Oracle® Fusion Middleware
Oracle API Gateway OAuth User Guide
119 Release 2 (11.1.2.3.0)

April 2014

ORACLE

Oracle API Gateway OAuth User Guide, 11g Release 2 (11.1.2.3.0)
Copyright © 1999, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and dis-
closure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or al-
lowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, per-
form, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of
this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any
errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered
to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the ap-
plicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, dis-
closure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Gov-
ernment contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in
FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway,
Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or in-
tended for use in any inherently dangerous applications, including applications which may create a risk of personal injury.
If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim
any liability for any damages caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their re-
spective owners.

This software and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with
respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any
loss, costs, or damages incurred due to your access to or use of third-party content, products, or services. This docu-
mentation is in prerelease status and is intended for demonstration and preliminary use only. It may not be specific to the
hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or
damages incurred due to the use of this documentation.

The information contained in this document is for informational sharing purposes only and should be considered in your
capacity as a customer advisory board member or pursuant to your beta trial agreement only. It is not a commitment to
deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The develop-
ment, release, and timing of any features or functionality described in this document remains at the sole discretion of Or-
acle.

This document in any form, software or printed matter, contains proprietary information that is the exclusive property of
Oracle. Your access to and use of this confidential material is subject to the terms and conditions of your Oracle Soft-
ware License and Service Agreement, which has been executed and with which you agree to comply. This document
and information contained herein may not be disclosed, copied, reproduced, or distributed to anyone outside Oracle
without prior written consent of Oracle. This document is not part of your license agreement nor can it be incorporated in-
to any contractual agreement with Oracle or its subsidiaries or affiliates.

30 April 2014

Contents

1. APl Gateway as an OAULN SEIVEIcccooei i
1. Introduction to API Gateway OAULN 2.0 SEIVELiuiiiii i e 6
(Y= TP 6
[T 1 I 0 oo g (o= o] TP 6
OAULh 2.0 eXample WOTKFIOW ... et 6
AP| Gateway OAULN FEALUIES c. ittt e 8
API GateWay OAUIN SCOPES vttt ittt e 9
OAuth 2.0 authentication fIOWS ... 9
FUIther INfOrMAtioN ... e 10
2. Set up API Gateway OAULN 2.0 ... e e 11
L YT 1= 11
Enable OAUth 2.0 MaNAGEMENTuii e et 11
Enable OAULh ENAPOINTS ...t e e 12
IMPOrt ClieNt @PPIICALIONS ... e 12
Import the sample client appliCatiONS ... e 13
Migrate Client apPPlICALIONSt e e 13
Migrate existing client appliCatioNS ..o 14
Upgrade API Gateway CONfIQUIAtIONcuiuirirititite e e eaenes 14
3. Manage OAuUth 2.0 client apPliCALIONSiuiii e e 16
(O YT 1= PR 16
Manage registered client apPliCALIONSv.ieiei e 16
Access the Client Application Registry web interfacecoocoiiiiiiiie 16

Run the sample client appliCatioNSciiiii 17
Manage access tokens and authorization COOESvuiuiiieiiii e 18
SEOrE IN @ CACNE ..o e 19

Store in a relational database ... 19

StOrE N CASSANUIA . ..vuenitieti ettt ettt et e 20
MaNAGE OAULN SCOPES ...ttt e 20
Relational database-backed Client Application RegIStrycoviiiiiiiiiiiii e 21
OAuth relational database SChemas 21
Generate a certificate and private key for a client application ... 22
4. API Gateway OAuth 2.0 authentication flOWSccoiiiiiii e 24
L YT 1= 24
Authorization code (0r Web SErver) flOW ... 24
[©]0] = 11 g =T g W= Tol o oSSR (o] (T o 25

RUN the sample ClENTo e 28
FUrther INfOrmation ... e 29
Implicit grant (Or user agent) fOW ... 29
ODBtaIN &N ACCESS tOKEMN ...iuiititii et 30

RUN the SamPIE CHENT ... e 32
Further iINfOrmationo e 33
Resource owner password credentials flowo 33
REQUESE @N ACCESS TOKEN ... et 33
HaNdIe the FESPONSEui e 34

RUN the sample ClIENt ... e 34
FUrther iINfOrmMation ... e 35
Client credentials grant flOW ... 35
REqUESE @ ACCESS TOKEN ... et e 35
HanNdIe the FTESPONSEuii e 36

RUN the sample ClIENt ... e 36
FUrther information ..o e e 37

B8 AT I o PP PPN 37

Oracle® Fusion Middleware

Create @ JWT DEAIEr tOKEMiuiiit ittt 37

REQUESE @N ACCESS TOKEN ... uiiiiii e eeaes 38

HaNdIe the reSPONSE ... e 39

RUN the SAMPIE CIENT ... e 39

FUNer INfOMMAtioN ..o e 39

REVOKE tOKEN ..t 40

RUN the sample ClENT ... e 40

RESPONSE COUBS ...t ettt ettt et et eeaes 41

FUrther INfOrmation ... e 41

ToKeN INfOrMEALION SEIVICEiitit e e ettt e e e e e aaaaans 42

RUN the sample ClIENt ... e 42

2T a0 ETc N o7 Yo =P 43

Further iINfOrmation ... e 43

2. OAULN SEIVEN TIILEIS oiiiieeeeiiee e e e e e e e e aeees
1. Get access token INFOrMALION ...t e 44
(@ =T o PP 44
L0 L T=T=] 11T P 44

Y To] T o] fT gl JST=] 11 oo LT 44
ADVANCE SEHINGS . .eiitiiet ettt ettt ettt 45

2. Get access token using authorization COAEiiiiii i 46
OVEBIVIBW .ttt ettt ettt ettt ettt ettt et 46
Application validation SENGSo.ieieiii e 46
ACCESS tOKEN SEHINGS ...ttt ettt ettt aas 46

Y To] T o] T g1 JEST=] 11 oo L PP a7

3. Get access token using client CredentialSooiriiie i 48
L YT 1= 48
Application validation SEINGS ...t e 48
ACCESS tOKEN SEHINGS ...ttt ettt et aas 48

Y To] T (o] T gL =TT 11 oo L TP 49

4. Get access tOKEN USING JWT ..ttt ettt ettt ens 50
L YT 1= 50
Application validation SEHINGSoviririi i e aas 50
ACCESS tOKEN SEIHINGS ...ttt ettt ettt 50

Y To] T o] fT gL JST=] 11 oo L TP 51

5. Get access token USING SAML @SSEITIONuuiuiiiite e 52
L YT 1= 52
SAML assertion validation SEHINGSiiiiii e 52
ACCESS tOKEN SBHINGS . v ittt e e e e e e e aas 52

Y To] T o] T gL JST=] 11 oo L TP 53

6. Consume authoriZationN FEQUESTES ... ettt eeaes 54
L YT 1= 54
ValIdALION SELNGS ...ttt et et 54
AULhOTIZAtioON COAE SEILINGS ... vttt e e e e e e e e e aaaaaes 55
ACCESS tOKEN SEHINGS ...ttt ettt et aas 55

Y To] T (o] T gL =TT 11 oo L TP 56

A AN 11 (o1 ¥4= 3 (=Yg T T 1o o PP 57
L YT 1= 57
=T 1] 0] = LE= Y=] o PSPPI 57
AULhOTIZAtION COOE SEHINGS ... ntinit ettt e e e 57
ACCESS tOKEN SBHINGS ...ttt ettt aas 58
MONITOTING SELNGS ...ttt ettt et ettt et ettt et et e e e e ens 59

8. REfrESN BCCESS TOKEN ..ottt 60
OVEBIVIBW .ttt ettt ettt ettt ettt ettt et 60
Application validation SELNGSi.ieie e 60
ACCESS tOKEN SEHINGS ...ttt ettt ettt aas 60

Y To] T o] T g1 JEST=] 11 oo L PP 61

9. Get access token using resource owner CredentialSocoiiiiiiiiiiiii 62

Oracle® Fusion Middleware

OVEBIVIEW ettt ettt ettt ettt ettt ettt ettt e 62
Application validation SEHINGS e 62
ACCESS tOKEN SBHINGS ...ttt ettt 62
MONITOTING SELINMGS ...ttt ettt ettt ettt ettt ettt e e e et et e e e 63

10, REVOKE TOKEN ..ot e 64
OVEBIVIBW ittt ettt ettt ettt ettt et e 64
REVOKE tOKEN SEHINGS ... e 64

Y To] T (o] T gL =TT 11 oo L TP 64

11. Validate ACCESS OKEN ...ttt e et 65
L YT 1= 65
(€1=T LT =TI~ x] o PP 65
ST a0 ET N o7 Yo = 65

12. OAuth 2.0 server message attriDULESo 67
L YT 1= 67
ACCESSLOKEN MELNOUS ...ttt et e 67
accesstoken.authn MEtNOASovuieiii e 67
AUthZCOAE MELNOOS ... it s 68
oauth.client.details MEtNOASo e e 68
Example of querying a message attribute 69
OAULN SCOPE AHIDULES ..ot et et ettt ene e 71

3. APl Gateway as an OAUth Client ...
1. Introduction to APl Gateway OAUth 2.0 CENEiuiii e 73
(O YT 1= PP 73

API Gateway OAUth ClENt FEAtUIESt aes 73
OAuth 2.0 example client WOrKfIOW ..o e 74

2. Set up APL Gateway OAULN 2.0 ... e 77
OVEBIVIBW ettt ettt ettt ettt et ettt e 77
Enable OAULh 2.0 MANAGEMENTt e eenes 77

3. Configure OAuUth 2.0 client @ppliCAtIONSo.iuie e e e 78
L0 YT 1= 78

A @PPIICALION ...t 78
(0040 [=TT] o 1= 79

Configure SAML DEAIET ... 79

(©0] 110 [1T AV LR 79

Configure advanCed SELHNGScueii et 80

Add OAULN 2.0 PIrOVIAET ...ttt et 81
Creating a Callback URL IStENET e 81

4, OAULN CHENT FILBIS e e e e eea e e raas
1. Retrieve OAuth client access token from toKeN StOrageoeveieiiiiiiiiiiii e 83
L YT 1= 83
GBNEIAI SEIHINGS ..ottt ettt et et et et 83

2. AULhONIZE CIIENE WItN SEIVET .. ot 84
OVEBIVIEW ettt ettt ettt ettt ettt ettt et 84
GENEIAl SELINGS ...ttt ittt et e 84

SIS IS 1 1 1] Vo 1 PP 84
AdAItIONA] SELINGS ...ttt ettt 84

3. Refresh an OAUth Client ACCESS TOKEN i.ii e 85
OVEBIVIBW ettt ettt ettt ettt et ettt e 85
GENEIAl SELIINGS ... eetit ittt et 85

SIS I 1 1] Vo L PP 85
AdAItIONA] SELINGS ..ttt e 85

4. OAuth 2.0 client message attribDULES ... 86
OVEBIVIBW ittt ettt ettt ettt et ettt e e et e 86
oauth.client.accesstoken MEthOASo e 86
oauth.client.application MEthOAS ... e 86
0AULN.CAIIDACK.STALEttt e et e 87

Introduction to API Gateway OAuth 2.0 server

Overview

OAuth is an open standard for authorization that enables client applications to access server resources on behalf of a
specific Resource Owner. OAuth also enables Resource Owners (end users) to authorize limited third-party access to
their server resources without sharing their credentials. For example, a Gmail user could allow LinkedIn or Flickr to have
access to their list of contacts without sharing their Gmail user name and password.

The Oracle API Gateway can be used as an Authorization Server and as a Resource Server. An Authorization Server is-
sues tokens to client applications on behalf of a Resource Owner for use in authenticating subsequent API calls to the
Resource Server. The Resource Server hosts the protected resources, and can accept or respond to protected resource
requests using access tokens.

Note

This guide assumes that you are familiar with the terms and concepts described in the OAuth 2.0 Authoriz-
ation Framework [http://tools.ietf.org/html/rfc6749].

OAuth 2.0 concepts
The API Gateway uses the following definitions of basic OAuth 2.0 terms:

. Resource Owner:
An entity capable of granting access to a protected resource. When the resource owner is a person, it is referred to
as an end user.

. Resource Server:
The server hosting the protected resources, and which is capable of accepting and responding to protected resource
requests using access tokens. In this case, the APl Gateway acts as a gateway implementing the Resource Server
that sits in front of the protected resources.

e Client Application:
A client application making protected requests on behalf of the resource owner and with its authorization.

e Authorization Server:
The server issuing access tokens to the client application after successfully authenticating the Resource Owner and
obtaining authorization. In this case, the APl Gateway acts both as the Authorization Server and as the Resource
Server.

e Scope:
Used to control access to the Resource Owner's data when requested by a client application. You can validate the
OAuth scopes in the incoming message against the scopes registered in the APl Gateway. An example scope is
useri nfo/ readonly.

OAuth 2.0 example workflow

Assume that you are using a image printing website such as Canon to print some of your photos. You also have some
photos on your Flickr account that you would like to print. However, you must download all these locally, and then upload
them again to the printing website, which is inconvenient. You would like to be able to sign into Flickr from your Canon
printing profile, and print your photos directly.

This problem can be solved using the example OAuth 2.0 Web Server flow shown in the following diagram:

http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/rfc6749

Introduction to APl Gateway OAuth 2.0 server

Resource Server

Client Application @

Access data
Qg |

APP

‘ W o [e e [e
.. L}
: O ;
1 -
@ ' s Issue access token 1 Delegates
o S ! authentication
Access service | S ¢ authorization
; :
) . i
1 @ b

-
Issue authz code *s

®

T -

Grant access

Resource Owner
(User)

Authorization Server

Out of band, the Canon printing client application pre-registers with Flickr and obtains a client ID/secret. The client applic-
ation registers a callback URL to receive the authorization code from Flickr when you, as Resource Owner, allow Canon
to access the photos from Flickr. The printing application has also requested access to an APl named
[f1i ckr/ phot os, which has an OAuth scope of phot os.

The steps in the diagram are described as follows:

1. You are using a mobile phone and are signed into the Canon image printing website. You click to print Flickr photos.
The Canon client app redirects you to the Flickr OAuth Authorization Server. You must already have a Flickr ac-
count.

2. You log into your Flickr account, and the Flickr Authorization Server asks you "Do you want to allow the Canon print-
ing app to access your photos?". You click Yes to authorize.

3. When successful, the printing app receives an authorization code at the callback URL that was pre-registered out of
band.

Note

You have not shared your Flickr username and password with the printing app. At this point, you as
Resource Owner are no longer involved in the process.

Introduction to API Gateway OAuth 2.0 server

4. The client app gets the authorization code, and must exchange this short-lived code for an access token. The client
app sends another request to the Authorization Server, saying it has a code that proves the user has authorized it to
access their photos, and now issue the access token to be sent on to the API (Resource Server). The Authorization
Server verifies the authorization code and returns an access token.

5. The client app sends the access token to the API (Resource Server), and receives the photos as requested.

API Gateway OAuth features
The API Gateway ships with the following features to support OAuth 2.0:

* Web-based client application registration
* Generation of authorization codes, access tokens, and refresh tokens
e Support for the following OAuth flows:
e Authorization Code
¢ Implicit Grant
« Resource Owner Password Credentials
e Client Credentials
e JWT
« Refresh Token
. Revoke Token
¢ Token Information Service
e Sample client applications for all supported flows

The following diagram shows the roles of the API Gateway as an OAuth 2.0 Resource Server and Authorization Server:

Client
Applicati
PP .Ica 1on Protected Resources

==
i

Accesses Protected P

Resources i o
Authorization Server - Applications
Resource Server i

B
Issues Access i j Data
Tokens Authorized Access to [o
Protected Resources - .
Accesses
Services
L Application
‘ Servers
Authenticates,
Grants Access pree
. .
. Service Bus
Cloud-Based
Services

User
{Resource Owner)

Monitoring and
Control

Introduction to APl Gateway OAuth 2.0 server

API Gateway OAuth scopes
An OAuth scope is a text string used to control access to protected resources. The resource that the scope is associated
with determines the meaning of the scope. For example, if a cust orer _det ai | s scope is associated with a particular
resource, and a client application is associated with the cust oner _det ai | s scope, the client application will have ac-
cess to that resource. Client applications and resources can have multiple OAuth scopes.

For example, in the following overview diagram:

e Client application A can access the cust oner _det ai | s scope.
e Client application B can access the cust oner _det ai | s and phot os scopes.
e Client application C can access the phot os scope only.

Customer Details

Client Application A %
[)
- "
| |

Client Application B ‘,.-"
-l‘lil _-_

c SRLEETETTTEY =
APP Q
APl Gateway “1.
Client Application C
0
[|
s [
Photos

You can configure the scopes that a client application can access in the Client Application Registry web interface. For
more details, see Manage OAuth 2.0 client applications.

Tip

In general, good OAuth design involves a finite number of OAuth scopes. You should decide on the set of
scopes to be used in your system instead of creating too many scopes later on.

OAuth 2.0 authentication flows

Introduction to APl Gateway OAuth 2.0 server

The API Gateway supports the following authentication flows:

OAuth 2.0 Authorization Code Grant (Web Server):

The Web server authentication flow is used by applications that are hosted on a secure server. A critical aspect of
the Web server flow is that the server must be able to protect the issued client application's secret.

OAuth 2.0 Implicit Grant (User-Agent):

The user-agent authentication flow is used by client applications residing in the user's device. This could be imple-
mented in a browser using a scripting language such as JavaScript or Flash. These client applications cannot keep
the client application secret confidential.

OAuth 2.0 Resource Owner Password Credentials:

This username-password authentication flow can be used when the client application already has the Resource
Owner's credentials.

OAuth 2.0 Client Credentials:

This username-password flow is used when the client application needs to directly access its own resources on the
Resource Server. Only the client application's credentials are used in this flow. The Resource Owner's credentials
are not required.

OAuth 2.0 JIWT:

This flow is similar to OAuth 2.0 Client Credentials. A JSON Web Token (JWT) is a JSON-based security token en-
coding that enables identity and security information to be shared across security domains.

OAuth 2.0 Refresh Token:

After the client application has been authorized for access, it can use a refresh token to get a new access token.
This is only done after the consumer already has received an access token using the Authorization Code Grant or
Resource Owner Password Credentials flow.

OAuth 2.0 Revoke Token:

A revoke token request causes the removal of the client application permissions associated with the particular token
to access the end-user's protected resources.

OAuth 2.0 Token Information Service:

The OAuth Token Info service responds to requests for information on a specified OAuth 2.0 access token.

Further information

For more details on the API Gateway OAuth 2.0 support, see the following topics:

Set up API Gateway OAuth 2.0
Manage OAuth 2.0 client applications
API Gateway OAuth 2.0 authentication flows

For more details on OAuth 2.0, see the OAuth 2.0 Authorization Framework [http://tools.ietf.org/html/rfc6749].

10

http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/rfc6749

Set up API Gateway OAuth 2.0

Overview

This chapter describes how to configure the OAuth 2.0 support provided with the API Gateway. It describes how to en-
able the OAuth 2.0 endpoints used to manage client applications, and how to import the preregistered examples
provided with the APl Gateway. It also explains how to migrate existing OAuth 2.0 applications.

