Assembler Application Developer's Guide

315Navigation Cartridge Configuration Reference | About the navigation cartridge configuration models



URL request parameters for the Refinement Menu cartridge
You can configure the Refinement Menu cartridge at runtime by setting the value of the DYNAMIC_REFINE¬
MENT_MENU_CONFIG property on the  RefinementMenuRequestParamMarshaller via the Nrmc URL
parameter.

The sample cartridge renderer includes logic for displaying the maxNumRefinements number of results when
a user clicks on the "show more refinements" link.

DescriptionURL parameterProperty name

The Nrmc parameter takes multiple arguments allow you to configure
dimension refinement behavior in the cartridge.

NrmcDYNAMIC_REFINE¬
MENT_MENU_CON¬
FIG

(Deprecated) A Boolean indicating whether to display the maxNum¬
Refinements number of menu items. Use therefinementsShown

ShowMoreIdsshowMore

property if you are refactoring your code or developing a new
application.

About Nrmc URL parameter syntax

The Nrmc parameter takes the following values:
• Dimension ID — Required. The ID of the dimension you wish to configure.
• +show:<value> — Required; <value> is the value to pass to the refinementsShown property on the

configuration object.

The configuration for each dimension is separated by a vertical pipe, as in the example below:
20001+show:all|20002+show:some

Note: You can also use the notation used with the Presentation API, for example:
Nrc=id+10074+expand+true+more+true. For more information about this notation, see the MDEX
Engine Basic Development Guide.

Navigation Container
The Navigation Container is provided as an alternative the refinement menu cartridge for implementations
using Oracle Guided Search with the packaged services. It enables you to retrieve the full list of available
dimension refinements for a dimension query.

The response model for the Navigation Container includes a list of RefinementMenu objects that each include
the records within a dimension refinement. The NavigationContainerHandler handles the "show more
refinements" link and associated link Action for each of these refinements, and also controls whether to display
debugging information.

Configuration model for the Navigation Container
The Navigation Container configuration model includes the List<String> property of dimension IDs that
are returned with the response model. Since it is a dimension navigation feature, it includes a whyPrece¬
denceRuleFired property that can be used for debugging precedence rule behavior in your application.

The configuration model for this cartridge is NavigationContainerConfig. It includes the following
properties:

Oracle Commerce Guided Search Assembler Application Developer's Guide

Navigation Cartridge Configuration Reference | About the navigation cartridge configuration models316



DescriptionProperty name

A List of dimension IDs to return as expanded lists of available refinements. Any
dimension refinements not included in this List are returned in the default, shorter
form output by the MDEX Engine.

showMoreIds

A string representing the text to use for the "show more refinements" link. The
same string is used for each of the included dimension refinements.

moreLinkText

A string representing the text to use for the "show fewer refinements" link. The
same string is used for each of the included dimension refinements.

lessLinkText

A Boolean indicating whether the refinement menus should be fully expanded.
Defaults to true. When using a dataset that includes dimensions with a large
number of refinements, you should set this to false.

refinementsShownBy¬
Default

A string that sets the amount of refinements to return on each refinement menu,
from the following values:

refinementsShown

• none — returns no refinements.
• some — returns numRefinements refinements.

(Deprecated) A Boolean that sets whether to use the showMoreIdsURL parameter
when determining how many refinements to display. If false, the showMore

useShowMoreIdsParam

property on the RefinementMenuConfig object is used instead. If this property
is set to true, refinements cannot be collapsed. Defaults to true.

If query debugging features are enabled, this property enables debugging
information about why precedence rules fired on a query in a

whyPrecedenceRule¬
Fired

DGraph.WhyPrecedenceRuleFired property for each root dimension value.
For additional information, see "About query debugging results in the reference
application."

Cartridge handler configuration for the Navigation Container
The Navigation Container handler extends the NavigationCartridgeHandler. The application-wide default
configuration in the Assembler context file determines the behavior of collapsed dimensions and "show more"
and "show less" links, and can be set to enable or disable the precedence rule debugging feature if query
debugging features are enabled.

The cartridge handler uses a contentItemInitializer to merge the layered configuration. The included
requestParamMarshaller bean enables URL request-based configuration for the cartridge, which is
required for modifying the properties on the response model through URL parameters.
URL request parameters for the Navigation Container
Because the Navigation Container returns a list of RefinementMenu objects, it takes the same Nrmc URL
parameter as the Refinement Menu cartridge.

DescriptionURL parameterProperty name

The Nrmc parameter takes multiple arguments allow you
to configure dimension refinement behavior in the
cartridge.

NrmcDYNAMIC_REFINE¬
MENT_MENU_CONFIG

If query debugging is enabled for the reference application,
this property allows you to include debugging information

whyPrece¬
denceRuleFired

whyPrecedenceRule¬
Fired

about why precedence rules fired on a query in a
DGraph.WhyPrecedenceRuleFired property for each
dimension value.

Oracle Commerce Guided Search Assembler Application Developer's Guide

317Navigation Cartridge Configuration Reference | About the navigation cartridge configuration models



For details on configuring the Nrmc parameter, see "URL request parameters for the Refinement Menu
cartridge."

Breadcrumbs
The Breadcrumbs cartridge displays the parameters defining the search or navigation state for the current set
of search results.

The response model for this cartridge is Breadcrumbs, which may contain SearchBreadcrumb, Refine¬
mentBreadcrumb,RangeFilterBreadcrumb, and GeoFilterBreadcrumb objects as appropriate. Each
breadcrumb contains information about search or navigation selections that the end user has made, and
provides links to remove that selection from the filter state.

The Breadcrumbs cartridge does not have any associated Experience Manager configuration options or MDEX
Engine configuration.

Cartridge handler configuration for Breadcrumbs
The Breadcrumbs cartridge handler extends the NavigationCartridgeHandler, but otherwise does not
require any additional configuration.

Results cartridges
The following sections provide an overview of the configuration models for features that display search results
in the reference implementation.

Results list
The Results List cartridge displays search and navigation results in a list view.

The response model for this cartridge is ResultsList, which contains a list of Record objects and SortOp¬
tionLabel objects that enable the end user to select from a set of pre-defined sort orders.

About the order of records in the record list

The order of records returned by the MDEX Engine is determined by a sort key or relevance ranking strategy
depending on the type of query that returns the results.

Relevance ranking is applied when the query includes a text search. Record sorting is applied to all other
queries including navigation queries. The sort options that are available to the end user in the application
represent static sort orders that are not based on relevance to any search terms.

Record boost and bury

Record boost and bury is a feature that enables fine-grained re-ordering of records within search or navigation
results. With record boost, you can assign records to ranked strata, with those in the highest stratum being
shown first, those in the second-ranked stratum shown next, and so on. With record bury, you can assign
records to strata that are ranked much lower relative to others. This boost/bury mechanism therefore lets you
manipulate ranking of returned record results in order to promote or push certain records to the top or bottom
of the results list. The records in each stratum are defined as a set of specific records or a navigation state
that the records must satisfy. A record is assigned to the highest stratum whose definition it matches, so
boosting takes precedence over burying. Record boost and bury apply regardless of whether the records
returned are the results of a search or navigation query.

