Oracle Commerce Guided Search
Platform Services

Application Controller Guide
Version 11.1 « July 2014

ORACLE
COMMERCE

Contents

Preface..... e ———————— 9
ADOUL TNIS QUIAE. ...ttt a et e e e b et e e e e a bt e e e e a b b e e e e e e abbe e e e e aanbee e e e e annbeeeeeanreeas 9
WhO Should USE thiS QUIAE.........e ittt et e e e e e e e ettt e e e e e e e e e e e e e nnbabreeeeeaaaaeans 9
Conventions USEd IN thiS QUIAE.........ccuueiiieiiii et e e e e e e e e s s et e e e e e eaeaeessaasasnsssaneeeaaaeeeeeeannnnnen 9
(7] a1 ¢= Tox 119 To T] r=Tor [T TU] o] o o /PR 9
Chapter 1: INtroducCtion............. e e e 11
About the Oracle Endeca Application CONtrOIIEr........... . et e e ee e e e e e e 11
Y O o a1 1= Tox 11] =Y S STRSRRSPPRRP 11
EAC arChiteCture @XamIPIE........cc.viiiiiiie et e e ar e e e e e e 13
Chapter 2: Using the Application Controller.........ccccccceiiiimmrcciiiirnreccsr s 15
Installing the AppliCation CONIIOIIE............c e e e e e e e e e st e e e eaaaeeessaensnranaeeaeaaaeeas 15
Enabling SSL security in the Application CONrOlIE.............oo i 15
Specifying the EAC Central Server in Oracle Endeca WOrkbencCh............ccoooiiiiiiiiiiiiie e 16
Starting and stopping the Application Controller directly on UNIX...........oooiiiiiiiiiiiic e 16
Starting the Application Controller from iNittab...... ... e e 16
Starting and stopping the Application Controller on WINAOWS...........uiiiiiiiiiiee e 17
USIiNG the €aC.PrOPEITIES filE......cii et e e e e e e e e e s s e et a e e e e e eaaeeeessaassataaaeeeeaaaeeesasannnnnes 17
Setting the MDEX ENGiNe roOt dir€CIOIY.......cooiiiiiiiiiiiieee et 17
Setting the Copy utility’s t€MPOrary dir€CIOIY........coiiiiiiiiie e et e e e et e e e s sreeeaeeens 17
Ensuring clean component SNULAOWN...........ciiiiiiiiiieeece e e e e e e e re e e e e e e e e e s e ntreeeeeeaaeeanas 18
Managing SEIVEI FESTAMS.........eiiiiiiiiii ettt ettt e s ettt e e e s st e e e e s aa b et e e e e anbneeeesannneeaenan 18
About the Application CONITOIET 10G......c.iiiiiiiie ettt e e e e e e et e e e s et ae e e e eensteeeeeanraeaeeeannees 18
Modifying Application Controller l0gging IEVEIS.............uiiiiiiiiiii e e e e e e e e eraaae s 18
Chapter 3: Provisioning Implementations with Application Controller........ 21
PrOVISIONING OVEIVIEW. ...ttt ettt e e oo e o4 et e et e et e e e e e e e s e s a b et e ettt e e e e e e s e aaanab e s reeeeeeaeeeeaaannns 21
About the provisioning file and SChEMIA..........ooo e 21
Invalid characters iN ProVISIONING. i ittt e e e e e e et ee et e e e e e e e e e e s nnanbeeneeeaaaaaenn 22
Defining the root AppliCation EIEMIENT.............uiiii e s 22
DTS] 1T o B o1 £ T PRI 22
Defining components in your provisioning fil€.............ouiiiiiiie i 23
Defining scripts in your proviSioning fil...........cii i 25
Application Controller COMPONENTt FEFEIENCE.oiii i e e e e e e e s e s eeeaaaeee e s 26
o) o = RSP 27
190 1 SO 28
Do = o] o T PSP PPP T PUPRRR 30
[0 1S 1= SRR 32
[RC=T oo (=T a1 = o] PR SSR 33
Provisioning your implementation With @aCCMd..........oouiiiii e 35
Provisioning the Application Controller to work on multiple machings...........cccccveviiiiiiiiie e 35
Forcing the removal of an @pPliCatION............eiiiiii e et e st e e e e e e e neees 36
About INCreMENtal PrOVISIONING.o.utiiiieiit ettt et e e e e bbbt e e s e bbbt e e e e aabbe e e e e anbbe e e e e aanbeeeeeannnes 36
Incrememental provisioning GUIAEINES..........oo e e e e e e eeeeaa e e e 37
ADOUL the AEf_fil@ SEHING....ciiii e e e e e e e e e e et e e e e eaeeeeesannsstenreeenaaaeeeeanan 37
F Y oTo U (g To T o] o= = o PSP PP PRPPTOF 37
Adding @ comMPONENT IN EACCIMA.eiiiiiiiee ettt ettt e e e e e e e e st eeeeeeaaeeeaeaannnnreeeeeeaaeeeeesaaannen 38
Removing @ ComMPONENTt iN EACCIMA.euiiiiiiiii it e e e e e et e e et e e e e e e s e e eereeeeeeeeas 38
Modifying @ component iN @ACCIMA.uiiiiiiiiiii et e et e e e s bt e e s e aabe e e e e s abreeeeeeae 38
JaXe [o 1 aTo Jr= TN aTo 1S3 T T = =T ox 1 o To SO PPPPRRRT 38
RemovIiNg @ NOST IN @ACCMIA.coi it e e e e e e e e e e e e e e e s s eeeeeeee s 39
Modifying @ NOSE IN ACCIMA. ..ottt e e e e et e e e e e rb et e e e s aabe e e e e e aabeeeeeeaa 39
P [o[1aTo JE= T Ted o oL a1 T =T=TeTed 1 oo O U PPUPPPPRR 39
RemoviNg @ SCHPL iN @ACCMIA. ..ottt e e e e e e e e e e e e e e e e e e s e ereeeeeaee s 39
Modifying @ SCHPL IN EACCIMA. ...ttt e e s et e e e e e a b e et e e s abbe e e e e e aabaeeeeean 39

Provisioning your deployment with the Endeca Deployment Template..............oooorriiieicre e, 40

Using the Endeca Deployment TemPIate. ... 40
Chapter 4: Common System Architectures in an Endeca Implementation...41
Overview Of SyStem arChitECIUMES.ueiiii et et e e s sare e e e e s enneeeee e 41
Development environment...............cccccec...

Staging and testing environment....

Sample produCtion ENVIFONMENES.......... it e e ettt e e e sttt e e e s st e e e e e aabbeeeessnbeeeeesanneeeeessnd 42
Descriptions of implementation SIZE....... ..o e e e e e e 42
Small implementation with lower throUgNPUL..............cooiii e 42
Medium implementation with higher throughput.............ooo e 43

Chapter 5: Using the eaccmd TOOL..........cooiieeciiiiimriccr e 45

Y oY 10 | A == T o3 0 o SRS 45

(0] T T TR =T =T o1 o o PO PRURRRRR A5
L=Y= Toto] .0 Lo U ET=To 1SS RUURPRPPPPPPRPPRY 45

(T2 odor 4 To I £=T=To | o= To] S SOSPSPRRRR A6

Component and utility Status VErDOSItY..... ... e e e e e e 47

Using the default NOSt @nd POIt..........oeeiiiiiiiee e e e e e e e e e e e e e et eeeeaaeeeeeesennssreesd a7

(=F= ooty oo lote] aa g F=TaTo I (=Y =T =) o Lo YOS PRSRRSY A7
ProviSioNiNg COMMENGAS........oiiiiiiee ittt ettt et e e e e e e e e e e e aaeeeeeeeeaaaaeeeaaa e nnenseeeeeaeaeaeeesaaannnnsnnneeeees? a7
Incremental ProviSioNiNg COMMANGS.uu e e e e e e e e e et s s e s e s e e e eeeaaaaeaeeeeeeeeeeeensesnnnnsnnnnnnnnnd 48
SyNChronization COMMEANGS........coiiiiiiiii ettt e ettt e e e e bttt e e e snbe e e e e s annbeeeeeannseeeesannneeeas 50
Component and script control COMMANGSooiiiiiiiii e e e e e e eeas 51
LU 1113V oo .4 1 4 F= T T £ PP 51

Chapter 6: Endeca Application Controller API Interface Reference............. 61

Using the Application Controller WSDL..............uuiiiiiiiiiee et e e e e e e e e e et re e e e e eaeaseeessasnnenneeesd 61
Simple types in the Application Controller WSDL..........cooo i reee e 61

ComponentCONLIOl INEITACE........ueee et e e eeeeeasrs st aeeaeeeeeesd 61
startComponent(FullyQualifiedComponentIDType startComponentinput)...........ccccveeiiiiiieiiiineeeeee e, 62
stopComponent(FullyQualifiedComponentIDType stopComponentinput).........ccooceiiiiiiiiiiiiiieeeee e 62

SYNChronization INTEITACE.ooi ettt e e e e e e e et e e e e e e e e e e e e s annnennneeeaaaaeeeeesd 62
setFlag(FullyQualifiedFlagIDType SetFIaginpuL)...........cooi i 62
removeFlag(FullyQualifiedFlagIDType removeFIaginput)............oooiiiiiiiii e 63
removeAllFlags(IDType removeAllFIagsINDULE)..... ... eee e e e 63
listFlags(IDType lStFIAgSINPUL)........cooi e e e e e e e e e e s e e e e e e e e e e s seennnrenneesd 63

L0) =T o =Tt SR OPPPURPPPPPRR 63
startBackup(RunBackupType startBackuplnput)....... ... 64
startFileCopy(RunFileCopyType startFileCopyINPUL)..........ueeeiiiiiiiiii e 64
startRollback(RunRollbackType startRollbackinput)...........c.eeeiiiiiiiii e 65
startShell(RunShellType startShelllNpUL)..........oooo e eee e 66
stop(FullyQualifiedULIlity TOKENTYPE).....icuueiiee ettt ettt e e e sttt e e e e st e e e s sbeneeeesnnteeeeessnneneeeeand 66
getStatus(String applicationID, String tOKEN).........cooiiiiiiiiii e 66
listDirectoryContents(ListDirectoryContentsinputType listDirectoryContentsinput).............ccccccoiiiiiiiiiiinnee. 67

ProviSioNiNg INTEITACE.eceiiiii et e e e e e e e e e e e e e st teaeeeeeaaaeessassantssseneeeeaeeseessnnnsnsd 67
defineApplication(ApplicationType appliCation).........c..eeii i
getApplication(IDType getAppliCatioNINPUL).......cooi e e e
getCanonicalApplication(IDType getCanonicalApplicationINput)..............eeeviiieiiiiiiiiieee e,
listApplicationIDs(listAPPlICAtioNIDSINPUL).........coiiiiiiiie e e e
removeApplication(RemoveApplicationType removeApplicationInput)...........cc.oeeeiiiiiiiiii s
addComponent(AddComponentType addComponentinpul)...........coccciiiiiiiiiiiee e
removeComponent(RemoveComponentType removeComponentinput)
updateComponent(UpdateComponentType updateComponentinput)...........ccuueieiiiiiiiiiiiiiiiieeee e
addHost(AddHostType addHOSLINPUL)...........c.evviiiiieieeee e
updateScript(UpdateScriptType updateScriptinput)
removeHost(RemoveHostType removeHOSHINPUL)...... ..o e
updateHost(UpdateHostType updateHOSTINPUL)............ovviiiiiiiei e
addScript(AddScriptType addSCriptINDUL)..........cueeiiiiiie e
removeScript(RemoveScriptType removeScriptinpUL).........oooo e

Yol (] 01 (07e] g1 (o) BT] (=) =Tt T PEPRRR
startScript(FullyQualifiedScriptIDType startScriptiNput)..........coooiiiiii e

iv Oracle Commerce Guided Search Platform Services

Contents

stopScript(FullyQualifiedScriptiIDType StopSCriptINDUL).........coiiiiiiiiee e 73
getScriptStatus(FullyQualifiedScriptiIDType getScriptStatusInput)...........ceevveieiiiiiiici e 73
Chapter 7: Endeca Application Controller APl Class Reference................... 75

About Endeca Application Controller API Classes
AddComponentType class

AddHostType class..............

F e o R Tel oL i Y] o= o=] TR STPRRT

F Y o] o] lez=uTe] a1 | B IR I=3 i 1Y o T T o = L USRS
PN o] o] [Te= 11 T0] g 1IN/ 1= o1 F= 1= PO
BaCKUPMENOATYPE ClaSS.....ei ittt ettt ettt e e e ettt e e e e aa bt e e e e e aab et e e e e aanbeeeeesanbaneeeeaanbeeeeeaane
BatChSTatUSTYPE ClaSS.ottt ea bttt e e e s b et e e e e bttt e e e e et b e e e e e abbeeeeesanbeeeeenaan
COMPONENTLISITYPE CIASS.....ueeiiiiieiiii it e e e e e e e e e e e e e e e e et e e e e e eeaeeeeessessasbssaeneeaaaaaaaas
1070] gl oTe o= 0 A I/ o 1= el = L PRSPPI
DgidXComMPONENTTYPE CIASS........eieiiiiiiiiii ittt a et e e ettt e e e s b b e e e e e e aab e e e e e e sbbe e e e e aanbeeeeesabeneeeeane
DgraphCompoOnENnTTYPE CIASS.uuiiiiiiiiiiee et e et e e e e e e e e e e et a— e e e eeeaeeeeeessassabaeaeeeeaaaeeesasannnsenes
DT =Ted (o] Y I IS Y o =T o = TP PRPPRPP
DT =Te (o] YA B =T el T TP P PP PPPPPP
oy O = 1U | o7 = T PSSR SUPRRR
FIlePathLiStTYPE ClaSS.........oiii ittt e e ettt e e e sttt e e e ab bt e e e e s aabeeeeeeenbeeeeesanteeeeessnsd 80
FIlEPatNTYPE ClasS.ooi ittt e e e e bt e e e e s bt e et e e e st e e e e e e abbeeeeeeanbteeeesaneneeeenand 80
= To I3 Y o = o = = P PUUPRRRRR 80
FOrgeCompPONENTTYPE ClIASS.........oiiiiiiiiiii ittt ettt e e ettt e e e s bttt e e e e aab et e e e e sbbeeeeeaanbaeeaesaneeeeeeaned 80
FullyQualifiedComponentIDTYPE CIaSS........uuuiiiiiiiiiiieeiitie et e e e e e e e b b e e e e e anbe e e e e ennees 81
FullyQualifiedFIagIDTYPE ClaSS.ccciiiiiiiee ittt et e e e e ettt e e e e ettt e e e e ante e e e e e snbteeaeeanbeeeeeeansaeeeeeanntaeaeeennnes 81
FullyQualifiedHOSHIDTYPE ClaSS....cciiiiiiiiie ittt e e ettt e e e e e bttt e e e enbe e e e e e anbeeeeeeanbeeeeeannes 81
FullyQualifiedSCriPIDTYPE CIaSS.coiuiiiiieiiiieiee ettt e e e et e e e e b e e e e eaabr e e e e e anbe e e e e annes 82
FullyQualifiedULIlity TOKENTYPE ClaSS. .. .ceiiiiiiiiee ettt ettt e e e e ettt e e e e et e e e e e snbee e e e e snteeaeeenntaeeeeennnees 82
HOSILISTTYPE ClaSS.eeiiiiiiiiiii ettt e e ettt e e e a bttt e e e e bttt e e e e nbe e e e e e ambaeeeesanbeeeeesanbteeeesannreeeeesnd 82
[(oS Y oL R e = T OO P P OPPPPPPOPPPPP 82
TSIV o] o] [To= 10 To] a1 10 ES]] 10 1 Ao F= T P OPPPPPRRPRE 83
ListDirectoryContentSINPUITYPE ClasS......co ittt et e e e e et e e e e nbee e e e e nnees 83
LogServerCompONENITYPE ClIaSS.ouuiiiiiiiiiiiie ittt e e e e b bt e e e ab e e e e s e aabe e e e e e anreeeeeeannes 83
o o L= g TS 1Y o= o =T P OUUPRUURRRR 83
PrOPEIY TYPE ClaSS.eeiiiiiiiiii ettt et e e e b et e e e e a bttt e e e aabte e e e e aasbeeeeeeanbaeeeeeanbeeeeesanneeeeesannneeeeesnd 84
ProvisioNiNGFAUIE CIASS..........coiiiiiiiiiiee ettt e e et e e e s b b e e e s aabee e e e s snbeeeeesanbeeeeeenand 84
RemoveApplicationType class....................

RemoveComponentType class

REMOVEHOSITYPE ClaSS.eeiiiiiiiiiii ettt e ettt e e e et e et e e e sb b e e e e e s anbeeeeessbbeeeessanreeeeeesand 85
REMOVESCIIPITYPE ClaSS....cciiii i ittt e e e e e e e e e e e e s e e et st e e eeeeeaeaeessaesesasssseeereeaeeeseeannnnsesd 85
ReportGeneratorComponeNntTYPE ClasS........cooi it e e e e e e e e enae e e e e e nees 85
RUNBACKUPTYPE CIaSS......eeeeiieiei ettt ettt e e oo oottt ettt e e e e e e e e e e naseeeeeeeaaaaeeeaaaannnsnseeeeeaaaaaeeeeanannned 86
RUNFIIECOPYTYPE ClaSS....cceiiiiiiiiiiiitieeee et e e e et e et e e e e e e e e e e et et s e eeeeeaeaeessaaaanasssseneeeeaaeessesanassesd 86
RUNROIIDACKTYPE ClaSS.eeeiiiiiiiiie ettt ettt e e ettt e e e e sttt e e e e sbbeeeeesanbbeeeeesnaneeeesanteeeeessnsd 87
RUNSNEITYPE ClaSS.ceeeiieiiiii ettt ettt e e a et e e e e be et e e e s bt e e e e e e aab e e e e e s abbeeeeesanbneeeesanrneeeenand 87
RUNULIIEY TYPE ClasS......co ittt et e et ettt ettt et ettt e e s e e e e e e e eeeeaaaaaaeeeeeeeseeesesesesnnsnnnnnnnnnnnnnd 87
S Tel g o1 { I Y o T= I o =T SR PRPSSUPSRRROPII 88
Yo 0 0 I3 =T =TRSO 88
SSLCONfIGUIAtIONTYPE ClASS....ccciiiiiiiiiittee ettt et b sbaeeeeeaaeeeeesaennsnbrsaneeeaeeeeeeeead 88
ST =1 (Sl I oYY o = T RSP PTPRPOPPI 88
StAIUSTYPE CIASS...cei ittt e ettt e e o sttt e e aa b bttt e e s bbb et e e e aabe et e e e snbe e e e e e annne e e e e annreeed 89
TIMERANGETYPE ClASS... . i et et ettt e aeaesessstnsas s anaeaeaeeeeaanaeaaseeeeesesnnennsd 89
TIMESEIIESTYPE ClaSS. ... eeiiiiiiiiii ettt ettt e e ettt e e e e a ettt e e e e abe e e e e e aanbe e e e e e nneeeeeeannbeeeeeennnbeeaeeannred 89
18] oo F= 1 (=107] gaT o o) a1=T 01 4 1Y =T o= TS U UEFRURS 90
L0 ToTo E=1 (=Y o1 3] o 1= T o =T P PUUPOPURP 90
(0 TeTe Eo1 (oIS Tod] o) 4 Y o T T o =TT PO PPPUPPPRPP: 90

Copyright and disclaimer

Copyright © 2003, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs,
including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, shall be subject to license terms and license restrictions applicable to the programs. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices.
UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim
all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Vi

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Oracle customers have access to electronic support through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

viii Oracle Commerce Guided Search Platform Services

Preface

Oracle Commerce Guided Search is the most effective way for your customers to dynamically explore your
storefront and find relevant and desired items quickly. An industry-leading faceted search and Guided Navigation
solution, Guided Search enables businesses to influence customers in each step of their search experience.
At the core of Guided Search is the MDEX Engine™, a hybrid search-analytical database specifically designed
for high-performance exploration and discovery. The Oracle Commerce Content Acquisition System provides
a set of extensible mechanisms to bring both structured data and unstructured content into the MDEX Engine
from a variety of source systems. The Oracle Commerce Assembler dynamically assembles content from any
resource and seamlessly combines it into results that can be rendered for display.

Oracle Commerce Experience Manager enables non-technical users to create, manage, and deliver targeted,
relevant content to customers. With Experience Manager, you can combine unlimited variations of virtual
product and customer data into personalized assortments of relevant products, promotions, and other content
and display it to buyers in response to any search or facet refinement. Out-of-the-box templates and experience
cartridges are provided for the most common use cases; technical teams can also use a software developer's
kit to create custom cartridges.

