ORACLE’

INSURANCE

Oracle® Insurance Policy
Administration

Web Services

Version 10.1.1.0
Document Part Number: E55503-01

August, 2014

ORACLE’

ORACLE

INSURANCE

Copyright © 2009, 2014, Oracle and/or its affiliates. All rights reserved.

Trademark Notice

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their
respective owners.

License Restrictions
Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of
this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any
errors, please report them to us in writing.

Restricted Rights Notice

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the
U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are “commercial computer
software” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license
restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate failsafe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates
disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Third Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information on content, products and services from
third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind
with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any
loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

WebServices Revised: 7/10/2014 2

ORACLE

INSURANCE
Table of Contents

WEB SERVICES OVERVIEW.iutttittttte e s ittt e ee e e s s aats ettt e e e s e s sbebe e e e e e e aa s an b e s e et e e e e s e aan b beseeeeeeesaannnbnseeeeeeesannnnnees 4
CUSTOMER SUPPORTtttttttttttttstsssnnsnnsnnnnnns 4
CREATING MESSAGES WITH SOARP ...ttt ettt e bttt e e e e e sttt e e e s e s st e e e e e e e e e s e annbrneeeeeeas 5
SOAP OVEIVIBW ..itiiieiiitiiee e eiteeee e sttt e e sttt e e sttt e e e sttt e e e aabae e e e aabee e e e aabbe e e e aa st e e e e aasbeeeeaabbeeeesnbbeeesntbeeesnnnneeas 5
LTS 5 PRSPPI 5

S CUIIEY ettt e e e e e ———————— 6
INBOUND WEB SERVICESciiiiiiiiie i e ie e e e s e e e e e s e s e s e s e e e e e s e s e s e s e s e s e s e s e e e s e s e s e s e s e e e s e e e e e e e e e aeaeae e e s e ae s e e e aeananens 7
D2 11U 1= 0] o V2SS 7
SOAP REQUEST EXAMPIE ...ttt e b e e et e e e eab e e e eaees 7
FHERECEIVEMottt e oo et et e e e e e s h b e bt e et e e e e e s a bbb be e e e e e e s e snnbbbeeeeaaeeeaann 8

T 0o [o 1o T o TP 8

High Level FIOW OVEIVIEWccoo i 8

ASFIIE OVEIVIEWttt ettt e e e e sttt e e e e e s e snae ettt e aeeesastebeeeeeeeeesnnntsaaeeeaeeseannsbennnaeenas 9

S 1V = Ui DO PP PP TUPPPPPPPPPN 10
TransformMation EXAMPIES.cooiiiiiiiiiiie ettt s b e e e st e e e e sbr e e e e sbreeaean 17

L (0TS o o 7 19
SOAP REQUEST EXAIMPIE ...ttt ettt e e e e 19

[t oTo1ST=To I @0 1 1T 11 r= 11 0] o 1S 19

L@ YT T SRS 19
REQUESE FIOW ... 20
Exposed Computation BUSINESS RUIEcoiiiiiiiiiiii ettt 21

AV £= 110 = 11T o F TP UUP TR POPTPTPP 22
Exposed Computation SOAP MESSAGEScuiiuuiiieiiiieieiiiee e ittee e sttt e e s st e e s st e e e aebeeeeaaees 22

5 15 SO PEERR 25
L@ YT TSSO 25

L LT [8 =] 1Y o o 1= 25

L 0] 01 1= P 26
o (o] £ PP PRTRT 26
RESPONSE FOIMALo 27
RESPONSES 27
OUTBOUND WEB SERVICESettttttttteteustsussssssssstsssssssssssssnsssnsssnnnns 29
Outbound Services CONNECLON (OSC) uiiiiiieeiii ittt e e e ettt e e e e e e bbb e e e e e e e s e aasbeereeaaeeaaannbeeeaeaaeas 29
FILE RECEIVED EXAMPLE USING ACORD LOMA ..o 29
SOAP REOUEST ..o 29
DAY [T T (o TR 30
SOAP RESPONSE ...t 31
SUCCESSTUI RESPONSEeiiieeiie e e ettt st e e e e s e st e et e e e s s st eeeaeeesaaaataneeeeeeesannsnnrneeeeeenannns 31

Y@ o = T || PSP TT PO UPPRTPR 32

WebServices Revised: 7/10/2014 3

ORACLE

INSURANCE

WEB SERVICES OVERVIEW

The Oracle Insurance Policy Administration (OIPA) system exposes many of its core functionalities to external
applications through Web Services. The available exposed services are as follows:

= ValuePolicy — Service for running valuations on a policy.

= FileReceived — Service for inserting data, providing quote details and performing illustrations.
= ProcessPolicy — Service for processing all pending activities on an existing policy.

= ExposedComputation — Service for exposing OIPA’s math engine.

This document not only discusses the available Web Services, but also gives a basic overview of protocols and
demonstrates the process for creating messages needed by the Web Services for a more holistic explanation of
the available functionality.

Note: This documentation uses SOAP messages as a means to explain functionality.

CUSTOMER SUPPORT

If you have any questions about the installation or use of our products, please visit the My Oracle Support
website: https://support.oracle.com, or call (800) 223-1711.

Oracle customers have access to electronic support through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

WebServices Revised: 7/10/2014 4

https://support.oracle.com/
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

ORACLE

INSURANCE

CREATING MESSAGES WITH SOAP

SOAP Overview

SOAP (Simple Object Access Protocol) is an XML-based language used for the transport of structured
information from a requester to a provider. A SOAP message is sent from the requesting application to an OIPA
Web Service.

A SOAP response message including the outcome is then returned to the requester. In the context of OIPA, a
SOAP message can be sent using HTTP or HTTPS for added security. Proper authentication information must
be included in the security portion of the header. The body, explained in detail later in this document, simply
consists of the message, as defined by the service’s WSDL.

WSDL

WSDL (Web Service Definition Language) is an XML-based language used to describe Web Services. In the
case of OIPA, the WSDL for each available Web Service defines the message format, data type, and transport
protocols that should be used between the requester and OIPA, the provider.

A list of all available Web Services and their associated WSDLs are listed below, where the server name
“server.domain.tld” and the port number “9080” are specific to each deployment of OIPA.

Note: This document assumes the OIPA WAR name is PASJava.war.

= FileReceived: http://server.domain.tld:9080/PASJava/FileReceived?wsd|

= ExposedComputation: http://server.domain.tld:9080/PASJava/ExposedComputation?wsdl
= ValuePolicy: http://server.domain.tld:9080/PASJava/ValuePolicy?wsdl

= ProcessPolicy: http://server.domain.tld:9080/PASJava/ProcessPolicy?wsdl

WebServices Revised: 7/10/2014 5

http://bal03003.us.oracle.com:9080/PASJava/FileReceived?wsdl
http://bal03003.us.oracle.com:9080/PASJava/ExposedComputation?wsdl
http://bal03003.us.oracle.com:9080/PASJava/ValuePolicy?wsdl
http://bal03003.us.oracle.com:9080/PASJava/ProcessPolicy?wsdl

ORACLE

INSURANCE

Security

OIPA adheres to the WS-Security standards for the authentication of SOAP messages. The standards, as
developed by the OASIS Open committee, can be referenced here:

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf

The <wsse:UsernameToken> element is used to include the authentication information. The username and
password are specified inside of the <wsse:Username>, and <wsse:Password> elements, respectively.

