
Oracle® Fusion Middleware
Oracle API Gateway OAuth User Guide
11g Release 2 (11.1.2.3.0)

April 2014

Oracle API Gateway OAuth User Guide, 11g Release 2 (11.1.2.3.0)

Copyright © 1999, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and dis-
closure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or al-
lowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, per-
form, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of
this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any
errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered
to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the ap-
plicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, dis-
closure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Gov-
ernment contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in
FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway,
Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or in-
tended for use in any inherently dangerous applications, including applications which may create a risk of personal injury.
If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim
any liability for any damages caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their re-
spective owners.

This software and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with
respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any
loss, costs, or damages incurred due to your access to or use of third-party content, products, or services. This docu-
mentation is in prerelease status and is intended for demonstration and preliminary use only. It may not be specific to the
hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or
damages incurred due to the use of this documentation.

The information contained in this document is for informational sharing purposes only and should be considered in your
capacity as a customer advisory board member or pursuant to your beta trial agreement only. It is not a commitment to
deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The develop-
ment, release, and timing of any features or functionality described in this document remains at the sole discretion of Or-
acle.

This document in any form, software or printed matter, contains proprietary information that is the exclusive property of
Oracle. Your access to and use of this confidential material is subject to the terms and conditions of your Oracle Soft-
ware License and Service Agreement, which has been executed and with which you agree to comply. This document
and information contained herein may not be disclosed, copied, reproduced, or distributed to anyone outside Oracle
without prior written consent of Oracle. This document is not part of your license agreement nor can it be incorporated in-
to any contractual agreement with Oracle or its subsidiaries or affiliates.

30 April 2014

Contents

1. API Gateway as an OAuth server ...
1. Introduction to API Gateway OAuth 2.0 server ..6

Overview ..6
OAuth 2.0 concepts ..6
OAuth 2.0 example workflow ..6
API Gateway OAuth features ..8
API Gateway OAuth scopes ...9
OAuth 2.0 authentication flows ..9
Further information ... 10

2. Set up API Gateway OAuth 2.0 .. 11
Overview .. 11
Enable OAuth 2.0 management ... 11

Enable OAuth endpoints .. 12
Import client applications .. 12

Import the sample client applications .. 13
Migrate client applications .. 13

Migrate existing client applications ... 14
Upgrade API Gateway configuration ... 14

3. Manage OAuth 2.0 client applications .. 16
Overview .. 16
Manage registered client applications ... 16

Access the Client Application Registry web interface ... 16
Run the sample client applications ... 17
Manage access tokens and authorization codes ... 18

Store in a cache ... 19
Store in a relational database .. 19
Store in Cassandra ... 20

Manage OAuth scopes .. 20
Relational database-backed Client Application Registry .. 21

OAuth relational database schemas ... 21
Generate a certificate and private key for a client application ... 22

4. API Gateway OAuth 2.0 authentication flows .. 24
Overview .. 24
Authorization code (or web server) flow ... 24

Obtain an access token ... 25
Run the sample client .. 28
Further information ... 29

Implicit grant (or user agent) flow ... 29
Obtain an access token ... 30
Run the sample client .. 32
Further information ... 33

Resource owner password credentials flow .. 33
Request an access token ... 33
Handle the response ... 34
Run the sample client .. 34
Further information ... 35

Client credentials grant flow .. 35
Request an access token ... 35
Handle the response ... 36
Run the sample client .. 36
Further information ... 37

JWT flow .. 37

iii

Create a JWT bearer token .. 37
Request an access token ... 38
Handle the response ... 39
Run the sample client .. 39
Further information ... 39

Revoke token .. 40
Run the sample client .. 40
Response codes .. 41
Further information ... 41

Token information service .. 42
Run the sample client .. 42
Response codes .. 43
Further information ... 43

2. OAuth server filters ...
1. Get access token information .. 44

Overview .. 44
Token settings ... 44
Monitoring settings ... 44
Advanced settings .. 45

2. Get access token using authorization code ... 46
Overview .. 46
Application validation settings ... 46
Access token settings .. 46
Monitoring settings ... 47

3. Get access token using client credentials ... 48
Overview .. 48
Application validation settings ... 48
Access token settings .. 48
Monitoring settings ... 49

4. Get access token using JWT ... 50
Overview .. 50
Application validation settings ... 50
Access token settings .. 50
Monitoring settings ... 51

5. Get access token using SAML assertion .. 52
Overview .. 52
SAML assertion validation settings ... 52
Access token settings .. 52
Monitoring settings ... 53

6. Consume authorization requests .. 54
Overview .. 54
Validation settings .. 54
Authorization code settings ... 55
Access token settings .. 55
Monitoring settings ... 56

7. Authorize transaction ... 57
Overview .. 57
Template settings ... 57
Authorization code settings ... 57
Access token settings .. 58
Monitoring settings ... 59

8. Refresh access token .. 60
Overview .. 60
Application validation settings ... 60
Access token settings .. 60
Monitoring settings ... 61

9. Get access token using resource owner credentials ... 62

Oracle® Fusion Middleware

iv

Overview .. 62
Application validation settings ... 62
Access token settings .. 62
Monitoring settings ... 63

10. Revoke token ... 64
Overview .. 64
Revoke token settings ... 64
Monitoring settings ... 64

11. Validate access token .. 65
Overview .. 65
General settings ... 65
Response codes .. 65

12. OAuth 2.0 server message attributes ... 67
Overview .. 67
accesstoken methods .. 67
accesstoken.authn methods ... 67
authzcode methods .. 68
oauth.client.details methods ... 68
Example of querying a message attribute .. 69
OAuth scope attributes .. 71

3. API Gateway as an OAuth client ..
1. Introduction to API Gateway OAuth 2.0 Client ... 73

Overview .. 73
API Gateway OAuth Client features .. 73
OAuth 2.0 example client workflow ... 74

2. Set up API Gateway OAuth 2.0 .. 77
Overview .. 77
Enable OAuth 2.0 management ... 77

3. Configure OAuth 2.0 client applications ... 78
Overview .. 78
Add application .. 78

Configure scopes ... 79
Configure SAML bearer ... 79
Configure JWT ... 79
Configure advanced settings ... 80

Add OAuth 2.0 provider ... 81
Creating a Callback URL listener ... 81

4. OAuth client filters ..
1. Retrieve OAuth client access token from token storage ... 83

Overview .. 83
General settings ... 83

2. Authorize client with server ... 84
Overview .. 84
General settings ... 84
SSL settings .. 84
Additional settings .. 84

3. Refresh an OAuth client access token ... 85
Overview .. 85
General settings ... 85
SSL settings .. 85
Additional settings .. 85

4. OAuth 2.0 client message attributes .. 86
Overview .. 86
oauth.client.accesstoken methods ... 86
oauth.client.application methods .. 86
oauth.callback.state .. 87

Oracle® Fusion Middleware

v

Introduction to API Gateway OAuth 2.0 server
Overview

OAuth is an open standard for authorization that enables client applications to access server resources on behalf of a
specific Resource Owner. OAuth also enables Resource Owners (end users) to authorize limited third-party access to
their server resources without sharing their credentials. For example, a Gmail user could allow LinkedIn or Flickr to have
access to their list of contacts without sharing their Gmail user name and password.

The Oracle API Gateway can be used as an Authorization Server and as a Resource Server. An Authorization Server is-
sues tokens to client applications on behalf of a Resource Owner for use in authenticating subsequent API calls to the
Resource Server. The Resource Server hosts the protected resources, and can accept or respond to protected resource
requests using access tokens.

Note
This guide assumes that you are familiar with the terms and concepts described in the OAuth 2.0 Authoriz-
ation Framework [http://tools.ietf.org/html/rfc6749].

OAuth 2.0 concepts

The API Gateway uses the following definitions of basic OAuth 2.0 terms:

• Resource Owner:
An entity capable of granting access to a protected resource. When the resource owner is a person, it is referred to
as an end user.

• Resource Server:
The server hosting the protected resources, and which is capable of accepting and responding to protected resource
requests using access tokens. In this case, the API Gateway acts as a gateway implementing the Resource Server
that sits in front of the protected resources.

• Client Application:
A client application making protected requests on behalf of the resource owner and with its authorization.

• Authorization Server:
The server issuing access tokens to the client application after successfully authenticating the Resource Owner and
obtaining authorization. In this case, the API Gateway acts both as the Authorization Server and as the Resource
Server.

• Scope:
Used to control access to the Resource Owner's data when requested by a client application. You can validate the
OAuth scopes in the incoming message against the scopes registered in the API Gateway. An example scope is
userinfo/readonly.

OAuth 2.0 example workflow

Assume that you are using a image printing website such as Canon to print some of your photos. You also have some
photos on your Flickr account that you would like to print. However, you must download all these locally, and then upload
them again to the printing website, which is inconvenient. You would like to be able to sign into Flickr from your Canon
printing profile, and print your photos directly.

This problem can be solved using the example OAuth 2.0 Web Server flow shown in the following diagram:

6

http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/rfc6749

Out of band, the Canon printing client application pre-registers with Flickr and obtains a client ID/secret. The client applic-
ation registers a callback URL to receive the authorization code from Flickr when you, as Resource Owner, allow Canon
to access the photos from Flickr. The printing application has also requested access to an API named
/flickr/photos, which has an OAuth scope of photos.

The steps in the diagram are described as follows:

1. You are using a mobile phone and are signed into the Canon image printing website. You click to print Flickr photos.
The Canon client app redirects you to the Flickr OAuth Authorization Server. You must already have a Flickr ac-
count.

2. You log into your Flickr account, and the Flickr Authorization Server asks you "Do you want to allow the Canon print-
ing app to access your photos?". You click Yes to authorize.

3. When successful, the printing app receives an authorization code at the callback URL that was pre-registered out of
band.

Note
You have not shared your Flickr username and password with the printing app. At this point, you as
Resource Owner are no longer involved in the process.

Introduction to API Gateway OAuth 2.0 server

7

4. The client app gets the authorization code, and must exchange this short-lived code for an access token. The client
app sends another request to the Authorization Server, saying it has a code that proves the user has authorized it to
access their photos, and now issue the access token to be sent on to the API (Resource Server). The Authorization
Server verifies the authorization code and returns an access token.

5. The client app sends the access token to the API (Resource Server), and receives the photos as requested.

API Gateway OAuth features

The API Gateway ships with the following features to support OAuth 2.0:

• Web-based client application registration
• Generation of authorization codes, access tokens, and refresh tokens
• Support for the following OAuth flows:

• Authorization Code
• Implicit Grant
• Resource Owner Password Credentials
• Client Credentials
• JWT
• Refresh Token
• Revoke Token
• Token Information Service

• Sample client applications for all supported flows

The following diagram shows the roles of the API Gateway as an OAuth 2.0 Resource Server and Authorization Server:

Introduction to API Gateway OAuth 2.0 server

8

API Gateway OAuth scopes

An OAuth scope is a text string used to control access to protected resources. The resource that the scope is associated
with determines the meaning of the scope. For example, if a customer_details scope is associated with a particular
resource, and a client application is associated with the customer_details scope, the client application will have ac-
cess to that resource. Client applications and resources can have multiple OAuth scopes.

For example, in the following overview diagram:

• Client application A can access the customer_details scope.
• Client application B can access the customer_details and photos scopes.
• Client application C can access the photos scope only.

You can configure the scopes that a client application can access in the Client Application Registry web interface. For
more details, see Manage OAuth 2.0 client applications.

Tip
In general, good OAuth design involves a finite number of OAuth scopes. You should decide on the set of
scopes to be used in your system instead of creating too many scopes later on.

OAuth 2.0 authentication flows

Introduction to API Gateway OAuth 2.0 server

9

The API Gateway supports the following authentication flows:

• OAuth 2.0 Authorization Code Grant (Web Server):
The Web server authentication flow is used by applications that are hosted on a secure server. A critical aspect of
the Web server flow is that the server must be able to protect the issued client application's secret.

• OAuth 2.0 Implicit Grant (User-Agent):
The user-agent authentication flow is used by client applications residing in the user's device. This could be imple-
mented in a browser using a scripting language such as JavaScript or Flash. These client applications cannot keep
the client application secret confidential.

• OAuth 2.0 Resource Owner Password Credentials:
This username-password authentication flow can be used when the client application already has the Resource
Owner's credentials.

• OAuth 2.0 Client Credentials:
This username-password flow is used when the client application needs to directly access its own resources on the
Resource Server. Only the client application's credentials are used in this flow. The Resource Owner's credentials
are not required.

• OAuth 2.0 JWT:
This flow is similar to OAuth 2.0 Client Credentials. A JSON Web Token (JWT) is a JSON-based security token en-
coding that enables identity and security information to be shared across security domains.

• OAuth 2.0 Refresh Token:
After the client application has been authorized for access, it can use a refresh token to get a new access token.
This is only done after the consumer already has received an access token using the Authorization Code Grant or
Resource Owner Password Credentials flow.

• OAuth 2.0 Revoke Token:
A revoke token request causes the removal of the client application permissions associated with the particular token
to access the end-user's protected resources.

• OAuth 2.0 Token Information Service:
The OAuth Token Info service responds to requests for information on a specified OAuth 2.0 access token.

Further information

For more details on the API Gateway OAuth 2.0 support, see the following topics:

• Set up API Gateway OAuth 2.0
• Manage OAuth 2.0 client applications
• API Gateway OAuth 2.0 authentication flows

For more details on OAuth 2.0, see the OAuth 2.0 Authorization Framework [http://tools.ietf.org/html/rfc6749].

Introduction to API Gateway OAuth 2.0 server

10

http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/rfc6749

Set up API Gateway OAuth 2.0
Overview

This chapter describes how to configure the OAuth 2.0 support provided with the API Gateway. It describes how to en-
able the OAuth 2.0 endpoints used to manage client applications, and how to import the preregistered examples
provided with the API Gateway. It also explains how to migrate existing OAuth 2.0 applications.

Enable OAuth 2.0 management

The OAuth Service is not available in the basic installation. It must be deployed manually. However, there is a conveni-
ence script in $VDISTDIR/samples/scripts/oauth for deploying the OAuth 2.0 Services Listener, supporting policies and
sample apps, this can be run from $VDISTDIR/samples/scripts with:

Linux:

./run.sh oauth/deployOAuthConfig.py --type=authzserver

Windows:

run.bat oauth\deployOAuthConfig.py --type=authzserver

The parameters for this script are as follows:

Usage: deployOAuthConfig.py [options]

Options:
-h, --help show this help message and exit
-u USERNAME, --username=USERNAME

The user to connect to the topology (default 'admin')
-p PASSWORD, --password=PASSWORD

The password for the user to connect to the topology
connect user (default 'changeme')

--port=PORT The port Client Application registry is listening on
(default 8089)

--admin=ADMIN The Client Application Registry admin name (default
regadmin)

--adminpw=ADMINPW The Client Application Registry admin password
(default changeme)

--type=TYPE The deployment type: "authzserver", "clientdemo" or
"all" (default all)

-g GROUP, --group=GROUP
The group name

-n SERVICE, --service=SERVICE
The service name

The API Gateway provides the following endpoints used to manage OAuth 2.0 client applications:

Description URL

Authorization Endpoint (REST API) https://GATEWAY:8089/api/oauth/authorize

Token Endpoint (REST API) https://GATEWAY:8089/api/oauth/token

11

Description URL

Token Info Endpoint (REST API) https://GATEWAY:8089/api/oauth/tokeninfo

Revoke Endpoint (REST API) https://GATEWAY:8089/api/oauth/revoke

Oracle Client Application Registry
(HTML Interface)

https://GATEWAY:8089

Oracle Client Application Registry
(REST API)

https://GATEWAY:8089/api/kps/ClientApplicationRegistry

In this table, GATEWAY refers to the machine on which the API Gateway is installed.

Important
You must first enable the OAuth listener port in the API Gateway before these endpoints are available.

Enable OAuth endpoints

To enable the OAuth management endpoints on your API Gateway, perform the following steps:

1. In the Policy Studio tree, select Listeners -> API Gateway -> OAuth 2.0 Services -> Ports.
2. Right-click the OAuth 2.0 Interface in the panel on the right, and select Edit.
3. Select Enable Interface in the dialog.
4. Click the Deploy button in the toolbar.
5. Enter a description and click Finish.

Note
On Linux-based systems, such as Oracle Enterprise Linux, you must open the firewall to allow external ac-
cess to port 8089. If you need to change the port number, set the value of the
env.PORT.OAUTH2.SERVICES environment variable. For details on setting external environment vari-
ables for API Gateway instances, see the API Gateway Deployment and Promotion Guide.

Import client applications

The API Gateway ships with a number of preregistered sample client applications, if deploying with the deployOAuthCon-
fig.py script these samples will already be imported. If the script is not used this section explains how to manually import
these applications into the Client Application Registry.

