Oracle Commerce Guided Search
Platform Services

Forge API Guide for Perl
Version 11.1 « July 2014

ORACLE
COMMERCE

Contents

(= - o = 7
ADOUL TNIS QUIAE. ...ttt oo a et e oo e bttt e e oo a bt e e e e a b b e e e e e e bbe e e e s e anbe e e e e e annbeeeeeanreeas 7
WhO Should USE thiS QUIAE.........e ettt ettt e e e e e e e ettt et e e e e e e e e e e e e nnbabrneeeaaaaaaans 7
Conventions USEd IN thiS QUIAE.........c.uuiiiiiiiiiee e e e e e e e e e e e e e e s et e b aeaeeeeaaaeeesaassnsasaneeeaaaaeeeeasannnnnn 7
(7] a1 ¢= Tox 119 To T] r= o7 [T TU] o] o o /U 8
Chapter 1: Introduction to the Forge APL.........c e 9
ADbOUL the Perl ManipUIGTON........ ... ettt e e e e e e e e ettt e e eae e e e e s s e e nnteeeeeeaeaaeeeeeaaannnnneeneens 9
Classes available to @ Perl ManipUIAtOr...............oooiiiiiiiii et e e e e e e e e e e e e e e aenans 10
Understanding Forge and downstream reCord ProCeSSING......cccieiiieiieiieieieieieeeeeieeeteateterssssse e e e e e e e eaaaaaaeeeeeeeeeeeennes 10
About the Forge EXECULION FramEWOTK..........cooi ittt e e e e e e e e b e e e e e nnes 12
An example Perl ManipUIALOr ..ottt ettt a e e e e e e e e e aaaaaaaaaaeeeeaearaaraaaa———_ 12
AddItioNal USE CASE EXAMPIES.....ci it eeieeeeeeee e e e e e e e e e e e e aetete e et e et eeeeeeseatnsnsanaanaaaaaeaeaaeaaeaaaaeeaeeeeneeeesnssnnnrnnes 14

Remove a property from €acCh FrECOIM.........ooii i i e e e e e e e e s e eeeeaaeeeeean 14

Reformat a property 0N €aCH FECOI..........coiiuiiiie e e e et e e e e et e e e e e snbee e e e e ansteeaeeaneees 15

Remove records with @ partiCular ProPEILY.........cueeiiiiiiiii e e e e e e e e s e e e e aaeeeeaaan 16

Perform a left join on records from tWO reCOrd SOUICES........coiuuiiiiiiiiiiii e 16

Retrieve records matching a key from any number of record SOUICES............coccuuiiiiiiciiieeeiiiiiee e 19

Process records USING @ SUDCIASS.uuuiiiiiiiii it e e e e e e e e ae e e e e e e e e s e s s nrnrraaneeeaaaeaeas 21

Add a geocode Property t0 @ MECOITooiiiiiiiiii ittt e e e e et e e e e e a e e e e e e aabee e e e e aneeas 22
Chapter 2: EDF::DVal class..........coomrerrirer e 25
EDF::DVal ClaSS OVEIVIEW.......cii it e ettt e e e e e e e e ettt eeeeeeeeeeesa e nsnaeeeeeeeaaaeeesaaaannsnseneeneaaaeeesaaaannns 25
EDF::DVal::dimension_id MELNOQ. ...t e e e e e e e et e e e e e e e e e e e s e nnneeeees 25
EDF::DValiiid METNOA ...ttt ettt e e e b e e bt e s nr e n e n e 26
Chapter 3: EDF::Manipulator class...........cccccmnriinnivinnnsnneeneee 27
EDF::Manipulator ClaSS OVEIVIEW..........etiiiiiiiiiiii ettt e e e e e e et et e e e e e e e e s bbb e e e e et e e e e e e s e e annnnnreees 27
EDF::Manipulator::context MEthOd............oo e nnneneees 28
EDF::Manipulator::finiSh MELNOQ.ooiiiiiiii et eaaasnrees 28
EDF::Manipulator::get_records MEthOU. ... 28
EDF::Manipulator::name MELNOQ........ .ot e et e e e e e e e e e e e e e e e e e e aaeeeeaaannnnneees 29
EDF::Manipulator::next_record MELNOM............uuuiiiiiiiee e e e e e e e e e e e e aaaeaeeeeeeeeeeeeeeees 29
EDF::Manipulator::prepare Method.oooi et e e e 30
EDF::Manipulator::record_source MENOM.uiiiiiiiiei et e e e e s e e e e e e e e e e e e e nennneeeeeas 30
EDF::Manipulator::record_soUrces MELNOM...........uuuuuuiiiiiiii e e e e e e e e e e e e aaaaaaeeeeeeeeeeeee 31
Chapter 4: EDF::PVal Class.....ccccooiieuiiiiiii it srrces s s ees e s e e s e e 33
EDF::PVal ClaSS OVEIVIEW ...ttt ettt et oottt ettt e e e e e e e e e e aaababe et eeeeaaeeeesaannnbeeeeeeeaaaeeeeaaaannnenen 33
D] =T = g L= 0 =Y o T T PSSP 33
EDF::PValivalue MELNOA ..ottt e et e e e e e e e e e ettt eeeeeaeaeeseaaannnsanneeeeaaaeeeeeeaannnenen 34
Chapter 5: EDF::RecordKey Class..........ccccoiiiiimmmmmmmmmmmmssssssssss e e s s sseessmssssssssnns 35
EDF::RECOIAKEY ClASS OVEIVIEWuiiiiiiiiiiiiii ettt ettt e e e st e e e e b bt e e e ab bt e e e e e ab e e e e e e annbeeeeeeannes 35
EDF::RecordKey::add_columns MethOde et e e e e e e e e 35
EDF::RecordKey::Clone MEtNOdot e e e e e e 36
EDF::RecordKey::columns MELNOQcooiiiiiiiiiiie et et et e e e e rbre e e e e eanees 36
EDF::RecordKey::equals Methodot e e e e e e e e e s 36
Chapter 6: EDF::KeyColumn class..........cccveeciiiiimirecisiirnreecs s sees s s e e nnnnnas 39
EDF::KeYCOIUMN ClASS OVEIVIEWoiiiiiiiiiiie i iiiiie e ettt e e ettt e e e ettt e e e e sttt e e e e snteeeeeaanteeeeeeansteeeeesantaeaeeeanneeeaeeannres 39
EDF::KeyColumn::add_values MENOAccooiiiiiiiiiiiiie ettt e e e e e e e s e e e e e e eaeeeeessannnsanneeees 39
EDF::KeyColumn::id MELNOM.........coiiiiiiie ettt et e e e s sb e e e e s e enbee e e e s sbreeeeeansd 40
EDF::KeyColumn::itype MELNOA ..ottt e e e ettt e e e e st e e e e e nteeeeeeanseeeeeesneaeaeeanned 40
EDF::KeyColumn::ivalues MELNOGooiiiiiiiiii it e e et e e e e et e e e e e nbe e e e e e snneeeeeeenneed 41

EDF::KeyColumn::DVAL CONSLANTeeiiiiiiiieiiieee et e e e e e e e e e e e e e et eaeeeeaaeeeeseeennsenreed 41

EDF::KeyColumn::PVAL CONSTANTottt ettt e et e e e e e bt e e e e e nbe e e e e e nnnreeeeeanneed 42
Chapter 7: EDF::Record Class........cccccciiiimmmmeeciiiinrreesssssssssssss s ssssssss s s s s nmssssnns 43
EDF::RECOIMA ClASS OVEIVIEBWoieiiiiiieieeeieee e ettt e e ettt e e e e e e e e e e e e e e aabeeeeseeaaaa e eeeseesaaneeeseesannnaeeesessnnnaeeeeesnsd 43
EDF::Record::add_dvals method