It is suggested that SSL (Secure Socket Layer) be used as a method of encryption for all SOAP messages.

The optional <wsse:Nonce> element allows for the usage of a nonce as added security. A nonce is a random
number, in this case represented in base 64, which is embedded in the security header to aid in preventing old
communications from being reused. This number is newly generated for each request on the client side, and is
returned along with the SOAP response from OIPA. The <wsu:Created> element must contain the timestamp
of the creation time of the nonce.

<soapenv:Header>
<wsse:Security soapenv:mustUnderstand="1" xmlns:wsse="http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken wsu:Id="UsernameToken-1" xmlns:wsu="http://docs.oasis-
open.org/wss/2004/01/o0asis-200401-wss-wssecurity-utility-1.0.xsd">
<wsse:Username>username</wsse:Username>
<wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/o0asis-200401-wss-username-
token-profile-1.0#PasswordDigest">EncryptedPassword</wsse:Password>
<wsse:Nonce EncodingType="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-soap-
message-security-1.0#Base64Binary">0UtRdmO7dLg/v+0DI04/DA==</wsse:Nonce>
<wsu:Created>2009-09-28T17:43:02.546Z</wsu:Created>
</wsse:UsernameToken>
</wsse:Security>
</soapenv:Header>

By default, starting with the 10.1.0.0 release, OIPA will not allow web services to be invoked with hashed
passwords. To continue using PasswordDigest, the property webservice.allowHashedPassword should be set to
Yes. See the System Properties document in OTN for further details.

WebServices Revised: 7/10/2014 6

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf

ORACLE

INSURANCE

INBOUND WEB SERVICES

ValuePolicy

The ValuePolicy Web Service allows valuation to be run on an already existing policy. An inputXml will be
passed in with values for PolicyNumber, PolicyValuesFlag, EffectiveDate, and Nearest. Below is a sample
inputXml.

<Parameters>
<Parameter NAME="PolicyNumber”>PolicyNumber</Parameter>
<Parameter NAME="PolicyValuesFlag">Yes|No</Parameter>
<Parameter NAME="Nearest">Yes|No</Parameter>
<Parameter NAME="EffectiveDate">[Date]</Parameter>
</Parameters>

SOAP Request Example

<soapenv:Envelope xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
xmlns:xsd="http://www.w3.0org/2001/XMLSchema”
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:val="http://ValuePolicy">
<soapenv:Header>
<wsse:Security soapenv:mustUnderstand="1" xmlns:wsse="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken wsu:Id="UsernameToken-1" xmlns:wsu="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
<wsse:Username>tester</wsse:Username>
<wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-
username-token-profile-1.0#PasswordText">tester</wsse:Password>
<wsse:Nonce EncodingType="http://docs.oasis-open.org/wss/2004/01/0asis-200401-
WSS-soap-message-security-1.0#Base64Binary">FRKBB/REsT/4ThQzEjoiUQ==</wsse:Nonce>
<wsu:Created>2011-07-01722:39:59.640Z</wsu:Created>
</wsse:UsernameToken>
</wsse:Security>
</soapenv:Header>
<soapenv:Body>
<val:policyValuation>
<inputXml><![CDATA[
<Request>
<Parameters>
<Parameter NAME="PolicyNumber”>VDA31012206</Parameter>
<Parameter NAME="PolicyValuesFlag">Yes</Parameter>
<Parameter NAME="Nearest">Yes</Parameter>
<Parameter NAME="EffectiveDate">11/02/2002</Parameter>
</Parameters>
</Request>]]></inputXml>
</val:policyValuation>
</soapenv:Body>
</soapenv:Envelope>

WebServices Revised: 7/10/2014 7

ORACLE

INSURANCE

FileReceived

Introduction

The OIPA FileReceived Web Service allows an application to send data in XML format and execute core OIPA
features against it. Based on the presence and functionality of extensions, this data can be modified, validated,
and/or inserted in the OIPA database. A SOAP message is sent by a client application to the FileReceived Web
Service. The SOAP message includes two parameters: FilelD and XML. FilelD identifies the configuration to
use from the AsFile table for processing and transforming inbound XML into OIPA’s AsXml. The XML element
represents data to be sent to the OIPA for creating objects.

Once the SOAP message is received by the FileReceived Web Service, the AsFile entry is extracted from the
database and the AsFile XMLData is processed (i.e., math is executed and attributes are assigned values).
Data in the request XML is then transformed into AsXml using AsFile XSLT and assigned attributes.

A SOAP message is sent back to the requestor, or caller, including the result of the request. If the request was
successful, then the message will consist of the transformed AsXml. This AsXml can also be transformed using
XSLT picked from the AsFileOutput table indicated by Output AssignAttribute. If the request was not successful,
then the Web Service response will consist of a SOAP Fault detailing the errors.

High Level Flow Overview

/Response AsXml
{ OR

SOAP Fail
Report

SOAP
Message
HTTP 1 HTTP
External Transport | File ID Transport

Application Server

Integration Layer
SOAP

System

Message
) [L
File ID Success
XML
Failure
OIPA
v Prelnsert <validation . no |
-. | Response
Operations Error> in >)(pML
FileReceived i XSLT
Web Service Update L
Del List
Dcl List
l FileID Response Xml
(_AsFile Table)) Postinsert] Build
Me—— Deserialize Operations Response
ta Dels Qutput XML
e XMLData Format
» X5LT Name
B Updated
Dpcl List Response Format Xslt
' Request XML AsXml . e ———
] h::i‘;n 1 (__OIPA Database - F=QshileUurputrable.
Process Math et XSLT T I -
and Assign b= Transform To L Insert ~
Attributes AsXmil Dels into Bllaciutputitatt
Database

WebServices Revised: 7/10/2014 8

ORACLE

INSURANCE

High Level Flow Diagram

Inbound Flow
1. The FileReceived Web Service receives a request via a SOAP message.
2. The AsFile entry is looked up using the FilelD specified in the request.

The math in the AsFile entry’'s XMLData is processed.

 ow

The AssignAttributes section in the AsFile entry’s XMLData is processed.
The XSLT maps the request XML to AsXml.

The transformed AsXml is mapped to data objects.

Prelnsert operations are performed on the objects.

Objects are inserted into the database.

© © N o v

Postinsert operations are performed on the objects.
10. Output XSLT from AsFileOutput is loaded based on assign attributes.
11. Response XML is built.

12. If the ValidationError section is configured in the XSLT, then a SOAP fault is created (with embedded
response XML) and sent to the caller. Otherwise, response AsXml is returned.

