Configuring Siebel Open
Ul

Siebel Innovation Pack 2014,
Rev. A

June 2015

ORACLE

Copyright © 2005, 2015 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in
your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing
it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are “commercial computer software” pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed
on the hardware, and/or documentation, shall be subject to license terms and license restrictions
applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services.
Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due
to your access to or use of third-party content, products, or services.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website
at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information,
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Chapter 1: What’s New in This Release

Chapter 2: Overview of Siebel Open Ul
About Siebel Open Ul 17

Differences Between High Interactivity and Siebel Open Ul 21
How Siebel CRM Renders High-Interactivity Clients 22
How Siebel CRM Renders Siebel Open Ul Clients 24
Summary of Differences Between High Interactivity and Siebel Open Ul 28

About Using This Book 30
Important Terms and Concepts 30
How This Book Indicates Computer Code and Variables 31
How This Book Describes Objects 32
About the Siebel Innovation Pack 33
Support for Customizing Siebel Open Ul 34
Getting Help from Oracle 35

Chapter 3: Architecture of Siebel Open Ul

About the Siebel Open Ul Development Architecture 37
Overview of the Siebel Open Ul Development Architecture 37
Example of How Siebel Open Ul Renders a View or Applet 44
Customizing the Presentation Model and Physical Renderer 48
Stack That Siebel Open Ul Uses to Render Objects 50
Items in the Development Architecture You Can Modify 53
Example Client Customizations 54
Differences in the Server Architecture Between High Interactivity and Siebel Open Ul
Differences in the Client Architecture Between High Interactivity and Siebel Open Ul

Life Cycle of User Interface Elements 58
Summary of Presentation Model Methods 58
Life Cycle of a Physical Renderer 60
Life Cycle of a Plug-in Wrapper 61
Example of the Life Cycle of a User Interface Element 62

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

55
57

Contents ®

Chapter 4: Example of Customizing Siebel Open Ul
Roadmap for Customizing Siebel Open Ul 65

Process of Customizing the Presentation Model 66
Creating the Presentation Model 66
Customizing the Setup Logic of the Presentation Model 68
Customizing the Presentation Model to Identify the Records to Delete 70
Customizing the Presentation Model to Delete Records 74
Overriding Predefined Methods in Presentation Models 78
Customizing the Presentation Model to Handle Notifications 79
Attaching an Event Handler to a Presentation Model 82
Customizing Methods in the Presentation Model to Store Field Values 85
Customizing the Presentation Model to Call the Siebel Server and Delete a Record 87

Process of Customizing the Physical Renderer 88
Setting Up the Physical Renderer 88
Customizing the Physical Renderer to Render the Carousel 90
Customizing the Physical Renderer to Bind Events 92
Customizing the Physical Renderer to Bind Data 95
Customizing the Physical Renderer to Refresh the Carousel 96
Modifying CSS Files to Support the Physical Renderer 99

Process of Customizing the Plug-in Wrapper 102
Creating the Plug-in Wrapper 102
Customizing the Plug-in Wrapper to Display the Control Differently 105
Customizing the Plug-in Wrapper to Bind Custom Events to a Control 106
Customizing the Plug-in Wrapper to Define Custom Events 108
Customizing the Plug-in Wrapper to React to Value Changes of a Control 110
Attaching the Plug-in Wrapper to a Control Conditionally 112

Configuring the Manifest for the Recycle Bin Example 114
Configuring the Manifest for the Color Box Example 116
Testing Your Modifications 117

Chapter 5: Customizing Siebel Open Ul

Guidelines for Customizing Siebel Open Ul 119
Guidelines for Customizing Presentation Models 119
Guidelines for Customizing Physical Renderers 121
Guidelines for Customizing Plug-in Wrappers 122

Guidelines for Customizing Presentation Models and Physical Renderers and Plug-in
Wrappers 122

Doing General Customization Tasks 123
Enabling Object Managers for Siebel Open Ul 123

4 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Contents B

Preparing Siebel Tools to Customize Siebel Open Ul 127

Modifying the Application Configuration File 128

Deriving Presentation Models, Physical Renderers and Plug-in Wrappers 129
Adding Presentation Model Properties That Siebel Servers Send to Clients 130
Configuring Siebel Open Ul to Bind Methods 134

Calling Methods for Applets and Business Services 135

Using the Base Physical Renderer Class With Nonapplet Objects 137
Creating Components 142

Allowing Users to Interact with Clients During Business Service Calls 143
Customizing How Siebel Open Ul Displays Error Messages 145

Customizing Navigation Options 147

Customizing Events 150
Refreshing Custom Events 150
Overriding Event Handlers 151
Attaching an Event Handler to an Event 151
Attaching More Than One Event Handler to an Event 152
Stopping Siebel Open Ul From Calling Event Handlers 153
Attaching and Validating Event Handlers in Any Sequence 153
Customizing the Sequence that Attaches and Validates Event Handlers 159
Using AttachEventHandler Prior to Siebel CRM Release 8.1.1.13 160
Overriding the OnControlEvent Method and Then Calling a Superclass 160
Allowing Blocked Methods for HTTP GET Access 160

Managing Files 161
Organizing Files That You Customize 162
Updating Relative Paths in Files That You Customize 165

Specifying Dependencies Between Presentation Models or Physical Renderers and Other
Files 165

Configuring Manifests 167
Overview of Configuring Manifests 167
Configuring Custom Manifests 171
Adding Custom Manifest Expressions 181
Adding JavaScript Files to Manifest Administrative Screens 183

Chapter 6: Customizing Styles, Applets, Fields, and
Controls

Customizing Logos, Themes, Backgrounds, Tabs, Styles, and Fonts 185
Customizing the Logo 186
Customizing Themes 189
Customizing Browser Tab Labels 192

Using Cascading Style Sheets to Modify the Position, Dimension, and Text Attributes of an
Object 193

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 5

Contents ®

Adding Fonts to Siebel Open Ul 194

Customizing Applets 197
Displaying and Hiding Fields 198
Allowing Users to Drag and Drop Data Into List Applets 201
Expanding and Collapsing Applets 203
Customizing List Applets to Display a Box List 206
Customizing List Applets to Render as Carousels 207
Customizing List Applets to Render as Maps 212
Configuring the Focus in Siebel Applets 215
Adding Static Drilldowns to Applets 216
Allowing Users to Change the Applet Visualization 217
Displaying Applets Differently According to the Applet Mode 226
Adding Custom User Preferences to Applets 232
Customizing Applets to Capture Signatures from Desktop Applications 235
Customizing Applets to Capture Signatures for Siebel Mobile Applications 240
Enabling Salutation Applets in Siebel Open Ul 244

Customizing Controls 247
Creating and Managing Client-Side Controls 248
Displaying Control Labels in Different Languages 258

Chapter 7: Customizing Calendars and Schedulers

Customizing Calendars 261
Deploying Calendars According to Your Calendar Deployment Requirements 262
Using Fields to Customize Event Styles for the Calendar 262
Allowing Users to Drag Items from List Applets to Create Calendar Events 265
Customizing Event Styles for the Calendar 265
Customizing Calendar Work Days 266
Customizing How Calendars Display Timestamps 267
Replacing Standard Interactivity Calendars 268
Customizing How Users View Calendar Availability 269
Customizing the Calendar All Day Slot 270

Customizing Resource Schedulers 270
Overview of Customizing Resource Schedulers 271
Customizing a Resource Scheduler 272
Customizing the Filter Pane in Resource Schedulers 284
Customizing the Resource Pane in Resource Schedulers 286
Customizing the Timescale Pane in Resource Schedulers 289
Customizing the Schedule Pane in Resource Schedulers 296
Customizing Participant Availability in Resource Schedulers 304
Customizing Tooltips in Resource Schedulers 307

6 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Contents B

Chapter 8: Configuring Siebel Open Ul to Interact with
Other Applications

Displaying Data from External Applications in Siebel Open Ul 313
Displaying Data from External Applications in Siebel Views 313
Displaying Data from External Applications in Siebel Applets 316

Displaying Data from Siebel Open Ul in External Applications 320
Displaying Siebel Portlets In External Applications 321
Configuring Advanced Options 326
Configuring Communications with Siebel Portlets When Hosted Inside iFrame 327
Additional Considerations 330
Limitations 331
Preparing Standalone Applets 331
Using iFrame Gadgets to Display Siebel CRM Applets in External Applications 332

Chapter 9: Customizing Siebel Open Ul for Siebel Mobile
Disconnected

Overview of Customizing Siebel Open Ul for Siebel Mobile Disconnected 335
Operations You Can Customize When Clients Are Offline 335
Operations You Cannot Customize When Clients Are Offline 336
Process of Customizing Siebel Open Ul for Siebel Mobile Disconnected 337

Doing General Customization Tasks for Siebel Mobile Disconnected 338
Modifying Manifest Files for Siebel Mobile Disconnected 338
Registering Methods to Make Sure Siebel Open Ul Runs Them in the Correct Sequence
341
Using Siebel Business Services or JavaScript Services to Customize Siebel CRM Objects
343

Using Custom JavaScript Methods 347

Using Custom Siebel Business Services 349

Configuring Data Filters 353

Configuring Objects That Siebel Open Ul Does Not Display in Clients 353
Configuring Error Messages for Disconnected Clients 353

About Siebel Mobile Application Logging 355

Customizing Siebel Pharma for Siebel Mobile Disconnected Clients 355
Configuring Interactive Detailing in the Siebel Open Ul Application for Siebel Pharma 360

Customizing Siebel Service for Siebel Mobile Disconnected Clients 367
Allowing Users to Commit Part Tracker Records 367
Allowing Users to Return Parts 369
Allowing Users to Set the Activity Status 375

Methods You Can Use to Customize Siebel Mobile Disconnected 378
Methods You Can Use in the Applet Class 379

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 7

Contents ®

Methods You Can Use in the Business Component Class 381
Methods You Can Use in the Business Object Class 399

Methods You Can Use in the Business Service Class 401

Methods You Can Use in the Application Class 404

Methods You Can Use in the Model Class 408

Methods You Can Use in the Service Model Class 409

Methods You Can Use in Offline Classes 409

Other Methods You Can Use with Siebel Mobile Disconnected 411

Appendix A: Siebel Open Ul Application Programming
Interface

Overview of the Siebel Open Ul Client Application Programming Interface 415

Methods of the Siebel Open Ul Application Programming Interface 416
Presentation Model Class 416
Presentation Model Class for Applets 429
Presentation Model Class for List Applets 447
Presentation Model Class for Menus 453
Physical Renderer Class 455
Plug-in Wrapper Class 460
Plugin Builder Class 463
Template Manager Class 464
Event Helper Class 468
Business Component Class 471
Applet Class 471
Applet Control Class 472
JQ Grid Renderer Class for Applets 482
Business Service Class 484
Application Model Class 484
Control Builder Class 496
Locale Object Class 496
Component Class 504
Component Manager Class 507
Other Classes 510

Methods for Pop-Up Objects, Google Maps, and Property Sets 511
Pop-Up Presentation Models and Physical Renderers 511
Method That Integrates Google Maps 517
Methods That Manipulate Property Sets 521

Appendix B: Reference Information for Siebel Open Ul

Life Cycle Flows of User Interface Elements 527
Life Cycle Flows That Save Records 527

8 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Contents B

Life Cycle Flows That Handle User Navigation 529

Life Cycle Flows That Send Notifications 533

Life Cycle Flows That Create New Records in List Applets 535
Life Cycle Flows That Handle User Actions in List Applets 539

Notifications That Siebel Open Ul Supports 545
Summary of Notifications That Siebel Open Ul Supports 546
Using Notifications with Operations That Call Methods 554
NotifyGeneric Notification Type 555
NotifyStateChanged Notification Type 558
Example Usages of Notifications 561

Property Sets That Siebel Open Ul Supports 566
Siebel CRM Events That You Can Use to Customize Siebel Open Ul 567
Languages That Siebel Open Ul Supports 592

Screens and Views That Siebel Mobile Uses 594
Screens and Views That Siebel Consumer Goods Uses 594
Screens and Views That Siebel Sales Uses 595
Screens and Views That Siebel Service Uses 597
Screens and Views That Siebel Pharma Uses 598

Controls That Siebel Open Ul Uses 599
Browser Script Compatibility 602

Appendix C: Post-Upgrade Configuration Tasks

Updating Physical Renderer Customizations for Controls 611
Control DOM Access and Changes 611
Control Value Access and Changes 612
Control State Manipulation 613

Modifying Physical Renderer Code for Event Helper 614
Binding Stray DOM Events 614
Binding Events for Controls 617

Overriding Plug-In Wrappers 618
About Overriding Plug-In Wrappers 618
Overview of the Skeleton Structure of a Plug-in Wrapper 619
About Presentation Model-Injected APIs in Plug-in Wrappers 621

About Mobile-Specific Renderers Independent of jQuery Mobile APIs 624
About Restructuring Mobile Classes 624
About Class Equivalency 625
Adapting Inheritance Hierarchies 626

About Mobile-Specific Renderers Dependent on jQuery Mobile APIs 627

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 9

Contents B

Restructuring Mobile Classes 628
Parsing for jQuery Mobile Usage 628
Modifying Third-party Dependencies 630

About Cascading Style Sheet Post-Upgrade Tasks 631
About Cascading Style Sheet Options 631
Restoring the Cascading Style Sheet 631
Reconfiguring the Cascading Style Sheet 635

Glossary

Index

10 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

1

This Release

NOTE: Siebel Innovation Pack 2014 is a continuation of the Siebel 8.1/8.2 release.

What’s New in Configuring Siebel Open Ul, Siebel Innovation Pack

2014, Rev. A

Table 1 lists the changes in this revision of the documentation to support this release of the software.

Table 1. What’s New in Configuring Siebel Open Ul, Siebel Innovation Pack 2014, Rev. A

Topic Description

“Displaying Data from Siebel Open
Ul in External Applications” on
page 320

Modified topic. Includes updated information about displaying
data from Siebel Open Ul in external applications.

“Event Helper Class” on page 468

Modified topic. Includes new information about Event Helper
mappings.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 11

What’s New in This Release

What’s New in Configuring Siebel Open Ul, Siebel Innovation Pack

2014

Table 2 lists the changes in this revision of the documentation to support this release of the software.

Table 2.

What’s New in Configuring Siebel Open Ul, Siebel Innovation Pack 2014

Topic Description

“Overview of the Siebel Open Ul
Development Architecture” on
page 37

Modified topic. Includes updated information about the
architecture, including plug-in wrappers, event helper objects,
and the template manager.

“Life Cycle of a Plug-in Wrapper” on
page 61

New topic. Describes the life cycle of a plug-in wrapper.

“Customizing the Physical
Renderer to Render the Carousel”
on page 90

Modified topic. Describes how to customize the physical
renderer to render carousel.

“Customizing the Physical
Renderer to Bind Events” on
page 92

Modified topic. Describes how to customize the physical
renderer to bind events.

“Customizing the Physical
Renderer to Refresh the Carousel”
on page 96

Modified topic. Describes how to customize the physical
renderer to refresh the carousel.

“Modifying CSS Files to Support the
Physical Renderer” on page 99

Modified topic. Includes new information about adding files
that the physical renderer requires.

“Configuring the Manifest for the
Recycle Bin Example” on page 114

Modified topic. Includes new information about adding files
that the manifest must specify.

“Configuring the Manifest for the
Color Box Example” on page 116

New topic. Describes how to configure the manifest for the
color box example.

“Guidelines for Customizing Plug-in
Wrappers” on page 122

New topic. Outlines guidelines for customizing plug-in
wrappers.

“Deriving Presentation Models,
Physical Renderers and Plug-in
Wrappers” on page 129

New topic. Describes how to create a reference between two
presentation models, where Siebel Open Ul derives one
presentation model from another presentation model.

Customizing How Siebel Open Ul
Displays Error Messages on
page 145

New topic. You can customize Siebel Open Ul to display error
messages in a status bar or dialog box.

“Customizing Navigation Options”
on page 147

New topic. It describes how to configure the navigation options
available to users.

“Customizing Events” on page 150

12

Modified topic. Includes several new topics that describe how
to customize the way Siebel Open Ul handles events.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Table 2.

Topic Description

“Attaching and Validating Event
Handlers in Any Sequence” on
page 153

What’s New in This Release m

What’'s New in Configuring Siebel Open Ul, Siebel Innovation Pack 2014

New topic. Describes how to customize the sequence that
Siebel Open Ul uses when it validates event handlers.