The core Results List cartridge enables the content administrator to specify one set of records to boost and
one set of records to bury. Boost and bury are applied to the result list before any additional sorting or relevance

Oracle Commerce Guided Search Assembler Application Developer's Guide

Navigation Cartridge Configuration Reference | About the navigation cartridge configuration models318



ranking modules. For more information about record boost and bury, refer to the MDEX Engine Basic
Development Guide.

Configuration model for the Results List cartridge
The Results List configuration model allows you to configure the number and sorting of records returned by a
search or navigation query. Additionally, it includes whyMatchEnabled and whyRankEnabled properties
that can be used for debugging the set of records returned for a query.

The configuration model for this cartridge is ResultsListConfig. It includes the following properties:

DescriptionProperty name

An integer that controls the number of results to display per page. This value can be set
using Nrpp URL parameter.

recordsPerPage

A String that specifies the field that stores the record's logical name.recordDisplay¬
FieldName

An enumerated list of sort options on the results list available to the site visitor. Each
item in this list is a SortOptionConfig with the following properties:

sortOption

• label — A descriptive label that displays to the site visitor in the client application
• value — A sort order specified in the format <key>|<direction>, where key

is the name of the property or dimension on which to sort, and the direction is 0 for
ascending and 1 for descending. An empty string represents the default sort order
specified by the content administrator in Experience Manager.

You can set this value via the Ns URL parameter.

A String that specifies the selected Sort.sortRequestPa¬
rameter

A Boolean that specifies whether to return precomputed sorts. Defaults to false. If you
do not set this to true, any calls to the getPrecomputedSorts() method return an
empty list.

includePrecom¬
putedSorts

(Optional) The Relevance Ranking Strategy. If you specify a Relevance Ranking Strategy
without setting relRankTerms, relRankKey, or relRankMatchMode, your Relevance

relRankStrategy

Ranking strategy will apply to the results from the current search filter. This setting is
ignored if an end user explicitly selects a sort.

(Optional) The Relevance Ranking key to use with the selected Relevance Ranking
strategy. This can be a search interface, dimension, or property set in the MDEX Engine.

relRankKey

You must set a relRankStrategy and relRankTerms if you specify a value for this
property.

(Optional) Relevance Ranking terms, delimited by a + sign. These can be different from
the terms in the search filter. You must set a relRankStrategy and relRankKey if
you specify a value for this property.

relRankTerms

(Optional) The match mode that determines the subset of results to apply Relevance
Ranking to. You must set a relRankStrategy if you specify a value for this property.

relRankMatch¬
Mode

An ordered list of CollectionFilters that enable items to be boosted to the top of
the results list. This setting is ignored if an end user explicitly selects a sort.

boostStrata

An ordered list of CollectionFilters that enable items to be buried at the bottom
of the results list. This setting is ignored if an end user explicitly selects a sort.

buryStrata

Oracle Commerce Guided Search Assembler Application Developer's Guide

319Navigation Cartridge Configuration Reference | About the navigation cartridge configuration models



DescriptionProperty name

The number of sub-records to return for any aggregate records in the results list. This
property should have one of the following values:

subRecordsPerAg¬
gregateRecord

• ZERO — Sub-records are not returned.
• ONE — A single representative record is returned.
• ALL — All sub-records are returned.

The default value is ONE. For best performance, Oracle recommends that you use ZERO
or ONE.

An integer record offset for the result list. This property defaults to 0 and is used for
paging. This value can be set using No URL parameter.

offset

A list of record fields to pass through from each record to the Record output model of
the ResultsListHandler.

fieldNames

For aggregate records, a list of sub-record fields to pass through from each sub-record
to the Record output model of the ResultsListHandler.

subRecordField¬
Names

If query debugging features are enabled, this property enables debugging information
about why each record matched the search and navigation state. For additional
information, see "About query debugging results in the reference application."

whyMatchEnabled

If query debugging features are enabled, this property enables debugging information
about why each record was ranked in the given order. For additional information, see
"About query debugging results in the reference application."

whyRankEnabled

Note: You only need to set the relRankKey, relRankTerms and relRankMatchMode properties if
you wish to apply relevance ranking to values other than those specified in the search filter, or to the
results of an EQL expression.

MDEX Engine configuration for the Results List cartridge
Your MDEX Engine configuration for your application allows you to configure which properties and dimensions
should display in the results list view, optimize certain properties to use for sorting records, and specify a default
sort order.

Dynamic configuration

In the Property and Dimension editors in Developer Studio, you can specify which properties and dimensions
are returned for the record with the record list. This configuration can be overridden in the cartridge handler
configuration. For more information about configuring the display of properties and dimensions for the record
list, refer to the Developer Studio Help.

Static configuration

Although you can sort on any property or dimension at query time, it is also possible to optimize a property or
dimension for sorting in Developer Studio. This controls the generation of a precomputed sort, which you can
retrieve on the ResultsListConfig object by using the getPrecomputedSorts() method. For more
information about precomputed sorts, refer to the MDEX Engine Basic Development Guide.

Dgidx flags

You can specify the default sort order for records as a flag in Dgidx. For more information about Dgidx flags
and sorting, refer to the MDEX Engine Basic Development Guide.

Oracle Commerce Guided Search Assembler Application Developer's Guide

Navigation Cartridge Configuration Reference | About the navigation cartridge configuration models320



The Deployment Template configuration for the Discover Electronics reference application does not specify a
default sort key.

Cartridge handler configuration for the Results List cartridge
The Results List cartridge handler extends the NavigationCartridgeHandler. The application-wide default
configuration in the Assembler context file specifies default sort options, relevance ranking strategy, and record
and sub-record properties to pass through to the cartridge handler response model. It also allows you to enable
or disable debugging features if query debugging features are enabled.

The cartridge handler uses a contentItemInitializer to merge the layered configuration. The included
requestParamMarshaller bean enables URL request-based configuration for the cartridge.
Template configuration for the Results List cartridge
The Results List template allows a content administrator to configure the main results of a search or navigation
query based on the site visitor's filter state. Configuration options include sort order, boost/bury, and number
of records to display per page.

The Results List cartridge template allows a content administrator to configure the following properties on the
configuration model:

• recordsPerPage

• sortOption

• relRank

• boostStrata

• buryStrata

URL request parameters for the Results List cartridge
End user configuration is passed to the configuration model as URL parameters. This allows application end
users to specify how records should be displayed and sorted in order to customize their navigation experience.

For most of the properties on the configuration model, the cartridge renderer in the reference implementation
respects the values set at the cartridge handler or template level. The offset value is used to control paging
display.

DescriptionURL
Parameter

Property

The cartridge renderer uses this property to enable an application end
user to set their own limit on records to display per page.

