Oracle® Crystal Ball
Oracle® Crystal Ball Decision Optimizer
Oracle® Crystal Ball Enterprise Performance Management
Oracle® Crystal Ball Classroom Student Edition
Oracle® Crystal Ball Classroom Faculty Edition
Oracle® Crystal Ball Enterprise Performance Management for Oracle Hyperion
Enterprise Planning Suite
Oracle® Crystal Ball Suite

Predictor User’s Guide
Release 11.1.2.4.850
Contents

<table>
<thead>
<tr>
<th>Documentation Accessibility</th>
<th>...</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Documentation Feedback</td>
<td>..</td>
<td>9</td>
</tr>
<tr>
<td>Chapter 1. Welcome</td>
<td>..</td>
<td>11</td>
</tr>
<tr>
<td>About Predictor</td>
<td>..</td>
<td>11</td>
</tr>
<tr>
<td>How This Guide Is Organized</td>
<td>..</td>
<td>12</td>
</tr>
<tr>
<td>Screen Capture Notes</td>
<td>..</td>
<td>12</td>
</tr>
<tr>
<td>Example Files</td>
<td>..</td>
<td>12</td>
</tr>
<tr>
<td>Online Help</td>
<td>..</td>
<td>12</td>
</tr>
<tr>
<td>Developer Kit</td>
<td>..</td>
<td>13</td>
</tr>
<tr>
<td>Accessibility Notes</td>
<td>..</td>
<td>13</td>
</tr>
<tr>
<td>Additional Resources</td>
<td>..</td>
<td>13</td>
</tr>
<tr>
<td>Chapter 2. Getting Started with Predictor</td>
<td>...</td>
<td>15</td>
</tr>
<tr>
<td>Forecasting Basics</td>
<td>..</td>
<td>15</td>
</tr>
<tr>
<td>Creating Spreadsheets with Historical Data</td>
<td>...</td>
<td>16</td>
</tr>
<tr>
<td>Starting Predictor and Running a Forecast</td>
<td>..</td>
<td>17</td>
</tr>
<tr>
<td>Analyzing Results at a Basic Level</td>
<td>..</td>
<td>18</td>
</tr>
<tr>
<td>Learning More</td>
<td>..</td>
<td>18</td>
</tr>
<tr>
<td>Chapter 3. Setting Up Predictor Forecasts</td>
<td>..</td>
<td>19</td>
</tr>
<tr>
<td>Guidelines for Setting Up a Forecast</td>
<td>..</td>
<td>19</td>
</tr>
<tr>
<td>Selecting the Location and Arrangement of Historical Data</td>
<td>..</td>
<td>21</td>
</tr>
<tr>
<td>Selecting Discontiguous Data</td>
<td>..</td>
<td>22</td>
</tr>
<tr>
<td>Selecting Data Attributes—Seasonality, Events, Screening</td>
<td>..................................</td>
<td>23</td>
</tr>
<tr>
<td>Viewing Historical Data by Seasonality</td>
<td>..</td>
<td>24</td>
</tr>
<tr>
<td>Identifying Seasonality with Autocorrelations</td>
<td>.......................................</td>
<td>26</td>
</tr>
<tr>
<td>Viewing and Managing Events</td>
<td>..</td>
<td>28</td>
</tr>
<tr>
<td>Adding Events</td>
<td>..</td>
<td>29</td>
</tr>
<tr>
<td>Editing Events</td>
<td>..</td>
<td>30</td>
</tr>
<tr>
<td>Deleting Events</td>
<td>..</td>
<td>30</td>
</tr>
<tr>
<td>Setting Event Dates</td>
<td>..</td>
<td>31</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Viewing Screened Data</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Setting Screening Options</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Selecting a Forecasting Method</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Using Classic Time-series Forecasting Methods</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Setting Classic Time-series Forecasting Method Parameters</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Using ARIMA Time-series Forecasting Methods</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Selecting an ARIMA Model Selection Criterion</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>Using ARIMA Custom Models</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>Adding Custom ARIMA Models</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Editing Custom ARIMA Models</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Setting ARIMA Options</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Using Multiple Linear Regression</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Selecting Regression Variables</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>Setting Stepwise Regression Options</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Setting Forecast Options</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Selecting Error Measures</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>Selecting Forecasting Techniques</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>Chapter 4. Analyzing Predictor Results</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Understanding the Predictor Results Window</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Entering the Number of Time Periods to Forecast</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>Selecting a Prediction Interval</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Selecting How to Display and Analyze Results</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Adjusting and Rounding Forecasted Data</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Custom Rounding</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Pasting Prediction Data</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Assumptions on the Supporting Sheet</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>Viewing Charts</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>Customizing Charts</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Animating Prediction Simulations</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>Copying and Printing Charts</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>Creating Reports</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>Extracting Results Data</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>Analyzing and Using Extracted Results</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>Appendix A. Predictor Tutorials</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>About Predictor Tutorials</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>Tutorial 1—Shampoo Sales</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>Tutorial 2—Toledo Gas</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Viewing and Analyzing Predictor Results</td>
<td>65</td>
<td></td>
</tr>
</tbody>
</table>
Documentation Accessibility

For information about Oracle’s commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.
Documentation Feedback

Send feedback on this documentation to: epmdoc_ww@oracle.com

Follow EPM Information Development on these social media sites:
LinkedIn - http://www.linkedin.com/groups?gid=3127051&goback=.gmp_3127051
Twitter - http://twitter.com/hyperionepminfo
Facebook - http://www.facebook.com/pages/Hyperion-EPM-Info/102682103112642
Google+ - https://plus.google.com/106915048672979407731/#106915048672979407731/posts
YouTube - https://www.youtube.com/user/EvolvingBI
About Predictor

Forecasting is an important part of many business decisions. Every organization must set goals, try to predict future events, and then act to fulfill the goals. As the timeliness of market actions becomes more important, the need for accurate planning and forecasting throughout an organization is essential to get ahead. The difference between good and bad forecasting can affect the success of an entire organization.

Predictor is an easy-to-use, graphically oriented forecasting feature included in:

- Oracle Crystal Ball, including Student and Faculty Editions
- Oracle Crystal Ball Decision Optimizer
- Oracle Crystal Ball Enterprise Performance Management

If you have historical data in your spreadsheet model, Predictor analyzes the data for trends and seasonal variations. It then predicts future values based on this information. You can answer questions such as, “What are the likely sales figures for next quarter?” or, “How much material do we need to have on hand?” As an added benefit, you can automatically save Predictor forecasts as Crystal Ball assumptions for immediate use in powerful risk analysis models. See Chapter 2, “Getting Started with Predictor,” for an overview of how Predictor works and what it can do for you.

Predictor runs on several versions of Microsoft Windows and Microsoft Excel. For a list of required hardware and software, see the current Oracle Crystal Ball Installation and Licensing Guide.
How This Guide Is Organized

This guide includes the following additional sections to help you use Predictor:

- **Chapter 2, “Getting Started with Predictor”**
 Procedures for starting Predictor and running basic forecasts using default settings

- **Chapter 3, “Setting Up Predictor Forecasts”**
 Procedures for running forecasts with customized settings

- **Chapter 4, “Analyzing Predictor Results”**
 Descriptions of Predictor results and how to analyze them

- **Appendix A, “ Predictor Tutorials”**
 A basic tutorial that quickly introduces Predictor’s features and an advanced tutorial that uses multiple regression analysis

- **Glossary**
 Definitions of terms specific to Predictor as well as statistical terms used in this manual

For additional examples, definitions of statistical terms, and publication references, see the Predictor section of the *Oracle Crystal Ball Reference and Examples Guide*.

Screen Capture Notes

Because of round-off differences between various system configurations, you may notice calculated results that are slightly different from those in the examples.

Example Files

Example names are listed in full wherever given.

➢ To open an example file:

1. Select Resources, and then Example Models in the Crystal Ball ribbon Help group.
2. Click its name in the Model Name list.

Online Help

You can display online help for Predictor by pressing F1 or clicking Help in the Predictor wizard.

Tip: Click Contents at the top of the Help window for a table of contents.

Developer Kit

If you are familiar with Visual Basic for Applications (VBA) or other supported development systems, you can use the Predictor developer kit to automate a number of basic forecasting and analysis operations. For details, see the Oracle Crystal Ball Developer's Guide.

Accessibility Notes

You do not need to enable keyboard accessibility specifically for Crystal Ball and its features; command access is always in accessible mode. Crystal Ball, including Predictor, follows Microsoft Windows conventions for accessing commands using the keyboard. When you press Alt, shortcut keys are underlined in menus and dialogs. Crystal Ball output can be extracted to Microsoft Excel spreadsheets and pasted into PowerPoint slides, which are accessible through Microsoft Office. Starting with Crystal Ball version 11.1.2.0.00, an optional Accessibility mode, available through the Options tab of the Run Preferences dialog, activates special features for people with visual or motor impairments. For example, default chart display includes distinction by patterns as well as colors. For additional information about Crystal Ball accessibility, see the Oracle Crystal Ball User’s Guide. For information about Microsoft Excel or PowerPoint accessibility, refer to Microsoft Office product documentation.

Additional Resources

Oracle offers technical support, training, and other services to help you use Crystal Ball most effectively.

For more information, see the Crystal Ball Web site at:

http://www.oracle.com/crystalball
Forecasting Basics

Most historical or time-based data contains an underlying trend or seasonal pattern. However, most historical data also contains random fluctuations (“noise”) that make it difficult to detect these trends and patterns without a computer. Predictor uses sophisticated time-series methods to analyze the underlying structure of the data. It then projects the trends and patterns to predict future values.

Predictor uses two types of forecasting:

- **Time-series forecasting** breaks historical data into components: level, trend, seasonality, and error. Predictor analyzes these components and then projects them into the future to predict likely results.

- **Multiple linear regression** works best when outside influences have an effect on the variable that you want to forecast. Regression takes historical data from the influencing variables and determines the mathematical relationship between these variables and the target variable. It then uses time-series forecasting methods to forecast the influencing variables and combines the results mathematically to forecast the target variable.

In Predictor, a data series is a set of historical data for a single variable. When you run Predictor, it uses each time-series method on each of the selected data series and calculates a mathematical measure of goodness-of-fit. Predictor selects the method with the best goodness-of-fit as the method that will yield the most accurate forecast. Predictor performs this selection automatically, but you can also select individual methods manually or override the method that Predictor recommends with a different one.

The final forecast shows the most likely continuation of the data. Keep in mind that all these methods assume that some aspects of the historical trend or pattern will continue into the future. However, the farther out you forecast, the greater the likelihood that events will diverge from past behavior, and the less confident you can be of the results. To help you gauge the reliability
of the forecast, Predictor provides a prediction interval indicating the degree of uncertainty regarding the forecast.

After finding the best forecast for the data, Predictor displays detailed output that can include statistics, charts, reports, and interactive Microsoft Excel PivotTables. Predictor can also paste the predicted values into a spreadsheet.

The following topics describe how to set up Predictor forecasts using default settings so you can generate results quickly for further analysis:

- “Creating Spreadsheets with Historical Data” on page 16
- “Starting Predictor and Running a Forecast” on page 17
- “Analyzing Results at a Basic Level” on page 18
- “Learning More” on page 18

“Tutorial 1—Shampoo Sales” on page 59 demonstrates Predictor basics. You may find it helpful to work through this tutorial now, or read through the following sections first and then try the tutorial. When you are ready to expand your forecasting skills, Chapter 3, “Setting Up Predictor Forecasts,” provides detailed instructions.

Creating Spreadsheets with Historical Data

Before using Predictor, create a Microsoft Excel spreadsheet with historical data to analyze. The spreadsheet should include:

- **Optional:** A descriptive spreadsheet title.
- **Optional:** A date (or other time period, such as Q2-2004) column or row, either at the top or along the left side of the data (in the last column before the data). If you format the dates as Microsoft Excel dates, Predictor can find the dates, extend them with the predicted values, and use them as chart labels.
- Historical data, spaced equal time periods apart, in columns or rows adjacent to the date column or row. To produce a reasonable forecast, you should have at least six historical data points. Other requirements:
 - Single moving average analysis requires that the number of historical data points be twice the number of points to forecast.
 - Double moving average analysis requires that the number of historical data points be three times the number of points to forecast (or at least six, whichever is higher).
 - To use seasonal methods, you must have at least two seasons (complete cycles) of historical data.
 - For multiple linear regression, the number of historical data points must be greater than or equal to the number of independent variables (counting the included constant as an independent variable).
 - To lag an independent variable in multiple linear regression, lag must be less than the number of historical data points. For details on lags, see “Notes about Autocorrelations” on page 27.
For multiple linear regression with lags, the number of data points minus any lags and leading blanks must be greater than the number of independent variables, plus 1 if a constant is included in the regression equation.