“Allowing Blocked Methods for
HTTP GET Access” on page 160

New topic. Describes how to allow blocked methods for HTTP
GET access.

“Using Temporary Manifest
Expressions During Development”
on page 182

New topic. Describes how to configure a temporary expression
so that you can test and troubleshoot the manifest
configuration during development.

“Customizing the Logo” on
page 186

“Customizing Themes” on
page 189

“Customizing Applets” on page 197

“Customizing List Applets to
Render as Carousels” on page 207

Modified topics. You no longer use the theme.js file,
mobiletheme.js file, or the tablettheme.js file to customize a
theme. You now use the manifest.

“Using Cascading Style Sheets to
Modify the Position, Dimension,
and Text Attributes of an Object”
on page 193

Modified topic. Describes how to modify the position,
dimension and text attributes of an object.

“Adding Fonts to Siebel Open UI”
on page 194

New topic. Describes how to configure Siebel Open Ul so that
it can use fonts that do not come predefined.

“Expanding and Collapsing
Applets” on page 203

New topic. Describes how to configure Siebel Open Ul so that
it allows the user to choose more than one row in a list applet.

“Customizing List Applets to
Render as Maps” on page 212

New topic. Describes how to customize list applets to render
as maps.

“Customizing Applets to Capture
Signatures from Desktop
Applications” on page 235

Modified topic. Includes modifications to the instructions and
updated property values.

“Customizing Applets to Capture
Signatures for Siebel Mobile
Applications” on page 240

New topic. Describes how to customize applets to capture
signatures for Siebel Mobile applications.

“Enabling Salutation Applets in
Siebel Open Ul” on page 244

New topic. Describes how to enable the salutation applet so
Siebel Open Ul can display it in the client.

“Creating and Managing Client-
Side Controls” on page 248

New topic. Includes an example that describes how to
customize a text box control that Siebel Open Ul displays in
the client without modifying the Siebel Server.

“Configuring Client-Side Multi-
Select” on page 256

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

New topic. Describes how to configure client-side multi-select
check-boxes for touch devices.

13

What’s New in This Release

Table 2.

What's New in Configuring Siebel Open Ul, Siebel Innovation Pack 2014

Topic Description

“Displaying Control Labels in
Different Languages” on page 258

New topic. Describes how to configure Siebel Open Ul so that
it displays the text for a control label according to the language
that the client browser uses.

“Allowing Users to Drag Items from
List Applets to Create Calendar
Events” on page 265

New topic. Describes how allow the user to drag an item from
a list applet, and then drop it on a calendar to create an event.

“Customizing How Users View
Calendar Availability” on page 269

New topic. Describes how to enable and disable viewing free
busy availability in the calendar.

“Customizing the Calendar All Day
Slot” on page 270

New topic. Describes how to show and hide the calendar all
day slot.

“Customizing Participant
Availability in Resource
Schedulers” on page 304

New topic. Describes how to customize the controls that Siebel
Open Ul uses to display information about participant
availability in a resource scheduler.

“Displaying Siebel Portlets In
External Applications” on page 321

Modified topic. To display a Siebel portlet in an external
application, you add parameters to the Application Object
Manager. You do not add them to the Siebel Server.

“About Siebel Mobile Application
Logging” on page 355

New topic. Includes information about logging on Siebel Mobile
applications.

“Configuring Interactive Detailing
in the Siebel Open Ul Application
for Siebel Pharma” on page 360

New topic. Describes how to configure the Detail button to
appear on an applet in the Siebel Open Ul application for
Siebel Pharma.

“Using Siebel Business Services or
JavaScript Services to Customize
Siebel CRM Objects” on page 343

Modified topic. It describes how to configure Siebel Open Ul to
anonymously register existing applet and business component
objects.

“Using Custom Siebel Business
Services” on page 349

Modified topic. It describes how to customize Siebel business
services to make a call to a standalone service using the
InvokeMethod method.

“AddValidator Method” on
page 420

New topic. The AddValidator method validates an event. It
allows you to write a custom validation for any event.

“AttachEventHandler Method” on
page 421

Modified topic. Includes new information about the values that
the AttachEventHandler method returns.

“Plug-in Wrapper Class” on
page 460

New topic. Describes the Plug-in Wrapper class.

“Plugin Builder Class” on page 463

New topic. Describes the Plugin Builder class.

“Template Manager Class” on
page 464

14

New topic. Describes the Template Manager class.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

What’s New in This Release m

Table 2. What's New in Configuring Siebel Open Ul, Siebel Innovation Pack 2014

Topic

“Event Helper Class” on page 468

Description

New topic. Describes the Event Helper class.

Appendix C, “Post-Upgrade
Configuration Tasks”

New appendix. Describes post-upgrade configuration tasks.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 15

What’s New in This Relea

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

2 Siebel Open Ul

This chapter describes an overview of Oracle’s Siebel Open Ul. It includes the following topics:
B About Siebel Open Ul on page 17
I Differences Between High Interactivity and Siebel Open Ul on page 21

B About Using This Book on page 30

About Siebel Open Ul

This topic describes Siebel Open Ul. It includes the following information:
Overview of Siebel Open Ul on page 17

Open Development Environment on page 19

Multiple Client Environment on page 20

Support for More Than One Usage on page 20

New Notification User Interfaces on page 21

Mobile Environments on page 21

Overview of Siebel Open Ul

Siebel Open Ul is an open architecture that you can use to customize the user interface that your
enterprise uses to display Siebel CRM business process information. These processes must meet the
requirements of a wide range of employee, partner, and customer applications. You can use Siebel
Tools to do these customizations, and you can also use Web technologies, such as HTML, CSS, or
JavaScript. Siebel Open Ul uses these technologies to render the Siebel Open Ul client in the Web
browser. It uses no proprietary technologies, such as browser plug-ins or ActiveX.

Siebel Open Ul can run any Siebel business application on any Web browser that is compliant with
the World Wide Web Consortium (W3C) standards. It can display data in Web browsers that support
Web standards on various operating systems, such as Windows, Mac OS, or Linux. For example:

B Internet Explorer
B Google Chrome
B Mozilla Firefox

B Apple Safari

Siebel Open Ul uses current Web design principles, such as semantic HTML and unobtrusive
JavaScript. These principles make sure configuration for the following items remains separate from
one another:

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 17

Overview of Siebel Open Ul = About Siebel Open Ul

B Data and metadata that determines HTML content
B Cascading Style Sheet configurations that determine styling and layout
B JavaScript behavior that determines interactivity and client logic

You can modify each of these items separately and independently of each other. Siebel Open Ul
dynamically adjusts itself to the screen space available on the device and platform from which it is
being accessed. Siebel Open Ul will hide some of the objects that it displays on a Siebel screen when
it displays Siebel CRM data in a list or form on the smaller footprint of a mobile device. Hiding these
objects, such as menus or tabs, can help to optimize mobile screen usage. Siebel Open Ul can use
swipe and zoom features that are native on a tablet for the same user interface that it uses for
keyboard and mouse events that are native on a desktop.

Siebel Open Ul can reference a third-party resource. For example, you can configure Siebel Open Ul
to get data from a supplier Web site, incorporate it with Siebel CRM data, and then display this data
in the client. For example, it can get literature information from a supplier, and then include this
information in a detailed display that includes information about the product, such as images,
diagrams, or parts lists. It can mix this information with Siebel CRM data, such as customers who
own this product, or opportunities who might be interested in purchasing this product.

The architecture that Siebel Open Ul uses includes well-defined customization points and a
JavaScript API that allow for a wide range of customization for styling, layout, and user interface
design. For more information, see “Architecture of Siebel Open Ul” on page 37. For more information
about the JavaScript API that Siebel Open Ul uses, see Appendix A, “Siebel Open Ul Application
Programming Interface.”

For information about deploying Siebel Open Ul, including supported features, see Article ID
1499842.1 on My Oracle Support. For more information about using Siebel Tools, see Using Siebel
Tools.

Example Customizations That You Can Make with Siebel Open Ul

The following list describes a few of the example customizations that you can make with Siebel Open
Ul. You can use JavaScript to implement most of these examples. It is often not necessary to use
Siebel Tools to do these customizations:

Refresh only the part of the screen that Siebel Open Ul modifies.

B Display and hide fields.

B Configure a spell checker.

B Display a list applet as a box list, carousel, or grid.

B Display data from an external application in a Siebel CRM view or applet.

B Display a Siebel CRM view or applet in an external application.

B Display a Google map.

B Use cascading style sheets to modify HTML elements, including position, and dimension of an
element.

B Use HTML to customize the logo that your company uses or to customize the background image.

Use JavaScript to configure menus, menu items, and the layout.

18 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Overview of Siebel Open Ul @ About Siebel Open Ul

Display Siebel CRM data in a Google map or add maps that include location data.
Create a custom mobile list.

Configure scrolling, swipe, swipe scrolling, infinite scrolling, and the height of the scroll area.

Configure a view to use landscape or portrait layout.
Configure toggle controls and toggle row visibility.

For more information about these examples, see Chapter 5, “Customizing Siebel Open UI.”

Open Development Environment

You can use Siebel Tools or a development tool of your choice to customize Siebel Open Ul so that
it fits in your business environment and meets specific user requirements. You might not require Web
development in many situations because the Siebel Tools configuration works for the Siebel Open Ul
client similarly to how it works for the standard interactivity or high interactivty Siebel client. You
can use a predefined, uncustomized deployment, or you can use Siebel Tools to customize the SRF
and Siebel Web templates. You can use only Web development or you can use Siebel Tools and Web
development depending on your implementation requirements.

You can use Siebel Open Ul with the rendering environment of your choice. You can use your
preferred Integrated Development Environment (IDE) to write native JavaScript code on top of the
API that Siebel CRM uses, or with the JavaScript API that Siebel Open Ul uses. For more information,
see Chapter 5, “Customizing Siebel Open Ul.” For more information about the JavaScript API that
Siebel Open Ul uses, see Appendix A, “Siebel Open Ul Application Programming Interface.”

You can use HTML, CSS, or JavaScript to add features. For example, you can do the following:
B Create smooth transitions between swipe, accordion, or carousel views.

B Create multifont displays.

B Expand, collapse, or resize an applet.

|

Use open-source JavaScript code that can reuse work from the open-source development
community.

B Use a plug-in, proprietary development environment, or native development environment that
you choose, to create a custom rendering architecture that resides on top of the JavaScript API
that Siebel Open Ul uses.

B Use intraworkspace communication and DOM (Document Object Model) access and manipulation
through JavaScript.

B Do a limited pilot test of your customizations in your current Siebel Server implementation while
most of your users continue to use the high-interactivity client.

B Preserve your existing customizations.

Siebel Open Ul JavaScript API Support

The JavaScript APl that Siebel Open Ul uses is recommended over browser scripting. You can use
your own Integrated Development Environment to write JavaScript and you can customize the
JavaScript API that Siebel Open Ul provides. This JavaScript API allows you to do the following:

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 19

Overview of Siebel Open Ul = About Siebel Open Ul

Include Siebel Open Ul objects, such as views or applets, in a third-party user interface.
Integrate external content in the Siebel Open Ul client.

Use public and documented JavaScript APIs that support your business logic without rendering
objects that depend on a specific or proprietary technology.

For more information about this JavaScript API, see Appendix A, “Siebel Open Ul Application
Programming Interface.”

Multiple Client Environment
Siebel Open Ul can do the following to support different client environments:

B Display data in any client that meets the World Wide Web Consortium standards. For example, a
corporate desktop, laptop, seven-inch tablet, or ten-inch tablet. Siebel Open Ul can display a
typical Siebel CRM desktop client in the smaller footprint that a tablet provides.

B Display data in a browser.

Display data simultaneously from a single Siebel business application to more than one client
environment.

Siebel Open Ul works the same way for the following client types:
B Siebel Web Client
B Siebel Mobile Web Client

I Siebel Dedicated Web Client, also known as the Thick Client

Support for More Than One Usage

Siebel Open Ul adjusts to the unique attributes that each client uses so that the user can do the
same task on a variety of client types. It can optimize the intrinsic capabilities of each client type or
device so that they provide a desirable user experience for the novice user and for the expert user.
An administrator can configure Siebel Open Ul to meet some of these individual skill levels. Siebel
Open Ul can do the following:

B Support applications that you customize to meet appearance and behavior requirements or usage
patterns of various devices, such as smartphones, tablets, desktop computers, or laptop
computers.

Use flexible layout options that support a tree tab layout or a custom navigation design.
Automatically hide tabs and navigation panes when not in use to optimize space.

B Allow employees, partners, and customers to use the same business process and validation with
different levels of access.

B Use user interactions that are consistent with current Web applications.

Support layout and gesture capabilities for mobile users who use a tablet or smartphone device.

20 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Ul = Differences Between High Interactivity and Siebel Open Ul

New Notification User Interfaces

Siebel Open Ul includes elements from social media and smartphones that improve user productivity,
such as notification applets. It combines these capabilities with other Siebel CRM innovations to
provide the following capabilities:

B Use a notification area that displays messages. The user can access this area at any time without
disrupting current work.

Hover the mouse to toggle between summary and detail information for a record.

B Use native Web browser functionality. For example, use bookmarks, zoom, swipe, printing and
print preview, and spell checker.

B Use intuitive system indicators for busy events or to cancel a time-consuming operation.

Allow navigation through a wide range of data entry and navigation capabilities through the
keyboard, mouse, tablet, or gesturing.

For more information, see “Notifications That Siebel Open Ul Supports” on page 545.

Mobile Environments
Siebel Open Ul on a mobile interface uses the same architecture that Siebel Open Ul on a desktop
application uses. For more information, see Siebel Connected Mobile Applications Guide.

Siebel Open Ul architecture follows Responsive Web Design patterns, which allow the same content
to be displayed differently based on the device from which it is being accessed.

Differences Between High Interactivity
and Siebel Open Ul

This topic describes the differences that exist between the high-interactivity client and the
Siebel Open Ul client. It includes the following information:

B How Siebel CRM Renders High-Interactivity Clients on page 22

B How Siebel CRM Renders Siebel Open Ul Clients on page 24

B Comparison of Customization Capabilities Between High Interactivity and Siebel Open Ul on page 29
|

Summary of Differences Between High Interactivity and Siebel Open Ul on page 28

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 21

Overview of Siebel Open Ul Differences Between Hig

How Siebel CRM Renders High-Interactivity Clients

The Siebel Server uses SWE (Siebel Web Engine) tags in SWE templates to create the screens that
it displays in the high-interactivity client that a Siebel application uses. A control is a contained, user
interface element, such as a menu, toolbar, grid, combo box, and so on. The red borders in Figure 1
identify some of the controls that the Siebel Server renders.

e =m@gs

wcaunt

A Home
My Aecounts tr 400t e [0
Hara: T hw ste Farant Halry Prvana # status i B Secourt Type sevount Team Soscunt Class
FinzncaOna Corporation $an Fizneisco Kimtiall bry. Claaners (a2 pandzas Ceadit Hold [AutarHome Supply Stora SADMIN Sonios Spgregator A
| atiue Systems- Huad Duaters e Zaphpr Fattners a9 7337050 Ces it Hold [Barking SADMIN Billing Aggregator
| Avfive Systems - SFO (123)123:1234 Closed [Al Suite SADMIN Billing
| giive Bystems - SFO San Francisce 01555121 Ciosed [l Al Suite SADMIN Biling
| Active Systems. San Francizca San Faaneisce, USA Caztomer [l Customar SADMIN Customer
Albany Hauralogy Center Albany 5 @01) 8742043 N Customar [; Dapanment SADMIN Custemer
| atbany Ragistoay Center Al s o1 §7aa922 N Customer [Depantment SADMIN Custemer
| A1l fm esican Insutancs Age. Bay s @151 555-1239 Open Point [0 Parine: SADMIN Custemer
Albman Capital Comporatian HHa 123) 123:1239 ctive [l Commercial SADMIN Customer
Aluarez L Distribution (zcehiptealestbisaript Active [l Retailar SADMIN Customer >
I T
. o
FinanceCne Corporation GRE L
—— 7
Asosunt Name:® FinenoeDne Corporation Sitei San Frantises Acsount Team: SABMIN
Addiess | 580 Fotsom St = State: AT - Wiain Fhone #: 4257564757
City: | San Francitce Courtey: | Angailla - Main Facfl: ¢NSITET2101
Zip Code: | 84105 URL. susmefinznceane com

weaseriptvoid(0)

Figure 1. How Siebel CRM Renders High Interactivity Clients

A typical Siebel CRM Web page includes several controls that Siebel Web Template (SWT) files define.
For example:

Menus
B Toolbars
B Predefined query lists
B Screen tabs
B Applets

In high interactivity, each of these controls, or a group of controls, occupies an HTML frame. High
interactivity positions the HTML frame and uses the position and dimension information that the
HTML markup contains in this frame to hardcode them into place. High interactivity gets this
information from the SWT files that it processes to render the page layout.