Enable OAuth 2.0 management

The OAuth Service is not available in the basic installation. It must be deployed manually. However, there is a conveni-
ence script in $VDISTDIR/samples/scripts/oauth for deploying the OAuth 2.0 Services Listener, supporting policies and
sample apps, this can be run from $VDISTDIR/samples/scripts with:

Linux:

./run. sh oaut h/ depl oyQAut hConfi g. py --type=aut hzserver

Windows:

run. bat oaut h\ depl oyQAut hConfi g. py --type=aut hzserver

The parameters for this script are as follows:

Usage: depl oyQAut hConfi g. py [opti ons]

Opt i ons:
-h, --help

show this hel p nessage and exit

-u USERNAME, - -user name=USERNAME

The user to connect to the topol ogy (default 'admn')

-p PASSWORD, - - passwor d=PASSWORD

- - por t =PORT

- -adm n=ADM N

- - adm npw=ADM NPW
--type=TYPE

The password for the user to connect to the topol ogy
connect user (default 'changene')

The port Cient Application registry is |istening on
(default 8089)

The Cient Application Registry adm n nane (default
regadmi n)

The Cient Application Registry adm n password
(default changene)

The depl oyment type: "authzserver", "clientdenm" or
"all" (default all)

-g GROUP, --group=GROUP

The group nanme

-n SERVI CE, --service=SERVI CE

The servi ce nane

The API Gateway provides the following endpoints used to manage OAuth 2.0 client applications:

Description URL

Authorization Endpoint (REST API) htt ps: // GATEWAY: 8089/ api / oaut h/ aut hori ze

Token Endpoint (REST API) htt ps: // GATEWAY: 8089/ api / oaut h/ t oken

11

Set up API Gateway OAuth 2.0

Description URL
Token Info Endpoint (REST API) htt ps: // GATEWAY: 8089/ api / oaut h/ t okeni nf o
Revoke Endpoint (REST API) htt ps: // GATEWAY: 8089/ api / oaut h/ r evoke

Oracle Client Application Registry|htt ps:// GATEWAY: 8089
(HTML Interface)

(REST API)

Oracle Client Application Registry|https:// GATEWAY: 8089/ api / kps/ Cl i ent Appl i cati onRegi stry

In this table, GATEWAY refers to the machine on which the APl Gateway is installed.

A

Important

You must first enable the OAuth listener port in the API Gateway before these endpoints are available.

Enable OAuth endpoints

To enable the OAuth management endpoints on your APl Gateway, perform the following steps:

Click the

arNPE

In the Policy Studio tree, select Listeners -> API Gateway -> OAuth 2.0 Services -> Ports.
Right-click the OAuth 2.0 Interface in the panel on the right, and select Edit.
Select Enable Interface in the dialog.

Deploy button in the toolbar.

Enter a description and click Finish.

Note

On Linux-based systems, such as Oracle Enterprise Linux, you must open the firewall to allow external ac-
cess to port 8089. If you need to change the port number, set the value of the
env. PORT. QAUTH2. SERVI CES environment variable. For details on setting external environment vari-
ables for APl Gateway instances, see the API Gateway Deployment and Promotion Guide.

Import client applications

The API Gateway ships with a number of preregistered sample client applications, if deploying with the deployOAuthCon-
fig.py script these samples will already be imported. If the script is not used this section explains how to manually import
these applications into the Client Application Registry.

For example,

Note

The sample client applications are for demonstration purposes only and should be removed before moving
the Authorization Server into production.

the default example client applications include the following:

12

Set up API Gateway OAuth 2.0

Client ID

Client Secret

Sanpl eConfi denti al App

6808d4b6- ef 09- 4b0d- 8f 28- 3b05da9c48ec

Sanpl ePubl i cApp

3b001542- e348- 443b- 9ca2- 2f 38bd3f 3e84

Import the sample client applications

To import the preregistered example client applications, perform the following steps:

1. Access the Client Application Registry Web interface at the following URL:

https://1 ocal host: 8089

wn

Enter the default username/password of admi n/ changene.
Click the Import button at the top right of the screen.
4. Select the following sample file in the dialog:

$VDI STDI R/ sanpl es/ scri pt s/ oaut h/ sanpl eapps. dat

VDI STDI R specifies the directory in which the APl Gateway is installed.
5. You can also enter a Decryption Secret in the dialog. However, the sanpl eapps. dat file is in plaintext format,

and does not require a password.

6. Click OK to import the two sample applications. The following screen shows these applications imported into the Cli-

ent Application Registry:

Client Registry

Managing applications
Use the paging arrows to navigate your list of applications.

New application

©) Refresh Import

Export

Client App

Sample Confidential App Sample Confidential Application

Sample Public App

Sample Public Application

Client Application, registered for use in the CLient Demo

Alternatively, you can use the following script to import the sample client application data without using the Client Applic-

ation Registry Web interface:

$VDI STDI R/ sanpl es/ scri pt s/ oaut h/ i npor t Sanpl eDat a. py

You can edit this script to configure your user credentials and file location.

Migrate client applications

Set up API Gateway OAuth 2.0

If you are migrating from API Gateway version 11.1.2.0.x, you can use the following script to migrate your existing OAuth
client applications:

$VDI STDI R/ sanpl es/ scri pt s/ oaut h/ m gr at eFronv71. py

This script enables you to first export your existing client application data, which you can then import as described in the
section called “Import client applications”. This script has a - - passwor d parameter if you wish to encrypt the exported
data for transport.

Migrate existing client applications
To migrate your existing client applications, perform the following steps:

1. After installing APl Gateway 11.1.2.3.0, copy the $VDI STI R/ sanpl es/ oaut h/ m gr at eFron¥1. py file to the
same location in your existing APl Gateway 11.1.2.0.x installation:

$VDI STI R/ sanpl es/ oaut h/ m gr at eFronv71. py

2. In your existing APl Gateway 11.1.2.0.x installation, ensure that $VDI STI R/ sanpl es/ scri pt s/ common. py has
the correct def Ser ver Nanme and def G- oupNane variables set for your existing topology.

3. Run the ni grat eFronv1. py script against your running version 11.1.2.0.x Admin Node Manager and API Gate-
way. The script outputs the following file:

$VDI STI R/ sanpl es/ oaut h/ appr egi st ry/ encodedapps. dat

Note
If you wish to encrypt the data, run the script with the - - passwor d parameter.

4. Check the encodedapps. dat file to ensure that the export has been successful.

5. Import the encodedapps. dat output by the script into a running APl Gateway 11.1.2.3.0 using the Client Applica-
tion Registry web interface. For more details, see the section called “Import client applications”. When importing en-
crypted data, you must enter a password in the Decryption Secret field.

Upgrade API Gateway configuration

If you are migrating from a previous API Gateway version, you must upgrade your AP| Gateway configuration. To gener-
ate an upgraded API Gateway version 11.1.2.3.0 configuration, perform the following steps:

1. Run the following script from your version 11.1.2.3.0 installation directory:

<11.1.2.3.0_install>/platforn bi n/upgradeConfig --groups -d <previ ous-version-install>
-0 pat h/to/ upgrade/ out put/

n

In Policy Studio, select File > Open File.
3. Specify the following file:

pat h/ t o/ upgr ade/ out put / gr oups/ gr oup- 2/ conf / <gui d>/ conf i gs. xm

4. In the open configuration in the Policy Studio tree, under Key Property Stores, delete ApiKeyStore and ClientAp-
plicationRegistry.

5. Select File > Save > Deployment Package to export a . f ed file.

Start the version 11.1.2.3.0 Admin Node Manager and API Gateway instance.

7. In Policy Studio, close the connection to the file, and connect to the now running 7.2 Admin Node Manager. Before
connecting to the API Gateway instance, click Deploy.

o

14

Set up API Gateway OAuth 2.0

Click Browse for .fed, and select the . f ed file exported previously in step 4.
9. Import the client applications using the the web-based portal on htt ps://| ocal host: 8089 by clicking Import,
and browsing to the file created in the previous section:

©

<11.1.2.3.0_install >/ sanpl es/ oaut h/ appr egi stry/ encodedapps. dat >

For more details on upgrading APl Gateway configuration, see the AP| Gateway Installation and Configuration Guide.

15

Manage OAuth 2.0 client applications

Overview

Client applications that send OAuth requests to the APl Gateway’s Authorization Server must be registered with the Au-
thorization Server. This chapter describes the registry used to store these client applications, and how to manage them
using a REST API-based HTML interface. This topic also includes details on the relational database schema, and SSL
commands used for the example client applications.

Note

This topic assumes that you have already performed the steps described in Set up APl Gateway OAuth
2.0. These include enabling the OAuth endpoints, importing sample applications, and migrating existing cli-
ent applications.

Manage registered client applications
Every client application that sends OAuth requests to the APl Gateway's OAuth Authorization Server must be registered
with the Client Application Registry. The APl Gateway provides the Client Application Registry Web-based HTML inter-
face for managing registered client applications. If you have APl Manager installed, the Client Application Registry is

available in the API Manager web-based interface. The API Gateway also provides the Client Application Registry REST
API to enable you to manage registered clients on the command line.

Access the Client Application Registry web interface

You can access the Client Application Registry Web interface at the following URL:

https://1 ocal host : 8089
The default username/password is adni n/ changene.

You can select a client registration entry to update its details. For example, you can configure APIs, user sharing, API
keys, credentials, quota plans, and scopes by expanding the appropriate link at the left:

16

Manage OAuth 2.0 client applications

Editing application, Sample Confidential App

Changes to the application are saved automatically.

W Delete Editing application

Sample Confidential App Phone 012345678
Add image sample Confidential Application Emall sample@sampleapp.com
;] 95b7c70-fe01-4e31-8f1f-cddo77812d7d
Enabled 1
Created by APl Manager Administrator
Created 17 April 2013, 08:46
~ API KEYS
New API key Remove
APIKEY ENABLED JAVASCRIPT ORIGINS CREATED
ee56884e-3382-4f52-b9e5-38d40c0b3206 show secret | [EH 25 September 2012, 10:49
¥ OAUTH CREDENTIALS
New client ID Remove
CLIENT ID ENABLED JAVASCRIPT ORIGINS REDIRECT URLS CREATED TYPE
sampleConfidentialApp show secret | [EH hitps://lecalhost/cauth_ca... 25 April 2014, 12:45 Confidential = Edit

¥ OAUTH SCOPES

Add scope ~ Remove
SCOPE DEFAULT
resource READ m
resource WRITE m

By default, the Client Application Registry is backed by an embedded Apache Cassandra database.
Run the sample client applications

The API Gateway includes sample Jython client applications for all supported OAuth flows in the following directory your
API Gateway installation:

I NSTALL_DI R/ sanpl es/ scri pt s/ oaut h

To run a sample script, open a UNIX shell or DOS command prompt in the following directory:
I NSTALL_DI R/ sanpl es/ scripts

Windows

For example, run the following command:

> run. bat oauth\inplicit_grant. py

Linux/Solaris

For example, run the following command:

> sh run.sh oauth/inplicit_grant.py

17

Manage OAuth 2.0 client applications

Manage access tokens and authorization codes

API Gateway can store generated authorization codes and access tokens in its caches, in an embedded database, or in
a relational database. The Authorization Server issues tokens to clients on behalf of a Resource Owner to use when au-
thenticating subsequent API calls to the Resource Server. These issued tokens must be persisted so that subsequent cli-
ent requests to the Authorization Server can be validated.

The following screen shows the OAuth stores in the Policy Studio:

type Filter text € Access Token Stores 2
b E5 External Connections || & Access Token Stores
b gnesources ~ Access Token Stores
= &= Libraries
. #% Add Access token store
[id Black list
[% White list [Child Items]
) schedules & Access Token Store
] caches
@ alerts
1 Key Property Stores

~ & OAuth2 Stores

v [2 Access Token Stores

& Authorization Code Stores

The Authorization Server can cache authorization codes and access tokens depending on the OAuth flow. The steps for
adding an authorization code cache are similar to adding an access token cache.

The Authorization Server offers the following persistent storage options for access tokens and authorization codes:

¢ API Gateway cache (default)
* Relational Database Management System (RDBMS)
« Embedded Apache Cassandra database

The following screen shows these options in the Policy Studio:

18

Manage OAuth 2.0 client applications

Choose persistence type

® Storeina cache
OAuth AuthZ Code Cache

Storeina database

Store in Cassandra

The Purge expired tokens every 60 secs setting enables you to configure the time in seconds that a background pro-
cess polls the cache or database looking for expired access/refresh tokens or authorization codes.

Store in a cache
Perform the following steps:

1. Right-click Access Token Stores in the Policy Studio tree, and select Add Access Token Store.

2. In dialog that enables you to choose the persistence type, select Store in a cache, and select the browse button to
display the cache configuration dialog.

3. Add a new cache (for example, QAut h Access Token Cache). For more details, see the API Gateway User
Guide.

Store in a relational database
Perform the following steps:
1. Create the supporting schema required for the storage of access tokens, refresh tokens, and authorization codes us-

ing the sgl commands in $VDISTIR\system\confi\sgl\<DBMS>\oauth-server.sql where <DBMS> is the Database
Management System being used. Schema are provided for Microsoft SQLServer, MySQL, Oracle RDBMS and DB2

2. Right-click Access Token Stores in the Policy Studio tree, and select Add Access Token Store.

19

Manage OAuth 2.0 client applications

3. In the dialog that enables you to choose the persistence type, select Store in a database, and select the browse
button to display a database configuration dialog.

4. Complete the database configuration details. The following example uses a MySQL instance named oaut h_db. For
more details, see the AP| Gateway User Guide.

Name: |A::::ess Token DB Cache v

URL: |jr.:lhc:mysql:ﬁlocalhnstl:33ﬂﬁfﬂauth_d|

User Name: |fﬂﬂlt |

Password:

@ Enter Password *ded Ak ko |

) Wildcard Password

For more details, see the section called “Relational database-backed Client Application Registry”.
Store in Cassandra
Perform the following steps:

1. Right-click Access Token Stores in the Policy Studio tree, and select Add Access Token Store.

2. This displays the dialog that enables you to choose the persistence type. Select Store in Cassandra.

3. You can configure Read and Write consistency levels for the Cassandra database. These control how up-to-date
and synchronized a row of data is on all of its replicas. The default Read setting of ONE means that the database re-
turns a response from the closest replica. The default Write setting of ANY means that a write must be written to at
least one replica node. For more details, see http://www.datastax.com/docs/0.8/dml/data_consistency.

Manage OAuth scopes

An OAuth scope is a text string used to control access to resources. The resource that the scope is associated with de-
termines the meaning of the scope. For example, if a vehi cl e_dat a scope is associated with a particular resource, and
a client application is associated with the vehi cl e_dat a scope, the client application will have access to that resource.
Client applications and resources can have multiple OAuth scopes.

You can configure the scopes that a client application can access in the Client Application Registry web interface. You
can specify scopes as free-form text or choose from a list of known configured scopes. You can also select a scope as a
default scope for client applications. Default scopes are used when an authorization or token request does not contain
scopes. The full list of scopes (default and non-default) represent the list of scopes that can be included in an authoriza-
tion or token request.

You can manage scopes in the Client Application Registry web interface by expanding OAUTH SCOPES:

20

http://www.datastax.com/docs/0.8/dml/data_consistency

Manage OAuth 2.0 client applications

¥ OAUTH SCOPES

Add scope - New Remove
SCOPE DEFAULT
https:/flocalhost:8080/auth/userinfo.email
https:/flecalhost:28090/auth/user.photos
Note

The example default scopes provided with the APl Gateway are URL-based. However, you can specify any
text string for an OAuth scope (for example, cust oner _det ai | s or r eadonl y).

When an authorization code or access token request is received from a client application, the APl Gateway OAuth ac-
cess token filters check that the scopes in the message match the scopes configured for the client application. If no
scopes are provided in the message, the filter creates an access token for the scopes that are configured as default. The
scope for which the access token was created is checked against the list of available scopes in the Client Application Re-
gistry web interface. This list is generated from the scopes defined in Validate Access Token filter in the server configura-
tion. For more details on this filter, see Validate access token.

Important

A You can also specify OAuth scopes using selectors (for example, use ${ htt p. request. ver b} to map
HTTP CET and PUT requests). However, the Client Application Registry web interface does not display se-
lectorized scopes in the list of available scopes. This is because selectorized scopes in the Validate Access
Token filter cannot be evaluated at registration time.

The administrator must therefore find out about any selectorized scopes to be applied to resources at

runtime. If a scope must be conifigured using a selector, the administrator must find out exactly which se-
lector to specify in the scope. For more details on selectors, see the APl Gateway User Guide.

Relational database-backed Client Application Registry
By default, the Oracle Client Application Registry Key Property Store (KPS) is backed by an Apache Cassandra data-
base. The Oracle Client Application Registry KPS can also be backed by a relational database such as Oracle, MySQL,
DB2, or Microsoft MySQL Server. For more details, see the Key Property Store User Guide, available from Oracle Sup-
port.

OAuth relational database schemas

For example, the OAuth relational database schemas displayed by example mysgl commands are as follows:

oauth_access_token schema
The following shows the result from the show col utms from oaut h_access_t oken; command:

21

Manage OAuth 2.0 client applications

Femmmmeee e Fommmem e aaas E Femmm Fommmeeaa D R +
| Field | Type | Null | Key | Default | Extra |
T B Femmm Fommme e D +
id	varchar(255)	NO	PRI	NULL	
auth_request	blob	NO		NuULL	
client_id	varchar(255)	NO		NuULL	
expiry_tinme	datetine	NO		NuULL	
token	bl ob	NO		NULL	
refresh_token	varchar(255)	YES		NULL	
user_auth	varchar(255)	NO		NuULL	
user_name	varchar(255)	NO		NuULL	
fococoocsoocsoooo fecocoosoocooos oo oo oo oo= Fecocoo=ooo Fococoos +

oauth_refresh_token schema
The following shows the result from the show col utms from oaut h_r ef resh_t oken; command:

ococcooccccacas moccccocococooo docoooo ooocao mocccocaoo moocoooo +
| Field | Type | Null | Key | Default | Extra |
dococooccccacas oocccococococooo docoooo dmoocao ooccccoocaoo moocoooo +
token_id	varchar(255)	NO	PRI	NULL	
auth_request	blob	NO		NULL	
expiry_ tine	datetine	NO		NUL	
token	bl ob	NO		NULL	
user_name	varchar(255)	NO		NULL	
focccoocococasos - ccoococooosoos Fmcoooo Foooo= foocoosoos o ccoooo +

oauth_authz_code schema
The following shows the result from the show col utms from oaut h_aut hz_code; command:

- S R 4e-ee-- S S R S R +
| Field | Type | Null | Key | Default | Extra |
e S eoeen- teee-- - R +
| id | varchar(255) | NO | PRI | NULL | |
| authorization | blob | NO | | NULL | |
| expiry_tine | datetinme | NO | | NULL | |
--------------- S T T

Generate a certificate and private key for a client application

The following example openssl command shows generating a client application certificate and private key:

$ openssl req -x509 -nodes -days 365 -newkey rsa: 1024 -keyout nykey.pem
-out mycert.pem
Generating a 1024 bit RSA private key

You are about to be asked to enter information that will be incorporated
into your certificate request.

What you are about to enter is what is called a D stinguished Nane or a DN
There are quite a few fields but you can | eave sonme bl ank.

For sonme fields there will be a default val ue.

If you enter '.', the field will be Ieft blank.

