

Oracle® Revenue Management and Billing

Version 2.3.0.0.0

Batch Server Administration Guide

Revision 1.0

E49217-01

June, 2014

Oracle Revenue Management and Billing Batch Server Administration Guide

ii Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle Revenue Management and Billing Batch Server Administration Guide

E49217-01

Copyright Notice

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Trademark Notice

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be
trademarks of their respective owners.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure, and are protected by intellectual property laws. Except as expressly
permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish or display any part, in any
form, or by any means. Reverse engineering, disassembly, or de-compilation of this software, unless
required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, related documentation and technical data delivered to U.S. Government
customers are “commercial computer software” or “commercial technical data” pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the
use, duplication, disclosure, modification, and adaptation shall be subject to restrictions and license
terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the
Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

Hazardous Applications Notice

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which
may create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy and other measures to ensure the safe
use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by
use of this software in dangerous applications.

Third Party Content, Products, and Services Disclaimer

This software and documentation may provide access to or information on content, products and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third party content, products and services. Oracle

Oracle Revenue Management and Billing Batch Server Administration Guide

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. iii

Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third party content, products or services.

Oracle Revenue Management and Billing Batch Server Administration Guide

iv Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Preface

About This Document
This document helps you to understand the concepts required while configuring and working with the
batch component in Oracle Revenue Management and Billing. You must refer to this document after
going through the Oracle Revenue Management and Billing Server Administration Guide.

Intended Audience
This document is intended for the following audience:

 System and Database Administrators

 Consulting Team

 Implementation Team

Organization of the Document
The information in this document is organized into the following sections:

Section No. Section Name Description

Section 1 Batch Architecture Explains the difference between foreground
and background processing. It also lists the
components required during the background
processing.

Section 2 Concepts Explains the different types of predefined
background processes. It also explains how to
create a batch control and how to configure the
batch component.

Section 3 Monitoring Background Processes Describes the methods used for monitoring the
background processing (batch).

Section 4 Interactive Submission (SPLBATCH) Explains how to submit interactive batches. It
also lists the limitations of interactive batches.

Section 5 Online Submission Explains how to submit a batch job through the
user interface. It also explains the concepts
related to online batch daemon.

Section 6 External Scheduler Submission Explains how to configure and execute batch
jobs through external scheduler. It also lists and
describes utilities that allow external schedulers
(or a command line) to establish a JVM to run
batch processes and then submit batch process
to that JVM.

Section 7 Miscellaneous Operations Lists and describes the common activities that
are applicable to batch processing.

Oracle Revenue Management and Billing Batch Server Administration Guide

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. v

Related Documents
You can refer to the following documents for more information:

Document Description

Oracle Revenue Management and Billing
Release Notes Version 2.3.0.0.0

Provides a brief description about the new features and
enhancements made in this release. It also highlights the
bug fixes and known issues in this release.

Oracle Revenue Management and Billing
Server Administration Guide

Describes the Oracle Revenue Management and Billing
architecture. It also explains how to configure, deploy,
and monitor web and business application servers.

Oracle Revenue Management and Billing Batch Server Administration Guide

vi Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Contents

1. Batch Architecture ... 1

1.1 Background Processing and the Architecture .. 2

2. Concepts .. 3

2.1 Process Types ... 3

2.1.1 Process What's Ready Processes3

2.1.2 Extract Processes3

2.1.3 Ad-hoc Processes3

2.1.4 Monitor Processes3

2.1.5 Conversion Processes4

2.1.6 Object Validation Processes4

2.1.7 To Do Processes4

2.1.8 Archive and Purge Processes5

2.1.9 Configuration Lab Processes5

2.1.10 Interface Processes5

2.2 Batch Controls .. 5

2.2.1 Viewing Batch Controls Using the Application Viewer8

2.2.2 Adding your own Batch Controls9

2.3 Standard Parameters .. 9

2.3.1 Explanation of Timeout and Commit Interval .. 11

2.3.2 Explanation of Thread Limit and Thread Number .. 11

2.3.3 Explanation of Restart and Rerun ... 12

2.4 Timed Batch Processes ... 13

2.5 Common Configuration Files .. 14

2.5.1 eOBatch.properties .. 15

2.5.2 spl.properties - Product Configuration Settings ... 16

2.5.3 hibernate.properties - Database Connectivity Properties .. 17

2.5.4 log4j.properties - Logging Configuration .. 19

2.5.5 coherence-cache-config.xml ... 20

2.5.6 tangasol-coherence-override.xml .. 20

2.6 Configuration Process ... 23

2.7 Submission Methods .. 24

3. Monitoring Background Processes .. 25

3.1 Batch Run Tree ... 25

3.2 Using SQl Queries to Monitor Background Processes .. 26

3.3 Monitoring using JMX classes ... 27

3.3.1 Jconsole .. 27

Oracle Revenue Management and Billing Batch Server Administration Guide

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. vii

3.3.2 Mbeans ... 27

3.3.3 BatchCluster MBean ... 28

3.3.4 Threadpools Mbean .. 30

3.3.5 Members MBean .. 31

3.3.6 ClusterNode Mbean .. 32

3.3.7 BatchThread Mbeans .. 34

3.3.8 Adding Custom JMX Information .. 37

3.3.9 Cancelling Batch Processes Using JMX ... 37

3.3.10 jmxbatchclient[.sh] - JMX batch command line ... 37

4. Interactive Submission (SPLBATCH) ... 40

4.1 Anatomy of an Interactive Submission ... 40

4.2 Return Codes .. 42

4.3 Limitations of the Interactive Submission Method .. 42

5. Online Submission ... 43

5.1 Using Online Submission .. 44

5.2 Online Batch Daemon ... 49

5.2.1 Guidelines for using the Batch Server/Batch Scheduler Daemon 51

5.2.2 Logging using the Batch Server/Scheduler Daemon .. 51

5.2.3 Configuring JMX with the Batch Server/Scheduler Daemon .. 52

5.3 Submitbatch - Command Based Daemon .. 52

6. External Scheduler Submission .. 53

6.1 Concepts ... 53

6.2 Threadpoolworker[.sh] Utility .. 53

6.2.1 threadpoolworker and F1_TSPACE_ENTRY .. 55

6.2.2 threadpoolworker.properties configuration file .. 55

6.2.3 Multi-cast or Uni-cast ... 56

6.2.4 Well Known Addresses ... 57

6.2.5 threadpoolworker[.sh] command line options .. 58

6.2.6 tpwlog4j.properties .. 60

6.2.7 Automatic Log Rotation .. 60

6.2.8 Return Codes .. 60

6.3 submitjob[.sh] ... 61

6.3.1 submitbatch.properties Configuration File .. 61

6.3.2 submitbatchlog4j.properties Configuration File .. 62

6.3.3 Job Specific parameters files .. 62

6.3.4 submitjob[.sh] Command-Line Options .. 63

6.3.5 Property Override Order .. 66

6.3.6 Port number of RMI Registry (-i) .. 66

6.3.7 Soft Parameters (-x) vs (-X) ... 66

Oracle Revenue Management and Billing Batch Server Administration Guide

viii Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

6.3.8 Environment Variable substitution at runtime... 67

6.3.9 Return Codes .. 67

7. Miscellaneous Operations ... 68

7.1 Forcing a Process to Not Attempt Restart .. 68

7.2 Error Processing .. 68

7.3 Marking a Process Complete from the Command Line .. 69

7.4 Sending Emails at the Conclusion of Batch Processes .. 69

7.5 Template Overrides .. 71

7.5.1 Batch Configuration User Exits ... 72

7.5.2 Properties File User Exits .. 75

7.5.3 Specifying Custom Log File Names ... 76

7.6 Turning off L2 Cache ... 77

Oracle Revenue Management and Billing Batch Server Administration Guide

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 1

1. Batch Architecture
The product is known for its online (or foreground) processing (a.k.a. online processing) but one of the
major features of the product is its set of background processes. Background processing is a major part
of the product with numerous background processes supplied as standard.

The easiest way to understand the concept behind background processing is to think that background
processing is like a super efficient user that operates on a batch of objects. That is why background
processing is commonly called Batch.

Note: For publishing purpose the term "batch" will be used to denote background processing in this
document.

Online typically operates on one object at a time, initiated by an online user or a Web Service call, where
batch can operate on one or more objects (also known as a set of objects) at a time, initiated using a
number of technologies.

Object

Object

Object

Object

Object

Object

In
it
ia

ti
n

g
 t
e

c
h

n
o

lo
g

y
O

n
lin

e
 U

s
e

r
o

r
W

e
b

 S
e

rv
ic

e

Application Service

(Single Object)

Batch Job Driver

(Set Processing)

B
a

c
k
g

ro
u

n
d

 P
ro

c
e

s
s
in

g
F

o
re

g
ro

u
n

d
 P

ro
c
e

s
s
in

g

The main reasoning behind the super efficient user is that each background process consists of a driver
object that identifies the set of valid objects to process and then processes each object through the
same business objects that the online uses. For example, the BILLING driver determines which accounts
are eligible to be billed according to business calendar and then passes each account to the rate object
to produce a bill. Contrast this with online bill generation, where the user identifies the account
manually, and then that single account is passed to the same rate object to be billed. The background
process can call more than one object during the duration of the background process.

Oracle Revenue Management and Billing Batch Server Administration Guide

2 Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

For the batch process, all of the database access and object access (including access to business objects,
algorithms, user exits (server side only) etc is done through the Oracle Utilities Application Framework.

1.1 Background Processing and the Architecture
The Background Processing component is run within the Oracle Utilities Application Framework
and is associated typically with the Business Application Server. It is not associated the Web Application
Server and does not require the Web Application Server to be active to operate. The only component
other than product that the background processing component requires is the database server (or tier).

Depending on the initiation method employed the background processing component uses a standalone
copy of the Oracle Utilities Application Framework to perform access to the database and business
objects and its own copy of the same business objects used by the Business Application Server.

Essentially the background processing has its own resources (Java Virtual machines (JVMs), connection
pools) independent of the rest of the architecture and can therefore be run on the same hardware as
the rest of the architecture or on dedicated hardware.

Oracle Revenue Management and Billing Batch Server Administration Guide

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 3

2. Concepts
Before you attempt to configure or operate the product, there are important concepts that you should
understand. These concepts are addressed in this document as a basis for the other documents in the
Technical Documentation set.

2.1 Process Types
The product ships with a set of predefined background processes that are grouped into process types.

2.1.1 Process What's Ready Processes

Some background processes create and update records that are ready for processing. The definition of
ready differs for every process. Processes of this type tend to use a business date in their determination
of what's ready. For example, the bill cycle process creates bills for all bill cycles whose bill window is
open (i.e., where the business date is between the bill cycle's start and end date). If the requester of the
process does not supply a specific business date, the system assumes that the current system date
should be used. If you need to use a date other than the current date, supply the desired date when you
request the batch process.

2.1.2 Extract Processes

Some background processes extract a batch of information (to be interfaced OUT of the system).
Processes of this type extract records marked with a specific batch number. If the requester of the
process does not supply a specific batch number, the system assumes that the latest batch number
should be extracted. If you need to re-extract an historical batch, you can supply the respective batch
number when you request the batch process.

To rerun extracts it may be possible to simply rerun using a rerun number (if rerun number re-runable)
or by running the staging process that is associated with the extract then running the extract again.
Refer to individual processes for more details.

Note:

Default file formats for all supplied extracts are documented in the relevant business process
documentation supplied with the product.

The FILE-PATH and FILE-DIR additional parameters used in all extract processes are limited to two
hundred and fifty-four (254) characters each fully expanded.

2.1.3 Ad-hoc Processes

There is a specific background process that doesn't fit into the any other categories. This process backs
out bills that were created during the bill cycle process. You must supply specific parameters to this
process in order to tell it which batch of bills to remove.

2.1.4 Monitor Processes

This is a new type of process where an object, which has a status, needs to have some processing done
at a particular status, in the background. The monitor process detects a specific condition that can be
triggered by data, status or combinations of data and status values. Once that condition has been

Oracle Revenue Management and Billing Batch Server Administration Guide

4 Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

reached the batch process automatically executes the instructions that have been configured on the
batch process parameters and the object definition itself.

2.1.5 Conversion Processes

Note: Not all Oracle Utilities Application Framework based products include conversion. Refer to the
relevant product documentation to check the validity of this group of processes.

A number of processes are available when converting or migrating data from external applications into
the product. These processes may or may not be used as part of an implementation depending on your
conversion strategy.

Refer to the Conversion Toolkit Utilities documentation for further information about conversion.

2.1.6 Object Validation Processes

Note: Not all Oracle Utilities Application Framework based products include object validation processes.
Refer to the relevant product documentation to check the validity of this group of processes.

A number of processes are available to perform general validation for conversion or upgrade purposes.
Each of the major objects in the database must be validated using the respective object validation
program.

We strongly recommend validating each object in the following steps:

 Execute each object's validation program in random-sample mode to highlight pervasive errors.
When you execute a validation in random-sample mode, you are actually telling it to validate
every X records (where X is a parameter that you supply to the batch process).

 View errors highlighted by validation programs using the Conversion Error Summary transaction.

 Correct the errors using SQL. Note, you can use the base package's transactions (e.g., Person
Maintenance, Premise Maintenance, etc.) to correct an error if the error isn't so egregious that it
prevents the object from being displayed on the browser.

 After all pervasive errors have been corrected; re-execute each object's validation program
in all-instances mode to highlight elusive, one-off errors.

In addition to validating your objects after conversion or an upgrade, the validation programs
have another use. For example, you may want to experiment with changing the validation of a person
and want to determine the impact of this new validation on your existing persons. You could change the
validation and then run the person validation object - it will produce errors for each person that fails the
new validation.

Refer to the Conversion Toolkit Utilities documentation for further information about conversion.

2.1.7 To Do Processes

To Do processes are processes that feed off all the other processes in the system and create, update or
delete To Do as defined in the system tables for the product. The number of records created will depend
on the values in the system tables and the number of records satisfying those criteria.

If the To Do functionality is not used at this site then the To Do batch processes are not required to be
run and should be removed from the schedules.

Refer to the Defining General Options and To Do Business Process documentation for further details.

Oracle Revenue Management and Billing Batch Server Administration Guide

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 5

2.1.8 Archive and Purge Processes

Note: Not all Oracle Utilities Application Framework based products include archiving. Refer to the
relevant product documentation to check the validity of this group of processes.

During the life of a product implementation at your site the data in the database will build up. Historical
records will remain in the product until they are archived and/or purged. There are a set of background
processes that execute the necessary components of the archiving engine to archive and/or purge data
from an environment. They are usually scheduled in accordance with business requirements.
Configuration of the archive engine must be performed before executing these processes.

Refer to the Archiving Engine documentation for further information.

2.1.9 Configuration Lab Processes

Note: Not all Oracle Utilities Application Framework based products include archiving. Refer to the
relevant product documentation to check the validity of this group of processes.

To migrate or synchronize data between environments a set of processes must be executed to initiate
components of the Configuration Lab component of the product. These background processes are run
only when synchronizing or comparing/applying changes between two environments.

Refer to the Configuration Lab Utilities documentation for further information.

2.1.10 Interface Processes

Some of the processes implemented by the product are in fact interfaces that may need to be updated
during an implementation. Refer to the individual process register in the IT Supplemental Background
Process Register for details of each process.

2.2 Batch Controls
In the product the concept of Batch controls are implemented to act as control points for a background
process and have the following purposes:

 For those processes that extract information, the product batch control record defines the next
batch number to be assigned to new records that are eligible for extraction. For example, the
batch control record associated with the process that extracts bill print information defines the
next batch number to be assigned to recently completed bill routings. When this bill print extract
process next runs, it extracts all bill routings marked with the current batch number (and
increments the next batch number).

 Each background process' batch control record organizes audit information about the historical
execution of the background process. The system uses this information to control the restart of
failed processes. You can use this information to view error messages associated with failed runs.

 Many processes have been designed to run in parallel in order to speed execution. For example,
the Payment Process can be executed so that payments are processed in multiple "threads" (and
multiple threads can execute at the same time). Batch control records associated with this type
of process organize audit information about each thread in every execution. The system uses this
information to control the restart of failed threads.

An example of the batch control dialog is shown in the figure below:

Oracle Revenue Management and Billing Batch Server Administration Guide

6 Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

The parameters on the batch control object are:

Parameter Usage

Batch code Code that is the unique identifier of the background process

Description Short description for Batch process. Used for Batch Run Tree

Detailed Description Details of the execution of the batch process.

Batch Control Type Whether this batch process is timed or not timed (see Timed Batch
Processes for more details of this functionality).

Time Interval The number of seconds between timed batch processes. This field only
appears for and is only applicable to Batch Control Type of Timed only
(see Timed Batch Processes for more details of this functionality).

Timer Active

Whether the timer is active for this timed batch process or not. This field
only appears for and is only applicable to Batch Control Type of Timed
only (see Timed Batch Processes for more details of this functionality).

Userid Default userid used for security for this batch process. This field only
appears for and is only applicable to Batch Control Type of Timed only
(see Timed Batch Processes for more details of this functionality).

Batch Language Default language for messages for this batch process. This field only
appears for and is only applicable to Batch Control Type of Timed only
(see Timed Batch Processes for more details of this functionality).