22 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Ul = Differences Between High Interactivity and Siebel Open Ul

A high interactivity client is a type of Siebel CRM client that resembles a Windows client. It supports
fewer browsers than standard interactivity, but it includes a set of features that simplify data entry.
For example, page refreshes do not occur as often as they do in standard interactivity. The user can
create new records in a list, save the data, and then continue browsing without encountering a page
refresh. For more information about high interactivity and standard interactivity, see Configuring
Siebel Business Applications.

How High Interactivity Rendering Affects Your Ability to Customize
Siebel CRM

A SWE template allows you to customize a high-interactivity client only according to the capabilities
that the SWE tags provide. For example, you can add a custom list applet to a view, but you cannot
modify the individual objects that this list applet contains. You cannot modify a list applet to render
as a carousel because a view web template can reference an applet, but it cannot reference the
objects that the applet contains, and you cannot modify the ActiveX controls that do render these
objects.

Figure 2 illustrates how Siebel CRM uses repository metadata to render objects in a high-interactivity
client. For example, Siebel CRM uses:

B View metadata that resides in the repository on the Siebel Server to render a view object in the
client.

B Applet metadata and Siebel CRM data that reside in the repository to render an applet object in
the client.

Figure 2 illustrates how a standard, custom rendering capability is not available on the high
interactivity client because Siebel CRM uses a SWE tag that it gets from the Siebel Server to render
each control, and you cannot modify these tags in the client. The configuration on the client is for
the most part a black box configuration. You cannot modify it, or it is difficult to modify objects in
the client without using Siebel Tools to do custom binding.

Siabeal Siebel
Page Fage
| I
]]]] | | | |
Screen Application Screen Application
El= Tabs [y fdenu = Tabs Ul Mernu
| | I I
Toolbar Toolbar
Applet Item Appila Itam
Repository Metadata on Siebel Server Rendering on High Interactivity Client

Figure 2.

How Siebel CRM Uses Repository Metadata to Render Objects in High Interactivity Clients

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 23

Overview of Siebel Open Ul & Differences Between High Interactivity and

Siebel CRM uses a SWE template to render each applet directly from the Siebel repository to the user
interface in the client, and each applet references a business component to get Siebel CRM metadata
and data from the repository. This configuration does not allow you to customize how Siebel CRM
renders this applet unless you use Siebel Tools to modify the repository. For example, you cannot
use JavaScript in the client to distribute data from a repository applet across more than one pane in
a Siebel screen, such as displaying the address of a contact in a pane that is separate from the pane
that displays other contact details, such as the contact name and phone number. You cannot use an
alternative configuration, such as your custom configuration or a third-party configuration, to bind
the Siebel business layer to user interface objects, except through Siebel Tools.

Only one view that displays content typically exists in a Siebel screen, and you cannot add more
views unless you use Siebel Tools to modify the repository. Siebel Tools specifies the configuration
for each instance of these objects that determines how Siebel CRM binds the object to the Siebel
Business Layer. For example:

B To bind the command that a menu item or toolbar button calls

B To bind the business component and business component fields that an applet references to get
Siebel CRM data

You can write scripts on the Siebel Server or the client, but these scripts only allow you to customize
how Siebel CRM processes the requests that it receives from the user interface. They do not allow
you to customize rendering.

For more information about applets, business components, views, the Siebel repository, Siebel
metadata, Siebel Tools, the Siebel Object Hierarchy, and so on, see Configuring Siebel Business
Applications.

How Siebel CRM Renders Siebel Open Ul Clients

Siebel CRM does the following to render a Siebel Open Ul client:

B Uses HTML div elements and HTML tables in SWE templates to determine physical layout instead
of the HTML frames that high interactivity uses. Siebel Open Ul does not use div elements to
structure a page. The entire page hierarchy that Siebel Open Ul uses is a hierarchy of div
elements. Siebel Open Ul does not use the HTML frame.

B Uses cascading style sheets (CSS) to specify position, dimension, and styling for HTML elements,
such as font color and font type, instead of the HTML code that high interactivity uses. This
styling does not apply to the objects that an ActiveX control renders in a high-interactivity client,
such as a list applet.

This configuration is more closely aligned with current guidelines for Web design than the
configuration that high interactivity uses. Siebel Open Ul allows you to customize how Siebel CRM
renders individual objects in the client without having to use Siebel Tools, and it allows you use an
alternative configuration, such as your custom configuration or a third-party configuration, to bind
the Siebel business layer to user interface objects. Siebel Open Ul allows you to customize an
existing SWT file or create a new SWT file.

24 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

tween High Interactivity and Siebel Open Ul

How Siebel CRM Renders Div Containers on Siebel Servers

Figure 3 illustrates how the Siebel Server uses SWE tags that reside in SWE templates to render div
containers on the Siebel Server. For example, it renders a swe:view tag as a view container. It does
the same rendering on this server for Siebel Open Ul that it does for high interactivity.

Siebel Siebel
Page Page
| I
]]]] | | l |
. <div/> for . <div/> for
- SWEMEY- ; =div> for =dlivi= for i
SWaView contral swatoolbar SWEMEnU N Ve Screan Toolbar Application
" Tabs Menu
| I
i <divi> for
swa applat Applet
SWE Tags In SWE Templates on Siebel Server SWE Rendering on Siebal Server

Figure 3. How Siebel Servers Use SWE Tags to Render Containers on the Siebel Server

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 25

Overview of Siebel Open Ul & Differences Betw:

How Siebel CRM Handles Data in Siebel Open Ul

Figure 4 illustrates how Siebel CRM uses a presentation model, which is a JavaScript file that resides
in the client that specifies how to handle the metadata and data that Siebel Open Ul gets from the
Siebel Server. Siebel CRM then displays this information in a list applet or form applet in the client.
The presentation model provides a logical abstraction of the metadata, transaction data, and
behavior for part of the user interface. Siebel Open Ul includes a presentation model for each
significant part of the user interface, such as the application menu, toolbars, screen tabs, visibility
drop-down lists, applet menus, different types of applets, and so on. The presentation model does
not render the HTML in the user interface.

Siebel Siebel
Page Page
| |
]] 1 1 |]]]
o Me PM for PM for
View S_'I:_:;eeb;n Toolbar ﬂ"pﬂ':fﬁ'm Rendering Screen 1I_“ﬂ|"~|;'||£c;rr Application
for View Tabs Menu
| I |
Toolbar PMA for
2 Iterm Applet
Repository Metadata on Siebel Sarver Rendering on Siebel Opan Ul Client

Legend
PM Presentation Model

Figure 4. How Siebel CRM Handles Data in Siebel Open Ul

26 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

rences Between High Interactivity and Siebel Open Ul

How Siebel CRM Renders Objects in Siebel Open Ul

Figure 5 illustrates how Siebel CRM uses a physical renderer, which is a JavaScript file that Siebel
Open Ul uses to render the user interface. A physical renderer contains instructions that describe
how to render the physical presentation and interaction for a user interface element, such as a grid,
carousel, form, tree, tab, menu, button, and so on. Each physical renderer references a presentation
model, and it uses the metadata, data, and behavior that this presentation model defines to render
an object in the client. For more information about presentation models and physical renders, see
“About the Siebel Open Ul Development Architecture” on page 37.

=
A\

S

vww\ N R

=
=) = (e

Rendering on Siebel Opan Ul Client

Legend)

PM Presentation Model
PR Physical Renderer
— Reference

Figure 5. How Siebel CRM Renders Objects in Siebel Open Ul

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 27

Overview of Siebel Open Ul & Differences Between High Interactivity and

Examples of How You Can Customize Siebel Open Ul

Siebel Open Ul uses the presentation model and the physical renderer to separate the logical user
interface from the rendering. This configuration allows you to modify the user interface without
having to modify the logical structure and behavior of the client. For example, you can modify the
physical renderer so that it uses a third-party, grid-to-carousel control to display a list applet as a
carousel without modifying a presentation model. For more information about this example, see
“Customizing List Applets to Render as Carousels” on page 207.

You can use the physical renderer of a control to implement a variety of configurations so that Siebel
Open Ul can render this control at nearly any physical location in the browser and with your custom
logic. You can use the physical renderer to display different parts of the same applet in different
physical panes in a Siebel screen. For example, you can configure Siebel Open Ul to display a
temporary recycle bin that uses data from the presentation model to render data in a pane that is
physically separate from the data that the list applet displays. For more information about this
example, see Chapter 4, “Example of Customizing Siebel Open Ul.”

You can use the presentation model to modify the logical behavior of the user interface without
modifying the physical renderer. For example, you can modify a presentation model to add a list
column in a list applet so that it iterates through list columns and renders them without modifying
the physical renderer. This column can reside on the client even if the Siebel Server contains no
representation of it.

You can customize at the control level writing plug-in wrappers that govern how a control should
appear and behave when a certain set of conditions are satisfied. A checkbox appearing as a
flipswitch on mobile devices is an example of this type of implementation.

Summary of Differences Between High Interactivity and
Siebel Open Ul

Siebel Open Ul and high interactivity implement the physical user interface differently:

B Siebel Open Ul. The SWE renderer that Siebel Open Ul uses structures the physical user
interface through HTML div elements instead of the HTML frames that high interactivity uses. This
configuration allows you to use cascading style sheets to do the layout for these div elements
instead of hard coding the position of HTML frames. It simplifies reconfiguring the HTML for
different user interface themes.

B High interactivity. Uses a hierarchy of HTML frames. This hierarchy makes it difficult to
reconfigure the rendered HTML to support different user interface themes.

Siebel Open Ul uses the same browser proxy configuration that high interactivity uses. This structure
uses the Siebel Object Hierarchy that includes applications, views, applets, business objects, and
business components. It implements each of these objects in JavaScript. These JavaScript objects
render HTML and handle user interaction through DOM events. Siebel Open Ul uses no ActiveX
controls to render the physical user interface.

The applet object that resides in the proxy contains all the same metadata and data that it requires
to render the physical user interface that high interactivity uses. For more information, see “About
Objects and Metadata” on page 33.

28 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

pen Ul = Differences Between High Interactivity and Siebel Open Ul

In some situations, Siebel Open Ul gets more data locally from the proxy or the client, or it creates
metadata in the client. A presentation model specifies how to display this local data. It also provides
an interface to the proxy.

Siebel Open Ul uses a physical renderer to implement the binding that exists between a predefined
JavaScript control and the Siebel Object Model that resides in the proxy.

To create the HTML DOM structure for a JavaScript control, the renderer uses the metadata and data
that Siebel Open Ul populates into the client proxy. The renderer uses methods that reside in the
presentation model to access this metadata.

Comparison of Customization Capabilities Between High Interactivity
and Siebel Open Ul

High interactivity and Siebel Open Ul share the following customization capabilities:

B Metadata configuration for all user interface objects resides in the Siebel Repository.
B Layout configuration of user interface objects resides in SWE templates.

B Some server scripting capabilities exist to render custom configurations.

Table 3 summarizes some of the significant customization differences that exist between high
interactivity and Siebel Open Ul. For a more detailed comparison, see Article ID 1499842.1 on My
Oracle Support.

Table 3. Summary of Customization Differences Between High Interactivity and Siebel Open Ul

High Interactivity Siebel Open Ul

Renders the user interface as a collection of | Renders the user interface as a collection of HTML div

HTML frames. elements.

Uses hard coding to determine styling, Uses CSS files to determine styling, sizing, and

sizing, and positioning. Limits the positioning. Allows you to fully modify the user

customizations you make to this style. interface. For example, you can create a custom user
interface for a small, nondesktop environment.

Siebel Web Engine can only render an Siebel Web Engine can render an entire view or only

entire view. an individual applet.

Uses ActiveX. Limits the customizations Uses JavaScript that allows you to fully customize

that you can make in the user interface. how Siebel Open Ul renders the user interface.

Allows any current, compliant Web browser to use
Siebel Open Ul.

An applet can reference only a business An applet can reference a business service, business
component or a virtual business component, or virtual business component.
component.

Browser scripting for proxy objects resides in the client. For more information, see “Browser Script
Compatibility” on page 602.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 29

Overview of Siebel Open Ul & About Using This Book

About Using This Book

This topic includes information about how to use this book. It includes the following information:
“Important Terms and Concepts” on page 30

“How This Book Indicates Computer Code and Variables” on page 31

“How This Book Describes Objects” on page 32

“About the Siebel Innovation Pack” on page 33

“Support for Customizing Siebel Open Ul” on page 34

“Getting Help from Oracle” on page 35

Important Terms and Concepts

This book uses the following terms and concepts that you must understand before you customize
Siebel Open Ul:

B A user is a person who uses the client of a Siebel business application to access Siebel CRM data.

B The user interface is the interface that the user uses in the client to access data that Siebel Open
Ul displays.

B The client is the client of a Siebel business application. Siebel Call Center is an example of a
Siebel business application. Siebel Open Ul renders the user interface in this client.

The server is the Siebel Server, unless noted otherwise.

An administrator is anyone who uses an administrative screen in the client to configure Siebel
CRM. The Administration - Server Configuration screen is an example of an administrative
screen.

B Predefined Siebel Open Ul is the ready-to-use version of Siebel Open Ul that Oracle provides to
you before you make any customization to Siebel Open Ul.

B A Siebel CRM object is an object that resides in the Siebel Repository File. For example, a screen,
view, applet, business component, menu, or control is each an example of a Siebel object. The
Contact List Applet is an example of a Siebel CRM applet. A Siebel CRM applet is not equivalent
to a Java applet. For more information, see Configuring Siebel Business Applications.

B A predefined object is an object that comes already defined with Siebel CRM and is ready to use
with no modification. The objects that Siebel Tools displays in the Object List Editor immediately
after you install Siebel Tools, and the objects that the SRF (Siebel Repository File) contains before
you make any customization, are predefined objects.

A custom object is a predefined object that you modified or a new object that you create.

The term focus indicates the currently active object in the client. To indicate the object that is in
focus, Siebel CRM typically sets the border of this object to a solid blue line.

30 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

For

Overview of Siebel Open Ul ® About Using This Book

To derive a value is to use one or more properties as input when calculating this value. For
example, Siebel Open Ul can derive the value of a physical renderer property from one or more
other properties. For more information, see “Deriving Presentation Models, Physical Renderers and
Plug-in Wrappers” on page 129.

The term class describes a JavaScript class. It does not describe the Siebel class object type,
unless noted otherwise, or unless described in the context of the Siebel Object Hierarchy. For
more information about the Siebel class object type, see Siebel Object Types Reference.

The term reference describes a relationship that exists between two objects, where one object
gets information from another object or sends information to this object. For example, in the
Siebel Object Hierarchy, the Opportunity List Applet references the Opportunity business
component to get opportunity records from this business component, and the Opportunity
business component references the S_OPTY table to get opportunity records from this table.

The term instance describes the current, run-time state of an object. For example, a business
component instance is a run-time occurrence of a business component. It includes all the run-
time data that the business component currently contains, such as the values for all fields and
properties of this business component. For example, an instance of the Contact business
component includes the current, run-time value of the City field that resides in this business
component, such as San Francisco. You can configure Siebel Open Ul to get a business
component instance, and then modify this data or call the methods that this business component
references.

more information about these terms and other background information, see the following items:
A complete list of terms that this book uses, see “Glossary” on page 637.
Using the Siebel Open Ul client, see Siebel Fundamentals for Open Ul.

Enabling the Siebel Server to run Siebel Open Ul, see the Siebel Installation Guide for the
operating system you are using.

Using Siebel Tools, see Using Siebel Tools.

How This Book Indicates Computer Code and Variables

Computer font indicates a value that you enter or text that Siebel CRM displays. For example:

This is computer font

Italic text indicates a variable value. For example, the nand the method _name in the following syntax
description are variables:

Named Method n: method name

The following is an example of this code:

Named Method 2: WriteRecord

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 31

Overview of Siebel Open Ul & About Using This Book

How This Book Indicates Code That You Can Use as a Variable and
Literal

You can write some code as a literal or a variable. For example, the Home method sets a record in
the current set of records as the active row. It uses the following syntax:

busComp .Home() ;
where:
B busComp identifies the business component that contains the record that Home sets.