NrpprecordsPerPage

This parameter enables you to override sort options on a per-query basis.NssortOption

This parameter enables you to control record display when paging.Nooffset

(Optional) The Relevance Ranking key. You must set a relRankStrat¬
egy on the cartridge to use this parameter. You must also specify rel¬
RankTerms.

NrkrelRankKey

(Optional) Relevance Ranking terms, delimited by a + sign. You must
set a relRankStrategy on the cartridge to use this parameter. You
must also specify a relRankKey.

NrtrelRankTerms

(Optional) The match mode that determines the subset of results to apply
Relevance Ranking to. You must set a relRankStrategy, rel¬
RankKey, and relRankTerms if you specify a value for this property.

NrmrelRankMatchMode

If query debugging is enabled for the reference application, this property
enables you to include record matching information about a per-query
basis, rather than at the cartridge handler level.

whymatchwhyMatchEnabled

Oracle Commerce Guided Search Assembler Application Developer's Guide

321Navigation Cartridge Configuration Reference | About the navigation cartridge configuration models



DescriptionURL
Parameter

Property

If query debugging is enabled for the reference application, this property
enables you to include record ranking information about a per-query
basis, rather than at the cartridge handler level.

whyrankwhyRankEnabled

Note: The Nrk, Nrt, and Nrm parameters take precedence over any relevance ranking declaration in
the Ntk, Ntt, and Ntx parameters.

Enabling snippeting in record results
The Assembler can return snippets (an excerpt from a record property that contains the user's search terms
and the surrounding context) for display in results lists.

Snippeting is configured as part of a search interface. You can enable snippeting on one or more properties
in a search interface, typically properties that contain multiple lines of text.

To enable snippeting:

1. Enable snippeting on one or more properties in the relevant search interface.
For more information about configuring snippeting, refer to the MDEX Engine Basic Development Guide.

2. In the Results List cartridge handler configuration, specify the relevant snippet property in the list of
fieldNames.

For example, if you enabled the property product.short_desc for snippeting, you would specify the
property product.short_desc.Snippet, as in the following example:
  <bean id="CartridgeHandler_ResultsList" class="com.endeca.infront.cartridge.Re¬
sultsListHandler" 
      parent="NavigationCartridgeHandler" scope="prototype">
   <property name="fieldNames">
    <list>
     <value>product.id</value>
     <value>product.code</value>
     <value>product.name</value>
     <value>product.brand.name</value>
     <value>product.short_desc</value>

<value>product.short_desc.Snippet</value>
     <value>product.price</value>
     <value>product.min_price</value>
     <value>product.max_price</value>
     <value>product.img_url_thumbnail</value>
    </list>
   </property>  

<!-- additional elements omitted from this example -->
  </bean>

The snippet is returned as a string property on the response model for each record for display by the renderer.

Record details cartridges
The following section provides an overview of the configuration model for record detail features in the reference
implementation.

Oracle Commerce Guided Search Assembler Application Developer's Guide

Navigation Cartridge Configuration Reference | About the navigation cartridge configuration models322



Record details page
The Record Details page displays detailed information about a specific record.

The response model for this cartridge is RecordDetails, which contains a single Record.

The rendering logic for a record details page is expected to be highly customized for each site, in order to
display the relevant record information and provide additional functionality such as bookmarking or initiating
a purchase transaction.

Configuration model for the Record Details cartridge
The Record Details configuration model allows you to configure which properties on the record should be
passed through to the output model of the cartridge handler, so that the renderer can display them.

The configuration model for this cartridge is RecordDetailsConfig. It includes the following properties:

DescriptionProperty name

A list of record fields to pass through from the record to the Record output model
of the RecordDetailsHandler.

fieldNames

For aggregate records, a list of sub-record fields to pass through from each
sub-record to the Record output model of the RecordDetailsHandler.

subRecordFieldNames

MDEX Engine configuration for the Record Details page
No special configuration is required the display of record details, but you can specify what information you
want to display on the record page.

Dynamic configuration

You can specify which properties and dimensions are returned with the record for a record details page in
Developer Studio. For more information about configuring the display of properties and dimensions for record
details, refer to the Developer Studio Help.

Cartridge handler configuration for the Record Details cartridge
The Record Details cartridge handler extends the NavigationCartridgeHandler, but otherwise does not
require any additional configuration.

Template configuration for the Record Details cartridge
The Record Details cartridge in the Discover Electronics application does not require any configuration in
Experience Manager. The cartridge can be placed on a Record Details page to display detailed information
about a record.

Content and spotlighting cartridges
The following sections provide an overview of the configuration models for features that enable content
spotlighting in the reference implementation.

Record Spotlight
The Record Spotlight cartridge can promote either specific featured records or a set of dynamic records based
on a navigation state.

The response model for this cartridge is RecordSpotlight, which includes a list of Record objects and an
optional action to show all records (in the case of a dynamic record spotlight).

Oracle Commerce Guided Search Assembler Application Developer's Guide

323Navigation Cartridge Configuration Reference | About the navigation cartridge configuration models



Configuration model for the Record Spotlight cartridge
The Record Spotlight configuration model allows you to configure the selected records and "See All" link within
a record spotlight, as well as the record fields to pass through to the cartridge response model.

The configuration model for this cartridge is RecordSpotlightConfig. It includes the following properties:

DescriptionProperty name

A string representing the maximum number of records that this spotlight can contain.
If the content administrator designates specific records in the Experience Manager,

maxNumRecords

the number of records cannot exceed the value of maxNumRecords. If the content
administrator specifies a query, the Assembler returns no more than this number
of records.

A RecordSpotlightSelection object that represents the records selected for
spotlighting. This includes the specified filter state, sort options, and result limit.

recordSelection

A Boolean that determines whether to display the "See All" link. The link requires
a value for seeAllLinkText in order to display.

showSeeAllLink

A string representing the display text for a link that represents the navigation state
of a dynamic record spotlight. If this string is not configured, no link is generated
for the client application.

seeAllLinkText

A list of record fields to pass through from the record to the Record output model
of the RecordSpotlightHandler.

fieldNames

For aggregate records, a list of sub-record fields to pass through from each
sub-record to the Record output model of the RecordSpotlightHandler.

subRecordFieldNames

MDEX Engine configuration for a spotlight
You can configure which properties and dimensions can be displayed in a spotlight.

Dynamic configuration

Although the content administrator can designate the records for a spotlight either by specifying a search and
navigation query or by specifying individual record IDs, the Assembler query that fetches the spotlighted records
is always a navigation query (using records in the specific record case). Therefore, the configuration that
determines which properties and dimensions are returned with the record for spotlighting is "show with record
list." This configuration can be overridden in the cartridge handler configuration. For more information about
configuring the display of properties and dimensions for the record list, refer to the Developer Studio Help.

Related Links
MDEX Engine configuration for the Results List cartridge on page 320

Your MDEX Engine configuration for your application allows you to configure which properties and
dimensions should display in the results list view, optimize certain properties to use for sorting records,
and specify a default sort order.