When values in the date series are not in Microsoft Excel date format, the intervals between the values must all be exactly the same. For example, you can use integers for weeks (1, 2, 3, and so on) but you cannot omit any. The following is not an acceptable data series: 1, 2, 3, 5, 7. Also consider the valid date series 01-Jan, 01-Feb, 01-Mar. This is no longer valid when converted into days expressed as integers: 1, 32, 60.

Optional: Headings for each data column or row, such as SKU 23442, Gas Usage, or Interest Rate.

The Toledo Gas spreadsheet (Figure 1) has all these components.

Figure 1 Example Spreadsheet

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toledo Residential Gas Usage</td>
<td>learn about model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Independent variable</td>
<td>Dependent variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Usage (ft³)</td>
<td>Occupancy Permits</td>
<td>Average Temperature (Degrees F)</td>
<td>Cost of Natural Gas per ccf (Dollars)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan-15</td>
<td>52.00</td>
<td>151</td>
<td>31.97</td>
<td>$6.40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb-15</td>
<td>53.00</td>
<td>128</td>
<td>30.89</td>
<td>$6.16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar-15</td>
<td>54.00</td>
<td>85</td>
<td>41.17</td>
<td>$6.55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr-15</td>
<td>55.00</td>
<td>52</td>
<td>44.66</td>
<td>$6.28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>May-15</td>
<td>56.00</td>
<td>5</td>
<td>66.34</td>
<td>$5.45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jun-15</td>
<td>57.00</td>
<td>134</td>
<td>70.40</td>
<td>$5.23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jul-15</td>
<td>58.00</td>
<td>92</td>
<td>71.76</td>
<td>$5.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aug-15</td>
<td>59.00</td>
<td>171</td>
<td>74.73</td>
<td>$6.76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sep-15</td>
<td>60.00</td>
<td>248</td>
<td>64.18</td>
<td>$7.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct-15</td>
<td>61.00</td>
<td>212</td>
<td>50.92</td>
<td>$7.38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov-15</td>
<td>62.00</td>
<td>268</td>
<td>39.55</td>
<td>$7.41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec-15</td>
<td>63.00</td>
<td>226</td>
<td>41.17</td>
<td>$7.47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan-16</td>
<td>64.00</td>
<td>146</td>
<td>35.22</td>
<td>$7.74</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb-16</td>
<td>65.00</td>
<td>124</td>
<td>36.30</td>
<td>$8.30</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Starting Predictor and Running a Forecast

- Before you start Predictor:
 1. Open a model with historical data (see “Creating Spreadsheets with Historical Data” on page 16).
 2. Select a cell within the range to analyze.

- To start Predictor:
 1. Select **Predictor** in the Crystal Ball ribbon.

The first time you start Predictor, the Predictor wizard **Welcome** panel opens. After that, **Input Data** opens.
The Welcome panel introduces Predictor and provides an overview of how it works.

2 If Welcome opens, click Next to advance to Input Data.

3 Set up a forecast following the instructions in Chapter 3, “Setting Up Predictor Forecasts.” To set up a basic forecast, see “Guidelines for Setting Up a Forecast” on page 19.

4 To run a forecast and produce results, click Run.

The Predictor Results window opens.

Note: You can click Run from any of the wizard panels except Welcome at any time, as long as the data range has been properly defined on the Input Data panel.

To use predicted results, see “Analyzing Results at a Basic Level” on page 18.

Analyzing Results at a Basic Level

Predictor simplifies the forecasting process, but you must understand the results it produces.

For a detailed description of all results and how to analyze them, see Chapter 4, “Analyzing Predictor Results.” At a basic level, you can view results for different series and paste results into the spreadsheet model:

- “Understanding the Predictor Results Window” on page 45
- “Entering the Number of Time Periods to Forecast” on page 47
- “Selecting How to Display and Analyze Results” on page 48

Learning More

This chapter introduced Predictor at a basic level and suggested topics with more advanced content. If you have not already done so, you may find it helpful to:

- Work through “Tutorial 1—Shampoo Sales” on page 59
- Consider reviewing Chapter 3, “Setting Up Predictor Forecasts,” to learn procedures for increasing the accuracy of Predictor forecasting and analysis
In This Chapter

Guidelines for Setting Up a Forecast... 19
Selecting the Location and Arrangement of Historical Data 21
Selecting Data Attributes—Seasonality, Events, Screening 23
Selecting a Forecasting Method .. 32
Setting Forecast Options ... 42

Guidelines for Setting Up a Forecast

Tip: To preview these steps, work through “Tutorial 1—Shampoo Sales” on page 59.

Follow these steps to set up a Predictor forecast and generate results:

1. Create and open a spreadsheet model with historical data as described in “Creating Spreadsheets with Historical Data” on page 16.

2. Select a data cell and start Predictor (see “Starting Predictor and Running a Forecast” on page 17).

 Note: You can select an entire data range or a single cell and let Predictor determine the range. If columns or rows of data are separated by blank columns or rows, you can use Ctrl+click to select one cell in each data series. For details, see “Selecting Discontiguous Data” on page 22.

3. Display the Input Data panel of the Predictor wizard.
 If Welcome opens, click Next to display Input Data.

4. In Input Data, confirm that:
 ● The appropriate data range is selected, including any row labels and column headers
 ● Column Header and Label settings are correct
 For details, click Help or see “Selecting the Location and Arrangement of Historical Data” on page 21.

5. Click Next to display Data Attributes.

6. In Data Attributes, indicate the time period for the data.
For example, if the data points represent monthly numbers, select **months**.

7 For **Seasonality**, select AutoDetect so Predictor will use statistical algorithms to determine whether the data is seasonal. Findings are displayed in a statement to the right of the list box. To fine-tune seasonality settings or use optional events and screening settings, see “Selecting Data Attributes—Seasonality, Events, Screening” on page 23.

8 **Optional:** If you are analyzing more than one data series with AutoDetect, click View Seasonality to chart the seasonality for each series.

For more information, see “Viewing Historical Data by Seasonality” on page 24.

9 Click **Next** to open the **Methods** panel, and select forecasting methods.

10 Depending on the Data Attributes **Seasonality** setting, select one or more of these:

 * **Non-seasonal Methods**—Work best on data that does not show a pattern that repeats regularly over a certain number of time periods, but can show a trend of decreasing or increasing over time

 * **Seasonal Methods**—Work best on data that shows a pattern that repeats regularly over a certain number of time periods and can also show a trend of decreasing or increasing over time

 * **ARIMA**—Useful in a variety of situations, particularly with many historical values and very few outlier values

 * **Multiple Linear Regression**—Useful when independent variables affect another variable of interest

 Tip: If **Non-seasonal Methods** and **Seasonal Methods** are available, select both.

If you have selected several series and one of them is controlled by the other, it is a dependent variable. In that case, select **Multiple Linear Regression** and see “Using Multiple Linear Regression” on page 40.

11 When settings are complete, click **Next** to review or change forecasting options.

12 Select an error measure and a forecasting technique.

 The Glossary in this document and the Predictor sections of the Oracle Crystal Ball Reference and Examples Guide describe these settings. For basic forecasting, use the defaults: RMSE and standard forecasting.

13 When all **Options** settings are complete, click **Run** to run the forecast and produce results. For more information, see “Starting Predictor and Running a Forecast” on page 17.

The following topics describe how to customize Predictor settings to more closely reflect the historical data and provide more accurate forecast results:

 * “Selecting the Location and Arrangement of Historical Data” on page 21
 * “Selecting Data Attributes—Seasonality, Events, Screening” on page 23
 * “Selecting a Forecasting Method” on page 32
 * “Setting Forecast Options” on page 42
Selecting the Location and Arrangement of Historical Data

Use the Input Data panel of the Predictor wizard to select the location and arrangement of historical data to analyze.

Tip: After you start Predictor the first time, Input Data opens automatically whenever you start Predictor, or click Input Data in the navigation pane of the Predictor wizard.

To select the location and arrangement of historical data:

1. Open a model with historical data, select a data cell in the range to analyze, and start Predictor as described in “Starting Predictor and Running a Forecast” on page 17.

 Input Data shows a possible data selection in the Location of data series text box and the illustration at the right side of the panel.

2. Location of data series indicates the cells that contain data to analyze. If the data series have headers or labels at the beginning of the rows or columns of data, include them in the selection and select the appropriate Headers settings. If necessary, select a different data range.

 Note: If you select one cell before you start the wizard, the data range is selected automatically, based on the continuously filled cells around the selected cell. If you select a range of cells before you start the wizard, that range is selected. If you do not select a cell, or if you select an empty cell before you start the wizard, you can select the range using the cell selector. You can have discontiguous data series with blank columns or rows between them. For selection rules, see “Selecting Discontiguous Data” on page 22.

3. Confirm that the Orientation, Headers, and Labels settings are correct:

 - Orientation—Specifies whether data series are in rows or columns: Data in rows indicates that historical data is in horizontal rows; Data in columns indicates that historical data is in vertical columns.

 - First row (or column) has headers—Indicates whether the selected data has a title or header cell at the top of each column (if the data is in columns) or to the left of each row (if the data is in rows).

 - First column (or row) has dates—Indicates whether the data range has a first row or column for dates. Predictor recognizes dates only in cells that are formatted as Microsoft Excel dates.

 - Back—Opens the Welcome panel

 - Next—Opens the Data Attributes panel

 - Run—Runs Predictor if all required settings are complete, using the current method selections

 - Close—Closes the Predictor wizard
When settings are complete, click Next to open Data Attributes and set seasonality and optional events and screening options. For instructions, see “Selecting Data Attributes—Seasonality, Events, Screening” on page 23.

Note: If the data range has empty cells in the middle of a data series, by default Predictor fills in the missing data (see “Viewing Screened Data” on page 31). If you select multiple data series, the data series are not required to start at the same time period. However, all the data series must end at the same time period.

Tip: For a quick forecast, complete the Input Data settings and click Run. Logical defaults on the remaining panels help ensure accurate results after you select a range of historical data to analyze.

Selecting Discontiguous Data

If a model is formatted with blank rows or columns between the data series, you can still select multiple series for forecasting. Alternative ways for selecting such discontiguous series, either before you start Predictor or by using the cell selector tool in the Input Data panel, are as follows:

- You can use the Ctrl key to select a complete discontiguous range. The entire selected range is then used in Predictor.
- You can also select multiple discontiguous cells. In that case, each one of these cells is used as a starting point for autodetecting a series range and the results of the autodetection are combined and used in Predictor. If data is in columns and you select a few discontiguous blocks from right to left, Predictor sorts the resulting ranges and ensures that they are ordered from left to right. Data in rows is ordered from top to bottom.

The individual ranges that make up the discontiguous range must be aligned. If data is in rows, the left and right column of each range must be aligned. If data is in columns, the top and the bottom row must be aligned. If multiple ranges are detected but they are not aligned, an error message is displayed and only the first selected range is used.
Selecting Data Attributes—Seasonality, Events, Screening

Subtopics

- Viewing Historical Data by Seasonality
- Viewing and Managing Events
- Viewing Screened Data
- Setting Screening Options

Seasonality, also known as cyclical data, means that data for some unit of time repeats in a regular pattern. For example, if you have 24 monthly data points, and the data has peaks every December, the seasonality (repeating pattern) has a period of one year or 12 months.

Use the Data Attributes panel of the Predictor wizard to perform the following tasks:

- Specify time-period and seasonality information for historical data
- Define events that influenced data values
- Apply optional screening to replace missing values and locate and replace data outliers

Specifying Time Periods and Seasonality

To specify time periods and seasonality:

1. Display the Data Attributes panel of the Predictor wizard.
 - To display Data Attributes, click Next in Input Data or click Data Attributes in the navigation pane of the Predictor wizard.

2. For Data is in, identify the time period for the data.
 - For example, if the data points represent monthly numbers, select months.