You can use busComp as a literal or a variable. If you declare busComp as a variable in some other
section of code, and if it contains a value of Account when you use the Home method, then Home
sets a record in the Account business component as the active record. You can also use the following
code, which also sets a record in the Account business component as the active record:

Account._Home();

Case Sensitivity in Code Examples

The code examples in this book use standard JavaScript and HTML format for uppercase and
lowercase characters. It is recommended that you use the following case sensitivity rules that this
book uses:

B All code that occurs outside of a set of double quotation marks (" ") is case sensitive. The only
exception to this rule occurs with path and file names.

B All code that occurs inside a set of angle brackets (<>) is case sensitive. The only exception to
this rule is any code that you enclose with a set of double quotation marks that you nest inside
a set of angle brackets.

The following example is valid:

function RecycleBinPModel O{
SiebelAppFacade .RecycleBinPModel .superclass.constructor.apply(this, arguments);

3
The following example is not valid. Bold font indicates the code that is not valid:

function Recyclebinpmodel (){
SiebelAppFacade.RecycleBinPModel .superclass.constructor.apply(this, arguments);

}

How This Book Describes Objects

For brevity, this book describes how an object, such as a user property, does something. For
example, this book might state the following:

The Copy Contact user property copies contacts.

In strict technical terms, the Copy Contact user property only includes information that some other
Siebel CRM object uses to copy contacts.

32 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Overview of Siebel Open Ul ® About Using This Book

For brevity, to describe how Siebel CRM uses the value that a property contains, in some instances
this book describes only the property name. For example, assume Siebel CRM displays the value that
the Display Name property contains. This property is a property of a tree node object. This book only
states the following:

Siebel CRM displays the Display Name property of the tree node.

In reality, Siebel CRM displays the value that the Display Name property contains.

About Objects and Metadata

A Siebel object definition defines the metadata that Siebel Open Ul uses to run a Siebel application.
The Account List Applet that Siebel Tools displays in the Object List Editor is an example of an object
definition. It includes metadata that Siebel Open Ul uses to render the Account List Applet, such as
the height and width of all controls that the applet contains, and all the text labels that it must display
on these controls. The Siebel Repository is a set of database tables that stores these object
definitions. Examples of types of objects include applets, views, business components, and tables.
You use Siebel Tools to create or modify an object definition.

The object manager hosts a Siebel application, providing the central processing for HTTP
transactions, database data, and metadata, which is data that the object definitions contain. It is
different from Siebel CRM data, which is data that is specific to your business, such as account names
and account addresses.

For more information, Configuring Siebel Business Applications.

How This Book Describes Relationships Between Objects

An object definition includes properties and a property includes a value. For example, the Business
Object property of the Account Address view contains a value of Account. To describe this
relationship, this book might state the following:

The Account Address view references the Account business object.

Sometimes the relationship between objects occurs through more than one object. For brevity, this
book does not always describe the entire extent of relationships that exists between objects through
the entire Siebel Object Hierarchy. For example, because the Account business object references the
Account business component, and the Account Address view references the Account business object,
this book might state the following:

The Account Address view references the Account business component.

About the Siebel Innovation Pack

Oracle provides the functionality that this guide describes as part of Siebel Innovation Pack 2014. To
use this functionality, you must install the innovation pack and do the postinstallation configuration
tasks. For more information about the functionality that Siebel Innovation Pack 2014 includes, see
the applicable Siebel Maintenance Release Guide on My Oracle Support.

Depending on the software configuration that you purchase, your Siebel business application might
not include all the features that this book describes.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 233

Overview of Siebel Open Ul & About Using This Book

Support for Customizing Siebel Open Ul

Siebel CRM supports the following customizations in Siebel Open Ul. You must carefully consider the
implications of doing this customization and development:

34

Siebel Open Ul allows you to use predefined or existing Siebel repository information in your
deployment without customization. Siebel Open Ul uses this repository information to render the
user interface. This rendering does require user acceptance testing.

You can use Siebel Tools to customize Siebel Open Ul so that it works in your business
environment and meets user requirements. Siebel Tools configuration for Siebel Open Ul is
similar to the configuration that you do for clients that Siebel CRM renders in high interactivity
and standard interactivity. You configure the same Siebel Repository File and the same Siebel
Web templates.

You can use your Web development skills and the Siebel Open Ul JavaScript APl to customize
Siebel Open Ul. For details about this API, see Appendix A, “Siebel Open Ul Application
Programming Interface.” Siebel Open Ul uses this API to replace proprietary browser scripting
that renders high-interactivity clients. Oracle continues to support browser scripting, but strongly
recommends that you convert any browser script that your deployment currently uses so that it
uses the Siebel Open Ul JavaScript API.

You can combine Siebel Tools development with development of the Siebel Open Ul JavaScript
API simultaneously, as needed.

Siebel CRM supports including Siebel Open Ul or individual Siebel Open Ul objects in a third-party
user interface. Views and applets are examples of Siebel Open Ul objects.

Siebel CRM supports integrating external content in the Siebel Open Ul client.

You can modify the cascading style sheets that come predefined with Siebel Open Ul to rebrand
your deployment and customize the user experience.

Siebel Open Ul supports usage of Siebel SmartScript to specify workflow. For more information,
see Siebel SmartScript Administration Guide.

You can use HTML, CSS, or JavaScript to add features. For example, you can do the following:

m Build user interfaces on any technology that can integrate with the Siebel Open Ul JavaScript
API.

m Use your preferred, open-source JavaScript library, such as jQuery, from the open-source
development community, or you can use the environment that Siebel Open Ul provides.

m Use a plug-in, proprietary development environment, or a native development environment.
You can use these environments to create a custom rendering architecture that integrates
with the Siebel Open Ul JavaScript API.

B Use intraworkspace communication and DOM access and manipulation through JavaScript
programming.

m Do a pilot user acceptance test of your Siebel Open Ul deployment that uses your current
Siebel Server implementation. Users can continue to use the high interactivity Siebel client
during this testing.

B Preserve your existing configurations and customizations.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Overview of Siebel Open Ul ® About Using This Book

Support That Siebel Open Ul Provides

It is strongly recommended that you carefully consider the support policies that this topic describes
before you customize Siebel Open Ul. For more information about the support that Oracle provides,
see Scope of Service for Siebel Configuration and Scripting - Siebel Open Ul (Article ID 1513378.1)
on My Oracle Support.

Support for the Siebel Open Ul JavaScript API

Oracle only supports usage and features of the Siebel Open Ul JavaScript APl as described in Oracle’s
published documentation. This policy makes sure that your deployment properly uses this APl and
helps to make sure your deployment works successfully. You are fully responsible for support of any
custom code that you write that uses this API. For product issues that are related to this API, Oracle
might request a minimal test case that exercises your APl modifications.

Oracle supports your usage of an Integrated Development Environment (IDE) of your choice that you
use to write native JavaScript code that you then deploy to work with the Siebel Open Ul JavaScript
API. Oracle does not support the features of or the quality of any third-party IDE.

Oracle supports your usage of the Siebel Open Ul JavaScript APl with a rendering environment and
system integration that you choose. Oracle has implemented Siebel Open Ul in HTML. You can use
this implementation as a template for your deployment on other technologies. This template
approach allows you to expedite development. However, Oracle can in no way support these
customizations because this work is outside the scope of Oracle's support for customizations. It is
recommended that you work with Oracle's Application Expert Services on any implementation issues
you encounter that are related to the Siebel Open Ul JavaScript API. For more information, see
“Getting Help from Oracle” on page 35.

If your current deployment includes an integration that resides on the desktop, and if this integration
does not easily support migration to JavaScript integration, then it is recommended that you move
this integration to the Siebel Server, or use a web service on the desktop that can integrate to this
server.

Support for Code Suggestions, Examples, and Templates

Oracle provides code examples only to help you understand how to use the Siebel Open Ul JavaScript
API with Siebel Open Ul. Oracle does not support your usage of these code examples. It only
supports usage of this APl as described in Appendix A, “Siebel Open Ul Application Programming
Interface.”

Getting Help from Oracle

The predefined application that Oracle provides includes integration interfaces that allow you to
modify or to create a new user interface. You can use these integration interfaces to create your own
presentation model or physical renderer, at your discretion. It is your responsibility to create and
maintain any customizations that you make. For more information, see “About the Presentation
Model” on page 39 and “About the Physical Renderer” on page 42.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 35

Overview of Siebel Open Ul & About

To get help from Oracle with configuring Siebel Open Ul, you can create a service request (SR) on
My Oracle Support. Alternatively, you can phone Global Customer Support directly to create a service
request or to get a status update on your current SR. Support phone numbers are listed on My Oracle
Support. You can also contact your Oracle sales representative for Oracle Advanced Customer
Services to request assistance from Oracle's Application Expert Services.

36 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

3 of Siebel Open Ul

This chapter describes the architecture that you can use to customize Siebel Open Ul. It includes
the following topics:

B About the Siebel Open Ul Development Architecture on page 37

l Life Cycle of User Interface Elements on page 58

About the Siebel Open Ul Development
Architecture

This topic describes the development architecture that you can use to customize Siebel Open
Ul. It includes the following information:

B Overview of the Siebel Open Ul Development Architecture on page 37
Example of How Siebel Open Ul Renders a View or Applet on page 44
Customizing the Presentation Model and Physical Renderer on page 48
Stack That Siebel Open Ul Uses to Render Objects on page 50

Items in the Development Architecture You Can Modify on page 53
Example Client Customizations on page 54

Differences in the Server Architecture Between High Interactivity and Siebel Open Ul on page 55

Differences in the Client Architecture Between High Interactivity and Siebel Open Ul on page 57

Overview of the Siebel Open Ul Development
Architecture

Siebel Open Ul uses objects to deploy each element that it displays in the client. You can customize
each of these objects in a way that is similar to how you customize each object in a high-interactivity
client. You can customize each object separately. Each object resides in a layer that implements a
particular area of customization. For example, you can customize each of the following items that
you can also customize in high interactivity:

B Application
Screen
View

Applet

Applet Control

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 37

Architecture of Siebel Open

B Menu
m Application menu
m Applet menu
B Toolbar
m Application toolbar
B Navigation object
B Tabs at different levels
m Visibility menu
B Predefined Query (PDQ) menu

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

1 = About the Siebel Open Ul Development Architecture

Architecture You Can Use to Customize Siebel Open Ul

Figure 6 illustrates the basic architecture that you can use to customize Siebel Open Ul. For an
overview of how Siebel Open Ul uses the presentation model and physical renderer, see “How Siebel
CRM Renders Siebel Open Ul Clients” on page 24.

Applies styvie
to clhent C535 Styling
interface

Frry Asmos
k
Renders Piug-in | Physical N Template I s [
the data WEPRET | Renderer Manager Frana s | .
, P " —

Formats the
data and Presantation Model
applies logic

|Holds run-time
data and Client Prosy
metadata

Open Ul
Client

Object | Siebel
Manager Fepository File

Siebel Server

Figure 6. Architecture You Can Use to Customize Siebel Open Ul

About the Presentation Model

The presentation model is a JavaScript file that specifies how to handle the metadata and data that
Siebel Open Ul gets from the Siebel Server, and then displays this information in a list applet or form
applet in the client. It allows you to customize behavior, logic, and content. It determines the logic
to apply, captures client interactions, such as the user leaving a control, collects field values, and
sets properties. A presentation model can get the following items from the proxy, and then expose
them for external use. These properties and methods are similar to the properties and methods that
most software models use:

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 39

Architecture of Siebel Open Ul 1 About the Siebel Open Ul Development

B Properties. Contains information about the current state of each user interface element. For
example, if Siebel Open Ul currently displays or hides a field.

B Methods. Implements behavior that modifies the state of an object. For example, if the user
chooses a value, then a method can hide a field.

A presentation model can contain customization information that is separate from the predefined
configuration information that Siebel Open Ul uses for physical rendering. For example, it can display
or hide a field according to a pick value.

For more information, see “Example of a Presentation Model” on page 45.

About the Template Manager

The template manager is a JavaScript object that provides HTML markup as requested by a physical
renderer, a plug-in wrapper or any other active JavaScript object running in Siebel Open Ul. A
template manager ensures that each component of Siebel Open Ul generates exactly the same
markup, enhanced with a predefined classname, for similar type of Ul controls that is independent
of device, browser, and resolution. For example, if a text field is being rendered in Siebel Open Ul,
it must use same a classname, for example, “siebui-input, whether it is being rendered in a browser
on a desktop, or a mobile device.

About the Template Manager in Responsive Web Design

One of the most crucial aspects of responsive web design is to have clean and virtually identical DOM
elements within a specific classname for a control. For example, an anchor can also be styled in such
a way that it appears similarly to a button in one context and in another might appear as a hyperlink.

You must, however, provide the same DOM element for a particular type consistently, coupled with
a specialized classname, when required. The template manager then acts as an HTML content
provider for all types of primitives controls.

How it Works

The template manager expects the caller, which in most cases would be renderers or plug-in
wrappers, to provide certain information on what kind of control they need. For example, does the
caller need to create input element? Depending on the type and other parameters specified by the
caller, the template manager determines the control that is required, then builds an HTML string and
returns that string to the caller. The template manager also provides the flexibility to add more DOM
attributes which may or may not be standard, for example mobile specific "data-" attributes, or
automation attributes.

For more information about the template manager class, see “Template Manager Class” on page 464.

About Event Helper Objects

Event helper objects facilitate event binding in a physical renderer or a plug-in wrapper. They
consolidate events across platforms, most importantly standardize events such as touch and click.
The differences required in rendered markup and the behavioral aspects, if any, can be handled
internally by the template manager and the even helper object respectively.

For more information about the event helper objects, see “About Event Helper Objects” on page 40.

40 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

velopment Architecture

About Plug-in Wrappers

A plug-in wrapper is a complete and independent manager of an applet control and its life-cycle. It
is entirely responsible for all actions of a control, including but not limited to its showing, value
management, event handling. Plug-in wrappers cater to control level management. A plug-in
wrapper allows the wrapper to handle the control of specific functionalities. Individual renderers will
delegate the control-specific-functionalities to the wrappers. The wrappers handle the applet control
level implementation.

Figure 7 outlines the class structure of plug-in wrappers.

Field Plug-in
Wrapper

Figure 7. Class Structure of Plug-in Wrappers

Explanation of the elements in Figure 7:

B Base Plug-In Wrapper. This is the base specification class. It defines the base properties and
methods to which every plug-in wrapper must adhere. No functionality is implemented in this
class and it is not recommended that any derivation or customization occur from this class.

B Field Plug-In Wrapper. This is the class that defines the default functionality of a control. All
APls have a definition, and this plug-in wrapper is a fallback class for all customizations. You may
choose to derive a custom wrapper from this class if your intention is to write a new
customization.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Architecture of Siebel Open Ul & About the Siebel Open Ul Develo

B Plug-In Wrapper 1, Plug-In Wrapper 2, Plug-In Wrapper 3, Plug-In Wrapper N. These
are Siebel Open Ul out-of-the-box customizations that are used to display specific types of
controls. Examples of these are date pickers, drop-down menus, flip switches and signatures.
You may choose to derive a custom wrapper from one of these classes if your intention is to
slightly modify the functionality of an existing plug-in wrapper.

For more information about plug-in wrappers, including detailed instructions about creating and
customizing a plug-in wrapper, see “Process of Customizing the Plug-in Wrapper” on page 102, and
“Plug-in Wrapper Class” on page 460.

About the Plug-in Builder

The plugin builder wires the physical renderer to a plug-in wrapper for a given control and a given
set of conditions. It also provides a decoupling between physical renderers, such as an applet, and
plug-in wrappers for controls in that applet.

For more information see, “About Plug-in Wrappers” on page 41, and “Plugin Builder Class” on
page 463.

About the Physical Renderer

A physical renderer is a JavaScript file that Siebel Open Ul uses to render the user interface. It binds
a presentation model to a control. It can enable different behavior between a desktop client and a
mobile client. It allows the presentation model to remain independent of the physical user interface
objects layer. It allows you to use custom or third-party JavaScript code to render the user interface.
It can display the same records in the following different ways:

B List Applet

B Carousel

B Calendar

B Mind Map

For more information, see “Example of a Physical Renderer” on page 46.