Cartridge handler configuration for the Record Spotlight cartridge
The Record Spotlight cartridge handler extends the NavigationCartridgeHandler. The application-wide
default configuration in the Assembler context file specifies record properties to pass through to the cartridge
handler response model.

Template configuration for a record spotlight
A Record Spotlight cartridge enables a content administrator to specify a set of contextually relevant records
to spotlight on a particular page.

Oracle Commerce Guided Search Assembler Application Developer's Guide

Navigation Cartridge Configuration Reference | About the navigation cartridge configuration models324



The Record Spotlight cartridge template allows a content administrator to configure the following properties
on the configuration model:

• maxNumRecords

• recordSelection

• showSeeAllLink

• seeAllLinkText

These properties are configured using the Spotlight Selection editor.

In addition, the cartridge template includes the following pass-through property:

DescriptionProperty name

A title that the content administrator can specify to display for this cartridge in
the front-end application.

title

Media Banner
The Media Banner cartridge displays video or images to the site user and can be configured to link to a static
page, a single record, or a specified navigation state.

The response model for this cartridge is MediaBanner, which includes a MediaObject and an ActionLabel
that contains a destination link.

Configuration model for the Media Banner cartridge
The configuration model for the Media Banner cartridge includes a media object and an associated link.

The configuration model for this cartridge is MediaBannerConfig. It includes the following properties:

DescriptionProperty name

The MediaObject representing the image or video asset to display in the application.media

The LinkBuilder object used to construct a link to a navigation state or a static
page within the application.

link

MDEX Engine configuration for a media banner
No special configuration is required for the media banner, but your MDEX Engine configuration will affect the
display of records in the link selector when setting a navigation state or choosing a specified record.

Dynamic configuration

You can specify how records are sorted and which properties and dimensions are returned with a record in
Developer Studio. For more information about configuring record sorting and display, refer to the Developer
Studio Help.

Cartridge handler configuration for the Media Banner cartridge
The Media Banner cartridge handler extends the NavigationCartridgeHandler, but otherwise does not
require any additional configuration.

Template configuration for the Media Banner cartridge
The Media Banner enables the content administrator to use the media selector and link editor to create a media
banner that links to a specified page, selected record, or dynamic navigation state.

The Media Banner cartridge template allows a content administrator to configure the following properties on
the configuration model:

• media

Oracle Commerce Guided Search Assembler Application Developer's Guide

325Navigation Cartridge Configuration Reference | About the navigation cartridge configuration models



• link

In addition, the cartridge template includes the following pass-through property:

DescriptionProperty name

(Optional) The alt-text to display when the end user hovers over the media asset in
the application.

imageAlt

For detailed information about the properties within the media and link properties, consult the Javadoc for
the MediaObject and LinkBuilder classes.

Dynamic triggering cartridges
The following sections contain information about features related to triggering content items based on the
user's context.

The dynamic slot feature is typically used to trigger a cartridge independently from the page that contains it,
although the Discover Electronics application uses the same mechanism to trigger entire pages by
programmatically creating a content slot configuration and passing it to the Assembler.

About dynamic slots
A dynamic slot is a generic mechanism that enables content administrators to manage the content for specific
sections of an Experience Manager-driven page independently from the overall page.

There two main scenarios for using dynamic slots:
• To share content across different pages. In this case, the triggers on the content items that populate

the slot are more general or orthogonal to the trigger criteria for the page. For example, a header cartridge
may be shared across an entire site if it is referenced from every page and has an "Applies at all locations"
trigger. A promotion may be configured with a user segment trigger and display when a site visitor who
belongs to the specified user segment browses to any of the pages that references the collection that
contains the promotion.

• To create variants of a page. In this case, the triggers on the content items that populate the slot are
more specific than the trigger criteria for the page. (Typically, they would "inherit" the parent content item's
triggers and add additional criteria for the variable content.)

Following are some specific use cases for dynamic slots:
• A brand manager needs to control the banner images that display throughout the site. This is a different

person from the merchandiser who typically manages pages in Experience Manager.
• A brand manager needs to be able to specify the images that display at a particular navigation state (for

example, Digital Cameras > Samsung) even if there is no specific landing page for that navigation state.
• A merchandiser wishes to display promotions in the menu area based on more specific trigger criteria than

those that apply to the page as a whole. For example, one could create a page to use as a base for all
"Digital Cameras" pages, and populate the menu sections with more specific content based on the brand,
price range, or other dimensions. This model enables content reuse for most of the content within a page
with page-specific overrides for subsections as needed. It removes the need to create many individual
pages for each specific combination of triggers.

• A merchandiser wishes to display promotions in the menu area based on trigger criteria that are simply
different from those on the page as a whole. For example, there might be a "Back to School" special for a
particular time frame that applies to all pages within a category or even the entire site. This model enables
content reuse for individual sections across a variety of pages. The reusable sections are managed in a

Oracle Commerce Guided Search Assembler Application Developer's Guide

Navigation Cartridge Configuration Reference | About the navigation cartridge configuration models326



central location so that updates immediately take effect across all the pages that include the reused content,
rather than having to edit each one manually.

Dynamic slot prerequisites

The dynamic slot feature enables content administrators to populate a section of a content item with content
from a different collection in Experience Manager. As a prerequisite, your application must include a collection
with the appropriate content type for populating an administrator's dynamic slot cartridge.

Note: If a content administrator attempts to populate a dynamic slot in a given collection with a content
item from the same collection and creates a circular reference, the Assembler detects the conflict during
preprocessing and returns the content item with an @error property.

Request Event Attributes
The RequestEvent and NavigationEventWrapper classes support getting and setting common search
and navigation information about a request event. This Appendix provides a reference table of out-of-the-box
attributes that you can retrieve or set on a RequestEvent object.

Related Links
Navigation Cartridge Configuration Reference on page 281

This appendix provides an overview of the configuration models for the included navigation cartridges.
You should review this information if you use these cartridges in your Assembler application to
communicate with an MDEX Engine.

Base request event attributes on page 327
The following describes the base schema for an Assembler request event.

Navigation cartridge request event attributes on page 328
The following describes the schema for an Assembler navigation cartridge request event. These fields
are in addition to those described for the base request.

Base request event attributes
The following describes the base schema for an Assembler request event.

The RequestEvent class includes getter and setter methods for each of these attributes.

DescriptionTypeAttribute

The unique identifier for a browser session. To retrieve this
information, you must register an implementation of SessionId¬
Provider in the request event adapter constructor.

Stringendeca:sessionId

The time (in milliseconds from POSIX Epoch) that the assemble()
method started

longendeca:assemblyStart¬
Timestamp

The time (in milliseconds from POSIX Epoch) that the assemble()
method finished

longendeca:assemblyFinish¬
Timestamp

Oracle Commerce Guided Search Assembler Application Developer's Guide

327Navigation Cartridge Configuration Reference | Request Event Attributes



Navigation cartridge request event attributes
The following describes the schema for an Assembler navigation cartridge request event. These fields are in
addition to those described for the base request.

The NavigationEventWrapper class includes getter and setter methods for each of these attributes.

