
Oracle Commerce Guided Search
Platform Services
Relationship Discovery Guide

Version 11.1 • July 2014

Contents
Preface..7
About this guide..7
Who should use this guide...7
Conventions used in this guide..7
Contacting Oracle Support...7

Chapter 1: Introduction to Term Discovery...9
Overview of Relationship Discovery...9
Overview of Term Discovery..9
Overview of Cluster Discovery...11

Chapter 2: Configuration Guidelines for Term Extraction..............................13
Term extraction workflow...13
Configuration for the main term extraction module..13

Record specifier property name..14
Terms output property...14
Update mode...14
Maximum number of input records...15

Configuration for candidate term identification...15
Source input text property...16
All-terms destination property...16
Input term property..17
Language specification of input records...17

Configuration for corpus-level filtering..18
Minimum and maximum occurrences in records..18
Minimum and maximum coverage settings...19
Threshold for the global informativeness of terms..19
Using regular expressions..20
Enabling debugging information for corpus-level filtering...20

Configuration for record-level filtering..20
Specifying a scoring threshold..21
Limiting the number of terms per record...21

Best practices for term filtering...23
Minimal term extraction configuration..25
Format of the source data..25

Chapter 3: Configuration Guidelines for Clustering.......................................27
Configuration UI for clusters...27
Clustering parameter descriptions...27
Tuning strategy for clusters..29

Chapter 4: Building the Front End of the Term Discovery Application.........31
Files to be changed..31
Adding global constants...31
Setting refinements in the controller file...32
Displaying refinements...33
Displaying clusters...33

Cluster properties..33
JSP code for displaying clusters...33
Clustering overlap properties..36

Displaying records and dimension refinements...36

Chapter 5: Creating a Term Discovery Application...37
Term Discovery application workflow...37
Configuring the required dimension and properties...37

iii

Designating the record specifier property...37
Configuring the Term Discovery dimension..38
Configuring the all-terms property...39
Creating a partial-match search interface...40

Creating the Term Discovery pipeline..41
Creating the record adapter for source records..42
Creating the record adapter for the exclude list..43
Adding pre-processing components...44
Configuring the Java manipulator...44
Configuring other components..48
Running the Term Discovery pipeline...48

Chapter 6: Term Discovery Advanced Topics...49
Partial updates for term extraction...49

Term extraction prerequisites for partial updates..49
Record adapters for partial updates..50
Java manipulator for partial updates...50

Term filtering with pre-tagged records...51
Creating the instance implementation...51
Filtering only pre-existing terms..52
Filtering both sets of terms uniformly..52
Filtering only the new terms..53

Tuning aids for the filtering parameters..54
Using STATEFUL mode for tuning...54
Using corpus-filtering logging statistics...54

Examining the term extractor logs..55
Term extractor logs...55
Increasing the JVM heap size...56
Location of term extraction state files...56

Appendix A: Term Discovery Sample Files...59
Modified nav_controls.jsp file...59
New nav_clusters.jsp file..63
Sample record manipulator for HTML documents...65

Oracle Commerce Guided Search Platform Servicesiv

Copyright and disclaimer

Copyright © 2003, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs,
including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, shall be subject to license terms and license restrictions applicable to the programs. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices.
UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim
all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

v

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Oracle customers have access to electronic support through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Oracle Commerce Guided Search Platform Servicesvi

Preface

Oracle Commerce Guided Search is the most effective way for your customers to dynamically explore your
storefront and find relevant and desired items quickly. An industry-leading faceted search and Guided Navigation
solution, Guided Search enables businesses to influence customers in each step of their search experience.
At the core of Guided Search is the MDEX Engine™, a hybrid search-analytical database specifically designed
for high-performance exploration and discovery. The Oracle Commerce Content Acquisition System provides
a set of extensible mechanisms to bring both structured data and unstructured content into the MDEX Engine
from a variety of source systems. The Oracle Commerce Assembler dynamically assembles content from any
resource and seamlessly combines it into results that can be rendered for display.

Oracle Commerce Experience Manager enables non-technical users to create, manage, and deliver targeted,
relevant content to customers. With Experience Manager, you can combine unlimited variations of virtual
product and customer data into personalized assortments of relevant products, promotions, and other content
and display it to buyers in response to any search or facet refinement. Out-of-the-box templates and experience
cartridges are provided for the most common use cases; technical teams can also use a software developer's
kit to create custom cartridges.

About this guide
This guide describes the tasks involved in creating an Oracle Commerce Guided Search Relationship Discovery
application.

Who should use this guide
This guide is intended for developers responsible for creating a Relationship Discovery implementation.

Conventions used in this guide
This guide uses the following typographical conventions:

Code examples, inline references to code elements, file names, and user input are set in monospace font. In
the case of long lines of code, or when inline monospace text occurs at the end of a line, the following symbol
is used to show that the content continues on to the next line: ¬

When copying and pasting such examples, ensure that any occurrences of the symbol and the corresponding
line break are deleted and any remaining space is closed up.

Contacting Oracle Support
Oracle Support provides registered users with answers to implementation questions, product and solution
help, and important news and updates about Guided Search software.

You can contact Oracle Support through the My Oracle Support site at https://support.oracle.com.

https://support.oracle.com

Chapter 1

Introduction to Term Discovery

This section provides overviews of the Endeca Term Discovery and Endeca Cluster Discovery features.

Overview of Relationship Discovery
The Endeca Relationship Discovery feature provides you with the ability to identify and extract key relationships
in documents, including documents consisting of unstructured text.

This guide describes how to implement the Endeca Term Discovery and Endeca Cluster Discovery features,
which are two major components of the Relationship Discovery solution. The third major component, Endeca
Entity Discovery, is not documented in this guide; for information on this feature, contact your Endeca
representative.

Note: The implementation of Term Discovery and Cluster Discovery requires that you must have
purchased a license for Relationship Discovery. The license package includes documentation that
describes how to enable the feature. Contact your Endeca representative if you are not certain whether
you have a Relationship Discovery license.

The Term Discovery and Cluster Discovery components of Relationship Discovery have the capability to:
• Extract salient terms (noun phrases) from documents.
• Provide a scoring mechanism for the extracted terms, which determines whether a given term is retained.

Note that term scores are for internal use by the Endeca software and therefore not exposed.
• Generate relevant terms on queries.
• Generate clusters of relevant terms.

Note that Term Discovery is currently supported only for English and French. All documentation in this guide
applies to both versions, unless otherwise noted.

Overview of Term Discovery
Term Discovery is the feature that extracts salient terms from source documents.

Term Discovery can be thought of as a two-part process:

1. Extracting terms from source documents (unstructured or structured) and scoring them according to their
relevancy. The scored terms are mapped to an Endeca dimension, called a Term Discovery dimension in
this guide.

2. Presenting terms relevant to the current navigation state.

Extracting terms from documents

Term extraction is the process of tagging an Endeca record with a list of its relevant terms. A term represents
a concept mentioned in the record’s source document, and is typically a noun phrase. The noun phrase consists
of one or more nouns, potentially with adjoining words. A relevant term is a term that bears information for a
document relative to the rest of the corpus.

During the term extraction process, term variants found in documents are stemmed for comparison and
aggregation, but the final representation of the term uses the dominant form (most frequent variant). Using the
dominant form allows the recovery of the preferred representation (singular/plural case, capitalization) of proper
nouns and brand names.

Term extraction is performed by the Data Foundry via a Java manipulator pipeline component that uses the
Endeca TermExtractor class. The terms are extracted into a user-specified property on the Endeca record.
The property is then mapped (via a property mapper) to a dimension. Such a dimension is called a Term
Discovery dimension in this guide.

Configuration information on term extraction is given in Chapter 2 (“Configuration Guidelines for Term
Extraction”).

Maximum size of extracted terms

A noun phrase consists of a noun (or a sequence of nouns) with any associated modifiers. The modifiers are
limited to adjectives, adjective phrases, or nouns used as adjectives.

Programmatically, each word in a noun phrase is called a token. An extracted noun phrase can have a maximum
of 5 tokens; each token is limited to 200 characters. Therefore, a valid noun phrase has a maximum size of
1,000 characters.

The maximum size of a sentence in a document is 1,000 tokens (words). If the term extractor cannot determine
the sentence boundaries of text in the document, it splits the text into blocks of 1,000 tokens and then performs
text extraction on the blocks. In addition, the following WARN message will be entered in the term extraction
log:
Sentence boundaries could not be found for text beginning
with tokens t1 t2 t3 t4 t5

where t1 through t5 are the first 5 tokens of the problematic text.

The term extractor treats invalid noun phrases as follows:
• If a noun phrase has more than 5 tokens, only the last 5 tokens are retained. For example, with a 7-token

noun phrase, the first 2 tokens are completely ignored by the term extractor and the last 5 tokens are
retained.

• Tokens that are over 200 characters are ignored.
• If a noun phrase includes an overly-long token, that token is ignored, and the precedent and antecedent

tokens are treated as separate noun phrases. For example, assume a 5-token noun phrase. Token 3 is
an overly-long token and the others are valid. In this case, Token 3 will be ignored and the term extractor
will return 2 noun phrases: the first noun phrase will consist of Tokens 1 and 2, and the second will consist
of Tokens 4 and 5.

Presenting relevant terms

Relevant terms are the most frequent terms available in the Term Discovery dimension. These terms are
returned from the documents in the current result set. All of the terms in the set belong to the same Term
Discovery dimension.

Oracle Commerce Guided Search Platform Services Relationship Discovery Guide

Introduction to Term Discovery | Overview of Term Discovery10

The Term Discovery dimension must have these two attributes:
• It must be a flat dimension (that is, a dimension that does not contain hierarchies).
• It must not be a hidden dimension. (Configuring it as a hidden dimension will disable the Cluster Discovery

feature.)

Relevant terms are returned by the Endeca MDEX Engine as dimension value refinements. Programmatically,
relevant terms are DimVal objects. Therefore, application developers can use the same Endeca Presentation
API methods on relevant terms that can be used on normal dimension value refinements. For example, they
can be returned sorted using any ranking behavior supported for dimension value refinements.

For more information on displaying relevant terms, see the “Displaying refinements” topic.

Overview of Cluster Discovery
A cluster is a collection of relevant terms, providing a grouping of Endeca records that share these common
terms.

All of the terms (which are dimension values) must come from the same dimension, which must be a Term
Discovery dimension. Clusters can be generated only if the Term Discovery dimension is available for
refinements. So not only can this dimension not be hidden, it must also be available from the navigation states
for which clusters are desired. Your application must therefore have this dimension globally available (rather
than having it available only when triggered by precedence rules).

The following features apply to the clusters:
• The Endeca MDEX Engine performs dynamic clustering. That is, when a user navigates the clustering

tree, it is reclustered at any selection, allowing users to zoom into their data to practically any level.
• There is no limit in the number of records that can be clustered.
• Each cluster is represented by a list of terms, which provide to the user what is known as information scent:

the user is instantly aware of what each cluster contains (that is, the user can quickly understand the implied
content of the clustered records).

• All clusters are designed to maximize two metrics: coherence (each cluster has only closely related records)
and distinctiveness (two different clusters will have different records).

• Each cluster has high recall. A match partial technique is typically used on cluster selection, maximizing
the number of semantically related records that are returned.

Multiple clusters can be generated from the same dimension. You can configure the maximum number of
clusters that can be generated by using the Clusters tab on the Dimensions editor. This tab also allows you
to set several parameters for cluster generation. For details, see Chapter 3 (“Configuration Guidelines for
Clustering”).

Programmatically, a cluster is a Supplementobject that accompanies the result of a navigation query. For
details on the object’s properties and how to display them, see the “Displaying clusters” topic in Chapter 5.

Oracle Commerce Guided Search Platform Services Relationship Discovery Guide

11Introduction to Term Discovery | Overview of Cluster Discovery

Chapter 2

Configuration Guidelines for Term Extraction

This topic describes some guidelines for configuring term extraction.

Term extraction workflow
This topics gives an overview of the workflow of the term extractor.

Term extraction consists of three steps, each of which is optional:

1. Candidate Term Identification — Identify all terms that are candidates for a given document and then extract
those terms. This step is omitted if terms are being extracted from pre-tagged records (see the “Term
filtering with pre-tagged records” topic in Chapter 6).

2. Corpus-level Filtering — Globally filter the extracted terms to determine a controlled vocabulary for the
corpus. This involves identifying terms that should be removed corpus-wide (and in step 3 are removed
from the set of tags on each record).

3. Record-level Filtering — Determine, for each record, what are the most relevant terms for it from the
controlled vocabulary. This involves identifying terms that should be removed from an individual record
(independent of terms that should be removed from the entire corpus, but possibly using corpus-level
information) and subsequently removing these terms from the tags on the record.

Note that steps 2 and 3 remove the terms that are judged (by their score or by their presence on the exclude
list) to be of low information value. The tagged terms on each record are a result of step 3.

This section provides configuration requirements for the term extraction modules. You supply the configuration
parameters as pass-through name/value pairs to the Java manipulator.

Configuration for the main term extraction module
The com.endeca.edf.termextractor.TermExtractor class is the main module for the term extraction framework.

You supply this class name in the CLASS_NAME attribute of the Java manipulator. This module also requires
configuration parameters that are supplied with PASS_THROUGH elements in the Java manipulator. These
parameters are listed in the following table, with details in later sections.

Configuration ValuePASS_THROUGH Element

The source property that is mapped to the Endeca record specifier
property. Mandatory. No default.

RECORD_SPEC_PROP_NAME

Configuration ValuePASS_THROUGH Element

The source property to use as the destination for tagged terms.
Mandatory. No default.

OUTPUT_PROP_NAME

The type of data update to perform: STATELESS (the default),
STATEFUL, or PARTIAL. Optional.

UPDATE_MODE

Integer that sets the maximum number of records to be processed.
Optional. Defaults to all records processed.

MAX_INPUT_RECORDS

Record specifier property name
The RECORD_SPEC_PROP_NAME pass-through specifies a source record property that is mapped to the
Endeca record specifier property in the implementation.

The RECORD_SPEC_PROP_NAME pass-through is mandatory.

To find out the name of the record specifier source property:

1. In Developer Studio, use the Properties view to find out the record specifier property for the implementation.
The Record Spec column shows this information.

2. In the Property Mapper editor, use the Mappings dialog box to find out which source property is mapped
to the Endeca record specifier property.

Use the name from step 2 for the RECORD_SPEC_PROP_NAME pass-through.

Terms output property
The OUTPUT_PROP_NAME pass-through specifies the property that will hold the tagged terms (if any) for
each Endeca record.

The OUTPUT_PROP_NAME pass-through is mandatory. If the property does not already exist in the
implementation, then the term extractor will create it. After term extraction, this property is typically mapped to
an Endeca dimension via the property mapper.

Update mode
The UPDATE_MODE pass-through specifies which type of data update is being performed by the pipeline.

The UPDATE_MODE pass-through is optional. The three values for this pass-through are STATELESS,
STATEFUL, and PARTIAL. Note that if this pass-through is omitted, the term extractor performs a STATELESS
update.

STATELESS mode

STATELESS is analogous to a baseline update and performs the following actions:

1. Extracts terms from all records.
2. Performs corpus-level and record-level filtering on all records.
3. Emits all records.
4. Does not create state files.