How Siebel Open Ul Uses the Presentation Model and the Physical
Renderer and Plug-In Wrapper

A high-interactivity client allows you to use scripts, but it does not include a formal environment that
binds data to the user interface. It customizes a controller instead of customizing a view. Siebel Open
Ul uses presentation models and physical renderers to meet this requirement.

A user interface object includes a combination of the following items:

B Physical presentation and interaction for a user interface element. For example, a grid,
carousel, form, tree, tab, menu, button, and so on.

B Logical presentation and interaction that Siebel Open Ul can physically display in more
than one way. For example, Siebel Open Ul can display a list of records in a grid or in a carousel.
The logical representation of this data includes the metadata that Siebel Open Ul uses to
determine the Siebel CRM information that this list of records contains. It does not include
information that Siebel Open Ul uses to physically display this list as a grid or carousel.

42 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

| Open Ul = About the Siebel Open Ul Development Architecture

B Presentation and interaction information. Includes application metadata, transaction data,
and configuration information that determines client behavior. Siebel Open Ul binds these items
to the generic presentation. For example, it can determine whether or not a field is required, and
then identify the data that it must display in a list column, or it can identify the business service
method that it binds to a button.

A high-interactivity application can bind metadata, data, and logical behavior to a generic user
interface in a highly configurable and declarative manner. It drives a fixed set of user interface
presentation and interaction options. For example, you can configure a high-interactivity application
so that a field is required or uses a hierarchical picklist. Siebel Open Ul can use this configuration,
but it also allows you to do the following customizations that you cannot do in high interactivity:

B Add a completely new presentation or interaction feature in the user interface. For
example, display or hide a field according to a pick value.

B Create a new or modify an existing logical user interface object. For example, you can use
Siebel Open Ul to customize an object so that it displays a list of records in an infinite scroll list,
which is an object that allows the user to view these records in a sliding window that displays
records over a larger list of records that already exist in the client. It allows the user to do an
infinite scroll in a mobile user interface. Note that, from a usability standpoint, it is almost always
preferable to configure Siebel Open Ul to use an interface that allows the user to page through
sets of records rather than use a scroll list. This configuration reduces uncertainty regarding the
records that Siebel Open Ul has or has not displayed in the visible portion of the client.

B Modify the type of user interface element that Siebel Open Ul uses to display
information. For example, you can configure Siebel Open Ul to display a list of records in a
carousel instead of on a grid. You can also configure Siebel Open Ul to display a check box control
in a grid or a form as a flip switch.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 43

Architecture of Siebel Open Ul & About the Siebel Op

Example of How Siebel Open Ul Renders a View or
Applet

Figure 8 illustrates how Siebel Open Ul renders the Contact Form Applet.

Cascading Style Sheat
Files Q
Plug-in Physical Renderer File: - _ ‘__ o e
? Wrappes ?‘ partialrefreshpr.js =1 —t

Prezantation Model File:
partialrefreshpm.js

-

Open Ul
Client

O
? Manifast

Web Template File

-

Siebel Server

Figure 8. Example of How Siebel Open Ul Renders a View or Applet

Explanation of Callouts
Siebel Open Ul does the following to render the Contact Form Applet:

1 The user attempts to navigate to the Contact Form Applet.

2 Siebel Open Ul creates the view that displays this applet. This creation is similar to how Siebel
CRM creates a view in high-interactivity mode.

3 Siebel Open Ul references the manifest to identify the files it must download to the client. For
more information, see “Configuring Manifests” on page 167.

Siebel Open Ul downloads the JavaScript files it identified in Step 3 to the client.

5 A presentation model formats the data and applies application logic. For more information, see
“Example of a Presentation Model” on page 45.

6 A physical renderer registers itself with a corresponding object. A presentation model also does
this registration. For more information, see “Example of a Physical Renderer” on page 46.

44 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

he Siebel Open Ul Development Architecture

7 A physical renderer fetches and incorporates plug-in wrappers for its applet controls. For more
information, see “Example of a Plug-in Wrapper” on page 47.

8 Siebel Open Ul loads the cascading style sheets according to the manifest configuration that it
referenced in Step 3.

9 Siebel Open Ul uses a presentation model, physical renderer, and cascading style sheets to
render the Contact Form Applet.

Example of a Presentation Model

Figure 6 describes how the partialrefreshpm.js file does a partial refresh. It is recommended that you
include this business logic in a presentation model so that more than one modeler can reuse it. To
get a copy of this file, see Article ID 1494998.1 on My Oracle Support. To view an example that uses

£ typent(SimbelippFeceds Saccisletoeshen
IeEwLl Y. Memasrece{ "SIsbnIiGrFacade -

[=ocrder!IrdPartyS jgoery . signaturepad . min” . “corder!sisbelsphyrecdeser=] .

define (Tsiebel/custonpartialref reshpsT, funoticn (1

fanction FartialRefreshFPR(pm)
SienelAppFacacse FartlislRefreshPR.superclass. o

1
Siebells Excend{ FarcieliRefreshPR, Sietelirpfaceds PhysicalRecdeses } 7

FaztislRefreshPR.osonosvee . I
SiebelippFacsde . FartisliefreshPR, su - somil{ERim)

this.ATcachFMBinding { [F56 T 4 wEayows B @
[
fEnorion Meairyiagpsac(b
r commrels — this.JecPM(} . Gecd =Seo

war WorkPhonelos — contsolal -MoskP
var FaxPoooedNom = controlm] TFaxPoo

1£4 cansmow
£ mdivéNorkFhonelum b =4k
S =gname= + WOrKFROSeNuN . Eenxﬂnutlw._il + meym posmowugpe
€ "diw#FaxPhonelom Lakbel=
€ Siname=t= . ¥ = LGemIm €} = = 1T }.=howl):

SdiveNoxkPRonuiium Label=) -

puTiiame () + ~*]= §._nac

€} + = 1= }.Eid

this file, see “Displaying and Hiding Fields” on page 198.

if{ typeof| SisbelippFacade.FartialfefzeshfH) === “undefined") {
EisbelJ]s.Namespace| "SiebelappEAcAde, PATTiAlRefresnbM™) ¢

fonotion PartialRefreshPM({ proxy) {
SiebelAppFacede.PartialRefreshPFM.superclass.constructor.call(this, proxy }:

Sicbeld5 . Extend(PartialRefreshfM, SicbelippFacade.PresentationModel):

e ParcialRefreshPH.protocype. Inie = foanotion) {
SiebelAppFacede .PartislRefreshFM.superclass.Inic.call(this)
this.AddFropercy("ShowdJobTitleRelacedfisld™, "™)»
this, AddMerhod("ShowSelecstion™, SeleccionChange, { sequence : false, scops : this }):
this.AddMethod("FieldChange®, OmFieldChange, { seguence : false, =cope: this |)
b

function SelectionChange()({
vVar contiols = this.Fet("GerContzola™)
var contral = cancroals| "JabTiele™]:
var valus = this.ExecuteMethod(| "GetFieldValue®, control)
thias.SecFropercy("ShowdobTitleRelacedField™, (value ? troa: falas)):
i

function {mFieldChange({ concrol, walue }{
if{ concrol.GecHame ()} == "JobTicle") {
this.SetProperty({ "ShowdobTitleRelatedField™, valus ¥ troe: false))

Figure 9. Example of a Presentation Model

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 45

Architecture of Siebel Open Ul & About the Si

Explanation of Callouts
The partialrefreshpm.js file includes the following sections:

1 Creates the JavaScript namespace.

2 Uses the Define method to make sure Siebel Open Ul can identify the constructor. For more
information, see “Define Method” on page 510.

Creates the presentation model class.
Customizes a predefined presentation model to support partial refresh logic.

Includes the logic that Siebel Open Ul runs if the user changes records.

o g M~ W

Includes the logic that Siebel Open Ul runs if the user modifies a field value in a record.

Example of a Physical Renderer

Figure 10 describes how the partialrefreshpr.js file does a partial refresh for a physical renderer. To
get a copy of this file, see Article ID 1494998.1 on My Oracle Support. To view an example that uses
this file, see “Displaying and Hiding Fields” on page 198.

12 typeof| SiebeligpFacade.PartialRefzeahfl | == *usdefined™ j|
etally Hamaspaca ["SJiabalapplacess . FaztialiefoaahPRE™) ;

define ["riebel/custon/partialrefreshps™, ["order!dzdParty/iqaery.signatureped.min™, "order!siebel/phyrendesrez™], faonatien [} |

function FartislRefreshPR{ pm }{
SiebelAppFacade . FartialRefreshPR. superclass. constrocnoz.calll this, pm)
1

Hiabells Exrend| PasrialPefeeskPl, SiekelippFacads PhysisalBesdeses)

PastialRefreshPR.prototype.Inis = funotion () [
SiebelappFacade.FartislRedreshPR, superciass, Init. call{thim)
this. AstachFHBinding | Fhaw’o‘bhn:ﬁ:‘iu-l:dneld' iEyLayout)7
T
fanotion Modsfylagysue{ §[
e var csscrels = this. JecPH().0et| "Jeclonceals®)

ar samdEsy = phis. GerPH () Ses("InowlebTicleRelanedPield® §:
var WerkPhonelus = cesssels| "Moskp sums |
var FaxPhesedce = contzole| “FaxPhocelun™ |

1E{ camdhow [
§["diviNorkPhoneNum Labsl™) .onow(dr
Fi{ "Iname="" + HorkPhooelum.GecInputHame() + ""]™ j.show{hr
§{ "div#FarFhonelos Label®™ . show{) !

§("(name='" s FaxFheonelus CeclnpucHamef) & =*]%).=houf):
b
ala |
§("diviMorkPhooedux Label®) .hide(d;
£ "[nase="" & BorkPhooelus . Getlnputiase() 4 ""]").hidei{):
1 "diviFaxFPhoneliam Label®).hide{):
$("(name="" # FaxFhonelam.GeclnpatHame(} + =)= }.hide():

Figure 10. Example of a Physical Renderer

Explanation of Callouts
The partialrefreshpr.js file includes the following sections:

1 Creates the JavaScript namespace.

46 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

out the Siebel Open Ul Development Architecture

2 Uses the Define method to make sure Siebel Open Ul can identify the constructor. For more
information, see “Define Method” on page 510.

3 Creates the physical renderer class.
Specifies the ShowJobTitleRelatedField property.

5 Includes the logic that Siebel Open Ul runs if it modifies ShowJobTitleRelatedField.

Example of a Plug-in Wrapper

Figure 11 describes how the ColorBoxPW.js file does a partial refresh for a physical renderer. To get
a copy of this file, see Article ID 1494998.1 on My Oracle Support. To view an example that uses this
file, see “Process of Customizing the Plug-in Wrapper” on page 102.

/S First, define the custom PH's namespace.

if (typecf (SiebelippFacade.ColorBoxPW) === “"yndefined™) {
@

I Siebell)s.Namespace(SiebelippFacade.ColorBoxPH");

define("siebel/ColorBoxPh™, ["siebel/basepw”], function () {

[Define the module and add any dependencies (including 3rd pa"°1'ile= the PW may wse) here.
& pracade.ColorBoxPe = (function

function ColorBoxPW() {
// The constructor. Initializations and declrations go here. Just a superclass call in ocur case.
| Elebe [AppFacade.LolorBonPn, SUPErclass. CONStructor. apply (Chis, arguments);
]

Jf Make sure to extend from the right PW.
I Siebells.Extend(ColorBoxPW, SiebelAppFacade.DropDownPi); o

Jf That's it, that's all the customization we need.
return ColorBoxPh;
Ml

£ tow this bit geverns how or where this custom PW applies. The AttachPW API attaches this PW to
£ & speedific type of control, which in our caze 13 & combo box.
Siebelipp.5_dpp.PluginBuilder .AttachPi(consts. get{"SWE_CTRAL_COMBOBOX™), SiebelippFacade.ColorBos®d, function {(control) {
/f Every combo box encountered iz run against thizs sethod definition, snd returning true will do the attachment.
ff The control object itself iz at ocur dizposal to make a sound choice. Conditions can be as complex or sisple as regquired.
/¢ In this case, we return true only if the control's repository namc is “Probebility2™.
return (control.Gethase() === “Probability2™);

118
return SiebelappFacade .ColorBoxPul;
Hi

Figure 11. Example of a Plug-in Wrapper

Explanation of Callouts
The ColorBoxPW.js file includes the following sections:

1 Creates the JavaScript namespace.

2 Uses the Define method to make sure Siebel Open Ul can identify the constructor. For more
information, see “Define Method” on page 510.

3 Creates the plug-in wrapper class.
4 Implements the Life Cycle and Interface Methods of a Plug-in Wrapper.

5 Implements events handlers and other methods specific to the given Plug-in Wrapper.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 47

Architecture of Siebel Open Ul & About the Siebel Open Ul Develo

6 Wires the Plug-in Wrapper to the Physical Renderer (optionally) based on conditionals.

Customizing the Presentation Model and Physical
Renderer

Siebel Open Ul uses two JavaScript files to implement the presentation model and the physical
renderer and plug-in wrappers that it uses to display an applet. For example, it uses the following
files to display a carousel:

B ListPModel.js for the presentation model

B CarouselRenderer.js for the physical renderer

It uses the following files to display a grid:

B JQGridRenderer.js for the physical renderer

B ListPModel.js for the presentation model

It uses the following concatenated file for all applet controls:

B pwinfra.js is a concatenation of all the plug-in wrapper objects used for all standard applet
controls in the Siebel application

Customizing the Presentation Model

Siebel Open Ul considers static and dynamic values as part of the presentation model that it uses.
For example, a list applet includes columns and renders data in each column in every row. Metadata
specifies the column name and other details for each column, such as required, editable, and so on.
These values are static. Siebel Open Ul does not modify them unless you configure it to modify them
as part of a customization effort. A list applet can also include dynamic values. For example, a value
that identifies the record that is in focus, or the total number of visible records. Siebel Open Ul can
modify the value of a dynamic value in reply to an external event according to the behavior of the
model. For example, if the user clicks a field in a record, and if this record is not in focus, then Siebel
Open Ul modifies the property that stores the focus information to the record that the user clicked.
You can implement this type of functionality in a presentation model. For more information, see
“About the Presentation Model” on page 39.

Example of Customizing the Static and Dynamic Values of a Presentation Model

You can modify a presentation model to add a list column. For example, you can modify the SIS
Product List Applet so that it displays a Select column that allows the user to choose more than one
record, and then press Delete to delete them. You only modify a presentation model to implement
this example. You do not modify a physical render. Siebel Open Ul uses the JQGridRenderer physical
renderer for the grid control. JQGridRenderer is sufficiently generic that it can iterate any list of
columns that the presentation model returns. To view an example of this modification, see
“Customizing List Applets to Render as Maps” on page 212.

48 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

bel Open Ul = About the Siebel Open Ul Development Architecture

Example of Customizing the Behavior of a Presentation Model

You can add behavior to a presentation model. For example, you can configure a presentation model
to display or hide a set of fields according to the value of another field. You can configure Siebel Open
Ul so that the Job Title field on the Contacts form applet determines whether or not it displays the
Work# field and the Main Fax# field of a contact. If the Job Title includes a value, then Siebel Open
Ul displays the Work# field and the Main Fax# field. A presentation model defines this conditional
display. The physical renderer requires no configuration to implement this example. It queries the
presentation model, and then renders these fields according to the instructions that it gets from the
presentation model. You can implement this behavior on the client without modifying any
configuration on the Siebel Server. For a detailed description of an example that uses this type of
configuration, see Chapter 4, “Example of Customizing Siebel Open UI.”

Customizing the Physical Renderer

You can use a physical renderer to modify how Siebel Open Ul renders an object. For example, Siebel
Open Ul displays the predefined Contact Affiliations list applet as a typical Siebel CRM list. You can
modify this list to display as a carousel. You can modify how the user scrolls through a set of records,
which is a physical aspect of the applet that a physical renderer defines. But this list is still a list of
records that is a logical representation of the applet that the presentation model defines. You do not
modify this logical representation. To view an example of this type of modification, see “Customizing
List Applets to Render as Carousels” on page 207. For more information, see “About the Physical
Renderer” on page 42.