Country Name (2 letter code) [AU]:US

22

Manage OAuth 2.0 client applications

State or Province Nane (full nane) [Sone-State]: VA

Locality Nane (eg, city) []:New on

Organi zati on Nanme (eg, conpany) [Internet Wdgits Pty Ltd]: Oracle
Organi zational Unit Name (eg, section) []: APl Gateway

Common Nane (eg, YOUR nane) []: Sanpl eConfi denti al App

Emai | Address []:support @ dgits.com

23

API Gateway OAuth 2.0 authentication flows

Overview

The API Gateway can use the OAuth 2.0 protocol for authentication and authorization. The API Gateway can act as an
OAuth 2.0 Authorization Server and supports several OAuth 2.0 flows that cover common Web server, JavaScript,
device, installed application, and server-to-server scenarios. This topic describes each of the supported OAuth 2.0 flows
in detail, and shows how to run example client applications.

Authorization code (or web server) flow

The authorization code or web server flow is suitable for clients that can interact with the end-user’s user-agent (typically
a Web browser), and that can receive incoming requests from the authorization server (can act as an HTTP server). The
Authorization Code flow is also known as the Three-Legged OAuth flow.

The authorization code flow is as follows:

1.

The web server redirects the user to the APl Gateway acting as an authorization server to authenticate and author-
ize the server to access data on their behalf.

After the user approves access, the web server receives a callback with an authorization code.

After obtaining the authorization code, the web server passes back the authorization code to obtain an access token
response.

After validating the authorization code, the APl Gateway passes back a token response to the web server.
After the token is granted, the web server accesses their data.

24

API Gateway OAuth 2.0 authentication flows

Enter LIRL

Web Server
(Client App)

UserAgent (Browser)

Present Autharization U1

.

0Open URL
Start OAuth Process

P

Redirect to AuthZ Server
Opens redirect URL
I

-

Authorization Server

> Fresent Authorization UT

-

User

Obtain an access token

Present credentials and authorise or deny o
P

Present submitted data from user

[

-

T
\Verify and create Authorization code

Redirect to Web Server with Authorzation Code

L

Follow redirect to Web Senrerh

Presant Authorization Code

[
{

Return Access Token

il
|

Call protected resource with Access Token

Resource Server

Y

T
Refurm protecied resource

il
-

Web Server
(Client App)

UserAgent (Browser)

The detailed steps for obtaining an access token are as follows:

Authorization Server

1. Redirect the user to the authorization endpoint with the following parameters:

Resource Server

Parameter

Description

response_t ype

Required. Must be set to code.

client_id

Oracle Client Application Registry.

Required. The Client ID generated when the application was registered in the

redirect _uri

Optional. Where the authorization code will be sent. This value must match one
of the values provided in the Oracle Client Application Registry.

ing the callback.

scope Optional. A space delimited list of scopes, which indicate the access to the Re-
source Owner's data being requested by the application.
state Optional. Any state the consumer wants reflected back to it after approval dur-

25

API| Gateway OAuth 2.0 authentication flows

The following is an example URL:

htt ps: // api gat eway/ oaut h/ aut hori ze?cl i ent _i d=Sanpl eConfi denti al App&
response_t ype=code&&r edi rect _uri =htt pd8A%RFY2FI ocal host ¥8A8090%2Faut h92Fr edi rect. ht m &
scope=ht t ps¥BAWRFY2FI ocal host %8A8090%2Faut h92Fuser i nf o. emai |

Note

During this step the Resource Owner user must approve access for the application Web server to access
their protected resources, as shown in the following example screen.

Confidential App

is requesting permission to access:

« Access and change your email contacts

Learn more

Mo thanks

2. The response to the above request is sent to the redi rect _uri . If the user approves the access request, the re-
sponse contains an authorization code and the st at e parameter (if included in the request). If the user does not ap-

prove the request, the response contains an error message. All responses are returned to the Web server on the query
string. For example:

https://1 ocal host/ oaut h_cal | back& ode=9sr N6sqnj r vG5bWNB42PCG u0TFW

3. After the Web server receives the authorization code, it may exchange the authorization code for an access token and
a refresh token. This request is an HTTPS PGST, and includes the following parameters:

Parameter Description

grant _type Required. Must be set to aut hori zat i on_code.

code Required. The authorization code received in the redirect above.

redirect _uri Required. The redirect URL registered for the application during application re-

26

API| Gateway OAuth 2.0 authentication flows

Parameter Description
gistration.
client_id* Optional. The cl i ent _i d obtained during application registration.
client_secret* Optional. The cl i ent _secr et obtained during application registration.
f or mat Optional. Expected return format. The default is j son. Possible values are:
e urlencoded
e json
e xm

* Iftheclient _idandclient_secret are not provided as parameters in the HTTP POST, they must be provided in
the HTTP Basic Authentication header (Aut hori zati on base64Encoded(client_id:client_secret)).

The following example HTTPS POST shows some parameters:

POST / api / oaut h/ t oken HTTP/ 1.1
Cont ent - Type: appl i cati on/ x- ww«+ f or m ur| encoded

client _i d=Sanpl eConfi denti al App&cl i ent_secr et =6808d4b6- ef 09- 4b0d- 8f 28- 3b05da9c48ec
&code=9sr N6sqnj r vGbbWNB42PCG uOTFWWé&r edi rect _uri =ht t p¥8AY2F%2F| ocal host ¥3A809
0%2Faut h92Fr edi rect . ht ml &r ant _t ype=aut hori zati on_code&f or mat =query

4. After the request is verified, the APl Gateway sends a response to the client. The following parameters are in the re-
sponse body:

Parameter Description

access_t oken The token that can be sent to the Resource Server to access the protected re-
sources of the Resource Owner (user).

refresh_t oken A token that may be used to obtain a new access token.

expires The remaining lifetime on the access token.

type Indicates the type of token returned. At this time, this field always has a value of
Bear er.

The following is an example response:

HTTP/ 1.1 200 K
Cache-Control : no-store
Cont ent - Type: application/json
Pragma: no-cache{
"access_token": “091G451HZ0V830opz6udi SEj chPynd2Ss9.

27

API| Gateway OAuth 2.0 authentication flows

"token_type": "Bearer",
"expires_in": "3600",

5. After the Web server has obtained an access token, it can gain access to protected resources on the Resource Server
by placing it in an Aut hori zati on: Bear er HTTP header:

CET /oauth/protected HTTP/ 1.1
Aut hori zati on: Bearer 91G451HZ0V830pz6udi SEj chPynd2Ss9
Host: api gat eway. com
For example, the cur | command to call a protected resource with an access token is as follows:
curl -H "Authorization: Bearer 91G451HZ0V830opz6udi SEj chPynd2Ss9"
htt ps:// api gat eway. coni oaut h/ pr ot ect ed

Run the sample client

The following Jython sample client creates and sends an authorization request for the authorization grant flow to the Au-
thorization Server:

I NSTALL_DI R/ sanpl es/ scri pt s/ oaut h/ aut hori zati on_code. py

To run the sample, perform the following steps:

1. Open ashell prompt at | NSTALL_DI R/ sanpl es/ scri pt s, and execute the following command:

> run oaut h/ aut hori zati on_code. py

The script outputs the following:

> G to the URL here:

http://127.0.0. 1: 8080/ api / oaut h/ aut hori ze?cl i ent _i d=Sanpl eConfi denti al App
&r esponse_t ype=code&scope=ht t ps¥BAYRFY2FI| ocal host ¥%8A8090%2Faut h%2Fuser i nf 0. enai |
& edirect _uri =htt ps¥8A%RFY%2F| ocal host %2Foaut h_cal | back

Enter Authorization code in dialog

L |

Enter Authorization Code @l

L] Enter Authorization Code:

OK Cancel

2. Copy the URL output to the command prompt into a browser, and perform the following steps as prompted:
a. Provide login credentials to the authorization server. The default values are:
e Username: adm n
e Password: changene

28

API Gateway OAuth 2.0 authentication flows

b. When prompted, grant access to the client application to access the protected resource.

After the Resource Owner has authorized and approved access to the application, the Authorization Server redirects
a fragment containing the authorization code to the redirection URI. For example:

https:/ /1 ocal host/ oaut h_cal | back& ode=Aal 50 3RYB2uQOgi yqVsLs1ATI YOI | O
In this example, the authorization code is:

Aal 50r 3RYB2uQgi yqVsLs1ATI YOI | 0

Enter this value into the Enter Authorization Code dialog. The script will exchange the authorization code for an
access token, and then access the protected resource using the access token. For example:

Enter Authorization code in dialog

Aut hZ code: Aal 50r 3RYB2uQgi ygqVsLs1ATI YOI | O

Exchange aut hZ code for access token

Sendi ng up access token request using grant_type set to authorization_code
Response from access token request: 200

Parsing the json response

**********************ACCESS TO(EN RESPG\ISE***********************************
Access token received from aut hori zati on server i cPgKP2uVUD2t hvAZ5ENhs Qb66f f nZEC
XHy RQEz5zP8aGzcobLV3AR

Access token type received from authorizati on server Bearer

Access token expiry tine: 3599

Refresh token: NpNbzl VWj 8MiMhcWk2zsawxxJ3YADF cOXI xI Zvwot | hh8
EEEEEEEEEEEREEEEEEEEEEEEEEREEEEEEEEEEEEREEE]
Now we can try access the protected resource using the access token

Executing get request on the protected url

Response from protected resource request is: 200

<ht ml >Congrats! You've hit an QAuth protected resource</htm >

Further information

For details on API Gateway filters that support this flow, see the following topics:

Get access token using authorization code
Consume authorization requests
Authorize transaction

Implicit grant (or user agent) flow

The implicit grant (user-agent) authentication flow is used by client applications (consumers) residing in the user's device.
This could be implemented in a browser using a scripting language such as JavaScript, or from a mobile device or a
desktop application. These consumers cannot keep the client secret confidential (application password or private key).

The user agent flow is as follows:

1.

2.

The web server redirects the user to the APl Gateway acting as an authorization server to authenticate and author-
ize the server to access data on their behalf.

After the user approves access, the web server receives a callback with an access token in the fragment of the redir-
ect URL.

After the token is granted, the application can access the protected data with the access token.

29

API Gateway OAuth 2.0 authentication flows

Enkers LIRL -

User Agent [Browser)

P

Execute javascoript :

g Fedirect to AuthZ response_type=token

Javaseript client Authorization Server Web Server

with javesi

Opers redirect URL -
|

a
-+

Prasent Authorization UL

. Fresant Author zation U1
-

Obtain an access token

Present credentals end authorise or deny

User Agent (Browser)

Present subrritted data from user n
T

Verify and create Access Token :

L

F 3

Redirect to Wi Serder with Acoess Token In 7 fragment
I
Fedlow redirect bo Web Server with oul fragrmert -
|

page with javascript

rF 3

Ewtract access token fram fragment

Call protected resource with Access Token >
- Reeturn protecied resource

Javascript client Authorization Server

<

The detailed steps for obtaining an access token are as follows:

1. Redirect the user to the authorization endpoint with the following parameters:

Parameter

Description

response_type

Required. Must be set to token.

client_id

Required. The Client ID generated when the application was registered in the
Oracle Client Application Registry.

redirect _uri

Optional. Where the access token will be sent. This value must match one of
the values provided in the Oracle Client Application Registry.

scope Optional. A space delimited list of scopes, which indicates the access to the
Resource Owner's data requested by the application.
state Optional. Any state the consumer wants reflected back to it after approval dur-

ing the callback.

The following is an example URL:

htt ps:// api gat eway/ oaut h/ aut hori ze?cl i ent

i d=Sanpl eConfi denti al App& esponse_t ype=

t oken&&r edi rect _uri =ht t p¥8AYR2F%2FI ocal host %8A8090%2Faut h%2Fr edi r ect . ht ml &cope=
ht t ps%8AYRFY2FI ocal host %8A8090%2Faut h92Fuser i nf o. emai |

30

API| Gateway OAuth 2.0 authentication flows

Note

During this step the Resource Owner user must approve access for the application (Web server) to access
their protected resources, as shown in the following example screen.

Confidential App

is requesting permission to access:

¢ Access and change your email contacts

Learn more

Mo thanks

2. The response to the above request is sent to the redi rect _uri . If the user approves the access request, the re-
sponse contains an access token and the state parameter (if included in the request). For example:

https://1 ocal host/oaut h_cal | back#access_t oken=19437j hj 2781FQd44AzqT3Zg
&t oken_t ype=Bear er &expi r es_i n=3600

If the user does not approve the request, the response contains an error message.

3. After the request is verified, the APl Gateway sends a response to the client. The following parameters are contained
in the fragment of the redirect:

Parameter Description

access_t oken The token that can be sent to the Resource Server to access the protected re-
sources of the Resource Owner (user).

expires The remaining lifetime on the access token.

type Indicates the type of token returned. At this time, this field will always have a
value of Bear er .

state Optional. If the client application sent a value for state in the original authoriza-
tion request, the state parameter is populated with this value.

31

API| Gateway OAuth 2.0 authentication flows

4. After the application has obtained an access token, it can gain access to protected resources on the Resource Server
by placing it in an Aut hori zati on: Bear er HTTP header:

CGET /oauth/protected HTTP/ 1.1
Aut hori zati on: Bearer 91G451HZ0V830pz6udi SEj chPynd2Ss9
Host: api gat eway. com

For example, the cur | command to call a protected resource with an access token is as follows:
curl -H "Authorization: Bearer 091G451HZ0V830opz6udi SEj chPynd2Ss9"
htt ps:// api gat eway. coni oaut h/ pr ot ect ed

Run the sample client

The following Jython sample client creates and sends an authorization request for the implicit grant flow to the Authoriza-
tion Server:

| NSTALL_DI R/ sanpl es/ scri pts/oauth/inplicit_grant. py

To run the sample, perform the following steps:

1. Open ashell promptat| NSTALL_DI R/ sanpl es/ scri pt s, and execute the following command:

> run oauth/inplicit_grant.py

The script outputs the following:

> G to the URL here:
http://127.0.0. 1: 8080/ api / oaut h/ aut hori ze?cl i ent _i d=Sanpl eConfi dent i al App&
response_t ype=t oken&scope=ht t ps¥8AYRF%2F| ocal host ¥%8A8090%2Faut h92Fuser | nf 0. emai | &
redirect _uri =htt ps%BAY%RFY2F| ocal host ¥2Foaut h_cal | back&st at e=1956901292
Ent er Access Token code in dial og

Enter Access Token from fragment lé

L] Enter Access Token from fragment:

Ok Cancel

L -5
2. After the Resource Owner has authorized and approved access to the application, the Authorization Server redirects
to the redirection URI a fragment containing the access token. For example:

https://1 ocal host/oaut h_cal | back#access_t oken=
4owz Gyokz LLQB5FHAt OVk 7Eqgf 1wg YT ENEDXZ1nGr N7u7a2Xexy20U9&expi res_i n=
3599&st at €=1956901292&t oken_t ype=Bear er

In this example, the access token is:

32

API Gateway OAuth 2.0 authentication flows

4owz Gyokz LLQB5FHAt OV 7Eqf 1wg Y ENEDXZ1nGyN7u7a2Xexy20U9

Enter this value into the Enter Access Token from fragment dialog, and the script attempts to access the protec-
ted resource using the access token. For example:

**********************ACCESS TG(EN RESPO\ISE******************************
Access token received from authorizati on server 4owzGyokzLLQB5FH4t OMK7EqQf 1wqYf EN
EDXZ1nGvN7u7a2Xexy20U9

EEE R S S O S S S S S S S S S S S O S S O

Now we can try access the protected resource using the access token
Executing get request on the protected url

Response from protected resource request is: 200

<ht ml >Congrats! You've hit an QAuth protected resource</htm >

Further information

For details on the API Gateway filter that supports this flow, see the Consume authorization requests filter.

Resource owner password credentials flow

The resource owner password credentials flow is also known as the username-password authentication flow. This flow
can be used as a replacement for an existing login when the consumer already has the user’s credentials.

The Resource Owner password credentials grant type is suitable in cases where the Resource Owner has a trust rela-
tionship with the client (for example, the device operating system or a highly privileged application). The Authorization
Server should take special care when enabling this grant type, and only allow it when other flows are not viable.

This grant type is suitable for clients capable of obtaining the Resource Owner's credentials (username and password,
typically using an interactive form). It is also used to migrate existing clients using direct authentication schemes such as
HTTP Basic or Digest authentication to OAuth by converting the stored credentials to an access token.

Resource Owner Password Credentials flow

Resource Owner's -:redentlals._
Resource Owner's credentials

-
Authenticate Resource Owner :

Authenticate Client :

< Access token with optional refresh token

Access protected resource with access token >
T

< Protected resource response

Authorization Server Resource Server

Resource Owner

Request an access token

Client

The client token request should be sent in an HTTP POST to the token endpoint with the following parameters:

33

API Gateway OAuth 2.0 authentication flows

Parameter Description

grant _type Required. Must be set to passwor d

user nane Required. The Resource Owner's user name.

password Required. The Resource Owner's password.

scope Optional. The scope of the authorization.

f or mat Optional. Expected return format. The default is j son. Possible values are:
 urlencoded
e json
e xm

The following is an example HTTP POST request:

PGST / api / oaut h/ t oken HTTP/ 1.1

Content - Lengt h: 424

Cont ent - Type:
Host: 192.168. 0. 48: 8080

Aut hori zat i on:
j ohndoe&passwor d=A3ddj 3w

Handle the response

appl i cati on/ x- ww f or m ur | encoded; charset =UTF- 8

Basi ¢ czZCaGRSa3FOMz pnV\DFnQmFOMRIWr ant _t ype=passwor d&user nane=

The API Gateway will validate the resource owner’s credentials and authenticate the client against the Oracle Client Ap-
plication Registry. An access token, and optional refresh token, is sent back to the client on success. For example, a val-

id response is as follows:

HTTP/ 1.1 200 OK
Cache-Control :
Cont ent - Type:
Pragma: no-cache

"access_t oken":
"t oken_type":
"expires_in":

appl i cation/json

“@1G451HZ0V830pz6udi SEj chPynd2Ss9.

“refresh_token”: “8722¢gffy2229220002i uueee7GP........... ”

Run the sample client

The following Jython sample client sends a request to the Authorization Server using the Resource Owner password cre-

dentials flow:

I NSTALL_DI R/ sanpl es/ scri pt s/ oaut h/ r esour ceowner _password_cr edenti al s. py

To run the sample, open a shell prompt at | NSTALL_DI R/ sanpl es/ scri pt s, and execute the following command:

> run oaut h/ resour ceowner _password_credenti al s. py

34

API Gateway OAuth 2.0 authentication flows

The script outputs the following:

Sendi ng up access token request using grant_type set to password

Response from access token request: 200

Parsing the json response

**********************ACCESS TO,(EN RESPO\ISE***********************************
Access token received from authorization server |rGHhFhFwSnycXSt | zaljjvXl Saac9
JNI gvi F70oPi V8BOnx| SI sr xVA

Access token type received from authorizati on server Bearer

Access token expiry tine: 3600

EEE R S S R S I S I R S S R R S I S S S S R S S R S S S S S S O
Now we can try access the protected resource using the access token

Executing get request on the protected url

Response from protected resource request is: 200

<ht ml >Congrats! You've hit an QAuth protected resource</htm >

Further information

For details on the API Gateway filter that supports this flow, see Get access token using resource owner credentials.
Client credentials grant flow

The client credentials grant type must only be used by confidential clients. The client can request an access token using
only its client credentials (or other supported means of authentication) when the client is requesting access to the protec-
ted resources under its control. The client can also request access to those of another Resource Owner that has been
previously arranged with the Authorization Server (the method of which is beyond the scope of the specification).