Note
The sample client applications are for demonstration purposes only and should be removed before moving
the Authorization Server into production.

For example, the default example client applications include the following:

Set up API Gateway OAuth 2.0

12

Client ID Client Secret

SampleConfidentialApp 6808d4b6-ef09-4b0d-8f28-3b05da9c48ec

SamplePublicApp 3b001542-e348-443b-9ca2-2f38bd3f3e84

Import the sample client applications

To import the preregistered example client applications, perform the following steps:

1. Access the Client Application Registry Web interface at the following URL:

https://localhost:8089

2. Enter the default username/password of admin/changeme.
3. Click the Import button at the top right of the screen.
4. Select the following sample file in the dialog:

$VDISTDIR/samples/scripts/oauth/sampleapps.dat

VDISTDIR specifies the directory in which the API Gateway is installed.
5. You can also enter a Decryption Secret in the dialog. However, the sampleapps.dat file is in plaintext format,

and does not require a password.
6. Click OK to import the two sample applications. The following screen shows these applications imported into the Cli-

ent Application Registry:

Alternatively, you can use the following script to import the sample client application data without using the Client Applic-
ation Registry Web interface:

$VDISTDIR/samples/scripts/oauth/importSampleData.py

You can edit this script to configure your user credentials and file location.

Migrate client applications

Set up API Gateway OAuth 2.0

13

If you are migrating from API Gateway version 11.1.2.0.x, you can use the following script to migrate your existing OAuth
client applications:

$VDISTDIR/samples/scripts/oauth/migrateFrom71.py

This script enables you to first export your existing client application data, which you can then import as described in the
section called “Import client applications”. This script has a --password parameter if you wish to encrypt the exported
data for transport.

Migrate existing client applications

To migrate your existing client applications, perform the following steps:

1. After installing API Gateway 11.1.2.3.0, copy the $VDISTIR/samples/oauth/migrateFrom71.py file to the
same location in your existing API Gateway 11.1.2.0.x installation:

$VDISTIR/samples/oauth/migrateFrom71.py

2. In your existing API Gateway 11.1.2.0.x installation, ensure that $VDISTIR/samples/scripts/common.py has
the correct defServerName and defGroupName variables set for your existing topology.

3. Run the migrateFrom71.py script against your running version 11.1.2.0.x Admin Node Manager and API Gate-
way. The script outputs the following file:

$VDISTIR/samples/oauth/appregistry/encodedapps.dat

Note
If you wish to encrypt the data, run the script with the --password parameter.

4. Check the encodedapps.dat file to ensure that the export has been successful.
5. Import the encodedapps.dat output by the script into a running API Gateway 11.1.2.3.0 using the Client Applica-

tion Registry web interface. For more details, see the section called “Import client applications”. When importing en-
crypted data, you must enter a password in the Decryption Secret field.

Upgrade API Gateway configuration

If you are migrating from a previous API Gateway version, you must upgrade your API Gateway configuration. To gener-
ate an upgraded API Gateway version 11.1.2.3.0 configuration, perform the following steps:

1. Run the following script from your version 11.1.2.3.0 installation directory:

<11.1.2.3.0_install>/platform/bin/upgradeConfig --groups -d <previous-version-install>
-o path/to/upgrade/output/

2. In Policy Studio, select File > Open File.
3. Specify the following file:

path/to/upgrade/output/groups/group-2/conf/<guid>/configs.xml

4. In the open configuration in the Policy Studio tree, under Key Property Stores, delete ApiKeyStore and ClientAp-
plicationRegistry.

5. Select File > Save > Deployment Package to export a .fed file.
6. Start the version 11.1.2.3.0 Admin Node Manager and API Gateway instance.
7. In Policy Studio, close the connection to the file, and connect to the now running 7.2 Admin Node Manager. Before

connecting to the API Gateway instance, click Deploy.

Set up API Gateway OAuth 2.0

14

8. Click Browse for .fed, and select the .fed file exported previously in step 4.
9. Import the client applications using the the web-based portal on https://localhost:8089 by clicking Import,

and browsing to the file created in the previous section:

<11.1.2.3.0_install>/samples/oauth/appregistry/encodedapps.dat>

For more details on upgrading API Gateway configuration, see the API Gateway Installation and Configuration Guide.

Set up API Gateway OAuth 2.0

15

Manage OAuth 2.0 client applications
Overview

Client applications that send OAuth requests to the API Gateway’s Authorization Server must be registered with the Au-
thorization Server. This chapter describes the registry used to store these client applications, and how to manage them
using a REST API-based HTML interface. This topic also includes details on the relational database schema, and SSL
commands used for the example client applications.

Note
This topic assumes that you have already performed the steps described in Set up API Gateway OAuth
2.0. These include enabling the OAuth endpoints, importing sample applications, and migrating existing cli-
ent applications.

Manage registered client applications

Every client application that sends OAuth requests to the API Gateway's OAuth Authorization Server must be registered
with the Client Application Registry. The API Gateway provides the Client Application Registry Web-based HTML inter-
face for managing registered client applications. If you have API Manager installed, the Client Application Registry is
available in the API Manager web-based interface. The API Gateway also provides the Client Application Registry REST
API to enable you to manage registered clients on the command line.

Access the Client Application Registry web interface

You can access the Client Application Registry Web interface at the following URL:

https://localhost:8089

The default username/password is admin/changeme.

You can select a client registration entry to update its details. For example, you can configure APIs, user sharing, API
keys, credentials, quota plans, and scopes by expanding the appropriate link at the left:

16

By default, the Client Application Registry is backed by an embedded Apache Cassandra database.

Run the sample client applications

The API Gateway includes sample Jython client applications for all supported OAuth flows in the following directory your
API Gateway installation:

INSTALL_DIR/samples/scripts/oauth

To run a sample script, open a UNIX shell or DOS command prompt in the following directory:

INSTALL_DIR/samples/scripts

Windows
For example, run the following command:

> run.bat oauth\implicit_grant.py

Linux/Solaris
For example, run the following command:

> sh run.sh oauth/implicit_grant.py

Manage OAuth 2.0 client applications

17

Manage access tokens and authorization codes

API Gateway can store generated authorization codes and access tokens in its caches, in an embedded database, or in
a relational database. The Authorization Server issues tokens to clients on behalf of a Resource Owner to use when au-
thenticating subsequent API calls to the Resource Server. These issued tokens must be persisted so that subsequent cli-
ent requests to the Authorization Server can be validated.

The following screen shows the OAuth stores in the Policy Studio:

The Authorization Server can cache authorization codes and access tokens depending on the OAuth flow. The steps for
adding an authorization code cache are similar to adding an access token cache.

The Authorization Server offers the following persistent storage options for access tokens and authorization codes:

• API Gateway cache (default)
• Relational Database Management System (RDBMS)
• Embedded Apache Cassandra database

The following screen shows these options in the Policy Studio:

Manage OAuth 2.0 client applications

18

The Purge expired tokens every 60 secs setting enables you to configure the time in seconds that a background pro-
cess polls the cache or database looking for expired access/refresh tokens or authorization codes.

Store in a cache

Perform the following steps:

1. Right-click Access Token Stores in the Policy Studio tree, and select Add Access Token Store.
2. In dialog that enables you to choose the persistence type, select Store in a cache, and select the browse button to

display the cache configuration dialog.
3. Add a new cache (for example, OAuth Access Token Cache). For more details, see the API Gateway User

Guide.

Store in a relational database

Perform the following steps:

1. Create the supporting schema required for the storage of access tokens, refresh tokens, and authorization codes us-
ing the sql commands in $VDISTIR\system\conf\sql\<DBMS>\oauth-server.sql where <DBMS> is the Database
Management System being used. Schema are provided for Microsoft SQLServer, MySQL, Oracle RDBMS and DB2

2. Right-click Access Token Stores in the Policy Studio tree, and select Add Access Token Store.

Manage OAuth 2.0 client applications

19

3. In the dialog that enables you to choose the persistence type, select Store in a database, and select the browse
button to display a database configuration dialog.

4. Complete the database configuration details. The following example uses a MySQL instance named oauth_db. For
more details, see the API Gateway User Guide.

For more details, see the section called “Relational database-backed Client Application Registry”.

Store in Cassandra

Perform the following steps:

1. Right-click Access Token Stores in the Policy Studio tree, and select Add Access Token Store.
2. This displays the dialog that enables you to choose the persistence type. Select Store in Cassandra.
3. You can configure Read and Write consistency levels for the Cassandra database. These control how up-to-date

and synchronized a row of data is on all of its replicas. The default Read setting of ONE means that the database re-
turns a response from the closest replica. The default Write setting of ANY means that a write must be written to at
least one replica node. For more details, see http://www.datastax.com/docs/0.8/dml/data_consistency.

Manage OAuth scopes

An OAuth scope is a text string used to control access to resources. The resource that the scope is associated with de-
termines the meaning of the scope. For example, if a vehicle_data scope is associated with a particular resource, and
a client application is associated with the vehicle_data scope, the client application will have access to that resource.
Client applications and resources can have multiple OAuth scopes.

You can configure the scopes that a client application can access in the Client Application Registry web interface. You
can specify scopes as free-form text or choose from a list of known configured scopes. You can also select a scope as a
default scope for client applications. Default scopes are used when an authorization or token request does not contain
scopes. The full list of scopes (default and non-default) represent the list of scopes that can be included in an authoriza-
tion or token request.

You can manage scopes in the Client Application Registry web interface by expanding OAUTH SCOPES:

Manage OAuth 2.0 client applications

20

http://www.datastax.com/docs/0.8/dml/data_consistency

Note
The example default scopes provided with the API Gateway are URL-based. However, you can specify any
text string for an OAuth scope (for example, customer_details or readonly).

When an authorization code or access token request is received from a client application, the API Gateway OAuth ac-
cess token filters check that the scopes in the message match the scopes configured for the client application. If no
scopes are provided in the message, the filter creates an access token for the scopes that are configured as default. The
scope for which the access token was created is checked against the list of available scopes in the Client Application Re-
gistry web interface. This list is generated from the scopes defined in Validate Access Token filter in the server configura-
tion. For more details on this filter, see Validate access token.

Important
You can also specify OAuth scopes using selectors (for example, use ${http.request.verb} to map
HTTP GET and PUT requests). However, the Client Application Registry web interface does not display se-
lectorized scopes in the list of available scopes. This is because selectorized scopes in the Validate Access
Token filter cannot be evaluated at registration time.

The administrator must therefore find out about any selectorized scopes to be applied to resources at
runtime. If a scope must be conifigured using a selector, the administrator must find out exactly which se-
lector to specify in the scope. For more details on selectors, see the API Gateway User Guide.

Relational database-backed Client Application Registry

By default, the Oracle Client Application Registry Key Property Store (KPS) is backed by an Apache Cassandra data-
base. The Oracle Client Application Registry KPS can also be backed by a relational database such as Oracle, MySQL,
DB2, or Microsoft MySQL Server. For more details, see the Key Property Store User Guide, available from Oracle Sup-
port.

OAuth relational database schemas

For example, the OAuth relational database schemas displayed by example mysql commands are as follows:

oauth_access_token schema
The following shows the result from the show columns from oauth_access_token; command:

Manage OAuth 2.0 client applications

21

+---------------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------------+--------------+------+-----+---------+-------+
id	varchar(255)	NO	PRI	NULL	
auth_request	blob	NO		NULL	
client_id	varchar(255)	NO		NULL	
expiry_time	datetime	NO		NULL	
token	blob	NO		NULL	
refresh_token	varchar(255)	YES		NULL	
user_auth	varchar(255)	NO		NULL	
user_name	varchar(255)	NO		NULL	
+---------------+--------------+------+-----+---------+-------+

oauth_refresh_token schema
The following shows the result from the show columns from oauth_refresh_token; command:

+--------------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------------+--------------+------+-----+---------+-------+
token_id	varchar(255)	NO	PRI	NULL	
auth_request	blob	NO		NULL	
expiry_time	datetime	NO		NUL	
token	blob	NO		NULL	
user_name	varchar(255)	NO		NULL	
+--------------+--------------+------+-----+---------+-------+

oauth_authz_code schema
The following shows the result from the show columns from oauth_authz_code; command:

+---------------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------------+--------------+------+-----+---------+-------+
id	varchar(255)	NO	PRI	NULL	
authorization	blob	NO		NULL	
expiry_time	datetime	NO		NULL	
+---------------+--------------+------+-----+---------+-------+

Generate a certificate and private key for a client application

The following example openssl command shows generating a client application certificate and private key:

$ openssl req -x509 -nodes -days 365 -newkey rsa:1024 -keyout mykey.pem
-out mycert.pem
Generating a 1024 bit RSA private key
...
...........++++++
.....++++++
writing new private key to 'mykey.pem'

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank.
For some fields there will be a default value.
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US

Manage OAuth 2.0 client applications

22

State or Province Name (full name) [Some-State]:MA
Locality Name (eg, city) []:Newton
Organization Name (eg, company) [Internet Widgits Pty Ltd]:Oracle
Organizational Unit Name (eg, section) []:API Gateway
Common Name (eg, YOUR name) []:SampleConfidentialApp
Email Address []:support@widgits.com

Manage OAuth 2.0 client applications

23

API Gateway OAuth 2.0 authentication flows
Overview

The API Gateway can use the OAuth 2.0 protocol for authentication and authorization. The API Gateway can act as an
OAuth 2.0 Authorization Server and supports several OAuth 2.0 flows that cover common Web server, JavaScript,
device, installed application, and server-to-server scenarios. This topic describes each of the supported OAuth 2.0 flows
in detail, and shows how to run example client applications.

Authorization code (or web server) flow

The authorization code or web server flow is suitable for clients that can interact with the end-user’s user-agent (typically
a Web browser), and that can receive incoming requests from the authorization server (can act as an HTTP server). The
Authorization Code flow is also known as the Three-Legged OAuth flow.

The authorization code flow is as follows:

1. The web server redirects the user to the API Gateway acting as an authorization server to authenticate and author-
ize the server to access data on their behalf.

2. After the user approves access, the web server receives a callback with an authorization code.
3. After obtaining the authorization code, the web server passes back the authorization code to obtain an access token

response.
4. After validating the authorization code, the API Gateway passes back a token response to the web server.
5. After the token is granted, the web server accesses their data.

24

Obtain an access token

The detailed steps for obtaining an access token are as follows:

1. Redirect the user to the authorization endpoint with the following parameters:

Parameter Description

response_type Required. Must be set to code.

client_id Required. The Client ID generated when the application was registered in the
Oracle Client Application Registry.

redirect_uri Optional. Where the authorization code will be sent. This value must match one
of the values provided in the Oracle Client Application Registry.

scope Optional. A space delimited list of scopes, which indicate the access to the Re-
source Owner's data being requested by the application.

state Optional. Any state the consumer wants reflected back to it after approval dur-
ing the callback.

API Gateway OAuth 2.0 authentication flows

25

The following is an example URL:

https://apigateway/oauth/authorize?client_id=SampleConfidentialApp&
response_type=code&&redirect_uri=http%3A%2F%2Flocalhost%3A8090%2Fauth%2Fredirect.html&
scope=https%3A%2F%2Flocalhost%3A8090%2Fauth%2Fuserinfo.email

Note
During this step the Resource Owner user must approve access for the application Web server to access
their protected resources, as shown in the following example screen.

2. The response to the above request is sent to the redirect_uri. If the user approves the access request, the re-
sponse contains an authorization code and the state parameter (if included in the request). If the user does not ap-
prove the request, the response contains an error message. All responses are returned to the Web server on the query
string. For example:

https://localhost/oauth_callback&code=9srN6sqmjrvG5bWvNB42PCGju0TFVV

3. After the Web server receives the authorization code, it may exchange the authorization code for an access token and
a refresh token. This request is an HTTPS POST, and includes the following parameters:

Parameter Description

grant_type Required. Must be set to authorization_code.

code Required. The authorization code received in the redirect above.

redirect_uri Required. The redirect URL registered for the application during application re-

API Gateway OAuth 2.0 authentication flows

26

Parameter Description

gistration.

client_id* Optional. The client_id obtained during application registration.

client_secret* Optional. The client_secret obtained during application registration.

format Optional. Expected return format. The default is json. Possible values are:

• urlencoded

• json

• xml

* If the client_id and client_secret are not provided as parameters in the HTTP POST, they must be provided in
the HTTP Basic Authentication header (Authorization base64Encoded(client_id:client_secret)).

The following example HTTPS POST shows some parameters:

POST /api/oauth/token HTTP/1.1
Content-Type: application/x-www-form-urlencoded

client_id=SampleConfidentialApp&client_secret=6808d4b6-ef09-4b0d-8f28-3b05da9c48ec
&code=9srN6sqmjrvG5bWvNB42PCGju0TFVV&redirect_uri=http%3A%2F%2Flocalhost%3A809
0%2Fauth%2Fredirect.html&grant_type=authorization_code&format=query

4. After the request is verified, the API Gateway sends a response to the client. The following parameters are in the re-
sponse body:

Parameter Description

access_token The token that can be sent to the Resource Server to access the protected re-
sources of the Resource Owner (user).

refresh_token A token that may be used to obtain a new access token.

expires The remaining lifetime on the access token.

type Indicates the type of token returned. At this time, this field always has a value of
Bearer.