Customizing a Plug-in Wrapper

You can use a plug-in wrapper to modify how Siebel Open Ul renders an Applet Control object. For
example, Siebel Open Ul displays all fields with boolean values as Check Boxes. You can modify this
to display them as flip switch controls. You can modify how the user sets and resets the value of the
boolean field, which is a physical aspect of the applet control that a plugin wrapper defines. But this
control is still a boolean field: the logical representation of the applet control that the presentation
model defines. You do not modify this logical representation. To view an example of this type of
modification, “Customizing a Plug-in Wrapper” on page 49. For more information, see “About Plug-in
Wrappers” on page 41.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 49

Architecture of Siebel Open Ul 5 About th

Stack That Siebel Open Ul Uses to Render Objects

Figure 12 describes the stack that Siebel Open Ul uses to render objects. It uses the applet object
as an example.

Siebel Open Ul Client

Physical Layout
and Siyling o

Pug-in | Physical
Wrapper | Renderer o

Y

Presantation
Model e

Siebel Property
Set o

-

SWE Runtime
Applet Objact e

Applet Metadata 0

F

Buslness
Companent
Metadata

Siebel Server

Figure 12. Stack That Siebel Open Ul Uses to Render Objects

Explanation of Callouts
The stack that Siebel Open Ul uses to render objects includes the following items:

50 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

re of Siebel Open Ul = About the Siebel Open Ul Development Architecture

1 Physical layout and styling. Allows you to use HTML to display content, JavaScript to
customize logic, and cascading style sheets to customize layout and styling in the client. You can
position or hide controls to achieve almost any layout requirement. This high level of
customization is not possible with a high-interactivity client because high interactivity hard codes
the physical layout.

2 Physical renderer. For more information, see “About the Physical Renderer” on page 42 and
“About Plug-in Wrappers” on page 41.

3 Presentation model. For more information, see “About the Presentation Model” on page 39.

Proxy objects. Includes object instances for the client proxy. Each of these instances represents
an instance of a corresponding repository object that resides on the Siebel Server. Example
objects include a view, applet, business object, or business component. A proxy object includes
only enough logic to allow the client to use the same functionality that the server object uses,
including the data and metadata that the server object requires. A proxy object exposes the
interface for scripting in the client, but it does not allow you to significantly modify the physical
user interface. You can customize only the information that flows from the Siebel Server to the
client. You cannot customize how Siebel Open Ul uses the metadata or data in the proxy object
to render the physical user interface. In this example, proxy objects include the applet proxy and
business component proxy that contain data and metadata from the Server Response property
set. For more information, see “Browser Script Compatibility” on page 602.

5 Siebel Property Set. A hierarchy that Siebel Open Ul uses to communicate between objects
that reside on the Siebel Server and the proxies that reside in the client. The high-interactivity
client uses the same format for this property set.

6 SWE run-time applet object. Exposes scripting interfaces that allow you to modify the applet
so that it can control the business component or business service that this applet references. The
applet that resides on the Siebel Server gets a request from the proxy applet instance that
resides in the client. If necessary, it sends the request to a business component or business
service. Siebel Open Ul does not currently include a scripting interface that allows you to modify
the property set that the applet sends to the client.

7 Applet metadata. The applet object in the Siebel Repository File (SRF) that contains
information that Siebel Open Ul uses to bind the user interface to the business component. Siebel
Open Ul maps this information through business component fields. This binding can include only
a one-to-one mapping between one applet control and one business component field. Siebel
Open Ul does not allow more complex bindings. You can configure Siebel Open Ul to get data
through a presentation model in the client to develop functionality that is similar to the
functionality that a more complex binding provides. For more information, see “About Objects and
Metadata” on page 33.

Example Stack That Siebel Open Ul Uses to Render Objects

This topic describes a typical example of how Siebel Open Ul uses a presentation model and physical
renderer for an applet that it displays in a view. Every object that Siebel Open Ul renders uses this
same object stack. You can customize objects in this stack to modify rendering and behavior. For
example, you can customize the presentation model and physical renderers that implement view
navigation to use tree navigation instead of the predefined nested tab navigation.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 51

Architecture of Siebel Open Ul & About t

Figure 13 describes an example stack that Siebel Open Ul uses to display a calendar applet.

Siebel Open Ul Client

Jguery Full
Calendar o

[giullcalrenderar. js 'o

Siebel Property
Set

CSSSWEFrameCa
|Grid

Activity HI
Calendar Applet

Activity Business
Component

Siebel Server

Figure 13. Example Stack That Siebel Open Ul Uses to Render Objects

Explanation of Callouts
Siebel Open Ul uses the following items to display a calendar applet:

1 Jquery FullCalendar. The physical JavaScript control. A third-party typically provides this
control.

52 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

About the Siebel Open Ul Development Architecture

2 jgfullcalrenderer.js. Binds the CallPresentationModel object that the calpmodel.js file contains
with the third-party calendar control.

3 calpmodel.js. Describes the logical behavior for the calendar user interface that Siebel Open Ul
displays on top of a list applet that runs in high interactivity.

4 Activity proxies. Includes proxies for the Activity HI Calendar Applet and the Activity business
component.

Items in the Development Architecture You Can Modify

Figure 14 indicates the predefined items in the development architecture that Oracle provides and
the items that you can modify. It delineates areas where you can customize Siebel Open UI.

Siebel Open Ul Client Rendering
Customized HTML Creatad
Mash-Lip or | Customized CSSand ar?dh.l':lvacss from Siebel
External Data Y| JavaScript JavaScript Control Ijshu it Web
Control Library rary Temglates
t t t
Siehel JavaSeript Client from Siebel Matadata
Siebel Server
Siebeal
Object Fepository File
Manager Madified by
Siebel Tooks

[Legend

Oracle provides, not customizable
[Cracle provides, customizable
hl:l Cuslomer provides

Figure 14. Items in the Development Architecture You Can Modify

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 53

Architecture of Siebel Open Ul 1 About the Siebel Open Ul Develop

Example Client Customizations

Table 4 describes some example client customizations you can do in Siebel Open Ul. For detailed
examples, see Chapter 5, “Customizing Siebel Open UI.”

Table 4. Example Client Customizations

Customization Work You Must Do

Customize a list applet
or form applet.

You can use Siebel Tools to customize a list or form applet in the Siebel
Repository. This work completes the basic binding to the Siebel object
layer and displays a list or form in the client. No client customization is
required. For more information, see Using Siebel Tools.

Add custom client
behavior.

You modify a presentation model. For example:

B Display or hide a control. For example, show a control if the user
chooses a value from a drop down list. You add the required logic to
a presentation model. You add or remove the control from the set of
controls that Siebel Open Ul already displays in the applet proxy in
the client. For example, to add a local control in the client, you add
this control in the presentation model to the set of controls that the
proxy already contains.

Some configuration requirements do not require you to modify the
physical renderer. For example, it is not necessary to modify the
physical renderer to display a control because the predefined
implementation for getting all fields from the client is already
available.

B Modify the theme of a page. For example, you can configure
Siebel Open Ul to modify the theme of a page if the user changes
the orientation of a tablet device. You add the logic that modifies
styles that the user interface elements use when Siebel Open Ul
modifies the orientation state in the presentation model.

Add generic client
behavior.

You use a control to render the presentation model. For example, to
render a list applet as a carousel, you use the appropriate third-party
control.

Add specific applet
control-level behavior
and rendering.

For example, you can customize plug-in wrappers to make a boolean
field render and behave like a flip switch, rather than a check box.

Position controls and
customize style.

You modify CSS files.

54 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

" About the Siebel Open Ul Development Architecture

Differences in the Server Architecture Between High
Interactivity and Siebel Open Ul

Figure 15 compares the server architecture between high interactivity and Siebel Open UI.

High Interactivity Architecture Siebel Open Ul Architecture
Presentation Physical
ActiveX Model Control
Client
SWE Frame o Custom Presentation
Customization -] Reanderer ¢ ! Model
Business .
Wi Wi
= Object - Custom
™ Renderer
L
Business { Arolet .| SWE Frame
Applet Component - " | Customization
T
|
|
|
o | Presantation Control
| 4 Madel Customization
|
' ¥
Region |+ |
| Cusiom
I ™ Renderer
v
Invoke
Control - > Meathod
Customization
Siebel Server

Figure 15. Comparing Server Architecture Between High Interactivity and Siebel Open Ul

Explanation of Callouts
This comparison between the architecture that high interactivity uses and that Siebel Open Ul uses
includes the following items:

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 55

Architecture of Siebel Open Ul & About t

56

Rendering customization in high interactivity requires you to use a SWEFrame customization at
the applet level.

Rendering customization in Siebel Open Ul allows you to use SWEFrame customization, an
equivalent customization, or to customize the physical renderer independently at any level of the
object hierarchy, including at the subapplet level for an applet control.

High interactivity always starts rendering at the view level. It uses predefined code in the user
interface hierarchy, from a request processing perspective.

Siebel Open Ul uses objects, so rendering can occur at the screen, view, applet, or control level.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

1 = About the Siebel Open Ul Development Architecture

Differences in the Client Architecture Between High
Interactivity and Siebel Open Ul

Figure 16 compares the ActiveX Ul architecture that a high-interactivity client uses to the
architecture that Siebel Open Ul uses.

High Interactivity Architlecture Siebel Open U Archileclure
JavaScript Ul JavaSaript Library
JOwery Library
Data Layout and JavaScript
Activex Ul Controls Data Bindings Customization AP
Custom Custom
Browser ActiveX Prowy Browser JavaScript Proy
Script Script
Siebel High Interactivity Clien Siebel Open Ul Clie Cliant
i In ity ' pen nt Environrment
. Style
Siyling Stying Layout Shoets O
Layout, HTML HTML Composition :
Composition, and and Condiional Slebel eb
Gonditional Rendering 1 (Rendering emplates
‘Legend)
Siebel Ohject
IManagar Predefined Objects
T []Design-time Configurable Objects
Siebal Tools [] Run-time Configurable Objects
Configuration of _—

Repository Objects kD Cther Customizations)

Figure 16. Comparing Client Architecture Between High Interactivity and Siebel Open Ul

Explanation of Callouts
This comparison between high interactivity and Siebel Open Ul includes the following items:

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 57

Architecture of Siebel Open Ul & Life Cycle of User Interface Ele

1 Client Environment. The Siebel Open Ul client environment allows you to customize run-time
configurable objects to meet a wide range of rendering requirements, from supporting more than
one Web browser type to deploying to various client form factors.

Style sheets. The Siebel application or Web Server serves static style sheets.

Siebel Web Templates. The Siebel application or Web Server serves dynamic Siebel Web
Templates.

Life Cycle of User Interface Elements

This topic describes how Siebel Open Ul uses presentation model methods and physical renderer
methods, and the methods that the presentation model and physical renderer calls during the life
cycle of a user interface element.

The presentation model uses the following sequence of methods:
1 Init
2 Setup

The presentation model processes the events that it receives from the physical renderer during the
life cycle. It also processes the replies for requests that the Siebel Server sends. Siebel Open Ul can
make the following calls to the presentation model during a life cycle:

B Call from the physical renderer because of a user action.

B Notification that the Siebel Server sends. For more information, see “Notifications That Siebel
Open Ul Supports” on page 545.

Process property set that the Siebel Server sends.

Completion request to get a follow-up request after the proxy finishes processing a reply from
the Siebel Server.

The physical renderer continues to render each modification that occurs in the presentation model,
and the AttachPMBinding method binds each of these modifications during the Init call to the physical
renderer. One of the following items then signals these modifications:

B Siebel Open Ul runs a presentation model method.
B Siebel Open Ul modifies the value of a presentation model property.

For more information about the methods that this topic describes, see Appendix A, “Siebel Open Ul
Application Programming Interface.”

Summary of Presentation Model Methods

This topic summarizes some of the methods that a presentation model uses during the life cycle of
a user interface element.

58 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

rchitecture of Siebel Open Ul i Life Cycle of User Interface Elements

How Siebel Open Ul Uses the Init Method of the Presentation Model
The Init method uses the following methods to configure the properties, methods, and bindings of
the presentation model. For an example that uses Init, see “Creating the Presentation Model” on
page 66:

B AddProperty. Adds a property to a presentation model. This property can be simple or derived.
If you use AddProperty to define a derived property, then Siebel Open Ul uses the Get method
on the presentation model to calculate and return the property value. For more information about
deriving values, see “Deriving Presentation Models, Physical Renderers and Plug-in Wrappers” on
page 129. For more information, see “Get Method” on page 426.

B AddMethod. Adds a method to the presentation model. For more information, see “AddMethod
Method” on page 418.

B AttachEventHandler. Attaches a method that handles the logical event. Siebel Open Ul calls
this method when it sends an event to the presentation model through the OnControlEvent
method. For more information, see “OnControlEvent Method” on page 427 and
“AttachEventHandler Method” on page 421.

B AttachNotificationHandler. Attaches a method that handles the notification that Siebel Open
Ul calls when the Siebel Server sends a notification to an applet. A notification is a message that
Siebel Open Ul sends to the client when this client requests Siebel Open Ul to modify a business
component. For example, to create or delete a business component record. For more information,
see “Notifications That Siebel Open Ul Supports” on page 545.

B AttachPSHandler. Handles other incoming property sets that the Siebel Server sends to the
client. It can extract the values that a property set contains to individual properties or do other
processing.

B AttachPreProxyExecuteBinding. Attaches a method to the presentation model. Siebel Open
Ul calls AttachPreProxyExecuteBinding before it processes the reply that it receives from the
Siebel Server, but after it receives a reply from this server to the method that Siebel Open Ul
supplies as an argument. For more information, see “Customizing Events” on page 150.

B AttachPostProxyExecuteBinding. Attaches a method to the presentation model. Siebel Open
Ul calls AttachPostProxyExecuteBinding after it processes the reply from the Siebel Server.

The physical renderer calls the following presentation model methods:
B Get. Gets the value of a property that resides in a presentation model.

B ExecuteMethod. Runs a method that the AddMethod method calls. For more information, see
“ExecuteMethod Method” on page 425.

B OnControlEvent. Calls an event. The physical renderer uses the OnControlEvent method to call
the presentation model and send an event. To call the method, the presentation model uses a
binding that exists between the event and the presentation model method and the
AttachEventHandler method. For more information, see “OnControlEvent Method” on page 427
and “AttachEventHandler Method” on page 421.

B SetProperty. Sets the value of a presentation model property. The physical renderer can set this
value directly in some situations. For more information, see “SetProperty Method” on page 427.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 59

Architecture of Siebel Open Ul & Life Cycle of User In

How Siebel Open Ul Uses the Setup Method of the Presentation Model
The Setup method extracts the values that a property set contains. If Siebel Open Ul creates an
object on the Siebel Server, such as a frame, then this server sends the property set that describes
this object to the client. Siebel Open Ul uses this property set to set up the presentation model
properties in the client. The Setup method uses the AddProperty method to extract this property set
into presentation model properties. It does this work the first time Siebel Open Ul creates the user
interface object in the client. For more information, see “Methods That Manipulate Property Sets” on
page 521. For an example that uses Setup, see “Customizing the Setup Logic of the Presentation
Model” on page 68.

Life Cycle of a Physical Renderer

Figure 17 illustrates the life cycle of a physical renderer. For examples of various life cycle flows, see
“Life Cycle Flows of User Interface Elements” on page 527.

" Renderar
o E Init
o * Showlll # PluginWrapper.Showl|
Calls From Siebel Open o » BindEvents # PluginWrapper BindEvents
LI Framewark
o " BindData # PluginWrapper SeiValue
o » AtachPMBinding
Legend
[IMethod
EndLife
[Plug-in Wrapper

Figure 17. Life Cycle of a Physical Renderer

Explanation of Callouts
The physical renderer uses methods in the following sequence:

1 Renderer. Creates the renderer.

2 Init. Initializes and sets up the AttachPMBinding method. For more information, see “Init Method”
on page 426.

60 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

itecture of Siebel Open Ul & Life Cycle of User Interface Elements

ShowUlI. Displays a physical control that corresponds to an applet control. It renders the
container for the metadata, data, and event bindings. For example, when Siebel Open Ul renders
a list applet as a grid, ShowUI renders the third-party grid control that it uses for the applet.
Also, ShowUl calls all of the plug-in wrappers of the associated applet controls. For more
information, see “ShowUIl Method” on page 459.

BindEvents. Sets up the user interface binding of events to the physical user interface,
represented as HTML elements. It captures the user actions, and then translates these actions
to logical events in the physical renderer before Siebel Open Ul sends them to the presentation
model for processing. Also, BindEvents calls all of the plug-in wrappers of the associated applet
controls. For more information, see “BindEvents Method” on page 456.