Note: Any of the above steps can be skipped if client extensions direct so. Additional
functionality can also be performed at the beginning or end of every step.

An example of this inbound message would be the addition of an activity to a policy in the OIPA system. Such
a need might arise in the case of integration with a new business system. When approved, a message might
be sent to the OIPA system to create a new copy of a policy.

AsFile Overview

The AsFile database table stores a user-configurable portion of the FileReceived Web Service. This table
contains a separate record for each type of file OIPA has been configured to receive. It has following columns:

» FileGUID — unique identifier for each entry in this table.

= CompanyGUID — unique identifier for a company.

» FileNameFormat — stores a descriptive name of the file format type.

= FilelD — stores a unique three-character ID used to describe file format. An inbound SOAP message will
include a <FileID> element specifying the format of the file to be used for processing.

= XMLData — specifies details about request type, math, assign attributes, pre-insert and post-insert.

= XSLT — XSLT for transforming inbound XML into AsXml.

WebServices Revised: 7/10/2014 9

ORACLE

INSURANCE

XMLData

AsFile entry allows values to be assigned to various attributes before inbound XML undergoes the
transformation process into AsXml. This is configured by using the <Attribute> element inside the
<AssignAttributes> element. By assigning values at this stage of the process, pre-existing data from OIPA can
be used to populate the AsXml.

Any data that is needed prior to the XSLT transformation process can be processed in the XMLData section of
the File business rule. This example shows the use of XPATH, which allows for data from the incoming request
to be manipulated. Also illustrated in this example is the GUID Attribute type, which automatically sets the
Attribute value to a newly generated GUID.

<File>
<AssignAttributes>
<Attribute NAME="PlanGUID" TYPE="XPATH">
/TXLife/TXLifeRequest/OLifE/Holding/Policy/ProductCode
</Attribute>
<Attribute NAME="PolicyGUID" TYPE="GUID"></Attribute>
<Attribute NAME="CompanyGUID" TYPE="VALUE">
18B611A8-4429-4C67-94E6-3F4A882C9A8D</Attribute>
</AssignAttributes>
<PostInsert>
<Object CLASS="com.adminserver.utl.AsFilePostInsertActivityProcessorUtl"></0Object>
</PostInsert>
</File>
<Requesﬂype>

This optional section specifies the type of operation like Insert, llustration or Quote. If this tag is missing, then
the default request type is assumed to be of type Insert.

Insert — This is used to insert data into the system.

Quote — This is used for quoting. Entity creation and activity processing is done in memory. The type of request
does not leave its footprint in the database. Since the entity creation is in memory, it is not possible to access
the entities using SQL in the AsFile configuration. Furthermore, the Quote can only be executed on a pre-
existing policy.

lllustration — This is used for running illustrations. The entities are created in the database but deleted prior to
the completion of the request. As such, the type of request does not leave its footprint in the database. The
illustration activity is processed in memory like a Quote activity.

<Math>

This is an optional section that can run math on the values of the incoming XML. This section behaves the
same as the Math section of a normal business rule. Math variables in this section will have a prefix specified by
the ID attribute of the Math tag. These variables can then be used in the AssignAttributes section.

Example:

<File>
<Math ID="Math">

WebServices Revised: 7/10/2014 10

ORACLE

INSURANCE

<MathVariables>
<MathVariable VARIABLENAME="Number" TYPE="VALUE" DATATYPE="TEXT">
31ALICO10801</MathVariable>
<MathVariable VARIABLENAME="Prefix" TYPE="VALUE" DATATYPE="TEXT">AVA</MathVariable>
<MathVariable VARIABLENAME="PolicyNumber" TYPE="EXPRESSION"
DATATYPE="TEXT">Prefix+Number</MathVariable>
<MathVariable VARIABLENAME="State" TYPE="VALUE"
DATATYPE="TEXT">/NewPolicy/PolicyIssueState</MathVariable>
</Mathvariables>
</Math>
<AssignAttributes>
<Attribute NAME="TestValue" TYPE="VALUE">Math:PolicyNumber</Attribute>
<Attribute NAME="PolicyState" TYPE="XPATH">Math:State</Attribute>
</AssignAttributes>
</File>

<AssignAttributes>

This is the parent element for one or more <Attribute> elements.

<Attribute>

Any data processing that needs to take place prior to the transformation process is done using the <Attribute>
element. This element has two attributes: NAME and TYPE. NAME specifies the name of the attribute, while
TYPE defines how the specified expression will be evaluated. Attributes are evaluated from the top down,
allowing attributes listed first to be used in expressions below them.

Following is a list of available attribute TYPES:

TYPE Description

GUID Sets the attribute to a newly generated GUID

VALUE Sets the attribute to the specified value

SYSTEMDATE Sets the attribute to the current system date.

SEQUENCE Sets the attribute by calling asc_NextSequencelnteger and passing the value of the
NAME attribute as a parameter.

XPATH Sets the attribute to the result of the specified XPATH expression.

XPATHSTRINGLIST Sets the attribute to a comma delimited list containing the resulting values of the XPATH.

XPATHNUMBERLIST Sets the attribute to a comma delimited list containing the resulting values of the XPATH

SQL Sets the attribute to the result of the specified SQL statement.

SQLMAP Sets the attribute to a *key-value-pair’ type collection of the resulting values of the SQL
Statement.

Examples:

GUID:

<Attribute NAME="PolicyGUID" TYPE="GUID"></Attribute>
XPATH:

<Attribute NAME="Field" TYPE="XPATH">/Request/PolicyName</Attribute>

WebServices Revised: 7/10/2014 11

ORACLE

INSURANCE

<Prelnsert> and <Postlnsert>

<Prelnsert> and <Post Insert> are optional elements that allow other system functionally to be called before or
after the data is inserted into the database. This is done by calling specific types of Java classes that are used
for these operations. The architecture of the Pre- and Post-Insert functionality allows these classes to be
dynamically instantiated at runtime.

Pre- and Post-Insert operations are specified in the XMLData portion of a file’s configuration, after the closing of
the AssignAttributes element. The CLASS attribute of both elements allows for setting the name of the Java
class to be called.

The following example will invoke the AsFile Post-Insert Activity Processor after the records are inserted into
the database:

<PostInsert>
<Object CLASS="com.adminserver.pas.webservice.bll.AsFilePost
InsertIndividualActivityProcessorBl1l">
</Object>

</PostInsert>

The following is a list of available Pre and Post Insert Processors:

Name Parameters
AsFilePrelnsertPercentInAllocationProcessorBll N/A
AsFilePrelnsertUvNavCalculationProcessorBll N/A
AsFilePostInsertExposedComputationProcessorBlI ComputationID
AsFilePostInsertindividualActivityProcessorBl| ActivityClientNumber
AsFilePostInsertProcessPolicy PolicyNumber
<Output>

This is an optional element that allows the outbound AsXml to be manipulated by XSLT. It should have an
attribute TYPE="TRANSFORM". The text of this element references an attribute from the Attributes section of
the XMLData. The attribute should be the name of a record in the AsFileOutput table of the database.