The following is an example response:

HTTP/1.1 200 OK
Cache-Control: no-store
Content-Type: application/json
Pragma: no-cache{

"access_token": “O91G451HZ0V83opz6udiSEjchPynd2Ss9......",

API Gateway OAuth 2.0 authentication flows

27

"token_type": "Bearer",
"expires_in": "3600",

}

5. After the Web server has obtained an access token, it can gain access to protected resources on the Resource Server
by placing it in an Authorization: Bearer HTTP header:

GET /oauth/protected HTTP/1.1
Authorization: Bearer O91G451HZ0V83opz6udiSEjchPynd2Ss9
Host: apigateway.com

For example, the curl command to call a protected resource with an access token is as follows:

curl -H "Authorization: Bearer O91G451HZ0V83opz6udiSEjchPynd2Ss9"
https://apigateway.com/oauth/protected

Run the sample client

The following Jython sample client creates and sends an authorization request for the authorization grant flow to the Au-
thorization Server:

INSTALL_DIR/samples/scripts/oauth/authorization_code.py

To run the sample, perform the following steps:

1. Open a shell prompt at INSTALL_DIR/samples/scripts, and execute the following command:

> run oauth/authorization_code.py

The script outputs the following:

> Go to the URL here:
http://127.0.0.1:8080/api/oauth/authorize?client_id=SampleConfidentialApp

&response_type=code&scope=https%3A%2F%2Flocalhost%3A8090%2Fauth%2Fuserinfo.email
&redirect_uri=https%3A%2F%2Flocalhost%2Foauth_callback

Enter Authorization code in dialog

2. Copy the URL output to the command prompt into a browser, and perform the following steps as prompted:
a. Provide login credentials to the authorization server. The default values are:

• Username: admin
• Password: changeme

API Gateway OAuth 2.0 authentication flows

28

b. When prompted, grant access to the client application to access the protected resource.
3. After the Resource Owner has authorized and approved access to the application, the Authorization Server redirects

a fragment containing the authorization code to the redirection URI. For example:

https://localhost/oauth_callback&code=AaI5Or3RYB2uOgiyqVsLs1ATIY0ll0

In this example, the authorization code is:

AaI5Or3RYB2uOgiyqVsLs1ATIY0ll0

Enter this value into the Enter Authorization Code dialog. The script will exchange the authorization code for an
access token, and then access the protected resource using the access token. For example:

Enter Authorization code in dialog
AuthZ code: AaI5Or3RYB2uOgiyqVsLs1ATIY0ll0
Exchange authZ code for access token
Sending up access token request using grant_type set to authorization_code
Response from access token request: 200
Parsing the json response
**********************ACCESS TOKEN RESPONSE***********************************
Access token received from authorization server icPgKP2uVUD2thvAZ5ENhsQb66ffnZEC
XHyRQEz5zP8aGzcobLV3AR

Access token type received from authorization server Bearer
Access token expiry time: 3599
Refresh token: NpNbzIVVvj8MhMmcWx2zsawxxJ3YADfc0XIxlZvw0tIhh8
**
Now we can try access the protected resource using the access token
Executing get request on the protected url
Response from protected resource request is: 200
<html>Congrats! You've hit an OAuth protected resource</html>

Further information

For details on API Gateway filters that support this flow, see the following topics:

• Get access token using authorization code
• Consume authorization requests
• Authorize transaction

Implicit grant (or user agent) flow

The implicit grant (user-agent) authentication flow is used by client applications (consumers) residing in the user's device.
This could be implemented in a browser using a scripting language such as JavaScript, or from a mobile device or a
desktop application. These consumers cannot keep the client secret confidential (application password or private key).

The user agent flow is as follows:

1. The web server redirects the user to the API Gateway acting as an authorization server to authenticate and author-
ize the server to access data on their behalf.

2. After the user approves access, the web server receives a callback with an access token in the fragment of the redir-
ect URL.

3. After the token is granted, the application can access the protected data with the access token.

API Gateway OAuth 2.0 authentication flows

29

Obtain an access token

The detailed steps for obtaining an access token are as follows:

1. Redirect the user to the authorization endpoint with the following parameters:

Parameter Description

response_type Required. Must be set to token.

client_id Required. The Client ID generated when the application was registered in the
Oracle Client Application Registry.

redirect_uri Optional. Where the access token will be sent. This value must match one of
the values provided in the Oracle Client Application Registry.

scope Optional. A space delimited list of scopes, which indicates the access to the
Resource Owner's data requested by the application.

state Optional. Any state the consumer wants reflected back to it after approval dur-
ing the callback.

The following is an example URL:

https://apigateway/oauth/authorize?client_id=SampleConfidentialApp&response_type=
token&&redirect_uri=http%3A%2F%2Flocalhost%3A8090%2Fauth%2Fredirect.html&scope=
https%3A%2F%2Flocalhost%3A8090%2Fauth%2Fuserinfo.email

API Gateway OAuth 2.0 authentication flows

30

Note
During this step the Resource Owner user must approve access for the application (Web server) to access
their protected resources, as shown in the following example screen.

2. The response to the above request is sent to the redirect_uri. If the user approves the access request, the re-
sponse contains an access token and the state parameter (if included in the request). For example:

https://localhost/oauth_callback#access_token=19437jhj2781FQd44AzqT3Zg
&token_type=Bearer&expires_in=3600

If the user does not approve the request, the response contains an error message.

3. After the request is verified, the API Gateway sends a response to the client. The following parameters are contained
in the fragment of the redirect:

Parameter Description

access_token The token that can be sent to the Resource Server to access the protected re-
sources of the Resource Owner (user).

expires The remaining lifetime on the access token.

type Indicates the type of token returned. At this time, this field will always have a
value of Bearer.

state Optional. If the client application sent a value for state in the original authoriza-
tion request, the state parameter is populated with this value.

API Gateway OAuth 2.0 authentication flows

31

4. After the application has obtained an access token, it can gain access to protected resources on the Resource Server
by placing it in an Authorization: Bearer HTTP header:

GET /oauth/protected HTTP/1.1
Authorization: Bearer O91G451HZ0V83opz6udiSEjchPynd2Ss9
Host: apigateway.com

For example, the curl command to call a protected resource with an access token is as follows:

curl -H "Authorization: Bearer O91G451HZ0V83opz6udiSEjchPynd2Ss9"
https://apigateway.com/oauth/protected

Run the sample client

The following Jython sample client creates and sends an authorization request for the implicit grant flow to the Authoriza-
tion Server:

INSTALL_DIR/samples/scripts/oauth/implicit_grant.py

To run the sample, perform the following steps:

1. Open a shell prompt at INSTALL_DIR/samples/scripts, and execute the following command:

> run oauth/implicit_grant.py

The script outputs the following:

> Go to the URL here:
http://127.0.0.1:8080/api/oauth/authorize?client_id=SampleConfidentialApp&
response_type=token&scope=https%3A%2F%2Flocalhost%3A8090%2Fauth%2Fuserinfo.email&
redirect_uri=https%3A%2F%2Flocalhost%2Foauth_callback&state=1956901292

Enter Access Token code in dialog

2. After the Resource Owner has authorized and approved access to the application, the Authorization Server redirects
to the redirection URI a fragment containing the access token. For example:

https://localhost/oauth_callback#access_token=
4owzGyokzLLQB5FH4tOMk7Eqf1wqYfENEDXZ1mGvN7u7a2Xexy2OU9&expires_in=
3599&state=1956901292&token_type=Bearer

In this example, the access token is:

API Gateway OAuth 2.0 authentication flows

32

4owzGyokzLLQB5FH4tOMk7Eqf1wqYfENEDXZ1mGvN7u7a2Xexy2OU9

Enter this value into the Enter Access Token from fragment dialog, and the script attempts to access the protec-
ted resource using the access token. For example:

**********************ACCESS TOKEN RESPONSE******************************
Access token received from authorization server 4owzGyokzLLQB5FH4tOMk7Eqf1wqYfEN
EDXZ1mGvN7u7a2Xexy2OU9
**
Now we can try access the protected resource using the access token
Executing get request on the protected url
Response from protected resource request is: 200
<html>Congrats! You've hit an OAuth protected resource</html>

Further information

For details on the API Gateway filter that supports this flow, see the Consume authorization requests filter.

Resource owner password credentials flow

The resource owner password credentials flow is also known as the username-password authentication flow. This flow
can be used as a replacement for an existing login when the consumer already has the user’s credentials.

The Resource Owner password credentials grant type is suitable in cases where the Resource Owner has a trust rela-
tionship with the client (for example, the device operating system or a highly privileged application). The Authorization
Server should take special care when enabling this grant type, and only allow it when other flows are not viable.

This grant type is suitable for clients capable of obtaining the Resource Owner's credentials (username and password,
typically using an interactive form). It is also used to migrate existing clients using direct authentication schemes such as
HTTP Basic or Digest authentication to OAuth by converting the stored credentials to an access token.

Request an access token

The client token request should be sent in an HTTP POST to the token endpoint with the following parameters:

API Gateway OAuth 2.0 authentication flows

33

Parameter Description

grant_type Required. Must be set to password

username Required. The Resource Owner's user name.

password Required. The Resource Owner's password.

scope Optional. The scope of the authorization.

format Optional. Expected return format. The default is json. Possible values are:

• urlencoded

• json

• xml

The following is an example HTTP POST request:

POST /api/oauth/token HTTP/1.1
Content-Length: 424
Content-Type: application/x-www-form-urlencoded; charset=UTF-8
Host: 192.168.0.48:8080
Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JWgrant_type=password&username=
johndoe&password=A3ddj3w

Handle the response

The API Gateway will validate the resource owner’s credentials and authenticate the client against the Oracle Client Ap-
plication Registry. An access token, and optional refresh token, is sent back to the client on success. For example, a val-
id response is as follows:

HTTP/1.1 200 OK
Cache-Control: no-store
Content-Type: application/json
Pragma: no-cache
{

"access_token": “O91G451HZ0V83opz6udiSEjchPynd2Ss9......",
"token_type": "Bearer",
"expires_in": "3600",
“refresh_token”: “8722gffy2229220002iuueee7GP...........”

}

Run the sample client

The following Jython sample client sends a request to the Authorization Server using the Resource Owner password cre-
dentials flow:

INSTALL_DIR/samples/scripts/oauth/resourceowner_password_credentials.py

To run the sample, open a shell prompt at INSTALL_DIR/samples/scripts, and execute the following command:

> run oauth/resourceowner_password_credentials.py

API Gateway OAuth 2.0 authentication flows

34

The script outputs the following:

Sending up access token request using grant_type set to password
Response from access token request: 200
Parsing the json response
**********************ACCESS TOKEN RESPONSE***********************************
Access token received from authorization server lrGHhFhFwSmycXStIza1jjvXlSaac9
JNIgviF7oPiV8OnxlSIsrxVA

Access token type received from authorization server Bearer
Access token expiry time: 3600
**
Now we can try access the protected resource using the access token
Executing get request on the protected url
Response from protected resource request is: 200
<html>Congrats! You've hit an OAuth protected resource</html>

Further information

For details on the API Gateway filter that supports this flow, see Get access token using resource owner credentials.

Client credentials grant flow

The client credentials grant type must only be used by confidential clients. The client can request an access token using
only its client credentials (or other supported means of authentication) when the client is requesting access to the protec-
ted resources under its control. The client can also request access to those of another Resource Owner that has been
previously arranged with the Authorization Server (the method of which is beyond the scope of the specification).

Request an access token

The client token request should be sent in an HTTP POST to the token endpoint with the following parameters:

API Gateway OAuth 2.0 authentication flows

35

Parameter Description

grant_type Required. Must be set to client_credentials.

scope Optional. The scope of the authorization.

format Optional. Expected return format. The default is json. Possible values are:

• urlencoded

• json

• xml

The following is an example POST request:

POST /api/oauth/token HTTP/1.1
Content-Length: 424
Content-Type: application/x-www-form-urlencoded; charset=UTF-8
Host: 192.168.0.48:8080
Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW
grant_type=client_credentials

Handle the response

The API Gateway authenticates the client against the Oracle Client Application Registry. An access token is sent back to
the client on success. A refresh token is not included in this flow. An example valid response is as follows:

HTTP/1.1 200 OK
Cache-Control: no-store
Content-Type: application/json
Pragma: no-cache
{ "access_token": “O91G451HZ0V83opz6udiSEjchPynd2Ss9......",

"token_type": "Bearer",
"expires_in": "3600"

}

Run the sample client

The following Jython sample client sends a request to the Authorization Server using the client credentials flow:

INSTALL_DIR/samples/scripts/oauth/client_credentials.py

To run the sample, open a shell prompt at INSTALL_DIR/samples/scripts, and execute the following command:

> run oauth/client_credentials.py

The outputs the following:

Sending up access token request using grant_type set to client_credentials
Response from access token request: 200
Parsing the json response
**********************ACCESS TOKEN RESPONSE***********************************
Access token received from authorization server

API Gateway OAuth 2.0 authentication flows

36

OjtVvNusLg2ujy3a6IXHhavqdEPtK7qSmIj9fLl8qywPyX8bKEsjqF
Access token type received from authorization server Bearer
Access token expiry time: 3599
**
Now we can try access the protected resource using the access token
Response from protected resource request is: 200
<html>Congrats! You've hit an OAuth protected resource</html>

Further information

For details on the API Gateway filter that supports this flow, see Get access token using client credentials.

JWT flow

A JSON Web Token (JWT) is a JSON-based security token encoding that enables identity and security information to be
shared across security domains.

In the OAuth 2.0 JWT flow, the client application is assumed to be a confidential client that can store the client applica-
tion’s private key. The X.509 certificate that matches the client’s private key must be registered in the Oracle Client Ap-
plication Registry. The API Gateway uses this certificate to verify the signature of the JWT claim. For information on cre-
ating a private key and certificate, see the section called “Generate a certificate and private key for a client application”.

For more details on the OAuth 2.0 JWT flow, see
http://self-issued.info/docs/draft-ietf-oauth-jwt-bearer-00.html

Create a JWT bearer token

To create a JWT bearer token, perform the following steps:

1. Construct a JWT header in the following format:

{"alg":"RS256"}

2. Base64url encode the JWT Header as defined here, which results in the following:

eyJhbGciOiJSUzI1NiJ9

3. Create a JWT Claims Set, which conforms to the following rules:
• The issuer (iss) must be the OAuth client_id or the remote access application for which the developer re-

gistered their certificate.

API Gateway OAuth 2.0 authentication flows

37

http://self-issued.info/docs/draft-ietf-oauth-jwt-bearer-00.html

• The audience (aud) must match the value configured in the JWT filter. By default, this value is as follows:

http://apigateway/api/oauth/token

• The validity (exp) must be the expiration time of the assertion, within five minutes, expressed as the number of
seconds from 1970-01-01T0:0:0Z measured in UTC.

• The time the assertion was issued (iat) measured in seconds after 00:00:00 UTC, January 1, 1970.
• The JWT must be signed (using RSA SHA256).
• The JWT must conform with the general format rules specified here:

http://tools.ietf.org/html/draft-jones-json-web-toke.
For example:

{
"iss": "SampleConfidentialApp",

"aud": "http://apigateway/api/oauth/token",
"exp": "1340452126",
"iat": "1340451826"

}

4. Base64url encode the JWT Claims Set, resulting in:

eyJpc3MiOiJTYW1wbGVDb25maWRlbnRpYWxBcHAiLCJhdWQiOiJodHRwOi8vYXBpc2VydmV
yL2FwaS9vYXV0aC90b2tlbiIsImV4cCI6IjEzNDA0NTIxMjYiLCJpYXQiOiIxMzQwNDUxODI2In0=

5. Create a new string from the encoded JWT header from step 2, and the encoded JWT Claims Set from step 4, and
append them as follows:

Base64URLEncode(JWT Header) + . + Base64URLEncode(JWT Claims Set)

This results in a string as follows:

eyJhbGciOiJSUzI1NiJ9.eyJpc3MiOiAiU2FtcGxlQ29uZmlkZW50aWFsQXBwIiwgImF1ZCI6ICJodHRw
Oi8vYXBpc2VydmVyL2FwaS9vYXV0aC90b2tlbiIsICJleHAiOiAiMTM0MTM1NDYwNSIsICJpYXQiOiAi
MTM0MTM1NDMwNSJ9

6. Sign the resulting string in step 5 using SHA256 with RSA. The signature must then be Base64url encoded. The sig-
nature is then concatenated with a . character to the end of the Base64url representation of the input string. The
result is the following JWT (line breaks added for clarity):

{Base64url encoded header}.
{Base64url encoded claim set}.