Oracle Commerce Guided Search Platform Services Relationship Discovery Guide

Configuration Guidelines for Term Extraction | Configuration for the main term extraction module14

STATEFUL mode

STATEFUL performs the following actions:

1. Extracts terms from new records only.
2. Performs corpus-level and record-level filtering on all records (i.e., both previously processed records and

new records).
3. Emits all records (i.e., both previous and new records).
4. Creates term state files.

For information on the STATEFUL mode, see the "Using STATEFUL mode for tuning" topic in Chapter 6.

PARTIAL mode

PARTIAL is analogous to a partial update and performs the following actions:

1. Extracts terms from new records only.
2. Performs record-level filtering on new records only. Corpus-level filtering is not performed at all, so the

previous corpus information is left as-is.
3. Emits new records only.
4. Does not create state files (i.e., previous term state files are left as-is).

For details on performing PARTIAL updates with a Term Discovery pipeline, see the "Partial updates for term
extraction" topic in Chapter 6.

Notes on update modes

Keep the following notes in mind when using the update modes:
• STATELESS mode is recommended for sites that perform baseline updates exclusively.
• STATEFUL mode is recommended for sites that implement partial updates. That is, the baseline update

pipeline will use STATEFUL mode while the partial update pipeline will use PARTIAL mode.
• The STATELESS and STATEFUL modes do not need pre-existing state files in order to run.
• The PARTIAL mode does require the existence of the term state files. Therefore, a STATEFUL update

must be performed before a PARTIAL update.

Maximum number of input records
The MAX_INPUT_RECORDS pass-through specifies the maximum number of input records to be processed
by Forge.

The MAX_INPUT_RECORDS pass-through is optional. This pass-through is intended for development purposes
and should be omitted in a production environment so that all records are processed.

Note that the Java manipulator will respect the Forge -n flag. The difference is that MAX_INPUT_RECORDS
affects the input of records while -n affects the output (emission) of records. That is, with the -n flag, all source
records are read in, but only -n records are emitted; with the MAX_INPUT_RECORDS pass-through, only the
specified number of records are read in (and emitted).

Configuration for candidate term identification
A set of pass-throughs is available to configure which terms are candidates for term extraction.

The following configuration parameters are used when performing candidate term identification for terms:

Oracle Commerce Guided Search Platform Services Relationship Discovery Guide

15Configuration Guidelines for Term Extraction | Configuration for candidate term identification

Configuration ValuePASS_THROUGH Element

Source property to use as the source text for term extraction.
Mandatory. No default.

TEXT_PROP_NAME

Source property to use as the destination for all terms on a record.
Mandatory. No default.

ALL_TERMS_OUTPUT_PROP_NAME

Source property to use as the source text for pre-tagged records.
Optional. No default.

INPUT_TERM_PROP_NAME

Source property containing the language ID. Optional. No default.LANG_PROP_NAME

Language ID that determines whether the English (en) or French (fr)
version of the term extractor will be used. Optional, but its use is

LANG

recommended. Default is the first language in the product
configuration file.

Source input text property
The TEXT_PROP_NAME pass-through specifies which pre-existing property on the input data record will be
used as the source for term extraction.

The TEXT_PROP_NAME pass-through is mandatory. Note that the value for this pass-through specifies a
source property, not an Endeca property. This property will then be mapped to an Endeca dimension.

If you want to extract terms from multiple properties, a pipeline component must combine the text from the
multiple properties into one text property. The name of that text property is then used for the TEXT_PROP_NAME
pass-through.

All-terms destination property
The ALL_TERMS_OUTPUT_PROP_NAME pass-through specifies the property which gets all terms on a
record that pass corpus-level filtering.

The ALL_TERMS_OUTPUT_PROP_NAME pass-through is mandatory. The property gets all terms on a record
that pass corpus-level filtering regardless of whether they pass record-level filtering.

If the property does not already exist in the implementation, the term extractor will create it. When mapped to
an Endeca property, record searches can be performed on this all-terms property (assuming it is configured
to be searchable).

The all-terms property is used for search purposes. For each record, the term extractor finds all of the terms
in the corpus-wide vocabulary that occur in that document (regardless of their relevance for that document)
and puts them in the all-terms property. By using this property for searches, stemming of the terms can be
performed.

For example, if the terms "search engine" and "search engines" appear in the corpus, they will be normalized
to the dominant form (e.g., as "search engine"). But if you want to find all records that contain either variant,
you cannot use Phrase search against the body text, because Phrase search does not locate stemmed variants.
Instead, Term Discovery ensures that both the dimension value name and the term stored in the all-terms
property is the dominant form.

The terms in the all-terms property are separated by using sep as the delimiter. The term extractor makes the
separator by doing (sep)+ until the separator is not a substring of any term in the corpus. Therefore, the
separator may be sep, sepsep, sepsepsep, and so on. For example, an article on Aldera, Spain might produce

Oracle Commerce Guided Search Platform Services Relationship Discovery Guide

Configuration Guidelines for Term Extraction | Configuration for candidate term identification16

the following all-terms property (named P_AllTerms) on the record (in the example, sepsep is the separator
for the property):
P_AllTerms: district sepsep Spain sepsep south coast sepsep
 coast sepsep town sepsep Aldera sepsep province sepsep
 Romans sepsep decline sepsep station sepsep hills sepsep
 Heracles sepsep temple sepsep colonies sepsep Tiberius

Because of the widespread use of this separator, you should add it to the stop word list. (Note that this is the
application’s stop word list, not the term exclude list.) Before doing so, first determine which form is the separator.
Run the corpus at least once to find what the separator is and then set that separator as a stop word. For
example, if "sep" is a valid term in the corpus, then it is likely that sepsep will the separator. Thus, you would
add "sepsep" (but not "sep") to the stop word list. Then, periodically monitor the corpus to make sure the
separator has not changed.

Input term property
The INPUT_TERM_PROP_NAME pass-through is used for a corpus that contains pre-tagged records.

Pre-tagged records are source records with pre-existing terms that were generated by non-Endeca software.
In this scenario, you do not want to extract new terms from the documents but do want to perform corpus-level
and/or record-level filtering on the pre-tagged terms.

This pass-through can be used in conjunction with the TEXT_PROP_NAME pass-through to combine the
pre-existing terms with the new extracted terms. For details on working with pre-tagged records, see the "Term
filtering with pre-tagged records" topic in the Advanced Term Discovery Topics section.

Language specification of input records
Two pass-throughs set the language ID of input records on a global and per-record basis.

You can use the LANG and LANG_PROP_NAME pass-throughs to specify the global language ID and the
per-record language ID of the input records. The language ID is case insensitive for both pass-throughs (for
example, you can specify either EN or en for English).

Note that the LANG_PROP_NAME value takes precedence, and if not present, the value of LANG is used as
the language of the record.

Both pass-throughs are optional and both can be specified in a Java manipulator.

LANG pass-through

The LANG pass-through specifies the language ID to use on a global basis. Currently, you can specify either
EN (or en) to run the English version of the text extractor or FR (or fr) to run the French version.

If you do not specify this pass-through, the global language ID defaults to the first language specified in the
product configuration file (named ProductConfig.xml). Although this pass-through is optional, it is recommended
that you use it to explicitly set the global language ID.

LANG_PROP_NAME pass-through

The LANG_PROP_NAME pass-through specifies the name of the record property that contains the language
ID for that record. If you do not specify this pass-through, the language ID for each record will default to the
value of the LANG pass-through. For example, if the value for LANG is EN, then the term extractor will assume
that all the records are in English.

If you do specify the LANG_PROP_NAME pass-through, the term extractor will evaluate each record as follows:

Oracle Commerce Guided Search Platform Services Relationship Discovery Guide

17Configuration Guidelines for Term Extraction | Configuration for candidate term identification

• If the value of the LANG_PROP_NAME property matches the LANG setting, then terms are extracted from
the record in that language.

• If the value of the LANG_PROP_NAME property does not match the LANG setting, then terms are not
extracted from the record. That is, the record is ignored for purposes of term extraction, but the record is
otherwise processed by Forge. For example, if the value of LANG is FR and the value of the
LANG_PROP_NAME property is EN for a given record, the terms extractor will ignore that record.

• If the value of the LANG_PROP_NAME property is null or the record does not contain the
LANG_PROP_NAME property, the term extractor will assume that the language ID of the record is the
same as the LANG setting and therefore will attempt to extract terms from the record in that language.

If you have documents in multiple languages, the LANG_PROP_NAME pass-through is useful to ensure that
only records in the desired language (the LANG setting) are processed by the term extractor.

Configuration for corpus-level filtering
A set of pass-throughs is available to configure how corpus-level filtering is done.

The following configuration parameters are used for performing corpus-level filtering:

Configuration ValuePASS_THROUGH Element

Integer specifying the minimum number of records in which a term must
appear in order to be considered. Default is 0; minimum recommended value
is 2.

CORPUS_MIN_RECS

Integer specifying the maximum number of records in which a term must
appear in order to be considered. Default is unlimited.

CORPUS_MAX_RECS

Double specifying the minimum fraction of the corpus that must contain the
term. Default is Double.NEGATIVE_INFINITY; useful range is 0-1;
recommended value is 0.00005.

CORPUS_MIN_COVERAGE

Double specifying the maximum fraction of the corpus that must contain the
term. Default is Double.POSITIVE_INFINITY; useful range is 0-1;
recommended value is 0.2.

CORPUS_MAX_COVERAGE

Minimum global informativeness score a term must have to be considered.
Default is Double.NEGATIVE_INFINITY.

CORPUS_MIN_INFO_GAIN

Maximum global informativeness score a term must have to be considered.
Default is Double.POSITIVE_INFINITY.

CORPUS_MAX_INFO_GAIN

String that is a regular expression for terms that should be kept. No default.CORPUS_REGEX_KEEP

String that is a regular expression for terms that should be discarded. No
default.

CORPUS_REGEX_SKIP

If set to true, detailed information about corpus-level scoring is written to
the logs. Default is false.

CORPUS_DEBUG

Minimum and maximum occurrences in records
Two pass-throughs set the minimum and maximum number of records in a term can appear before it is
discarded.

Oracle Commerce Guided Search Platform Services Relationship Discovery Guide

Configuration Guidelines for Term Extraction | Configuration for corpus-level filtering18

The CORPUS_MIN_RECS parameter determines the minimum number of records in which a term can appear
before it can be considered. If a term appears in fewer records than the CORPUS_MIN_RECS setting, then
the term is discarded.

Setting a value less than 2 is not recommended, as it useless for clustering. In addition, a value of 2 or higher
means that singlets are eliminated.

Singlets are terms that appear in only one record. Singlets typically occur very frequently in a corpus, but
cannot be used for clustering, which uses cross-record statistics. Therefore, eliminating singlets reduces
memory use and computation time. Minimum occurrences should be set to at least 2 to remove singlets; higher
values will require a term to appear on more records. Note that large document sets have more term redundancy
and can have this parameter set to higher values, such as 3 or higher.

The CORPUS_MAX_RECS parameter sets the maximum number of records in which a term can appear. If it
appears in more records than the set value, then the term is discarded.

You can use both pass-throughs to create a window. For example, assume you have set these values:
CORPUS_MIN_RECS=5
CORPUS_MAX_RECS=20

The result would be that a term would be retained only if it appeared in at least 5 records but no more than 20
records.

Minimum and maximum coverage settings
Two pass-throughs set the minimum and maximum percentage of records that must contain a term.

The coverage pass-throughs correspond to the fraction of the records in the corpus which contain at least one
occurrence of the given term:

• CORPUS_MIN_COVERAGE sets the minimum fraction of the corpus that must contain the term.
• CORPUS_MAX_COVERAGE sets the maximum fraction of the corpus that must contain the term.

For example, if you want to keep only those terms that appear in between 5% and 25% of the corpus, you
would use these settings:
CORPUS_MIN_COVERAGE=0.05
CORPUS_MAX_COVERAGE=0.25

The useful range for both pass-throughs is 0-1, in which 1 is 100% of the corpus.

Threshold for the global informativeness of terms
Two pass-throughs set the scoring threshold for the global informativeness of a term.

The CORPUS_MIN_INFO_GAIN parameter sets the minimum scoring threshold when measuring the global
informativeness (info_gain) of a term. The useful range for CORPUS_MIN_INFO_GAIN is minus infinity to plus
infinity, although most terms tend to fall in the -5.0...+5.0 range. The terms with negative information gain are
likelier to contribute more noise than signal. Eliminating these globally uninformative terms saves considerable
memory and query compute time. The minimum info_gain setting can be increased to require higher global
informativeness—or, conversely, decreased to allow more terms to be retained. Setting
CORPUS_MIN_INFO_GAIN to 0 is usually adequate. Setting this parameter to values higher than 1.0-2.0 can
dramatically reduce the number of terms.

The CORPUS_MAX_INFO_GAIN parameter sets the maximum scoring threshold for the global informativeness
of a term. If the scoring for a term exceeds this threshold, the term is discarded.

Oracle Commerce Guided Search Platform Services Relationship Discovery Guide

19Configuration Guidelines for Term Extraction | Configuration for corpus-level filtering

Using regular expressions
Two pass-throughs allow you to use regular expressions to retain or discard terms.

The term extractor supports two pass-throughs that are used for matching character sequences against patterns
specified by regular expressions:

• CORPUS_REGEX_KEEP specifies a regular expression that a term must match in order to be retained.
• CORPUS_REGEX_SKIP specifies a regular expression that a term must not match in order to be retained.

You can use either or both pass-throughs. If both are used, then a term must pass both tests in order to be
retained (that is, if the term satisfies one pass-through but not the other, the term is discarded).

The term extractor implements Sun’s java.util.regex package to parse and match the pattern of the
regular expression. Therefore, the supported regular-expression constructs are the same as those in the
documentation page for the java.util.regex.Pattern class at this URL:

http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

This means that among the valid constructs you can use are:
• Escaped characters, such \t for the tab character.
• Character classes (simple, negation, range, intersection, subtraction). For example, [^abc] means match

any character except a, b, or c, while [a-zA-Z] means match any upper- or lower-case letter.
• Predefined character classes, such as \d for a digit or \s for a whitespace character.
• POSIX character classes (US-ASCII only), such as \p{Alpha} for an alphabetic character, \p{Alnum} for

an alphanumeric character, and \p{Punct} for punctuation.
• Boundary matchers, such as ^ for the beginning of a line, $ for the end of a line, and \b for a word boundary.
• Logical operators, such as X|Y for either X or Y.

For a full list of valid constructs, see the Pattern class documentation page at the URL listed above.

The following is an example of a useful regular expression that uses the POSIX \p{Alnum} construct:
^\p{Alnum}[\p{Alnum}\.\-']+$

When used with the CORPUS_REGEX_KEEP pass-through, this regular expression will retain only terms that
have at least two characters, starts with an alphanumeric character, and contains only alphanumeric, period,
dash, apostrophe, and space characters. (The apostrophe is to retain terms such as O'Malley).

The following is a another example that is fairly restrictive:
[^A-Za-z0-9\-\.]

When used with the CORPUS_REGEX_SKIP pass-through, this regular expression will retain only terms that
consist of alphanumeric, dash, period, and space characters.

Enabling debugging information for corpus-level filtering
The CORPUS_DEBUG pass-through enables the logging of debugging information.