Oracle Revenue Management and Billing Batch Server Administration Guide

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 7

Parameter Usage

Email Address Default notification email or email group when batch process completes,
is cancelled or errors. This field is optional and requires. This field only
appears for and is only applicable to Batch Control Type of Timed only
(see Timed Batch Processes for more details of this functionality).

Batch Category Category of batch process (see Process Types for valid values).

Program Type What technology (programming language) the program is written in.
Currently only Java and COBOL1 are supported.

Program Name Name of the program or java class to execute for batch

Last Update Timestamp The Last date and time the batch control was updated. Used for update
purposes.

Last Update Instance The Last Update number the batch control was updated. Used for update
purposes.

Next Batch Nbr The rerun number allocated to this batch control to be used by the next
execution (if the batch process supports rerun numbers). This value is
maintained regardless of whether it is actually used by the batch run for
implementation use.

Accumulate All Instances Accumulate statistics at the batch process level as well as the individual
thread level

Thread Count Default maximum number of Threads to be used by this batch process.
This parameter is actively used for Timed batch processes only (see Timed
Batch Processes for more details of this functionality). For Non-timed
batch processes this Thread Count is used for documentation purposes
only. Refer to Explanation of Thread Limit and Thread Number for an
explanation of the concept of threading.

Override Nbr Of Records to
Commit

Default override commit interval to be used by all executions of this batch
process. This parameter is actively used for Timed batch processes only
(see Timed Batch Processes for more details of this functionality). For
Non-timed batch processes this Commit Interval is used for
documentation purposes only. Refer to Explanation of Timeout and
Commit Interval for an explanation of the concept of commit interval.

Trace Program Start Default value of trace flag to track start of execution to be used by all
executions of this batch process. Used for development and debug
purposes only.

Trace Program Exit Default value of trace flag to track end of execution to be used by all
executions of this batch process. Used for development and debug
purposes only.

1
 COBOL is only supported on selected products for backward compatibility.

Oracle Revenue Management and Billing Batch Server Administration Guide

8 Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Parameter Usage

Trace SQL Default value of trace flag to track all SQL statement issued by the batch
process to be used by all executions of this batch process. Used for
development and debug purposes only.

Trace Output Default value of trace flag to track internal debug information to be used
by all executions of this batch process. Used for development and debug
purposes only.

Batch Parameters The list of valid parameters for this batch process including the names of
the parameters, description, whether the parameter is mandatory or not
and what is the default values. These values are maintained by the
developers only.

Note: The system is delivered with all necessary batch controls for the supplied base background
processes.

2.2.1 Viewing Batch Controls Using the Application Viewer

While the Batch Controls can be viewed using the online system it is possible to view batch control
information from the Application Viewer application supplied with your product. It can be accessed from
the menu Admin → A → Application Viewer → Batch Control. A sample of the output that appears is
shown in the following diagram:

Oracle Revenue Management and Billing Batch Server Administration Guide

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 9

This information is only available in the AppViewer application if the FI-AVBT background process has
been executed or the genappviewitems[.sh] command is executed.

2.2.2 Adding your own Batch Controls

In any implementation Batch Controls may need to be added for new custom processes. This needs to
be done in a manner so that they are consistent with the base product as well as be supported for
upgrades. The following guidelines can assist in ensuring that Batch Controls are implemented correctly:

 Every custom process should have its own batch control. While it is possible to share batch
controls, there may be concurrency and restart issues if the multiple processes are executed at
the same time.

 Every instance of a particular process needs to have its own batch control. If you need to run an
interface multiple times, once for each supplier for example, then a batch control records needs
to be assigned to each instance so that they can be tracked and managed individually. This is also
important because in an environment running multiple instances of a process, there is a far
more likely chance the instances will be executing at the same time according to your schedule
(see point above).

 All custom batch controls should be prefixed by CM to avoid conflicts with possible future
processes introduced into the batch schedule. If this rule is not obeyed then there is a risk that
when an upgrade is introduced it may cause concurrency and restart issues.

 Avoid using batch controls with any special characters (i.e. characters other than letters and
numbers) as it may cause intermittent or operational errors. Avoid embedded blanks and
characters such as !@#$%^I\?><,.~`"’{}[]&*()/:;.

2.3 Standard Parameters
To standardize all the batch processes, the product uses a number of common standard parameters to
uniformly provide functionality across all processes. The table below lists all the standard parameters:

Parameter Usage

Batch code Code is the unique identifier of the background process

Batch thread number Thread number is only used for background processes that can be run in
multiple parallel threads. It contains the relative thread number of the
process. For example, if the billing process has been set up to run in 20
parallel threads, each of the 20 instances receives its relative thread
number (1 through 20).

Batch thread count Thread count is only used for background processes that can be run in
multiple parallel threads. It contains the total number of parallel threads
that have been scheduled. For example, if the billing process has been set
up to run in 20 parallel threads, each of the 20 instances receives a thread
count of 20.

Batch rerun number Rerun number is only used for background processes that download
information that belongs to given run number. It should only be supplied if
you need to download an historical run (rather than the latest run).

Oracle Revenue Management and Billing Batch Server Administration Guide

10 Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Parameter Usage

Batch business date Business date is only used for background processes that use the current
date in their processing. For example, billing using the business date to
determine which bill cycles should be downloaded. If this parameter is left
blank, the system date is used.

Commit Interval Override maximum records between commits. This parameter represents
the number of transactions that are committed in each unit of work. This
parameter is optional and overrides the background process's Standard
Commit between records (each background process's Standard Commit
between records is documented in the product documentation). You
would reduce these values, for example, if you were submitting a batch
process during the day and you wanted more frequent commits to release
held resources. You might want to increase these values when a
background process is executed at night (or weekends) and you have a lot
of memory on your servers.

Timeout Override maximum minutes between cursor re-initiation (also known as
Cursor Reinitialization). This parameter is optional and overrides each
background process's Standard Commit Records and Standard Cursor Re-
Initiation Minutes (each background process's Standard Commit Records I
Standard Cursor Re- Initiation Minutes is documented in individual process
registers in the product documentation). You would reduce these values,
for example, if you were submitting a batch process during the day and
you wanted more frequent commits to release held resources (or more
frequent cursor initiations). You might want to increase these values when
a background process is executed at night (or weekends) and you have a
lot of memory on your servers.

Note: The Maximum minutes between cursor re-initiation is for Oracle
implementations only and only applies to COBOL based processes.

User ID This is the userid that is used to access objects. It must be defined to the
security component of the product.

Password This parameter is not applicable (it is provided for backward compatibility).

Language This is the language code used to retrieve messages and format output
from background processes.

Oracle Revenue Management and Billing Batch Server Administration Guide

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 11

Parameter Usage

Traces Trace program at start (YIN), trace program exit (YIN), trace SQL (YIN) and
trace output.

If trace program start is set to Y, a message is displayed whenever a
program is started.

If trace program at exit is set to Y, a message is displayed whenever a
program is exited.

If trace SQL is set to Y, a message is displayed whenever an SQL statement
is executed.

If trace out is set to Y, message are output from the program at execution
points.

Note: This facility should only be used in testing and benchmarking.

2.3.1 Explanation of Timeout and Commit Interval

Note: Timeout only applies to COBOL based background processes.

The Timeout and Commit interval parameters are tuneable parameters to affect the impact of the
background processes on the other processes running and prevent internal database errors. In most
cases using the defaults will satisfy your site requirements. It is also important to understand their
impact to ascertain whether any change is required.

During processing of any background process a main object is used to drive the process. For example in
Payment the main object is Payment Event. The Payment process loops through the payment event
objects as it processes. For other processes it is other objects that are considered the main object. This
main object type is used to determine when a transaction is complete.

For both Timeout and Commit interval this is important as:

 When a certain number of main objects have been processed then a database commit is issued
to the database. This number is the Commit Interval. The larger the commit interval the larger
the amount of work that the database has to keep track of between commit points.

 The Timeout parameter is used to minimize issues in Oracle where the unit of work is so large it
causes a Snapshot too old. Oracle stores undo information on the Rollback Segment and the read
consistent information for the current open cursor is no longer available. This is primarily caused
when Oracle recycles the Rollback Segment storage regularly. The product is prevented by
reinitializing the cursor on a regular basis to prevent an error. When this timeout, known as the
Cursor Reinitialization, is exceeded then at the end of the current transaction a commit will be
issued.

 At any time in a process a commit for objects processed may be caused by the reaching the
Commit Interval or the time limit set on Timeout, whichever comes first.

2.3.2 Explanation of Thread Limit and Thread Number

One of the features of the Oracle Utilities Application Framework is the ability to run background
processes using multiple threads.

Oracle Revenue Management and Billing Batch Server Administration Guide

12 Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

The threading concept in the product is simple. Each thread takes a predetermined slice of the data to
work on. The last thread checks if all other threads are finished and updates the status of the batch
control records. For example, if you have 10 threads, then each thread takes 1/10th of the work. As each
thread is executing it processes its workload and then completes, the last thread executing is
responsible for updating the overall process status to indicate completion.

Implementing threading means you have to execute a number of batch processes with an ascending
thread number up to the thread limit. For example, if you have a batch process with 10 threads, you
must run 10 batch processes each with a unique thread number between 1 and 10 to complete the
batch process. Threads can be located on the same machine or different machines. For example, you
can run threads 1 to 5 on one machine and threads 6– 10 on another.

Note: If there is limited data skew in the data then the threads should finish around the same time. If
there is some data skew then some threads may finish later than others.

To implement multi-threading when you submit a process:

 Specify a thread limit greater than 1 as a parameter.

 Execute a process for every thread with a sequential thread number up to an including the
thread limit. There are a couple of implementation guidelines with threading:

o Make sure the number of threads is not excessive. You do not want to flood the CPUs.

o You must submit a process per thread. In some submission methods this is done
automatically and in some it is done manually.

o Threading will increase throughout BUT it will cause higher than usual resource usage
(CPU, Disk etc) as well as higher contention. Excessive threading can in fact cause
performance degradation in online as well as background processing. Therefore the
number of threads should not be excessive.

Almost all background processes within the product support multiple threads (the only processes
typically single streamed are extracts and data loads as they involve sequential files).

2.3.3 Explanation of Restart and Rerun

The product allows all background processes to be restarted or rerun as required. During the execution
of the background process, restart information per thread is stored within framework, like a checkpoint.
This checkpoint is performed at the last commit point as dictated by the Commit Interval and/or
Timeout value (Time out only applied to Oracle implementations only). When a commit is performed,
the last commit point is recorded for the execution. If a thread of a background process fails, the
database automatically rolls back to the last commit point. The thread can then be restarted from that
point automatically or from the start of the data. To indicate the restart, the thread is executed with the
same parameters as the original.

Additionally, processes are re-runable. Re-run able means that a specific run number can be re-run as
required or a process at a specific date. Using a rerun number or a previously used business date are all
that is required to rerun a process.

Note: Not all background processes use Run number as a run indicator. Refer to the online
documentation for which batch processes are re-runable.

Oracle Revenue Management and Billing Batch Server Administration Guide

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 13

2.4 Timed Batch Processes

Note: This facility is ideal with Monitor batch processes.

Traditionally when you consider batch you picture processes that process large amounts of records in a
longer amount of time than an online transaction. They have a start time and an end time and execute a
limited amount of times a day.

The Oracle Utilities Application Framework supports the traditional approach but also supports the
ability to run batch processes continuously in the background. For example, you may have a background
process run continuously to monitor behavior on a particular object (i.e. the monitor processes).
Therefore the concept of timed (continuous) and non- timed (traditional) batch processes was
introduced.

The idea is that the site configures whether a batch process is timed or not on the batch control record
definition. By default all batch processes will be defined as non-timed for backward compatibility. The
site then configures the batch processes it deems to run continuously as timed. At this point additional
information is required:

 Timer Interval – The time, in seconds, between executions of the batch process. If the current
execution of the timed job exceeds this tolerance, a new instance of the job will not be
submitted until the job completes.

 Timer Active – Whether the timed batch process is active in timed mode or not. This enables the
timed batch process to be switched off if necessary. Timer Active is active when this value is set
to Yes and inactive when set to No.

 Userid – Default userid to be used for the timed batch process.

 Batch Language – Default language for the timed batch process.

 Email Address – Email address or group to email when there is an issue with the batch process.

Note: The Email adapter must be enabled for this functionality to be enabled.

The figure below illustrates the additional entries:

Additionally the following additional attributes should be specified for timed batch processes:

 Thread Count

 Override Nbr of Records to Commit (optional)

Once the Batch Control Type is defined the submission method then implements the logic to keep the
background process continuously:

 For sites using the online submission facility with the online daemon, the batch controls which
are timed are executed automatically once the daemon starts and is routed to a defined batch
server. If the daemon or batch server crashes then the batch process will fail and automatically
restart upon restart of the daemon or batch server.

Oracle Revenue Management and Billing Batch Server Administration Guide

14 Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

 For sites using the external scheduler, the timed batch process will commence the first time the
batch process is initiated. If the threadpoolworker or submitjob fails, for any reason, and
there is no clustering configured then the batch process must be restarted manually (or using a
scheduler) to initiate the continuous process once again.

To stop the continuous batch process at any time the following techniques can be used:

 Set the Timer Active flag to No on the Batch Control record for the batch process. At the next
Timer Interval, the timed batch process will stop and complete. Remember to change the Timer
Active back to Yes again to re-instate the batch process as a continuous process.

 Cancel the batch process using the JMX interface (JMX console or jmxbatchclient)

 Kill the submitjob process that initiated the batch process. This should be the last resort.

2.5 Common Configuration Files
As with the online component of the Oracle Utilities Application Framework there are a number of
configuration files that control the performance and behavior of the batch component. It is
recommended that you familiarize yourself with the Oracle Revenue Management and Billing Server
Administration Guide for additional advice in relation to the configuration discussed.

The batch component houses the configuration files differently to the online and web services
component. The online and web services are housed within a J2EE Web Application Server and
therefore the configuration files are located according to the J2EE standards.

In the batch component the configuration are housed in directories as the batch component is a J2EE
Web Application Server. Therefore, during the configuration process, the configuration files
used by the batch component are built using templates using the initialSetup utility. This utility
deposits the configuration files in the $SPLEBASE\splapp\standalone\config directory (or
%SPLEBASE%/splapp/standalone/config directory in Windows).

The figure below summarizes the directory structure and the relevant configuration files:

splapp

standalone

config

hibernate.properties

log4j.properties

spl.properties

e0Batch.properties

tpwlog4j.properties

threadpoolworker.properties

submitbatch.properties

submitbatchlog4j.properties

tangasol-coherence-override.xml

coherence-cache-config.xml

Oracle Revenue Management and Billing Batch Server Administration Guide

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 15

The following configuration files (along with their templates) are listed below:

Configuration File Contents Template

eOBatch.properties General environment settings eOBatch.properties.template

hibernate.properties Database connectivity hibernate.properties.batch.t

emplate

log4j.properties Logging settings log4j.properties.standalone.

template

spl.properties Application behaviour spl.properties.standalone.te

mplate

submitbatch.properties submitjob default settings submitbatch.properties.templ

ate

submitbatchlog4j.properties submitjob logging settings submitbatchlog4j.properties.

template

threadpoolworker.properties threadpoolworker
configuration

threadpoolworker.properties.

template

tpwlog4j.properties threadpoolworker logging
settings

tpwlog4j.properties.template

coherence-cache-config.xml Cache settings for cluster coherence-cache-

config.xml.template

tangasol-coherence-
override.xml

Override setting for cluster tangasol-coherence-

override.xml.template

The subsequent subsections will outline the contents of the configuration files.

2.5.1 eOBatch.properties

The eOBatch.properties configuration file defines the environmental settings for the batch
component. Typically this configuration file is generated and never altered.

The configuration contains two settings:

Parameter Context

SPLOUTPUT Location of the output directory for logs and temporary files.

standalone.dir Home location of the batch component. This is a relative path to the location of
this configuration file.

For example:

standalone.dir=..j..jsplappjstandalone

SPLOUTPUT=jspljsploutputjDEMO

Note: This configuration file should not be altered unless instructed to by Oracle Support.

Oracle Revenue Management and Billing Batch Server Administration Guide

16 Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

2.5.2 spl.properties - Product Configuration Settings

The spl.properties configuration file is the configuration file that contains product behavior settings
for the batch component. This configuration file also exists in the online and web application server so a
common configuration standard was adopted.