3. For Seasonality, indicate whether the data is seasonal:
 - **AutoDetect**—Uses statistical algorithms to determine whether the data is seasonal. Findings are displayed in a statement to the right of the list box.
 - **Non-seasonal**—Indicates that data is treated as non-seasonal; seasonal methods will not be applied.
 - **Seasonal**—Indicates that seasonal and non-seasonal methods are used by default. You must have at least two seasons (complete cycles) of data to use the seasonal methods.

4. Optional: If you are analyzing more than one data series click View Seasonality to review seasonality for each series.
 - For more information, see “Viewing Historical Data by Seasonality” on page 24.

5. Specify how to treat missing values and outliers (historical values that differ extremely from other values):
 - Select Fill-in missing values to fill in missing data values using settings in the Data Screening Options dialog.
Select **Adjust outliers** to eliminate extreme values from the data before the time-series forecasting methods are run.

Notice that the default values (filling in missing values but not adjusting outliers) are appropriate for most cases. For details, see “Viewing Screened Data” on page 31.

6 **Optional:** Click **View Events** to define and manage events—time periods where data could have been affected by unusual occurrences such as promotions, weather, holidays, and strikes.

If you have defined an event, you can select **Include Events** to incorporate event definitions into forecasts. For details, see “Viewing and Managing Events” on page 28.

7 **Optional:** Click **View Screened Data** to view a chart of filled-in values and adjusted outliers. For more information, see “Viewing Screened Data” on page 31.

8 When settings are complete, click **Next** to open the **Methods** panel.

Viewing Historical Data by Seasonality

As you progress through the Predictor wizard, you need to know if the data is seasonal (increases and decreases in a regular cycle) and, if so, what the season or cycle is. You can select AutoDetect in the Input Data panel, but you still may want to view charts of historical data to confirm seasonality selections before you run Predictor. In the Data Attributes panel of the Predictor wizard, you can choose to view charts of data values and autocorrelations for each series of historical data.

Note: If you selected **Fill-in missing values** in the **Input Data** panel, the missing values are already filled in when you view charts of historical data and autocorrelations. Data counts include the filled-in values. However, if you selected **Adjust outliers**, these charts do not include outlier adjustments and data counts. To view adjusted data, including data counts adjusted to include outliers, select **View Screened Data**.

To view historical data values by series, in **Data Attributes**, click **View Seasonality**. The **Historical Data - Seasonality** dialog opens (Figure 2).
Historical Data - Seasonality contains:

- Series chart, upper-left corner—By default, plots historical data values for the selected series; can also display autocorrelation coefficients (see “Identifying Seasonality with Autocorrelations” on page 26 for details). In both views, seasonality is indicated by a repeating pattern.

- Series group, lower-left corner—Lists all the data series in the selected spreadsheet cell range. The currently selected series is displayed in the chart. Contains:
 - **Series**—The selected series
 - **Seasonality**—Seasonality setting for the current series
 - **Cycle**—Number of time periods in each season or cycle for the current series
 - **Apply to All Series**—Applies the current settings to all series

- Statistics, upper-right corner—Lists:
 - Statistics for seasonal data: number of data values, minimum value, mean value, maximum value, standard deviation of values, and the number of time periods in a cycle, such as 12 months in a year
 - Ljung-Box statistic for evaluating autocorrelations and the probability that data is not seasonal
 - The three most significant autocorrelation coefficients (up to a lag of one-half of the number of data points)

- Menus that enable you to perform these actions:
 - Copy and print the chart (Edit menu)
Switch between the historical data chart, chart of data autocorrelations, and a data table (View menu)
Show and hide statistics (View menu)
Set chart preferences (Preferences menu)
Indicate whether to show or hide simulation values for predictions (Preferences menu)
Open Predictor help (Help menu)

To show or remove trend corrections from the chart and statistics tables, select or clear Show detrended lags.

To confirm seasonality using autocorrelations between data at different time lags, click View Autocorrelations. The seasonality chart changes to Autocorrelations view (“Identifying Seasonality with Autocorrelations” on page 26).

Tip: If you selected more than one historical data series, change the graph to view another data series by selecting it from the Series list.

Identifying Seasonality with Autocorrelations

The Autocorrelations view of the Historical Data dialog displays a chart of autocorrelations—correlations of values of the same series separated by varying time lags—to indicate whether the historical data values have seasonality (Figure 3).
Note: “Viewing Historical Data by Seasonality” on page 24 describes the Historical Data - Seasonality dialog.

Other dialog features:

- In Autocorrelations View, the series chart plots autocorrelation coefficients at different lags for the selected series (three greatest lags are plotted with darker bars); seasonality is indicated by strong lags at certain time periods.

- To show or remove trend corrections from the chart and statistics tables, select or clear Show detrended lags. For more information about lags and the Ljung-Box statistic, see “Notes about Autocorrelations” on page 27.

- To enlarge the chart, click + in the lower-left corner and move the sliders to show different levels of detail.

- To view seasonality in terms of historical data values for each series, click View Time Series. The seasonality chart changes to Chart View, a plot of historical data values over time. For more information, see “Viewing Historical Data by Seasonality” on page 24.

If you selected more than one historical data series, change the graph to view another data series by selecting it from the Series list.

Notes about Autocorrelations

- The lag represents the number of data periods that the data is offset with the original data before calculating the correlation coefficient. For example, a lag of 12 corresponds with correlating the data with itself, offset by 12 periods; in other words, the correlation of the first data item with the thirteenth data item, the second data item with the fourteenth data item, and so on. The p-value (value of Prob) in the statistics table indicates the significance of the lag and is detrended or not, depending on the check box selection in Autocorrelations View.

- A seasonal series has alternating patterns of positive and negative lags. The seasonality (cycle) is usually determined by the strongest lag in the set of positive lags following the first set of negative lags.

- Seasonality is always calculated on detrended lags to remove the effect that trending data has on autocorrelations. You can select or clear Show detrended lags to view autocorrelation information with or without detrending.

- If the probability of the Ljung-Box statistic is less than 0.05, the set of autocorrelations is significant, and the data is probably seasonal. The seasonality is indicated by the autocorrelation lag. For example, if one of the top three lags is 12 and has a probability of less than 0.001, the data probably have a seasonality of 12 periods.
Viewing and Managing Events

Subtopics

- Adding Events
- Editing Events
- Deleting Events
- Setting Event Dates

You can use the events feature of Predictor to define identifiable occurrences that have affected historical data and could affect predicted data. These events can be one-time occurrences, such as a storm, or events that repeat on a regular basis, such as quarterly sales promotions. You can also define events that repeat at irregular intervals, such as assembly-line lockouts or tagouts. Notice that these events are different from unusual values without a known cause discussed in “Viewing Screened Data” on page 31.

You can define events for historical and predicted data. If an event is defined only for historical data, Predictor calculates changes produced by a defined event and uses that information to minimize the effect of the event on data predictions. If an event is defined for historical and predicted data ranges, historical data is used to predict data for the same event in the future.

To use defined events in Predictor calculations, in Data Attributes, select Include Events.

To add, edit, delete, and view events, in Data Attributes, click View Events. The Historical Data - Events dialog opens, similar to Figure 4 if an event has already been defined.

Figure 4 Historical Data - Events Dialog with an Event Added
Historical Data - Events contains:

- Series chart, upper-left corner—Plots historical data values for the selected series; defined events are indicated by vertical bars.

 Click the Zoom button at the bottom of the chart beneath the y-axis to contract and expand the x-axis and show more or fewer time periods per unit of length.

- Events list—Lists events by number, name, duration, and date. A check box indicates whether the event applies to all series or just the selection. Use the buttons to add, edit, or delete events. For details, see the following:

 - “Adding Events” on page 29
 - “Editing Events” on page 30
 - “Deleting Events” on page 30

 Note: Events cannot overlap. At least one time period must not be defined as an event. If more than 10 percent of the historical values are defined as events, predictive accuracy can be affected. A warning message is displayed, but you can still choose to complete the forecast.

- Series list, lower-left corner—Lists all the data series in the selected spreadsheet cell range. The currently selected series is displayed in the chart.

- Statistics, upper-right corner—Lists the following: number of historical data values, minimum value, mean value, maximum value, standard deviation of values, and the number of time periods in a cycle, such as 12 months in a year.

- Menus that enable you to:

 - Copy and print the chart (Edit menu)
 - Switch among the historical data chart and a data table (View menu)
 - Show and hide statistics (View menu)
 - Set chart preferences (Preferences menu)
 - Show or hide simulations for predictions (Preferences menu)
 - Open Predictor help (Help menu)

Tip: You can view information for another data series by selecting it from the Series list.

After you define at least one event and select Include Events in Data Attributes, you can include events data in reports and extract events data. For instructions, see “Creating Reports” on page 55 and “Extracting Results Data” on page 55.

Adding Events

- To add an event:

 1. In Data Attributes, click View Events.
2 In **Historical Data – Events**, click **Add** (Alt+a).

3 In the **Add Event** dialog, provide the following requested information:

 - **Name**—A label to identify the event
 - **Apply to all series**—When selected, applies the new event to all series, not just to the current series
 - **Start date**—The date the event or the first occurrence of the event began ("Setting Event Dates" on page 31)
 - **Duration**—The number of time periods that include a single occurrence of the effects of the event; this number must be a whole number, not a decimal, greater than 0
 - **Repeats**—Whether the event never repeats, repeats continuously at regular intervals, or repeats at custom (irregular) intervals

 To enter additional irregular intervals after the “Start date” entry (including intervals in the future), select **at custom intervals** and follow the instructions in "Setting Event Dates" on page 31.

 If you select **every**, intervals are assumed to repeat in future predicted data as well as in past historical data.

4 **When settings are complete**, click **OK**.

 For a description of the **Historical Data – Events** dialog, see “**Viewing and Managing Events**” on page 28.

Editing Events

➢ **To edit an event:**

1 In **Data Attributes**, click **View Events**.

2 In **Historical Data – Events**, select an event and click **Edit** (Alt+t).

3 In **Edit Event**, edit the displayed information.

 For a description of each edit box, see “**Adding Events** ” on page 29. For information on the start date and custom date settings, see “**Setting Event Dates**” on page 31.

4 **When settings are complete**, click **OK**.

 For a description of the **Historical Data – Events** dialog, see “**Viewing and Managing Events**” on page 28.

Deleting Events

➢ **To delete an event:**

1 In **Data Attributes**, click **View Events**.

2 In **Historical Data – Events**, select the event to delete and click **Delete** (Alt+d).
3 Select Yes to delete the event and No to keep it.
4 When settings are complete, click OK.

For a description of the Historical Data – Events dialog, see “Viewing and Managing Events” on page 28.

Setting Event Dates

Note: The following settings are in Add Event and Edit Event. See “Adding Events” on page 29 and “Editing Events” on page 30.

To set the start date of the first or only occurrence of an event, click Select (Alt+S) to display a calendar. You can enter text in the Filter box to narrow the search. For example, if the time period is months, enter M to display May and March for all years. An asterisk (*) is a “wildcard” symbol that matches any characters.

➤ To set additional start dates for irregular occurrences after the first “Start date” entry:
1 Select at custom intervals, and then click Select (Alt+S) to display the Select Custom Dates dialog.
2 Use the arrow buttons to move dates from Available Dates to Selected Dates. These are start dates for other occurrences of that event that happen later than the start date entered in Add Events.

The duration is assumed to be the same as the duration entered in Add Events. You can use Filter as described for “Start date” earlier in this list.

3 To define start dates for event occurrences in the future, enter a number for Show Future Periods. This setting is only for entering start dates. It is different from Periods to Forecast, shown in Predictor Results.

Viewing Screened Data

You can use the Predictor data screening features to:

- Fill in values that should exist in historical data but do not, such as data missing for one month in a five-year series (see “Selecting Data Attributes—Seasonality, Events, Screening” on page 23)

- Screen (exclude) outliers, values that differ significantly from the normal range of historical data

- Specify the statistical algorithms used to fill in or screen data (see “Setting Screening Options” on page 32)

➤ To examine the effects of filling in or screening data, and to change screening settings:
1 Click View Screened Data in the Data Attributes panel.
The **Historical Data - Data Screening** dialog opens. Any screened data values are highlighted in the chart.

2. **Optional:** Select **Show screened data only** to gray out unscreened data in the chart.

3. **Optional:** Click **Screening Options** to specify data filling and screening options. For details, see “**Setting Screening Options**” on page 32.