The CORPUS_DEBUG pass-through enables the term extractor to write detailed information about the
corpus-level filtering scores it assigns to terms. Temporarily setting this pass-through to true will help you to
tune corpus-level filtering. For details, see the "Using corpus-filtering logging statistics" topic in Chapter 6.

Configuration for record-level filtering
Two pass-throughs are available to configure record-level filtering for term extraction.

Oracle Commerce Guided Search Platform Services Relationship Discovery Guide

Configuration Guidelines for Term Extraction | Configuration for record-level filtering20

http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

This table lists the configuration parameters that are used for performing record-level filtering. Note that both
pass-throughs are optional.

Configuration ValuePASS_THROUGH Element

Double that sets the minimum scoring fraction of the median to use. 1.1
is the recommended value; 0.0 is the default.

RECORD_FRACT_OF_MEDIAN

Sets a limit on the maximum number of terms that are tagged on a record.
Default is to have no limit.

RECORD_NTERMS

Specifying a scoring threshold
The RECORD_FRACT_OF_MEDIAN sets a scoring threshold for record-level filtering.

When the Term Discovery software decides which terms will be tagged on a record, it uses a scoring method
in which terms that are more frequent in this document than across the corpus are considered to be more
relevant and thus are retained. Filtering occurs on the document-by-document basis; in other words, each term
is considered for inclusion or exclusion separately for each document in which it occurs.

The distribution of scores for terms on a single record typically has very few high-scoring terms, followed by
a long, gently-sloped plateau of marginally informative terms, with a sudden drop-off of few uninformative
terms.

The RECORD_FRACT_OF_MEDIAN value lets you set a scoring threshold for the plateau; only terms that
score above this threshold are kept. RECORD_FRACT_OF_MEDIAN should be set to a value that expresses
the threshold as a fraction of the median score for terms on the document.

The recommended threshold is 1.1 (i.e., 10% higher than the median), which will keep only the highly-informative
terms. Higher values will tend to increase precision (the terms that are kept are more likely to be relevant) but
decrease recall (more likely to lose relevant terms). The default value of this threshold is 0.0, which allows all
terms through.

Limiting the number of terms per record
The RECORD_NTERMS pass-through sets a limit on the maximum number of terms that are tagged on a
record.

You can use the RECORD_NTERMS pass-through to implement one of two strategies to limit the number of
terms that are tagged on records:

• Set an absolute upper limit.
• Establish a cut-off window.

You cannot mix both strategies. In both strategies, the Term Discovery software determines which terms have
the highest relevance for that record. Note that this pass-through is recommended mainly for collections that
have large documents.

Setting a hard limit

To set an absolute upper limit, use the RECORD_NTERMS pass-through with only one integer value. Use this
version of the pass-through when you are certain about the number of terms you want per record and can
therefore set a hard limit. In this example, RECORD_NTERMS is set to a value of 8:

Oracle Commerce Guided Search Platform Services Relationship Discovery Guide

21Configuration Guidelines for Term Extraction | Configuration for record-level filtering

Using this setting, Term Discovery will determine which are the eight most relevant terms for this record and
tag the record with them.

Establishing a cut-off window

To establish a cut-off window, use the RECORD_NTERMS pass-through with a range of two integers, which
sets the lower and upper limits of a cut-off window. This windowing strategy establishes a window that will be
scanned for an optimal cut-off. This cut-off is where term informativeness drops off most precipitously. Use
this strategy when you want Term Discovery to be sensitive to actual term informativeness rather than just
using a hard limit.

In the following example, the value for RECORD_NTERMS is the range of 24-36 terms:

Oracle Commerce Guided Search Platform Services Relationship Discovery Guide

Configuration Guidelines for Term Extraction | Configuration for record-level filtering22

You can think of the term range as providing a fuzzy neighborhood to be used instead of a hard limit. For
example, instead of RECORD_NTERMS having a hard limit of 32, you can set it to a range of 24-36. This
range establishes a window where a record can have a minimum of 24 terms and a maximum of 36 terms.
The Term Discovery algorithm will determine the optimal cut-off within that window for each record.

For example, assume the above settings and also assume that 40 terms were extracted from Record A and
also from Record B:

• For Record A, the optimal cut-off for the terms might be after term 26 (because of a sharp drop-off in
relevancy for terms 27-40). Therefore, Record A will have 26 terms tagged onto it.

• For Record B, the optimal cut-off for its set of terms might be after term 30. In this case, Record B will have
30 tagged terms.

When using the range version of this pass-through, keep the following in mind:
• The lowest recommended value for the lower limit is around 10. The reason is that the scores of the top

terms scores usually differ noticeably, and the largest score drop-off is likely to be found at the setting for
the lower limit. Thus, if the lower is less than 10, you should expect it to behave like the hard-limit version
of RECORD_NTERMS, which is misleading.

• The value for the upper limit should not be much larger than the value for the lower limit. If the difference
is too much, the number of terms assigned to each particular record will be essentially random (within the
cut-off window). The only way to have this number of terms relatively consistent is to use a lower- and
upper-limit pair that are not too far from each other.

Best practices for term filtering
This topic presents a best practices list for term extraction.

The best practices lists include the pass-through name and a recommended (best practices) value. If a
recommended value is not given, then the default value is also the recommended one.

The two important things to keep in mind are:
• When tuning corpus-level filtering, the number of documents is the main consideration.
• When tuning record-level filtering, the size of the text property is the main consideration.

Two tuning aids that may helpful are described in the "Tuning aids for the filtering parameters" topic in Chapter
6.

Corpus-level filtering best practices

CORPUS_MIN_RECS

Recommendation: Values of less than 2 are not recommended in general, since they allow terms that are seen
only once in the entire corpus. If clustering is used, this value MUST be set to at least 2. Note that this parameter
works similarly to CORPUS_MIN_COVERAGE: terms that are seen less frequently than in CORPUS_MIN_RECS
are discarded, as are terms that are seen in less than CORPUS_MIN_COVERAGE * (number of documents
in the corpus).

CORPUS_MAX_RECS

Recommendation: As a general rule of thumb, this pass-through does not have to be used. If your number of
records can change (say, via partial updates), Oracle recommends that you not use CORPUS_MAX_RECS,
because the statistics will change with the changed number of records. In this case, you may want to use the
CORPUS_MAX_COVERAGE pass-through instead.

CORPUS_MIN_COVERAGE

Oracle Commerce Guided Search Platform Services Relationship Discovery Guide

23Configuration Guidelines for Term Extraction | Best practices for term filtering

Recommendation: The useful range is 0-1. A value of 0.00005 is a good compromise, because the term
extractor will retain a term if it has been seen in at least one document out of 20,000.

This value will change with the nature of the data set. For example, a site with a data set with a lot of topical
diversity (such as news) can reduce this value and allow terms with lower coverage (however, one out of any
hundred thousand is probably the smallest reasonable value). If memory use is an issue, you should increase
this value.

CORPUS_MAX_COVERAGE

Recommendation: The useful range is 0-1. A value of 0.2 (which is 20% of the documents) is a good
compromise. If a term is seen in more than one out of five documents (i.e., 20%), it is probably too broad to
be useful. If terms that are tagged onto documents seem too generic, this number should be turned down. As
with CORPUS_MIN_COVERAGE, turning this number down, even slightly, should free memory.

CORPUS_REGEX_KEEP

Recommendation: A useful regular expression for terms to keep is:
^\p{Alnum}[\p{Alnum}\.\-']+$

This retains terms that have at least two characters, start with an alphanumeric character, and includes only
alphanumerics, spaces, periods, dashes, and single quotes.

Note: Each term must both match CORPUS_REGEXP_KEEP and not match CORPUS_REGEXP_SKIP
to be retained.

CORPUS_REGEX_SKIP

Recommendation: Use this pass-through only if you are certain of the format of the terms you want to discard.

CORPUS_MIN_INFO_GAIN and CORPUS_MAX_INFO_GAIN

Recommendation: Begin by setting CORPUS_MIN_INFO_GAIN to 0. Do not set CORPUS_MAX_INFO_GAIN
initially. Tune the other term extraction pass-throughs. Then, run a data set (or a subset) with CORPUS_DEBUG
set to true, which will print the list of terms that passed all the selection criteria. You can use this information
to adjust the selection criteria, which may include adjusting the CORPUS_MIN_INFO_GAIN and using the
CORPUS_MAX_INFO_GAIN pass-throughs.

If fewer generic terms are desired, increase the value of CORPUS_MIN_INFO_GAIN in small increments (0.5
or 1.0). If more generic terms are desired, decrease this value. CORPUS_DEBUG can be used to select a
particular value of CORPUS_MIN_INFO_GAIN.

CORPUS_DEBUG

Recommendation: Set this pass-through to true only when you are tuning the filtering parameters; otherwise,
do not use it. For details on the logging entries it produces, see the "Using corpus-filtering logging statistics"
topic in Chapter 6.

Record-level filtering best practices

RECORD_NTERMS and RECORD_FRACT_OF_MEDIAN

Recommendation: The use of these pass-throughs depends on the length of text in the text property that
contains candidate terms. The two scenarios considered here are properties with either short text or long text.

For short text (such the P_Description property in the wine data set shipped with the sample reference
implementation), the recommendation is to not use these pass-throughs, which will keep all the terms.

For long text (such as news sites or sites with long articles), use the range version of RECORD_NTERMS to
set however many terms per record you want, say a range of 16-24 or, if more is wanted, a range of 24-30.
(Keep in mind that the lower limit should be greater than 10 and the upper limit should not be much large than

Oracle Commerce Guided Search Platform Services Relationship Discovery Guide

Configuration Guidelines for Term Extraction | Best practices for term filtering24

the lower limit.) Set RECORD_FRACT_OF_MEDIAN to 1.1 for relatively small documents, 1.2 for larger
documents, and 1.5 for very large documents.

Minimal term extraction configuration
The minimal term extraction configuration consists of four pass-throughs.

The four pass-throughs for a minimal term extraction configuration are the following:
• RECORD_SPEC_PROP_NAME
• TEXT_PROP_NAME
• OUTPUT_PROP_NAME
• ALL_TERMS_OUTPUT_PROP_NAME

This configuration will run as follows:
• A baseline update (STATELESS mode) will be performed.
• No corpus- or record-level filtering will be performed, but the exclude list (if it exists) will be processed. As

a result, all terms in the corpus will be extracted and all of them (with the exception of the terms on the
exclude list) will be tagged onto records.

• The expected language of the documents will be the first language specified in the product configuration
file.

This configuration is the most permissive for term extraction. Although most sites will prefer to perform some
level of corpus and record filtering, this minimal configuration may be useful with small data sets that have a
closely-related set of noun phrases in their documents.

Format of the source data
Terms can be extracted from either structured and unstructured source data.

In general, data and content acquisition will typically be used to retrieve the records used by the term extractor.
In particular, crawling (via the Endeca Web Crawler or the Endeca CAS Server) is a viable source of content
for term extraction.

The term extractor utilizes Natural Language Parsing (NLP). In order to maximize the accuracy of NLP output,
the input must be as clean as possible and as similar to natural language as the original data allows. The
following list provides some recommendations about how to pre-process unstructured text that is fed to the
term extractor:

• Remove anything from the property that is sent to the term extractor that is not the main contents of the
document. For example, when dealing with news articles, it is a good idea to remove bylines, copyright
disclaimers, and so forth. When dealing with Web pages, the task is noticeably harder, because the
navigational elements, page headers and footers, guestbook links, ads, etc., all have to be removed. In
such extreme cases, one suggestion is to retain long sequences of sentences with correct
sentence-terminating punctuation that does not have many major HTML tags (H1, P, HR, DIV, SPAN, etc.)
embedded: meaningful text is likely to satisfy this requirement, and items such as menus, ads, and page
elements are likely to fail it.

• Remove anything that is not natural language text. This includes HTML tags, other markup, and long
sequences of non-alpha characters (e.g., long sequences of dashes used as delimiters). Links to images,
URLs (that might be used in plain text, outside of HTML tags), and anything that is not in grammatically
correct language should be stripped. The same caveat applies to sequence of characters that are too long
to be meaningful terms. The term extractor will report and skip those overlong noun phrases. However, it

Oracle Commerce Guided Search Platform Services Relationship Discovery Guide

25Configuration Guidelines for Term Extraction | Minimal term extraction configuration

is useful to detect these upstream of the term extractor because their presence might indicate sections of
the documents that should be removed.

• Punctuation should be correctly spaced, especially when stripping HTML or adding sentence-terminating
punctuation. A sentence terminator is correctly interpreted only if it is followed by a space. For example:
Look at this.Or this.

should not be converted to:
Look at this.Or this.

but instead to:
Look at this. Or this.

• Convert non-sentence text into sentences. If, for example, a useful section of the document is written as
a list or a table (that is, separated with or <TD> tags), it is recommended to terminate such entries
with periods (or semicolons, depending on context), if they are not so terminated to begin with.

• Merge text fields, if needed. For example, if the document title is a separate property, it is useful to append
it to the main text property (terminating it with punctuation, if possible).

• Use the correct case for capitalized and non-capitalized text. NLP relies on capitalization to make correct
part-of-speech judgments. If capitalization is not available, it makes a best guess and this guess is better
when dealing with lower-case text than with all upper-case text. If the document text is in all upper case,
it is advisable to convert it to all lower-case (or, possibly, all lower case with initial capitalization for the first
word in every sentence). This will improve NLP quality.

• Use correct spelling in Web pages, especially blogs. For documents written in informal language, it is
recommended that simple pattern replacement be done on most frequent terms (for example, "u" should
be replaced with "you").

As mentioned in the second item above, the term extractor will discard overly-long noun phrases and issue
warning messages, such as this example from the Forge log:
While processing Record '42710': Overlong noun phrase ending
in 'sturdy white featuring simple pear flavor'

The example shows a problem with text in Record 42710.

Whenever possible, the text should be cleansed in the source data. However, you can add record manipulators
to the pipeline to perform pre-processing cleanup.

You can also use the CORPUS_REGEX_KEEP and CORPUS_REGEX_SKIP pass-throughs in the Java
manipulator to control which extracted terms are kept or discarded. For details on how to construct regular
expressions with these pass-throughs, see the "Using regular expressions" topic of this chapter.

Oracle Commerce Guided Search Platform Services Relationship Discovery Guide

Configuration Guidelines for Term Extraction | Format of the source data26

Chapter 3

Configuration Guidelines for Clustering

This section describes some guidelines for configuring term extraction.

Configuration UI for clusters
You use the Dimension editor in Developer Studio to configure clustering for a Term Discovery dimension.

In the Dimension editor, the Cluster Discovery tab is where you set the configuration parameters:

The next two topics provide descriptions of the parameters and guidelines for tuning them.

Clustering parameter descriptions
This topic describes the meanings of the parameters on the Cluster Discovery tab.

The list below describes the clustering parameters on the Cluster Discovery tab, including their range of values
(with defaults) and recommended values. The next topic in this section explains the reasoning behind the
recommended values and provides an order in which these parameters should be adjusted.

Sample size

Description: Clustering is done by examining term distribution across a sample of the result set. This parameters
governs how many records are sampled from the navigation state. Clustering processing time and memory
consumption are both roughly linear with this number; thus, lowering the value results in smaller memory
consumption and faster turnaround. However, statistical errors are likely to occur when the sample size is
small. Setting this value higher will overcome statistical errors for data sets where fewer terms are tagged onto
each record.