Client Credentials flow

Client Authorization Server Resource Server

Client credentials

-

Authenticate Client :

Access token with NO refresh token

»

Access protected resource with access token -
1

< Protected resource response

Client Authorization Server Resource Server

Request an access token

The client token request should be sent in an HTTP POST to the token endpoint with the following parameters:

35

API Gateway OAuth 2.0 authentication flows

Parameter Description

grant _type Required. Must be settocl i ent _credenti al s.

scope Optional. The scope of the authorization.

f or mat Optional. Expected return format. The default is j son. Possible values are:

. url encoded
e json
e xni

The following is an example POST request:

POST / api / oaut h/ t oken HTTP/ 1.1

Cont ent - Lengt h: 424

Cont ent - Type: application/ x-ww-formurl encoded; charset=UTF-8
Host: 192.168. 0. 48: 8080

Aut hori zati on: Basi c czZCaGRSa3FOMzpnVWDFmQrFOM2IW

grant _type=client_credentials

Handle the response

The API Gateway authenticates the client against the Oracle Client Application Registry. An access token is sent back to
the client on success. A refresh token is not included in this flow. An example valid response is as follows:

HTTP/ 1.1 200 K

Cache-Control : no-store

Cont ent - Type: application/json

Pragma: no-cache

{ "access_t oken": “091G451HZ0V8B30pz6udi SEj chPynd2Ss9.
"t oken_type": "Bearer",
"expires_in": "3600"

Run the sample client

The following Jython sample client sends a request to the Authorization Server using the client credentials flow:
| NSTALL_DI R/ sanpl es/ scri pt s/ oaut h/ client_credenti al s. py
To run the sample, open a shell prompt at | NSTALL_DI R/ sanpl es/ scri pt s, and execute the following command:

> run oauth/client_credentials. py

The outputs the following:

Sendi ng up access token request using grant_type set to client_credentials
Response from access token request: 200

Parsing the json response

**********************AC(:ESS TG(EN RESPO\ISE*********~k*************************
Access token received from aut hori zati on server

36

API Gateway OAuth 2.0 authentication flows

O t WNusLg2uj y3a6l XHhavqdEPt K7qSm j 9f LI 8qywPy X8bKEsj qF
Access token type received from authorizati on server Bearer
Access token expiry time: 3599

R R R S b Ok S S Rk S I S kR S Sk S R ko kS S

Now we can try access the protected resource using the access token
Response from protected resource request is: 200
<ht ml >Congrats! You've hit an QAuth protected resource</htm >

Further information
For details on the API Gateway filter that supports this flow, see Get access token using client credentials.
JWT flow

A JSON Web Token (JWT) is a JSON-based security token encoding that enables identity and security information to be
shared across security domains.

Server Application Authorization Server Resource Server

Token Reguest (with JWT)

Token Response
< po

|
Call APT with Access Token

Server Application Authorization Server Resource Server

In the OAuth 2.0 JWT flow, the client application is assumed to be a confidential client that can store the client applica-
tion’s private key. The X.509 certificate that matches the client’s private key must be registered in the Oracle Client Ap-
plication Registry. The API Gateway uses this certificate to verify the signature of the JWT claim. For information on cre-
ating a private key and certificate, see the section called “Generate a certificate and private key for a client application”.

For more details on the OAuth 2.0 JWT flow, see
http://self-issued.info/docs/draft-ietf-oauth-jwt-bearer-00.html

Create a JWT bearer token
To create a JWT bearer token, perform the following steps:

1. Construct a JWT header in the following format:
{"al g":"RS256"}
2. Base64url encode the JWT Header as defined here, which results in the following:

eyJhbGei G JSUzI 1Ni J9

3. Create a JWT Claims Set, which conforms to the following rules:

e Theissuer (i ss) must be the OAuth cl i ent _i d or the remote access application for which the developer re-
gistered their certificate.

37

http://self-issued.info/docs/draft-ietf-oauth-jwt-bearer-00.html

API Gateway OAuth 2.0 authentication flows

e The audience (aud) must match the value configured in the JWT filter. By default, this value is as follows:

htt p: // api gat eway/ api / oaut h/ t oken

e The validity (exp) must be the expiration time of the assertion, within five minutes, expressed as the number of

seconds from 1970- 01- 01TO: 0: 0Z measured in UTC.
e The time the assertion was issued (i at) measured in seconds after 00: 00: 00 UTC, January 1, 1970.
* The JWT must be signed (using RSA SHA256).
e The JWT must conform with the general format rules specified here:

http://tools.ietf.org/html/draft-jones-json-web-toke.
For example:

i ss": "Sanpl eConfi denti al App",
"aud": "http://api gat eway/ api / oaut h/ t oken",
"exp": "1340452126",
"iat": "1340451826"

}

4. Base64url encode the JWT Claims Set, resulting in:

eyJpc3M O JTYWLwbGVDb25maVWRI bnRp YW BcHAI LCIhdWQ G JodHRwWO 8v YXBpc2VydnV
yL2FwaS9vYXV0aC90b2t | bi | sI mv4cCl 61] EzZNDAONTI xM Yi LCIpYXQ O | xMz QMNDUx CDI 2| n0=

5. Create a new string from the encoded JWT header from step 2, and the encoded JWT Claims Set from step 4, and

append them as follows:

Base64URLEncode(JWI Header) + . + Base64URLEncode(JWIr C ai ns Set)

This results in a string as follows:

eyJhbCGei G JSUzI 1Ni J9. eyJpc3M O Ai U2Ft cGx Q29|uZn1 kZ\Ws0aWFs QXBW i wgl n=1ZCl 61 CJodHRw

c&l
O 8vYXBpc2VydnVyL2FwaS9vYXV0aCa0b2t | bi | sl CII eHAI G Al MTMDMIMLNDYWNSI sl CIpYXQ G Al
MT VD MTMLNDMAMNSJ 9

6. Sign the resulting string in step 5 using SHA256 with RSA. The signature must then be Base64url encoded. The sig-
nature is then concatenated with a . character to the end of the Base64url representation of the input string. The

result is the following JWT (line breaks added for clarity):

{Base64ur| encoded header}.
{Base64ur| encoded claimset}.

This results in a string as follows:

eyJhbGei G JSUzI 1Ni J9. eyJpc3M O Al U2Ft cGxl @Q9uZm kzZWs0aWFs QXBw i wgl nFF1ZCl 61 CJodHR
wa 8vYXBpc2VydmvyL2FwaS9v YXV0aC90b2t | bi | sl CJI eHAI O Ai MTMOMITMLNDYWNSI sI CIpYXQ G A
i MTMOMTMLNDMMNISJ 9. i | WRBOBA bQ T5zBaG Q veOZFI WETkdVC6Lof J8dNOakvvDOnv| vUZt Pp4dx3

KdEDj 4YcsyCEAPhf opU ZO3LE- i NPl bxB5dsni zbFl c20GZr 7Z041 | Df 920J Hg9DGqwQos J- s9CGc| RQK
- | UPF41 VWw1Q7Pi dPVWKR9ohnBc2gt 8

Request an access token

The JWT bearer token should be sent in an HTTP PCST to the Token Endpoint with the following parameters:

Parameter Description
grant _type Required. Must be set to
urn:ietf:parans: oauth: grant-type:jw-bearer.

38

http://tools.ietf.org/html/draft-jones-json-web-toke

API Gateway OAuth 2.0 authentication flows

Parameter Description

assertion Required. Must be set to the JWT bearer token, base64url-encoded.

f or mat Optional. Expected return format. The default is j son. Possible values are:
e urlencoded
e json
e xm

The following is an example POST request:

PGOST / api / oaut h/ t oken HTTP/ 1.1

Content - Lengt h: 424

Cont ent - Type: application/ x-ww« f or m url encoded; charset =UTF-8

Host: 192.168. 0. 48: 8080

grant _t ype=ur n%BAi et f ¥8Apar ans¥8Aoaut h%BAgr ant - t ype%3Aj wt - bear er &asserti on=eyJhbGci G JS
Uzl INi J9. eyJpc3M O Ai U2Ft cGxl @9uzZm kZWs0aWFs QXBwl i wgl nF1ZCl 61 CJodHRWO 8vYXBpc2Vy
dmvyL2FwaS9v YXV0aC90b2t | bi | sl CJI eHAI O Ai MTMOMTMLNDYWNSI s1 CIpYXQ G Ai MIivD MIMLNDMMN
SJ9. i | WVRBCBA bQ T5zBaG Q veOZFI WGTkdVC6Lof J8dNOakvvDOnv | vUZt Pp4dx3KAED] 4YcsyCEAPh
f opU ZG3LE- i NPl bxB5dsmi zbFI c20GZr 7Zo41 | Df 92QJ Hg9DGgwQos J- s9Ge| RQk- | UPF41 Vy1Q7Pi dP
VWKR9ohnBc2gt 8

Handle the response

The API Gateway returns an access token if the JWT claim and access token request are properly formed, and the JWT
has been signed by the private key matching the registered certificate for the client application in the Oracle Client Ap-
plication Registry.

For example, a valid response is as follows:
HTTP/ 1.1 200 OK
Cache-Control : no-store

Cont ent - Type: application/json
Pragma: no-cache

{
"access_token": “091G451HZ0V830pz6udi SEj chPynd2Ss9. "
"token_type": "Bearer",
"expires_in": "3600",

Run the sample client

The following Jython sample creates and sends a JWT Bearer token to the Authorization Server:
I NSTALL_DI R/ sanpl es/ scri pt s/ oauth/jwt . py
To run the sample, open a shell prompt at | NSTALL_DI R/ sanpl es/ scri pt s, and execute the following command:

> run oaut h/jwt. py

Further information

39

API Gateway OAuth 2.0 authentication flows

For details on the API Gateway filter that supports this flow, see Get access token using JWT.

Revoke token

In some cases a user may wish to revoke access given to an application. An access token can be revoked by calling the
API Gateway revoke service and providing the access token to be revoked. A revoke token request causes the removal
of the client permissions associated with the particular token to access the end-user's protected resources.

Revoke Token

Authorization Server

Client authentication with token to be revoked

-

Verify client can revoke token :

< Revoke token response

Client Authorization Server

The endpoint for revoke token requests is as follows:

https://<APl Gat eway>: 8089/ api / oaut h/ r evoke

The token to be revoked should be sent to the revoke token endpoint in an HTTP POST with the following parameter:

Parameter Description
t oken Required. A token to be revoked (for example,
4ecl EUX1IN60oVI CoZBbaDTIl 977SV3T9KqgJ3ay Ovs4gghGA4).

The following is an example POST request:

POST / api / oaut h/ revoke HTTP/ 1.1

Cont ent - Type: application/ x-ww« f or m url encoded; charset =UTF-8
Host: 192.168. 0. 48: 8080

Aut hori zati on: Basic W2Ft cGxl Q9uZm kZWs0aWFs QXBWO YANMDhkNG 2LW/mVDkt NG wZC04Zj | ALT
Ni MDVKYTI j NDhl Yw==t oken=4ec| EUX1N6oVI CoZBbaDT| 977SV3T9KqJ3ayOvs4gqhGA4

Run the sample client

40

API| Gateway OAuth 2.0 authentication flows

The following Jython sample client creates a token revoke request to the Authorization Server:
I NSTALL_DI R/ sanpl es/ scri pt s/ oaut h/ r evoke_t oken. py
To run the sample, open a shell prompt at | NSTALL_DI R/ sanpl es/ scri pt s, and execute the following command:

> run oaut h/revoke_t oken. py

& Enter Eoken value x|
s Enter the token to be revoked:

OK Cancel

When the Authorization Server receives the token revocation request, it first validates the client credentials and verifies
whether the client is authorized to revoke the particular token based on the client identity.

Note

Only the client that was issued the token can revoke it.

The Authorization Server decides whether the token is an access token or a refresh token:

« Ifitis an access token, this token is revoked.
. If it is a refresh token, all access tokens issued for the refresh token are invalidated, and the refresh token is re-

voked.
Response codes
The following HTTP status response codes are returned:

« HTTP 200 if processing is successful.
e HTTP 401 if client authentication failed.
. HTTP 403 if the client is not authorized to revoke the token.

The following is an example response:

Token to be revoked: 3eXnUZzkODNGbh9D94k5Xhi VAWIgu9nuZ56VAYoZi ot 4WNhI Z72D3
Revoking token...............

Response from revoke token request is: 200

Successful ly revoked t oken

Further information

For details on the API Gateway filter that supports this flow, see Revoke token.

41

API Gateway OAuth 2.0 authentication flows

Token information service

You can use the token information service to validate that an access token was issued by the API Gateway. A request to
the t okenl nf o service is an HTTP GET request for information in a specified OAuth 2.0 access token.

User Agent Authorization Server

Token Info Regquest -

Check token validity :

Token Info Response
< po

User Agent Authorization Server

The endpoint for the token information service is as follows:

htt ps: // <api gat eway>: 8089/ api / oaut h/ t okeni nf o

Getting information about a token from the Authorization Server only requires a GET request to the tokeninfo endpoint.
For example:

CGET / api / oaut h/ t okeni nfo HTTP/ 1.1

Host: 192. 168. 0. 48: 8080
access_t oken=4ecl EUX1N60VI CoZBbaDTI 977SV3T9KgJ3ayOvs4gqhGAd

This request includes the following parameter:

Parameter Description
access_t oken Required. A token that you want information about (for example:
4ecl EUX1IN60oVI CoZBbaDTIl 977SV3T9KqJ3ayOvs4gghGAd4)

The following example uses this parameter:

https:// api gat eway/ api / oaut h/ t okeni nf 0?access_t oken=4ecl EUX1N6oVI CoZBba
DTl 977SV3T9KgJ3ayOvs4gqhGAd

Run the sample client

The following Jython sample client creates a token revoke request to the Authorization Server:

42

API| Gateway OAuth 2.0 authentication flows

I NSTALL_DI R/ sanpl es/ scri pt s/ oaut h/ t oken_i nf 0. py

To run the sample, open a shell prompt at | NSTALL_DI R/ sanpl es/ scri pt s, and execute the following command:

> run oaut h/token_i nfo. py

This displays the following dialog:

E Enter token value £

- Get information about this token:

oK Cancel

When the Authorization Server receives the Token Info request, it first ensures the token is in its cache (EhCache or
Database), and ensures the token is valid and has not expired.

The following is an example response:

Get token info for this token: BcYG POQSCrt bEc1F0ag8zf 60T9r CaM.i | 1dYj FLT5zhxz3x5Scr dN
Response from token info request is: 200

**********************T(XEN I NFO RESPO\]SE***********************************

Token audi ence received from authorizati on server: Sanpl eConfidenti al App
Scopes user consented to: https://Iocal host: 8090/ aut h/ useri nf o. enmi |
Token expiry tine: 3566

User id : admn

LR R R RS R R R R R R R R R R R R R R R EREEEEEEEEREEEEEEEEREEEEEREESEE]

Response codes
The following HTTP Status codes are returned:

e 200 if processing is successful
e 400 on failure

The response is sent back as a JSON message. For example:

{
"audi ence" : "Sanpl eConfi denti al App",
"user_id" : "admin",
"scope" : "https://|ocal host: 8090/ aut h/useri nfo. emai | ",

"expires_in" : 2518

You can get additional information about the access token using message attributes. For more details, see OAuth 2.0
server message attributes.

Further information

For details on the API Gateway filter that supports this flow, see Get access token information.

43

Get access token information

Overview

The OAuth 2.0 Access Token Information filter is used to return a JSON description of the specified OAuth 2.0 access
token. OAuth access tokens are used to grant access to specific resources in an HTTP service for a specific period of
time (for example, photos on a photo sharing website). This enables users to grant third-party applications access to their
resources without sharing all of their data and access permissions.

An OAuth access token can be sent to the Resource Server to access the protected resources of the Resource Owner
(user). This token is a string that denotes a specific scope, lifetime, and other access attributes. For details on supported
OAuth flows, see APl Gateway OAuth 2.0 authentication flows.

Token settings
Configure the following fields on the Access Token Info Settings tab:

Token to verify can be found here:

Click the browse button to select the location of the access token to verify (for example, in the default OAuth Access
Token Store). To add a store, right-click Access Token Stores, and select Add Access Token Store. You can store
tokens in a cache, in a relational database, or in an embedded Cassandra database. For more details, see the section
called “Manage access tokens and authorization codes”.

Where to get access token from:
Select one of the following:

e In Query String:
This is the default setting. Defaults to the access_t oken parameter.

¢ In aselector:
Defaults to the ${ ht t p. cl i ent . get Cgi Argurment (' access_t oken')} selector. For more details on API Gate-
way selectors, see the API Gateway User Guide.

Monitoring settings

The settings on the Monitoring tab configure service-level monitoring options such as whether to store usage metrics
data to a database. This information can be used by the web-based APl Gateway Manager tool to display service use,
and by the API Gateway Analytics tool to produce reports on how the service is used.

* Monitor service usage:
Select this option if you want to store message metrics for this service.

e Monitor service usage per client:
Select this option if you want to generate reports monitoring which authenticated clients are calling which services.

e Monitor client usage:
If you want to generate reports on authenticated clients, but are not interested in which services they are calling, se-
lect this option and deselect Monitoring service usage per client.

e Which attribute is used to identify the client?:
Enter the message attribute to use to identify authenticated clients. The default is aut henti cati on. subj ect. i d,
which stores the identifier of the authenticated user (for example, the username or user's X.509 Distinguished
Name).

e Composite Context:
This setting enables you to select a service context as a composite context in which multiple service contexts are
monitored during the processing of a message. This setting is not selected by default.

For example, the APl Gateway receives a message, and sends it to ser vi ceA first, and then to ser vi ceB. Monit-

44

Get access token information

oring is performed separately for each service by default. However, you can set a composite service context before
servi ceAand ser vi ceB that includes both services. This composite service passes if both services complete suc-
cessfully, and monitoring is also performed on the composite service context.

Advanced settings

The settings on the Advanced tab include the following:

Return additional Access Token parameters:
Click Add to return additional access token parameters, and enter the Name and Value in the dialog. For example, you
could enter Depar t ment in Name, and the following selector in Value:

${accesst oken. get Addi ti onal I nf ormati on() . get (" Department")

45

Get access token using authorization code

Overview

The OAuth 2.0 Access Token using Authorization Code filter is used to get a new access token using the authoriza-
tion code. This supports the OAuth 2.0 Authorization Code Grant or Web server authentication flow, which is used by ap-
plications that are hosted on a secure server. A critical aspect of this flow is that the server must be able to protect the is-
sued client application's secret. For more details on supported OAuth flows, see APl Gateway OAuth 2.0 authentication
flows.

OAuth access tokens are used to grant access to specific resources in an HTTP service for a specific period of time (for
example, photos on a photo sharing website). This enables users to grant third-party applications access to their re-
sources without sharing all of their data and access permissions. An OAuth access token can be sent to the Resource
Server to access the protected resources of the Resource Owner (user). This token is a string that denotes a specific
scope, lifetime, and other access attributes.

