

[image:]

Preface

Audience

The target audience of this guide is implementers and system administrators responsible for implementation and deployment of mobile applications.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit: http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info

or

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents

Installation, Configuration and Release Notes

	
•

	

Oracle Real-Time Scheduler
Release Notes

	
•

	

Oracle Real-Time Scheduler Quick Install Guide

	
•

	

Oracle Real-Time Scheduler Server Installation Guide

	
•

	

Oracle Real-Time Scheduler Mobile Application Installation and Deployment Guide

	
•

	

Oracle Real-Time Scheduler Mobile Application Implementation and Developer Guide

	
•

	

Oracle Real-Time Scheduler DBA Guide

	
•

	

Oracle Real-Time Scheduler Configuration Guide

User Guides

	
•

	

Oracle Real-Time Scheduler
Server Application User’s Guide

	
•

	

Oracle Real-Time Scheduler Mobile Application User’s Guide

Map Editor Installation and User Guides

	
•

	

Oracle Real-Time Scheduler Map Editor User’s Guide

	
•

	

Oracle Real-Time Scheduler Map Editor Installation Guide

Framework Guides

	
•

	

Oracle Utilities Application Framework V4.2.0.2 Business Process Guide

	
•

	

Oracle Utilities Application Framework V4.2.0.2 Administration Guide

	
•

	

Oracle Utilities Application Framework V4.2.0.2 Release Notes

Supplemental Documents

	
•

	

Oracle Real-Time Scheduler Server Administration Guide

	
•

	

Oracle Real-Time Scheduler Batch Server Administration Guide

	
•

	

Oracle Real-Time Scheduler
Security Guide

OEBPS/Images/image00164.jpeg
=

T T

- memory database

7 Browser-based Ui for |
é | dispatchers and other

OEBPS/Text/part0038.xhtml

Business Object Entity API

This module is the lower level API to insert/update records in F1_BIZOBJ table. In most of the cases BusinessObject addBO/updateBO and other APIs from BOHelper should be used. However for exceptional scenarios following APIs can be used. Both BOHelper and BusinessObject uses these APIs internally.

Every column of F1_BIZOBJ table has a corresponding property in this class. Underscore in column name is removed and a camelCase approach is used to name the JS variables corresponding to a DB column. E.g. bo_key DB column maps to boKey inJS.

		

add

		

		

Inserts this record into f1_bizobj table

		

update

		

		

Updates this record in f1_bizobj table, uses boCode and boKey to uniquely identify a record

		

read

		

		

Read a record from table

		

purge

		

		

Deletes the record from DB

		

setOutboundMsg

		

args = {service: <service name>,payload: <JSON data>}

		

Invoking this method before calling update/add method would ensure that an outbound update is also sent to server using same transaction.

OEBPS/Images/image00162.jpeg
ORACLE"

Oracle Real-Time Scheduler Mobile
Application Implementation and
Development Guide

Release 2.2.1.0
E58444.01
January 2015

Copyrighs (¢ 2015 Oracle Corporation. Al Righs Reserved.

OEBPS/Text/part0037.xhtml

Business Object Factory API

This API is used to create a new instance of a business object. The API ensures that before returning a business object instance, all the parent business object related files are loaded and then only a new instance is created and returned.

BOHelper API

		

API

		

		

Description

		

getBusinessObject

		

		

Accepts the business object name and data as arguments and returns a new instance of a BO initialized with data, if provided. Data can be set on an initialized business object instance by accessing data property of instance.

		

loadRawData

		

args = {transaction: , input: {boKey: , bocode: , mocode:, genCol1:}, onSuccess: , onFailure}

		

Specify column name value pairs in input arguments. Success callback will be called with an argument in format {output: <BOJSONdata>} if more than one record were fetched output will be an array of BO JSON data. Use this API when you need just the data but no BO instance. Creating a BO instance loads all BO related JS files, however if you are interested only in BO JSON data this API can be very light weight when compared with getBusinessObject API.

		

getRowCount

		

args = {transaction:<tx>, onSuccess:<success callback>, onFailure:<failure callback>, input: { <db column key value pairs>}}

		

Success callback is called with row count (based on filter criteria passed in input) as {count:<value>, transaction:<tx>}

		

getBOStatusDescr

		

BO Name, Status

		

Returns the description for a BO and its given status code.

		

checkProcedureStatus

		

args = {transaction:<tx>, onSuccess:<success callback>, onFailure:<failure callback>, input: {boKey: <value>}}

		

Success callback is called with a true or false as an argument, true when all procedures are complete or there are no procedures

		

getNewBOPrimeKey

		

		

Returns a new primary key. This API is useful for those business objects that are not received from the server but are created on the client first and then posted to the server.

		

isProcedurePending

		

args = {transaction:<tx>, onSuccess:<success callback>, onFailure:<failure callback>, input: {boKey: <value>}}

		

Success callback is called with a true or false as an argument, true when any procedure is pending or false when none is pending or none exists.

		

getStoredProcedureData

		

args = {onSuccess: <success Callback>, onFailure:<failure callback>}

		

Success callback returns all the procedures having moCode=M1-PRCTYP and all procedures types with moCode=M1-PRCTYP

		

isProcedureFailed

		

args = {transaction:<tx>, onSuccess:<success callback>, onFailure:<failure callback>, input: {boKey: <value>}}

		

Success callback is called with a true or false as an argument, true when any procedure has failed or true if when none is in failed state or none exists.If no boKey is passed all procedures are checked

OEBPS/Images/image00163.jpeg
ORACLE

OEBPS/Text/part0036.xhtml

Business Object JavaScript (BO JS)

Every BO JS must extend GenericBusinessObject class, if there is no parent to this business object otherwise it must extend the parent class.

Example business object class:

ouml.BusinessObject["M1-Assignment"] = (function (ouml){

 //define private variables and functions here (vars and functions that should not be accessible from anywhere else except this module)

var util = ouml.Utilities;

 /**

 * M1-Assignment BO constructor (variable name m1Assignment can be named anything).

 * @constructor

 * @memberof ouml.BusinessObject

 *

 */

 var m1Assignment = function(data){

 this.bo = "M1-Assignment";

 //Invoke the parent BO, if any or generic BO, and pass the "this" reference. So that parent can use same "this" reference.

 ouml.GenericBusinessObject.call(this, data);

 };

 //set the prototype to parent BO, so we extend the parent's functions.

 m1Assignment.prototype = Object.create(ouml.GenericBusinessObject.prototype);

 //point the constructor property to this key (in case we need to make use of it later)

 m1Assignment.prototype.constructor = m1Assignment;

 return m1Assignment;

 })(ouml);

GenericBusinessObject APIs

		

API

		

Parameters

		

Description

		

<constructor>

		

Data - BO JSON data (optional)

		

If BO JSON data is provided it will be set to this.data property of this instance. To create a new BO instance you should use ouml.BusinessObjectFactory.getBusinessObject

		

addBO

		

{onSuccess: <success callback>, onFailure: <failure callback>, transaction: <transaction to be used>, input.outbound: <outbound message details>}

		

Inserts the BO data to F1_BIZOBJ tables.Use this API only when a record doesn’t already exist for this BO in DB (otherwise use updateBO). If a save operation should also send an outbound message via guaranteed delivery to server, set the service name and payload in input.outbound argument. Input.outbound = {service: <service name>, payload: <service payload JSON> }

This API invokes getDTO API of BO and uses the returned value to save to DB. (getDTO returns the mapping of BO JSON to F1_BIZOBJ column)

		

getData

		

JSON path of a filed

		

Returns the value of a JSON path on BO data. Directly accessing a value in a nested JSON structure might result into "undefined is not a function" error so to avoid that use this API.

		

getDTO

		

		

Every BO must implement this method. This should map the BO JSON data to columns in F1_BIZOBJ

		

hasUndefinedOrEmptyField

		

JSON path of a field

		

Returns true if the field is undefined or is empty.

		

setData

		

Field, Data

		

When supplied with only one argument, it should be the BO JSON data. If you need to set the value of a specific field pass both field and data.

		

setFieldData

		

Field,Data

		

Set the value of a specific field to given data.

		

updateBO

		

{onSuccess: <success callback>, onFailure: <failure callback>, transaction: <transaction to be used>, input.outbound: <outbound message details>}

		

It is like addBO but instead of inserting a new record it will update the data

OEBPS/Text/part0035.xhtml

Business Objects

Please reference the Oracle Utilities Application Framework documentation for details of server side implementation and metadata associated with business objects. Mobile client implementation of business objects includes the following artifacts:

		

•

		

Business Object JavaScript (BO JS) - A JavaScript file located in the scripts/bo/ folder with the same name as the business object name.

		

•

		

Business Object User Inteface (BO UI) - An HTML file for the BO UI located in the ui/bo/ folder with the same name as the business object name.

		

•

		

Business Object User Inteface JavaScript (BO UI JS) - A JavaScript file located in the ui/bo folder with the same name as the business object name.

		

•

		

boFiles - config.js mapping for the BO JS files.This is only specified if the business object name and the JavaScript name are not the same.

		

•

		

pageFiles - cconfig.js mapping for the BO UI JS files.This is only specified if the file name is not same as the Page ID.

Business object data is received by Inbound Service and processed by inbound scripts. Please reference the

Device Inbound Messages

 section for more information.

Javascript in the Oracle Utilities Mobile Library uses revealing module pattern or prototype pattern or a combination of both where prototype is wrapped in revealing module. Every Javascript class/module is attached to a namespace that starts with "ouml".

Please make yourself comfortable with Object Oriented Programming in JavaScript which is a pre-requisite for writing new BO classes. (https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-Oriented_JavaScript

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Details_of_the_Object_Model)

OEBPS/Text/part0034.xhtml

Properties

The following properties are downloaded at login.

		

•

		

Properties

		

•

		

KeyValue

		

•

		

sessionId

		

•

		

decimalSeparator

		

•

		

API - ouml.Properties

OEBPS/Text/part0033.xhtml

Deployment

The application consists of code and metadata:

		

•

		

Code is installed (for native apps) or deployed (for webapp) as an application.

		

•

		

Metadata that is required for the application to work properly, is downloaded on a successful logon in JSON format and stored in the offline database. Deployment metadata is stored in F1_BIZOBJ table with DEPLOYMENT as value in "type" column. The Oracle Utilities Mobile Library provides various APIs to access deployment metadata in simple format Data consist of various Oracle Utilities Application Framework objects including:

		

•

		

Labels

		

•

		

Lookups and Extended Lookups

		

•

		

Messages

		

•

		

Business Object Lifecycle

		

•

		

Business Objects Data (non transactional objects)

These objects can be configured on the server. Please reference the Oracle Real-Time Scheduler Server Configuration Guide for more details.

API (module - ouml.Metadata)

		

API

		

Parameters

		

Description

		

getLabel

		

Label/field Id

		

Returns the label description (should be used instead of hardcoding text strings on UI). Check ViewModel wrapper API for usage on HTML pages.

		

getLookup

		

Lookup ID

		

Returns an array of items containing lookup value and description in the format [{lookupValue: "", description:""},] Check ViewModel wrapper API for usage on HTML pages.

		

getLookupDesc

		

Lookup, lookupValue

		

Returns the description for a specific lookup value of a lookup. Check ViewModel wrapper API for usage on HTML pages.

		

getExtLookup

		

Extended Lookup BO Name

		

Returns an array containing lookup value and description in the format [{lookupValue: "", description:""},] Check ViewModel wrapper API for usage on HTML pages.

		

getExtLookupDesc

		

Extended lookup BO Name, lookup Value

		

Returns the description for a specific lookup value of a extended lookup BO Check ViewModel wrapper API for usage on HTML pages.

		

getMessage

		

Message category, message Id

		

Returns the message. (To get formatted message with parameters, use ouml.ClientError API)

		

getNextBOStates

		

Bo name, bo status

		

Returns a list of next valid states which the business object can transition to from a given state. It returns an array of objects with this format {boNextStatusLabel, boStatus, role}

		

getStatusReasons

		

Bo Name, status

		

Returns an array containing the status reasons valid for a given state. Format of the output is [{description: "", selectability:, "", statusReasonCd: ""},{}]

		

isFinalBOState

		

Bo Name, Status

		

Returns true if there are no next valid states for a given business object and state, otherwise returns false.

		

getBOInfo

		

Bo Name

		

Returns all information(metadata) about a BO. A JSON object with description, owner code, each valid states and related info.

		

getAncestors

		

Bo Name

		

Returns an array of items with business object information for all business objects in the hierarchy. At 0 th index is the top most parent and given business object at the end of the array.

		

getAncestorNames

		

Bo Name

		

Returns an array of business object names for all business objects in the hierarchy. At 0 th index is the top most parent and given business object at the end of the array.

To read the value of a Business Object in deployment, you can use BOEntity APIs.

OEBPS/Text/part0032.xhtml

Cordova Encryption Plugin APIs

The plugin call takes the following parameters:

		

 1.

		

success : Function name of the function to be called on successful execution of the plugin. This function is called with a string parameter depending upon the value of the action parameter.

		

 2.

		

failure : Function name of the function to be called on execution failure of the plugin. This function is also called with a string parameter containing the error message of the error which occurred while executing the plugin leading to failure.

		

 3.

		

" Crypto": The plugin identifier.

		

 4.

		

action : The action parameter passed to the plugin. This includes one of the following values:

		

 a.

		

encrypt For this action, the plugin will return the encrypted string of the input text on success. The encryption key will be passed along with the input text as parameter to the plugin in json format.

b.

decrypt For this action, the plugin will return the decrypted string of the input encrypted text on success. The encryption key will be passed along with the input text as parameter to the plugin in json format

		

c.

		

hash For this action, the plugin will return the hashed value of the input string on success.

		

 5.

		

json : The input parameter to plugin in json format. It will contain the input string to be encrypted along with the symmetric encryption key to be used for encryption.

Process Details

		

1.

		

Users log in to the system in online mode. The user credentials are stored in persistent storage using the hashed value obtained from custom Cordova plugin for offline authentication.

		

2.

		

 After login the following device options are fetched from server in online mode and are stored in local storage:

		

a.

		

MDT_ENCRYPTION_FLAG

		

b.

		

MDT_ENCRYPTION_KEY

If the user logs in offline mode then the last stored values of these device options are used in the application.

If transaction data exists on the device then the new values obtained from the server for these device options are not overwritten in the local storage. Thus the MDT_ENCRYPTION_FLAG and MDT_ENCRYPTION_KEY device options values on the device cannot be changed after transaction data is generated on the device.

		

3.

		

Using the MDT_ENCRYPTION_FLAG device option the encryption module can be turned on (‘M1ON’) or off (‘M1OF) for a particular device using the MDT portal page.

		

4.

		

If MDT_ENCRYPTION_FLAG set to ‘M1ON’ then the transaction data generated on the hybrid client is stored in encrypted format in local storage and its decrypted after reading from local storage to get the original form before use. If MDT_ENCRYPTION_FLAG is ‘M1OF’ then all transaction data on device is stored in readable text format.If the value is set to is M1DF (default), then the value is fetched as per the Master Global Configuration.

		

5.

		

The MDT_ENCRYPTION_KEY is stored in local storage in encrypted format. It is encrypted using the base64 encoding value of username:password as encryption key and using the same encryption algorithm which is used to encrypt transaction data.

Deployment data is not encrypted on the device as it is not transactional data.

OEBPS/Text/part0031.xhtml

Encryption APIs

For android devices, encryption is provided by a cordova plugin. However, instead of using cordova plugin APIs directly, you should use the APIs indicated in the table below in the ouml.Crypto module.

 The Oracle Utilities Mobile Library uses these APIs internally to store data to the F1_BIZOBJ table if the encryption is enabled for devices. Please reference

Chapter 2: Encryption

 for more information.

These APIs return the original input as is if the encryption is not enabled for this device. Callers of the APIs can check the output in success callback to confirm if the data was indeed encrypted (or decrypted).

		

API

		

Parameters

		

Description

		

ouml.Crypto.encrypt

		

args = {

onSuccess: <success callback>, onFailure:<failure callback>, input: {data: <text string or an array of text strings>}, encryptionKey : <optional, key to be used>}

		

Encrypted input data will be returned via success callback as {output: <encrypted text>, encrypted: <true|false>}. If the input was an array then output will be an array e.g. {output: []} with each array element corresponding to input array element. Encryption key is not required unless you have to use a different encryption key than what is configured on server. Encrypted property is set to false if no encryption was done in case of iOS device or encryption not enabled for this devce.

		

ouml.Crypto.decrypt

		

args = {

onSuccess: <success callback>, onFailure:<failure callback>, input: {data: <text string or an array of text strings>},

encryptionKey : <optional, key to be used>}

		

Decrypted input data will be returned via success callback as {output: <decrypted text>, decrypted: <true|false>}. If the input was an array then output will be an array e.g. {output: []} with each array element corresponding to input array element. Encryption key is not required unless you have to use a different decryption key than what is configured on server. Decrypted property is set to false if no decryption was done in case of iOS device or encryption not enabled for this devce.

OEBPS/Text/part0030.xhtml

API -ouml.Config

		

•

		

apps - an array of app owner codes (owner code) (e.g. ["M1","CM"])

		

•

		

restServerURL - OUAF REST API URL

		

•

		

mobileAppURL - Mobile app URL

		

•

		

DEFAULT_MDT_URL - DEFAULT MDT URL

		

•

		

DEFAULT_DEPLOYMENT_ID - DEFAULT_DEPLOYMENT_ID,

		

•

		

mainMenu - menu items that should be available on every page menu

		

•

		

applicationFolder - A folder name used to store the files on local device filesystem

		

•

		

URLMapping - Mapping of URLs. This mapping can be used to override default UI pages

		

•

		

initScript - Initial script that gets executed after successful login, this script decides the application home page.

		

•

		

getConfig - Returns the value of a property (the property available in topmost app)

		

•

		

boFiles - list all the files required by a business object. If the only file that a business object requires is same file as the name of business object and is available in scripts/bo folder then no need to include that. In case of CM config, files are assumed to be present in scripts/bo folder.

		

•

		

getBOFiles - Returns the JS file names required by a business object. This API is internally used by ouml.Loader.loadBO so implementers will not have to ever use this. This property returns the value of boFiles variable after merging it from all layers.

		

•

		

pageFiles - list all the files required by a UI page (business object or non-business object). If the page id (div having data-role =page) is same as file name then no need to include that file. provide absolute path starting from product folder (e.g. cm/taskList.js)

		

•

		

getPageFiles - Returns the JS file names required by a Page(bo pages too) UI. This API is internally used by ouml.Loader.loadPage API so implementers will not have to ever use this. This property returns the value of pageFiles variable after merging it from all layers.

		

•

		

commonJSfiles - List all JS files that should be loaded on successful login. This property is used by login module and it loads all the files defined at different layer, after merging it from all layers. Common JS files like plugins.js or common.js which hosts common APIs not specific to a business object or a Page should be declared in this property. File should contain the path starting from product folder name (e.g. m1/scripts/plugins/plugins.js)

		

•

		

inboundMsgFiles - List mapping between an inbound script and corresponding file containing the script. File MUST be present in scripts/inbound folder. CM can override base .

		

•

		

getInboundMsgFiles - Returns the inbound message handler file names for a given script code.This API reads the value from inboundMsgFiles variable in config.js of each app layer and returns the files from appropriate layer. This API is internally used by the Oracle Utilities Mobile Library and implementers will not have to use this.