About this guide

This guide describes the tasks involved in managing implementations using the Oracle Commerce Guided
Search Application Controller.

Who should use this guide

This guide is intended for developers responsible for provisioning and managing Oracle Commerce Guided
Search implementations.

Conventions used in this guide

This guide uses the following typographical conventions:

Code examples, inline references to code elements, file names, and user input are set in monospace font. In
the case of long lines of code, or when inline monospace text occurs at the end of a line, the following symbol
is used to show that the content continues on to the next line: -

When copying and pasting such examples, ensure that any occurrences of the symbol and the corresponding
line break are deleted and any remaining space is closed up.

Contacting Oracle Support

Oracle Support provides registered users with answers to implementation questions, product and solution
help, and important news and updates about Guided Search software.

10 | Preface

You can contact Oracle Support through the My Oracle Support site at https.//support.oracle.com.

Oracle Commerce Guided Search Platform Services Application Controller Guide

https://support.oracle.com

Chapter 1
Introduction

This section introduces the Oracle Endeca Application Controller and its architecture.

About the Oracle Endeca Application Controller

The Oracle Endeca Application Controller (EAC) is a control system you can use to control, manage, and
monitor components in your Endeca implementation.

The EAC provides the infrastructure to support Endeca projects from design through deployment and runtime.
It replaces the deprecated Control Interpreter, while leaving the Endeca tools (Developer Studio and Oracle
Endeca Workbench) largely intact.

The EAC uses open standards, such as the Web Services Descriptive Language (WSDL), which makes the
Application Controller platform- and language-independent. As a result, the Application Controller supports a
wide variety of applications in production. It allows you to handle complex operating environments that support
features such as partial updates, delta updates, phased MDEX Engine updates, and more.

EAC architecture

The EAC is installed on each machine that runs the Endeca software and is typically run in a distributed
environment.

Depending on the role that the EAC plays in the Endeca implementation, each instance of the EAC can take
one of two roles:

« EAC Central Server
* EAC Agent

You can communicate with the EAC and provide instance configuration and resource configuration information
to the EAC Central Server, using any of the three methods:

» Endeca Workbench. Endeca Workbench communicates through the WSDL interface to the EAC Central
Server. Using Endeca Workbench you can provision, run, and monitor your application. For details, see
the Oracle Endeca Workbench Help.

» The command line utility, eaccmd. eaccmd lets you script the EAC within a language such as Perl, shell,
or batch.

+ Direct programmatic control through the Endeca WSDL-enabled interface and languages, such as Java,
that support Web services.

12

Introduction | EAC architecture

/ Note: The Endeca Deployment Template utilizes this method for communication with the EAC
Central Server.

Using any of these methods, you can instruct the EAC to perform different operations in your Endeca
implementations, such as start or stop a component (for example, Forge or Dgraph), or a utility (for example,
Copy or Shell environment).

The following diagram describes the EAC architecture and means of communication with it, while the sections
below describe the roles of the EAC Central Server and EAC Agents:

Agent

WSDL (public) WSDL (internal)

]

1

[1

Workbench eaccmd
Utility

EAC Central Server

One instance of the EAC serves as the EAC Central Server for your implementation. This instance includes
a WSDL-enabled interface, through which you communicate with the EAC. Communication is implemented
with the standard Web services protocol, SOAP.

The EAC Central Server also contains a repository that stores provisioning information — that is, data about
the hosts, components, applications and scripts that the EAC is managing.

/ Note: You should configure only one EAC Central Server for a given application. The EAC can run into

' issues when multiple Central Servers are provisioned with the same application on the same EAC Agents
(for example, it can lead to confusing clean-up instructions being sent to the Agents from multiple Central
Servers, which can interrupt scripts).

EAC Agents

All other instances of the EAC serve as Agents. The Agents instruct their host machines to do the actual work
of an Endeca implementation, such as processing data with a Forge component, or coordinating the workings
of multiple MDEX Engines with an Aggregated MDEX Engine component.

Each Agent also contains a small repository for its own use. The EAC Central Server communicates with its
Agents through an internal Web service interface. You do not communicate directly with the Agents—all
command, control, and monitoring functions are sent through the EAC Central Server.

Oracle Commerce Guided Search Platform Services Application Controller Guide

Introduction | EAC architecture 13

EAC architecture example

A typical Endeca implementation is usually spread across multiple host servers. Each of these physical servers
must have an EAC Agent that controls the components installed on the server.

The following diagram shows the architecture of the EAC.

The EAC Central Server communicates with EAC Agents that run on each machine hosting an entire
implementation (or components that comprise an implementation). The EAC Server communicates to the
Agents the information about the instance configuration and resource configuration. The Agents run the
necessary components and their processes on each machine, such as Forge, Dgidx, and Dgraph.

[~ " "mpex 1 [T 7 TMpEY I

WSDL (internal)

WSDL (internal) WSDL (internal)

—_— e m— — — — — — e e — — —_— e o m— —

MDEX 1 MDEX 2 ' MDEX (n) |
: (production) : : (production) : : {production) :
| DGRAPH |1 DGRAPH | DGRAPH |
: HTTP Service (8888 : HTTP Service (8888 : HTTP Service (8888
[EAC i EAC | EAC
[Agent | Agent | Agent
| | |
| | |

ITL Host
{production)

=

Related Links

WSDL (public) WSDL (internal)

HTTP Service (8888)

ccs EAC d FORGE
— Agent

i DGIDX
Store

Using the eaccmd Tool on page 45

This section describes the eaccmd command-line tool, which can be used to provision and run the
Endeca Application Controller.

Endeca Application Controller API Interface Reference on page 61

Application Controller interfaces are documented here. However, the exact syntax of a class member
depends on the output of the WSDL tool that you are using. Be sure to check the client stub classes
that are generated by your WSDL tool for the exact syntax of the Application Controller API class
members.

Oracle Commerce Guided Search Platform Services Application Controller Guide

Chapter 2
Using the Application Controller

This section describes how to use the Application Controller.

Installing the Application Controller

This topic describes the ways you can install the Application Controller.
You have the following choices:

+ Install the Agent. The Agent controls the workings of a single machine in an Application Controller
deployment. There are typically several Agents in a deployment.

+ Install the EAC Central Server along with one or more EAC Agents. The Central Server acts as a hub in
an Application Controller deployment, relaying commands to each of the Agents in the deployment. As
such, there is only a single Central Server per deployment. Alternatively, you can use an SSL-enabled
Central Server. Upon configuration, this version encrypts the HTTP channel between the Central Server
and the client Web services.

During installation, when you select whether you want to run the Agent and/or the Central Server on a machine,
an XML pointer to the appropriate WAR file is copied to its workspace directory. The presence or absence of
these files in the workspace directory determines what that machine is running. If you want to run the
SSL-enabled version of the Central Server, you must copy the XML pointer to it to your workspace directory
manually, as described in the following section.

Enabling SSL security in the Application Controller

SSL in the Application Controller is disabled by default.

To enable SSL security (between the client and the EAC Central Server, between the Central Server and an
Agent, or between Agents), you need to do the following:

+ Enable the SSL version of the appropriate Application Controller WAR file (eac-ssl .war replaces eac.war
for the Central Server, and eac-agent-ssl .war replaces eac-agent.war for the Agent).

* Modify the server .xml file for the Tomcat that is hosting the Application Controller.

For details on enabling SSL security in the Application Controller, see the Endeca Security Guide.

16 Using the Application Controller | Specifying the EAC Central Server in Oracle Endeca Workbench

Specifying the EAC Central Server in Oracle Endeca Workbench

You can specify the EAC Central Server from the Endeca Workbench EAC Settings page.

On the EAC Settings page of Endeca Workbench, you specify the host and port for the EAC Central Server.
These settings control which machine Endeca Workbench communicates with when making requests to EAC.
See the Endeca Workbench help for more information.

Starting and stopping the Application Controller directly on
UNIX

Although you typically control the Application Controller through Endeca Workbench, you can also start and
stop it independently.

In a UNIX shell, you start the Application Controller (along with any other components using the same port)
with the following command:

$ENDECA_ROOT/tools/server/bin/startup.sh

You stop the Application Controller (along with any other components using the same port) with the following
command:

$ENDECA ROOT/tools/server/bin/shutdown.sh

Starting the Application Controller from inittab

In a UNIX production environment, the Endeca Application Controller can be started by init from inittab.

In a UNIX development environment, the Endeca HTTP Service can be started from the command line. In a
UNIX production environment, however, Oracle recommends that it be started by init from inittab. If the service
crashes or is terminated, init automatically restarts it.

The UNIX version of Platform Services contains a file named endeca_run.sh that is in the
$ENDECA ROOT/tools/server/bin directory. This is a version of startup.sh that calls run instead of
start and redirects stdout and stderr to $SENDECA_CONF/logs/catalina.out.

You can write a script that is referenced in inittab. The script sets environment variables and then calls
endeca_run.sh. When writing your script, it is recommended as a best practice that you run the Endeca HTTP
Service as a user other than root. When running the service as a non-root user, you can set a USER environment
variable that will be inherited by other scripts, such as EAC scripts.

This sample script (hamed start_endeca_http_service.sh) sets the ENDECA_USER variable to the
“endeca” user, sets the INSTALLER_SH variable to the path of the environment variables script and sources
it, and then does an su to change to the “endeca” user:

#1/bin/sh

ENDECA USER=endeca
INSTALLER_SH=/usr/local/endecas/PlatformServices/workspace/setup/installer_sh.ini
We want to use installer_sh.ini variables in this script,

so we source It here.

source $INSTALLER SH

change to user endeca

su $ENDECA_USER -c "/bin/sh -c \"source $INSTALLER SH; \

Oracle Commerce Guided Search Platform Services Application Controller Guide

Using the Application Controller | Starting and stopping the Application Controller on Windows 17

cd $ENDECA_CONF/work; exec env USER=$ENDECA USER \
$ENDECA ROOT/tools/server/bin/endeca_run.sh\""

On Solaris platforms, replace "source" with "." because source is not a command in the Bourne shell. The
start_endeca_http_service.sh scriptis then referenced in inittab with an entry similar to this example.

ec:2345:respawn:/usr/local/endeca/PlatformServices/workspace/setup/start_ende-
ca_http_service.sh

When writing your startup script, keep in mind that it is server-specific, and therefore its details (such as paths
and user names) depend on the configuration of your server.

Starting and stopping the Application Controller on Windows
Although you typically control the Application Controller through Endeca Workbench, you can also start and
stop it independently.

The Endeca HTTP service, which controls the Endeca Application Controller, is created, registered, and
configured by the installation, and started when you reboot your computer after installation.

To stop and restart the Application Controller after installation, do the following:

1. Go to Start > Control Panel > Administrative Tools > Services.
2. In the Windows Services editor, select the Endeca HTTP service.
3. Click Stop or Restart.

Using the eac.properties file
The eac.properties file, which is located in the $ENDECA_CONF/conf directory on UNIX, or
%ENDECA_CONF%\conT on Windows, is the general configuration file for the Endeca Application Controller.

The following section describes the process control-related settings you can specify in eac.properties.

&
7~ Note: SSL-related properties in this file are discussed in the Endeca Security Guide.

Setting the MDEX Engine root directory

The attribute com.endeca.mdexRoot specifies the root directory of your MDEX Engine installation.

If you did not specify this directory upon installing Platform Services, the value for this setting will be blank.
Note that although the EAC will start if this is left blank, If you install the MDEX Engine package later, you
should specify the MDEX Engine root directory as an absolute path, including the MDEX Engine version
number. For example:

com.endeca.mdexRoot=C:\\Endeca\\MDEX\\6.5.0

Setting the Copy utility’s temporary directory

Directories are copied first to a specified temporary directory on the destination machine before being copied
one file at a time to the target location.

Oracle Commerce Guided Search Platform Services Application Controller Guide

18 Using the Application Controller | About the Application Controller log

You can configure the location of this temporary directory in the eac . properties file, using the optional
setting com.endeca.eac.filetransfer.fileTransferTempDir as follows:

« If this setting is defined as an absolute path, the Copy utility uses it.
« If it is defined as a relative path, the Copy utility considers it to be relative to ¥#ENDECA_CONF%/state/
« If it is not defined, the Copy utility uses the directory YENDECA_CONF%/state/file_transfer/

Ensuring clean component shutdown

Server components such as the Dgraph can be cleanly shut down via their HTTP interface.

When stopping a server, the Application Controller first attempts to shut down the server through its HTTP
interface. If this does not complete within 30 seconds, it kills the server process. You can modify this default
with the com.endeca.eac.process.shutdownTimeOutSecs setting in eac.properties.

Managing server restarts

In an effort to make Endeca deployments more fault tolerant, the Application Controller automatically restarts
servers that crash.

You can configure the number of times the Application Controller attempts to restart a server within a specified
time window. If the server crashes more than the specified number of times in the specified time window, then
it is marked as failed.

Both of these variables are set in eac.properties. The
com.endeca.eac.process.maxServerRestartsPerWindow setting defaults to five, while
com.endeca.eac.process.serverRestartTimeWindowMins defaults to one.

About the Application Controller log

The Endeca Application Controller log is located in %ENDECA_CONF%\1ogs (on Windows) or
$ENDECA_CONF/10gs (on UNIX).

The EAC log has a default size limit of 1G. The log is named main.r ot ati on nunber . log and is part of

a two-log rotation that rolls automatically when the maximum size is reached. When the second log file reaches
the maximum size, the first is overwritten. That is, when main.0. log reaches the 1G size limit, the system

starts to write to main.1.1og. Once main.1.log reaches the 1G size limit, mnain.0. log is overwritten.

Modifying Application Controller logging levels
By default, Application Controller log files log WARNING and SEVERE messages.

If you want to capture INFO level messages as well, you need to modify the logging.properties file.

To modify logging levels in the logging.properties file:

Stop the Endeca HTTP service.

Navigate to %ENDECA_CONF%\conf (on Windows) or $ENDECA_CONF/conf (on UNIX).
Open logging.properties.

Locate the section EAC Log Level.

In the line com.endeca.eac. level, change WARNING to INFO.

A

Oracle Commerce Guided Search Platform Services Application Controller Guide

Using the Application Controller | About the Application Controller log 19

6. Save and close the file.
7. Start the Endeca HTTP service.

For more information about logging options, see the comments in logging.properties.

Oracle Commerce Guided Search Platform Services Application Controller Guide

Chapter 3

Provisioning Implementations with Application
Controller

You specify Application Controller hosts, components, and scripts, and later reference them in Workbench,
eaccmd, or your custom Web services interface. This process is known as provisioning.

Provisioning overview

Provisioning an Endeca implementation with the Application Controller consists of the following steps.

 Creating a provisioning file, in which you define the hosts and components that comprise your
implementation, as well as the scripts that it uses.

» Referencing that file when creating an implementation with the eaccmd tool or your custom Web service
interface.

]
7 Note: This chapter provides examples using the sample wine reference implementation and the eaccmd
tool.

Related Links

About eaccmd on page 45
When you manage your Endeca implementation with the Endeca Application Controller, you control
and monitor its working through the EAC Central Server.

Endeca Application Controller API Interface Reference on page 61
Application Controller interfaces are documented here. However, the exact syntax of a class member
depends on the output of the WSDL tool that you are using. Be sure to check the client stub classes

that are generated by your WSDL tool for the exact syntax of the Application Controller API class
members.

About the provisioning file and schema

The provisioning file is a file in XML format in which you define the following aspects of your implementation.

* Application (the root element)
» Hosts (and, optionally, directories on hosts)
» Components

22 Provisioning Implementations with Application Controller | About the provisioning file and schema

* Scripts

The provisioning schema (named eaccmdProvisioning.xsd) is located in the
$ENDECA_ROOT/conf/schema directory on UNIX (%ENDECA_ROOT%\conf\schema on Windows).

Note: You can name the provisioning file anything you like. In the remainder of this chapter, we frequently
refer to the provisioning file as app - xml.

Invalid characters in provisioning

The following characters cannot be used when provisioning applications, components, hosts, scripts, or utility
tokens.

Invalid Windows file name characters, including:

» Forward slash (/)

Backslash (\)

Colon (z)

Asterisk (*)

* Question mark (?)

Right and left angle brackets (< >)
» Double quotation mark (“)

* Vertical pipe (])

These additional characters:

+ Single quotation mark (“)
» Space

Defining the root Application element

The root element in a provisioning file is the application element.

You can also specify an applicationID in the eaccmd tool. If eaccmd specifies a different applicationID for the
same application, it overrides the one provided in the provisioning file.

Defining hosts

In the hosts element you list each host by a host ID, a host name, a port number, and (optionally) properties
and directories.

The host syntax is as follows:

<host host-id="hostl" host-name="localhost" port=''8888">

<properties>
<property name="department'” value="engineering" />
<property name="department” value="prof services"™ />
<property name="enforceDiskQuota" />

</properties>

</host>

In this example the port is the HTTP port through which the EAC Central Server communicates with its Agents.
The optional use of host-id to alias host definitions is explained in the following section. The optional addition
of properties and directories is described later in this document.

Oracle Commerce Guided Search Platform Services Application Controller Guide

Provisioning Implementations with Application Controller | About the provisioning file and schema 23

Related Links

Aliasing hosts with host-id on page 23
In each host definition, you can create a unique alias called host-id that may be used to refer to the
specified host and port. (The host-name and port do not need to be unique.)

Provisioning directories on hosts on page 23
As part of host provisioning, you can also provision directories using a full path and a name.

Adding properties to hosts and components on page 24
You can add properties, consisting of a required name and an optional value, to any host or component
element.

Aliasing hosts with host-id

In each host definition, you can create a unique alias called host-id that may be used to refer to the specified
host and port. (The host-name and port do not need to be unique.)

For example, say you defined host1 as follows:
<host host-id="hostl" host-name=""localhost" port=''8888" />

Later, when defining components, you could simply refer to that host-id when specifying the host for a given
component.

<dgidx name="'dgidx-0"" host-id="hostl">
Aliasing hosts in this way has two benefits:

+ It allows you to switch staging and production machines easily, by changing the name and port associated
with a host-id alias.

+ It makes it possible to reference a single physical host through different host-id aliases.

Provisioning directories on hosts
As part of host provisioning, you can also provision directories using a full path and a name.

For example, assuming a host has already been provisioned as defined above, you could add the following
element:

<host >

<directories>

<directory dir-id="input'>
<path>C:\staging_app\working\input</path>
</directory>

</directories>

</host>

Defining components in your provisioning file
The components element contains all of the components in your implementation.

Depending on the component type, the settings vary. The following section provides details about all supported
component types.

Note the following:

» The order of elements in a component does not matter.
» Unless otherwise noted, relative paths are supported.

Oracle Commerce Guided Search Platform Services Application Controller Guide

24 Provisioning Implementations with Application Controller | About the provisioning file and schema

* Required elements are labelled as such. If you attempt to provision a component without a required element,
you will receive an error.

Using XML entities in your provisioning file
The Application Controller supports the use of XML entities in provisioning files.

For example, assume you established the following entities in your XML provisioning file:

<IDOCTYPE application [
<IENTITY W_base "C:\Endeca\PlatformServices\reference\sample wine_ data\data'>

<IENTITY H1 "hostl'>
1>

Subsequently, when defining a Forge component, rather than having to enter the host machine and working
directory like this:

<forge component-id=""forgel"™ host-id="hostl">
<working-dir>

C:\Endeca\PlatformServices\reference\sample wine_data\data\
</working-dir>

</forge>

you can instead refer to them by their entities, like this:

<forge component-id="forgel"™ host-id="&H1;"">
<working-dir>
&W_base;\
</working-dir>

Adding properties to hosts and components
You can add properties, consisting of a required name and an optional value, to any host or component element.
Such properties can be used for value mapping as well as for flagging the element in question.

You add properties as part of provisioning your application. After your application is provisioned, any properties
that you defined are included in the application definition, which you can retrieve using eaccmd’s describe-app
command. This feature is only useful in user-provided scripts; it is not an additional place to pass arguments
or options to Endeca components.

Related Links

Forge on page 27
A Forge element launches the Forge (Data Foundry) software, which transforms source data into
tagged Endeca records.

Dgidx on page 28
A Dgidx component sends the finished data prepared by Forge to the Dgidx program, which generates
the proprietary indices for each Dgraph.

Dgraph on page 30
A Dgraph element launches the Dgraph (MDEX Engine) software, which processes queries against
the indexed Endeca records.

LogServer on page 32
The LogServer component controls the use of the Endeca Log Server.

ReportGenerator on page 33

Oracle Commerce Guided Search Platform Services Application Controller Guide

Provisioning Implementations with Application Controller | About the provisioning file and schema 25

The ReportGenerator component runs the Report Generator, which processes Log Server files into
HTML-based reports that you can view in your Web browser and XML reports that you can view in
Endeca Workbench.