Range: Integer, 50-2000 (default: 500)

Recommended value: 500

Maximum clusters

Description: This parameter limits the number of clusters that will be generated by the MDEX Engine.

Range: Integer, 2-10 (default: 10)

Recommended value: 6

Coherence

Description: This parameter governs the decision of whether a set of terms is coherent enough to form a cluster
(that is, each cluster should have only closely related records). Low values are permissive (i.e., not demanding
much coherence) and will result in fewer larger clusters. High values are strict and will result in more smaller
clusters. The average value is recommended.

Range: Integer, 0-10 (default: 5)

Recommended value: 5

Maximum precision

Description: Terms that are extracted from sampled records are filtered by their precision p (where p = number
of sampled records that this term is tagged onto divided by the number of all sampled records). Terms that
have too high a value of p are likely to be the search term (or be synonymous with it) or be too general to make
for a good clustering term. If you use the recommended tuning values of the term extractor, each term is tagged
to only roughly 1/3 of the records that contain this term in the text, which means that the search term, if present,
will have p of roughly 0.33 (more or less stringent tuning of the term extractor will change this value). There
usually is a gap in the values of p between the search term and the more useful terms, which start at
approximately p = 0.25 and less.

Range: Float, 0.0 - 1.0 (default: 1.0)

Recommended value: 0.25

Maximum cluster size

Description: This parameter sets the maximum number of terms in a cluster. Each cluster will have at least 2
terms. Because of the match-partial cluster selection mechanism, the more terms there are in the cluster, the
(potentially) higher its coverage will be. On the other hand, the clusters that are too large take up too much
space to display and take too long for users to read.

Range: Integer, 2 - 10 (default: 10)

Recommended value: 8

Oracle Commerce Guided Search Platform Services Relationship Discovery Guide

Configuration Guidelines for Clustering | Clustering parameter descriptions28

Maximum cluster overlap

Description: If two clusters overlap (that is, if the record sets that each cluster maps to overlap), then the smaller
one (as measured by the estimated size of the record set it maps to) can be removed, depending on how big
this overlap is. This parameter dictates the overlap above which the smaller cluster is removed.

Clusters which overlap by more than this value will be removed. Thus, the default setting of 10 means that
clusters that overlap by more than 10 out of 10 records will be removed. Since this is impossible, this means
that setting of 10 will disable cluster overlap filtering, which is most extreme level of coarseness for this filter.
Tuning this parameter down will make the cluster overlap more and more fine-grained. Thus, a value of 9 will
remove only the clusters that greatly overlap; setting it to the recommended value of 5 will remove only clusters
overlapping half-way or so (remember that the overlap is merely estimated). Setting this parameter to lower
values (less than 5) will make overlap filtering quite sensitive and will remove clusters which overlap even by
a small amount. Note that clusters that do not overlap at all will never be filtered.

Range: Integer, 0-10 (default: 10)

Recommended value: 5

Tuning strategy for clusters
This topic provides guidelines for tuning the clustering parameters.

The guidelines for the clusters tuning strategy include initial values (to be used for the first trial clustering run)
and recommended values. The tuning process will involve changing the parameters from their initial values
toward their recommended values, with certain variation dependent on the properties of the particular data set
and the application needs.

In general, the tuning strategy involves starting with the parameters at a permissive setting and then gradually
decreasing the value. You tune the parameters by observing their impact simultaneously on the results for
several different queries (no query or node 0; broad queries; narrow queries; single-term query; multi-term
query). In other words, you should avoid tuning the parameters based on a specific query.

The following procedure is intended as a tool for gradual tuning, as it allows you to observe the effect of
changing the parameters on several different queries at once. Use the suggested order, as it maps to the order
in which these parameters impact the clustering algorithm, from upstream to downstream.

1: Number of records sampled from the navigation state

Recommended value: 500

Initial value: 500

Strategy: Start with the parameter set to 500, and increase it if you see that the terms at the bottom of your
related terms list (terms 100-120 or so) are seen in fewer than 3 records.

Note that the recommended value of 500 is for data sets with 20 or more terms tagged onto each record. Use
a higher value for data sets with fewer terms per record. If an average record has only 2 to 3 terms per record,
set this value to 2000. A good rule of thumb for this value is: when the 120 most frequent terms are sampled
for clustering, the 120th term should be present in at least 3 records. If it is present in fewer, this setting should
be increased.

2: Maximum refinement precision

Recommended value: 0.25

Initial value: 1.0

Oracle Commerce Guided Search Platform Services Relationship Discovery Guide

29Configuration Guidelines for Clustering | Tuning strategy for clusters

Strategy: Start with this value set to 1.0 (no precision filtering). Try several different queries and pick a level
of top useful precision that separates useful terms from the frequent but uninformative ones. Note that, typically,
only the values between 0.05 and 0.5 will be useful.

3: Maximum number of terms per cluster

Recommended value: 6 - 8

Initial value: 10

Strategy: Start with a value of 10 to see all the terms that are getting into clusters. Reduce the value until the
clusters are small enough to fit into whatever real estate your UI provides. Using a value of 2 is not
recommended. Note that the cluster coverage (and recall) are reduced when the number of terms is reduced.

4: Cluster Coherence

Recommended value: 5

Initial value: 5

Strategy: Start with the default value of 5. If you see undesirable cluster splintering (several clusters that seem
to map to the same semantic areas), this value should be decreased; on the other hand, if the cluster set is
missing some semantic areas, this value should be increased. Note that it is acceptable to have several
overlapping clusters remaining after tuning this value, because they will be removed in the next step.

5: Maximum cluster overlap

Recommended value: 5

Initial value: 10

Strategy: Start with a value of 10, then decrease this parameter until the desired number of overlapping clusters
remains (i.e., in some cases, depending on customer needs, some cluster overlap can be retained, particularly
if the smaller cluster is an especially coherent one).

6: Maximum number of clusters

Recommended value: 6

Initial value: 10

Strategy: Start with a value of 10 to see all the available clusters after all the other settings had been applied.
Reduce this number if you still see more clusters than permitted by the available UI space.

Oracle Commerce Guided Search Platform Services Relationship Discovery Guide

Configuration Guidelines for Clustering | Tuning strategy for clusters30

Chapter 4

Building the Front End of the Term Discovery
Application

This section provides information on how to change your front-end application to display terms and clusters.

Files to be changed
You can modify existing JSP files and add a new file.

The examples are based on the following JSP files that are shipped with the endeca_jspref reference
implementation:

• constants.jsp

• controller.jsp

• nav_controls.jsp

In addition, a new nav_clusters.jsp file is provided in Appendix A as an example of rendering clusters.

Adding global constants
The constants.jsp file sets global variables that can be used in any other page in the application.

It is a good practice to add global variables for handling the displaying of the terms dimension and the clusters.
Doing so will allow you to easily change display characteristics in one central file.

The following Java code is an example of a section that can be added to the constants.jsp file:
// Dimension name of the Term Discovery dimension.
// Make it null if you do NOT want term processing.
private static final String relTermsDimName = "Terms";

//Display name of the Term Discovery dimension.
private static final String relTermsDisplayString = "Term Discovery";

//The rootId of the Term Discovery dimension.
//Make it -1 if you do NOT want terms processing.
private static final long relTermsRootId = 2;

// Handling for the all-terms property.
// Ignored if String is null.

private static final String P_AllTerms = "P_AllTerms";

// if true, a More... link shows after the term's short list.
// Should be false in production.
private static final boolean showTermsMore = false;

// If true, TD dimension and property show in record display
// Should be false in production.
private static final boolean showTermsInRecord = false;

The code sets up the following variables. These constants will be used in most of the JSP pages listed above.

PurposeGlobal Variable

Sets the name of the Endeca dimension for Term Discovery.relTermsDimName

Sets the name that will be displayed in application pages for the Term
Discovery dimension.

relTermsDisplayString

Sets the root ID of the Term Discovery dimension.relTermsRootId

Sets the name of the Endeca property that contains all the terms.P_AllTerms

Sets whether a More... link is shown for terms.showRelTermsMore

Setting refinements in the controller file
The controller.jsp module is the entry point into the Endeca application.

The controller file receives the browser request from the application server, formulates the query, and sends
the query to the MDEX Engine.

The following code should be added to the controller.jsp file:
if (relTermsRootId >= 0 && usq.containsNavQuery()
 && request.getParameter("Ne") == null) {
 DimValIdList dvl = new DimValIdList();
 dvl.addDimValueId(relTermsRootId);
 usq.setNavExposedRefinements(dvl);
}

The code can be added after the ENEQuery object named usq is created.

The code first tests that three conditions are true:
• The relTermsRootId global variable is set to a value greater than 0.
• The ENEQuery.containsNavQuery() method determines that the current query is a navigation query.
• The request does not include the Ne URL parameter, which determines which dimension navigation

refinements are exposed.

If all three conditions are true, then the code performs three actions:

1. Creates an empty DimValIdList object.
2. Uses the DimValIdList.addDimValueId() method to add the ID of the Term Discovery dimension to

the list.
3. Uses the ENEQuery.setNavExposedRefinements() method to set the refinements that are

exposed/returned with the navigation query.

Oracle Commerce Guided Search Platform Services Relationship Discovery Guide

Building the Front End of the Term Discovery Application | Setting refinements in the controller file32

In step 3, the dimension ID of the Term Discovery dimension is given as the argument, which means that this
dimension will be the parent of the refinements that should be returned with the query. The returned refinements
will be the terms.

Displaying refinements
The terms in a Term Discovery dimension are returned as dimension value refinements.

These refinements are displayed according to the coding in the nav_controls.jsp file. Because a number
of changes are required to handle the Term Discovery refinements, the modified file is included in Appendix
A.

Displaying clusters
The information for each cluster is returned from the MDEX Engine in a Supplement object that accompanies
the result of a navigation query.

The Supplement objects are encapsulated in a SupplementList object.

Cluster properties
Each cluster (Supplement object) contains a PropertyMap object.

The PropertyMap object in turn contains the following cluster-related properties (as key/value pairs):

ValueKey Name

The name of the Term Discovery dimension from which this cluster was
generated.

Dgraph.SeeAlsoCluster

The zero-based rank of this cluster (0 for the first cluster, 1 for the second
cluster, and so on).

ClusterRank

A number indicating the number of terms in this cluster.NTerms

The term at rank I within this cluster. Note that there will be as many Term_i
entries as there are terms in the cluster.

Term_i (where I is 0, 1 ...
NTerms-1)

JSP code for displaying clusters
You can add a new nav_clusters.jsp file for rendering clusters.

Appendix A of this guide includes a new nav_clusters.jsp file that can be used as a template for rendering
cluster contents. This file should be included at the end of the nav_controls.jsp file. Note that it is
recommended that you display clusters only if there are two or more.

The highlights of this file are as follows:

1. Get all the Supplement objects from the Navigation object, which will be encapsulated in a Supple¬
mentList object (note that the list can also include non-cluster Supplement objects):
SupplementList navsups = nav.getSupplements();

Oracle Commerce Guided Search Platform Services Relationship Discovery Guide

33Building the Front End of the Term Discovery Application | Displaying refinements

2. Within a For loop (labeled supLoop), get a Supplement object and then get that object’s properties:
Supplement sup = (Supplement)navsups.get(I);
PropertyMap propsMap = sup.getProperties();

3. Get the value of the Dgraph.SeeAlsoCluster property:
String clustersPropName = (String)propsMap.get("DGraph.SeeAlsoCluster");

4. Test the value returned from the Dgraph.SeeAlsoCluster property. If it is null, then this Supplement
object is not a cluster and we should loop back to step 2; if the value is non-null, then this is a cluster and
we continue to step 5:
if (clustersPropName != null)

5. If this is the first discovered cluster, then the clustersOn variable will be set to false. Therefore, first
display the Cluster Discovery header and then set the clustersOn variable to true (so that the header
will not be displayed again):
if (!clustersOn) {
 // display title
 ...
 clustersOn = true;
}

6. Get the ranking (ClusterRank property) of the cluster and the number of terms (NTerms property) it
contains. The returned string values are then transformed to integers:
String rankString = (String)propsMap.get("ClusterRank");
String nTermsString = (String)propsMap.get("NTerms");
int rank;
int nTerms;
try {
 rank = Integer.parseInt(rankString);
 nTerms = Integer.parseInt(nTermsString);
}

7. Within a For loop, retrieve the terms from the NTerms property and format them by separating them with
commas and spaces. The list of terms will then be:
StringBuffer termsSB = new StringBuffer();
StringBuffer termsSBSpace = new StringBuffer();
for (int iTerm = 0; iTerm < nTerms; ++iTerm) {
 String term = (String)propsMap.get("Term_"+iTerm);
 ...
 if (termsSB.length() != 0) {
 termsSB.append(", ");
 termsSBSpace.append(" ");
 }
 termsSB.append(term);
 termsSBSpace.append('"').append(term).append('"');
}

8. For a given cluster, begin to create a UrlENEQuery request (using the current request), in case the user
wants to click on that cluster. Also get the current navigation searches (as an ERecSearchList) to
determine if the cluster selection is already active in the searches.
UrlENEQuery newq = new UrlENEQuery(request.getQueryString(),"UTF-8");
ERecSearchList searches = newq.getNavERecSearches();

Oracle Commerce Guided Search Platform Services Relationship Discovery Guide

Building the Front End of the Term Discovery Application | Displaying clusters34

9. Create a new search (an ERecSearch object), using the clusterPartial search interface as the search
key, the list of related terms (in the clusterSpace variable) as the terms for the search, and mode
matchpartial as the search option (which specifies MatchPartial as the search mode).
ERecSearch newSearch = new ERecSearch("clustersPartial",
 clusterSpace, "mode matchpartial");

10. Test whether the current navigation searches are null or do not contain the new search (from step 9). If the
test is true, then the new search can be added to the UrlENEQuery request; if it is false, do not add the
new search because the cluster selection is already active.
if (searches == null || !searches.contains(newSearch)) {
 ...
 searches.add(newSearch);
 newq.setNavERecSearches(searches);
 ...
}

11. Loop back to step 2 to get another Supplement object. The loop is done when all the objects in the Sup¬
plementList have been retrieved.

12. Display the clusters, which are stored as a list of strings in the clusterStrings variable. The
clusterUrls variable is a list of the cluster URLs:
for (int I = 0; I < clusterStrings.size(); ++I) {
 %><tr><td></td>
 <td width="100%">
 > <a href="<%= clusterUrls.get(I) %>">

 <%= clusterStrings.get(I) %>
 </td></tr><%
}

The following is an abbreviated example of the JSP reference implementation showing the clusters rendered
by the nav_clusters.jsp file. Clicking on a cluster link will execute the partial match query built by steps
8-10.

Oracle Commerce Guided Search Platform Services Relationship Discovery Guide

35Building the Front End of the Term Discovery Application | Displaying clusters

Clustering overlap properties
Clustering overlap information is also returned by the MDEX Engine.

The PropertyMap object (in the cluster Supplement) also includes the following set of properties that provide
clustering overlap information.

ValueKey Name

The name of the Term Discovery dimension from which this cluster was
generated.

Dgraph.SeeAlsoClusterOverlaps

A number indicating the number of clusters that were returned by the
MDEX Engine.

NClusters

The cluster overlap numbers for a given cluster. Note that the cluster
number (the I value) corresponds to the ClusterRank value in the
DGraph.SeeAlsoCluster object.