		

•

		

capabilitiesMapping - define a mapping between a capability type (defined on server) and corresponding script to be executed on client for a given capability. These scripts should be defined in common.js (e.g. cm/ui/common.js) or some JS file that is loaded via commonJSFiles so that whenever a capability request (e.g. scan barcode) is made this file should be already loaded.

		

•

		

oracleMapProperties - Used to configure the Oracle MapViewer properties. The serverConfig property is very important. This is the name of the Feature Configuration created for the Oracle MapViewer on the server. The client gets all the MapViewer information like URL, Datasource, Tile Layer etc using the Feature configuration. Besides the serverConfig the images for activities can be changed here. The style for the information window which pops up on clicking an activity marker can also be modified here.

		

•

		

sqliteDB - Set to false by default out of the box. If set to true the SQLite plugin is used to create a SQLite database on the client devices instead of using the HTML5 WEBSQL database. This flag can be set to true only if the SQLite plugin is installed for the Cordova project used to build the native application.

OEBPS/Text/part0029.xhtml

Config

Each application layer has its own config.js file where a new property can be added. A property defined in the lower layer can also be overwritten by defining a new property with the same name.

Some of the properties that are of type array cannot be overridden completely but values from each layer are merged. Please reference the description of each property.

OEBPS/Images/image00167.jpeg
DR

EEEREREE[
loeeasaalf

OEBPS/Images/image00168.jpeg

OEBPS/Images/image00165.jpeg
~ Mobile Application

Deployment

OEBPS/Images/image00166.jpeg
5 e mobiesconsmincs
P

L b

B contan

OEBPS/Text/part0103.xhtml

Switching Between Indicators

We can switch between indicators based on specific condition. We need to add the indicators first as specified in the section above before we can perform switch. Please note that all the indicator should have same ‘position’ value to enable them to switch between themselves.

In this example, we will extend the previous example to switch between the indicators for ‘Crew Onsite’ and ‘Crew Enroute’.

To show the indicator for ‘Crew Onsite’, we need to override ONSITE state transition in the custom BO for M1-Assignment in the same way as we had overriden ENROUTE method in the previous section.

		

1.

		

Within the overridden ONSITE function, add the API to add indicator for ‘Crew Onsite’.

m1CMAssignmentViewModel.prototype.ONSITE = function () {

 ouml.Indicator.addUpdateIndicator("CMCRONS");

 ouml.ViewModel["M1-Assignment"].prototype.ONSITE.call(this);

 }

		

2.

		

Since both ‘Crew Enroute’ and ‘Crew Onsite’ share same value in ‘position’, they will replace each other based on the state of the assignment.

OEBPS/Text/part0104.xhtml

 Removing an Indicator

You also have the option to remove an indicator. For example, you can hide the ‘Network connected / disconnected’ indicator.

		

•

		

To remove an indicator, call the API to remove an indicator from indicator bar:

 ouml.Indicator.removeIndicator("extendable_lookup_value ")

		

•

		

To remove the network indicator while the crew is enroute, override the ENROUTE state transition method in custom BO of M1-Assignment in CM layer.

m1CMAssignmentViewModel.prototype.ENROUTE = function () {

 ouml.Indicator.addUpdateIndicator("CMCRENR");

 ouml.Indicator.removeIndicator("M1NCCON");

 ouml.Indicator.removeIndicator("M1NCDSCN");

 ouml.ViewModel["M1-Assignment"].prototype.ENROUTE.call(this);

 }

		

•

		

Indicators can also be removed from indicator bar by changing the ‘Usage Flag’ of this extendable lookup to ‘Inactive’.[image:]

OEBPS/Text/part0101.xhtml

Customizable Indicators

We can add a new indicator and show that inside indicator bar visible at header section of the page. List of indicators shown inside indicator bar is maintained as Extendable Lookup in Oracle Utilities Application Framework. Please follow the steps below to add/hide an indicator in indicator bar.

The following examples are for demonstration purpose only and applicable for manipulation of indicators in indicator bar during state transition. These changes will not be persisted. Customization approach may differ based on actual requirement, even though the API for handling indicators in indicator bar will remain the same.

OEBPS/Text/part0102.xhtml

Adding a Custom Indicator

		

1.

		

Login to Oracle Utilities Application Framework with a CM system user ID and navigate to list of Extendable Lookups following the path: Menu -> Admin Menu -> E -> Extendable Lookup

		

2.

		

Search for the business object M1-MCPIndicator.

		

3.

		

Select the extendable lookup from search result.This lookup contains indicator information for those which need to be added to indicator bar.[image:]

		

4.

		

Add new indicators that you want to show in indicator bar. For example:

		

a.

		

Click the Add link on the Extendable Lookup Value List section.

		

b.

		

Add an indicator for showing Crew Onsite.

The indicator code must start with ‘CM’, which designates these indicators as custom.[image:]

		

c.

		

Add a second (similar) indicator for showing Crew Enroute.

		

5.

		

Add the new indicator icons in the path <base _dir>\m1Mobile\www\cm\images. The position of the indicator (with respect to the other indicators) depends on the value of: M1-MCPIndicator -> businessObjectDataArea -> position.

		

6.

		

Call the API to add the indicator in the indicator list:

ouml.Indicator.addUpdateIndicator(extendable_lookup_value); //e.g. ouml.Indicator.addUpdateIndicator("CMCRENR");

The code for indicator bar customization should be added within the CM layer. For example, you may want to show the ‘Crew Enroute’ indicator when crew is working in an Assignment and is in Enroute state. To implement that, you must first create custom BO M1-Assignment within CM layer, followed by overriding the method ‘ENROUTE’.Within the overridden ENROUTE function, invoke the API to add this indicator in indicator bar.

 m1CMAssignmentViewModel.prototype.ENROUTE = function () {ouml.Indicator.addUpdateIndicator("CMCRENR"); ouml.ViewModel["M1-Assignment"].prototype.ENROUTE.call(this); }

Now the indicator is added to the indicator bar. [image:]

OEBPS/Text/part0028.xhtml

Database Schema

API

getHandle - Returns the DB handle object. This returns a singleton instance of an object that should be used for any DB transactions.

Tables

At application launch, the tables indicated below are created in the browser database or in SQLite if they do not already exist. You can reference this schema and browse the database during development or debugging.

F1_BIZOBJ

This table stores both deployment and transaction data for all business objects. GEN_COL1 to GEN_COL10 can be used to store specific fields that can be used to query the business object.

		

Offline Field

		

Description

		

BO_KEY

		

combination of business objects PK1-PK5 (pk1^pk2^pk3^pk4^pk5)

		

BO_CODE

		

Business object code

		

MO_CODE

		

Maintenance object code

		

DATA

		

JSON data for a business object

		

TYPE

		

Type of data (DEPLOYMENT or TRANSACTION).

		

DATE_UPDATED

		

Timestamp(local) when the data was modified.

		

VERSION

		

Version of the record.

		

GEN_COL1 - GEN_COL10

		

Generic columns for storing business object attributes used in search and application logic.

F1-Inbound

This table supports inbound messages.

		

Offline Field

		

Description

		

MSG_ID

		

Unique message ID for the inbound message.

		

PAYLOAD

		

JSON Data received in a message.

		

SCRIPT

		

Script code (message processing script).

		

PRIORITY

		

Priority of the message.

		

ACK_REQUESTED

		

Flag to indicate whether acknowledgement is requested.

		

ACK

		

Flag to indicate whether acknowledgement was returned.

		

PROC

		

Flag to indicate whether the message is processed.

		

PROC_ACK

		

Flag to indicate whether processing acknowledgement was sent.

		

ERROR

		

Error message received during processing, if any.

F1-Outbound

This business object supports outbound messages.

		

Offline Field

		

Description

		

ID

		

Unique message ID of the outbound message.

		

SERVICE

		

Service name.

		

PAYLOAD

		

Service input payload.

OEBPS/Text/part0027.xhtml

Offline Database

This section provides information regarding client side offline database tables and APIs available to interact with the offline database.

A WebSQL database is used for local data storage if the application is opened in a web browser. If the application is installed as a native app on a device and "sqliteDB" property is set (in config.js) then the SQLite DB on the device is used. The database is initialized with an initial size of 5MB.

OEBPS/Text/part0026.xhtml

Logging

System logs are sometimes needed to diagnose how the server application is communicating with devices, investigate errors, or for other troubleshooting or informational purposes.

Mobile log files can be accessed in the MDT portal under the Log tab.

Changing Log Settings from a Device

Device users can change log settings from the Oracle Real-Time Scheduler Mobile Application Settings page. This includes turning logging on or off, as allowed by the user’s permissions, setting the log level, and setting appenders.

Log Appenders

The logging module supports the following types of appenders to display logging messages:

		

•

		

Console Appender (CONSOLE): Writes log messages on the web console.

		

•

		

File Appender (FILE): Writes log messages in a local file on the client. The log files in the client are then sent to the server when requested.

		

•

		

Remote Appender (AJAX): Sends log messages (json/xml/text) to the server with an asynchronous HTTP request.

		

•

		

Popup Window Appender (POPUP): Opens a new window/sub window in the browser and writes log messages in real time.

Users can enable more than one appenders at the same time to write logs from setting page of application

Log Message Format

Log entries use the following format.

[Unique Prefix] - Date Time Log-Level Log Message (Origin Module Line Number)

Log API

The Oracle Utilities Mobile Library Logging module exposes the APIs required by your implementation to facilitate system logging. Any application module that requires logging uses this module with the single log instance maintained for the complete application. Logs get the appropriate instance from ouml.JSLogger and use the exposed API.

For example to log an info message your implementation would use:

		

•

		

ouml.JSLogger.info('Your message ');

		

•

		

Extra public APIs exposed by this object (not part of the Oracle Utilities Mobile Library or parent business object)

		

•

		

mdtdebug(message) : The module that needs to log a framework level debug message calls this method. Passes the log message arguments to the methods.

		

•

		

debug(message) : The module that needs to log a debug message calls this method.Passes the log message arguments to the methods.

		

•

		

info(message) : The module that needs to log an info message calls this method.Passes the log message arguments to the methods.

		

•

		

warn(message) : The module that needs to log a warn message calls this method.Passes the log message arguments to the methods.

		

•

		

error(message) : The module that needs to log an error message calls this method.Passes the log message arguments to the methods.

		

•

		

perf(message) : The module that needs to log a perf message calls this method.Passes the log message arguments to the methods

		

•

		

fatal(message) : The module that needs to log a fatal message calls this method.Passes the log message arguments to the methods

		

•

		

 setLevel(level) : These methods set the logging level of the logger instance that the application has acquired initially. The level that is to be set should be within the set of levels supported by Logger. Else default logging level will be used

		

•

		

syncLogFile() : This method synchronizes the log files to the server.

OEBPS/Text/part0025.xhtml

Server Inbound Messages

This section refers to messages that are outbound from the mobile device and inbound to the server.

As described in Client side outbound messages section above, these messages to server are delivered by invoking specific services as per the given context or business logic. E.g. Get Shift, update shift, update task etc.

Guaranteed Delivery

A special kind of inbound messaging called Guaranteed Delivery ensures that messages from a device are stored in the application database first, and then processed afterwards. This ensures that even though the message cannot be processed immediately because of other factors, the message is at least guaranteed to be delivered to the server.

Guaranteed Delivery Algorithm

The remote message guaranteed delivery algorithm, M1-REMMSG-GD, processes guaranteed delivery requests through remote message creation (through the business object M1-CrewMessage) and state transition. Your implementation must configure the base algorithm on Installation Options/Guaranteed Delivery. This is configured by navigating to Installation Options > Algorithms, System Event: Guaranteed Delivery.

Remote Message

The Remote Message table uses a Device Message ID field that stores a unique ID sent from the mobile device to distinguish inbound messages sent from the server application. This field is later used by the Guaranteed Delivery (M1-REMMSG-GD) algorithm to verify whether or not an inbound message already exists in the Remote Message table before creating a new record (to avoid duplicate entries for inbound messages).

OEBPS/Text/part0024.xhtml

Server Outbound Messages

This section refers to messages that are outbound from the server inbound to the mobile device.

Outbound messages are maintained through the M1-MessageToDevice business object. The different states that the outbound message can transition to are defined and managed by the business object's lifecycle.

For data synchronization the device sends:

		

•

		

Device ID

		

•

		

A list of acknowledgements. Includes Remote Message ID, PROC_SW Y/N (whether it’s been processed yet), and optional error details.

The device receives:

		

•

		

A list of new messages to be processed. This includes Remote Message ID, business object, message name, payload, priority.

		

•

		

Ordered by priority (with high-priority messages first) and then in Created Date-Time order.

		

•

		

Number of messages is based on bucket size.

The following "rules" apply for client applications that process outbound messages:

		

•

		

Valid MDT_IDDefined in the server application.

		

•

		

Number of messages received is based on bucket size defined on the MDT Type.There may be more or less messages than what is received, however the bucket size limits the number of messages received at one time. The system continues to send the messages in batches until the queue is empty.

		

•

		

If the device does not acknowledge receipt of the message, the same message will be sent again.It is possible to set "callback" settings to cancel messages so that they aren’t continually sent.

		

•

		

If the device does acknowledge receipt, the message must be processed.Messages should be processed in order, high-priority first.

		

•

		

Error details are provided in the outbound message.

If the caller wants to work with the output message IDs from M1-InvokeRSIScript or M1-GetRSIIdsByContext , it could be an RSI_ID (30 chars) OR a REMOTE_MSG_ID (14 chars).

All Callback and Error scripts, ditto. The existing element <rsiMessageId> may be 30 chars or 14 chars.

Callbacks are done only for messages that have not been delivered. If a message is delivered but never processed, it will remain in Queued status forever, unless some other process handles it. You may want a Monitor for that.

Output RSI ID for Various Business Services, Service Scripts, etc.

		

•

		

Business Services: Invoke Remote Script (M1-InvokeRSIScript) and Get Remote Script Invocation By Context (M1-GetRSIIdsByContext)

		

•

		

Output message IDs can now be either an RSI ID (30 characters long) or a Remote Message ID (14 characters long).

		

•

		

Callback and Error Scripts

		

•

		

Existing schema message IDs can now be either an RSI ID (30 characters long) or a Remote Message ID (14 characters long).

Callback Logic

Callbacks are done only for messages that have not been delivered. If a message is delivered but never processed, it will remain in Queued status forever, unless some other process handles it.

Call back is configured, in seconds, under Master Configuration > Global Configuration, field: Remote Script Call Back Seconds.

This indicates the number of seconds that should pass (from the message’s creation date time) before the callback is executed. This works when the Remote Message monitor batch process triggers the remote message’s monitor algorithm (which executes callback scripts when applicable).

Remote Message Batch Monitor

The remote message monitor, a timed monitor batch process, can be set to monitor the rules associated with the current state of messages that go between the server application and mobile devices. It is recommended that you set this monitor to run very frequently such as every 5 minutes so that processed messages can be transitioned to a non-queued state (to improve performance on queries for unprocessed messages).

Archiving

The Remote Message table contains columns that allow for record archiving via the Information Lifecycle Management (ILM) process. The ILM crawler calculates a cutoff date as (process date - retention period) and selects all records for the maintenance object with a date prior to this cutoff date that are not marked as ready for archive. The Override Cutoff Date parameter can be used to define an earlier cutoff period. This may be useful if your implementation has many years of historic data ready to be processed by the crawler and you want to stagger this by limiting the process to a shorter period.

Your policies and business processes will determine how your implementation defines the ILM retention period. This is configured by navigating to Master Configuration > ILM Configuration and modifying the Default Retention Days field.

OEBPS/Text/part0023.xhtml

Server Communication

This section describes the outbound and inbound messaging used by the system.

OEBPS/Text/part0022.xhtml

Device Outbound Messages

An outbound message is essentially a RESTful service invocation initiated by client which delivers a message (JSON payload) to that service on server. There are two types of outbound RESTful invocations modes from client:

Online Mode

A service invocation where response from the service is required to proceed further with the business flow. For this type of outbound call, client has to be connected to network as if device is offline we cannot proceed further.:

		

Online Mode API

		

Parameters

		

Description

		

ouml.AJAX.invokeService

		

service - service to be executed

args - {onSuccess: <callback>, onFailure: <callback>, method: <GET or POST>, contentType: <content type header>, headers: {<all headers passed as is to ajax call>}

}

payload - JSON Data

		

Invokes a service immediately (device has to be connected to network) and returns the results via an asynchronous callback.

This API adds mandatory headers required for authentication and connecting to server.

Offline Mode

A message is posted to a service however the actual call to service would be made only when the device is connected. Such outbound messages (service calls) are delivered to server as and when the device is connected and client business flow is not dependent on response from server. However it is ensured that no message will be lost and it will be delivered to server eventually. Client ensures that message sent via this outbound module are stored in offline storage and delivered in same sequence they were posted. Application crash or network connectivity should not result into any message loss.

		

Offline Mode API

		

Parameters

		

Description

		

ouml.OutboundWorker.queueOutbound

		

args -

{

transaction:<tx object>,

onSuccess: <callback>,

onFailure: <callback>,

input: { service: <service name>, payload: <JSON data>}

}

		

Message posted via this API will be saved to F1_OUTBOUND table using passed transaction else a new transaction will be used. Transaction object will be returned via success callback so that same can be used to execute the next transaction in case of multiple commits. Whenever device comes online the payload will be delivered to the specified service.

OEBPS/Text/part0021.xhtml

Device Inbound Messages

Configuration

MDT type uses the ASYNC_INTERVAL (seconds) property to configure the interval at which a REST service(M1-SyncData) will be invoked by client. Inbound message is processed by a script which is specified on incoming message (SCRIPT column). Inbound scripts should be located in scripts/inbound folder and script name to filename should be mapped to the inboundMsgFiles property in config.js.

Note: One JS file can have more than one inbound scripts.

Message Storage

Messages received are stored in F1_INBOUND intermediate table on device DB. Please reference the

Database Schema

 section for more information.

Inbound Message Event API

Once a message is downloaded and saved to intermediate table it is handed over to inbound processing script. This processing script should be implemented as follows:

Processing Script Code Structure

ouml.Inbound["M1-MCPDpAsgn"] = (function (ouml){

function process(msgEvent) {

}

return {

 process: process

 };

})(ouml);

M1-MCPDPAsgn is an example script code. This should be replaced with your actual script name. This script needs to implement a process method that is required to be exposed as public method of this module.

The Oracle Utilities Mobile Library invokes a process method with an event object with the following structure.

		

•

		

msgEvent.message - inbound message in JSON format (format of this message is as defined on server, specific to a script)

		

•

		

msgEvent.error(ouml.ClientError) - this method should be called in case an error occurs in processing this message. An instance of ouml.Error should be passed to it. This error message is saved to F1_INBOUND table’s error column.

		

•

		

msgEvent.complete(transaction) - this method should be called on successful message processing. Transaction used, if any, should be passed to this method and same will be used by the Oracle Utilities Mobile Library to update the F1_INBOUND’S PROC column. If no transaction is passed then a new transaction is created.

Message Acknowledgements

On successful download and save to the intermediate table, a message delivery acknowledgement is sent back with very next REST service call. This only indicates the delivery part, not the processing. On successful message processing another acknowledgment is sent with a flag to indicate whether or not the processing was successful. If during message processing an error occurs, the same error is also sent back to the server.

The Input to the REST service contains following payload:

{

"msgId": msg_id column value from F1_INBOUND,

"isProc": true/flase (true when PROC column value is Y)

"errorData": {error object}, error column value}

}

OEBPS/Text/part0020.xhtml

Device Communication

This section provides information on communication between the server application and mobile devices. Although we have two categories of messages, inbound and outbound, they are both transferred via HTTP requests initiated by device.