AsXml

AsXml is the XML formatting used by OIPA to store data destined for the database. This format is very simple,
using a parent element for each database table, and a child element for each column of the table. The root
element, <AsXml>, must be used to identify the formatting.

Each element must exactly match the name of the table or column in the database for mapping purposes. Each
column of the table needs to be populated with data unless the column is set to allow NULL.

WebServices Revised: 7/10/2014 12

ORACLE

INSURANCE
Schema
<AsXml>
<TableName>
<ColumnName>Value</ColumnName>
</TableName>
</AsXml>
Examples
An example of a record from AsPolicy in AsXml format:
<AsXml>
<AsPolicy>
<PolicyGuid>6CCA@B15-EFAC-471F-A698-27949AB9B9C4</PolicyGuid>
<PlanGuid>3904A440-E035-40A1-9905-D544F7A6C093</PlanGuid>
<CompanyGuid>A9211F9D-2C3B-4523-8151-768684696488</CompanyGuid>
<PolicyNumber>GLPT31012265</PolicyNumber>
<PolicyName>Term Policy</PolicyName>
<IssueStateCode>38</IssueStateCode>
<PlanDate>1/29/2031 12:00:00 AM</PlanDate>
<UpdatedGmt>9/10/2009 6:43:01 PM</UpdatedGmt>
<StatusCode>09</StatusCode>
<CreationDate>1/29/2031 12:00:00 AM</CreationDate>
<XmlData></XmlData>
</AsPolicy>
</AsXml>
An example of a record from AsRate in AsXml format:
<AsXml>
<AsRate>
<RateGuid>CA132F95-E768-45AE-ABBE-00000980034B< /RateGuid>
<RateGroupGuid> C6496E59-7EF7-4719-959B2COO65CA4EF9</RateGroupGuid>
<RateDescription>Term_20_Premium<RateDescription>
<Criterial»@3</Criterial>
<Criteria2>02</Criteria2>
<IntegerCriteria>12</IntegerCriteria>
<Rate>11.35</Rate>
</AsRate>
</AsXml>
WebServices Revised: 7/10/2014 13

ORACLE

INSURANCE

XSLT

Overview

XSLT (Extensible Stylesheet Language) is an XML-based language used for the transformation of XML
documents to other formats. Using XSLT, OIPA transforms the inbound payload of the SOAP message into
AsXml, which can then be transformed into objects and processed by the system.

OIPA adheres to XSLT Version 2 specifications, which allows for very flexible configuration of the
transformation process. Standard XSLT elements can be used to transform the inbound message into AsXml
based on templates, as well as to perform data validation and error handling.

All attributes that are used in the XSLT stylesheet must be defined either in the AsFile’s XmIData column or in
the Web Service’s XML parameter. This is explained in the XSLT section.

Using Attributes from the XMLData Element of AsFile Entry

Each attribute defined in the XMLData section that will be needed in the XSLT stylesheet must first be declared
as a parameter in the XSLT, after the XSLT prolog, using the <xs1:param> tag.

For example, PolicyGuid, set in the XMLData section, can be referenced in the XSLT by declaring it in the
beginning of the XSLT like this:

<xsl:param name="PolicyGuid"></xsl:param>

And then using it like this:

<xsl:element name="PolicyGuid">
<xsl:value-of select="¢PolicyGuid"></xsl:value-of>
</xsl:element>

Functions

Several functions are available for use inside of the XSLT stylesheet. They allow for added functionally, such
as generating GUIDs and retrieving the current system time. The available utility functions are:

= getNextGUID()

= getGmtTimeString()
= formatDateTime()

= addMillis()

In order to use these added functions, the XsltFunctionHelper class must be added as a namespace in the
XSLT prolog as noted below.

xmlns:utl="com.adminserver.webservice.helper.XsltFunctionHelper"

WebServices Revised: 7/10/2014 14

ORACLE
INSURANCE

The getNextGUID() function will generate a new GUID. For example, the following code will output a newly
generated GUID inside the <PolicyGuid> element.

<xsl:element name="PolicyGuid">
<xsl:value-of select="utl:getNextGUID()"/>
</xsl:element>

Functions can also be used to retrieve current system time and then format it properly for insertion into the
database.

WebServices Revised: 7/10/2014 15

ORACLE

INSURANCE

<xsl:template name="GMT">
<xsl:param name="Offset" select="0" as="xs:integer"/>
<xsl:value-of select="utl:formatDateTime(utl:addMillis (utl:getGmtTimeString (),
$0ffset))"/>

</xsl:template>

Validation and Error Handling

AsFile has the ability to perform data validations using the XSLT portion of the configuration. For example, the
value of a variable can be tested to ensure the value is as expected.

The following validation syntax can be used anywhere in the XSLT:

<xsl:if test="“$variable = ‘incorrect value’">
<xsl:variable name=“Errorl" select=“Error Message"/>
<ValidationError ERRORSTATUSCODE=“Erreel">
<xsl:value-of select=“$Errorl "/>
</ValidationError>
</xsl:if>

If upon evaluation the <xs1:if> expression is true, then the <validationError> block will be executed. As a
result, a SOAP fault will be thrown, and the text within the element, ERRORSTATUSCODE and resulting XML
will be returned to the caller.

WebServices Revised: 7/10/2014 16

ORACLE

INSURANCE

Transformation Examples

Example 1:

XML Portion of SOAP Request
<NewPolicy>
<PolicyName>TestPolicy</PolicyName>
</NewPolicy>

XSLT
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:helper="com.adminserver.webservice.helper.XsltFunctionHelper" extension-element-
prefixes="helper" version="2.0">
<xsl:param name="SystemDate"></xsl:param>
<xsl:template match="NewPolicy">
<xsl:element name="AsXml">
<xsl:variable name="PolicyName" select="./PolicyName"></xsl:variable>
<xsl:element name="AsPolicy">
<xsl:element name="PolicyName">
<xsl:value-of select="PolicyName"></xsl:value-of>
</xsl:element>
</xsl:element>
</xsl:element>
</xsl:template>
</xsl:stylesheet>

Resulting AsXml After Transformation:
<AsXml>
<AsPolicy>
<PolicyName>
TestPolicy
</PolicyName>
</AsPolicy>
</AsXml>

Example 2:

The following example shows the construction of the AsPolicy database table.