For the batch component the spl.properties uses the following settings:

Parameter Context

com.oracle.xPath.flu

shTimeout
The time, in seconds, when the Xpath cache is automatically cleared. A
zero (0) value indicates never auto-flush cache and a positive value
indicates the number of seconds.

com.oracle.xPath.LRU

Size

Maximum number of XPath queries to hold in cache across all threads. A
zero (0) value indicates no caching, minus one (-1) value indicates
unlimited or other positive values indicate number of queries stored in
cache. Cache is managed on a Least Reused basis.

com.splwg.batch.clus

ter.jvmName
(Optional) Unique Name for JVM. Name must not include embedded
blanks.

com.splwg.schema.new

validations.Fl
Internal use only

spl.runtime.cobol.co

brcall
If COBOL is used, whether remote calls are supported. (true or false).
Defaults to false.

spl.runtime.cobol.en

coding
If COBOL is used, the character set supported by the Business Application
Server.

spl.runtime.cobol.sq

l.cache.maxTotalEntr

ies

Number of SQL statement entries stored in the cache. Defaults to 1000.

spl.runtime.cobol.sq

l.cursoredCache.maxR

ows

If COBOL used, number of cursors cached. Defaults to 10.

spl.runtime.cobol.sq

l.disableQueryCache
If COBOL used, whether the query cache is disabled. Defaults to false.

spl.runtime.cobol.sq

l.fetchSize
If COBOL used, size of fetch buffers for SQL statements. Defaults to 150.

spl.runtime.environ.

init.dir
Location of the base configuration files.

spl.runtime.environ.

SPLEBASE
Location of SPLEBASE

spl.runtime.options.

isFCFenabled
Whether Oracle RAC Fast Connection Failover support is enabled. This
value is set to true when ONSCONFIG is specified.

spl.runtime.options.

onsserver
ONS Configuration string used for Oracle RAC Support. This value is set to
the value of ONSCONFIG.

spl.runtime.oracle.s

tatementCacheSize
The SQL cache size allocation for SQL statements. Defaults to 300.

Oracle Revenue Management and Billing Batch Server Administration Guide

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 17

Parameter Context

spl.runtime.service.

extraInstallationSer

vices

Name of Application service used for installation defaults.

spl.runtime.sql.high

value
High Value used for processing

spl.runtime.utf8Data

base
Whether the database supports the UTF8 characterset. (true or false).

spl.tools.loaded.app

lications
List of applications installed. Values are typically base,xxx,cm where xxx is
the product code.

2.5.3 hibernate.properties - Database Connectivity Properties

Note: Unlike the online and web services layer, it is not possible to use JNDI based JDBC connections.
Batch must use UCP for connection pooling.

Opening a connection to a database is generally much less expensive than executing an SQL statement.
A connection pool is used to minimize the number of connections opened between application and
database. It serves as a librarian, checking out connections to application code as needed. Much like a
library, your application code needs to be strict about returning connections to the pool when complete,
for if it does not do so, your application will run out of available connections. Hence, the need for having
a connection pooling mechanism such as Hibernate using Universal Connection Pool (UCP) connection
pooling.

Hibernate is a powerful Object Relational Mapping (ORM) technology that makes it easy to work with
relational databases. Hibernate makes it seem as if the database contains plain Java objects, without
having to worry about how to get them out of (or back into) database tables. Coupled with the UCP
connection pooling, it provides a comprehensive connectivity tool for the java (or COBOL, if used) to
operate effectively against the database.

The product uses the Hibernate and UCP libraries to create a connection pool and connect the java (or
COBOL, if used) objects to the database to store, update, delete and retrieve data. It is used for all the
database access for online as well as batch.

Refer to http://www.hibernate.org and
http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/htdocs/ucp.html for more
information on the technology aspects of Hibernate and UCP.

The product has a configuration file for the database connectivity and pooling called the
hibernate.properties configuration file. This file contains the configuration settings for the database
connections and the connection pool to be used by any of the SQL statements accessing the database.

The configuration settings contained in the hibernate.properties file are summarized in the following
table:

Setting Usage

hibernate.cache.use_second_level_cache May be used to completely disable the second
level cache, which is enabled by default for classes
which specifies a cache mapping. Defaults to false.

http://www.hibernate.org/
http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/htdocs/ucp.html

Oracle Revenue Management and Billing Batch Server Administration Guide

18 Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Setting Usage

hibernate.cglib.use_reflection_optimiz

er
Enables use of CGLIB instead of runtime reflection
(System-level property). Reflection can sometimes
be useful when troubleshooting, note that
Hibernate always requires CGLIB even if you turn
off the optimizer. Tends to make Hibernate load
faster if value is false. Defaults to false.

hibernate.connection.databaseName Database name used for SQL Server

hibernate.connection.driver_class This is the JDBC driver class used by Hibernate.

hibernate.connection.password This is the user ID used to connect to the database.
This value is sourced from the DBPASS parameter
from the ENVIRON.INI. If the value is prefixed by
"ENC" then the password is encrypted.

hibernate.connection.provider_class The classname of a custom Connection Provider
which provides JDBC connections to Hibernate.
The product uses the UCP Connection provider.
Other providers are not supported.

hibernate.connection.release_mode This parameter controls when a connection is
released to the pool. By default the value is set to
auto. If you wish to view the module executing in
the MODULE column on the v$session table, then
this value must be set to on_close. Using auto in
this example may lead to incorrect values in
MODULE.

hibernate.connection.url This is the connection string used to connect to the
database. The URL is built using the protocol
outlined by the JDBC driver and uses the values
from the ENVIRON.INI. It will either contain the
standard JDBC connection string or the value of
DB_OVERRIDE_CONNECTION.

hibernate.connection.username This is the user ID used to connect to the database.
This value is sourced from the DBUSER parameter
from the ENVIRON.INIH

hibernate.dialect This is the SQL dialect (database type) for the
database being used. Any valid Hibernate dialect
may be used. Refer to
http://www.hibernate.org/hib_docs/v3/api/org/hi
bernate/dialect/package-summary.html for a full
list. This value is sourced from the DIALECT
parameter from the ENVIRON.INI.

hibernate.jdbc.batch_size A non-zero value enables use of JDBC2 batch
updates by Hibernate. Defaults to 30.

http://www.hibernate.org/hib_docs/v3/api/org/hibernate/dialect/package-summary.html
http://www.hibernate.org/hib_docs/v3/api/org/hibernate/dialect/package-summary.html

Oracle Revenue Management and Billing Batch Server Administration Guide

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 19

Setting Usage

hibernate.jdbc.fetch_size Determines a hint to the JDBC driver on the
number of rows to return in any SQL statement.
Defaults to 100.

hibernate.max_fetch_depth Sets a maximum "depth" for the outer join fetch
tree for single-ended associations (one-to-one,
many-to-one). A 0 disables default outer join
fetching. Defaults to 2.

hibernate.query.factory_class Chooses the HQL parser implementation.

hibernate.query.substitutions Mapping from tokens in Hibernate queries to SQL
tokens (tokens might be function or literal names,
for example). The product uses true 'Y', false 'N'.

hibernate.show_sql Write all SQL statements to console. Defaults to
false.

hibernate.transaction.factory_class The classname of a Transaction Factory to use with
Hibernate Transaction API.

hibernate.ucp.connection_wait_timeout Specifies how long, in seconds, an application
request waits to obtain a connection if there are
no longer any connections in the pool.

hibernate.ucp.inactive_connection_time

out
Specifies how long, in seconds, an available
connection can remain idle before it is closed and
removed from the pool.

hibernate.ucp.max_idle_time Not used

hibernate.ucp.max_size Maximum Pool Size

hibernate.ucp.max_statements SQL Buffer size

hibernate.ucp.min_size Minimum Pool Size

For a more in-depth description of these parameters and others not included with the product see
http://www.hibernate.org and http://www.oracle.com/technetwork/database/enterprise-
edition/downloads/ucp-112010-099129.html.

2.5.4 log4j.properties - Logging Configuration

Note: This log file should not be altered unless specified. The generated configuration file has all the
recommended settings for all sites.

The product uses the log4j Java classes to centralize all log formats into a standard format. The details
of the configuration settings and log4j itself are available at http://logging.apache.org/log4j/ or
http://en.wikipedia.org/wiki/Log4j. This log file is primarily used for the daemon and THIN execution
modes.

http://www.hibernate.org/
http://www.oracle.com/technetwork/database/enterprise-%20edition/downloads/ucp-112010-099129.html
http://www.oracle.com/technetwork/database/enterprise-%20edition/downloads/ucp-112010-099129.html
http://logging.apache.org/log4j/
http://en.wikipedia.org/wiki/Log4j

Oracle Revenue Management and Billing Batch Server Administration Guide

20 Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

2.5.5 coherence-cache-config.xml

The coherence-cache-config.xml configuration file is used by the CLUSTERED mode of execution
to manage the Oracle Coherence based cache across the batch cluster. This file is generally not altered
at the implementation level as it is preconfigured to execute the batch component of the product.

For details of the contents of this file refer to the Oracle Coherence Integration Guide.

2.5.6 tangasol-coherence-override.xml

Note: This configuration file replaces the tangasol parameters in various configuration files in previous
versions of the product.

The tangasol-coherence-override.xml file is used to specify cache parameters for CLUSTERED
mode batch.

The following settings apply to the settings provided by the configuration of CLUSTERED mode:

Parameter Context Source

address IP Address assigned to cluster. Specifies
the multicast IP address that a Socket
will listen or publish on. Valid values
are from 224.0.0.0 to
239.255.255.255. For non-multicast
implementations use the Well Known
Addresses (WKA) functionality.

Derived from
COHERENCE_CLUSTER_ADDRESS in
ENVIRON.INI.

http://docs.oracle.com/cd/E15357_01/coh.360/e15830/usehibernateascoh.htm

Oracle Revenue Management and Billing Batch Server Administration Guide

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 21

Parameter Context Source

cluster-name The cluster-name element contains the
name of the cluster. In order to join the
cluster all members must specify the
same cluster name. The name can be
up to 32 characters to define the name
of the cluster. This is required and
must be unique for each environment.
With DISTRIBUTED mode, the batch
JVMs for an environment are naturally
grouped because they register
themselves through database table
Fl_TSPACE_ENTRY, but in CLUSTERED
mode the JVMs are joined through a
Coherence cache. The cache may be
across all environments, so a unique
cluster name, along with address and
port (see below), is required to ensure
that they are appropriately grouped
per environment.

Environments are typically separated
by database and/or database user, so a
possible convention may be to use a
combination of database name and
owner Id as the cluster name, for
example FWDEMO.SPLADM.

Derived from
COHERENCE_CLUSTER_NAME in
ENVIRON.INI.

license-mode License Mode.

Specifies whether the batch clustering
facility is being used in a development
or production mode.

Valid values are prod (Production), and
dev (Development).

Derived from
COHERENCE_CLUSTER_MODE in

ENVIRON.INI.

port Port number assigned to cluster.
Specifies the multicast port that the
Socket will listen or publish on. Valid
values are from 1 to 65535. For non-
multicast implementations use the Well
Known Addresses (WKA) functionality.

Derived from
COHERENCE_CLUSTER_PORT in
ENVIRON.INI.

For details of the contents of this file and additional parameters refer to the Oracle Coherence
Developers Guide and the external scheduler section of this document.

For example:

<coherence>

<cluster-config>

Oracle Revenue Management and Billing Batch Server Administration Guide

22 Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

<member-identity>

<cluster-name>FWDEMO.SPLADM</cluster-name>

</member-identity>

<multicast-listener>

<address> 239.128.0.10</address>

<port> 7810</port>

</multicast-listener>

<service-guardian>

<service-failure-policy>logging</service-failure-policy>

<timeout-milliseconds>86400000</timeout-milliseconds>

</service-guardian>

</cluster-config>

<logging-config>

<destination>log4j</destination>

<severity-level>S</severity-level>

</logging-config>

<license-config>

<license-mode>prod</license-mode>

</license-config>

</coherence>

The example above assumes multi-cast use of the CLUSTERED mode, refer to Oracle Coherence
Developers Guide and the external scheduler section of this document for alternative examples.

Note:

If using Coherence Cluster Address and Coherence Cluster port then they form a multicast address
unique to the environment/cluster. All worker and submitter JVMs that want to join this cluster must
have the same cluster name, cluster address and cluster port.

The first worker JVM that starts for a particular combination of cluster/address/port establishes that
cluster. Other JVMs with this same combination will then join this cluster.

The framework guards against the submission of batch processes to the wrong cluster in two ways.
Firstly, if the address port matches an existing cluster s address port, but the cluster name is different,
the JVM will exit with this error message:

This member could not join the cluster because of a configuration mismatch between this member and
the configuration being used by the rest of the cluster.

Secondly, if a JVM’s cluster name references an existing cluster, but the database to which the existing
cluster is connected is not the same as the joining JVM’s, it will exit with this message:

Error validating cluster membership. Terminating...

In either case it is a configuration issue that needs to be corrected.

Oracle Revenue Management and Billing Batch Server Administration Guide

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 23

2.6 Configuration Process
To configure the batch component during the installation process and post-installation then the
following process should be used:

ENVIRON.INI

configureEnv initialSetup -t

cistab templates

e0Batch.properties

submitbatchlog4j.properties

hibernate.properties

tpwlog4j.properties

threadpoolworker.properties

etc splapp/standalone/config

Install Configure

submitbatch.properties

log4j.properties

log4j.properties

coherence-cache-config.xml

tangasol-coherence-

override.xml

 The configureEnv utility is used during installation time and can be used post implementation to
set parameters in the ENVIRON.INI.

Note: The configureEnv utility should be used to make any changes to the ENVIRON.INI. Manual changes
to this configuration file are not recommended.

 After the ENVIRON.INI has been set or altered, the settings must be reflected in the relevant
configuration files used by the batch component using the initialSetup utility. The initialSetup
utility takes the relevant templates, builds the configuration files and deposits them in the
$SPLEBASE\splapp\standalone\config directory (or
%SPLEBASE%/splapp/standalone/config directory in Windows).

The configuration files are now ready to be used for the batch component.

Oracle Revenue Management and Billing Batch Server Administration Guide

24 Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

2.7 Submission Methods
There are a number of ways of submitting batch processes within the Oracle Utilities Application
Framework. The various ways reflect the different uses for the product at a site. The figure below
summarizes the various submission methods:

Web Application Server External Scheduler Command Line

DISTRIBUTED/CLUSTERED DISTRUBUTED/CLUSTERED THIN

Business Application Server Threadpool

threadpoolworker[.sh]

submitjob[.sh]

SPLBATCH[.sh]

submitjob[.sh] – P

Batch Demon Business Application

Server

ObjectThread

Thread

Thread Thread

Thread Thread

Object

Thread

Object

Database Server

 It is possible to submit the batch process in a basic interactive mode where the batch object
executed in a single JVM. This mode is known as THIN mode and is primarily designed for
developers to test their code in isolation from the rest of the system. The mode is not efficient
enough to be recommended for any activity other than developer testing. Refer to Interactive
Submission section for details on how to use this method.

 The product browser user interface allows the registration and execution of batch processes
within the JVM used online. This mode allows part of the resources of online be devoted to
registering and executing of batch processes. This method is primarily designed for use for
testing purposes. Refer to the Online Submission section for details on how to use this method.

 Typically at a site, a batch scheduling tool is used to schedule and manage all of the background
tasks required at a site. This can include running product batch processes and any related
maintenance process such as transferring interface files to and from other systems, backup and
other maintenance activities. This method is designed for production use and has a number of
variations to support flexible scheduling options. Refer to the External Scheduler Submission
section for details on how to use this method.

Oracle Revenue Management and Billing Batch Server Administration Guide

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 25

3. Monitoring Background Processes
When a background process is initiated the product records information about the progress of the
execution using a number of methods. These methods can be used to provide feedback to the
operations personnel on the health and progress of individual processes.

3.1 Batch Run Tree
Within the product browser interface there is an ability to monitor the status and outcomes of individual
processes. This can be useful for finding out what actually occurred if an error condition occurred. To
access the screen:

 Acquire a logon to the browser interface. It may be necessary to setup a special userid that
operators can use to access the online.

 Select the Batch → Batch Run Tree option from the side menu. A sample is displayed in the
figure below:

 A batch search window will appear to allow select of the individual execution of the process. It is
possible to search on batch number, batch Control Id or rerun number. A sample is illustrated
below.

 Select the appropriate batch run to monitor. This will then open a portal with the appropriate
run information (for example):

Oracle Revenue Management and Billing Batch Server Administration Guide

26 Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

 In the case of the sample the process ended successfully. Additionally the following additional
elements may be displayed:

o If the processed ended with any errors then the error message would be indicated.

Note: Technical Errors (e.g. SQL Errors) are indicated using this method.

 Business errors that are generated as To Do's are indicated separately.

o If the program was restarted, each restart would be displayed in the tree
individually.

 To get more information about the error click on the error message on the tree.

The Batch Run tree is available to any valid user and is a method to communicate the execution
information to the relevant business representatives.

3.2 Using SQl Queries to Monitor Background
Processes

The Batch Run Tree displays information within the database that is collected by the Oracle Utilities
Application Framework for every background process execution, regardless of the method used to
initiating the process.

While it is possible to use the Batch Run Tree as a spot check on particular processes, it is possible to
create views on the underlying to extract the data for long term analysis of batch performance. These
views can be then used to analyse or extract the data for further investigation.

Oracle Revenue Management and Billing Batch Server Administration Guide

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 27

The details of the views that can be created and types of analysis that can be performed are located in
the Batch Troubleshooting whitepaper in the Performance Troubleshooting series KB Id: 560382.1 on
My Oracle Support.

3.3 Monitoring using JMX classes
The product supports management and monitoring using Java Management eXtensions (JMX) For
example, a user may want to see exactly which processes are busy running in a worker JVM at any
particular point, and may want to be able to cancel runaway tasks. Refer to the Java Management
Extensions (JMX) Technology site for more information.