OEBPS/Text/part0019.xhtml

 Oracle Utilities Mobile Library

This section describes the key modules and APIs that are available for implementing new user interface pages and application features.

OEBPS/Text/part0058.xhtml

Signature

The signature object is a wrapper for the Signature plugin. This object is used for capturing a signature on the canvas and saving it as an image on the server.

API (module - ouml.Signature)

		

API

		

Description

		

init

		

Initializes the signature widget and makes it ready for use on the UI

		

reset

		

Clears the signature from the widget on the UI

		

getData

		

Gets the data for the signature image in base64 encoded format

OEBPS/Text/part0057.xhtml

Barcoding

The BaseBarCode object is a wrapper for the Apache Cordova Barcode scanner. This object can be used to get the barcode and barcode type for an item.

API (module - ouml.BaseBarcode)

		

API

		

Parameters

		

Description

		

scan

		

Success callback, failure callback

		

This returns the barcode result which has the barcode type and barcode in the success callback

OEBPS/Text/part0056.xhtml

Maps

The Maps object is a wrapper for the Apache Cordova geolocation and also for the Javascript function to get the current device location. This object can be used to get the users current location and has helper method to get info window content.

API (module - ouml.Maps)

		

API

		

Parameters

		

Description

		

getCurrentLocation

		

Callback function, refresh flag

		

This returns the current location latitude and longitude in the callback function. The refresh flag is always false for now. If the users location cannot be determined then 0,0 is returned back.

		

getInfoWindowContent

		

Data area with activity data, callback function, latitude and longitude

		

This returns the info window content which needs to be displayed on click of the Activity marker on the map

OEBPS/Text/part0055.xhtml

Camera

The camera object is a wrapper for the Apache Cordova Camera plugin. This object is used for capturing a picture by opening the device picture gallery or by opening the device camera.

API (module - ouml.Camera)

		

API

		

Parameters

		

Description

		

openPictureLibrary

		

Callback function

		

Opens the device picture gallery from the User interface. User can select a picture from the picture gallery and it will be passed as aStringcontaining the base64-encoded photo image in the callback function

		

openCamera

		

Callback function

		

Opens the device camera from the User interface. User can take a picture using the camera and it will be passed as aStringcontaining the base64-encoded photo image in the callback function

		

onFail

		

Error message

		

Function to show failure message on Camera API failure

OEBPS/Text/part0054.xhtml

File

The file object is a wrapper for the Apache Cordova File. This object is used for read/write access to files residing on the device. It also has some other helper functions for file access/read/write.

API (module - ouml.File)

		

API

		

Parameters

		

Description

		

openLocalFile

		

url

		

Opens the local file from the device file system in native device viewer. The url passed in as the parameter is the complete path of the file to be opened.

		

base64ToArrayBuffer

		

base64String

		

Creates bytes buffer for a given base64 String

		

getFilesFromDirectory

		

Directory name, success callback and failure callback

		

Fetches list of files for a given directory and its sub directories on the device

		

createDirectoryStructure

		

Directory path, success callback and failure callback

		

Creates the structure for given directory on the device. It creates all the directories passed as part of the directory path.

		

writeFileData

		

filename, directory path for the file, success callback, failure callback, original callback, file data, appendEOF flag

		

Writes data to a given file on the Device. A file is created on the device file system and the data passed is written to the file. If original callback is passed it will supersede the success callback. The file url is passed as a parameter to the callback function. If appendEOF flag is passed then the data is appended to the file if the file exists.

		

deleteFile

		

Filepath including file name, success callback and failure callback

		

Deletes given file on the device. The file path is used to locate the file and delete it

		

getFileSize

		

Filepath including file name, success callback and failure callback

		

Returns the size of a given file on the device in the callback function. The file size is returned in bytes.

		

readLogsFile

		

filename, directory path for the file, success callback, failure callback

		

Reads log data from given file on the device

		

deleteFolder

		

directory path with directory name, success callback, failure callback

		

Deletes given folder on the device

		

fileFailure

		

error

		

Default file failure callback. Used if no failure callback is passed as input to the other API functions

OEBPS/Text/part0053.xhtml

Attachments

An attachment can be any file, such as a photo, a document with instructions or specifications, a spreadsheet, or any other supporting documentation. Mobile devices have the ability to upload attachments to the server application as well as receive attachments from the server. This processing uses restful web services.

API (module - ouml.BaseViewModel)

		

API

		

Parameters

		

Description

		

showAttachments

		

Pk value associated with the attachments, item id associated (optional)

		

Fetches and renders a list of attachments in the attachments section. The primary key and item id (optional) are used to query and load the attachments from the Database. The file API is used to query the attachment folder on the device and see if the attachment exists. If the attachment exists then open option is displayed for that attachment in the list and if it does not exist then download option is displayed in the list. It also fetches the common attachments associated with the activity.

		

getServerAttachment

		

PK value associated with the attachment, file path if file is already downloaded, attachment id , attachment filename

		

If the file path exists then it opens the local file on device. If filepath does not exist then a server call is made and the file is downloaded from server and stored on the device

		

deleteFileOnDevice

		

Complete file path with the file name

		

The file specified in the file path is deleted from the device

		

onPhotoDataSuccess

		

Image data as base64 binary

		

From the UI if the device camera is used to take a picture or picture is selected from gallery then this function is invoked and it gets the image data in base64 binary format as input. It in turn saves the file locally

		

createAttachmentMessage

		

Directory path, attachment file name, flag to indicate if its text or binary, persist flag (optional), file size

		

This function creates an attachment message and sends the data to the server for storage as part of the activities attachment list. If persist flag is set then it is an attachment uploaded from device to server so this function creates a record in the F1_BIZOBJ table for the attachment as well.

		

createTaskDirectory

		

Task ID

		

Creates a directory with the task id as the name of the directory

OEBPS/Text/part0052.xhtml

Mobile Device APIs

The following sections describe APIs used to access various objects and modules of the mobile application.

OEBPS/Text/part0051.xhtml

AsyncWorker API

BO Plugins

		

new Ouml.AsyncWorker

		

		

Constructor to create an instance of AsyncWorker

		

addWork

		

args = {obj: <a reference of object on which a method will be executed>, method: <method name>, args: <arguments to be passed when executing a method on obj instance>}

		

Use this API to queue an async function to be executed. Function will not be executed right away, this API just collects the data required to execute a function later.

		

execute

		

args = {onSuccess:<Success callback >, onFailure:< failure callback >, transaction: <transaction to be used to execute all functions>}

		

This API must be called to start the execution of queued async functions. On successful execution of 1 st function AsyncWorker will execute 2nd function and so on. On Failure of any function in queue the onFailure callback of this function (execute) will be invoked and error object returned by failing function will be passed as argument. On successful completion of all functions onSuccess callback of this function will be invoked.

Plugins approach of the Oracle Utilities Mobile Library is just a convention that is recommended approach to write client side equivalent of server side Enter and PostProcessing plugin scripts.

Enter and PostProcessing algorithms on a BO are written in JavaScript for execution on client. Each plugin is written as a Javascript Class attached to ouml.plugins namespace.<script-code>. This class should implement a process method. Structure of a plugin script:

ouml.plugins["M1-MCPTSUpd"] = (function (ouml){

var m1SendTaskUpdate = function () {

};

m1SendTaskUpdate.prototype.constructor = m1SendTaskUpdate;

m1SendTaskUpdate.prototype.process = function(args) {

 }

 return m1SendTaskUpdate;

})(ouml);

Process method should accept an object as argument with following atributes:

transaction- transaction to be used for any DB operations

onSuccess - callback for successful execution of plugin

onFailure - callback for failure in execution, any exception or error scenario

input - {bo: <BO instance reference>, action: <ADD/REPLACE>}

onFailure callback should be called with ouml.ClientError instance

Each BO Js should have a state transition method per state, this method should create instances of appropriate plugin scripts and invoke the process method of each. All enter plugins should be invoked first and then BO’s save method should be invoked which should decide whether to invoke bo.update or bo.add based on action on the business object (add or replace). The business object save method should execute all post processing plugins. This approach will ensure that whenever a state transition is done first Enter plugin scripts are executed and then Post processing scripts. As mentioned earlier, the Oracle Utilities Mobile Library does not enforce how a business object class should be implemented however if above approach is followed there are APIs that the Oracle Utilities Mobile Library provides which you can take advantage of and also be consistent with base product code. Please reference the

AsyncWorker API

 section for more information.

OEBPS/Text/part0050.xhtml

Asynchronous Functions Pattern

Any method that can do ASYNC work has to accept arguments as a single obj/args ({key: value,…}) instead of fixed arguments. Please reference addBO under

Business Object JavaScript (BO JS)

 or loadRawData under

BOHelper API

.

		

•

		

Rransaction,input,onSuccessandonFailureare required keys on this object and will be same for all ASYNC methods.Real input required by business logic of the function will be part of "input" , each function can decide what should be in it.

		

•

		

onSuccess will always be called with a single argument obj (again {key: value,…})

		

•

		

transaction,outputare required keys on this obj.

		

•

		

output can contain the real response that caller is expecting in as JSON.

		

•

		

onFailure will alwas be called with a single argument ouml.ClientError

		

•

		

Each such ASYNC API should have its own set of onSuccess and onFailure implementation to intercept the async response of API called by it.So that lower level API’s async response should be first intercepted by your API and formatted in a format that caller of your API can understand

		

•

		

AsyncWorker can be used to execute N number of such methods in sequence.

		

•

		

Each method will use transaction returned by (via onSucess callback) previous method

Methods that are guaranteed to be executed SYNChronously need not follow the above approach.

OEBPS/Text/part0049.xhtml

Indicators

An indicator bar is displayed on the screen header as a popup. This bar displays various indicators to present device, server, network, user and activities states.

API (module - ouml.BaseViewModel)

		

API

		

Parameters

		

Description

		

ouml.Indicator.addIndicator

		

 lookusValue|count: integer valueto represent counter if any

		

Add an indicator in the indicator list. Also sets a counter for this indicator.ouml.Indicator.addIndicator(‘M1NCCON’);ouml.Indicator.addIndicator(‘M1NR’ , 5);

		

ouml.Indicator.removeIndicator

		

lookusValue.

		

Removes an indicator from the indicator list.

ouml.Indicator.removeIndicator(‘M1NCCON’);

		

ouml.Indicator.addUpdateIndicator

		

lookusValuecount: integer valueto represent counter if any

		

Description

Updates an indicator if it exists, otherwise adds an indicator in the same position.ouml.Indicator.addUpdateIndicator(‘M1NCCON’);

ouml.Indicator.addUpdateIndicator(‘M1NR’ , 5);

		

ouml.Indicator.setCounter

		

lookusValue

count: integer value to represent counter

		

Sets count value for an Indicator in Indicator list.

Example:

ouml.Indicator.setCounter(‘M1NR’ , 5);

		

ouml.Indicator.getCounter

		

lookusValue

		

Returns count value for an Indicator in Indicator list.

Example:

var mailCount = ouml.Indicator.getCounter(‘M1NR’);

Executing a single Javascript Asynchronous function is easy, however executing multiple asynchronous functions (one after another on success of previous one) requires a bit of extra code to manage the callbacks. The extra code is required to prevent recursive callbacks.The AsyncWorker module can accept a list of functions to be executed. It returns (invokes your callback function) when the last function in the list is executed successfully or any one function fails. To be able to execute any functions using this AsyncWorker module you must follow the pattern below when executing your asynchronous functions:

OEBPS/Images/image00169.jpeg

OEBPS/Images/image00170.jpeg

OEBPS/Text/part0048.xhtml

Menu

One popup menu appears on each page. Each contains the following two types of menu items:

		

•

		

Application Level Menu items

		

•

		

Page Level Menu item.

For menu item we have one observableArray pageMenuItems in BaseViewModel. By default it will be populated with Application Level menu items once View Model is loaded, and it can be extended or appended from child ViewModel with page specific menu items.

Application Level menu items are generated from configuration file of the application and page specific menu will be implemented by the developer in the page specific models.

 Menu Items (ouml.MenuItem)

This is menu item object. Create one object for each menu item.

Constructor

ouml.MenuItem({ // Integer a unique id. It’s also determines position of menu item in menu. It’s a required filed

 index;

 // Label of menu that will appear for menu item on UI. It’s a required property

 title;

 // Icon if we want an icon for menu item optional

 icon;

 // java script method or a URL optional

 Action;

 // Set active true or false if user you want to show hide the menu item -> It’s required

 Active;})

Menu API

Menu API is part of the Base View Model and will be available in the child view model at different application layers if the child view model extends the base view model.

		

API

		

Parameters

		

Description

		

ouml. BaseViewModel.getMenuItem

		

index: an Integer value

		

Returns a ouml.MenuItem object.

This API will help write there custom API for menus.

Return an object of ouml.MenuItem or undefined

var menuItem = this.getMenuItem(201);

		

ouml. BaseViewModel.addMenuItem

		

menuItem : an object of ouml.MenuItms

		

Add menu item in the menu.

This API checks for the menu item with the same index value. If menu Item exits its replace the menu items fields’ value with new one otherwise add it to the list.

		

ouml. BaseViewModel. updateMenuItem

		

menuItem : an object of ouml.MenuItm

		

Update menu item values example: Label, action handler and visibility.

This API checks for the menu item with the same index value. If menu Item exits its update the menu items fields’ value with new one. Print an error log input parameter is not a valid ouml.MenuItem object.

		

ouml. BaseViewModel. showMenuItem

		

item : an object of ouml.MenuItem or index - index of menu item

		

Display a hidden menu item dynamically

e.g. this.showMenuItem(201);

		

ouml. BaseViewModel. hideMenuItem

		

item : an object of ouml.MenuItem or index - index of menu item

		

Hide a visible menu item from menu dynamically.e.g. this.hideMenuItem(201);

Application/SDK level menu Items

To add application level menu item Developer/CM need to add ouml.MenuItem object in mainMenu Array List of config.js of the application.

var mainMenu = [

 new ouml.MenuItem({ index:102, title: "Settings",

 action: "ouml/ui/settings.html", active:true}),

];

Page Level Menu Item

To add page level menu item Developer/CM need to override setPageMenuItems() API of ouml.BaseViewModel().

cmModel.prototype.setPageMenuItems = function(){

 var sample = new ouml.MenuItem({ index:201,

title: ‘Sample Menu Item’,

action: this.sample,

active:true

});

 this.addMenuItem(sample);

 }

OEBPS/Text/part0047.xhtml

API

APIs are covered in the BaseViewModel API section.

OEBPS/Text/part0046.xhtml

Page Fragments

OEBPS/Text/part0045.xhtml

Headers

Header elements are automatically injected from the generic header.html on each page load. This forms the content of the jQuery Mobile page header (data-role="header");

If the SDK detects empty header DIVs with data-role="header" and only injects the header.html content, otherwise individual pages can define their own header html that remains untouched by the SDK.

It’s advised to use the system headers on most screens with the following APIs to selectively show/hide them on specific screens.

Contents

The following buttons that appear on the header (from left to right):

		

•

		

Back Button - Displays a back button

		

•

		

Maps Button - Toggles between the Timeline view and the MapView

		

•

		

Panic Alert - Triggers a Panic Alert from a new UI screen

		

•

		

Indicator Bar - Please reference the

Indicators

 section for more information

		

•

		

Menu Bar - Please reference to the

Menu

 section for more information

Public APIs (via ouml.BaseViewModel)

		

•

		

showBackButton - This is a knockout observable object. The default value is set to True. The value changes when in different UI screens.

Home Page (Shift Start/Task List)  Invisible

Task List Page  Shift Page  Visible

Task List Page (Invisible)  Assignment Main Page (Visible) -> Assignment Details Section -(Visible)

Back button is visible when the Stack Size is > 2 (Current page occupies a place too)

This method should be called by over-riding determinePageHeaderButtons() in your UI’s ViewModel class.

Example - model.showBackButton(false); // Would set it to false.

		

•

		

showPanicButton - Controls the visibility of the Panic button. Default value is true. This is a KO Observable object. This button would be displayed on all the UI screens except for the Login screen.

Example - model.showPanicButton(false); // hides it.

		

•

		

howMapButton - Controls the visibility of the Map button. Default value is false. This button is only displayed on the Task List page in the application. Any UI requiring this method will have to toggle it ON in the determinePageHeaderButtons API.

		

•

		

determinePageHeaderButtons - API that can be used to control the visibility of the header buttons. This API gets called even when coming out of the section pages using the back button. This is different than the ouml.ViewModel.load() method that is used for the first time initialization. This API can be optionally over-ridden by the child ViewModel UI screens.

OEBPS/Text/part0044.xhtml

HTML Content

Each HTML file that can be navigated by a direct link on the menu, an href in html, or via the navigateToPage API should follow standard jQuery page structure:

<div data-role="page" id=

"M1-BreakTask" >

<div data-role="header">...</div>

<div role="main" class="ui-content">...</div>

<div data-role="footer">...</div>

</div>

		

•

		

The ID of the page div should match to the business object name if it is a BO UI otherwise it should be same as the html filename excluding the file extension.

		

•

		

Each HTML file cannot have more than one div with data-role=page.

		

•

		

Oracle Utilities Mobile Library uses a single page template structure of jQuery.

OEBPS/Text/part0043.xhtml

UI Layout and Navigation

The Oracle Utilities Mobile Library uses jQuery and Knockout APIs for UI Pages. Each UI page is either a single HTML file or a set of files (page fragments) combined together and displayed as one. Oracle Utilities Mobile Library uses jQuery ajax APIs to load HTML and JS content. Knockout is used to bind the JSON data to UI elements. All layout and navigation specific APIs are part of BaseViewModel class and are made available to a page specific ViewModel when it inherits the BaseViewModel.

OEBPS/Text/part0042.xhtml

Property Names

		

•

		

ASYNC_INTERVAL - Defines the time interval (in seconds) between Device to Server data sync.

		

•

		

ATTACHMENT_STORAGE_SIZE - Maximum (Sum of all the attachments) attachment storage size possible for the current MDT>

		

•

		

BASE_TIMEZONE_OFFSET - Fetches the base time offset against GMT.

		

•

		

CURRENCY_CODE - Preferred currency code as fetched from the user’s ‘Display Profile’

		

•

		

DATE_DISPLAY_FORMAT - Preferred date display format as fetched from the user’s ‘Display Profile’

		

•

		

DECIMAL_SEPARATOR - Decimal separator as fetched from the user’s ‘Display Profile’ (Un-used right now)

		

•

		

DISPLAY_OPTION - Display option set for the current MDT’s MDT Type. This is not used in this framework as the screens are built responsive to deal with both Mobile and Laptop.

		

•

		

GPS_LOG_INTERVAL - Time interval for capturing the device’s current location.

		

•

		

GPS_SUPPORTED - GPS Enabled or Disabled on the MDT Type.

		

•

		

GPS_SYNC_INTERVAL - Logged GPS records will be synced across to the server at this time interval (in mins).

		

•

		

INITIAL_SERVICE_SCRIPT - Not used right now but will have the initial script name to be executed. At the moment, the ouml.Config.getConfig("initScript") property.

		

•

		

IP_UPDATE_INTERVAL - IP Address update interval. This is not used in the implementation yet as there is no server to device push communication (Only Device to server pull calls are supported).

		

•

		

LOG_ARCHIVE_DAYS - Un-used - remove.