Defining scripts in your provisioning file
A script is a named command that you provision and run within the Application Controller.

In most cases, a script invokes a batch file that runs a process, such as a baseline update or report generation,
or otherwise exercises component control. Scripts provide the automation that makes it possible for you to
wrap and reuse a sequence of commands, without removing your ability to configure your application.

Although only one instance of each script can run at a time, most scripts are designed to be run repeatedly.
For example, rather than start each component separately using Endeca Workbench or eaccmd, you can
launch a baseline update script that will execute the start component commands in the proper sequence. You
can reuse this script as often as you like.

Scripts live on the EAC Central Server; the EAC runs them from there. You can use scripts with the eaccmd
tool, when accessing the Endeca WSDL programmatically, or within Endeca Workbench. Details on starting,
stopping, and obtaining status for scripts for each of these environments can be found in the following places:

» Component and script control commands.

» The ScriptControl interface.

* In the Oracle Endeca Workbench Help.

>
7 Note: EAC scripts are not the same as Control Interpreter control scripts, which are deprecated. EAC
scripts are not supported on clusters that are not uniformly one platform.

Related Links
ScriptControl interface on page 72
The ScriptControl interface provides programmatic script management capabilities.

Component and script control commands on page 51

The component and script control commands are used to start and stop components or scripts and
retrieve their status.

Developing and maintaining scripts
You can write your own script in Java or .NET to contact the Central Server directly.

Because the EAC does not offer any mechanism for passing arguments to scripts at runtime, you need to
provision a separate EAC script for every combination of arguments you plan to use. For example, if you want
the Report Generator to generate daily and weekly reports, you must provision the associated script twice,
once for each time period argument.

Script environment variables

You can write your own script in Java or .NET to contact the EAC Central Server directly. Script environment
variables allow you to look up the host, port, and application name if you want to use them in your script.

These environment variables are set in the script’s runtime environment. The EAC Central Server provides
values for the following three variables:

» EAC_HOST is the hostname for the EAC Central Server host.
* EAC_PORT is the port number for the EAC Central Server host.
+ EAC_APP is the application in which this script is provisioned.

Oracle Commerce Guided Search Platform Services Application Controller Guide

26 Provisioning Implementations with Application Controller | Application Controller component reference

Provisioning scripts
Scripts, like hosts and components, need to be provisioned before they can be used in the Application Controller.

Scripts can be provisioned with the following elements:

Sub-element Description

script-id Required. The name of this script.

cmd Required. The command to launch the script.

log-file Name of the script log file. If log-file is not specified, the default value is
used.

working-dir Working directory for the process that is launched. If it is specified, it must

be an absolute path. If working-dir is not specified, the default value of
$ENDECA CONF/work/ (app_id)/ is used.

Example

This example provisions two scripts:
<scripts>
<script script-id="scriptl">
<cmd>runthis.sh</cmd>
</script>
<script script-id="script2'>
<cmd>run.sh --this</cmd>
</script>
</scripts>

Using canonical paths in an application
The Application Controller provides a great deal of flexibility in computing directories.

However, if you want to write a generic script that can work with any kind of provisioning, the
getApplication() method can make it difficult to predict unspecified directory destinations.

In such cases, the getCanonicalApplication() method returns the provisioning just as
getApplication() does, but with all paths canonicalized. This process ensures that all paths are absolute,
and that the working directory and log path settings are provided. It also prevents .. from being used in a path
name. In eaccmd, you use the optional --canonical flag to the describe-app command to enable
canonicalization.

Because it has to resolve paths on each Agent, getCanonicalApplication() can be slightly slower than
getApplication(). Therefore, if you know that your script uses full paths, you may prefer to use
getApplication().

Application Controller component reference

This section includes details and examples about the following components: Forge, Dgidx, Dgraph, LogServer,
and ReportGenerator.

Oracle Commerce Guided Search Platform Services Application Controller Guide

Forge

Provisioning Implementations with Application Controller | Application Controller component reference 27

A Forge element launches the Forge (Data Foundry) software, which transforms source data into tagged

Endeca records.

Every Application Controller component contains the following attributes:

Attribute
component-id
host-id

properties

Description
Required. The name of this instance of the component.
Required. The alias of the host upon which the component is running.

An optional list of properties, consisting of a required name and an optional
value.

The Forge element contains the following sub-elements:

Sub-element

args

input-dir
log-file

output-prefix-name

output-dir
pipeline-file
num-partitions

working-dir

state-dir
temp-dir
web-service-port

ssl-configuration

Description

Command-line flags to pass to Forge, expressed as a set of arg
sub-elements. If an argument takes a value, the argument and value must
be on separate lines in the provisioning file. For example:

<args>
<arg>--threads</arg>
<arg>3</arg>

</args>

The path to the Forge input.

Name of the Forge log file. If the log-file is not specified, the default is
component working directory plus component name plus “.log”.

The implementation-specific prefix name, without any associated path
information.

Directory where the output from the Forge process will be stored.
Required. Name of the Pipeline.epx file to pass to Forge.
The number of partitions.

Working directory for the process that is launched. If it is specified, it must
be an absolute path. If any of the other properties of this component contain
relative paths, they are interpreted as relative to the working directory. If
working-dir is not specified, it defaults to
$ENDECA_CONF/work/<appName>/ <componentName> on UNIX, or
%ENDECA_CONF%\work\<appName>/ <componentName> on Windows.

The directory where the state file is located.
The temporary directory that Forge uses.
The port on which the Forge metrics Web service listens.

Both the parallel Forge and Forge metrics Web service can secure their
communications with SSL. The ssl-configuration element contains
three sub-elements of its own:

» cert-file: The cert-file specifies the path of the eneCert.pem
certificate file that is used by Forge processes to present to any client.

Oracle Commerce Guided Search Platform Services Application Controller Guide

28 Provisioning Implementations with Application Controller | Application Controller component reference

Sub-element Description

This is also the certificate that the Application Controller Agent should
present to Forge when trying to talk to it. The file name can be a path
relative to the component’s working directory.

» ca-Tile: The ca-fi le specifies the path of the eneCA.pem Certificate
Authority file that Forge processes uses to authenticate communications
with other Endeca components. The file name can be a path relative
to the component’s working directory.

» cipher: Specify one or more cryptographic algorithms, one of which
Dgraph will use during the SSL negotiation. If you omit this setting, the
Dgraph chooses a cryptographic algorithm from its internal list of
algorithms. See the Endeca Commerce Security Guide for more
information.

Example
The following example provisions a Forge component for use with the sample wine data:

<forge component-id="wine_forge" host-id="wine_indexer">
<args>
<arg>-vw</arg>
</args>
<num-partitions>1</num-partitions>
<working-dir>
C:\Endeca\PlatformServices\reference\sample wine_ data
</working-dir>
<pipeline-file>._.\data\forge input\pipeline.epx</pipeline-file>
<input-dir>.\data\forge_input</input-dir>
<output-dir>._\data\partitionO\forge output</output-dir>
<state-dir>.\data\partitionO\state</state-dir>
<log-file>_.\logs\wine_forge.log</log-file>
<output-prefix-name>wine</output-prefix-name>
</forge>

Dgidx

A Dgidx component sends the finished data prepared by Forge to the Dgidx program, which generates the
proprietary indices for each Dgraph.

Every Application Controller element contains the following attributes:

Attribute Description

component-id Required. The name of this instance of the component.

host-id Required. The alias of the host upon which the component is running.

properties An optional list of properties, consisting of a required name and an optional
value.

The Dgidx element contains the following sub-elements:

Oracle Commerce Guided Search Platform Services Application Controller Guide

Provisioning Implementations with Application Controller | Application Controller component reference 29

Sub-element Description

args Command-line flags to pass to Dgidx, expressed as a set of arg
sub-elements. If an argument takes a value, the argument and value must
be on separate lines in the provisioning file. For example:
<args>
<arg>--threads</arg>
<arg>3</arg>
</args>

app-config-prefix Path and file prefix that define the input for Dgidx. For example, in
/endeca/project/files/myProject, files beginning with myProject
in the directory /endeca/project/files are the ones to be considered.

output-prefix Required. Path and prefix name for the Dgidx output. For example,
output_prefix = c:\temp\wine generates files that start with “wine”
in the c:\'temp directory.

log-file The path to and name of the Dgidx log files. If the log-file is not specified,
the default is component working directory plus component name plus
“.log”. Dgidx can generate three distinct log files: the basic component log
file, and two files that log the subtasks described in run-aspell, below.

* The file dgwordlist logs stdout/stderr for the dgwordlist subtask
described below. The name of this file is derived from the Dgidx
component’s log-file location, plus the term “dgwordlist”. If an extension
exists, “dgwordlist” is added before the extension. For example, if the
original log-file is C:\dir\dgidx-1. log, then the dgwordlist log
would be C:\dir\dgidx-1.dgwordlist.log.

» The file aspellcopy logs the stdout/stderr for the subtask of uploading
the Aspell files to Dgidx’s output directory, where the Dgraph can access
them. The name of this file is derived from the Dgidx component’s
log-file location, plus the term “aspellcopy”. If an extension exists,
“aspellcopy” is added before the extension. For example, if the original
log-file is C:\dir\dgidx-1.txt, then the aspellcopy log would be
C:\dir\dgidx-1.aspellcopy.txt.

input-prefix Required. Path and prefix name for the Forge output that Dgidx indexes.

working-dir Working directory for the process that is launched. If it is specified, it must
be an absolute path. If any of the other properties of this component contain
relative paths, they are interpreted as relative to the working directory. If
working-dir is not specified, it defaults to
$ENDECA_CONF/work/<appName>/<componentName> on UNIX, or
%ENDECA_CONF%\work\<appName>/<componentName> on Windows.

run-aspell Specifies Aspell as the spelling correction mode for the implementation.
This causes the Dgidx component to run dgwordlist and to copy the Aspell
files to its output directory, where the Dgraph component can access them.
The default is true. See log-file above for details on the logging of these
subtasks. For Aspell details, see the Endeca Advanced Development
Guide.

temp-dir A temporary directory used by this component.

Oracle Commerce Guided Search Platform Services Application Controller Guide

30 Provisioning Implementations with Application Controller | Application Controller component reference

Example
The following example provisions a Dgidx component to work with the sample wine data:

<dgidx component-id="wine_dgidx' host-id="wine_indexer">
<args>
<arg>-v</arg>
</args>
<working-dir>
C:\Endeca\PlatformServices\reference\sample_wine_data
</working-dir>
<input-prefix>._.\data\partitionO\forge output\wine</input-prefix>
<app-config-prefix>
\data\partitionO\forge output\wine
</app-config-prefix>
<output-prefix>.\data\partitionO\dgidx_output\wine</output-prefix>
<log-file>_\logs\wine_dgidx.log</log-file>
<run-aspell>true</run-aspell>
</dgidx>

Dgraph

A Dgraph element launches the Dgraph (MDEX Engine) software, which processes queries against the indexed
Endeca records.

Every Application Controller component contains the following attributes:

Attribute Description

component-id Required. The name of this instance of the component.

host-id Required. The alias of the host upon which the component is running.

properties An optional list of properties, consisting of a required name and an optional
value.

The Dgraph element contains the following sub-elements:

Sub-element Description

args Command-line flags to pass to Dgraph, expressed as a set of arg
sub-elements. If an argument takes a value, the argument and value must
be on separate lines in the provisioning file. For example:
<args>
<arg>--threads</arg>
<arg>3</arg>
</args>

port Required. The port at which the Dgraph should listen. The default is 8000.

log-file The path to and name of the Dgraph log file. If the log-file is not specified,
the default is component working directory plus component name plus
“.Iog!!.

input-prefix Required. Path and prefix name for the Dgidx output that the Dgraph uses
as an input.

Oracle Commerce Guided Search Platform Services Application Controller Guide

Sub-element

app-config-prefix

working-dir

startup-timeout

reg-log-file

spell-dir

update-dir

update-log-file
temp-dir

ssl-configuration

Example

Provisioning Implementations with Application Controller | Application Controller component reference 31

Description

Path and file prefix that define the input for the Dgraph. For example, in
/endeca/project/Files/myProject, files beginning with myProject
in the directory /endeca/project/files are the ones to be considered.

Working directory for the process that is launched. If it is specified, it must
be an absolute path. If any of the other properties of this component contain
relative paths, they are interpreted as relative to the working directory. If
working-dir is not specified, it defaults to
$ENDECA_CONF/work/<appName>/<componentName> on UNIX, or
%ENDECA_CONF%\work\<appName>/<componentName> on Windows.

Specifies the amount of time in seconds that the Application Controller
waits while starting the Dgraph. If it cannot determine that the Dgraph is
running in this timeframe, it times out. The default is 60.

Path to and name of the request log.

If specified, is the directory in which the Dgraph will look for Aspell files. If
it is not specified, the Dgraph will look for Aspell files in the Dgraph’s input
directory (that is, input-prefix without the prefix). For example, if input-prefix
is /dir/prefix and all the Dgraph input files are /dir/prefix.*, the Dgraph will
look for the Aspell files in /dir/.

Specifies the directory from which the Dgraph reads partial update file. For
more information, see the Endeca Partial Updates Guide.

Specifies the file for update-related log messages.
A temporary directory used by this component.

Contains three sub-elements of its own:

« cert-Tile: The cert-file specifies the path of the eneCert.pem
certificate file that is used by the Dgraph to present to any client. This
is also the certificate that the Application Controller Agent should
present to the Dgraph when trying to talk to the Dgraph. The file name
can be a path relative to the component’s working directory.

» ca-file: The ca-fi le specifies the path of the eneCA.pem
Certificate Authority file that the Dgraph uses to authenticate
communications with other Endeca components. The file name can be
a path relative to the component’s working directory.

» cipher: Specify one or more cryptographic algorithms, one of which
Dgraph will use during the SSL negotiation. If you omit this setting, the
Dgraph chooses a cryptographic algorithm from its internal list of
algorithms. See the Endeca Commerce Security Guide for more
information..

The following example provisions an SSL-enabled Dgraph component for use with the sample wine data:

<dgraph component-id="wine_dgraph" host-id="wine_indexer'>

<args>

<arg>--spl</arg>
<arg>--dym</arg>

</args>

<port>8000</port>

Oracle Commerce Guided Search Platform Services Application Controller Guide

32 Provisioning Implementations with Application Controller | Application Controller component reference

<working-dir>
C:\Endeca\PlatformServices\reference\sample wine_data
</working-dir>
<input-prefix>.\data\partitionO\dgraph_input\wine</input-prefix>
<app-config-prefix>
\data\partitionO\dgraph_input\wine
</app-config-prefix>
<log-file>_\logs\wine_dgraph.log</log-file>
<reg-log-file>_\logs\wine_dgraph_reqg_log.out</req-log-file>
<startup-timeout>120</startup-timeout>
<ssl-configuration>
<cert-file>
C:\Endeca\PlatformServices\workspace\etc\eneCert.pem
</cert-file>
<ca-file>
C:\Endeca\PlatformServices\workspace\etc\eneCA.pem
</ca-file>
<cipher>AES128-SHA</cipher>
</ssl-configuration>
</dgraph>

LogServer
The LogServer component controls the use of the Endeca Log Server.

Every Application Controller component contains the following attributes:

Attribute Description

component-id Required. The name of this instance of the component.

host-id Required. The alias of the host upon which the component is running.

properties An optional list of properties, consisting of a required name and an optional value.

The LogServer component contains the following sub-elements:

Sub-element Description

ort Required. Port on which to run the LogServer.

output-prefix Required. Path and prefix name for the LogServer output. For example,
output_prefix = c:\temp\wine generates files that start with “wine” in
c:\temp

gzip Required. Controls the archiving of log files. Possible values are true and false.

working-dir Working directory for the process that is launched. If it is specified, it must be an

absolute path. If any of the other properties of this component contain relative
paths, they are interpreted as relative to the working directory. If working-dir is not
specified, it defaults to SENDECA_CONF/work/<appName>/<componentName>
on UNIX, or YENDECA_CONF%\work\<appName>/<componentName> on
Windows.

startup-timeout Specifies the amount of time in seconds that the eaccmd waits while starting the
LogServer. If it cannot determine that the LogServer is running in this timeframe,
it times out. The default is 60.

Oracle Commerce Guided Search Platform Services Application Controller Guide

Provisioning Implementations with Application Controller | Application Controller component reference

Sub-element Description

log-file The path to the LogServer log file. If the log-file is not specified, the default is
component working directory plus component name plus “.log”.

Example
The following example provisions a LogServer component based on the sample wine data.

<logserver component-id="wine_logserver" host-id="wine_indexer'>
<port>8002</port>

<working-dir>
C:\Endeca\PlatformServices\reference\sample_wine_data
</working-dir>
<output-prefix>.\logs\logserver_output\wine</output-prefix>
<gzip>false</gzip>

<startup-timeout>120</startup-timeout>
<log-file>_\logs\wine_logserver.log</log-file>

</logserver>

ReportGenerator

The ReportGenerator component runs the Report Generator, which processes Log Server files into HTML-based

reports that you can view in your Web browser and XML reports that you can view in Endeca Workbench.

Every Application Controller component contains the following attributes:

33

Attribute Description

component-id Required. The name of this instance of the component.

host-id Required. The alias of the host upon which the component is running.
properties An optional list of properties, consisting of a required name and an optional value.

The ReportGenerator component contains the following sub-elements:

Sub-element Description

working-dir

input-dir-or-file

output-file

Working directory for the process that is launched. If it is specified, it must be an
absolute path. If any of the other properties of this component contain relative
paths, they are interpreted as relative to the working directory. If working-dir is
not specified, it defaults to

$ENDECA CONF/work/<appName>/<componentName> on UNIX, or
%ENDECA_CONF%\work\<appName>/<componentName> on Windows.

Required. Path to the file or directory containing the logs to report on. If it is a
directory, then all log files in that directory are read. If it is a file, then just that file
is read.

Required. Name the generated report file and path to where it is stored. For
example:
C:\Endeca\reports\myreport._html on Windows

/endeca/reports/myreport.html on UNIX

Oracle Commerce Guided Search Platform Services Application Controller Guide

34 Provisioning Implementations with Application Controller | Application Controller component reference

Sub-element

stylesheet-file

settings-file

timerange

start-date <date>

stop-date <date>

time-series

charts

log-file

java_binary

java_options

args

Example

Description

Required. Filename and path of the XSL stylesheet used to format the generated
report. For example:

%ENDECA CONF%\etc\ report_stylesheet.xsl on Windows
$ENDECA CONF/etc/report_stylesheet.xsl on UNIX

Path to the report_settings.xml file. For example:
%ENDECA_CONF%\etc\report_settings.xml on Windows
$ENDECA_CONF/etc/report_settings.xml on UNIX

Sets the time span of interest (or report window). Allowed keywords:

* Yesterday

+ LastWeek

+ LastMonth

» DaySoFar

+ WeekSoFar

* MonthSoFar
These keywords assume that days end at midnight, and weeks end on the midnight
between Saturday and Sunday.

These set the report window to the given date and time. The date format should
be either yyyy mm_dd or yyyy mm _dd.hh_mm_ss. For example,
2009 10 _23.19 30 57 expresses Oct 23, 2009 at 7:30:57 in the evening.

Turns on the generation of time-series data and specifies the frequency, Hourly
or Daily.
Turns on the generation of report charts. Disabled by default.

The path to the ReportGenerator log file. If the log-file is not specified, the default
is component working directory plus component name plus “.log”.

Should indicate a JDK 1.5.x or later. Defaults to the JDK that Endeca installs.

Command-line options for the java_binary setting. This command is primarily
used to adjust the ReportGenerator memory, which defaults to 1GB. To set the
memory, use the following:

jJjava_options = -Xmx[MemoryInMb]m -Xms[MemorylnMb]m

Command-line flags to pass to the ReportGenerator, expressed as a set of arg
sub-elements.

The following example provisions a ReportGenerator component based on the sample wine data.

<reportgenerator component-id="wine_gen_html_report" host-id="wine_indexer'>

<working-dir>

C:\Endeca\PlatformServices\reference\sample_wine_data

</working-dir>

<input-dir-or-file>_\logs\logserver_output</input-dir-or-file>
<output-Ffile>_.\reports\daily\daily report_html</output-file>

Oracle Commerce Guided Search Platform Services Application Controller Guide

Provisioning Implementations with Application Controller | Provisioning your implementation with eaccmd 35

<stylesheet-file>_\etc\report_stylesheet.xsl</stylesheet-file>
<settings-file>_\etc\report _settings.xml</settings-file>
<timerange>day-so-far</timerange>

<charts>true</charts>

<log-file>_.\logs\wine _gen_html_report.log</log-file>
</reportgenerator>

Provisioning your implementation with eaccmd

You can use the eaccmd command-line interface to create an implementation based on the provisioning file
you created.