Application validation settings
Configure the following fields on this tab:

Use this store to validate the Authorization Code:

Click the browse button to select the store in which to validate the authorization code (for example, in the default Authz
Code Store). To add a store, right-click Authorization Code Stores, and select Add Authorization Code Store. You
can store codes in a cache, in a relational database, or in an embedded Cassandra database. For more details, see the
section called “Manage access tokens and authorization codes”.

Find client application information from message:
Select one of the following:

¢ In Authorization Header
This is the default setting.
e In Query String:
The Client Id defaults to cl i ent _i d, and Client Secret defaults to cl i ent _secret.

Access token settings
Configure the following fields on the this tab:

Access Token will be stored here:

Click the browse button to select where to store the access token (for example, in the default OAuth Access Token
Store). To add an access token store, right-click Access Token Stores, and select Add Access Token Store. You can
store tokens in a cache, in a relational database, or in an embedded Cassandra database. For more details, see the sec-
tion called “Manage access tokens and authorization codes”.

Access Token Expiry (in secs):
Enter the number of seconds before the access token expires. Defaults to 3600 (one hour).

Access Token Length:
Enter the number of characters in the access token. Defaults to 54.

Access Token Type:

Enter the access token type. This provides the client with information required to use the access token to make a protec-
ted resource request. The client cannot use an access token if it does not understand the token type. Defaults to
Bear er .

46

Get access token using authorization code

Include Refresh Token:
Select whether to include a refresh token. This is a token issued by the Authorization Server to the client that can be
used to obtain a new access token. This setting is selected by default.

Refresh Token Expiry (in secs):
When Include Refresh Token is selected, enter the number of seconds before the refresh token expires. Defaults to

43200 (twelve hours).

Refresh Token Length:
When Include Refresh Token is selected, enter the number of characters in the refresh token. Defaults to 46.

Store additional Access Token parameters:
Click Add to store additional access token parameters, and enter the Name and Value in the dialog (for example, De-
part nent, Engi neeri ng).

Monitoring settings

The settings on this tab configure service-level monitoring options such as whether to store usage metrics data to a data-
base. This information can be used by the web-based API Gateway Manager tool to display service use, and by the API
Gateway Analytics tool to produce reports on how the service is used. For details on the fields on this tab, see the sec-
tion called “Monitoring settings” in Get access token information.

a7

Get access token using client credentials

Overview

The OAuth 2.0 Access Token using Client Credentials filter enables an OAuth client to request an access token using
only its client credentials. This supports the OAuth 2.0 Client Credentials flow, which is used when the client application
needs to directly access its own resources on the Resource Server. Only the client application's credentials or public/
private key pair are used in the this flow. The Resource Owner's credentials are not required. For more details on sup-
ported OAuth flows, see API Gateway OAuth 2.0 authentication flows.

OAuth access tokens are used to grant access to specific resources in an HTTP service for a specific period of time (for
example, photos on a photo sharing website). This enables users to grant third-party applications access to their re-
sources without sharing all of their data and access permissions. An OAuth access token can be sent to the Resource
Server to access the protected resources of the Resource Owner (user). This token is a string that denotes a specific
scope, lifetime, and other access attributes.

Application validation settings

Configure the following fields on this tab:

Find client application information from message:
Select one of the following:

¢ In Authorization Header:
This is the default setting.
e In Query String:
The Client Id defaultsto cl i ent _i d, and Client Secret defaultsto cl i ent _secret.

Access token settings
Configure the following fields on the this tab:

Access Token will be stored here:

Click the browse button to select where to store the access token (for example, in the default OAuth Access Token
Store). To add an access token store, right-click Access Token Stores, and select Add Access Token Store. You can
store tokens in a cache, in a relational database, or in an embedded Cassandra database. For more details, see the sec-
tion called “Manage access tokens and authorization codes”.

Access Token Expiry (in secs):
Enter the number of seconds before the access token expires. Defaults to 3600 (one hour).

Access Token Length:
Enter the number of characters in the access token. Defaults to 54.

Access Token Type:

Enter the access token type. This provides the client with information required to use the access token to make a protec-
ted resource request. The client cannot use an access token if it does not understand the token type. Defaults to
Bearer.

Include Refresh Token:
Select whether to include a refresh token. This is a token issued by the Authorization Server to the client that can be
used to obtain a new access token. This setting is selected by default.

Refresh Token Expiry (in secs):
When Include Refresh Token is selected, enter the number of seconds before the refresh token expires. Defaults to

48

Get access token using client credentials

43200 (twelve hours).

Refresh Token Length:
When Include Refresh Token is selected, enter the number of characters in the refresh token. Defaults to 46.

Store additional Access Token parameters:
Click Add to store additional access token parameters, and enter the Name and Value in the dialog (for example, De-
part nent and Engi neeri ng).

Generate Token Scopes:

When requesting a token from the Authorization Server, you can specify a parameter for the OAuth scopes that you wish
to access. When scopes are sent in the request, you can select whether the access token is generated only if the scopes
in the request match all or any scopes registered for the application. Alternatively, for extra flexibility you can get the
scopes by calling out to a policy.

Select one of the following options to configure how access tokens are generated based on specified scopes:

* Get scopes from aregistered application:
Select whether the scopes must match Any or All of the scopes registered for the application in the Client Applica-
tion Registry. Defaults to Any. If no scopes are sent in the request, the token is generated with the scopes re-
gistered for the application.

e Get scopes by calling policy:
Select a pre-configured policy to get the scopes, and enter the attribute that stores the scopes in the Scopes ap-
proved for token are stored in the attribute textbox. Defaults to scopes. f or. t oken. The configured filter re-
quires the scopes as set of strings on the message whiteboard.

Monitoring settings

The settings on this tab configure service-level monitoring options such as whether to store usage metrics data to a data-
base. This information can be used by the web-based APl Gateway Manager tool to display service use, and by the API
Gateway Analytics tool to produce reports on how the service is used. For details on the fields on this tab, see the sec-
tion called “Monitoring settings” in Get access token information.

49

Get access token using JWT

Overview

The OAuth 2.0 Access Token using JWT filter enables an OAuth client to request an access token using only a JSON
Web Token (JWT). This supports the OAuth 2.0 JWT flow, which is used when the client application needs to directly ac-
cess its own resources on the Resource Server. Only the client JWT token is used in this flow, the Resource Owner's
credentials are not required. For more details on supported OAuth flows, see API Gateway OAuth 2.0 authentication
flows.

A JWT is a JSON-based security token encoding that enables identity and security information to be shared across se-
curity domains. JWTs represent a set of claims as a JSON object. For more information on JWT, go to ht-
tp://self-issued.info/docs/draft-ietf-oauth-json-web-token.html.

OAuth access tokens are used to grant access to specific resources in an HTTP service for a specific period of time (for
example, photos on a photo sharing website). This enables users to grant third-party applications access to their re-
sources without sharing all of their data and access permissions. An OAuth access token can be sent to the Resource
Server to access the protected resources of the Resource Owner (user). This token is a string that denotes a specific
scope, lifetime, and other access attributes.

Application validation settings
Configure the following fields on this tab:

Audience (aud) must contain the following URI:

Enter the JWT aud (intended audience). The JWT must contain an aud URI that identifies the Authorization Server, or
service provider domain, as an intended audience. The Authorization Server must also verify that it is an intended audi-
ence for the JWT. Defaults to ht t p: / / api gat eway/ api / oaut h/ t oken.

Clock skew in seconds for JWT Claim:
When creating the JWT, an OAuth client can set certain claims relating to time (for example, i at , exp, or nbf). This field
allows you to enter a number of seconds to allow for clock skew when dealing with these claims.

If the i at claim is present, the OAuth token service asserts that the current time is greater than the issued at time. If the
exp claim is present, the OAuth token service asserts that the current time is less than or equal to the expiry time (plus
skew seconds if configured). If the nbf claim is present, the OAuth token service asserts that the current time is greater
than or equal to expiry time (minus skew seconds if configured).

Access token settings
Configure the following fields on this tab:

Access Token will be stored here:

Click the browse button to select where to cache the access token (for example, in the default OAuth Access Token
Store). To add an access token store, right-click Access Token Stores, and select Add Access Token Store. You can
store tokens in a cache, in a relational database, or in an embedded Cassandra database. For more details, see the sec-
tion called “Manage access tokens and authorization codes”

Access Token Expiry (in secs):
Enter the number of seconds before the access token expires. Defaults to 3600 (one hour).

Access Token Length:
Enter the number of characters in the access token. Defaults to 54.

Access Token Type:
Enter the access token type. This provides the client with information required to use the access token to make a protec-

50

http://self-issued.info/docs/draft-ietf-oauth-json-web-token.html
http://self-issued.info/docs/draft-ietf-oauth-json-web-token.html

Get access token using JWT

ted resource request. The client cannot use an access token if it does not understand the token type. Defaults to
Bearer.

Include Refresh Token:
Select whether to include a refresh token. This is a token issued by the Authorization Server to the client that can be
used to obtain a new access token. This setting is unselected by default.

Refresh Token Expiry (in secs):
When Include Refresh Token is selected, enter the number of seconds before the refresh token expires. Defaults to
43200 (twelve hours).

Refresh Token Length:
When Include Refresh Token is selected, enter the number of characters in the refresh token. Defaults to 46.

Store additional Access Token parameters:
Click Add to store additional access token parameters, and enter the Name and Value in the dialog (for example, De-
part ment and Engi neeri ng).

Generate Token Scopes:

When requesting a token from the Authorization Server, you can specify a parameter for the OAuth scopes that you wish
to access. When scopes are sent in the request, you can select whether the access token is generated only if the scopes
in the request match all or any scopes registered for the application. Alternatively, for extra flexibility, you can get the
scopes by calling out to a policy.

Select one of the following options to configure how access tokens are generated based on specified scopes:

e Get scopes from aregistered application:
Select whether the scopes must match Any or All of the scopes registered for the application in the Client Applica-
tion Registry. Defaults to Any. If no scopes are sent in the request, the token is generated with the scopes re-
gistered for the application.

« Get scopes by calling policy:
Select a preconfigured policy to get the scopes, and enter the attribute that stores the scopes in the Scopes ap-
proved for token are stored in the attribute field. Defaults to scopes. f or . t oken. The configured filter requires
the scopes as set of strings on the message whiteboard.

Monitoring settings
The settings on this tab configure service-level monitoring options such as whether to store usage metrics data to a data-
base. This information can be used by the web-based API Gateway Manager tool to display service use, and by the API

Gateway Analytics tool to produce reports on how the service is used. For details on the fields on this tab, see the sec-
tion called “Monitoring settings” in Get access token information.

51

Get access token using SAML assertion

Overview

The OAuth 2.0 Access Token using SAML Assertion filter enables an OAuth client to request an access token using a
SAML assertion. This supports the OAuth 2.0 SAML flow, which is used when a client wishes to utilize an existing trust
relationship, expressed through the semantics of the SAML assertion, without a direct user approval step at the authoriz-
ation server. For more details on supported OAuth flows, see APl Gateway OAuth 2.0 authentication flows.

For more information on SAML, see the IETF draft document SAML 2.0 Profile for OAuth 2.0 [ht-
tp://tools.ietf.org/html/draft-ietf-oauth-saml2-bearer-18].

OAuth access tokens are used to grant access to specific resources in an HTTP service for a specific period of time (for
example, photos on a photo sharing website). This enables users to grant third-party applications access to their re-
sources without sharing all of their data and access permissions. An OAuth access token can be sent to the Resource
Server to access the protected resources of the Resource Owner (user). This token is a string that denotes a specific
scope, lifetime, and other access attributes.

SAML assertion validation settings

Configure the following fields on this tab:

Audience and Recipient within SAML Assertion must contain the following URI:

Enter a URI that must be contained in the SAML assertion's intended audience and recipient. The SAML assertion must
contain a URI that identifies the authorization server as an intended audience, and that identifies the token endpoint URL
of the authorization server as a recipient. Defaults to ht t p: / / api gat eway/ api / oaut h/ t oken.

Drift time (seconds):
Enter a drift time in seconds to allow for clock skew.

Call the following policy to verify SAML Assertion signature:
Click the browse button to select a policy to verify the SAML assertion signature.

Access token settings

Configure the following fields on this tab:

Access Token will be stored here:

Click the browse button to select where to cache the access token (for example, in the default OAuth Access Token
Store). To add an access token store, right-click Access Token Stores, and select Add Access Token Store. You can
store tokens in a cache, in a relational database, or in an embedded Cassandra database. For more details, see the sec-
tion called “Manage access tokens and authorization codes”

Access Token Expiry (in secs):
Enter the number of seconds before the access token expires. Defaults to 3600 (one hour).

Access Token Length:
Enter the number of characters in the access token. Defaults to 54.

Access Token Type:

Enter the access token type. This provides the client with information required to use the access token to make a protec-
ted resource request. The client cannot use an access token if it does not understand the token type. Defaults to
Bearer.

Refresh Token Details:
Select one of the following options:

52

http://tools.ietf.org/html/draft-ietf-oauth-saml2-bearer-18
http://tools.ietf.org/html/draft-ietf-oauth-saml2-bearer-18
http://tools.ietf.org/html/draft-ietf-oauth-saml2-bearer-18

Get access token using SAML assertion

e« Generate a new refresh token:
Select this option to generate a new access token and refresh token pair. The old refresh token passed in the re-
quest is removed. This option is selected by default.

Enter the number of seconds before the refresh token expires in the Refresh Token Expiry (in secs) field, and
enter the number of characters in the refresh token in the Refresh Token Length field. The expiry defaults to
43200 (12 hours), and the length defaults to 46.

« Do not generate arefresh token:
Select this option to generate a new access token only. The old refresh token passed in the request is removed.

Store additional meta data with the access token which can subsequently be retrieved:
Click Add to store additional access token parameters, and enter the Name and Value in the dialog (for example, De-
part ment and Engi neeri ng).

Generate Token Scopes:

When requesting a token from the Authorization Server, you can specify a parameter for the OAuth scopes that you wish
to access. When scopes are sent in the request, you can select whether the access token is generated only if the scopes
in the request match all or any scopes registered for the application. Alternatively, for extra flexibility, you can get the
scopes by calling out to a policy.

Select one of the following options to configure how access tokens are generated based on specified scopes:

e Get scopes from aregistered application:
Select whether the scopes must match Any or All of the scopes registered for the application in the Client Applica-
tion Registry. Defaults to Any. If no scopes are sent in the request, the token is generated with the scopes re-
gistered for the application.

e« Get scopes by calling policy:
Select a preconfigured policy to get the scopes, and enter the attribute that stores the scopes in the Scopes ap-
proved for token are stored in the attribute field. Defaults to scopes. f or . t oken. The configured filter requires
the scopes as set of strings on the message whiteboard.

Monitoring settings
The settings on this tab configure service-level monitoring options such as whether to store usage metrics data to a data-
base. This information can be used by the web-based APl Gateway Manager tool to display service use, and by the API

Gateway Analytics tool to produce reports on how the service is used. For details on the fields on this tab, see the sec-
tion called “Monitoring settings” in Get access token information.

53

Consume authorization requests

Overview

The OAuth 2.0 Authorization Code Flow filter is used to consume OAuth authorization requests, and is also known as
the Authorization Request filter. This filter supports the OAuth 2.0 Authorization Code Grant (Web server) authentica-
tion flow, which is used by applications hosted on a secure server. A critical aspect of this flow is that the server must be
able to protect the issued client application's secret. The Web server flow is suitable for clients capable of interacting with
the end-user’s user-agent (typically a Web browser), and capable of receiving incoming requests from the Authorization
Server (acting as an HTTP server). The Authorization Code Grant flow is also known as the Three-Legged OAuth Flow.

The OAuth 2.0 Authorization Code Grant flow is as follows:

1. The Web server redirects the user to the API Gateway acting as an Authorization Server to authenticate and author-
ize the server to access data on their behalf.

2. After the user approves access, the Web server receives a callback with an authorization code.

3. After obtaining the authorization code, the Web server passes back the authorization code to obtain an access token
response.

4. After validating the authorization code, the API Gateway passes back a token response to the Web server.

5. After the token is granted, the Web server accesses their data.

OAuth access tokens are used to grant access to specific resources in an HTTP service for a specific period of time (for
example, photos on a photo sharing website). This enables users to grant third-party applications access to their re-
sources without sharing all of their data and access permissions. An OAuth access token can be sent to the Resource
Server to access the protected resources of the Resource Owner (user). This token is a string that denotes a specific
scope, lifetime, and other access attributes.

The OAuth 2.0 Authorization Request filter also supports the Implicit Grant (User Agent) flow. This is used by client ap-
plications (consumers) residing in the user's device (for example, in a browser using JavaScript, or from a mobile device
or desktop application). These consumers cannot keep the client secret confidential (application password or private

key).

For more details on supported OAuth flows, see APl Gateway OAuth 2.0 authentication flows.
Validation settings

Configure the following fields on the Validation/Templates tab:

Authorize Resource Owner:
Select one of the following:

e Useinternal flow
Uses the internal API Gateway flow to authorize the Resource Owner. This is the default setting. The internal flow
authenticates the user against the APl Gateway user store, and redirects the user to the Authorize Transaction fil-
ter to use sample template files for login and Resource Owner scope authorization.

Note

If you wish to store additional information with the authorization code (for Authorization Code flow), or
with an access token (for Implicit Grant flow), you must set additional parameters in the Authorize
Transaction flow filter.

e Call this policy
Click the browse button to select a policy to authorize the Resource Owner. You can use the Policy will store sub-

54

Consume authorization requests

ject in selector text box to specify where the policy is stored. Defaults to the ${ aut henti cat i on. subj ect . i d}
message attribute. For more details on selectors, see the API Gateway User Guide.

Note

If you wish to store additional information with the authorization code (for Authorization Code flow), or
with an access token (for Implicit Grant flow), you must set additional parameters in the Authorization
Code Flow filter.

Authorization code settings
Configure the following fields on the Authz Code Details tab:

Authorization Code will be stored here:

Click the browse button to select where to cache the access token (for example, in the default Authz Code Store). To
add an access token store, right-click Authorization Code Stores, and select Add Authorization Code Store. You can
store codes in a cache, in a relational database, or in an embedded Cassandra database. For more details, see the sec-
tion called “Manage access tokens and authorization codes”.

Location of Access Code redirect page:
Enter the full path to the HTML page used for the access code HTTP redirect. Defaults to the following:

${envi ronnent . VDI STDI R}/ sanpl es/ oaut h/ t enpl at es/ showAccessCode. ht ni

VDI STDI R specifies the directory in which the APl Gateway is installed.

Length:
Enter the number of characters in the authorization code. Defaults to 30.

Expiry (in secs):
Enter the number of seconds before the authorization code expires. Defaults to 600 (ten minutes).

Additional parameters to store for this Authorization Code:

If you wish to store additional metadata with the authorization code, click Add, and enter the Name and Value in the dia-
log (for example, Depart ment and Engi neeri ng). When additional data is set, it is then available in the Access
Token using Authorization Code filter when the authorization code is exchanged for an access token. You can also
specify the fields in this table using selectors. For more details, see the API Gateway User Guide.