		

•

		

LOG_FILE_COUNT - Number of active log files to keep before archival.

		

•

		

LOG_FILE_SIZE - The maximal size in kilobytes of a log file. After the log file reaches this size, it’s rolled over into a new file.

		

•

		

M1_CAPABILITY - Stores the JSON format of all the capabilities defined on the MDT Type. Value should first be JSON Parsed before use.For using Capabilities use - ouml.Capabilities

		

•

		

MDT_ENCRYPTION_KEY - Data encryption key is used to encrypt any transactional data on the device. The Key itself is encrypted with the user entered - user name and password.

		

•

		

MDT_LOG_LEVEL - MDT’s logging framework uses this Log level to conditionally log only selective log statements.

		

•

		

MDT_SESSION_ID - Counter incremented each time a device is registered. This will be used for BO primary generation to ensure unique keys.

		

•

		

MONEY_DECIMAL_DIGITS - Number of allowed decimal digits for Money fields. (Un-used right now)

		

•

		

MONEY_FORMAT - Money format as fetched from the user’s display profile. (Un-used right now)

		

•

		

NUMBER_FORMAT - Number format as fetched from the user’s display profile.

		

•

		

NUMBER_GROUP_SEPARATOR - Number group separator symbol.

		

•

		

TIME_FORMAT - Time format as defined in the user’s display profile.

OEBPS/Text/part0041.xhtml

API - ouml.PropertyEntity

Public APIs

		

•

		

getMDTProperty - Fetch the value against the key/name property. This is a synchronous call for all the properties except for "PurgeOnNextLogon". This takes in an input of Property name and an optional callback function which is only used in the case of Property Name = ‘PurgeOnNextLogon’.Method Signature - function getMDTProperty(key, callbackFunc) {}

		

•

		

setMDTProperty - Set the value against the key/name property.This is a synchronous call for all the properties except for "PurgeOnNextLogon". The parameters callbackFunc, errorFunc, transaction are optional for properties that aren’t stored in the DB. Method Signature - function setMDTProperty(key, value , callbackFunc, errorFunc , transaction) {}

		

•

		

removeMDTProperty - Delete a given property from the Property cache. This is a synchronous call for all the properties except for "PurgeOnNextLogon". Method Signature - function removeMDTProperty(key , onSuccess ,onFailure ,transaction) {}

OEBPS/Text/part0040.xhtml

Properties

Properties are used to represent configurable values such as Date formats, Sync Interval, Log File Size. These properties are fetched via a REST call to the server every time in online mode. Some of these properties can be set and retrieved at execution time too.

OEBPS/Text/part0039.xhtml

Business Object UI (HTML and Javascript)

Every BO has a top level UI page (UI Map/HTML file), which is the main landing page when you use navigateToBOPage API. This page usually has list of sections and each section point to a <DIV> in either same HTML file or other HTML fragments(files) included via an overridden API(loadPageFragments). HTML file name must match the BO name and the top level DIV which has data-role=page should have BO name as the value for div’s id attribute. E.g. for M1-Assignment BO, file name would be M1-Assignment.html and the top level div in that page is:

<div data-role="page" id="M1-Assignment">

 <script src="M1-Assignment.js"></script>

For a non BO Page too the div Id should uniquely identify a page and if the JS file name, html file and the div id all are same then the Oracle Utilities Mobile Library can load the JS file automatically without any script include.

As you can see above we are including a script inside the div, this is important as with jQuery mobile, you cannot expect any script outside the page div to be loaded. So if you ever have to load a JS file for any page (BO or non BO) it should be included inside the page div.

Having said that if the JS file name is same as the bo name or the id of page div (for non-business objects), then we need not include this file in HTML code and the Oracle Utilities Mobile Library automatically includes a file with this name in same directory as the page.

Page View Model

Every UI JS must extend the BaseViewModel class, if there is no parent to this BO otherwise it must extend the parent class. Code for every UI page (bo/non bo) should be attached to a specific namespace (ouml.ViewModel) as shown in this example BO class:

ouml.ViewModel["M1-Assignment"] = (function(ouml) {

function m1Assignment() {

 ouml.ViewModel["M1-Common"].call(this);

 model = this;

};

//set the prototype to parent BO, so we extend the parent's functions.

 m1Assignment.prototype = Object.create(ouml.ViewModel["M1-Common"].prototype);

 //point the constructor property to this key (in case we need to make use of it later)

 m1Assignment.prototype.constructor = m1Assignment;

 return m1Assignment;

})(ouml);

Note: In this example we have a common parent for all business objects, which extends BaseViewModel hence we are extending M1-Common here.

This is the basic minimum code that every business object (nonBO) UI must have.

BaseViewModel API Properties

		

LABELS

		

A reference to all labels, can be used in HTML as:

		

LOOKUPS

		

A reference to all Lookups. usage:

<select class="ui-select" id="keepWithCrew" data-role="none" data-bind="value:stateSpecificFields.keepWithCrew, options: LOOKUPS.M1_SAME_CREW_FLG, optionsText: 'description', optionsValue: 'lookupValue', optionsCaption: 'Select One ...'"></select>

		

EXTLOOKUPS

		

A reference to all Extended lookups. Usage:

<select id="customerContactType" data-bind="options: EXTLOOKUPS['M1-CustomerContactType'], optionsText: 'description', optionsValue: 'lookupValue', value: completionInfo.customerContactDetails.customerContactType, optionsCaption: ''"data-role="none"></select>

		

pageTitle

		

This is a knockout observable array, so anytime value is changed it will automatically reflect on UI title. model.pageTitle(model.LABELS.M1_SHIFT_LBL)

		

pageButtons

		

This is a knockout observable array, all page buttons are stored here. Please reference the setPageButtons API under

Page View Model

 for more information.

		

pageMenuItems

		

This is a knockout observable array containing all menu items.

		

pageIndicators

		

This is a knockout observable array containing all page indicators.

		

API

		

Parameters

		

Description

		

showBackButton

		

Boolean(true|false)

		

Sets the visibility of back button on a page. Visible when set to true.

		

showPanicButton

		

Boolean(true|false)

		

Sets the visibility of Panic Alert button on a page. Visible when set to true.

		

showMapButton

		

Boolean(true|false)

		

Sets the visibility of Map button on a page. Visible when set to true.

		

loadPageFragments

		

		

This API when implemented by a page will be invoked before displaying the page content. This API must return an array of HTML file names. The content of each file will be appended to the currently active mobile page’s content..Use this API to create a UI from multiple HTML files, and reuse same HTMl file in multiple pages. Each HTML file should contain divs which can be navigated to by showSection API. All the Divs should have visibility of none, otherwise they will appear on UI as soon as a fragment (an html file) is loaded. Please reference the

UI Layout and Navigation

 section for more details.

		

load

		

args = {onSuccess:<callback>}

		

This API when implemented by a page will be invoked just after page HTML/JS files are loaded. Implementer must invoke args.onSuccess() on completion of the work of this method. It is assumed that something asynchronous can happen in this overridden method hence the onSuccess callback is provide to indicate the completion of that work. E.g. loading appropriate data from DB and binding the UI via KO.

		

setPageButtons

		

		

Applicable only for business object pages. This API when implemented by a business object page will be invoked during page load process to allow the page to customize the page specific buttons. Overridden method must set pageButtonList property to an array of buttons, each button object should match this structure: {buttonLabel : <string value>, buttonAction: <click handler function on viewModel >}. Default Oracle Utilities Mobile Library implementation of this method adds next valid states of current BO’s state to pageButtonList, and set the state name as handler function name, which means for every state the BO UI JS file (ViewModel) should have a corresponding method.

		

onInboundMessage

		

{inboundMsg } - inbound message received from server

		

This method will be invoked every time a new message is received via InboundWorker. Message received from server will be passed as an argument (inboundMsg.msgData). (each inbound message processing script decides whether or not to notify the current page)

		

navigateToBOPage

		

bo - Name of the BO

args = {inputArgs: {key:value}, inputData: {key: value}}

		

Loads the BO JS files, BO UI page/html and BO UI JS files in that order. Even if your HTML file for a business object has no JS included via script tag it will load the matching file (same name as bo) in same folder as the main html file. It also loads the pageFiles specified in config.js for a given pageID (div’s id)

		

navigateToPage

		

bo - Name of the BO

args = {inputArgs: {key:value}, inputData: {key: value}}

		

Same as navigateToBOPage except that this can be used to load any non business object page UI html files. So no BO JS files are loaded.

		

showSection

		

args = {id:<id of the div>, title: <string for title>, processAction: {icon:< data-icon attribute to be set>, handler:<method in current viewModel to be invoked>}}

		

This API doesn’t switch the currently loaded page however hides currently active section and displays the requested one. Left side icon will be a back button and right side icon will be set accordingly only if processAction is set. On click of right side icon handler will be invoked

		

goBack

		

		

Use this API to back to either previous section or to a previous page. Whatever was displayed before this UI.

		

showError

		

error - an instance of ouml.ClientError

sectionId - optional, div ID of a section that should be displayed to show this error on

		

Displays an inline error message in RED color at the top of either currently displayed section or displays the section with given ID first to show the error

		

setDefaultSection

		

sectionId- div id of a section that is displayed by default when page loads

		

This API must be implemented in order for showSection to work. Default section is the Div that is displayed by default when page is loaded.

		

showDefaultSection

		

		

Show the default section and cleans the page’s section history stack. So that using goBack on main page should not go back to previously displayed section of that page but previous page in history.

		

showProcedures

		

Key - BO primary key

onComplete - success callback

		

		

showCommonAttachments

		

		

		

showAttachments

		

		

		

dialNumber

		

		

		

getFormattedDate

		

date - date to be formatted

		

Converts a base date to device date and formats it to a user specific format. Useful for displaying business object data in the UI.

		

getFormattedTime

		

dateTime - datetime to be formatted

		

Converts a base datetime to device datetime and formats it to a user specific format. Useful for displaying business object data in the UI.

		

getFormattedDateTime

		

dateTime - datetime to be formatted

		

Converts a base datetime to device date time and formats it to a user specific format. Useful for displaying business object data in the UI.

		

setPageMenuItems

		

		

Implement and override this method to add page specific menu items. Oracle Utilities Mobile Library calls it at appropriate time to render the page menus. Please reference addMenuItem under

Page View Model

 for more details.

		

addMenuItem

		

menuItem - a menu item object

, ouml.MenuItem({index:<index of item>,title: <label>, action:<callback function on viewModel>, active: <true|false>});

		

setPageMenuItems method if overridden must add individual menu items using this API. A Menu item object should be passed to this method. Please reference the

Menu

 section for more details.

		

setAppMenuItems

		

an integer value

		

Returns an ouml.MenuItem object. This API helps your implementation to write a custom API for menus.

Buttons

The Page Buttons API automatically generates life cycle buttons for a BO User Interface. User can override this default behavior by overriding setPageButtons API of the Base View Model present in Oracle Utilities Mobile Library.

For automatically generation of Life Cycle buttons for a Bo UI, page specific model needs to extends ouml.BaseViewModel.

For generation of buttons for a Non BO UI developer needs to override setPageButtons API and either call addButton function of base view model or directly push button JSON into pagebUttons observable array.

JSON for Buttons

{ buttonLabel: "Button Label", buttonAction: function

}

 Menu API has been added as part of the Base View Model and will be available in child view model at different application layers if child view model extends base view model.

		

1.

		

setPageButton

Description Need to override in page specific view model to add page buttons.

Specified by setPageButton in ouml. BaseViewMode()

Parameters none

Returns none

Sample Uses cmModel.prototype.setPageButtons = function(){ var sample = {

buttonLabel: ‘Sample’,

buttonAction: this.sampleAction

};

 this.addButton(sample);

 }

		

2.

		

addButton (json)

Description Returns a ouml.MenuItem object. This API will help developer/Cm to write there custom API for menu

Specified by addButton in ouml. BaseViewMode()

Parameters json: plain json object

Returns none

Sample Uses Var button = {buttonLabel: ‘Sample’, buttonAction: this.sampleAction} this.addButton(button);

Page Level Buttons

To add page level Buttons for a non BO UI, override setPageButtons() API of ouml.BaseViewModel.

cmModel.prototype.setPageButtons = function(){

var sample = {

buttonLabel: ‘Sample’,

buttonAction: this.sampleAction

};

this.addButton(sample);

 }

OEBPS/Images/cover00171.jpeg
ORACLE"

Oracle Real-Time Scheduler Mobile
Application Implementation and
Development Guide

Release 2.2.1.0
E58444.01
January 2015

Copyrighs (¢ 2015 Oracle Corporation. Al Righs Reserved.

OEBPS/Text/part0007.xhtml

Inbound and Outbound Communication

Inbound and Outbound communication between ORS mobile and server applications is based on RESTFul services and JSON payload. In situations where device is offline at the time of making outbound HTTP request communication modules of ORS Mobile application ensure that delivery of the message when device is back online and communication with server is reestablished. To simplify debugging and implementation activities in a development environment, guaranteed delivery and asynchronous messaging can be turned on or off on the Settings page within the mobile application.

Please reference

Oracle Real-Time Scheduler APIs

 for more details on communication between mobile and server applications.

OEBPS/Text/part0006.xhtml

Deployment Models

The mobile application can be packaged and deployed in the format native to one of the supported runtime platforms. Alternately, it can be packaged as a web application and deployed to an application server to be accessed on the mobile device via a web browser.

Please note that certain device specific features are not available when the application is deployed as a web application and accessed via web browser.

The following table lists the features supported by application mode.

		

Feature

		

Compiled

		

Browser Based

		

GPS

		



		



		

Capture Picture

		



		

X

		

Capture Signature

		



		

X

		

Capture Sound

		

X

		

X

		

Barcode Scanning/Reading

		



		

X

		

Download Attachments from MDT

(All File Types)

		



		

X

		

Upload Attachment from MDT to Server

(Only Captured Picture and Signature)

		



		

X

		

Maps

		



		



OEBPS/Text/part0008.xhtml

Development Environment Setup

This section provides information needed to setup the development environment for the mobile application. Implementers can use this environment to add new features and test their code locally or on devices using the steps provided in this section.

Prior to setting up the development environment, you must have completed general server side configuration. Please reference the Oracle Real-Time Scheduler Server Configuration Guide for information.

OEBPS/Text/part0003.xhtml

Overview

This guide provides development and configuration details for the Oracle Real-Time Scheduler Mobile Application including Oracle Utilities Mobile Library, APIs, development environment setup, customization and extension methodology.

This section provides a general overview and information about the mobile application components and architecture.

OEBPS/Text/part0002.xhtml

Oracle Real-Time Scheduler Implementation and Development Guide, Release 2.2.1.0

E58444-01

Copyright © 2000, 2015 Oracle and/or its affiliates. All rights reserved.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

OEBPS/Text/part0005.xhtml

Oracle Utilities Mobile Library (OUML)

The Oracle Real-Time Schedule Mobile Application is based on the Oracle Utilities Mobile Library (OUML) optimized to work with Oracle Utilities Application Framework (OUAF) based services, configurations and metadata. The Oracle Utilities Mobile Library provides a foundation layer and APIs for application development including offline storage, encryption, communication, logging, configuration, UI rendering/navigation, customization, deployment and so on. The Oracle Utilities Mobile Library makes use of third party libraries that are either bundled with the application or listed as pre-requisites.

Please reference

Chapter 3: Oracle Utilities Mobile Library

 for more information on working with the Oracle Utilities Mobile Library.[image:]

OEBPS/Text/part0004.xhtml

Architecture

Oracle Real-Time Scheduler simplifies and optimizes the scheduling, dispatching, and tracking of mobile service crews and field activities.[image:]

The mobile application consists of the Oracle Utilities Mobile library and application layers responsible for specific business functionality. It uses HTML5 and JavaScript to implement business logic, render the user interface and interact with mobile device services. Web services facilitate communication between the mobile application and the application server.

OEBPS/Text/part0001.xhtml

		

[image: logobar.png]

		

Oracle Real-Time Scheduler Mobile Application Implementation and Development Guide

 Release 2.2.1.0

E58444-01

January 2015

OEBPS/Text/part0078.xhtml

Recipient Mail

Mail messages that are received by mobile application users.

Business Object: M1-RecipientMail

Business Object JavaScript

		

API

		

Short Description

		

getDTO

		

Returns the business object data mapped to offline columns.

		

save

		

Handles all the post processing plugin scripts called after each state

		

enterState

		

Change the state of BO. Depending on the state of the BO, one of the enterState methods below are invoked.For example enterStateSENT is invoked when bo state of Sent is entered

		

enterStateSENT

		

Handles the enter state Sent - invokes the appropriate enter plugin scripts and at the end calls the save method to invoke post-processing scripts

		

enterStateACKNOWLEDGED

		

Handles the enter state Acknowledged - invokes the appropriate enter plugin scripts and at the end calls the save method to invoke post-processing scripts

Business Object UI JavaScript

		

API

		

Short Description

		

setPageButtons

		

Overrides the base API that controls the Page Buttons of various states of the BO Lifecycle.

		

setPageMenuItems

		

Sets the Page Menu Items for a given BO page

		

load

		

HTML Pages

		

Html Page

		

Short Description

		

M1-RecipientMail.html

		

This page handles the display of Received mail. This UI contains action buttons to ‘Reply’, 'Delete' and ‘Acknowledge’ the mail. ‘Acknowledge’ button will appear only if the mail is marked for acknowledgement required.

		

mailInbox.html

		

This page creates UI sections for mail inbox showing list of all received and sent mails. This UI has two tabs - a) Received: this shows list of all messages received by user. b) Sent: this shows list of all messages sent by user. User may navigate to detail view of received of sent messages from this screen. The list in this screen also supports pagination.

		

mailComposePage.html

		

This page creates UI sections for drafting and sending a new mail. User may enter recipient user and group, subject, message and mention priority queue. This screen contains ‘Send Mail’ button which will send the mail to intended recipients.

		

mailReplyPage.html

		

This page creates UI sections for replying to a received mail. This page contains action button for ‘Send Mail’ which will send the mail in reply to the received mail. The field for ‘Send To’ is pre-populated with the senders ID, other fields are editable that user can alter before sending the reply.

Page Menu Items

		

•

		

Compose Mail

		

•

		

End Shift

OEBPS/Text/part0077.xhtml

Mail

Mail is defined as messages that can be sent to or sent from the crew from within the mobile application.

Business Object: M1-MainMail

Business Object JavaScript

		

API

		

Short Description

		

getDTO

		

Returns the BO data mapped to offline columns.

		

save

		

Handles all the post processing plugin scripts called after each state

		

enterState

		

Change the state of BO. Depending on the state of the BO, one of the enterState methods below are invoked.For example enterSateSENT is invoked when bo state of Sent is entered

		

enterStateSENT

		

Handles the enter state Sent - invokes the appropriate enter plugin scripts and at the end calls the save method to invoke post-processing scripts

		

enterStateERROR

		

Handles the enter state Error- invokes the appropriate enter plugin scripts and at the end calls the save method to invoke post-processing scripts

Business Object UI JavaScript

		

API

		

Short Description

		

setPageMenuItems

		

Sets the Page Menu Items for a given BO page

		

setPageButtons

		

Overrides the base API that controls the Page Buttons of various states of the BO Lifecycle.

		

load

		

HTML Pages

		

Html Page

		

Short Description

		

M1-MainMail.html

		

This page handles the display of all the Sent Mail information.