Cluster_i (where I is 0, 1, ...
NClusters-1)

These properties provide a square matrix that has the cluster overlap numbers. In the matrix, number (I,
j) is the estimated number of records (from the records sampled from the navigation states) that are covered
by both cluster I and cluster j.

Note that from the definition it follows that diagonal numbers (I, I) have the estimated number of records covered
by each particular cluster. These diagonal numbers tend to decrease, because of the way that the Cluster
Discovery software sorts clusters (by decreasing estimated coverage).

This information can be used in application-specific ways, for example, by an application page that presents
a graphical depiction of the clusters.

Displaying records and dimension refinements
Records and refinements from a Term Discovery dimension are displayed like other dimensions.

There is no difference in displaying refinement dimension values from a Term Discovery dimension than from
regular dimensions. Information on displaying refinements is found in the Endeca MDEX Engine Basic
Development Guide, in the chapter titled “Working with Dimensions.”

Likewise, the process of displaying Endeca records generated from Term Discovery refinements is the same
as with any Endeca record. For details, see the chapter titled “Working with Endeca Records” in the Endeca
MDEX Engine Basic Development Guide.

Oracle Commerce Guided Search Platform Services Relationship Discovery Guide

Building the Front End of the Term Discovery Application | Displaying records and dimension refinements36

Chapter 5

Creating a Term Discovery Application

This section describes how to create and configure a Relationship Discovery application.

Term Discovery application workflow
This section gives an overview of the major tasks in building a Term Discovery application.

The general steps in building the application are:

1. Create and configure the appropriate Endeca properties and dimensions for term extraction and clustering,
such as the record specifier property, the all-terms property, and the Term Discovery dimension.

2. Create the record adapters for the term extraction pipeline.
3. Create the Java manipulator that performs the term extraction.
4. Add other pipeline components.
5. Run the pipeline.

Note that this section does not describe how to modify the front-end of the application. That information is in
Chapter 5, "Building the Front End of the Term Discovery Application."

Configuring the required dimension and properties
The Endeca dimension and properties needed by the Relationship Discovery components must be created
and configured.

The tasks are:
• Designate an Endeca property to be the record specifier property for the application.
• Configure the Term Discovery dimension.
• Configure the all-terms property.
• Create a partial-match search interface.

These tasks are described in the following topics.

Designating the record specifier property
One of the Endeca properties must be designated as the record specifier property.

This task assumes that an Endeca property already exists that can qualify to be the record specifier property.
The property must meet the following requirements:

• Each record must have this property.
• Each record should be assigned exactly one value for this property.
• The value for this property on each record must be unique.

Keep in mind that only one property in the project may be designated as the record specifier property.

You must designate a record specifier property because the RECORD_SPEC_PROP_NAME pass-through
(for the term extraction Java manipulator) needs to use this property for record identification purposes.

To designate a record specifier property:

1. In the Project tab of Developer Studio, double-click Properties.
2. From the Properties view, select a property and click Edit. The Property editor is displayed.
3. In the General tab, check Use for Record Spec.
4. Click OK. The Properties view is redisplayed.
5. From the File menu, choose Save.

Configuring the Term Discovery dimension
An Endeca dimension must be configured as the Term Discovery dimension.

The extracted terms are mapped to an Endeca dimension, called a Term Discovery dimension. The Term
Discovery dimension must have these two attributes:

• It must be a flat dimension (that is, a dimension that does not contain hierarchies).
• It must not be a hidden dimension.

To configure the Term Discovery dimension:

1. In the Project tab of Developer Studio, double-click Dimensions.
2. Create a dimension to be the Term Discovery dimension.
3. In the Dimensions editor, configure the Term Discovery dimension, using the following recommended values

(DR refers to the Dynamic Ranking tab):
Recommended ValueTab/Field

any valid dimension namenone/Name

system generatednone/ID

Nonenone/Member of this dimension group

Alphanone/Refinements sort order

CheckedGeneral/Prepare sort offline

UncheckedGeneral/Hidden

as required by the applicationGeneral/Show with record list

Either Default, English, or FrenchGeneral/Language

CheckedSearch/Search hierarchy for dimension search

CheckedSearch/Enable record search

UncheckedSearch/Search hierarchy for record search

Oracle Commerce Guided Search Platform Services Relationship Discovery Guide

Creating a Term Discovery Application | Configuring the required dimension and properties38

Recommended ValueTab/Field

as required by the applicationSearch/Enable wildcard search

UncheckedAdvanced/Primary

UncheckedAdvanced/Enable for rollup

as required by the applicationAdvanced/Compute refinement statistics

leave text field emptyAdvanced/Collapsible dimension threshold

Either None or And (do not select Or)Advanced/Multiselect

CheckedDR/Enable dynamic ranking

10DR/Maximum dimension values to return

AlphabeticallyDR/Sort dimension values

UncheckedDR/Generate "More..." dimension value

See Chapter 3 ("Configuration Guidelines for
Clustering").

Cluster Discovery/all fields

4. When finished, click OK.
5. From the File menu, choose Save.

The resulting Dimension editor should look similar to this example:

Configuring the all-terms property
The purpose of the all-terms property is for users to perform record searches against the extracted terms, in
order to increase recall.

The ALL_TERMS_OUTPUT_PROP_NAME pass-through is used to create the property value. The property
should then be mapped to an Endeca property, with a name of your choosing.

To configure the all-terms property:

1. In the Project tab of Developer Studio, double-click Properties.

Oracle Commerce Guided Search Platform Services Relationship Discovery Guide

39Creating a Term Discovery Application | Configuring the required dimension and properties

2. Create a property to be the all-terms property.
3. Configure the property, using the following recommended configuration values:

DescriptionOption

any valid property namenone/Name

Alphanone/Type

CheckedGeneral/Prepare sort offline

UncheckedGeneral/Rollup

as required by the applicationGeneral/Enable for record filters

UncheckedGeneral/Use for record spec

as required by the applicationGeneral/Show with record list

as required by the applicationGeneral/Show with record

Either Default, English, or FrenchGeneral/Language

CheckedSearch/Enable record search

CheckedSearch/Enable positional indexing

as required by the applicationSearch/Enable wildcard search

4. When finished, click OK.
5. From the File menu, choose Save.

Keep in mind that the all-terms property uses a form of the string sep as a separator between the terms. For
example, the string sepsep may be the separator. It is recommended that you add this separator to the stop
word list. (Note that this is the application’s stop word list, not the term exclude list.)

Creating a partial-match search interface
You can create a search interface for the all-terms property.

Although not required, it is a good idea that you create a search interface for the all-terms property. The
MatchPartial search mode should be configured for the interface, thus allowing matches on subsets of queries.

To create a partial-match search interface:

1. In the Project tab of Developer Studio, double-click Search Interfaces.
2. To begin creating the search interface, click New.
3. In the main dialog of the New Search Interface editor, enter a name for the interface.
4. In the Allow Cross-field drop-down, select Always.
5. From the All (searchable) members panel, select the all-terms property and add it to the Selected members

box.
6. Click the Relevance Ranking Modules button and add the NTerms (Number of Terms) module.
7. Click the Options button to open the Search Interface Options editor. In the editor, configure the following

recommended values:
Recommended ValueField

CheckedCustomize partial match settings

2Match at least ... words

Oracle Commerce Guided Search Platform Services Relationship Discovery Guide

Creating a Term Discovery Application | Configuring the required dimension and properties40

Recommended ValueField

0Omit at most ... words

8. Save the configured interface.

The following is an example of a partial-match search interface named clustersPartial that was created for
the all-terms property named P_AllTerms.

Creating the Term Discovery pipeline
This section describes how to create and configure a Term Discovery pipeline using Developer Studio.

The pipeline is used for baseline updates. For instructions on creating a pipeline for partial updates, see the
"Partial Updates for Term Extraction" topic in Chapter 6.

The goal of this section is to describe the pipeline components that are specific to Term Discovery, in particular,
the Java manipulator. Therefore, components that are common to all pipelines (dimension server, property
mapper, indexer adapter, and so on) are omitted for simplicity.

The pipeline for your specific implementation such as a record manipulator to pre-process records, and perhaps
another one to post-process the records. For example, if you are crawling a Web site, you will probably include
a record manipulator to strip the records of HTML code before the terms are extracted from the records.

The high-level overview of the procedure to construct a Term Discovery pipeline using Developer Studio is:

1. Create a record adapter to read the source records.
2. Create a record adapter to read in the exclude list.
3. Optionally, create other components to pre-process the incoming records.
4. Create a Java manipulator to perform the term extraction process.
5. Create a property mapper to map source properties to Endeca properties and dimensions.
6. Create an indexer adapter. Because there is nothing unique about an indexer adapter for a Term Discovery

pipeline, the process of creating this component is not described in this guide.

Here is how the sample Term Discovery pipeline looks in the Developer Studio Pipeline Diagram.

Oracle Commerce Guided Search Platform Services Relationship Discovery Guide

41Creating a Term Discovery Application | Creating the Term Discovery pipeline

Creating the record adapter for source records
The pipeline needs at least one record adapter to read in the source records.

The actual configuration of the record adapter depends on the data format of the source data. However, the
record adapter does not need any special configuration for a Term Discovery pipeline, because the term
extraction process begins after the source records are read in.

The General tab is configured as shown in the illustration below. The other tabs have the default settings. The
Developer Studio on-line help includes detailed information on how to create and configure the record adapter.

The record adapter for the sample pipeline uses an XML format and looks like this:

Oracle Commerce Guided Search Platform Services Relationship Discovery Guide

Creating a Term Discovery Application | Creating the Term Discovery pipeline42

Creating the record adapter for the exclude list
If you are using an exclude list, the pipeline needs a record adapter to read in the list.

The exclude list contains a set of terms that will be removed from the final list of extracted terms. Excludes are
compared against the canonical and all raw forms of a term; if it matches any, the term will be excluded. This
is equivalent to canonicalizing the exclude term.

The excluded terms can be stored in any source file that can be read by a record adapter. For example, the
terms can reside in a database and be read with a JDBC record adapter. The sample reference uses a text
file that is read in with a Delimited record adapter.

The exclude list should be stored in the Forge input directory (that is, the directory where the source record
data set is stored). If you are using the Endeca Application Controller, the Incoming Directory (as
provisioned in Endeca Workbench for the Forge component) is the mandatory location for the exclude list.

The format rules for the excluded terms list are as follows:
• One (and only one) header must be used.
• The header name can be any name. The sample reference uses EXCLUDE as the header name.
• If you are using a Delimited record adapter, each excluded term must be delineated by the column and

row delineators that are configured in the record adapter.

Oracle Commerce Guided Search Platform Services Relationship Discovery Guide

43Creating a Term Discovery Application | Creating the Term Discovery pipeline

• The exclude list is case insensitive.
• Apostrophes can be included as necessary. For example, enter i’m if you want that term to be excluded.

The list is processed after all terms have been extracted from the records.

In this brief example, the names of the weekdays will be excluded from the list of extracted terms:
EXCLUDE
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday

The excluded terms list is read in by its own record adapter. The record adapter in the sample pipeline uses
a Delimited format, and is identical to the source data record adapter, except for the name and URL path, as
shown in this partial illustration of the adapter:

Adding pre-processing components
You can add pipeline components that pre-process incoming records.

Although it is not mandatory, you may need to add one or more pipeline components that pre-process the
incoming records before they are passed on to the Java manipulator for term extraction. The sample pipeline
uses a record manipulator, named CleanBody, to remove HTML coding from incoming HTML documents. This
data cleansing is necessary so that the term extractor does not extract HTML tags.

The CleanBody record manipulator is used as the record source for the Java manipulator described in the next
section. The record manipulator produces a property named body which is used as the source property for
the TEXT_PROP_NAME pass-through in the Java manipulator.

The CleanBody record manipulator is described in Appendix A.

Configuring the Java manipulator
A Java manipulator must be configured for the term extraction class.

A Java manipulator component uses one or more Java modules to manipulate source records as part of Forge's
data processing. You can use multiple Java manipulators in the pipeline.

Oracle Commerce Guided Search Platform Services Relationship Discovery Guide

Creating a Term Discovery Application | Creating the Term Discovery pipeline44

The Java manipulator in a Term Discovery pipeline typically performs these major term extraction tasks:
• Extracts terms (noun phrases) from source records.
• Filters out unwanted terms (based on the exclude list).
• Calculates per-record scores for the terms.
• Performs corpus-level filtering, which determines how informative a term is in respect to the other records

in the corpus.

The configuration attributes of a Java manipulator are described below.

Creating the Java manipulator

You use Developer Studio to create and configure a Java manipulator.

To create a Java manipulator:

1. From the Pipeline Diagram in Developer Studio, click New.
2. Select Java Manipulator. The New Java Manipulator editor is displayed.
3. In the Name field, enter a name. The name must be unique among the pipeline components.
4. Fill in the appropriate fields on the General, Sources, and Pass Throughs tabs. See the following sections

for details on these tabs.
5. Optionally, you can use the Comment tab to enter description or other comment about this component.
6. Click Ok.

Configuring the General tab

Use the General tab to configure these Java property attributes:
• Java home. Optional. Specifies the location of the Java runtime engine (JRE). If this attribute is not specified,

Forge tries to obtain the location by using the following sequence:

1. The argument to the Forge --javaHome flag.
2. The ENDECA_ROOT/j2sdk directory, which is installed as part of the Endeca Platform Services package.
3. The JAVA_HOME environment variable.

• Class. Mandatory. Specifies the name of the Java class that will be used by this Java manipulator. Use
this class for term extraction:
com.endeca.edf.termextractor.TermExtractor

• Class path. Mandatory. Specifies the absolute or relative path to the JAR file that contains the class
specified by the Class attribute. The JAR file must contain the class and all other classes it depends on.
The following example points to the location of the termextractor.jar (which contains the TermExtractor
class):
/endeca/PlatformServices/6.1.4/lib/java/te/termextractor.jar

The following is an example of the General tab:

Oracle Commerce Guided Search Platform Services Relationship Discovery Guide

45Creating a Term Discovery Application | Creating the Term Discovery pipeline

Configuring the Sources tab

Use the Sources tab to specify which other component in the pipeline is providing records to this Java
manipulator. You can specify multiple record sources.

A Java manipulator used for term extraction typically uses two record sources: one for the source records and
the other for the exclude list. If two record source inputs are configured, the first input is used for source records
and the second is for the exclude list.

Note: Make sure that the record sources are configured in the proper order, with the source record
source being first. If they are reversed, the TermExtractor class in the Java manipulator will throw an
exception and the Forge process will fail. Developer Studio arranges the sources in alphabetical order;
therefore, you may have to rename them so that they are displayed in the correct order.

In the following example, the CleanBody record manipulator is considered to be the record data source while
the LoadExcludeList source is the exclude list.

Oracle Commerce Guided Search Platform Services Relationship Discovery Guide

Creating a Term Discovery Application | Creating the Term Discovery pipeline46

Configuring the Pass Throughs tab

The Pass Throughs tab is used to send configuration-specific information to the Java classes being executed
by the Java manipulator. Descriptions of the pass-through name/value pairs for the Java classes are provided
in the "Configuration Guidelines for Term Extraction" section.