This results in a string as follows:

eyJhbGciOiJSUzI1NiJ9.eyJpc3MiOiAiU2FtcGxlQ29uZmlkZW50aWFsQXBwIiwgImF1ZCI6ICJodHR
wOi8vYXBpc2VydmVyL2FwaS9vYXV0aC90b2tlbiIsICJleHAiOiAiMTM0MTM1NDYwNSIsICJpYXQiOiA
iMTM0MTM1NDMwNSJ9.ilWR8O8OlbQtT5zBaGIQjveOZFIWGTkdVC6LofJ8dN0akvvD0m7IvUZtPp4dx3
KdEDj4YcsyCEAPhfopUlZO3LE-iNPlbxB5dsmizbFIc2oGZr7Zo4IlDf92OJHq9DGqwQosJ-s9GcIRQk
-IUPF4lVy1Q7PidPWKR9ohm3c2gt8

Request an access token

The JWT bearer token should be sent in an HTTP POST to the Token Endpoint with the following parameters:

Parameter Description

grant_type Required. Must be set to
urn:ietf:params:oauth:grant-type:jwt-bearer.

API Gateway OAuth 2.0 authentication flows

38

http://tools.ietf.org/html/draft-jones-json-web-toke

Parameter Description

assertion Required. Must be set to the JWT bearer token, base64url-encoded.

format Optional. Expected return format. The default is json. Possible values are:

• urlencoded

• json

• xml

The following is an example POST request:

POST /api/oauth/token HTTP/1.1
Content-Length: 424
Content-Type: application/x-www-form-urlencoded; charset=UTF-8
Host: 192.168.0.48:8080
grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Ajwt-bearer&assertion=eyJhbGciOiJS
UzI1NiJ9.eyJpc3MiOiAiU2FtcGxlQ29uZmlkZW50aWFsQXBwIiwgImF1ZCI6ICJodHRwOi8vYXBpc2Vy
dmVyL2FwaS9vYXV0aC90b2tlbiIsICJleHAiOiAiMTM0MTM1NDYwNSIsICJpYXQiOiAiMTM0MTM1NDMwN
SJ9.ilWR8O8OlbQtT5zBaGIQjveOZFIWGTkdVC6LofJ8dN0akvvD0m7IvUZtPp4dx3KdEDj4YcsyCEAPh
fopUlZO3LE-iNPlbxB5dsmizbFIc2oGZr7Zo4IlDf92OJHq9DGqwQosJ-s9GcIRQk-IUPF4lVy1Q7PidP
WKR9ohm3c2gt8

Handle the response

The API Gateway returns an access token if the JWT claim and access token request are properly formed, and the JWT
has been signed by the private key matching the registered certificate for the client application in the Oracle Client Ap-
plication Registry.

For example, a valid response is as follows:

HTTP/1.1 200 OK
Cache-Control: no-store
Content-Type: application/json
Pragma: no-cache
{

"access_token": “O91G451HZ0V83opz6udiSEjchPynd2Ss9......",
"token_type": "Bearer",
"expires_in": "3600",

}

Run the sample client

The following Jython sample creates and sends a JWT Bearer token to the Authorization Server:

INSTALL_DIR/samples/scripts/oauth/jwt.py

To run the sample, open a shell prompt at INSTALL_DIR/samples/scripts, and execute the following command:

> run oauth/jwt.py

Further information

API Gateway OAuth 2.0 authentication flows

39

For details on the API Gateway filter that supports this flow, see Get access token using JWT.

Revoke token

In some cases a user may wish to revoke access given to an application. An access token can be revoked by calling the
API Gateway revoke service and providing the access token to be revoked. A revoke token request causes the removal
of the client permissions associated with the particular token to access the end-user's protected resources.

The endpoint for revoke token requests is as follows:

https://<API Gateway>:8089/api/oauth/revoke

The token to be revoked should be sent to the revoke token endpoint in an HTTP POST with the following parameter:

Parameter Description

token Required. A token to be revoked (for example,
4eclEUX1N6oVIOoZBbaDTI977SV3T9KqJ3ayOvs4gqhGA4).

The following is an example POST request:

POST /api/oauth/revoke HTTP/1.1
Content-Type: application/x-www-form-urlencoded; charset=UTF-8
Host: 192.168.0.48:8080
Authorization: Basic U2FtcGxlQ29uZmlkZW50aWFsQXBwOjY4MDhkNGI2LWVmMDktNGIwZC04ZjI4LT
NiMDVkYTljNDhlYw==token=4eclEUX1N6oVIOoZBbaDTI977SV3T9KqJ3ayOvs4gqhGA4

Run the sample client

API Gateway OAuth 2.0 authentication flows

40

The following Jython sample client creates a token revoke request to the Authorization Server:

INSTALL_DIR/samples/scripts/oauth/revoke_token.py

To run the sample, open a shell prompt at INSTALL_DIR/samples/scripts, and execute the following command:

> run oauth/revoke_token.py

When the Authorization Server receives the token revocation request, it first validates the client credentials and verifies
whether the client is authorized to revoke the particular token based on the client identity.

Note
Only the client that was issued the token can revoke it.

The Authorization Server decides whether the token is an access token or a refresh token:

• If it is an access token, this token is revoked.
• If it is a refresh token, all access tokens issued for the refresh token are invalidated, and the refresh token is re-

voked.

Response codes

The following HTTP status response codes are returned:

• HTTP 200 if processing is successful.
• HTTP 401 if client authentication failed.
• HTTP 403 if the client is not authorized to revoke the token.

The following is an example response:

Token to be revoked: 3eXnUZzkODNGb9D94Qk5XhiV4W4gu9muZ56VAYoZiot4WNhIZ72D3
Revoking token...............
Response from revoke token request is: 200
Successfully revoked token

Further information

For details on the API Gateway filter that supports this flow, see Revoke token.

API Gateway OAuth 2.0 authentication flows

41

Token information service

You can use the token information service to validate that an access token was issued by the API Gateway. A request to
the tokenInfo service is an HTTP GET request for information in a specified OAuth 2.0 access token.

The endpoint for the token information service is as follows:

https://<apigateway>:8089/api/oauth/tokeninfo

Getting information about a token from the Authorization Server only requires a GET request to the tokeninfo endpoint.
For example:

GET /api/oauth/tokeninfo HTTP/1.1
Host: 192.168.0.48:8080
access_token=4eclEUX1N6oVIOoZBbaDTI977SV3T9KqJ3ayOvs4gqhGA4

This request includes the following parameter:

Parameter Description

access_token Required. A token that you want information about (for example:
4eclEUX1N6oVIOoZBbaDTI977SV3T9KqJ3ayOvs4gqhGA4)

The following example uses this parameter:

https://apigateway/api/oauth/tokeninfo?access_token=4eclEUX1N6oVIOoZBba
DTI977SV3T9KqJ3ayOvs4gqhGA4

Run the sample client

The following Jython sample client creates a token revoke request to the Authorization Server:

API Gateway OAuth 2.0 authentication flows

42

INSTALL_DIR/samples/scripts/oauth/token_info.py

To run the sample, open a shell prompt at INSTALL_DIR/samples/scripts, and execute the following command:

> run oauth/token_info.py

This displays the following dialog:

When the Authorization Server receives the Token Info request, it first ensures the token is in its cache (EhCache or
Database), and ensures the token is valid and has not expired.

The following is an example response:

Get token info for this token: BcYGjPOQSCrtbEc1F0ag8zf6OT9rCaMLiI1dYjFLT5zhxz3x5ScrdN
Response from token info request is: 200
**********************TOKEN INFO RESPONSE***********************************
Token audience received from authorization server: SampleConfidentialApp
Scopes user consented to: https://localhost:8090/auth/userinfo.email
Token expiry time: 3566
User id : admin
**

Response codes

The following HTTP Status codes are returned:

• 200 if processing is successful
• 400 on failure

The response is sent back as a JSON message. For example:

{
"audience" : "SampleConfidentialApp",
"user_id" : "admin",
"scope" : "https://localhost:8090/auth/userinfo.email",
"expires_in" : 2518

}

You can get additional information about the access token using message attributes. For more details, see OAuth 2.0
server message attributes.

Further information

For details on the API Gateway filter that supports this flow, see Get access token information.

API Gateway OAuth 2.0 authentication flows

43

Get access token information
Overview

The OAuth 2.0 Access Token Information filter is used to return a JSON description of the specified OAuth 2.0 access
token. OAuth access tokens are used to grant access to specific resources in an HTTP service for a specific period of
time (for example, photos on a photo sharing website). This enables users to grant third-party applications access to their
resources without sharing all of their data and access permissions.

An OAuth access token can be sent to the Resource Server to access the protected resources of the Resource Owner
(user). This token is a string that denotes a specific scope, lifetime, and other access attributes. For details on supported
OAuth flows, see API Gateway OAuth 2.0 authentication flows.

Token settings

Configure the following fields on the Access Token Info Settings tab:

Token to verify can be found here:
Click the browse button to select the location of the access token to verify (for example, in the default OAuth Access
Token Store). To add a store, right-click Access Token Stores, and select Add Access Token Store. You can store
tokens in a cache, in a relational database, or in an embedded Cassandra database. For more details, see the section
called “Manage access tokens and authorization codes”.

Where to get access token from:
Select one of the following:

• In Query String:
This is the default setting. Defaults to the access_token parameter.

• In a selector:
Defaults to the ${http.client.getCgiArgument('access_token')} selector. For more details on API Gate-
way selectors, see the API Gateway User Guide.

Monitoring settings

The settings on the Monitoring tab configure service-level monitoring options such as whether to store usage metrics
data to a database. This information can be used by the web-based API Gateway Manager tool to display service use,
and by the API Gateway Analytics tool to produce reports on how the service is used.

• Monitor service usage:
Select this option if you want to store message metrics for this service.

• Monitor service usage per client:
Select this option if you want to generate reports monitoring which authenticated clients are calling which services.

• Monitor client usage:
If you want to generate reports on authenticated clients, but are not interested in which services they are calling, se-
lect this option and deselect Monitoring service usage per client.

• Which attribute is used to identify the client?:
Enter the message attribute to use to identify authenticated clients. The default is authentication.subject.id,
which stores the identifier of the authenticated user (for example, the username or user's X.509 Distinguished
Name).

• Composite Context:
This setting enables you to select a service context as a composite context in which multiple service contexts are
monitored during the processing of a message. This setting is not selected by default.

For example, the API Gateway receives a message, and sends it to serviceA first, and then to serviceB. Monit-

44

oring is performed separately for each service by default. However, you can set a composite service context before
serviceA and serviceB that includes both services. This composite service passes if both services complete suc-
cessfully, and monitoring is also performed on the composite service context.

Advanced settings

The settings on the Advanced tab include the following:

Return additional Access Token parameters:
Click Add to return additional access token parameters, and enter the Name and Value in the dialog. For example, you
could enter Department in Name, and the following selector in Value:

${accesstoken.getAdditionalInformation().get("Department")

Get access token information

45

Get access token using authorization code
Overview

The OAuth 2.0 Access Token using Authorization Code filter is used to get a new access token using the authoriza-
tion code. This supports the OAuth 2.0 Authorization Code Grant or Web server authentication flow, which is used by ap-
plications that are hosted on a secure server. A critical aspect of this flow is that the server must be able to protect the is-
sued client application's secret. For more details on supported OAuth flows, see API Gateway OAuth 2.0 authentication
flows.

OAuth access tokens are used to grant access to specific resources in an HTTP service for a specific period of time (for
example, photos on a photo sharing website). This enables users to grant third-party applications access to their re-
sources without sharing all of their data and access permissions. An OAuth access token can be sent to the Resource
Server to access the protected resources of the Resource Owner (user). This token is a string that denotes a specific
scope, lifetime, and other access attributes.

Application validation settings

Configure the following fields on this tab:

Use this store to validate the Authorization Code:
Click the browse button to select the store in which to validate the authorization code (for example, in the default Authz
Code Store). To add a store, right-click Authorization Code Stores, and select Add Authorization Code Store. You
can store codes in a cache, in a relational database, or in an embedded Cassandra database. For more details, see the
section called “Manage access tokens and authorization codes”.

Find client application information from message:
Select one of the following:

• In Authorization Header
This is the default setting.

• In Query String:
The Client Id defaults to client_id, and Client Secret defaults to client_secret.

Access token settings

Configure the following fields on the this tab:

Access Token will be stored here:
Click the browse button to select where to store the access token (for example, in the default OAuth Access Token
Store). To add an access token store, right-click Access Token Stores, and select Add Access Token Store. You can
store tokens in a cache, in a relational database, or in an embedded Cassandra database. For more details, see the sec-
tion called “Manage access tokens and authorization codes”.

Access Token Expiry (in secs):
Enter the number of seconds before the access token expires. Defaults to 3600 (one hour).

Access Token Length:
Enter the number of characters in the access token. Defaults to 54.

Access Token Type:
Enter the access token type. This provides the client with information required to use the access token to make a protec-
ted resource request. The client cannot use an access token if it does not understand the token type. Defaults to
Bearer.

46

Include Refresh Token:
Select whether to include a refresh token. This is a token issued by the Authorization Server to the client that can be
used to obtain a new access token. This setting is selected by default.

Refresh Token Expiry (in secs):
When Include Refresh Token is selected, enter the number of seconds before the refresh token expires. Defaults to
43200 (twelve hours).

Refresh Token Length:
When Include Refresh Token is selected, enter the number of characters in the refresh token. Defaults to 46.

Store additional Access Token parameters:
Click Add to store additional access token parameters, and enter the Name and Value in the dialog (for example, De-
partment, Engineering).

Monitoring settings

The settings on this tab configure service-level monitoring options such as whether to store usage metrics data to a data-
base. This information can be used by the web-based API Gateway Manager tool to display service use, and by the API
Gateway Analytics tool to produce reports on how the service is used. For details on the fields on this tab, see the sec-
tion called “Monitoring settings” in Get access token information.

Get access token using authorization code

47

Get access token using client credentials
Overview

The OAuth 2.0 Access Token using Client Credentials filter enables an OAuth client to request an access token using
only its client credentials. This supports the OAuth 2.0 Client Credentials flow, which is used when the client application
needs to directly access its own resources on the Resource Server. Only the client application's credentials or public/
private key pair are used in the this flow. The Resource Owner's credentials are not required. For more details on sup-
ported OAuth flows, see API Gateway OAuth 2.0 authentication flows.

OAuth access tokens are used to grant access to specific resources in an HTTP service for a specific period of time (for
example, photos on a photo sharing website). This enables users to grant third-party applications access to their re-
sources without sharing all of their data and access permissions. An OAuth access token can be sent to the Resource
Server to access the protected resources of the Resource Owner (user). This token is a string that denotes a specific
scope, lifetime, and other access attributes.

Application validation settings

Configure the following fields on this tab:

Find client application information from message:
Select one of the following:

• In Authorization Header:
This is the default setting.

• In Query String:
The Client Id defaults to client_id, and Client Secret defaults to client_secret.

Access token settings

Configure the following fields on the this tab:

Access Token will be stored here:
Click the browse button to select where to store the access token (for example, in the default OAuth Access Token
Store). To add an access token store, right-click Access Token Stores, and select Add Access Token Store. You can
store tokens in a cache, in a relational database, or in an embedded Cassandra database. For more details, see the sec-
tion called “Manage access tokens and authorization codes”.

Access Token Expiry (in secs):
Enter the number of seconds before the access token expires. Defaults to 3600 (one hour).

Access Token Length:
Enter the number of characters in the access token. Defaults to 54.

Access Token Type:
Enter the access token type. This provides the client with information required to use the access token to make a protec-
ted resource request. The client cannot use an access token if it does not understand the token type. Defaults to
Bearer.

Include Refresh Token:
Select whether to include a refresh token. This is a token issued by the Authorization Server to the client that can be
used to obtain a new access token. This setting is selected by default.

Refresh Token Expiry (in secs):
When Include Refresh Token is selected, enter the number of seconds before the refresh token expires. Defaults to

48

43200 (twelve hours).

Refresh Token Length:
When Include Refresh Token is selected, enter the number of characters in the refresh token. Defaults to 46.

Store additional Access Token parameters:
Click Add to store additional access token parameters, and enter the Name and Value in the dialog (for example, De-
partment and Engineering).

Generate Token Scopes:
When requesting a token from the Authorization Server, you can specify a parameter for the OAuth scopes that you wish
to access. When scopes are sent in the request, you can select whether the access token is generated only if the scopes
in the request match all or any scopes registered for the application. Alternatively, for extra flexibility you can get the
scopes by calling out to a policy.