The page contains action button to ‘Resend’ the same mail. User may choose to alter subject, message and priority queue while resending the same message. User may resend to the same user or group as in the original mail.

		

mailInbox.html

		

This page creates UI sections for mail inbox showing list of all received and sent mails. This UI has two tabs - a) Received: this shows list of all messages received by user. b) Sent: this shows list of all messages sent by user. User may navigate to detail view of received of sent messages from this screen. The list in this screen also supports pagination.

This page also has a link to taskList.html in case user wants to switch to task list page.

		

mailComposePage.html

		

This page creates UI sections for drafting and sending a new mail. User may enter recipient user and group, subject, message and mention priority queue. This screen contains ‘Send Mail’ button which will send the mail to intended recipients.

Page Menu Items

		

•

		

Compose Mail

		

•

		

End Shift

OEBPS/Text/part0076.xhtml

Period of Unavailability Task

Period of unavailability tasks define a specific period where the crew is unavailable for shift work.

Business Object: M1-POUTask

Business Object JavaScript

		

API

		

Short Description

		

getDTO

		

Returns the business object data mapped to offline columns

		

save

		

Handles all the post processing plugin scripts called after each state

		

enterState

		

Change the state of BO. Depending on the state of the BO, one of the enterState methods below are invoked.For example enterStateCANCELED is invoked when bo state of Canceled is entered

		

enterStateENROUTE

		

Handles the enter state Enroute - invokes the appropriate enter plugin scripts and at the end calls the save method to invoke post-processing scripts

		

enterStateONSITE

		

Handles the enter state Start - invokes the appropriate enter plugin scripts and at the end calls the save method to invoke post-processing scripts

		

enterStateCANCELED

		

Handles the enter state Canceled- invokes the appropriate enter plugin scripts and at the end calls the save method to invoke post-processing scripts

		

enterStateCOMPLETED

		

Handles the enter state Completed - invokes the appropriate enter plugin scripts and at the end calls the save method to invoke post-processing scripts

		

enterStatePendingDispatch

		

Handles the enter state QD-DISPATCH- invokes the appropriate enter plugin scripts and at the end calls the save to invoke post-processing scripts method.

Business Object UI JavaScript

		

API

		

Short Description

		

setPageMenuItems

		

Sets the Page Menu Items for a given BO page

		

load

		

		

ENROUTE

		

Handles the Enroute button being clicked. Saves the old BO data before the state change and invokes the enterStateAPI of the BO JS passing in the input of state and action.

		

ONSITE

		

Handles the Start button being clicked. Saves the old BO data before the state change and invokes the enterStateAPI of the BO JS passing in the input of state and action.

		

COMPLETED

		

Handles the Complete button being clicked. Saves the old BO data before the state change and invokes the enterStateAPI of the BO JS passing in the input of state and action.

		

CANCELED

		

Handles the Cancel button being clicked. Saves the old BO data before the state change and invokes the enterStateAPI of the BO JS passing in the input of state and action.

		

showMap

		

This is the API triggered to showMap and is used to navigate to the appropriate map page passing in the boInstance data as input.

HTML Pages

		

Html Page

		

Short Description

		

M1-POUTask.html

		

This page handles the display of all the Period Of Unavailability information.

This html shows Location, Arrival Date Time, Start Date Time, Completion Date Time, Calculated Travel Time, Calculated Travel Distance and BO Status.

This includes showing the buttons associated with the lifecycle of the BO.

		

M1-OracleMap.html

		

This html contains section to show map canvas and map directions

Page Menu Items

		

•

		

Maps

OEBPS/Text/part0075.xhtml

Non Productive Tasks

Non productive tasks (NPTs) indicate a window of time as well as location where the crew must attend to some task unrelated to shift work.

Business Object: M1-NonPrdTask

Business Object JavaScript

		

API

		

Short Description

		

getDTO

		

Returns the business object data mapped to offline columns

		

save

		

Handles all the post processing plugin scripts called after each state

		

enterState

		

Change the state of BO. Depending on the state of the BO, one of the enterState methods below are invoked.For example enterStateCANCELED is invoked when bo state of Canceled is entered

		

enterStateENROUTE

		

Handles the enter state Enroute - invokes the appropriate enter plugin scripts and at the end calls the save method to invoke post-processing scripts

		

enterStateONSITE

		

Handles the enter state Start - invokes the appropriate enter plugin scripts and at the end calls the save method to invoke post-processing scripts

		

enterStateCANCELED

		

Handles the enter state Canceled- invokes the appropriate enter plugin scripts and at the end calls the save method to invoke post-processing scripts

		

enterStateCOMPLETED

		

Handles the enter state Completed - invokes the appropriate enter plugin scripts and at the end calls the save method to invoke post-processing scripts

		

enterStatePendingDispatch

		

Handles the enter state QD-DISPATCH- invokes the appropriate enter plugin scripts and at the end calls the save to invoke post-processing scripts method.

Business Object UI JavaScript

		

API

		

Short Description

		

setPageMenuItems

		

Sets the Page Menu Items for a given BO page

		

load

		

		

ENROUTE

		

Handles the Enroute button being clicked. Saves the old BO data before the state change and invokes the enterStateAPI of the BO JS passing in the input of state and action.

		

ONSITE

		

Handles the Start button being clicked. Saves the old BO data before the state change and invokes the enterStateAPI of the BO JS passing in the input of state and action.

		

COMPLETED

		

Handles the Complete button being clicked. Saves the old BO data before the state change and invokes the enterStateAPI of the BO JS passing in the input of state and action.

		

CANCELED

		

Handles the Cancel button being clicked. Saves the old BO data before the state change and invokes the enterStateAPI of the BO JS passing in the input of state and action.

		

showMap

		

This is the API triggered to showMap and is used to navigate to the appropriate map page passing in the boInstance data as input.

HTML Pages

		

Html Page

		

Short Description

		

M1-NonPrdTask.html

		

This page handles the display of Non Productive Task information.

This html shows Location, Arrival Date Time, Break Duration and BO Status.

This includes showing the buttons associated with the lifecycle of the BO.

		

M1-OracleMap.html

		

This html contains section to show map canvas and map directions

Page Menu Items

		

•

		

Maps

OEBPS/Text/part0074.xhtml

Break Task

Break tasks provide information about tasks designated for the crew taking a break.

Business Object: M1-BreakTask

Business Object JavaScript

		

API

		

Short Description

		

getDTO

		

Returns the business object data mapped to offline columns.

		

Save

		

Handles all the post processing plugin scripts called after each state

		

enterState

		

Change the state of BO. Depending on the state of the BO, one of the enterState methods below are invoked.For example enterStateCANCELED is invoked when bo state of Canceled is entered

		

enterStateSTARTED

		

Handles the enter state Started - invokes the appropriate enter plugin scripts and at the end calls the save method to invoke post-processing scripts

		

enterStateCANCELED

		

Handles the enter state Canceled- invokes the appropriate enter plugin scripts and at the end calls the save method to invoke post-processing scripts

		

enterStateCOMPLETED

		

Handles the enter state Completed - invokes the appropriate enter plugin scripts and at the end calls the save method to invoke post-processing scripts

		

enterStatePendingDispatch

		

Handles the enter state QD-DISPATCH- invokes the appropriate enter plugin scripts and at the end calls the save to invoke post-processing scripts method.

Business Object UI JavaScript

		

API

		

Short Description

		

setPageMenuItems

		

Sets the Page Menu Items for a given BO page.

		

load

		

		

STARTED

		

Handles the Start button being clicked. Saves the old BO data before the state change and invokes the enterStateAPI of the BO JS passing in the input of state and action.

		

COMPLETED

		

Handles the Complete button being clicked. Saves the old BO data before the state change and invokes the enterStateAPI of the BO JS passing in the input of state and action.

		

CANCELED

		

Handles the Cancel button being clicked. Saves the old BO data before the state change and invokes the enterStateAPI of the BO JS passing in the input of state and action.

HTML Pages

		

Html Page

		

Short Description

		

M1-BreakTask.html

		

This page handles the display of Break Task information.

This html shows Arrival Date Time, Break Duration and BO Status.

This includes showing the buttons associated with the lifecycle of the BO.

OEBPS/Text/part0073.xhtml

Depot Task Assignments

Business Object: M1-DepotTaskAssignment

Business Object Java Script

		

API

		

Short Description

		

getDTO

		

Returns the business object data mapped to offline columns.

		

Save

		

Handles all the post processing plugin scripts called after each state

		

enterState

		

Change the state of BO. Depending on the state of the BO, one of the enterState methods below are invoked.For example enterSateCOMPLETE is invoked when bo state of Complete is entered

		

enterStatePENDING

		

Handles the enter state Pending - invokes the appropriate enter plugin scripts and at the end calls the save method to invoke post-processing scripts

		

enterStateRETURNED

		

Handles the enter state Returned- invokes the appropriate enter plugin scripts and at the end calls the save method to invoke post-processing scripts

		

enterStateCOMPLETE

		

Handles the enter state Complete - invokes the appropriate enter plugin scripts and at the end calls the save method to invoke post-processing scripts

		

enterStatePendingDispatch

		

Handles the enter state Pending Dispatch - invokes the appropriate enter plugin scripts and at the end calls the save to invoke post-processing scripts method.

Business Object UI JavaScript

		

API

		

Short Description

		

setPageMenuItems

		

Sets the Page Menu Items for a given BO page

		

load

		

		

getStatusReasons

		

Get the status reasons available for the BO

		

getTaskTypeDesc

		

Gets the task type description of Depot Related Assignment and appends label "AT DEPOT" to it

		

showLoadingAssignment

		

Handles the click of a specific item from a list of items for a given loading assignment. This method loads "itemDetailsSection" section to show the item details.

		

saveCompl

		

This function is invoked on save of the Item details section. This function updates the load status,decline status, decline reason and comments to the database through the updateLoadStatus function

		

updateLoadStatus

		

This function updates the load status,decline status, decline reason and comments to the database

		

selectAllItems

		

This function is called on "Mark All as Loaded" menu item. This updates the load status of all unloaded items. Declined items are not modified.

		

getTaskList

		

This function is called on "LOADED" and "NOT LOADED" to load items belonging to that particular tab.

		

showActivities

		

This function is called on "ALL" tab

		

saveStatusReason

		

This function is called when saving Status Reason

		

PENDING

		

Resets the status Reason. Invokes the BO's enterState method with "PENDING" status

		

RETURNED

		

		

COMPLETE

		

Checks if all the items are loaded. Partial loading is not supported. If not loaded, then a message is shown. If all the items are loaded then it invokes the BO's enterState method with "COMPLETE" status. On success control returns back to Depot Task Items screen.

		

declineActivity

		

This function is called when "RETURNED" button is clicked from the screen or "Decline Activity" menu item is selected. This function calls the RETURNED method.

		

completeActivity

		

This function is called when "COMPLETE" button is clicked from the screen or "Complete Activity" menu item is selected. This function calls the COMPLETE method

		

scanAnyItem

		

Handles the Scan Any button. This function in turn invokes ouml.Capabilities.executeCapability('M1CAPBARCODE') passing in the success method to process the barcode returned. The success method iterates over the list of items , loads the detail screen of the item whose barcode is matched and marks the load status of item found as loaded.

		

scanNext

		

On successful match of the item found when scanAnyItem method was invoked, if there are any unloaded items, then "Scan Next" button is displayed on the screen to scan any unloaded items. On clicking the button, scanNext function is invoked, which in turn invokes scanAnyItem.

		

scanItemInDetail

		

This API is used to handle the scanning of the selected item in the detail screen. The API is invoked when the Scan Button is clicked from the Item Details page. If the barcode returned matches the barcode of the selected item, the item's load status is set to loaded.

		

scanItemInAnchor

		

This API is used to handle the scanning of a particular item. The API is invoked when the scan icon next to a item is clicked on the item list screen. If the barcode returned matches the barcode of the selected item, the item's load status is set to loaded.

		

showMoreItems

		

By default the number of items displayed in the Item Information section is restricted to the page size configuration parameter. Handles showing of additional items if present when Show More button is clicked

HTML Pages

		

Html Page

		

Short Description

		

M1-DepotTaslAssignment.html

		

This page handles the display of all the Depot Task Assignment information once an activity is clicked on from the Depot Task.

This page has UI sections to display Item List and Item Details, Decline Section and Scan Section.

When displaying the Item List, the user can choose between showing "All", "Loaded" and "Not Loaded" tabs.

This also includes showing the buttons associated with the lifecycle of the BO.

Page Menu Items

		

Mark All as Loaded

		

Appears only after assignment status is Pending.

		

Scan Any

		

Appears only if it is a device and bar coding capability is enabled and there are items in the assignment with a barcode.

		

Complete Activity

		

Appears only after assignment status is Pending

		

Decline Activity

		

Appears only after assignment status is Pending

OEBPS/Text/part0072.xhtml

Depot Task Items

		

•

		

Business Object: M1-DepotTaskItems

		

•

		

Parent Business Object: M1-DepotTask

Parent Business Object JavaScript

		

API

		

Short Description

		

enterStateCOMPLETED

		

Handles the enter state Completed - invokes the appropriate enter plugin scripts and at the end calls the save method to invoke post-processing scripts. Override this state transition from parent BO as there is a need to execute additional plugin.

Business Object UI JavaScript

		

API

		

Short Description

		

load

		

		

getTaskList

		

This API is used to populate the task list (Depot Related Assignments) within the depot task. Depending on the input tab selected, it shows the "All" (default),"Loaded" and "Not Loaded" tasks.

		

getMoreTaskList

		

By default, only specific number of tasks(configurable) in the task list are shown. If there are more than the configured number of tasks then the "Show More" button is shown and Handles it.

		

setPageMenuItems

		

Sets the Page Menu Items for a given BO page

		

ENROUTE

		

Handles the Enroute button being clicked. Saves the old BO data before the state change and invokes the enterStateAPI of the BO JS passing in the input of state and action

		

ARRIVED

		

Handles the Arrive button being clicked. Saves the old BO data before the state change and invokes the enterStateAPI of the BO JS passing in the input of state and action

		

ONSITE

		

Handles the Start button being clicked. Saves the old BO data before the state change and invokes the enterStateAPI of the BO JS passing in the input of state and action

		

CANCELED

		

Handles the Cancel button being clicked. Saves the old BO data before the state change and invokes the enterStateAPI of the BO JS passing in the input of state and action

		

COMPLETED

		

Handles the Complete button being clicked. Saves the old BO data before the state change and invokes the enterStateAPI of the BO JS passing in the input of state and action

		

showMap

		

This is the API triggered to showMap and is used to navigate to the appropriate map page passing in the boInstance data as input.

HTML Pages

		

Html Page

		

Short Description

		

M1-DepotTaskItems.html

		

This page handles the display of information associated with the depot task items such as Depot Information, Scheduling Information, Activities for the given Depot including Tabs to display "All", "Loaded", "Not Loaded" activities. The "Show More" button is shown to display more than the pre-configured number of activities if they exist for a given depot task. The Status Reason section is shown when status of Arrive is chosen. This page also includes showing the buttons associated with the lifecycle of the BO.

Upon completion/return of Depot Task, user is navigated to the taskList.html page.

		

M1-OracleMap.html

		

This html contains section to show map canvas and map directions

Page Menu Items

		

•

		

Attachments - Only on Device

		

•

		

Procedures

OEBPS/Text/part0071.xhtml

Depot Task

Depot tasks represent a scheduled visit to a depot, with a task duration for loading or off-loading the goods.

Note: A UI HTML Pages is not supported for M1-DepotTask. The below mentioned Business Object JavaScript and Business Object UI JavaScript are specified as they may be inherited/used by child BO M1-DepotTaskItems.

Business Object: : M1-DepotTask

Business Object JavaScript

		

API

		

Short Description

		

getDTO

		

Returns the business object data mapped to offline columns.

		

save

		

Handles all the post processing plugin scripts called after each state

		

enterState

		

Change the state of BO. Depending on the state of the BO, one of the enterState methods below are invoked.For example enterSateENROUTE is invoked when bo state of Enroute is entered

		

enterStateENROUTE

		

Handles the enter state Enroute - invokes the appropriate enter plugin scripts and at the end calls the save method to invoke post-processing scripts

		

enterStateARRIVED

		

Handles the enter state Arrived -invokes the appropriate enter plugin scripts and at the end calls the save method to invoke post-processing scripts

		

enterStateONSITE

		

Handles the enter state Start/On Site - invokes the appropriate enter plugin scripts and at the end calls the save method to invoke post-processing scripts

		

enterStateCANCELED

		

Handles the enter state Canceled- invokes the appropriate enter plugin scripts and at the end calls the save method to invoke post-processing scripts

		

enterStateCOMPLETED

		

Handles the enter state Completed - invokes the appropriate enter plugin scripts and at the end calls the save method to invoke post-processing scripts

		

enterStatePendingDispatch

		

Handles the enter state Pending Dispatch- invokes the appropriate enter plugin scripts and at the end calls the save to invoke post-processing scripts method.

Business Object UI JavaScript

		

API

		

Short Description

		

load

		

		

enterState

		

Triggered by change of BO State on UI. It invokes the enterStateAPI of the BO JS passing in the input of state and action.

OEBPS/Text/part0070.xhtml

Depot Related Assignment

Depot related assignments provide a copy of an activity created by the system to track the assigned crew's progress in accomplishing work specifically related to picking up and dropping off goods.

		

•

		

Business Object: M1-DepotRelatedAssignment

		

•

		

Parent Business Object: M1-Assignment

Business Object JavaScript

		

API

		

Short Description

		

getDTO

		

Returns the business object data mapped to offline columns.

Business Object UI JavaScript

		

API

		

Short Description

		

setPageMenuItems

		

Sets the Page Menu Items for a given BO page

		

load

		

		

showItemAssignment

		

Handles the click of a specific item from a list of items for a given assignment. If the item is a package item then it shows the lists of items under it. If the item is a single item, then it shows the item details.

		

showPackageItemAssignment

		

Handles the click of a specific item from a list of items within a given package. When the item is clicked it shows the item details.

		

showItems

		

Handles the population of all items that are available for a given assignment

		

getItemsList

		

This API takes the input of "DELIVERED" or "NOTDELIVERED" and populates the tab of Delivered /Not Delivered items for a given assignment

		

showPackageItems

		

Handles the population of all items that are available for a given package item within the list of items in an assignment

		

getPackageItemsList

		

This API takes the input of "DELIVERED" or "NOTDELIVERED" and populates the tab of Delivered /Not Delivered items for a given package item within the list of items in an assignment

		

scanAnyItem

		

This API is used to handle the Scan Any feature available on the Item list page as well as from the page menu. The Scan Any button/menu item only shows up if there are any items within the item list with a barcode and it is a device and the device has the scanning capability.

		

scanNext

		

Handles the Scan Next button once the first item has been scanned. This feature is only available when there are more items in the item list with a barcode and it is a device and the device has the scanning capability.

		

scanItemDetail

		

This API is used to handle the scanning of item once a specific item has been selected. The API is invoked when the Scan Button is clicked from the Item Details page. The Scan button shows up only if the item has a barcode and it is a device and the device has the scanning capability.

		

scanPackageItemDetail

		

This API is used to handle the scanning of item once a specific item has been selected within a package. The API is invoked when the Scan Button is clicked from the Item Details page within a package item list. The Scan button shows up only if the item has a barcode and it is a device and the device has the scanning capability.

		

scanItemInAnchor

		

This API is used to handle the scanning of item once a specific item has been selected. The API is invoked when the scan icon is clicked on a particular item on the item list page. The icon shows up only if the item has a barcode and it is a device and the device has the scanning capability.

