
Oracle Commerce Guided Search
Platform Services

Forge Guide
Version 11.1 • July 2014

Contents
Preface..9
About this guide..9
Who should use this guide...9
Conventions used in this guide..9
Contacting Oracle Support...10

Part I: Basic Pipeline Development..11

Chapter 1: The Endeca ITL..13
Introduction to the Endeca ITL..13
Endeca ITL components...14

Chapter 2: Endeca ITL Development..17
Endeca ITL development process..17
Endeca tools suite...17
A closer look at data processing and indexing..21

Chapter 3: Overview of Source Property Mapping...27
About source property mapping..27
About using a single property mapper..27
About using explicit mapping..27
Minimum configuration..28
About mapping unwanted properties..28
About removing source properties after mapping...28
Types of source property mapping...29
About adding a property mapper..30
The Mappings editor...32

Chapter 4: Match Modes..35
About choosing a match mode for dimensions...35
Rules of thumb for dimension mapping..37
Dimension mapping example..37

Chapter 5: Advanced Mapping Techniques...39
The Property Mapper editor Advanced tab...39
About enabling implicit mapping...39
Enabling default mapping...40
About the default maximum length for source property values...41

Chapter 6: Before Building Your Instance Configuration...............................43
Endeca Application Controller directory structure...43
Pipeline overview..43

Chapter 7: About Creating a Basic Pipeline..47
The Basic Pipeline template..47
Record adapters..48
Dimension adapter..49
Dimension server..49
Property mapper...50
Indexer adapter...51

Chapter 8: About Running Your Basic Pipeline..53
Running a pipeline..53

iii

Viewing pipeline results in a UI reference implementation...53

Chapter 9: After Your Basic Pipeline Is Running..55
Additional tasks...55
About source property mapping..55
Setting the record specifier property...58
About specifying dimensions and dimension value order...59
Additional pipeline components..59
Additional index configuration options..60

Part II: Joins..63

Chapter 10: Overview of Joins..65
Record assemblers and joins..65
About performing joins in a database...66
Join keys and record indexes...66
Join types..68

Chapter 11: About Configuring Join Keys and Record Indexes....................75
Creating a record index...75
Creating a join key for a record cache..76
Join keys with multiple properties or dimensions..77

Chapter 12: About Implementing Joins...79
Implementing a join...79

Chapter 13: Advanced Join Behavior...83
Records that have multiple values for a join key...83
Sources that have multiple records with the same join key value...84
About tweaking left joins...85

Chapter 14: Tips and Troubleshooting for Joins..87
Joins that do not require record caches..87
Working with sources that have multiple records with the same join key value...87
Best practice for choosing left and right side of joins..87
Combining equivalent records in record caches...88
Forge warnings when combining large numbers of records...89

Part III: Advanced Dimension Features..91

Chapter 15: Externally-Created Dimensions...93
Overview of externally-created dimensions..93
XML requirements...95
Importing an externally-created dimension...97

Chapter 16: Externally-Managed Taxonomies...99
Overview of externally-managed taxonomies...99
Including externally-managed taxonomies in your project..99
XSLT and XML requirements..100
Pipeline configuration..102
About updating an externally-managed taxonomy in your pipeline..105
Unexpected default-mapping behavior...105

Part IV: Other Advanced Features..107

Chapter 17: The Forge Logging System..109

Oracle Commerce Guided Search Platform Servicesiv

Overview of the Forge logging system..109
Log levels reference..109
About logging topics..109
The command line interface..110

Chapter 18: The Forge Metrics Web Service...113
About the Forge Metrics Web service...113
About enabling Forge metrics...114
About using Forge metrics..114
The MetricsService API...115

Appendix A: Forge Flag Reference..117
Forge flag options reference..117

Appendix B: File Formats Supported by the Document ConversionModule.123
Word processing formats...123
Text and markup formats...125
Spreadsheet formats..126
Vector image formats...127
Raster image formats...128
Presentation formats..130
Archive formats..130
Database formats...131
E-mail formats..131
Other formats...132

Appendix C: Advanced JDBC Column Handler..133
About the Advanced JDBC Column Handler...133
JDBC configuration options..133
Storing data on disk..135
Using the Advanced JDBC Column Handler..135
Output...137
Troubleshooting..139

v

Contents

Copyright and disclaimer

Copyright © 2003, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs,
including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, shall be subject to license terms and license restrictions applicable to the programs. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices.
UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim
all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

vii

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Oracle customers have access to electronic support through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Oracle Commerce Guided Search Platform Servicesviii

Preface

Oracle Commerce Guided Search is the most effective way for your customers to dynamically explore your
storefront and find relevant and desired items quickly. An industry-leading faceted search and Guided Navigation
solution, Guided Search enables businesses to influence customers in each step of their search experience.
At the core of Guided Search is the MDEX Engine™, a hybrid search-analytical database specifically designed
for high-performance exploration and discovery. The Oracle Commerce Content Acquisition System provides
a set of extensible mechanisms to bring both structured data and unstructured content into the MDEX Engine
from a variety of source systems. The Oracle Commerce Assembler dynamically assembles content from any
resource and seamlessly combines it into results that can be rendered for display.

Oracle Commerce Experience Manager enables non-technical users to create, manage, and deliver targeted,
relevant content to customers. With Experience Manager, you can combine unlimited variations of virtual
product and customer data into personalized assortments of relevant products, promotions, and other content
and display it to buyers in response to any search or facet refinement. Out-of-the-box templates and experience
cartridges are provided for the most common use cases; technical teams can also use a software developer's
kit to create custom cartridges.

About this guide
This guide describes the major tasks involved in developing the instance configuration, including the pipeline,
of an Endeca application.

It assumes that you have read the Oracle Commerce Getting Started Guide and are familiar with the Endeca
terminology and basic concepts.

Who should use this guide
This guide is intended for developers who are building applications using Oracle Commerce.

Conventions used in this guide
This guide uses the following typographical conventions:

Code examples, inline references to code elements, file names, and user input are set in monospace font. In
the case of long lines of code, or when inline monospace text occurs at the end of a line, the following symbol
is used to show that the content continues on to the next line: ¬

When copying and pasting such examples, ensure that any occurrences of the symbol and the corresponding
line break are deleted and any remaining space is closed up.

Contacting Oracle Support
Oracle Support provides registered users with answers to implementation questions, product and solution
help, and important news and updates about Guided Search software.

You can contact Oracle Support through the My Oracle Support site at https://support.oracle.com.

Oracle Commerce Guided Search Platform Services Forge Guide

| Preface10

https://support.oracle.com

Part 1

Basic Pipeline Development

• The Endeca ITL
• Endeca ITL Development
• Overview of Source Property Mapping
• Match Modes
• Advanced Mapping Techniques
• Before Building Your Instance Configuration
• About Creating a Basic Pipeline
• About Running Your Basic Pipeline
• After Your Basic Pipeline Is Running

Chapter 1

The Endeca ITL

The Endeca Information Transformation Layer (ITL) is a major component of Oracle Commerce. This section
provides an introduction to the Endeca ITL and its componenets.

Introduction to the Endeca ITL
The Endeca Information Transformation Layer (ITL) reads in your source data and manipulates it into a set of
indices for the Endeca MDEX Engine. The Endeca ITL consists of the Content Acquisition System and the
Data Foundry.

Although the original source data is not changed, this transformation process may change its representation
within your Endeca implementation. The Endeca ITL is an off-line process that you run on your data at intervals
that are appropriate for your business requirements.

Endeca Content Acquisition System
The Content Acquisition System includes the Endeca Web Crawler and the Endeca CAS Server, as well as a
rich set of packaged adapters.

These components crawl unstructured content sources and ingest structured data. This includes relational
databases, file servers, content management systems, and enterprise systems such as enterprise resource
planning (ERP) and master data management (MDM).

Packaged adapters reach the most common systems, including JDBC and ODBC. The Content Adapter
Development Kit (CADK) allows developers to write custom adapters and Java manipulators.

Endeca Data Foundry
The Endeca Data Foundry aggregates information and transforms it into Endeca records and MDEX Engine
indices.

During the data processing phase, the Data Foundry:
• Imports your source data
• Tags it with the dimension values used for navigating and Endeca properties used for display.
• Stores the tagged data—along with your dimension specifications and any configuration rules—as Endeca

records that are ready for indexing.

• Indexes the Endeca records it produced during its data processing phase, and produces a set of indices
in Endeca MDEX Engine format.

Endeca ITL components
At a base level, the Endeca ITL is a combination of programs and configuration files. The Endeca ITL has
additional components that support a variety of features.

This illustration shows a high-level view of the Endeca ITL architecture.

The components described in this section are the core components that all Endeca implementations use,
regardless of the additional features they implement.

Pipeline components will be discussed in this guide as is appropriate. For more detailed information about
pipeline components, see the Developer Studio online help.

Data Foundry programs
Data Foundry component is composed of two core programs, Forge and Dgidx.

• Forge is the data processing program that transforms your source data into standardized, tagged Endeca
records.

• Dgidx is the indexing program that reads the tagged Endeca records that were prepared by Forge and
creates the proprietary indices for the Endeca MDEX Engine.

Configuration files
Forge and Dgidx use an instance configuration to accomplish their tasks. An instance configuration includes
a pipeline, a dimension hierarchy, and an index configuration.

Pipeline
The pipeline functions as a script for the entire process of transforming source data to Endeca records.

The pipeline describes a data processing workflow as a graph of data transformation stages, known as
components, connected by links across which data flows.

The components specify the format and the location of the source data, any changes to be made to the source
data (manipulation), and how to map each record’s source properties to Endeca properties and dimensions.

Oracle Commerce Guided Search Platform Services Forge Guide

The Endeca ITL | Endeca ITL components14

If you intend to run partial updates, your instance configuration will contain two pipelines: one for running
baseline updates and one for partial updates. See the Endeca Partial Updates Guide for details on setting up
the partial updates pipeline.

Dimension hierarchy
The dimension hierarchy contains a unique name and ID for each dimension, as well as names and IDs for
any dimension values created in Developer Studio. The Data Foundry uses these unique names and IDs when
it maps your data’s source properties to dimensions.

These names and IDs can be created in three different ways:
• Automatically, by the Data Foundry.
• In Developer Studio.
• In an external system, and then imported either into the Data Foundry or Developer Studio.

The dimension hierarchy is used during indexing to support the incremental filtering that is the essence of
Guided Navigation.

Index configuration
The index configuration defines how your Endeca records, Endeca properties, dimensions, and dimension
values are indexed by the Data Foundry. The index configuration is the mechanism for implementing a number
of Endeca features such as search and ranking.

Oracle Commerce Guided Search Platform Services Forge Guide

15The Endeca ITL | Endeca ITL components

Chapter 2

Endeca ITL Development

The Endeca Information Transformation Layer components enable you to develop your data processing back
end. This section provides an overview of the development process and Endeca tools suite, and a closer look
at data processing and indexing.

Endeca ITL development process
The Endeca ITL uses an instance configuration to process, tag, and locate data.

Creating an instance configuration is an iterative process. Oracle recommends that you first create a very
simple instance configuration to test your data. After the simple configuration is working as you expect, you
can make additional modifications, view your results, and make changes as necessary. Also, it is often useful
to work on a subset of your data, for quicker turnaround of data processing, while you are developing your
instance configuration.

Endeca ITL development consists of the following steps:

1. Use Developer Studio to create an instance configuration.
This defines how your data should be indexed and displayed. It includes Content Acquisition System
components, such as a JDBC Adapter.

2. Use an Endeca Deployment Template application to do the following:
a) Run Forge, referencing the instance configuration, to process your source data into tagged Endeca

records.
b) Run Dgidx on the Forge output to create MDEX Engine indices from the tagged Endeca records.
c) Run Dgraph to start a MDEX Engine and point it at the indices created by Dgidx.

3. View the results and repeat these steps to make changes as necessary.

Endeca tools suite
The Endeca distribution includes two tools that help you create and edit your instance configuration, and
maintain your Endeca implementation: Endeca Developer Studio and Oracle Endeca Workbench. This section
provides a brief introduction to these tools.

Endeca Developer Studio
Endeca Developer Studio is a Windows application that you use to define all aspects of your instance
configuration.

With Developer Studio, you can define:
• Pipeline components for tasks such as loading, standardizing, joining, mapping, and exporting data.
• Endeca properties and property attributes such as sort and rollup.
• Dimensions and dimension values, including dimension hierarchy.
• Precedence rules among dimensions that provide better control over your implementation’s navigation

flow.
• Search configurations, including which properties and dimensions are available for search.
• Dynamic business rules that allow you to promote certain records on your Web site using data-driven

business logic. Dynamic business rules are used to implement merchandising and content spotlighting.
• User profiles that tailor the content returned to an end-user based upon preconfigured rules.

Developer Studio uses a project file, with an .esp extension, that contains pointers to the XML files that support
an instance configuration. Editing a project in Developer Studio edits these underlying files.

Oracle Endeca Workbench
Oracle Endeca Workbench is a Web-based application that provides access to reports that describe how
end-users are using an Endeca implementation.

The two primary audiences for Endeca Workbench are:
• Business users who define business logic such as merchandising/content-spotlighting rules and thesaurus

entries.

Endeca Workbench lets business users make changes to parts of an Endeca implementation after the
implementation’s core functionality has been developed. For example, a developer uses Developer Studio
to specify which Endeca properties and dimensions are available for search, then a business user uses
Endeca Workbench to specify thesaurus entries that support search functionality.

• System administrators who maintain and manage an Endeca implementation.

Endeca Workbench lets system administrators provision applications, components and scripts to the Endeca
Application Controller, monitor the status of an Endeca implementation, and start and stop system processes.

Endeca Workbench can report the most popular search terms, the most popular navigation locations, search
terms that are most often misspelled, and so forth.

About system provisioning tasks in Endeca Workbench
System provisioning lets you assign resources to a new Endeca application in Endeca Workbench, and modify
the resources in an existing application. You can provision more than one application to the EAC, using the
EAC Admin Console page of Endeca Workbench.

Typically, you provision resources to the Endeca configuration in the following order:

1. Add, edit or remove an Endeca application.
2. Add, edit or remove hosts from the application.
3. Add, configure or remove Endeca components on one or more hosts.

Endeca components include Forge, the Indexer (Dgidx), Aggregated Indexer, MDEX Engine (Dgraph), Log
Server, and Report Generator.

Oracle Commerce Guided Search Platform Services Forge Guide

Endeca ITL Development | Endeca tools suite18

4. Add, edit, or remove an EAC script.

About system operations tasks in Endeca Workbench
System operations let you run Endeca components by using Endeca Workbench to call underlying EAC
processes.

On the EAC Admin Console page of Endeca Workbench, you can do the following:
• Start and stop the Endeca applications and components you provision.

Typically, each provisioned application can have its own set of components, such as Forge, the Indexer,
the MDEX Engine, the Log Server and the Report Generator. You can then start and stop these components.

• Start and stop the EAC scripts you provision. These could include the scripts that perform a baseline update
and report generation for the application.

• Monitor the status of Endeca components.

Finding more information on tools setup and usage
You can find tool setup and usage information in the following locations:

• The Oracle Endeca Workbench Administrator’s Guide provides in-depth information about tool setup and
configuration.

• The Oracle Endeca Developer Studio Help and the Oracle Endeca Workbench Help provide details on
using each individual tool’s features.

About controlling your environment
While not part of the Endeca ITL development per se, before you can begin building and running pipelines,
you must put into place a mechanism for controlling the resources in your Endeca implementation. This
mechanism provides process execution and job management facilities.

About using the Endeca Application Controller
The Endeca Application Controller is the interface you use to control, manage, and monitor your Endeca
implementations.

The use of open standards, such as the Web Services Descriptive Language (WSDL), makes the Application
Controller platform and language agnostic. As a result, the Application Controller supports a wide variety of
applications in production. In addition, the Application Controller allows you to handle complex operating
environments that support features such as partial updates, delta updates, phased Dgraph updates and more.

Application Controller architecture
Most implementations that use the Application Controller will follow the general setup outlined below.

The following illustration shows the architecture of a typical implementation that uses the Application Controller.

Oracle Commerce Guided Search Platform Services Forge Guide

19Endeca ITL Development | Endeca tools suite

In this architecture diagram, the following happens:

1. The developer creates an instance configuration, using Developer Studio, that determines what data and
features will be incorporated into the index.

2. The developer creates a provisioning document in XML format that defines all the hosts and components
in the implementation.

3. The developer sends the provisioning files to the EAC Central Server machine. The developer can use
three methods for the provisioning tasks:

• Endeca Workbench
• The eaccmd utility
• A custom Web services interface.

4. Once the Agent machines in the implementation are provisioned, the developer sends commands (again
using either eaccmd, Endeca Workbench, or a custom interface) to the EAC Central Server. The EAC
Central Server communicates these tasks to its Agents, which reside on each machine that is running
Endeca components.

5. The Application Controller manages the entire data update process, according to the instructions it receives.
This includes running Forge and the Indexer (Dgidx) to create indexed data, and starting the MDEX Engine
(Dgraph) based on that indexed data.

For detailed information on configuring and using the Endeca Application Controller, see the Oracle Endeca
Application Controller Guide.

Ways of communicating with the Endeca Application Controller
You have three ways in which you can communicate with the EAC Central Server:

• Endeca Workbench
• The eaccmd utility
• A custom Web services interface (using the Endeca WSDL).

About using Endeca Workbench to communicate with the EAC Central Server
Endeca Workbench lets you provision the resources in your environment, such as applications, components
and logging, and start and stop these resources as needed. Endeca Workbench communicates this information
to the EAC Central Server to coordinate and execute the processes that result in a running Endeca
implementation.

Endeca Workbench is one of the ways of communicating with the EAC Central Server (the other two are the
eaccmd utility and a custom Web services interface).

Oracle Commerce Guided Search Platform Services Forge Guide

Endeca ITL Development | Endeca tools suite20

The primary benefit of using Endeca Workbench as a means of communication with the EAC Central Server
is that it relieves you of the burden of using the command line utility eaccmd, or of creating a custom Web
services interface.

Endeca Workbench allows multiple users to edit the same implementation while avoiding conflicting changes.
Only one Endeca Workbench user can edit a particular implementation module at any given time, locking out
all other users from that module.

Important: Concurrent project editing can only happen in Endeca Workbench. There is no built-in
allowance for concurrent users of Endeca Workbench and Developer Studio. Therefore, to prevent
changes from being overwritten or otherwise lost, a project should be active in only one of these tools
at a time.

A closer look at data processing and indexing
It is important to have a clear understanding of how the Data Foundry works with source records before you
begin building your instance configuration. Read the following sections for a behind-the-scenes look at the
data processing and indexing functions in the Data Foundry.

Data processing
The data processing workflow in the Data Foundry is defined in your pipeline and typically follows a specific
path.

The Forge and Dgidx programs do the actual data processing, but the components you have defined in the
pipeline dictate which tasks are performed and when. The Data Foundry attempts to utilize all of the hardware
resources available to it, both by processing records in multiple components simultaneously, and by processing
multiple records simultaneously within the same component.

The data processing workflow typically follows this path:

1. Load the raw data for each source record.
2. Standardize each source record’s properties and property values to create consistency across records.
3. Map the source record’s properties into Endeca properties and/or dimensions.
4. Write the tagged Endeca records, along with any dimension hierarchy and index configuration, as finished

data that is ready for indexing.
5. Index the finished data and create the proprietary indices used by the MDEX Engine.

Data processing workflow

The following illustration shows a simple conversion of source data into tagged Endeca records:

Oracle Commerce Guided Search Platform Services Forge Guide

21Endeca ITL Development | A closer look at data processing and indexing

Source data
You can load source data from a variety of formats using the Content Acquisition System components.

Your Endeca applications will most often read data directly from one or more database systems, or from
database extracts. Input components load records in a variety of formats including delimited, JDBC, and XML.
Each input component has its own set of configuration properties. One of the most commonly used type of
input component loads data stored in delimited format.

About loading source data
Source data may be loaded into the Data Foundry from a variety of formats. The easiest format to use is a
two-dimensional format similar to the tables found in database management systems.

Database tables are organized into rows of records, with columns that represent the source properties and
property values for each record. The illustration below shows a simple example of source data in a
two-dimensional format.

You specify the location and format of the source data to be loaded in the pipeline. Forge loads and processes
one source record at a time, in sequential order. When Forge loads a source record, it transforms the record
into a series of property/property value pairs.

Oracle Commerce Guided Search Platform Services Forge Guide

Endeca ITL Development | A closer look at data processing and indexing22

Standardizing source records
You specify any standardization of source properties and property values in the pipeline. Standardization
cleanses the data so that it is as consistent as possible before mapping begins.

You can take the following steps to standardize your data:

Note: The functionality described below supports limited data cleansing. If you have an existing data
cleansing infrastructure, it may be more advantageous to use that facility instead.

1. Fix misspellings in your source properties and property values.
2. Explicitly specify the encoding type (e.g., UTF-8, CP-1252, or Latin-1) of the source data when Forge reads

it into a Pipeline. If you are loading text-based source data in a Record Adapter, you specify the encoding
type in the Encoding field of the General tab. If an incorrect encoding is specified, then Forge generates
warnings about any characters that do not make sense in the specified encoding. For example, in the ASCII
encoding, any character with a number above 127 is considered invalid. Invalid characters are replaced
with strings prefixed by %X, so the invalid characters are not loaded into Forge.

3. Remove unsupported characters.

The only legal Unicode characters are U+09, U+0D, U+0A, U+20-U+7E, U+85, U+A0-U+D7FF, and
U+E000-U+FFFD. In particular, source data should not contain Unicode characters from the range 0x00
through 0x1F with the exceptions of 0x09 (tab), 0x0A (newline), and 0x0D (carriage return). For example,
records based on databases may use 0x00 (null) as a default empty value. Other characters that are often
in existing database sources are 0x1C (field separator), 0x1E (record separator), and 0x1F (unit separator).

If a data source contains additional control characters as defined by the chosen encoding, remove or replace
the control characters. For example, Windows-1252 specifies 0x7F-0x81, 0x8D-0x90, 0x9D-0x9E as control
characters, and Latin-1 specifies x7F and x9F as control characters.

The following are some notes and suggestions for dealing with control characters:
• The default input adapter encoding (LATIN-1) for delimited and vertical record input adapters in Forge

makes the assumption, for throughput efficiency, that input data does not contain control characters
(i.e. x00-x1F [except x09, x0A, x0D] and x7F-x9F).

• For data sources that contain control characters because of character data in a non-Latin encoding
(e.g., UTF-8 or Windows-1252), the recommended and best practice solution is to explicitly specify the
encoding type (e.g., "UTF-8" or "Windows-1252").