Select one of the following options to configure how access tokens are generated based on specified scopes:

• Get scopes from a registered application:
Select whether the scopes must match Any or All of the scopes registered for the application in the Client Applica-
tion Registry. Defaults to Any. If no scopes are sent in the request, the token is generated with the scopes re-
gistered for the application.

• Get scopes by calling policy:
Select a pre-configured policy to get the scopes, and enter the attribute that stores the scopes in the Scopes ap-
proved for token are stored in the attribute textbox. Defaults to scopes.for.token. The configured filter re-
quires the scopes as set of strings on the message whiteboard.

Monitoring settings

The settings on this tab configure service-level monitoring options such as whether to store usage metrics data to a data-
base. This information can be used by the web-based API Gateway Manager tool to display service use, and by the API
Gateway Analytics tool to produce reports on how the service is used. For details on the fields on this tab, see the sec-
tion called “Monitoring settings” in Get access token information.

Get access token using client credentials

49

Get access token using JWT
Overview

The OAuth 2.0 Access Token using JWT filter enables an OAuth client to request an access token using only a JSON
Web Token (JWT). This supports the OAuth 2.0 JWT flow, which is used when the client application needs to directly ac-
cess its own resources on the Resource Server. Only the client JWT token is used in this flow, the Resource Owner's
credentials are not required. For more details on supported OAuth flows, see API Gateway OAuth 2.0 authentication
flows.

A JWT is a JSON-based security token encoding that enables identity and security information to be shared across se-
curity domains. JWTs represent a set of claims as a JSON object. For more information on JWT, go to ht-
tp://self-issued.info/docs/draft-ietf-oauth-json-web-token.html.

OAuth access tokens are used to grant access to specific resources in an HTTP service for a specific period of time (for
example, photos on a photo sharing website). This enables users to grant third-party applications access to their re-
sources without sharing all of their data and access permissions. An OAuth access token can be sent to the Resource
Server to access the protected resources of the Resource Owner (user). This token is a string that denotes a specific
scope, lifetime, and other access attributes.

Application validation settings

Configure the following fields on this tab:

Audience (aud) must contain the following URI:
Enter the JWT aud (intended audience). The JWT must contain an aud URI that identifies the Authorization Server, or
service provider domain, as an intended audience. The Authorization Server must also verify that it is an intended audi-
ence for the JWT. Defaults to http://apigateway/api/oauth/token.

Clock skew in seconds for JWT Claim:
When creating the JWT, an OAuth client can set certain claims relating to time (for example, iat, exp, or nbf). This field
allows you to enter a number of seconds to allow for clock skew when dealing with these claims.

If the iat claim is present, the OAuth token service asserts that the current time is greater than the issued at time. If the
exp claim is present, the OAuth token service asserts that the current time is less than or equal to the expiry time (plus
skew seconds if configured). If the nbf claim is present, the OAuth token service asserts that the current time is greater
than or equal to expiry time (minus skew seconds if configured).

Access token settings

Configure the following fields on this tab:

Access Token will be stored here:
Click the browse button to select where to cache the access token (for example, in the default OAuth Access Token
Store). To add an access token store, right-click Access Token Stores, and select Add Access Token Store. You can
store tokens in a cache, in a relational database, or in an embedded Cassandra database. For more details, see the sec-
tion called “Manage access tokens and authorization codes”

Access Token Expiry (in secs):
Enter the number of seconds before the access token expires. Defaults to 3600 (one hour).

Access Token Length:
Enter the number of characters in the access token. Defaults to 54.

Access Token Type:
Enter the access token type. This provides the client with information required to use the access token to make a protec-

50

http://self-issued.info/docs/draft-ietf-oauth-json-web-token.html
http://self-issued.info/docs/draft-ietf-oauth-json-web-token.html

ted resource request. The client cannot use an access token if it does not understand the token type. Defaults to
Bearer.

Include Refresh Token:
Select whether to include a refresh token. This is a token issued by the Authorization Server to the client that can be
used to obtain a new access token. This setting is unselected by default.

Refresh Token Expiry (in secs):
When Include Refresh Token is selected, enter the number of seconds before the refresh token expires. Defaults to
43200 (twelve hours).

Refresh Token Length:
When Include Refresh Token is selected, enter the number of characters in the refresh token. Defaults to 46.

Store additional Access Token parameters:
Click Add to store additional access token parameters, and enter the Name and Value in the dialog (for example, De-
partment and Engineering).

Generate Token Scopes:
When requesting a token from the Authorization Server, you can specify a parameter for the OAuth scopes that you wish
to access. When scopes are sent in the request, you can select whether the access token is generated only if the scopes
in the request match all or any scopes registered for the application. Alternatively, for extra flexibility, you can get the
scopes by calling out to a policy.

Select one of the following options to configure how access tokens are generated based on specified scopes:

• Get scopes from a registered application:
Select whether the scopes must match Any or All of the scopes registered for the application in the Client Applica-
tion Registry. Defaults to Any. If no scopes are sent in the request, the token is generated with the scopes re-
gistered for the application.

• Get scopes by calling policy:
Select a preconfigured policy to get the scopes, and enter the attribute that stores the scopes in the Scopes ap-
proved for token are stored in the attribute field. Defaults to scopes.for.token. The configured filter requires
the scopes as set of strings on the message whiteboard.

Monitoring settings

The settings on this tab configure service-level monitoring options such as whether to store usage metrics data to a data-
base. This information can be used by the web-based API Gateway Manager tool to display service use, and by the API
Gateway Analytics tool to produce reports on how the service is used. For details on the fields on this tab, see the sec-
tion called “Monitoring settings” in Get access token information.

Get access token using JWT

51

Get access token using SAML assertion
Overview

The OAuth 2.0 Access Token using SAML Assertion filter enables an OAuth client to request an access token using a
SAML assertion. This supports the OAuth 2.0 SAML flow, which is used when a client wishes to utilize an existing trust
relationship, expressed through the semantics of the SAML assertion, without a direct user approval step at the authoriz-
ation server. For more details on supported OAuth flows, see API Gateway OAuth 2.0 authentication flows.

For more information on SAML, see the IETF draft document SAML 2.0 Profile for OAuth 2.0 [ht-
tp://tools.ietf.org/html/draft-ietf-oauth-saml2-bearer-18].

OAuth access tokens are used to grant access to specific resources in an HTTP service for a specific period of time (for
example, photos on a photo sharing website). This enables users to grant third-party applications access to their re-
sources without sharing all of their data and access permissions. An OAuth access token can be sent to the Resource
Server to access the protected resources of the Resource Owner (user). This token is a string that denotes a specific
scope, lifetime, and other access attributes.

SAML assertion validation settings

Configure the following fields on this tab:

Audience and Recipient within SAML Assertion must contain the following URI:
Enter a URI that must be contained in the SAML assertion's intended audience and recipient. The SAML assertion must
contain a URI that identifies the authorization server as an intended audience, and that identifies the token endpoint URL
of the authorization server as a recipient. Defaults to http://apigateway/api/oauth/token.

Drift time (seconds):
Enter a drift time in seconds to allow for clock skew.

Call the following policy to verify SAML Assertion signature:
Click the browse button to select a policy to verify the SAML assertion signature.

Access token settings

Configure the following fields on this tab:

Access Token will be stored here:
Click the browse button to select where to cache the access token (for example, in the default OAuth Access Token
Store). To add an access token store, right-click Access Token Stores, and select Add Access Token Store. You can
store tokens in a cache, in a relational database, or in an embedded Cassandra database. For more details, see the sec-
tion called “Manage access tokens and authorization codes”

Access Token Expiry (in secs):
Enter the number of seconds before the access token expires. Defaults to 3600 (one hour).

Access Token Length:
Enter the number of characters in the access token. Defaults to 54.

Access Token Type:
Enter the access token type. This provides the client with information required to use the access token to make a protec-
ted resource request. The client cannot use an access token if it does not understand the token type. Defaults to
Bearer.

Refresh Token Details:
Select one of the following options:

52

http://tools.ietf.org/html/draft-ietf-oauth-saml2-bearer-18
http://tools.ietf.org/html/draft-ietf-oauth-saml2-bearer-18
http://tools.ietf.org/html/draft-ietf-oauth-saml2-bearer-18

• Generate a new refresh token:
Select this option to generate a new access token and refresh token pair. The old refresh token passed in the re-
quest is removed. This option is selected by default.

Enter the number of seconds before the refresh token expires in the Refresh Token Expiry (in secs) field, and
enter the number of characters in the refresh token in the Refresh Token Length field. The expiry defaults to
43200 (12 hours), and the length defaults to 46.

• Do not generate a refresh token:
Select this option to generate a new access token only. The old refresh token passed in the request is removed.

Store additional meta data with the access token which can subsequently be retrieved:
Click Add to store additional access token parameters, and enter the Name and Value in the dialog (for example, De-
partment and Engineering).

Generate Token Scopes:
When requesting a token from the Authorization Server, you can specify a parameter for the OAuth scopes that you wish
to access. When scopes are sent in the request, you can select whether the access token is generated only if the scopes
in the request match all or any scopes registered for the application. Alternatively, for extra flexibility, you can get the
scopes by calling out to a policy.

Select one of the following options to configure how access tokens are generated based on specified scopes:

• Get scopes from a registered application:
Select whether the scopes must match Any or All of the scopes registered for the application in the Client Applica-
tion Registry. Defaults to Any. If no scopes are sent in the request, the token is generated with the scopes re-
gistered for the application.

• Get scopes by calling policy:
Select a preconfigured policy to get the scopes, and enter the attribute that stores the scopes in the Scopes ap-
proved for token are stored in the attribute field. Defaults to scopes.for.token. The configured filter requires
the scopes as set of strings on the message whiteboard.

Monitoring settings

The settings on this tab configure service-level monitoring options such as whether to store usage metrics data to a data-
base. This information can be used by the web-based API Gateway Manager tool to display service use, and by the API
Gateway Analytics tool to produce reports on how the service is used. For details on the fields on this tab, see the sec-
tion called “Monitoring settings” in Get access token information.

Get access token using SAML assertion

53

Consume authorization requests
Overview

The OAuth 2.0 Authorization Code Flow filter is used to consume OAuth authorization requests, and is also known as
the Authorization Request filter. This filter supports the OAuth 2.0 Authorization Code Grant (Web server) authentica-
tion flow, which is used by applications hosted on a secure server. A critical aspect of this flow is that the server must be
able to protect the issued client application's secret. The Web server flow is suitable for clients capable of interacting with
the end-user’s user-agent (typically a Web browser), and capable of receiving incoming requests from the Authorization
Server (acting as an HTTP server). The Authorization Code Grant flow is also known as the Three-Legged OAuth Flow.

The OAuth 2.0 Authorization Code Grant flow is as follows:

1. The Web server redirects the user to the API Gateway acting as an Authorization Server to authenticate and author-
ize the server to access data on their behalf.

2. After the user approves access, the Web server receives a callback with an authorization code.
3. After obtaining the authorization code, the Web server passes back the authorization code to obtain an access token

response.
4. After validating the authorization code, the API Gateway passes back a token response to the Web server.
5. After the token is granted, the Web server accesses their data.

OAuth access tokens are used to grant access to specific resources in an HTTP service for a specific period of time (for
example, photos on a photo sharing website). This enables users to grant third-party applications access to their re-
sources without sharing all of their data and access permissions. An OAuth access token can be sent to the Resource
Server to access the protected resources of the Resource Owner (user). This token is a string that denotes a specific
scope, lifetime, and other access attributes.

The OAuth 2.0 Authorization Request filter also supports the Implicit Grant (User Agent) flow. This is used by client ap-
plications (consumers) residing in the user's device (for example, in a browser using JavaScript, or from a mobile device
or desktop application). These consumers cannot keep the client secret confidential (application password or private
key).

For more details on supported OAuth flows, see API Gateway OAuth 2.0 authentication flows.

Validation settings

Configure the following fields on the Validation/Templates tab:

Authorize Resource Owner:
Select one of the following:

• Use internal flow
Uses the internal API Gateway flow to authorize the Resource Owner. This is the default setting. The internal flow
authenticates the user against the API Gateway user store, and redirects the user to the Authorize Transaction fil-
ter to use sample template files for login and Resource Owner scope authorization.

Note
If you wish to store additional information with the authorization code (for Authorization Code flow), or
with an access token (for Implicit Grant flow), you must set additional parameters in the Authorize
Transaction flow filter.

• Call this policy
Click the browse button to select a policy to authorize the Resource Owner. You can use the Policy will store sub-

54

ject in selector text box to specify where the policy is stored. Defaults to the ${authentication.subject.id}
message attribute. For more details on selectors, see the API Gateway User Guide.

Note
If you wish to store additional information with the authorization code (for Authorization Code flow), or
with an access token (for Implicit Grant flow), you must set additional parameters in the Authorization
Code Flow filter.

Authorization code settings

Configure the following fields on the Authz Code Details tab:

Authorization Code will be stored here:
Click the browse button to select where to cache the access token (for example, in the default Authz Code Store). To
add an access token store, right-click Authorization Code Stores, and select Add Authorization Code Store. You can
store codes in a cache, in a relational database, or in an embedded Cassandra database. For more details, see the sec-
tion called “Manage access tokens and authorization codes”.

Location of Access Code redirect page:
Enter the full path to the HTML page used for the access code HTTP redirect. Defaults to the following:

${environment.VDISTDIR}/samples/oauth/templates/showAccessCode.html

VDISTDIR specifies the directory in which the API Gateway is installed.

Length:
Enter the number of characters in the authorization code. Defaults to 30.

Expiry (in secs):
Enter the number of seconds before the authorization code expires. Defaults to 600 (ten minutes).

Additional parameters to store for this Authorization Code:
If you wish to store additional metadata with the authorization code, click Add, and enter the Name and Value in the dia-
log (for example, Department and Engineering). When additional data is set, it is then available in the Access
Token using Authorization Code filter when the authorization code is exchanged for an access token. You can also
specify the fields in this table using selectors. For more details, see the API Gateway User Guide.

Note
If you entered parameters for the authorization code and parameters for the access token, the data will be
merged. Data in the Access Token using Authorization Code filter may overwrite parameters stored with
the authorization code. For example, if you set Name:John and Department:Engineering in the Au-
thorization Request filter, and set Department:HR in the Access Token using Authorization Code fil-
ter, the token is created with Name:John and Department:HR.

Access token settings

Configure the following fields on the Access Token Details tab:

Access Token will be stored here:
Click the browse button to select where to cache the access token (for example, in the default OAuth Access Token
Store). To add an access token store, right-click Access Token Stores, and select Add Access Token Store. You
can store tokens in a cache, in a relational database, or in an embedded Cassandra database. For more details, see the

Consume authorization requests

55

section called “Manage access tokens and authorization codes”.

Expiry (in secs):
Enter the number of seconds before the access token expires. Defaults to 3600 (one hour).

Length:
Enter the number of characters in the access token. Defaults to 54.

Type:
Enter the access token type. This provides the client with information required to use the access token to make a protec-
ted resource request. The client cannot use an access token if it does not understand the token type. Defaults to
Bearer.

Additional parameters to store for this Access Token:
Click Add to store additional access token parameters, and enter the Name and Value in the dialog (for example, De-
partment, Engineering).

Generate Token Scopes:
When requesting a token from the Authorization Server, you can specify a parameter for the OAuth scopes that you wish
to access. You can select whether the access token is generated only if the scopes in the request match all or any
scopes registered for the application. Alternatively, for extra flexibility you can get the scopes by calling out to a policy.

Select one of the following options to configure how access tokens are generated based on specified scopes:

• Get scopes from a registered application:
Select whether the scopes must match Any or All of the scopes registered for the application in the Client Applica-
tion Registry. Defaults to Any. If no scopes are sent in the request, the token is generated with the scopes re-
gistered for the application.

• Get scopes by calling policy:
Select a pre-configured policy to get the scopes, and enter the attribute that stores the scopes in the Scopes ap-
proved for token are stored in the attribute textbox. Defaults to scopes.for.token. The configured filter re-
quires the scopes as set of strings on the message whiteboard.

Monitoring settings

The settings on this tab configure service-level monitoring options such as whether to store usage metrics data to a data-
base. This information can be used by the web-based API Gateway Manager tool to display service use, and by the API
Gateway Analytics tool to produce reports on how the service is used.

Monitoring Options
For details on the Monitoring Options fields on this tab, see the section called “Monitoring settings” in Get access token
information.

Record Outbound Transactions
Select whether to record outbound message traffic. You can use this setting to override the Record Outbound Transac-
tions setting on the System Settings > Traffic Monitor screen. This setting is selected by default.

Consume authorization requests

56

Authorize transaction
Overview

The OAuth 2.0 Authorize Transaction filter is used to authorize the Resource Owner and grant (allow/deny) client ac-
cess to the resources. This supports the OAuth 2.0 Authorization Code Grant or Web server authentication flow, which is
used by applications hosted on a secure server. A critical aspect of this flow is that the server must be able to protect the
issued client application's secret. The Web server flow is suitable for clients capable of interacting with the end-user’s
user-agent (typically a Web browser), and capable of receiving incoming requests from the Authorization Server (acting
as an HTTP server).