		

scanPackageItemInAnchor

		

This API is used to handle the scanning of item once a specific item within a package has been selected. The API is invoked when the scan icon is clicked on a particular item on the item list page within the package. The icon shows up only if the item has a barcode and it is a device and the device has the scanning capability.

		

saveCustAcceptance

		

This API is used to save the Customer Acceptance when the check icon is clicked. This includes the receipt option and signature acceptance.

		

saveItemCompl

		

This API is used to save the Item Completion Details once the save/check icon is clicked.

		

savePackageItemCompl

		

This API is used to save item Completion Details within a Package once the save/check icon is clicked.

		

markAllItems

		

This API takes "DELIVERED" or "DECLINED" as possible inputs and marks all the items that have not yet been delivered/declined with the input.

		

updateDeliveryStatus

		

Handles the checkbox of each item in the item list page, if checkbox is checked then the item is marked as delivered.

		

updatePackageDeliveryStatus

		

Handles the checkbox of each package item in the package item list page, if checkbox is checked then the item in the package item list is marked as delivered.

		

showItemLevelAttachments

		

Handles the attachments at item level. It passes in the task id and item id as inputs to the showAttachments API

		

ENROUTE

		

Overrides the parent M1-Assignment BO UI JS. It invokes the parent BO’s ENROUTE BO UI JS to change state and then show/hide item/signature specific menu items.

		

ARRIVED

		

Overrides the parent M1-Assignment BO UI JS. It invokes the parent BO’s ENROUTE BO UI JS to change state and then show/hide item/signature specific menu items.

		

ONSITE

		

Overrides the parent M1-Assignment BO UI JS. It invokes the parent BO’s ENROUTE BO UI JS to change state and then show/hide item/signature specific menu items.

		

POSTPONED

		

Overrides the parent M1-Assignment BO UI JS. It invokes the parent BO’s ENROUTE BO UI JS to change state and then show/hide item/signature specific menu items.

		

SUSPENDED

		

Overrides the parent M1-Assignment BO UI JS. It invokes the parent BO’s ENROUTE BO UI JS to change state and then show/hide item/signature specific menu items.

		

COMPLETED

		

Overrides the parent M1-Assignment BO UI JS. It does item specific/customer acceptance validations and then invokes the parent BO’s COMPLETED BO UI JS to change.

		

showMoreItems

		

By default the number of items displayed in the Item Information section is restricted to the page size configuration parameter. Handles showing of additional items if present when Show More is clicked.

		

showMap

		

This is the API triggered to showMap and is used to navigate to the appropriate map page passing in the boInstance data as input.

HTML Pages

		

Html Page

		

Short Description

		

M1-DepotRelatedAssignment.html

		

This page handles the display of all the Depot Related Assignment information. Since the parent BO of M1-DepotRelatedAssignment is M1-Assignment, it inherits the html pages in M1-Assignment including commonAssignment.html, commonProcedures.html, commonAttachments.html.

This html shows Activity Information, Customer Information, Scheduling Information, Item Information, Common Completion Information, and Customer Acceptance Information.

In addition it has UI sections to display Item List, Item Details, Package Items list and Package Item details, Customer Acceptance and Scan Section.

When displaying the Item List or Package Item List, the user can choose between showing "All", "Delivered" and "Not Delivered" tabs.

Upon completion of Assignment, user is navigated to the taskList.html page.

		

M1-OracleMap.html

		

This html contains section to show map canvas and map directions.

Page Menu Items

		

•

		

Attachments - Only on Device

		

•

		

Procedures

		

•

		

Maps

		

•

		

Customer Acceptance - Only on Device

		

•

		

Deliver All Items - Appears only after assignment status is OnSite

		

•

		

Deliver All Items - Appears only after assignment status is OnSite

		

•

		

Scan Any - Appears only if it is a device and bar coding capability is enabled and there are items in the assignment with a barcode.

OEBPS/Text/part0069.xhtml

Assignments

An assignment is a copy of an activity created by the system to track the assigned crew's progress in accomplishing the work.

Business Object: M1-Assignment

Business Object JavaScript

		

API

		

Short Description

		

getDTO

		

Returns the business object data mapped to offline columns.

		

Save

		

Handles all the post processing plugin scripts called after each state

		

enterState

		

Changes the state of BO. Depending on the state of the BO, one of the enterState methods below are invoked.For example enterSateENROUTE is invoked when bo state of Enroute is entered

		

enterStateENROUTE

		

Handles the enter state Enroute - invokes the appropriate enter plugin scripts and at the end calls the save method to invoke post-processing scripts

		

enterStateARRIVED

		

Handles the enter state Arrived -invokes the appropriate enter plugin scripts and at the end calls the save method to invoke post-processing scripts

		

enterStateBREAK

		

Handles the enter state Break - invokes the appropriate enter plugin scripts and at the end calls the save method to invoke post-processing scripts

		

enterStateONSITE

		

Handles the enter state Start/On Site - invokes the appropriate enter plugin scripts and at the end calls the save method to invoke post-processing scripts

		

enterStateRETURNED

		

Handles the enter state Returned- invokes the appropriate enter plugin scripts and at the end calls the save method to invoke post-processing scripts

		

enterStatePOSTPONED

		

Handles the enter state Postponed - invokes the appropriate enter plugin scripts and at the end calls the save method to invoke post-processing scripts

		

enterStateSUSPENDED

		

Handles the enter state Suspended - invokes the appropriate enter plugin scripts and at the end calls the save method to invoke post-processing scripts

		

enterStateCOMPLETED

		

Handles the enter state Completed - invokes the appropriate enter plugin scripts and at the end calls the save method to invoke post-processing scripts

		

enterStatePendingDispatch

		

Handles the enter state Pending Dispatch- invokes the appropriate enter plugin scripts and at the end calls the save to invoke post-processing scripts method.

Business Object UI JavaScript

		

API

		

Short Description

		

setPageButtons

		

Overrides the base API that controls the Page Buttons of various states of the BO Lifecycle.

		

setPageMenuItems

		

Sets the Page Menu Items for a given BO page

		

loadPageFragments

		

Loads a list of fragments that should be added on the UI of a given page in a specific sequence: commonAssignment.html, commonProcedures.html,commonAttachments.html

		

load

		

		

enterState

		

Triggered by change of BO State on UI. Depending on the BO State clicked, one of the methods below are invoked.For example ENROUTE is invoked when bo state of Enroute is clicked on.

		

ENROUTE

		

Handles the Enroute button being clicked. It is invoked by the enterState of BO UI JS method above. Appropriate validations of various UI fields if required are performed and at the end of it invoke the enterStateAPI of the BO JS passing in the input of state and action.

		

ARRIVED

		

Handles the Arrived button being clicked. It is invoked by the enterState of BO UI JS method above. Appropriate validations of various UI fields if required are performed and at the end of it invoke the enterStateAPI of the BO JS passing in the input of state and action.

		

ONSITE

		

Handles the Start button being clicked. It is invoked by the enterState of BO UI JS method above. Appropriate validations of various UI fields if required are performed and at the end of it invoke the enterStateAPI of the BO JS passing in the input of state and action.

		

RETURNED

		

Handles the Decline button being clicked. It is invoked by the enterState of BO UI JS method above. Appropriate validations of various UI fields if required are performed and at the end of it invoke the enterStateAPI of the BO JS passing in the input of state and action.

		

POSTPONED

		

Handles the Decline button being clicked. It is invoked by the enterState of BO UI JS method above. Appropriate validations of various UI fields if required are performed and at the end of it invoke the enterStateAPI of the BO JS passing in the input of state and action.

		

SUSPENDED

		

Handles the Suspend button being clicked. It is invoked by the enterState of BO UI JS method above. Appropriate validations of various UI fields if required are performed and at the end of it invoke the enterStateAPI of the BO JS passing in the input of state and action.

		

COMPLETED

		

Handles the Complete button being clicked. It is invoked by the enterState of BO UI JS method above. Appropriate validations of various UI fields if required are performed and at the end of it invoke the enterStateAPI of the BO JS passing in the input of state and action.

		

SENDNOW

		

Handles the Send Now button being clicked. It is invoked by the enterState of BO UI JS method above. Appropriate validations of various UI fields if required are performed and at the end of it invoke the enterStateAPI of the BO JS passing in the input of state and action.

		

getStatusReasons

		

Get the status reasons available for the BO

		

showAddRemarkTypeSection

		

API triggered when user shows selected remark types

		

setSelectedRemarkType

		

API triggered when user needs to add selected remark types

		

deleteSelectedRemarkType

		

API triggered when user needs to delete selected remark types

		

saveStateFields

		

This API is triggered when user tries to save the UI fields populated for the RETURNED, ARRIVED, SUSPENDED, POSTPONED states

		

saveCompCompl

		

This API is triggered when user tries to save the UI fields populated for Common Completion Information section

		

showMap

		

This is the API triggered to showMap and is used to navigate to the appropriate map page passing in the boInstance data as input.

HTML Pages

		

Html Page

		

Short Description

		

M1-Assignment.html

		

This page handles the display of all the Assignment information. This includes showing the buttons associated with the lifecycle of the BO.

Upon completion of Assignment, user is navigated to the taskList.html page.

		

commonAssignment.html

		

This html contains UI sections to display the Account Information, Customer Information, Scheduling Information and Common Completion Information, section to handle specific states such as declined, Postponed, Suspended and Arrived.

		

commonProcedures.html

		

This html contains 2 UI sections to display: procedure list and procedure details once a particular procedure is selected from the list.

		

commonAttachments.html

		

This html contains UI sections to show attachments list, common attachments list, Gallery to open picture library and camera to be able t take pictures.

		

M1-OracleMap.html

		

This html contains section to show map canvas and map directions

Page Menu Items

		

•

		

Attachments - Only on Device

		

•

		

Procedures

		

•

		

Maps

OEBPS/Text/part0068.xhtml

Panic Alert

Panic Alerts are generated when a crew in distress presses the Panic button on their mobile device.

UI JavaScript

		

API

		

Short Description

		

setPageButtons

		

Overrides the base API that controls the Page Buttons. It shows the Send and Back buttons.

		

load

		

		

sendPanicAlert

		

Handles the sending of the Panic Alert to the server.

		

showMap

		

This is the API triggered to showMap and is used to navigate to the appropriate map page passing in the boInstance data as input.

HTML Pages

		

Html Page

		

Short Description

		

panicAlert.html

		

This page handles the display of Panic Alert indicator.

It shows the countdown in seconds indicating when the Request for Help Will be Sent.

If the countdown reaches 0, the panic alert is automatically sent to server.

This page also shows the Send button and Back button.

The Send button is used to force Send the panic alert to Server at any time.

OEBPS/Text/part0067.xhtml

Task List

The task list provides a listing of the crew’s assigned work for the shift.

UI JavaScript

		

API

		

Short Description

		

setPageMenuItems

		

Sets the Page Menu Items for a given BO page

		

load

		

		

getTaskList

		

Fetch tasks from the database and update the model with the list of tasks. Depending on the tab selected, it displays either the Open tasks or the Completed tasks.

		

getMoreTaskList

		

Handles the "Show More" button being clicked and fetches the next tasks set from the database and update the model. Again depending on the tab selected, it displays either the Open tasks or the Completed tasks.

		

endShift

		

Handles the End of Shift being invoked and navigates to the End of Shift Page.

		

onInboundMessage

		

This API is used to refresh the model once any task is received from the server

		

showMap

		

This is the API triggered to showMap and is used to navigate to the appropriate map page passing in the boInstance data as input.

		

getDTO

		

Returns the business object data mapped to offline columns. This is overwritten.

		

setStatus

		

Change the status of the business object. This is overwritten.

HTML Pages

		

Html Page

		

Short Description

		

taskList.html

		

This page handles the display of all the tasks available for a given Crew Shift. It displays the tasks in either the "Open" tab or the "Completed" tab depending on the State of the task.

For each task in the task list, it shows the task type Description, location associated with the task (if exists), state of the task and the Arrival date time for an Open Task and BO Status Date Time for a Completed task.

It also displays an icon, if there are attachments associated with a task.

The page is setup to show a pre-configured number of tasks by default. Clicking on "Show More" triggers the next set of tasks to be retrieved.

		

endOfShift.html

		

When User requests end of shift, this page has UI sections to display Vehicle information and enter the start and end odometer.

It displays information showing that the activities that have not been marked to keep for a future shift will be rescheduled to any crew.

It also shows the Complete button to get confirmation from user to complete the shift.

		

mailInbox.html

		

This page creates UI sections for mail inbox showing list of all received and sent mails. This UI has two tabs - a) Received: this shows list of all messages received by user. b) Sent: this shows list of all messages sent by user. User may navigate to detail view of received of sent messages from this screen. The list in this screen also supports pagination.

		

M1-OracleMap.html

		

This html contains section to show map canvas and map directions

		

commonAttachments.html

		

This page handles attachments and shows all the information associated with attachments.

This html contains UI sections to show attachments list, common attachments list, gallery to open picture library and camera to be able to take pictures.

OEBPS/Text/part0066.xhtml

Images

Images specific to M1 are located in the m1/images and m1/themes/images folder.

OEBPS/Text/part0065.xhtml

Plugins

Appropriate "enter" or "post processing" scripts are called on save and enter state methods of business objects.

Plugin scripts are located in the m1/scripts/plugins/plugins.js file.

 Please reference Oracle Utilities Application Framework documentation and the Oracle Real-Time Scheduler Configuration Guide for more information on business object lifecycles and lifecycle plugins.

OEBPS/Text/part0064.xhtml

Inbound Scripts

Once a message is downloaded and saved to intermediate table it is handed over to inbound processing script. Below is a list of processing scripts to handle various inbound requests.

		

Script Name

		

Short Description

		

M1-MCPDpAsgn

		

Handles the inbound requests of assignment data coming in.

		

M1-MCPDpTask

		

Handles inbound requests for POU, Break, Depot Task, Depot Task Items, Non Productive Task

		

M1-MCPDspShf

		

Handles inbound requests for updates made to the shift once the shift has started.

		

M1-MCPMalUpd

		

Handles inbound requests for mail updates from the server.

		

M1-MCPREntUp

		

Handles inbound requests for updates to Related Entities including attachments.

		

M1-MDTSetCLL

		

Handles requests to dynamically increase log level on the client side.

		

M1-MDTSndLog

		

Handles requests from server to send log files of mobile device to a known location on server.

		

M1-MCPRclAsg

		

Handles M1-Assignment recall.

OEBPS/Text/part0063.xhtml

Oracle Real-Time Scheduler APIs

The following sections describes APIs used to access various objects and modules of Oracle Real-Time Scheduler Mobile Application (M1).

OEBPS/Text/part0062.xhtml

Error Handling

 All error messages that gets displayed to user on UI must be created as Message object on server side and downloaded to client as deployment. Any error situation that occurs on client has to create an instance of ouml.ClientError. Please reference the API description below for more information.

All onFailure/error callbacks should return an instance of ouml.ClientError. The Oracle Utilities Mobile Library includes API to display an error on UI in two forms as described in API description below.

		

API

		

Parameters

		

Description

		

new ouml.ClientError

		

args = {msgCat:<message category>, msgId:<message id>,params:<parameters to be set on message>}

		

Create a new instance by passing the message category, id and parameters

		

ouml.ViewModel.showError

		

error - an instance of ouml.ClientError

sectionId - optional, div ID of a section that should be displayed to show this error on

		

Displays an inline error message in RED color at the top of either currently displayed section or displays the section with given ID first to show the error

		

ouml.Notification.showAlert

		

ouml.ClientError - an instance of this class

		

Displays the closeable error on a popup at the top of current UI page.

OEBPS/Text/part0061.xhtml

Logging

The Oracle Utilities Mobile Library Logging module exposes the APIs required by your implementation to facilitate system logging. Any application module that requires logging uses this module with the single log instance maintained for the complete application. Logs get the appropriate instance from ouml.JSLogger and use the exposed API.

For example to log an info message your implementation would use:

ouml.JSLogger.info('Your message ');

Extra public APIs exposed by this object (not part of the Oracle Utilities Mobile Library or Parent business object).

		

•

		

mdtdebug(message): The module that needs to log a framework

level

debug message calls this method. Passes the log message arguments to the methods.

		

•

		

debug(message) : The module that needs to log a debug message calls this method. Passes the log message arguments to the methods.

		

•

		

info(message) : The module that needs to log an info message calls this method. Passes the log message arguments to the methods.

		

•

		

warn(message): The module that needs to log a warn message calls this method. Passes the log message arguments to the methods.

		

•

		

error(message) : The module that needs to log an error message calls this method. Passes the log message arguments to the methods.

		

•

		

perf(message) : The module that needs to log a perf message calls this method. Passes the log message arguments to the methods

		

•

		

fatal(message) : The module that needs to log a fatal message calls this method. Passes the log message arguments to the methods

		

•

		

setLevel(level) : These methods set the logging level of the logger instance that the application has acquired initially. The level that is to be set should be within the set of levels supported by Logger. Else default logging level will be used

		

•

		

syncLogFile() : This method synchronizes the log files to the server.

OEBPS/Text/part0060.xhtml

UI Theme

The UI Theme defines the color scheme used in the mobile application. Please reference

Chapter 5: Customization and Extension Methodology

 for information on working with UI Themes and the JQuery Mobile Theme Editor.

OEBPS/Text/part0059.xhtml

Procedures

Procedures can be associated with shifts or activities. Procedures are checks which need to be performed during the shift start and during activity completion.

API (module - ouml.BaseViewModel)

		

API

		

Parameters

		

Description

		

showProcedures

		

Pk value associated with theprocedures, callback function

		

Fetches and renders a list of procedures in the procedure section. The pk value key is used to query and load the procedures from the Database.

		

showProcedureDetails

		

Procedure ID, callback function

		

On click of an item in the procedure list this function is invoked. It queries the procedure based on the procedure id passed and displays the details.

		

onProcedureSave

		

Procedure ID

		

When the procedure is saved this function is invoked. This function validates the procedure based on the criteria set on the server in the procedure type and moves it to the passed, failed or overridden procedure state.

		

onProcedureCorrect

		

Procedure ID

		

Invoked when the user corrects and saves the procedure data.

		

onProcedureAccept

		

Procedure ID

		

This updates the database with the updated procedure details. The procedure details are also sent to the server for update.

OEBPS/Text/part0018.xhtml

Android Deployment

This section provides information on deploying the native application to an Android emulator or device. Please reference the Apache Cordova documentation section titled "Platform Guides" under "Android Platform Guide" for more information.

Deployment from a Command Line

Using Cordova CLI commands the native application (APK) can be deployed to a running Android emulator or device

		

•

		

Use the Emulate command to deploy the native application to an emulator.E.g. cordova emulate androidThe application will get deployed on a configured Android emulator where it can be tested.

		

•

		

Use the Run command to deploy the native application to a device.E.g. cordova run android

		

•

		

Make sure USB debugging is enabled on the device.

		

•

		

Use a mini USB cable to plug the device to your system.

Deployment using an APK File

Using Cordova commands, the native application (APK) can be created and deployed to an Android device

Use the Build command to compile and build the native applications.E.g. cordova build android

		

•

		

The application (APK) file is created under the in the Cordova project under the folder <Cordova project folder>\platforms\android\ant-build

		

•

		

The file created will be <application_name>-debug.apk and can be installed on Android devices for testing.

		

•

		

To install the APK file on Android device make sure the option to install apps from Unknown sources is checked in your device.