To provision your implementation:

1. Create a provisioning document as described above.

2. Run eaccmd with the --define-app command, specifying the provisioning document you created in step 1.
For example:
eaccmd localhost:8888 define-app --app myApp --def app.xml

Related Links

Using the eaccmd Tool on page 45
This section describes the eaccmd command-line tool, which can be used to provision and run the
Endeca Application Controller.

Provisioning the Application Controller to work on multiple machines

Typically, you provision the Application Controller to work in a distributed environment. You do this by defining
the implementation appropriately and then starting the components on the provisioned delegate machines.

The following steps walk you through multi-machine provisioning and execution using the Application Controller.

1. Write a provisioning document for the EAC Central Server in which you define all of the components and
their corresponding host machines. Save this document as app.xml.

2. Run eaccmd on the host_1 machine, using the app.xml provisioning document as follows:
eaccmd devhost:8888 define-app --app myApp --def app.xml

3. To start the component Forge on machine data_proc, issue this eaccmd command on host_1:
eaccmd devhost:8888 start --app myApp --comp forge

4. To start the component Dgidx on machine data_proc, issue this eaccmd command on host_1:
eaccmd devhost:8888 start --app myApp --comp dgidx

5. To start the component Dgraph on machine dgraph_1, issue this eaccmd command on host_1:
eaccmd devhost:8888 start --app myApp --comp dgraph

Multi-machine example

The example below illustrates how provisioning and running the Application Controller work in multi-machine
environments. In this scenario, there are three machines: devhost, which serves as the EAC Central Server,
and dev555 and dev777, which serve as Agent machines running Forge and Dgraph respectively. The
Application Controller is installed identically on each machine. Eaccmd is run on devhost (aliased host_1),
using HTTP port 8888.

Oracle Commerce Guided Search Platform Services Application Controller Guide

36 Provisioning Implementations with Application Controller | Forcing the removal of an application

Eaccmd issues commands to the EAC Central Server, which in turn passes them on to Agent machines dev555
(aliased data_proc) and dev777 (aliased dgraph_1) via HTTP. The EAC Central Server machine, devhost,
handles all direct communication with the user, while the Agent machines execute application tasks.

I
| .
Agent 1
I
| devEES
| “data_proc
EAC
- HTTF e
eaccmd — Central . =
Eoi [connections Dygidx
HTTP
connection devhost
“host_1" E N
Agent 2
devi iy
“dgraph_1"

Ograph

Communication with Web Server Application Execution

>
7~ Note: EAC task tokens (names or IDs) must be unique across an application. If two tasks have the
same token (such as "copy_index_files_to_dgraph_server"), and exist on separate EAC Agent machines,
you cannot run both instances of this task simultaneously.

Forcing the removal of an application

You remove an application in eaccmd with the remove-app command.

If you want to remove an application that is throwing an error (for example, because it contains a host or
component that has become unreachable), or one with running utilities or components, you must add the
--force flag. The syntax is as follows:

remove-app --force --app app_id

In a WSDL tool, this behavior is controlled by the forceRemove property on the RemoveApplicationType class.

About incremental provisioning

With incremental provisioning, it is possible to add, remove, or modify one or more hosts, components, or
scripts without having to bring down the entire implementation.

You can perform incremental provisioning in eaccmd or your custom Web service tool. We use eaccmd in the
examples below.

Related Links

Oracle Commerce Guided Search Platform Services Application Controller Guide

Provisioning Implementations with Application Controller | About incremental provisioning 37

About eaccmd on page 45
When you manage your Endeca implementation with the Endeca Application Controller, you control
and monitor its working through the EAC Central Server.

Endeca Application Controller API Interface Reference on page 61
Application Controller interfaces are documented here. However, the exact syntax of a class member
depends on the output of the WSDL tool that you are using. Be sure to check the client stub classes
that are generated by your WSDL tool for the exact syntax of the Application Controller API class
members.

Incrememental provisioning guidelines

The following guidelines apply to incremental provisioning.

+ Scripts can be changed at any time, as long as they are not running.

* Properties on either hosts or components can be changed at any time.

» Anything other than a property on a component cannot be changed, nor can a component be removed, if
the component is either running or unreachable.

Anything other than a property or a directory on a host cannot be changed, nor can a host be removed, if
any components or utilities on it are running, or if the host is unreachable.

You can attempt to override the constraints mentioned above by using the --force flag.

About the def_file setting

The def_file is the provisioning document used to add a component or host to the implementation.

You can use a larger provisioning file for this purpose, or you can use one that specifies exactly one component
or host. If you choose to use a larger provisioning file, then you must specify which component or host listed
within it that you are adding.

For example, say you want to add a host called new_host to your application. You could add provisioning
information for new_host to your existing provisioning file, myApp . xml. When you run the add-host command,
you would give it the host name as well as the provisioning file name.

In the case of scripts, you have two options: you can use a def_file, as you do with components and hosts, or
you can provide the necessary information individually, through the -—cmd (command), --wd (working
directory), and --l1og-Fi le settings.

About the --force flag

The --force flag indicates whether or not the Application Controller should attempt to force any running
components, utilities, or scripts to stop before attempting an update or a remove operation.

In the case of updates, the update persists in the application provisioning, regardless of whether or not the
forced stop was successful, even if this leaves a dangling process somewhere.

Examples

* In the case of a component, the command:
update-component --force --app myApp --name forge

would first stop the component forge, if it is running, before updating it.

Oracle Commerce Guided Search Platform Services Application Controller Guide

38 Provisioning Implementations with Application Controller | About incremental provisioning

* In the case of a host, the command:
remove-host --force --app myApp --name dev777

would first stop any running components or services on host dev777 before removing that host.
* In the case of a script, the command:

update-script --force --app myApp --script newbaseline._pl
--cmd perl

would first stop the script newbaseline.pl before updating it.

Adding a component in eaccmd

You can use eaccmd to add components to your application.

To add a component in eaccmd, use the following syntax:

add-component --app app_id [--comp comp_id] --def def file
For example:

add-component --app myApp --comp new_forge --def myApp.xml

Removing a component in eaccmd
You can use eaccmd to remove components from applications.
To remove a component in eaccmd, use the following syntax:
remove-component [--force] --app app_hame --comp comp_id
For example:

remove-component --force --app myApp --comp forge

Modifying a component in eaccmd

You can use eaccmd to modify components in an application.

To change the attributes of a previously-defined component in eaccmd, use the following syntax:

update-component [--force] --app app_id [--comp comp_id]
--def def _file

For example:
update-component --force --app myApp --def newDgraphProps.xml

Adding a host in eaccmd

You can use eaccmd to add hosts to your application.

To add a host in eaccmd, use the following syntax:

add-host --app app_id [--host host _id] --def def file
For example:

add-host --app myApp --host mktg022 --def myApp.xml

Oracle Commerce Guided Search Platform Services Application Controller Guide

Provisioning Implementations with Application Controller | About incremental provisioning

Removing a host in eaccmd
You can use eaccmd to remove hosts from an application.
To remove a host in eaccmd, use the following syntax:
remove-host [--force] --app app_id --host host_id
For example:

remove-host --force --app myApp --host dev777

Modifying a host in eaccmd
You can use eaccmd to modify hosts in an application.

To change the attributes of a previously-defined host in eaccmd, use the following syntax:

update-host [--force] --app app_id [--host host_id]
--def def_file

For example:

update-host --force --app myApp --host mktg022
--def newMktgHostProps.xml

Adding a script in eaccmd

You can use eaccmd to add scripts to your application.

To add a script in eaccmd, use the following syntax:

39

add-script --app app_id --script script_id [--cmd command --wd working_dir --log-

file log_file] | [--def def_file]
For example:

add-script --app myApp --script newbaseline.pl --cmd perl

Removing a script in eaccmd
You can use eaccmd to remove scripts from applications.
To remove a script in eaccmd, use the following syntax:
remove-script [--force] --app app_id --script script_id
For example:

remove-script --app myApp --script testbaseline.pl

Modifying a script in eaccmd
You can use eaccmd to modify a script in an application.
To modify an existing script in eaccmd, use the following syntax:

update-script [--force] --app app_id --script script_id [--cmd command --wd
working_dir --log-file log_file] | [--def def_file]

Oracle Commerce Guided Search Platform Services Application Controller Guide

40 Provisioning Implementations with Application Controller | Provisioning your deployment with the Endeca
Deployment Template
For example:

update-script —--app myApp --script newbaseline.pl --def myApp.xml

Provisioning your deployment with the Endeca Deployment
Template
The Endeca Deployment Template is a collection of operational components that provides a starting point for
development and application deployment.

Representing the best practices of Endeca’s Customer Solutions organization, the template includes the
complete directory structure required for deployment, including EAC scripts, configuration files, and batch files
or shell scripts that wrap common script functionality.

This template includes functionality required for a Dgraph deployment powered by the EAC and the Java EAC
Development Toolkit, including support for baseline and partial index updates and Endeca Workbench integration.

Using the Endeca Deployment Template

The Endeca Deployment Template should be installed immediately following the installation of Oracle Endeca
Commerce on all servers that will be hosting Oracle Endeca Commerce components, and before any provisioning
has been done through Endeca Workbench.

If Endeca Workbench has been used to make any changes to Oracle Endeca Commerce configuration prior
to installing the Endeca Deployment Template, they will be overwritten and lost.

Oracle Commerce Guided Search Platform Services Application Controller Guide

Chapter 4

Common System Architectures in an Endeca
Implementation

This section describes typical system architectures for each stage of an Endeca implementation.

Overview of system architectures

This topic provides a general description of typical system architectures for each stage of an Endeca
implementation.

Endeca implementations typically have three stages:

1. Development
2. Staging and testing
3. Production

This section does not provide specific system sizing requirements for a particular implementation. There are
too many variables in each unique implementation to give general guidance. Some of these variables include
hardware cost restrictions, data processing demands, application throughput demands, query load demands,
scale requirements, failover availability, and so on. Endeca Professional Services can perform a hardware
sizing analysis for your implementation.

Development environment

A development environment is one in which developers create or substantially modify an Endeca implementation.

This implementation does not serve end-user queries. Because data processing and query processing demands
are not very important at this stage, development typically occurs on a single machine. The single machine
runs the Endeca Application Controller, Forge, Dgidx, a Web server, and the MDEX Engine.

Staging and testing environment

A staging environment is one that validates the correctness of the implementation including data processing
and all necessary search and navigation features.

42 Common System Architectures in an Endeca Implementation | Sample production environments

Features such as merchandising, thesaurus entries, and others may require business users to modify the
implementation during this implementation phase. This environment is also typically used to test performance
of the system. Once the implementation works as required, it is migrated to the production environment.

In terms of hardware architecture, most staging environments closely resemble or exactly match the intended
production environment. This means the production environment typically determines the architecture of the
staging environment.

Sample production environments

A production environment is a live Endeca implementation that serves end-user search and navigation queries.

There are a variety of system architectures in a production environment. All of them typically use at least two
servers and one load balancer. As system demand increases, the number of servers necessary in the
implementation increases. Demand may take the form of time to crawl source data, frequent source data
updates, faster query throughput, faster response time under increasing load, and so on. Several of the most
common implementation architectures are described in the following sections.

Descriptions of implementation size
We can roughly divide implementations into small, medium, and large.

A full definition of these terms includes an accounting of record size (number and size of properties and
dimension values per record), total data set size, the number of indexing and MDEX Engine servers, and other
measurements of scale.

Although that level of detail is necessary for sizing a specific implementation, it is not necessary for the more
general discussion of hardware architecture here. For simplicity's sake, this chapter uses the terms small and
medium e as follows:

» A small implementation means the Dgraph runs an application's data set on a single processor.

* A medium implementation means a single Dgraph is mirrored several times for throughput (rather than
solely for redundancy), and it means a dedicated server may be necessary for crawling or indexing.

Small implementation with lower throughput

A simple architecture for smaller implementations is made up of two servers and a single load balancer.

Server 1 runs only the MDEX Engine. Server 2 runs a mirror of the MDEX Engine (for redundancy) and Forge
and Dgidx. A single load balancer distributes queries between the MDEX Engines on servers 1 and 2.

Oracle Commerce Guided Search Platform Services Application Controller Guide

Common System Architectures in an Endeca Implementation | Sample production environments 43

Endeca Web / application
API || | server(s)
HTTP
Load
balancer

EAC EAC (_
Dgraph Dgraph .
F—d Dgidx F — — — =
Forge File Nzl
transfer Source data
extract

Server 1 Server 2

The advantage of this scenario is low cost and MDEX Engine redundancy. If one MDEX Engine is offline for
any reason, the load balancer distributes user queries to the other MDEX Engine.

The disadvantage of this scenario is that the system operates at reduced throughput capacity during Forge
and Dgidx processing, and during a server failure of either machine. Also, if the single load balancer fails, the
system goes offline.

Medium implementation with higher throughput

In this example system architecture, a medium implementation that requires higher query throughput is made
up of four servers and two load balancers.

To achieve higher throughput, servers 1, 2, and 3 all run mirror copies of the MDEX Engine. This level of
redundancy provides faster throughput by load balancing the incoming queries over a greater number of MDEX
Engines. If either load balancer or any MDEX Engine should fail, then the redundant load balancer and remaining
MDEX Engines handle all queries. Server 4 runs all the offline processes including Forge and Dgidix.

Oracle Commerce Guided Search Platform Services Application Controller Guide

44 Common System Architectures in an Endeca Implementation | Sample production environments

Endeca Web / application
APl || | server(s)
HTTPl
Load Load

balancer| [balancer

| |

EAC EAC EAC EAC ()
Dgidx R
Dgraph Dgraph Dgraph FE I |
" m File il N
transfer Source data
Server 1 Server 2 Server 3 Server 4 extract

The advantage of this scenario is that overall throughput and redundancy is high. Each MDEX Engine runs
on a dedicated server, so the servers do not need to share resources for Forge processing and indexing. Also,
this scenario employs two load balancers to reduce potential offline time if one balancer fails.

The disadvantage of this scenario is that the implementation operates at reduced throughput if any MDEX
Engine server fails. However, a single server failure has less effect on the implementation than the previous
examples because the MDEX Engine has been replicated more times than in previous examples.

Oracle Commerce Guided Search Platform Services Application Controller Guide

Chapter 5
Using the eaccmd Tool

This section describes the eaccmd command-line tool, which can be used to provision and run the Endeca
Application Controller.

About eaccmd

When you manage your Endeca implementation with the Endeca Application Controller, you control and monitor
its working through the EAC Central Server.

You can communicate with the EAC Central Server in two ways:

+ With the eaccmd command-line tool, as described in this chapter.
» Through direct programmatic control with a language that understands Web services.

The Application Controller's WSDL API is described in the “Endeca Application Controller API Interface
Reference."

Running eaccmd

This topic describes how to run eaccmd.

The eaccmd tool is installed by default in %ENDECA_ROOT%\bin on Windows. On UNIX; it is
$ENDECA_ROOT/bin. You run eaccmd within a scripting environment such as Bash or Perl. You can run
eaccmd on any machine as long as it is pointing at the EAC Central Server.

The eaccmd syntax is platform-independent.

Related Links

eaccmd usage on page 45
This topic describes the usage of eaccmd.

eaccmd usage

This topic describes the usage of eaccmd.

The eaccmd usage is as follows:
eaccmd host:eac _port <cmd> [--async] [-verbose]

46

Using the eaccmd Tool | eaccmd feedback

where settings in square brackets ([]) are optional and <cmd> is one of:

[Provisioning commands:]
define-app [--app app_id] [--def def file]
describe-app --app app_id [--canonical]
remove-app [--force] --app app_id
list-apps
[Incremental Provisioning commands:]
add-component --app app_id [--comp comp_id] --def def_file
add-host --app app_id [--host host_id] --def def file
add-script --app app_id --script script_id (--def def file |
[--wd working_dir] [--log-file log_file] --cmd command [args...])
remove-component [--force] --app app_id --comp comp_id
remove-host [--force] --app app_id --host host_id
remove-script --app app_id --script script_id
update-component [--force] --app app_id [--comp comp_id] --def def Ffile
update-host [--force] --app app_id [--host host_id] --def def Ffile
update-script [--force] --app app_id --script script_id
(--def def _file | [--wd working_dir] [--log-file log_Ffile]
--cmd command [args...])
[Synchronization commands:]
set-flag —-app app_id --flag flag
remove-flag —-app app_id --flag flag
remove-all-flags --app app_id
list-flags --app app_id
[Component and Script Control commands:]

start --app app_id [--comp comp_id | --script script_id]
stop --app app_id [--comp comp_id | --script script_id]
status --app app_id [--comp comp_id | --script script_id]

[Utility commands:]

Is --app app_id --host host_id --pattern Ffile_ pattern

start-util --type shell --app app_id [--token token]
--host host_id [--wd working_dir] --cmd command [args...]

start-util --type copy --app app_id [--token token] [--recursive]
-—from host_id --to host_id --src src_path --dest dest path

start-util --type backup --app app_id [--token token] --host host_id
-—dir Is [--method <copy|move>] [--backups num_ backups]

start-util --type rollback --app app_id [--token token] --host host_id
--dir Is

stop-util --app app_id --token token

status-util --app app_id --token token

eaccmd feedback

Eaccmd gives no feedback in cases of success (that is, if a component is running or completed or a service
is completed).

If an operation fails, a FAILED message is printed to the screen.

If instead you want eaccmd to run asynchronously, you must use the --async flag on the command line after
the command, as follows:

eaccmd host:port <cmd> [--async]

Oracle Commerce Guided Search Platform Services Application Controller Guide

Using the eaccmd Tool | Component and utility status verbosity 47

Component and utility status verbosity

By default, eaccmd provides single-word component and utility status messages, such as Running. To receive
more detailed feedback, you can run eaccmd with the --verbose flag.

This flag provides useful information beyond simply the state.

Server component status verbosity
The following is an example of a verbose status message for a server component. Server components include
the Dgraph and LogServer.

State: NotRunning
Start time: 10/11/08 3:58 PM
Failure Message:

Batch component status verbosity

The following is an example of a verbose status message for a batch component. Batch components include
Forge, Dgidx, and ReportGenerator.

State: NotRunning

Start time: 10/11/08 3:58 PM

Duration: 0O days O hours O minutes 6.96 seconds
Failure Message:

Using the default host and port

The eaccmd. properties file supplies host and port information to eaccmd.

In the eaccmd . properties file, which is located in the $ENDECA_CONF/conf directory on UNIX and
%ENDECA _CONF%\conf on Windows, you can specify a host and port for eaccmd to use. (The default values
are host=localhost and port=8888.) With this file in place, you do not have to specify the host and port on the
command line.

If your EAC Central Server is not on localhost:8888, you must either edit the file to point to the correct host
and port or continue to specify host:port on the command line. Any host:port specified on the command line
overrides the settings in the eaccmd . properties file.

eaccmd command reference

The eaccmd tool contains commands for provisioning, resource configuration, and component use.

Provisioning commands

The provisioning commands make it possible for you to define and manage your applications from the command

line.
Command Description
define-app [--app app_id] [--def def_file] Defines an application. Def_file takes an XML

provisioning file, a sample of which,

Oracle Commerce Guided Search Platform Services Application Controller Guide

48 Using the eaccmd Tool | eaccmd command reference

Command

describe-app --app app_id [--canonical]

remove-app [--force] --app app_id

list-apps

Provisioning example

Description

sample_wine_definition.xml, is located in the
%ENDECA_REFERENCE_DIR%\
sample_wine_data\etc directory on Windows, or
the $ENDECA_
REFERENCE_DIR\sample_wine_data\etc
directory on UNIX. The provisioning file typically
contains an application ID. If eaccmd specifies a
different app_id for the same application, the eaccmd
version overrides the one in provided in the provisioning
file.

Describes an application. Returns an XML file in the
format used by the def_file setting of define-app. If
—--canonical is specified, all paths are canonicalized.

Removes the named application. The optional
--TForce flag indicates whether or not this remove
operation should force any running components or
services to stop before attempting the remove. Remove
fails if any components or services are still running
(that is, not forced to stop).

Lists all defined applications.

The following example defines an application called my_wine. (In this and all examples that follow we assume
that the host and port are set in the eaccmd - properties file and so do not need to be included on the

command line.)

eaccmd define-app --app my _wine --def sample_wine_definition.xml

Incremental provisioning commands

The incremental provisioning commands make it possible for you to add, remove, or update a host, component,
or script without having to bring down the entire application.

Command

add-component --app app_id [--comp comp_id] --def
def_file

add-host --app app_id [--host host_id] --def def_file

Description

Adds a single component to an application. Def_file is
a provisioning document. You can use a larger
provisioning file for this purpose, or you can use one
that specifies exactly one component or host. If you
choose to use a larger provisioning file, then you must
specify which component listed within it that you are
adding, using the —-comp flag.