DescriptionTypeAttribute

The suggested auto-correct term, if it triggers for the request.Stringendeca:autocorrectTo

The content path of the page corresponding to the request.Stringendeca:contentPath

The suggested "Did You Mean" term, if it triggers for the request.List
<String>

endeca:didYouMeanTo

The dimension names selected for navigation.List
<String>

endeca:dimensions

The dimension value names selected for navigation.List
<String>

endeca:dimensionValues

The time, in milliseconds, that it takes the MDEX Engine to run
the query.

Longendeca:eneTime

The number of records returned for the request.Longendeca:numRecords

The number of selected refinements.Integerendeca:numRefinements

The names of the records returned by the request.List
<String>

endeca:recordNames

To populate this attribute, the recordDisplayFieldName
property on the ResultsListConfig object must be set to the
name of the field that contains record names.

The record specifier for a selected record.Stringendeca:recordSpec

The type of request. Possible values are:Request¬
Type

endeca:requestType

• T - Root navigation
• N - Navigation only
• S - Search only
• SN - Search, then navigation
• R - Record detail
• UNKNOWN - Unknown

The search key for the current navigation state.Stringendeca:searchKey

The search mode for the request.Stringendeca:searchMode

Oracle Commerce Guided Search Assembler Application Developer's Guide

Navigation Cartridge Configuration Reference | Request Event Attributes328



DescriptionTypeAttribute

The search terms for the request.Stringendeca:searchTerms

The site root path of the page corresponding to the request.Stringendeca:siteRootPath

The sort keys for the request. Each key is a String with the
format fieldName|<Descending|Ascending> .

List
<String>

endeca:sortKey

The list of spotlights triggered for the request.List
<String>

endeca:spotlights

Oracle Commerce Guided Search Assembler Application Developer's Guide

329Navigation Cartridge Configuration Reference | Request Event Attributes





Index
301 redirects 124

A
A (Aggregated Record) parameter 288
Actions

about 111
Action fields 112, 113
using 112, 113
using with packaged services 113

adding help to a cartridge 170
Adobe Flex

verifying version 208
aggERecFormatter 148
aggregate record detail pages 148
aggrERecFormatter 134
Apache Maven 209
application URLs

about 111
Actions 111
configuration 116

Assembler
about 13
Assembler Service 71
configuration 63
content include query 70
content slot query 71
dependencies 62
deploying 62
dynamic content query 71
error handling 24
event listeners 23, 178
eventing framework 23
input 19
introduced 13
invoking in Java 69
libraries 62
output 19
overview 19
processing content by URI 70
processing model 19
rendering the response 82
requirements 62
Spring configuration 63

Assembler API
ActionPathProvider interface 111

Assembler libraries 62
Assembler service

about 67
configuring 67

Assembler Service 62
querying 71

Assembler services 32

Assembler servlet
error handling 24
response format 72

authoring environment 61
Auto-suggest cartridges 301
Auto-Suggest Dimension Search Results cartridge

cartridge handler configuration 301
configuration model 301
template configuration 302

Auto-Suggest panel
template configuration 301

automatic phrasing
example scenarios 308, 309
implementing 307

B
baseUrlState 155
basic query builder 131
boost and bury 318
Breadcrumbs cartridge 318

cartridge handler configuration 318

C
canonical link 120
canonicalization 109, 137, 141
cartridge

handler 175
handler interface 174
Hello World example 161
help 170
instance configuration 298
introduced 161
renderer 165
request configuration 299
samples 180
template 166
testing 181

cartridge extension points 169
cartridge handlers 25, 67

about 19
configuring 63

cartridge template 213
cartridge templates

adding dynamic slots 243
cartridges 25

about 15
cartridge handlers 16
cartridge templates 15, 16
instance configuration 25
navigation cartridges 17

Results List cartridge 17



cartridges (continued)
response model 25

checkbox editor 236
choice editor 230
combo box editor 230
configuring

cartridge instance 167
configuring URLs
content collections

example 34
content folders

creating 38
moving 39
overview 34

content item
property type 50
type 45

content item list 51
content items 25

about 15, 21
configuring 16
configuring in Workbench 16
container 25, 50
ContentInclude 21
ContentSlotConfig 21
dynamic slots 21, 22
instance configuration 16
leaf 25
nesting 22

content properties
editor mappings 223
primitive types 226

content type 31, 45
content XML 16
core cartridges

Auto-Suggest Dimension Search Results cartridge 301
Auto-Suggest panel 301
Breadcrumbs 318
Dimension Search Results 302
Media Banner 325
Record Details 323
Record Spotlight 323
Refinement Menu 313
Results List 318
Search Adjustments 304
Search Box 299

custom editors
introduced 173

D
data application 254, 255, 256, 258

interaction with Experience Manager 254
development environment 208
Dimension List editor 263
Dimension Search Results cartridge 302

cartridge handler configuration 303
configuration model 302
MDEX Engine configuration 303

Dimension Search Results cartridge (continued)
template configuration 303
URL parameters 304

dimension value list editor 265
dimensions

preparing 123
dimLocationFormatters 134
directory-style URLs 152, 153
Discover Electronics

handling of renderers 81
sample templates 43

duplicate content 109
Dy (Dimension Search) parameter 290
dynamic content 77
dynamic slot editor 244
dynamic slots 67, 242, 326

about 326
adding 243
Assembler configuration 244
configuration 244
editor 244
use cases 326

E
editor configuration

data service 239, 241
editor configuration file 212
editor modules

building 210
editors

building 210
configuring 49, 50
dependencies 208
developing 208, 209, 210
dimension list editor 263
dimension selector 261
dimension value boost-bury 263
dimension value list editor 265
dynamic slots 242, 243
editor-specific configuration 50
editors.xml 50
guided navigation editor 260
image preview 266
label configuration 226
Link Builder 245
media editor 247, 248, 249, 251, 253
record list editor 268, 274
record stratification 259, 270
registering 212
rich text editor 271
RSLs 208
sort editor 272
workflow 209

Endeca Assembler
default cartridge processing 25

Endeca Configuration Repository 16
Endeca parameters

base-36 encoding 154

Oracle Commerce Guided Search332

Index



Endeca parameters (continued)
encoding 108, 152
moving 152, 153
moving out of the query string 108

Endeca Sitemap Generator
URL configuration file 157
urlconfig.xml 157

Endeca URL Optimization API
using 156

erecFormatter 134, 144
event listeners

creating 178
registering 180

examples
cartridges 16, 17

Experience Manager
interaction with media MDEX Engine 254

Experience Manager API
installing 209

G
group labels 238
guided navigation editor 260
Guided Search Service

dynamic content 79
handling the response 79

Guided Search services 73, 113
Dimension Search Service 74
Guided Search Service 75, 77
Record Details Service 75