		

•

		

Browse to the APK location using File Manager and open the APK which prompt option to install the APK.The application will get installed on the device and can be tested by running it on the device.

OEBPS/Text/part0017.xhtml

iOS Deployment

This section provides information on deploying the native application to an iOS emulator or device. Please reference the Apache Cordova documentation section titled "Platform Guides" under "iOS Platform Guide" for more information.

Deployment from a Command Line

Using Cordova CLI commands the native application (IPA) can be deployed to a iOS emulator or device.

		

 1.

		

Use the Build command to create the iOS Xcode project. E.g. cordova build iosThe Xcode project is created under <Cordova_Project>/projects/ios directory as <Application_name>.xcodeproj

		

 2.

		

Open the xcodeproj file.The Xcode IDE file opens.

		

 3.

		

Click Run to deploy and run the application to an iOS simulator or device. The application will get deployed on a configured iOS emulator where the application can be tested. An iOS developer account is required to run to deploy the application on an iOS device.

Deployment Using an IPA File

Using Cordova commands, the native application (IPA) can be created and deployed to an iOS device.

		

 1.

		

Use the Build command to create the iOS Xcode project.E.g. cordova build iosThe Xcode project is created under <Cordova_Project>/projects/ios directory as <Application_name>.xcodeproj

		

 2.

		

Open the xcodeproj file.The Xcode IDE file opens.

		

 3.

		

Select the Product > Archive option from the Xcode IDE to generate the IPA file.

		

 4.

		

Sign the IPA file.

		

 5.

		

Create the IPA file as an Ad-hoc or Enterprise deployment.

		

 6.

		

Copy the <Application_Name>.ipa file to the iTunes 

Automatically Add to iTunes folder.

		

 7.

		

Connect your iOS device to the machine and open iTunes.

		

 8.

		

Under your device on the Apps tab the <Application_Name> will be displayed and can be installed by clicking the Install button then Apply. This installs the app on the device.

OEBPS/Text/part0016.xhtml

Building and Deploying the Mobile Application

This section provides information on how to deploy the Oracle Real-Time Scheduler Mobile Application on various device types. Please refer to the Oracle Real-Time Scheduler Mobile Application Installation and Deployment Guide in the chapter titled "Deploying the Mobile Applications" for steps on deploying the mobile client application as a web application.

OEBPS/Text/part0015.xhtml

Local Testing

The HTML5 code added to the www directory can be tested locally using a Google Chrome browser. For device specific features such as camera and barcode scanner, the testing must be done using native applications.

Use these steps to test the application:

		

 1.

		

Install the Google Chrome desktop browser.

		

 2.

		

Disable the cross domain Javascript security in the Chrome browser. This can be done by adding the --disable-web-security option to the Chrome startup. On Windows, the Chrome executable Shortcut  Target property can be modified by adding --disable-web-security after the chrome.exe.

		

 3.

		

Open the www/index.html file in Google Chrome. The login page opens. This can be used to login into the application and test the local changes.The source is available from the local www directory. The Javascript console in the Chrome browser can be used to view all local resources and to debug the code by adding break points. The console also provides various device emulators to view the web pages in device specific formats.

OEBPS/Text/part0014.xhtml

Encryption

The encryption plugin is only used on devices running Android platform to:

		

•

		

Store passwords encrypted on devices

		

•

		

Store transaction data encrypted on devices (BO, Inbound, Outbound records)

For iOS, encryption is handled with native device encryption. If the Oracle Real-Time Scheduler Mobile Application is deployed as a web application and is being accessed on the device via web browser, the encryption module is not used, but rather, transaction data is stored in plain text format in offline database.

The encryption module is implemented entirely on the device side and there is no associated server side counterpart.

Transaction data generated by the application is securely stored in a non readable encrypted format accessible only to the authenticated user. User credentials are securely stored in private storage of the application in encrypted format for offline authentication. A Symmetric Key for Encryption is generated on the server. This key changes every time a new user session is started.

Encryption features can be enabled or disabled per specific mobile device. They can also be enabled system-wide via Feature Configuration by setting the Encryption value as "Default".

OEBPS/Text/part0013.xhtml

Device Plugins

This section provides a high level description of the device plugins used with the Oracle Real-Time Scheduler Mobile Application.

Device

The Cordova Device plugin defines a global device object, which describes the device's hardware and software.

Camera

The Cordova Camera plugin provides an API for taking pictures and for choosing images from the system's image library.

File

The Cordova File plugin implements a File API allowing read/write access to files residing on the device.

Geolocation

The Cordova Geolocation plugin provides information about the device's location, such as latitude and longitude. Common sources of location information include Global Positioning System (GPS) and location inferred from network signals such as IP address, RFID, WiFi and Bluetooth MAC addresses, and GSM/CDMA cell IDs.

InAppBrowser

The Cordova InAppBrowser plugin provides a web browser view that displays when calling window.open().

Network Information

The Cordova InAppBrowser plugin provides an implementation of an old version of the Network Information API. It provides information about the device's cellular and wifi connection, and whether the device has an internet connection.

Barcode Scanner

This is an external Barcode scanner plugin for Cordova which is optional and can be used with the application. The plugin provides implementation for scanning barcodes and provides the type and the barcode for a scanned item.

SQLite

This is an external SQLite plugin for Cordova which is optional and can be used with the application. The plugin provides implementation for using SQLite Database on the device. The plugin uses the same API as the HTML5 WEBSQL database.

Background Mode

This is an external background mode plugin for Cordova which is required only for iOS. This plugin prevents the application on iOS from going to sleep while in the background

Signature Capture

This is an external signature capture plugin for jQuery. This is a Javascript only plugin and does not require installation using the Cordova add plugin command. The plugin file needs to be included in the www/libs/jSignature folder. It provides a JavaScript widget for simplifying the creation of a signature capture field in a browser window, allowing a user to draw a signature using mouse, pen or finger.

OEBPS/Text/part0012.xhtml

Plugin Installation

Cordova includes a set of "core plugins" which are used by the mobile application to access native device features such as the file system, camera, geolocation and so on. Aside from using the Cordova core plugins, implementers can also develop their own plugins or use other available plugins. These plugins are described in the Apache Cordova documentation.

Use the CLI tool to installing/uninstalling plugins. This is done by using the "plugin add" command:

Example:

cordova plugin add <path to plugin>

Note: Please reference the Oracle Real-Time Scheduler Mobile Application Installation and Deployment Guide in the "Plugin Configurations" section for the list of required plugins for the mobile application including the actual paths for the plugins with the release versions being used. The following section provides an overview of the plugin functions.

OEBPS/Text/part0011.xhtml

Apache Cordova Project

The same Apache Cordova project can be used to create native applications for different mobile operating systems.

Complete the following steps to create an Apache Cordova project:

		

1.

		

Install Cordova.Please reference the installation instructions delivered with the Cordova product. The section on "The Command-Line Interface" includes steps to install the CLI tool information about Cordova project commands.

		

2.

		

Create the Cordova project using the create command.Example: cordova create <Directory name> <Application namespace> <Application name>This creates the Cordova project folder on the machine.The <PRODUCT_HOME>/source/www directory has to be copied or linked to the www directory for the Cordova project. Any changes made in the www directory for the Cordova project will be reflected in the generated native application.

		

3.

		

Add different mobile platforms to the Cordova project. E.g. Cordova platform add iosE.g. Cordova platform add android

OEBPS/Text/part0010.xhtml

Source Code

Required libraries and source code for development and customization in the local environment can be copied from the <PRODUCT_HOME> directory of the shared build environment that is created as part of the initial install. Please refer to the

Oracle Real-Time Scheduler Mobile Application Installation and Deployment Guide for information on the initial install.

The <PRODUCT_HOME>/source/www folder in the shared build environment contains the source files which could be linked to a version control system to enable code contributions from multiple local development environments.

The www directory needs to be copied over or linked to the local Apache Cordova project. This project can be used to locally build native applications.

OEBPS/Text/part0098.xhtml

Creating Custom Screens for a Child BO

In this scenario we will create a child BO, cm-break (which has a new field), for the parent Break BO.

		

1.

		

Create a child BO on the server side with the required changes and the corresponding changes in the deployment necessary to receive the BO on the client side.

		

2.

		

Create the html page and the corresponding UI js file under www/cm/ui/bo with the same name as the child BO.

		

3.

		

Create a mapping in www/cm/config.js for variable boFiles:

 var boFiles = {

 "cm-break":["cm-break.js"]

 };

		

4.

		

Create www/cm/ui/bo/cm-break.html and cm/ui/bo/cm-break.js.

cm-break.html to show the new field

<html>

<head>

<title></title>

<meta name="viewport" content="user-scalable=no, width=device-width">

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

</head>

<body>

<div data-role="page" id="cm-break">

<div data-role="header" data-position="fixed"></div>

<div data-role="content">

<ul data-role="listview" data-inset="false" data-filter="false">

<li data-icon="false"><a>

<h2>

</h2>

<aside class="ui-li-aside">

<spandata-bind="text:getFormattedTime(scheduleDetails.arrivalDateTime)"

id="arrivalDateTime">

</aside>

<li data-icon="false"><a>

<h2>

<span data-bind="text:LABELS.M1_DURATION_LBL"

id="m1Duration-label">

 </h2>

<aside class="ui-li-aside">

</aside>

<li data-icon="false"><a>

<h2>

<span data-bind="text: LABELS.M1_TASK_STATUS_FLG"

id="m1TaskStatus-label">

</h2>

<aside class="ui-li-aside">

</aside>

<li data-icon="false"><a>

 <h2>CM Field</h2>

<aside class="ui-li-aside">

<input id="boStatus2" data-bind="value: sample"></input>

</aside>

 </br>

 <div data-bind="template: {name: 'buttonTemplate'}, refresh: true"

class="ui-grid-a" id="breakTaskButtonTemplate"></div>

</div>

</div>

</body>

</html>

cm-break.js

ouml.ViewModel["cm-break"] = (function(ouml) {

var model = undefined;

var boInstance = undefined;

 var app = ouml.App;

 function cmBreak() {

 model = this;

 ouml.ViewModel["M1-BreakTask"].call(this);

 };

 //set the prototype to parent BO, so we extend the parent's functions.

 cmBreak.prototype = Object.create(ouml.ViewModel["M1-BreakTask"].prototype);;

 cmBreak.prototype.constructor = cmBreak;

return cmBreak;

})(ouml);

The js can be extended to handle any writable fields by overriding STARTED,COMPLETED and CANCELED methods and making required changes in cm/bo/cm-break.js if necessary based on the algorithms defined.

OEBPS/Text/part0009.xhtml

Installing Prerequisite Software

Please reference the chapter on installing prerequisite software in the Oracle Real-Time Scheduler Mobile Application Installation and Deployment Guide for information.

OEBPS/Text/part0097.xhtml

Custom Screens and Functions

Creating a Custom Page Not Related To a Business Object

Create the custom page not related to a BO and using Oracle Utilities Mobile Library APIs

		

1.

		

Create your html and the corresponding js file under www/cm/ui/ .

		

2.

		

Define the mapping of the page ID and the corresponding js file in www/cm/config.js.

Example: About.html

<html>

<head>

<title></title>

<meta name="viewport" content="user-scalable=no, width=device-width">

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

</head>

<body>

<div data-role="page" ID="About">

<script src="About.js"></script>

<div data-role="header" data-position="fixed"> </div>

<div>

About Home Delivery Product

</div>

</body>

</html>

Example: About.js

ouml.ViewModel["About"] = (function(ouml) {

 var model = undefined;

function aboutUs() {

 model = this;

 ouml.ViewModel["M1-Common"].call(this);

 };

 aboutUs.prototype = Object.create(ouml.ViewModel["M1-Common"].prototype);

 aboutUs.prototype.constructor = aboutUs;

 aboutUs.prototype.load = function (args) {

 var callbackFunc = args["onSuccess"];

 callbackFunc();

 model.pageTitle("About Us");

 };

 return aboutUs;

})(ouml);

Configuration Property

 set in www/cm/config.js

var pageFiles = {

"About":["cm/ui/About.js"]

}

OEBPS/Text/part0096.xhtml

Overriding M1 Plugins and Creating Custom Plugins

You can override plugins defined in www/m1/plugins/plugins.js or create custom plugins by defining custom plugin scripts in www/cm/plugins/plugins.js

In this example we will override logic in the M1-MCPSTCom script in www/cm/plugins/plugins.js.

		

1.

		

In plugin.js define:

ouml.plugins["M1-MCPSTCom"] = (function(ouml) {

var m1SendTaskComplCall = function() {

};

m1SendTaskComplCall.prototype.constructor = m1SendTaskComplCall;

m1SendTaskComplCall.prototype.process = function(args) {

 //Custom logic goes here

};

return m1SendTaskComplCall;

})(ouml);

		

2.

		

Define the mapping in custom config.js in the

commonJSFiles property.

var commonJSFiles = ["cm/scripts/plugins/plugins.js"];

OEBPS/Text/part0095.xhtml

Extending HTML Pages

You can hide or show html elements using jquery API’s

In this example we will customize the scheduling information section in M1-Assignment and hide the completion information section.

		

1.

		

Create a custom M1-Assignment.js under cm/ui/bo/M1-Assignment.

		

2.

		

Create a mapping in www/cm/config.js to map the custom

M1-Assignment.js to M1-Assignment pageid.

var pageFiles = {

 "M1-Assignment": ["cm/ui/bo/M1-Assignment.js"]

 }

		

3.

		

Create a html fragment www/cm/ui/bo/cmshiftimpl.html with the div element which has the same div ID as M1 Scheduling information div (section) ID=

schinfo

. Add custom html elements required with in this div.

		

4.

		

Override the loadFragment method to include cmshiftimpl.html.

		

5.

		

Rename the Scheduling information div section ID, "schinfo", to a different ID so that the custom div with ID schinfo takes effect.

www/cm/ui/bo/M1-Assignment.js

ouml.ViewModel["M1-Assignment"].CM = (function(ouml) {

var m1CMAssignmentViewModel = function(){

 ouml.ViewModel["M1-Assignment"].call(this);

 };

 m1CMAssignmentViewModel.prototype = Object.create(ouml.ViewModel["M1-Assignment"].prototype);

 m1CMAssignmentViewModel.prototype.constructor = m1CMAssignmentViewModel;

 m1CMAssignmentViewModel.prototype.load = function(args) {

 args.onSuccess = onLoadSuccess.bind(this, args.onSuccess);

 ouml.ViewModel["M1-Assignment"].prototype.load.call(this, args);

 };

 m1CMAssignmentViewModel.prototype.loadPageFragments = function() {

 //return a list of fragments that should be added in same sequence

 //default path is the same dir which hosts the main page HTML file

 return ["commonAssignment.html", "cm/ui/bo/cmshifttmpl.html"];

 };

 function onLoadSuccess(onSuccess) {

 //Hide Common Completion section.

 $.mobile.activePage.find("#saveCompCompl-href").parent("LI").hide();

 //Rename the Scheduling infromation section Id of schinfo to a different ID, so that we can use custom section with same ID

 $.mobile.activePage.find("#schinfo").attr("id","schinfo-m1");

 onSuccess();

 }

 return m1CMAssignmentViewModel;

})(ouml);

OEBPS/Text/part0094.xhtml

Extending BO Files

 In this example, we will extend M1-Assignment BO js file.

		

1.

		

Create M1-Assignment.js file under www/cm/scripts/bo/M1-Assignment.js. www/cm/scripts/bo/M1-Assignment.js.

 ouml.BusinessObject["M1-Assignment"].CM = (function (ouml){

 //define private variables and functions here (vars and functions that should not be accessible from anywhere else except this module)

 var m1CMAssign = function(data){

 this.bo = "M1-Assignment";

 //Invoke the parent BO, if any or generic BO, and pass the "this" reference. So that parent can use same "this" reference.

 ouml.BusinessObject["M1-Assignment"].call(this, data);

 };

 //set the prototype to parent BO, so we extend the parent's functions.

 m1CMAssign.prototype = Object.create(ouml.BusinessObject["M1-Assignment"].prototype);

 //point the constructor property to this key (in case we need to make use of it later)

 m1CMAssign.prototype.constructor = m1CMAssign;

 m1CMAssign.prototype.enterStateENROUTE = function(args) {

 ouml.BusinessObject["M1-Assignment"].prototype.enterStateENROUTE.call(this, args);

 // Custom logic goes here

 };

 //return the reference to a BO class(function here). When you do "new ouml.BusinessObject["M1-Assignment"]()" it would mean new m1Assignment(), which is what we want.

 return m1CMAssign;

})(ouml);

		

2.

		

Map cm M1-Assignment.js to the boFiles property in www/cm/config.js.

 var boFiles = {

 "M1-Assignment": ["M1-Assignment.js"]

 };

OEBPS/Text/part0093.xhtml

Extending Existing Screens and Functions

Hiding Menu Items And Overriding Functionality

Depot Related Assignments have attachments which are shown at page level on the menu and at item level within the item section. Attachments are shown based on a positive check for Cordova.

In this example we will add a capability check. The showAttachments functionality is also overriden.

		

1.

		

Extend M1 DepotRelatedAssignment.js by creating it under cm/ui/bo/M1-DepotRelatedAssignment.js.

ouml.ViewModel["M1-DepotRelatedAssignment"].CM = (function(ouml) {

var model = undefined;

 function cmDepotRelatedAssignment() {

 model = this;

 ouml.ViewModel["M1-DepotRelatedAssignment"].call(this);

 if(enableAttachmentSupport())

 model.showAttachmentIcon(true);

 else

 model.showAttachmentIcon(false);

 };

 function enableAttachmentSupport()

 {

 if(ouml.Capabilities.isCapabilitySupported('M1ATTJPEG') && ouml.Device.isCordova())

 return true;

 else

 return false;

 }

 cmDepotRelatedAssignment.prototype = Object.create(ouml.ViewModel["M1-DepotRelatedAssignment"].prototype);;

 cmDepotRelatedAssignment.prototype.constructor = cmDepotRelatedAssignment;

 cmDepotRelatedAssignment.prototype.setPageMenuItems = function(){

 ouml.ViewModel["M1-DepotRelatedAssignment"].prototype.setPageMenuItems.call(this);

 model.hideMenuItem(301);

 var input = {pkValue : ouml.App.getPageContext().inputArgs['taskId']};

 var attachmentsMenuItem = new ouml.MenuItem({index:301,title: model.LABELS.M1_ATTACHMENT, action:model.showAttachments.bind(this,input), active:true});

 if(enableAttachmentSupport())

 model.addMenuItem(attachmentsMenuItem);

 };

 cmDepotRelatedAssignment.prototype.showAttachments = function (keys) {

 // Custom Attachment logic goes here.

 };

 return cmDepotRelatedAssignment;

})(ouml);

		

2.

		

Create a mapping for this js in www/cm/config.js mapping pageId to the js file through the pageFiles property.

 var pageFiles = {

"M1-DepotRelatedAssignment": ["cm/ui/bo/M1-DepotRelatedAssignment.js"]

 }

OEBPS/Text/part0092.xhtml

Page Level Menu Items

Menu items for a particular screen are set in the UI javascript by overriding setPageMenuItems function.

In this example we will hide the "Decline Activity" menu option and introduce a new menu item called "New Function" in the M1-DepotTaskAssignment screen.

		

1.