For more details on supported OAuth flows, see API Gateway OAuth 2.0 authentication flows.

Template settings

Configure the following fields on the Validation/Templates tab:

HTML Templates:
Specify the following templates for HTML forms:

• Login Form:
Enter the full path to the HTML form that the Resource Owner can use to log in. Defaults to the following:

${environment.VDISTDIR}/samples/oauth/templates/login.html

• Authorization Form:
Enter the full path to the HTML form that the Resource Owner can use to grant (allow/deny) client access to the re-
sources. Defaults to the following:

${environment.VDISTDIR}/samples/oauth/templates/requestAccess.html

VDISTDIR specifies the directory in which the API Gateway is installed.

Authorization code settings

Configure the following fields on the Authz Code Details tab:

Authorization Code will be stored here:
Click the browse button to select where to cache the access token (for example, in the default Authz Code Store). To
add an access token store, right-click Authorization Code Stores, and select Add Authorization Code Store. You can
store codes in a cache, in a relational database, or in an embedded Cassandra database. For more details, see the sec-
tion called “Manage access tokens and authorization codes”.

Location of Access Code redirect page:
Enter the full path to the HTML page used for the access code HTTP redirect. Defaults to the following:

${environment.VDISTDIR}/samples/oauth/templates/showAccessCode.html

Length:
Enter the number of characters in the authorization code. Defaults to 30.

Expiry (in secs):
Enter the number of seconds before the authorization code expires. Defaults to 600 (ten minutes).

57

Additional parameters to store for this Authorization Code:
If you wish to store additional metadata with the authorization code, click Add, and enter the Name and Value in the dia-
log (for example, Department and Engineering). When additional data is set, it is then available in the Access
Token using Authorization Code filter when the authorization code is exchanged for an access token. You can also
specify the fields in this table using selectors. For more details, see the API Gateway User Guide.

Note
If you entered parameters for the authorization code and parameters for the access token, the data will be
merged. Data in the Access Token using Authorization Code filter may overwrite parameters stored with
the authorization code. For example, if you set Name:John and Department:Engineering in the Au-
thorize Transaction filter, and set Department:HR in the Access Token using Authorization Code fil-
ter, the token is created with Name:John and Department:HR.

Access token settings

Configure the following fields on the Access Token Details tab:

Access Token will be stored here:
Click the browse button to select where to cache the access token (for example, in the default OAuth Access Token
Store). To add an access token store, right-click Access Token Stores, and select Add Access Token Store. You
can store tokens in a cache, in a relational database, or in an embedded Cassandra database. For more details, see the
section called “Manage access tokens and authorization codes”.

Expiry (in secs):
Enter the number of seconds before the access token expires. Defaults to 3600 (one hour).

Length:
Enter the number of characters in the access token. Defaults to 54.

Type:
Enter the access token type. This provides the client with information required to use the access token to make a protec-
ted resource request. The client cannot use an access token if it does not understand the token type. Defaults to
Bearer.

Additional parameters to store for this Access Token:
Click Add to store additional access token parameters, and enter the Name and Value in the dialog (for example, De-
partment, Engineering).

Generate Token Scopes:
When requesting a token from the Authorization Server, you can specify a parameter for the OAuth scopes that you wish
to access. When scopes are sent in the request, you can select whether the access token is generated only if the scopes
in the request match all or any scopes registered for the application. Alternatively, for extra flexibility you can get the
scopes by calling out to a policy.

Select one of the following options to configure how access tokens are generated based on specified scopes:

• Get scopes from a registered application:
Select whether the scopes must match Any or All of the scopes registered for the application in the Client Applica-
tion Registry. Defaults to Any. If no scopes are sent in the request, the token is generated with the scopes re-
gistered for the application.

• Get scopes by calling policy:
Select a pre-configured policy to get the scopes, and enter the attribute that stores the scopes in the Scopes ap-
proved for token are stored in the attribute textbox. Defaults to scopes.for.token. The configured filter re-
quires the scopes as set of strings on the message whiteboard.

Authorize transaction

58

Monitoring settings

The settings on this tab configure service-level monitoring options such as whether to store usage metrics data to a data-
base. This information can be used by the web-based API Gateway Manager tool to display service use, and by the API
Gateway Analytics tool to produce reports on how the service is used. For details on the fields on this tab, see the sec-
tion called “Monitoring settings” in Get access token information.

Authorize transaction

59

Refresh access token
Overview

The OAuth 2.0 Refresh Access Token filter enables an OAuth client to get a new access token using a refresh token.
This filter supports the OAuth 2.0 Refresh Token flow. After the client consumer has been authorized for access, they
can use a refresh token to get a new access token (session ID). This is only done after the consumer already has re-
ceived an access token using either the Web Server or User-Agent flow. For more details on supported OAuth flows, see
API Gateway OAuth 2.0 authentication flows.

Application validation settings

Configure the following fields on this tab:

Find client application information from message:
Select one of the following:

• In Authorization Header:
This is the default setting.

• In Query String:
The Client Id defaults to client_id, and Client Secret defaults to client_secret.

Access token settings

Configure the following fields on this tab:

Access Token will be stored here:
Click the browse button to select where to cache the access token (for example, in the default OAuth Access Token
Store). To add an access token store, right-click Access Token Stores, and select Add Access Token Store. You can
store tokens in a cache, in a relational database, or in an embedded Cassandra database. For more details, see the sec-
tion called “Manage access tokens and authorization codes”.

Access Token Expiry (in secs):
Enter the number of seconds before the access token expires. Defaults to 3600 (one hour).

Access Token Length:
Enter the number of characters in the access token. Defaults to 54.

Access Token Type:
Enter the access token type. This provides the client with information required to use the access token to make a protec-
ted resource request. The client cannot use an access token if it does not understand the token type. Defaults to
Bearer.

Refresh Token Details:
Select one of the following options:

• Generate a new refresh token:
Select this option to generate a new access token and refresh token pair. The old refresh token passed in the re-
quest is removed. This option is selected by default.

Enter the number of seconds before the refresh token expires in the Refresh Token Expiry (in secs) field, and
enter the number of characters in the refresh token in the Refresh Token Length field. The expiry defaults to
43200 (12 hours), and the length defaults to 46.

• Do not generate a refresh token:
Select this option to generate a new access token only. The old refresh token passed in the request is removed.

60

• Preserve the existing refresh token:
Select this option to generate a new access token and preserve the existing refresh token. The refresh token passed
in the request is sent back with the access token response.

Store additional meta data with the access token which can subsequently be retrieved:
Click Add to store additional access token parameters, and enter the Name and Value in the dialog (for example, De-
partment and Engineering).

Monitoring settings

The settings on this tab configure service-level monitoring options such as whether to store usage metrics data to a data-
base. This information can be used by the web-based API Gateway Manager tool to display service use, and by the API
Gateway Analytics tool to produce reports on how the service is used. For details on the fields on this tab, see the sec-
tion called “Monitoring settings” in Get access token information.

Refresh access token

61

Get access token using resource owner credentials
Overview

The OAuth 2.0 Resource Owner Credentials filter is used to directly obtain an access token and an optional refresh
token. This supports the OAuth 2.0 Resource Owner Password Credentials flow, which can be used as a replacement for
an existing login when the consumer client already has the user’s credentials. For more details on supported OAuth
flows, see API Gateway OAuth 2.0 authentication flows.

OAuth access tokens are used to grant access to specific resources in an HTTP service for a specific period of time (for
example, photos on a photo sharing website). This enables users to grant third-party applications access to their re-
sources without sharing all of their data and access permissions. An OAuth access token can be sent to the Resource
Server to access the protected resources of the Resource Owner (user). This token is a string that denotes a specific
scope, lifetime, and other access attributes.

Application validation settings

Configure the following fields on this tab:

Authenticate Resource Owner
Select one of the following:

• Authenticate credentials using this repository:
Select one of the following from the list:
• Simple Active Directory Repository

• Local User Store

• Call this policy:
Click the browse button to select a policy to authenticate the Resource Owner. You can use the Policy will store
subject in selector text box to specify where the policy is stored. Defaults to the
${authentication.subject.id} message attribute. For more details on selectors, see the API Gateway User
Guide.

Find client application information from message:
Select one of the following:

• In Authorization Header:
This is the default setting.

• In Query String:
The Client Id defaults to client_id, and Client Secret defaults to client_secret.

Access token settings

Configure the following fields on the this tab:

Access Token will be stored here:
Click the browse button to select where to cache the access token (for example, in the default OAuth Access Token
Store). To add an access token store, right-click Access Token Stores, and select Add Access Token Store. You can
store tokens in a cache, in a relational database, or in an embedded Cassandra database. For more details, see the sec-
tion called “Manage access tokens and authorization codes”.

Access Token Expiry (in secs):
Enter the number of seconds before the access token expires. Defaults to 3600 (one hour).

62

Access Token Length:
Enter the number of characters in the access token. Defaults to 54.

Access Token Type:
Enter the access token type. This provides the client with information required to use the access token to make a protec-
ted resource request. The client cannot use an access token if it does not understand the token type. Defaults to
Bearer.

Include Refresh Token:
Select whether to include a refresh token. This is a token issued by the Authorization Server to the client that can be
used to obtain a new access token. This setting is selected by default.

Refresh Token Expiry (in secs):
When Include Refresh Token is selected, enter the number of seconds before the refresh token expires. Defaults to
43200 (twelve hours).

Refresh Token Length:
When Include Refresh Token is selected, enter the number of characters in the refresh token. Defaults to 46.

Store additional Access Token parameters:
Click Add to store additional access token parameters, and enter the Name and Value in the dialog (for example, De-
partment and Engineering).

Generate Token Scopes:
When requesting a token from the Authorization Server, you can specify a parameter for the OAuth scopes that you wish
to access. You can select whether the access token is generated only if the scopes in the request match all or any
scopes registered for the application. Alternatively, for extra flexibility you can get the scopes by calling out to a policy.

Select one of the following options to configure how access tokens are generated based on specified scopes:

• Get scopes from a registered application:
Select whether the scopes must match Any or All of the scopes registered for the application in the Client Applica-
tion Registry. Defaults to Any. If no scopes are sent in the request, the token is generated with the scopes re-
gistered for the application.

• Get scopes by calling policy:
Select a pre-configured policy to get the scopes, and enter the attribute that stores the scopes in the Scopes ap-
proved for token are stored in the attribute textbox. Defaults to scopes.for.token. The configured filter re-
quires the scopes as set of strings on the message whiteboard.

Monitoring settings

The settings on this tab configure service-level monitoring options such as whether to store usage metrics data to a data-
base. This information can be used by the web-based API Gateway Manager tool to display service use, and by the API
Gateway Analytics tool to produce reports on how the service is used.

Monitoring Options
For details on the Monitoring Options fields on this tab, see the section called “Monitoring settings” in Get access token
information.

Record Outbound Transactions
Select whether to record outbound message traffic. You can use this setting to override the Record Outbound Transac-
tions setting on the System Settings > Traffic Monitor screen. This setting is selected by default.

Get access token using resource owner credentials

63

Revoke token
Overview

The OAuth 2.0 Revoke a Token filter is used to revoke a specified OAuth 2.0 access or refresh token. A revoke token
request causes the removal of the client permissions associated with the specified token used to access the user's pro-
tected resources. For more details on supported OAuth flows, see API Gateway OAuth 2.0 authentication flows.

OAuth access tokens are used to grant access to specific resources in an HTTP service for a specific period of time (for
example, photos on a photo sharing website). This enables users to grant third-party applications access to their re-
sources without sharing all of their data and access permissions. OAuth refresh tokens are tokens issued by the Author-
ization Server to the client that can be used to obtain a new access token.

Revoke token settings

Configure the following fields on this tab:

Token to be revoked can be found here:
Click the browse button to select the cache to revoke the token from (for example, the default OAuth Access Token
Store). To add an access token store, right-click Access Token Stores, and select Add Access Token Store. You can
store tokens in a cache, in a relational database, or in an embedded Cassandra database. For more details, see the sec-
tion called “Manage access tokens and authorization codes”.

Find client application information from message:
Select one of the following:

• In Authorization Header:
This is the default setting.

• In Query String:
The Client Id defaults to client_id, and Client Secret defaults to client_secret.

Monitoring settings

The settings on this tab configure service-level monitoring options such as whether to store usage metrics data to a data-
base. This information can be used by the web-based API Gateway Manager tool to display service use, and by the API
Gateway Analytics tool to produce reports on how the service is used. For details on the fields on this tab, see the sec-
tion called “Monitoring settings” in Get access token information.

64

Validate access token
Overview

The OAuth 2.0 Validate Access Token filter is used to validate a specified access token contained in persistent storage.
OAuth access tokens are used to grant access to specific resources in an HTTP service for a specific period of time (for
example, photos on a photo sharing website). This enables users to grant third-party applications access to their re-
sources without sharing all of their data and access permissions.

For more details on supported OAuth flows, see API Gateway OAuth 2.0 authentication flows.

General settings

Configure the following fields:

Name:
Enter a suitable name for this filter.

Verify access token is in cache:
Click the browse button to select the cache in which to verify access token (for example, in the default OAuth Access
Token Store). To add an access token store, right-click Access Token Stores, and select Add Access Token Store.
You can store tokens in a cache, in a relational database, or in an embedded Cassandra database. For more details, see
the section called “Manage access tokens and authorization codes”.

Location of access token:
Select one of the following:

• In Authorization Header with prefix:
The access token is in the Authorization header with the selected prefix. Defaults to Bearer. This is the default op-
tion.

• In query string/form body field named:
The access token is in the HTTP query string with the name specified in the text box.

• In Attribute:
The access token is in the API Gateway message attribute specified in the text box.

Validate Scopes:
Select whether scopes match Any or All of the configured scopes in the table, and click Add to add an OAuth scope.
The default scopes are found in ${http.request.uri}.

For example, the default scopes used in the OAuth demos are resource.READ and resource.WRITE.

Response codes

The Validate Access Token filter performs a number of checks to determine if the token is valid. If any of the checks
fail, the response can be examined to determine the reason for the failure.

The filter performs the following sequence of steps to determine if the token is valid:

1. Locate the token in the incoming request. The token can be in the Authorization header, in a query string, or in a
message attribute.
• If the filter is configured to find the token in a message attribute and no token is found, the following response is

sent:

HTTP/1.1 400 Bad Request
WWW-Authenticate: Bearer realm="DefaultRealm",

65

error="invalid_request",
error_description="Unable to find token in the message."

• If the filter is configured to find the token in the Authorization Bearer header and no token is found (or the Au-
thorization header is not found or does not contain the Bearer header), the following response is sent:

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Bearer realm="DefaultRealm"

2. If the token is found in the incoming request, next verify that the token can be found in the API Gateway persistent
storage mechanism. If it cannot be found, the following response is sent:

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Bearer realm="DefaultRealm",
error="invalid_token",
error_description="Unable to find the access token in persistent storage."

3. If the token is found in persistent storage, next verify the authenticity of the token. This includes checking the token's
expiry, client identifier, and required scopes.
• Check if the token has expired. An expired token must not be able to allow access to a resource. If the token

has expired, the following response is sent:

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Bearer realm="DefaultRealm",
error="invalid_token",
error_description="The access token expired."

• Check the client ID in the token and ensure it is the same as a client ID stored in the API Gateway client re-
gistry. (To use OAuth you need a client application and the client application must have OAuth credentials.)
Check that the application is still enabled. If either checks fail, the following response is sent:

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Bearer realm="DefaultRealm",
error="invalid_token",
error_description="The client app was not found or is disabled."

• Validate the scopes in the token against the scopes configured in Policy Studio. In Policy Studio you can specify
that scopes should match Any or All of the scopes listed in the table. If All is selected, the token scopes must
match all of the scopes listed in Policy Studio. If Any is selected, the token scopes intersection with the scopes
listed in Policy Studio must not be empty. If the scopes do not match, the following response is sent:

HTTP/1.1 403 Forbidden
WWW-Authenticate: Bearer realm="DefaultRealm",
error="insufficient_scope",
error_description="scope(s) associated with access token are not valid to access
this resource.",
scope="Scopes must match Any of these scopes:resource.WRITE"

The message includes a further string listing the scopes required to access the resource.
4. If the token is authentic, allow access to the resource.