EDF::Record::add_pvals method

= = Toto fo Btor [o T< Y0 0 T<Y 1 Lo To [N 44
EDF::Record:idvals METNOM ...ttt e e ettt e e e e e et e e e e e eeraaeeeeesenbaneeeeeesnsd 45
Y D] b =T oto] o B 1= YA 1 4= 1. [Yo ISP UOUUOUSRRPRP 45
EDF::Record::ipvals MEthOdoooiiiiiiiiiiii ettt e e et e e e e et e e e s sbbe e e e s sanbaeeeesaneeeeeeeaned 45
Chapter 8: EDF::RecordSource Class.......cccccceeiiiimmmmmiiniimnsesssnssnsssssssss s ssnnanes 47
EDF::RECOrdSOUICE CIASS OVEIVIEWeuniiiiiieitee e eee ettt e ettt e e e ettt e e e e e ee et e e e e e e e aabeeeeeeesabaseeeseesannseeeesensnnnseeeeesd 47
EDF::RecordSource::get_records MethOdc.eiiiiiiiiiii e 48
EDF::RecordSource:iName MELNOMueuiiiiiiiiiiieeeee e ettt e e e e e s e e e e e e eeaaeaeaeseeeeeeeeessssessd 48
EDF::RecordSource::next_record MEhOAoooiiiiiiiiiiieeeee et e e e e e e e e e e e e et e e e e e eeraeeeeesd 49
EDF::RecordSource::nuUmMDBEr MELNOMAcoouiiiiiiee et e e e e e e e e e e eera e e e e e eernaaeeeeesd 49
Chapter 9: Static methods............oo 51
StAtiC METNOAS OVEIVIEW........eeeee ettt ettt e e e e et e e e e e et e e e e e e e entaneeeeeeeaannns 51
D] o L A=Y o)l .11 10T T O UTUUURR 51
EDF::print_infO METNOMAoooiiii ettt e e e e e e e s e e et ee e e e e e e eaeeessasnnnteaeneeeaaaeeeeeaannnned 52
EDF::print_warning MeEthOdttt e e e e e e e et e e e e e e e e e e e e e e nnabeeeeeeeaaaeeeeaaaannnened 52

iv Oracle Commerce Guided Search Platform Services

Copyright and disclaimer

Copyright © 2003, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs,
including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, shall be subject to license terms and license restrictions applicable to the programs. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices.
UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim
all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Vi

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Oracle customers have access to electronic support through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Oracle Commerce Guided Search Platform Services

Preface

Oracle Commerce Guided Search is the most effective way for your customers to dynamically explore your
storefront and find relevant and desired items quickly. An industry-leading faceted search and Guided Navigation
solution, Guided Search enables businesses to influence customers in each step of their search experience.
At the core of Guided Search is the MDEX Engine™, a hybrid search-analytical database specifically designed
for high-performance exploration and discovery. The Oracle Commerce Content Acquisition System provides
a set of extensible mechanisms to bring both structured data and unstructured content into the MDEX Engine
from a variety of source systems. The Oracle Commerce Assembler dynamically assembles content from any
resource and seamlessly combines it into results that can be rendered for display.

Oracle Commerce Experience Manager enables non-technical users to create, manage, and deliver targeted,
relevant content to customers. With Experience Manager, you can combine unlimited variations of virtual
product and customer data into personalized assortments of relevant products, promotions, and other content
and display it to buyers in response to any search or facet refinement. Out-of-the-box templates and experience
cartridges are provided for the most common use cases; technical teams can also use a software developer's
kit to create custom cartridges.

About this guide

This reference describes the classes and methods you can incorporate in a Perl manipulator component. A
Perl manipulator component uses Perl to efficiently manipulate source records as part of Forge's data processing.
For example, pipeline developers can use a Perl manipulator to add, remove, and reformat properties, join
record sources, and so on.

Who should use this guide

This reference is intended for developers who are building Data Foundry pipelines using Endeca Developer
Studio.

Conventions used in this guide

This guide uses the following typographical conventions:

Code examples, inline references to code elements, file names, and user input are set in monospace font. In
the case of long lines of code, or when inline monospace text occurs at the end of a line, the following symbol
is used to show that the content continues on to the next line: -

When copying and pasting such examples, ensure that any occurrences of the symbol and the corresponding
line break are deleted and any remaining space is closed up.

8 | Preface

Contacting Oracle Support

Oracle Support provides registered users with answers to implementation questions, product and solution
help, and important news and updates about Guided Search software.

You can contact Oracle Support through the My Oracle Support site at https:/support.oracle.com.

Oracle Commerce Guided Search Platform Services Forge API Guide for Perl

https://support.oracle.com

Chapter 1
Introduction to the Forge API

This guide describes the classes and methods you can incorporate in a Perl manipulator component.

About the Perl manipulator

A Perl manipulator component uses Perl to efficiently manipulate source records as part of Forge's data
processing. For example, pipeline developers can use a Perl manipulator to add, remove, and reformat
properties, join record sources, and so on.

The Forge APl is the interface between a Perl manipulator and the Forge Execution Framework . All pipeline
components (record adapter, spider, indexer adapter, and so on) plug into the Forge Execution Framework
using one of two methods: next_record or get_records. For all components except the Perl manipulator,
these two methods are hidden from the pipeline developer.

Before a component such as an indexer adapter processes records, it gets them from an upstream component
by calling next_record or get_records via the Forge Execution Framework. See the topic on understanding
Forge and downstream record processing for an explanation of this process.

However, for the Perl manipulator, the next_record and get_records methods are exposed to you as
methods that you can override. These methods allow the Perl manipulator to plug into the Forge Execution
Framework and make calls to upstream pipeline components during record processing.

There are the four overrideable methods available to a Perl manipulator. They are overrideable because the
Perl manipulator component in Developer Studio provides an empty implementation of each one. If you run
the defaultimplementation, the methods do nothing. It is your custom implementation that overrides the default
and defines how a Perl manipulator behaves.

Each method can be called at different stages of record processing. At a minimum, one method (either
get_records or next_record) is required to retrieve records.

» EDF: :Manipulator: : prepare—called before record processing starts to perform setup and initialization
tasks. Optional.

* EDF: :Manipulator: :next_record—called during record processing when a downstream pipeline
component requests the next record from the Perl manipulator. This method accesses any record sources
specified on the Sources tab of your Perl manipulator. More commonly used than get_records.

* EDF: :Manipulator: :get_records—called during record processing when a downstream pipeline
component requests the set of records matching a given key. This method accesses any record sources
specified on the Sources tab of your Perl manipulator.

* EDF: :Manipulator: :finish—called when record processing is complete. Typically performs clean
up or logging tasks. Optional.

10 Introduction to the Forge API | Classes available to a Perl manipulator

Within these four overrideable methods, you can use classes and methods in the EDF namespace that Endeca
provides to perform record manipulation. In other words, you implement the four overrideable methods of
EDF: :Manipulator using methods and classes in the EDF namespace such as EDF: :Record, EDF: :PVal,
EDF: :DVal, and so on. See the classes available to a Perl manipulator for an overview of each class.

Creating a Perl manipulator

See the Oracle Endeca Developer Studio Help for information about creating, modifying, or removing a Perl
manipulator component from your pipeline.

Classes available to a Perl manipulator

If Forge encounters a Perl manipulator component while processing your pipeline, it creates an instance of
the EDF: :Manipulator class.

The EDF: :Manipulator works with EDF: zRecordSource to retrieve records using the classes

EDF: :RecordKey and EDF: :KeyColumn to identify records. The EDF: :Manipulator manipulates the
structure of records with the EDF: -Record, EDF: : PVal, and EDF: :DVal classes. In addition, there are also
several static methods available in the EDF name space for logging.

Here is a summary of the available classes:

Class Description

EDF: :Dval Represents a dimension value tagged to a record or contained in an
EDF: :RecordKey.

EDF: :KeyColumn Represents a value for comparison within an EDF: :RecordKey.

EDF: :Manipulator Represents a Perl manipulator component in Forge.

EDF: :Pval Represents a property value on a record or in an EDF: :RecordKey.

EDF: :Record Describes a record.

EDF: :RecordKey Contains the information necessary to identify records for record selection and
joins.

EDF: :RecordSource Represents a record source specified on the Sources tab of the Perl Manipulator
editor.

Static methods Contains methods for logging different levels of messages (ERR, INF, WRN).