To add a pass-through name/value pair:

1. In the Java Manipulator editor, click the Pass Throughs tab
2. In the Name field, enter the name of the pass-through.
3. In the Value field, enter the value for the named pass-through.
4. Click Add.
5. Repeat steps 2-4 as necessary.
6. Click Ok.

The following is an example of a populated Pass Throughs tab:

Oracle Commerce Guided Search Platform Services Relationship Discovery Guide

47Creating a Term Discovery Application | Creating the Term Discovery pipeline

Configuring other components
The Term Discovery pipeline will have other components that are common to all pipelines.

Among these other components are a property mapper. When configuring the property mapper, you must map
the property specified in the OUTPUT_PROP_NAME pass-through to the Term Discovery dimension and the
ALL_TERMS_OUTPUT_PROP_NAME property to an Endeca property, such as P_AllTerms.

The configurations of other components, such as an indexer adapter, are not described in this guide because
there are no requirements that are specific to a Term Discovery pipeline. For more information on pipeline
components, see the Platform Services Forge Guide.

Running the Term Discovery pipeline
You can run the pipeline with either the Endeca Application Controller (EAC) or control scripts.

Baseline updates for Term Discovery applications are supported under the Endeca Application Controller. No
special configuration is needed for Term Discovery applications. See the Oracle Endeca Workbench
Administrator’s Guide for details on provisioning your application to Endeca Workbench and uploading the
instance configuration from Developer Studio to Endeca Workbench (this makes the application known to the
EAC Central Server.)

For information on using control scripts with term extraction pipelines, see the Endeca Control System Guide.

Oracle Commerce Guided Search Platform Services Relationship Discovery Guide

Creating a Term Discovery Application | Creating the Term Discovery pipeline48

Chapter 6

Term Discovery Advanced Topics

This section discusses advanced topics for Term Discovery applications.

Partial updates for term extraction
Partial updates can be performed in Term Discovery implementations.

As with other types of implementations, performing partial updates in a Term Discovery implementation requires
a second pipeline that includes an update adapter. Full details on constructing partial update pipelines are in
the Endeca MDEX Engine Partial Updates Guide. This section will describe in detail only those parts that are
unique to the term extraction pipeline.

Term extraction prerequisites for partial updates
Term Discovery implementations have additional requirements for partial updates.

The Endeca MDEX Engine Partial Updates Guide describes the requirements for the baseline and partial
update pipelines. The following additional prerequisites apply to a Term Discovery application performing
partial updates:

• In the baseline pipeline, the Java manipulator must have an UPDATE_MODE pass-through with the
STATEFUL setting.

• In the partial update pipeline, the Java manipulator must have an UPDATE_MODE pass-through with the
PARTIAL setting.

• Both pipelines must use the same name for their Java manipulators. The reason is that the baseline pipeline
(with the STATEFUL setting) produces state files whose names are derived from the name of the Java
manipulator. The partial update Java manipulator, in turn, also uses its name to look for the term state files
produced by the baseline Java manipulator. Thus, both names must be identical.

• The partial update pipeline does not perform corpus-level filtering. Therefore, you do not have to add corpus
filtering pass-throughs to the Java manipulator.

• The Java manipulator pass-throughs should be the same in both pipelines (other than the corpus filtering
and UPDATE_MODE pass-throughs).

The sample partial update pipeline, shown below, is used to illustrate the various components:

Record adapters for partial updates
The partial update pipeline also has a source record adapter and an exclude record adapter.

The record adapter for the incoming source records is configured the same as the source adapter for the
baseline pipeline. The configuration for this record adapter is described in the topic "Creating the record adapter
for source records", in the section "Creating the Term Discovery pipeline" of Chapter 4.

The record adapter for the exclude list (which is optional) is also identical to the one described in the topic
"Creating the record adapter for the exclude list". Note that the same exclude list is being used as the one in
the baseline pipeline.

Java manipulator for partial updates
A Java manipulator for term extraction is also used in the partial update pipeline.

The Java manipulator in the sample partial update pipeline is identical to the one in the baseline pipeline, with
the exceptions previously noted. In particular, make sure of the following:

• The name of this Java manipulator must be the same as the one in the baseline pipeline.
• This Java manipulator must have an UPDATE_MODE pass-through with the PARTIAL setting.

The Pass Throughs tab of the Java manipulator should look similar to this example:

Oracle Commerce Guided Search Platform Services Relationship Discovery Guide

Term Discovery Advanced Topics | Partial updates for term extraction50

Term filtering with pre-tagged records
The Term Discovery software can apply filtering to documents that have already been tagged.

The use case described in this scenario involves a corpus in which the documents are tagged with pre-existing
terms that were generated and maintained by an external process (i.e., not by the Endeca term extraction
software). The goal is to apply corpus-level and record-level filtering to these terms, just as though they had
been identified as candidates by the term extractor itself.

There are three variations of this use case:
• Filtering only of pre-tagged terms: No new terms are extracted from the records, but you want filtering to

be performed on the pre-tagged terms.
• Uniform filtering on both sets of terms: The term extractor extracts new terms and combines them with the

pre-tagged terms. The same filters are applied to both sets of terms equally.
• Filtering only one of the sets of terms: New terms are extracted from the records by the Endeca term

extractor. Only the newly-extracted terms are filtered, but the pre-tagged terms are not. After filtering, both
sets of terms are combined into one output property and tagged on the records.

Important: In all cases, the pre-tagged source property must contain only one term as its value. Any
given record can have multiple instances of this property.

Creating the instance implementation
The back-end implementation for pre-tagged records varies according to the use case.

Oracle Commerce Guided Search Platform Services Relationship Discovery Guide

51Term Discovery Advanced Topics | Term filtering with pre-tagged records

Creating the instance implementation (pipeline and dimension/property configurations) for these use cases is
very similar to that described in Chapter 4. Only one Java manipulator is needed for each case and everything
should be done in Developer Studio.

To create the instance implementation for pre-tagged records:

1. In Developer Studio, configure the record specifier property. You can also create an all-terms property if
you wish.

2. Configure the related terms dimension, including the clustering parameters.
3. In the Pipeline Diagram, create a record adapter for the source data.
4. Optionally, you can use an exclude list to ensure that unwanted terms are excluded. If so, create a record

adapter for the exclude list. (Note that an exclude list can be used with pre-existing terms.)
5. Create and configure the Java manipulator, using the configuration values in the tables in the following

three sections. Note that you can also configure the ALL_TERMS_OUTPUT_PROP_NAME and the
UPDATE_MODE pass-throughs, according to the application’s needs.

6. In the property mapper component, map the OUTPUT_PROP_NAME property to the related terms dimension
that you created in step 2. If you created an all-terms property, map that also.

You then run the instance implementation in an Endeca Application Controller environment, as described in
the "Running the Term Discovery pipeline" topic in Chapter 4.

The next topics describe the configuration settings for the Java manipulator pass-throughs.

Filtering only pre-existing terms
This use case assumes that the source records have already been tagged with terms.

In this use case, you want to perform corpus- and/or record-level filtering on these pre-tagged terms. However,
you do not want the term extractor to extract any more terms from the records.

The Java manipulator that will perform filtering on the pre-tagged terms should have the following configuration
values for the pass-throughs:

Configuration ValuePASS_THROUGH Element

Set to the name of the record specifier property.RECORD_SPEC_PROP_NAME

Set to the name of a non-existent property, so that no new terms are
extracted.

TEXT_PROP_NAME

Set it to the name of the source property containing the pre-tagged terms.INPUT_TERM_PROP_NAME

Set it to the name of the property that is the destination for the pre-existing
terms on the Endeca record.

OUTPUT_PROP_NAME

As required by the application. For details, see the "Configuration for
corpus-level filtering" topic in Chapter 2.

corpus-level pass-throughs

As required by the application. For details, see the "Configuration for
record-level filtering" topic in Chapter 2.

record-level pass-throughs

Filtering both sets of terms uniformly
This use case assumes that you want to perform term extraction on a data set that already has pre-tagged
terms.

Oracle Commerce Guided Search Platform Services Relationship Discovery Guide

Term Discovery Advanced Topics | Term filtering with pre-tagged records52

In this use case, you want to combine both sets of terms and have the same filtering applied to them.

The Java manipulator that will perform uniform filtering on both sets of terms should have the following
configuration values for the pass-throughs:

Configuration ValuePASS_THROUGH Element

Set to the name of the record specifier property.RECORD_SPEC_PROP_NAME

Set to the name of the source text property from which new terms will be
extracted.

TEXT_PROP_NAME

Set to the name of the source property containing the pre-tagged terms.INPUT_TERM_PROP_NAME

Set to the name of the property that is the destination for both newly-tagged
terms and pre-existing terms.

OUTPUT_PROP_NAME

As required by the application. For details, see the "Configuration for
corpus-level filtering" topic in Chapter 2.

corpus-level pass-throughs

As required by the application. For details, see the "Configuration for
record-level filtering" topic in Chapter 2.

record-level pass-throughs

When the term extractor runs, both newly-extracted terms and pre-tagged terms are output to the same
OUTPUT_PROP_NAME property. As a result, the same corpus- and record-filtering is applied to all terms.

Filtering only the new terms
This use case assumes that new terms are extracted from the records by the Endeca term extractor, but are
not immediately combined with the pre-tagged terms.

In this use case, the newly-extracted terms are not combined at first with the pre-tagged terms. Instead, only
the newly-extracted terms are filtered, and the pre-tagged terms are not. After filtering, both sets of terms are
combined into one output property and tagged on the Endeca records.

The Java manipulator that will perform this type of filtering should have the following configuration values for
the pass-throughs:

Configuration ValuePASS_THROUGH Element

Set to the name of the record specifier property.RECORD_SPEC_PROP_NAME

Set to the name of the source text property from which new terms will be
extracted.

TEXT_PROP_NAME

Set to the name of the source property containing the pre-tagged terms.
That is, the destination for the new terms will be the same property as the
pre-existing terms.

OUTPUT_PROP_NAME

As required by the application. For details, see the "Configuration for
corpus-level filtering" topic in Chapter 2.

corpus-level pass-throughs

As required by the application. For details, see the "Configuration for
record-level filtering" topic in Chapter 2.

record-level pass-throughs

Note that the INPUT_TERM_PROP_NAME pass-through is not used. As a result, the pre-existing terms are
not filtered, but are used as-is.

When the term extractor runs, only the newly-extracted terms are filtered with the corpus- and record-level
pass-throughs. The filtered terms are then output to the OUTPUT_PROP_NAME property, which is the name

Oracle Commerce Guided Search Platform Services Relationship Discovery Guide

53Term Discovery Advanced Topics | Term filtering with pre-tagged records

of the property with the pre-existing terms. As a result, the same corpus- and record-filtering is applied to all
terms. Note that if duplicate values are created for the OUTPUT_PROP_NAME property, they are removed
by the property mapper.

Tuning aids for the filtering parameters
This section discusses two tuning aids that will help you when you are tuning the parameters for the corpus-
and record-level pass-throughs.

The two tuning aids are:
• STATEFUL update mode
• Corpus-verbose logs

Using STATEFUL mode for tuning
You can use STATEFUL mode to tune the values you set for the corpus-level and record-level pass-throughs
in the Java manipulator.

Before you begin, make sure the baseline pipeline has the UPDATE_MODE pass-through set to STATEFUL
mode.

The general procedure for using STATEFUL mode for tuning is:

1. Generate a baseline update, index the records, and start the MDEX Engine.
2. Run searches against the P_AllTerms property and check the quality of the clusters.
3. Adjust the corpus-level and/or record-level parameters.
4. Add a MAX_INPUT_RECORDS pass-through set to 0 (zero) to the Java manipulator.
5. Generate another baseline update. The update will be much faster because no terms will be extracted.

However, a full corpus- and record-level filtering operation will be performed.
6. Repeat the above steps (except step 4) until you are satisfied with the results.

When you finish, be sure to remove the MAX_INPUT_RECORDS pass-through so all your source records will
be processed.

Using corpus-filtering logging statistics
The CORPUS_DEBUG pass-through is helpful for generating debugging information.

The CORPUS_DEBUG pass-through enables the term extractor to log detailed information about the scores
it assigns to terms. Temporarily setting this pass-through will help you to tune corpus-level filtering.

The log entries contain four fields of information:

InformationLog Entry

The term (noun phrase) that was extracted and filtered.term

The number of documents in which this term occurs at least once. You can use the
RECORD_NTERMS pass-through to set a limit on the number of documents in which
a term can occur.

count

Oracle Commerce Guided Search Platform Services Relationship Discovery Guide

Term Discovery Advanced Topics | Tuning aids for the filtering parameters54

InformationLog Entry

The coverage score, which is a percentage of all the corpus documents in which this
term was found. You can use the CORPUS_MIN_COVERAGE and
CORPUS_MAX_COVERAGE pass-throughs to adjust the percentage.

coverage

the info_gain score, which is a measure of the global informativeness of the term. The
CORPUS_MIN_INFO_GAIN and CORPUS_MAX_INFO_GAIN pass-throughs will affect
this score.

info_gain

An example of a term log entry is:
term: airport count: 60 coverage: 0.04 info_gain: 1.614589

In this example, the term airport was found in 60 documents, which is 0.04 (4%) of the 1500-document
corpus, and a global informativeness score of 1.614589 was given to the term.

Examining the term extractor logs
This section provides an overview of the term extractor logs.

In addition to the logs, the section also describes how to control the size of the JVM heap (based on errors in
the logs) and information on the state files produced by the term extractor.

Term extractor logs
The term extractor writes its log entries to the Forge log.

The term extractor log entries are of these default types:
• INFO
• WARN
• ERROR

INFO entries are log messages that indicate information that may be of interest to the user; for example, what
the component is doing.

WARN entries are warning messages that indicate that processing will continue, but that problems may exist
with the source data or the instance configuration. For example, if a noun phrase contains more than five
tokens, a warning message similar to this one will warn you that the noun phrase is too long:
While processing Record '52755': Overlong noun phrase ending
in 'tannic Shiraz showing spicy oak flavors'

ERRORmessages indicate serious problems that prevent successful processing of the source data. For example,
providing an invalid pass-through to the Java manipulator will result in an error like this:
(AdapterRunner): Bad value for option UPDATE_MODE: PARTAL
com.endeca.edf.adapter.AdapterException: Bad value for option UPDATE_MODE: PARTAL

 at com.endeca.edf.termextractor.TermExtractor.configure(TermExtractor.java:1805)

 at com.endeca.edf.termextractor.TermExtractor.execute(TermExtractor.java:1644)

 at com.endeca.edf.adapter.AdapterRunner.main(AdapterRunner.java:204)

Oracle Commerce Guided Search Platform Services Relationship Discovery Guide

55Term Discovery Advanced Topics | Examining the term extractor logs

In this example, the user incorrectly entered "PARTAL" (instead of "PARTIAL") for the UPDATE_MODE
pass-through. As a result, an AdapterException was thrown by the Java manipulator.

If you are using the Endeca Application Controller, you can view the Forge log from the EAC Admin Console
page in Endeca Workbench.

The Java manipulator also creates a log using this naming format:
Edf.Pipeline.RecordPipeline.JavaManipulator.jmname.log

where jmname is the name of the Java manipulator. The contents of this log are essentially the same as the
term extractor entries in the Forge log. This log serves as a backup log in case of a problem with Forge. Note
that this log cannot be viewed from Endeca Workbench.

Increasing the JVM heap size
You can increase the size of the JVM heap to fix out-of-memory errors.