Note

If you entered parameters for the authorization code and parameters for the access token, the data will be
merged. Data in the Access Token using Authorization Code filter may overwrite parameters stored with
the authorization code. For example, if you set Narme: John and Depart ment : Engi neeri ng in the Au-
thorization Request filter, and set Depar t nent : HR in the Access Token using Authorization Code fil-
ter, the token is created with Nanme: John and Depart ment : HR.

Access token settings
Configure the following fields on the Access Token Details tab:
Access Token will be stored here:
Click the browse button to select where to cache the access token (for example, in the default QAut h Access Token

St or e). To add an access token store, right-click Access Token Stores, and select Add Access Token Store. You
can store tokens in a cache, in a relational database, or in an embedded Cassandra database. For more details, see the

55

Consume authorization requests

section called “Manage access tokens and authorization codes”.

Expiry (in secs):
Enter the number of seconds before the access token expires. Defaults to 3600 (one hour).

Length:
Enter the number of characters in the access token. Defaults to 54.

Type:

Enter the access token type. This provides the client with information required to use the access token to make a protec-
ted resource request. The client cannot use an access token if it does not understand the token type. Defaults to
Bearer.

Additional parameters to store for this Access Token:
Click Add to store additional access token parameters, and enter the Name and Value in the dialog (for example, De-
par t ment , Engi neeri ng).

Generate Token Scopes:

When requesting a token from the Authorization Server, you can specify a parameter for the OAuth scopes that you wish
to access. You can select whether the access token is generated only if the scopes in the request match all or any
scopes registered for the application. Alternatively, for extra flexibility you can get the scopes by calling out to a policy.

Select one of the following options to configure how access tokens are generated based on specified scopes:

* Get scopes from aregistered application:
Select whether the scopes must match Any or All of the scopes registered for the application in the Client Applica-
tion Registry. Defaults to Any. If no scopes are sent in the request, the token is generated with the scopes re-
gistered for the application.

e Get scopes by calling policy:
Select a pre-configured policy to get the scopes, and enter the attribute that stores the scopes in the Scopes ap-
proved for token are stored in the attribute textbox. Defaults to scopes. f or. t oken. The configured filter re-
quires the scopes as set of strings on the message whiteboard.

Monitoring settings

The settings on this tab configure service-level monitoring options such as whether to store usage metrics data to a data-
base. This information can be used by the web-based APl Gateway Manager tool to display service use, and by the API
Gateway Analytics tool to produce reports on how the service is used.

Monitoring Options
For details on the Monitoring Options fields on this tab, see the section called “Monitoring settings” in Get access token
information.

Record Outbound Transactions

Select whether to record outbound message traffic. You can use this setting to override the Record Outbound Transac-
tions setting on the System Settings > Traffic Monitor screen. This setting is selected by default.

56

Authorize transaction

Overview

The OAuth 2.0 Authorize Transaction filter is used to authorize the Resource Owner and grant (allow/deny) client ac-
cess to the resources. This supports the OAuth 2.0 Authorization Code Grant or Web server authentication flow, which is
used by applications hosted on a secure server. A critical aspect of this flow is that the server must be able to protect the
issued client application's secret. The Web server flow is suitable for clients capable of interacting with the end-user’s
user-agent (typically a Web browser), and capable of receiving incoming requests from the Authorization Server (acting
as an HTTP server).

For more details on supported OAuth flows, see APl Gateway OAuth 2.0 authentication flows.

Template settings
Configure the following fields on the Validation/Templates tab:

HTML Templates:
Specify the following templates for HTML forms:

* Login Form:
Enter the full path to the HTML form that the Resource Owner can use to log in. Defaults to the following:

${envi ronnent . VDI STDI R}/ sanpl es/ oaut h/ t enpl at es/ | ogi n. ht m

e Authorization Form:
Enter the full path to the HTML form that the Resource Owner can use to grant (allow/deny) client access to the re-
sources. Defaults to the following:

${envi ronment . VDI STDI R}/ sanpl es/ oaut h/ t enpl at es/ r equest Access. ht m

VDI STDI R specifies the directory in which the APl Gateway is installed.
Authorization code settings

Configure the following fields on the Authz Code Details tab:

Authorization Code will be stored here:

Click the browse button to select where to cache the access token (for example, in the default Aut hz Code Store). To
add an access token store, right-click Authorization Code Stores, and select Add Authorization Code Store. You can
store codes in a cache, in a relational database, or in an embedded Cassandra database. For more details, see the sec-
tion called “Manage access tokens and authorization codes”.

Location of Access Code redirect page:
Enter the full path to the HTML page used for the access code HTTP redirect. Defaults to the following:

${envi ronnent . VDI STDI R}/ sanpl es/ oaut h/ t enpl at es/ showAccessCode. ht ni

Length:
Enter the number of characters in the authorization code. Defaults to 30.

Expiry (in secs):
Enter the number of seconds before the authorization code expires. Defaults to 600 (ten minutes).

57

Authorize transaction

Additional parameters to store for this Authorization Code:

If you wish to store additional metadata with the authorization code, click Add, and enter the Name and Value in the dia-
log (for example, Depart nment and Engi neeri ng). When additional data is set, it is then available in the Access
Token using Authorization Code filter when the authorization code is exchanged for an access token. You can also
specify the fields in this table using selectors. For more details, see the API Gateway User Guide.

Note

If you entered parameters for the authorization code and parameters for the access token, the data will be
merged. Data in the Access Token using Authorization Code filter may overwrite parameters stored with
the authorization code. For example, if you set Nanme: John and Depart nent : Engi neeri ng in the Au-
thorize Transaction filter, and set Depart nent : HR in the Access Token using Authorization Code fil-
ter, the token is created with Nane: John and Depart nent : HR.

Access token settings
Configure the following fields on the Access Token Details tab:

Access Token will be stored here:

Click the browse button to select where to cache the access token (for example, in the default QAut h Access Token
St ore). To add an access token store, right-click Access Token Stores, and select Add Access Token Store. You
can store tokens in a cache, in a relational database, or in an embedded Cassandra database. For more details, see the
section called “Manage access tokens and authorization codes”.

Expiry (in secs):
Enter the number of seconds before the access token expires. Defaults to 3600 (one hour).

Length:
Enter the number of characters in the access token. Defaults to 54.

Type:

Enter the access token type. This provides the client with information required to use the access token to make a protec-
ted resource request. The client cannot use an access token if it does not understand the token type. Defaults to
Bearer.

Additional parameters to store for this Access Token:
Click Add to store additional access token parameters, and enter the Name and Value in the dialog (for example, De-
part ment, Engi neeri ng).

Generate Token Scopes:

When requesting a token from the Authorization Server, you can specify a parameter for the OAuth scopes that you wish
to access. When scopes are sent in the request, you can select whether the access token is generated only if the scopes
in the request match all or any scopes registered for the application. Alternatively, for extra flexibility you can get the
scopes by calling out to a policy.

Select one of the following options to configure how access tokens are generated based on specified scopes:

e Get scopes from aregistered application:
Select whether the scopes must match Any or All of the scopes registered for the application in the Client Applica-
tion Registry. Defaults to Any. If no scopes are sent in the request, the token is generated with the scopes re-
gistered for the application.

e« Get scopes by calling policy:
Select a pre-configured policy to get the scopes, and enter the attribute that stores the scopes in the Scopes ap-
proved for token are stored in the attribute textbox. Defaults to scopes. f or. t oken. The configured filter re-
quires the scopes as set of strings on the message whiteboard.

58

Authorize transaction

Monitoring settings

The settings on this tab configure service-level monitoring options such as whether to store usage metrics data to a data-
base. This information can be used by the web-based API Gateway Manager tool to display service use, and by the API
Gateway Analytics tool to produce reports on how the service is used. For details on the fields on this tab, see the sec-
tion called “Monitoring settings” in Get access token information.

59

Refresh access token

Overview

The OAuth 2.0 Refresh Access Token filter enables an OAuth client to get a new access token using a refresh token.
This filter supports the OAuth 2.0 Refresh Token flow. After the client consumer has been authorized for access, they
can use a refresh token to get a new access token (session ID). This is only done after the consumer already has re-
ceived an access token using either the Web Server or User-Agent flow. For more details on supported OAuth flows, see
API Gateway OAuth 2.0 authentication flows.

Application validation settings
Configure the following fields on this tab:

Find client application information from message:
Select one of the following:

e In Authorization Header:
This is the default setting.
e In Query String:
The Client Id defaults to cl i ent _i d, and Client Secret defaults to cl i ent _secret.

Access token settings
Configure the following fields on this tab:

Access Token will be stored here:

Click the browse button to select where to cache the access token (for example, in the default OAuth Access Token
Store). To add an access token store, right-click Access Token Stores, and select Add Access Token Store. You can
store tokens in a cache, in a relational database, or in an embedded Cassandra database. For more details, see the sec-
tion called “Manage access tokens and authorization codes”.

Access Token Expiry (in secs):
Enter the number of seconds before the access token expires. Defaults to 3600 (one hour).

Access Token Length:
Enter the number of characters in the access token. Defaults to 54.

Access Token Type:

Enter the access token type. This provides the client with information required to use the access token to make a protec-
ted resource request. The client cannot use an access token if it does not understand the token type. Defaults to
Bearer.

Refresh Token Details:
Select one of the following options:

* Generate a new refresh token:
Select this option to generate a new access token and refresh token pair. The old refresh token passed in the re-
quest is removed. This option is selected by default.

Enter the number of seconds before the refresh token expires in the Refresh Token Expiry (in secs) field, and
enter the number of characters in the refresh token in the Refresh Token Length field. The expiry defaults to
43200 (12 hours), and the length defaults to 46.

« Do not generate a refresh token:
Select this option to generate a new access token only. The old refresh token passed in the request is removed.

60

Refresh access token

e Preserve the existing refresh token:
Select this option to generate a new access token and preserve the existing refresh token. The refresh token passed
in the request is sent back with the access token response.

Store additional meta data with the access token which can subsequently be retrieved:
Click Add to store additional access token parameters, and enter the Name and Value in the dialog (for example, De-
part ment and Engi neeri ng).

Monitoring settings
The settings on this tab configure service-level monitoring options such as whether to store usage metrics data to a data-
base. This information can be used by the web-based APl Gateway Manager tool to display service use, and by the API

Gateway Analytics tool to produce reports on how the service is used. For details on the fields on this tab, see the sec-
tion called “Monitoring settings” in Get access token information.

61

Get access token using resource owner credentials

Overview

The OAuth 2.0 Resource Owner Credentials filter is used to directly obtain an access token and an optional refresh
token. This supports the OAuth 2.0 Resource Owner Password Credentials flow, which can be used as a replacement for
an existing login when the consumer client already has the user’s credentials. For more details on supported OAuth
flows, see API Gateway OAuth 2.0 authentication flows.

OAuth access tokens are used to grant access to specific resources in an HTTP service for a specific period of time (for
example, photos on a photo sharing website). This enables users to grant third-party applications access to their re-
sources without sharing all of their data and access permissions. An OAuth access token can be sent to the Resource
Server to access the protected resources of the Resource Owner (user). This token is a string that denotes a specific
scope, lifetime, and other access attributes.

Application validation settings
Configure the following fields on this tab:

Authenticate Resource Owner
Select one of the following:

e Authenticate credentials using this repository:
Select one of the following from the list:
e Sinple Active Directory Repository
e Local User Store

e Call this policy:
Click the browse button to select a policy to authenticate the Resource Owner. You can use the Policy will store
subject in selector text box to specify where the policy is stored. Defaults to the
${aut henti cati on. subj ect . i d} message attribute. For more details on selectors, see the APl Gateway User
Guide.

Find client application information from message:
Select one of the following:

¢ In Authorization Header:
This is the default setting.
e In Query String:
The Client Id defaults to cl i ent _i d, and Client Secret defaults to cl i ent _secret.

Access token settings
Configure the following fields on the this tab:
Access Token will be stored here:
Click the browse button to select where to cache the access token (for example, in the default OAuth Access Token
Store). To add an access token store, right-click Access Token Stores, and select Add Access Token Store. You can
store tokens in a cache, in a relational database, or in an embedded Cassandra database. For more details, see the sec-

tion called “Manage access tokens and authorization codes”.

Access Token Expiry (in secs):
Enter the number of seconds before the access token expires. Defaults to 3600 (one hour).

62

Get access token using resource owner credentials

Access Token Length:
Enter the number of characters in the access token. Defaults to 54.

Access Token Type:

Enter the access token type. This provides the client with information required to use the access token to make a protec-
ted resource request. The client cannot use an access token if it does not understand the token type. Defaults to
Bearer.

Include Refresh Token:
Select whether to include a refresh token. This is a token issued by the Authorization Server to the client that can be
used to obtain a new access token. This setting is selected by default.

Refresh Token Expiry (in secs):
When Include Refresh Token is selected, enter the number of seconds before the refresh token expires. Defaults to
43200 (twelve hours).

Refresh Token Length:
When Include Refresh Token is selected, enter the number of characters in the refresh token. Defaults to 46.

Store additional Access Token parameters:
Click Add to store additional access token parameters, and enter the Name and Value in the dialog (for example, De-
part ment and Engi neeri ng).

Generate Token Scopes:

When requesting a token from the Authorization Server, you can specify a parameter for the OAuth scopes that you wish
to access. You can select whether the access token is generated only if the scopes in the request match all or any
scopes registered for the application. Alternatively, for extra flexibility you can get the scopes by calling out to a policy.

Select one of the following options to configure how access tokens are generated based on specified scopes:

*« Get scopes from aregistered application:
Select whether the scopes must match Any or All of the scopes registered for the application in the Client Applica-
tion Registry. Defaults to Any. If no scopes are sent in the request, the token is generated with the scopes re-
gistered for the application.

e Get scopes by calling policy:
Select a pre-configured policy to get the scopes, and enter the attribute that stores the scopes in the Scopes ap-
proved for token are stored in the attribute textbox. Defaults to scopes. f or. t oken. The configured filter re-
quires the scopes as set of strings on the message whiteboard.

Monitoring settings

The settings on this tab configure service-level monitoring options such as whether to store usage metrics data to a data-
base. This information can be used by the web-based APl Gateway Manager tool to display service use, and by the API
Gateway Analytics tool to produce reports on how the service is used.

Monitoring Options
For details on the Monitoring Options fields on this tab, see the section called “Monitoring settings” in Get access token
information.

Record Outbound Transactions

Select whether to record outbound message traffic. You can use this setting to override the Record Outbound Transac-
tions setting on the System Settings > Traffic Monitor screen. This setting is selected by default.

63

Revoke token

Overview

The OAuth 2.0 Revoke a Token filter is used to revoke a specified OAuth 2.0 access or refresh token. A revoke token
request causes the removal of the client permissions associated with the specified token used to access the user's pro-
tected resources. For more details on supported OAuth flows, see APl Gateway OAuth 2.0 authentication flows.

OAuth access tokens are used to grant access to specific resources in an HTTP service for a specific period of time (for
example, photos on a photo sharing website). This enables users to grant third-party applications access to their re-
sources without sharing all of their data and access permissions. OAuth refresh tokens are tokens issued by the Author-
ization Server to the client that can be used to obtain a new access token.

Revoke token settings
Configure the following fields on this tab:

Token to be revoked can be found here:

Click the browse button to select the cache to revoke the token from (for example, the default OAuth Access Token
Store). To add an access token store, right-click Access Token Stores, and select Add Access Token Store. You can
store tokens in a cache, in a relational database, or in an embedded Cassandra database. For more details, see the sec-
tion called “Manage access tokens and authorization codes”.

Find client application information from message:
Select one of the following:

¢ In Authorization Header:
This is the default setting.
e In Query String:
The Client Id defaultsto cl i ent _i d, and Client Secret defaultsto cl i ent _secret.

Monitoring settings
The settings on this tab configure service-level monitoring options such as whether to store usage metrics data to a data-
base. This information can be used by the web-based APl Gateway Manager tool to display service use, and by the API

Gateway Analytics tool to produce reports on how the service is used. For details on the fields on this tab, see the sec-
tion called “Monitoring settings” in Get access token information.

64

Validate access token

Overview

The OAuth 2.0 Validate Access Token filter is used to validate a specified access token contained in persistent storage.
OAuth access tokens are used to grant access to specific resources in an HTTP service for a specific period of time (for
example, photos on a photo sharing website). This enables users to grant third-party applications access to their re-
sources without sharing all of their data and access permissions.

For more details on supported OAuth flows, see APl Gateway OAuth 2.0 authentication flows.

General settings
Configure the following fields:

Name:
Enter a suitable name for this filter.

Verify access token is in cache:

Click the browse button to select the cache in which to verify access token (for example, in the default OAuth Access
Token Store). To add an access token store, right-click Access Token Stores, and select Add Access Token Store.
You can store tokens in a cache, in a relational database, or in an embedded Cassandra database. For more details, see
the section called “Manage access tokens and authorization codes”.

Location of access token:
Select one of the following:

¢ In Authorization Header with prefix:
The access token is in the Authorization header with the selected prefix. Defaults to Bear er . This is the default op-
tion.

e In query string/form body field named:
The access token is in the HTTP query string with the name specified in the text box.

e In Attribute:
The access token is in the APl Gateway message attribute specified in the text box.

Validate Scopes:
Select whether scopes match Any or All of the configured scopes in the table, and click Add to add an OAuth scope.
The default scopes are found in ${ ht t p. request . uri }.

For example, the default scopes used in the OAuth demos are r esour ce. READand r esour ce. WRI TE.

Response codes

The Validate Access Token filter performs a number of checks to determine if the token is valid. If any of the checks
fail, the response can be examined to determine the reason for the failure.

The filter performs the following sequence of steps to determine if the token is valid:

1. Locate the token in the incoming request. The token can be in the Authorization header, in a query string, or in a
message attribute.
e If the filter is configured to find the token in a message attribute and no token is found, the following response is
sent:

HTTP/ 1.1 400 Bad Request
WAV Aut hent i cat e: Bearer real nE" Def aul t Real ni',

65

Validate access token

4.

error="inval id_request"”,
error_description="Unable to find token in the nessage."

If the filter is configured to find the token in the Authorization Bearer header and no token is found (or the Au-
thorization header is not found or does not contain the Bearer header), the following response is sent:

HTTP/ 1.1 401 Unaut hori zed
WAWV¥ Aut hent i cat e: Bearer real n="Def aul t Real nt'

If the token is found in the incoming request, next verify that the token can be found in the APl Gateway persistent
storage mechanism. If it cannot be found, the following response is sent:

HTTP/ 1.1 401 Unaut hori zed

WAV Aut hent i cat e: Bear er real nE" Def aul t Real ni',

error="inval i d_t oken",

error_description="Unable to find the access token in persistent storage."

If the token is found in persistent storage, next verify the authenticity of the token. This includes checking the token's
expiry, client identifier, and required scopes.

Check if the token has expired. An expired token must not be able to allow access to a resource. If the token
has expired, the following response is sent:

HTTP/ 1.1 401 Unaut hori zed

VWAV Aut hent i cat e: Bearer real n¥"Def aul t Real ni',
error="inval i d_t oken",

error_description="The access token expired."