Understanding Forge and downstream record processing

The pipeline metaphor suggests all data moves downstream through a pipeline during processing. It is important
to understand that although the term pipeline suggests that record processing occurs in a downstream order
(a push scenario beginning with source data and ending with indexed Endeca records), Forge actually processes
records by requesting records from upstream components (a pull scenario) to retrieve records as necessary.

Pipeline components, such as a record adapter, Perl manipulator, indexer adapter, spider, and so on, call
backwards up a pipeline, either requesting a record one at a time using the next_record method, or requesting
all records that match a key using the get_records method. Forge then returns the records downstream to
the requesting component for processing.

Oracle Commerce Guided Search Platform Services Forge API Guide for Perl

Introduction to the Forge API | Understanding Forge and downstream record processing 1"

When you write the EDF - :Manipulator: :next_recordor EDF: :Manipulator: :get_records method
for a Perl manipulator, you are defining how the Forge Execution Framework retrieves the records from the
Perl manipulator and how the framework returns them to the downstream component.

It's useful to contrast downstream record flow with upstream method calls in the diagrams below. The first
diagram shows the conceptual explanation of downstream processing. Records flow from a source database
through the pipeline, and Forge produces Endeca records as a result.

Pipeline

Record
Adapter

- @

o

=]

o

m

= Ferl

g Manipulator

=

=

=

§

= Indexer
Adapter

Endeca Records

The second diagram shows each component in the pipeline calling next_record through the Forge Execution
Framework to make upstream requests for records. The upstream requests are represented in steps 1, 2, and
3. The Forge Execution Framework returns the records to the requesting component. The downstream record
flow is represented in steps 4 and 5.

Oracle Commerce Guided Search Platform Services Forge API Guide for Perl

12 Introduction to the Forge API | About the Forge Execution Framework

_ Pipeline
Source b
Data Recard

/#" Adapter

2. Perl manipulator's default implementation
of next_record calls vour implementation of

‘Cﬁ: the next_recard method. “Your method calls

next_record on the Record Adapter via the

Forge Execution Framewwark.
Perl
Manipulator

""\..\ 4. %our implementation of next_recard

receives the record from the framework,
procezses i, and returns it to the framewwork.
> Indexer
Aclapter

3. Record adapter reads the
next record from the data] -1
zource. Forge returns the

record ta the framewark

AN

1. Indexer adapter requests the
next recard from the Perl
manipulator via the Forge
Execution Framework. The "\
framewark calls the Perl
Manipulator's next_record method.

mﬁumg uonnxxJ abilo :|\

N/

5. Indexer adapter receives the
recard from the framewark, writes ;;,

out, and requests the next record .1
That request begins the process
again st step 1 urdill all records are
processed.

N\

Endeca Records

About the Forge Execution Framework

The Forge Execution Framework is the layer of Forge that runs a Forge pipeline.

The framework does this by having pipeline components request records from their upstream record sources.
See the topic on understanding Forge and downstream record processing for an explanation of this process.

An example Perl manipulator
This Perl manipulator example adds a Record Number property to each record. The example uses the prepare,
next_record, and finish methods.

First, the General tab shows the name of the component and that prepare, next_record, and finish
methods are checked, which means that each method is defined in the Method Override editor rather than as
an external file or class.

Oracle Commerce Guided Search Platform Services Forge API Guide for Perl

Introduction to the Forge API | An example Perl manipulator 13

Mame:

I Perl_manipulator

General | Sources | Record Index | Comment

¥ Qverride these methods:
v prepare() Edit...

¥ next_record() Edit...

[get_records() Ed

il

Iv finish() Edit...

" Use this Perl dass:

‘? Help | oK Cancel |

]

Clicking Edit for the prepare() method displays the Method Override editor, which contains the Perl code
shown below. This code makes sure there is only one record source and initializes the record count to zero.

Make sure there is exactly one record source configured
my @source_list = $this->record_sources;

iT (scalar(@{ $this->record_sources }) 1= 1) {
die(""Perl Manipulator ", $this->name,
" must have exactly one record source.™™);

Keep the current record number in our context.
$this->context->{RECNO} = O;

Clicking Edit for the next_record() method displays the Method Override editor which contains the Perl
code shown below. This code counts the records processed and tags each record with a property value with
that indicates the record number.

#Count this record.
++$this->context->{RECNO};
my $rec = $this->record_source(0)->next_record;

Careful: $rec will be undef if there are no more records.

if ($rec) {
my $pval = new EDF::PVal("'Record Number", $this->context->{RECNO});
$rec->add_pvals($pval);

return $rec;

Clicking Edit for the Finish() method displays the Method Override editor, which contains the Perl code
shown below. This code prints the number of records processed using the print_info method.

Print the number of records processed.

EDF: :print_info('Perl Manipulator ".
$this->name, " processed ".
$this->context->{RECNO}.

" records.');

Oracle Commerce Guided Search Platform Services Forge API Guide for Perl

14 Introduction to the Forge API | Additional use case examples

Additional use case examples

This section contains additional use case examples.

Remove a property from each record

This Perl manipulator example removes the Password property from each record as it is processed.

First, the General tab shows the name of the component and that the next_record method is checked, which
means that next_record is defined in the Method Override editor rather than as an external file or class.

| Perl_manipulator

General |Som:\es | Record Index | Comment |
' Qverride these methods:

I™ prepare() Edt... I
v next_record() Edit... I
™ get_records() Exdit I
™ finish(Edit I

" Use this Perl dass:

|
?udn||a<|cm|

Clicking Edit for the next_record() method displays the Method Override editor which contains the Perl code
shown below. This code removes the Password property from each record.

Get the next input record.
my $rec = $this->record_source(0)->next_record;

Careful: $rec will be undef if there are no more records
it (1$rec) { return undef; }

There are two ways to do this: the slow way, which is to walk over
the array of PVals and splice out each one that is named "Password®;
and the fast way, which is to grep all of them out and re-assign the
array. We"ll do it the fast way.

@{ $rec->pvals } = grep { $ ->name ne "Password®" } @{ $rec->pvals };

return $rec;

v . . o
< Note: This example could also include a prepare method to perform the same record source validation
as in the introduction's example Perl manipulator.

Oracle Commerce Guided Search Platform Services Forge API Guide for Perl

Introduction to the Forge API | Additional use case examples 15

Reformat a property on each record

This example reformats the Price property on each record.

Assume the Price value has no dollar sign. The Perl manipulator replaces the Price value with a number that
has a leading dollar sign and exactly two decimal places.

First, the General tab shows the name of the component and that the next_record method is checked, which
means that next_record is defined in the Method Override editor rather than as an external file or class.

I Perl_manipulator

General | Sources | Record Index | Comment
¥ Override these methods:

™ prepare() Edit I

¥ next_record() Edit...

[~ get_records) Edit

™ Use this Per] dass:

|
?udp||a<|c:amel|

Clicking Edit for the next_record() method displays the Method Override editor which contains the Perl code
shown below. This code reformats the Price property on each record.

Get the next input record.
my $rec = $this->record_source(0)->next_record;

Careful: $rec will be undef if there are no more records.
if (1$rec) { return undef; }

Pull the PVals named "Price® out of the list of Pvals.
my @prices = grep { $ ->name eq "Price" } @{ $rec->pvals };

IT there isn"t exactly one price property, print a warning.
ifT (scalar(@prices) 1= 1) {
EDF: :print_warning("Expected 1 PVal named Price; found ' .
scalar(@prices));

Reformat all the Price properties. This works even if

there are 0 properties.

foreach my $pval (@prices) {
$pval is a reference the same PVal that is on the
record, so changing the value here changes it on the record.
$pval->value = sprintf('"\$%.2f", $pval->value);

return $rec;

v . . e
7 Note: This example could also include a prepare method to perform the same record source validation
as in the introduction's example Perl manipulator.

Oracle Commerce Guided Search Platform Services Forge API Guide for Perl

16

Introduction to the Forge API | Additional use case examples

Remove records with a particular property

This example removes records with the property named Delete This Record.

First, the General tab shows the name of the component and that the next_record method is checked,
which means that next_record is defined in the Method Override editor rather than as an external file or
class.

I Perl_manipulator

General | Sources | Record Index | Comment
¥ Override these methods:

™ prepare() Edit I

¥ next_record() Edit...