• For data sources that contain character data in more than one non-Latin encoding (e.g., a mixture of
UTF-8 and Windows-1252), the recommended and best practice solution is to explicitly specify the
more conservative encoding type (e.g., UTF-8).

• For data sources where the data-cleanliness assumption is not satisfied because of real control characters
(i.e., x00-x1F [except x09, x0A, x0D] and x7F), the recommended and best practice solution is to clean
the data ahead of time to remove or replace those control characters. If data sources contain additional

Oracle Commerce Guided Search Platform Services Forge Guide

23Endeca ITL Development | A closer look at data processing and indexing

control characters as defined by the chosen encoding, these should also be removed or replaced.For
data sources where the data-cleanliness assumption is not satisfied because of real control characters
(i.e., x00-x1F [except x09, x0A, x0D] and x7F), the recommended and best practice solution is to clean
the data ahead of time to remove or replace those control characters. If data sources contain additional
control characters as defined by the chosen encoding, these should also be removed or replaced.

4. Edit source property values to use a consistent format (for example, USA instead of United States or U.S.).
5. Re-assign similar source properties to one common property. (for example, you could assign a Flavor1

property and a Flavor2 property to a generic Flavors property).

Example of standardized source records

The following image shows a simple standardization example:

About mapping source properties and property values
After a source record has been standardized, Forge maps the record’s source properties to dimensions and
Endeca properties.

• Mapping a source property to a dimension indicates that the record should be tagged with a dimension
value ID from within that dimension. This enables navigation on the property.

• Mapping a source property to an Endeca property indicates that the property should be retained for display
and search.

Related Links
Overview of Source Property Mapping on page 27

The property mapper is a pipeline component used to map properties on the records in your source
data to Endeca properties and/or dimensions to make them navigable, displayable, both, or neither.
The property mapper is a key component in developing a pipeline, so it is important to understand
its functions well.

About writing out tagged data
After all the source records have been mapped, the Forge program writes its finished data.

The finished data consists of:
• The Endeca records along with their tagged dimension value IDs and Endeca properties.
• The names and IDs for each dimension and dimension value, along with any dimension hierarchy.
• Any index configuration specified.

Oracle Commerce Guided Search Platform Services Forge Guide

Endeca ITL Development | A closer look at data processing and indexing24

About indexing
After Forge creates the tagged data, Dgidx indexes the output and creates the proprietary indices for the
Endeca MDEX Engine.

Oracle Commerce Guided Search Platform Services Forge Guide

25Endeca ITL Development | A closer look at data processing and indexing

Chapter 3

Overview of Source Property Mapping

The property mapper is a pipeline component used to map properties on the records in your source data to
Endeca properties and/or dimensions to make them navigable, displayable, both, or neither. The property
mapper is a key component in developing a pipeline, so it is important to understand its functions well.

About source property mapping
Source property mappings dictate which dimension values are tagged to each record and which property
information is available for record search, sort, and display.

Note that before you can map a source property to an Endeca property or dimension, you must have created
that Endeca property or dimension.

Source properties can be mapped in three different ways. They can be:
• Mapped to an Endeca property (for search, sort, and display only).
• Mapped to a dimension (for search, sort, display, and navigation).
• Ignored by specifying a null mapping.

You use a property mapper component to establish source property mappings. Typically, the property mapper
is placed in the pipeline after the Perl manipulator (if one exists) that is used to clean and prepare source
properties. You should use a single property mapper to map all of your source properties to both Endeca
properties or dimensions.

About using a single property mapper
You should use a single property mapper to map all of your source properties to both Endeca properties or
dimensions. Although there are rare cases where multiple property mappers may be used, Oracle strongly
recommends that you use only one property mapper in any given pipeline.

About using explicit mapping
When you specify a source property and a target Endeca property or dimension to map to, you are creating
an explicit mapping. In general, explicit mapping is the type of mapping Oracle recommends you use.

However, Developer Studio also offers some advanced techniques that allow you to automate the mapping
process. These techniques are intended to facilitate the process of building prototypes and should not be used
for building production-ready implementations.

Related Links
Advanced Mapping Techniques on page 39

You can specify mapping techniques and default behavior using the Property Mapper editor
Advanced tab.

Types of source property mapping on page 29
There are four types of source property mappings:

Minimum configuration
At a minimum, a property mapper requires both a record source and a dimension source to define the
components that will supply it with record and dimension data.

The dimension source must be a dimension server. You can leave the other settings at their defaults while
developing your initial working pipeline, then add mappings as needed.

About mapping unwanted properties
Mapping properties that do not add value to the application is wasteful in terms of processing time and resources.
Oracle recommends, therefore, that you only create mappings for those source properties you intend to use
in your final application.

Source properties that do not have mappings specified for them are ignored during the mapping process,
unless you use the advanced mapping techniques on the Property Mapper editor Advanced tab.

Related Links
Advanced Mapping Techniques on page 39

You can specify mapping techniques and default behavior using the Property Mapper editor
Advanced tab.

About removing source properties after mapping
After mapping, source properties still exist as part of the Endeca record. You can remove them and create a
record that consists exclusively of Endeca properties and dimension values by enabling the Filter Unknown
Properties setting in your pipeline's indexer adapter.

The following example shows this option:

Oracle Commerce Guided Search Platform Services Forge Guide

Overview of Source Property Mapping | Minimum configuration28

Types of source property mapping
There are four types of source property mappings:

• Explicit mapping — Explicit mappings are created when you use the property mapper's Mappings editor
to specify a source property and a target Endeca property or dimension to map to. In other words, the
mapping does not exist until you explicitly create it. In general, this is the type of mapping Oracle
recommends that you use.

• Null mapping — Null mappings are a type of explicit mapping, because you have to use the Mappings
editor to explicitly create one. The difference is that while explicit mappings map a source property to an
Endeca property or dimension, a null mapping tells the Data Foundry that it should not try to map a specific
source property.

Explicit null mappings provide a means to prevent an implicit or default mapping from being formed for a
particular source property. In other words, you can enable either implicit or default mapping, and then turn
off mapping altogether for selected source properties using explicit null mappings.

• Implicit mapping — When implicit mapping is enabled, any source property that has a name that is
identical to an existing dimension is automatically mapped to that dimension. The like-named dimension,
and any of its constituent dimension values, must already exist in your dimension hierarchy.

Note: Implicit mapping works only if no explicit mapping exists.

Implicit mapping is limited to mappings between source properties and dimensions. Implicit mapping cannot
take place between source properties and Endeca properties.

You enable implicit mapping from the property mapper Advanced tab.

• Default mapping — This option defines the default that Forge uses to handle source properties that have
neither explicit nor implicit mappings. You can specify that Forge ignore source properties without explicit
or implicit mappings, create a new Endeca property to map to the source property, or create a new dimension
to map to the source property.

You enable default mapping from the property mapper Advanced tab.

Oracle Commerce Guided Search Platform Services Forge Guide

29Overview of Source Property Mapping | Types of source property mapping

Important: Techniques to automate the mapping process are intended to facilitate the process of building
prototypes and should not be used for building production-ready implementations. Implicit and default
mapping techniques can have unexpected results if you’re not careful when using them.

Related Links
About enabling implicit mapping on page 39

The first advanced option, Map source properties to Endeca dimensions with the same name,
enables implicit mapping.

Enabling default mapping on page 40
The default mapping option defines the default that Forge uses to handle source properties that have
neither explicit nor implicit mappings. There are three possible settings.

Priority order of source property mapping
Forge uses a specific prioritization when mapping source properties.

1. Forge looks for an explicit mapping for the source property.
2. If no explicit mapping exists and “Map source properties to Endeca dimensions with the same name”

is enabled, Forge tries to create an implicit mapping between the source property and a like-named
dimension.

3. If no explicit or implicit mapping exists, Forge uses the “If no mapping is found, map source properties
to Endeca: Properties/Dimensions” option to determine how to handle the mapping.

About adding a property mapper
This section provides a quick overview to adding a property mapper to the pipeline, including:

• Determining where to place the property mapper in the pipeline.
• Creating the property mapper in Developer Studio.
• Using the Mappings editor, which you use to create explicit and null mappings.

Determining where to add the property mapper
The fundamental requirements for the placement of a property mapper in the pipeline are:

• The property mapper must come after a record input component (such as a record adapter) and a dimension
input component (such as a dimension server).

• The property mapper must come before the indexer adapter.

In a basic pipeline, the property mapper uses the record adapter as its record source and the dimension server
as its dimension source, and then the indexer adapter takes the property mapper’s output as its record source.

Partial Update Pipeline

Pipelines used for partial updates also use a property mapper, as explained in the Endeca Partial Updates
Guide. The Pipeline Diagram example below shows a partial update pipeline:

Oracle Commerce Guided Search Platform Services Forge Guide

Overview of Source Property Mapping | About adding a property mapper30

In this partial update pipeline, the property mapper (PropDimMapper) uses the record adapter (LoadUpdateData)
as its record source and the dimension server as its dimension source. The record manipulator
(UpdateManipulator) uses the property mapper as its record source.

Creating the property mapper
The Developer Studio help provides a step-by-step procedure of how to add a property mapper to your pipeline.
This section gives an overview of the general steps.

To create a property mapper:

1. In Developer Studio, open the Pipeline Diagram dialog.
2. Select New > Property Mapper.

A New Property Mapper editor is displayed.

Oracle Commerce Guided Search Platform Services Forge Guide

31Overview of Source Property Mapping | About adding a property mapper

3. Enter a name for the property mapper, a record source, and a dimension source. You can leave the other
settings at their defaults while developing your initial working pipeline.

4. To add the property mapper, click OK.

The next sections will give overviews of the functions available in the Mappings editor.

The Mappings editor
The Mappings editor is where you create your source property mappings. You access this editor from the
Property Mapper editor by clicking the Mappings button.

When you open the Mappings editor, it displays a table of the existing source property mappings:

The meanings of the table columns are:
• Source – The name of the source property to be mapped.
• Target – The name of an Endeca property or dimension to which the source property will be mapped. This

cell will be empty if the source property has a null mapping.
• Match mode – Indicates the type of match mode used for a dimension mapping (the cell will be empty for

properties).

Related Links
About choosing a match mode for dimensions on page 35

In Developer Studio, you set the type of dimension value handling, on a per mapping basis, by selecting
a mode from the Match mode list in the Dimension Mapping editor, as illustrated below:

Creating new source mappings
The New button lets you create a new source property mapping.

To create a new mapping:

1. Left-click the New button.
Three choices are displayed.

Oracle Commerce Guided Search Platform Services Forge Guide

Overview of Source Property Mapping | The Mappings editor32

2. Select the type of mapping you wish to create.
The corresponding editor appears. For example, selecting Property Mapping displays the Property
Mapping editor.

3. Enter the name of the source property and select a target Endeca property or dimension to which the source
property will be mapped.
The Maximum Length field defines the maximum source property value length allowed when creating
mappings. That is, source properties that have values that exceed this length are not mapped.

The Oracle Endeca Developer Studio help also provides information on the Property Mapping editor and the
Dimension Mapping editor.

Using null mappings to override implicit and default mappings
Explicit null mappings provide a means to prevent an implicit or default mapping from being formed for a
particular source property. In other words, you can enable either implicit or default mapping, and then turn off
mapping altogether for selected source properties using explicit null mappings.

To create a null mapping:

1. Select New > Null Mapping in the Mappings editor.
2. Enter the source property name in the Null Mapping editor.

Example

The following example shows a source property named P_TestProp that will have a null mapping:

Oracle Commerce Guided Search Platform Services Forge Guide

33Overview of Source Property Mapping | The Mappings editor

About assigning multiple mappings
You can assign more than one mapping to a source property—for example, you can map a source property
to both a dimension and an Endeca property. A typical source property that you may want to map to both a
dimension and an Endeca property is Price.

You can map the Price source property in the following ways:
• To a Price Range dimension that allows the end-user to search for records within a given price range (for

example, wines that cost between $10 and $25).
• To an Endeca property that allows you to display the discrete price of each individual record.

Conversely, you can assign more than one source property to a single dimension or Endeca property. For
example, if you have multiple source properties that are equivalent, most likely they should all be mapped to
the same dimension or Endeca property. Flavor and Color are example properties that might require this
behavior.

Oracle Commerce Guided Search Platform Services Forge Guide

Overview of Source Property Mapping | The Mappings editor34

Chapter 4

Match Modes

When Forge maps a source property value to a dimension value, the dimension value it uses can either be
explicitly defined in the dimension hierarchy or automatically generated by Forge. You control this behavior
by using match modes.

About choosing a match mode for dimensions
In Developer Studio, you set the type of dimension value handling, on a per mapping basis, by selecting a
mode from the Match mode list in the Dimension Mapping editor, as illustrated below:

There are three match modes you can choose from:
• Normal
• Must Match
• Auto Generate

Note: Match modes only apply to dimensions. They are not used when mapping source properties to
Endeca properties.

Normal mode
Normal match mode maps only those source property values that have a matching dimension value explicitly
defined in the dimension hierarchy.

Forge assigns the IDs for any matching dimension values to the Endeca records. Any source property values
that do not have matching dimension values in the dimension hierarchy are ignored.

In order for a source property value to match a dimension value, the dimension value’s definition must contain
a synonym that:

• Is an exact text match to the source property value.
• Has its Classify option enabled.

Example

This example shows the Synonyms dialog in the Dimension Value editor with a dimension value synonym
that has its Classify option enabled:

Must Match mode
Must Match behaves identically to Normal, with the exception that Must Match issues a warning for any source
property values that do not have matching dimension values.

Related Links
The Forge Logging System on page 109

This section provides a brief introduction to the Forge logging system. Its command-line interface
allows you to focus on the messages that interest you globally and by topic.

Auto Generate mode
Auto Generate specifies that Forge automatically generates a dimension value name and ID for any source
property value that does not have a matching dimension value in the dimension hierarchy. Forge uses these
automatically-generated names and IDs to tag the Endeca records the same as it would explicitly-defined
dimension values.

Auto Generate mode dramatically reduces the amount of editing you have to do to the dimension hierarchy.
However, auto-generated dimensions are always flat. Auto-generated names and IDs are persisted in a file
that you specify as part of a dimension server component.

Related Links
Dimension server on page 49

Dimension servers work in conjunction with dimension adapters, and serve as a centralized source
of dimension information for all other pipeline components.

Oracle Commerce Guided Search Platform Services Forge Guide

Match Modes | About choosing a match mode for dimensions36

Rules of thumb for dimension mapping
When you choose the match mode to use for generating your dimension values, keep in mind the following
two rules of thumb:

• If you manually define dimension values in the dimension hierarchy, the Normal, Must Match, and Auto
Generate features behave identically with respect to those dimension values.

• Any source property value that does not have a matching dimension value specified in the dimension
hierarchy will not be mapped unless you have set the dimension to Auto Generate in the pipeline.

Dimension mapping example
The following illustration shows a simple dimension mapping example that uses a combination of generation
methods. The sections after the illustration describe the mapping behavior in the example.

Dimension mapping

Wine_Type dimension

The Red and White property values have matching Red and White dimension values specified in the dimension
hierarchy. These property values are mapped to the Red and White dimension value IDs, respectively. Bottles

Oracle Commerce Guided Search Platform Services Forge Guide

37Match Modes | Rules of thumb for dimension mapping

B and C are tagged with the Red dimension value ID, and Bottle A is tagged with the White dimension value
ID.

The Sparkling property value does not have a matching dimension value in the dimension hierarchy. The Wine
Type dimension is set to Must Match, so this property is ignored and a warning is issued. As a result, Bottle
D does not get tagged with a dimension value ID from the Wine Type dimension.

Country dimension

There are no dimension values explicitly defined in the dimension hierarchy for the Country dimension. However,
this dimension is set to Auto Generate, so all three of the Country property values (USA, France, and Chile)
are mapped to automatically-generated dimension value IDs.

Bottle A is tagged with the auto-generated ID for the USA dimension value. Bottles B and D are tagged with
the auto-generated ID for the France dimension value. Bottle C is tagged with the auto-generated ID for the
Chile dimension value.

Body dimension

The Crisp property value has a matching dimension value specified in the dimension hierarchy, so the Crisp
property value is mapped to the Crisp dimension value. Bottle A is tagged with the Crisp dimension value ID.

The other three property values (Elegant, Full, and Fresh) do not have matching dimension values in the
dimension hierarchy but, because the Body dimension is set to Auto Generate, these three property values
are mapped to automatically-generated dimension value IDs.

Bottle B is tagged with the auto-generated ID for the Elegant dimension value. Bottle C is tagged with the
auto-generated ID for the Full dimension value. Bottle D is tagged with the auto-generated ID for the Fresh
dimension value.

Regardless of how they were generated, all of the dimension value IDs are included in the finished data that
Forge produces for indexing.

Oracle Commerce Guided Search Platform Services Forge Guide

Match Modes | Dimension mapping example38

Chapter 5

Advanced Mapping Techniques

You can specify mapping techniques and default behavior using the Property Mapper editor Advanced tab.

The Property Mapper editor Advanced tab
The Property Mapper editor Advanced tab (shown below) lets you configure advanced mapping techniques
when you are building prototypes.

The following sections describes these techniques.

Important: Oracle strongly recommends that you use the explicit mapping techniques, because the
advanced mapping techniques can have unexpected results if you are not careful when using them.

About enabling implicit mapping
The first advanced option, Map source properties to Endeca dimensions with the same name, enables
implicit mapping.

When implicit mapping is enabled, any source property that has a name that is identical to an existing dimension
is automatically mapped to that dimension. The like-named dimension, and any of its constituent dimension

values, must already exist in your dimension hierarchy (in other words, you’ve already defined them using the
Dimensions and Dimension Values editors).

Implicit mapping uses the Normal mapping mode where only those source property values that have a matching
dimension value explicitly defined in the dimension hierarchy are mapped. Forge assigns the IDs for any
matching dimension values to the Endeca records. Any source property values that do not have matching
dimension values in the dimension hierarchy are ignored.

Note: Implicit mapping is limited to mappings between source properties and dimensions. This means
that implicit mapping cannot take place between source properties and Endeca properties. In addition,
implicit mapping only works if no explicit mapping exists.

Enabling default mapping
The default mapping option defines the default that Forge uses to handle source properties that have neither
explicit nor implicit mappings. There are three possible settings.

Use the default mapping option with caution because:
• With this option enabled, all source properties will ultimately be mapped and mapped properties use system

resources. Ideally, you should only map source properties that you intend to use in your implementation
so that you minimize the use of system resources.

• Many production-level implementations automatically pull and process new data when it is available. If this
data has new source properties, these properties will be mapped and included in your MDEX Engine
indices. Again, this uses system resources unnecessarily but, perhaps more importantly, this situation may
also result in the display of dimensions or Endeca properties that you do not want your users to see.

To set the default mapping options:

1. Select the Advanced tab in the Property Mapper editor.
The tab includes the following option:

If no mapping is found, map source properties to Endeca:
• Properties
• Dimensions

2. Select one or neither of the two settings:
DescriptionOption

Uncheck the option altogether to ignore source properties that do not have an explicit
or implicit mapping defined.

Neither

Check Property to create a mapping between the source property and an Endeca
property. Forge does this by creating a new Endeca property that uses the same
name and value as the source property and assigning it to the record.

Properties

CheckDimension to create a mapping between the source property and a dimension.
Forge does this by creating a new dimension, using the source property’s name.

Dimensions

Forge uses the Auto Generate mode to populate the dimension with dimension values
that match the source property’s values.

Oracle Commerce Guided Search Platform Services Forge Guide

Advanced Mapping Techniques | Enabling default mapping40

About the default maximum length for source property values
The Default Maximum Length option defines the maximum source property value length allowed when
creating mappings. Source properties that have values that exceed this length are not mapped, and a warning
is issued by the Forge Logging system, if so configured.

If you do not explicitly specify a Default Maximum Length, Forge checks against the following limits when
determining whether to map a value:

• Source properties that are mapped to Endeca properties can have values of any length.
• Source properties that are mapped to dimensions must have values that are 255 characters or less.

If you do explicitly specify a Default Maximum Length, that length is applied to both Endeca property and
dimension mappings.

Related Links
The Forge Logging System on page 109

This section provides a brief introduction to the Forge logging system. Its command-line interface
allows you to focus on the messages that interest you globally and by topic.

About overriding the default maximum length setting
You can override theDefault MaximumLength setting on a per-mapping basis by using theMaximumLength
field in both the Property Mapping and Dimension Mapping editors.

Example

Suppose you use the Default Maximum Length to limit the length of all your source property mappings to be
100 characters. However, you want to allow the P_Description property to have a greater limit (say, 255
characters). You would then use the Property Mapping editor to set an override for the P_Description source
property that allows the description to be up to 255 characters:

Oracle Commerce Guided Search Platform Services Forge Guide

41Advanced Mapping Techniques | About the default maximum length for source property values

Chapter 6

Before Building Your Instance Configuration

Before you start building your instance configuration, you must create a directory structure to support your
data processing back end.

Endeca Application Controller directory structure
While the Endeca Application Controller builds the directory structure it requires, you first have to build two
directories:

• Endeca instance configuration directory — You create this directory and its contents with Developer
Studio (using the File > New Project menu). The directory contains the Developer Studio project file, the
baseline pipeline file, the partial updates pipeline file (if you are running partial updates), and the index
configuration files (XML). You then use Developer Studio to send the instance configuration to Endeca
Workbench.

• Incoming directory— This directory contains the source data to be processed by Forge. You then provision
this directory in Endeca Workbench by using the EAC Administration > Admin Console menu, and
selecting the Forge component tab.

You must create these directories before you use Endeca Workbench to provision your application and its
components to the EAC. Be sure to copy your source data to the incoming directory on the machine that will
be running Forge. This is the location where Forge looks for source data.

Pipeline overview
Your pipeline functions as the script for the entire data transformation process that occurs when you run the
Forge program. The pipeline specifies things like the format and location of the source data, any changes to
be made to the source data (standardization), and the mapping method to use for each of the source data’s
properties.

A pipeline is composed of a collection of components. Each component performs a specific function during
the transformation of your source data into Endeca records. Components are linked together by means of
cross-references, giving the pipeline a sequential flow.

About adding and editing pipeline components
You add and edit pipeline components using the Pipeline Diagram editor in Developer Studio.

The pipeline diagram depicts the components in your pipeline and the relationship between them. It describes
the flow of events that occur in the process of converting raw data to a format that the Endeca MDEX Engine
can use, making it easy for you to trace the logic of your data model. The pipeline diagram is the best way to
maneuver and maintain a high-level view of your pipeline as it grows in size and complexity.