H
handler implementation cases 177
Hello World

renderer 165
HTTP servlet request 63

I
initializing a cartridge 174
internationalization 53, 215
introduction

URL optimization 107

J
JSP

example 79, 82

K
keyword redirects

about 309
Assembler response 311
Assembler service 311
cartridge handler configuration 310

keyword redirects (continued)
content XML 310

keywords
adding 134
canonicalizing 108
integrating into URLs 108

L
language support 53, 215
Link Builder

adding 245
configuration 246

locales
custom editors 216
editors 215
templates 53

Log Server
client side click events 99

logging
events 99
performance 99
request event adapters 97, 98, 99
request events 96

M
MDEX Engine

configuration for Experience Manager editors 239, 241
data service configuration 239, 241
media MDEX Engine 255, 258
using to index media 254

MDEX request builder 64
MDEX resource 64
Media Banner cartridge 325

cartridge handler configuration 325
configuration model 325
MDEX Engine configuration 325
template configuration 325

media browser
enabling 253

Media Browser 248, 249
media editor 249
Media editor 247, 248, 251

media browser 253
uploading media 251

media MDEX Engine 253, 254
interaction with Experience Manager 254

media paths 251
microbrowser 239
misc-path

optimizing 134
multichannel applications

about 85
multiple sites 39

N
N (Navigation) parameter 283

333

Index



navigation cartridges
cartridge handlers 297
configuration 296
default configuration 297
MDEX Engine configuration 298

Navigation Container
about 316
cartridge handler configuration 317
configuration model 316
URL parameters 317

navigation pages 137
navigation state builder 64
NavigationCartridgeHandler

and navigation state 66
and subclasses 66

navStateCanonicalizer 134
navStateFormatter 134, 137
Nf (Range Filter) parameter 285
Nfg (Geocode Filter) parameter 286
No (Record Offset) parameter 292
non-Endeca parameters

passing 152, 155
Nr (Record Filter) parameter 286
Nrk (Relevance Ranking Search Key) parameter 294
Nrm (Relevance Ranking Match Mode) parameter 294
Nrmc (Refinement Menu Config) parameter 291
Nrpp (Records Per Page) parameter 291
Nrs (Endeca Query Language Filter) parameter 286
Nrt (Relevance Ranking Search Terms) parameter 293
Ns (Sort Key and Sort Order) parameter 292
Ntk (Record Search Key) parameter 284
Ntl (Language ID) parameter 289
Ntp (Auto-Phrasing) parameter 288
Ntt (Record Search Terms) parameter 283
Ntx (Record Search Mode) parameter 284
Nty (Auto-Correct / DYM) parameter 290

O
optimized URLs

overview 129

P
packaged services

Actions 113
page types

content structure 31
overview 30
with services 32

pages
creating 33

paramEncoder 154
parameters

encoding 152, 154
Endeca 152, 153, 154
non-Endeca 152, 155
session-scope 152, 155

path-param-separator
optimizing 151

path-params
optimizing 152

pathParamKeys 153
pathSeparatorToken 151
ports 61
prerequisites

Adobe Flex 207
Apache Maven 207

Preview
non-Java 89

preview application
about 87
changing 93
changing the link service 92
enabling 91
instrumenting 88
testing 94

preview link service 92
production environment 61
properties

and configuration in Experience Manager 48
Boolean 236
content item 50
content item list 51
defining 47
editor mappings 223
item 237
list 279
numeric 233
overview 48
preparing 123
sort options 269
string 227
template section 50, 51

property editors
cartridge selector 52
checkbox 236
choice 230
default value 228
grouping 238
introduced 48
numeric stepper 233
radio group 232
section 52
slider 234
string 228

Q
query debugging

about 100
enabling 101
results 101
URL parameters 101

query parameters 73
query string 73

optimizing 152

Oracle Commerce Guided Search334

Index



R
R (Record) parameter 287
radio button editor 232
record detail pages 144
Record Details cartridge 190, 323

cartridge handler configuration 323
configuration model 323
MDEX Engine configuration 323
template configuration 323

Record Spotlight cartridge 323
cartridge handler configuration 324
configuration model 324
MDEX Engine configuration 324
template configuration 325

RecordDetailsHandler
and record state 66

reference application
request event adapters 99

reference data application
configuring 256
overview 255
requirements 255

Refinement Menu cartridge 313
cartridge handler configuration 315
configuration model 313
MDEX Engine configuration 315
template configuration 315
URL parameters 316

relevance ranking 318
renderers 25, 81
rendering a cartridge 165
request event adapters

registering 98
request events

attributes 327
navigation attributes 328

response format 72
Results List cartridge 194, 318

cartridge handler configuration 321
configuration model 319
MDEX Engine configuration 320
template configuration 321
URL parameters 321

Rich Text editor 271
Rsel (Featured Records Selector) parameter 288
RSS cartridge 184
rule groups, See content folders

S
sample editor

building 214
registering 214
RichTextEditor 213
sample cartridge 213

sample editor module 214
Search Adjustments cartridge 304

cartridge handler configuration 306

Search Adjustments cartridge (continued)
configuration model 304
MDEX Engine configuration 305
template configuration 306
URL parameters 307

Search Box cartridge 299
MDEX Engine configuration 300
template configuration 300

Select Records dialog 241
SeoNavStateEncoder 154
serialization

JSON 22
XML 22

services, See Assembler services
session objects 155
session-scope parameters

removing 152, 155
show with record 123
show with record list 123
site definition 39
site filters 40
site state builder 64
sitemap

planning 29
Sitemap Generator, See Endeca Sitemap Generator
snippeting 322
sorting 318
structural properties 50

T
templates 25

and Discover Electronics 43
creating 43
defining editors 48

See also property editors
defining properties 47
defining sections 50, 51
description, specifying 46
id 45
mobile channel templates 85
Name property 47
naming conventions 45
properties 48

See also properties
saving 45
schema 44
structure 44
troubleshooting 54
troubleshooting default values 55
type 45
updating 56
validation 44, 54

thumbnail images
specifying 46
using 47

335

Index



U
URL

anatomy 129
components 129

URL canonicalization, See canonicalization
URL configuration

aggregate record detail pages 148
canonicalization 109, 137, 141
keywords 134
misc-path 134, 137, 144, 148
navigation pages 137
path-param-separator 151
path-params 152
query string 152
record detail pages 144

URL configuration file
creating 131
using 156
using with Endeca Sitemap Generator 157

URL formatter 131
URL formatter class

basic URLs 118
optimized URLs 118

URL formatting 131
See also URL configuration

URL optimization
application recommendations
basic application requirements
classes 107
configuring URLs
integrating with Endeca Sitemap Generator
introduction
package 107
preparing your application
URL configuration

URL Optimization
CSS 124
external resources 124
images 124
Javascript files 124

URL parameters 115
A (Aggregated Record) 288
Dy (Dimension Search) 290
N (Navigation) 283
Nf (Range Filter) 285
Nfg (Geocode Filter) 286