Adds a single host to an application. Def_file is a
provisioning document. You can use a larger
provisioning file for this purpose, or you can use one
that specifies exactly one component or host. If you
choose to use a larger provisioning file, then you must
specify which host listed within it that you are adding,
using the --host flag.

Oracle Commerce Guided Search Platform Services Application Controller Guide

Command

add-script --app app_id --script script_id (--def def_file
| [--wd working_dir] [--log-file log_file] --cmd command
[args...])

remove-component [--force] --app app_id --comp
comp_id

remove-host [--force] --app app_id --host host_id

remove-script [--force] --app app_id --script script_id

update-component [--force] --app app_id [--comp
comp_id] --def def_file

update-host [--force] --app app_id [--host host_id] --def
def_file

Using the eaccmd Tool | eaccmd command reference 49

Description

Adds a script to an application. Scripts can be added
at any time. You can use --def to specify a definition
file to start the script, or use the following settings:
--log-file is the file for appended stdout/stderr
output. If it is not specified, it defaults to
$ENDECA_CONF/logs/script/

(app_id).(script_id).log

—--wd is the working directory. If it is not specified, it
defaults to SENDECA_CONF/working/ (app_id)/

--cmd is the command that is used to start the script.
If ——cmd is omitted, the first unrecognized argument
is taken as the start of your command. The
--log-file and --wd, if used, should come before
--cmd.

Removes a single component from an application. The
optional --force flag indicates whether or not this
remove operation should force any running components
or services to stop before attempting the remove.
Remove fails if any components or services are still
running (that is, not forced to stop).

Removes a single host from an application. The
optional --Force flag indicates whether or not this
remove operation should force any running components
or services to stop before attempting the remove.
Remove fails if any components or services are still
running (that is, not forced to stop).

Removes a script from an application. The optional
--TForce flag indicates whether or not this remove
operation should force a running script to stop before
attempting the remove.

Updates a component. Component properties can be
updated at any time. Other changes cannot be made
if the component is running or unreachable. The
optional --force flag indicates that the Application
Controller will attempt to force the conditions under
which the specified updates can be made (by stopping
stop a running component or utility invocation, for
example). Regardless of whether or not the forced stop
is successful, however, the update persists in the
application provisioning, even if this leaves a dangling
process somewhere.

Updates a host. Host properties can be updated at any
time. Other changes cannot be made if any
components or services are running on the host, or if
the host is unreachable. The optional --Force flag
indicates that the Application Controller will attempt to
force the conditions under which the specified updates

Oracle Commerce Guided Search Platform Services Application Controller Guide

50 Using the eaccmd Tool | eaccmd command reference

Command Description

can be made (by stopping stop a running component
or utility invocation, for example). Regardless of
whether or not the forced stop is successful, however,
the update persists in the application provisioning, even
if this leaves a dangling process somewhere.

update-script [--force] --app app_id --script script_id | Updates a script. The optional —-force flag indicates

(--def def_file | [--wd working_dir] [--log-file log_file] whether or not this update operation should force a

--cmd command [args...]) running script to stop before attempting the update.
You can use --def to specify a definition file to update
the script, or use the following settings:

--wd is the working directory. If it is not specified, it
defaults to $SENDECA_CONF/working/ (app_id)/

--log-Tile is the file for appended stdout/stderr
output. If it is not specified, it defaults to
$ENDECA_CONF/logs/script/

(app_id).(script_id).log

--cmd is the command that is used to start the script.
If ——cmd is omitted, the first unrecognized argument
is taken as the start of your command. The

--log-file and --wd, if used, should come before
—--cmd.

Incremental provisioning example

The following example adds a Forge component to the my_wine application. Because this provisioning file
contains only a single component, it is not necessary to use the --comp flag.

eaccmd add-component --app my wine --def update forge.xml

Synchronization commands

Synchronization commands are used by the Synchronization service (described below) to manage
application-level flags that let users know when processes are in use.

Command Description

set-flag --app app_id --flag flag Sets a flag that demonstrates that a group of processes
are in use. You specify the flag with the application
name and a flag name, which may be arbitrary but
should be well-known.

remove-flag --app app_id --flag flag Removes the named flag and releases the reserved
processes.
remove-all-flags --app app_id Removes all flags in an application and releases all

reserved processes.

list-flags --app app_id Lists all flags in an application.

Oracle Commerce Guided Search Platform Services Application Controller Guide

Using the eaccmd Tool | eaccmd command reference 51

About the Synchronization service

The Synchronization service lets you create, query, and delete application-level flags on a series of processes.
These flags indicate that the flagged processes are in use. The service creates flags on the fly at the user’s
request and deletes them when they are released. Using this service, multiple users can synchronize their
activities by obtaining and querying the flags. If two users attempt to flag the same processes at the same time
an error occurs.

Synchronization service flags are identified by an application name/flag name pair. Because flag names are
user-created and arbitrary, all users must be aware of flag names and consistent in their use. If a set of
processes needs to be reserved, then everyone concerned needs to know the name of the flag.

Synchronization examples

The following example adds a flag called mkt1010 to the my_wine application:
eaccmd set-flag —-app my wine --flag mkt1010

The following example removes all flags in the my_wine application:
eaccmd remove-all-flags --app my_wine

Component and script control commands

The component and script control commands are used to start and stop components or scripts and retrieve
their status.

Command Description
start --app app_id [--comp comp_id | --script script_id] | Starts a component or a script.
stop --app app_id [--comp comp_id | --script script_id] | Stops a component or a script.

status --app app_id [--comp comp_id | --script script_id] | Gets the status of a component (one of Starting,
Running, NotRunning, or Failed) or a script (one of
Running, NotRunning, or Failed).

Component control example

The following example starts a Dgraph named wine_dgraph in the my_wine application.
eaccmd start --app my wine --comp wine_dgraph

Utility commands

The utility commands allow you to run and monitor Application Controller utilities through the eaccmd tool.

There are three kinds of Utility commands: Shell, Copy, and Archive.

General notes on Application Controller utilities
Keep in mind the following general points about Application Controller utilities.

« Utility naming: Be sure to name your utilities carefully. If you create a new utility that has the same name
as a running utility, an error is issued. However, if there is an existing utility with the same name that is not
running, the new utility overwrites it.

» System cleanup of utility output: Each instance of the Shell and Copy utilities stores status information and
output logs. The Application Controller clears this information for non-running utilities instances every seven

Oracle Commerce Guided Search Platform Services Application Controller Guide

52 Using the eaccmd Tool | eaccmd command reference

days (that is, 10,080 minutes) to save system resources. This setting can be modified in the eac.properties
file.

The List Directory Contents (Is) command

The List Directory Contents command lets you see the contents of directories on remote machines. Its behavior
is similar to that of Is on UNIX, although some non-Is restrictions, noted below, apply.

Command Description

Is --app app_id --host host_id --pattern file_pattern Returns a list of files matching the pattern input in
file_pattern. Note the following: A file_pattern must start
with an absolute path, such as C:\ or /. A file_pattern
can contain . or .. as directory names, and expands *
and ? wildcards. A file_pattern cannot contain the
wildcard expressions .*, .?, or ..* as directory or file
names. Bracketed wildcards, such as file[123].txt, are
not supported. Wildcards cannot be applied to drive
names. You cannot use .. to create paths that do not
exist. For example, the path /temp/../../a.txt
refers to a path that is above the root directory. This is
an invalid path that causes the operation to fail.

Wildcard behavior

The List Directory Contents command expands the wildcards in a pattern. If the expansion results in a file, it
returns a file. If the expansion results in a directory, it returns the directory non-recursively. Wildcard expansion
can result in any combination of files and directories.

For example, assume that the following directories and files exist:

/home/endeca/reference/ . ..
/home/endeca/Zinstall.log
/home/e . txt

The following command:
eaccmd Is --app my _wine --host my host --pattern /home/e*

would list all of these files and directories, because they match the file_pattern.

Delimiting wildcard arguments

To prevent inappropriate expansion, any wildcard arguments you use with the List Directory Contents utility
in eaccmd need to be delimited with double quotation marks. For example: On Windows, "C:*.txt". On UNIX,
"/home/endeca/test/*.txt".

The Shell utility

The Shell utility allows you to run arbitrary commands in a host system shell.

Command Description

start-util --type shell --app app_id [--token token] --host | Starts a Shell utility with the specified command string.

host_id [--wd working_dir] --cmd command [args...] The token is a string. If you do not specify a token, one
is generated and returned when you start the utility.
The token is used to stop the utility or to get its status.

Oracle Commerce Guided Search Platform Services Application Controller Guide

Using the eaccmd Tool | eaccmd command reference 53

Command Description

--wd, which is optional, sets the working directory for
the process that gets launched. If specified, it must be
an absolute path. If wd is not specified, the setting
defaults to ¥ENDECA_CONF%\working\
<appName>\shell on Windows or
$ENDECA_CONF/working/ <appName>/shell on
UNIX. The --cmd arguments are passed in a single
string. If --cmd is omitted, the first unrecognized
argument is taken as the start of your command.

stop-util --app app_id --token token Stops a Shell utility. The token is a string, either
user-created or generated and returned when you start
the utility, that eaccmd prints to screen. The token can
be used to stop the utility or to get its status.

status-util --app app_id --token token Gets the status of a Shell utility. The token is a string,
either user-created or generated and returned when
you start the utility, that eaccmd prints to screen. The
token can be used to stop the utility or to get its status.

Shell utility examples

The first example deletes the Dgidx output after it has been copied in a separate action over to the Dgraph:
eaccmd start-util --type shell --app my wine --host mkt1010

--cmd rm <dgidx-output-dir>/*_*

The second example performs a recursive directory copy:

eaccmd start-util --type shell --app myapp --host hosttorunon
-—cmd cp—r /mysourcedir /mydestdir

Troubleshooting the Shell utility

In many cases, particularly cross-platform scenarios, the Shell command must be wrapped in double quotation
marks. The error message returned, which occurs at the console level, is usually something similar to the
following:

The system cannot find the path specified.

The Copy utility

The Copy utility uses an internal Web services interface to copy files or directories, either locally or between

machines.

Commands Description

start-util --type copy --app app_id [--token token] As part of the Copy utility, starts a copy. You identify
[--recursive] --from host_id --to host_id --src file_pattern | the hostname, port, and path for both the source and
--dest dest_path destination directories. If the copy is local, you do not

need to specify the host_id.

Keep in mind that you are not necessarily copying to
the machine you are running eaccmd on. The hosts

you are copying to and from are those you specified

in your provisioning file.

Oracle Commerce Guided Search Platform Services Application Controller Guide

54

Using the eaccmd Tool | eaccmd command reference

Commands

stop-util --app app_id --token token

status-util --app app_id --token token

Copy utility examples

Description

—--token is a string used to stop the utility or get its
status. If you do not specify a token, one is generated
and returned when you start the utility.

If -—recursive is specified, it indicates that the Copy
utility recursively copies any directories that match the
wildcard.

If -—recursive is not specified, the Copy utility does
not copy directories, even if they match the wildcard.
Instead, it creates intermediate directories required to
place the copied files at the destination path.

—--Src is a string representing the file, wildcard, or
directory to be copied. A —-src must start with an
absolute path, such as C:\ or /. A --src can contain . or
.. as directory names, and expands * and ? wildcards.

Note the following:

* You cannot use the wildcard expressions .*, .?, or
..* as directory or file names.

» Bracket wildcards, such as file[123].txt, are not
supported.

+ Wildcards cannot be applied to drive names.

--dest is the full path to the destination file or
directory. —--dest must be an absolute path, and no
wildcards are allowed.

If -—dest is a directory, that directory must exist,
unless the following conditions are met:

» The parent of the destination already exists.
* You are copying only one thing.

Stops a Copy utility. The token is a string, either
user-created or generated and returned when you start
the utility, that eaccmd prints to screen. The token can
be used to stop the utility or to get its status.

Gets the status of a Copy utility. The token is a string,
either user-created or generated and returned when

you start the utility, that eaccmd prints to screen. The
token can be used to stop the utility or to get its status.

This section illustrates several different Copy actions. For simplicity, the majority of the Copy actions are done
on a single machine. The final example shows how to copy across machines.

First, assume the following directory structure exists on the source:

/
endecal/
work/
dgraphlogs/

Oracle Commerce Guided Search Platform Services Application Controller Guide

Using the eaccmd Tool | eaccmd command reference 55

a-log
forgelogs/
b.log
endeca2/
work/
dgraphlogs/
c.log
forgelogs/
d.log
e.log
destination/

The following command copies one file to a new name

eaccmd start-util --type copy --app myApp

--src '/endecal/work/dgraphlogs/a.log" --dest "/destination/out.log"

The resulting directory change would look like this:

destination/
out.log

The following command copies one file into an existing directory:

eaccmd start-util --type copy --app myApp
--src '/endecal/work/dgraphlogs/a.log" --dest '"'/destination”

The resulting directory change would look like this:

destination/
a.log

The following command recursively copies a directory to a new name

eaccmd start-util --type copy --app myApp

--src '“/endecal/work/dgraphlogs’ --dest '“/destination/outlogs"

The resulting directory change would look like this:

destination/
outlogs/
a.log

The following command recursively copies a directory into an existing directory:

eaccmd start-util --type copy --app myApp
--src '"/endecal/work/dgraphlogs' --dest ''/destination"
—--recursive

The resulting directory change would look like this:

destination/
dgraphlogs/
a.log

The following command copies all files in a directory.

eaccmd start-util --type copy --app myApp
--src '/endeca2/work/forgelogs/*" --dest "/destination”

The resulting directory change would look like this:

destination/
d.log
e.log

—--recursive

Oracle Commerce Guided Search Platform Services Application Controller Guide

56

Using the eaccmd Tool | eaccmd command reference

The following copy command demonstrates the use of multiple wildcards:

eaccmd start-util --type copy --app myApp
--src ""/e*/work/*logs/*.log" --dest "/destination”

The resulting directory change would look like this:

destination/
a.log
b.log
c.log
d.log
e.log

The following copy demonstrates a recursive copy with wildcards:

eaccmd start-util --type copy --app myApp
--src ""/e*/work™ --dest "/destination" --recursive

The resulting directory change would look like this:

destination/
work/
dgraphlogs/
a.log
c.log
forgelogs/
b.log
d.log
e.log

When copying to another machine, the syntax is as follows:

eaccmd start-util --type copy --app myApp —--from ITLHost --to MDEXHost
--src /full/path/to/file/src.txt --dest /full/path/to/file/dest.txt

Keep in mind that the hostnames are not IP addresses or DNS names, but rather are the hosts that are defined
within the EAC. If you are using the Deployment Template, these are the hosts defined in the AppConfig.xml
file with tags similar to this example:

<host id="ITLHost" hostName="itl._example.com"™ port="8888" />
<host i1d=""MDEXHost" hostName="mdex.example.com"™ port='38888" />

Also make sure that you have a clear network path between hosts (if necessary, make the appropriate
modifications in any firewall to allow traffic).

About the Copy utility
This topic provides details about how the Copy utility works.

The Copy utility supports wildcards (* and ?) and recursive copying. In some cases, the destination directory
must already exist; in others, the utility automatically creates both the destination directory and any empty
directories in the transfer.

Directories are copied first to a temporary directory on the destination machine before being copied one file
at a time to the target location. You can configure the location of this temporary directory in the eac.properties
file, using the optional setting com.endeca.eac.filetransfer.fileTransferTempDir as follows:

« If this setting is defined as an absolute path, the Copy utility uses it.
« Ifitis defined as a relative path, the Copy utility considers it to be relative to YENDECA CONF%/state/
« If it is not defined, the Copy ultility uses the directory YENDECA_CONF%/state/file_transfer/

If the Copy ultility tries to copy a file to a location where another file already exists, the utility overwrites the
preexisting file.

Oracle Commerce Guided Search Platform Services Application Controller Guide

Using the eaccmd Tool | eaccmd command reference 57

]
7" Note: The Copy utility supports both SSL and non-SSL communication, with SSL being off by default.
For details on enabling SSL, see the Endeca Security Guide.

Destination directories

In most cases, the destination directory where the copied files are placed has to exist already. However, there
are a few exceptions where the destination directory does not have to exist prior to the copy:

» Copying just one file to the location of an existing file.
» Copying just one file to a new file name in an existing directory.
» Copying just one directory to a new directory name in an existing parent directory.

Failure and recovery
The following situations result in a failure of the Copy utility:

» The Copy utility tries to write to a directory it doesn’t have permissions to.

* There is not enough disk space.

 There is no file at the source location.

* The wildcard expression matches no files.

» When there are mismatches between directories and files (for example, the Copy utility tries to copy a file
to path where a directory with that name already exists, or tries to create a directory in the destination and
a file with that name already exists).

* You cannot use .. to create paths that do not exist. For example, the path /temp/../../a.txt refers
to a path that is above the root directory. This is an invalid path that causes the utility to fail.

+ Asking for a copy that results in multiple files being written to the same location. For example, given the
following directory structure on the source:

/trunk/src/a.txt
/testbranch/src/a.txt

a copy from /t*/src/* to /temp would result in the Copy utility trying to write both a.txt files to the same
location in the temp directory.

There is no recovery for copies. Therefore, if the transfer of a large file fails, the entire file must be transferred
again. Likewise, if a multi-file transfer fails before completion, you must either re-run the entire transfer or
request only those parts that did not transfer.

Explicit machine naming

Keep in mind that when you are using the Copy utility, you are potentially working with three machines: the
EAC Central Server, from which you issue eaccmd commands, the Agent machine you are copying data from,
and the one you are copying data to. In such cases, the name localhost can be confusing. Unless you are
using the Copy utility to move files on a single machine, you should use explicit machine names rather than
simply localhost.

Delimiting wildcard elements

To prevent inappropriate expansion, any wildcard arguments you use with the Copy utility in eaccmd need to
be delimited with double quotation marks. For example:

On Windows, "C:*.txt".
On UNIX, "/home/endecal/test/*.txt".

Oracle Commerce Guided Search Platform Services Application Controller Guide

58 Using the eaccmd Tool | eaccmd command reference

Copying across platforms

If you are copying files or directories between machines on different platforms, you have to wrap any Window
paths on a Linux or Solaris shell in double quotation marks (for example, "C:*.txt").

The Archive utility
The Archive utility allows you to archive and roll back directories.

Using the Archive utility, you can save off and back up a set of component outputs, which later can be rolled
back on demand. With the backup operation, you create back up copies of directories distinguished by time
stamps. With the rollback operation, you replace the current version of a directory with the most recently
backed-up version. The current version is then renamed with an .unwanted suffix.

>
7~ Note: Do not start a backup or rollback operation while another such operation is in progress on the
same directory. Unexpected behavior may occur if you do so.

Related Links

Backup operations on page 58
Backup operations create an archive directory from an existing directory.

Rollback operations on page 59
Rollback operations roll back the directory to the most recent backed up version.

Backup operations
Backup operations create an archive directory from an existing directory.

Backup operations create an archive directory from an existing directory. The archive directory has the same
name as the original directory, but with a timestamp appended to the end. The timestamp reflects the time
when the backup operation was performed.

For example, if the original directory is called logs and was backed up on October 11, 2008 at 8:00 AM, the
backup operation creates a directory called logs.2008_10_11.08_00_00.

Command Description

start-util --type backup --app app_id [--token token] Starts the backup operation. The token is a string. If
--host host-id --dir dir [--method] <copy|move> you do not specify a token, one is generated and
[--backups num_backups] returned when you start the utility. The token is used

to stop the utility or to get its status. The host and dir
settings specify the path to the directory that will be
archived. The method is either copy or move (the
default).

The optional backups setting specifies the maximum
number of archives to store. This number does not
include the original directory itself, so if backups is set
to 3, you would have the original directory plus up to
three archive directories, for a total of as many as four
directories. The default num_backups is 5.

stop-util --app app_id --token token Stops a backup operation. The token is a string, either
user-created or system-generated when you start the
utility. The token can be used to stop the utility or to
get its status.

Oracle Commerce Guided Search Platform Services Application Controller Guide

Using the eaccmd Tool | eaccmd command reference 59

Command Description

status-util --app app_id --token token Gets the status of a backup operation. The token is a
string, either user-created or system-generated when
you start the utility. The token can be used to stop the
utility or to get its status.

Backup operation example

In the following example, an archive version of the logs directory is created.

eaccmd start-util --type backup --app my wine --host mktl1010
-—dir c:\my_wine\data\logs --backups 2

Rollback operations
Rollback operations roll back the directory to the most recent backed up version.

For example, say you have a directory called logs, one called logs.2008_10_11.08_00_00, and other, older
versions. When you roll back, the following things happen:

* logs is renamed logs.unwanted.
* logs.2008_10_11.08_00_00 is renamed logs.
» The older versions are left alone.