[~ get_records) Edit

™ Use this Per] dass:

|
?udp||a<|c:amel|

Clicking Edit for the next_record() method displays the Method Override editor, which contains the Perl
code shown below. This code removes records with the property named Delete This Record.

Here"s the trick: as long as the record has at least one PVal named
"'Delete This Record", we don"t return it; instead, we skip it by

looping back up and fetching the next record. This effectively

removes (by skipping) records with PVals named ""Delete This Record".
my $rec;

my $skip;

do {
$rec = $this->record_source(0)->next record;
Careful: $rec will be undef if there are no more records
return undef unless $rec;
Find all the pvals named "Delete This Record"
my @pvals = grep { $ ->name eq "Delete This Record" } @{ $rec->pvals };
IT there"s at least one, skip this record.
skip = (scalar(@pvals) > 0);
} while ($skip);

IT you want to do additional work, do it here.
return $rec;

&
77 Note: This example could also include a prepare method to perform the same record source validation
as in the introduction's example Perl manipulator.

Perform a left join on records from two record sources

This example performs a left join on records from two record sources.

Oracle Commerce Guided Search Platform Services Forge API Guide for Perl

Introduction to the Forge API | Additional use case examples 17

First, the General tab shows the name of the component and that both prepare and next_record methods
are checked, which means that each method is defined in the Method Override editor rather than as an
external file or class.

B

Mame:

| Perl_manipulator

General | Sources | Record Index | Comment
{* Override these methods:

¥ prepare() Edit.

¥ next_record() Edit...

[~ get_records() |
[finish() |
" Use this Perl dass:

J
? b | oK | Cancel I

Clicking Edit for the prepare method displays the Method Override editor, which contains the Perl code
shown below. This code makes sure there are exactly two record sources.

Make sure we have exactly two record sources
ifT (scalar(@{ $this->record_sources }) 1= 2) {
die("Perl Manipulator ", $this->name,
" must have exactly two record sources.');

}

Make sure the record sources are named "'Left" and "Right"
This name is arbitrary, and only done to demonstrate
retrieving record sources by name.
if (1$this->record_source(Left™)) {
die("Perl Manipulator ", $this->name,

must have a record source named “Left".'");

}

if (1$this->record_source("Right™)) {
die("'Perl Manipulator ", $this->name,
" must have a record source named "Right®.'");

}

Keep the canonical record key in our context.

This key has two columns. The First column is the values
of the property "KeyProp™. The second column is the values
from the dimension with ID 1000.

my $key = new EDF::RecordKey;

$key->add_columns(new EDF::KeyColumn(EDF: :KeyColumn: :PVAL, "KeyProp'));
$key->add_columns(new EDF::KeyColumn(EDF: :KeyColumn: :DVAL, 1000));
$this->context->{KEY} = $key;

Oracle Commerce Guided Search Platform Services Forge API Guide for Perl

18

Introduction to the Forge API | Additional use case examples

Clicking Edit for the next_record() method displays the Method Override editor, which contains the Perl
code shown below. This code joins the two record sources.

my $left_src = $this->record_source("Left");

my $right_src = $this->record_source("Right");
my $left _rec;

my @right_recs;

$left_rec = $left_src->next_record;

it (I$left_rec) { return undef; } # End of input

This makes a copy of the canonical key and fills it in.
my $key = $left_rec->key($this->context->{KEY});

Find matching records on the right-hand side.
@right_recs = $right_src->get_records($key);

Move PVals and DVals from the right-hand records onto the
left-hand records.

foreach my $right_rec (@right_recs) {
Don"t move KeyProp over.
my @pvals = grep { $_->name ne "KeyProp" } @{ $right_rec->pvals };
$left_rec->add_pvals(@pvals);
Don"t move DVals from dimension 1000 over.
my @dvals = grep { $ ->dimension_id '= 1000 } @{ $right rec->dvals };
$left_rec->add_dvals(@dvals);

return $left_rec;

Clicking the Sources tab of the Perl Manipulator editor shows that both Left and Right record sources are
available.

Perl Manipulator : Perl_manipul x|

Name:

I Perl_manipulator

General Sources | Record Index | Comment |

Record sources:

Left Remave
Right —I

I DimensionMapper ZI Add I
? Heb | oK I Cancel |

S
7 Note: A Perl manipulator causes Forge to fail when the Perl manipulator is on the left side of a left join
and no record cache adapter is used. Forge returns the following error:

-——FATAL ERROR---
FTL: [LoadData]: (RecordAdapter.cpp:566) Can"t call nextRecordlnput at end-of-

Oracle Commerce Guided Search Platform Services Forge API Guide for Perl

Introduction to the Forge API | Additional use case examples 19

stream
on RecordAdapter "LoadData*

To work around this issue, add a record cache adapter after the Perl manipulator. See the Endeca Developer
Studio Help for details about using a record cache.

Retrieve records matching a key from any number of record sources

This example retrieves records from any number of record sources that match a key.

First, the General tab shows the name of the component and that the prepare and get_records() methods
are checked, which means that they are defined in the Method Override editor rather than as an external file
or class.

Mame:

J Perl_manipulator

General | Sources | Record Index | Comment

(¢ Override these methods:

v prepare() Edit...
[~ next_record() Edit
¥ get_records() Edit...
[™ finishQ

" Use this Perl dass:

|
i ? Help | oK | Cancel |

Clicking Edit for the prepare() method displays the Method Override editor which contains the Perl code
shown below. This code sets a flag for later manipulation on the first call of get_records().

We want to do special processing on the first call to
GET_RECORDS.

Setting this context flag will let us determine later
what to do for the first call.
$this->context->{FIRST} = 1;

Clicking Edit for the get_records() method displays the Method Override editor, which contains the Perl
code shown below. This code retrieves records from all the record sources available on the Sources tab of
the Perl Manipulator editor.

my $key = shift;
my @recs;

Things to do on the first call only.
if ($this->context->{FIRST}) {

Not the first call any more; reset the flag.
$this->context->{FIRST} = 0;

Build a hash of the names of PVals that are in the key.
$this->context->{PVAL_KEYS} = \{ };

Oracle Commerce Guided Search Platform Services Forge API Guide for Perl

20

Introduction to the Forge API | Additional use case examples

Build a hash of the dimension IDs of that are in the key.
$this->context->{DVAL KEYS} = \{ }:
foreach $col (@{ $key->columns }) {
if ($col->type eq PVAL) {
$this->context->{PVALS}->{$col->id} = 1;

else {
$this->context->{DVALS}->{$col->id} = 1;
}

}

Do the rest on each call to get_records.
foreach my $src ($this->record_sources) {
my @fetched = $src->get_records($key);

Remove the PVals that are in the key. This is done on the
assumption that we"re on the right-hand side of a join, so
the key PVals are already on the record used to make the key
that was passed to us. Leaving these PVvVals on the key would
create duplicates that we"d have to remove later.
foreach my $rec (@fetched) {
Remove PVals that are in the key.
@{ $rec->pvals } =
grep { '$this->context->{PVALS}->{$ ->name} }
@{ $rec->pvals };
Remove DVals that are in the key.
@{ $rec->dvals } =
grep { '$this->context->{DVALS}->{$ ->dimension_id} }
@{ $rec->dvals };

}
push(@recs, @fetched);
}

return @recs;

Clicking the Sources tab of the Perl Manipulator editor shows that the First, Second, and Third record sources
are available.

Perl Manipulator : Perl_ pul; x|
Name:
I Perl_manipulator

General Sources | Record Index | Comment

Record sources:

First Remaove |
Second

Third

| hird :j| Add |
R v [[ok | conce |

Oracle Commerce Guided Search Platform Services Forge API Guide for Perl

Introduction to the Forge API | Additional use case examples 21

Process records using a subclass

This example uses a subclass of EDF: :Manipulator to add a property to each record in the same way as
in the first example Perl manipulator. This approach provides an alternative to writing your Perl code in the
Method Override editor or in a Perl file.

4 Note: The Perl class must be located on the machine running Forge. It is convenient to locate the PM
file in the in the same location as other Perl modules for Endeca (ENDECA_ROOT\lib\perl). Placing
your PM file in ENDECA_ROOT\Ii1b\perl does not require any additional configuration for Forge to
locate it. However, if you upgrade Forge, you will have to copy this file to another location and copy it
back in after upgrading.