For details on adding and editing pipeline components, see the Oracle Endeca Developer Studio Help.

About creating a data flow using component names
You must give every component in your pipeline a unique name that identifies it to the other components. You
use these names to specify cross-references between components, effectively creating a flow of data through
the pipeline.

Pipeline Example

For example, by tracing the data flow backwards in the following illustration and starting from the bottom, you
can see that:

1. IndexerAdapter gets its data from PropMapper and DimensionServer.
2. PropMapper gets its data from LoadData and DimensionServer.
3. DimensionServer gets its data from Dimensions.
4. LoadData and Dimensions both get their data from source files (this is indicated by the lack of arrows

feeding them).

When you specify a data source within a component’s editor, you are indicating which of the other components
will provide data to that component. Components can have multiple data sources, such as the PropMapper
component above, which has both a record source, LoadData, and a dimension source, DimensionServer.

Pipeline Example: Adding a Pipeline Component

Alternatively, you can connect pipeline components graphically in the Pipeline Diagram editor.

When you add and remove components, you must be careful to make any data source changes required to
maintain the correct data flow. To illustrate this point, the example above is modified to include another

Oracle Commerce Guided Search Platform Services Forge Guide

Before Building Your Instance Configuration | Pipeline overview44

component, RecordManipulator, that comes between LoadData and PropMapper in the data flow of the pipeline.
Adding RecordManipulator in this location requires that:

• RecordManipulator’s data source is set to LoadData.
• PropMapper’s data source is changed to RecordManipulator.

Similar care must be taken when removing a component from a pipeline.

URLs in the pipeline
Some of the components in the pipeline require URLs that point to external files, such as source data files. All
of these URLs are relative to the location of the Pipeline.epx file.

This file contains the pipeline specifications that you have created in Developer Studio. Developer Studio
automatically generates a Pipeline.epx file when you create a new project and saves it in the same directory
as your .esp project file.

Note: As a rule, you should not move the Pipeline.epx file, or any other automatically generated
files, from their location in the same directory as the .esp project file.

Oracle Commerce Guided Search Platform Services Forge Guide

45Before Building Your Instance Configuration | Pipeline overview

Chapter 7

About Creating a Basic Pipeline

Endeca Developer Studio provides a Basic Pipeline template that helps you get started when building your
pipeline from scratch. The goal of the Basic Pipeline template is to get you up and running with a working
pipeline as quickly as possible. A working pipeline is defined as a pipeline that can read in source records and
output finished records, ready for indexing.

The Basic Pipeline template
The Basic Pipeline template streamlines the setup for a pipeline that contains the following five components:

• Record adapter (LoadData) for loading source data.
• Property mapper (PropMapper) for mapping source properties to Endeca properties and dimensions.
• Indexer adapter (IndexerAdapter) for writing out data that is ready to be indexed by the Dgidx program.
• Dimension adapter (Dimensions) for loading dimension data.
• Dimension server (DimensionServer) that functions as a single repository for dimension data that has been

input via one or more dimension adapters.

The following illustration shows the pipeline diagram for a basic pipeline:

Oracle recommends that you leave most of the Basic Pipeline component options at their default settings and
customize them later, after you have a basic pipeline functioning. Endeca also recommends that you do not
include other components to perform additional tasks until after you have a functioning pipeline. The remainder
of this section describes how to get a Basic Pipeline working.

Note: This section does not describe all of the features of a basic pipeline’s components in exhaustive
detail. It describes the minimum you need to know to create a functioning pipeline. Detailed information
on individual components is included in subsequent chapters of this book and in the Oracle Endeca
Developer Studio Help.

Record adapters
Record adapters load and save records in a variety of formats, including delimited, binary, ODBC (Windows
only), JDBC, and Microsoft Exchange. Each record adapter format has its own set of attributes.

This section describes the most common type of record adapter: an input record adapter that loads data stored
in delimited format. See the Oracle Endeca Developer Studio help for detailed information on the other record
adapter types.

Note: Output record adapters are primarily used as a diagnostic tool and for translating formats.

Source data in delimited format

A delimited file is a rectangular file with columns and rows separated by specified characters. Each row
corresponds to a record and each column corresponds to a property.

The records in a delimited file must have identical properties, in terms of number and type, although it is
possible for a record to have a null value for a property.

About the Record Index tab
The Record Index tab allows you to add dimensions or properties that are used in the record adapter's record
index to control the order in which records are read in for downstream components.

A record index is used to support join functionality, and is needed only if a downstream component will need
to request records by ID. For example, a cache needs to be able to respond to a record assembler's (left join)
request for a particular record.

If the order of the records being used by the downstream component do not matter, then you should not add
a record index to the record adapter. For example, a switch join does not require a record index on components
above it because it does not matter what order the records are pulled in.

Oracle Commerce Guided Search Platform Services Forge Guide

About Creating a Basic Pipeline | Record adapters48

If the record adapter has a record index that is not required, you may see a Forge log WARN message about
an ID conflict, as illustrated by the following example:
FORGE {baseline}: The RecordAdapter 'LoadMainData' has records
that do not follow the index specified.
Record number '14' violates the index sort order with record key
[R_VHNR] => {'PVal [value= 361945]'} (the previous record key
was [R_VHNR] => {'PVal [value= 957483]'})!

If you see this warning, remove the record index from the record adapter and Forge will stop removing records
that do not conform to the record index.

Note: There are two cases where join keys are not required for data sources and, hence, neither are
record indexes.

Related Links
Joins that do not require record caches on page 87

There are two join cases that do not require record caches:

Dimension adapter
You use dimension adapters to load dimension data.

When you create a new project in Developer Studio, a default dimensions file, called Dimensions.xml, is
created for you and stored in the same directory as your .esp project file. As you make changes to your
dimension hierarchy in Developer Studio, this file is updated to reflect the changes.

Note: Dimension adapters can also save dimension information for diagnostic purposes. Saving
dimensions is an advanced topic and it is not covered in this section.

Dimension server
Dimension servers work in conjunction with dimension adapters, and serve as a centralized source of dimension
information for all other pipeline components.

Dimension information typically follows the path outlined below:

1. Dimension adapters load dimension information from your dimension source files.
2. The dimension server gets its dimension information from the dimension adapters.
3. Other pipeline components get their dimension information from the dimension server.

Setting up your pipeline with a dimension server allows you to change your dimension adapters as needed
without having to change the dimension source for all other pipeline components that require dimension
information.

Oracle Commerce Guided Search Platform Services Forge Guide

49About Creating a Basic Pipeline | Dimension adapter

In addition to functioning as a centralized source for dimension information, dimension servers also coordinate
the loading and saving of dimension information that is generated when using the Auto Generate option during
source property-to-dimension mapping. Auto-generated dimensions are persisted in the file location that is
specified as part of the dimension server component.

Typically, there is only one dimension server per pipeline.

Related Links
Overview of Source Property Mapping on page 27

The property mapper is a pipeline component used to map properties on the records in your source
data to Endeca properties and/or dimensions to make them navigable, displayable, both, or neither.
The property mapper is a key component in developing a pipeline, so it is important to understand
its functions well.

Property mapper
You use a property mapper component to establish mappings between source properties, and Endeca properties
and dimensions. These mappings dictate which dimension values are tagged to the current record and which
property information is available for record search and display.

Oracle strongly recommends that you have only one property mapper per pipeline.

At a minimum, a property mapper requires both a record source and a dimension source to define the
components that will supply it with record and dimension data. You can leave the other settings at their defaults
while developing your initial working pipeline.

Important: The property mapper is a crucial component and you should be very familiar with its settings.

Related Links
Overview of Source Property Mapping on page 27

Oracle Commerce Guided Search Platform Services Forge Guide

About Creating a Basic Pipeline | Property mapper50

The property mapper is a pipeline component used to map properties on the records in your source
data to Endeca properties and/or dimensions to make them navigable, displayable, both, or neither.
The property mapper is a key component in developing a pipeline, so it is important to understand
its functions well.

Indexer adapter
An indexer adapter writes out data that is ready to be indexed by the Dgidx program. An indexer adapter
requires two data sources: one for record data and one for dimension data. Typically, there is only one indexer
adapter per pipeline.

Oracle Commerce Guided Search Platform Services Forge Guide

51About Creating a Basic Pipeline | Indexer adapter

Chapter 8

About Running Your Basic Pipeline

After you have created your basic pipeline, you should run it and view the results. Your initial goal is to make
sure that your source data is running through the entire pipeline and being incorporated into the MDEX Engine
indices.

Running a pipeline
This task describes the steps you use to run your basic pipeline.

The Basic Pipeline template does not contain a source data file. Therefore, before you run the Basic Pipeline,
make sure you have created an incoming directory that contains source data. Alternatively, you can use the
incoming directory in the sample_wine_data reference implementation.

See the Oracle Endeca Workbench Administrator’s Guide for more details on running a pipeline under the
Endeca Application Controller.

To run a pipeline:

1. In Endeca Workbench, provision your application and its components to the EAC Central Server, as
documented in the Oracle Endeca Workbench Administrator’s Guide.

2. In Developer Studio, use the Tools > EndecaWorkbenchmenu option to send your instance configuration
to Endeca Workbench by using the Set Instance Configuration option.

3. In Endeca Workbench, run a baseline update script to process your data and start the MDEX Engine
(optionally, you can run a baseline update script using the eaccmd utility, or the custom Web services
interface).

Viewing pipeline results in a UI reference implementation
Once you have an MDEX Engine running, you can use a generic front-end, called aUI reference implementation,
to view the data. UI reference implementations are sample Web applications included with the Endeca
distribution.

This procedure assumes that the JSP UI reference implementation that is shipped with the Endeca Workbench
is running.

To test your basic pipeline using a UI reference implementation:

1. Open Internet Explorer 6.0 or later.

2. Navigate to the JSP reference implementation; for example:
http://localhost:8888/endeca_jspref

3. Enter the host and port for your MDEX Engine and click Go.

At this point in the process, you should see a list of records but no Endeca properties or dimensions.

You must define and map Endeca properties and dimensions before they can appear in your Web application.

Related Links
After Your Basic Pipeline Is Running on page 55

After you get your basic pipeline running, you can begin crafting your Endeca implementation in
earnest. Again, Oracle recommends a stepped approach where you implement a small set of features,
test them to make sure your implementation is behaving as expected, and then implement additional
features.

Oracle Commerce Guided Search Platform Services Forge Guide

About Running Your Basic Pipeline | Viewing pipeline results in a UI reference implementation54

Chapter 9

After Your Basic Pipeline Is Running

After you get your basic pipeline running, you can begin crafting your Endeca implementation in earnest. Again,
Oracle recommends a stepped approach where you implement a small set of features, test them to make sure
your implementation is behaving as expected, and then implement additional features.

Additional tasks
Additional tasks you will most likely want to do include:

• Create Endeca properties and dimensions, and then map them to your source properties.
• Designate an Endeca property to be the record specifier.
• Add pipeline components for various tasks such as joining source data and manipulating source data

properties.
• Specify additional index configuration settings such as search configuration, dimension groups, and so

forth.

Important: The information in this section gives a high level overview of these additional tasks and is
not intended to be complete. Refer to other sections in this documentation and the Oracle Endeca
Developer Studio Help for detailed information on implementing the features listed here, as well as many
others.

About source property mapping
Source property mappings dictate which dimension values are tagged to each record and which property
information is available for record search, sort, and display.

Before you can map a source property to an Endeca property or dimension, you must create the Endeca
property or dimension. This section covers how to create Endeca properties and dimensions as well as how
to map source properties to them. It also tells you how to create null mappings.

Source properties can be mapped in three different ways. They can be:
• Mapped to an Endeca property (for search, sort, and display only).
• Mapped to a dimension (for search, sort, display, and navigation).
• Ignored by specifying a null mapping.

Note: The mapping described in this section is known as explicit mapping. In general, this is the type
of mapping Oracle recommends that you use.

Related Links
Overview of Source Property Mapping on page 27

The property mapper is a pipeline component used to map properties on the records in your source
data to Endeca properties and/or dimensions to make them navigable, displayable, both, or neither.
The property mapper is a key component in developing a pipeline, so it is important to understand
its functions well.

Adding and mapping Endeca properties
Preparing an Endeca property for display within an Endeca implementation is a two-step process.

Note: The UI reference implementation has been written to iterate over all the Endeca properties that
are returned with a query and display them, so you don’t have to do any additional coding to get the
Endeca property to display in the UI.

You must:

1. Add the Endeca property to your project. You do this in the Property editor in Developer Studio.
2. Create a mapping between a source property and the Endeca property. You do this in the Property Mapper

editor in Developer Studio.
This step instructs the Data Foundry to populate the Endeca property with the value from the source property.
Without this mapping, the Endeca property will not be available for display.

Continue adding Endeca properties and mapping them to source properties. You can map multiple source
properties to a single Endeca property.

Adding and mapping dimensions
Similar to creating an Endeca property, the process for adding a dimension to your implementation has several
steps.

To create a dimension, you must:

1. Add the dimension to your project. You do this in the Dimension editor in Developer Studio.
2. Add any dimension values that you want to create manually.
3. Create a mapping between a source property and the dimension in the Developer Studio Property Mapper

editor. Without this mapping, the dimension will be removed from the MDEX Engine.

Related Links
Overview of Source Property Mapping on page 27

The property mapper is a pipeline component used to map properties on the records in your source
data to Endeca properties and/or dimensions to make them navigable, displayable, both, or neither.
The property mapper is a key component in developing a pipeline, so it is important to understand
its functions well.

Oracle Commerce Guided Search Platform Services Forge Guide

After Your Basic Pipeline Is Running | About source property mapping56

About synonyms
Synonyms provide a textual way to refer to a dimension value, rather than by ID alone. You specify the way
each synonym is used by the MDEX Engine in the Dimension Value Synonyms editor in Developer Studio.

A dimension value can have multiple synonyms. You can choose from Search,Classify, and (Display) options
as follows:

• Enabling the Search option indicates that this synonym should be considered during record and dimension
searches. You can enable search for multiple synonyms, allowing you to create a more robust dimension
value for searching.

• Enabling the Classify option indicates that this synonym should be considered when attempting to map a
source property value to this dimension value. In order for a source property value to match a dimension
value, the dimension value’s definition must contain a synonym that:

• Is an exact text match to the source property value.
• Has its Classify option enabled.

If a synonym does not have itsClassify option enabled, it is ignored during mapping, regardless of whether
or not it is a text match to a source property value.

Again, by enabling classification for multiple synonyms, you increase the mapping potential for a dimension
value because a source property can map to any of the synonyms that have been marked with Classify.

• While you can have multiple synonyms for a dimension value, only one synonym can be marked for display.
This is the synonym whose text is displayed in your implementation whenever this dimension value is
shown. By default, the first synonym you create is set to be displayed, as is indicated by the parentheses
around the synonym’s name, but you can set any synonym for display in the Synonyms dialog box

To better understand these three options, consider the following example.

Example

This dimension value has an ID of 100 (automatically assigned by Developer Studio) and three synonyms:
Dimension Value ID = 100
Synonyms =
 2002 SEARCH=enabled CLASSIFY=enabled DISPLAY=yes
 ‘02 SEARCH=enabled CLASSIFY=enabled DISPLAY=no
 02 SEARCH=enabled CLASSIFY=enabled DISPLAY=no

In this example, records with source property values matching any of the following terms would be tagged
with the dimension value ID 100, and dimension searches on those terms would return that dimension value
ID:

2002

‘02

02

Additionally, anytime the dimension value with an ID of 100 is displayed in the implementation, the text used
to represent the dimension value is “2002”.

After you have created the dimension and defined any manual dimension values, you create the mapping
between a source property and the dimension.

Note: The UI reference implementation has been written to iterate over all the dimensions that are
returned with a query and display them, so you don’t have to do any additional coding to get the dimension
to display in the UI.

Oracle Commerce Guided Search Platform Services Forge Guide

57After Your Basic Pipeline Is Running | About source property mapping

Continue adding dimensions and mapping them to source properties. You can map multiple source properties
to a single dimension.

About null mappings
A null mapping, set in the Developer Studio Property Mapper editor, indicates that a source property should
be ignored.

Explicit null mappings provide a means to prevent an automated mapping from being formed for a particular
source property. In other words, you can enable automated mapping, and then turn off mapping for selected
source properties using explicit null mappings.

Related Links
Types of source property mapping on page 29

There are four types of source property mappings:

Setting the record specifier property
Developer Studio lets you configure how records should be identified by your application. The RECORD_SPEC
attribute allows you to specify the property that you wish to use to identify specific records.

Records can have only one record spec during updates and at startup. You may set the RECORD_SPEC
attribute’s value to TRUE in any property where the values for the property meet the following requirements:

• The value for this property on each record must be unique.
• Each record should be assigned exactly one value for this property.

Only one property in the project may have the RECORD_SPEC attribute set to TRUE.

For example, Forge uses the RECORD_SPEC property value to identify the records that it is transforming. If the
project does not have a designated the RECORD_SPEC property, Forge assigns a unique record specifier value
to each record. As another example, implementing partial updates requires that the project have an assigned
RECORD_SPEC property.

Although it is valid for a project to not have a specific RECORD_SPEC property, it is recommended that you
assign one. For example, you may wish to use a field such as UPC, SKU, or part_number to identify a record.

To configure a RECORD_SPEC attribute for an existing property:

1. In the Project tab of Developer Studio, double-click Properties.
2. From the Properties view, select a property and click Edit.

The Property editor is displayed.
3. In the General tab, check Use for Record Spec.
4. Click OK.

The Properties view is redisplayed.
5. Select File > Save.

Oracle Commerce Guided Search Platform Services Forge Guide

After Your Basic Pipeline Is Running | Setting the record specifier property58

About specifying dimensions and dimension value order
The MDEX Engine returns dimensions and dimension values in the order in which they are specified in the
Developer Studio Dimensions and Dimension Values editors, respectively. As a result, you may want to
reorder your dimensions and dimension values to better control their display.

Additional pipeline components
After you have added your dimensions and Endeca properties to your project, you may want to include other
pipeline components to perform additional tasks. The following table describes the components you can add:

For More InfoDescriptionComponent

"Adding a record assembler" in this
guide and in the Oracle Endeca
Developer Studio Help.

Join data from one or more secondary data sources
to the current record.

Record assemblers

"Adding a record cache" in this guide
and in the Oracle Endeca Developer
Studio Help.

Store a temporary copy of record data that has
been read in by a record adapter. Record caches
are generally used in conjunction with record
assemblers and are set up to contain data from
secondary data sources.

Record caches

For information on how to write your
own Java manipulator and for a

A Java manipulator is your own code in Java that
you can use to perform data manipulation on

Java manipulators

sample code, see the Endecaproperties and records. Java manipulators provide
you with the most generic way of changing records
in the Forge pipeline.

Content Adapter Development Kit
(CADK) Guide.

A Java manipulator contains a class that is based
on the Java API Adapter interface in the Content
Adapter Development Kit (CADK).

See "Using Perl Manipulators to
Change Source Properties" in the

Allow you to write custom Perl code that changes
the data associated with an Endeca record. Perl

Perl manipulators

Oracle Endeca Developer Studio
Help.

manipulators are useful for such tasks as manually
adding or removing source properties, changing
the value of a source property, retrieving records
based on a particular key, and so on. For details on Perl code syntax, see

the Endeca Forge API Guide for
Perl.

"Creating a spider" in this guide.Crawl document hierarchies on a file system or
over HTTP. From a root URL, a spider spools URLs
of documents to crawl.

Spiders

See "Record Manipulators and
Expressions" in the Oracle Endeca
Developer Studio Help.

Provide support, such as URL extraction, for a
content acquisition system, such as a crawler
implementation.

Record manipulators

Oracle Commerce Guided Search Platform Services Forge Guide

59After Your Basic Pipeline Is Running | About specifying dimensions and dimension value order

For More InfoDescriptionComponent

See the Endeca Partial Updates
Guide.

Provide support for partial (rapid) updates.Update adapters

Related Links
Adding a record cache on page 79

Use the options in the Record Cache editor to add and configure a record cache for each of your
record sources.

Additional index configuration options
The Endeca MDEX Platform offers a rich set of index configuration options that allow you to customize your
Endeca implementation. You use the index configuration to specify things like search configurations, precedence
rules, dynamic business rules, and so on.

The major index configuration features are described in the table below. Refer to other sections of this guide
as well as to the Endeca Basic Development Guide and the Endeca Advanced Development Guide for
information on all of the features you can choose to implement.

For More InfoDescriptionComponent

See the "Working with Dimensions"
chapter in Endeca Basic
Development Guide.

Allow you to organize dimensions into explicit
groupings for presentation purposes.

Dimension groups

See "Configuring Dimension
Groups" in the Oracle Endeca
Developer Studio Help.

See the "Working with Search
Interfaces" chapter in Endeca Basic
Development Guide.

Allow you to control record search behavior for
groups of one or more properties or dimensions.
Some of the features that can be specified for a
search interface include relevance ranking,

Search interfaces

See "Configuring Search Interfaces"
in the Oracle Endeca Developer
Studio Help.

matching across multiple properties and
dimensions, and partial matching.

See the "Using Stemming and
Thesaurus" chapter in the Endeca
Advanced Development Guide.

The thesaurus allows the MDEX Engine to return
matches for related concepts to words or phrases
contained in user queries. For example, an
thesaurus entry might specify that the phrase "Mark

Thesaurus entries

See "Configuring Search" in the
Oracle Endeca Developer Studio
Help.

Twain" is interchangeable with the phrase "Samuel
Clemens".

See the Oracle Endeca Workbench
Help.

Oracle Commerce Guided Search Platform Services Forge Guide

After Your Basic Pipeline Is Running | Additional index configuration options60

For More InfoDescriptionComponent

See the "Advanced Search
Features" section in the Endeca
Advanced Development Guide.

Stop words are words that are set to be ignored by
the Endeca MDEX Engine. Typically, common
words like "the" are included in the stop word list.

Stop words

See "Configuring Search" in Oracle
Endeca Developer Studio Help.

See the "Search Characters" chapter
in the Endeca Basic Development
Guide.

Allow you to configure the handling of punctuation
and other non-alphanumeric characters in search
queries.

Search characters

See "Configuring Search" in Oracle
Endeca Developer Studio Help.

See the "Using Stemming and
Thesaurus" chapter in the Endeca
Advanced Development Guide.