Java Management Extensions (JMX) is a technology that specifically addresses this requirement to
introspect information within the Oracle Utilities Application Framework. By employing Management
Beans (MBeans), the batch framework can implement management interfaces for the various
monitoring and management instrumentation points. A remote client, such as Sun’s jconsole or other
JMX consoles/browsers, can then communicate with the active MBeans to query and modify the
behavior of the batch node.

This section will outline the basic facilities available using JMX. Configuration of the JMX capability is
discussed within each submission method outlined in Submission Methods.

3.3.1 Jconsole

Jconsole is a GUI application provided with the Java JDK installed. It can be invoked with the connection
information configured with the product as a parameter, for example:

jconsole service:jmx:rmi:///jndi/rmi://<host>:<port>/spl/fw/jmxConnector

The <server>, <port> and the "/spl/fw/jmxConnector" string correspond with the property
values specified for the batch node. These values are specified in configuration files outlined in the
relevant subsection of the "Submission Methods" section of this document.

Refer to http://java.sun.com/javase/6/docs/technotes/guides/management/jconsole.html for more
information on using jconsole.

Note: While jconsole is used in the examples shown in this document, other JMX consoles and JMX
browsers (JSR160) can be used.

3.3.2 Mbeans

The JMX interface exposes a number of MBeans to manage the Batch cluster from any node on the
cluster. The Mbeans expose a hierarchical set of information for the cluster. The JMX API has a number
of levels:

https://support.oracle.com/epmos/faces/MosIndex.jspx?_afrLoop=14233197048603&_afrWindowMode=0&_adf.ctrl-state=1c9ebud0v3_4
http://java.sun.com/javase/6/docs/technotes/guides/management/jconsole.html

Oracle Revenue Management and Billing Batch Server Administration Guide

28 Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

oracle.ouaf.base

BatchCluster

CLUSTER_NAME

ThreadPools

Members

BatchThread_<name>

ClusterNode

The BatchCluster MBean holds attributes and operations at the cluster level. The MBean has a series of
Threadpools. Each Threadpool has one or more Members which represent the nodes the threadpool is
executing across. Nodes can be present for the same machine or multiple machines (one node per
instance).

3.3.3 BatchCluster MBean

Note: This API is only available for CLUSTERED mode.

The BatchCluster MBean contains the global information about the batch cluster. It creates an entry
with the name of the Batch Cluster as the identifier. This level is designed to provide information and
operations at a cluster level. When connecting to the JMX facility from a JSR160 compliant facility the
BatchCluster Mbean is always visible. For example:

Oracle Revenue Management and Billing Batch Server Administration Guide

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 29

The BatchCluster Mbean exposes a number of attributes:

Attribute Comments

Address Cluster address as specified in COHERENCE_CLUSTER_ADDRESS in
ENVIRON.INI

Name Name of Cluster as specified in COHERENCE_CLUSTER_NAME in
ENVIRON.INI.

Port Port number assigned to Cluster as specified in
COHERENCE_CLUSTER_PORT in ENVIRON.INI.

The BatchCluster Mbean supports a number of operations:

Operation Comments

flushAllCaches Flush the data reuse cache across the batch cluster. Invoke this
operation to reload configuration data changes for batch jobs.

registerClusterMBeans Register the Mbeans for lower level tracking. This needs to be invoked
to allow threadpool and batch thread level tracking.

unregisterClusterMBeans Disable lower level tracking. This stops low level tracking.

Oracle Revenue Management and Billing Batch Server Administration Guide

30 Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

3.3.4 Threadpools Mbean

Note: This information is only accessible once the registerClusterMbeans operation is executed.
This API is only available for CLUSTERED mode.

When the registerClusterMbeans operation has been executed, the API exposes lower level
information on the active threadpools in the cluster. Information about inactive threadpools is not
shown. Each threadpool has a tree structure in the API. When accessing the API from a JSR160
compliant tool, the information for the threadpools are made available. For example:

The Threadpools Mbean exposes a number of attributes:

Attribute Comments

Name Name of Threadpool

AvailableThreads Number of spare threads for batch processes. The value of zero (0) indicates
the threadpool is at capacity.

NumberofMembers Number of members/hosts defined to the threadpool

There are no operations at the threadpool level.

Oracle Revenue Management and Billing Batch Server Administration Guide

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 31

3.3.5 Members MBean

Note: This information is only accessible once the registerclusterMbeans operation is executed.
This API is only available for CLUSTERED mode.

When a threadpool is executed each instance of the threadpool may have one or more members. For
example, if there are a number of instances of the threadpool on a machine or across machines each
instance is listed as a member. This allows low level control of the nodes in a threadpool. When
accessing the API from a JSR160 compliant tool, the information and operations for each member for
the threadpools are made available. For example:

For each member the Members Mbean exposes a number of attributes:

Attribute Comments

HostName Name of Host hosting this threadpool instance

JVMName Name of JVM assigned at runtime

PID Unique as Process Id for JVM

MemberId Member Number. This number of unique across the cluster and is used
to track the member internally by the framework.

Oracle Revenue Management and Billing Batch Server Administration Guide

32 Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Info Parameters used to start threadpool instance in free format.

For each member the Members Mbean exposes a number of operations:

Operation Comments

flushAllcaches Flush the cache for this instance

stopnode Stop this member. This allows members to be dropped off after execution.

displayClusterCache Raw mode cluster information. Used for development only.

3.3.6 ClusterNode Mbean

Note: This API is only available for CLUSTERED mode.

When using the online submission deamon and online batch server in non-production a ClusterNode
Mbean is used. This tracks the DEFAULT threadpool which is configured as part of installation.

Note: This information is duplicated as a Threadpool Mbean instance but this Mbean is dedicated to the
DEFAULT pool if it is active. This Mbean is not affected by the registerClusterMbeans operation.

When accessing the API from a JSR160 compliant tool, the information and operations for each member
for the DEFAULT threadpool are made available. For example:

Oracle Revenue Management and Billing Batch Server Administration Guide

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 33

The clusterNode Mbean exposes a number of attributes:

Attribute Comments

JVMName Name of JVM assigned at runtime. This

rnfo Information string for Threadpool

prD as Process Id for JVM

The ClusterNode Mbean exposes a number of operations:

flushAllCaches Flush the cache across the batch cluster

stopNode Stop online batch threadpool.

displayClusterCache Raw mode cluster information. Used for
development only.

Oracle Revenue Management and Billing Batch Server Administration Guide

34 Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

3.3.7 BatchThread Mbeans

Mbeans associated with BatchThread are created once the getJobWork method for a Java program has
successfully completed. Each thread, as requested by the threadCount parameter for the batch process,
will have its own MBean. A BatchThread MBean for a thread is alive for as long as it takes for the thread
to complete, and automatically destroyed when the thread ends.

The batch thread number, as indicated in the MBean name, will be the current threads thread number.

 In the case of Java, these MBeans expose the running values for a thread. The records/units
processed, in-error and remaining, are provided as the thread runs and updates the MBean
internally.

 For a COBOL thread, if COBOL used, the values are not as detailed, since COBOL does not work in
terms of work units, but some valuable information can still be obtained (e.g. elapsed time).

The Java BatchThread example below shows two threads running for batch process ZZQABATl. The
MBean name contains the thread number and count, and they show to be running in Java threads 39
and 35 respectively. The Java thread number is for uniqueness only.

Oracle Revenue Management and Billing Batch Server Administration Guide

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 35

The MBeans that expose the batch processes are divided into categories. The name of the MBean is
constructed to indicate the type of batch process, the name of the batch process, and the thread
number and count. For sake of uniqueness, the name also includes the Java thread number.
The name therefore is constructed as follows:
CCC_BBB_t_of_c.jjj

Where:
CCC: The type of MBean. This can be either BatchJob or BatchThread.
BBB: The Batch code from the Batch Control.
t_of_c: The batch thread number and count. For BatchJob types, this will just be "0". For BatchThread
types, the t is the thread number, and c the thread count.
jjj: The Java thread number, which will be unique within a batch node.

Note:

Refreshing this information will dynamically update the values.

JMX information is only displayed at active runtime and calls process can happen very fast –
depending on the amount of data to be selected for the run – so the JMX console may not even detect
this MBean.

The BatchThread MBean is accessible from the jmxbatchclient utility.

The BatchThread Mbean exposes a number of attributes:

Attribute Comments

BatchNumber The current batch number.

Oracle Revenue Management and Billing Batch Server Administration Guide

36 Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Attribute Comments

cancelRequested True if the thread has been asked to stop running. See
CancelReqeustedBy.

cancelRequestedBy If CancelRequested=true, this will be a string indicating the workstation
from where the cancellation was requested. This value will also be logged
to the Batch Run Tree.

DateTimeStarted The date and time the batch process was started.

DistThreadpool The thread pool to which this batch process belongs.

ElapsedTime How long the batch process has been running.

ExecutionStrategycla

ss
This indicates the commit strategy followed by the program.

programName The program name executed.

programType The program type: Java or COBOL.

Recordscommitted The number of record updates that have been committed to the
database. See note below.

RecordsInError The number of records so far in error. This is what will be logged to the
Batch Run Tree. See note below.

RecordsProcessed The number of records processed so far. This is what will be logged to the
Batch Run Tree. See note below.

RunType The type of run: New Run, Restart or Rerun.

Status Current status of the thread. Valid values are: Initializing" (very briefly in
the beginning – prior to the call to getJobwork in the application class);
Getting Work means it is currently in the process of selecting the work
units for the batch process; Got Work means it is has successfully selected
the work and is in the process of initiating the threads.

workunitSize The total number of work units for this batch process. For new and
restarted runs, this will always contain the total number of work units as
selected in the getJobwork method when the batch process was originally
started.

workunitSizeThisRun This is the number of work units for this particular run. For a restarted
run, this value will typically be less than the above value; otherwise they
will be the same.

workunitsCommitted The number of work units that have had their work committed.

workunitsInError The work units that have been found to be in error so far.

workunitsProcessed The work units that have been processed so far.

Oracle Revenue Management and Billing Batch Server Administration Guide

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 37

Note: The "Records…" numbers are what will be used to log to the Batch Run Tree, and they are usually
in step with the "WorkUnits…" values. The reason they are shown separately is because some Java batch
programs manually manipulate the record counts for the Batch Run Tree. The true progress status of a
thread is reflected in the "WorkUnits…" counts.

3.3.8 Adding Custom JMX Information

The JMX API allows individual background processes to add custom JMX properties to expose additional
information as necessary. This feature is designed to allow developers of custom background processes
to add additional information to the JMX facilities. The custom background process can access the API
using the following call:

addJMXlnfo("<parameter>", "<value>");

Refer to the Oracle Utilities Software Development Kit for more information about this API.

3.3.9 Cancelling Batch Processes Using JMX

While JMX can be used to obtain monitoring information it is possible to cancel threads of batch
processes using the operations component of JMX. To cancel a thread the following process must be
performed:

 Start the JMX console of your choice and connect to the relevant JMX port configured for the
batch.

 Select the thread and batch process to be cancelled from the JMX console.

 Select the Cancel operation from the operations component of the console. The console may
recognize the operations of the JMX classes and allow the actions to be processed. For example,
jconsole will generate cancelThread button. Issue the action.

Note: Depending on the JMX console used, a confirmation dialog may NOT be displayed and cannot be
undone once issued. Ensure that the correct thread for the batch process is selected. To cancel a batch
process, ALL threads must be cancelled.

 The batch process will be marked as cancelled and stopped. The IP address of the requestor is
logged in the Batch Run Tree for auditing purposes.

3.3.10 jmxbatchclient[.sh] - JMX batch command line

While the JMX client interface provided allows real time information to be displayed in a JMX browser, if
a JMX browser is not used then the JMX interface may be interfaced using a command line utility. This
utility is useful to allow third party products (such as batch schedulers) or other systems to control and
monitor the state of the system. This JMX batch command line allows the following to be performed:

 Identify what thread pools are defined in a threadpoolworker

Oracle Revenue Management and Billing Batch Server Administration Guide

38 Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

 See what active batch processes or threads are currently running

 Be able to cancel a particular thread or a batch process

 Gracefully shutdown a threadpoolworker

 The command line utility is in the following format:

To execute the command line, the administrator must:

 Logon to the machine running the product (any tier where the product software exists).

 Attach to the environment using the splenviron[.sh] command. This sets the appropriate
environment settings for the script.

 Execute the JMX Batch command line utility:

jnxbatchclient[.sh] -j [URL] [options]

Where [options] are:

-c: Specifies that active threads should be cancelled. Can be used with -f option to cancel only batch
processes matching the regular expression provided. For example:

Note: Cancelled threads are marked with the date, time, userid and IP address of the user who initiated
the cancel command.

-d: Display the details of the currently active threads.
-f: If a large number of threads are currently active, a filter can be supplied to only display or cancel

threads that match the regex based pattern.

For example the threadpool be filtered to show only the BATI with the option:

-f .*BATI.* as follows:

jmxbatchclient.sh -j

service:jmx:rmi:///jndi/rmi://myserver:9999/spl/fw/jmxConnector

-f .*BAT1.*

would yield:

Options: -j

service:jmx:rmi:///jndi/rmi://myserver:9999/spl/fw/jmxConnector

-f .*BAT1.*

Connecting to

service:jmx:rmi:///jndi/rmi://myserver:9999/spl/fw/jmxConnector

ActiveGridNode

threadPools=[MYSERVER:5,

LOCAL_THREAD_POOL:b9835d11f15fd71b:681ba91d:1200151a3c8:-

8000:0, SCHEDULER_DAEMON_THREAD_POOL:1]

BatchThread_zzQABAT1_1_of_1.31

-h: Display the available options and their descriptions.

-j: JMX URL to perform the action against (Required).

This should match the spl.runtime.management.connector.url.default property specified in
the threadpoolworker.properties.

-k: Specifying this option will result in the cancellation of all currently running threads and the
stoppage of the threadpoolworker process.

Oracle Revenue Management and Billing Batch Server Administration Guide

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 39

Note: Active threads within a cancelled threadpoolworker are marked with the date, time, userid and
IP address of the user who initiated the kill command.

-l: By default, all logging information is displayed and logged using log4j. Supplying this option will
result in only select information being displayed to the system output.

-s: Display the summary of the currently active threads is a listing format.

Oracle Revenue Management and Billing Batch Server Administration Guide

40 Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

4. Interactive Submission (SPLBATCH)
One of the methods supported for developers is the "Interactive" method of submission. This method
takes its name from the level of inactivity required during the initiation of the background process.

The idea with this method is that the background process driver program is invoked directly (via a
supplied utility) and the parameters required for the batch process will be requested for input
interactively. At the end of the interactivity the background process is executed and control is returned
when the process is completed. Effectively you input the parameters interactively and run the
background process in the foreground.

This submission method is only suggested to be used for development testing only for the following
reasons:

 The process is actually run the foreground so interaction during execution is limited.

 To execute the background process a single threaded JVM is executed with the full context. This
means the whole framework is loaded into memory before the actual execution is performed.
This is not efficient for non-development use.

 The interactivity will not allow re-specification of incorrect values for parameters. While some
validation is performed during input of parameters, full validation is performed during execution
of the actual background process.

To use this method of submission the following process needs to be performed:

 Logon to the host machine using an appropriate authorized account (for UNIX/Linux it must be a
member of the group used for the product.

 The environment must be attached to using the splenviron[.sh] utility. For example:

splenviron.sh -e DEV

 Execute the SPLBATCH[.sh] utility from the command line to initiate the interactive
submission of the background process.

 When prompted, answer the parameter prompts using the following guidelines.

 Output is displayed to screen and batch run tree (see Batch Run Tree for further information).

4.1 Anatomy of an Interactive Submission
During the interactive submission process the following occurs:

 A Java Virtual Machine (JVM) is initiated according to the precepts in the SPLBATCH[.sh]
utility and the configuration settings specified in the
$SPLEBASE/splapp/standalone/config (or
%SPLEBASE%\splapp\standalone\config on Windows) directory. Please refer to the
Oracle Revenue Management and Billing Server Administration Guide for an explanation of the
configuration settings.

 A full version of the product (including online classes) is loaded into the JVM.

 Database connections are established to the underlying database according to the
$SPLEBASE/splapp/standalone/config/hibernate.properties (or
%SPLEBASE%\splapp\standalone\config\hibernate.properties on Windows)

Oracle Revenue Management and Billing Batch Server Administration Guide

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 41

configuration file. Please refer to the Oracle Revenue Management and Billing Server
Administration Guide for an explanation of the configuration settings.

 The parameters for the background process are prompted. For example:

Parameter Prompt Usage

Batch Code Batch control for batch process. This is mandatory as it is used to
determine the program to execute.

Batch Thread Number Number of Thread to execute. This is mandatory and must be less or
equal to thread limit. Usually specify 1.

Batch Thread Count Thread limit. Usually specify 1.

Batch Rerun Number The batch run number to rerun (Background process must support
rerun numbers for this to be used). Specify 0 to ignore.

Batch Business Date. If not
accepted,

will use the system date

The business date in ISO format (i.e. YYYY-MM-DD). Use blank entry to
use current system date.