<xsl:template match="TXLife">
<xsl:element name="AsXml">
<!-- Create the AsPolicy Record -->
<xsl:comment>Policy Info</xsl:comment>
<xsl:element name="AsPolicy">
<xsl:element name="PolicyGuid">
<xsl:value-of select="$PolicyGUID"></xsl:value-of>
</xsl:element>
<xsl:element name="StatusCode">
<xsl:text>08</xsl:text>
</xsl:element>
<xsl:element name="IssueStateCode">
<xsl:value-of select="$StateCode"></xsl:value-of>
</xsl:element>

WebServices Revised: 7/10/2014 17

ORACLE

INSURANCE

<xsl:element name="PolicyNumber">

<xsl:value-of select="$PolicyNumber"></xsl:value-of>
</xsl:element>
<xsl:element name="PlanDate">

<xsl:value-of select="$PlanDate"></xsl:value-of>
</xsl:element>
<xsl:element name="PlanGuid">

<xsl:value-of select="$PlanGUID"></xsl:value-of>
</xsl:element>
<xsl:element name="CompanyGuid">

<xsl:value-of select="$CompanyGUID"></xsl:value-of>
</xsl:element>
<xsl:element name="UpdatedGMT">

<xsl:value-of select="$UpdatedGMT"></xsl:value-of>
</xsl:element>
<xsl:element name="CreationDate">

<xsl:value-of select="$CreationDate"></xsl:value-of>
</xsl:element>

</xsl:element>
</xsl:element>
</xsl:template>
WebServices Revised: 7/10/2014 18

ORACLE

INSURANCE

Process Policy

= Allows invocation of processing for all pending activities on an existing policy.
= Takes as input XML that contains policy information identifying the policy to be processed.
» Returns a success indicator on successful processing; otherwise, returns a SOAP fault.

SOAP Request Example

<soapenv:Envelope xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:proc="http://ProcessPolicy">
<soapenv:Header>
<wsse:Security soapenv:mustUnderstand="1" xmlns:wsse="http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken wsu:Id="UsernameToken-1" xmlns:wsu="http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-wssecurity-utility-1.0.xsd">
<wsse:Username>tester</wsse:Username>
<wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-
username-token-profile-1.0#PasswordText">tester</wsse:Password>
<wsse:Nonce EncodingType="http://docs.oasis-open.org/wss/2004/01/0asis-200401-
WSS-soap-message-security-1.0#Base64Binary"”>FRkBB/REsT/4ThQzEjoiUQ==</wsse:Nonce>
<wsu:Created>2011-07-01T722:39:59.640Z</wsu:Created>
</wsse:UsernameToken>
</wsse:Security>
</soapenv:Header>
<soapenv:Body>
<proc:policyValuation>
<inputXml><![CDATA[<Request>
<Parameters>
<Parameter NAME="PolicyNumber">VDA31022177</Parameter>
</Parameters>
</Request>]]></inputXml>
</proc:policyValuation>
</soapenv:Body>
</soapenv:Envelope>

Exposed Computation

Overview

The Exposed Computation Web Service is exposed to give an external application access to OIPA’s robust
math engine. A call to this Web Service can be used to execute a calculation and return result values in the
SOAP response XML.

A request to this service takes two text parameters:

= ComputationID — An identifier for a record in the AsExposedComputation table.
= XML — A text parameter that is treated as an XML document by the service.

WebServices Revised: 7/10/2014 19

ORACLE

INSURANCE

The service processes a math engine based on the configuration for the passed ComputationID parameter. The
XML document can be used to feed extra dynamic parameters to a request. Response from the call is also
driven by the configuration of the ComputationID in the request.

Request Flow

HTTE
External Transport
System
SOAP
Message

! ComputationID L

XML

Response AsXml
[OR

SOAP Fail
Report

SOAP
Message
HTTP 1
- Transport
Jacsmautationtn — Application Server

Integration Layer l

XML

OIPA

!

ExposedComputation
Web Service

;

Extract Parameters
From Request Xml

v

Retrieve PolicyNumber
From ParametersMap

;

Retrieve EffectiveDate
From ParametersMap

e — .'.I
AsBusinnessRule

PlanGuid

L Yes

Retrieve exposed
camputation

I.-"'Rz:tricvc policy
[from database

Response Xml
Retrieve exposed
computation

Build response
businessrule —j [

[
) Rule| [AsPlan
Xl Perform math b

AsExposed
Computation

No

Policy valuation

Yes

-""".-Polis;'.r exists =
Y

/ Exception

=" Perform —~_Yes
valuation

Request Flow Diagram

The Exposed Computation Web Service processes a request with the following steps:

1. Parse policy number and effective date from the incoming XML document. Set policy context if policy
information is supplied.

2. Load AsExposedComputation record for the ComputationID from the request.

3. Load ExposedComputation business rule (from AsBusinessRules table). If a policy is present, then load
the business rule override for the plan of the policy.

4. Do policy valuation if a policy is present and exposed computation business rule is configured to do so.

5. Execute math from the Input configuration in the exposed computation business rule. If a policy is
present, then use the data present in it and its plan.

WebServices

Revised: 7/10/2014

20

ORACLE

INSURANCE

6. Build response XML from the Output configuration in the exposed computation business rule
AsExposedComputation Table

The AsExposedComputation table is a configuration table for storing exposed computations. An
AsExposedComputation record will have a unique ComputationID value. The other relevant column in this table
is the RuleName column, which is the name of the rule in the AsBusinessRules table that contains the
configuration for processing.

Exposed Computation Business Rule

The RuleName from the AsExposedComputation table for the exposed computation request is used to load an
AsBusinessRule record that contains the configuration for what to process. The ExposedComputation business
rule is set-up in much the same way as the Calculate business rules are configured for calculating segments.
There is an Input element that contains the math variables configuration for processing the math engine. The
math variables should be configured the same way as any other math section in the system. There is also an
Output element, which contains the mappings for the input variables to output in the response. Below is a
sample of a simple ExposedComputation configuration:

<ExposedComputation>
<Input>
<MathVariables>
<MathVariable VARIABLENAME="Variablel"
TYPE="VALUE" DATATYPE="TEXT">
TestValue</Mathvariable>
</MathVariables>
</Input>
<Output>
<Mappings>
<Mapping OUTPUTNAME="Resultl">Variablel</Mapping>
</Mappings>
</Output>
</ExposedComputation>

The Input element contains the math to process, while the Output element pulls the math variable into the
output for “Result1”. The response of the exposed computation request will contain the value for “Result1”.

WebServices Revised: 7/10/2014 21

ORACLE

INSURANCE

Valuation
The exposed computation also has the ability to do valuation. The configuration for this support is below:

<ExposedComputation VALUATION="Yes”>

</ExposedComputation>

By adding this attribute, valuation is run before executing math. This makes available all valuation FIELDs
(Valuation:Policy:CashValue, Valuation:Fund:FundGUID:CashValue, etc.) to the math configuration. Valuation
can only be executed if the request is being processed in the context of a policy.

When processing valuation that may contain variable funds, there is also the ability for using the nearest NUVs
for the funds. This is achieved through the following configuration:

<ExposedComputation VALUATION="Yes” NEARESTNUV="Yes”>

</ExposedComputation>
Exposed Computation SOAP Messages

SOAP Request Input Parameters

When making an ExposedComputation request, the second parameter available is a String that the service
treats as an XML document. This XML contains parameters that can be used as Parameter FIELD values when
executing the math engine.