%
Note: There can only be a single .unwanted directory at a time. If you roll back twice, the .unwanted
directory from the first rollback is deleted.

Command Description

start-util --type rollback --app app_id [--token token] | Starts the rollback operation. The token is a string. If

--host host_id --dir dir you do not specify a token, one is generated and
returned when you start the utility. The token is used
to stop the utility or to get its status. The host and dir
settings specify the path to the directory that will be
rolled back.

stop-util --app app_id --token token Stops a rollback operation. The token is a string, either
user-created or generated and returned when you start
the utility, that eaccmd prints to screen. The token can
be used to stop the utility or to get its status.

status-util --app app_id --token token Gets the status of a rollback operation. The token is a
string, either user-created or generated and returned
when you start the utility, that eaccmd prints to screen.
The token can be used to stop the utility or to get its
status.

Rollback operation example
In the following example, the archived logs directory is rolled back.

eaccmd start-util --type rollback --app my_wine --host mkt1010
-—dir c:\my_ wine\data\logs

Oracle Commerce Guided Search Platform Services Application Controller Guide

Chapter 6
Endeca Application Controller APl Interface Reference

Application Controller interfaces are documented here. However, the exact syntax of a class member depends
on the output of the WSDL tool that you are using. Be sure to check the client stub classes that are generated
by your WSDL tool for the exact syntax of the Application Controller API class members.

Using the Application Controller WSDL
You can use the Endeca Application Controller WSDL API to write your application in the language of your
choice (such as Java, C#, or Perl).
Using the Web Services tool of your choice (such as Axis for Java), do the following:

1. Run the WSDL through your tool to generate the stubs (that is, an API that your code can call).
2. Write your application, using that code to control the Application Controller.

>
7~ Note:

» The Application Controller schema is defined in eac.wsdl, which is located in the

$ENDECA_ROOT/lib/services directory on UNIX and %ENDECA_ROOT%\lib\services on
Windows.

* You generate clent stubs (or proxies) using the eac.wsdl file located in the file system provided by
the Endeca installation. You cannot generate client stubs using the SOAP Web services addresses
associated with each service within the WSDL file.

Simple types in the Application Controller WSDL

The Application Controller WSDL defines several data types that can be treated as simple data types.

» IDType, TokenType, BackupMethodType, TimeRangeType, and TimeSeriesType can be treated as Strings.
» PortNumber can be treated as an Integer.

» TimeOut can be treated as a Long.

ComponentControl interface

The ComponentControl interface provides component management capabilities.

62 Endeca Application Controller API Interface Reference | Synchronization interface

It consists of the following methods:

startComponent(FullyQualifiedComponentiDType startComponentinput)
Starts the named component.
FullyQualifiedComponentIDType parameters:

« applicationID identifies the application to use.
» componentlD identifies the component to use.

Throws:

» EACFault is the error message returned by the Application Controller when the method fails.

stopComponent(FullyQualifiedComponentIDType stopComponentinput)
Stops the named component.
FullyQualifiedComponentIDType parameters:

« applicationID identifies the application to use.
» componentID identifies the component to use.

Throws:

» EACFault is the error message returned by the Application Controller when the method fails.

Synchronization interface

The Synchronization interface manages application-level flags that let users know when processes are in use.

For example, your code could create a flag named update-running to ensure that a new baseline update does
not start while another update is already in progress.

Typical usage is as follows:

ifT (setFlag(MY_FLAG_ID) == true)
[perform action, such as a baseline update]
removeFlag(MY_FLAG_1D)

else

[sighal error such as "an update is already in progress']

setFlag(FullyQualifiedFlagiDType setFlaginput)
Creates a new flag, identified by flagID, that is associated with the named application.
FullyQualifiedFlaglDType parameters:

+ applicationID identifies the application to use.
« flagID is a unique string identifier for this flag.

Throws:

» EACFault is the error message returned by the Application Controller when the method fails.
Returns:

Oracle Commerce Guided Search Platform Services Application Controller Guide

Endeca Application Controller API Interface Reference | Utility interface

» A Boolean, false if the flag was already set, or true if it was not set meaning the method succeeded).

removeFlag(FullyQualifiedFlagiDType removeFlaginput)

Removes the named flag.
FullyQualifiedFlagIDType parameters:

« applicationID identifies the application to use.
+ flagID is a unique string identifier for this flag.

Throws:

» EACFault is the error message returned by the Application Controller when the method fails.

removeAllFlags(IDType removeAllFlagsinput)

Removes all flags in an application.
IDType parameter:
+ applicationID identifies the application to use.
Throws:
» EACFault is the error message returned by the Application Controller when the method fails.

listFlags(IDType listFlagsinput)
Lists the collection of flags in an application.
IDType parameter:
« applicationID identifies the application to use.
Throws:
» EACFault is the error message returned by the Application Controller when the method fails.
Returns:
» flagIDList, a string collection of flagIDs.

Utility interface

The Utility interface allows you to manage the Application Controller utilities (Shell, Copy, and Archive)
programmatically.

63

]
77 Note: Be sure to name your utilities carefully. If you create a new utility that has the same name as a
running utility, an error is issued. However, if there is an existing utility with the same name that is not

running, the new utility overwrites it.

The Utility interface consists of the following methods:

Oracle Commerce Guided Search Platform Services Application Controller Guide

64 Endeca Application Controller API Interface Reference | Utility interface

startBackup(RunBackupType startBackupinput)

Starts the backup operation of the Archive utility.

Backup operations create an archive directory from an existing directory. The archive directory has the same
name as the original directory, but with a timestamp appended to the end. The timestamp reflects the time
when the backup operation was performed.

For example, if the original directory is called logs and was backed up on October 11, 2008 at 8:00 AM, the
backup operation creates a directory called logs.2008_10_11.08_00_00.

Note: Do not start a backup or rollback operation while another such operation is in progress on the
same directory. Unexpected behavior may occur if you do so.

RunBackupType parameters:

applicationID identifies the application to use.

token identifies the token used to stop the utility or to get its status. If you do not specify a token, one is
generated and returned when you start the utility.

hostID is a unique identifier for the host. The hostID and dirName parameters specify the path to the
directory that will be archived.

dirName is the full path of the directory. The hostID and dirName parameters specify the path to the directory
that will be archived.

backupMethod is either copy or move.

numBackups specifies the maximum number of archives to store. This number does not include the original
directory itself, so if numBackups is set to 3, you would have the original directory plus up to three archive
directories, for a total of as many as four directories. The default numBackups is 5.

Throws:

EACFault is the error message returned by the Application Controller when the method fails.

Returns:

The string token assigned to this invocation.

startFileCopy(RunFileCopyType startFileCopylnput)

Launches the Copy utility, which copies files either on a single machine or between machines.

RunFileCopyType parameters:

applicationID identifies the application to use.

token identifies the token used to stop the utility or to get its status. If you do not specify a token, one is
generated and returned when you start the utility.

fromHostID is a unique identifier for the host from which you are copying.
toHostID is a unique identifier for the host to which you are copying.

sourcePath is a string representing the file, wildcard, or directory to be copied. A sourcePath must start
with an absolute path, such as C:\ or /. A sourcePath can contain . or .. as directory names, and expands
* and ? wildcards. Note the following:

You cannot use the wildcard expressions .*, .?, or ..* as directory or file names.
Bracket wildcards, such as file[123].txt, are not supported.
Wildcards cannot be applied to drive names.

destinationPath is the full path to the destination file or directory. destinationPath must be an absolute path,
and no wildcards are allowed.

Oracle Commerce Guided Search Platform Services Application Controller Guide

Endeca Application Controller API Interface Reference | Utility interface 65

The destination directory must exist, unless the parent of the destination already exists and you are copying
only one thing.

* recursive, when true, indicates that the Copy utility recursively copies any directories that match the wildcard.
If recursive is false, the Copy utility does not copy directories, even if they match the wildcard. Instead, it
creates intermediate directories required to place the copied files at the destination path.

Throws:
» EACFault is the error message returned by the Application Controller when the method fails.

Returns:

* The string token assigned to this invocation.

startRollback(RunRollbackType startRollbackinput)

Rollback operations roll back the directory to the most recent backed up version.

For example, say you have a directory called logs, one called 1ogs.2008_10_11.08_00_00, and other, older
versions. When you roll back, the following things happen:

* logs is renamed logs.unwanted.

* 10gs.2008_10_11.08_00_00 is renamed logs.

* The older versions are left alone.

>
7~ Note: There can only be a single .unwanted directory at a time. If you roll back twice, the .unwanted
directory from the first rollback is deleted.

%
Note: Do not start a backup or rollback operation while another such operation is in progress on the
same directory. Unexpected behavior may occur if you do so.

RunRollbackType parameters:
+ applicationID identifies the application to use.

+ token identifies the token used to stop the utility or to get its status. If you do not specify a token, one is
generated and returned when you start the utility.

* hostID is a unique identifier for the host. The hostID and dirName parameters specify the path to the
directory that will be archived.

+ dirName is the full path of the directory. The hostID and dirName parameters specify the path to the directory
that will be archived.

Throws:
» EACFault is the error message returned by the Application Controller when the method fails.

Returns:

* The string token assigned to this invocation.

Oracle Commerce Guided Search Platform Services Application Controller Guide

66 Endeca Application Controller API Interface Reference | Utility interface

startShell(RunShellType startShelllnput)

The startShell() method launches the Shell utility, which allows you to run arbitrary commands in a host system
shell.

RunShellType parameters:

« applicationID identifies the application to use.

token identifies the token used to stop the utility or to get its status. If you do not specify a token, one is
generated and returned when you start the utility.

* hostID is a unique identifier for the host.
» cmd is the command line to execute.
» workingDir is the full path to the working directory.

Throws:
» EACFault is the error message returned by the Application Controller when the method fails.
Returns:

* The string token assigned to this invocation.

stop(FullyQualifiedUtilityTokenType)

Takes a token returned by any of the start methods, and stops that invocation by terminating the process that
is running it.

FullyQualifiedUtilityTokenType parameters:
« applicationID identifies the application to use.

» token identifies the token used to stop the utility.

Throws:

» EACFault is the error message returned by the Application Controller when the method fails.

getStatus(String applicationlD, String token)

Takes a token returned by any of the Utility start methods (startBackup(), startFileCopy(), startRollback(), or
startShell()), and returns the current status of that utility.

Parameters:

» applicationID identifies the application to use.
+ token identifies the token used to get the utility’s status.

Throws:
» EACFault is the error message returned by the Application Controller when the method fails.
Returns:

» A BatchStatusType object.

Oracle Commerce Guided Search Platform Services Application Controller Guide

Endeca Application Controller API Interface Reference | Provisioning interface 67

listDirectoryContents(ListDirectoryContentsinputType
listDirectoryContentsinput)

Performs a list operation similar to UNIX Is on a remote host, with the following restrictions on the input file
pattern.

+ A filePattern must start with an absolute path, such as C:\ or /.

A filePattern can contain . or .. as directory names, and expands * and ? wildcards.

A filePattern cannot contain the wildcard expressions .*, .?, or ..* as directory or file names.
» Bracketed wildcards, such as file[123].txt, are not supported.

Wildcards cannot be applied to drive names.

* You cannot use .. to create paths that do not exist. For example, the path /temp/../../a.ixt refers to a path
that is above the root directory. This is an invalid path that causes the operation to fail.

ListDirectoryContentsInputType parameters:
+ applicationID (required) identifies the application to use.
* hostID (required) is a unique identifier for the host.

« filePattern (required) is the name of the directory, file, or wildcard combination of directory and file whose
contents are to be listed.
Throws:

» EACFault is the error message returned by the Application Controller when the method fails. Failure
conditions correspond to bad input cases.

Returns:

» A FilePathListType object representing the contents of the requested directory.

Provisioning interface

The Provisioning interface allows you to define and manage your Endeca applications programmatically.

It contains the following methods:

defineApplication(ApplicationType application)
Defines an application.

ApplicationType parameters:

+ applicationID identifies the application to use.
* hosts is a collection of HostType objects, representing the hosts to define.

» components is a collection of ComponentType objects (such as ForgeComponentType,
DgraphComponentType, and so on) representing the components to define.

* scripts is a collection of ScriptType objects.
Throws:

» EACFault is the error message returned by the Application Controller when the method fails.

* ProvisioningFault is a list of provisioning errors and a list of provisioning warnings thrown when there are
fatal errors during provisioning.

Oracle Commerce Guided Search Platform Services Application Controller Guide

68 Endeca Application Controller API Interface Reference | Provisioning interface

Returns:
* A ProvisioningWarningListType object, containing minor warnings about non-fatal provisioning problems.

Related Links

ComponentType class on page 77
A class that describes the base type for all components within an application.

ScriptType class on page 88
A class that describes the base type for all scripts within an application.

getApplication(IDType getApplicationinput)
Gets an application, which is composed of hosts, components, and scripts and identified by an application ID.
IDType parameter:

« applicationID identifies the application to use.

Throws:

» EACFault is the error message returned by the Application Controller when the method fails.

Returns:
» An ApplicationType object.

Related Links

ApplicationType class on page 76

A class that describes an application to be deployed by the Application Controller. An application is
composed of a set of components residing on a set of hosts.

getCanonicalApplication(IDType getCanonicalApplicationinput)

The getCanonicalApplication() method returns the provisioning just as getApplication() does, but with all paths
canonicalized.

This process ensures that all paths are absolute, and that the working directory and log path settings are
provided. It also prevents .. from being used in a path name.

IDType parameter:

« applicationID identifies the application to use.
Throws:

» EACFault is the error message returned by the Application Controller when the method fails.
Returns:

* An ApplicationType object, as described on page 248.

Related Links

ApplicationType class on page 76

A class that describes an application to be deployed by the Application Controller. An application is
composed of a set of components residing on a set of hosts.

Oracle Commerce Guided Search Platform Services Application Controller Guide

Endeca Application Controller API Interface Reference | Provisioning interface 69

listApplicationlDs(listApplicationIDsInput)
Lists the applications that are defined.
Returns:
* An ApplicationlDListType object.
Throws:
» EACFault is the error message returned by the Application Controller when the method fails.

Related Links

ApplicationIDListType class on page 76
A class that describes a returned value of a list application call to the Provisioning service.

removeApplication(RemoveApplicationType removeApplicationinput)

Removes the named application.
RemoveApplicationType parameter:

» applicationID identifies the application to use.
Throws:

» EACFault is the error message returned by the Application Controller when the method fails.

* ProvisioningFault is a list of provisioning errors and a list of provisioning warnings thrown when there are
fatal errors during provisioning.

Returns:

+ A ProvisioningWarningListType object, containing minor warnings about non-fatal provisioning problems.

addComponent(AddComponentType addComponentinput)

Adds a single component to an application.
AddComponentType parameters:

« applicationID identifies the application to use.
» component is one of the following: Forge, Dgidx, Dgraph, LogServer, ReportGenerator

Throws:

» EACFault is the error message returned by the Application Controller when the method fails.

* ProvisioningFault is a list of provisioning errors and a list of provisioning warnings thrown when there are
fatal errors during provisioning.

Returns:

» A ProvisioningWarningListType object, containing minor warnings about non-fatal provisioning problems.

removeComponent(RemoveComponentType removeComponentinput)
Removes a single component from an application.

RemoveComponentType parameters:

+ applicationID identifies the application to use.

Oracle Commerce Guided Search Platform Services Application Controller Guide

70 Endeca Application Controller API Interface Reference | Provisioning interface

» componentID identifies the component to use.

» forceRemove indicates whether or not a remove operation should force the component to stop before
attempting the remove. If the component is running, and forceRemove is not set to true, then the remove
call will fail.

Throws:

» EACFault is the error message returned by the Application Controller when the method fails.
* ProvisioningFault is a list of provisioning errors and a list of provisioning warnings thrown when there are
fatal errors during provisioning.
Returns:

+ A ProvisioningWarningListType object, containing minor warnings about non-fatal provisioning problems.

updateComponent(UpdateComponentType updateComponentinput)
Updates a running component.
UpdateComponentType parameters:

+ applicationID identifies the application to use.
« component is one of the following: Forge, Dgidx, Dgraph, LogServer, ReportGenerator.

« forceUpdate indicates that the Application Controller will attempt to force the conditions under which the
update can take place, by stopping running components.

Throws:

» EACFault is the error message returned by the Application Controller when the method fails.

* ProvisioningFault is a list of provisioning errors and a list of provisioning warnings thrown when there are
fatal errors during provisioning.

Returns:
* A ProvisioningWarningListType object, containing minor warnings about non-fatal provisioning problems.

addHost(AddHostType addHostinput)

Adds a host to an application.
AddHostType parameters:

+ applicationID identifies the application to use.
* host is a HostType object specifying the host to add.

« directories allows you to specify directories using a full path and a name. These directories are associated
with hosts and created when the host is provisioned.

Throws:

» EACFault is the error message returned by the Application Controller when the method fails.

* ProvisioningFault is a list of provisioning errors and a list of provisioning warnings thrown when there are
fatal errors during provisioning.

Returns:

* A ProvisioningWarningListType object, containing minor warnings about non-fatal provisioning problems.

Oracle Commerce Guided Search Platform Services Application Controller Guide

Endeca Application Controller API Interface Reference | Provisioning interface 7

updateScript(UpdateScriptType updateScriptinput)

Updates a running script.
UpdateScriptType parameters:

« applicationID identifies the application to use.
» script is a ScriptType object specifying the script to be updated.
 forceUpdate is a Boolean that indicates whether the Application Controller should force a running script to
stop before attempting the update.
Throws:

» EACFault is the error message returned by the Application Controller when the method fails.
* ProvisioningFault is a list of provisioning errors and a list of provisioning warnings thrown when there are
fatal errors during provisioning.

Returns:
» A ProvisioningWarningListType object, containing minor warnings about non-fatal provisioning problems.

removeHost(RemoveHostType removeHostinput)

Removes a single host from an application.

RemoveHostType parameters:

+ applicationID identifies the application to use.

* hostlD is a unique string identifier for this host.

+ forceRemove indicates whether or not the Application Controller should force any running components or
services to stop before attempting the remove. If a component or service is running, and forceRemove is
not set to true, then the remove call will fail.

Throws:

» EACFault is the error message returned by the Application Controller when the method fails.
* ProvisioningFault is a list of provisioning errors and a list of provisioning warnings thrown when there are
fatal errors during provisioning.

Returns:
» A ProvisioningWarningListType object, containing minor warnings about non-fatal provisioning problems.

updateHost(UpdateHostType updateHostinput)

Updates a running host.

UpdateHostType parameters:

« applicationID identifies the application to use.

* host is a HostType object specifying the host to add.

» directories allows you to specify directories using a full path and a name. These directories are associated
with hosts and created when the host is provisioned.

 forceUpdate indicates that the Application Controller will attempt to force the conditions under which the
update can take place, by stopping running components or services.

Throws:
» EACFault is the error message returned by the Application Controller when the method fails.

Oracle Commerce Guided Search Platform Services Application Controller Guide

72 Endeca Application Controller API Interface Reference | ScriptControl interface

* ProvisioningFault is a list of provisioning errors and a list of provisioning warnings thrown when there are
fatal errors during provisioning.

Returns:

» A ProvisioningWarningListType object, containing minor warnings about non-fatal provisioning problems.

addScript(AddScriptType addScriptinput)

Adds a script to an application.
AddScriptType parameters:

+ applicationID identifies the application to use.
» script is a ScriptType object (see page 269) specifying the script to add.

Throws:

« EACFault is the error message returned by the Application Controller when the method fails.

* ProvisioningFault is a list of provisioning errors and a list of provisioning warnings thrown when there are
fatal errors during provisioning.

Returns:
A ProvisioningWarningListType object, containing minor warnings about non-fatal provisioning problems.

Related Links

ScriptType class on page 88
A class that describes the base type for all scripts within an application.

removeScript(RemoveScriptType removeScriptinput)
Removes a script from an application.

RemoveScriptType parameters:

+ applicationID identifies the application to use.
« scriptID is a unique string identifier for this host.

» forceRemove indicates that the Application Controller will attempt to force the conditions under which the
remove can take place.

Throws:

» EACFault is the error message returned by the Application Controller when the method fails.
* ProvisioningFault is a list of provisioning errors and a list of provisioning warnings thrown when there are
fatal errors during provisioning.

Returns:
A ProvisioningWarningListType object, containing minor warnings about non-fatal provisioning problems.

ScriptControl interface

The ScriptControl interface provides programmatic script management capabilities.

It contains the following methods:

Oracle Commerce Guided Search Platform Services Application Controller Guide

Endeca Application Controller API Interface Reference | ScriptControl interface

startScript(FullyQualifiedScriptIDType startScriptinput)

Starts the named script.
FullyQualifiedScriptIDType parameters:

« applicationID identifies the application to use.
« scriptlD identifies the script to use.