Validate access token

66

OAuth 2.0 server message attributes
Overview

Most of the OAuth 2.0 server policy filters in the API Gateway generate message attributes that can be queried further
using the API Gateway selector syntax. For example, the message attributes generated by the OAuth server filters in-
clude the following:

• accesstoken

• accesstoken.authn

• authzcode

• authentication.subject.id

• oauth.client.details

• scope attributes

For more details on selectors, see the API Gateway User Guide.

accesstoken methods

The following methods are available to call on the accesstoken message attribute:

${accesstoken.getValue()}
${accesstoken.getExpiration()}
${accesstoken.getExpiresIn()}
${accesstoken.isExpired()}
${accesstoken.getTokenType()}
${accesstoken.getRefreshToken()}
${accesstoken.getOAuth2RefreshToken().getValue()}
${accesstoken.getOAuth2RefreshToken().getExpiration()}
${accesstoken.getOAuth2RefreshToken().getExpiresIn()}
${accesstoken.getOAuth2RefreshToken().hasExpired()}
${accesstoken.hasRefresh()}
${accesstoken.getScope()}
${accesstoken.getAdditionalInformation()}

The following example shows output from querying each of the accesstoken methods:

so0HlJYASrnXqn2fL2VWgiunaLfSBhWv6W7JMbmOa131HoQzZB1rNJ
Fri Oct 05 17:16:54 IST 2012
3599
false
Bearer
xif9oNHi83N4ETQLQxmSGoqfu9dKcRcFmBkxTkbc6yHDfK
xif9oNHi83N4ETQLQxmSGoqfu9dKcRcFmBkxTkbc6yHDfK
Sat Oct 06 04:16:54 IST 2012
43199
false
true
https://localhost:8090/auth/userinfo.email
{department=engineering}

accesstoken.authn methods

The following methods are available to call on the accesstoken.authn message attribute:

${accesstoken.authn.getUserAuthentication()}

67

${accesstoken.authn.getAuthorizationRequest().getScope()}
${accesstoken.authn.getAuthorizationRequest().getClientId()}
${accesstoken.authn.getAuthorizationRequest().getState()}
${accesstoken.authn.getAuthorizationRequest().getRedirectUri()}
${accesstoken.authn.getAuthorizationRequest().getParameters()}

The following example shows output from querying each of the accesstoken.authn methods:

admin
[https://localhost:8090/auth/userinfo.email]
SampleConfidentialApp
343dqak32ksla
https://localhost/oauth_callback
{client_secret=6808d4b6-ef09-4b0d-8f28-3b05da9c48ec,

scope=https://localhost:8090/auth/userinfo.email, grant_type=authorization_code,
redirect_uri=https://localhost/oauth_callback, state=null,
code=FOT4nudbglQouujRl8oH3EOMzaOlQP, client_id=SampleConfidentialApp}

authzcode methods

The following methods are available to call on the authzcode message attribute:

${authzcode.getCode()}
${authzcode.getState()}
${authzcode.getApplicationName()}
${authzcode.getExpiration()}
${authzcode.getExpiresIn()}
${authzcode.getRedirectURI()}
${authzcode.getScopes()}
${authzcode.getUserIdentity()}
${authzcode.getAdditionalInformation()}

The following example shows output from querying each of the authzcode methods:

F8aHby7zctNRknmWlp3voe61H20Md1
sds12dsd3343ddsd
SampleConfidentialApp
Fri Oct 05 15:47:39 IST 2012
599 (expiry in secs)
https://localhost/oauth_callback
[https://localhost:8090/auth/userinfo.email]
admin
{costunit=hr}

oauth.client.details methods

The following methods are available to call on the oauth.client.details message attribute:

${authzcode.getCode()}
${authzcode.getState()}
${authzcode.getApplicationName()}
${authzcode.getExpiration()}
${authzcode.getExpiresIn()}
${authzcode.getRedirectURI()}
${authzcode.getScopes()}
${authzcode.getUserIdentity()}

The following example shows output from querying each of the oauth.client.details methods:

OAuth 2.0 server message attributes

68

F8aHby7zctNRknmWlp3voe61H20Md1
sds12dsd3343ddsd
SampleConfidentialApp
Fri Oct 05 15:47:39 IST 2012
599 (expiry in secs)
https://localhost/oauth_callback
[https://localhost:8090/auth/userinfo.email]
admin

Example of querying a message attribute

If you add additional access token parameters to the OAuth 2.0 Access Token Info filter, you can return a lot of addi-
tional information about the token. For example:

{
"audience" : "SampleConfidentialApp",
"user_id" : "admin",
"scope" : "https://localhost:8090/auth/userinfo.email",
"expires_in" : 3567,
"Access Token Expiry Date" : "Wed Aug 15 11:19:19 IST 2012",
"Authentication parameters" : "{username=admin,
client_secret=6808d4b6-ef09-4b0d-8f28-3b05da9c48ec,
scope=https://localhost:8090/auth/userinfo.email, grant_type=password,
redirect_uri=null, state=null, client_id=SampleConfidentialApp,
password=changeme}",

"Access Token Type:" : "Bearer"

You also have the added flexibility to add extra name/value pair settings to access tokens upon generation.The OAuth
2.0 access token generation filters provide an option to store additional parameters for an access token. For example, if
you add the name/value pair Department/Engineering to the Client Credentials filter:

OAuth 2.0 server message attributes

69

You can then update the Access Token Info filter to add a name/value pair using a selector to get the following value:

Department/${accesstoken.getAdditionalInformation().get("Department")}

For example:

OAuth 2.0 server message attributes

70

Then the JSON response is as follows:

{
"audience" : "SampleConfidentialApp",
"user_id" : "SampleConfidentialApp",
"scope" : "https://localhost:8090/auth/userinfo.email",
"expires_in" : 3583,
"Access Token Type:" : "Bearer",
"Authentication parameters" :
"{client_secret=6808d4b6-ef09-4b0d-8f28-3b05da9c48ec,
scope=https://localhost:8090/auth/userinfo.email, grant_type=client_credentials,
redirect_uri=null, state=null, client_id=SampleConfidentialApp}",

"Department" : "Engineering",
"Access Token Expiry Date" : "Wed Aug 15 12:10:57 IST 2012"

You can also use API Gateway selector syntax when storing additional information with the token. For more details on
selectors, see the API Gateway User Guide.

OAuth scope attributes

In addition, the following message attributes are used by the OAuth filters to manage OAuth scopes. The scopes are
stored as a set of strings (for example, resource.READ and resource.WRITE):

• scopes.in.token
Stores the OAuth scopes that have been sent in to the Authorization Server when requesting the access token.

• scopes.for.token
Stores the OAuth scopes that have been granted for the access token request.

• scopes.required
Used by the Validate Access Token filter only. If there is a failure accessing an OAuth resource due to incorrect
scopes in the access token, an insufficent_scope exception is sent back in the WWW-Authenticate header.
When Get scopes by calling a policy is set, the configured policy can set the scopes.required message attrib-

OAuth 2.0 server message attributes

71

ute. This enables the OAuth Resource Server to properly interact with client applications and provide useful error re-
sponse messages. For example:

WWW-Authenticate Bearer realm="DefaultRealm",error="insufficient_scope",
error_description="scope(s) associated with access token are not valid
to access this resource", scope="Scopes must match All of these scopes:
https://localhost:8090/auth/user.photos https://localhost:8090/auth/userinfo.email"

OAuth 2.0 server message attributes

72

Introduction to API Gateway OAuth 2.0 Client
Overview

OAuth is an open standard for authorization that enables client applications to access server resources on behalf of a
specific Resource Owner. OAuth also enables Resource Owners (end users) to authorize limited third-party access to
their server resources without sharing their credentials.

The API Gateway can act as the client application in an OAuth 2.0 scenario, as such the API Gateway can instigate the
authorization process, handle redirects and request OAuth tokens from an authorization server. Received tokens are
stored securely and subsequently used to access protected resources on behalf of users. These features provide the be-
nefits that the oauth client burden is moved to the gateway, the resource owner’s credentials are never shared with the
client application, and the access token is never shared with the resource owner’s user agent.

Note
This guide assumes that you are familiar with both the terms and concepts described in the OAuth 2.0 Au-
thorization Framework [http://tools.ietf.org/html/rfc6749] and the OAuth Server features of the API Gateway
see Chapter 1, API Gateway as an OAuth server.

API Gateway OAuth Client features

The API Gateway ships with the following features to support OAuth 2.0 Client functionality:

• Provider Profiles for defining OAuth Service providers and the applications registered therein.
• A set of pre-configured sample Provider Profiles for use with Axway, Google and Salesforce OAuth services
• Storage of received tokens
• Support for the following OAuth flows:

• Authorization Code
• Resource Owner Password Credentials
• Client Credentials
• JWT
• SAML

Note
The Implicit grant type is not supported as it is designed to support client applications that do not have a se-
cure server component and as such is not applicable for the API Gateway acting as an OAuth client.

The following diagram shows the roles of the API Gateway as an OAuth 2.0 Client Application accessing OAuth services
provided By the Axway API Gateway, Google and Salesforce:

73

http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/rfc6749

OAuth 2.0 example client workflow

The OAuth 2.0 client is responsible for accessing the OAuth 2.0 protected resources of other servers. It is useful to con-
sider an example workflow to understand how the API Gateway fits the role of OAuth Client, for this we use a similar ex-
ample to the one in the section called “OAuth 2.0 example workflow” but in this context the API Gateway assumes the
role of client, and the service provider is Google. As an oauth client the API Gateway wishes to access a calendar of a
local user who maintains a personal account on Google, but it is required that the user does not reveal their Google cre-
dentials to the API Gateway.

This problem can be solved using the example OAuth 2.0 Web Server flow shown in the following diagram:

Introduction to API Gateway OAuth 2.0 Client

74

Out of band, the API Gateway pre-registers with Google and obtains a client ID/secret. The API Gateway also registers a
callback URL to receive the authorization code from Google when the Resource Owner authorizes access to their calen-
dar. The printing application has also requested access to an API named /google/calendar, which has an OAuth
scope of calendar. The credentials received from Google are added to the Google Provider Profile on the API Gateway
via PolicyStudio, see Configure OAuth 2.0 client applications. The Provider Profile is also configured with the Authoriza-
tion end point and Token endpoint of the Google Authorization server. The callback URL is also created as a HTTP
Listener on the API Gateway with a filter for receiving the authorisation code.

The steps in the diagram are described as follows:

1. With a User Agent (UA), such as a browser or mobile phone, the user accesses a service defined on the API Gate-
way. This service must access Google on the users behalf and so instigates the authorization flow by redirecting the
UA to the authorization endpoint defined in the Google Provider Profile.

2. After following the redirect the user logs into their Google account and authorizes the application for the requested
scope.

Note
The user has not shared their Google username and password with the API Gateway app. At this
point, the Resource Owner is no longer involved in the process.

Introduction to API Gateway OAuth 2.0 Client

75

3. The authorization server then redirects the users UA to the callback url on the API Gateway along with an authoriza-
tion code.

4. On receiving the authorization code the API Gateway client app can exchange this short-lived code for an access
token. The client app sends another request to the Authorization Server, this time to the token endpoint, saying it
has a code that proves the user has authorized it to access their calendar, and now issue the access token to be
sent on to the API (Resource Server). The Authorization Server verifies the authorization code and returns an ac-
cess token. The API Gateway then stores the access token in persistent storage.

5. The client app then attaches the access token to the API (Resource Server) requests, and receives the calendar in-
formation as requested.

Introduction to API Gateway OAuth 2.0 Client

76

Set up API Gateway OAuth 2.0
Overview

This chapter describes how to deploy the OAuth 2.0 client sample provided with the API Gateway. The sample demon-
strate

Enable OAuth 2.0 management

The OAuth Services are not available in the basic installation. They must be deployed manually. However, there is a con-
venience script in $VDISTDIR/samples/scripts/oauth for deploying the OAuth 2.0 Client demo, supporting policies and
sample Provider Profiles, this can be run from $VDISTDIR/samples/scripts with: Linux:

./run.sh oauth/deployOAuthConfig.py --type=clientdemo

Windows:

run.bat oauth\deployOAuthConfig.py --type=clientdemo

The parameters for this script are as follows:

Usage: deployOAuthConfig.py [options]

Options:
-h, --help show this help message and exit
-u USERNAME, --username=USERNAME

The user to connect to the topology (default 'admin')
-p PASSWORD, --password=PASSWORD

The password for the user to connect to the topology
connect user (default 'changeme')

--port=PORT The port Client Application registry is listening on
(default 8089)

--admin=ADMIN The Client Application Registry admin name (default
regadmin)

--adminpw=ADMINPW The Client Application Registry admin password
(default changeme)

--type=TYPE The deployment type: "authzserver", "clientdemo" or
"all" (default all)

-g GROUP, --group=GROUP
The group name

-n SERVICE, --service=SERVICE
The service name

77

Configure OAuth 2.0 client applications
Overview

OAuth 2.0 client credential profiles enable you to globally configure authentication settings for OAuth 2.0 as a client. An
OAuth 2.0 credential profile is the combination of OAuth service provider details and a specific OAuth client application.
An OAuth service provider defines the authorization and token endpoints. API Gateway includes three preconfigured
OAuth providers:

• API Gateway
• Google
• SalesForce

Client applications must be registered with the service provider to obtain a client ID and secret as well as to register addi-
tional details like the OAuth flow type and redirect URL (where required). Google applications can be registered at ht-
tps://cloud.google.com/console, SalesForce applications can be registered at https://www.salesforce.com, and API Gate-
way applications can be registered in the client application registry or API Manager (ports 8089 and 8075 respectively).

The API Gateway provider represents OAuth services running on an API Gateway. For more information on setting up
the OAuth server on API Gateway, see Set up API Gateway OAuth 2.0. The API Gateway provider uses the existing
OAuth server samples for authorization and token endpoints (https://127.0.0.1:8089/api/oauth/authorize
and https://127.0.0.1:8089/api/oauth/token). The Google and SalesForce provider settings ship with the
current public endpoints.

You can also add new OAuth providers. See the section called “Add OAuth 2.0 provider” for more information.

Add application

Each OAuth 2.0 provider can have multiple client application credentials. Each set of credentials represents an applica-
tion that has been registered with the provider. Upon registering, the application is assigned a client ID and secret and
can designate a redirect URL for receiving access codes.

To add an application for an existing OAuth 2.0 provider, click an OAuth 2.0 client credential node (for example,
Google), and click the Add button on the OAuth2 Credentials tab of the OAuth2 Credential Profile window. Complete
the following fields on the Add OAuth2 Application dialog:

Name:
Enter a suitable name for this client application.

Client ID:
This identifies the client responsible for the OAuth request. This ID is assigned by the OAuth provider.

Client Secret:
This is a confidential secret key used for authentication. This secret is assigned by the OAuth provider.

OAuth Flow Type:
Select an OAuth flow type. The options are:

• Authz Code
• Client Credentials
• JWT
• Resource Owner
• SAML

78

https://cloud.google.com/console
https://cloud.google.com/console
https://www.salesforce.com

For more details on the authentication flows that API Gateway supports, see the API Gateway OAuth 2.0 authentication
flows topic.

Redirect URL:
Enter the URL of the client's redirect endpoint (for example, https://localhost:8088/oauth_callback). This is
the URL registered with the provider for receiving access codes via a redirect from the authorization server. This must
match a listener configured on API Gateway (see Redirect URL Listener).

To configure client scopes, SAML bearer settings, JWT settings, or other advanced settings, click the appropriate tabs.

Configure scopes

You can configure the scopes that a client application can access on the Scopes tab. Click Add to add a scope. This is
the set of scopes required by the application, and this list must match, or be a subset of, the required scopes registered
with the OAuth provider. For more information on scopes, see the section called “Manage OAuth scopes”.

Configure SAML bearer

You can configure SAML bearers on the SAML Bearer tab. According to the IETF draft document SAML 2.0 Profile for
OAuth 2.0 [http://tools.ietf.org/html/draft-ietf-oauth-saml2-bearer-18], a SAML assertion can be used to request an ac-
cess token when a client wishes to utilize an existing trust relationship, expressed through the semantics of the SAML
assertion, without a direct user approval step at the authorization server. When a client application is configured to use
the SAML grant type a SAML assertion must be either configured/generated or made available on the message board.

To generate an assertion select the Generate assertion using following configuration option and complete the follow-
ing fields:

Use private key to sign SAML assertion:
Click Signing Key to select a private key to use to sign the assertion. This will be the private key certificate registered
with the OAuth provider.

Resource Owner ID:
Enter the identity of the resource owner as expected by the resource server. This can be specified using a selector (for
example, ${authentication.subject.id}).

Assertion expires in:
Enter the time duration that the assertion is valid for. Expressed in days, hours, minutes, and seconds.

Drift time (secs):
Enter a drift time in seconds to allow for clock skew.

Alternatively, you can generate the assertion through other means and take it from the message board by selecting the
option Get assertion from message attribute named: and entering the name of the attribute (for example,
${oauth.saml.assertion}).

Important
The IETF draft document also describes how to use SAML 2.0 for client authentication. This is not suppor-
ted in API Gateway.