SOAP Request Example

<soapenv:Envelope xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:exp="http://ExposedComputation”>
<soapenv:Header>
<wsse:Security soapenv:mustUnderstand="1" xmlns:wsse="http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken wsu:Id="UsernameToken-1" xmlns:wsu="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
<wsse:Username>tester</wsse:Username>
<wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-
username-token-profile-1.0#PasswordText">tester</wsse:Password>
<wsse:Nonce EncodingType="http://docs.oasis-open.org/wss/2004/01/0asis-200401-
wss-soap-message-security-1.0#Base64Binary">FRkBB/REsT/4ThQzEjoiUQ==</wsse:Nonce>
<wsu:Created>2011-07-01722:39:59.640Z</wsu:Created>
</wsse:UsernameToken>
</wsse:Security>
</soapenv:Header>
<soapenv:Body>
<exp:processExposedComputation>
<computationId>BC-Expl</computationId>
<inputXml><![CDATA[

WebServices Revised: 7/10/2014 22

ORACLE

INSURANCE

<Request>
<Parameters>
<Parameter NAME="PolicyNumber">VDA31011809</Parameter>
<Parameter NAME="EffectiveDate”>01/01/2009</Parameter>
<Parameter NAME="InputVariablel">TestValuel</Parameter>
</Parameters>
</Request>]]></inputXml>
</exp:processExposedComputation>
</soapenv:Body>
</soapenv:Envelope>

PolicyNumber

Inclusion of a “PolicyNumber” parameter tells the exposed computation that it is being processed for a policy.
The exposed computation business rule is now overridable by plan with this parameter, and the math engine
will have access to Policy and Plan FIELD variables for that policy when executed. This parameter is also
required if the exposed computation is configured to perform valuation during the request.

EffectiveDate

An “EffectiveDate” parameter can be included when an exposed computation executes valuation during the
request. This date will be used as the valuation date during valuation. If this parameter is not defined and
valuation is still executed, the valuation date will default to the system date.

Below is the expected format for the XML parameter in the request:

<Parameters>
<Parameter NAME="PolicyNumber”>P0OL12345</Parameter>
<Parameter NAME="EffectiveDate”>01/01/2009</Parameter>
</Parameters>

SOAP Response

The data returned in the SOAP response XML from a call to exposed computation is built from the <Output>
mappings configured in the exposed computation rule. The root element from the response is the
ComputationID from the request. Each child element of the root is the mapping from the output configuration
with its math value as the element text. For example, refer to the ComputationID “EC_Test” with the below
exposed computation configuration:

<ExposedComputation>
<Input>
<MathVariables>
<MathVariable VARIABLENAME="Variablel"
TYPE="VALUE" DATATYPE="TEXT">
TestValuel</MathVariable>

WebServices Revised: 7/10/2014 23

ORACLE

INSURANCE

<MathVariable VARIABLENAME="Variable2"
TYPE="VALUE" ATATYPE="TEXT">
TestValue2</MathVariable>
</MathVariables>
</Input>
<Output>
<Mappings>
<Mapping OUTPUTNAME="Resultl">Variablel</Mapping>
<Mapping OUTPUTNAME="Result2">Variable2</Mapping>
</Mappings>
</Output>
</ExposedComputation>

This will be the response XML.:

<EC_Test>
<Resultl>TestValuel</Resultl>
<Result2>TestValue2</Result2>
</EC_Test>

WebServices Revised: 7/10/2014 24

ORACLE

INSURANCE

DISQ

Overview

DISQ provides a simple, more comprehensive interaction model that requires no configuration. DISQ surfaces
all of the data and associated operations in a consistent and flexible manner, facilitating any kind of service

interaction.

While OIPA provides flexible services with AsFile and ExposedComputation, these services are difficult to
understand, configure, and interact with. There is no formal XML schema that defines the input and output
parameters for most web services. The payloads typically consist of a single string, which can be any kind of
structured xml data.

In contrast, DISQ provides a formal XML schema which describes the data and operations that it exposes.
DISQ requires no configuration in order for it to function, beyond normal configuration in the existing system.
With a simple introduction to the DISQ model, one can easily understand how to make any request into OIPA.

Request Model

DISQ consists of a single Service Endpoint, with a flexible Request model which allows several operations to be
invoked dynamically. A DISQ Request consists of the following parts:

1. Header - provides a loose bucket of properties that can help influence the overall processing of the
DISQ request.

2. Context - identifies the resource that the DISQ request applies to. Context is a fundamental problem
with OIPA because most times external systems do not know the OIPA unique identifier (i.e. GUID) of
the resource they want to access. So the system requires a different method of "looking up” the
resource to work with. The Context section of the DISQ request solves this problem by allowing the
caller to specify any combination of fields to uniquely identify the context for the Action.

3. Action - identifies the operation to be performed within the context specified.

4. ResponseFormat - identifies the information to be returned as a result of the action being performed.

The contents of the request are dictated by the Action being executed. It is important to understand the usage
models surrounding each Action in order to understand the appropriate Context and Response.

WebServices Revised: 7/10/2014 25

ORACLE

INSURANCE

<DisgReguest>
“Headers
<Messageld-E8T71BS3730-2ACT-4572-8E23-202FF4C5ARa4< MegsageId>
<Timestamp>Z01Z-05%-159T17:00:30.4936-04:00</Timestamp>
</Headez>

Header

<Contexts
<Company> .
<CompanyName>Holding Company</Companylame> ContEXt = HDldlng Company
</ Company>
</Context>
<Fet>
<Client>
«LastName>Hyatt</LastHame> Action = Get Client
</Client>
</ Bat> ——
<Hesponseformats
<ResponseTyperDefault</ResponseType> Response = {:)r‘||'_l’|l Fixed Fields

</HesponseFormats

</DisgReguest>

In the DISQ request sample above, we can see the following:

e The Header defines a Message ID and a Timestamp. These are supported in the standard DISQ
Schema, and are typically used in SOA middleware.

o The Context defines the company that the client belongs to; in this case the caller is identifying the
Holding Company as the context for this request.

e The Action being requested is to Get a Client with the last name Hyatt.

e The ResponseFormat is defined as Default. In the case of a Get action, the default response will be to
return the fixed fields for the requested entity.

From a Query standpoint, it helps to read the request as follows:

Get me a Client with the Last Name 'Hyatt' that belongs to the Company named 'Holding Company"

Context

Context is one of the most important aspects to DISQ. Without holding the internal OIPA identifiers, external
systems need some method of identifying the unique resource to use when executing an Action. The Context
section is the DISQ means of identifying that resource.

Actions
Actions are the means of specifying the operation that is to be performed against the Context. The list of

Actions that are available will grow overtime. At the time of this writing, the following Actions are expected:

o Get
e Find

Get Action denotes the retrieval of a single, unique resource in the system. The Get action will always return a
single element. If more than one resource happens to be found, an exception will be thrown.