The Java manipulator runs under the control of the JVM (Java virtual machine) on your computer. If the Java
manipulator requires a large amount of memory, it is possible that the JVM will begin to throw OutOfMemoryError
instances when attempting to instantiate objects. The following ERROR log entry is an example:

Exception in thread "main" java.lang.Error: Error was thrown at record: 13352
at com.endeca.edf.termextractor.TermExtractor
 $ExtractifiedRecordHandlerSource.produceNextEr
 (TermExtractor.java:711)
...
at com.endeca.edf.adapter.AdapterRunner.main
 (AdapterRunner.java:221)
Caused by: java.lang.OutOfMemoryError: Java heap space

As the final line of the log entry indicates, the problem was caused because the Java heap space is too small.

Java has options that help control how much memory it uses:
• -Xmx sets the maximum memory heap size.
• -Xms sets the minimum memory heap size.

The default size for these values is measured in bytes. Append the letter K (or k) to the value to indicate
kilobytes, M (or m) to indicate megabytes, and G (or g) to indicate gigabytes.

You then use the Forge --javaArgument flag to pass in the JVM heap size setting to Forge, as in this
example that sets the JVM heap size to a maximum of one gigabyte:
--javaArgument -Xmx1G

Make sure that the heap size is not larger than the available free RAM on your system.

Note that if you want to pass in multiple Java options, you must use a separate --javaArgument flag for
each option.

Location of term extraction state files
When run in STATEFUL mode, the term extractor produces several state files that are required to support
partial updates.

Oracle Commerce Guided Search Platform Services Relationship Discovery Guide

Term Discovery Advanced Topics | Examining the term extractor logs56

The term extractor state files are stored in directories that use this format:

jmname_cs
jmname_ers

where jmname is the name of the Java manipulator that produced the state file.

For example, if MyTermExtractor is the name of the Java manipulator, then one of the resulting state file will
be:
MyTermExtractor_cs

Two other files are also created (one level above the state directories) with the following name format:

jmname_rtss
jmname_ers.count

By using the name of the Java manipulator as part of the state files and directories, multiple term extraction
components can be used in the pipeline without the problem of one state file overwriting another component’s
state files.

All term extraction state files are written to the default state directory of Forge. On the EAC Admin Console
page (in Endeca Workbench), you can specify another location for the state directory of Forge.

Oracle Commerce Guided Search Platform Services Relationship Discovery Guide

57Term Discovery Advanced Topics | Examining the term extractor logs

Appendix A

Term Discovery Sample Files

This appendix section contains two JSP files for the UI and a sample record manipulator.

Modified nav_controls.jsp file
This sample nav_controls.jsp file is used for the Relationship Discovery UI.

The following nav_controls.jsp file has been modified to display refinements from the Terms Discovery
dimension. Added or modified code is highlighted in bold face.
<%--
DESCRIPTION:
This module displays basic, standard navigation controls. It
is mainly used for debugging purposes and as a starting point for
no-frills navigation solutions. It only displays refinement dimensions,
so this module should be used in conjunction with nav_breadcrumbs.

Copyright (C) 2008 by Endeca Technologies - COMPANY CONFIDENTIAL
---%>

<table border="0" cellspacing="0" cellpadding="0" width="100%">
 <tr><td colspan="2" bgcolor="orange">
 nav_controls:</td></tr>
 <tr><td colspan="2"></td></tr>
 <%
 // Get refinement dimension groups
 DimGroupList refDimensionGroups = nav.getRefinementDimGroups();
 // Get descriptor dimensions
 DimensionList descDimensionsNC = nav.getDescriptorDimensions();
 // Output message if no refinement options left
 if (refDimensionGroups.size() == 0) {
 %>
 <tr><td colspan="2">
 <i>No Additional Query
Parameters Available</i></td></tr>
 <%
 }
 // Output message if no refinement options have been made
 else if (descDimensionsNC.size() == 0) {
 %>
 <tr><td colspan="2">
 <i>Query Parameters:</i></td></tr>
 <tr><td colspan="2"></td></tr>
 <%

 }
 // Header if additional query parameters available
 else {
 %>
 <tr><td colspan="2">
 <i>Additional Query Parameters:</i></td></tr>
 <tr><td colspan="2"></td></tr>
 <%
 }
 // Loop over dimension groups
 for (int i=0; i<refDimensionGroups.size(); i++) {
 // Get dimension group object
 DimGroup dg = (DimGroup)refDimensionGroups.get(i);
 // If group is explicit (not default group), display group
 if (dg.isExplicit()) {
 %>
 <tr><td colspan="2"></td></tr>
 <tr><td colspan="2">
 <%= dg.getName() %></td></tr>
 <%
 }
 // Loop over dimensions in group
 for (int j=0; j<dg.size(); j++) {
 // Get dimension object
 Dimension dim = (Dimension)dg.get(j);
 // Get root for dimension
 DimVal root = dim.getRoot();
 // Get id of root
 long rootId = root.getId();

// special handling for Term Discovery dimension
 final boolean isRelTerms = dim.getName().equals(relTermsDimName);
 // Get refinement list for dimension
 DimValList refs = dim.getRefinements();
 // Create request to expose dimension values
 UrlGen urlg = new UrlGen(request.getQueryString(), "UTF-8");
 urlg.removeParam("D");
 urlg.removeParam("Dx");
 urlg.removeParam("sid");
 urlg.removeParam("in_dym");
 urlg.removeParam("in_dim_search");
 urlg.addParam("sid",(String)request.getAttribute("sid"));

// Expand dimension
 if (!isRelTerms && refs.size() == 0) {
 urlg.addParam("Ne",Long.toString(rootId)+
 (relTermsRootId>= 0? " "+Long.toString(relTermsRootId):""));
 }
 // Close dimension
 else {
 urlg.removeParam("Ne");
 }
 String url = CONTROLLER+"?"+urlg;
 // Display dimension (open row here, close later)

if (!isRelTerms) {
 %>
 <tr><td colspan="2"><a href="<%= url %>">

 <%= dim.getName() %>
 }
 else {
 %>
 <tr><td colspan="2" bgcolor="orange">

Oracle Commerce Guided Search Platform Services Relationship Discovery Guide

Term Discovery Sample Files | Modified nav_controls.jsp file60

 <%=relTermsDisplayString %></td></tr>
 <%
 }

 // Get intermediate list for dimension
 DimValList ints = dim.getIntermediates();
 // Loop over intermediate list
 for (int k=0; k < ints.size(); k++) {
 // Get intermediate dimension value
 DimVal intermediate = ints.getDimValue(k);
 // Display intermediate
 %> >
 <%= intermediate.getName() %><%
 }
 // Close nav row
 %></td></tr><%
 String refinementsColor = "blue";

Set activeDiscTerms = new HashSet();
 if (isRelTerms) {
 String ntk = (String)request.getParameter("Ntk");
 String ntx = (String)request.getParameter("Ntx");
 if (ntk != null && ntk.equals(P_AllTerms) &&
 "mode matchall".equals(ntx))
 {
 String discTerm = (String)request.getParameter("Ntt");
 if (discTerm != null) {
 if (discTerm.length() >= 3 &&
 discTerm.charAt(0) == '"' &&
 discTerm.charAt(discTerm.length()-1) == '"')
 {
 // remove quotes
 discTerm = discTerm.substring(1, discTerm.length()-1);
 }
 activeDiscTerms.add(discTerm);
 }
 }
 } // if (isRelTerms)

 %><%
 // Loop over refinement list
 for (int k=0; k < refs.size(); k++) {
 // Get refinement dimension value
 DimVal ref = refs.getDimValue(k);
 // Get properties for refinement value
 PropertyMap pmap = ref.getProperties();
 // Get dynamic stats
 String dstats = "";
 if (pmap.get("DGraph.Bins") != null) {
 dstats = " ("+pmap.get("DGraph.Bins")+")";
 }
 %><%
 // Create request to select refinement value
 urlg = new UrlGen(request.getQueryString(), "UTF-8");
 boolean displayRefinement=true;

if (isRelTerms &&
 (!ref.getName().equals("More...") || !showRelTermsMore))
 {
 if (ref.getName().equals("More...") ||
 ENEQueryToolkit.isImplicitRefinement(dim, ref) ||
 activeDiscTerms.contains(ref.getName()))

Oracle Commerce Guided Search Platform Services Relationship Discovery Guide

61Term Discovery Sample Files | Modified nav_controls.jsp file

 {
 displayRefinement = false;
 }
 else {
 urlg.addParam("Ntk",P_AllTerms);
 urlg.addParam("Ntt","\""+ref.getName()+"\"");
 urlg.addParam("Ntx","mode matchall");
 urlg.removeParam("No");
 urlg.removeParam("Nao");
 urlg.removeParam("Nty");
 urlg.removeParam("D");
 urlg.removeParam("Dx");
 urlg.removeParam("sid");
 urlg.removeParam("in_dym");
 urlg.removeParam("in_dim_search");
 urlg.addParam("sid",(String)request.getAttribute("sid"));
 url = CONTROLLER+"?"+urlg;
 }
 %><%
 } else {
 // If refinement is navigable, change the Navigation parameter
 if (ref.isNavigable()) {
 urlg.addParam("N",
 (ENEQueryToolkit.selectRefinement(nav,ref)).toString());
 urlg.addParam("Ne",Long.toString(rootId)+
 (relTermsRootId>= 0? " "+Long.toString(relTermsRootId):""));
 }
 // If refinement is non-navigable, change only the
 // exposed dimension parameter
 // (Leave the Navigation parameter as is)
 else {
 urlg.addParam("Ne",Long.toString(ref.getId())+
 (relTermsRootId>= 0? " "+Long.toString(relTermsRootId):""));
 }
 urlg.removeParam("No");
 urlg.removeParam("Nao");
 urlg.removeParam("Nty");
 urlg.removeParam("D");
 urlg.removeParam("Dx");
 urlg.removeParam("sid");
 urlg.removeParam("in_dym");
 urlg.removeParam("in_dim_search");
 urlg.addParam("sid",(String)request.getAttribute("sid"));
 url = CONTROLLER+"?"+urlg;
 }
 // Display refinement
 if (displayRefinement) {
 %>
 <tr><td></td>
 <td width="100%"><a href="<%= url %>">
 <font face="arial" size="1" color="<%=refinementsColor%>">
 <%= ref.getName() %>
 <%= dstats %>
 </td></tr>
 <%
 }
 } // end of: Loop over refinement list
 } // end of: Loop over dimensions in group
 // If group is explicit (not default group), display spacer
 if (dg.isExplicit()) {
 %>

Oracle Commerce Guided Search Platform Services Relationship Discovery Guide

Term Discovery Sample Files | Modified nav_controls.jsp file62

 <tr><td colspan="2"></td></tr>
 <%
 }

 } // end of: Loop over dimension groups
 %>
 <tr><td colspan="2"></td></tr>
</table>

<%-- Display Clusters Controls --%>
<%@ include file="nav_clusters.jsp" %>

<%-- Display Range Filter Controls --%>
<%@ include file="nav_range_controls.jsp" %>

New nav_clusters.jsp file
This nav_clusters.jsp sample file is used to render clusters that are generated by the Cluster Discovery
feature.

This file should be included in the nav_controls.jsp file.
<%--
DESCRIPTION:
This module demonstrates the Cluster Discovery feature.
It displays clusters received as Supplemental Objects, makes them
selectable, and, upon selection, generates a search based on
the selected clusters.

This module is included in the nav_controls.jsp module.

Copyright (C) 2008 by Endeca Technologies - COMPANY CONFIDENTIAL
---%>
<%
// Get supplemental list
SupplementList navsups = nav.getSupplements();
boolean clustersOn = false;

// lazily allocated:
List<String> clusterUrls = null;
List<String> clusterStrings = null;

// Loop over cluster supplemental objects
supLoop:
for (int i = 0; i < navsups.size(); ++i) {
 // Get individual see also object
 Supplement sup = (Supplement)navsups.get(i);
 // Get property map
 PropertyMap propsMap = sup.getProperties();

 String clustersPropName = (String)propsMap.get("DGraph.SeeAlsoCluster");
 if (clustersPropName != null) {
 if (!clustersOn) {
 // display title
 %>
 <table border="0" cellspacing="0" cellpadding="0" width="100%">
 <tr><td colspan="5" bgcolor="orange">

Oracle Commerce Guided Search Platform Services Relationship Discovery Guide

63Term Discovery Sample Files | New nav_clusters.jsp file

 Cluster Discovery</td></tr>
 <tr><td colspan="5"></td></tr>
 <%
 clustersOn = true;
 } // end of if !clustersOn
 String rankString = (String)propsMap.get("ClusterRank");
 String nTermsString = (String)propsMap.get("NTerms");
 int rank;
 int nTerms;
 try {
 rank = Integer.parseInt(rankString);
 nTerms = Integer.parseInt(nTermsString);
 } catch (NumberFormatException e) {
 // add code here to log error
 continue supLoop;
 } // end of catch

 StringBuffer termsSB = new StringBuffer();
 StringBuffer termsSBSpace = new StringBuffer();
 for (int iTerm = 0; iTerm < nTerms; ++iTerm) {
 String term = (String)propsMap.get("Term_"+iTerm);
 if (term == null) {
 // add code to log error
 continue supLoop;
 } // end of if termsSB.length
 termsSB.append(term);
 termsSBSpace.append('"').append(term).append('"');
 } // end of for terms
 String clusterX = termsSB.toString();
 String clusterSpace = termsSBSpace.toString();
 // Create request to follow a cluster selection
 // (unless cluster selection already active in the searches)
 UrlENEQuery newq = new UrlENEQuery(request.getQueryString(), "UTF-8");
 ERecSearchList searches = newq.getNavERecSearches();
 ERecSearch newSearch = new ERecSearch("clustersPartial",
 ERecSearch newSearch = new ERecSearch("clustersPartial",

 if (searches == null || !searches.contains(newSearch)) {
 if (searches == null)
 searches = new ERecSearchList();
 if (clusterUrls == null) {
 clusterUrls = new ArrayList<String>();
 clusterStrings = new ArrayList<String>();
 } // end of if clusterUrls
 searches.add(newSearch);
 newq.setNavERecSearches(searches);
 UrlGen hostportq = new UrlGen("", "UTF-8");
 hostportq.addParam("eneHost",
 (String)request.getAttribute("eneHost"));
 hostportq.addParam("enePort",
 (String)request.getAttribute("enePort"));
 String url = CONTROLLER + "?" + hostportq.toString() +
 "&" + UrlENEQuery.toQueryString(newq, "UTF-8");
 clusterUrls.add(url);
 clusterStrings.add(clusterX);
 } // end of if searches
 } // end of if clusterPropName != null
} // end of if clusterPropName != null

if (clusterStrings != null && clusterStrings.size() > 1) {
 // display clusters only if at least 2.

Oracle Commerce Guided Search Platform Services Relationship Discovery Guide

Term Discovery Sample Files | New nav_clusters.jsp file64

 for (int i = 0; i < clusterStrings.size(); ++i) {
 %>
 <tr><td></td>
 <td width="100%">
 > <a href="<%= clusterUrls.get(i) %>">

 <%= clusterStrings.get(i) %>
 </td></tr>
 <%
 } // end of for clusterStrings
} // end of if clusterStrings

if (clustersOn) {
 // close table
 %>
 <tr><td colspan="2"></td></tr>
 </table>
 <%
} // end of if clusterOn

Sample record manipulator for HTML documents
This sample record manipulator cleans HTML documents.