If you place the file in a location other than ENDECA ROOT\lib\perl, you must modify Perl's library search
path to include the path to the PM file. You can modify the path by either modifying your PERLLIB environment
variable or by running Forge with the —--per11ib command line option and providing the path as an argument.

The Perl manipulator component is configured to access a Perl class as shown:

Name:

| PerlManip

General | Sources | Record Index | Comment |

" Override these methods:

[

(% Use this Perl dass:
| MyPerlManip

E|
g
i

R tep |

The contents of the MyPer IManip class are as follows:

package MyPerIManip;
use EDF::Manipulator;
@ISA = gw(EDF: :Manipulator);

sub new
{ _
my $proto = shift;
my $class = ref($proto) || $proto;

my $this = {};
bless($this, $class);
$this->SUPER::init(@);
return $this;

}

sub prepare

Make sure there is exactly one record source configured
my @source_list = $this->record_sources;

if (scalar(@{ $this->record_sources }) 1= 1) {
die("Perl Manipulator ", $this->name,

Oracle Commerce Guided Search Platform Services Forge API Guide for Perl

22 Introduction to the Forge API | Additional use case examples

must have exactly one record source.');
}
$this->{RECNO} = O;

sub next_record

{
my $this = shift;
++$this->{RECNO};
my $rec = $this->record_source(0)->next_record;
if ($rec) {
my $pval = new EDF::PVal(“'Record Number', $this->{RECNO});
$rec->add_pvals($pval);

return $rec;

}

Add a geocode property to a record

An application may include geocode properties in its records to enable record sorting by distance from a given
reference point.

The indexer requires geocode data in the form d,d where each d is a double-precision floating-point value:

» The first d is the latitude of the location in whole and fractional degrees. Positive values indicate north
latitude and negative values indicate south latitude.

» The second d is the longitude of the location in whole and fractional degrees. Positive values indicate east
longitude, and negative values indicate west longitude.

For example, Endeca’s main office is located at 42.365615 north latitude, 71.075647 west longitude. This
geocode should be supplied to the indexer as "42.365615,-71.075647". If the input data is not available in this
format, it can be assembled from separate properties using EDF Perl.

This example creates a Location property by concatenating the values of a record's Latitude property and its
Longitude property.

First, the General tab shows the name of the component and that the next_record method is checked,
which means that next_record is defined in the Method Override editor rather than as an external file or
class.

| Perl_manipulator

General | Sources | Record Index | Comment |
% Override these methods:

I" prepare(Edit:,. I

¥ next_record() Edit... I

[get_records() Edt

I finish() I I
" Use this Perl dass:

|
R b | [ok | conce

Oracle Commerce Guided Search Platform Services Forge API Guide for Perl

Introduction to the Forge API | Additional use case examples 23

Clicking Edit for the next_record method shows the Perl code. This code creates a Location property and
adds it to each record that contains Latitude and Longitude properties.

S
Note: The contents of the Method Override editor are as follows:

#Get the next record from the first record source.
my $rec = $this->record_source(0)->next_record;
return undef unless $rec;

#Return an array of property values from the record.
my @pvals = @{$rec->pvals};

#Return the value of the Latitude property.
my @lat = grep {$ ->name eq ‘Latitude"} @{$rec->pvals};

#Return the value of the Longitude property.
my @long = grep {$_->name eq "Longitude™} @{$rec->pvals};

#Exit If there is more than one Latitude property.
if (scalar (@lat) '=1) {

die(""Perl Manipulator ", $this->name,

" must have exactly one Latitude property.');

}

#Exit If there is more than one Longitude property.
if (scalar (@long) !=1) {

die(""Perl Manipulator ", $this->name,

" must have exactly one Longitude property.');

}

#Concatenate Latitude and Longitude into Location.
my $loc = $lat[0]->value . "," . $long[0]->value;

#Add new Location property to record.
my $pval = new EDF::PVal(“Location", $loc);
$rec->add_pvals($pval);

return $rec;

Note: This example could also include a prepare method to perform the same record source validation
as in the introduction's example Perl manipulator.

Oracle Commerce Guided Search Platform Services Forge API Guide for Perl

Chapter 2
EDF::DVal class

This section describes the EDF: :DVal class.

EDF::DVal class overview
An EDF: :DVal object represents a dimension value tagged to a record or contained in an EDF : - RecordKey.

Constructor

The new method constructs a new EDF: :DVal object. The method takes up to two optional input arguments,
the dimension ID, and the DVal ID. For example:

my $empty_dval = new EDF::DVal;
my $full_dval = new EDF::DVal (1000, 1234);</p>
Methods

» dimension_id
- id

EDF::DVal::dimension_id method

The dimension_id method returns a scalar value representing the ID of the dimension that contains the
DVal.

Example Usage

my $rec = $this->record_source(0)->next_record;

my $dval = $rec->dvals->[0];

if ($dval->dimension_id == 1000) {
$dval->dimension_id = 2000; # Swap dimensions

}

Input Arguments

None.

26 EDF::DVal class | EDF::DVal::id method

Return Values

A scalar value representing the ID of the dimension that contains the DVal.

EDF::DVal::id method

The 1d method returns a scalar value representing the ID of the DVal.

Example Usage

my $rec = $this->record_source(0)->next_record;
my $dval = $rec->dvals->[0];
if (Sdval->id == 1234) {
$dval->id = 4321; # Change all 1234"s into 4321°s
}

Input Arguments

None.

Return Values

A scalar value representing the ID of the DVal.

Oracle Commerce Guided Search Platform Services Forge API Guide for Perl

Chapter 3
EDF::Manipulator class

his section describes the EDF: :Manipulator class.

EDF::Manipulator class overview

Each Perl manipulator that Forge runs as part of your pipeline is an instance of the EDF: :Manipulator class.

The EDF: :Manipulator class varies from other classes in the EDF namespace because you, the pipeline
developer, write the body of the overrideable methods for an EDF: :Manipulator. The overrideable methods
are prepare, get_records, next_records, and finish.

Note: For convenience, the local variable $this is already initialized to reference the EDF: :Manipu-
lator instance when your code is evaluated. This initialization is approximately equivalent to the code:

package EDF::Manipulator;
sub next_record($) {

my $this = shift;

Your code goes here

}

Constructor

There is no constructor method for this class. Forge constructs an EDF: :Manipulator object at runtime
when Forge encounters a Perl manipulator component in your pipeline.

Methods

+ context

« finish

» get_records

* name

* next_record

* prepare

* record_source
* record_sources

28 EDF::Manipulator class | EDF::Manipulator::context method

EDF::Manipulator::context method

The context method stores information that needs to persist across method calls and that needs to be
restricted to a specific Perl manipulator.

For example, you might use this method to store the number of records processed, a key used for lookups,
and so forth. This method is useful when you have multiple Perl manipulators that each store information, such
the number of records or a particular key, and that information must not be shared among them. The information
stored by the context method is not global— each Perl manipulator in a pipeline has its own context.

Example Usage
Recall $this is initialized with the EDF::Manipulator instance.

$this->context->{RECNO} += 1;
Input Arguments

None.

Return Values

A reference to a hash.

EDF::Manipulator::finish method

The Finish method contains your custom-written Perl code that you want Forge to call after record processing
is complete. The code you provide here becomes the body of the Finish method.

Calls to next_record or get_records methods result in an error. To signal a failure during finish, call Perl's
die() function. See the Introduction's example Perl manipulator for a sample usage of this method.

Input Arguments

None.

Return Values

None.

EDF::Manipulator::get_records method

The get_records method contains your custom-written Perl code that Forge calls to retrieve all the records
matching an EDF: :RecordKey argument you specify.

The code you provide here becomes the body of the get_records method. Although you write the Perl code
to determine how Forge implements get_records, you do not call this method. Forge calls this method when
the component downstream of the Perl manipulator requests records. The get_records method returns an
array of records to the requesting pipeline component. Like the next_record method, get_records has
access to any record sources specified on the Sources tab of your Perl Manipulator editor.

See the example that retrieves records matching a key for a sample usage.