Check the client ID in the token and ensure it is the same as a client ID stored in the API Gateway client re-
gistry. (To use OAuth you need a client application and the client application must have OAuth credentials.)
Check that the application is still enabled. If either checks fail, the following response is sent:

HTTP/ 1.1 401 Unaut hori zed

WAV Aut hent i cat e: Bearer real n="Def aul t Real ni',

error="invalid token",

error_description="The client app was not found or is disabled. "

Validate the scopes in the token against the scopes configured in Policy Studio. In Policy Studio you can specify
that scopes should match Any or All of the scopes listed in the table. If All is selected, the token scopes must
match all of the scopes listed in Policy Studio. If Any is selected, the token scopes intersection with the scopes
listed in Policy Studio must not be empty. If the scopes do not match, the following response is sent:

HTTP/ 1.1 403 For bi dden

WAV Aut hent i cat e: Bear er real nE" Def aul t Real nt',

error="insufficient_scope",

error_description="scope(s) associated with access token are not valid to access
this resource.",

scope="Scopes nmust match Any of these scopes:resource. WRl TE"

The message includes a further string listing the scopes required to access the resource.

If the token is authentic, allow access to the resource.

66

OAuth 2.0 server message attributes

Overview

Most of the OAuth 2.0 server policy filters in the APl Gateway generate message attributes that can be queried further
using the API Gateway selector syntax. For example, the message attributes generated by the OAuth server filters in-
clude the following:

e accesstoken

e« accesstoken. aut hn

e authzcode

e authentication.subject.id
e oauth.client.details

e scope attributes

For more details on selectors, see the API Gateway User Guide.

accesstoken methods

The following methods are available to call on the accesst oken message attribute:

accesst oken. get Val ue() }
accesst oken. get Expi rati on()

accesst oken. get Expi resin()}

accesst oken. i sExpired()}

accesst oken. get TokenType() }

accesst oken. get Ref reshToken() }

accesst oken. get QAut h2Ref r eshToken() . get Val ue() }
accesst oken. get QAut h2Ref r eshToken() . get Expi rati on
accesst oken. get QAut h2Ref r eshToken() . get Expi r esl n(
accesst oken. get QAut h2Ref r eshToken() . hasExpi red()}
accesst oken. hasRefresh()}

accesst oken. get Scope() }

accesst oken. get Addi ti onal I nformati on()}

}

()}
)}

ARAPAPARAPAAARPAAARSH

The following example shows output from querying each of the accesst oken methods:

S00H JYASr nXgn2f L2VWji unaLf SBhW/6W JMomOal131HoQz ZB1r NJ
Fri Oct 05 17:16:54 | ST 2012

3599

fal se

Bear er

xi f 9oNH 83NAETQLQxnB5Goqf u9dKeRecFnBkx Tkbc 6y HDf K
xi f 9oNH 83NAETQLQxnBGoqf u9dKe RecFnBkx Tkbc 6y HDf K
Sat Oct 06 04:16:54 | ST 2012

43199

fal se

true

https:/ /1 ocal host: 8090/ aut h/ useri nf 0. enai
{depart nent =engi neeri ng}

accesstoken.authn methods

The following methods are available to call on the accesst oken. aut hn message attribute:

${accesst oken. aut hn. get User Aut henti cati on()}

67

OAuth 2.0 server message attributes

${ accesst oken.
${ accesst oken.
${ accesst oken.
${ accesst oken.
${ accesst oken.

aut hn
aut hn
aut hn
aut hn
aut hn

. get Aut hori zat i onRequest
. get Aut hori zat i onRequest
. get Aut hori zat i onRequest
. get Aut hori zat i onRequest
. get Aut hori zat i onRequest

()
()
()
()
OF

get Scope() }
getClientld()}
getState()}

get Redirect Uri ()}
get Paranet ers() }

The following example shows output from querying each of the accesst oken. aut hn methods:

admi n

[https://|ocal host: 8090/ aut h/ useri nfo. enai |]

Sanpl eConfi denti al App

343dgak32ksl a

https:/ /1 ocal host/ oaut h_cal | back

{client_secret=6808d4b6- ef 09- 4b0d- 8f 28- 3b05da9c48ec,
scope=https://| ocal host: 8090/ aut h/ useri nfo. emai |, grant_type=authorization_code
redirect _uri=https://|ocal host/oauth_cal | back, state=null
code=FOT4nudbgl Qouuj Rl 8oH3EOWzad QP, cli ent _i d=Sanpl eConfi denti al App}

authzcode methods

The following methods are available to call on the aut hzcode message attribute:

${ aut hzcode. get Code() }

${aut hzcode. get State()}

${aut hzcode. get Appl i cati onName() }

${aut hzcode. get Expi rati on()}

${aut hzcode. get Expi resin() }

${aut hzcode. get Redi rect URI () }

${ aut hzcode. get Scopes() }

${aut hzcode. get User I dentity()}

${aut hzcode. get Addi ti onal I nf ormati on()}

The following example shows output from querying each of the aut hzcode methods:

F8aHby7zct NRknmW p3voe61H20Mi1
sds12dsd3343ddsd

Sanpl eConfi denti al App

Fri Oct 05 15:47:39 |ST 2012

599 (expiry in secs)

https://1 ocal host/ oaut h_cal | back
[https://|ocal host: 8090/ aut h/ useri nfo. emai |]
admi n

{costunit=hr}

oauth.client.details methods

The following methods are available to call on the oaut h. cl i ent . det ai | s message attribute:

get Code() }
getState()}

get Appl i cati onNanme() }
get Expi ration()}

get Expi resin()}

get Redi rect URI ()}

get Scopes()}

get Userl dentity()}

${ aut hzcode.
${ aut hzcode.
${ aut hzcode.
${ aut hzcode.
${ aut hzcode.
${ aut hzcode.
${ aut hzcode.
${ aut hzcode.

The following example shows output from querying each of the oaut h. cl i ent . det ai | s methods:

68

OAuth 2.0 server message attributes

F8aHby7zct NRknmW p3voe61H20Mi1
sds12dsd3343ddsd

Sanpl eConfi denti al App

Fri Oct 05 15:47:39 |ST 2012

599 (expiry in secs)

https:/ /1 ocal host/ oaut h_cal | back

[gt tps://1ocal host: 8090/ aut h/ useri nfo. emai |]
admi n

Example of querying a message attribute

If you add additional access token parameters to the OAuth 2.0 Access Token Info filter, you can return a lot of addi-
tional information about the token. For example:

{
"audi ence" : "Sanpl eConfidenti al App",
"user_id" : "admin",
"scope" : "https://|ocal host: 8090/ aut h/ useri nfo. emai |l ",
"explires_in" : 3567,
"Access Token Expiry Date" : "Wed Aug 15 11:19:19 | ST 2012",
"Aut henti cati on paraneters" : "{usernane=adm n,
client_secret=6808d4b6- ef 09- 4b0d- 8f 28- 3b05da9c48ec,
scope=https://| ocal host: 8090/ aut h/ useri nfo. emai |, grant_type=password,

redirect _uri=null, state=null, client_id=Sanpl eConfidenti al App,
passwor d=changene} ",
"Access Token Type:" : "Bearer"

You also have the added flexibility to add extra name/value pair settings to access tokens upon generation.The OAuth
2.0 access token generation filters provide an option to store additional parameters for an access token. For example, if
you add the name/value pair Depar t ment / Engi neer i ng to the Client Credentials filter:

69

OAuth 2.0 server message attributes

Access Token using Client Credentials %

The client can request an Access Token using only its Client Credentials

Name: |:Access Token using client credentials |

Application Validation | Access Token | Monitoring

Access Token will be stored here: | OAuth Access Token Store | u

Access Token Details

Access Token Expiry(in secs) |:3600 | Access Token Length | 54 | Access Token Type :Bearer |

Refresh Token Details

(") Generate a new refresh token
Refresh Token Expiry(in secs) Refresh Token Length
@® Do not generate a refresh token

Store additional meta data with the access token which can subsequently be retrieved.

Name Value
Department Engineering

Edit | | Delete

Generate Token Scopes
® Getscopes from aregistered application
If scopes are in the request then they must match | Any | of the scopes registered for the application.
IF no scopes are in the request then scopes registered for the application will be used.

() Getscopes by calling a policy

Scopes approved For token are stored in attribute:

You can then update the Access Token Info filter to add a name/value pair using a selector to get the following value:
Depart ment / ${ accesst oken. get Addi ti onal | nformati on() . get (" Departnent")}

For example:

70

OAuth 2.0 server message attributes

Access Token Information ._J
_
For a given Access Token, return a json description of the token
Mame: | Access Token Information
Access Token Info Settings | Monitaring | Advanced
Feturn additional Access Token parameters
Marme Yalue
iDepartrment 44 accesstoken, getddditionalInformation)), get" Department™
Then the JSON response is as follows:
{ , . :
"audi ence" : " Sanpl eConfi denti al App"”,
"user_id" : "Sanpl eConfidential App",
"scope" : "https://|ocal host: 8090/ aut h/ useri nfo.email",
"expires_in" : 3583,
"Access Token Type:" : "Bearer",
"Aut henti cati on paranmeters" :
"{client_secret=6808d4b6- ef 09- 4b0d- 8f 28- 3b05da9c48ec,
scope=https://| ocal host: 8090/ aut h/ useri nfo. emai |, grant_type=client_credential s,
redirect _uri=null, state=null, client_id=Sanpl eConfi denti al App}",
"Departnent” : "Engi neering",
"Access Token Expiry Date" : "Wd Aug 15 12:10:57 | ST 2012"

You can also use APl Gateway selector syntax when storing additional information with the token. For more details on
selectors, see the API Gateway User Guide.

OAuth scope attributes

In addition, the following message attributes are used by the OAuth filters to manage OAuth scopes. The scopes are
stored as a set of strings (for example, r esour ce. READ and r esour ce. WRI TE):

e scopes.in.token
Stores the OAuth scopes that have been sent in to the Authorization Server when requesting the access token.

e scopes.for.token
Stores the OAuth scopes that have been granted for the access token request.

e scopes.required
Used by the Validate Access Token filter only. If there is a failure accessing an OAuth resource due to incorrect
scopes in the access token, an i nsuf fi cent _scope exception is sent back in the WWM Aut hent i cat e header.
When Get scopes by calling a policy is set, the configured policy can set the scopes. r equi r ed message attrib-

71

OAuth 2.0 server message attributes

ute. This enables the OAuth Resource Server to properly interact with client applications and provide useful error re-
sponse messages. For example:

WAV Aut hent i cate Bearer real ne"Def aul t Real ni', error="i nsufficient_scope",
error_description="scope(s) associated with access token are not valid
to access this resource", scope="Scopes nust match Al of these scopes:
https://1 ocal host: 8090/ aut h/ user . phot os https://| ocal host: 8090/ aut h/ useri nfo. emai | "

72

Introduction to API Gateway OAuth 2.0 Client

Overview

OAuth is an open standard for authorization that enables client applications to access server resources on behalf of a
specific Resource Owner. OAuth also enables Resource Owners (end users) to authorize limited third-party access to
their server resources without sharing their credentials.

The API Gateway can act as the client application in an OAuth 2.0 scenario, as such the APl Gateway can instigate the
authorization process, handle redirects and request OAuth tokens from an authorization server. Received tokens are
stored securely and subsequently used to access protected resources on behalf of users. These features provide the be-
nefits that the oauth client burden is moved to the gateway, the resource owner’s credentials are never shared with the
client application, and the access token is never shared with the resource owner’s user agent.

Note

This guide assumes that you are familiar with both the terms and concepts described in the OAuth 2.0 Au-
thorization Framework [http://tools.ietf.org/html/rfc6749] and the OAuth Server features of the API Gateway
see Chapter 1, APl Gateway as an OAuth server.

APl Gateway OAuth Client features
The API Gateway ships with the following features to support OAuth 2.0 Client functionality:

* Provider Profiles for defining OAuth Service providers and the applications registered therein.
* A set of pre-configured sample Provider Profiles for use with Axway, Google and Salesforce OAuth services
e Storage of received tokens
e Support for the following OAuth flows:
e Authorization Code
* Resource Owner Password Credentials
e Client Credentials
o JIWT
e SAML

Note

The Implicit grant type is not supported as it is designed to support client applications that do not have a se-
cure server component and as such is not applicable for the APl Gateway acting as an OAuth client.

The following diagram shows the roles of the APl Gateway as an OAuth 2.0 Client Application accessing OAuth services
provided By the Axway API Gateway, Google and Salesforce:

73

http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/rfc6749

Introduction to API Gateway OAuth 2.0 Client

Client Application an

APl Gateway
Protected Resources
@ Accesses Protected N
Resources P
Authorization Server ‘ Ik Applications
Resource Server
P ._ =
Issues Access U i j Data
Tokens Authorized Access to v 3 o
5, axwa_y Protected Resources L
Accesses e
Services

Go gle N
i saleg%rce ‘
g ;y Service Bus

h .
(Cloud-Based
Q Services

User
{Resource Owner)

Application
Servers

OAuth 2.0 example client workflow

The OAuth 2.0 client is responsible for accessing the OAuth 2.0 protected resources of other servers. It is useful to con-
sider an example workflow to understand how the API Gateway fits the role of OAuth Client, for this we use a similar ex-
ample to the one in the section called “OAuth 2.0 example workflow” but in this context the APl Gateway assumes the
role of client, and the service provider is Google. As an oauth client the API Gateway wishes to access a calendar of a

local user who maintains a personal account on Google, but it is required that the user does not reveal their Google cre-
dentials to the APl Gateway.

This problem can be solved using the example OAuth 2.0 Web Server flow shown in the following diagram:

74

Introduction to API Gateway OAuth 2.0 Client

Resource Server

Client Application @

Access data
Qg |

APP

‘ W v [e e [e
..]
:) ;
1 -
@ ' "« Issue access token + Delegates
o “a ! authentication
Access service | S ¢ authorization
; :
) o i
] @ b

-
Issue authz code *s

®

T -

Grant access

Resource Owner
(User)

Authorization Server

Out of band, the API Gateway pre-registers with Google and obtains a client ID/secret. The APl Gateway also registers a
callback URL to receive the authorization code from Google when the Resource Owner authorizes access to their calen-
dar. The printing application has also requested access to an APl named / googl e/ cal endar, which has an OAuth
scope of cal endar . The credentials received from Google are added to the Google Provider Profile on the APl Gateway
via PolicyStudio, see Configure OAuth 2.0 client applications. The Provider Profile is also configured with the Authoriza-
tion end point and Token endpoint of the Google Authorization server. The callback URL is also created as a HTTP
Listener on the API Gateway with a filter for receiving the authorisation code.

The steps in the diagram are described as follows:

1. With a User Agent (UA), such as a browser or mobile phone, the user accesses a service defined on the API Gate-
way. This service must access Google on the users behalf and so instigates the authorization flow by redirecting the
UA to the authorization endpoint defined in the Google Provider Profile.

2. After following the redirect the user logs into their Google account and authorizes the application for the requested
scope.

Note

The user has not shared their Google username and password with the API Gateway app. At this
point, the Resource Owner is no longer involved in the process.

75

Introduction to APl Gateway OAuth 2.0 Client

The authorization server then redirects the users UA to the callback url on the API Gateway along with an authoriza-
tion code.

On receiving the authorization code the APl Gateway client app can exchange this short-lived code for an access
token. The client app sends another request to the Authorization Server, this time to the token endpoint, saying it
has a code that proves the user has authorized it to access their calendar, and now issue the access token to be
sent on to the API (Resource Server). The Authorization Server verifies the authorization code and returns an ac-
cess token. The API Gateway then stores the access token in persistent storage.

The client app then attaches the access token to the API (Resource Server) requests, and receives the calendar in-
formation as requested.

76

Set up API Gateway OAuth 2.0

Overview

This chapter describes how to deploy the OAuth 2.0 client sample provided with the API Gateway. The sample demon-

strate

Enable OAuth 2.0 management

The OAuth Services are not available in the basic installation. They must be deployed manually. However, there is a con-
venience script in $VDISTDIR/samples/scripts/oauth for deploying the OAuth 2.0 Client demo, supporting policies and
sample Provider Profiles, this can be run from $VDISTDIR/samples/scripts with: Linux:

./run. sh oaut h/ depl oyQAut hConfi g. py --type=clientdenp

Windows:

run. bat oaut h\ depl oyQAut hConfi g. py --type=clientdeno

The parameters for this script are as follows:

Usage: depl oyQAut hConfi g. py [opti ons]

Opt i ons:
-h, --help

show this hel p nessage and exit

-u USERNANME, - -user nane=USERNAME

The user to connect to the topol ogy (default 'admn')

-p PASSWORD, - - passwor d=PASSWORD

- - por t =PORT

- -adm n=ADM N

- - adm npw=ADM NPW
--type=TYPE

The password for the user to connect to the topol ogy
connect user (default 'changene')

The port Cdient Application registry is |istening on
(default 8089)

The Cient Application Registry adm n nane (default

r egadmi n)

The Cient Application Registry adm n password
(default changene)

The depl oynent type: "authzserver", "clientdenn" or
"all" (default all)

-g GROUP, --group=GROUP

The group nanme

-n SERVI CE, --service=SERVICE

The servi ce nane

77

Configure OAuth 2.0 client applications

Overview

OAuth 2.0 client credential profiles enable you to globally configure authentication settings for OAuth 2.0 as a client. An
OAuth 2.0 credential profile is the combination of OAuth service provider details and a specific OAuth client application.
An OAuth service provider defines the authorization and token endpoints. API Gateway includes three preconfigured
OAuth providers:

¢ API| Gateway
* Google
. SalesForce

Client applications must be registered with the service provider to obtain a client ID and secret as well as to register addi-
tional details like the OAuth flow type and redirect URL (where required). Google applications can be registered at ht-
tps://cloud.google.com/console, SalesForce applications can be registered at https://www.salesforce.com, and API Gate-
way applications can be registered in the client application registry or APl Manager (ports 8089 and 8075 respectively).

The API Gateway provider represents OAuth services running on an API Gateway. For more information on setting up
the OAuth server on API Gateway, see Set up API Gateway OAuth 2.0. The API Gateway provider uses the existing
OAuth server samples for authorization and token endpoints (htt ps://127.0. 0. 1: 8089/ api / oaut h/ aut hori ze
and https://127.0.0.1: 8089/ api / oaut h/ t oken). The Google and SalesForce provider settings ship with the
current public endpoints.

You can also add new OAuth providers. See the section called “Add OAuth 2.0 provider” for more information.

Add application

Each OAuth 2.0 provider can have multiple client application credentials. Each set of credentials represents an applica-
tion that has been registered with the provider. Upon registering, the application is assigned a client ID and secret and
can designate a redirect URL for receiving access codes.

To add an application for an existing OAuth 2.0 provider, click an OAuth 2.0 client credential node (for example,
Google), and click the Add button on the OAuth2 Credentials tab of the OAuth2 Credential Profile window. Complete
the following fields on the Add OAuth2 Application dialog:

Name:
Enter a suitable name for this client application.

Client ID:
This identifies the client responsible for the OAuth request. This ID is assigned by the OAuth provider.

Client Secret:
This is a confidential secret key used for authentication. This secret is assigned by the OAuth provider.

OAuth Flow Type:
Select an OAuth flow type. The options are:

¢ Authz Code
¢ Client Credentials

o JIWT
. Resource Owner
¢ SAML

78

https://cloud.google.com/console
https://cloud.google.com/console
https://www.salesforce.com

Configure OAuth 2.0 client applications

For more details on the authentication flows that API Gateway supports, see the APl Gateway OAuth 2.0 authentication
flows topic.