Setting Screening Options

You can choose from among several statistical methods to identify and adjust outliers and fill in missing values.

- To select an outlier detection method:
 1. In the **Data Attributes** panel, click **View Screened Data**.

 The **Historical Data - Data Screening** dialog opens.
 2. In **Historical Data — Data Screening**, click **Screening Options**.

 The **Data Screening Options** dialog opens.
 3. Select a detection method and enter an associated threshold value.

 You can select outliers using the mean and standard deviation, the median and median absolute deviation (MAD), or the median and interquartile deviation (IQD). For a description of each method, see the Predictor sections of the *Oracle Crystal Ball Reference and Examples Guide*. The default is **Mean and Standard Deviation** with a standard deviation of 3.

- To select a method for adjusting outliers and filling in missing values:
 1. Display the **Data Screening Options** dialog as described in steps 1 and 2 above.
 2. Select a method:

 - **Cubic spline interpolation** calculates a smooth, continuous curve that passes through each data point. It evaluates the entire data set.

 - **Neighbor interpolation** examines values on each side of the value to be adjusted or filled in and calculates that value based on the mean or median of the specified neighbors.

 For more information about each method, see the Predictor sections of the *Oracle Crystal Ball Reference and Examples Guide*.
 3. If you select **Neighbor interpolation**, indicate the number of neighbors to evaluate on each side of the target value and select a statistic.
 4. When settings are complete, click **OK**.

Selecting a Forecasting Method

Use the Methods panel of the Predictor wizard to select a forecasting method.
To display **Methods**, click **Next** in **Data Attributes** or click **Methods** in the navigation pane of the Predictor wizard.

To select one or more forecasting methods:

1. Depending on the **Data Attributes Seasonality** setting and the nature of the data, select one or more of the following:
 - **Non-seasonal Methods**—Work best on data that do not show a pattern that repeats regularly over a certain number of time periods, but can show a trend of decreasing or increasing over time
 - **Seasonal Methods**—Work best on data that show a pattern that repeats regularly over a certain number of time periods and can also show a trend of decreasing or increasing over time
 - **ARIMA**—Useful in a variety of situations, particularly with many historical values and very few outlier values
 - **Multiple Linear Regression**—Useful when independent variables affect another variable of interest

 Note: Shortcut keys for selecting or clearing each method group are as follows: Ctrl+n, Non-seasonal Methods; Ctrl+s, Seasonal Methods; Ctrl+a, ARIMA; and Ctrl+m, Multiple Linear Regression.

2. **Optional:** Click a method type listed in step 1 to view details and additional selections for that type.

 If you select **Non-seasonal Methods** or **Seasonal Methods**, method icons are displayed. Click an icon for additional information about that method.

3. **Optional:** Disable any individual method or override the default settings:
 - For **Non-seasonal Methods** and **Seasonal Methods**, see “Using Classic Time-series Forecasting Methods” on page 33 for help with selecting only a few methods or using all of them (recommended). Notice that you can double-click any method to change its parameters and override the defaults.
 - For **ARIMA** (autoregressive integrated moving average) methods), see “Using ARIMA Time-series Forecasting Methods” on page 36.
 - For **Multiple Linear Regression**, see “Using Multiple Linear Regression” on page 40.

4. When settings are complete, click **Next** to review and change forecasting options.

Using Classic Time-series Forecasting Methods

Note: This section describes non-seasonal and seasonal time-series forecasting methods that do not include Box-Jenkins ARIMA methods. For information on those methods, see “Using ARIMA Time-series Forecasting Methods” on page 36.
You can forecast historical data using many different time-series forecasting methods. Some methods are designed to work best for certain types of data:

- **Seasonal data** (increasing or decreasing in a regularly recurring pattern over time; Figure 5, left side)
- **Trend data** (consistently increasing or decreasing over time; Figure 5, right side)
- **Data with no trend or seasonality**

Figure 5 Seasonal Data (Left) and Data with a Trend (Right)

In addition to these categories, two types of seasonal methods exist: additive and multiplicative. Additive seasonality has a steady pattern amplitude, and multiplicative seasonality has the pattern amplitude increasing or decreasing over time. Damped trend methods can be non-seasonal or seasonal and show decay over time.

Figure 6 on page 34 illustrates the different non-seasonal and seasonal curves.

Figure 6 Different Method Curves

For time-series forecasting, any of the classic time-series forecasting methods should work with different amounts of success. However, each method has its own purpose, as described in
Table 1 and the summary paragraphs that follow it. For more information about each classic method, see the Predictor sections of the Oracle Crystal Ball Reference and Examples Guide.

Table 1 Choosing a Classic Time-series Forecasting Method

<table>
<thead>
<tr>
<th>No Trend or Seasonality</th>
<th>Trend Only, No Seasonality</th>
<th>Seasonality Only, No Trend</th>
<th>Both Trend and Seasonality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single exponential smoothing</td>
<td>Double exponential smoothing</td>
<td>Seasonal additive</td>
<td>Holt-Winters’ additive</td>
</tr>
<tr>
<td>Single moving average</td>
<td>Double moving average</td>
<td>Seasonal multiplicative</td>
<td>Holt-Winters’ multiplicative</td>
</tr>
<tr>
<td></td>
<td>Damped trend smoothing</td>
<td></td>
<td>Damped trend additive</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Damped trend multiplicative</td>
</tr>
</tbody>
</table>

To summarize selection guidelines:

- **Moving average methods**—These methods help to smooth out short-term fluctuations and highlight longer-term trends or cycles. They are used when the time series does not have a trend. When the time series has a trend, using the double moving average method computes a second moving average from the original moving average to track the trend better.

- **Exponential smoothing methods**—While the moving averages give equal weights to included values, single exponential smoothing assigns exponentially decreasing weights as the observation get older, a more reasonable approach. When a time series has a trend, double exponential smoothing is useful and is computed by smoothing the series twice.

- **Damped trend methods**—For use when a curve becomes flatter (decelerates) over time.

To determine whether you have trend or seasonal data, click **View Seasonality** on the **Input Data** panel. For details, see “Viewing Historical Data by Seasonality” on page 24.

Tip: Viewing seasonality can help you decide which methods to select. However, selecting all the classic time-series forecasting methods available for either **Non-seasonal Methods** or **Seasonal Methods** does not significantly slow down the calculations unless you are forecasting thousands of values at once, so you can consider trying them all (the default).

For forecasting method selection procedures, see “Selecting a Forecasting Method” on page 32. To manually set the parameters for any method, see “Setting Classic Time-series Forecasting Method Parameters” on page 35.

Setting Classic Time-series Forecasting Method Parameters

Note: This section describes classic non-seasonal and seasonal time-series forecasting methods and does not include Box-Jenkins ARIMA methods. For information on those methods, see “Using ARIMA Time-series Forecasting Methods” on page 36.
To manually set the parameters for any classic time-series forecasting method, overriding the automatic calculation of parameters:

1. **Double-click in the method area.**

The method’s Parameters dialog opens.

2. **Optional:** Select Optimize to automatically optimize the parameters using error measures.

3. **Optional:** Select Lock Parameters to enter new parameter values in the parameter text boxes.

 For more information on these parameters, see the Predictor sections of the Oracle Crystal Ball Reference and Examples Guide.

4. Click **OK.**

Note: The user-defined settings remain for the current data selection until you reset them. Click **Set Default** to restore default settings for future data selection.

Using ARIMA Time-series Forecasting Methods

Subtopics

- Selecting an ARIMA Model Selection Criterion
- Using ARIMA Custom Models
- Adding Custom ARIMA Models
- Editing Custom ARIMA Models
- Setting ARIMA Options

Autoregressive integrated moving average (ARIMA) forecasting methods were popularized by G. E. P. Box and G. M. Jenkins in the 1970s. These techniques, often called the Box-Jenkins forecasting methodology, have the following steps:

1. Model identification and selection
2. Estimation of autoregressive (AR), integration or differencing (I), and moving average (MA) parameters
3. Model checking

ARIMA is a univariate process. Current values of a data series are correlated with past values in the same series to produce the AR component, also known as \(p \). Current values of a random error term are correlated with past values to produce the MA component, \(q \). Mean and variance values of current and past data are assumed to be stationary, unchanged over time. If necessary, an I component (symbolized by \(d \)) is added to correct for a lack of stationarity through differencing.

In a non-seasonal ARIMA(\(p,d,q \)) model, \(p \) indicates the number or order of AR terms, \(d \) indicates the number or order of differences, and \(q \) indicates the number or order of MA terms. The \(p, d, \) and \(q \) parameters are integers equal to or greater than 0.

Cyclical or seasonal data values are is indicated by a seasonal ARIMA model of the format
SARIMA\((p, d, q)(P, D, Q)(t)\)

The second group of parameters in parentheses are the seasonal values. Seasonal ARIMA models consider the number of time periods in a cycle as defined in the Historical Data – Seasonality dialog (Figure 2 on page 25). For a year, the number of time periods \((t)\) is 12.

Note: In the Predictor user interface, seasonal ARIMA models do not include the \((t)\) component, although it is still used in calculations. See the Bibliography in the Oracle Crystal Ball Reference and Examples Guide for references that describe this methodology in more detail.

Crystal Ball ARIMA models do not fit to constant datasets or datasets that can be transformed to constant datasets by non-seasonal or seasonal differencing. Because of that feature, all constant series, or series with absolute regularity such as data representing a straight line or a saw-tooth plot, do not return an ARIMA model fit.

To use ARIMA methods:

1. **In the** Predictor wizard Methods panel, select ARIMA.
2. **In the** Autoregressive Integrated Moving Average (ARIMA) Details panel, select Automatic (the default) or Custom models.

Note: Unless you are thoroughly acquainted with ARIMA methodology and intend to construct or use existing custom ARIMA models, select Automatic.

3. **Optional:** If you selected Automatic, select a model selection criterion, Minimize information criterion (the default) or Minimize selected error measure. The default generally provides a better ARIMA estimate. Minimizing the error measure selected elsewhere for Predictor forecasting can result in overfitting.

4. **Optional:** Click Select Information Criterion (Alt+e) to indicate which information criterion to use. For details, see “Selecting an ARIMA Model Selection Criterion” on page 38. Unless you have good reason to select another, BIC (the default) is usually appropriate.

5. **Optional:** Select Perform extended model search to compare more models to the historical data. Results may be somewhat more accurate, but the analysis can take noticeably more time.

6. **Optional:** If you selected Custom models in step 2, build a list of models to use. For instructions, see “Using ARIMA Custom Models” on page 38.

7. **Optional:** Click ARIMA Options (Alt+o) to indicate whether to include a constant in the ARIMA equation and whether to perform a Box-Cox transformation. The default, AutoSelect or None, is usually appropriate for both options. For more information, see “Setting ARIMA Options” on page 39.

Note: If Automatic is selected, any displayed models are fitted to each series. Custom seasonal models are not fitted to non-seasonal series, but non-seasonal models will be fitted to seasonal series.

If Custom models is selected, models apply only to the currently selected Predictor series and must be defined for each series separately.
Selecting an ARIMA Model Selection Criterion

To select an ARIMA model selection criterion:

1. In the Predictor wizard Methods panel, select ARIMA.
2. In the Autoregressive Integrated Moving Average (ARIMA) Details panel, select Automatic (the default).
3. Select Minimize Information Criterion, and then click Select Information Criterion (Alt+e).
4. In the Select Information Criterion dialog, select a setting:
 - Bayesian Information Criterion (BIC)
 - Akaike's Information Criterion (AIC)
 - Corrected AIC (AICc)

Note: See the Bibliography in the Oracle Crystal Ball Reference and Examples Guide for references that discuss the differences among these criteria. The three criteria differ in the way that they penalize overfitting. The differences are small, and the chosen criterion typically does not lead to a change in the ARIMA model selected as the best fit.

Using ARIMA Custom Models

While automatic selection of an ARIMA model should be completely adequate, if results are different from what you expect and you are familiar with ARIMA methodology and model construction, you can create and edit ARIMA models in Predictor.

To use custom models for ARIMA forecasting:

1. In the Predictor wizard Methods panel, select ARIMA.
2. In the Autoregressive Integrated Moving Average (ARIMA) Details panel, select Custom models.
3. Click a button to add, edit, or remove a model:
 - Add (Alt+d), enables you to create a new model, as described in “Adding Custom ARIMA Models” on page 39.
 - Edit (Alt+e), enables you to modify the selected model, as described in “Editing Custom ARIMA Models” on page 39.
 - Remove (Alt+v), permanently deletes the selected model.