URL parameters (continued)
No (Record Offset) 292
Nr (Record Filter) 286
Nrk (Relevance Ranking Search Key) 294
Nrm (Relevance Ranking Match Mode) 294
Nrmc (Refinement Menu Config) 291
Nrpp (Records Per Page) 291
Nrs (Endeca Query Language Filter) 286
Nrt (Relevance Ranking Search Terms) 293
Ns (Sort Key and Sort Order) 292
Ntk (Record Search Key) 284
Ntl (Language ID) 289
Ntp (Auto-Phrasing) 288
Ntt (Record Search Terms) 283
Ntx (Record Search Mode) 284
Nty (Auto-Correct / DYM) 290
R (Record) 287
Rsel (Featured Records Selector) 288
whymatch (Record Match Info) 295
whyrank (Record Rank Info) 295

URL query parameters
cartridge specific parameters 289
core parameters 282
default parameters 282

URL transitioning 124
urlconfig.xml 131

See also URL configuration file
Endeca Sitemap Generator 157
using 156
using for URL optimization 157
using with Endeca Sitemap Generator 157

See also URL configuration file
URLs

directory-style 152, 153

W
whymatch (Record Match Info) parameter 295
whyrank (Record Rank Info) parameter 295
word separator

configuring 108

Z
zones, See content folders

Oracle Commerce Guided Search336

Index


	Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Oracle Support

	About the Assembler
	Introduction to the Assembler
	What is the Assembler?
	Basic Assembler concepts

	Configuring Assembler applications in Experience Manager
	Assembler Search and Guided Navigation Features
	Example: The Results List cartridge


	Assembler Architectural Overview
	The Assembler processing model
	About content items
	About ContentInclude and ContentSlotConfig objects
	About nesting content items


	About serialization and de-serialization
	The Assembler eventing framework
	Assembler event framework reference

	About Assembler error handling

	About cartridges and content items
	About cartridges
	Structure of cartridges


	Designing an Assembler Application
	Planning an Assembler Application
	About planning your application sitemap
	About page types
	About page structure and content types
	About mapping pages to services
	Creating a page

	About content folders
	Content folders example
	Creating a content folder
	About moving content folders

	About sites

	Creating Experience Manager Templates
	About creating templates
	Anatomy of a template
	About the template XML schema
	Template identifiers
	About the type of a template
	Specifying the description and thumbnail image for a template
	About using thumbnail images in Experience Manager

	Specifying the default name for a cartridge
	About defining the content properties and editing interface
	About template properties
	About defining the editing interface for properties
	About configuring editor default values
	Specifying editor-specific configuration


	Structural properties
	Adding a content item property
	Adding a content item list property
	About cartridge selectors

	About multiple locales
	Managing Experience Manager Templates
	Updating Experience Manager templates
	Troubleshooting problems with uploading templates
	Troubleshooting invalid templates

	About modifying templates that are used by existing pages
	Retrieving the current templates from Experience Manager



	Developing an Assembler Application
	Deploying the Assembler
	Assembler environment requirements
	About authoring and production environments

	Assembler dependencies
	About deploying the Assembler
	Assembler configuration
	About configuring cartridge handlers
	HTTP servlet request access
	Search and navigation request configuration
	About configuring cartridge handlers that make search and navigation queries
	About configuring cartridges to retrieve dynamic content

	About configuring the Assembler servlet


	Invoking the Assembler
	Invoking the Assembler in Java
	Invoking the Assembler with a ContentInclude item
	Invoking the Assembler with a ContentSlotConfig item

	Querying the Assembler Service
	The Assembler servlet response format

	About building an Assembler query string
	About retrieving Assembler results using the packaged services
	The Dimension Search Service
	The Record Details Service
	The Guided Search Service
	Configuring dynamic content for the Guided Search Service
	About retrieving content item properties from packaged services


	About handling the Assembler response
	About rendering the Assembler response


	Implementing Multichannel Applications
	Overview of multichannel applications with the Endeca Assembler
	About creating templates for mobile channels

	Tuning an Assembler application
	Setting up the preview application for Workbench
	About the preview application
	About instrumenting your Java application for preview
	Instrumenting non-Java applications for preview
	Enabling your preview application
	Changing the preview link service
	Managing the preview application and sites in Workbench
	Testing your preview application


	Configuring logging for an Assembler Application
	Configuring logging for custom events
	About request events
	About request event adapters
	About registering a request event adapter
	Request event adapters in the reference application

	Client side click events


	Configuring cartridge performance logging
	Understanding and debugging MDEX Engine query results
	About the query debugging features
	About enabling query debugging features
	URL parameters for query debugging features
	About query debugging results in the reference application



	Optimizing Application URLs
	About the URL optimization classes
	Package contents
	Introduction to URL optimization
	Overview of URL optimization capabilities
	About URL canonicalization

	Working with Application URLs
	About application URLs
	About Actions
	Action fields
	About using Actions with the packaged services

	About working with URL parameters
	About URL configuration in the reference application
	URL formatter configuration

	About working with canonical links

	Preparing your application
	Preparing your dimensions
	Preparing your properties
	Handling images and external JavaScript files
	URL transitioning

	Building optimized URLs
	Core URL optimization classes
	Overview of building URLs using the URL optimization classes
	Parsing an incoming query and sending it to an MDEX Engine
	Informing the UrlState of the navigation state
	Creating link URLs from a UrlState

	Configuring URLs
	Anatomy of an optimized Endeca URL
	About the URL configuration file
	Creating a URL configuration file
	About optimizing the misc-path
	Formatting misc-path strings in optimized URLs
	Optimizing URLs for navigation pages
	Canonicalization configuration options
	Optimizing URLs for record detail pages
	Optimizing URLs for aggregate record detail pages

	Configuring the path-param-separator
	About optimizing the path-params and query string
	Moving Endeca parameters out of the query string
	Encoding Endeca parameters
	Removing session-scope parameters
	About passing non-Endeca parameters to the API

	Using the URL configuration file with your application

	Integrating with the Sitemap Generator
	The Sitemap Generator urlconfig.xml file
	Using the URL configuration file with the Sitemap Generator


	Extending the Assembler
	Extending and Developing Cartridges
	Cartridge Basics
	First steps with a new cartridge
	Adding a basic renderer
	Elements of the example cartridge
	The cartridge template
	The cartridge instance configuration
	The cartridge renderer

	Overview of cartridge extension points
	Customizing the Experience Manager interface
	Adding embedded user assistance to a cartridge
	Using the core Experience Manager editors
	About custom editors

	About Cartridge Handlers and the Assembler
	About the CartridgeHandler interface
	About initializing the cartridge configuration
	About the NavigationCartridgeHandler class

	Implementing a cartridge handler
	Cartridge handler development scenarios

	About using event listeners to extend the navigation cartridges
	Creating an event listener
	About registering an event listener

	Sample Cartridges
	About using the sample cartridges
	Setting up a test application based on Discover Electronics
	Creating a Spring context file for sample cartridges

	RSS Feed cartridge
	Creating the cartridge template
	Creating the cartridge handler
	Creating the cartridge renderer

	Custom Record Details cartridge with availability information
	Creating the cartridge handler and supporting classes

	Custom Results List with recommendations
	Creating the cartridge handler and supporting classes

	"Hello, World" cartridge with layered color configuration
	Creating the cartridge handler and supporting classes
	Creating the cartridge renderer
	Testing the "Hello, World" cartridge with layered color configuration



	Developing Editors for Workbench
	Setting up the Experience Manager Editor SDK
	Flex prerequisites and resources
	About setting up a Flex development environment
	Configuring a Flash Builder 4.0 development environment
	Configuring Flex Framework dependencies as Runtime Shared Libraries (RSLs)
	Installing the Experience Manager API to a Maven repository

	Developing Editors With the Experience Manager Editor SDK
	About developing custom editors
	Creating an editor module for custom editors
	Registering custom editors
	About creating and uploading a cartridge template
	Example: The sample RichTextEditor
	The sample Rich Text Box cartridge template
	Installing the sample editor module and cartridge template

	About custom editors in multiple locales
	Modifying the POM file to support multiple locales
	Resources properties files
	Modifying an editor module for muliple locales.