BindData. Downloads metadata and data from the Siebel Server to the client proxy, and then
binds this data to the user interface. The list columns that a list applet uses is an example of
metadata, and the record set that this list applet uses is an example of data. Also, BindData calls
all of the plug-in wrappers of the associated applet controls. For more information, see “BindData
Method” on page 456.

AttachPMBinding. Attaches handlers to notifications that occur during the life cycle. For more
information, see “AttachPMBinding Method” on page 423. For more information about notifications
that can occur during the life cycle, see “Notifications That Siebel Open Ul Supports” on page 545.

GetPM. Calls a method that the presentation model contains. It is recommended that you use
GetPM only to call the following presentation model methods:

ExecuteMethod
OnControlEvent

Get

SetProperty

You can use ExecuteMethod or OnControlEvent to call a method that modifies the state of the
presentation model or to call a method that reads this state. You can use the Get method to get
the value of a presentation model property. You can use SetProperty to set the value of a
presentation model property.

For more information, see “GetPM Method for Physical Renderers” on page 458 and
“OnControlEvent Method” on page 427.

EndLife. Ends the life of the physical renderer. For more information, see “EndLife Method” on
page 457.

Life Cycle of a Plug-in Wrapper

The plug-in wrapper uses methods in the following sequence:

1

ShowUl. Performs show related activities for a control. For more information see “ShowUl
Method” on page 459.

BindEvents. Attaches events to the DOM instance of the control. For more information see
“BindEvents Method” on page 456.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 61

Architecture of Siebel Open Ul 1 Life Cycle of

3 BindData. Initializes data to the DOM instance of the control. For more information see
“BindData Method” on page 456.

4 EndLife. Ends the life of the Plug-in Wrapper. For more information see “EndLife Method” on
page 457.

Example of the Life Cycle of a User Interface Element

Figure 18 describes the life cycle of the calendar user interface element.

Siebel Open Ul Client

Button Click

©| O

gF"hm.'sic:all Renderar

ﬂFra-s;untatiu:m. Model

)
Activity HI
Calendar Applet
Proxy

(7]

Activity HI Calendar
Applat

Siebel Server

Figure 18. Example of the Life Cycle of a User Interface Element

Explanation of Callouts
The following sequence occurs during the life cycle of a calendar user interface object:

1 The user clicks a button that refreshes the calendar.

62 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

of Siebel Open Ul & Life Cycle of User Interface Elements

2 The Init method adds the following items to the physical renderer:

AttachPMBinding (“'ProcessCalendarData”, Refreshul)

3 The physical renderer sends the following method to the presentation model:

OnControlEvent("'Refresh_Calendar" ,RequestCalendarData)
For more information, see “OnControlEvent Method” on page 427.

4 The Init method adds the following items to the presentation model:

AddProperty (MeetingDates, [ist of dates)

AddMethod (RequestCalendarData, #implementation)

AttachEventHandler (“Refresh_Calendar”, RequestCalendarData)
AttachNotificationHandler (“GetCalendarOUlData”, ProcessCalendarData)
AttachPostProxyExecute (“GetCalendarOUlData”,SetDefaultFocus)

For more information, see “AttachEventHandler Method” on page 421.

5 The presentation model sends the RequestCalendarData method to the Activity HI Calendar
Applet proxy.

6 The Activity HI Calendar Applet proxy sends a request to the Siebel Server to call the
RequestCalendarData method.

7/ The Siebel Server gets metadata from the Activity HI Calendar Applet that resides on this server,
and then sends the GetCalendarOUIData notification method to the presentation model. For more
information, see “About Objects and Metadata” on page 33.

8 The presentation model does the following:
2 Runs the ProcessCalendarData method and the SetDefaultFocus method.

b Sends the RefreshUl method to the physical renderer. This method gets the relevant properties
from the presentation model.

9 The physical renderer refreshes the calendar.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 63

Architecture of Siebel Op

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

4 ustomizing Siebel

This chapter includes a detailed example that describes the typical tasks that you can do to
customize Siebel Open Ul. It includes the following topics:

Roadmap for Customizing Siebel Open Ul on page 65

Process of Customizing the Presentation Model on page 66
Process of Customizing the Physical Renderer on page 88

Process of Customizing the Plug-in Wrapper on page 102
Configuring the Manifest for the Recycle Bin Example on page 114

Configuring the Manifest for the Color Box Example on page 116

Testing Your Modifications on page 117

Roadmap for Customizing Siebel Open
Ul

You do the following tasks to customize Siebel Open Ul:

1 Process of Customizing the Presentation Model on page 66

2 Process of Customizing the Physical Renderer on page 88

3 Process of Customizing the Plug-in Wrapper on page 102

4 Configuring the Manifest for the Recycle Bin Example on page 114
5 Configuring the Manifest for the Color Box Example on page 116
6 Testing Your Modifications on page 117

You can use this sequence as a general guideline to create your own customizations. To summarize,
you do the following work:

B Modify a presentation model. You customize the presentation model that implements the
recycle bin that contains the records that a user deletes in a view. You add a Select list column
and modify the Delete button so that the user can choose more than one record, and then delete
them from the server database. You configure Siebel Open Ul to do a local backup on the client
of the chosen records. This configuration requires you to modify the metadata that Siebel Open
Ul uses in the client and to modify client behavior. It does not require you to modify rendering.
So, you only modify the presentation model. You do not modify the physical renderer to
implement this part of the example.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 65

Example of Customizing Siebel Open Ul & Process of Customizing

B Modify a physical renderer. You customize a physical renderer for a third-party carousel
control that displays the recycle bin contents and that allows the user to restore deleted records.
You modify the physical renderer so that Siebel Open Ul displays a local back up copy of the
deleted records in a carousel control, and then allows the user to choose and restore each of
these records. This configuration modifies the physical representation of the records so that
Siebel Open Ul displays them in a modified grid. It also modifies the physical interactivity that
allows the user to choose records in the carousel.

B Modify a plug-in wrapper. You customize a specific control by writing a plug-in wrapper (CW)
or plugin wrapper (PW). In this example, if the customization is on the Opportunity List applet,
a custom PW will be written for the probability field which will add a colorbox to the field, which
will then change colors based on the value in the probability field. Also, clicking on the box will
open a legend that explains the colors.

For background information about the architecture that this example uses, see “Stack That Siebel
Open Ul Uses to Render Objects” on page 50 and “Life Cycle of User Interface Elements” on page 58.

Process of Customizing the Presentation
Model

This task is a step in “Roadmap for Customizing Siebel Open UI” on page 65.
To customize the presentation model, do the following tasks:
Creating the Presentation Model on page 66
Customizing the Setup Logic of the Presentation Model on page 68
Customizing the Presentation Model to Identify the Records to Delete on page 70

Customizing the Presentation Model to Delete Records on page 74

1

2

3

4

5 Overriding Predefined Methods in Presentation Models on page 78

6 Customizing the Presentation Model to Handle Notifications on page 79

7 Attaching an Event Handler to a Presentation Model on page 82

8 Customizing Methods in the Presentation Model to Store Field Values on page 85
9

Customizing the Presentation Model to Call the Siebel Server and Delete a Record on page 87

Creating the Presentation Model
This task is a step in “Process of Customizing the Presentation Model” on page 66.

The presentation model uses the Init method to configure the properties, methods, and bindings of
the presentation model, and the Setup method to extract the values that a property set contains.
For more information about these methods, see “Life Cycle of User Interface Elements” on page 58.

66 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Open Ul & Process of Customizing the Presentation Model

Figure 19 illustrates the code you use to create the presentation model. Each number in this figure
identifies the corresponding step number in the numbered task list that this book includes
immediately after this figure.

SiebelJS . Hameapace { "JisbelAppracade,RecyclebinfHadel™)
define | "sisbel/custom/recyclebinpmodel™, [], fonction () |

fanction Recycleﬂ‘.nﬁ[ﬂdel it
SispbelAppFacade . RecycleadinPModel superclass, construcsoor . apply(this, arguments) J o
1

SiebelJd5. Extend| He :y\cIe!:r_W_ﬂEeI, Tiebel Ep Facade . LiscPresencaciongodel | _-F

retorn RecycleBinFHodel:
P ogyh:
retaorn "SiebelippFacade . BecycleBinPModel™ ;

b

I

Figure 19. Setting Up the Presentation Model

To create the presentation model
1 Create the custom presentation model file:

a Download a copy of the recyclebinpmodel.js file to the following folder:

INSTALL DIR\eappweb\PUBLIC\ Janguage code\build number\scripts\siebel\custom

This topic describes how to modify code that resides in the recyclebinpmodel.js file. It is
recommended that you get a copy of this file to assist in your understanding of how to
implement the example that this topic describes. This file includes all the code that this
example uses. It also includes more comments that describe code functionality. To get a copy
of this file, see Article ID 1494998.1 on My Oracle Support.

For more information about the folders you can use to store your customizations, see
“Organizing Files That You Customize” on page 162. For more information about the
language_code, see “Languages That Siebel Open Ul Supports” on page 592.

b Use a JavaScript editor to open the recyclebinpmodel.js file that you downloaded in Step a.

2 Make sure the RecycleBinPModel class does not exist and that you do not configure Siebel Open
Ul to override this class. You add the following code:

if(typeof(SiebelAppFacade.RecycleBinPModel) === "undefined™){

3 Make sure a namespace exists that Siebel Open Ul can use to prevent conflicts:

SiebelJS.Namespace("'SiebelAppFacade .RecycleBinPModel™);

4 Use the Define method to identify the presentation model file:

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 67

Example of Customizing Siebel Open Ul & Process of C

define("'siebel/custom/recyclebinpmodel™, [], function({

You must use the Define method to make sure Siebel Open Ul can identify the constructor. You
must include the relative path and the name of the presentation model file without the file name
extension. For more information, see “Define Method” on page 510.

5 Define the class:
SiebelAppFacade .RecycleBinPModel = (function(){

6 Load the SiebelApp.Constants namespace that defines the constants that Siebel Open Ul uses:
var consts = SiebelJS_Dependency(*'SiebelApp.Constants');

7 Define the class constructor:

function RecycleBinPModel (){
SiebelAppFacade.RecycleBinPModel .superclass.constructor.apply(this,
arguments);

¥
8 Set up the injected dependency:
SiebelJS_Extend(RecycleBinPModel, SiebelAppFacade.ListPresentationModel);
For more information about injected dependency, see “About Dependency Injection” on page 73.
9 Return the constructor:

return RecycleBinPModel;

} O):
return "'SiebelAppFacade.RecycleBinPModel™;

P:

10 Save the recyclebinpmodel.js file.

Customizing the Setup Logic of the Presentation Model
This task is a step in “Process of Customizing the Presentation Model” on page 66.

In this topic, you customize the setup logic of the presentation model so that it adds the Selected
list column to an applet. You add the control that you configure for this example to the ListColumns
list that resides in the client.

68 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

iebel Open Ul = Process of Customizing the Presentation Model

Figure 20 illustrates the code you use to customize the setup logic of the presentation model. Each
number in this figure identifies the corresponding step number in the numbered task list that this
book includes immediately after this figure.

FecycleBinPNode L. Lot oL e . SECUD = TURCLION| PLOpSEC)
var]'I:I'!"_GDI'IE-ID]. - BIE‘EIE]..‘[IEME App.CeCAppletLontEo Ll InAatance (
HClient Selesct®,
conaca,get{"SVE_CTEL_THECFBOX™) ,
HEalmsE", - -
"Select',
n5ge g
thliqﬁt'ﬂ{ FeetliatO@columna™) [TSelectionBox™] = mycontrol: e
FiebelkppFacade ., Becye leBinPNode]l . superclass. Secup.call{ this, prop3ec j:

bz

Figure 20. Customizing the Setup Logic of the Presentation Model

To customize the setup logic of the presentation model

1 In the recyclebinpmodel.js file, identify the property or method of the object that you must
modify.

To do this identification, you can examine the JavaScript APl methods to identify the method that
most closely matches the behavior that your example requires. For more information about this
JavaScript API, see Appendix A, “Siebel Open Ul Application Programming Interface.”

You can use the following list as a guide to get you started, depending on the area of the Siebel
application that your customization must modify:

m Application methods. For more information, see “Application Model Class” on page 484.

m Applet methods. For more information, see “Presentation Model Class for Applets” on
page 429.

m List applet methods. For more information, see “Presentation Model Class for List Applets”
on page 447.

m Applet control methods. For more information, see “Applet Control Class” on page 472.
® Menu methods. For more information, see “Presentation Model Class for Menus” on page 453.

m Siebel business service methods. For more information, see “Business Service Class” on
page 484.

In this example, you can examine the presentation model that Siebel Open Ul uses for list applets
to identify the property or method that the object you must modify uses. To identify this property,
see “Properties of the Presentation Model That Siebel Open Ul Uses for List Applets” on page 448.

After examining these properties, assume that you determine that Siebel Open Ul uses the
GetListOfColumns method that the presentation model references. In general, when you examine
a property or method in a list applet, it is recommended that you first examine the list
presentation model that a list uses, and then the applet presentation model that a form applet
uses.

You must add the Selected list column to a list applet. The Selected list column is a control that

Siebel Open Ul displays in the client. So, you add it to the list of listOfColumns that Siebel Open
Ul already uses.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 69

Example of Customizing Siebel Open Ul & Process of Customizi

2 Specify the method that the presentation model runs as part of the Setup life cycle:

RecycleBinPModel .prototype.Setup = function(propSet){

In this example, you configure Siebel Open Ul to create a control that it displays only in the
client, and then insert it into the GetListOfColumns property of the applet. You add this code in
the Setup life cycle method of the presentation model because this logic is related to the work
that Siebel Open Ul does to create the applet. Siebel Open Ul must create the applet first, and
then insert the control. For more information, see “Summary of Presentation Model Methods” on
page 58.

3 Create a new instance of the AppletControl object:

var mycontrol = SiebelApp.S_App.GetAppletControl Instance

This example requires Siebel Open Ul to create a new listOfColumns and to add it to the
GetListOfColumns array. You can use the GetAppletControllnstance method to create a new
instance of the AppletControl object. For more information, see “GetAppletControllnstance
Method” on page 487.

4 Name the instance:

"Client_Select",

You must specify a unique name for the instance. This example uses Client_Select, which is a
unique value that Siebel Open Ul can use to determine the operation that it must perform.

5 Specify the control type:

consts.get("'SWE_CTRL_CHECKBOX'),

"Select",

"Select",

“50");

this.Get("GetListOfColumns'™)["'SelectionBox'"] = mycontrol;
SiebelAppFacade .RecycleBinPModel .superclass.Setup.call(this, propSet);

}:
where:
m consts.get(""SWE_CTRL_CHECKBOX'"™) specifies the control as a checkbox.
m Select specifies the display name. You can specify any display name.
m 50 specifies the width of the column.
For more information about control types, see “Applet Control Class” on page 472.

6 Save the recyclebinpmodel.js file.

Customizing the Presentation Model to Identify the
Records to Delete

This task is a step in “Process of Customizing the Presentation Model” on page 66.

70 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

n Ul & Process of Customizing the Presentation Model

In this topic, you modify the list column control that you created in Step 3 on page 70. This control
uses a check box, so you must make sure that Siebel Open Ul stores the value of this check box
when the user toggles it.

Figure 21 illustrates the code that you use to customize the presentation model logic to identify the
records to delete. Each number in this figure identifies the corresponding step number in the
numbered task list that this book includes immediately after this figure.

FecycleBinPModel.prototype.Initc = function(){
SiebelippFacade.RecycleBinPHodel .. superclass, Init.call{ this }:
this. iddfethod{ "LeaveField", Preleavelfield, [sSequence : true, scope @

this }

function PrelLeaveField{ control, wvalue, notLeave, returnStructure) {

if (control.GetName() === "Client Select” 2
is.Executelethod et ActiveControl™, null
var dellb] = is.Ge (e [eTionPendingoe ;
var currentielection = this.Get{ "GetSelection™ };
if{ valus === "YT" j{
deltbj[current3eleccion] = this.Gec|"GetRecordSec”) [current3eleccion]

H
else(

deldbj[currentSelection] = null:;:

T

returnStructure["CancelCperation™ = true: 3
returnStructure["ReturnValue® = true: 4

b
H

Figure 21. Customizing the Presentation Model Logic to Identify the Records to Delete

To customize the presentation model to identify the records to delete
1 In the recyclebinpmodel.js file, add the method that Siebel Open Ul must call:

this_AddMethod("'LeaveField", PreLeaveField, {sequence:true, scope:this});

where:

m AddMethod adds the LeaveField method. To identify the method that you must add when you
do your own customization work, you can examine the life cycles that Siebel Open Ul uses
that most closely meets your business requirement. To view these life cycles, see “Life Cycle
Flows of User Interface Elements” on page 527.