Note: Displayed models are fitted to each series. Custom seasonal models are not fitted to non-seasonal series, but non-seasonal models are fitted to seasonal series.
Adding Custom ARIMA Models

To add a custom model for ARIMA forecasting:

1. Follow steps 1 and 2 in “Using ARIMA Custom Models” on page 38.
2. Click Add (Alt+d).
3. In the Add ARIMA Model dialog, indicate the orders for each parameter of the non-seasonal and, optionally, seasonal model, and then click OK.
 - Follow these rules for entering model orders:
 - Non-seasonal component orders can be 0 to 10. Seasonal component orders can be 0 to 2.
 - Orders must be integers.
 - At least one parameter of the non-seasonal or seasonal model component must be non-zero.
 - As with standard ARIMA notation, the \(p \) portion of the model definition goes in the AR box, the \(q \) portion in the MA box, and the \(d \) portion in the I box.
 - The time-period portion of a seasonal model is taken from the existing Predictor information for that series but is not included in the Custom models list.
4. When the definition is complete, click OK.
 - The new model is displayed in the Custom models list. Seasonal models are preceded by \(S \) —SARIMA(2,0,3)(1,0,2), for example.

Editing Custom ARIMA Models

To edit a custom model for ARIMA forecasting:

1. Follow steps 1 and 2 in “Using ARIMA Custom Models” on page 38.
2. Click Edit (Alt+e).
3. In the Edit ARIMA Model dialog, indicate the orders for each part of the non-seasonal and, optionally, seasonal model, and then click OK.
 - For model rules, see “Adding Custom ARIMA Models” on page 39.
4. When the definition is complete, click OK.

Setting ARIMA Options

ARIMA equations can include a constant that represents the intercept if the AR portion of a model is not 0; otherwise, it represents the mean of the series. You can set ARIMA options to indicate whether to include the constant in ARIMA equations. The ARIMA options can also be used to provide variance stationarity in data using the Box-Cox transformation. If you choose to apply the Box-Cox transformation, you can select from among several lambda \((\lambda) \) options. For more information, see the Oracle Crystal Ball Reference and Examples Guide.
The ARIMA options settings apply to both automatic and custom-model ARIMA forecasts.
AutoSelect is the default for the constant option; **None** is the default for the Box-Cox option.

➤ To set ARIMA options:

1. In the Predictor wizard **Methods** panel, select **ARIMA**.
2. In the **Autoregressive Integrated Moving Average (ARIMA) Details** panel, click **ARIMA Options** (Alt +o).
3. In the **ARIMA Options** dialog, indicate whether to:
 - Include the constant in ARIMA equations by selecting **AutoSelect** (the default), **Always**, or **Never**
 - Perform no Box-Cox transformation (**None**); or perform a Box-Cox transformation with an **Optimized value** for lambda or a **Square root**, **Logarithmic**, or **Custom lambda** value (between –5 and +5, inclusive)

Note: If you select **AutoSelect** for constant inclusion, Predictor includes a constant in the ARIMA equation only when the model does not include a non-seasonal or seasonal difference term.

Using Multiple Linear Regression

If you know that some independent variables affect another variable of interest (the dependent variable), use multiple linear regression as the forecasting method for that variable. For example, summer temperatures affect electricity usage because, as it gets hotter, more people run their air conditioning. This means that electricity usage (the dependent variable) is dependent on the temperature (an independent variable).

Predictor follows this process to forecast a dependent variable with regression:

1. Creates an equation that defines the mathematical relationship between the independent variables and a dependent variable. This is the regression equation.
2. Forecasts each independent variable by running all the selected time-series forecasting methods for each one and using the best method for each.
3. Calculates the regression equation with the predicted independent variable values to create the forecast for the dependent variable.

➤ To use multiple linear regression:

1. On the Predictor wizard **Methods** panel, select **Multiple Linear Regression**.
2. In the **Regression Variables** dialog, select dependent and independent variables. For instructions, see “Selecting Regression Variables” on page 41.
3. Select the regression method to use: **Standard**, **Forward stepwise**, or **Iterative stepwise**. For descriptions, see the Glossary in this document and the **Oracle Crystal Ball Reference and Examples Guide**.
4. If you selected a stepwise regression, you can select associated settings.
For instructions, see “Setting Stepwise Regression Options” on page 42.

5 Select or clear the remaining settings:

- Include constant in regression equation—Includes the y-intercept constant in the regression equation; if not selected, the regression equation passes through the origin. This setting is selected by default.

- Run only regression method for dependent variables—If selected, forecasting methods other than regression are not run on dependent variables. By default, this setting is not selected and all the forecasting methods run on these variables along with linear regression.

- Calculate variance inflation factor (VIF) for independent variables—Calculates the Variance Inflation Factor (VIF) of each independent variable included in the regression equation, where VIF is a measure of the strength of multicollinearity (amount of correlation) between the independent variables. Calculating the VIF requires additional time. By default, this setting is not selected.

Note: For rules concerning the minimum number of data points required for multiple linear regression, see “Creating Spreadsheets with Historical Data” on page 16.

Selecting Regression Variables

The Regression Variables dialog opens when you select Multiple Linear Regression in the Methods panel of the Predictor wizard.

To select dependent and independent variables for regression analysis:

1 In the Regression Variables dialog, move the dependent variables into the Dependent variables (Y's) list:
 a. Select the name of a dependent variable in the Independent variables (X's) list.
 You can have more than one dependent variable. Predictor forecasts them all, one at a time, as functions of all the same independent variables.
 b. Click between the lists.
 The variable moves to Dependent variables (Y's).

2 Confirm that all variables are included in the appropriate list.

3 To lag independent variable data by a number of time periods:
 a. Select a variable in Independent variables (X's).
 b. Enter the number of time periods to lag the variable in the Lag text box below the list.
 c. Repeat for any other independent variables you want to lag.

4 Clear the check box for any variables you do not want to include in the regression.

5 Click OK.

The Methods panel is displayed again (see “Using Multiple Linear Regression” on page 26).
Setting Stepwise Regression Options

The Stepwise Options dialog opens when you select one of the stepwise regression methods in the Methods panel of the Predictor wizard.

To set appropriate stepwise method options:

1. In the Stepwise Options dialog, select R-Squared and Partial F-Test settings.

 Text boxes, settings, and buttons in the Stepwise Options dialog:

 - **R-Squared**—Stops the stepwise regression if the difference between a specified statistic (either R-Squared or Adjusted R-Squared) for the previous and new regression solution is below a threshold value. When this happens, Predictor does not use the new regression solution. By default, this stopping criterion is selected and uses R-Squared as the statistic. If this setting and the Partial F-Test Significance are selected, the stepwise regression stops when it reaches either criterion’s threshold value.

 - **Threshold**—Sets the minimum increment required between the R-Squared or Adjusted R-Squared of the last step and the R-Squared or Adjusted R-Squared of the new step to continue with the stepwise regression. The default is 0.001.

 - **Partial F-Test Significance**—Stops the stepwise regression if the probability of the F statistic for a new solution is above a maximum value. By default, this stopping criterion is not selected. If this setting and the R-Squared setting are selected, the stepwise regression stops when it reaches either criterion’s threshold value.

 - **Probability to add**—Sets the maximum probability of the correlation (partial F statistic) of the independent variable required to add the variable to the regression equation. The default is 0.05. When dealing with statistical tests, smaller probabilities indicate more significance.

 - **Probability to remove**—Sets the minimum probability of the correlation (partial F statistic) of the independent variable required to remove the variable from the regression equation. The default is 0.05. This setting is only available with iterative stepwise regression. The **Probability to remove** setting must be at least 0.05 higher than the **Probability to add** setting.

2. Click OK.

The Methods panel is displayed again (see “Using Multiple Linear Regression” on page 40).

Setting Forecast Options

Use the Options panel of the Predictor wizard to select an error measure and a forecasting technique. To display Options, click Next in Methods or click Options in the navigation pane of the Predictor wizard.

The following topics describe how to set the forecast options:

- “Selecting Error Measures” on page 43
- “Selecting Forecasting Techniques” on page 43
When all **Options** settings are complete, click **Run** to run the forecast and produce results. For more information, see “Starting Predictor and Running a Forecast” on page 17.

Selecting Error Measures

Predictor uses one of three error measures to determine which time-series forecasting method works best. When determining the best method, Predictor calculates the selected error measure when fitting each method to the historical data. The method with the lowest error measure is considered best, and the rest of the methods are ranked accordingly.

By default, Predictor uses RMSE to select the best method.

- To change which error measure Predictor uses:
 1. **On the Options panel, select the error measure you want Predictor to use to determine the best method:**
 - **RMSE** - Root Mean Squared Error
 - **MAD** - Mean Absolute Deviation
 - **MAPE** - Mean Absolute Percentage Error

For more information on these error measures, see the Glossary in this document and the Predictor sections of the *Oracle Crystal Ball Reference and Examples Guide*.

- **Follow the instructions in “Selecting Forecasting Techniques” on page 43** to complete the Options settings and prepare to run the forecasts.

Selecting Forecasting Techniques

Predictor uses one of four forecasting techniques for time-series forecasting: Standard, Simple lead, Weighted lead, and Holdout. By default, Predictor uses Standard forecasting to select the best method.

- To change which forecasting technique Predictor uses:
 1. **On the Options panel, select the forecasting technique to use for time-series:**
 - **Standard forecasting**—Error measure between the fit values and the historical data for the same period; the default
 - **Simple lead**—Error measure between the historical data and the fit offset by a specified number of periods (lead)
 - **Weighted lead**—Average error measure between the historical data and the fit offset by 0, 1, 2, etc. periods, up to the specified number of periods (weighted lead)
 - **Holdout**—Error measure between a set of excluded data and the forecasting values. Predictor does not use the excluded data to calculate the forecasting parameters

For more information about each technique, see the Predictor sections of the *Oracle Crystal Ball Reference and Examples Guide*.
2 If you select Simple lead, Weighted lead, or Holdout, enter the appropriate lead or holdout in the box.

3 When all settings in the Predictor wizard are complete, click Run to run the forecast and produce results.
Understanding the Predictor Results Window

Subtopics

- Entering the Number of Time Periods to Forecast
- Selecting a Prediction Interval

The Predictor Results window (Figure 7) is similar to the Historical Data dialog described in “Viewing Historical Data by Seasonality” on page 24.
The Series group determines which data series is displayed. If you predicted results for more than one series, look at all results by selecting each series in the Series list.

By default, the displayed information is calculated using the forecasting method listed as BEST. You can view a different method for each series if you want. The methods are ordered from best to worst.

You can override the best method to calculate results using the new “best” method. This change only affects the current series. The other series remain unchanged unless you select one and override its method also.

If you change the method selection for a given series and then select another series and come back to the original series, it is the best method for the original series that is selected (not any non-best selection that may have been active when the series was changed). To always view a particular method when a particular series is selected, the best method should be overridden for that series.

The chart of series data values includes historical and predicted, or forecasted, data. Plots of raw data values and fitted values are displayed for historical data. By default, predicted data values are enclosed by lines that show the upper and lower prediction intervals (described in “Selecting a Prediction Interval” on page 48). The space in between is shaded, similar to a fan chart. You can use Ctrl+p to display and hide prediction interval lines on the chart. You can use the Preferences menu or Ctrl+b to hide the shading and hide plots of predicted values for each simulation (“Animating Prediction Simulations” on page 53).

In the case of a dependent regression variable, the predicted values are a function of the best forecast methods (or overridden best forecasting methods) of the independent variables.
If you defined at least one event and selected Include events in the Data Attributes panel, a shaded vertical bar displays through historical and predicted data defined as events. You can select Preferences, and then Highlight Events to hide these bars and display them again (see Figure 7 on page 46).

In the upper-right is a table of statistics for the raw historical data.

Below the historical statistics are error statistics for the predicted data values.

At the bottom of the statistics table are parameter values for the currently selected forecasting method.

For more information about these parameters and statistics, see the Glossary in this document and the Predictor sections of the Oracle Crystal Ball Reference and Examples Guide.