	Specifying dependencies between editors
	The editor dependency expression language
	Escaping characters when specifying editor dependencies
	Enforcing a specific value when the editor is disabled



	Template Property and Editor Reference
	Editor property mapping reference
	Editor label configuration reference
	Basic content properties
	Adding a string property
	Adding a string editor
	Adding a choice editor
	Adding a radio group editor

	About numeric properties
	Adding a numeric stepper
	Adding a slider

	Adding a Boolean property
	Adding a Boolean editor

	Adding an item property

	Adding a group label
	Complex property editors
	About the microbrowser
	Data service configuration reference

	About the Select Records dialog
	Select Records data service configuration reference

	About the Dynamic Slot editor
	Creating a cartridge template with a dynamic slot
	Specifying a cartridge handler for a dynamic slot template

	Adding a Link Builder
	About configuring the Link Builder

	About the Media editor
	About the Media Browser
	Adding a Media editor
	About Media editor configuration

	Uploading media to the Endeca Configuration Repository
	About resolving media paths in content items
	Enabling the Media Browser
	Using an MDEX Engine to index media assets
	Interaction between Experience Manager and the media MDEX Engine
	Overview of the reference data application
	Deploying the reference data application for Discover Electronics

	Pipeline configuration for a media crawl


	Adding a Boost-Bury Record editor
	Adding a Guided Navigation editor
	Adding a Dimension Selector
	Adding a Dimension List editor
	Adding a Dimension Value Boost-Bury editor
	Adding a Dimension Value List editor
	Adding an Image Preview
	Adding a Record List editor
	Specifying record sort options

	Adding a Record Stratification editor
	Adding a Rich Text editor
	Adding a Sort editor
	Adding a Spotlight Selection editor

	Application feature property reference
	Adding a list property

	Navigation Cartridge Configuration Reference
	Navigation cartridge URL parameter reference
	About this section
	Core URL query parameters
	N (Navigation)
	Ntt (Record Search Terms)
	Ntk (Record Search Key)
	Ntx (Record Search Match Mode)
	Nf (Range Filter)
	Nfg (Geocode Filter)
	Nr (Record Filter)
	Nrs (Endeca Query Language Filter)
	R (Record)
	Rsel (Featured Records Selector)
	A (Aggregated Record)
	Ntp (Auto-Phrasing)
	Ntl (Language ID)

	Cartridge-specific URL query parameters
	Dy (Dimension Search)
	Nty (Auto-Correct / DYM)
	Nrmc (Refinement Menu Config)
	Results List cartridge URL query parameters
	Nrpp (Records Per Page)
	Ns (Sort Key and Sort Order)
	No (Record Offset)
	Nrt (Relevance Ranking Search Terms)
	Nrk (Relevance Ranking Search Key)
	Nrm (Relevance Ranking Match Mode)
	whymatch (Record Match Info)
	whyrank (Record Rank Info)



	About the navigation cartridge configuration models
	Overview of the navigation cartridge configuration models
	Default cartridge configuration
	Feature configuration in the MDEX Engine

	Cartridge instance configuration
	Request-based configuration

	Search cartridges
	Search box
	MDEX Engine configuration for the Search Box cartridge
	Template configuration for the Search Box cartridge

	Auto-suggest search results
	Template configuration for the auto-suggest panel
	Configuration model for the Auto-Suggest Dimension Search Results cartridge
	Cartridge handler configuration for the Auto-Suggest Search Results cartridge
	Template configuration for the Auto-Suggest Dimension Search Results cartridge

	Dimension search results
	Configuration model for the Dimension Search Results cartridge
	MDEX Engine configuration for dimension search results
	Cartridge handler configuration for Dimension Search Results
	Template configuration for the Dimension Search Results cartridge
	URL request parameters for the Dimension Search Results cartridge

	Search adjustments
	Configuration model for the Search Adjustments cartridge
	MDEX Engine configuration for the Search Adjustments cartridge
	Cartridge handler configuration for Search Adjustments
	Template configuration for the Search Adjustments cartridge
	URL request parameters for the Search Adjustments cartridge
	About implementing automatic phrasing
	Phrase search scenario: Automatically applying phrases
	Phrase search scenario: Phrases as a search suggestion

	Keyword redirects
	Cartridge handler configuration for keyword redirects
	Content XML for keyword redirects
	About using keyword redirects with the Assembler service
	About handling keyword redirects in an application


	Guided Navigation cartridges
	Refinement menu
	Configuration model for the Refinement Menu cartridge
	MDEX Engine configuration for Guided Navigation
	Cartridge handler configuration for the Refinement Menu cartridge
	Template configuration for the Refinement Menu cartridge
	URL request parameters for the Refinement Menu cartridge

	Navigation Container
	Configuration model for the Navigation Container
	Cartridge handler configuration for the Navigation Container
	URL request parameters for the Navigation Container

	Breadcrumbs
	Cartridge handler configuration for Breadcrumbs


	Results cartridges
	Results list
	Configuration model for the Results List cartridge
	MDEX Engine configuration for the Results List cartridge
	Cartridge handler configuration for the Results List cartridge
	Template configuration for the Results List cartridge
	URL request parameters for the Results List cartridge
	Enabling snippeting in record results


	Record details cartridges
	Record details page
	Configuration model for the Record Details cartridge
	MDEX Engine configuration for the Record Details page
	Cartridge handler configuration for the Record Details cartridge
	Template configuration for the Record Details cartridge


	Content and spotlighting cartridges
	Record Spotlight
	Configuration model for the Record Spotlight cartridge
	MDEX Engine configuration for a spotlight
	Cartridge handler configuration for the Record Spotlight cartridge
	Template configuration for a record spotlight

	Media Banner
	Configuration model for the Media Banner cartridge
	MDEX Engine configuration for a media banner
	Cartridge handler configuration for the Media Banner cartridge
	Template configuration for the Media Banner cartridge


	Dynamic triggering cartridges
	About dynamic slots


	Request Event Attributes
	Base request event attributes
	Navigation cartridge request event attributes


	Index