This sample record manipulator, named CleanBody, uses several expressions (including PERL and
PARSE_DOC) to remove HTML coding from incoming HTML documents. This cleansing is necessary so that
the term extractor can extract terms that do not include HTML tags.

The logic behind cleaning the body text is as follows:

1. Create a property called body_missing.
2. If a property named body exists, remove the property named body_missing.
3. Create a property named body.mimetype with value "text/html".
4. Create a property named body.encoding with value "utf8".
5. Run the PARSE_DOC expression from body[.*] to create a property named text.
6. Remove all the body[.*] properties.
7. Rename the text property to body.

The resulting body property is then used as the source property for the TEXT_PROP_NAME pass-through for
the Java manipulator.

Code for the sample record manipulator
<RECORD_MANIPULATOR FRC_PVAL_IDX="TRUE" NAME="CleanBody">
 <COMMENT>Provides expressions to clean HTML body text.</COMMENT>
 <RECORD_SOURCE>LoadAllMainData</RECORD_SOURCE>
 <EXPRESSION LABEL="" NAME="CREATE" TYPE="VOID" URL="">
 <EXPRNODE NAME="PROP_NAME" VALUE="body.missing"/>
 <EXPRESSION LABEL="" NAME="CONST" TYPE="STRING" URL="">
 EXPRNODE NAME="VALUE" VALUE="true"/>
 </EXPRESSION>
 </EXPRESSION>
 <EXPRESSION LABEL="" NAME="IF" TYPE="VOID" URL="">
 <EXPRESSION LABEL="" NAME="PROP_EXISTS" TYPE="INTEGER" URL="">
 <EXPRNODE NAME="PROP_NAME" VALUE="body"/>
 </EXPRESSION>

Oracle Commerce Guided Search Platform Services Relationship Discovery Guide

65Term Discovery Sample Files | Sample record manipulator for HTML documents

 <EXPRESSION LABEL="" NAME="REMOVE" TYPE="VOID" URL="">
 <EXPRNODE NAME="PROP_NAME" VALUE="body.missing"/>
 </EXPRESSION>
 </EXPRESSION>
 <EXPRESSION LABEL="" NAME="IF" TYPE="VOID" URL="">
 <EXPRESSION LABEL="" NAME="PROP_EXISTS" TYPE="INTEGER" URL="">
 <EXPRNODE NAME="PROP_NAME" VALUE="body.missing"/>
 </EXPRESSION>
 <EXPRESSION LABEL="" NAME="CREATE" TYPE="VOID" URL="">
 <EXPRNODE NAME="PROP_NAME" VALUE="body"/>
 <EXPRESSION LABEL="" NAME="IDENTITY" TYPE="PROPERTY" URL="">
 <EXPRNODE NAME="PROP_NAME" VALUE="lp"/>
 </EXPRESSION>
 </EXPRESSION>
 </EXPRESSION>
 <EXPRESSION LABEL="" NAME="CREATE" TYPE="VOID" URL="">
 <EXPRNODE NAME="PROP_NAME" VALUE="body.mimetype"/>
 <EXPRESSION LABEL="" NAME="CONST" TYPE="STRING" URL="">
 <EXPRNODE NAME="VALUE" VALUE="text/html"/>
 </EXPRESSION>
 </EXPRESSION>
 <EXPRESSION LABEL="" NAME="CREATE" TYPE="VOID" URL="">
 <EXPRNODE NAME="PROP_NAME" VALUE="body.encoding"/>
 <EXPRESSION LABEL="" NAME="CONST" TYPE="STRING" URL="">
 <EXPRNODE NAME="VALUE" VALUE="utf8"/>
 </EXPRESSION>
 </EXPRESSION>

 <EXPRESSION LABEL="" NAME="PERL" TYPE="VOID" URL="">
 <EXPRBODY>
<![CDATA[my @bodies = get_props_by_name("body");
foreach my $body (@bodies) {
 my $value = $body->value;
 # Replace HTML block elements with end-of-sentence punctuation.
 $value =~
 s/<\/?(?:H[123456])|(?:[OU]L)|(?:LI)|(?:D[LDT])|(?:PRE)|(?:DIV)|
 (?:NOSCRIPT)|(?:BLOCKQUOTE)|(?:FORM)|(?:TABLE)|(?:TH)|(?:TD)|(?:HR)|
 (?:FIELDSET)|(?:ADDRESS)>/. /g;
 $body->value($value);
}
replace_props("body", @bodies);]]>
 </EXPRBODY>
 </EXPRESSION>
 <EXPRESSION LABEL="" NAME="PARSE_DOC" TYPE="VOID" URL="">
 <EXPRNODE NAME="FILE_PATH" VALUE="FALSE"/>
 <EXPRNODE NAME="PARSE_META" VALUE="FALSE"/>
 <EXPRNODE NAME="MIMETYPE_PROP" VALUE="body.mimetype"/>
 <EXPRNODE NAME="ENCODING_PROP" VALUE="body.encoding"/>
 <EXPRNODE NAME="BODY_PROP" VALUE="body"/>
 <EXPRNODE NAME="TEXT_PROP" VALUE="text"/>
 </EXPRESSION>
 <EXPRESSION LABEL="" NAME="REMOVE" TYPE="VOID" URL="">
 <EXPRNODE NAME="PROP_NAME" VALUE="body"/>
 <EXPRNODE NAME="PROP_NAME" VALUE="body.missing"/>
 <EXPRNODE NAME="PROP_NAME" VALUE="body.mimetype"/>
 <EXPRNODE NAME="PROP_NAME" VALUE="body.encoding"/>
 </EXPRESSION>
 <EXPRESSION LABEL="" NAME="RENAME" TYPE="VOID" URL="">
 <EXPRNODE NAME="OLD_NAME" VALUE="text"/>
 <EXPRNODE NAME="NEW_NAME" VALUE="body"/>
 </EXPRESSION>

Oracle Commerce Guided Search Platform Services Relationship Discovery Guide

Term Discovery Sample Files | Sample record manipulator for HTML documents66

 <EXPRESSION LABEL="" NAME="PERL" TYPE="VOID" URL="">
 <EXPRBODY>
 <![CDATA[my @bodies = get_props_by_name("body");
foreach my $body (@bodies) {
 my $value = $body->value;
 # Move filing date to a separate property
 if ($value =~ s/Filed at (.*)//) {
 my $filed = $1;
 add_props(new Zinc::PropVal("filed", $filed));
 }
 # Remove leading newlines
 $value =~ s/^(?:\r?\n)+//;
 # Remove byline
 $value =~ s/^([a-zA-Z,.]+ \([A-Z]+\)) ?-- ?//;
 # Add sentence endings to things that look like lists
 $value =~ s/([^.])(?:\r?\n)+([0-9])/$1. \n$2/g;
 $body->value($value);
}
replace_props("body", @bodies);]]>
 </EXPRBODY>
 </EXPRESSION>
</RECORD_MANIPULATOR>

Oracle Commerce Guided Search Platform Services Relationship Discovery Guide

67Term Discovery Sample Files | Sample record manipulator for HTML documents

Index

A
ALL_TERMS_OUTPUT_PROP_NAME pass-through

definition 16
used for all-terms property 39

all-terms property, creating 39

B
baseline updates, mode for 14
best practices for term filtering 23

C
clusters

configuration parameters 27
configuring in Developer Studio 27
JSP code for rendering 33
overlap properties 36
overview 11
properties in Supplement objects 33
tuning strategy 29

constants.jsp file
adding global constants 31
setting refinements 32

CORPUS_DEBUG pass-through
used for tuning 54, 55

CORPUS_MAX_COVERAGE pass-through
recommended setting 24

CORPUS_MAX_INFO_GAIN pass-through
recommended setting 24

CORPUS_MAX_RECS pass-through
recommended setting 23

CORPUS_MIN_COVERAGE pass-through
definition 19
recommended setting 24

CORPUS_MIN_INFO_GAIN pass-through
definition 19
recommended setting 24

CORPUS_MIN_RECS pass-through
definition 19
recommended setting 23

CORPUS_REGEX_KEEP pass-through
definition 20
recommended setting 24

CORPUS_REGEX_SKIP pass-through
definition 20
recommended setting 24

corpus-level filtering
best practices 23
configuration parameters 18
for new terms only 53
for pre-tagged and extracted terms 53

corpus-level filtering (continued)
for pre-tagged terms 52

coverage score for terms 55

D
debugging the term extraction process 55
destination property for tagged terms 14
dimension for Term Discovery, creating 38

E
Endeca Cluster Discovery, overview of 11
Endeca Relationship Discovery, overview of 9
Endeca Term Discovery, overview of 10
exclude list for term extraction 43

F
filtering applied to pre-tagged records 51
format of source data 25

G
global constants for the front-end application 31
global informativeness of terms, threshold for 19
global language ID for documents, setting 17

H
HTML documents, sample record manipulator for 65

I
info_gain score for terms 19, 55
INPUT_TERM_PROP_NAME pass-through

definition 17
filtering pre-tagged records 52, 53

J
Java manipulator

configuring for baseline pipeline 44
configuring for partial update pipeline 50
increasing JVM heap size 56
logs 56

JSP code for rendering clusters 33
JVM heap size, increasing 56

L
LANG pass-through

definition 17
LANG_PROP_NAME pass-through

definition 17
logs

Java manipulator 56
term extractor 55

M
MAX_INPUT_RECORDS pass-through

definition 15
minimal configuration for term extraction 25

N
nav_clusters.jsp sample file 63
nav_controls.jsp sample file 59
noun phrases, size of 10

O
OUTPUT_PROP_NAME pass-through

definition 14
overlap properties for clusters 36

P
PARSE_DOC expression 65
PARTIAL mode definition 15
partial updates for Term Discovery

Java manipulator 50
mode setting 15
record adapters 50
requirements 49

partial-match search interface, creating 40
pass-throughs for term extraction

ALL_TERMS_OUTPUT_PROP_NAME 16
CORPUS_MAX_COVERAGE 19
CORPUS_MIN_COVERAGE 19
CORPUS_MIN_INFO_GAIN 19
CORPUS_MIN_RECS 19
CORPUS_REGEX_KEEP 20
CORPUS_REGEX_SKIP 20
INPUT_TERM_PROP_NAME 17
LANG 17
LANG_PROP_NAME 17
MAX_INPUT_RECORDS 15
minimal configuration 25
OUTPUT_PROP_NAME 14
RECORD_FRACT_OF_MEDIAN 21
RECORD_NTERMS 21
RECORD_SPEC_PROP_NAME 14
TEXT_PROP_NAME 16
UPDATE_MODE 14

pipeline for Term Discovery
baseline updates 41
exclude list record adapter 43
Java manipulator 44
partial updates 49
pre-processing records 44
running 48
source record adapters 42

pre-tagged records for Term Discovery
corpus-level and record-level filtering 52
creating instance implementation 52
filtering for new terms only 53
filtering for pre-tagged and extracted terms 53
use cases 51

R
record adapters

baseline pipeline 42
exclude list 43
partial update pipeline 50

record manipulator for HTML documents, sample 65
record specifier property, specifying 38
RECORD_FRACT_OF_MEDIAN pass-through

definition 21
recommended setting 24

RECORD_NTERMS pass-through
definition 21
recommended setting 24

RECORD_SPEC_PROP_NAME pass-through
setting in Developer Studio 14

record-level filtering
best practices 24
configuration parameters 21
for new terms only 53
for pre-tagged and extracted terms 53
for pre-tagged terms 52
setting scoring threshold 21

refinements
displaying in a Term Discovery dimension 36
displaying in nav_controls.jsp 33
setting in controller file 32

regular expressions for term extraction 20
relevant terms, definition of 10
restricting input records for term extraction 15

S
scoring threshold for record-level filtering, setting 21
search interface for Term Discovery application, creating 40
search property for all extracted terms 16
singlet terms, eliminating 19
source property for term extraction 16
state files, term extraction 57
STATEFUL mode

definition 15
for tuning filtering pass-throughs 54

STATELESS mode for baseline updates 14
strategies to limit terms on records 21

Oracle Commerce Guided Search Platform Services70

Index

Supplement objects for clusters 33

T
Term Discovery application

all-terms property 39
exclude list record adapter 43
global constants for UI 31
Java manipulator 44
overview 37
partial-match search interface 40
pre-processing records 44
record specifier 38
running the pipeline 48
source record adapter 42
terms dimension 38

Term Discovery dimension
creating 38
displaying records 36

Term Discovery dimension (continued)
displaying refinements 36

term extraction
format of source data 25
minimal configuration 25
overview 10
relevant terms 10
state files 57

terms tagged on records, limiting 21
TEXT_PROP_NAME pass-through

definition 16
tuning strategy for clusters 29

U
UI for Term Discovery application 31
UPDATE_MODE pass-through

values 14

71

Index

	Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Oracle Support

	Introduction to Term Discovery
	Overview of Relationship Discovery
	Overview of Term Discovery
	Overview of Cluster Discovery

	Configuration Guidelines for Term Extraction
	Term extraction workflow
	Configuration for the main term extraction module
	Record specifier property name
	Terms output property
	Update mode
	Maximum number of input records

	Configuration for candidate term identification
	Source input text property
	All-terms destination property
	Input term property
	Language specification of input records

	Configuration for corpus-level filtering
	Minimum and maximum occurrences in records
	Minimum and maximum coverage settings
	Threshold for the global informativeness of terms
	Using regular expressions
	Enabling debugging information for corpus-level filtering

	Configuration for record-level filtering
	Specifying a scoring threshold
	Limiting the number of terms per record

	Best practices for term filtering
	Minimal term extraction configuration
	Format of the source data

	Configuration Guidelines for Clustering
	Configuration UI for clusters
	Clustering parameter descriptions
	Tuning strategy for clusters

	Building the Front End of the Term Discovery Application
	Files to be changed
	Adding global constants
	Setting refinements in the controller file
	Displaying refinements
	Displaying clusters
	Cluster properties
	JSP code for displaying clusters
	Clustering overlap properties

	Displaying records and dimension refinements

	Creating a Term Discovery Application
	Term Discovery application workflow
	Configuring the required dimension and properties
	Designating the record specifier property
	Configuring the Term Discovery dimension
	Configuring the all-terms property
	Creating a partial-match search interface

	Creating the Term Discovery pipeline
	Creating the record adapter for source records
	Creating the record adapter for the exclude list
	Adding pre-processing components
	Configuring the Java manipulator
	Configuring other components
	Running the Term Discovery pipeline

	Term Discovery Advanced Topics
	Partial updates for term extraction
	Term extraction prerequisites for partial updates
	Record adapters for partial updates
	Java manipulator for partial updates

	Term filtering with pre-tagged records
	Creating the instance implementation
	Filtering only pre-existing terms
	Filtering both sets of terms uniformly
	Filtering only the new terms

	Tuning aids for the filtering parameters
	Using STATEFUL mode for tuning
	Using corpus-filtering logging statistics

	Examining the term extractor logs
	Term extractor logs
	Increasing the JVM heap size
	Location of term extraction state files

	Term Discovery Sample Files
	Modified nav_controls.jsp file
	New nav_clusters.jsp file
	Sample record manipulator for HTML documents

	Index