Stemming allows the word root and word
derivations of search terms to be included in search
results. For example, a search for the term
“children” would also consider “child” (which is the

Stemming

See “Configuring Search” in the
Oracle Endeca Developer Studio
Help.

word root). This means that singular and plural
forms of nouns are considered equivalent and
interchangeable for all search operations.
Preconfigured stemming files are shipped for
supported languages. You cannot modify these
files, but you can enable or disable stemming with
Developer Studio.

See "Configuring Precedence Rules"
in the Oracle Endeca Developer
Studio Help.

Allow your Endeca implementation to delay the
display of a dimension until the user triggers it,
making navigation through the data easier and
avoiding information overload.

Precedence rules

See "Promoting Records with
Dynamic Business Rules" in the

Dynamic business rules allow you to promote
contextually relevant result records, based on

Dynamic business
rules

Endeca Advanced Development
Guide.

data-driven rules, to users as they navigate or
search within a dataset. For example, you can show
a list of best-selling merlots when a user has See "Configuring Dynamic Business

Rules" in Oracle Endeca Developer
Studio Help.

navigated to a record set made up of merlots.
Dynamic business rules make it possible to
implement features such as merchandising and
content spotlighting. See "Working with dynamic business

rules" in the Oracle Endeca
Workbench Help.

Oracle Commerce Guided Search Platform Services Forge Guide

61After Your Basic Pipeline Is Running | Additional index configuration options

Part 2

Joins

• Overview of Joins
• About Configuring Join Keys and Record Indexes
• About Implementing Joins
• Advanced Join Behavior
• Tips and Troubleshooting for Joins

Chapter 10

Overview of Joins

Generally, applications consist of more than one data source. For example, an application used to navigate
books would have records that contain both title and author information. If the title and author source data
reside in different locations, you would need to join them together to create a single record with both pieces
of information.

Record assemblers and joins
You add a record assembler component to your pipeline to join data from one or more data sources. To use
a record assembler, you must define:

• The data sources to be joined. With two exceptions, all data sources feeding a join must be record caches,
described below.

• The type of join to perform.

Record caches give Forge random access to the data, allowing it to look up records by join key. Forge uses
available RAM for the cache and then allocates hard drive space as necessary.

When you configure a join in a record assembler, you specify a join key for each source. Join keys are dimension
or property names. Forge uses these keys to find equivalent records within the data sources participating in
the join.

During a record assembly, the following happens:

1. Forge finds the value for the join key in the current record.
2. Forge looks for a matching value to the join key within the record cache. If Forge finds a record with a

matching value, that record is considered equivalent to the current record.

3. Forge performs the join according to the configuration that you have specified.

Related Links
Joins that do not require record caches on page 87

There are two join cases that do not require record caches:
Overview of Joins on page 65

Generally, applications consist of more than one data source. For example, an application used to
navigate books would have records that contain both title and author information. If the title and author
source data reside in different locations, you would need to join them together to create a single
record with both pieces of information.

About performing joins in a database
While the Data Foundry offers a large variety of join types and functionality, you are encouraged to perform
joins within a database prior to exporting the information to the Data Foundry, if possible. The advantages of
using a database to perform the join include:

• Many users are more familiar with this technology.
• Databases typically provide support for more data types.
• If the data is already in a database, existing indexes may be used, eliminating the need to recreate the

index.
• Eliminating joins from your pipeline makes for simpler pipelines.
• Using the database, in some cases, may reduce I/O by collapsing data in the join.

However, it is not always possible to join information in a database. Data may exist outside of a database or
in incompatible databases, may require a transformation prior to aggregation, and so on. It is for these cases
that the Data Foundry provides its extensive join facility.

Join keys and record indexes
Join keys determine how records are compared by the record assembler. For each data source feeding a join,
you designate one or more properties or dimensions to function as the source's join key.

During the course of the join, the record assembler compares the values within each source's join key. Records
that have the same values for their respective keys are considered equivalent for the purposes of the join. With
two exceptions, all joins require a join key for each data source.

Comparisons are based solely on property and dimension values, not names. It is not a requirement, therefore,
that the properties and dimensions you specify for your record keys have identical names.

Example

As an example, consider the following left join with four record sources. Source 1 and Source 2 use Id as
their join key. Source 3 and Source 4 use Pid as their join key. The other properties are not part of the join
key for any of the sources.

Oracle Commerce Guided Search Platform Services Forge Guide

Overview of Joins | About performing joins in a database66

For this data, we know:
• The join key for the first record in Source 1 is Id=A. The second record's key is Id=C. The third record's

key is Id=B.
• The join key for the first record in Source 2 is Id=C. The second record's key is Id=D.
• The join key for the record in Source 3 is Pid=A.
• The join key for the record in Source 4 is Pid=B.

The resulting left join looks like this:

In this example, the following occurred:
• Record Id=A from Source 1 is joined to record Pid=A from Source 3.
• Record Id=B from Source 1 is joined to record Pid=B from Source 4.
• Record Id=C from Source 1 is joined to record Id=C in Source 2.
• Record Id=D from Source 2 has no equivalent in the left source, so it is discarded.

Note: Join keys rarely incorporate dimensions. One reason is that if you use dimensions in a key, the
records must have previously been processed and mapped by Forge. That is, the records must have
the dimensions tagged on them before the join begins.

Related Links
Joins that do not require record caches on page 87

There are two join cases that do not require record caches:

About matching record indexes for join sources
In addition to a join key, you must also configure a record index for each data source that feeds a join. A record
index is a key that indicates to the record assembler how it can identify records from that source.

A source's record index key must match its join key. In other words, the key that tells the record assembler
how to find a source's records must be the same as the key that the record assembler uses to compare records
from that source.

Note: There are two cases where join keys are not required for data sources and, hence, neither are
record indexes.

Oracle Commerce Guided Search Platform Services Forge Guide

67Overview of Joins | Join keys and record indexes

Related Links
Joins that do not require record caches on page 87

There are two join cases that do not require record caches:
About Configuring Join Keys and Record Indexes on page 75

In addition to a join key, you must also configure a record index for each data source that feeds a
join. A record index is a key that indicates to the record assembler how it can identify records from
that source.

Join types
The following sections describe the join types supported by the Data Foundry. Each section provides a simple
example for the join type being discussed. Note that while most of the examples use two record sources, many
of the join types accept more than two sources, while other join types accept only one. Also note that in the
examples, Id is the name of the join key for all sources.

Left join
With a left join, if a record from the left source compares equally to any records from the other sources, those
records are combined. Records from the non-left sources that do not compare equally to a record in the left
source are discarded.

In a left join, records from the left source are always processed, regardless of whether or not they are combined
with records from non-left sources.

In the example below, the left source is Source 1. Records A, C, and D from Source 1 are combined with their
equivalents from Source 2. Record E is discarded because it comes from a non-left source and has no
equivalent in the left source. Record B is not combined with any other records, because it has no equivalent
in Source 2, but it is still processed because it comes from the left source.

Oracle Commerce Guided Search Platform Services Forge Guide

Overview of Joins | Join types68

Inner join
In an inner join, only records common to all sources are processed. Records that appear in all sources are
combined and the combined record is processed. Records that do not exist in all sources are discarded.

In the example below, Records A, C, and D are combined and processed. Records B and E are not common
to all sources and are discarded.

Outer join
In an outer join, all records from all sources are processed. Records that compare equally are combined into
a single record.

With an outer join, records that do not have equivalents in other data sources are not combined, but are still
processed and included in the join output. An outer join requires two or more record sources.

In the example below, Records A, C, and D have equivalents in both Source 1 and Source 2. These records
are combined. Records B and E do not have equivalents but they are still processed. As a result, Record B
does not have values for Retail and Wholesale because there is no Record B in Source 2. Correspondingly,
Record E has no values for Name and Brand because there is no Record E in Source 1.

Oracle Commerce Guided Search Platform Services Forge Guide

69Overview of Joins | Join types

Disjunct join
In a disjunct join, only records that are unique across all sources are processed. All other records are discarded.

In this example, records B and E are unique across all sources, so they are processed. Records A, C, and D
are not unique and therefore are discarded. Note that, in this example, the results for the join appear odd,
because a record will never have both Name/Brand properties and Retail/Wholesale properties. Typically,
this join is most useful when working with sources that share a common set of properties.

Switch join
In a switch join, given N sources, all records from Source 1 are processed, then all records from Source 2,
and so on until all records from all N sources have been processed.

Note that records are never compared or combined, and all records from all sources are processed. Generally,
a switch join is applied to sources that have similar properties but unique records, with respect to record keys,
across the sources.

In this example, all the records from Source 1 are processed, then all the records from Source 2 are processed.

Oracle Commerce Guided Search Platform Services Forge Guide

Overview of Joins | Join types70

Sort switch join
In a sort switch, all records from all sources are processed in such a way as to maintain the record index. The
record index specifies that records should be processed in a sorted order, determined by record key comparison.

With a sort switch join, records are never combined. If a record from Source 1 compares equally to a record
from Source 2, the record from Source 1 is processed first, consistent with the order of the sources as specified
in the join settings.

In the example below, records A, C, and D are common to both Source 1 and Source 2. For each of these
records, the Source 1 instance is processed before the Source 2 instance. Records B and E do not have
equivalents, but they are processed in the order dictated by the record index which is, in this case, the Id key.

Oracle Commerce Guided Search Platform Services Forge Guide

71Overview of Joins | Join types

First record join
In a first record join, the sources are prioritized such that, if a record from a higher priority source compares
equally to records from lower priority sources, the record from the highest priority source is processed and the
records from the lower priority sources are discarded.

Sources are listed in order of decreasing priority in the join configuration.

Records are never combined. The most common use of this join is for handling incremental feeds. For
incremental feeds, history data (previously processed records) is given a lower priority and the latest data feed
takes precedence. Records from the latest feed replace records in the history data, and records from the history
data are processed only if a corresponding record does not exist in the latest feed.

In this example, records A, C, and D from Source 1 are processed, while their equivalents in Source 2 are
discarded. Records B and E are both processed because they have no equivalents.

Oracle Commerce Guided Search Platform Services Forge Guide

Overview of Joins | Join types72

Combine join
A combine join combines like records from a single data source. Combine is a pseudo-join that operates on a
single source.

In the example below, there are multiple records with Id=A, Id=C, and Id=D. These records are combined.
Only one records exists for Id=B and Id=E, so neither of these records is combined, but both are processed
and included in the joined data.

Note: Combining large numbers of records will cause Forge to print warning messages about slow
performance.

Related Links
Forge warnings when combining large numbers of records on page 89

When combining a large number of records (via either a Combine join or a record cache with the
Combine Records setting enabled), Forge will issue a warning that performance may be slow. The
default number of records at which this warning is issued is 100.

Oracle Commerce Guided Search Platform Services Forge Guide

73Overview of Joins | Join types

Chapter 11

About Configuring Join Keys and Record Indexes

In addition to a join key, you must also configure a record index for each data source that feeds a join. A record
index is a key that indicates to the record assembler how it can identify records from that source.

Creating a record index
You specify a record index for a data source in the source's editor. The following example describes how to
create a record index for a record cache.

We use a record cache in this example because, with two exceptions, all data sources that feed a join must
be record caches.

To create a record index for a record cache:

1. In the pipeline diagram, double-click the record cache you want to edit to open it in the Record Cache
editor.

2. Click the Record Index tab.
3. Click Add.
4. In the Type frame, do one of the following:

• Choose Custom Property. Type a name for the property in the Custom Property text box.
• Choose Dimension. Select a dimension name from the Dimension list.

5. (Optional) Repeat steps 2 and 3 to add additional dimensions or properties to the index.
6. (Optional) To reorder the components in the index, select a property or dimension and click Up or Down.
7. Click OK.

Example

The following illustration shows a record cache called LeftDataCache with a record index of P_Name,
P_Price.

You specify a record cache's join key in the Record Assembler editor that uses the cache.

A source's record index key must match its join key. In other words, the key that tells the record assembler
how to find a source's records must be the same as the key that the record assembler uses to compare records
from that source.

Related Links
Joins that do not require record caches on page 87

There are two join cases that do not require record caches:
Join keys with multiple properties or dimensions on page 77

You can specify multiple properties or dimensions, called key components, for a single join key in
order to join records based on more than one characteristic.

Creating a join key for a record cache on page 76
The following example describes how to create a join key for a record cache.

Creating a join key for a record cache
The following example describes how to create a join key for a record cache.

In addition to a join key, you must also configure a record index for each data source that feeds a join. A record
index is a key that indicates to the record assembler how it can identify records from that source.

To create a join key for a record cache:

1. In the pipeline diagram, double-click the record assembler that uses the cache to open it in the Record
Assembler editor.

2. Click the Record Join tab.
The list of join entries corresponds with the data sources you specified in the Sources tab.

3. Select the record cache and click Edit.
The Join Entry editor appears.

4. Click Add.
The Key Component editor appears.

5. Using the steps below, create a join key that is identical to the record index key you created for the record
cache.
a) In the Type frame, do one of the following:

Oracle Commerce Guided Search Platform Services Forge Guide

About Configuring Join Keys and Record Indexes | Creating a join key for a record cache76

Choose Custom Property. Type a name for the property in the Custom Property text box.•
• Choose Dimension. Select a dimension name from the Dimension list.

b) Click OK to return to the Join Entry editor.
c) (Optional) Repeat these steps for each component you want to add to the key.
d) (Optional) To reorder the components in the key, select a component in the Join Entry editor and click

Up or Down.
e) Click OK to close the Join Entry editor.

6. Repeat steps 3 through 5 for each record source that is participating in the join.
7. When you are done configuring your join, click OK to close the Record Assembler editor.

Example

The join key for LeftDataCache should look like this:

Related Links
Creating a record index on page 75

You specify a record index for a data source in the source's editor. The following example describes
how to create a record index for a record cache.

Join keys with multiple properties or dimensions
You can specify multiple properties or dimensions, called key components, for a single join key in order to join
records based on more than one characteristic.

For example, consider the task of joining book data to corresponding price data. Assume that the primary key
component for a book is BID and price is determined by this BID plus another characteristic, the cover type
CTYPE. Therefore, the join must be configured to join on both BID and CTYPE, as shown below:

Oracle Commerce Guided Search Platform Services Forge Guide

77About Configuring Join Keys and Record Indexes | Join keys with multiple properties or dimensions

For consistency in the comparison, the join key for each source participating in a join must be parallel. In other
words, they must have the same number of key components, in the same order. Also, the type of each join
key component must be parallel for all join entries in a given record assembler. This means that a dimension
value key component cannot be compared to a property name key component.

Oracle Commerce Guided Search Platform Services Forge Guide

About Configuring Join Keys and Record Indexes | Join keys with multiple properties or dimensions78

Chapter 12

About Implementing Joins

With two exceptions, all data sources feeding a join must be record caches, so the procedures in this section
are written from that perspective.

Implementing a join
In order to implement a join, you must add the join and the records it will process into your pipeline, and
configure the join accordingly.

Implementing a join is a three-step process:

1. Add a record cache to your pipeline for each record source that will feed the join.
2. Add a record assembler to your pipeline.
3. Configure the join in the record assembler.

Each step is described in the following sections.

Adding a record cache
Use the options in the Record Cache editor to add and configure a record cache for each of your record
sources.

To add a record cache for each record source that will feed the join:

1. In the Pipeline Diagram editor, click New, and then choose Record > Cache.
The Record Cache editor appears.

2. In the Name text box, type a unique name for this record cache.
3. (Optional) In the General tab, you may do the following:

a) If the cache should load fewer than the total number of records from the record source, type the number
of records to load in the Maximum Records text box. This features is provided for testing purposes.

b) If you want to merge records with equivalent record index key values into a single record, check the
CombineRecords option. For one-to-many or many-to-many joins, leaveCombineRecords unchecked.

Important: The Combine Records option can have unexpected results if you do not understand
how it functions.

4. In the Sources tab, select a record source and, optionally, a dimension source.

If a component's record index contains dimension values, you must provide a dimension source. Generally,
this is only the case if you are caching data that has been previously processed by Forge.

5. In the Record Index tab, do the following:
a) Specify which properties or dimensions you want to use as the record index for this component. Note

that the record index you specify for a cache must match the join key that you will specify for that cache
in the record assembler.

b) Indicate whether you want to discard records with duplicate keys.

6. (Optional) In the Comment tab, add a comment for the component.
7. Click OK.
8. Repeat these steps for all record sources that will be part of the join.

Related Links
Joins that do not require record caches on page 87

There are two join cases that do not require record caches:
Combining equivalent records in record caches on page 88

The General tab on the Record Cache editor has a Combine Records setting. With the setting
enabled for record caches, equivalent records in data sources are combined.

Adding a record assembler
Use the Record Assembler editor to add and configure a new record assembler for your pipeline.

To add a record assembler to your pipeline:

1. In the Pipeline Diagram editor, click New, and then choose Record > Assembler.
The Record Assembler editor appears.

2. In the Name text box, type a unique name for the new record assembler.
3. In the Sources tab, do the following:

a) In theRecord Sources list, select a record source and clickAdd. Repeat as necessary to add additional
record sources.
With two exceptions, record assemblers must use record caches as their source of record data.

b) In the Dimension Source list, select a dimension source.
If the key on which a join is performed contains dimension values, you must provide a dimension source.
Generally, this is only the case if you are joining data that has already been processed once by Forge.

4. (Optional) In the Record Index tab, do the following:
a) Specify which properties or dimensions you want to use as the record index for this component.

An assembler's record index does not affect the join, it only affects the order in which downstream
components will retrieve records from the assembler.

b) Indicate whether you want to discard records with duplicate keys.

5. In the Record Join tab, configure your joins.
6. (Optional) In the Comment tab, add a comment for the component.
7. Click OK.

Related Links
Joins that do not require record caches on page 87

There are two join cases that do not require record caches:

Oracle Commerce Guided Search Platform Services Forge Guide

About Implementing Joins | Implementing a join80

Configuring the join on page 81
You can use theRecord Assembler and Join Type editors to choose from and configure the different
types of joins.

Configuring the join
You can use the Record Assembler and Join Type editors to choose from and configure the different types
of joins.

To configure the join in the record assembler:

1. In the Record Assembler editor, click the Record Join tab.
2. Use the Join Type list to select the kind of join you want to perform.
3. If you are performing a left join, check the Multi Sub-records option if the left record can be joined to more

than one right record.
4. The join entries list represents the record sources that will participate in the join, as specified on the Sources

tab. In the Join Entries list, define the order of your join entries by selecting an entry and clicking Up or
Down.
For all joins, properties get processed from join sources in the order in they are in the list. The first entry is
the Left entry for a left join.

5. To define the join key for a join entry, select the entry from the Join Entries list and click Edit.
The Join Entry editor appears.

6. Click Add.
The Key Component editor appears.

7. Using the steps below, create a join key that is identical to the record index key for the join entry you
selected.
a) In the Type frame, do one of the following:

• Choose Custom Property. Type a name for the property in the Custom Property text box.
• Choose Dimension. Select a dimension name from the Dimension list.

b) Click OK to return to the Join Entry editor.
c) (Optional) Repeat these steps for each component you want to add to the key.
d) (Optional) To reorder the components in the key, select a component in the Join Entry editor and click

Up or Down.
e) Click OK to close the Join Entry editor.

8. Repeat steps 5 through 7 for each record source that is participating in the join.
9. When you are done configuring your join, click OK to close the Record Assembler editor.

Related Links
About tweaking left joins on page 85

The Multi Sub-records setting (on the Record Assembler editor Record Join tab) changes the
behavior of a left join if a record from the left source has multiple values for the join key. It is used
only used with left joins. Enabling this option forces Forge to create multiple keys for such records.

Join keys with multiple properties or dimensions on page 77
You can specify multiple properties or dimensions, called key components, for a single join key in
order to join records based on more than one characteristic.

Join types on page 68
The following sections describe the join types supported by the Data Foundry. Each section provides
a simple example for the join type being discussed. Note that while most of the examples use two

Oracle Commerce Guided Search Platform Services Forge Guide

81About Implementing Joins | Implementing a join

record sources, many of the join types accept more than two sources, while other join types accept
only one. Also note that in the examples, Id is the name of the join key for all sources.

Oracle Commerce Guided Search Platform Services Forge Guide

About Implementing Joins | Implementing a join82

Chapter 13

Advanced Join Behavior

In some cases, multiple sets of records may use identical join keys, or a single record may include multiple
keys (such as a database table with two Id columns). These sections cover how joins are handled for such
situations.

Records that have multiple values for a join key
A record can have multiple property values for a given property name. For example, a record could have two
values for the property Id.

If a record is configured to join to another record based on a key that has multiple values in one or both of the
records, the join implementation must consider the multiple values in the comparison.

The question is, if the record has the values {A, B} for the property Id, should it match to records with value
A, value B, or both? The answer is that the record matches to records that have exactly both values. This
behavior is different than the semantics of a database join, because tuples in a database have only one value
per column. Therefore, you should carefully consider how to handle records that have multiple values per key
component.

Note: This section describes how to deal with records that have multiple values per join key. Do not
confuse this scenario with one where your join keys incorporate multiple properties/dimensions.

The following example illustrates the effects of joining records that have multiple values for a join key.

A left join, using Id as the join key, on these two data sources results in the following:

The record from Source 1 with join key (Id=A, Id=BB) is combined with a record with the same key from Source
2. Similarly, since both sources have a record with keys (Id=A, Id=CC) and (Id=B, Id=CC), these records are
combined appropriately. Finally, the record (Id=DD, Id=A) from Source 1 is combined with the record (Id=A,
Id=DD) from Source 2. The order of the property values is not significant.

You can tweak left joins in which the left source has multiple values for a key by telling Forge to create a
separate join key based on each value.

Related Links
Join keys with multiple properties or dimensions on page 77

You can specify multiple properties or dimensions, called key components, for a single join key in
order to join records based on more than one characteristic.

About tweaking left joins on page 85
The Multi Sub-records setting (on the Record Assembler editor Record Join tab) changes the
behavior of a left join if a record from the left source has multiple values for the join key. It is used
only used with left joins. Enabling this option forces Forge to create multiple keys for such records.

Sources that havemultiple records with the same join key value
This section explains Forge's behavior when joining sources where each source may have more than one
record with the same join key value (higher cardinality joins).

For example, a record source might process 5 records each with Id=A. This behavior has a database counterpart.
It is considered here because the results of the join can be complicated. The result of the join is a Cartesian
product of the sets of records, from each source, with the same join key.

Consider performing a left join on the following two data sources, assuming the join key is the property Id.
Both sources have records with redundant keys. For example, Source 1 has three records with Id=A and two
records with Id=B. Source 2 has three records with Id=A and two records with Id=B.