Oracle Commerce Guided Search Platform Services Forge API Guide for Perl

EDF::Manipulator class | EDF::Manipulator::name method 29

Input Arguments

Provide an EDF: :RecordKey argument to identify records.

Return Values

An array of records matching the provided EDF : :RecordKey. This array is passed back to the requesting
pipeline component. Returning an empty list or undef does not signal the end of processing. An undef or an
empty list indicates there are no records that match the key provided.

EDF::Manipulator::name method

The name method returns the value of the Name field that you specified in the Perl Manipulator editor.

The local variable $this is initialized to contain the EDF : :Manipulator instance for the Perl manipulator.
Such initialization means calling $this->name; returns the name of the EDF: :Manipulator instance.

Example Usage
EDF: :print_info("This Perl manipulator is named '. $this->name);

Input Arguments

None.

Return Values

The name of the Perl manipulator.

EDF::Manipulator::next_record method

The next_record method contains your custom-written Perl code that returns the next record from this Perl
manipulator during record processing.

Although you write the Perl code to determine how the next record should be returned to Forge, you do not
call this method. Forge calls this method when a component downstream of the Perl manipulator requests the
next record. The next_record method returns a single record per invocation. Like the get_records method,
next_record has access to any record sources specified on the Sources tab of the Perl manipulator.

See the example that reformats a property on each record for a sample usage.

Input Arguments

None.

Return Values

A single record, which is passed to the requesting pipeline component. To signal the end of records to be
processed, return the undeT value.

Oracle Commerce Guided Search Platform Services Forge API Guide for Perl

30 EDF::Manipulator class | EDF::Manipulator::prepare method

EDF::Manipulator::prepare method
The prepare method contains custom-written Perl code that you want Forge to call before record processing
starts.

This code typically performs pre-processing tasks such as checking data sources, initializing record counts,
and so on. The code you provide here becomes the body of the prepare method. Calling either next_record
or get_records from prepare results in an error. To signal a failure during prepare, call Perl's die () function.
Also see the Manipulator: :finish method.

See the Introduction's example Perl manipulator for a sample usage of this method.

Input Arguments

None.

Return Values

None.

EDF::Manipulator::record_source method

The record_source method provides the Perl manipulator access to any record source specified on the
Sources tab of the Perl Manipulator editor.

Sources can be identified by either name or position number. The number of a record source is determined
by the position in which it appears in the Sources tab of the Perl Manipulator editor beginning from the index
point 0. In this example, record source number 0 is named "Left," and record source number 1 is named "Right."

Name:

| Perl_manipulator

General Sources | Record Index | Comment
Record sources:

Left Remove I
Right

| DimensionMapper ﬂ Add
@ Hep | oK | Cancel |

Example Usage
This example accesses the record source identified by name:

my $rec = $this->record_source(*'Left')->next_record;

Oracle Commerce Guided Search Platform Services Forge API Guide for Perl

EDF::Manipulator class | EDF::Manipulator::record_sources method 31

This example accesses the record source identified by position:

my $rec = $this->record_source(0)->next_record;

Input Arguments

Either the name or position number of the desired record source.

Return Values

An EDF: :RecordSource object or undef if the indicated source does not exist.

EDF::Manipulator::record_sources method

The record_sources method provides a Perl manipulator access to all the record sources specified on the
Sources tab of the Perl Manipulator editor.

See record_source to get a single record source.

Example Usage
Make sure we have exactly two record sources
ifT (scalar(@{ $this->record_sources }) = 2) {
die("Perl manipulator ", $this->name,
" must have exactly two record sources.');
Input Arguments

None.

Return Values

An array of EDF: :RecordSource objects.

Oracle Commerce Guided Search Platform Services Forge API Guide for Perl

Chapter 4
EDF::PVal class

This section describes the EDF: zPVal class.

EDF::PVal class overview

An EDF: :PVal object represents a property value on a record or an EDF: :RecordKey.

Constructor

The new method creates a new EDF : : PVal object. The method takes two optional input arguments, the name
and value of the PVal. For example:

my $empty pval = new EDF::PVal;
my $full_pval = new EDF::PVal(“'Name', "Value');
Methods

* name
* value

EDF::PVal::name method

The name method returns a scalar value representing the name of the EDF: -PVal. Manipulating the value
changes the EDF: :PVal object.

Example Usage

my $rec = $this->record_source(0)->next_record;
my $pval = $rec->pvals->[0];
if ($pval->name =~ /"~Endeca\./) {
$pval->name = "Internal Property.";
}

Input Arguments

None.

34 EDF::PVal class | EDF::PVal::value method

Return Values

A scalar value representing the name of the EDF: : PVal.

EDF::PVal::value method

The value method returns a scalar value representing the value of the EDF: zPVal object. Manipulating the
value changes the EDF: :PVal object.

Example Usage

my $rec = $this->record_source(0)->next_record;
my $pval = $rec->pvals->[0];
if ($pval->value =~ /~file:/) {
$pval->value = "File Path";
}

Input Arguments

None.

Return Values

A scalar value representing the value of the EDF: :PVal.

Oracle Commerce Guided Search Platform Services Forge API Guide for Perl

Chapter 5
EDF::RecordKey class

This section describes the EDF: :RecordKey class.

EDF::RecordKey class overview

An EDF: :RecordKey contains the information necessary to identify records for record selection and joins.
An EDF: :RecordKey contains one or more EDF: : KeyColumn objects that represent values for comparison.

Constructor

The new method constructs a new EDF - - RecordKey. The constructor takes no input arguments. For example:
my $key = new EDF::RecordKey;

Methods

* add_columns
» clone

» columns

» equals

EDF::RecordKey::add_columns method
The add_columns method adds one or more EDF: : KeyColumn objects to an EDF: :RecordKey.
Example Usage
my $key = shift;
$key->add_columns(new EDF::KeyColumn);

Input Arguments

A list of EDF: : KeyColumn objects.

Return Values

None.

36 EDF::RecordKey class | EDF::RecordKey::clone method

EDF::RecordKey::clone method

The clone method takes an EDF: :RecordKey and clones it according to the EDF: :PVal and EDF: :DVal
contents of the EDF: :RecordKey. The EDF: : PVal and EDF: :DVal values in the RecordKey are not shared
between the original and the copy.

By contrast, EDF :Record: key creates a copy where EDF: :PVal and EDF: :DVal values are shared between
the original and the copy.

Example Usage
my $key = shift;

my $copy = $key->clone;
Input Arguments

An EDF: :RecordKey object.

Return Values

A new EDF: :RecordKey object.

EDF::RecordKey::columns method

The columns method returns a reference to the array of columns in the EDF: : RecordKey. Manipulating the
referenced array changes the EDF: :RecordKey.

Example Usage

my $key = shift;
if (scalar @{ $key->columns } > 0) {
@{ $key->columns } = (); # Remove all columns

Input Arguments

None.

Return Values

A reference to the array of columns in the EDF: :RecordKey.

EDF::RecordKey::equals method

The equals method takes one argument, another EDF: :RecordKey, and returns 1 if the second key is the
same as the first or 0 if it is not.

Example Usage

my $key = shift;
my $copy = $key->clone;
if (Is$key->equals($copy)) {

Oracle Commerce Guided Search Platform Services Forge API Guide for Perl

EDF::RecordKey class | EDF::RecordKey::equals method 37

die('Something is awry.');

}

Input Arguments

An EDF: : RecordKey object.

Return Values

1 if the record keys are equal or 0 if they are not.

Oracle Commerce Guided Search Platform Services Forge API Guide for Perl

Chapter 6
EDF::KeyColumn class

This section describes the EDF: :KeyColumn class.

EDF::KeyColumn class overview

An EDF: :KeyColumn object represents a value for comparison within an EDF : - RecordKey. Each column
has a type, an ID, and zero or more values that are either EDF: :DVal or EDF: :PVal objects.

Constructor

The new method constructs a new EDF: :KeyColumn object. The method takes two input arguments, a type
and an ID. See the type and id methods below for more information. For example:

my $col = new EDF::KeyColumn(PVAL, "Color'");

Methods
» add_values
* id
» type
» values

Constants

* PVAL
» DVAL

EDF::KeyColumn::add_values method

The add_values method adds one or more values to the column. You can add either property values or
dimension values; however, the type of the value must match the columntype.