Throws:
» EACFault is the error message returned by the Application Controller when the method fails.

stopScript(FullyQualifiedScriptiIDType stopScriptinput)
Stops the named script.

FullyQualifiedScriptiIDType parameters:

+ applicationID identifies the application to use.
« scriptID identifies the script to use.

Throws:
» EACFault is the error message returned by the Application Controller when the method fails.

getScriptStatus(FullyQualifiedScriptiIDType getScriptStatusinput)
Returns the status of a script.

FullyQualifiedScriptiIDType parameters:

« applicationID identifies the application to use.
« scriptID identifies the script to use.

Throws:
» EACFault is the error message returned by the Application Controller when the method fails.

Returns:

73

+ A ScriptStatus object (a sub-class of the StatusType class). This status may be Running, NotRunning, or

Failed. (Failure results from a failure error code or internal EAC errors).

Related Links

StatusType class on page 89
Describes the status of a server component in the Application Controller.

Oracle Commerce Guided Search Platform Services Application Controller Guide

Chapter 7
Endeca Application Controller API Class Reference

This section describes the Endeca Application Controller API classes.

About Endeca Application Controller API Classes

The Endeca Application Controller API classes and their properties are documented here. However, the exact
syntax of a class member depends on the output of the WSDL tool that you are using.

Typically, a Java WSDL tool translates these classes into get and set methods. For example, the
ApplicationIDType class would generate getApplicationlD() and setApplicationlD(String[] applicationlD) methods.

The Microsoft NET WSDL tool translates these classes into .NET properties. Be sure to check the client stub
classes that are generated by your WSDL tool for the exact syntax of the Application Controller API class
members.

AddComponentType class

A class that describes a component to be added to a named application during incremental provisioning.

AddComponentType properties

« applicationID (required) identifies the application to use.
» component (required) is one of the following: Forge, Dgidx, Dgraph, LogServer, or ReportGenerator.

AddHostType class

A class that describes a host to be added to a named application during incremental provisioning.

AddHostType properties

+ applicationID (required) identifies the application to use.
* host (required) is a description of the host to add.
« directories allows you to specify directories using a full path and a name.

76 Endeca Application Controller API Class Reference | AddScriptType class

AddScriptType class

A class that describes a script to be added to a named application during incremental provisioning.

AddScriptType properties

« applicationID (required) identifies the application to use.
» script (required) is a description of the script to add.

ApplicationIDListType class

A class that describes a returned value of a list application call to the Provisioning service.

ApplicationIDListType encapsulates the list of applications running on this EAC Central Server.

ApplicationIDListType properties
« applicationID identifies the application to use.

ApplicationType class

A class that describes an application to be deployed by the Application Controller. An application is composed
of a set of components residing on a set of hosts.

You can construct an ApplicationType object as a full specification of the application, including all hosts and
components. Alternatively, you can start with an empty an ApplicationType object and incrementally fill in the
hosts, components, and scripts. In the latter case, order matters, because a host must be added before you
add a component that lives on that host.
ApplicationType properties

« applicationID identifies the application to use.

* hosts is a list of hosts.

» components is a list of components.

* scripts is a list of scripts.

BackupMethodType class

In relation to the Archive utility, this class serves as an identifier for the type of backup you want the utility to
perform, Copy or Move.

BackupMethodType fields
The enumeration of possible values is as follows:

» Copy.
* Move.

Oracle Commerce Guided Search Platform Services Application Controller Guide

Endeca Application Controller API Class Reference | BatchStatusType class 77

BatchStatusType class

Based on the StatusType class, a BatchStatusType object describes the status of a batch component.

Batch components include Forge, Dgidx and ReportGenerator..

BatchStatusType properties
 StateType — (required) An enumeration of the following fields:
Starting, which only applies to server components (Dgraph or LogServer)
Running
NotRunning
Failed

» startTime — (required) The time the batch component started; for example, 10/11/08 3:58 PM.

» failureMessage — The failure message, which tells you that a failure has occurred in the execution of the
component. failureMessage is empty unless state is FAILED. (This is different from EACFault, which tells
you that a problem has occurred while processing the Web Service request to get the status.)

* duration — (required) The length of time the batch component has been running; for example, 0 days 0
hours 0 minutes 6.96 seconds.

Related Links

StatusType class on page 89
Describes the status of a server component in the Application Controller.

ComponentListType class

A class that describes a list of components, such as ForgeComponentType and DgraphComponentType.

ComponentListType properties
» component (required) A collection of components comprising this ComponentListType object.

ComponentType class

A class that describes the base type for all components within an application.

ComponentType properties
Each component contains these properties, as well as some others.

» componentID (required) identifies the component to use.

hostID (required) is a unique string identifier for this host.

» workingDir is a string identifying the working directory for this component.

logFile is a string identifying the log file for this component.

* properties is a string identifying any properties associated with this component.

Oracle Commerce Guided Search Platform Services Application Controller Guide

78 Endeca Application Controller API Class Reference | DgidxComponentType class

DgidxComponentType class

A class that describes a Dgidx component within an application.

A Dgidx component sends the finished data prepared by Forge to the Dgidx program, which generates the
proprietary indices for each Dgraph.

DgidxComponentType properties

componentID (required) identifies the component to use.
hostID (required) is a unique string identifier for this host.

workingDir is a string identifying the working directory for this component. Any relative paths in component
properties are be interpreted as relative to the component's workingDir. The workingDir property, if specified,
must be an absolute path.

logFile is a string identifying the log file for this component.

args is a list of command-line flags to pass to Dgidx.

appConfigPrefix is the path and file prefix that define the input for Dgidx.

inputPrefix (required) is the path and prefix name for the Forge output that Dgidx indexes.
outputPrefix (required) is the path and prefix name for the Dgidx output.

runAspell prepares the Aspell files for the Dgraph. The default is true, which causes the Dgidx component
to run dgwordlist and to copy the Aspell files to its output directory, where the Dgraph component can
access them. Note that your stub generation tool may generate a Boolean property (for example,
runAspellSpecified in .NET) that is used to detect whether the user called the set method for this attribute;
the property will be used to determine whether to include this field in the serialized XML.

tempDir is the path to the temporary directory that Dgidx uses.

DgraphComponentType class

A class that describes a Dgraph component within an application.

A Dgraph element launches the Dgraph (MDEX Engine) software, which processes queries against the indexed
Endeca records.

DgraphComponentType properties

componentID (required) identifies the component to use.
hostID (required) is a unique string identifier for this host.

workingDir is a string identifying the working directory for this component. Any relative paths in component
properties are be interpreted as relative to the component's workingDir. The workingDir property, if specified,
must be an absolute path.

logFile is a string identifying the log file for this component.
args is a list of command-line flags to pass to the Dgraph.

port (required) is the port the Dgraph listens at. The default is 8000.

Oracle Commerce Guided Search Platform Services Application Controller Guide

Endeca Application Controller API Class Reference | DirectoryListType class 79

+ appConfigPrefix is the path and file prefix that define the input for Dgraph.
* inputPrefix (required) is the path and prefix name for the Dgidx output that the Dgraph uses as an input.
» reqLogFile is the path to and name of the request log.

« spellDir, if specified, is the directory in which the Dgraph will look for Aspell files. If it is not specified, the
Dgraph will look for Aspell files in the Dgraph’s input directory (that is, inputPrefix without the prefix). For
example, if inputPrefix is /dir/prefix and all the Dgraph input files are /dir/prefix.*, the Dgraph will look for
the Aspell files in /dir/).

+ startupTimeout specifies the amount of time in seconds that the Application Controller will wait while starting
the Dgraph. Note that your stub generation tool may generate a Boolean property (for example,
startupTimeoutSpecified in .NET) that is used to detect whether the user called the set method for this
attribute; the property will be used to determine whether to include this field in the serialized XML.

+ sslConfiguration sets SSL usage for this Dgraph.

» updateDir is the directory from which Dgraph reads partial update files. For more information, see the
Endeca Partial Updates Guide.

» updateLogFile specifies the file for update-related log messages.

» tempDir is the path to the temporary directory that the Dgraph uses.

DirectoryListType class

A class that represents a collection of DirectoryType objects.

DirectoryListType property
» directory (required) is a collection of DirectoryType objects.

DirectoryType class

A class used by the HostType class to define a directory while provisioning a host.

DirectoryType properties
+ dirlD (required) is a unique identifier for this directory.

+ dir (required) is a full path for this directory.

EACFault class

The class that creates the EACFault. EACFault is the error message returned by the Application Controller
when the method fails.

EAC Fault property
* error is the error message.

Oracle Commerce Guided Search Platform Services Application Controller Guide

80 Endeca Application Controller API Class Reference | FilePathListType class

FilePathListType class

An array of FilePathTypes that describes a returned value of a listDirectoryContents call.

FilePathListType operates on the application level.

FilePathListType property

» filePaths (required) describe a file on a remote host.

FilePathType class

A class that describes a file on a remote host.

FilePathType properties
+ path (required) is the full path to the file.

« directory (required) indicates whether the path is a directory.

FlagiDListType class
A class that describes a returned value of a list flags call. FlagIDListType operates on the application level.

FlagIiDListType property

« flaglD is a unique string identifier for this flag.

ForgeComponentType class

A class that describes a Forge component within an application.

A Forge element launches the Forge (Data Foundry) software, which transforms source data into tagged
Endeca records.

ForgeComponentType properties

» componentID (required) identifies the component to use.
* hostlID (required) is a unique string identifier for this host.

» workingDir is a string identifying the working directory for this component. Any relative paths in component
properties are be interpreted as relative to the component's workingDir. The workingDir property, if specified,
must be an absolute path.

* logFile is a string identifying the log file for this component.
+ args is a list of command-line flags to pass to Forge.

« stateDir is the directory where the state file is located.

Oracle Commerce Guided Search Platform Services Application Controller Guide

Endeca Application Controller API Class Reference | FullyQualifiedComponentIDType class 81

* inputDir is the path to the Forge input.
+ outputDir is the directory where the output from the Forge process will be stored.

+ outputPrefixName is the prefix, without any associated path information, that Forge uses to save its output
files. These files are located in the directory specified by outputDir.

» numPartitions is the number of partitions. Note that your stub generation tool may generate a Boolean
property (for example, numPartitionsSpecified in .NET) that is used to detect whether the user called the
set method for this attribute; the property will be used to determine whether to include this field in the
serialized XML.

+ pipelineFile (required) is the name of the Pipeline.epx file to pass to Forge.
» tempDir is the temporary directory that Forge uses.

» webServicePort is the port used by the Forge metrics Web service, which provides progress and performance
metrics for Forge. For details, see "The Forge Metrics Web Service" in the Endeca Forge Guide. Note that
your stub generation tool may generate a Boolean property (for example, webServicePortSpecified in .NET)
that is used to detect whether the user called the set method for this attribute; the property will be used to
determine whether to include this field in the serialized XML.

FullyQualifiedComponentIDType class

A class that serves as an input to the start, stop, get status, and remove component commands.

FullyQualifiedComponentIDType properties

+ applicationID (required) identifies the application to use.

» componentID (required) identifies the component to use.

FullyQualifiedFlagIDType class

In relation to the Synchronization service, this class serves as an input to an acquire or release flag method.

FullyQualifiedFlaglDType properties
« applicationID (required) identifies the application to use.

« flagID (required) is a unique string identifier for this flag.

FullyQualifiedHostIDType class

A class that identifies a host so that it can be used as an input to another command, such as remove host.

FullyQualifiedHostIDType properties
« applicationID (required) identifies the application to use.

Oracle Commerce Guided Search Platform Services Application Controller Guide

82 Endeca Application Controller API Class Reference | FullyQualifiedScriptIDType class

* hostID (required) is a unique string identifier for this host.

FullyQualifiedScriptIDType class

A class that identifies a script so that it can be used as an input to another command, such as startScript().

FullyQualifiedScriptIDType properties
« applicationID (required) identifies the application to use.

« scriptID (required) is a unique string identifier for this script.

FullyQualifiedUtilityTokenType class

In relation to the Utility service, this object represents the token.

FullyQualifiedUtilityTokenType properties
« applicationID (required) identifies the application to use.

« token (required) identifies the token used to stop the utility or to get its status. If you do not specify a token,
one is generated and returned when you start the utility.

HostListType class

A class that represents a collection of HostType objects.

HostListType property

* host (required) is a unique identifier comprising a hostname, port, and hostID.

HostType class

A class that describes a host within an application.

Along with components, a collection of HostType objects define an application.

HostType properties

* hostname (required) is the name of the host.

* port (required) is the connection port.

* hostID is a unique string identifier for this host.

« directories allows you to specify directories using a full path and a name.

Oracle Commerce Guided Search Platform Services Application Controller Guide

Endeca Application Controller API Class Reference | ListApplicationIDsInput class 83

ListApplicationlDsInput class

An empty object you pass into the Web services interface to get back a list of applications.

ListDirectoryContentsinputType class

An object that serves as an input to the listDirectoryContents object.

ListDirectoryContentsinputType properties

« applicationID (required) identifies the application to use to look up the host.
* hostID (required) is a unique identifier for the host within that application.

« filePattern (required) is the pattern that listDirectoryContents() expands the wildcards in a pattern. If the
expansion results in a file, it returns a file. If the expansion results in a directory, it returns the directory
non-recursively. Wildcard expansion can result in any combination of files and directories.

LogServerComponentType class

A class that describes a LogServerComponent within an application.

The LogServer component controls the use of the Endeca Log Server.

LogServerComponentType properties

» componentID (required) identifies the component to use.

* hostID (required) is a unique string identifier for this host.

» workingDir is a string identifying the working directory for this component. Any relative paths in component
properties are be interpreted as relative to the component’s workingDir. The workingDir property, if specified,
must be an absolute path.

* logFile is a string identifying the log file for this component.

* port (required) is the port on which to run the LogServer.

+ outputPrefix (required) is the path and prefix name for the LogServer output.

* gzip (required) controls the archiving of log files. Possible values are true and false.

« startupTimeout (required) specifies the amount of time in seconds that the Application Controller will wait
while starting the LogServer. Note that your stub generation tool may generate a Boolean property (for
example, startupTimeoutSpecified in .NET) that is used to detect whether the user called the set method
for this attribute; the property will be used to determine whether to include this field in the serialized XML.

PropertyListType class

A class that represents a collection of PropertyType objects.

PropertyListType property

* properties is a collection of name/value pairs.

Oracle Commerce Guided Search Platform Services Application Controller Guide

84 Endeca Application Controller API Class Reference | PropertyType class

PropertyType class

The PropertyType class allows you to add arbitrary properties (that is, name/value pairs) to host and all
component elements.

PropertyType properties

* name (required) is a non-null string.

* value is a string.

ProvisioningFault class

An extension of EACFault, the ProvisioningFault class is thrown when there are fatal errors during provisioning.

ProvisioningFault properties

* errors is a list of provisioning errors.
» warnings is a list of provisioning warnings.

RemoveApplicationType class

Related to the Provisioning service, this class serves as input to the incremental remove command.

RemoveApplicationType properties

+ applicationID (required) identifies the application to use.

» forceRemove indicates whether or not a remove operation should force any running components or services
to stop before attempting the remove. Note that your stub generation tool may generate a Boolean property
(for example, forceRemoveSpecified in .NET) that is used to detect whether the user called the set method
for this attribute; the property will be used to determine whether to include this field in the serialized XML.

RemoveComponentType class

Related to the Provisioning service, this class serves as input to the incremental remove command.

RemoveComponentType properties

+ FullyQualifiedComponentIDType (required) identifies the component to use.

» forceRemove indicates whether or not a remove operation should force the component to stop before
attempting the remove. Note that your stub generation tool may generate a Boolean property (for example,
forceRemoveSpecified in .NET) that is used to detect whether the user called the set method for this
attribute; the property will be used to determine whether to include this field in the serialized XML.

Oracle Commerce Guided Search Platform Services Application Controller Guide

Endeca Application Controller API Class Reference | RemoveHostType class 85

RemoveHostType class

Related to the Provisioning service, this class serves as input to the incremental remove command.

RemoveHostType properties

+ FullyQualifiedHostIDType (required) is a unique string identifier for this host.

» forceRemove is a Boolean that indicates whether or not a remove operation should force any running
components or services to stop before attempting the remove. Note that your stub generation tool may
generate a Boolean property (for example, forceRemoveSpecified in .NET) that is used to detect whether
the user called the set method for this attribute; the property will be used to determine whether to include
this field in the serialized XML.

RemoveScriptType class

Related to the Provisioning service, this class serves as input to the incremental remove command.

RemoveScriptType properties

+ applicationID (required) identifies the application.

+ scriptID (required) identifies the script to remove.

» forceRemove is a Boolean that indicates whether or not a remove operation should force any running
components or services to stop before attempting the remove. Note that your stub generation tool may
generate a Boolean property (for example, forceRemoveSpecified in .NET) that is used to detect whether
the user called the set method for this attribute; the property will be used to determine whether to include
this field in the serialized XML.

ReportGeneratorComponentType class

A class that describes a ReportGenerator component within an application.

The ReportGenerator component runs the Report Generator, which processes Log Server files into HTML-based
reports that you can view in your Web browser and XML reports that you can view in Endeca Workbench.

ReportGeneratorComponentType properties

» componentID (required) identifies the component to use.

* hostID (required) is a unique string identifier for this host.

» workingDir is a string identifying the working directory for this component. Any relative paths in component
properties are be interpreted as relative to the component's workingDir. The workingDir property, if specified,
must be an absolute path.

* logFile is a string identifying the log file for this component. args is a list of command-line flags to pass to

the ReportGenerator.

javaBinary, if used, should indicate a JDK 1.5.x or later. Defaults to the JDK that Endeca installs.

javaOptions are the command-line options for the javaBinary parameter. This parameter is primarily used

to adjust the ReportGenerator memory, which defaults to 1GB. To set the memory, use the following:
java_options = -Xmx[MemoryInMb]m -Xms[MemorylInMb]m inputDirOrFile (required) is the path to the file
or directory containing the logs to report on. If it is a directory, then all log files in that directory are read. If
it is a file, then just that file is read.

Oracle Commerce Guided Search Platform Services Application Controller Guide

86 Endeca Application Controller API Class Reference | RunBackupType class

outputFile (required) is the name the generated report file and path to where it is stored.

stylesheetFile (required) is the filename and path of the XSL stylesheet used to format the generated report.
settingsFile is the path to the report_settings.xml file.

timerange sets the time span of interest (or report window). Allowed keywords: Yesterday, LastWeek,
LastMonth, DaySoFar,WeekSoFar, and MonthSoFar. These keywords assume that days end at midnight,
and weeks end on the midnight between Saturday and Sunday. Note that your stub generation tool may
generate a Boolean property (for example, timerangeSpecified in .NET) that is used to detect whether the
user called the set method for this attribute; the property will be used to determine whether to include this
field in the serialized XML.

startDate set the report window to the given date and time. The date format should be either yyyy_mm_dd
or yyyy_mm_dd.hh_mm_ss.

stopDate sets the report window to the given date and time. The date format should be either yyyy_mm_dd
or yyyy_mm_dd.hh_mm_ss. timeSeries turns on the generation of time-series data and specifies the
frequency, Hourly or Daily.

charts turns on the generation of report charts. Note that your stub generation tool may generate a Boolean
property (for example, chartsSpecified in .NET) that is used to detect whether the user called the set method
for this attribute; the property will be used to determine whether to include this field in the serialized XML.

RunBackupType class

A child of the RunUtilityType class, this class provides all the information you need to perform a backup
operation to the Archive utility.

RunBackupType properties

applicationID (required) is the unique identifier for this application.

token identifies the token used to stop the utility or to get its status. If you do not specify a token, one is
generated and returned when you start the utility.

hostID (required) is a unique identifier for the host. The hostID and dirName parameters specify the path
to the directory that will be archived.

dirName (required) is the full path of the directory. The hostID and dirName parameters specify the path
to the directory that will be archived.

backupMethod is either Copy or Move. Note that your stub generation tool may generate a Boolean property
(for example, backupMethodSpecified in .NET) that is used to detect whether the user called the set method
for this attribute; the property will be used to determine whether to include this field in the serialized XML.
numBackups specifies the maximum number of archives to store. This number does not include the original
directory itself, so if numBackups is set to 3, you would have the original directory plus up to three archive
directories, for a total of as many as four directories. The default numBackups is 5. Note that your stub
generation tool may generate a Boolean property (for example, numBackupsSpecified in .NET) that is used
to detect whether the user called the set method for this attribute; the property will be used to determine
whether to include this field in the serialized XML.

RunFileCopyType class

A child of the RunUtilityType class, this class provides all the information you need to run the Copy utility.

RunFileCopyType properties

applicationID (required) identifies the application to use.