The results of a left join on these two data sources look like this:

Oracle Commerce Guided Search Platform Services Forge Guide

Advanced Join Behavior | Sources that have multiple records with the same join key value84

As discussed above, the join produces a Cartesian product. The first record from Source 1 (Id=A, Name=Shirt,
Color=Blue) is combined with each of the three records from Source 2 that have the join key Id=A, producing
the first three records shown in the results table. Similarly, the second record from Source 1 (Id=A, Name=shirt,
Color=blue) is combined with each of the three records from Source 2 with the join key Id=A to produce the
next three records.

For a given join key Id=x, the number of records created by a Cartesian product is the product of the number
of records in each source with Id=x. In the example above, Source 1 had two records with Id=A and Source
2 had three. Therefore, the Cartesian product produces six records (2 x 3 = 6). Adding a third source with
three records of Id=A would produce 18 records (2 x 3 x 3 = 18). Because the number of records produced
can grow quickly, you should take care should to evaluate correctness when dealing with data of this nature.
Often, the desired behavior is to combine records with duplicate keys, using a Combine join or the Combine
Records option on a record cache, from all or several sources.

About tweaking left joins
The Multi Sub-records setting (on the Record Assembler editor Record Join tab) changes the behavior of
a left join if a record from the left source has multiple values for the join key. It is used only used with left joins.
Enabling this option forces Forge to create multiple keys for such records.

Note: In the case where a left source's join key consists of a single property/dimension, each value
becomes an independent key.

For example, if the join key is Id, a record with the values Id=1, Id=2, Id=3 produces three independent keys,
one for each value. The right sources are searched for each of these keys. That is, each right source is queried
for a match to the join key Id=1, a match to Id=2, and finally a match to Id=3. All records that match any of the
keys are combined with the record from the left source, producing the joined record.

Multi sub-records can be extrapolated to join keys with multiple key components by considering the values
corresponding to each key component as a set. Performing a Cartesian product of these sets provides the key
combinations. For example, given the key components idA and idB and a record from the left source with the
values idA=1, idA=2, idB=11, idB=12, the keys produced by the Cartesian product are [{idA=1, idB=11}, {idA=1,
idB=12}, {idA=2, idB=11}, {idA=2, idB=12}]. Again, the right sources are searched for each of these keys.

Oracle Commerce Guided Search Platform Services Forge Guide

85Advanced Join Behavior | About tweaking left joins

Multi sub-records

A good example that illustrates the use of multi sub-records is one where you have a left table that consists
of a CD and the songs on it, and a right table with song details.

In this example, you would perform the join on the SongId, so that each song in the left table is joined
appropriately with its counterpart in the right table. Note that in this example, SongId is the join key for all
sources.

Related Links
Join keys with multiple properties or dimensions on page 77

You can specify multiple properties or dimensions, called key components, for a single join key in
order to join records based on more than one characteristic.

Oracle Commerce Guided Search Platform Services Forge Guide

Advanced Join Behavior | About tweaking left joins86

Chapter 14

Tips and Troubleshooting for Joins

The sections below provide tips and troubleshooting information for joins.

Joins that do not require record caches
There are two join cases that do not require record caches:

• Switch joins do not do record comparisons and, hence, do not require record caches for their data sources.
You can use any type of record server component (record adapter, record cache, record assembler, Perl
manipulator, and so on) as a source for a switch join.

• For a left join, for which all of the right sources are record caches, the left source does not require a record
cache. This special case is useful for optimizing a left join with a large, unsorted data source.

Working with sources that have multiple records with the same
join key value

In order to configure a join with the desired behavior, it is important to have a strong understanding of what
happens when record assemblers process records that do not have unique values for their join keys (higher
cardinality joins).

Related Links
Sources that have multiple records with the same join key value on page 84

This section explains Forge's behavior when joining sources where each source may have more than
one record with the same join key value (higher cardinality joins).

Best practice for choosing left and right side of joins
A best practice is to keep record sources with the most values per join key on the left side of joins.

When performing joins (such as an outer join), Forge can output records from both sides of the join, except
where two records, one from each side, match on the join key, in which case it combines the two records into
one. The interesting case is when multiple records on each side have the same value for the join key. For
example, if 10 records from the left side and 10 records from the right side each have the same value for the
join key, the result of the join is the cross-product of all the records, 100 in total.

Thus, when Forge does joins, it typically streams records from each side, joining where appropriate and
outputting records, joining them where appropriate. But in the cross-product case, it cannot stream records
from both sides simultaneously. For each record on one side, Forge has to do a separate iteration of the records
on the other side. Forge has to pick at least one side of the join for loading all the records with the same join
key into memory. Forge's design chooses the right side for that; it always streams records from the left side.
On the right side, however, while Forge streams whenever possible, it will load all records with a common join
key value into memory.

Thus, a best practice is to keep record sources with the most values per join key on the left side of joins.

Combining equivalent records in record caches
The General tab on the Record Cache editor has a Combine Records setting. With the setting enabled for
record caches, equivalent records in data sources are combined.

The setting controls how the cache handles records that have equivalent values for the record index key, and
it is turned off by default. Care should be taken if you choose to use it.

Consider performing a left join on the following two data sources, assuming the record index key is the property
Id. Both sources have records with redundant keys. For example, Source 1 has three records with Id=A and
two records with Id=B. Source 2 has three records with Id=A and two records with Id=B.

Without the Combine Records setting enabled, the results of a left join on these two data sources look like
this:

Oracle Commerce Guided Search Platform Services Forge Guide

Tips and Troubleshooting for Joins | Combining equivalent records in record caches88

With the Combine Records setting enabled for the record caches, equivalent records in the data sources
would be combined, so the new data sources would look like this:

The results of a left join on these two combined data sources would look like this:

Forge warnings when combining large numbers of records
When combining a large number of records (via either a Combine join or a record cache with the Combine
Records setting enabled), Forge will issue a warning that performance may be slow. The default number of
records at which this warning is issued is 100.

This threshold can be adjusted with the Forge --combineWarnCount command-line flag.

Two messages will be printed:
• The first is an informational message that is printed when the number of records combined reaches the
--combineWarnCount threshold. The message includes the key of the records being combined. The

Oracle Commerce Guided Search Platform Services Forge Guide

89Tips and Troubleshooting for Joins | Forge warnings when combining large numbers of records

intent of this message is to give users an early warning that Forge has just started a potentially long
operation and therefore may seem to be stalled, but is actually working.

• The second message is a warning, indicating the total number of records combined, and the value of the
key.

Note: Setting the --combineWarnCount value to 0 (zero) will disable these messages.

Oracle Commerce Guided Search Platform Services Forge Guide

Tips and Troubleshooting for Joins | Forge warnings when combining large numbers of records90

Part 3

Advanced Dimension Features

• Externally-Created Dimensions
• Externally-Managed Taxonomies

Chapter 15

Externally-Created Dimensions

This section describes how to include and work with an externally-created dimension in a Developer Studio
project. This capability allows you to build all or part of a logical hierarchy for your data set outside of Developer
Studio and then import that logical hierarchy as an Endeca dimension available for use in search and Guided
Navigation.

Overview of externally-created dimensions
An externally-created dimension describes a logical hierarchy of a data set; however, the dimension hierarchy
is transformed from its source format to Endeca compatible XML outside of Developer Studio.

The logical hierarchy of an externally-created dimension must conform to Endeca’s external interface for
describing a data hierarchy (found in external_dimensions.dtd) before you import the dimension into
your project. Once you import an externally-created dimension, its ownership is wholly transferred to Developer
Studio, so that afterwards you can modify the dimension with Developer Studio.

Related Links
External dimensions and external taxonomies on page 93

Externally-managed taxonomies and externally-created dimensions differ in how you include them
in a Developer Studio project and how Developer Studio treats them once they are part of a project.

External dimensions and external taxonomies
Externally-managed taxonomies and externally-created dimensions differ in how you include them in a Developer
Studio project and how Developer Studio treats them once they are part of a project.

It is important to clarify the difference between an externally-managed taxonomy and an externally-created
dimension to determine which feature document is appropriate for your purposes. Use the table below to
determine which one you are working with.

The following table compares an externally-managed taxonomy and an externally-created dimension:

Externally-created dimensionExternally-managed taxonomyOperation

You generally do not update the source file for the
hierarchy after you import it into your project. If you do

Any changes to the dimension
must be made in third-party tool.

How do you modify
or update the

update the file and re-import, then any changes youYou then export the taxonomy

Externally-created dimensionExternally-managed taxonomyOperation

from the tool, and Forge
transforms the taxonomy and

hierarchy after it is
in the project?

made to the dimension using Developer Studio are
discarded. After importing the hierarchy, you can modify
a dimension just as if you created it manually using
Developer Studio.

re-integrates the changes into
your project.

After you import the file, Developer Studio takes full
ownership of the dimension and its dimension values.

The third-party tool that created
the file retains ownership. The

How does
Developer Studio

You can modify any characteristics of the dimension
and its dimension values.

dimension is almost entirely
read-only in the project. You
cannot add or remove dimension

manage the
hierarchy?

values from the dimension.
However, you can modify
whether dimension values are
inert and collapsible.

Created either directly in an XML file or created using
a third-party tool.

Created using a third-party tool.How do you create
the XML file?

By choosing Import External Dimension on the File
menu. During import, Developer Studio creates internal

Read in to a pipeline using a
dimension adapter with Format

How do you include
the file in a
Developer Studio
project?

dimensions and dimension values for each node in the
file's hierarchy. If you create the file using a third-party
tool and any XML transformation is necessary, you must

set to XML - Externally
Managed. Forge transforms the
taxonomy file in to a dimension

transform the file outside the project before you chooseaccording to the .xslt file that
Import External Dimension on the File menu. The file
must conform to external_dimensions.dtd.

you specify on the Transformer
tab of the dimension adapter.

Related Links
Overview of externally-managed taxonomies on page 99

An externally-managed taxonomy is a logical hierarchy for a data set that is built and managed using
a third-party tool. Once you include an externally-managed taxonomy in your project, it becomes a
dimension whose hierarchy is managed by the third-party tool that created it.

Including externally-created dimensions in your project
You can use Developer Studio to include an externally-created dimension file in your project, as long as the
dimension file conforms to the external_dimensions.dtd file.

Ensure you are working with an externally-created dimension, and not an externally-managed taxonomy. Any
created dimension files must conform to the Endeca external_dimensions.dtd file.

An overview of the process to include an externally-created dimension in a Developer Studio project is as
follows:

1. Create a dimension hierarchy. You can do this one of two ways:

• Create it manually in an XML file.
• Create a dimension using a third-party tool.

Oracle Commerce Guided Search Platform Services Forge Guide

Externally-Created Dimensions | Overview of externally-created dimensions94

2. Import the XML file for the dimension into Developer Studio, and modify the dimension and dimension
values as necessary.

Related Links
External dimensions and external taxonomies on page 93

Externally-managed taxonomies and externally-created dimensions differ in how you include them
in a Developer Studio project and how Developer Studio treats them once they are part of a project.

XML requirements on page 95
When you create an external dimension—whether by creating it directly in an XML file or by
transforming it from a source file—the dimension must conform to Endeca’s
external_dimensions.dtd file before you import it into your project.

Importing an externally-created dimension on page 97
You add an externally-created dimension to your pipeline by importing it with Developer Studio.

XML requirements
When you create an external dimension—whether by creating it directly in an XML file or by transforming it
from a source file—the dimension must conform to Endeca’s external_dimensions.dtd file before you
import it into your project.

The external_dimensions.dtd file defines Endeca-compatible XML used to describe dimension hierarchies in
an Endeca system. This file is located in %ENDECA_ROOT%\conf\dtd on Windows and
$ENDECA_ROOT/conf/dtd on UNIX.

Also, an XML declaration that specifies the external_dimensions.dtd file is required in an external
dimensions file. If you omit specifying the DTD in the XML declaration, none of the DTD’s implied values or
other default values, such as classification values, are applied to the external dimensions during Endeca ITL
processing. Here is an example XML declaration that should appear at the beginning of an external dimension
file:
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE external_dimensions SYSTEM "external_dimensions.dtd">

Here is a very simple example of an external dimension file with the required XML declaration and two
dimensions:
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE external_dimensions SYSTEM "external_dimensions.dtd">

<external_dimensions>
 <node id="1" name="color" classify="true">
 <node id="2" name="red" classify="true"/>
 <node id="3" name="blue" classify="true"/>
 </node>

 <node id="10" name="size" classify="true">
 <node id="20" name="small" classify="true"/>
 <node id="30" name="med" classify="true"/>
 </node>

</external_dimensions>

Related Links
XML syntax to specify dimension hierarchy on page 96

Oracle Commerce Guided Search Platform Services Forge Guide

95Externally-Created Dimensions | XML requirements

The XML elements available to external_dimensions.dtd allow a flexible XML syntax to describe
a dimension hierarchy. There are three different syntax approaches you can choose from when
building the hierarchy structure of your externally-created dimension.

XML syntax to specify dimension hierarchy
The XML elements available to external_dimensions.dtd allow a flexible XML syntax to describe a
dimension hierarchy. There are three different syntax approaches you can choose from when building the
hierarchy structure of your externally-created dimension.

All three approaches are supported by external_dimensions.dtd. Each provides a slightly different syntax
structure to define a dimension and express the parent/child relationship among dimensions and dimension
values. The three syntax choices are as follows:

• Use nested node elements within node elements.
• Use the parent attribute of a node to reference a parent’s node ID.
• Use the child element to reference the child’s node ID.

You can use only one of the three approaches to describe a hierarchy within a single XML file. In other words,
do not mix different syntax structures within one file. Any node element without a parent node describes a new
dimension. You can describe as many dimensions as necessary in a single XML file.

The following examples show each approach to building a dimension hierarchy. The these examples are
semantically equivalent: each describes the same dimension and child dimension values.

Example of using nested node elements

This example shows nested dimension values red and blue within the dimension color:
<node name="color" id="1">
 <node name="red" id="2"/>
 <node name="blue" id="3"/>
</node>

Example of using parent attributes

This example shows the red and blue dimension values using the parent attribute. The value of the parent
attribute references the ID for the dimension color:
<node name="color" id="1"/>
<node id="2" name="red" parent="1"/>
<node id="3" name="blue" parent="1"/>

Example of using child elements

This example uses child elements to indicate that red and blue are dimension values of the color dimension.
The ID of each child element references the ID of the red and blue nodes:
<node name="color" id="1">
 <child id="2"/>
 <child id="3"/>
</node>
<node name="red" id="2"/>
<node name="blue" id="3"/>

Oracle Commerce Guided Search Platform Services Forge Guide

Externally-Created Dimensions | XML requirements96

Node ID requirements
Each node element in your dimension hierarchy must have an id attribute. Depending on your requirements,
you may choose to provide any of the following values for the id attribute:

• Name — If the name of a dimension value is what determines its identity, then provide the id attribute
with the name.

• Path — If the path from the root node to the dimension value determines its identity, then provide a value
representing the path in the id attribute.

• Existing identifier — If a node already has an identifier, then that identifier can be used in the id attribute.

The id value must be unique. If you are including multiple XML files, the identifier must be unique across the
files.

There is one scenario where an id attribute is optional. It is optional only if you are using an externally-created
dimension and also defining your dimension hierarchy using nested node sub-elements (rather than using
parent or child ID referencing).

Importing an externally-created dimension
You add an externally-created dimension to your pipeline by importing it with Developer Studio.

Once you import the XML file, the dimension appears in the Dimensions view, and Developer Studio has full
read-write ownership of the dimension. You can modify any aspects of a dimension and its dimension values
as if you created it in Developer Studio.

To import an externally-created dimension:

Note: Unlike the procedure to import an externally-managed taxonomy, you do not need to run a baseline
update to import an externally-created dimension.

1. Select File > Import External Dimensions.
The Import External Dimensions dialog box displays.

2. Specify the XML file that defines the dimensions.
3. Chose a dimension adapter from the Dimension adapter to receive imported dimensions drop-down

list.
4. Click OK.

The dimensions appear in the Dimensions editor for you to configure as necessary.
5. Save the project.

Related Links
Including externally-managed taxonomies in your project on page 99

You can use Developer Studio to include an externally-managed taxonomy into your project, but you
cannot alter the taxonomy within Developer Studio, even after importing it.

Oracle Commerce Guided Search Platform Services Forge Guide

97Externally-Created Dimensions | Importing an externally-created dimension

Chapter 16

Externally-Managed Taxonomies

This section describes how to work with an externally-managed taxonomy in a Developer Studio project. This
capability allows you to build all or part of a logical hierarchy for your data set outside of Developer Studio and
use Developer Studio to transform that logical hierarchy into Endeca dimensions and dimension values for
use in search and Guided Navigation.

Overview of externally-managed taxonomies
An externally-managed taxonomy is a logical hierarchy for a data set that is built and managed using a third-party
tool. Once you include an externally-managed taxonomy in your project, it becomes a dimension whose
hierarchy is managed by the third-party tool that created it.

In Developer Studio, you cannot add or remove dimension values from an externally-managed taxonomy. If
you want to modify a dimension or its dimension values, you have to edit the taxonomy using the third-party
tool and then update the taxonomy in your project.

It is important to clarify the difference between an externally-managed taxonomy and an externally-created
dimension to determine which feature document is appropriate for your purposes. The two concepts are similar
yet have two important key differences: externally-managed taxonomies and externally-created dimensions
differ in how you include them in a Developer Studio project and how Developer Studio treats them once they
are part of a project.

Related Links
External dimensions and external taxonomies on page 93

Externally-managed taxonomies and externally-created dimensions differ in how you include them
in a Developer Studio project and how Developer Studio treats them once they are part of a project.

Including externally-managed taxonomies in your project
You can use Developer Studio to include an externally-managed taxonomy into your project, but you cannot
alter the taxonomy within Developer Studio, even after importing it.

Ensure you are working with an externally-managed taxonomy, and not an externally-created dimension.

An overview of the process to include an externally-managed taxonomy in a Developer Studio project is as
follows:

1. You build an externally-managed taxonomy using a third-party tool. This guide does not describe any
third-party tools or procedures that you might use to perform this task.

2. You create an XSLT style sheet that instructs Forge how to transform the taxonomy into Endeca XML that
conforms to external_dimensions.dtd.

Important: When creating your XSLT stylesheet, you should use the Xerces XML parser to ensure
that the output is compatible with Forge.

3. You configure your Developer Studio pipeline to perform the following tasks:
a) Describe the location of an externally-managed taxonomy and an XSLT style sheet with a dimension

adapter.
b) Transform an externally-managed taxonomy into an externally-managed dimension by running a baseline

update.
c) Add an externally-managed dimension to the Dimensions view and the Dimension Values view.

After you finish the tasks listed above, you can perform additional pipeline configuration that uses the
externally-managed dimension, and then run a second baseline update to process and tag your Endeca
records.

Related Links
External dimensions and external taxonomies on page 93

Externally-managed taxonomies and externally-created dimensions differ in how you include them
in a Developer Studio project and how Developer Studio treats them once they are part of a project.

XSLT and XML requirements on page 100
To transform an externally-managed taxonomy into an externally-managed dimension, you have to
create an XSLT style sheet that instructs Forge how to map the taxonomy XML to Endeca XML. The
mapping in your XSLT style sheet and your resulting hierarchy must conform to the Endeca
external_dimensions.dtd file.

XSLT and XML requirements
To transform an externally-managed taxonomy into an externally-managed dimension, you have to create an
XSLT style sheet that instructs Forge how to map the taxonomy XML to Endeca XML. The mapping in your
XSLT style sheet and your resulting hierarchy must conform to the Endeca external_dimensions.dtd
file.

About XSLT mapping
In order for Developer Studio to process the XML from your externally-managed taxonomy, you have to create
an XSLT style sheet that instructs Forge how to map the XML elements in an externally-managed taxonomy
to Endeca-compatible XML.

This requires configuring the Transformer tab of a dimension adapter with the path to the XSLT style sheet
and the path to the taxonomy XML file, and then running a baseline update to transform the external taxonomy
into an Endeca dimension.

Important: When creating your XSLT stylesheet, you should use the Xerces XML parser to ensure that
the output is compatible with Forge.

Oracle Commerce Guided Search Platform Services Forge Guide

Externally-Managed Taxonomies | XSLT and XML requirements100

The external_dimensions.dtd defines Endeca-compatible XML to describe dimension hierarchies. This
file is located in %ENDECA_ROOT%\conf\dtd on Windows and $ENDECA_ROOT/conf/dtd on UNIX.

XML syntax to specify dimension hierarchy
The XML elements available to external_dimensions.dtd allow a flexible XML syntax to describe dimension
hierarchy. There are three different syntax approaches you can choose from when building the hierarchy
structure of your externally-managed dimension.

All three options are supported by external_dimensions.dtd. Each approach provides a slightly different
syntax structure to define a dimension and express the parent/child relationship among dimensions and
dimension values. The three syntax choices are as follows:

• Use nested node elements within node elements.
• Use the parent attribute of a node to reference a parent’s node ID.
• Use the child element to reference the child’s node ID.

You can use only one of the three approaches to describe a hierarchy within a single XML file. In other words,
do not mix different syntax structures within one file. Any node element without a parent node describes a new
dimension. You can describe as many dimensions as necessary in a single XML file.

The following examples show each approach to building a dimension hierarchy. These examples are semantically
equivalent: each describes the same dimension and child dimension values.

Example of using nested node elements

This example shows nested dimension values red and blue within the dimension color:
<node name="color" id="1">
 <node name="red" id="2"/>
 <node name="blue" id="3"/>
</node>

Example of using parent attributes

This example shows the red and blue dimension values using the parent attribute. The value of the parent
attribute references the ID for the dimension color.
<node name="color" id="1"/>
<node name="red" id="2" parent="1"/>
<node name="blue" id="3" parent="1"/>

Example of using child elements

This example uses child elements to indicate that red and blue are dimension values of the color dimension.
The ID of each child element references the ID of the red and blue nodes.
<node name="color" id="1">
 <child id="2"/>
 <child id="3"/>
</node>
<node name="red" id="2"/>
<node name="blue" id="3"/>

Oracle Commerce Guided Search Platform Services Forge Guide

101Externally-Managed Taxonomies | XSLT and XML requirements

Node ID requirements and identifier management in Forge
When you transform the hierarchy structure from an external taxonomy, each node element in your dimension
hierarchy must have an id attribute. Forge ensures that each identifier is unique across an Endeca
implementation by creating a mapping between a node’s ID and an internal identifier that Forge creates.