The Forecasts group is used to change the number of time periods to forecast and to select prediction interval boundaries. See “Entering the Number of Time Periods to Forecast” on page 47 and “Selecting a Prediction Interval” on page 48.

You can also use the Adjust and Paste buttons to adjust missing values and outliers (extreme values) and paste predicted values into the Predictor model (“Adjusting and Rounding Forecasted Data” on page 48 and “Pasting Prediction Data” on page 50).

You can select Preferences, and then Highlight Seasonality or Highlight Screened Data to show or hide indications of seasonal cycles or filtered data if those features if they are selected in the Predictor wizard and included within displayed data.

You can select Preferences, and then Show Simulations for Prediction (or click Simulate) to create an animated chart of predicted values for each time period (“Animating Prediction Simulations” on page 53).

Click Zoom, to display sliders that enable you to enlarge the chart for viewing details and then decrease it again.

You can right-click within the Predictor Results window to display a menu with related commands.

For additional information, see “Selecting How to Display and Analyze Results” on page 48.

Entering the Number of Time Periods to Forecast

After Predictor determines the method that best fits the historical data, it can use that same method to forecast future values. You need to decide how many time periods to forecast.

Consider these factors:

- The first few values are fairly reliable. Forecast only as many values as you need.
- The farther out you try to forecast, the less reliable the predicted values are. The prediction interval of any forecast grows to reflect this decrease in reliability.
To indicate how many time periods to forecast, enter the number in **Periods to forecast** in the lower-right corner of the **Predictor Results** window.

Selecting a Prediction Interval

The prediction interval defines the range above and below a predicted value where the value has some probability of occurring. For example, a prediction interval of 10% and 90% gives two points for each predicted value. The lower point represents the 10th percentile. The higher point represents the 90th percentile. The chance that the predicted value will fall within this range is 80%. The farther out the forecast is, the greater the size of this range.

To select a prediction interval, select from the **Prediction interval** list in the lower right corner of the **Predictor Results** window or select **Custom** to enter the wanted prediction interval in the **Custom Prediction Interval** dialog.

Selecting How to Display and Analyze Results

You can use Predictor results in several ways:

- Adjust the predicted data, including rounding it
- Paste the predicted data anywhere on the worksheet or into a new worksheet
- View, copy, and print charts that can show historical data, fitted values, predicted data, and associated prediction intervals
- Generate a report summarizing the findings
- Create an interactive table of all the historical data, fitted values, predicted data, and prediction intervals
- Create an interactive table of some or all the method information for each forecast, including the errors, parameters, and statistics for each method tried

For instructions:

- “Adjusting and Rounding Forecasted Data” on page 48
- “Pasting Prediction Data” on page 50
- “Viewing Charts” on page 51
- “Creating Reports” on page 55
- “Extracting Results Data” on page 55

Adjusting and Rounding Forecasted Data

After you run a Predictor forecast, you can adjust the predicted data to customize it for your particular situation. For example, you could add 50 to each predicted value, or you could round each value to the nearest hundreds. Adjustments are applied to all methods for that series.
To adjust predicted data:

1. Run a Predictor forecast and display the Predictor Results window.

2. Click Adjust.

3. In the Adjust Forecast for Series dialog, change any or all settings in the listed order:
 - 1. Percentile of forecast range—See the note below for an explanation; select Custom to enter a percentile into the Custom Percentile dialog (Default = Median)
 - 2. Adjust values by—Increases or decreases each value by the specified amount (Default = 0.00)
 - 3. Round values to—Rounds values to the specified numeric place; for example Integer rounds to the nearest number in units place (Default = No rounding; select Custom to specify a decimal place as described in “Custom Rounding” on page 49)
 - 4. Restrict values to range—Limits adjusted values to the specified range (Default = –Infinity to Infinity)

Note: When a time-series forecast is pasted into a model as a Crystal Ball assumption, each forecast value is assumed to be the median, or 50th percentile, of a normal distribution assumption. The percentile adjustment is ignored in this case.

4. Optional: Click Apply to All Series to apply the settings to all data series, except for dependent variables in a regression analysis.

5. Optional: Click Defaults to restore all the default settings.

6. When setting changes are complete, click OK.

Custom Rounding

Several rounding settings are available in the Adjust Forecast for Series dialog; you can also specify custom rounding levels.

To specify a custom rounding level:

1. In the Adjust Forecast for Series dialog, select Custom for 3. Round values to.

2. In the Custom Rounding dialog, specify a rounding level:
 - 0 = first place to the left of the decimal (units place)
 - 1 = second place to the left of the decimal (tens)
 - 2 = third place to the left of the decimal (hundreds)
 - 3 = fourth place to the left of the decimal (thousands)
 - –1 = first place to the right of the decimal (tenths)
 - –2 = second place to the right of the decimal (hundredths)
 - –3 = third place to the right of the decimal (thousandths)
Increased positive and negative values continue this pattern. The default is 0. The valid range of entries is –15 to 15, inclusive.

Pasting Prediction Data

When you run a prediction, you can paste predicted results into a Microsoft Excel worksheet in two ways:

- As forecast values — base prediction values.
- As “random walk” formulas that can be used to simulate future values within the prediction interval in a Crystal Ball simulation. (When not running a simulation, the formulas will be set to show the base prediction values.)

Note: This feature is available in Crystal Ball 11.1.2.4.400 and later. For information on these new features and on updating to 11.1.2.4.400 or later, see the Crystal Ball Readme for the target release and My Oracle Support.

To paste prediction data into a worksheet:

1. In the **Predictor Results** window, set **Periods to forecast** to the number of time periods to paste into the worksheet.
2. Click **Paste**.
3. Select from among these settings in the **Paste Forecasts to Spreadsheet** dialog:
 - **Location**
 - **At end of historical data** — Pastes predicted data after the historical data
 - **Starting at cell** — Pastes data in the specified cell and following cells; select a range to paste multiple data series

 Note: Data is pasted below or to the right of the specified cell, depending on the **Orientation** selection.

 - **Paste as**
 - **Forecast values** — The base prediction values
 - **Random walk formulas** — Formulas that refer to assumption cells on a separate support sheet for use in simulations

 - **Options**
 - **Include date series** — Pastes date labels next to predicted values
 - **AutoFormat** — Formats data to match the numeric formatting of the data series and highlights forecasts in **bold**.
4. Click **OK**.
The results are pasted at the specified location. Predictor uses the results from the currently selected BEST method shown in the Results window (unless you overrode the BEST method with a different method.).

Note: Of the eight classic time-series forecasting methods, two result in flat lines: single moving average and single exponential smoothing. The predicted values for these are all the same. This result is not an error. It is the best possible forecast for volatile or patternless data.

Assumptions on the Supporting Sheet

When pasting “random walk” formulas, Predictor creates assumptions as error or delta values on a supporting sheet and then references that sheet from the formula cells. In release 11.1.2.4.600 and later, the supporting spreadsheet is hidden by default.

For multiple linear regression, Predictor creates assumptions for the independent variable forecast values only. The dependent variable values are formula cells that are a function of the independent variables.

Note: This feature is available in Crystal Ball 11.1.2.4.400 and later. For information on these new features and on updating to 11.1.2.4.400 or later, see the Crystal Ball Readme for the target release and My Oracle Support.

Viewing Charts

Subtopics

- Customizing Charts
- Animating Prediction Simulations
- Copying and Printing Charts

By default, the Predictor Results window contains a chart of historical and predicted values in the upper left.

➢ To control the chart view, use these settings:

- **Periods to forecast**—Determines the number of predicted values that are displayed in the chart
- **Prediction interval**—Indicates which prediction interval to calculate and plot
- **Series**—Selects the data series to display in the chart
- **Method**—Selects the method to use for calculating predicted values
- **View menu**—**View, Table** changes the chart display to a table; **View, Chart** changes it back; and **View, Show Statistics** hides and displays the statistics tables to enlarge the chart
Note: If Include events is selected in the Data Attributes panel of the Predictor wizard, and at least one event is defined, Table View includes an Event column with the name and number of each event defined for the selected series.

- Preferences menu—Contains the following options:
 - Preferences, Chart Preferences displays the Chart Preferences dialog (see “Customizing Charts” on page 52, following).
 - Preferences, Show All Error Measures shows and hides error measures that are not selected in the Options panel of the Predictor wizard.
 - Preferences, Show Simulations for Prediction shows and hides a plot of predicted values for each time period (“Animating Prediction Simulations” on page 53).
 - Preferences, Highlight Seasonality graphically emphasizes seasonal data cycles if present.
 - Preferences, Highlight Screened Data emphasizes filled-in or adjusted-outlier data if these are present and you selected at least one of the Data Screening settings in the Data Attributes panel.
 - Preferences, Highlight Events emphasizes data defined as events if you have defined at least one event and selected Include events in the Data Attributes panel.
 - Preferences, Highlight Prediction Interval shows and hides a shaded band that represents the prediction interval selected for the displayed series.

Note: This feature is available in Crystal Ball 11.1.2.4.400 only. For information on the 11.1.2.4.400 new features and on updating to 11.1.2.4.400, see the Crystal Ball 11.1.2.4.400 Readme and My Oracle Support.

Chart Notes
- As shown in the chart legend, the green line represents the historical data, the blue lines represent fitted and predicted values, and the orange dotted lines above and below the predicted values represent the upper and lower prediction interval. A gap between the historical and predicted values delineates the past and future values.
- Of the classic time-series forecasting methods, only the seasonal methods and multiple linear regression result in curves that approximate repeated data patterns.

Customizing Charts
You can customize Predictor charts in many ways:
- Change the colors of lines, line types, and line sizes in the chart
- Display and hide the grid lines and legend
- Show a separator line between historical and predicted values
- Show the chart in perspective for a 3D effect
- Make the chart lines transparent
To customize Predictor charts:

1. In the Predictor Results window, select Preferences, and then Chart Preferences.

2. In the Chart Preferences dialog, review the Show Series settings:
 - Clear the check box for any series that you do not want to include.
 - Make any wanted line color, line type, or line size changes.

3. Optional: Review the Options settings:
 - Change the Gridlines setting to display horizontal or vertical gridlines.
 - Change the Legend setting to display or hide the legend and change its position in the chart.
 - Change whether to show or hide the separator line between historical and predicted values.

4. Optional: Review the Effects settings:
 - Select the 3D chart setting to add three-dimensional perspective.
 - Select the Transparency setting to make the chart lines transparent, according to the number in the percent box.

5. Click OK to return to the Predictor Results window.

Animating Prediction Simulations

Note: This feature is available in Crystal Ball 11.1.2.4.400 and later. For information on new features in these releases and on updating, see the Crystal Ball Readme for releases 11.1.2.4.400 and later, and My Oracle Support.

When you run a prediction, a set of random values is generated for each time period using the best of all forecasting methods selected in the Methods panel of the Predictor wizard, or manually selected in the Method list in the Predictor Results window. The characteristics of the generated values are determined by the forecasting method. The prediction interval sets bounds for the values, although outliers can occur.

For analytic, training, and demonstration purposes, you can view a set of the random values generated for each time period. These plots are shown as animations plotted successively in the predicted values section of the chart.

To display an animated plot of prediction simulations, in the Predictor Results window:

1. Confirm that the Series, Method, Periods to forecast, and Prediction interval selections are correct.

2. Select Preferences, and then Show Simulations for Prediction.
Simulation plots are displayed in the predicted data portion of the chart (Figure 8). If you point with the mouse to an area within the set of plots, a tooltip indicates the prediction value and date or other time period. You can also click.

Figure 8 Predicted Values for Usage (ft\(^3\)), Toledo Gas Model

You can determine the number of simulations to display and how quickly they should plot.

To customize the predicted value simulation charting, click in the lower right corner of the chart. Use the vertical and horizontal sliders to control the number and speed of simulations. The vertical slider controls simulation speed and the horizontal slider controls the number of simulations. Try working with slower speeds and lower simulation numbers to learn more about prediction calculations.

Note: You can select Preferences, and then Chart Preferences to view or change the Forecast chart color, line type, and line size.

To test the simulation settings, click.

Copying and Printing Charts

- To copy and print charts:
 1. In the Predictor Results window, select Edit.
2 Perform an action:
 - Select Copy Chart to copy the chart to the Windows clipboard.
 - Select Page Setup, Print Preview, or Print to perform those printing tasks with Windows-standard dialogs.