Oracle Commerce Guided Search Platform Services Application Controller Guide

Endeca Application Controller API Class Reference | RunRollbackType class 87

token identifies the token used to stop the utility or to get its status. If you do not specify a token, one is
generated and returned when you start the utility.

fromHostID (required) is the unique identifier for the host you are copying the data from. toHostID (required)
is the unique identifier for the host you are copying the data to.

sourcePath (required) is the full path to the source file or directory. If sourcePath contains no wildcards,
then destinationPath must be the destination file or directory itself, rather than the parent directory.
destinationPath (required) is the full path to the destination file or directory.

recursive, when specified, downloads the directories recursively. Note that your stub generation tool may
generate a Boolean property (for example, recursiveSpecified in .NET) that is used to detect whether the
user called the set method for this attribute; the property will be used to determine whether to include this
field in the serialized XML.

RunRollbackType class

A child of the RunUtilityType class, this class provides all the information you need to perform a rollback
operation to the Archive utility.

RunRollbackType properties

applicationID (required) identifies the application to use.

token identifies the token used to stop the utility or to get its status. If you do not specify a token, one is
generated and returned when you start the utility.

hostID (required) is a unique identifier for the host. The hostID and dirName parameters specify the path
to the directory that will be archived.

dirName (required) is the full path for the directory. The hostID and dirName parameters specify the path
to the directory that will be archived.

RunShellType class

A child of the RunUtilityType class, this class provides all the information you need to run the Shell utility.

RunShellType properties

applicationID (required) identifies the application to use.

token identifies the token used to stop the utility or to get its status. If you do not specify a token, one is
generated and returned when you start the utility.

hostID (required) is a unique identifier for the host.
cmd (required) is the command(s). workingDir is the full path for the working directory.

RunUtilityType class

Parent class of the other Utility classes.

RunUtilityType properties

applicationID (required) identifies the application to use.

Oracle Commerce Guided Search Platform Services Application Controller Guide

88 Endeca Application Controller API Class Reference | ScriptListType class

+ token identifies the token used to stop the utility or to get its status. If you do not specify a token, one is
generated and returned when you start the utility.

ScriptListType class

A class that describes a list of scripts.

ScriptListType properties
« script (required) is a collection of scripts comprising this ScriptListType object.

ScriptType class

A class that describes the base type for all scripts within an application.

ScriptType properties

+ scriptID (required) is a unique string identifier for the script.
» cmd (required) is the command that is used to start the script.

* logFile is the file for appended stdout/stderr output. It defaults to
$ENDECA_CONF/logs/script/(app_id).(script_id).log.
« workingDir is the working directory. It defaults to SENDECA_CONF/working/(app_id)/.

SSLConfigurationType class

A class used by the DgraphComponentType class to enable SSL on the resulting components.

SSLConfigurationType properties

« certFile (required) specifies the path of the eneCert.pem certificate file that is used by the Dgraph process
to present to any client.

The file name can be a path relative to the component’s working directory.

+ caFile (required) specifies the path of the eneCA.pem Certificate Authority file that the Dgraph process
uses to authenticate communications with other Endeca components. The file name can be a path relative
to the component’s working directory.

« cipher specifies a cryptographic algorithm that Dgraph will use during the SSL negotiation. If you omit this
setting, the Dgraph chooses a cryptographic algorithm from its internal list of algorithms. See the Endeca
Commerce Security Guide for more information.

StateType class

A class used by the StatusType class to describe the state of a component.

Oracle Commerce Guided Search Platform Services Application Controller Guide

Endeca Application Controller API Class Reference | StatusType class 89

StateType fields
An enumeration of the following fields:

+ Starting Starting only applies to server components (Dgraph or LogServer).
* Running

* NotRunning

* Failed

StatusType class

Describes the status of a server component in the Application Controller.

Server components include the Dgraph and LogServer. All other components (Forge, Dgidx, and
ReportGenerator) are batch components. Their status is described by the BatchStatusType class.

StatusType properties
» StateType — (required) An enumeration of the following fields: Starting (which only applies to server
components (Dgraph or LogServer), Running, NotRunning, or Failed.
+ startTime — (required) The time the component started; for example, 10/25/07 3:58 PM.

« failureMessage — The failure message, which tells you that a failure has occurred in the execution of the
component. failureMessage is empty unless state is FAILED. (This is different from EACFault, which tells
you that a problem has occurred while processing the Web Service request to get the status.)

TimeRangeType class
A class used by the ReportGeneratorComponentType class to set the time span of interest (or report window).

TimeRangeType fields
The enumeration of possible values is as follows:

* Yesterday
+ LastWeek
LastMonth
» DaySoFar
WeekSoFar
MonthSoFar

TimeSeriesType class

A class used by the ReportGeneratorComponentType class to turn on the generation of time-series data and
specify the frequency, hourly or daily.

TimeSeriesType fields

The enumeration of possible values is as follows:

Oracle Commerce Guided Search Platform Services Application Controller Guide

90 Endeca Application Controller API Class Reference | UpdateComponentType class

* Hourly
+ Daily

UpdateComponentType class

A class that describes a component to be updated during incremental provisioning.

UpdateComponentType properties

« applicationID (required) identifies the application.
» component (required) identifies the component to update.

 forceUpdate indicates whether or not the Application Controller should force the component to stop before
attempting the update. Note that your stub generation tool may generate a Boolean property (for example,
forceUpdateSpecified in .NET) that is used to detect whether the user called the set method for this attribute;
the property will be used to determine whether to include this field in the serialized XML.

UpdateHostType class

A class that describes a host to be updated during incremental provisioning.

UpdateHostType properties

« applicationID (required) identifies the application.
* host (required) identifies the host to update.

« forceUpdate indicates whether the Application Controller should force any components or services running
on the host to stop before attempting the update. Note that your stub generation tool may generate a
Boolean property (for example, forceUpdateSpecified in .NET) that is used to detect whether the user
called the set method for this attribute; the property will be used to determine whether to include this field
in the serialized XML.

UpdateScriptType class

A class that describes a script to be updated during incremental provisioning.

UpdateScriptType properties

+ applicationID (required) identifies the application.

+ scriptID (required) identifies the script to update.

« forceUpdate indicates whether the Application Controller should force any components or services running
on the host to stop before attempting the update. Note that your stub generation tool may generate a
Boolean property (for example, forceUpdateSpecified in .NET) that is used to detect whether the user
called the set method for this attribute; the property will be used to determine whether to include this field
in the serialized XML.

Oracle Commerce Guided Search Platform Services Application Controller Guide

Index

A

addComponent(AddComponentType addComponentinput)
69
AddComponentType class 75
addHost(AddHostType addHostInput) 70
AddHostType class 75
adding

components in eaccmd 38

hosts in eaccmd 38

properties to hosts and components 24

scripts in eaccmd 39
addScript(AddScriptType addScriptinput) 72
AddScriptType class 76
aliasing hosts with host-id 23
ApplicationIDListType class 76
applications, forcing the removal of 36
ApplicationType class 76
architecture

development environment 41

production environment 42

sizing 42

staging environment 42

testing environment 42
architecture of the EAC 11
archive utility

eaccmd 58

backup operations 58

rollback operations 59

B

backup operations with eaccmd 58
BackupMethodType class 76
BatchStatusType class 77

Cc

canonical paths in an application 26

class
AddComponentType 75
AddHostType 75
AddScriptType 76
ApplicationIDListType 76
ApplicationType 76
BackupMethodType 76
BatchStatusType 77
ComponentListType 77
ComponentType 77
DgidxComponentType 78
DgraphComponentType 78
DirectoryListType 79
DirectoryType 79

class (continued)
EACFault 79
FilePathListType 80
FilePathType 80
FlagIDListType 80
ForgeComponentType 80
FullyQualifiedComponentIDType 81
FullyQualifiedFlagIDType 81
FullyQualifiedHostIDType 81
FullyQualifiedScriptiIDType 82
FullyQualifiedUtilityTokenType 82
HostListType 82
HostType 82
ListApplicationIDslInput 83
ListDirectoryContentsInputType 83
LogServerComponentType 83
PropertyListType 83
PropertyType 84
ProvisioningFault 84
RemoveApplicationType 84
RemoveComponentType 84
RemoveHostType 85
RemoveScriptType 85
ReportGeneratorComponentType 85
RunBackupType 86
RunFileCopyType 86
RunRollbackType 87
RunShellType 87
RunUtilityType 87
ScriptListType 88
ScriptType 88
SSLConfigurationType 88
StateType 89
StatusType 89
TimeRangeType 89
TimeSeriesType 89
UpdateComponentType 90
UpdateHostType 90
UpdateScriptType 90
component and script control commands in eaccmd 51
ComponentControl interface 62
ComponentListType class 77
components
defining in your provisioning file 23
Dgidx 28
Dgraph 30
Forge 27
LogServer 32
ReportGenerator 33
ComponentType class 77
controlling the EAC on Windows 17

Index

D

def_file, about 37
defineApplication(ApplicationType application) 67
defining
components in your provisioning file 23
hosts 22
developing and maintaining scripts 25
Dgidx components 28
DgidxComponentType class 78
Dgraph components 30
DgraphComponentType class 78
DirectoryListType class 79
DirectoryType class 79

E

EAC Central Server, specifying in Oracle Endeca Workbench
16
EAC log 18
eac.properties
ensuring clean component shutdown 18
managing server restarts 18
setting the Copy utility temporary directory 18
setting the MDEX root directory 17
using 17
eaccmd
about 45
adding components 38
adding hosts 38
adding scripts 39
archive utility 58
component and script control commands 51
component and utility status verbosity 47
feedback from 46
incremental provisioning commands 48
Is command 52
modifying components 38
modifying hosts in 39
modifying scripts 39
provisioning command 47
provisioning with 35
removing components 38
removing hosts 39
removing scripts 39
running 45
shell utility 52
synchronization commands 50
usage 45
utility commands 51
EACFault class 79
Endeca Application Controller
about 11
architecture 11
installing 15
simple types in WSDL 61
using the WSDL 61
architecture example 13
starting from inittab 16

92

Endeca Deployment Template

using 40

using to provision 40
ensuring clean component shutdown 18
environment variables for scripts 25

F

feedback from eaccmd 46
FilePathListType class 80
FilePathType class 80

FlagIDListType class 80

force flag 37

forcing the removal of an application 36
Forge component 27
ForgeComponentType class 80
FullyQualifiedComponentIDType class 81
FullyQualifiedFlagIDType class 81
FullyQualifiedHostIDType class 81
FullyQualifiedScriptIDType class 82
FullyQualifiedUtilityTokenType class 82

G

getApplication(IDType getApplicationinput) 68
getCanonicalApplication(IDType
getCanonicalApplicationinput) 68
getScriptStatus(FullyQualifiedScriptIDType
getScriptStatusinput) 73

getStatus(String applicationlD, String token) 66
guidelines for incremental provisioning 37

H

HostListType class 82
hosts
aliasing with host-id 23
defining 22
provisioning directories on 23
HostType class 82

incremental provisioning

eaccmd 48

guidelines 37

the --force flag 37

the def_file setting 37

what is 36
inittab, starting the EAC from 16
installing the Application Controller 15
invalid characters in provisioning 22

L

List Directory Contents command with eaccmd 52
listApplicationIDs(listApplicationIDsInput) 69
ListApplicationIDsInput class 83

Oracle Commerce Guided Search Platform Services

listDirectoryContents(ListDirectoryContentsinputType
listDirectoryContentsInput) 67
ListDirectoryContentslnputType class 83
listFlags(IDType listFlagsinput) 63

logging levels, modifying in the EAC 18

logs, EAC 18

LogServer components 32
LogServerComponentType class 83

managing server restarts 18
modifying
components in eaccmd 38
EAC logging levels 18
hosts in eaccmd 39
multi-machine provisioning 35

(0]

Oracle Endeca Workbench, controlling the EAC in 16
overview of EAC provisioning 21

P

properties for hosts and components, adding 24
PropertyListType class 83
PropertyType class 84
provisioning

directories on hosts 23

invalid characters 22

on multiple machines 35

scripts 26

using eaccmd 35

with the Endeca Deployment Template 40
provisioning commands in eaccmd 47
provisioning file

about 21

defining scripts in 25

using XML elements in 24
provisioning overview 21
provisioning schema, about 21
ProvisioningFault class 84

R

removeAllFlags(IDType removeAllFlagsinput) 63
removeApplication(RemoveApplicationType
removeApplicationinput) 69

RemoveApplicationType class 84
removeComponent(RemoveComponentType
removeComponentinput) 69

RemoveComponentType class 84
removeFlag(FullyQualifiedFlagIDType removeFlaglnput) 63
removeHost(RemoveHostType removeHostinput) 71
RemoveHostType class 85
removeScript(RemoveScriptType removeScriptinput) 72
RemoveScriptType class 85

Index

removing

components in eaccmd 38

hosts in eaccmd 39

scripts in eaccmd 39
ReportGenerator components 33
ReportGeneratorComponentType class 85
rollback operations in eaccmd 59
RunBackupType class 86
RunFileCopyType class 86
running eaccmd 45
RunRollbackType class 87
RunShellType class 87
RunUltilityType class 87

S

sample implementation

medium, high throughput 43

small, low throughput 42
ScriptListType class 88
scripts

developing and maintaining 25

environment variables 25

modifying in eaccmd 39

provisioning 26

defining in your provisioning file 25
ScriptType class 88
setFlag(FullyQualifiedFlagIiDType setFlaginput) 62
setting the Copy utility's temporary directory 18
shell utility in eaccmd 52
SSL security, enabling 15
SSLConfigurationType class 88
startBackup(RunBackupType startBackuplnput) 64
startComponent(FullyQualifiedComponentIDType
startComponentinput) 62
startFileCopy(RunFileCopyType startFileCopylnput) 64
starting the EAC

in UNIX 16

on Windows 17
startRollback(RunRollbackType startRollbackinput) 65
startScript(FullyQualifiedScriptIDType startScriptinput) 73
startShell(RunShellType startShellinput) 66
StateType class 89
StatusType class 89
stop(FullyQualifiedUtilityTokenType) 66
stopComponent(FullyQualifiedComponentIDType
stopComponentinput) 62
stopScript(FullyQualifiedScriptIDType stopScriptinput) 73
synchronization commands in eaccmd 50
Synchronization interface 62
system architecture

overview 41

T

TimeRangeType class 89
TimeSeriesType class 89

93

Index

U \'

UNIX, controlling the EAC in 16 verbosity in eaccmd 47
updateComponent(UpdateComponentType

updateComponentinput) 70 W

UpdateComponentType class 90
updateHost(UpdateHostType updateHostlnput) 71 Windows, controlling the EAC from 17
UpdateHostType class 90 WSDL
updateScript(UpdateScriptType updateScriptinput) 71 simple types in 61
UpdateScriptType class 90 using 61
usage for eaccmd 45
using

canonical paths in applications 26 X

the Endeca Deployment Template 40
utility commands in eaccmd 51
Utility interface 63

XML entities in provisioning files 24

94 Oracle Commerce Guided Search Platform Services

	Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Oracle Support

	Introduction
	About the Oracle Endeca Application Controller
	EAC architecture
	EAC architecture example

	Using the Application Controller
	Installing the Application Controller
	Enabling SSL security in the Application Controller
	Specifying the EAC Central Server in Oracle Endeca Workbench
	Starting and stopping the Application Controller directly on UNIX
	Starting the Application Controller from inittab
	Starting and stopping the Application Controller on Windows
	Using the eac.properties file
	Setting the MDEX Engine root directory
	Setting the Copy utility’s temporary directory
	Ensuring clean component shutdown
	Managing server restarts

	About the Application Controller log
	Modifying Application Controller logging levels

	Provisioning Implementations with Application Controller
	Provisioning overview
	About the provisioning file and schema
	Invalid characters in provisioning
	Defining the root Application element
	Defining hosts
	Aliasing hosts with host-id
	Provisioning directories on hosts

	Defining components in your provisioning file
	Using XML entities in your provisioning file
	Adding properties to hosts and components

	Defining scripts in your provisioning file
	Developing and maintaining scripts
	Script environment variables
	Provisioning scripts
	Using canonical paths in an application

	Application Controller component reference
	Forge
	Dgidx
	Dgraph
	LogServer
	ReportGenerator

	Provisioning your implementation with eaccmd
	Provisioning the Application Controller to work on multiple machines

	Forcing the removal of an application
	About incremental provisioning
	Incrememental provisioning guidelines
	About the def_file setting
	About the --force flag
	Adding a component in eaccmd
	Removing a component in eaccmd
	Modifying a component in eaccmd
	Adding a host in eaccmd
	Removing a host in eaccmd
	Modifying a host in eaccmd
	Adding a script in eaccmd
	Removing a script in eaccmd
	Modifying a script in eaccmd

	Provisioning your deployment with the Endeca Deployment Template
	Using the Endeca Deployment Template

	Common System Architectures in an Endeca Implementation
	Overview of system architectures
	Development environment
	Staging and testing environment
	Sample production environments
	Descriptions of implementation size
	Small implementation with lower throughput
	Medium implementation with higher throughput

	Using the eaccmd Tool
	About eaccmd
	Running eaccmd
	eaccmd usage

	eaccmd feedback
	Component and utility status verbosity
	Using the default host and port
	eaccmd command reference
	Provisioning commands
	Incremental provisioning commands
	Synchronization commands
	Component and script control commands
	Utility commands
	The List Directory Contents (ls) command
	The Shell utility
	The Copy utility
	About the Copy utility

	The Archive utility
	Backup operations
	Rollback operations

	Endeca Application Controller API Interface Reference
	Using the Application Controller WSDL
	Simple types in the Application Controller WSDL

	ComponentControl interface
	startComponent(FullyQualifiedComponentIDType startComponentInput)
	stopComponent(FullyQualifiedComponentIDType stopComponentInput)

	Synchronization interface
	setFlag(FullyQualifiedFlagIDType setFlagInput)
	removeFlag(FullyQualifiedFlagIDType removeFlagInput)
	removeAllFlags(IDType removeAllFlagsInput)
	listFlags(IDType listFlagsInput)

	Utility interface
	startBackup(RunBackupType startBackupInput)
	startFileCopy(RunFileCopyType startFileCopyInput)
	startRollback(RunRollbackType startRollbackInput)
	startShell(RunShellType startShellInput)
	stop(FullyQualifiedUtilityTokenType)
	getStatus(String applicationID, String token)
	listDirectoryContents(ListDirectoryContentsInputType listDirectoryContentsInput)

	Provisioning interface
	defineApplication(ApplicationType application)
	getApplication(IDType getApplicationInput)
	getCanonicalApplication(IDType getCanonicalApplicationInput)
	listApplicationIDs(listApplicationIDsInput)
	removeApplication(RemoveApplicationType removeApplicationInput)
	addComponent(AddComponentType addComponentInput)
	removeComponent(RemoveComponentType removeComponentInput)
	updateComponent(UpdateComponentType updateComponentInput)
	addHost(AddHostType addHostInput)
	updateScript(UpdateScriptType updateScriptInput)
	removeHost(RemoveHostType removeHostInput)
	updateHost(UpdateHostType updateHostInput)
	addScript(AddScriptType addScriptInput)
	removeScript(RemoveScriptType removeScriptInput)

	ScriptControl interface
	startScript(FullyQualifiedScriptIDType startScriptInput)
	stopScript(FullyQualifiedScriptIDType stopScriptInput)
	getScriptStatus(FullyQualifiedScriptIDType getScriptStatusInput)

	Endeca Application Controller API Class Reference
	About Endeca Application Controller API Classes
	AddComponentType class
	AddHostType class
	AddScriptType class
	ApplicationIDListType class
	ApplicationType class
	BackupMethodType class
	BatchStatusType class
	ComponentListType class
	ComponentType class
	DgidxComponentType class
	DgraphComponentType class
	DirectoryListType class
	DirectoryType class
	EACFault class
	FilePathListType class
	FilePathType class
	FlagIDListType class
	ForgeComponentType class
	FullyQualifiedComponentIDType class
	FullyQualifiedFlagIDType class
	FullyQualifiedHostIDType class
	FullyQualifiedScriptIDType class
	FullyQualifiedUtilityTokenType class
	HostListType class
	HostType class
	ListApplicationIDsInput class
	ListDirectoryContentsInputType class
	LogServerComponentType class
	PropertyListType class
	PropertyType class
	ProvisioningFault class
	RemoveApplicationType class
	RemoveComponentType class
	RemoveHostType class
	RemoveScriptType class
	ReportGeneratorComponentType class
	RunBackupType class
	RunFileCopyType class
	RunRollbackType class
	RunShellType class
	RunUtilityType class
	ScriptListType class
	ScriptType class
	SSLConfigurationType class
	StateType class
	StatusType class
	TimeRangeType class
	TimeSeriesType class
	UpdateComponentType class
	UpdateHostType class
	UpdateScriptType class

	Index