Maximum Number of records
to commit: If not accepted,
the program default will be
used

Commit interval. Use blank entry to use program default.

Maximum Time-out minutes:
If not accepted, the program
default will be used

Timeout for Oracle. Use blank entry to use program default.

User ID Specify a valid user for security reasons.

User Password Not applicable. Use blank entry to ignore.

Language Code Language code used for error messages. This is mandatory. Specify
ENG for English or another valid code. The valid language pack must be
installed to use the selected language.

Trace Program Start (YIN) Enable tracing of program starts. Specify Y for Yes or N for No. This is
mandatory. Usually specify N.

Trace Program Exit (YIN) Enable tracing of program exits. Specify Y for Yes or N for No. This is
mandatory. Usually specify N.

Trace SQL (YIN) Enable tracing of SQL Statements. Specify Y for Yes or N for No. This is
mandatory. Usually specify N.

Trace Standard Output (YIN) Enable tracing of debug output from programs. Specify Y for Yes or N
for No. This is mandatory. Usually specify N.

Additional Run Parameters
(Blank line to end) :

parmname=parmvalue Specify additional parameters as specified on
Batch Control. Use a blank line to indicate last parameter.

 The program indicated on the batch control of the Batch Code specified is executed. For each
execution the following information is output:

Oracle Revenue Management and Billing Batch Server Administration Guide

42 Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

SCHEDULER ID: Internal number allocated to instance of process execution. All messages are associated
with this Scheduler Id.

BATCH CD: Batch Code submitted.

BATCH THREAD NBR: Batch Thread number submitted

BATCH THREAD CNT: Thread Limit used for submission

BATCH NBR: Batch Number allocated to this execution. Value of 0 indicates that the program does not
support batch numbers or current batch number is used.

BATCH BUSINESS DT: Batch Business date used for execution in YYYY-MM- DD format.

 The execution of the batch submission is also written to $SPLOUTOUT (or %SPLOUTPUT% on
Windows) in a log file named <batch_cd>.<datetime>.THRD<threadnumber>.stdout
and <batch_cd>.<datetime>.THRD<threadnumber>.stderr where <batch_cd> is the
batch code submitted, <datetime> is the date and time of the execution (in format
YYYYMMDDHHMMSS.S format) and <threadnumber> is the thread number submitted.

4.2 Return Codes
The following return codes apply to the processing using this method:

Return Code Usage

o (zero) Successful

Non-zero Unsuccessful. See log files for more information.

4.3 Limitations of the Interactive Submission Method
The interactive submission method is recommended for use with development only for the following
reasons:

 This method is designed for development use.

 Each thread runs within its own JVM. This is not efficient for multiple simultaneous batch
processes or multiple threads.

 The prompting is interactive and designed for developers only. While it is possible to pass a
parameter file containing the values for each of the prompts into the SPLBATCH[.sh] utility it
is not recommended.

 Incorrectly specified values for prompts cannot be corrected. You must wait for the batch
process failure to start again.

 There is no monitoring method or cancelling from the foreground execution (apart from killing
the terminal session).

 JMX monitoring is not possible with this method.

Oracle Revenue Management and Billing Batch Server Administration Guide

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 43

5. Online Submission
One of the most important useful testing/demonstration facilities of the product is the ability to submit
batch processes from the online component of the product. An authorized user can submit any batch
process using an online batch submission page.

The on-line batch submission page enables you to request a specific background process to be run.
When submitting a background process on-line, you may override standard system parameters and you
may be required to supply additional parameters for your specific background process. After submitting
your background process, you may use this page to review the status of the submission.

Basically the following process is used to submit background processes using the online submission
method:

 The process to be executed is registered online as to be submitted (or queued). This marks the
process execution as Pending. When you request a batch process to be submitted from on-line,
the execution of the desired background process will result in the creation of a batch run. Just as
with background processes executed through your scheduler, you may use the Batch Run Tree
page to view the status of the run, the status of each thread, the run-instances of each thread,
and any messages that might have occurred during the run.

Note: Your online submission record is assigned a status value so that you may know whether your
batch process has been submitted and whether or not it has ended; however, it will not contain any
information about the results of the background process itself. You must navigate to the Batch Run Tree
page to view this detail.

 A background process is scheduled (using a submitbatch script (run in Cron) or using the
submission daemon) that will pickup any Pending background process executions and execute
them. When you save a record on the batch process submission page, the batch process does
not get submitted automatically. Rather, it saves a record in the batch process table. A special
background process will periodically check this table for pending records and will execute the
batch process. This background process will update the status of the batch process submission
record so that a user can determine when their batch process is complete.

Note: At installation time, your system administrator will set up this special background process or
configure the scheduler daemon to periodically check for pending records in the batch process
submission table. Your administrator will define how often the system will look for pending records in
this table.

It should be noted that this special background process only submits one pending batch process
submission record at a time. It submits a batch process and waits for it to end before submitting the
next pending batch process.

Note: If you request a batch process to be run multi-threaded, the special background process will
submit the batch process as requested. It will wait for all threads to complete before marking the batch
process submission record as ended.

During execution the status of the execution in the batch run tree is updated as well as the original
submission screen. If you wish the system to inform you when the background process completes, you
may supply your email address. The email you receive will contain details related to the batch process s
output; similar to the batch process results you would see from the batch run tree.

Oracle Revenue Management and Billing Batch Server Administration Guide

44 Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Note: This assumes that during the installation process, your system administrator configured the
system to enable email notification. Your administrator may also override the amount of detail included
in the email notification.

5.1 Using Online Submission
The process of submitting using the online method is as follows:

 Logon to the product environment using your browser. Use the appropriate URL.

 Navigate to Main → Batch → Batch Submission.

 Find the batch control you wish to submit. You can use the Batch Code or the Description of the
batch process to find it. It is possible to submit any valid batch process in the list.

 Fill in the prompts on the screen with the appropriate values.

Oracle Revenue Management and Billing Batch Server Administration Guide

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 45

Prompt Comments

Batch Job Id The Batch Job ID is a system generated random number that identifies a
particular submission.

Batch Code To submit a batch process, choose the Batch Code for the process you
wish to submit.

Oracle Revenue Management and Billing Batch Server Administration Guide

46 Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Prompt Comments

Batch Thread
Number

Thread number is used to control whether a background processes is run single
threaded or in multiple parallel threads. It contains the relative thread number
of the process. For example, if the process X has been set up to run in 20
parallel threads, each of the 20 instances receives its relative thread number (1
through 20).

Note: Not all processes may be run multi-threaded.

Many of the system background processes may be run multi-threaded. When
submitting a background process on-line, you may also run a multi-threaded
process or run a single thread of a multi-threaded process. The fields Thread
Count and Thread Number on the batch submission page control the multi-
threaded process requests:

 To run a multi-threaded process, indicate the number of threads in
Thread Count and enter 0 in the Thread Number. For example, to
run the batch process XXX with 10 threads, enter Thread Count = 10 and
Thread Number = 0. This will execute all 10 threads of batch process
XXX.

 To run a single thread in a multi-threaded process, indicate the number
of threads in Thread Count and indicate the Thread Number you would
like to run. For example, to run only thread 1 out of 10 threads for
batch process XXX, enter Thread Count = 10 and Thread Number = 1.
This will execute thread 1 out of 10 for XXX.

 To run a process as a single thread, enter Thread Count = 1 and Thread
Number = 1. This will execute the background process single-threaded.

Note: When running a multi-threaded process, the completion of the last of
the threads will "mark" the batch process submission record as ended.

Batch Thread Count Thread count is used to control whether a background processes is run single
threaded or in multiple parallel threads. It contains the total number of
threads that have been scheduled. For example, if the billing process has been
set up to run in 20 parallel threads, each of the 20 instances receives a thread
count of 20.

Batch Rerun Number Rerun number is only used for background processes that download
information that belongs to given run number. It should only be supplied if you
need to download an historical run (rather than the latest run).

Batch Business Date Business date is only used for background processes that use a date in their
processing. For example, billing using the business date to determine which bill
cycles should be downloaded. If this parameter is left blank, the system date is
used at the time the background process is executed.

Override Nbr Records
To Commit and
Override Max
Timeout Minutes

These parameters are optional and override each background process’s
Standard Commit Records and Standard Timeout Minutes (each background
process’s Standard Commit Records/ Standard Timeout Minutes is documented
in the list of system background processes).

Oracle Revenue Management and Billing Batch Server Administration Guide

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 47

Prompt Comments

User ID Enter the user ID for the background process. This field defaults to the id of the
current user.

Language Code Language code is used to access language-specific control table values. For
example, error messages are presented in this language code.

Email If you wish the system to notify you when the batch process is complete, enter
your Email ID. This field defaults to the email address for the current user, if
populated on the user record.

Note: SMTP support must be configured to operate.

Desired Execution
Date/Time

The Desired Execution Date/Time defaults to the current date and time.
Override this information if you wish the background process to be executed at
some future date and time. If you wish to request a batch process to be
submitted in the future, you may do so when creating your batch process
submission record by entering a future submission date. The special background
process, which looks for pending records in the batch process submission table,
will only submit batch processes that do not have a future submission date.

Batch Job Status This indicates the current status of the batch process.

Program Name The Program Name associated with the batch control code is displayed. This is
used for tracking purposes.

Trace Program Start Toggle this switch on if you wish a message to be written whenever a program
is started.

Trace Program Exit Toggle this switch on if you wish a message to be written whenever a program
is exited.

Trace SQL Turn on this switch if you wish a message to be written whenever an SQL
statement is executed.

Trace Output Turn on this switch if you wish a message to be displayed for special information
logged by the background process.

Note:

The trace parameters are typically only used during QA and benchmarking.

The information displayed when the trace output switch is turned on depends on each background
process. It is possible that a background process displays no special information for this switch.

The location of the output of this trace information is defined by your system administrator at
installation time.

 If additional parameters have been defined for this background process on the Batch Control
page, the Parameter Name, Description and an indicator of whether or not the parameter is
Required are displayed. Enter the desired Parameter Value for each parameter.

Each of the batch processes has, as part of its run parameters, a preset constant that determines
how many errors that batch process may encounter before it is required to abort the run. You
can override this constant with an optional additional parameter (MAX-ERRORS). The input value

Oracle Revenue Management and Billing Batch Server Administration Guide

48 Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

must be an integer that is greater than or equal to zero. The maximum valid value for this
parameter is 999,999,999,999,999.

 Press the Save key. Once you have entered all the desired values, Save the record in order to
include it in the queue for background processes.

 If you wish to duplicate an existing batch process submission record, including all its parameter
settings, display the submission record you wish to duplicate and use the Duplicate and Queue
button. This will create a new Batch Job Submission entry in pending status. The new submission
entry will be displayed.

 If you wish to cancel a Pending batch process submission record, use the Cancel button. The
button is disabled for all other status values.

Note: Saving a record on this page does not submit the batch process immediately. A special
background process will run periodically to find pending records and submit them. Depending on how
often the special process checks for pending records and depending on how many other pending
records are in the ‘queue’, there may be a slight lag in submission time. If the desired execution
date/time is close to midnight, it is possible that your batch process will run on the day after you submit
it. If you have left the business date blank in this case, keep in mind that your business date would be set
to the day after you submit the batch process.

After saving the process in the batch submission screen the following process is performed:

 The execution of the process is registered within a batch run table in Pending status. Prior to
execution the user may cancel the batch process by pressing the cancel button. This updates the
process status to Canceled.

 At installation time, the product administrator sets up an additional process, the online daemon
(or submitbatch[.sh] cron utility see submitbatch) which polls the batch run table every x
minutes (where x is the parameter used on the command line).

 It processes each Pending process in sequence, using FIFO and at process start updates the batch
run table with a status of Started. This indicates the process is executing. The user cannot cancel
the process after it has been Started. At this time the batch run tree is populated with the run
information as it is executing, including restart information and threading.

 If the process is successful or errored, the batch runs information with an Ended status. You must
check the Batch Run tree to see if has been successful.

This figure illustrates the process:

Oracle Revenue Management and Billing Batch Server Administration Guide

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 49

5.2 Online Batch Daemon
During the installation of the Business Application Server component of the product, it is possible to
configure part of the Business Application Server runtime to become a batch daemon. This means that
part of the JVM used by the Business Application Server can be used as a daemon (or "listener") for
processes submitted online.

If configured, the Business Application executes an internal process to poll for "Pending" processes
registered using the online submission screen. This batch daemon then executes the batch process
within the Business Application Server JVM. The daemon can be configured to limit the impact on the
online system by limiting the number of concurrent threads that can be executed. The following diagram
illustrates this process:

Oracle Revenue Management and Billing Batch Server Administration Guide

50 Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Web Application Server

Business Application Server

Batch Demon Business Application Server

Object

Thread

Database Server

Thread

Thread

Thread

At installation time the installer asks additional questions to disable/enable the batch daemon:

…

Batch Server Enabled: false

Batch Threads Number: 5

Batch Scheduler Daemon: false

…

The three settings used can be configured using the following guidelines:

 Batch Server Enabled – Enable batch to be run within the JVM.

 Batch Threads Number – Maximum number of threads to limit background processes to within
the JVM if Batch Server Enabled is set to Yes. This number of threads represents the number of
threads surrendered from the main JVM thread pool and allocated to running batch exclusively.
The default is 5.

 Batch Scheduler Daemon – Enable the daemon to check for pending batch processes in the
Batch Submission or inbuilt batch process scheduler2. If a pending batch process is found it is
passed to the Batch Server for execution.

2
 The inbuilt batch process scheduler is NOT covered in this guide. Refer to the online documentation

provided with your product for details of this facility (if provided with your product).

Oracle Revenue Management and Billing Batch Server Administration Guide

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 51

The valid combinations of these settings are as follows:

Batch Server Enabled Batch Scheduler Daemon Comments

Yes Yes Batch Daemon runs on this Business Application
Server and any batch processes found by the
daemon are executed on this Server.

Yes No Batch Daemon does not run on this Business
Application Server but this Business Application
Server can execute batch programs. It is assumed
that another business application server has
been allocated as a batch scheduler daemon.

No Yes Batch Daemon does run on this Business
Application Server but Batch submission does not
run on this Business Application Server. It is
assumed that another business application server
has been allocated as a batch server.

No No Batch does not execute on this Business
Application Server and no Batch Daemon has
been allocated to this

5.2.1 Guidelines for using the Batch Server/Batch Scheduler
Daemon

This facility is not applicable to all environments and all situations at a site, the following guidelines will
assist in the appropriate use of the facility:

 If the environment is going to use the online submission (or inbuilt scheduler) then the Batch
Server and Batch Scheduler Daemon should be enabled for Business Application Server allocated
to the environment. If multiple Business Application Servers are allocated to the same
environment, then there should only be one server with the Batch Server enabled set to Yes and
only one server with the Batch Scheduler Daemon set to Yes (they can be the same server or
different servers). This setting is common for non-production environments.

 If the environment is not going to use the online submission, then both Batch Server Enabled
and Batch Scheduler Daemon should set to No. This is a common setting for Production as online
submission is usually disabled in production.

 Online submission and scheduling (if the product includes the inbuilt scheduler) are not
recommended for use in Production environments.

5.2.2 Logging using the Batch Server/Scheduler Daemon

The execution of any batch submission is also written to $SPLOUTOUT (or %SPLOUTPUT% on Windows)
in a log file named <batch_cd>.<datetime>.THRD<threadnumber>.stdout and
<batch_cd>.<datetime>.THRD<threadnumber>.stderr where <batch_cd> is the batch code
submitted, <datetime> is the date and time of the execution (in format YYYYMMDDHHMMSS.S
format) and <threadnumber> is the thread number submitted.

Oracle Revenue Management and Billing Batch Server Administration Guide

52 Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

5.2.3 Configuring JMX with the Batch Server/Scheduler Daemon

The executing threads Batch Server can be monitored using the JMX adapter by adding the following
lines to the $SPLEBASE/etc/conf/root/WEB-INF/classes/spl.properties (or
%SPLEBASE%\etc\conf\root\WEB- INF\classes\spl.properties on Windows) file:

spl.runtime.management.rmi.port=<port>

spl.runtime.management.connector.url.default=service:jmx:rmi:///jndi/rmi

://<server>:<port>/spl/fw/jmx(onnector java.rmi.server.hostname=<server>

Where:

<server>: Name of the host (or IP address) where the Business Application Server is located.

<port> A unique port allocated for the JMX agent to broadcast on. This port must be unique to the host
it is located upon.

To implement the change the initialSetup[.sh] commands must be executed. Additionally on
platforms when a WAR/EAR file is used, the WAR/EAR file must be redeployed. Refer to the Oracle
Revenue Management and Billing Server Administration Guide for details.

5.3 Submitbatch - Command Based Daemon

Note: This facility is documented for completeness only; it is recommended that the online submission
daemon be used in preference to this facility.

For backward compatibility purposes, there is a facility that can invoked on the command line (or in
cron, or similar, facility) to act as an alternative to the online scheduler daemon. This facility will run a
polling script that will detect a pending process and invoke the interactive method (in background) to
execute the process.

This can be configured using the following command line

submitbatch[.shJ [-e <env>J [-s <seconds>J [-hJ [-kJ

Where:

-s <seconds>: Run as daemon and pause <seconds> seconds between loops of checking whether
there is more work to do. Without the -s it runs one batch process and stops
(recommended if used with cron).