This internal mapping ensures that Forge assigns the same identifier to a node from an external taxonomy
each time the taxonomy is processed. For example, if you provide updated versions of a taxonomy file, Forge
determines which dimension values map to dimension values from a previous version of the file according to
the internal identifier. However, there is a scenario where Forge does not preserve the mapping between the
id attribute and the internal identifier that Forge creates for the dimension value. This occurs if you reorganize
a dimension value to become a child of a different parent dimension. Reorganizing a dimension value within
the same parent dimension does not affect the id mapping when Forge reprocesses updated files.

Depending on your requirements, you may choose to provide any of the following values for the id attribute:
• Name — If the name of a dimension value is what determines its identity, then the XSLT style sheet should

fill the id attribute with the name.
• Path — If the path from the root node to the dimension value determines its identity, then the XSLT style

sheet should put a value representing the path in the id attribute.
• Existing identifier — If a node already has an identifier, then that identifier can be used in the id attribute.

You can provide an arbitrary ID as long as the value is unique. If you are including multiple XML files, the
identifier must be unique across all files. As described above, Forge ensures that identifiers are unique across
the system.

Pipeline configuration
These sections describe the pipeline configuration requirements to incorporate an externally-managed taxonomy
into your Developer Studio project.

Integrating an externally-managed taxonomy
You use a dimension adapter to read in XML from an externally-managed taxonomy and transform it to an
externally-managed Endeca dimension. If necessary, you can import and transform multiple taxonomies by
using a different dimension adapter for each taxonomy file.

To perform the taxonomy transformation, you configure a dimension adapter with the XML file of the taxonomy
and the XSLT style sheet that Forge uses to transform the taxonomy file’s XML elements. You then build the
rest of your pipeline, set the instance configuration, and run a baseline update. When the update runs, Forge
transforms the taxonomy into a dimension that you can load and examine in the Dimensions view.

To integrate an externally-managed taxonomy:

1. In the Project tab of Developer Studio, double-click Pipeline Diagram.
2. In the Pipeline Diagram editor, choose New > Dimension > Adapter.

The Dimension Adapter editor displays.
3. In the Dimension Adapter Name text box, enter a unique name for the dimension adapter.
4. In the General tab, do the following:

a) In the Direction frame, select Input.
b) In the Format field, select XML - Externally Managed.

Oracle Commerce Guided Search Platform Services Forge Guide

Externally-Managed Taxonomies | Pipeline configuration102

c) In the URL field, enter the path to the source taxonomy file. This path can be absolute or relative to the
location of your project’s Pipeline.epx file.

d) Check Require Data if you want Forge to generate an error if the file does not exist or is empty.

5. In the Transformer tab, do the following:
a) In the Type field, enter XSLT.
b) In the URL field, specify the path to the XSLT file you created.

6. Click OK.
7. Select File > Save
8. If necessary, repeat steps 2 through 6 to include additional taxonomies.
9. Create a dimension server to provide a single point of reference for other pipeline components to access

dimension information. For more information about dimension servers, see the Oracle Endeca Developer
Studio Help.

Transforming an externally managed taxonomy
In order to transform your externally-managed taxonomy into an Endeca dimension, you have to set the instance
configuration and run a baseline update.

Running the update allows Forge to transform the taxonomy and store a temporary copy of the resulting
dimension in the EAC Central Server. After you run the update, you can then create a dimension in the
Dimensions view.

To transform an externally-managed taxonomy:

Note: To reduce processing time for large source data sets, you may want to run the baseline update
using the -n flag for Forge. (The -n flag controls the number of records processed in a pipeline, for
example, -n 10 processes ten records.) You can specify the flag in the Forge section of the EAC Admin
Console page of Endeca Workbench.

1. Add any pipeline components to your pipeline which are required for the update to run.
You cannot, for example, run the update without a property mapper. However, you can temporarily add a
default property mapper and later configure it with property and dimension mapping.

2. Ensure you have sent the latest instance configuration to Endeca Workbench.
Oracle recommends using the update_web_studio_config script to perform this task, as it will not
overwrite any configuration files which are maintained by Endeca Workbench. The
update_web_studio_config script is included in the Endeca Deployment Template.

The Oracle Endeca Deployment Template is available on the Oracle Software Delivery Cloud. For more
information about the Endeca Deployment Template, see the Oracle Commerce Administrator's Guide

3. On the EAC Admin Console page of Endeca Workbench, run your baseline update script.

Related Links
Loading an externally-managed dimension on page 104

After you transform an external taxonomy into an Endeca dimension, you can then load the dimension
in the Dimensions view and add its dimension values to the Dimension Values view.

Oracle Commerce Guided Search Platform Services Forge Guide

103Externally-Managed Taxonomies | Pipeline configuration

Uploading post-Forge dimensions to Endeca Workbench
If you are using the baseline update script provided with the Deployment Template, it will automatically upload
the post-Forge dimensions to Endeca Workbench. If, however, you are not using these scripts, you must use
the emgr_update utility.

After the baseline update finishes, the latest dimension values generated by the Forge process must be
uploaded to Endeca Workbench. This will ensure that any new dimension values (including values for autogen
dimensions and external dimensions) are available to Endeca Workbench for use (for example, for merchandizing
rule triggers).

If you are not using the baseline update script provided with the Deployment Template, you must use the
emgr_update utility as follows:

1. Open a command prompt or UNIX shell to run the utility.
2. Enter the following into the command line:emgr_update --action set_post_forge_dims

This will update the Endeca Workbench configuration with the post-Forge dimensions.

For more information on this utility, see the Oracle Commerce Administrator’s Guide.

Loading an externally-managed dimension
After you transform an external taxonomy into an Endeca dimension, you can then load the dimension in the
Dimensions view and add its dimension values to the Dimension Values view.

Rather than click New, as you would to manually create a dimension in Developer Studio, you instead click
Discover in Dimensions view to add an externally-managed dimension. Developer Studio discovers the
dimension by reading in the dimension’s file that Forge created when you ran the first baseline update. Next,
you load the dimension values in the Dimension Values editor.

To load a dimension and its dimension values:

Note: Because the dimension values are externally managed, you cannot add or remove dimension
values. You can however modify whether dimension values are inert or collapsible.

1. In the Project tab of Developer Studio, double-click Dimensions.
The Dimensions view displays.

2. Click the Discover button to add the externally-managed dimension to the Dimensions view.
Most characteristics of an externally-managed dimension and its dimension values are not modifiable.
These characteristics either appear as unavailable or Developer Studio displays a message indicating what
actions are possible.
The dimension appears in the Dimensions view with its Type column set to Externally Managed.

3. In Dimensions view, select the externally-managed dimension and click Values.
The Dimension Values view appears with the root dimension value of the externally-managed dimension
displayed.

4. Select the root dimension value and click Load.
The remaining dimension values display.

5. Repeat steps 3 and 4 for any additional externally-managed taxonomies you integrated in your project.

Related Links
About updating an externally-managed taxonomy in your pipeline on page 105

Oracle Commerce Guided Search Platform Services Forge Guide

Externally-Managed Taxonomies | Pipeline configuration104

If you want to modify an externally-managed taxonomy and replace it with a newer version, you have
to revise the taxonomy using the third-party tool that created it, and then repeat the process of
incorporating the externally-managed taxonomy into your pipeline.

Running a second baseline update
After loading dimension values and building the rest of your pipeline, you must run a second baseline update
to process and tag your Endeca records. The second baseline update performs property and dimension
mapping that could not be performed in the first baseline update because the externally-managed dimensions
had not yet been transformed and available for mapping.

Before running this update, make sure you have transformed and mapped your externally-managed dimensions.

To run a second baseline update:

1. Ensure you have sent the latest instance configuration to Endeca Workbench.
Oracle recommends using the update_web_studio_config script to perform this task, as it will not
overwrite any configuration files which are maintained by Endeca Workbench. The
update_web_studio_config script is included in the Endeca Deployment Template.

The Oracle Endeca Deployment Template is available on the Oracle Software Delivery Cloud. For more
information about the Endeca Deployment Template, see the Oracle Commerce Administrator's Guide.

2. On the EAC Admin Console page of Endeca Workbench, run your baseline update script.

About updating an externally-managed taxonomy in your
pipeline

If you want to modify an externally-managed taxonomy and replace it with a newer version, you have to revise
the taxonomy using the third-party tool that created it, and then repeat the process of incorporating the
externally-managed taxonomy into your pipeline.

Related Links
Pipeline configuration on page 102

These sections describe the pipeline configuration requirements to incorporate an externally-managed
taxonomy into your Developer Studio project.

Unexpected default-mapping behavior
Under certain circumstances, Forge will default-map dimensions from externally-managed taxonomies even
when default dimension mapping is disabled in the Property Mapper. The following two conditions are required
for this behavior to occur:

• A dimension mapping exists in the Property Mapper which points to a dimension sourced from an
externally-managed taxonomy file.

• The source node for the mapped dimension is not present in the externally-managed taxonomy file (for
example, because of a taxonomy change or user error).

Oracle Commerce Guided Search Platform Services Forge Guide

105Externally-Managed Taxonomies | About updating an externally-managed taxonomy in your pipeline

When these two conditions are met, Forge dynamically creates an entry for the missing node's dimension in
its output dimensions files; this entry has the attribute value SRC_TYPE="PROPMAPPER", as seen on
default-mapped dimension entries.

This behavior occurs even when the default dimension mapping functionality is disabled (that is, the If no
mapping is found, map source properties to Endeca dimensions option on the Advanced tab of the
Property Mapper component editor in Developer Studio is not checked).

The reason for the behavior is that in this case, Forge is handling the pipeline differently than Developer Studio.
In Developer Studio, you cannot map a source property to a non-existent dimension. Forge, however, allows
for properties to be mapped to undeclared dimensions, and when it encounters such a mapping, it creates a
new dimension for it using the property mapper.

Oracle Commerce Guided Search Platform Services Forge Guide

Externally-Managed Taxonomies | Unexpected default-mapping behavior106

Part 4

Other Advanced Features

• The Forge Logging System
• The Forge Metrics Web Service

Chapter 17

The Forge Logging System

This section provides a brief introduction to the Forge logging system. Its command-line interface allows you
to focus on the messages that interest you globally and by topic.

Overview of the Forge logging system
The Forge logging system provides a logging interface to Forge components. With this system, you can specify
the logging level for a component globally or by topic.

The logging level allows you to filter logging messages so you can monitor elements of interest at the appropriate
granularity without being overwhelmed by messages that are not relevant.

A simple command-line interface makes it easy to adjust your logging strategy to respond to your needs. During
development, you might be interested in feedback on only the feature you are working on, while in production,
you would typically focus on warnings and errors.

Log levels reference
The log levels used by Forge logging are as follows:

DescriptionLog level

Indicates a problem so severe that you have to shut down.FATAL

Non-fatal error messages.ERROR

Alerts you to any peculiarities the system notes. You may want to address these.WARN

Provides status messages, even if everything is working correctly.INFO

Provides all information of interest to a user.DEBUG

About logging topics
All log messages are flagged with one or more topics. There are different types for different components, all
logically related to some aspect of the component.

In Forge, you can specify individual logging levels for each of the following topics:
• baseline
• update
• config
• webservice
• metrics

The command line interface
You access logging on Forge with the --logLevel option. Its usage is as follows: --logLevel (<topic¬
Name>=)<logLevel>

By selecting a level you are requesting all feedback at of that level of severity and greater. For example, by
specifying the WARN level, you receive WARN, ERROR, and FATAL messages.

The --logLevel option sets either the default log level, the topic log level, or both:
• The default log level provides global logging for the component:
forge --logLevel WARN

This example logs all WARN level or higher messages.

Note: Forge defaults to log all INFO or higher level messages if a default level is not specified.

• The topic log level provides logging at the specified level for just the specified topic:
forge --logLevel baseline=DEBUG

This example overrides the default log level and logs all DEBUG messages and higher in the baseline topic.

• If two different log levels are specified, either globally or to the same topic, the finer-grained level is used:
forge –logLevel INFO –logLevel WARN

In the case of this example, all INFO level messages and higher are printed out.

It is possible to specify both default and topic level logging in the same command to filter the feedback that
you receive. For example:
forge --logLevel WARN --logLevel config=INFO --logLevel update=DEBUG

This command works as follows:
• It logs all WARN or higher messages, regardless of topic.
• It logs any message flagged with the config topic if it is INFO level or higher.
• It logs any message flagged with the update topic if it is DEBUG level or higher.

Aliasing existing -v levels
The Forge -v logging option is still supported, but has been changed to alias the --logLevel option as
follows: -v[f|e|w|i|d]. The following table maps the relationships and indicates the status of the arguments
in this release (supported or deprecated).

Oracle Commerce Guided Search Platform Services Forge Guide

The Forge Logging System | The command line interface110

11.0.0 log levelPre-6.x meaningStatus in
11.0.0

Argument

DEBUGDefaults to v (verbose) or the EDF_LOG_LEVEL
environment variable.

Supported-v

DEBUGVerbose (all messages).Deprecated-vv

INFOInfo (info, stat, warnings, and errors).Supported-vi

INFOStat (stat, warnings, and errors).Deprecated-va

WARNWarnings and errors.Supported-vw

ERRORErrors.Supported-ve

ERRORQuiet mode (errors).Deprecated-vq

FATALSilent mode (fatal errors).Deprecated-vs

DEBUGn/aSupported-vd

FATALn/aSupported-vf

Has no effect. The
timestamp is always
printed now.

Printed out the timestamp when using
--legacyLogFormat.

Deprecated-vt

About logging output to a file
In Forge, the -o flag defines a location for the logging output file. If you do not specify a location, it logs to
standard error.

The following snippet shows the start of an output file:
INFO 01/25/07 15:15:50.791 UTC FORGE {config}: forge <version> ("i86pc-win32")

INFO 01/25/07 15:15:50.791 UTC FORGE {config}: Copyright 2001-2007 Endeca Tech¬
nologies, Inc.

INFO 01/25/07 15:15:50.791 UTC FORGE {config}: Command Line: i86pc-
win32\bin\forge.exe

INFO 01/25/07 15:15:50.791 UTC FORGE {config}: Initialized cURL, version:
libcurl/7.15.5 OpenSSL/0.9.8

ERROR 01/25/07 15:15:50.791 UTC FORGE {config}: A file name is required!

Changes to the EDF_LOG_LEVEL environment variable
The EDF_LOG_LEVEL environment variable continues to be supported. If used, it should be set to one of the
new log level names.

The EDF_LOG_LEVEL environment variable sets the default Forge log level.

If you choose to use EDF_LOG_LEVEL, the variable should be set to one of the new log level names, such as
WARN or ERROR. Just as in previous versions of logging, the value set in EDF_LOG_LEVEL may be overridden
by any command line argument that changes the global log level.

Oracle Commerce Guided Search Platform Services Forge Guide

111The Forge Logging System | The command line interface

Chapter 18

The Forge Metrics Web Service

You can query a running Forge component for performance metrics using the Forge Metrics Web service. This
makes Forge easier to integrate into your management and monitoring framework.

About the Forge Metrics Web service
The Forge Metrics Web service provides progress and performance metrics for Forge. You can use the output
of this Web service in the monitoring tool or interface of your choice.

A running instance of Forge hosts a WSDL interface, metrics.wsdl. Using this WSDL interface, you can
query Forge for specific information about its performance.

Metrics are hierarchical, with parent-child relationships indicated by their location in the tree. You can either
give the service a full path to precisely the information you are seeking, or get the full tree and traverse it to
find what you want.

The following is an example of the kind of information tree returned by the Forge Metrics Web service:
(Root)
 Start time: Wed Jan 24 14:34:14 2007
 Percent complete: 41.4%
 Throughput: 871 records/second
 Records processed: 24000
 Components
 IndexerAdapter
 Records processed: 24902
 Total processing time: 2.331 seconds
 PropDimMapper
 Records processed: 24902
 Total processing time: 6.983 seconds
 LoadMainData
 Records processed: 24903
 Total processing time: 8.19 seconds

Each metric can be one of three types:
• Metric — serves as a parent category for child metrics, without containing any data of its own.
• Attribute metric — stores attributes, such as the start time of the Forge being queried.

For each attribute metric you request, you receive ID, Name, and Attribute Value (a string).

• Measurement metric — contains quantatative data, such as:

Estimated percent complete.•
• Overall throughput.
• Number of records processed.
• Per-component throughput.

For each measurement metric you request, you receive ID, Name, Measurement Units (a string), and
Measurement Value (a number).

Note:

The Forge Metrics Web service does not tell you what step Forge is on or its estimated time to completion.

The service is not long-lived; it exits when Forge does. For this reason, you cannot use this service to
find out how long the Forge run took.

The Forge Metrics Web service does not work in conjunction with parallel Forge.

About enabling Forge metrics
Before you can generate Forge metrics, you have tell Forge the port on which to set up the Forge Metrics Web
service. By doing so, you also turn Forge metrics on.

In the Endeca Application Controller, you set the web-service-portwhen you provision the Forge component.
You can do this three ways:

• In Endeca Workbench, on the EAC Administration page.
• In a provisioning file used with the eaccmd tool (for details on provisioning a Forge component, see the
Oracle Endeca Application Controller Guide.

• Programmatically, via the webServicePort on the ForgeComponentType object. For details, see the
Oracle Endeca Application Controller Guide.

Outside of the Application Controller environment, you can also set or change the Web service port (and thus
turn on Forge metrics) at the Forge commandline. The commandline argument for setting the metrics port is
--wsport <port-number> .

About enabling SSL security
You can enable SSL on the Forge component to make the Forge Metrics Web service secure.

For information on enabling SSL on the Forge component programmatically or while provisioning with eaccmd,
see the Oracle Endeca Application Controller Guide.

Note: The Web services port disregards the cipher sub-element of the ssl-configuration element.

About using Forge metrics
Assuming Forge’s web-service-port is set, when you start Forge, it serves up the Metrics Web service.
You can then use any Web services interface to talk to it and request metrics.

Oracle Commerce Guided Search Platform Services Forge Guide

The Forge Metrics Web Service | About enabling Forge metrics114

You can request global information on the parent node, or request on a component-by-component basis. (Each
pipeline component has corresponding metrics.) If you request "/" , the Metrics Web service returns the root
and all of its children. To refine your request, you give the Web service the path to the node you are interested
in.

The MetricsService API
The MetricsService interface includes the methods and classes described below.

The metrics schema is defined in metrics.wsdl, which is located in the $ENDECA_ROOT/lib/services
directory on UNIX and %ENDECA_ROOT%\lib\services on Windows.

Methods

ReturnsExceptionParametersPurposeName

getMetricOutput,
a string

MetricFault
is the error

getMetricInput is a
MetricInputType object consistingLists the

collection of
getMetric
(MetricInputType
getMetricInput)

collection of
metrics.

message
returned when
the method
fails.

of a path to the node you want to query
and a Boolean setting that allows you
to exclude that node’s children from the
query.

metrics in an
application.

Classes

PropertiesPurposeName

id is a unique string identifier for the metric.A class that describes a metric.MetricType

displayName is the name for the metric, as it
appears in the output file.

children is a collection of metric objects.

metric is a collection of metrics comprising this
MetricListType object.

A class that describes a list of metrics.MetricListType

path is the path to the node you want to query.
Null indicates top level, returning the whole tree.

A class that describes the input to the
getMetric method.

MetricInputType

excludeChildren lets you indicate if you want
just the metrics of the node specified in path or
those of its children too.

metric is an object of type MetricType.A class that describes the output
returned by the getMetric method.

MetricResultType

value is a string describing the attribute.An extension of MetricType, the
AttributeType class describes an
attribute metric.

AttributeType

Oracle Commerce Guided Search Platform Services Forge Guide

115The Forge Metrics Web Service | The MetricsService API

PropertiesPurposeName

value is a double representing the value of the
measurement metric.

An extension of MetricType, the
MeasurementType class describes a
measurement metric.

MeasurementType

units is a string describing the unit of measure
used by the metric.

Oracle Commerce Guided Search Platform Services Forge Guide

The Forge Metrics Web Service | The MetricsService API116

Appendix A

Forge Flag Reference

This reference provides a description of the options (flags) used by the Forge program.

Forge flag options reference
The included table lists the different flag options that Forge takes.

The usage of Forge is as follows:

forge [-bcdinov] [--options] <Pipeline-XML-File>

<Pipeline-XML-File> can be a relative path or use the file://[hostname]/ protocol.

Forge takes the following options:

Important: All flags are case-sensitive.

DescriptionOption

Specify the maximum number of records that the record caches should
buffer. This may be set individually in the Maximum Records field of the
Record Cache editor in Developer Studio.

-b <cache-num>

Forge has a set of XML entity definitions whose values can be overridden
at the command line, such as current_date, current_time, and

-c <name=value>

end_of_line. You can specify a replacement string for the default entity
values using the -c option, or in an .ini file specified with -i (described
below).

The format is:

<configValName=configVal>

For example:

end_of_line=”\n”

which would be specified on the command line with:

-c end_of_line=”\n”

DescriptionOption

or included as a line in an .ini file specified with -i.

This allows you to assign pipeline values to Forge at the command line. In
the above example, you would specify &end_of_line; in your pipeline
file instead of hard-coding “\n”, then invoke Forge with the -c option shown
above. Forge would substitute “\n” whenever it encountered
&end_of_line;.

For a complete list of entities and their default values, see the ENTITY
definitions in Endeca_Root/conf/dtd/common.dtd.

Specify the directory containing DTDs (overrides the DOCTYPE directive in
XML).

-d <dtd-path>

Specify an .ini file that contains XML entity string replacements. Each line
must be in this form:

-i <ini-filename>

<configValName=configVal>

See the description of the -c option for details.

Specify the number of records to pull through the pipeline. This option is
ignored by the record cache component.

-n <parse-num>

Specify an output file for messages.-o <filename>

Set the global log level. See --logLevel for corresponding information.-v[f|e|w|i|d]

If the -v option is omitted, the global log level defaults to d (DEBUG) or the
value set in the EDF_LOG_LEVEL environment variable. If the -v option is
used without a level, it defaults to d (DEBUG).

f = FATAL messages only.

e = ERROR and FATAL messages.

w = WARNING, ERROR, and FATAL messages.

i = INFO, WARNING, ERROR, and FATAL messages.

d = DEBUG, INFO, WARNING, ERROR, and FATAL messages.

Note: Options -v[a|q|s|t|v] have been deprecated.

Run as a client and connect to a Forge server in a Parallel Forge
environment.

--client <server:port>

Direct a Forge server to use <num> instead of assigning a client number.
Useful when the client number must remain consistent (that is, it must start
from zero and be sequential for all clients). Requires the --client option.

--clientNum <num>

Oracle Commerce Guided Search Platform Services Forge Guide

Forge Flag Reference | Forge flag options reference118

DescriptionOption

Specify the number of records that can be combined (via a Combine join or
a record cache with the Combine Records setting enabled) before issuing

--combineWarnCount <num>

a warning that performance may be slow. The default is 100, while 0 will
disable the warnings.