		

Create a js file under www/cm/ui/bo/M1-DepotTaskAssignment.js .

ouml.ViewModel["M1-DepotTaskAssignment"].CM = (function(ouml) {

var model = undefined;

 function cmDepotTaskAssignment() {

 model = this;

 ouml.ViewModel["M1-DepotTaskAssignment"].call(this);

 };

 //set the prototype to parent BO, so we extend the parent's functions.

 cmDepotTaskAssignment.prototype = Object.create(ouml.ViewModel["M1-DepotTaskAssignment"].prototype);;

 cmDepotTaskAssignment.prototype.constructor = cmDepotTaskAssignment;

 cmDepotTaskAssignment.prototype.newFunc = function()

 {

 //Custom code for the new function

 ouml.Utilities.log("New Function");

 }

 cmDepotTaskAssignment.prototype.setPageMenuItems = function(){

 ouml.ViewModel["M1-DepotTaskAssignment"].prototype.setPageMenuItems.call(this);

 // To hide menu item

 model.hideMenuItem(203);

 // To add new menu item

 var newDTMenuItem = new ouml.MenuItem({index:201,title: 'New Function', action:model.newFunc,active:true});

 model.addMenuItem(newDTMenuItem);

 }

 return cmDepotTaskAssignment;

})(ouml);

		

2.

		

Create a mapping for this js in www/cm/config.js mapping pageId to the js file through the pageFiles property.

var pageFiles = {

 "M1-DepotTaskAssignment": ["cm/ui/bo/M1-DepotTaskAssignment.js"]

 }

OEBPS/Text/part0091.xhtml

Extending Navigation

Application Level Menu Items

Application level menu items which is shown in all the screens are defined through the mainMenu property in config.js.

Default value:

var mainMenu = [

 new ouml.MenuItem({ index:102, title: "Settings", action: "ouml/ui/settings.html", active:true}),

 new ouml.MenuItem({ index:101, title: 'Logoff', action: function(){ouml.Utilities.logout();}, active:true})

];

This property can be extended in www/cm/config.js to add new application level menu items.

var mainMenu = [

 new ouml.MenuItem({ index:104, title: 'Contact Us', action: "CM/ui/ContactUs.html", active:true})

];

Application level menu items can be removed from individual pages by overriding setPageMenuItems in each page JS. Please reference the example in the next section for more information.

OEBPS/Text/part0090.xhtml

Overriding Icons

You can override icon properties in www/cm/themes/cm.styles.css.

For example:To specify custom image to paperclip icon used in Item level Attachment in Depot Related Assignment screen.

 .ui-icon-paperclip{

background-image: url("images/icons-png/delete-black.png");

}

OEBPS/Text/part0089.xhtml

Changing Images of Icons on Maps

Map icons are defined as part of a configurable property called oracleMapProperties in the config.js file. This property can be overridden in custom config.js to define custom properties for Oracle Map including images.

OEBPS/Text/part0099.xhtml

Creating Custom Screens for a New Business Object

Create BO javascript and html files for a new BO, CM-NewBO.

		

1.

		

Create the html page and the corresponding UI js file under cm/ui/bo with the same name as the new BO.

		

2.

		

Create a mapping in cm/config.js to map the BO name and the corresponding name of the BO js file. This mapping is defined in the boFiles variable.The file content should have the structure as below for the BO:

www/cm/scripts/bo/CM-NewBO.js

ouml.BusinessObject["CM-NewBO"] = (function (ouml){

 var cmNewBO = function(data){

 this.bo = "CM-NewBO";

 ouml.GenericBusinessObject.call(this, data);

 };

 cmNewBO.prototype = Object.create(ouml.GenericBusinessObject.prototype);

 cmNewBO.prototype.constructor = cmNewBO; return cmBreakTask;

 cmNewBO.prototype.getDTO = function() {

// Refer to the getDTO API method for the description

 };

// Logic to process the lifecycle methods go here

})(ouml);

www/cm/bo/ui/CM-NewBO.js

ouml.ViewModel["CM-NewBO"] = (function() {

 function cmNewBO() {

 ouml.BaseViewModel.call(this);

 model = this;

 };

 //set the prototype to parent BO, so we extend the parent's functions.

 cmNewBO.prototype = Object.create(ouml.ViewModel["M1-Common"].prototype);

 cmNewBO.prototype.constructor = cmNewBO;

 }

www/cm/bo/ui/CM-NewBO.html

<html>

<head>

<title></title>

<meta name="viewport" content="user-scalable=no, width=device-width">

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

</head>

<body>

 <div data-role="page" id="CM-NewBO"><!—UI elements 

</body>

</html>

OEBPS/Text/part0100.xhtml

Device Plugins

Device plugins can be overridden by specifying custom plugins under www/cm/scripts and map the new plugin file names in www/cm/config.js.

Barcode Plugin

In this example we will override the barcode plugin with the custom Barcode plugin, CMBarcoding.js.

www/cm/scripts/CMBarcoding.js

ouml.BaseBarcode = (function(ouml)

 // module dependency

 var util = ouml.Utilities;

 var model = function() {

};

 // Define custom plugin specific methods

 return model;

})(ouml);

ouml.BarcodeObjectFactory = (function(ouml) {

 var apps = ouml.Config.apps;

 function getBarcodeObject(){

 var barcodeObject = new ouml.BaseBarcode();

 return barcodeObject;

 }

 return {

 getBarcodeObject : getBarcodeObject

 };

})(ouml);

File Plugin

In this example we will override the File plugin with a custom File plugin, CMFile.js

www/cm/scripts/CMFile.js

ouml.File = (function(ouml) {

var util = ouml.Utilities;

var device = ouml.Device;

var model = function() {};

// Method relate to custom file plugin goes here

ouml.FileObjectFactory = (function(ouml) {

 var apps = ouml.Config.apps;

 function getFileObject(){

 var fileObject = new ouml.File();

 return fileObject;

 }

 // Return public method(s)

 return {

 getFileObject : getFileObject

 };

})(ouml);

www/cm/config.js

var commonJSFiles =["cm/scripts/cmBarcoding.js","cm/scripts/cmFile.js"];

Custom Script for Barcode

In this example we will override the custom script for Barcode.

The barcode plugin is invoked through a script defined in

www/cm/ui/common.js. This script is mapped in cm config.js through a capabilitiesMapping property:

var capabilitiesMapping = {

 "M1CAPBARCODE" : "CM-MCPBarCodeScan"

 };

var commonJSFiles = ["cm/ui/common.js"]

www/cm/ui/common.js

ouml.ServiceScripts["CM-MCPBarCodeScan"] = (function (ouml){

 var m1BarCode = function () {

 };

 m1BarCode.prototype.constructor = m1BarCode;

 m1BarCode.prototype.process = function(args) {

 // Custom logic to invoke methods of Barcode plugin goes here

 }

 return m1BarCode;

})(ouml);

OEBPS/Text/part0088.xhtml

Changing Images on Index.html

The images on the index.html are defined as a css property as shown below.

/* DeskTop version */

#bannerImage {

 content:url('images/OracleBanner.png');

}

/* Mobile version */

@media all and (max-width:500px) {

 #bannerImage {

 content:url('images/OracleBanner_mobile.png');

 }

}

The bannerImage property can be overridden in www/cm/themes/cm.styles.css to reference custom images.

OEBPS/Text/part0087.xhtml

Setting Custom Themes

You can create your own custom theme using JQuery Mobile Theme Roller (http://themeroller.jquerymobile.com/).

		

•

		

Oracle theme is set in www/ ouml/themes/theme-sample.css file.

		

•

		

You can either import theme-sample.css file in JQuery Mobile Theme Roller and modify it or create your own.

		

•

		

Make sure the custom theme downloaded from JQuery Mobile Theme Roller is named as cm.jquery.theme.css and is placed under www/cm/themes along with jquery.mobile.icons.min.css which is part of the download.

		

•

		

The corresponding images are placed under www/cm/themes/images.

		

•

		

The new theme should be mapped to the uiTheme property in www/cm/config.jsExample : uiTheme: "f"

OEBPS/Text/part0086.xhtml

Themes and Images

The following sections describe how to change custom themes and images.

OEBPS/Text/part0085.xhtml

Customization and Extension Methodology

This chapter provides information on extending the Oracle Real-Time Scheduler Mobile Application.

Ensure that the cm folder is created under www before you begin customization. Please reference the Oracle Real-Time Scheduler Mobile Application Installation and Deployment Guide in the chapter regarding building the mobile application for information on the required files that are needed under cm. Reference the configurable properties defined in the OUML.config.js API for the properties that can be overridden in config.js. This is described in

Chapter 3: Oracle Utilities Mobile Library

.We suggest that the cm directory mirrors the directory structure of the M1 directory with specific js in each folder.[image:]

		

Directory

		

Description

		

www/cm/scripts

		

Device plugins

		

www/cm/config.js

		

Custom config.js to define configurable properties

		

www/cm/themes

		

Custom css, theme css files

The following are files required under cm/themes:

		

•

		

cm.jquery.theme.css: custom themes

		

•

		

cm.styles.css: custom styles

		

•

		

jquery.mobile.icons.min.css: Icon definitions defined for custom theme. This also gets downloaded as part of downloading custom theme from JQuery Mobile Theme Roller

		

www/cm/themes/images

		

Custom images

		

www/cm/ui/bo

		

UI related javascript, html files for a specific BO, and

html files loaded as page fragments as part of the main BO html

		

www/cm/ui

		

Html and Javascript files not related to a BO. Custom common.js files to specify custom scripts and custom logic

		

www/cm/scripts/bo

		

Custom business object related java script files to handle lifecycle logic

		

www/cm/scripts/inbound

		

Custom inbound processing scripts

		

www/cm/scripts/plugins

		

Javascript files to specify custom plugin scripts

OEBPS/Text/part0084.xhtml

Attachments

An attachment can be any file, such as a photo, a document with instructions or specifications, a spreadsheet, or any other supporting documentation. Mobile devices have the ability to upload attachments to the server application as well as receive attachments from the server.

Business Object: M1-Attachment

Business Object JavaScript

		

API

		

Overridden

		

Short Description

		

getDTO

		

Yes

		

Returns the business object data mapped to offline columns.

		

setStatus

		

No

		

Change the status of the business object.

HTML Pages

		

Html Page

		

Short Description

		

commonAttachments.html

		

This page handles the Attachments and shows all the information associated with Attachments.

This html contains UI sections to show attachments list, common Attachments list, Gallery to open picture library and camera to be able to take pictures.

The following table provides a list of the various supported attachments and the associated business object. All of these business objects have the parent business object: M1-Attachment.

		

Type of Attachment

		

Business Object

		

Captured Picture Attachment

		

M1-CapturedPicture

		

Excel Attachment

		

M1-Excel

		

PDF Attachment

		

M1-PDF

		

Text File Attachment

		

M1-TXT

		

Word File Attachment

		

M1-Word

		

Captured Sound Attachment

		

M1-CapturedSound

		

MP3 Audio Attachment

		

M1-Mp3Audio

		

MPEG Video Attachment

		

M1-MPEGVideo

		

Microsoft Video Attachment

		

M1-MicrosoftVideo

OEBPS/Text/part0083.xhtml

Oracle Map

The Oracle Fusion Middleware MapViewer is used to render maps. The out of box solution uses Oracle MapViewer Javascript V2 HTML5 API.

UI JavaScript

		

API

		

Short Description

		

load

		

The first function which gets called on the Map page. This checks if it is an Activity specific map or for all the activities in the task list.

		

loadLocationData

		

Loads the Locations which are configured in the system. These locations are used to get location of activities without any site address like NPT and POU

		

loadMapConfiguration

		

This function loads the Map configuration which is defined as a Feature Configuration on the server. The properties in the Map configuration provide things like the Oracle Mapviewer URL, default latitude and longitude etc

		

populateTaskTypeMap

		

This method loads the Task Type descriptions

		

renderMap

		

Set the map height and calls the initOracleMap function

		

initOracleMap

		

This method initializes the Oracle Mapviewer map and sets the properties like URL, Datasource and tile layers. This also plot the Crew location and the activities as markers on the maps and add information windows for these markers

		

getDirectionsFromServer

		

This function gets the directions from the server from the crew location to the activity(ies).

		

renderOracleMapv2

		

This function plots the route based on those directions returned by the server on the map.

		

featureClick

		

This function shows an information window with the Activity details when activity marker is clicked on the Map.

		

showDirections

		

This functions renders the directions coming from the server in the Directions panel.

		

setMapHeight

		

Sets the height of the map

		

openNativeMaps

		

This function makes a javascript call when the Native maps button on an activity info windows is clicked. This calls the native map application on the device and passes the activity co-ordinates as parameters.

		

getLegend

		

This function creates the legend table displayed on the map.

HTML Pages

		

Html Page

		

Short Description

		

M1-OracleMap.html

		

This html contains section to show map canvas and map directions

OEBPS/Text/part0082.xhtml

Procedure Type

Procedure types define procedures of a certain type.

Business Object: M1-ProcedureType

Business Object

		

API

		

Overridden

		

Short Description

		

getDTO

		

Yes

		

Returns the business object data mapped to offline columns

		

setStatus

		

No

		

Change the status of the business object.

OEBPS/Text/part0081.xhtml

Simple Procedure

Procedures represent steps or tasks that crews may need to complete prior to starting a business activity such as starting their shift, using a vehicle or starting work on an activity.

Business Object: M1-SimpleProcedure

Business Object JavaScript

		

API

		

Short Description

		

getDTO

		

Returns the BO data mapped to offline columns

		

setStatus

		

Change the status of the business object.

HTML Pages

		

Html Page

		

Short Description

		

commonProcedures.html

		

This page handles the Procedures and shows all the information associated with Procedures both at the activity left as well as the shift level.

This has UI sections to display the Procedure List and Procedure Details.

The procedure details UI section gets the details of the procedures by invoking the procedure template specified in index.html

OEBPS/Text/part0080.xhtml

Depot Related Shift

A depot related shift is a planned period of time in which a crew (one or more mobile workers and vehicles) is scheduled to perform work specifically related to the pick up or drop off of goods.

		

•

		

Business Object: M1-DepotRelatedShift

		

•

		

Parent Business Object JavaScript - M1-CrewShift

Business Object UI JavaScript

		

API

		

Short Description

		

loadPageFragments

		

This API return a list of fragments that should be added in same sequence - commonShift.html

HTML Pages

		

Html Page

		

Short Description

		

commonShift.html

		

This page handles the crew shift page and shows all the information associated with the Depot Related Crew Shift.

This html shows Crew Name, Shift Planned Date Time, Shift Planned End Date Time, Primary Function Section, Worker Section, Vehicle Section.

User has the ability to change primary function.

User has the ability to add, edit and remove worker or vehicle information from the crew shift.

User has the ability to go out of service on the shift by entering the Status Reason and Estimated duration.

 In addition it has UI sections to display and complete Procedures associated with the Crew Shift.

This also includes showing the buttons associated with the lifecycle of the BO.

OEBPS/Text/part0079.xhtml

Crew Shift

A crew shift is a planned period of time in which a crew (one or more mobile workers and vehicles) is scheduled to perform work.

Business Object: M1-CrewShift

Business Object JavaScript

		

API

		

Short Description

		

getDTO

		

Returns the business object data mapped to offline columns

		

startShift

		

Before initiating the Starting the Shift checkin process, this function will check and delete if any preview tasks downloaded to MDT.

		

previewShift

		

Get the preview shift details from server.

Business Object UI JavaScript

		

API

		

Short Description

		

setPageButtons

		

Overrides the base API that controls the Page Buttons of various states of the BO Lifecycle.

		

setPageMenuItems

		

Sets the Page Menu Items for a given BO page

		

load

		

		

loadPrimaryFunctions

		

This API forms the list of Service Classes to be displayed under the Primary Function section

		

showWorkerSection

		

This API sets selectedWorker value with current row data and make shiftWorkerSection visible

		

showAddEditWorkerSection

		

This API resets the selectedWorker and make addEditWorkerSection visible.

		

addWorker

		

This API first deletes the selectedWorker from

resourceAllocationList if it already exists and then adds the updated selectedWorker

		

editWorkerDetails

		

This API is used to edit worker details once a specific worker has been selected from the resourceAllocationList.

		

editWorker

		

This API is the handler for showWorkerSection. It displays addEditWorkerSection with current selected data populated on UI.

		

removeWorker

		

Handles the deletion of currently selected worker from the resourceAllocationList

		

showVehicleSection

		

This API sets selectedVehicle value with current row data and make shiftVehicleSection visible

		

showAddEditVehicleSection

		

This API resets the selectedVehicle and make addEditVehicleSection visible.

		

addVehicle

		

This API first deletes the selectedVehicle from resourceAllocationList if it exists and then adds the updated selectedVehicle

		

editVehicleDetails

		

This method first deletes the selectedVehicle from resourceAllocationList if exist and then adds the updated information of selectedVehicle

		

removeVehicle

		

This API deletes the currently selected Vehicle from the resourceAllocationList

		

editVehicle

		

This API is the handler for showVehicleSection. It displays addEditVehicleSection with currently selected data populated on UI.

		

start

		

This API starts the Shift

		

logoff

		

This API does logoff of the Shift

		

setSelectedShiftFunction

		

This API sets the service class/Primary function of the shift.

		

preview

		

Handles the preview mode of Shift.

		

endShift

		

Handles the end of shift.

		

loadPageFragments

		

		

showShiftProcedures

		

Handles the showing of Procedures that exist for a given shift.

		

showServiceState

		

This API shows the service status possible if the current shift status is "In Service" or "Out of Service"

		

setServiceStatus

		

This API sets the service status to "In Service" if it is currently "Out of Service" and vice versa.

		

setShiftStatus

		

This API sets the shift status to whatever is passed in as input.

		

setStatusReasonFunction

		

This API is used to set the input status reason code and description.

HTML Pages

		

Html Page

		

Short Description

		

M1-CrewShift.html

		

This page handles the crew shift page and shows all the information associated with the Crew Shift.

This html shows Crew Name, Shift Planned Date Time, Shift Planned End Date Time, Primary Function Section, Worker Section, Vehicle Section.

User has the ability to change primary function.

User has the ability to add, edit and remove worker or vehicle information from the crew shift.

User has the ability to go out of service on the shift by entering the Status Reason and Estimated duration.

 In addition it has UI sections to display and complete Procedures associated with the Crew Shift.

This also includes showing the buttons associated with the lifecycle of the BO.

Upon start of Shift, user is automatically navigated to the taskList.html page.

		

taskList.html

		

Once the shift is successfully Started, the task list page is invoked. This page handles the display of all the tasks available for a given Crew Shift. It displays the tasks in either the "Open" tab or the "Completed" tab depending on the State of the task.

For each task in the task list, it shows the task type Description, location associated with the task (if exists), state of the task and the Arrival date time for an Open Task and BO Status Date Time for a Completed task.

It also displays an icon, if there are attachments associated with a task.

The page is setup to show a pre-configured number of tasks by default. Clicking on "Show More" triggers the next set of tasks to be retrieved.

		

endOfShift.html

		

When User requests end of shift, this page has UI sections to display Vehicle information and enter the start and end odometer.

It displays information showing that the activities that have not been marked to keep for a future shift will be rescheduled to any crew.

It also shows the Complete button to get confirmation from user to complete the shift.

Page Menu Items

		

Start Shift

		

Shown only when Shift is in Planned State

		

Preview Shift

		

Shown only when Shift is in Planned status and "advancedDispatchTasks" is set on model.

		

End Shift

		

Shown after Shift is started

		

Procedures

		

		

Change Service State

		

Shown after Shift is started