-k : Stop the background batch processor

-v : Print out verbose messages

-e <env> : Dummy parameter that is only used to make the process more identifiable so 'ps -edf'
can be used to determine which submitbatch script belongs to which environment
(<env>).

-h : Print command line help.

Oracle Revenue Management and Billing Batch Server Administration Guide

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 53

6. External Scheduler Submission
The Oracle Utilities Application Framework exposes a callable interface that allows scheduling and
execution of to be controlled by an external scheduling product. A number of utilities threadpoolworker
and submitjob have been include in the product to allow external schedulers (or a command line) to
establish a JVM to run background processes and then submit background process to that JVM.

Note: The words "node" and "IVM" are interchangeable in this section.

6.1 Concepts
At a site implementing the product, the batch processes to be executed to support the business as well
as perform expected maintenance on the system needs to be scheduled, managed and executed from a
central point. In most sites, this is done by using a third party batch process scheduler that controls the
scheduling and execution of any batch processes across a site.

To support the use of such a scheduler with any Oracle Utilities Application Framework based product(s)
a number of scripts and related configuration files have been provided to allow the scheduler to execute
the process batch processes.

The scripts and configuration files allows for three fundamental facilities that can be used by external
scheduling tools:

 The interface is command line based (it can also be invoked using a java based API see the
product javadocs within AppViewer for a description of the interface) which most external
scheduling tools support.

 The command based utilities return a standard return code to indicate the batch process has
been successful or has been unsuccessful. Actions dependent on return code within the
scheduler can then be configured.

 The logs within the utilities provided are in a common format that can be interrogated by the
external scheduler to provide finer grained actions (especially for unsuccessful executions).

For additional advice about interfacing external schedulers with the product refer to the Batch Best
Practices whitepaper at KB Id 836362.1 on My Oracle Support.

6.2 Threadpoolworker[.sh] Utility
This script starts a long-lived worker node (JVM) in a distributed batch grid environment. Once
successfully started, this process will accept submissions from lightweight submitter nodes and execute
the batch processes as requested by the submitters. A worker JVM may also host a scheduler daemon,
which, if activated inside a worker, will poll for batch process submission requests from the web
application that were done via the Batch Job Submission transaction.

There are three modes to execute background processes using this facility CLUSTERED, DISTRIBUTED
and THIN.

 In THIN mode, the batch program is executed in a stand-alone JVM. This means that a full
application context is established before the application program is invoked, and destroyed when
the execution ends. If a batch process is submitted in multiple threads, each thread requires its
own context, in its own separate JVM. THIN mode is typically used by developers to isolate their
tests from other developers and is not recommended for production use.

https://support.oracle.com/

Oracle Revenue Management and Billing Batch Server Administration Guide

54 Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

 In DISTRIBUTED mode, at least one worker JVM must be started and left running to poll for
work requests from submitter JVMs. Worker JVMs are also known as grid nodes, because
multiple workers can be started to load-balance batch. DISTRIBUTED mode is the existing,
classic way that customers have been running their batch processes in past releases of the Oracle
Utilities Application Framework. In this mode, one or more batch workers are started and left to
run as long-running, background tasks. Each worker can be individually configured to process n
number of threads concurrently, and this can further be grouped into thread pools. The workers
also have the option to host a batch process scheduler daemon, whose role is to listen for and
execute online batch process submissions (via the Batch Job Submission page for example).

 In CLUSTERED mode, as with DISTRIBUTED at least one worker JVM must be started. These
worker JVM's may be standalone or clustered with appropriate batch. The difference between
CLUSTERED and DISTRIBUTED is that in a CLUSTERED setup, worker and submitter JVMs
(members) are more tightly joined in a Coherence based cluster, resulting in better management
of various events, such as workers abruptly stopping (because of program crashes for example),
batch processes getting cancelled, etc. As long as at least one member is active in a cluster,
batch processes can be appropriately handled in the case of unexpected interruptions.

It is highly recommended that customers use the CLUSTERED mode.

The figure below summarizes the approaches of different execution modes:

JVM

Batch Thread

Framework

(Full)

JVM (Threadpool)

Batch Thread

Batch Thread

Batch Thread

Batch Thread

...

Framework

(Batch Only)

THIN DISTRIBUTED/CLUSTERED

If only THIN submissions are ever used, script threadpoolworker[.sh] does not have to be
executed. If this is the case, batch processes can be submitted in THIN mode from the command-line
using script submitjob[.sh].

This script may be executed more than once if multiple workers are required. This may be for
performance or load-balancing purposes, or to simply provide separate thread pool configurations in a
distributed grid. Worker JVMs in a grid can be started on different machines (even if the platforms
differ), provided they all access the same database and contain the runtime appropriate for the

Oracle Revenue Management and Billing Batch Server Administration Guide

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 55

architecture. If the web application is also batch- enabled, the worker hosted by the web application
then becomes one node among the nodes that were started as described above.

If multiple worker nodes, including the web application, are configured to host a scheduler daemon,
only one of those will be the active daemon. The others are dormant until the active one becomes
unavailable for some reason, for example if the JVM is killed, in which case one of the dormant ones will
automatically become active.

Note: A single product environment can be either CLUSTERED or DISTRIBUTED. Mixing IVMs that start
up in CLUSTERED and DISTRIBUTED mode will have unpredictable results.

6.2.1 threadpoolworker and F1_TSPACE_ENTRY

The DISTRIBUTED and CLUSTERED approaches use a database tuple space table Fl_TSPACE_ENTRY
for operations and management. The role of this table varies differently depending on the execution
mode of the worker or submitter.

In DISTRIBUTED mode, whenever a threadpoolworker or submitjob starts an entry is created in
the Fl_SPACE_ENTRY table. This is used by the threadpoolworker to advertise that it is ready to
accept work (known as a THREAD_OFFER) using a lease (to indicate when it is to check back with
Fl_TSPACE_ENTRY). If the threadpoolworker finds work in the Fl_TSPACE_ENTRY it issues a
GRID_WORK record grabbing the submitters work and executes the indicated batch process. After the
batch process has ended it issues a WORK_ENDED against the submitter record in the
Fl_TSPACE_ENTRY table and updates the threadpoolworker entry to THREAD_OFFER again to accept
more work. The submitter process creates an Fl_TSPACE_ENTRY table of WORK_OWNER to indicate it
waiting to be executed and waits. When the threadpoolworker accepts the submitters work it has
marked the submitters records as GRID_WORK indicating it is processing the task. At this time, the
submitted polls regulars waiting for the WORK_ENDED message to indicate the work has been
completed.

The issues with this type of processing are when there are issues with the threadpoolworker or
submitter. If these processes fail, then the Fl_TSPACE_ENTRY does not adequately reflect the state
of the processes. This may cause internal synchronization issues in some cases. A common technique
used by sites when this happens is to clear the offending Fl_TSPACE_ENTRY entries manually or
truncating the table altogether and reissue the work. The latter is dangerous if there is work still running
in the product.

The CLUSTERED mode was created to address this issue. It uses Fl_TSPACE_ENTRY for some
persistence but each threadpoolworker in the cluster is aware of the other nodes and the work that
is allocated to it. Any node can be used in execution of processes and in the case of submitter failure the
node will communicate to the appropriate process to keep the relevant parties informed. This also
occurs when a threadpoolworker failure where the other nodes inform the relevant parties involved
of the failure.

6.2.2 threadpoolworker.properties configuration file

To use the threadpoolworker utility a configuration file must be created to specify the attributes of
the JVM. The threadpoolworker.properties file should be placed in the $SPLEBASE/etc directory
(or %SPLEBASE%\etc directory on Windows).

The properties file contains the default properties for threadpoolworker. The following sample
illustrates the values:

Oracle Revenue Management and Billing Batch Server Administration Guide

56 Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

com.splwg.grid.distThreadPool.threads.DEFAULT=5

com.splwg.grid.distThreadPool.threads.LOCAL=0

com.splwg.batch.scheduler.daemon=true

spl.runtime.management.rmi.port=9090

spl.runtime.management.connector.url.default=service:jmx:rmi:///jndi/rmi

://{host}:{port}/spl/fw/jmxConnector

com.splwg.grid.executionMode=CLUSTERED

The following table describes the parameters:

Parameter Comments

com.splwg.grid.distThreadPool.th

reads.<poolname>
Number of Threads for pool <poolname>.

com.splwg.batch.scheduler.daemon Whether the node will act as a scheduler daemon.

com.splwg.grid.executionMode Mode of the threadpoolworker. Valid values are:
THIN, DISTRIBUTED or CLUSTERED.

spl.runtime.management.rmi.port JMX RMI Port to use. If omitted, JMX is disabled.

spl.runtime.management.connector

.url.default
Default JMX service. Required if rmi.port is specified. In the
example, above the URL format is shown. Substitute
{host} for hostname of machine and {port} for unique
RMI port.

com.splwg.batch.submitter.maxExe

cutionAttempts
This specifies how many times the worker(s) in the grid
should attempt execution of the work submitted by this
submitter. If the application program crashes and brings
down the worker JVM with it, this parameter is designed
to prevent any other worker nodes in the grid from picking
up this same bad work request and thereby spreading the
"poison work" around the grid, crashing JVMs along the
way and ultimately bringing the batch grid down
completely. The default is set to 1 and should be left like
that unless there is a good reason to change it

This file should be modified for site-specific values. For example, the scheduler daemon may not be
required to be activated by default, in which case property com.splwg.batch.scheduler.daemon
should be changed to false (or removed entirely to use the system default).

6.2.3 Multi-cast or Uni-cast

The CLUSTERED mode can use multi-cast or uni-cast to communicate across the threadpoolworker
nodes in a cluster. By default CLUSTERED mode uses a multicast protocol to discover other nodes when
forming a cluster. For information about multi-cast and uni-cast see the following sites:

 Discussion of protocols - http://wiki.tangosol.com/display/COH35UG/Network+Protocols

 Advanced Configuration of the multi-cast listener -
http://wiki.tangosol.com/display/COH35UG/multicast-listener

http://wiki.tangosol.com/display/COH35UG/Network+Protocols
http://wiki.tangosol.com/display/COH35UG/multicast-listener

Oracle Revenue Management and Billing Batch Server Administration Guide

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 57

 Advanced Configuration of the uni-cast listener -
http://wiki.tangosol.com/display/COH32UG/unicast-listener

6.2.4 Well Known Addresses

The default option at installation is use of multicast, if multicast is not an option; the well-known-
addresses feature may be used. It requires manual edits of the tangosol- coherence-

override.xml configuration file.

The WKA properties specify one or more "well-known" nodes (JVMs) that are used to start a cluster and
are likely to be available for other nodes to join. These well-known nodes are used by the other nodes
to find their way into the cluster without the use of multicast. Note that only one of these nodes is
required to be up; they don t all have to be up at the same time.

The following example shows a WKA configuration.

tangosol-coherence-override.xml on server test1 and test2.

<coherence>

<cluster-config>

<unicast-listener>

<well-known-addresses>

<socket-address id="l">

<address>testl</address>

<port>l9000</port>

</socket-address>

<socket-address id="2">

<address>test2</address>

<port>38000</port>

</socket-address>

</well-known-addresses>

</unicast-listener>

<service-guardian>

<service-failure-policy>logging</service-failure-policy>

<timeout-milliseconds>86400000</timeout-milliseconds>

</service-guardian>

</cluster-config>

http://wiki.tangosol.com/display/COH32UG/unicast-listener

Oracle Revenue Management and Billing Batch Server Administration Guide

58 Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

<logging-config>

<destination>log4j</destination>

<severity-level>S</severity-level>

</logging-config>

…

</coherence>

This example defines two threadpoolworker JVMs as WKA nodes:

 test1, port 19000

 test2, port 38000

With at least one of these two threadpoolworkers available, any other node that wants to join the
cluster will be able to, provided that node s configuration specifies the same list of WKAs.

This is illustrated with the submitbatch.properties example, which is what all submitters will use. The
wka properties reference the two WKA worker nodes, which allow it to join the cluster.

For further details, refer to http://wiki.tangosol.com/display/COH35UG/unicast-listener.

6.2.5 threadpoolworker[.sh] command line options

Note: The appropriate environment has to be attached to before this script can be executed (i.e.
sp1environ[.sh] -e <environnent> has to be run), unless the script is directly invoked from the
Windows explorer by double-clicking on it. In that case it will automatically attempt to attach to the
environment that owns the bin directory in which it is located and then prompt for options.

The following options can be specified when executing script threadpoolworker.

threadpoo1worker[.sh] [-d] [-e][-h][-i][-J][-p][-Q][-R][-s]

Where command line options are:

-d <yiN>: Whether the node is acting as a scheduler daemon. Specify N for No and y for Yes. If you
are already using a scheduler daemon in the online system or are not using online submission then set
this to N. Default is N.

-e <DISTRIBUTEDiCLUSTERED>:Execution mode for this threadpool. If CLUSTERED is the threadpool
will join the cluster specified in the threadpoo1worker.properties file.

-h: Show command line help. List the available options and their descriptions. It is formatted for a
121- column width display. The information is not logged.

-i <RMI Port>: Override port number for JMX. If specified with -R, this number will be used only to
substitute applicable URL {port} references. This option will not add any new RMI/JMX properties - it can
only be used to override existing ones. This option specifies the port number to:

 Use when the framework starts an RMI Registry and

 Substitute in all JMX Connector URL {port} references.

-J: Do not start JMX monitoring. For each property prefixed by
spl.runtime.management.connector.url that is defined with the default set of properties (e.g. in
the threadpoolworker.properties file), the framework will start a JMX Connector for the specified
URL. This activates JMX monitoring inside the worker node so that a client JMX console can be used to

http://wiki.tangosol.com/display/COH35UG/unicast-listener

Oracle Revenue Management and Billing Batch Server Administration Guide

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 59

monitor and manage active threads. If this option is specified, the framework will not start any JMX
connectors.

 -l2 <READ_ONLY|READ_WRITE|OFF>: Enable or disable batch caching. Default: READ_WRITE.
OFF and READ_ONLY are reserved for specific processes.

 -p<name-va1ue,name-va1ue,…>: Thread pool(s) offered by this worker node. Consists of one or
more name=value pairs, where "name" is the name of the pool and "value" the number of threads
offered in the pool. For example, DEFAULT=5,ONLINE=3

-Q: Preview the properties that would be active for this run. Used for testing. Preview the properties
that would be in use for the run without actually running the application. Specify other options along
with this option to show how they would merge with, override or substitute the default properties. The
information is not logged.

-R: Do not start a local RMI registry. If property spl.runtime.management.rmi.port is defined as
a default property (e.g. in the threadpoolworker.properties file), the batch framework will
attempt to start an RMI registry on the given port number. This option can be used to suppress the
automatic RMI registry startup. It may be required if an externally started RMI registry is already
running.

Note: If this option is used, the RMI port number supplied through the -i option is only used for
substitution in the JMX Connector URLs.

-s <space name>: Space name for "hard partition" of workers. Default is MAIN. Reserved for internal
use only.

When threadpoolworker is invoked, the command-line options will alter its default configuration.
The default configuration options come from either internal system defaults or the
threadpoolworker.properties file described above.

The properties are overridden in the following order:

1. The threadpoolworker.properties supersedes the internal system defaults.

2. The command-line options supersede the defaults in threadpoolworker.properties and
the internal system defaults.

Example 1

Assuming we have the above set of properties in threadpoolworker.properties and script
threadpoolworker is invoked as follows:

threadpoolworker[.shJ -d Y

This will replace the default "daemon" property to "N" (i.e. false) so that the properties now look as
follows:

com.splwg.grid.distThreadPool.threads.DEFAULT=5

com.splwg.grid.distThreadPool.threads.LOCAL=O

com.splwg.batch.scheduler.daemon=false

spl.runtime.management.rmi.port=9999

spl.runtime.management.connector.url.default=service:jmx:rmi:///jndi/rmi

://{host}:{port}/spl/fw/jmxConnector

Oracle Revenue Management and Billing Batch Server Administration Guide

60 Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

6.2.6 tpwlog4j.properties

Note: This log file should not be altered unless specified. The generated configuration file has all the
recommended settings for all sites.

The threadpoolworker utility logs information to
$SPLOUTPUT/threadpoolworker.<datetime>.log (or
%SPLOUTPUT%\threadpoolworker.<datetime>.log) where <datetime> is the date and time in
YYYYMMDDHHMMSS format of the start of the node. This configuration file is provided in the
$SPLEBASE/etc directory (or %SPLEBASE%\etc directory on Windows).

This is a standard log4j properties file, but declares two appenders specifically for threadpoolworker:

1. the console and

2. a file in the products $SPLOUTPUT (or % SPLOUTPUT% on Windows) directory.

This log4j configuration allows the worker s output to be logged to the command prompt window as
well as a log file. This file should not be altered unless desired.

The product uses the log4j Java classes to centralize all log formats into a standard format. The details of
the configuration settings and log4j itself are available at http://logging.apache.org/log4j/ or
http://en.wikipedia.org/wiki/Log4j.