You can use the KeyColumn: : type method to check whether EDF : - KeyColumn values are type
EDF: :KeyColumn: :PVAL or EDF: :KeyColumn: :DVAL.

40 EDF::KeyColumn class | EDF::KeyColumn::id method

Example Usage

my $key = new EDF::RecordKey;
my $col = new EDF::KeyColumn;
$key->add_columns($col);
$col->type = PVAL;
my @pvals;
for my $i (1..10) {
push(@pvals, new EDF::PVal(*'Number', $i));

$col->add_values(@pvals);
$col = new EDF::KeyColumn;
$col->type = DVAL;
$key->add_columns($col);
my @dvals;
for my $i (1001..1010) {
push(@dvals, new EDF::DVal (1000, $i1));

$key->add_values(@dvals);

Input Arguments

Either EDF: :PVal or EDF: :DVal objects depending on the column type.

Return Values

None.

EDF::KeyColumn::id method

The id method returns a scalar value representing the 1D of the column.

This value is either a property name, if the column type is KeyColumn: :PVAL, or a dimension ID if the column
type is KeyColumn: : DVAL. Manipulating the value changes the EDF: :KeyCo lumn object.

Example Usage

my $pcol = new EDF::KeyColumn;
$pcol->type = EDF::KeyColumn::PVAL;
$pcol->id = "Color";

my $dcol = new EDF::KeyColumn;
$dcol->type = EDF::KeyColumn: :DVAL;
$dcol->id = 1000;

Input Arguments

None.

Return Values

Either a property name or a dimension ID.

EDF::KeyColumn::type method

The type method returns a scalar value representing the type of the column.

Oracle Commerce Guided Search Platform Services Forge API Guide for Perl

EDF::KeyColumn class | EDF::KeyColumn::values method 41

Example Usage

This example creates a new KeyColumn object and assigns it the type PVAL.
my $col = new EDF::KeyColumn;

$col->type = EDF::KeyColumn: :PVAL;

Input Arguments

None.

Return Values

Either an EDF: :KeyColumn: :PVAL constant or an EDF: : KeyColumn: :DVAL constant.

EDF::KeyColumn::values method

The values method returns a reference to the array of values in the EDF: : KeyColumn object.

Each entry in the array is either an EDF - - PVal or an EDF: : DVal. Manipulating the referenced array changes
the EDF: :KeyColumn object.

Example Usage

my $key = shift;
for $col (@{ $key->columns }) {
if ($col->type eq PVAL) {
my @pvals = @{ $col->values };

else {
my @dvals = @{ $col->values };

}

Input Arguments

None.

Return Values

A reference to the array of values in the column.

EDF::KeyColumn::DVAL constant

The DVAL constant indicates that the column type contains EDF: :DVal values. If you need to compare this
value to others, use Perl's string comparison operators eq or ne.

Example Usage

This example creates a new KeyColumn object of type DVAL.

my $col = new EDF::KeyColumn;
$col->type = EDF::KeyColumn::DVAL;

Oracle Commerce Guided Search Platform Services Forge API Guide for Perl

42 EDF::KeyColumn class | EDF::KeyColumn::PVAL constant

This example shows a comparison using eq:
if ($col->type eq EDF::KeyColumn::DVAL) {...}

EDF::KeyColumn::PVAL constant

The PVAL constant indicates that the column type contains EDF: : PVal objects. If you need to compare this
value to others, use Perl's string comparison operators eq or ne.

Example Usage
This example creates a new EDF: : KeyColumn object of type PVAL.:

my $col = new EDF::KeyColumn;
$col->type = EDF::KeyColumn::PVAL;

This example shows a comparison using eq:
if ($col->type eq EDF::KeyColumn::PVAL) {...}

Oracle Commerce Guided Search Platform Services Forge API Guide for Perl

Chapter 7
EDF::Record class

This section describes the EDF: :Record class.

EDF::Record class overview

An EDF: :Record object describes a record. Records have a list of property values and a list of dimension
values.

Constructor
The new method creates a new EDF: :Record object. The method takes no arguments. For example:
my $rec = new EDF::Record;

Methods

» add_dvals
* add_pvals
» clone

» dvals

» key

* pvals

EDF::Record::add_dvals method

The add_dvals method adds a list of EDF: :DVal objects to the record.

Example Usage

my $rec = $this->record_source(0)->next_record;
my $dval = new EDF::DVal(l, 1);
$rec->add_dvals($dval);
my @newvals;
foreach $n (1..10) {

push(@newvals, new EDF::DvVal(l, $n));

$rec->add_dvals(@newvals);

44 EDF::Record class | EDF::Record::add_pvals method

Input Arguments

A list of EDF: :DVal objects.

Return Values

None.

EDF::Record::add_pvals method

The add_pvals method adds a single EDF: :PVal or a list of EDF: : PVals to the record.

This method is synonymous to the following code: push(@{$rec->pvals},@newvals);

Example Usage

my $rec = $this->record_source(0)->next_record;
my $pval = new EDF::PVal(*Number™, 1);
$rec->add_pvals($pval);
my @newvals;
foreach $n (1..10) {

push(@newvals, new EDF::PVal(*'Number"™, $n));

$rec->add_pvals(@newvals);

Input Arguments
A single EDF: zPVal or a list of EDF: :PVal objects.

Return Values

None.

EDF::Record::clone method

The clone method creates a copy of the record including the EDF: :PVal and EDF: :DVal items on the
record. This is useful if you want to make a copy of a record to modify, while retaining a copy of the original.

Example Usage

my $rec = $this->record_source(0)->next_record;
$clone has copies of $rec"s PVals

my $clone = $rec->clone;

Rename the First PVal on $clone to "Wilma" -
the first PVal on $rec is left untouched.
$clone->pvals->[0]->name = "Wilma";

Input Arguments

An EDF: :Record object.

Return Values

A new EDF: :Record object.

Oracle Commerce Guided Search Platform Services Forge API Guide for Perl

EDF::Record class | EDF::Record::dvals method 45

EDF::Record::dvals method

The dvals method returns an array of the dimension values tagged to a record. Manipulating the referenced
array changes the EDF: :Record object.

Example Usage

my $rec = $this->record_source(0)->next_record;
my $dvals = $rec->dvals;

Add a constant DvVal to the record
push(@{$dvals}, new EDF::DVal(l,1));

Input Arguments

None.

Return Values

An array of the dimension values tagged to the record.

EDF::Record::key method

The key method takes an EDF: :RecordKey, clones it according to the contents of the EDF: :Record, and
fills the dimensions of the cloned key in with the appropriate EDF: :PVal and EDF: :DVal values. The resulting
copy has EDF: :PVal and EDF: :DVal values that are shared between the original and the copy. See also
EDF: :RecordKey:clone.

Example Usage

my $rec = $this->record_source(0)->next_record;

my $col = new EDF::KeyColumn(EDF::KeyColumn::PVAL, "KeyProp™);
my $empty key = new EDF::RecordKey;
$empty_key->add_columns($col);

my $Filled_in_key = $rec->key($empty_key);

Input Arguments

An EDF: :RecordKey object.

Return Values

A new EDF: :RecordKey object.

EDF::Record::pvals method

The pvals method returns a reference to the array of property values (EDF: : PVal objects) on the record.
Manipulating the referenced array changes the EDF: : Record object.

Example Usage

my $rec = $this->record_source(0)->next_record;
my $pvals = $rec->pvals;

Oracle Commerce Guided Search Platform Services Forge API Guide for Perl

46 EDF::Record class | EDF::Record::pvals method

Change the name of the first PVal on the record
to "Wilma"

$pvals->[0]->name = "Wilma";

Remove all Pvals from the record

e{ $pvals } = ();

Input Arguments

None.

Return Values

A reference to the array of EDF: :PVal objects (property values) on the record.

Oracle Commerce Guided Search Platform Services Forge API Guide for Perl

Chapter 8
EDF::RecordSource class

This section describes the EDF: zRecordSource class.