Instruct Forge to compress the output to a level of <num>, which is 0 to 9
(where 0 = minimum, 9 = maximum). Specify off to turn off compression.

--compression <num> |
off

Specify the number of retries (-1 to 100) when connecting to the server.
The default is 12 while -1 = retry forever. Requires the --client option.

--connectRetries <num>

Deprecated. Encrypt a key pair so that only Forge can read it.--encryptKey
[user:]<password>

Print full help if used with no options. Prints specific help with these options
(option names and arguments are case sensitive):

--help [option]

• expression = Prints help on expression syntax.
• expression:TYPE = Prints help on the syntax for a specific expression

type, which can be DVAL, FLOAT, INTEGER, PROPERTY, STREAM,
STRING, or VOID.

• config = Prints help on configuration options.

Set the compression of the IndexerAdapter output Forge to a level of <num>,
which is 0 to 9 (where 0 = minimum, 9 = maximum). Specify off to turn off
compression.

--idxCompression [<num>
| off]

Instruct Forge to ignore any state files on startup. The state files are ignored
only during the startup process. After start up, Forge creates state files
during an update and overwrites the existing state files.

--ignoreState

Instruct Forge to copy index configuration files from the specified directory
to its output directory.

--indexConfigDir <path>

Instruct Forge to load input data from this directory.<path> must be an
absolute path and will be used as a base path for the pipeline. Any relative
paths in the pipeline will be relative to this base path.

--inputDir <path>

Note: If the pipeline uses absolute paths, Forge ignores this flag.

Deprecated. Specify the encoding of non-XML input files.--input-encoding
<encoding>

Oracle Commerce Guided Search Platform Services Forge Guide

119Forge Flag Reference | Forge flag options reference

DescriptionOption

Prepend the given Java option to the Java command line used to start a
Java virtual machine (JVM).

--javaArgument
<java_arg>

Override the value of the Class path field on the General tab of the Record
adapter, if one is specified.

--javaClasspath
<classpath>

If the Record adapter has a Format setting with JDBC selected, then Class
path indicates the JDBC driver.

If the Record adapter has a Format setting with Java Adapter selected,
then Class path indicates the absolute path to the custom record adapter’s
.jar file.

Specifies the location of the Java runtime engine (JRE). This option overrides
the value of the Java home field on the General tab of a Record adapter,
if one is specified.

--javaHome <java_home>

The --javaHome setting requires Java 2 Platform Standard Edition 5.0
(aka JDK 1.5.0) or later.

Instructs Forge to write logs to this directory, overriding any directories
specified in the pipeline.

--logDir <path>

Set the global log level and/or topic-specific log level.--logLevel (<topicName>
=) <logLevel> If this option is omitted, the value defaults to INFO or to that set in the

EDF_LOG_LEVEL environment variable.

For corresponding information, see the -v option.

Possible log levels are:
• FATAL = FATAL messages only.
• ERROR = ERROR and FATAL messages.
• WARN = WARN, ERROR, and FATAL messages.
• INFO = INFO, WARN, ERROR, and FATAL messages.
• DEBUG = DEBUG, INFO, WARN, ERROR, and FATAL messages.

Possible topics for Forge are:
• baseline
• update
• config
• webservice
• metrics

Do not generate new dimension value IDs (for incremental updates when
batch processing is running).

--noAutoGen

Oracle Commerce Guided Search Platform Services Forge Guide

Forge Flag Reference | Forge flag options reference120

DescriptionOption

The number of Parallel Forge clients connecting. Required with --server
option.

--numClients <num>

Specify the number of Dgidx instances available to Forge. This number
corresponds to the number of Dgraphs, which in turn corresponds to the
number of file sets Forge creates.

--numPartitions <num>

This option overrides the value of the NUM_IDX attribute in the ROLLOVER
element of your project’s Pipeline.epx file, if one is specified.

Instruct Forge to save output data to this directory, overriding any directories
specified in the pipeline.

--outputDir <path>

Override the value specified in Output prefix field of the Indexer Adapter
or Update Adapter editors in your Developer Studio pipeline.

--outputPrefix <prefix>

Add <dir> to perl’s library path. May be repeated.--perllib <dir>

File in which to store process ID (PID).--pidfile <pidfile-path>

Print records as they are produced by each pipeline component. If number
is specified, start printing after that number of records have been processed.

--printRecords [number]

Instructs Forge to remove from the AutoGen state any dimensions that have
been promoted as internal dimensions. When a pipeline developer promotes

--pruneAutoGen

a dimension that was automatically generated, the dimension is copied into
the dimensions.xml file and is removed from the AutoGen state file.

Specify the number of seconds (0 to 60) to sleep between connection
attempts. The default is 5. Requires the --client option.

--retryInterval <num>

Run as a server and listen on port specified Requires the --numClients
option.

--server <portNum>

Deprecated. During a crawl, throttle the rate at which URLs are fetched by
the spider, where:

--spiderThrottle
<wait>:<expression_type>
:<expression> <wait> is the fetch interval in seconds.

<expression_type> specifies the type of regular or host expression to use:
• url-regex

• url-wildcard

• host-regex

• host-wildcard

Oracle Commerce Guided Search Platform Services Forge Guide

121Forge Flag Reference | Forge flag options reference

DescriptionOption

<expression> is the corresponding expression.

Example:

--spiderThrottle 10:url-wildcard:*.html

This would make all URLs that match the wildcard “*.html” wait 10 seconds
between fetches.

Specify the path of the eneCA.pem Certificate Authority file that the Forge
server and Forge clients will use to authenticate each other.

--sslcafile
<CAcertfile-path>

Specify the path of the eneCert.pem certificate file that will be used by the
Forge server and Forge client for SSL communications.

--sslcertfile
<certfile-path>

Specify one or more cryptographic algorithms, one of which Dgraph will use
during the SSL negotiation. If you omit this setting, the Dgraph chooses a

--sslcipher <cipher>

cryptographic algorithm from its internal list of algorithms. See the Endeca
Commerce Security Guide for more information.

Note: This setting is ignored by the --wsport flag, even when it
uses SSL to secure its communications.

Instruct Forge to persist data in this directory, overriding any directories
specified in the pipeline.

--stateDir <path>

Instruct Forge to write temporary files in the specified directory, overriding
any directories specified by environment variables. The <path> value is

--tmpDir <path>

interpreted as being based in Forge’s working directory, not in the directory
containing Pipeline.epx.

Timing statistics (comp = time each component).--time <comp>

Specify the number of seconds (from -1 to 300) that the server waits for
clients to connect. Default is 60 and -1 means wait forever. Requires the
--server option.

--timeout <num>

Print out the current version information.--version

Start the Forge Metrics Web service, which is off by default. It listens on the
port specified.

--wsport <portNum>

Oracle Commerce Guided Search Platform Services Forge Guide

Forge Flag Reference | Forge flag options reference122

Appendix B

File Formats Supported by the Document Conversion
Module

This section lists the file formats that are supported by the Endeca Document Conversion Module. After installing
this module, you can use the CONVERTTOTEXT expression in your pipeline to convert any of the supported
source document formats. The Endeca Web Crawler and the Endeca CAS Server provide tight integrations
with the Document Conversion Module, which means that they can convert binary files as they are being
crawled.

Word processing formats
The following table lists supported word processing formats:

Version (if applicable)Format

Versions 3.0 - 6.0Adobe FrameMaker (MIF)

Level 2Adobe Illustrator Postscript

Ami

Ami Pro for OS2

2.0, 3.0Ami Pro for Windows

Through 4.0DEC DX

4.0, 4.1DEC DX Plus

3.0 - 4.5Enable Word Processor

1.0, 3.0First Choice WP

3.0Framework WP

97 - 2007Hangul

IBM DCA/FFT

2.0 - 5.0IBM DisplayWrite

1.01IBM Writing Assistant

5.0, 6.0, 8.0 - 13.0, 2004Ichitaro

Version (if applicable)Format

Through 3.0JustWrite

2010Kingsoft WPS Writer

1.1Legacy

Through 2.0Lotus Manuscript

9.7, 96, - Millennium 9.6Lotus WordPro

97 - Millennium 9.6Lotus WordPro (non-Win32)

1.1MacWrite II

All versions through 8.0Mass 11

2003 - 2007Microsoft Publisher (File ID only)

4.0 - 6.0Microsoft Word for DOS

4.0 - 6.0, 98 - 2008Microsoft Word for Macintosh

1.0 - 2007Microsoft Word for Windows

98-JMicrosoft Word for Windows

Microsoft WordPad

2.0Microsoft Works WP for DOS

2.0Microsoft Works WP for Macintosh

3.0, 4.0Microsoft Works WP for Windows

1.0 - 3.0Microsoft Write for Windows

Through 4.0MultiMate

2.0MultiMate Advantage

Navy DIF

3.0Nota Bene

2.0Novell Perfect Works

4.0 - 6.0Office Writer

1.1 - 3.0OpenOffice Writer

3.xOracle Open Office Writer

5.0PC File Doc

Versions A, BPFS:Write

1.0, 2.0Professional Write (DOS)

1.0Professional Write Plus (Windows)

2.0, 3.0Q&A Write (Windows)

1.0 - 3.0Samna Word IV

Smna Work IV+

Samsung JungUm Global (File ID only)

Oracle Commerce Guided Search Platform Services Forge Guide

File Formats Supported by the Document Conversion Module | Word processing formats124

Version (if applicable)Format

1.0Signature

1.02SmartWare II WP

1.0Sprint

5.2 - 9.0StarOffice Writer

1.2Total Word

Versions through 2.6Wang PC (IWP)

WordMarc Composer

WordMarc Composer+

WordMarc Word Processor

4.2WordPerfect for DOS

1.02 - 3.1WordPerfect for Macintosh

5.1 - X4WordPerfect for Windows

1.0 - 3.0WordStar 2000 for DOS

2.0, 3.0WordStar 2000 for DOS

3.0 - 7.0WordStar for DOS

1.0WordStar for Windows

Through III+XyWrite

Text and markup formats
The following table lists supported text and markup formats:

Notes:
• The Document Conversion Module supports converting XML content contained in both PCDATA and

CDATA elements.
• In the case of XHTML, "file ID only" means that the conversion process produces an Endeca property

representing the file format type but nothing else.

Version (if applicable)Format

7 bit and 8 bitANSI Text

7 bit and 8 bitASCII Text

DOS character set

EBCDIC

1.0 - 4.0HTML (CSS rendering not supported)

IBM DCA/RFT

Macintosh character set

Oracle Commerce Guided Search Platform Services Forge Guide

125File Formats Supported by the Document Conversion Module | Text and markup formats

Version (if applicable)Format

Rich Text Format (RTF)

3.0, 4.0Unicode Text

UTF-8

1.0Wireless Markup Language

text onlyXML

1.0XHTML (file ID only)

Spreadsheet formats
The following table lists supported spreadsheet formats:

VersionFormat

3.0 - 4.5Enable Spreadsheet

Through 3.0First Choice SS

3.0Framework SS

1.xIBM Lotus Symphony Spreadsheets

2010Kingsoft WPS Spreadsheets

Through Millennium 9.6Lotus 1-2-3

Through 5.0Lotus 1-2-3 Charts (DOS and Windows)

2.0Lotus 1-2-3 (OS/2)

2.x - 2007Microsoft Excel Charts

98 - 2008Microsoft Excel for Macintosh

3.0 - 2010Microsoft Excel for Windows

2007 - 2010 BinaryMicrosoft Excel for Windows (xslb)

4.0Microsoft Multiplan

2.0Microsoft SS Works for DOS

2.0Microsoft Works for Macintosh

3.0, 4.0Microsoft SS Works for Windows

2.0Novell PerfectWorks

1.1 - 3.0OpenOffice Calc

3.xOracle Open Office Calc

1.0PFS: Professional Plan

Through 5.0Quattro for DOS

Through X4QuattroPro for Windows

Oracle Commerce Guided Search Platform Services Forge Guide

File Formats Supported by the Document Conversion Module | Spreadsheet formats126

VersionFormat

SmartWare Spreadsheet

1.02SmartWare II SS

5.2 - 9.0StarOffice Calc

5.0SuperCalc

Through 2.0Symphony

1.0VP Planner

Vector image formats
The following table lists supported vector image formats:

Version (if applicable)Format

4.0 - 7.0, 9.0Adobe Illustrator

11 - 13 (CS 1 - 3)Adobe Illustrator (XMP only)

3.0 - 5.0 (CS 1 - 3)Adobe InDesign (XMP only)

Adobe InDesign Interchange (XMP only)

8.0 -10.0 (CS 1 - 3)Adobe Photoshop (XMP only)

1.0 - 1.7 (Acrobat 1 - 9)Adobe PDF

1.7 (Acrobat 8 - 9)Adobe PDF Package

1.7 (Acrobat 8 - 9)Adobe PDF Portfolio

4.0Adobe Photoshop

SDWAmi Draw

2.5, 2.6AutoCAD Drawing

9.0 - 14.0AutoCAD Drawing

2000i - 2007AutoCAD Drawing

2.0AutoShade Rendering

2.0 - 9.0Corel Draw

5.0, 7.0Corel Draw Clipart

Enhanced Metafile (EMF)

Escher graphics

3.0 - 5.0FrameMaker Vector and Raster Graphics
(FMV)

Gem File (Vector)

2.0 - 3.0Harvard Graphics Chart (DOS)

Oracle Commerce Guided Search Platform Services Forge Guide

127File Formats Supported by the Document Conversion Module | Vector image formats

Version (if applicable)Format

Harvard Graphics for Windows

2.0HP Graphics Language

5.1 - 5.3Initial Graphics Exchange Specification
(IGES) Drawing

Through 3.1Micrografx Designer

6.0Micrografx Designer

Through 4.0Micrografx Draw

Microsoft XPS (Text only)

2.0Novell PerfectWorks Draw

1.1 - 3.0OpenOffice Draw

3.xOracle Open Office Draw

4Visio (Page Preview mode only
WMF/EMF)

5.0 - 2007Visio

2007Visio XML VSX (File ID only)

Windows Metafile

Notes on Adobe PDF text extraction

The CAS Document Conversion Module works as follows when processing Adobe PDF files with security
settings:

• The CAS Document Conversion Module will respect the no-copy option of a PDF. That is, if a PDF publishing
application has a no-copy option (which prohibits the copying or extraction of text within the PDF), the
Document Conversion Module will not extract text from that PDF.

• The CAS Document Conversion Module does not support text extraction from password-protected files.
• The CAS Document Conversion Module does not support text extraction from PDFs with encrypted content.

To extract the text from these types of PDFs, you must re-create them without setting the appropriate security
option.

In addition, text added with the Sticky Note tool is not extracted.

Raster image formats
The following table lists supported raster image formats:

VersionFormat

Type I and Type IICALS Raster (GP4)

ANSI, CALS, NISTComputer Graphics Metafile

TIFF header onlyEncapsulated PostScript (EPS)

GEM Image (Bitmap)

Oracle Commerce Guided Search Platform Services Forge Guide

File Formats Supported by the Document Conversion Module | Raster image formats128

VersionFormat

Graphics Interchange Format (GIF)

1.0IBM Graphics Data Format (GDF)

1.0IBM Picture Interchange Format (PIF)

graphic embeddings in PDF filesJBIG2

JFIF (JPEG not in TIFF format)

JPEG

JP2JPEG 2000

Kodak Flash Pix

1.0Kodak Photo CD

Lotus PIC

Lotus Snapshot

BMP onlyMacintosh PICT1 and PICT2

MacPaint

Microsoft Windows Bitmap

Microsoft Windows Cursor

Microsoft Windows Icon

OS/2 Bitmap

OS/2 Warp Bitmap

5.0, 6.0Paint Shop Pro (Win32 only)

PC Paintbrush (PCX)

PC Paintbrush DCX (multi-page PCX)

Portable Bitmap (PBM)

Portable Graymap (PGM)

Portable Network Graphics (PNG)

Portable Pixmap (PPM)

Progressive JPEG

6.x - 9.0StarOffice Draw

Sun Raster

Group 5 and Group 6TIFF

Group 3 and Group 4TIFF CCITT Fax

2.0Truevision TGA (Targa)

WBMP wireless graphics format

1.0Word Perfect Graphics

x10 compatibleX-Windows Bitmap

Oracle Commerce Guided Search Platform Services Forge Guide

129File Formats Supported by the Document Conversion Module | Raster image formats

VersionFormat

x10 compatibleX-Windows Dump

x10 compatibleX-Windows Pixmap

2.0, 7.0, 8.0, 9.0, 10.0WordPerfect Graphics

Presentation formats
The following table lists supported presentation formats:

Version (if applicable)Format

6.0 - X3Corel Presentations

3.0Harvard Graphics (DOS)

1.xIBM Lotus Symphony Presentations

2010Kingsoft WPS Presentation

1.0 - Millennium 9.6Lotus Freelance

2.0Lotus Freelance (OS/3)

95, 97Lotus Freelance for Windows

4.0 - 2008Microsoft PowerPoint for Macintosh

3.0 - 2010Microsoft PowerPoint for Windows

2007 - 2010Microsoft PowerPoint for Windows Slideshow

2007 - 2010Microsoft PowerPoint for Windows Template

3.0, 7.0Novell Presentations

1.1, 3.0OpenOffice Impress

3.xOracle Open Office Impress

5.2 - 9.0StarOffice Impress

5.1 - X4WordPerfect Presentations

Archive formats
The following table lists supported archive formats:

Version (if applicable)Format

LZA Self Extracting Compress

LZH Compress

95, 97Microsoft Binder

1.5, 2.0, 2.9RAR

Oracle Commerce Guided Search Platform Services Forge Guide

File Formats Supported by the Document Conversion Module | Presentation formats130

Version (if applicable)Format

Self-extracting .exe

UNIX Compress

UNIX GZip

UNIX TAR

Uuencode

PKZipZIP

WinZipZIP

Database formats
The following table lists supported database formats:

VersionFormat

4.xDataEase

III, IV, and VDBase

Through 3.0First Choice DB

3.0Framework DB

1.0, 2.0Microsoft Access

2000 - 2003Microsoft Access Report Snapshot (File ID only)

1.0, 2.0Microsoft Works DB for DOS

2.0Microsoft Works DB for Macintosh

3.0, 4.0Microsoft Works DB for Windows

2.0 - 4.0Paradox (DOS)

1.0Paradox (Windows)

Through 2.0Q & A

R:Base 5000 and R:Base System VR:Base

2.0Reflex

1.02SmartWare II

E-mail formats
The following table lists supported e-mail formats:

VersionFormat

MHTEncoded mail messages

Oracle Commerce Guided Search Platform Services Forge Guide

131File Formats Supported by the Document Conversion Module | Database formats

VersionFormat

Multi Part AlternativeEncoded mail messages

Multi Part DigestEncoded mail messages

Multi Part MixedEncoded mail messages

Multi Part News GroupEncoded mail messages

Multi Part SignedEncoded mail messages

TNEFEncoded mail messages

8.5IBM Lotus Notes Domino XML
Language DXL

7.x, 8.xIBM Lotus Notes NSF (File ID only)

8.xIBM Lotus Notes NSF (Windows
only with Notes client or Domino
Server)

97 - 2007Microsoft Outlook MSG

Microsoft Outlook Express (EML)

97 - 2007Microsoft Outlook Forms Template
(OFT)

97 - 2007Microsoft Outlook OST

97 - 2007Microsoft Outlook PST

2001Microsoft Outlook PST (Mac)

Other formats
The following table lists other supported formats:

Version (if applicable)Format

2007Microsoft InfoPath (file ID only)

2007Microsoft OneNote (file ID only)

98 - 2003Microsoft Project (text only)

2007Microsoft Project (file ID only)

Microsoft Windows DLL

Microsoft Windows Executable

2.1vCard

2.1vCalendar

6.x - 8.0Yahoo! Messenger

Oracle Commerce Guided Search Platform Services Forge Guide

File Formats Supported by the Document Conversion Module | Other formats132

Appendix C

Advanced JDBC Column Handler

The Advanced JDBC Column Handler is an extension to the standard JDBC record adapter. It provides support
for obtaining data from database column types that are not supported by the standard JDBC record adapter,
such as CLOBs and BLOBs.

About the Advanced JDBC Column Handler
The Endeca Data Transformation Layer provides a Java-based database adapter for use with any database
that has a JDBC driver. This JDBC adapter can be used as a record adapter type to retrieve Endeca records
as rows of a SQL query result. Not all database column types are supported by this out-of-the-box Endeca
JDBC adapter. See the JDBC Input Format section of Endeca Developer Studio Help for a list of supported
database column types.

The Advanced JDBC Column Handler extends the set of supported database column types by providing
handlers for the following column types:

• LONGVARCHAR
• CLOB
• BLOB
• LONGVARBINARY
• BINARY
• VARBINARY

JDBC driver

The JDBC Driver for the specific database type is required for using the JDBC record adapter and should be
located somewhere on the file system.

JDBC configuration options
Create a properties file named columnHandler.properties.

Place this file in the ENDECA_ROOT\lib\java directory. The following table lists the configuration options
used in the columnHandler.properties file:

The size (in bytes) of the incremental data chunk read
and written while processing binary columns. This is a

binaryDataChunkSize

performance optimization setting; changing this value
will not affect the values ultimately returned by the
Advanced JDBC Column Handler.

Default setting: 1024

The size (in bytes) of the incremental data chunk read
and written while processing character-data columns.

charDataChunkSize

This is a performance optimization setting; changing
this value will not affect the values ultimately returned
by the Advanced JDBC Column Handler.

Default setting: 1024

The directory to which data files will be written (see
File System Output). Relative paths to an output
directory will be relative to forge’s working directory.

Default setting: ../incoming

outputDataDir

If this setting is
true

charDataToDisk

, character data will be written out to the file system
(encoded according to the value of the charDataOut¬
putEnc property), and the path to the output file will
be returned as the property's value. If false, the
character data will be returned as the property’s value.
Set this option to true for very large char columns.

Default setting: false

Output encoding to use when writing character data to
disk. A valid Java charset name must be specified.
Some common encoding charsets are listed below:

charDataOutputEnc

• US-ASCII
• ISO-8859-1
• UTF-8
• UTF-16BE
• UTF-16LE
• UTF-16

This setting is only used if charDataToDisk is true.