6.2.7 Automatic Log Rotation

By default the threadpoolworker.log file is appended to while the threadpoolworker is active. If
the threadpoolworker is long running and the log needs to be automatically rotated on a daily basis the
following changes should be applied to the workersubmitterlog4j.properties file:

Replace:

...

Fl is set to be a FileAppender.

log4j.appender.Fl=org.apache.log4j.FileAppender

…

with

Fl is set to be a RollingFileAppender

log4j.appender.Fl=org.apache.log4j.DailyRollingFileAppender

log4j.appender.Fl.DatePattern='.'yyyy-MM-dd

Refer to http://logging.apache.org/log4j/1.2/index.html for additional options.

6.2.8 Return Codes

The following return codes apply to the processing using this method:

Return Code Usage

0 (zero) Successful

Non-zero Unsuccessful. See log files for more information.

http://logging.apache.org/log4j/
http://en.wikipedia.org/wiki/Log4j
http://logging.apache.org/log4j/1.2/index.html

Oracle Revenue Management and Billing Batch Server Administration Guide

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 61

6.3 submitjob[.sh]
The submitjob[.sh] utility provides a means for the scheduler to submit a batch process. It can be
invoked from a command prompt, Windows explorer (on Windows platforms) or a 3rd party scheduler.
This script can be used to submit the batch process to an active threadpoolworker process, or to run
it in a full-context standalone JVM.

6.3.1 submitbatch.properties Configuration File

To use the submitjob[.sh] utility a configuration file must be created to specify the global attributes
of all the batch processes. The submitbatch.properties file should be placed in the
$SPLEBASE/etc directory (or %SPLEBASE%\etc directory on Windows).

The properties file contains the default properties for threadpoolworker. The following sample
illustrates the values:

com.splwg.grid.executionMode=DISTRIBUTED

com.splwg.batch.submitter.distThreadpool=DEFAULT

com.splwg.batch.submitter.promptForvalues=false

com.splwg.batch.submitter.rerunNumber=0

com.splwg.batch.submitter.threadNumber=0

com.splwg.batch.submitter.threadcount=1

com.splwg.batch.submitter.maximumcommitRecords=200

com.splwg.batch.submitter.userId=AUSER

com.splwg.batch.submitter.languagecd=ENG

com.splwg.grid.executionMode=CLUSTERED

The following table describes the parameters:

Parameter Comments

com.splwg.batch.submitter.distThreadpo

ol
Name of pool to be used for batch process. If
threadpoolworker not used then LOCAL must
be specified.

com.splwg.batch.submitter.languagecd Default Language code used for messages.
Relevant language pack must be installed.

com.splwg.batch.submitter.maximumcommi

tRecords
Default commit interval.

com.splwg.batch.submitter.promptForval

ues
Whether interactive mode is to be used. Specify
true for Yes (development use only) and false
for No. Default is false.

com.splwg.batch.submitter.rerunNumber Default run number. Default 0.

com.splwg.batch.submitter.threadcount Default thread limit. Default: 1.

com.splwg.batch.submitter.threadNumber Default thread number. Default: 0.

com.splwg.batch.submitter.userId Default userid used for all batch processes.

Oracle Revenue Management and Billing Batch Server Administration Guide

62 Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Parameter Comments

com.splwg.grid.executionMode Mode of execution. Valid values: THIN,
DISTRIBUTED or CLUSTERED.

This file can be modified for site-specific values. For example, the user Id will need to be changed from
"AUSER", so property com.splwg.batch.submitter.userId should be modified to specify the
appropriate user id allocated to batch. The user id property could also be removed so that there is no
default, forcing every batch process submission to specify its own user id.

6.3.2 submitbatchlog4j.properties Configuration File

The submitjoblog4j.properties configuration file defines the log format and logging level used by
the submitjob utility.

The submitjob utility logs information to $SPLOUTPUT/submitjob.<batch_cd>.<datetime>.log
(or %SPLOUTPUT%\submitjob.<batch.cd>.<datetime>.log) where <datetime> is the date and
time in YYYYMMDDHHMMSS format of the start of the node and <batch.cd> is the batch code of the
batch process.

The product uses the log4j Java classes to centralize all log formats into a standard format. The details of
the configuration settings and log4j itself are available at http://logging.apache.org/log4j/ or
http://en.wikipedia.org/wiki/Log4j.

Note: This configuration file should not be altered unless instructed by Oracle Support.

6.3.3 Job Specific parameters files

Note: Not ALL batch processes require a batch process specific parameter file. It is recommended that
ONLY batch processes that require any of the additional parameters listed below should have a batch
process specific parameter file.

For individual batch processes it is possible to create a specific file to handle the batch process specific
parameters. These parameters can override existing parameters or add additional parameters.

To configure individual batch process specific parameters configuration file named
<batchcode>.properties or <batchcode>.properties.xml must existing in the
$SPLEBASE/scripts/cm directory (or %SPLEBASE%\scripts\cm directory on Windows). In the vast
majority of cases the standard text based properties file will be adequate, but if UTF-8 formatted soft
parameter values have to be specified (e.g. Cyrillic characters), it is recommended the xml file format be
used.

The format of the batch process specific parameter file is similar to the submitbatch.properties file
with the following additional parameters:

Parameter Comments

com.splwg.batch.submitte

r.batchCd
Batch Code this batch process is associated with.

com.splwg.batch.submitte

r.distThreadPool
Name of pool to be used for batch process. If threadpoolworker not
used then LOCAL must be specified.

http://logging.apache.org/log4j/
http://en.wikipedia.org/wiki/Log4j

Oracle Revenue Management and Billing Batch Server Administration Guide

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 63

Parameter Comments

com.splwg.batch.submitte

r.maximumTimeoutMinutes
Specifies the number of minutes the thread(s) can run between
database commits.

Only COBOL programs, if used, use this value to avoid "snapshot too
old" errors on Oracle databases. Java batch classes completely
ignore this parameter.

com.splwg.batch.submitte

r.processDate
Business Date. This may be omitted. Typically, it is specified on the
command line.

Format: YYYY-MM-DD

com.splwg.batch.submitte

r.softParameter.<parmnam

e>

For any program-specific parameters, use this form of property
specification. The <parmname> denotes the name of the parameter.
For example, to specify a "number of rows to skip" when submitting
a validation program:

com.splwg.batch.submitter.softParameter.SKIP-

ROwS=1000

Multiple soft parameters may be specified.

com.splwg.batch.submitte

r.traceProgramEnd
Set this to true to see program end messages in the log.

com.splwg.batch.submitte

r.traceProgramStart
Set this to true to see program start messages in the log.

com.splwg.batch.submitte

r.traceSQL
Set this to true to see all SQL statements in the log.

com.splwg.batch.submitte

r.traceStandardOut
Set this to true to see program debug messages in the log.

com.splwg.grid.execution

Mode
Mode of execution. Valid values: THIN, DISTRIBUTED or
CLUSTERED.

A number of samples in $SPLEBASE/etc directory (or %SPLEBASE%\etc directory on Windows)
named SAMPLE.properties and SAMPLE.properties.xml are provided. These should be copied
and edited to provide site specific values.

Note: Environment variables may be substituted in the command line and the properties file.
Environment variable references must be surrounded by the ${…} construct. For example
${SPLOUTPUT} refers to the $SPLOUTPUT (or %SPLOUTPUT% on Windows) directory.

6.3.4 submitjob[.sh] Command-Line Options

Note: The appropriate environment has to be attached before this script can be executed (i.e.
splenviron[.sh] -e <environment> has to be run), unless the script is directly invoked from the
Windows explorer by double-clicking on it. In that case it will automatically attempt to attach to the
environment that owns the bin directory in which it is located and then prompt for options.

The following options can be specified when executing utility submitjob[.sh]:

submitjob[.sh] [-B][-b][-c][-d][-e][-f][-g][-h][-i][-J][-l][-L][-m][-n][-p]

[-P][-Q][-R][-r][-s][-t][-u][-x][-x]

Oracle Revenue Management and Billing Batch Server Administration Guide

64 Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Where command line options are:

-B <COBOL program name>: Batch "helper" COBOL program to perform scheduling activity.

-b <batch code>: Batch code of the batch process to submit. When submitting a batch process, a
batch code is always required. Either this option or -P may be specified, not both.

If this option is specified, submitjob will use the supplied batch code to look for a default
properties file for that batch code (e.g. VAL- SA.properties or VAL- SA.properties.xml as
discussed above) and use those properties if found.

-c <thread count>: Concurrent number of threads in which to run the process.

-d <date>: Process / business date. Format is YYYY-MM-DD

-e <DISTRIBUTEDITHINICLUSTERED>: Execution mode for this submission. If execution mode THIN
is selected, the JVM will create a full application context and run the batch process inside the JVM – i.e.
it will not be submitted to a thread pool for a worker JVM to pick up and run. This is analogous to
running the batch process using the existing SPLBATCH[.sh] utility.

If DISTRIBUTED or CLUSTERED is selected, the batch process will be submitted to run in the specified
distributed thread pool (option -p). It is also possible to have the submitter JVM be a worker JVM and
run the batch process (similar to THIN mode, but in parallel threads). See option –L.

-f<record count>: Record commit frequency count.

-g<four yIN switches>: Positional tracing switches:

1. Program entry

2. Program exit

3. SQL statements

4. General program debugging info

For example, NNYN will trace all SQL statements. Value of NNNN disables all tracing.

-h: Show help information. Display the available options and their descriptions. The information is not
logged.

-i <RMI port number>: Port number of RMI Registry to start and/or reference. If specified with -R,
this number will be used only to substitute applicable URL {port} references. This option will not add any
new RMI/JMX properties - it can only be used to override existing ones. See note below

-J: Do not start JMX connector. This option disables JMX monitoring for this JVM. As far as submitjob is
concerned, options -i, -R and - J are only applicable to batch processes submitted in THIN mode,
or DISTRIBUTED or CLUSTERED mode to the LOCAL thread pool.

For each property prefixed by spl.runtime.management.connector.url that is defined with the
default set of properties (e.g. in the submitbatch.properties file), the framework will start a JMX
Connector for the specified URL.

This activates JMX monitoring inside the worker node so that a client JMX console can be used to
monitor and manage active threads. If this option is specified, the framework will not start any JMX
connectors.

-l <ENGIFRAIetc.>: Language code. Relevant language pack must be installed.

Oracle Revenue Management and Billing Batch Server Administration Guide

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 65

-L: Submit this batch to the LOCAL thread pool (i.e. this JVM). Only applicable for DISTRIBUTED or
CLUSTERED mode. If specified, any default thread pool property is ignored. This option and -p are
mutually exclusive.

By specifying option -L, the batch process is submitted to the LOCAL thread pool that every submitter
JVM offers by default. This option is only applicable in a DISTRIBUTED or CLUSTERED mode execution
(-e). This is similar to submitting the batch process in THIN mode (i.e. a worker JVM is not needed to
run the batch process), except thread pool LOCAL can run multiple batch threads concurrently.

For example, the following command will run batch process VAL-SA inside this submitter JVM (LOCAL
thread pool) in 8 threads concurrently: submitjob[.sh] -b VAL-SA -c 8 -L -e DISTRIBUTED.

-m <number of minutes>: Minutes between database commits to avoid "snapshot too old" errors.

-n <email address>: Send a notification email when a batch process has ended to <email address>.
For more information, refer to Section Sending Emails at the Conclusion of Batch Processes.

-p <threadpool name>: Distributed thread pool in which to run the batch process. This option and -
L are mutually exclusive.

-p: Issue console prompts for the standard batch process parameters. When submitting a batch
process, a batch code is always required. Either this option or -b may be specified, not both. If - p is
specified, the submitter JVM will prompt for the batch code and other run parameters. If a batch-
specific properties file exists for the batch code entered at the prompt, it will NOT be used; the only
defaults in effect would be the ones specified in submitbatch.properties.

-Q: Preview the properties that would be in use for the run without actually running the application.
Specify other options along with this option to show how they would override or substitute the default
properties. The information is not logged.

-R: Do not start a local RMI registry. As far as submitjob is concerned, options -i, -R and – J are
only applicable to batch processes submitted in THIN mode, or DISTRIBUTED or CLUSTERED mode
to the LOCAL thread pool. If property spl.runtime.management.rmi.port is defined as a default
property (e.g. in the submitbatch.properties file), the batch framework will attempt to start an
RMI registry on the given port number.

This option can be used to suppress the automatic RMI registry startup. It may be required if an
externally started RMI registry is already running. Note that if this option is used, the RMI port number
supplied through the -i option is only used for substitution in the JMX Connector URLs.

-r <run number>: Run number of batch process to rerun.

-s <space name>: Space name for "hard partition" of workers. Default is MAIN. Used for
development only.

-t <thread number>: Number of individual thread for this submission. Specify 0 to automatically
submit all threads.

-u <user id>: Application user id used for batch process

-x <name=value,name=value,...>: Name=value pairs of INDIVIDUAL soft parameters expected
by the batch program. Value portion may be enclosed in quotes. These parameters will be merged with
any existing (defaulted) soft parameters. This option and -x are mutually exclusive.

Oracle Revenue Management and Billing Batch Server Administration Guide

66 Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

-x <name=value,name=value,...>: Name=value pairs of ALL soft parameters expected by the
batch program. Value portion may be enclosed in quotes. These parameters will replace all existing
(defaulted) soft parameters. This option and -x are mutually exclusive.

6.3.5 Property Override Order

When submitjob.[sh] is invoked, it can accept a number of command-line options to alter its default
configuration. The default configuration options come from internal system defaults, the
submitbatch.properties file or the batch specific properties file as described above.

The properties are overridden in the following order:

1. The submitbatch.properties supersedes the internal system defaults.

2. The batch-specific properties (e.g. VAL-LL.properties) supersede the
submitbatch.properties and the internal system defaults.

3. The command-line options supersede the defaults in submitbatch.properties, the batch
process-specific properties and the internal system defaults.

6.3.6 Port number of RMI Registry (-i)

As far as submitjob[.sh] is concerned, options -i, -R and -J are only applicable to batch processes
submitted in THIN mode, or (DISTRIBUTED|CLUSTERED) mode to the LOCAL thread pool.

The -i option specifies the port number to:

 Use when the framework starts an RMI Registry and

 Substitute in all JMX Connector URL {port} references.

For example, given the following properties in threadpoolworker.properties

spl.runtime.management.rmi.port=9999

spl.runtime.management.connector.url.default=service:jmx:rmi:///jndi/rmi

://{host}:{port}/spl/fw/jmx(onnect

or and this command-line
submitjob[.sh] -i 1099

will cause the value for property spl.runtime.management.rmi.port AND the "{port}" string in
the spl.runtime.management.connector.url.default property to be substituted.

Note: that in this case, the special substitution string "(host}" will also be replaced by the name of the
host machine. Therefore, assuming the host name is "localhost", the properties will therefore be
modified to look as follows:

spl.runtime.management.rmi.port=1099

spl.runtime.management.connector.url.default=service:jmx:rmi:///jndi/rmi://

localhost:1099/spl/fw/jmx(onnector

6.3.7 Soft Parameters (-x) vs (-X)

For batch processes that have multiple soft parameters, this option controls how the soft parameter
properties are managed. For example, assume the following soft parameter properties are defined for
batch process XXXX in its XXXX.properties file:

Oracle Revenue Management and Billing Batch Server Administration Guide

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 67

com.splwg.batch.submitter.softParameter.FILE-PATH=(:\data

com.splwg.batch.submitter.softParameter.FILE-NAME=default.dat

These soft parameters are therefore the defaults for this batch process if it is submitted with no
command-line options.

The following command will submit the batch process with a new FILE-NAME, but leave the FILE-
PATH as the default:

submitjob[.sh] -b XXXX -x FILE-NAME=newfile.dat

In other words, only the specified soft parameter (FILE-NAME) has been overridden.

It may be necessary in some cases to replace ALL the soft parameters with the ones specified,
particularly where there are many soft parameters and only one or two are required. This command will
submit the above batch process with a new FILE-NAME, but remove the FILE-PATH property for this
execution:

submitjob[.sh] -b XXXX -X FILE-NAME=newfile.dat

6.3.8 Environment Variable substitution at runtime

At runtime it is possible to substitute local variables by the individual thread parameters at runtime.
Three new local variables will be added that will be replaced at the thread level:

 (threadNumber} – will be replaced by the number of the executing thread

 (processDate} – will be replaced by process date

 {processDateTime} – will be replaced by process date time

These variables can be used in the soft paramaters. For example, if the process date is 01-31-2009 1:30
PM and the current thread is thread number 1, specifying the parameter FILE-NAME as:

-x FILE-NAME=MYOUTPUTFILE-{processDateTime}-{threadNumber}

Or

com.splwg.batch.submitter.softParameter.FILE-NAME= MYOUTPUTFILE-

{processDateTime}-{threadNumber}

would result in the FILE-NAME parameter being resolved to:

MYOUTPUTFILE-2009-01-31-13.30.00-1

6.3.9 Return Codes

The following return codes apply to the processing using this method:

Return Code Usage

0 (zero) Successful

Non-zero Unsuccessful. See log files for more information.

Oracle Revenue Management and Billing Batch Server Administration Guide

68 Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

7. Miscellaneous Operations
There are a number of common operations that are applicable to the background processing
component of the product.