Find Action denotes the retrieval of multiple instances of the same source type, all instances of that type that
match the search criteria will be found. Find is also different than Get in that it allows you to specify more than
one data element as the action. When more than one element of the same name is specified, the result of the

WebServices Revised: 7/10/2014 26

ORACLE

INSURANCE

data retrieval is to do a UNION of the results of processing each element individually. For example, if you want
to find all clients with a last name of "Smith" who live in Boston OR Bedford, you could execute the following:

<Find>
<Client>
<LastName>Smith</LastName>
<Addresses>
<Address>
<City>Boston</City>
</Address>
<Address>
<City>Bedford</City>
</Address>
</Addresses>
</Client>
</Find>

Response Format

The ResponseFormat section allows the caller to specify what to include in the Response from the DISQ
Request. There are a few elements in the ResponseFormat:

ResponseType - can be Default, Acknowledge, or Custom. Default is the behavior if the Response Format
element is omitted from the request.

o Default - the default response type is to return the subject of the action itself, and only the fixed fields. If
dynamic fields are required, then the caller must specify a Custom response type.

e Acknowledge - a simple success or failure will be returned from the call

e Custom - the caller specifies what information is to be returned.

The example below is for a Get Client action. The Custom format indicates that the caller is requesting certain
information to be returned. By specifying an empty Fields tag inside the Client tag, the caller is indicating to
return dynamic fields. By specifying an empty Addresses tag inside the Client tag, the caller is indicating to
return all addresses for the client.

<ResponseFormat>
<ResponseType>Custom</ResponseType>
<Client>
<Fields/>
<Addresses/>
</Client>
</ResponseFormat>

Responses

The Responses are returned from the execution of a DISQ Request can contain any OIPA type defined in the
oipa schema. Typically, these will be the entities that are the subject of the action being requested. For
example, for Get Client, a Client element will be returned. This section highlights an example response.

WebServices Revised: 7/10/2014 27

ORACLE

INSURANCE

Example: Get Client request with a Default response type.

DISQ Request

<DisgRequest>

<Header>
<MessageId>671B973D-2AC7-4572-8E23-202FFAC5AB64</Messageld>
<Timestamp>2012-09-19T17:00:30.496-04:00</Timestamp>

</Header>

<Context>
<Company>

<CompanyName>Holding Company</CompanyName>

</Company>

</Context>

<Get>
<Client>

<ClientGuid>0872C75B-B50F-47E1-B439-BA3DC3BBF88A</ClientGuid>

</Client>
</Get>
<ResponseFormat>
<ResponseType>Default</ResponseType>
</ResponseFormat>
</DisqRequest>

DISQ Response

<Client>
<FirstName>Deb</FirstName>
<LastName>Hyatt</LastName>
<TaxId>123412345</TaxId>
<ClientGuid>0872C75B-B50F-47E1-B439-BA3DC3BBF88A</ClientGuid>
<DateOfBirth>1976-01-01T00:00:00-05:00< /DateOfBirth>
<UpdatedGmt>2009-06-02T16:49:10-04:00</UpdatedGmt>
<MiddleInitial></MiddleInitial>
<Sex>02</Sex>
<TypeCode>02</TypeCode>
<LegalResidenceCountryCode>US</LegalResidenceCountryCode>
<MaritalStatus>@0</MaritalStatus>
<EntityTypeCode>CLIENT</EntityTypeCode>

</Client>

WebServices Revised: 7/10/2014

28

ORACLE

INSURANCE

OuTBOUND WEB SERVICES

Outbound Services Connector (OSC)

The OSC leverages the extensibility framework to allow for outbound web service calls during math processing.
The extension provides mechanisms to specify delivery targets and message templates. The latter allows users
to map between the data at a given extension point and a downstream interface. Further, it avoids the need to
develop individual extensions for each downstream interface, while maintaining application performance and
throughput.

Note: A setup and configuration guide for the OSC is provided in the 10.0.0.0 documentation
release library on OTN.

FILE RECEIVED EXAMPLE USING ACORD LOMA

Each of the following examples is meant to show how the various configuration files can be used to configure
the FileReceived Web Service to integrate with other systems. A majority of these examples are from the
ACORD 103 implementation, which is included in version 9.1 of OIPA.

SOAP Request

The SOAP request message must include an element indicating the service to use, which is
processFileReceived in the case of the FileReceived Web Service. Inside of this parent element, two child
elements need to be included: the first declaring the corresponding FilelD in AsFile, and the second including
the XML destined for transformation.

The <! [CDATA[]]> section allows the system to pass the full XML message to the Web Service without it
being evaluated by the initial parser of the SOAP message. If the usage of CDATA is not desired, all characters
that may be misinterpreted, such as “<” and “&”, must be replaced with their respective escape sequences
(“&1t;” and “&” in this case).

<soapenv:Envelope xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:fil="http://FileReceived">
<soapenv:Header>
<wsse:Security soapenv:mustUnderstand="1" xmlns:wsse="http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken wsu:Id="UsernameToken-1" xmlns:wsu="http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-wssecurity-utility-1.0.xsd">
<wsse:Username>tester</wsse:Username>
<wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-
username-token-profile-1.0#PasswordText">tester</wsse:Password>
<wsse:Nonce EncodingType="http://docs.oasis-open.org/wss/2004/01/0asis-200401-
WSS-soap-message-security-1.0#Base64Binary">kC5eI16igq8x17/qA3mzs6/g==</wsse:Nonce>
<wsu:Created>2010-03-22T14:12:34.223Z</wsu:Created>
</wsse:UsernameToken>

WebServices Revised: 7/10/2014 29

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/soap/envelope/
http://filereceived/
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0#PasswordText
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0#PasswordText
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#Base64Binary
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#Base64Binary

ORACLE

INSURANCE

</wsse:Security>
</soapenv:Header>
<soapenv:Body>
<fil:processFileReceived>
<fileId xsi:type="xsd:string">AL2</fileId>
<xml xsi:type="xsd:string">
&1t;NewField>
&1t;PlanName>Functional Prototype Plan</PlanName>
&1t;FundNamel>Interest Rate Calc Fund 1&1t;/FundNamel>
&1t;FundName2>Interest Rate Calc Fund 2&1t;/FundName2>
&1t;FundName3>Interest Rate Calc Fund 3&1t;/FundName3>
&1t;FundName4d>Interest Rate Calc Fund 4&1t;/FundName4d>
&1t;/NewField>
</xml>
</fil:processFileReceived>
</soapenv:Body>
</soapenv:Envelope>

XML Message

This example shows a very small portion of a sample request that follows the ACORD 103 specification. In this
example, the information can be nested in a structured manner as needed. Each element can have attributes to
aid in clarifying data