Creating Reports

To create a report of Predictor data for each series:

1 Run a Predictor forecast and display the Predictor Results window.
 If it is not visible, click Predictor Results in the Windows task bar. (It may be located in the Microsoft Office Excel group.)

2 Confirm that the following settings are complete and correct:
 - Periods to forecast—Determines the number of predicted values that are displayed
 - Prediction interval—Indicates which prediction interval to calculate and plot
 - Series—Selects the data series to display
 - Method—Selects the forecasting method used to calculate predicted values

 See “Viewing Charts” on page 51.

3 In the Predictor Results menu bar, select Analyze, and then Create Report.

4 In the Create Report Preferences dialog, select a report type:
 - Predictor includes only Predictor data.
 - Full and Custom can include all other available data as well as Predictor data. For information about Full and Custom reports, click Help.

 Note: If Include events is selected in the Data Attributes panel of the Predictor wizard, and at least one event is defined, the Events table is part of the Statistics section of the Series report. For custom reports, events data display is controlled by the Statistics check box in the Predictor Series settings of the Custom Report dialog.

5 Optional: Click Options to specify a location and formatting for the report. For an explanation of each setting, click Help.

6 Click OK.
 By default, the report is created in a separate workbook. See Figure 18 on page 71.

Extracting Results Data

You can extract results and methods data from the current Predictor forecasting run.
To extract Predictor results:

1. Run a Predictor forecast and display the Predictor Results window.

 If it is not visible, click Predictor Results in the Windows task bar. (It may be located in the Microsoft Office Excel group.)

2. Confirm that the following settings are complete and correct:

 - **Periods to forecast**—Determines the number of predicted values that are displayed
 - **Prediction interval**—Indicates which prediction interval to calculate and plot
 - **Series**—Selects the data series to display
 - **Method**—Selects the forecasting method used to calculate predicted values

 See “Viewing Charts” on page 51.

3. In the Predictor Results menu bar, select Analyze, and then Extract Data.

4. In the Extract Data Preferences dialog, select the Predictor Data tab, if it is not already visible, and select Results Table, Methods Table, or both:

 - **Results Table** shows fit and residual values for historical data, forecast and prediction interval values for the predicted values (where residuals are the difference between the fit value and the historical data value), and events data (if selected).

 Note: If Include events is selected in the Data Attributes panel of the Predictor wizard, and at least one event is defined, an additional Event column in the table of extracted data shows the event numbers defined for each series. Rows with events are also color coded. If the data has seasonality, seasonal differences are indicated with lighter colored rows. Screened data rows can also be highlighted. To change highlighting of these special types of data, select the Results Window and then select Preferences and any of the Highlight commands.

 - **Methods Table** shows error measures, parameters, ranking, and statistics for each selected fit method.

5. In the Results Table Details group, select the data types to include.

 Leave the defaults selected to extract all available data.

6. Click Options and confirm that the wanted location and formatting settings are selected.

 For details, select Help.

7. Click OK.

 Depending on the Options settings, two tabs are displayed in the existing workbook or a new workbook. The tabs are Results Table and Methods Table. Each tab contains an interactive Microsoft Excel PivotTable with the selected data. See “Analyzing and Using Extracted Results” on page 39.
Analyzing and Using Extracted Results

You can use extracted data as input for spreadsheet analysis or you can copy it into other applications. For an example of how to use the Results and Methods tables, see “Working with Data in Interactive Tables” on page 72. These are Microsoft Excel PivotTables, described in Microsoft documentation and help.

Results Table

Even though Predictor tried all the methods you selected in the Method Gallery, it generates the Results table using the best method, unless you overrode the best method, in which case, the program generates the result values using the overriding method.

Methods Table

The Methods table reports all the parameters and statistics for the methods you selected in the Methods panel. The method used to generate the predicted values, either the best method or the overriding method, is highlighted in bold text. The method is likely to be different for each predicted series.

To compare the quality of the results of different time-series forecasting methods, select the errors: RMSE, MAD, and MAPE. For all of these, the smaller the better. If you compare the RMSE of one method to the RMSE of another method, the smaller one should be ranked better. However, you cannot compare the RMSE of one method to the MAD or MAPE of another method.

To compare the quality of a regression, look for the following values:

Table 2 Evaluating Regression Quality

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Range</th>
<th>Ideal Value</th>
<th>Ideal Value Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>R^2 or Adjusted R^2</td>
<td>0 to 1</td>
<td>Close to 1</td>
<td>The linear regression accounts for almost all the variability in the dependent data.</td>
</tr>
<tr>
<td>F probability</td>
<td>0 to 1</td>
<td>Less than 0.05</td>
<td>The quality of the overall regression (dependency of the dependent variable on the independent variables) is good.</td>
</tr>
<tr>
<td>t probability</td>
<td>0 to 1</td>
<td>Less than 0.05</td>
<td>The quality of the coefficient of the regression equation is good.</td>
</tr>
<tr>
<td>Durbin-Watson</td>
<td>0 to 4</td>
<td>2</td>
<td>No autocorrelation (at lag 1) exists.</td>
</tr>
<tr>
<td>Theil’s U</td>
<td>Greater than 0</td>
<td>Less than 1</td>
<td>The quality of the results is better than guessing.</td>
</tr>
</tbody>
</table>

See the Predictor sections of Oracle Crystal Ball Reference and Examples Guide.
About Predictor Tutorials

This chapter contains:

- “Tutorial 1—Shampoo Sales” on page 59, a basic tutorial that shows how Predictor works
- “Tutorial 2—Toledo Gas” on page 63, an advanced tutorial that uses multiple linear regression for forecasting

For less detailed examples, see the Predictor section of the Oracle Crystal Ball Reference and Examples Guide.

Tutorial 1—Shampoo Sales

The easiest way to understand what Predictor does is to apply it to a simple example. In this example, you are sales manager for Tropical Cosmetics Co. The company’s latest product, shampoo with tropical ingredients, has been in the marketplace for almost a year. The vice president of marketing wants you to forecast the rest of the year’s shampoo sales and decide whether to recommend investing in advertising or enhancements for this product.

You have the weekly sales numbers for the last nine months.

To begin the tutorial:

1. Start Crystal Ball, which automatically starts Microsoft Excel.
2. Select Resources, and then Example Models in the Crystal Ball ribbon Help group.
3. In the Model Name list, click Shampoo Sales.

The Shampoo Sales spreadsheet opens (Figure 9).
In this spreadsheet, column B contains dates from January 1, 2015 until September 24, 2015 and column C contains Tropical Shampoo sales data. You need to forecast sales through the end of the year, December 31, 2015.

4 Select cell C4, if it is not already selected.

Select any one cell in the data range, headers, or date range, and Predictor selects all the filled adjacent cells.

5 Select Predictor in the Crystal Ball ribbon.

If necessary, wait for a simulation to stop or reset the last simulation.

The Predictor wizard opens. If this is the first time you started Predictor, the Welcome panel opens. Otherwise, Input Data opens.

6 If Welcome opens, click Next to display Input Data.

When you select any one cell in the data range before you start the wizard, Predictor determines the following:

- The data series (in this case, B3:C42)
- Whether the data values are in columns or rows
- Whether headers display at the beginning of the data
- Whether the first column or row contains dates or time periods

7 Confirm that cell range B3:C42 is selected and click Next.

The Data Attributes panel opens.

8 Confirm these settings and correct them if necessary:
- Data is in weeks.
- AutoDetect is selected to determine whether data has seasonality.
- In the Events group, Include events is selected.
- In the Data Screening group, Fill-in missing values is selected.

9. Click Next to open the Methods panel.
10. Leave the defaults selected and click Next to open the Options panel.
11. In Options, confirm that the defaults (RMSE and Standard forecasting) are selected, and then click Run.

The Predictor Results window opens.

12. Set Periods to forecast to 14 and review window contents (Figure 10).

Figure 10 Predictor Results Window for the Shampoo Sales Spreadsheet Model

The Predictor Results window contains the following:
- A chart of historical and predicted values; predicted values are displayed as a dark blue line extending to the right of the historical data (green) and the fitted values (blue). Above and below the predicted values is the prediction interval (a red dotted line), showing the 2.5th and 97.5th percentiles of the predicted values. This is called a 95% prediction interval.
- A marketing event was defined for this model, indicated by vertical bars and labels. Because the historical data showed an increase during the event, the predicted data also shows an increase when the event is scheduled to repeat.
Note: You can select Preferences, and then Highlight Events to hide the event labels and bars.

- A Series list of all data series selected for forecasting; onscreen information pertains to the selected series
- A Method list of all the methods Predictor tried, in order from the best-fitting method to the worst-fitting method. Predictor calculates the predicted values from the method that best fits the historical data. In this case, the BEST method is ARIMA(1,1,2).
- Historical data statistics for the selected series
- Error statistics for predicted data
- Parameters for the current BEST method

See “Selecting How to Display and Analyze Results” on page 48 for more information about data, buttons, and menus in this window.

13 Optional: Select View, and then Table to display a table of historical data in place of the chart. Notice that an Event column contains the number and name of defined events. Select View, and then Chart to display the chart again.

14 Click Paste to paste predicted data into the spreadsheet.

15 Select these settings in the Paste Forecasts to Spreadsheet dialog:

- At end of historical data
- Paste as Forecast values
- Include date series
- AutoFormat

16 Click OK.

The results paste at the bottom of the table in cells C43 to C56 as the same forecasted values plotted in the Predictor Results window (Figure 11). These values were predicted using the BEST method shown in the Predictor Results window.

Note: “Tutorial 2—Toledo Gas” on page 63 explains how to paste using “random walk” formulas.
Based on the results, you complete your memo to upper management. Current strategies seem to be working, so you recommend funding another project instead.

Tutorial 2—Toledo Gas

Suppose you work for Toledo Gas Company in the Residential Division. The Public Utilities Commission requires that you predict gas usage for the coming year to make sure that the company can meet the demand.

To start the tutorial:

1. Start Crystal Ball, which automatically starts Microsoft Excel.
2. Select Resources, and then Example Models in the Crystal Ball ribbon Help group. Then select Toledo Gas in the Model Name list.

The Toledo Gas spreadsheet opens (Figure 12).
3. Select cell C5.

4. Select **Predictor** in the Crystal Ball ribbon.

 The **Input Data** panel opens. Predictor selected all the data from cell B4 to cell F64.

5. Click **Next** to display **Data Attributes**.

6. Confirm that the default settings are selected: **months**, **AutoDetect**, and **Fill-in missing values**. Then, click **Next** to open **Methods**.

 The Methods panel offers four methods, including **Multiple Linear Regression**. Through research, you know that residential gas usage is primarily affected by three variables: new home starts, the temperature, and the price of natural gas. However, you are not certain how much effect each has on gas usage. Because you have independent variables affecting a dependent variable (the variable that you are interested in), regression is recommended for this forecast.

 In the Toledo Gas spreadsheet, the dependent variable is the historical residential gas usage. Independent variables:

 - Number of occupancy permits issued (new housing completions)
 - Average temperature per month
 - Unit cost of natural gas

7. In **Methods**, confirm that all four methods are selected, and then click **Multiple Linear Regression** to display the Multiple Linear Regression Details pane.

 Note: Ensure that the Multiple Linear Regression check box stays selected.

8. Click **Select Variables** to open the **Regression Variables** dialog.
If necessary, in Regression Variables, select Usage (ft³) and use \(\rightarrow \) to move it into Dependent variables (Y’s). Be sure the check box is selected, and confirm that the other three variables are listed under Independent variables (X’s).

Click OK to close Regression Variables.

Methods is displayed again.

In the Multiple Linear Regression Details pane, confirm that Method is set to Standard and Include constant in regression equation is selected.

Click Next.

The Options panel opens with these defaults: RMSE — Root Mean Squared Error and Standard forecasting.

Click Run to run the forecast and display the Predictor Results window (Figure 13).

Viewing and Analyzing Predictor Results

The Predictor Results window shows a chart with historical and fitted data, statistics, the name of the selected series and fitting method, the number of predicted time periods, and the selected prediction interval. Because the data is seasonal, vertical bands are displayed in the chart to separate each season (or cycle). For more information about the Predictor Results window, see “Understanding the Predictor Results Window” on page 45.
To continue with the tutorial:

1. Forecast the monthly usage for the next year by confirming that 12 is entered in Periods to forecast.
2. Notice that Prediction interval is set to 2.5% and 97.5%, the default.
3. Confirm that the selected Series is Usage (ft³), the dependent variable.
4. Notice that Method indicates that Standard Regression was selected as the best forecasting method.
5. View another variable: in the Series list, select Average Temperature (Degrees F).