7.1 Forcing a Process to Not Attempt Restart
In some cases it is necessary to force a background process to be complete within the product. This tells
the product not to attempt to restart the process but start afresh. For example, a process may error and
it may take a while to fix the error, instead of potentially holding up other processes you can tell the
system to assume it has completed so that the next execution can start from the beginning and in fact
reprocess the records.

To force the process to not to attempt a restart following the instructions to access the batch status
information and select the Run Control tab and select the Do not Attempt Restart field. Remember to
save the change using the Save button. A sample of this screen is illustrated below:

7.2 Error Processing
When a background process detects an error, the error may or may not be related to a specific object
that is being processed. For example, if the program finds an error during batch parameter validation,
this error is not object-specific. However, if the program finds an error while processing a specific bill,
this error is object-specific. The system reports errors in one of the following ways:

 Errors that are not object-specific are written to the error message log in the Batch Run Tree.

 Some batch processes create entries in an exception table for certain object-specific errors. For
example, an error detected in the creation of a bill may be written to the bill exception table. If
an error is written to an exception table, it does not appear in the batch run tree. For each
exception table, there is an associated To Do Entry Process that creates a To Do Entry for each
error to allow a user to correct the problem on-line.

 For some background processes, errors that do not result in the creation of an exception record
may instead generate a To Do entry directly. For these processes, if you wish the system to
directly create a To Do entry, you must configure the To Do type appropriately. Refer to To Do
entry for object-specific errors for information about configuring the To Do type. If the
background process detects an object specific error AND you have configured the system to
create a To Do entry, the error is not written to the batch run tree. If you have configured your To
Do type to not create To Do entries for certain errors, these errors are written to the batch run
tree. Each process that may be configured in this way is indicated in the following sections in the

Oracle Revenue Management and Billing Batch Server Administration Guide

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 69

Error May Generate To Do column. Note that not all tables below include this column. If the
table does not include the column, then the creation of a To Do for an object-specific error is not
applicable for the types of processes documented in the table.

Some processes create exceptions and To Do entries. It is possible for a background process to create
entries in an exception table AND create To Do entries directly, depending on the error. Consider batch
billing; any conditions that cause a bill or bill segment to be created in error status result in a record
added to the bill exception table or the bill segment exception table. However, any object-specific error
that is not related to a specific bill or bill segment or any error that prevents a bill or bill segment from
being created may result in a To Do entry for the object-specific error.

7.3 Marking a Process Complete from the Command
Line

One of the situations that may occur in the product is that an executing process may prematurely stop
before completion. This situation occurs if:

 The process was manually stopped using the UNIX/Windows kill command at the OS level.
Operators may choose to kill a process if it appears to be having a detrimental effect on the
system.

 The application server that is running the process has a hardware fault that causes the process to
stop prematurely.

 The database server that is running has a software or hardware fault that severs the connection
to the database prematurely.

In all the above situations the status within the product does not reflect the current status of the
process as the background process was prevented from updating its batch control records in time.

In most cases a simple rerun of the process with the same parameters may be performed, after the
situation that caused the fault has been remedied, to start the process from its last consistency point. If
there is a desire to ensure that the batch control information reflects the status after a failure then the
UPDERR process should be executed prior to any restart.

7.4 Sending Emails at the Conclusion of Batch
Processes

It is possible to send a notification email when a batch process has ended. This notification happens
after the batch process has ended and all application-related commits/rollbacks have taken place. It
does not impact the batch process itself in the event of errors happening during the notification process.
The default email is a simple text email that contains the batch control, date and time of the submission,
run number, submission parameters, batch process summary indicating records processed and in-error,
as well as the thread details, including logged messages (up to 100).
The email address can be configured a number of ways:

 Online Submission: The email address can be specified on the batch submission screen.

 External Submission: The email address is specified on the –n option of the submitjob[.sh]
command.

Oracle Revenue Management and Billing Batch Server Administration Guide

70 Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

The email address can be an individual person or a valid mail group (the latter requires additional
configuration in your email system).
To use email notification the email server must be configure using one of the following options:

1. The mail server can be defined through the default XAI Sender (see XAI Options in the XAI
documentation)with the appropriate SMTP settings on the Context tab.

2. Alternatively the properties can be supplied in the form of JVM properties as follows:

Host whose mail services will be used

(Default value : localhost)

mail.host=<your mail server>

Return address to appear on emails

(Default value : username@host)

mail.from=<name@host>

Other possible items include:

mail.user=

mail.store.protocol=

mail.transport.protocol=

mail.smtp.host=

mail.smtp.user=

mail.debug=

Name Type Description

mail.debug boolean The initial debug mode. Default is false.

mail.from String The return email address of the current user,
used by the InternetAddress method
getLocalAddress.

mail.host String The default host name of the mail server for both
Stores and Transports. Used if the
mail.protocol.host property isn't set.

mail.mime.address

.strict
boolean The MimeMessage class uses the InternetAddress

method parseHeader to parse headers in
messages. This property controls the strict flag
passed to the parseHeader method. The default
is true.

mail.smtp.class String Specifies the fully qualified class name of the
provider for the specified protocol. Used in cases
where more than one provider for a given
protocol exists; this property can be used to
specify which provider to use by default. The
provider must still be listed in a configuration file.

mail.smtp.host String The host name of the mail server for the specified
protocol. Overrides the mail.host property.

mail.smtp.port int The port number of the mail server for the
specified protocol. If not specified the protocol's
default port number is used.

Oracle Revenue Management and Billing Batch Server Administration Guide

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 71

Name Type Description

mail.smtp.user String The user name to use when connecting to mail
servers using the specified protocol. Overrides
the mail.user property.

mail.store.protoc

ol
String Specifies the default message access protocol.

The Session method get5tore()returns a Store
object that implements this protocol. By default
the first Store provider in the configuration files is
returned.

mail.transport.pr

otocol
 Specifies the default message access protocol.

The Session method getTransport() returns
a Transport object that implements this protocol.
By default the first Transport provider in the
configuration files is returned.

mail.user String The default user name to use when connecting to
the mail server. Used if the
mail.protocol.user property isn't set.

These properties can be added to the threadpoolworker.properties file for the standalone batch
threadpoolworker, or the spl.properties file for an online application server that hosts a batch
worker.

7.5 Template Overrides
By default, some of the configuration files outlined in this document are generated from product
templates. The scripts provided with the product for use during installation, patching and configuration
regularly rebuild the configuration files from templates. This can cause any manual changes to
configuration files to be reset to the base templates, which may mean loss of customizations if backups
of the configuration files are not taken.

The Oracle Utilities Application Framework now features a facility where a site may substitute their own
templates, based upon the product templates. This allows sites to customize their copies of the custom
templates to suit their site standards and retain their settings across upgrades and patches.

The process to use this facility is as follows:

 Make a copy of the template used for the relevant configuration file and prefix the copy with
cm.. Use the table below to identify the template used for the relevant configuration file
(templates are stored in the etc directory of the product environment):

Configuration file Template Custom template name

spl.properties spl.properties.standalon

e.template

cm.spl.properties.standa

lone.template

hibernate.properties hibernate.properties.tem

plate

cm.hibernate.properties.

template

log4j.properties log4j.properties.standal

one.template

cm.log4j.properties.stan

dalone.template

Oracle Revenue Management and Billing Batch Server Administration Guide

72 Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Configuration file Template Custom template name

eObatch.properties eObatch.properties.templ

ate

cm.eObatch.properties.te

mplate

submitjob.sh submitjob.sh.template cm.submitjob.sh.setvars.

include

submitjob.cmd submitjob.cmd.template cm.submitjob.cmd.setvars

.include

threadpoolworker.cmd threadpoolworker.cmd.set

vars.include

cm.threadpoolworker.cmd.

setvars.include

threadpoolworker.sh threadpoolworker.sh.setv

ars.include

cm.threadpoolworker.sh.s

etvars.include

 Make the site specific changes necessary for your site. Remember to use the structure and the
environment variables in the template as a guide for the format.

 Save the template.

Once this is done, if the configuration files are ever generated manually or as part of a patch then they
will use the custom template instead of the base template.

Note: If this facility is used, then it is the site's responsibility to maintain the custom template in line
with the product template. If future fixes add additional facilities to base templates then those changes
must be manually applied to any custom templates. Check any custom templates against the base
templates on a regular basis

7.5.1 Batch Configuration User Exits

Whilst the product supports custom templates it is now possible to only supply fragments of a
customization rather than whole configuration templates, known as user exit include files. This allows
you to specify additional settings to be included in the templates provided in stream when the product
templates are used to generate the configuration files when using the initialSetup command.

When initialSetup is executed the templates are applied with the following order of preference:

 Base framework templates (no prefix). These templates should not be altered.

 If a product specific template exists (prefixed by the product code) then the product template is
used instead of the base Framework template for the configuration file. These templates should
not be altered.

 If a template is prefixed with "em_" then this is a custom template to be used instead of the
product specific and base framework template.

These templates should live in $SPLEBASE/templates (or %SPLEBASE%\templates on Windows).

Note: When creating custom templates please use the base framework and any related product
templates as the basis for the content of the custom template.

Whilst this facility is flexible it means that any updates to the base or product templates MUST be
reflected in any custom templates. A new option is to use user exits that are placed strategically in the
most common configuration files that need change. When initialSetup is executed the existence of
user exit files are checked (when an #ouaf_user_exit directive exists in the template) and the

Oracle Revenue Management and Billing Batch Server Administration Guide

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 73

contents included in the generated configuration file. The figure illustrates the process for a typical
configuration change:

…

#ifdef !ONSCONFIG=[NULL]

spl.runtime.options.isFCFEnabled=true

spl.runtime.options.onsserver=nodes=…

#endif

#ouaf_user_exit spl.properties.exit.include

…

spl.runtime.environ.setting=true

initialSetup -t

…

spl.runtime.options.isFCFEnabled=true

spl.runtime.options.onsserver=nodes=…

spl.runtime.environ.setting=true

…

spl.properties.template

spl.properties.exit

spl.properties

As with the custom templates user exits have preferences depending on the ownership of the user exit
include file. Custom includes will override any product specific includes. There are no base includes as
they are already included in the template files. The figure below illustrates the preferences for both
templates and includes:

ENVIRON.INI

cm includes cm Template

Product includes Product Template

FW Template

initialSetup -t

templates

Oracle Revenue Management and Billing Batch Server Administration Guide

74 Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

The table below outlines the currently available user exits in the available templates:

Template File User Exit Include file Position and Usage

eObatch.properties.templ

ate

eOBatch.properties.exit.

include
Sets locations of files and other
locations for batch for
eOBatch.properties file.

hibernate.properties.bat

ch.templ ate

hibernate.properties.exi

t.include
At end of file (common
hibernate.properties
entries)

hibernate.properties.bat

ch.exit.include
At end of file (Batch specific

hibernate.properties
entries)

log4j.properties.standal

one.template

log4j.properties.exit.in

clude
At end of file (common
log4j.properties entries)

log4j.properties.standal

one.exit.include
At end of file (common
log4j.properties entries)

ouaf.jmx.access.file.tem

plate

ouaf.jmx.access.file.exi

t.include
Allows for additional users to be
specified for JMX connections.

ouaf.jmx.password.file.t

emplate

ouaf.jmx.password.file.e

xit.include
Allows for additional passwords
to be specified for JMX users.

splcobjrun.cmd.template splcobjrun.cmd.exit.incl

ude
Allows for COBOL execution
parameters (COBOL supported
products only) – Windows.

splcobjrun.sh.template splcobjrun.sh.exit.inclu

de
Allows for COBOL execution
parameters (COBOL supported
products only) – Linux/UNIX.

spl.properties.service.t

emplate

spl.properties.exit.incl

ude
At end of file (common
spl.properties entries)

spl.properties.service.e

xit.include
At end of file for EJB
spl.properties entries.

spl.properties.service.t

imeouts.exit.include
User exit for service timeouts.

spl.properties.template spl.properties.exit.incl

ude
At end of file (common
spl.properties entries)

spl.properties.root.exit

.include
At end of file for Web
Application based
spl.properties entries.

spl.properties.timeouts.

root.exit.include
User exit for global timeouts

spl.properties.standalon

e.template

spl.properties.exit.incl

ude
At end of file (common
spl.properties entries)

Oracle Revenue Management and Billing Batch Server Administration Guide

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 75

Template File User Exit Include file Position and Usage

spl.properties.standalon

e.exit.include
At end of file for Batch
Application based
spl.properties entries.

spl.properties.timeouts.

standalone.exit.include
Future use

submitbatch.properties.t

emplate

submitbatch.properties.e

xit.include
User exit for
submitbatch.properties.

submitbatchlog4j.propert

ies.template

submitbatchlog4j.propert

ies.exit.include
User exit for
submitbatchlog4j.propert

ies file

threadpoolworker.propert

ies.template

threadpoolworker.propert

ies.exit.include
User exit for
threadpoolworker.propert

ies file.

To use these user exits create the user exit include file with the prefix "cm_" in the
$SPLEBASE/templates (or %SPLEBASE%\templates) directory. To reflect the user exits in the
configuration files you must execute the initialSetup utility. Refer to the Custom JMS Configuration
section for an example of this process.

7.5.2 Properties File User Exits

The product behavior is controlled at a technical level by the values in the properties files. Whilst most
of the settings are defaulted to their correct settings in the file, additional parameters may be added to
the properties files to add new behavior. User exits are used to set these additional parameters in the
properties files.

From the table above there are more than one user exit available in each properties file template to use.
This is designed to maximize the reusability of configuration settings. There are a number of specialized
user exits that may need to be used:

 Common Settings3 – The configuration files used by each channel of execution (online, Web
Services and batch) has a common user exit. This user exit is used to house all the setting you
want to implement regardless of the channel used. For example the common setting user exits
are:

Configuration File User Exits for common settings

hibernate.properties hibernate.properties.exit.include

log4j.properties log4j.properties.exit.include

spl.properties spl.properties.exit.include

 Batch specific Settings – To implement custom settings for batch there is a separate user exit to
hold those parameters for those channels. The specific user exits are:

3
 These settings are shared across all channels. Batch specific settings should be set in the Batch

Specific user exits.

Oracle Revenue Management and Billing Batch Server Administration Guide

76 Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Configuration File User Exits for common settings

hibernate.properties hibernate.properties.batch.exit.includ

e

log4j.properties log4j.properties.standalone.exit.inclu

de

spl.properties spl.properties.standalone.exit.include

7.5.3 Specifying Custom Log File Names

By default the submitjob and threadpoolworker utilities will create logs in a specific location. For
example:

User Exit Platform Default Location and Name

submitjob.sh Linux/UNIX $SPLOUTPUT/submitjob.{batchcode}.{sysDateTime}.log

submitjob.cmd Windows %SPLOUTPUT%\submitjob.{batchcode}.{sysDateTime}.log

threadpoolworker.cmd Windows %SPLOUTPUT%\threadpoolworker.{sysDateTime}.log

threadpoolworker.sh Linux/UNIX $SPLOUTPUT\threadpoolworker.{sysDateTime}.{pid}.log

Where:

{batchcode}: Batch Control used for job

{sysDateTime}: System Date and Time in YYYYMMDDHHmmSSSSS format

{pid}: Process Id

If your implementation wishes to implement custom log file names then this may be achieved using user
exits which allow custom setting of the file name pattern. In the utilities an environment variable is set
to the name and location of the log file. The user exit may be used to set this environment variable to an
alternative. The user exit contains the script code fragment used to set the log file environment file
name.

The table below lists the user exit, environment variable name and the platform:

User Exit Platform User Exit Name Environment Variable

submitjob.sh Linux/UNIX submitjob.sh.setvars.incl
ude

SBJLOGID

submitjob.cmd Windows submitjob.cmd.setvars.in
clude

SBJLOGID

threadpoolworker.cmd Windows threadpoolworker.cmd.s
etvars.include

TPWLOGID

threadpoolworker.sh Linux/UNIX threadpoolworker.sh.set
vars.include

TPWLOGID

Oracle Revenue Management and Billing Batch Server Administration Guide

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 77

Additionally internal session variables are available for use in the user exits:

Variable submitjob4 threadpoolworker Comments

RUNOPTS -

batchcode -

sysDateTime -

Note:

Other environment variables in the session can be used and determined in the user exit script code.

When setting the log file name the location and file name MUST be valid for the security and operating
system used for the product. The directory should be writable by the OS user used to execute the job.

7.6 Turning off L2 Cache

Note: This facility should only be used where background processes specifically require it. Turning off
the cache in other circumstances will adversely affect performance.

By default, the threadpools use a batch cache to load common configuration data to avoid excessive
calls to the database. In some cases it is desirable to disable the caching for a particular threadpool. To
disable the cache on startup of the threadpool use the following command:

threadpoolworker[.shJ -12 OFF -p <threadpoo1name>

where <threadpoolname> is the name of the threadpool to start with the caching disabled.

Once the threadpool is started then all jobs that require caching off can be executed in this threadpool
using the DrST-THD-POOL parameter (for online submission),
com.splwg.batch.submitter.distThreadPool parameter in the job specific properties file or -p
option on the submitjob command.

4
 These are set for the Java runtime.