Default setting: UTF-8

Here is a sample columnHandler.properties file:
binaryDataChunkSize=1024
charDataChunkSize=1024
outputDataDir=C:\\Endeca\\Apps\\Discover\\data\\forge_output
charDataToDisk=true
charDataOutputEnc=UTF-8

If Forge is triggered in standalone mode then this configuration file can be placed in the same directory as the
adapter.jar file. The outputDataDir in that case should point to the current working directory.

Oracle Commerce Guided Search Platform Services Forge Guide

Advanced JDBC Column Handler | JDBC configuration options134

During a baseline update using the JDBC Column Handler, if this file is not present at
$ENDECA_ROOT\lib\java, there is a mismatch between the output folders during execution and the output
is not what is expected.

Storing data on disk
If binary columns will be used, or if character data columns will be output to the file system, you must be sure
the output directory exists.

Unless overridden by the outputDataDir setting described previously, the default output directory will be
the incoming directory parallel to Forge’s working directory. For example, the following directory tree shows
this incoming directory, assuming forge_input is configured as the Forge working directory:

Note that the incoming directory is accessible at ../incoming relative to the pipeline files within
forge_input/.

On initialization, the Advanced JDBC Column Handler will check to see if the outputDataDir is writable. If
it is not, the Advanced JDBC Column Handler will throw a warning into the Forge log, similar to the following:
WARN 09/24/14 14:00:49.958 UTC FORGE {forge,baseline}: (com.ende¬
ca.soleng.itl.jdbc.AdvancedJDBCColumnHandler): outputDataDir ../incoming not
writable

Because the Advanced JDBC Column Handler does not require a writable directory if only character columns
are used and character data is not spooled to disk, Forge will continue processing when it encounters a
non-writable outputDataDir. However, if binary columns are used or if character data is explicitly spooled
to disk, Forge will not return any valid data for those columns, and will log additional warnings to the Forge log
for each row and column in the database it is not able to process. These warnings will appear similar to the
following:
WARN 09/24/06 14:02:34.828 UTC FORGE {forge,baseline}: (com.ende¬
ca.soleng.itl.jdbc.AdvancedJDBCColumnHandler): IOException while dumping MyBina¬
ryData column

Using the Advanced JDBC Column Handler
Create a JDBC record adapter as usual, with PASS_THROUGH values like DB_DRIVER_CLASS, DB_URL,
and SQL. See the JDBC section in Developer Studio Help for information about how to create a JDBC record
adapter.

The following is an example of Record Adapter in Developer Studio:

Oracle Commerce Guided Search Platform Services Forge Guide

135Advanced JDBC Column Handler | Storing data on disk

Java home must be set as $ENDECA_ROOT\j2sdk

The class path must contain paths to:

• The adapter.jar location, for example, $ENDECA_ROOT\lib\java\adapter.jar.
• The JDBC driver, for example, $ENDECA_ROOT\lib\java\ojdbc.jar.
• The directory where columnHandler.properties is located, for example, C:\Endeca\.

Add one new PASS_THROUGH with name COLUMN_HANDLER_CLASS and value com.ende¬
ca.soleng.itl.jdbc.AdvancedJDBCColumnHandler. The following is an example of a complete JDBC
record adapter with this additional pass through:

Oracle Commerce Guided Search Platform Services Forge Guide

Advanced JDBC Column Handler | Using the Advanced JDBC Column Handler136

Whether Forge is run on the command line or from a control script, the adapter.jar file must be added to
the --javaClasspath argument. Also, if the columnHandler.properties configuration file will be used
to override any default options the directory containing the columnHandler.properties needs to be added
to the --javaClasspath argument as well. The following example illustrate the use of this argument when
Forge is run from the command line:
forge --javaClasspath /path/to/adapter.jar:/path/to/JDBCDriver.jar:/path/to/props¬
file_directory /path/to/Pipeline.epx

If your project requires additional JAR files, such as those required by the JDBC driver, be sure to include
those references as well. Also note that Unix systems use a colon to delimit multiple JARs, while Windows
uses a semicolon. For information about how to set the classpath, refer to Developer Studio Help.

Note: Instead of specifying clear text credentials, you can use Oracle Credentials Store (OCS) to specify
database credentials information. In which case instead of specifying the username and password
information along with DB_URL or DB_CONNECT_PROP, you need to use the passthrough
CREDENTIALS_KEY and provide the key name that should be used to retrieve the credentials from
Oracle Credentials Store. For information about how to use the OCS, refer to the Oracle Commerce
Guided Search Security Guide.

Output
File system output

The Advanced JDBC Column handler optionally writes character data (CLOB, LONGVARCHAR types) to the file
system, but by default these character values are returned inline as the Endeca property’s value. If configured
for output to the file system using the charDataToDisk option mentioned above, the files will be created in

Oracle Commerce Guided Search Platform Services Forge Guide

137Advanced JDBC Column Handler | Output

the outputDataDir directory (also configurable) and would have filenames of the form clob_dataN.tmp.
N, in this case, is a random number suffix to keep these temporary files distinct.

The binary column type handlers always write their data to the file system, in the outputDataDir directory.
These file names are of the form blob_dataN.tmp. The relative path to each file is returned as the Endeca
property’s value. For example ../incoming/blob_data22607.tmp. The pipeline must then read this file
in a subsequent record manipulator.

Importing character data with IMPORT_PROP

If the charDataToDisk option is enabled, character data will be written to the file system. One typical way
to acquire the data in these files is to build a record manipulator that uses the IMPORT_PROP expression to
read in the character data. The following is an example of such a record manipulator:
<RECORD_MANIPULATOR FRC_PVAL_IDX="TRUE" NAME="BLOB Manip.">
<RECORD_SOURCE>Records In</RECORD_SOURCE>
<EXPRESSION LABEL="" NAME="IF" TYPE="VOID" URL="">

<COMMENT>if a reference to a CLOB file exists...</COMMENT>
<EXPRESSION LABEL="" NAME="PROP_EXISTS" TYPE="INTEGER" URL="">
 <EXPRNODE NAME="PROP_NAME" VALUE="CLOB_COL_NAME"/>
</EXPRESSION>

<EXPRESSION LABEL="" NAME="IMPORT_PROP" TYPE="VOID" URL="">
<COMMENT>pull in the char data and remove the file</COMMENT>
 <EXPRNODE NAME="PROP_NAME" VALUE="CLOB_COL_NAME"/>
 <EXPRNODE NAME="REMOVE_FILES" VALUE="TRUE"/>
 <EXPRNODE NAME="ENCODING" VALUE="UTF-8"/>
</EXPRESSION>

</EXPRESSION>
</RECORD_MANIPULATOR>

Processing binary data with the Document Converter

One typical usage scenario for binary column data is to read in documents like PDFs or Word files from the
database. In this case, the Advanced JDBC Column Handler would write out this binary column data to the
temporary files mentioned above. Then the pipeline would invoke the Document Converter to convert these
binary-formatted files into plaintext Endeca properties indexed for search. The following example pipeline
component could be used to do this conversion:
<RECORD_MANIPULATOR FRC_PVAL_IDX="TRUE" NAME="BLOB Manip.">
<RECORD_SOURCE>Records In</RECORD_SOURCE>
<EXPRESSION LABEL="" NAME="IF" TYPE="VOID" URL="">

<COMMENT>if a reference to a BLOB file exists...</COMMENT>
<EXPRESSION LABEL="" NAME="PROP_EXISTS" TYPE="INTEGER" URL="">
 <EXPRNODE NAME="PROP_NAME" VALUE="BLOB_COL_NAME"/>
</EXPRESSION>

<EXPRESSION LABEL="" NAME="RENAME" TYPE="VOID" URL="">
<COMMENT>… rename the BLOB property,</COMMENT>
 <EXPRNODE NAME="OLD_NAME" VALUE="BLOB_COL_NAME"/>
 <EXPRNODE NAME="NEW_NAME" VALUE="Endeca.Document.Body"/>
</EXPRESSION>

<EXPRESSION LABEL="" NAME="CONVERTTOTEXT" TYPE="VOID" URL="">
<COMMENT>extract the searchable text from the file,</COMMENT>
 <EXPRNODE NAME="RESPONSE_TIMEOUT" VALUE="300"/>
</EXPRESSION>

Oracle Commerce Guided Search Platform Services Forge Guide

Advanced JDBC Column Handler | Output138

<EXPRESSION TYPE="VOID" NAME="REMOVE_EXPORTED_PROP">
<COMMENT>and then remove the file from the filesystem.</COMMENT>
 <EXPRNODE NAME="PROP_NAME" VALUE="Endeca.Document.Body"/>
 <EXPRNODE NAME="REMOVE_PROPS" VALUE="TRUE"/>
</EXPRESSION>

</EXPRESSION>
</RECORD_MANIPULATOR>

Note that the binary column’s property name should be renamed to Endeca.Document.Body, since this is the
property sought by the Document converter module. After this manipulator processes a record, it will create
properties like Endeca.Document.Text, which contains the converted document text and
Endeca.Document.Encoding, which reflects the binary file format detected. For more information on the
Document converter module, see the VOID CONVERTTOTEXT section of the Data Foundry Expression
Reference.

Troubleshooting
Logging output

Logging output will be directed to the Forge log. Non-fatal warning messages may be seen here. For example,
if a column handler encounters some sort of stream-reading error, the following log message would appear in
the forge log file:
WARN 09/22/14 14:00:49.958 UTC FORGE {forge,baseline}: (com.ende¬
ca.soleng.itl.jdbc.AdvancedJDBCColumnHandler): Could not read data from LONGVARCHAR
 column “text”: out of memory

The record returned for this row will have a null value for the property in question. Processing will continue
with the next row in the SQL query result. The only fatal errors which stop Forge from running will occur if an
unsupported column type is encountered. Unsupported Java SQL column types include the following:

• ARRAY
• DISTINCT
• JAVA_OBJECT
• OTHER
• REF
• STRUCT

If any of these column types are returned in the SQL result, Forge will produce an error message like the
following:
ERROR 07/31/14 13:29:07.903 UTC FORGE {forge,baseline}: (AdapterRunner): Unsup¬
ported Java SQL column type ARRAY

JDBC driver

The Advanced JDBC Column Handler processes data retrieved by the JDBC database driver. If you encounter
any problems, the first step is to ensure that the database driver is performing correctly. Testing the database
driver outside of forge will verify this; a good first step is to test the driver using a standalone Java program.

If you experience errors using the column handler with Oracle's JDBC drivers, you should check the following
guidelines:

• If you are using Oracle 9i or later, make sure that you are using the JDBC driver implementation that came
with your Oracle server installation. If you have a patched revision of the Oracle server (for example.

Oracle Commerce Guided Search Platform Services Forge Guide

139Advanced JDBC Column Handler | Troubleshooting

9.2.0.6), it is likely that the patch contains an updated JDBC driver. Check to make sure that you are using
the patched JDBC driver.

• If you are using earlier versions of Oracle 9i, try using the OCI driver instead of the thin driver. Later versions
of the Oracle 9i thin driver have full support for CLOBs and BLOBs, but earlier Oracle 9i drivers do not.

• If you are using Oracle 8i or earlier, contact Oracle Customer Support.

Oracle Commerce Guided Search Platform Services Forge Guide

Advanced JDBC Column Handler | Troubleshooting140

Index

A
adding components to a pipeline 44
Advanced JDBC Column Handler 133
Auto Generate mode

described 36
saving state information for 49

B
basic pipeline

dimension adapter 49
dimension server 49
indexer adapter 51
property mapper 50
record adapter 48
testing 53

C
combine joins 73
Combine Records setting in record caches 88
component names as used in a pipeline 44

D
data processing

general workflow 21
in detail 21
loading raw data 22
mapping source properties to dimensions 24
standardizing properties 23
writing out finished data 24

default mappings
enabling 40
overriding with null mappings 33

Default Maximum Length 41
override 41

Developer Studio 18
Dgidx

introduced 14
running 17

Dgraph, running the 17
dimension adapter 49
dimension groups 60
dimension hierarchy 15

configuring in Developer Studio 18
dimension mapping 24, 35

advanced techniques 39
Auto Generate mode 36
behavior when no mapping is found 40
default mapping 40
example 37

dimension mapping (continued)
implicit mapping 39
Must Match mode 36
Normal match mode 35
priority order for advanced techniques 30
source properties to like-named dimensions 39
synonyms 57
viewing existing 32

dimension search configured in Developer Studio 18
dimension server

for persisting auto-generated dimensions 49
overview 49

dimension values
auto generating 36
mapping to source property values 24
specifying the order of 59

dimensions
assigning multiple mappings to 34
creating 56
mapping to source properties 24
specifying the order of 59

directory structure for the Endeca Application Controller 43
disjunct joins 70
Document Conversion module

other supported formats 132
supported compressed formats 130
supported database formats 131
supported e-mail formats 131
supported presentation formats 130
supported raster image formats 128
supported text and markup formats 125
supported vector image formats 127
supported word processing formats 123

dynamic business rules 60
configuring in Developer Studio 18
configuring in Oracle Endeca Workbench 18

E
emgr_update utility 104
Endeca Application Controller

architecture 19
communicating with 20
communicating with Oracle Endeca Workbench 20
directory structure 43
introduced 19

Endeca CAS 13
Endeca Crawler

Document Conversion module
supported spreadsheet formats 126

Endeca Developer Studio
creating a basic pipeline project 47
creating and mapping dimensions 56

Endeca Developer Studio (continued)
creating and mapping Endeca properties 56
specifying index configuration options 60
using to add and edit pipeline components 44, 59

Endeca ITL
architecture 14
Data Foundry programs 14
data processing with 13
indexing

about 25
indexing with 13, 14, 25
introduced 13
loading raw data 22
mapping source properties to dimensions 24
standardizing source properties 23
writing out tagged data 24

Endeca properties
assigning multiple mappings to 34
creating 56

Endeca Tools setup information 19
Endeca tools suite 18
explicit mapping

creating 32
described 28

externally created dimensions
compared to externally managed taxonomies 93
Developer Studio configuration 94
importing 97
introduced 93
XML requirements 95

externally managed taxonomies
Developer Studio configuration 99
integrating 102
introduced 99
loading 104
node ID requirements 102
pipeline configuration 102
transforming 103
XML syntax 101
XSLT mapping 100

F
filtering unknown properties 28
first record joins 72
Forge

flags 117
introduced 14
running 17

Forge logging system 109
Forge metrics

enabling 114
using 115

Forge Metrics Web service 113
API 115
enabling SSL 114

H
higher cardinality joins 84

I
implicit mapping

described 29
enabling 39
overriding with null mappings 33

importing externally created dimensions 97
index configuration 15, 60
indexer adapters 51
inner joins 69
input components 22
instance configuration

creating 17
described 14

J
Java manipulators, about 59
JDBC Column Handler 133
join keys for data sources 66
joins

adding a record assembler 80
adding a record cache 79
cases where record caches are not required 87
choosing left and right 87
combine 73
combining equivalent records 88
configuring in a record assembler 81
creating record indexes 75
disjunct 70
first record 72
higher cardinality 84
implementing 79
inner 69
left 68
multiple keys in left joins 85
multiple values for join key 83
outer 69
overview 65
performing in a database 66
record index keys 67
sort switch 71
switch 70

L
left joins

described 68
multiple keys for records 85

loading source data 22
logging

aliasing v-levels 111
command line interface 110
EDF_LOG_LEVEL settings 111
levels 109

Oracle Commerce Guided Search Platform Services142

Index

logging (continued)
logLevel 110
output file 111
topics 110

M
mapping

explicit 29
source properties to dimensions 35
source properties to like-named dimensions 39

match modes
Auto Generate 36
Must Match 36
Normal 35

Multi Sub-records option for record assembler 85
multiple values for a join key 83
Must Match mode 36

N
node ID requirements for externally managed taxonomies
102
Normal match mode 35
null mapping

described 29
overriding implicit and default mappings 33

O
Oracle Endeca Workbench 18
outer joins 69

P
Perl assembler 59
pipeline 22

adding components to 44
creating a data flow for 44
creating using the Basic Pipeline template 47
described 14
editing components in 44
fundamentals 43
placement of property mapper 30
running 53
sequential record processing 22
URLs in 45
using only one property mapper in 27

precedence rules
introduced 18
specifying in Developer Studio 18, 60

priority order of source property mapping 30
property mapper

creating 31
described 50
minimum configuration 28
placement in pipeline 30
using only one per pipeline 27, 50

property mapper (continued)
using the Mappings editor 32

R
record adapter

overview 48
record index 48

record assembler
adding for joins 80
configuring joins in 81
creating join keys 76
described 59, 65
join keys with multiple properties 77
Multi Sub-records option 85

record cache
adding for joins 79
Combine Records setting 88
creating record indexes 75
described 59

record index keys for joins 48, 67
record search configured in Developer Studio 18
record specifier property, creating 58
reference implementation, UI 53

S
search characters 60
search configuration 18
search interfaces, about 60
sort switch join 71
source data

in delimited format 48
loading 22

source properties
assigning multiple mappings to 34
mapping 55
removing unknown 28
specifying null mappings for 58
standardizing 23

source property mapping
described 27
priority order 30
types 29
viewing existing 32

source property values
defining maximum length for importing 41
mapping to dimension values 35

source records 22
spiders 59
standardizing source properties 23
stemming 60
stop words 60
switch joins 70
system operations 19
system provisioning 18

143

Index

T
tagging Endeca records 17
thesaurus entries

configuring in Oracle Endeca Workbench 18
introduced 60

U
UI reference implementation, using 53

unknown source properties, removing 28

W
Web service, Forge Metrics 113

X
XML syntax for dimension hierarchy 96

Oracle Commerce Guided Search Platform Services144

Index

	Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Oracle Support

	Basic Pipeline Development
	The Endeca ITL
	Introduction to the Endeca ITL
	Endeca Content Acquisition System
	Endeca Data Foundry

	Endeca ITL components
	Data Foundry programs
	Configuration files
	Pipeline
	Dimension hierarchy
	Index configuration

	Endeca ITL Development
	Endeca ITL development process
	Endeca tools suite
	Endeca Developer Studio
	Oracle Endeca Workbench
	About system provisioning tasks in Endeca Workbench
	About system operations tasks in Endeca Workbench

	Finding more information on tools setup and usage
	About controlling your environment
	About using the Endeca Application Controller
	Application Controller architecture
	Ways of communicating with the Endeca Application Controller
	About using Endeca Workbench to communicate with the EAC Central Server

	A closer look at data processing and indexing
	Data processing
	Source data
	About loading source data
	Standardizing source records
	About mapping source properties and property values
	About writing out tagged data
	About indexing

	Overview of Source Property Mapping
	About source property mapping
	About using a single property mapper
	About using explicit mapping
	Minimum configuration
	About mapping unwanted properties
	About removing source properties after mapping
	Types of source property mapping
	Priority order of source property mapping

	About adding a property mapper
	Determining where to add the property mapper
	Creating the property mapper

	The Mappings editor
	Creating new source mappings
	Using null mappings to override implicit and default mappings
	About assigning multiple mappings

	Match Modes
	About choosing a match mode for dimensions
	Normal mode
	Must Match mode
	Auto Generate mode

	Rules of thumb for dimension mapping
	Dimension mapping example

	Advanced Mapping Techniques
	The Property Mapper editor Advanced tab
	About enabling implicit mapping
	Enabling default mapping
	About the default maximum length for source property values
	About overriding the default maximum length setting

	Before Building Your Instance Configuration
	Endeca Application Controller directory structure
	Pipeline overview
	About adding and editing pipeline components
	About creating a data flow using component names
	URLs in the pipeline

	About Creating a Basic Pipeline
	The Basic Pipeline template
	Record adapters
	About the Record Index tab

	Dimension adapter
	Dimension server
	Property mapper
	Indexer adapter

	About Running Your Basic Pipeline
	Running a pipeline
	Viewing pipeline results in a UI reference implementation

	After Your Basic Pipeline Is Running
	Additional tasks
	About source property mapping
	Adding and mapping Endeca properties
	Adding and mapping dimensions
	About synonyms

	About null mappings

	Setting the record specifier property
	About specifying dimensions and dimension value order
	Additional pipeline components
	Additional index configuration options

	Joins
	Overview of Joins
	Record assemblers and joins
	About performing joins in a database
	Join keys and record indexes
	About matching record indexes for join sources

	Join types
	Left join
	Inner join
	Outer join
	Disjunct join
	Switch join
	Sort switch join
	First record join
	Combine join

	About Configuring Join Keys and Record Indexes
	Creating a record index
	Creating a join key for a record cache
	Join keys with multiple properties or dimensions

	About Implementing Joins
	Implementing a join
	Adding a record cache
	Adding a record assembler
	Configuring the join

	Advanced Join Behavior
	Records that have multiple values for a join key
	Sources that have multiple records with the same join key value
	About tweaking left joins

	Tips and Troubleshooting for Joins
	Joins that do not require record caches
	Working with sources that have multiple records with the same join key value
	Best practice for choosing left and right side of joins
	Combining equivalent records in record caches
	Forge warnings when combining large numbers of records

	Advanced Dimension Features
	Externally-Created Dimensions
	Overview of externally-created dimensions
	External dimensions and external taxonomies
	Including externally-created dimensions in your project

	XML requirements
	XML syntax to specify dimension hierarchy
	Node ID requirements

	Importing an externally-created dimension

	Externally-Managed Taxonomies
	Overview of externally-managed taxonomies
	Including externally-managed taxonomies in your project
	XSLT and XML requirements
	About XSLT mapping
	XML syntax to specify dimension hierarchy
	Node ID requirements and identifier management in Forge

	Pipeline configuration
	Integrating an externally-managed taxonomy
	Transforming an externally managed taxonomy
	Uploading post-Forge dimensions to Endeca Workbench
	Loading an externally-managed dimension
	Running a second baseline update

	About updating an externally-managed taxonomy in your pipeline
	Unexpected default-mapping behavior

	Other Advanced Features
	The Forge Logging System
	Overview of the Forge logging system
	Log levels reference
	About logging topics
	The command line interface
	Aliasing existing -v levels
	About logging output to a file
	Changes to the EDF_LOG_LEVEL environment variable

	The Forge Metrics Web Service
	About the Forge Metrics Web service
	About enabling Forge metrics
	About enabling SSL security

	About using Forge metrics
	The MetricsService API

	Forge Flag Reference
	Forge flag options reference

	File Formats Supported by the Document Conversion Module
	Word processing formats
	Text and markup formats
	Spreadsheet formats
	Vector image formats
	Raster image formats
	Presentation formats
	Archive formats
	Database formats
	E-mail formats
	Other formats

	Advanced JDBC Column Handler
	About the Advanced JDBC Column Handler
	JDBC configuration options
	Storing data on disk
	Using the Advanced JDBC Column Handler
	Output
	Troubleshooting

	Index