Configure JWT

You can configure JWT on the JWT tab. This enables you to configure JWT for authorization grant, as defined by the
IETF draft document JSON Web Token (JWT) Profile for OAuth 2.0 Client Authentication and Authorization Grants [ht-
tp://tools.ietf.org/html/draft-ietf-oauth-jwt-bearer-07].

Configure OAuth 2.0 client applications

79

http://tools.ietf.org/html/draft-ietf-oauth-saml2-bearer-18
http://tools.ietf.org/html/draft-ietf-oauth-saml2-bearer-18
http://tools.ietf.org/html/draft-ietf-oauth-saml2-bearer-18
http://tools.ietf.org/html/draft-ietf-oauth-jwt-bearer-07
http://tools.ietf.org/html/draft-ietf-oauth-jwt-bearer-07
http://tools.ietf.org/html/draft-ietf-oauth-jwt-bearer-07

Important
API Gateway only supports the use of JWT as authorization grant and does not support JWT for client au-
thentication.

Configure the following fields:

Sign using private key:
Select this option and click Signing Key to select a private key certificate that has been registered with the OAuth pro-
vider, and use it to sign the JWT claim.

Sign using client secret:
Select this option to sign the JWT claim using a client secret issued by the OAuth provider.

JWT expiry (in secs):
Enter the expiry time for the JWT claim, in seconds.

Add additional JWT claims:
Click the Add button to add additional JWT claims. You can also Edit or Delete existing claims.

By default a JWT is generated with the following claim set:

Claim Dafault Value

iss The application client ID

aud The token endpoint of the provider

exp The expiry time from the field JWT expiry (in secs)

iat The issued assertion time, the time the assertion was issued measured in
seconds since 00:00:00 UTC, January 1, 1970.

These claims can be overridden by adding additional claims. It is also possible to add claims like scope to define
scopes, and prn (for SalesForce), or sub (as defined in the IETF draft doc) to identify the resource owner for whom a
token is being requested.

Note
Scopes must be added to a claim on this tab if they are required by the provider to be present in a claim.
The scopes defined on the Scopes tab are added to the query string of the token request, but for flexibility
they are not automatically added to the claim. The reason for this is because JWT authorization grants are
non-normative and claim sets must be agreed in advance with individual OAuth providers. For example,
SalesForce does not allow the addition of scopes to a JWT claim, whereas Google requires a scope claim.
Automatically adding scopes from the Scopes tab to a claim could preclude a JWT grant flow where
scopes must be present in the request but not the claim.

Configure advanced settings

You can use the following options to specify where to add the client credentials in token requests. The Authorization
Header or The Query String. This option applies to all standard grant types excluding JWT and SAML.

Configure OAuth 2.0 client applications

80

In Authorization Header:
Select this option to add the client credentials to the authorization header.

In Query String:
Select this option to add the client credentials to the query string.

Use the following options to specify where to find resource owner credentials, for the resource owner grant type.

Resource Owner ID:
Enter the resource owner ID. This can be specified as a selector.

Resource Owner Password:
Enter the resource owner password. This can be specified as a selector.

Finally, in the Properties table you can add additional properties to pass with authorization or token requests. These
properties can be used to set up provider-specific options, for example, Google authorization requests require the para-
meter access_type=offline to issue a refresh token.

After you have configured your OAuth 2.0 client credentials globally, you can select the client credential profile to use for
authentication on the Authentication tab of your filter (for example, in the Connection and Connect To URL filters). For
more information, see the API Gateway User Guide.

Add OAuth 2.0 provider

To configure a new OAuth 2.0 provider, right-click OAuth2, and select Add OAuth2 Client Credential. Complete the fol-
lowing fields on the OAuth2 Provider Configuration dialog:

Profile Name:
Enter a suitable name for this OAuth provider configuration (for example, Google or Microsoft).

Authorization Endpoint:
Enter the URL of the OAuth provider's authorization endpoint (for example, ht-
tps://accounts.google.com/o/oauth2/auth). This is a public URL where a resource owner is directed to au-
thorize a client application. This is used in the authorization code flow.

Token Endpoint:
Enter the URL of the OAuth provider's token endpoint (for example, ht-
tps://accounts.google.com/o/oauth2/token). This is a public URL where a client application can request a
token.

Token Store:
Click the browse button to choose an access token store. This is where received tokens are persisted.

You can configure OAuth access token stores globally under the Libraries node in the Policy Studio tree. These can
then be selected in the Access Token Store field. For more details on configuring access token stores, see the section
called “Manage access tokens and authorization codes”.

Store OAuth State in this Cache:
Click the browse button to choose a cache. This is where the state of an authorization request is stored. This is used in
the authorization code flow to maintain state when the user is directed to the authorization server for authorization.

Tip
To change the configuration of an existing OAuth 2.0 provider, click the OAuth client credential node, and
edit the settings on the OAuth2 Provider Settings tab of the OAuth2 Credential Profile window.

Creating a Callback URL listener

Configure OAuth 2.0 client applications

81

The callback url that is registered with an OAuth Provider is implemented very simply by creating a matching relative
path in a HTTP Listener. The policy for this path needs only to add an Authorize client with server filter (see Authorize cli-
ent with server). The filter must be configured with a reference to the relevant Provider Profile for this callback url.

Configure OAuth 2.0 client applications

82

Retrieve OAuth client access token from token storage
Overview

You can use the Retrieve OAuth Client Access Token from Token Storage filter to retrieve a stored access token
from a client access token store.

Tokens received from OAuth providers are stored in a Client Access Token Store. You can configure client access
token stores under the Libraries > OAuth2 Stores node in the Policy Studio tree view. Similar to an Access Token
Store, this store can be backed by an API Gateway cache (default), a Relational Database Management System
(RDBMS), or the embedded Apache Cassandra database. (For more details, see the section called “Manage access
tokens and authorization codes”.)

A configured token store is associated with an OAuth provider (see the section called “Add OAuth 2.0 provider”) and is
shared by all client applications registered with that provider.

These stored tokens can be retrieved by this filter by specifying the OAuth2 provider profile (the client application re-
gistered with a provider). Stored tokens are indexed by the client ID of the the client application and the authentication
subject id of the current user. If authentication.subject.id is not available, the client ID is used for both indexes.
This is valid for grant types that treat the client application as the resource owner, that is, client credentials, JWT, and
SAML (when no resource owner is specified).

If a valid token is found by this filter it is placed on the message board as oauth.client.accesstoken, and the filter
passes. If the token is expired, or there is no token found, the filter fails (expired tokens are still placed on the message
board). The fail path can be used to refresh an expired token or start the process of requesting a token. The client applic-
ation is also placed on the message board, under the attribute name oauth.client.application, for use in sub-
sequent filters.

General settings

Configure the following general settings for the Retrieve OAuth Client Access Token from Token Storage filter:

Name:
Enter a suitable name for this filter.

Choose profile to be used for token request:
Click the browse button to select an OAuth 2.0 client credential profile.

83

Authorize client with server
Overview

You can use the Authorize Client with Server filter to request a token.

Depending on the grant type this filter either makes a direct request to the OAuth provider for a token (two-legged flow),
or redirects the user to the provider's authorization server to authorize the client application (three-legged flow).

The two-legged flow covers all but the authorization code flow type and if successful results in a token being placed on
the message board and stored in the configured provider's token store. The filter passes and the token can be used to
make resource requests with the Connect to URL filter.

In the three-legged flow (authorization code flow) the filter redirects the user and the authorization completes when the
user is directed back to the client application redirect URL that was registered with the OAuth provider. For more informa-
tion, see the section called “Creating a Callback URL listener”.

If there is a token already stored for the user and client application, this filter sets the token on the message board and
passes. If the token has expired but has a refresh token this filter attempts to refresh the token instead of requesting a
new token or redirecting the user.

General settings

Configure the following general settings for the Authorize Client with Server filter:

Name:
Enter a suitable name for this filter.

Optionally use an explicit profile:
Select this option and click the browse button to explicitly select an OAuth2 client credential profile. This can be used if
no preceding filter has set the application profile on the message board, or to override the existing application profile.

SSL settings

You can configure SSL settings, such as trusted certificates, client certificates, and ciphers on the SSL tab. For details
on the fields on this tab, see the Connect to URL filter in the API Gateway User Guide.

Additional settings

The Settings tab allows you to configure the following additional settings:

• Retry
• Failure
• Proxy
• Redirect
• Headers

By default, these sections are collapsed. Click a section to expand it.

For details on the fields on this tab, see the Connect to URL filter in the API Gateway User Guide.

84

Refresh an OAuth client access token
Overview

OAuth 2.0 client tokens are designed to be short lived and have an expiry time, however, tokens can be issued with re-
fresh tokens. If a token has expired and it has a refresh token, you can use the Refresh an OAuth Client Access
Token filter to explicitly refresh the token.

General settings

Configure the following general settings for the Refresh an OAuth Client Access Token filter:

Name:
Enter a suitable name for this filter.

Optionally use an explicit profile:
Select this option and click the browse button to explicitly select an OAuth2 client credential profile. This can be used if
no preceding filter has set the application profile on the message board, or to override the existing application profile.

SSL settings

You can configure SSL settings, such as trusted certificates, client certificates, and ciphers on the SSL tab. For details
on the fields on this tab, see the Connect to URL filter in the API Gateway User Guide.

Additional settings

The Settings tab allows you to configure the following additional settings:

• Retry
• Failure
• Proxy
• Redirect
• Headers

By default, these sections are collapsed. Click a section to expand it.

For details on the fields on this tab, see the Connect to URL filter in the API Gateway User Guide.

85

OAuth 2.0 client message attributes
Overview

The OAuth 2.0 client policy filters in API Gateway generate message attributes that can be queried further using the API
Gateway selector syntax. The message attributes generated by the OAuth 2.0 client filters include the following:

• oauth.client.accesstoken

• oauth.client.application

• oauth.callback.state

For more details on selectors, see the API Gateway User Guide.

oauth.client.accesstoken methods

The following methods are available to call on the oauth.client.accesstoken message attribute:

${oauth.client.accesstoken.getAuthentication()}
${oauth.client.accesstoken.getClientId()}
${oauth.client.accesstoken.getCreated()}
${oauth.client.accesstoken.isExpired()}
${oauth.client.accesstoken.hasRefresh()}
${oauth.client.accesstoken.getRefreshToken()}
${oauth.client.accesstoken.getExpiresIn()}
${oauth.client.accesstoken.getExpiryDate()}
${oauth.client.accesstoken.getParams()}
${oauth.client.accesstoken.getTokenType()}

The following example shows output from querying each of the oauth.client.accesstoken methods:

regadmin
ClientConfidentialApp
Thu Mar 06 12:34:44 GMT 2014
false
true
GokdAuu706ydZtNkl92UEPmnJRNmVBJPiPVGGrEwXKz5Uh
3599
Thu Mar 06 13:34:43 GMT 2014
{state=9a388d14-a0e9-4b32-9003-e322c93279dd, scope=resource.WRITE}

oauth.client.application methods

This attribute represents the provider profile selected in the filter. It contains the provider details, such as token and au-
thorization endpoints, and the token store, as well as the specifics of the client application including the client ID and
secret. The following methods are available to call on the oauth.client.application message attribute:

${oauth.client.application.getTokenURL()}
${oauth.client.application.getAuthentication()}
${oauth.client.application.getProviderName()}
${oauth.client.application.getAppName()}
${oauth.client.application.getClientID()}
${oauth.client.application.getFlow()}
${oauth.client.application.getClientSecret()}
${oauth.client.application.getExtraTokenRequestProps()}
${oauth.client.application.getScopes()}
${oauth.client.application.getLocationOfClientDetails()}

86

${oauth.client.application.getClientIdHeaderName()}
${oauth.client.application.getClientSecretHeaderName()}
${oauth.client.application.getTokenStore()}
${oauth.client.application.getToken()}
${oauth.client.application.getTokenFromStore()}
${oauth.client.application.getProvider()}

The following example shows output from querying each of the oauth.client.application methods:

https://127.0.0.1:8089/api/oauth/token
regadmin
API Gateway
Sample Client Authzcode App
ClientConfidentialApp
authorization_code
9cb76d80-1bc2-48d3-8d31-edeec0fddf6c
{}
[resource.WRITE]
QueryString
client_id
client_secret
an object of type com.vordel.circuit.oauth.persistence.SynchronizedClientTokenStore
an object of type com.vordel.oauth.client.store.OAuth2ClientAccessToken
an object of type com.vordel.oauth.client.store.OAuth2ClientAccessToken
an object of type com.vordel.oauth.client.providers.BaseOAuth2Provider

oauth.callback.state

This property is a map of string to string containing the state set before entering into a three-legged authorization code
flow. The state map is stored before directing the resource owner to the provider's authorization server and is retrieved
when the user is returned to the redirect URL of the client application. In its basic form it contains the authentication sub-
ject id of the local user and the client ID of the client application being authorized by the user.

This attribute is only set by the Authorize Client with Server filter.

OAuth 2.0 client message attributes

87

	Oracle® Fusion Middleware
	Contents
	Chapter 1. API Gateway as an OAuth server
	Introduction to API Gateway OAuth 2.0 server
	Overview
	OAuth 2.0 concepts
	OAuth 2.0 example workflow
	API Gateway OAuth features
	API Gateway OAuth scopes
	OAuth 2.0 authentication flows
	Further information

	Set up API Gateway OAuth 2.0
	Overview
	Enable OAuth 2.0 management
	Enable OAuth endpoints

	Import client applications
	Import the sample client applications

	Migrate client applications
	Migrate existing client applications

	Upgrade API Gateway configuration

	Manage OAuth 2.0 client applications
	Overview
	Manage registered client applications
	Access the Client Application Registry web interface

	Run the sample client applications
	Manage access tokens and authorization codes
	Store in a cache
	Store in a relational database
	Store in Cassandra

	Manage OAuth scopes
	Relational database-backed Client Application Registry
	OAuth relational database schemas

	Generate a certificate and private key for a client application

	API Gateway OAuth 2.0 authentication flows
	Overview
	Authorization code (or web server) flow
	Obtain an access token
	Run the sample client
	Further information

	Implicit grant (or user agent) flow
	Obtain an access token
	Run the sample client
	Further information

	Resource owner password credentials flow
	Request an access token
	Handle the response
	Run the sample client
	Further information

	Client credentials grant flow
	Request an access token
	Handle the response
	Run the sample client
	Further information

	JWT flow
	Create a JWT bearer token
	Request an access token
	Handle the response
	Run the sample client
	Further information

	Revoke token
	Run the sample client
	Response codes
	Further information

	Token information service
	Run the sample client
	Response codes
	Further information

	Chapter 2. OAuth server filters
	Get access token information
	Overview
	Token settings
	Monitoring settings
	Advanced settings

	Get access token using authorization code
	Overview
	Application validation settings
	Access token settings
	Monitoring settings

	Get access token using client credentials
	Overview
	Application validation settings
	Access token settings
	Monitoring settings

	Get access token using JWT
	Overview
	Application validation settings
	Access token settings
	Monitoring settings

	Get access token using SAML assertion
	Overview
	SAML assertion validation settings
	Access token settings
	Monitoring settings

	Consume authorization requests
	Overview
	Validation settings
	Authorization code settings
	Access token settings
	Monitoring settings

	Authorize transaction
	Overview
	Template settings
	Authorization code settings
	Access token settings
	Monitoring settings

	Refresh access token
	Overview
	Application validation settings
	Access token settings
	Monitoring settings

	Get access token using resource owner credentials
	Overview
	Application validation settings
	Access token settings
	Monitoring settings

	Revoke token
	Overview
	Revoke token settings
	Monitoring settings

	Validate access token
	Overview
	General settings
	Response codes

	OAuth 2.0 server message attributes
	Overview
	accesstoken methods
	accesstoken.authn methods
	authzcode methods
	oauth.client.details methods
	Example of querying a message attribute
	OAuth scope attributes

	Chapter 3. API Gateway as an OAuth client
	Introduction to API Gateway OAuth 2.0 Client
	Overview
	API Gateway OAuth Client features
	OAuth 2.0 example client workflow

	Set up API Gateway OAuth 2.0
	Overview
	Enable OAuth 2.0 management

	Configure OAuth 2.0 client applications
	Overview
	Add application
	Configure scopes
	Configure SAML bearer
	Configure JWT
	Configure advanced settings

	Add OAuth 2.0 provider
	Creating a Callback URL listener

	Chapter 4. OAuth client filters
	Retrieve OAuth client access token from token storage
	Overview
	General settings

	Authorize client with server
	Overview
	General settings
	SSL settings
	Additional settings

	Refresh an OAuth client access token
	Overview
	General settings
	SSL settings
	Additional settings

	OAuth 2.0 client message attributes
	Overview
	oauth.client.accesstoken methods
	oauth.client.application methods
	oauth.callback.state