Forecasted values are displayed for Average Temperature. Seasonal Additive is identified as the best-fitting method (Figure 14).

![Figure 14 Average Temperature Before Method Override](image)

6. In the Method list, select Double Moving Average.

The chart changes to show the forecast using Double Moving Average instead of Seasonal Additive. A warning indicates that the Thiel’s U statistic exceeds preset limits.

7. To experiment, click Override Best Method.

This action changes the forecast to use Double Moving Average instead of Seasonal Additive (Figure 15). A note indicates a best-method override.
The primary work of Predictor is to create forecasts based on historical data. When you override the selected forecasting method, you should carefully analyze the results.

8 To determine the effect of this Method change on the Usage forecast, change Series back to Usage (ft3) (Figure 16).
Overriding the Average Temperature had a noticeable effect on the forecast (but not the fit) of the Usage variable. When Figure 16 is compared with Figure 13, you can see that the predicted results for Usage (ft3) are higher and more linear than those originally calculated.

Tip: Unless you have a compelling reason to do so, it is better not to override the selected forecast method.

Pasting Results into the Spreadsheet

You can paste the predicted results into the spreadsheet for further analysis using Crystal Ball or Microsoft Excel.

1. **To paste predicted results:**
2. In the **Predictor Results** window, click **Paste**.
3. In the **Paste Forecasts to Spreadsheet** dialog:
 - Select **At end of historical data** to indicate where to paste results.
 - Select **Paste forecasts as Random walk formulas**.
 - Select **Include date series** to list dates in the first column.
 - Confirm that **AutoFormat** is selected.
4. Click **OK** to paste the results as “random walk” formulas.
Note: This feature is available in Crystal Ball 11.1.2.4.400 and later. For information on these new features and on updating to 11.1.2.4.400 or later, see the Oracle Crystal Ball Readme for the target release and My Oracle Support.

4 Look at the results pasted below the historical data (Figure 17).

The upper spreadsheet pane was frozen below the column headers to display them in this figure.

Figure 17 Gas Service Predictions for the Next Twelve Months

5 In Figure 17, notice that:

- Forecasted results for 12 months are pasted at the end of the historical data.
- The independent variables have been defined as “random walk” formulas that reference Crystal Ball assumptions on a hidden tab.
- The dependent variable (Usage) column contains the regression equation that references the independent variable forecast values.
- The Coefficients row below the pasted forecasts contains the regression coefficients referenced in the dependent variable regression equations.
Creating a Report of Predictor Results

To create a report of Predictor data for each series:

1. Display the Predictor Results window.
 If it is not visible, click Predictor Results in the Windows task bar. (It may be in the Microsoft Office Excel group.)

2. In the Predictor Results window menu bar, select Analyze, and then Create Report.

3. In the Create Report Preferences dialog, confirm that Predictor is selected and then click OK.
 By default, the report is created in a separate workbook. The report contains summary data followed by information for each dependent and independent variable.

4. Click the Report workbook and scroll to the Average Temperature section (Figure 18).
Figure 18 Average Temperature Data Report for Toledo Gas

Notice the indication above the chart that the method used was an override of the best method.

Extracting Results

You can extract results and methods data from the current Predictor forecasting run.
To extract Predictor results:

1. Run a Predictor forecast and display the Predictor Results window.

 If it is not visible, click Predictor Results in the Windows task bar. (It may be located in the Microsoft Office Excel group.)

2. In the Predictor Results window menu bar, select Analyze, and then Extract Data.

3. In the Extract Data Preferences dialog, select the Predictor Data tab, if it is not already visible, and select Results Table and Methods Table. Leave the defaults selected to extract all available data.

4. Select Options and confirm that the defaults are selected: New workbook, with sheet names Results Table and Methods Table, using AutoFormat.

5. Click OK.

A new Microsoft Excel workbook opens with two tabs, Results Table and Methods Table. Each tab contains an interactive Microsoft Excel PivotTable:

- Results Table shows fit values and residuals for historical data, plus forecast and prediction interval values for the predicted values. (Residuals are the difference between the data value and the calculated best fit value). By default, data seasons (cycles) are displayed as alternating bands of white and a light color. To hide these bands, you can return to the Results Window, select Preferences, and then clear Highlight Seasonality.

- Methods Table shows error calculations and other statistics for each selected fit method.

See “Extracting Results Data” on page 55.

Working with Data in Interactive Tables

To work with Predictor data in interactive tables:

1. Select the Methods Table worksheet.
Next to the Series button, select Average Temperature from the list and click OK.

The table changes to show the parameters and statistics for each method of the Average Temperature forecast.

Click the Series button and drag it to the left of the Methods button.

The Methods table expands to include all the data series. When you drop the Series button next to the Methods button, the list of methods repeats for each series (Figure 20).

Click the arrow to the right of the Table Items button.
A list is displayed.

5 Clear all the items except for **Rank** and click **OK**.

The Methods table changes to show the Rank parameter. Look at the Average Temperature data. In the Methods column, Double Moving Average is highlighted in bold text to show that it was used to generate the results. Seasonal Additive, originally the best, is still listed with a rank of 1 (Figure 21).

Figure 21 Methods Within each Series Identified by Rank

6 Move the **Methods** button to the left of the **Series** button.

The interactive Microsoft Excel PivotTable reorganizes to show all the series grouped by method type as shown in Figure 22.
For more information about using interactive Microsoft Excel PivotTables, see the Microsoft Excel online help.
Adjusted R^2 Corrects R^2 to account for the degrees of freedom in the data.

ARIMA Often called the Box-Jenkins forecasting methodology, ARIMA is a set of univariate time-series forecasting methods. ARIMA involves the identification, selection, and checking of models with estimated autoregressive (AR), integration or differencing (I), and moving average (MA) parameters.

assumptions Estimated values in a spreadsheet model that Crystal Ball defines with a probability distribution.

autocorrelation Describes a relationship or correlation between values of the same data series at different time periods.

autoregression Describes a relationship similar to autocorrelation, except instead of the variable being related to other independent variables, it is related to previous values of its own data series.

causal methods A relationship between two variables where changes in one independent variable not only correspond to a particular increase or decrease in the dependent variable, but actually cause the increase or decrease.

Crystal Ball forecast A statistical summary of the assumptions in a spreadsheet model, output graphically or numerically.

damped trend additive smoothing forecasting method Calculates a seasonal index for historical data by adding the seasonal adjustment to the predicted level so that the resulting curve shows seasonal variation with flattening over time.

damped trend multiplicative forecasting method Calculates a seasonal index for historical data by multiplying the seasonal adjustment by the predicted level so that the resulting curve shows seasonal variation with flattening over time.

damped trend smoothing forecasting method A non-seasonal forecasting method that applies exponential smoothing twice, similar to double exponential smoothing, with a trend curve that flattens with time instead of being linear.

degrees of freedom The number of data points minus the number of estimated parameters (coefficients).

dependent variable In multiple linear regression, a data series or variable that depends on another data series. You should use multiple linear regression as the forecasting method for any dependent variable.

DES Double exponential smoothing.

double exponential smoothing Double exponential smoothing applies single exponential smoothing twice, once to the original data and then to the resulting single exponential smoothing data. It is useful where the historic data series is not stationary.

double moving average Smooths out past data by performing a moving average on a subset of data that represents a moving average of an original set of data.

Durbin-Watson Tests for autocorrelation of one time lag.

error The difference between the actual data values and the predicted data values.

F statistic Tests the overall significance of the multiple linear regression equation.

F-test statistic See F statistic.

forecast The prediction of values of a variables based on known past values of that variable or other related variables. Forecasts can also describe predicted values based on Crystal Ball spreadsheet models and expert judgements.
forward stepwise A regression method that adds one independent variable at a time to the multiple linear regression equation, starting with the independent variable with the greatest significance.

holdout Optimizes the forecasting parameters to minimize the error measure between a set of excluded data and the forecasting values. Predictor does not use the excluded data to calculate the forecasting parameters.

Holt-Winters’ additive forecasting method Separates a series into its component parts: seasonality, trend and cycle, and error. This method determines the value of each, projects them forward, and reassembles them to create a forecast.

Holt-Winters’ multiplicative forecasting method Considers the effects of seasonality to be multiplicative, that is, growing (or decreasing) over time. This method is similar to the Holt-Winters’ additive method.

hyperplane A geometric plane that spans more than two dimensions.

independent variable In multiple linear regression, the data series or variables that influence the another data series or variable.

iterative stepwise regression A regression method that adds or subtracts one independent variable at a time to or from the multiple linear regression equation.

lag Defines the offset when comparing a data series with itself. For autocorrelation, this refers to the offset of data that you choose when correlating a data series with itself.

lead A type of forecasting that optimizes the forecasting parameters to minimize the error measure between the historical data and the fit values, offset by a specified number of periods (lead).

least-squares approach Measures how closely a line matches a set of data. This approach measures the distance of each actual data point from the line, squares each distance, and adds up the squares. The line with the smallest square deviation is the closest fit.

level A starting point for the forecast. For a set of data with no trend, this is equivalent to the y-intercept.

linear equation An equation with only linear terms. A linear equation has no terms containing variables with exponents or variables multiplied by each other.

linear regression A process that models a variable as a function of other first-order explanatory variables. In other words, it approximates the curve with a line, not a curve, which would require higher-order terms involving squares and cubes.

MAD Mean absolute deviation. This is an error statistic that average distance between each pair of actual and fitted data points.

MAPE Mean absolute percentage error. This is a relative error measure that uses absolute values to keep the positive and negative errors from cancelling out each other and uses relative errors to let you compare forecast accuracy between time-series methods.

multiple linear regression A case of linear regression where one dependent variable is described as a linear function of more than one independent variable.

naive forecast A forecast obtained with minimal effort based on only the most recent data; e.g., using the last data point to forecast the next period.

p Indicates the probability of obtaining an F or t statistic as large as the one calculated for the data.

partial F statistic Tests the significance of a particular independent variable within the existing multiple linear regression equation.

PivotTable An interactive table in Microsoft Excel. You can move rows and columns and filter PivotTable data.

R^2 Coefficient of determination. This statistic indicates the proportion of the dependent variable error that is explained by the regression line.

regression A process that models a dependent variable as a function of other explanatory (independent) variables.

residuals The difference between the actual data and the predicted data for the dependent variable in multiple linear regression.

RMSE Root mean squared error. This is an absolute error measure that squares the deviations to keep the positive and negative deviations from cancelling out each other. This measure also tends to exaggerate large errors, which can help when comparing methods.
Seasonal Additive Forecasting Method
Calculates a seasonal index for historical data that does not have a trend. The seasonal adjustment is added to the predicted level, producing the seasonal additive forecast.

Seasonal Multiplicative Forecasting Method
Calculates a seasonal index for historical data that does not have a trend. The seasonal adjustment is multiplied by the predicted level, producing the seasonal multiplicative forecast.

Seasonality
The change that seasonal factors cause in a data series. For example, if sales increase during the Christmas season and during the summer, the data is seasonal with a six-month period.

Single Exponential Smoothing Forecasting Method (SES)
Weights past data with exponentially decreasing weights going into the past; that is, the more recent the data value, the greater its weight. This largely overcomes the limitations of moving averages or percentage change methods.

Single Moving Average Forecasting Method
Smooths out past data by averaging the last several periods and projecting that view forward. Predictor automatically calculates the optimal number of periods to be averaged.

Singular Value Decomposition
A method that solves a set of equations for the coefficients of a regression equation.

Smoothing
Estimates a smooth trend by removing extreme data and reducing data randomness.

SSE
Sum of square deviations. The least squares technique for estimating regression coefficients uses this statistic, which measures the error not eliminated by the regression line.

SVD
Singular value decomposition.

t Statistic
Tests the significance of the relationship between the dependent variable and any individual independent variable, in the presence of the other independent variables.

Time Series
A set of values that are ordered in equally spaced intervals of time.

Trend
A long-term increase or decrease in time-series data.

Variables
In regression, data series are also called variables.

Weighted Lead
A type of forecasting that optimizes the forecasting parameters to minimize the average error measure between the historical data and the fit values, offset by several different periods (leads).