Redirect URL:

Enter the URL of the client's redirect endpoint (for example, htt ps:/ /1 ocal host: 8088/ oaut h_cal | back). This is
the URL registered with the provider for receiving access codes via a redirect from the authorization server. This must
match a listener configured on API Gateway (see Redirect URL Listener).

To configure client scopes, SAML bearer settings, JWT settings, or other advanced settings, click the appropriate tabs.

Configure scopes

You can configure the scopes that a client application can access on the Scopes tab. Click Add to add a scope. This is
the set of scopes required by the application, and this list must match, or be a subset of, the required scopes registered
with the OAuth provider. For more information on scopes, see the section called “Manage OAuth scopes”.

Configure SAML bearer

You can configure SAML bearers on the SAML Bearer tab. According to the IETF draft document SAML 2.0 Profile for
OAuth 2.0 [http://tools.ietf.org/html/draft-ietf-oauth-sami2-bearer-18], a SAML assertion can be used to request an ac-
cess token when a client wishes to utilize an existing trust relationship, expressed through the semantics of the SAML
assertion, without a direct user approval step at the authorization server. When a client application is configured to use
the SAML grant type a SAML assertion must be either configured/generated or made available on the message board.

To generate an assertion select the Generate assertion using following configuration option and complete the follow-
ing fields:

Use private key to sign SAML assertion:
Click Signing Key to select a private key to use to sign the assertion. This will be the private key certificate registered
with the OAuth provider.

Resource Owner ID:
Enter the identity of the resource owner as expected by the resource server. This can be specified using a selector (for
example, ${ aut henti cati on. subj ect . i d}).

Assertion expires in:
Enter the time duration that the assertion is valid for. Expressed in days, hours, minutes, and seconds.

Drift time (secs):
Enter a drift time in seconds to allow for clock skew.

Alternatively, you can generate the assertion through other means and take it from the message board by selecting the

option Get assertion from message attribute named: and entering the name of the attribute (for example,
${ oaut h. sam . assertion}).

Important

The IETF draft document also describes how to use SAML 2.0 for client authentication. This is not suppor-
ted in API Gateway.

Configure JWT
You can configure JWT on the JWT tab. This enables you to configure JWT for authorization grant, as defined by the

IETF draft document JSON Web Token (JWT) Profile for OAuth 2.0 Client Authentication and Authorization Grants [ht-
tp://tools.ietf.org/html/draft-ietf-oauth-jwt-bearer-07].

79

http://tools.ietf.org/html/draft-ietf-oauth-saml2-bearer-18
http://tools.ietf.org/html/draft-ietf-oauth-saml2-bearer-18
http://tools.ietf.org/html/draft-ietf-oauth-saml2-bearer-18
http://tools.ietf.org/html/draft-ietf-oauth-jwt-bearer-07
http://tools.ietf.org/html/draft-ietf-oauth-jwt-bearer-07
http://tools.ietf.org/html/draft-ietf-oauth-jwt-bearer-07

Configure OAuth 2.0 client applications

Important

AP| Gateway only supports the use of JWT as authorization grant and does not support JWT for client au-
thentication.

Configure the following fields:

Sign using private key:

Select this option and click Signing Key to select a private key certificate that has been registered with the OAuth pro-

vider, and use it to sign the JWT claim.

Sign using client secret:
Select this option to sign the JWT claim using a client secret issued by the OAuth provider.

JWT expiry (in secs):
Enter the expiry time for the JWT claim, in seconds.

Add additional JWT claims:
Click the Add button to add additional JWT claims. You can also Edit or Delete existing claims.

By default a JWT is generated with the following claim set:

Claim Dafault Value

iss The application client ID

aud The token endpoint of the provider

exp The expiry time from the field JIWT expiry (in secs)

i at The issued assertion time, the time the assertion was issued measured in
seconds since 00:00:00 UTC, January 1, 1970.

These claims can be overridden by adding additional claims. It is also possible to add claims like scope to define
scopes, and pr n (for SalesForce), or sub (as defined in the IETF draft doc) to identify the resource owner for whom a
token is being requested.

Note

Scopes must be added to a claim on this tab if they are required by the provider to be present in a claim.
The scopes defined on the Scopes tab are added to the query string of the token request, but for flexibility
they are not automatically added to the claim. The reason for this is because JWT authorization grants are
non-normative and claim sets must be agreed in advance with individual OAuth providers. For example,
SalesForce does not allow the addition of scopes to a JWT claim, whereas Google requires a scope claim.
Automatically adding scopes from the Scopes tab to a claim could preclude a JWT grant flow where
scopes must be present in the request but not the claim.

Configure advanced settings

You can use the following options to specify where to add the client credentials in token requests. The Authorization
Header or The Query String. This option applies to all standard grant types excluding JWT and SAML.

80

Configure OAuth 2.0 client applications

In Authorization Header:
Select this option to add the client credentials to the authorization header.

In Query String:
Select this option to add the client credentials to the query string.

Use the following options to specify where to find resource owner credentials, for the resource owner grant type.

Resource Owner ID:
Enter the resource owner ID. This can be specified as a selector.

Resource Owner Password:
Enter the resource owner password. This can be specified as a selector.

Finally, in the Properties table you can add additional properties to pass with authorization or token requests. These
properties can be used to set up provider-specific options, for example, Google authorization requests require the para-
meter access_t ype=of f | i ne to issue a refresh token.

After you have configured your OAuth 2.0 client credentials globally, you can select the client credential profile to use for
authentication on the Authentication tab of your filter (for example, in the Connection and Connect To URL filters). For
more information, see the API Gateway User Guide.

Add OAuth 2.0 provider

To configure a new OAuth 2.0 provider, right-click OAuth2, and select Add OAuth2 Client Credential. Complete the fol-
lowing fields on the OAuth2 Provider Configuration dialog:

Profile Name:
Enter a suitable name for this OAuth provider configuration (for example, Googl e or M cr osof t).

Authorization Endpoint:

Enter the URL of the OAuth provider's authorization endpoint (for example, ht -
tps://accounts. googl e. con o/ oaut h2/ aut h). This is a public URL where a resource owner is directed to au-
thorize a client application. This is used in the authorization code flow.

Token Endpoint:

Enter the URL of the OAuth provider's token endpoint (for example, ht -
tps://accounts. googl e. com o/ oaut h2/ t oken). This is a public URL where a client application can request a
token.

Token Store:
Click the browse button to choose an access token store. This is where received tokens are persisted.

You can configure OAuth access token stores globally under the Libraries node in the Policy Studio tree. These can
then be selected in the Access Token Store field. For more details on configuring access token stores, see the section
called “Manage access tokens and authorization codes”.

Store OAuth State in this Cache:
Click the browse button to choose a cache. This is where the state of an authorization request is stored. This is used in
the authorization code flow to maintain state when the user is directed to the authorization server for authorization.

Tip
To change the configuration of an existing OAuth 2.0 provider, click the OAuth client credential node, and
edit the settings on the OAuth2 Provider Settings tab of the OAuth2 Credential Profile window.

Creating a Callback URL listener

81

Configure OAuth 2.0 client applications

The callback url that is registered with an OAuth Provider is implemented very simply by creating a matching relative
path in a HTTP Listener. The policy for this path needs only to add an Authorize client with server filter (see Authorize cli-
ent with server). The filter must be configured with a reference to the relevant Provider Profile for this callback url.

82

Retrieve OAuth client access token from token storage

Overview

You can use the Retrieve OAuth Client Access Token from Token Storage filter to retrieve a stored access token
from a client access token store.

Tokens received from OAuth providers are stored in a Client Access Token Store. You can configure client access
token stores under the Libraries > OAuth2 Stores node in the Policy Studio tree view. Similar to an Access Token
Store, this store can be backed by an APl Gateway cache (default), a Relational Database Management System
(RDBMS), or the embedded Apache Cassandra database. (For more details, see the section called “Manage access
tokens and authorization codes”.)

A configured token store is associated with an OAuth provider (see the section called “Add OAuth 2.0 provider”) and is
shared by all client applications registered with that provider.

These stored tokens can be retrieved by this filter by specifying the OAuth2 provider profile (the client application re-
gistered with a provider). Stored tokens are indexed by the client ID of the the client application and the authentication
subject id of the current user. If aut henti cati on. subj ect . i d is not available, the client ID is used for both indexes.
This is valid for grant types that treat the client application as the resource owner, that is, client credentials, JWT, and
SAML (when no resource owner is specified).

If a valid token is found by this filter it is placed on the message board as oaut h. cl i ent. accesst oken, and the filter
passes. If the token is expired, or there is no token found, the filter fails (expired tokens are still placed on the message
board). The fail path can be used to refresh an expired token or start the process of requesting a token. The client applic-

ation is also placed on the message board, under the attribute name oaut h. cl i ent . appl i cati on, for use in sub-
sequent filters.

General settings

Configure the following general settings for the Retrieve OAuth Client Access Token from Token Storage filter:

Name:
Enter a suitable name for this filter.

Choose profile to be used for token request:
Click the browse button to select an OAuth 2.0 client credential profile.

83

Authorize client with server

Overview
You can use the Authorize Client with Server filter to request a token.

Depending on the grant type this filter either makes a direct request to the OAuth provider for a token (two-legged flow),
or redirects the user to the provider's authorization server to authorize the client application (three-legged flow).

The two-legged flow covers all but the authorization code flow type and if successful results in a token being placed on
the message board and stored in the configured provider's token store. The filter passes and the token can be used to
make resource requests with the Connect to URL filter.

In the three-legged flow (authorization code flow) the filter redirects the user and the authorization completes when the
user is directed back to the client application redirect URL that was registered with the OAuth provider. For more informa-
tion, see the section called “Creating a Callback URL listener”.

If there is a token already stored for the user and client application, this filter sets the token on the message board and

passes. If the token has expired but has a refresh token this filter attempts to refresh the token instead of requesting a
new token or redirecting the user.

General settings

Configure the following general settings for the Authorize Client with Server filter:

Name:
Enter a suitable name for this filter.

Optionally use an explicit profile:
Select this option and click the browse button to explicitly select an OAuth2 client credential profile. This can be used if
no preceding filter has set the application profile on the message board, or to override the existing application profile.

SSL settings

You can configure SSL settings, such as trusted certificates, client certificates, and ciphers on the SSL tab. For details
on the fields on this tab, see the Connect to URL filter in the APl Gateway User Guide.

Additional settings

The Settings tab allows you to configure the following additional settings:

. Retry

* Failure

* Proxy

* Redirect
e« Headers

By default, these sections are collapsed. Click a section to expand it.

For details on the fields on this tab, see the Connect to URL filter in the APl Gateway User Guide.

84

Refresh an OAuth client access token

Overview
OAuth 2.0 client tokens are designed to be short lived and have an expiry time, however, tokens can be issued with re-

fresh tokens. If a token has expired and it has a refresh token, you can use the Refresh an OAuth Client Access
Token filter to explicitly refresh the token.

General settings

Configure the following general settings for the Refresh an OAuth Client Access Token filter:

Name:
Enter a suitable name for this filter.

Optionally use an explicit profile:

Select this option and click the browse button to explicitly select an OAuth2 client credential profile. This can be used if
no preceding filter has set the application profile on the message board, or to override the existing application profile.

SSL settings

You can configure SSL settings, such as trusted certificates, client certificates, and ciphers on the SSL tab. For details
on the fields on this tab, see the Connect to URL filter in the APl Gateway User Guide.

Additional settings

The Settings tab allows you to configure the following additional settings:

e Retry
e Failure
e Proxy

. Redirect
« Headers

By default, these sections are collapsed. Click a section to expand it.

For details on the fields on this tab, see the Connect to URL filter in the APl Gateway User Guide.

85

OAuth 2.0 client message attributes

Overview

The OAuth 2.0 client policy filters in API Gateway generate message attributes that can be queried further using the API

Gateway selector syntax. The message attributes generated by the OAuth 2.0 client filters include the following:

e oauth.client.accesstoken
e oauth.client.application
e oauth.call back.state

For more details on selectors, see the API Gateway User Guide.
oauth.client.accesstoken methods

The following methods are available to call on the oaut h. cl i ent . accesst oken message attribute:

${oaut h. cl i ent. accesst oken. get Aut henti cati on()}
${oaut h. client.accesstoken.getCientld()}

${oaut h. cl i ent.accesst oken. get Creat ed() }

${oaut h. cli ent.accesst oken. i sExpi red()}

${oaut h. cl i ent.accesst oken. hasRefresh()}

${oaut h. cl i ent.accesst oken. get Ref reshToken()}

${oaut h. cl i ent.accesst oken. get Expi resi n()}

${oaut h. client.accesst oken. get Expi ryDate()}

${oaut h. cl i ent. accesst oken. get Parans() }

${oaut h. cli ent.accesst oken. get TokenType()}

The following example shows output from querying each of the oaut h. cl i ent . accesst oken methods:

regadnin
Cli ent Confidenti al App
Thu Mar 06 12:34:44 GV 2014
fal se
true
GokdAuu706ydZt Nkl 92UEPMJRNMVBJIPi PVGGr EwXKz5Uh
3599
Thu Mar 06 13:34:43 GMI 2014
{st at e=9a388d14- a0e9- 4b32- 9003- €322¢93279dd, scope=resour ce. WRI TE}

oauth.client.application methods

This attribute represents the provider profile selected in the filter. It contains the provider details, such as token and au-
thorization endpoints, and the token store, as well as the specifics of the client application including the client ID and

secret. The following methods are available to call on the oaut h. cl i ent. appl i cati on message attribute:

oaut h. client. application.get TokenURL()}

oaut h.client.application.getAuthentication()}

oaut h. client. application.getProvi der Name()}

oaut h.client.application. get AppNane() }
oauth.client.application.getClientlD()}
oauth.client.application.getFl ow)}
oauth.client.application.getClientSecret()}

oaut h.client.application. get ExtraTokenRequest Props()}
oauth.client.application. get Scopes()}
oauth.client.application.getLocationOfClientDetails()}

AR APAAARAAARGD

OAuth 2.0 client message attributes

${oauth.client.application.getdientldHeader Narme()}
${oauth.client.application.getCientSecretHeader Narme()}
${oauth.client.application.get TokenStore()}

${oaut h. client.application.getToken()}

${oauth. client.application.get TokenFronstore()}
${oauth.client.application.getProvider()}

The following example shows output from querying each of the oaut h. cl i ent. appl i cat i on methods:

https://127.0.0. 1: 8089/ api / oaut h/ t oken

regadm n

APl Gat eway

Sanpl e dient Authzcode App

C i ent Confi denti al App

aut hori zat i on_code

?fb76d80- 1bc2- 48d3- 8d31- edeecOf ddf 6¢

[resour ce. WRI TE]

QueryString

client_id

client_secret

an object of type comvordel.circuit.oauth. persistence. Synchroni zedC i ent TokenSt or e
an object of type com vordel.oauth.client.store. QAut h2Cl | ent AccessToken
an object of type com vordel.oauth.client.store. QAut h2Cl i ent AccessToken
an obj ect of type com vordel. oauth.client.providers. BaseQAut h2Pr ovi der

oauth.callback.state
This property is a map of string to string containing the state set before entering into a three-legged authorization code
flow. The state map is stored before directing the resource owner to the provider's authorization server and is retrieved
when the user is returned to the redirect URL of the client application. In its basic form it contains the authentication sub-

ject id of the local user and the client ID of the client application being authorized by the user.

This attribute is only set by the Authorize Client with Server filter.

87

	Oracle® Fusion Middleware
	Contents
	Chapter 1. API Gateway as an OAuth server
	Introduction to API Gateway OAuth 2.0 server
	Overview
	OAuth 2.0 concepts
	OAuth 2.0 example workflow
	API Gateway OAuth features
	API Gateway OAuth scopes
	OAuth 2.0 authentication flows
	Further information

	Set up API Gateway OAuth 2.0
	Overview
	Enable OAuth 2.0 management
	Enable OAuth endpoints

	Import client applications
	Import the sample client applications

	Migrate client applications
	Migrate existing client applications

	Upgrade API Gateway configuration

	Manage OAuth 2.0 client applications
	Overview
	Manage registered client applications
	Access the Client Application Registry web interface

	Run the sample client applications
	Manage access tokens and authorization codes
	Store in a cache
	Store in a relational database
	Store in Cassandra

	Manage OAuth scopes
	Relational database-backed Client Application Registry
	OAuth relational database schemas

	Generate a certificate and private key for a client application

	API Gateway OAuth 2.0 authentication flows
	Overview
	Authorization code (or web server) flow
	Obtain an access token
	Run the sample client
	Further information

	Implicit grant (or user agent) flow
	Obtain an access token
	Run the sample client
	Further information

	Resource owner password credentials flow
	Request an access token
	Handle the response
	Run the sample client
	Further information

	Client credentials grant flow
	Request an access token
	Handle the response
	Run the sample client
	Further information

	JWT flow
	Create a JWT bearer token
	Request an access token
	Handle the response
	Run the sample client
	Further information

	Revoke token
	Run the sample client
	Response codes
	Further information

	Token information service
	Run the sample client
	Response codes
	Further information

	Chapter 2. OAuth server filters
	Get access token information
	Overview
	Token settings
	Monitoring settings
	Advanced settings

	Get access token using authorization code
	Overview
	Application validation settings
	Access token settings
	Monitoring settings

	Get access token using client credentials
	Overview
	Application validation settings
	Access token settings
	Monitoring settings

	Get access token using JWT
	Overview
	Application validation settings
	Access token settings
	Monitoring settings

	Get access token using SAML assertion
	Overview
	SAML assertion validation settings
	Access token settings
	Monitoring settings

	Consume authorization requests
	Overview
	Validation settings
	Authorization code settings
	Access token settings
	Monitoring settings

	Authorize transaction
	Overview
	Template settings
	Authorization code settings
	Access token settings
	Monitoring settings

	Refresh access token
	Overview
	Application validation settings
	Access token settings
	Monitoring settings

	Get access token using resource owner credentials
	Overview
	Application validation settings
	Access token settings
	Monitoring settings

	Revoke token
	Overview
	Revoke token settings
	Monitoring settings

	Validate access token
	Overview
	General settings
	Response codes

	OAuth 2.0 server message attributes
	Overview
	accesstoken methods
	accesstoken.authn methods
	authzcode methods
	oauth.client.details methods
	Example of querying a message attribute
	OAuth scope attributes

	Chapter 3. API Gateway as an OAuth client
	Introduction to API Gateway OAuth 2.0 Client
	Overview
	API Gateway OAuth Client features
	OAuth 2.0 example client workflow

	Set up API Gateway OAuth 2.0
	Overview
	Enable OAuth 2.0 management

	Configure OAuth 2.0 client applications
	Overview
	Add application
	Configure scopes
	Configure SAML bearer
	Configure JWT
	Configure advanced settings

	Add OAuth 2.0 provider
	Creating a Callback URL listener

	Chapter 4. OAuth client filters
	Retrieve OAuth client access token from token storage
	Overview
	General settings

	Authorize client with server
	Overview
	General settings
	SSL settings
	Additional settings

	Refresh an OAuth client access token
	Overview
	General settings
	SSL settings
	Additional settings

	OAuth 2.0 client message attributes
	Overview
	oauth.client.accesstoken methods
	oauth.client.application methods
	oauth.callback.state