<TXLife>
<TXLifeRequest>
<OLife>
<Holding id="Holding 1">
<HoldingTypeCode tc="2">Policy</HoldingTypeCode>
<Purpose tc="21">Family Income</Purpose>
<Policy>
<LineOfBusiness tc="1">Life</LineOfBusiness>
<ProductCode>F34523A4-7988-48EQ-BED9-BE2CF82FFC5F</ProductCode>
<PolicyStatus tc="21">Applied For</PolicyStatus>
<IssueType tc="1">Full Underwriting</IssueType>
<Jurisdiction tc="45">Pennsylvania</Jurisdiction>
<ReplacementType tc="1">None</ReplacementType>
<IssueDate>2008-02-15</IssueDate>
<PaymentMode tc="1">Annual</PaymentMode>
<PaymentMethod tc="2">Regular Billing</PaymentMethod>
<Life>
<QualPlanType tc="1">NonQualified</QualPlanType>
<Coverage id="BaseCoverage">
<PlanName>Acme Term</PlanName>
<ProductCode>04</ProductCode>
<LifeCovTypeCode tc="06">Term Life</LifeCovTypeCode>
<IndicatorCode tc="1">Base</IndicatorCode>
<LivesType tc="1">Single Life</LivesType>
<QualAddBenefitInd tc="1">True</QualAddBenefitInd>
<InitCovAmt>1000000</InitCovAmt>
<EffDate>2008-02-15</EffDate>
</Life>
</Policy>
</Holding>
</OLife>
</TXLifeRequest>
</TXLife>

WebServices Revised: 7/10/2014 30

ORACLE

INSURANCE

SOAP Response

The SOAP Response is the message that OIPA returns to the caller after receiving a SOAP request. There are
two possible outcomes to a SOAP request: success or a fault.

Successful Response

When an inbound SOAP request is successfully processed, a SOAP response is returned to the caller along
with the transformed AsXml that was inserted into the database. This default configuration can be changed and
the data returned to the caller can be modified by inserting an XSLT stylesheet into the AsFileOutput table of
the database. This example shows the default SOAP response.

<soapenv:Envelope xmlns:soapenv=""http://schemas.xmlsoap.org/soap/envelope/
xmlns:xsd=""http://www.w3.0rg/2001/XMLSchema"" xmlns:xsi=""http://www.w3.0rg/2001/XMLSchema-
instance"">
<soapenv:Body>
<nsl:processFileReceivedResponse
soapenv:encodingStyle=""http://schemas.xmlsoap.org/soap/encoding/
xmlns:nsl=""http://FileReceived"">
<processFileReceivedReturn xsi:type=""xsd:string"">
<![CDATA[<?xml version=""1.0"" encoding=""UTF-8""?>
<AsXml>
<AsAllocation>
<AllocationGuid>@9B57F68-0B2D-476D-AA4F-806CBA5D118A</AllocationGuid>
<Value>100</Value>
<GroupGuid>9FF5FE2A-D5EC-4B77-A5F5-DF44E6ABOBC7</GroupGuid>
<TypeCode>03</TypeCode>
<RelatedGuid>A3CCCO22-A7A3-1BAD-EQ40-8COAOEA651AF</RelatedGuid>
<FundGuid>66E7A284-2959-4261-84E5-FB81900AC504</FundGuid>
<AllocationMethodCode>@1</AllocationMethodCode>
<AllocationPercent>20</AllocationPercent>
<AllocationAmount>10</AllocationAmount>
<AllocationUnits>2</AllocationUnits>
<PercentInAllocation>@</PercentInAllocation>
<EffectiveDate/>
</AsAllocation>
<AsAllocation>
<AllocationGuid>717A1C87-AFFF-4BF1-86CD-F525A941D29B</AllocationGuid>
<Value>100</Value>
<GroupGuid>9FF5FE2A-D5EC-4B77-A5F5-DF44E6ABOBC7< /GroupGuid>
<TypeCode>03</TypeCode>
<RelatedGuid>A3CCCO22-A7A3-1BAD-EQ40-8COAQEA651AF</RelatedGuid>
<FundGuid>56FE@2B5-E24F-41CB-BBAB-FD5A1212210F</FundGuid>
<AllocationMethodCode>@1</AllocationMethodCode>
<AllocationPercent>20</AllocationPercent>
<AllocationAmount>10</AllocationAmount>
<AllocationUnits>2</AllocationUnits>
<EffectiveDate/>
</AsAllocation>
<AsAllocation>
<AllocationGuid>914C2901-6838-495E-BF81-01DA9423E624</AllocationGuid>
<Value>100</Value>
<GroupGuid>98DEFD38-40EA-4562-A023-CD8OF77936E8</GroupGuid>
<TypeCode>03</TypeCode>
<RelatedGuid>A3CCCO22-A7A3-1BAD-EQ40-8COAREA651AF</RelatedGuid>
<FundGuid>E5840467-A35B-44CF-8FAD-3CBO3AFB2F3A</FundGuid>
<AllocationMethodCode>@1</AllocationMethodCode>
<AllocationPercent>20</AllocationPercent>

WebServices Revised: 7/10/2014 31

http://schemas.xmlsoap.org/soap/envelope/
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://schemas.xmlsoap.org/soap/encoding/
http://filereceived.webservice.adminserver.com/

ORACLE

INSURANCE

<AllocationAmount>10</AllocationAmount>
<AllocationUnits>2</AllocationUnits>
<PercentInAllocation>@</PercentInAllocation>
<EffectiveDate/>

</AsAllocation>

<AsAllocation>
<AllocationGuid>305A4E2E-E3B4-4756-B48A-B7399AB564E2</AllocationGuid>
<Value>100</Value>
<GroupGuid>98DEFD38-40EA-4562-A023-CD8OF77936E8</GroupGuid>
<TypeCode>03</TypeCode>
<RelatedGuid>A3CCCO22-A7A3-1BAD-EQ40-8COAREA651AF</RelatedGuid>
<FundGuid>8DAE3947-83F6-4189-BB3F-DCA40F3AAAC9</FundGuid>
<AllocationMethodCode>@1</AllocationMethodCode>
<AllocationPercent>20</AllocationPercent>
<AllocationAmount>10</AllocationAmount>
<AllocationUnits>2</AllocationUnits>
<PercentInAllocation>@</PercentInAllocation>
<EffectiveDate/>

</AsAllocation>

</AsXml>]]>
</processFileReceivedReturn>
</nsl:processFileReceivedResponse>
</soapenv:Body>
</soapenv:Envelope>

SOAP Fault

If, for any reason, there is an error while processing the inbound SOAP request, OIPA will return a SOAP Fault
response message, along with details surrounding the error. In this example, a SOAP Fault message is being
returned because the security parameters sent in the SOAP request were incorrect.

<soapenv:Envelope xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Body>
<soapenv:Fault>
<faultcode>nsl:Receiver</faultcode>
<faultstring>Authorization failed.</faultstring>
<detail>
<ns2:AsErrorDetail>
<ns2:Error TYPE="System">
<ns2:Message>Authorization failed.</ns2:Message>
</ns2:Error>
</ns2:AsErrorDetail>
<ns3:hostname>WS-Training</ns3:hostname>
</detail>
</soapenv:Fault>
</soapenv:Body>
</soapenv:Envelope>

WebServices Revised: 7/10/2014 32

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/soap/envelope/