EDF::RecordSource class overview

An EDF: :RecordSource object represents the record source specified on the Sources tab of the Perl
Manipulator editor.

The data in this object becomes the record input that the EDF: :Manipulator modifies. An EDF: :Record-
Source has a name and a number, and can be addressed by either. You can retrieve records from an
EDF: :RecordSource using the next_record and get_records methods.

/ Note: The number of a record source is determined by the position in which it appears in the Sources
tab of the Perl Manipulator editor beginning from the index point 0.

In this example, record source number 0 is named "Left," and record source number 1 is named "Right."

x

Mame:

‘ Perl_manipulator

General Sources | Record Index | Comment
Record sources:

Left l Remove I
Right

| DimensioniMapper ﬂ Add

? b | oK Cancel |

48 EDF::RecordSource class | EDF::RecordSource::get_records method

Constructor

There is no constructor method for this class. Calling the EDF: :Manipulator: :record_source method
returns an EDF : :RecordSource object.

Methods

» get_records
* name

* next_record
* number

EDF::RecordSource::get_records method

The get_records method returns the list of records matching a specified EDF: zRecordKey.

Note that different pipeline components that act as record sources handle the get_records call in different
ways. For example, a record cache retains copies of all records, and can return multiple copies if the same
request is made repeatedly. Most other components do not retain copies. They return a matching record the
first time a given request is made and discard non-matching records between request.

Example Usage

my $key = shift;

my $src = $this->record_source(0);
my @recs = $src->get records($key);
Input Arguments

An EDF: : RecordKey object.

Return Values

The list of records matching a given EDF: :RecordKey.

EDF::RecordSource::name method

The name method returns the name of a record source as specified on the Sources tab of the Perl Manipulator
editor.

Example Usage

my $src = $this->record_source(0);
EDF: :print_info("'Record source 0 is ".
$src->name) ;

Input Arguments

None.

Oracle Commerce Guided Search Platform Services Forge API Guide for Perl

EDF::RecordSource class | EDF::RecordSource::next_record method 49

Return Values

The name of the record source.

EDF::RecordSource::next_record method

The next_record method returns the next record from this source, or undef if there are no more records
available from this source.

Example Usage

my $src = $this->record_source(0);
my $rec = $src->next_record;

Input Arguments

None.

Return Values

The next record from this source, or undeT if there are no more records available from this source.

EDF::RecordSource::number method
The number method returns the index of the record source in the array of record sources for a particular Perl
manipulator.
Note that if the same record source serves as an input to multiple Perl manipulators (for example, a record

cache), it may have a different number in each.

Example Usage

my $src = $this->record_source("RecordCache");
EDF: :print_info("'RecordCache is source number ™.
$src->number) ;

Input Arguments

None.

Return Values

The index of the record source in the array of record sources for a particular Perl Manipulator.

Oracle Commerce Guided Search Platform Services Forge API Guide for Perl

Chapter 9
Static methods

This section describes the Static methods.

Static methods overview

The Static methods can be used in any Forge Perl code to log messages.

Use these methods to log different levels of messages (ERR, INF, WRN): print_error, print_info, and
print_warning.

EDF::print_error method

The EDF: :print_error method prints a message at log level ERR.

A terminating new line token (\n) is not required. EDF: :print_error does not cause Forge to exit. Call
Perl's die() function to exit Forge. When Forge exits, it exits with an error code.

Example Usage

Make sure we have exactly one record source,

or print error and stop Forge.

if (scalar(@{ $this->record_sources }) = 1) {
EDF::print_error (“Perl Manipulator ', $this->name .
" must have exactly one record source.™™);
die("Perl Manipulator ", $this->name,

" must have exactly one record source.™);

}

Input Arguments

A string message to print.

Return Values

None.

52 Static methods | EDF::print_info method

EDF::print_info method

The EDF: :print_info method prints a message at log level INF.

A terminating new line token (\n) is not required.

Example Usage

my $src = $this->record_source("RecordCache");
EDF: :print_info("'RecordCache is source number " .
$src->number) ;

Input Arguments

A string message to print.

Return Values

None.

EDF::print_warning method

The EDF: :print_warning method prints a message at log level WRN.

A terminating new line token (\n) is not required.

Example Usage

IT there isn"t exactly one price property, print a warning.
if (scalar(@prices) = 1) {
EDF: :print_warning("Expected 1 PVal named Price; found" .
scalar(@prices));
}

Input Arguments

A string message to print.

Return Values

None.

Oracle Commerce Guided Search Platform Services Forge API Guide for Perl

Index

A

add_columns 35
add_dvals 43
add_pvals 44
add_values 39

Cc

clone 44
columns 36
context 28

D

dimension_id 25
DVal class
dimension_id 25
id 26
overview 25
dvals 45

E

equals 36

examples
add a geocode property 22
perform a left join 17
process records with a subclass 21
reformat a property 15
remove property 14
remove records by a property 16
retrieve records matching a key 19

F

finish 28

Forge Execution Framework
introduced 12
record processing 10

G
get_records 28, 48

K

key 45

KeyColumn class
add_values 39
DVAL 41
id 40

KeyColumn class (continued)
PVAL 42
type 41
values 41

Manipulator class
context 28
get_records 28
name 29
next_record 29
overview 27
prepare 30
record_source 30
record_sources 31
finish 28

N

name 29, 33, 48
next_record 29, 49
number, RecordSource class 49

P

Perl manipulator
class summary 10
example 12
introduced 9
prepare 30
print_error 51
print_info 52
print_warning 52
PVal class
name 33
overview 33
value 34
pvals, Record class 45

R

Record class
add_dvals 43
add_pvals 44
clone 44
dvals 45
key 45
overview 43

record_source 30

record_sources 31

Index

RecordKey class
add_columns 35
clone 36
columns 36
equals 36
overview 35

RecordSource class
get_records 48
name 48
next_record 49
overview 47

S

static methods
overview 51

54

static methods (continued)
print_error 51
print_info 52
print_warning 52

type 41

\"

value 34
values 41

Oracle Commerce Guided Search Platform Services

	Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Oracle Support

	Introduction to the Forge API
	About the Perl manipulator
	Classes available to a Perl manipulator
	Understanding Forge and downstream record processing
	About the Forge Execution Framework
	An example Perl manipulator
	Additional use case examples
	Remove a property from each record
	Reformat a property on each record
	Remove records with a particular property
	Perform a left join on records from two record sources
	Retrieve records matching a key from any number of record sources
	Process records using a subclass
	Add a geocode property to a record

	EDF::DVal class
	EDF::DVal class overview
	EDF::DVal::dimension_id method
	EDF::DVal::id method

	EDF::Manipulator class
	EDF::Manipulator class overview
	EDF::Manipulator::context method
	EDF::Manipulator::finish method
	EDF::Manipulator::get_records method
	EDF::Manipulator::name method
	EDF::Manipulator::next_record method
	EDF::Manipulator::prepare method
	EDF::Manipulator::record_source method
	EDF::Manipulator::record_sources method

	EDF::PVal class
	EDF::PVal class overview
	EDF::PVal::name method
	EDF::PVal::value method

	EDF::RecordKey class
	EDF::RecordKey class overview
	EDF::RecordKey::add_columns method
	EDF::RecordKey::clone method
	EDF::RecordKey::columns method
	EDF::RecordKey::equals method

	EDF::KeyColumn class
	EDF::KeyColumn class overview
	EDF::KeyColumn::add_values method
	EDF::KeyColumn::id method
	EDF::KeyColumn::type method
	EDF::KeyColumn::values method
	EDF::KeyColumn::DVAL constant
	EDF::KeyColumn::PVAL constant

	EDF::Record class
	EDF::Record class overview
	EDF::Record::add_dvals method
	EDF::Record::add_pvals method
	EDF::Record::clone method
	EDF::Record::dvals method
	EDF::Record::key method
	EDF::Record::pvals method

	EDF::RecordSource class
	EDF::RecordSource class overview
	EDF::RecordSource::get_records method
	EDF::RecordSource::name method
	EDF::RecordSource::next_record method
	EDF::RecordSource::number method

	Static methods
	Static methods overview
	EDF::print_error method
	EDF::print_info method
	EDF::print_warning method

	Index