In this example, the business requirement is to save the value in a control. Siebel Open Ul
saves the value of a control when the user navigates away from the control, so it calls the

LeaveField method to handle this requirement. For more information, see “LeaveField Method”
on page 440 and “Flow That Handles Focus Changes in List Applets” on page 533.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 71

Example of Customizing Siebel Open Ul i Process of Customizing the Pre

72

B PreLeaveField, {sequence : true, scope : this} configures Siebel Open Ul to call your
custom LeaveField method before it calls the predefined LeaveField method. It does this
during the Init life cycle when it runs the AddMethod method. It is recommended that you
set up the presentation model methods at the beginning of the Init life cycle call that contains
most of the properties and dependency injections, including predefined and custom methods.
For more information about Init, see “Life Cycle of User Interface Elements” on page 58. For
more information, see “About Dependency Injection” on page 73.

It is recommended that you use a named method to specify the Prexxx customization method,
such as PreLeaveField. This configuration makes sure that Siebel Open Ul uses the same method
for all presentation model instances. It is not recommended that you specify the Prexxx
customization method as an anonymous method in the AddMethod call because Siebel Open Ul
creates this anonymous method for every presentation model instance that resides in memory,
possibly for more than one applet in the same view. Defining an anonymous method in this
situation might cause a conflict.

Create the condition:

if (ctrl._GetName() === "Client_Select™){

The Setup method uses the GetName method with a literal return value of Client_Select. It
identifies the method that Siebel Open Ul uses for your custom control. For more information,
see “GetName Method for Applet Controls” on page 476.

Make sure Siebel Open Ul returns your custom logic after it sets the CancelOperation part of the
return value to true:

returnStructure["CancelOperation'™] = true;

This configuration overrides the predefined code when Siebel Open Ul calls LeaveField for your
new list column. In this example, you must implement LeaveField for the control, so it is not
desirable to call the predefined code for this control after Siebel Open Ul finishes running your
customization of the LeaveField method. For more information about using ReturnStructure when
you modify a method, see “AddMethod Method” on page 418.

Configure Siebel Open Ul to return a value of true after it sets the CancelOperation part of
returnStructure to true:

returnStructure["ReturnValue"] = true;

The LeaveField method returns a value of true to indicate success in this example, so you must
make sure Siebel Open Ul uses the same logic after your customization finishes running and
returns a value. This configuration makes sure the Init life cycle continues on the success path
after the custom LeaveField method runs. You can use ReturnValue to make sure Siebel Open Ul
sets the return value of your custom implementation to the required value. In this example, you
set this value to true.

Disable the processing that Siebel Open Ul does for the control that is in focus:

this.ExecuteMethod(''SetActiveControl', null);

This code sets the active control to null. For more information, see “Disabling Automatic Updates”
on page 74 and “SetActiveControl Method” on page 442.

Add the property that Siebel Open Ul uses to store the set of records that are pending deletion:

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

ing Siebel Open Ul © Process of Customizing the Presentation Model

this._AddProperty(*'DeletionPendingSet”, [1):

The set of records that are pending deletion represent the state of your custom presentation
model, so you add the DeletionPendingSet property to store the field values for this set of
records.

7 ldentify the records that Siebel Open Ul must delete:

var delObj = this.Get("'DeletionPendingSet');
var currentSelection = this._Get("GetSelection™);
if(value === "Y"){

delObj[currentSelection] = this.Get("'"GetRecordSet'™)[currentSelection];
3

else{
delObj[currentSelection]
}

Siebel Open Ul must identify the records that the user chooses to delete so that it can populate
a value into the DeletionPendingSet property. To identify this property, you can examine the
properties that the presentation model uses for the applet. This work is similar to the work you
do in Step 1 on page 69 to identify the property in the presentation model that Siebel Open Ul
uses for lists, except in this topic you examine the properties described in “Properties of the
Presentation Model That Siebel Open Ul Uses for Applets” on page 431.

null;

After examining these properties, assume you determine that Siebel Open Ul uses the
GetSelection property to get the index of the record that the user has chosen from among all the
records that Siebel Open Ul displays. You also determine that you can use the GetRecordSet
property to get this full set of records.

8 Save the recyclebinpmodel.js file.

About Dependency Injection

Dependency injection is a software development technique that Siebel Open Ul uses to create a
dependency between a presentation model and a physical renderer. If Siebel Open Ul modifies a
method or property that resides in the presentation model, then it also modifies a method or property
that resides in the physical renderer. It allows Siebel Open Ul to implement logic at run time rather
than during a compile. These dependency injections allow it to use an injected dependency chain,
which is a series of two or more dependency injections. You can modify Siebel Open Ul to make this
chaining depend on conditions that Siebel Open Ul modifies at run time. It can use all the methods
that the Init method references in “Summary of Presentation Model Methods” on page 58 for
dependency injection. For an example that uses dependency injection, see “Customizing the Physical
Renderer to Refresh the Carousel” on page 96.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 73

Example of Customizing Siebel Open Ul & Process of C

Disabling Automatic Updates

Siebel Open Ul sends updated field values to the Siebel Server for any fields that the user has
modified in the client. In this example, you must disable this update functionality for the current
control. You can reference the documentation for the predefined applet to identify the presentation
model property that you must modify. In this situation, the documentation indicates that you can
configure Siebel Open Ul to use the SetActiveControl property of the active control on the applet and
set it to null. For more information, see “Disabling Automatic Updates” on page 74, “SetProperty
Method” on page 427, and “SetActiveControl Method” on page 442.

ExecuteMethod calls a method that the presentation model references. It makes sure that Siebel
Open Ul runs all injected dependency chains that the method requires when it runs. You must use
ExecuteMethod to call any predefined or custom method that a presentation model references. For
more information, see “About Dependency Injection” on page 73 and “ExecuteMethod Method” on
page 425.

Customizing the Presentation Model to Delete Records
This task is a step in “Process of Customizing the Presentation Model” on page 66.

Figure 22 illustrates the code you use to configure the presentation model to delete records. In this
topic, you configure Siebel Open Ul to customize and conditionally override the InvokeMethod
method. Each number in this figure identifies the corresponding step nhumber in the numbered task
list that this book includes immediately after this figure.

RecycleBinPHodel. procotype. Init = functiond) {
SiebelippFacads, BecycleBinPHode Ll superclass, Init, call{ this)
this. AddMecthod{ “"InvokeMethod™, PrelnvokeMethod, { sequence : true, scope : this |): ﬂ

this. AddProperty ("dbject=lnderlelscion™, [1 i:

*r

function PrelnvokeMethod| methodName, psInputdrgs, lp, returnStructure){

if|{ mechodName === "DeleceRecord” &k 'this. fec{ "InDelecion™)) {
this.JetPropecty("Inleletion™, true):

wvar deletionFe ng = M eletionPendl %
if{ delecionPending.lengoh > 0 3
for{ var counter = deletionPending.length - 1; counter »= 0; counter=-- }{

var currentCby = delecionPending[oounter] :
if{ currencCb) »{
this. Executelet hod

» mull };
d andleRowdelect™, counter, false, fa H
if{ thia ExecuteBechod{ "CanlnvokeHethod~, "Deletefecord”)) [
this.Get{ "ObjectslUnderbeletion”™)[this.Get({ “GetZelection™)] = currentlbj:

{ "Sethctivelontcol™

var inputPF3 = Siebellpp.3 App.NewPropertyden();
this.Executelethod {"Invokelechod™, "DeleteRecord”™, inputPS): 0
T =
H

1

this.3etPropecey("DeletionPendingdec™, [1 ¥:

recurnIteuctuce ["CancelOperation™] = troae: %

Sichelhpp.5_App.uisStatus.Foee():

L]

[this.SeCPropecty(" Inbelecion”, false}: @:I

Figure 22. Customizing the Presentation Model to Delete Records

74 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

izing Siebel Open Ul = Process of Customizing the Presentation Model

To customize the presentation model to delete records

1

In the recyclebinpmodel.js file, add the method that Siebel Open Ul uses to delete a record:

this_AddMethod ("' InvokeMethod", PrelnvokeMethod, {sequence:true, scope:this});

You must identify the method that Siebel Open Ul uses when the user clicks Delete. To do this
identification, it is recommended that you examine the flowchart that Siebel Open Ul uses during
a typical life cycle when it calls methods that reside on the Siebel Server. For this example, the
life cycle flowchart indicates that Siebel Open Ul calls the DeleteRecord method when it calls the
InvokeMethod method. You add this code in the Init method. For more information, see “Life
Cycle Flows That Create New Records in List Applets” on page 535 and “DeleteRecord Method” on
page 386.

This configuration is similar to the configuration you added in Step 1 on page 71 that includes the
AddMethod method and the sequence statement.

Call the custom logic only if Siebel Open Ul calls the DeleteRecord method:
it ((methodName === "‘DeleteRecord') && !this.Get(*'InDeletion')){
This code examines the value of the InDeletion property that you set up in Step 3.
Set the InDeletion property to true only if Siebel Open Ul starts the deletion process:
this._SetProperty("InDeletion', true);

This code determines whether or not Siebel Open Ul is already running an instance of your
custom delete process, and then makes sure that no more than one of these instances runs at
the same time. The InDeletion property determines whether or not the deletion process is
currently running.

You could use the following code in the Init method to add this property:

this_AddProperty(*'inDeletion', false)

This example demonstrates how you can use SetProperty to use a property temporarily so that
it is similar to a conditional flag. This example uses SetProperty to create this property only when
necessary. If Siebel Open Ul calls the Get method before it calls the SetProperty method, then
the JavaScript returns a value of undefined, which is the default value that JavaScript assigns
to any variable that is not defined.

Get the set of records where the Selected value of each of these records includes a check mark:

var deletionPending = this.Get("'DeletionPendingSet™);

This code gets the state of the set of records before the user clicks Delete. Siebel Open Ul stores
this information in the DeletionPendingSet property in the LeaveField customization that you
added in Step 6 on page 72.

Determine whether or not the user has chosen at least one record for deletion:

if (deletionPending.length > 0){
This code represents this condition as > 0, where O indicates the number of records chosen.

Iterate through all the records that the user has chosen to delete:

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 75

Example of Customizing Siebel Open Ul & Process of Customizing the

for (var counter = deletionPending.length - 1; counter >= 0; counter--){
var currentObj = deletionPending[counter];
if (currentObj){
¥

¥

7/ Disable the processing that Siebel Open Ul does for the control that is in focus:

this_ExecuteMethod(*'SetActiveControl™, null);

For more information, see “Disabling Automatic Updates” on page 74 and “SetActiveControl
Method” on page 442.

8 Modify the application state so that Siebel Open Ul references the record that it must delete:

this.ExecuteMethod ('HandleRowSelect', counter, false, false);

To identify this code when you customize Siebel Open Ul, it is recommended that you examine
“Flow That Handles Navigation to Another Row in List Applets” on page 540. In this example, this
flow indicates that you must use the HandleRowSelect method. The presentation model that
Siebel Open Ul uses for list applets references HandleRowSelect, so you can configure Siebel
Open Ul to use ExecuteMethod to call it. For more information, see “HandleRowSelect Method” on
page 450.

9 Make sure that Siebel Open Ul can call the DeleteRecord method:

if(this._ExecuteMethod('CanlnvokeMethod™, "‘DeleteRecord™)){

It is recommended that you configure Siebel Open Ul to call Canlnvoke before it calls another
method to make sure that it can call this other method in the context of the object that is
currently in scope. Siebel Open Ul can use the Canlnvoke method to model complex logic for any
record that exists in the Siebel Database that resides on the Siebel Server. This logic can
determine whether or not Siebel Open Ul can call an operation according to the scope that it
applies to the current object, such as a record that is in scope. In this example, it determines
whether or not it can call the DeleteRecord method.

You can use the method descriptions in Appendix A, “Siebel Open Ul Application Programming
Interface” to identify the method that you must use in your customization work.

For more information about the method that this example uses, see “CanlnvokeMethod Method
for Presentation Models” on page 433.

10 Add a property that Siebel Open Ul can use to store information about the records that it sends
to the Siebel Server for deletion:

this_AddProperty(*'ObjectsUnderDeletion', [1);

Delete confirmation occurs through an asynchronous notification, so Siebel Open Ul must back
up the information that describes the record that it is about to delete. The notification handler
requires this information so that it can do the post-processing work for this record. Subsequent
steps in this topic describe this notification handler. For more information, see “About
Synchronous and Asynchronous Requests” on page 78 and “Notifications That Siebel Open Ul
Supports” on page 545.

11 Delete the record:

76 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

12

13

14

omizing Siebel Open Ul = Process of Customizing the Presentation Model

this.Get(""ObjectsUnderDeletion')[this.Get(''GetSelection')] = currentObj;
var inputPS = SiebelApp.S_App.NewPropertySet();
this_ExecuteMethod ('InvokeMethod"™, "DeleteRecord”™, InputPS);

where:

B ObjectsUnderDeletion inserts the record into a backed up record set, and if this insert
occurs at an index location that is equal to the index of the selected row, then Siebel Open
Ul can reference the selected row to identify the correct index to use when processing the
NotifyDeleteNotification reply. The Siebel Server sends this reply. Siebel Open Ul must
identify the record where it set the notification when it handles the NotifyDeleteNotifications
notification. You can configure Siebel Open Ul to call HandleRowSelect to select the row
before it sends the request to delete the record.

B GetSelection is a property of the applet presentation model that includes an index that
identifies the chosen record. This record resides in the record set that resides in the client.
When you develop your own customization, you can reference the documentation to identify
the property that your customization requires. For more information, see “Properties of the
Presentation Model That Siebel Open Ul Uses for Applets” on page 431.

® InvokeMethod is a method that resides in the presentation model that Siebel Open Ul uses
for a list applet. You can use ExecuteMethod to call it.

m false configures Siebel Open Ul to make a synchronous request to the Siebel Server. A
synchronous request makes sure that Siebel Open Ul sends all DeleteRecord requests to the
server before it exits the loop. If it exits the loop during a synchronous request, then it sends
all DeleteRecord requests sequentially. In this situation, it sends the requests to the server
so that the server can process a reply for the previous request, including the delete
completion notifications. The server does this processing during a synchronous request
before it sends the next DeleteRecord request. You can also use an asynchronous request
where Siebel Open Ul sends all the DeleteRecord requests to the server before it processes
any of the replies for these requests. For more information, see “About Synchronous and
Asynchronous Requests” on page 78.

Set the DeletionPendingSet property to zero:
this.SetProperty(“'DeletionPendingSet”, [1);

This code sets the DeletionPendingSet property to zero after Siebel Open Ul finishes running all
the DeleteRecord calls on the Siebel Server.

Set the CancelOperation member of the returnStructure to true:

returnStructure ["CancelOperation'™] = true;

You configure Siebel Open Ul to set this member before it exits the outer loop that processes the
deletionPending records. You do this so that Siebel Open Ul does not use the DeleteRecord
argument to make another call to the predefined InvokeMethod method. For more information
about ReturnStructure, see “AddMethod Method” on page 418.

Set the InDeletion flag to false:

this._SetProperty(*'InDeletion', false);

You configure Siebel Open Ul to set this property before it exits the conditional block that does
the InvokeMethod processing for the DeleteRecord method.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 77

Example of Customizing Siebel Open Ul & Process of Customizing the P

15 Save the recyclebinpmodel.js file.

About Synchronous and Asynchronous Requests
Note the following:

B A synchronous request is a type of request that Siebel Open Ul sends to the Siebel Server, and
then waits for a reply to this request before it continues any other processing.

B An asynchronous request is a type of request that Siebel Open Ul sends to the Siebel Server, and
then continues other processing while it waits for a reply to this request.

The GetSelection request is synchronous, so Siebel Open Ul cannot send another request to move
the selection to a different record before the Siebel Server sends a reply notification that indicates
a successful deletion. When processing this notification, the intended row is the same row that Siebel
Open Ul most recently selected. Siebel Open Ul can use the selected row as a common index that it
can use to reference the record. For information about how you can configure an asynchronous
request, see “Allowing Users to Interact with Clients During Business Service Calls” on page 143.

Overriding Predefined Methods in Presentation Models

This task is a step in “Process of Customizing the Presentation Model” on page 66.

If Siebel Open Ul calls the GetFormattedFieldValue method for a control that it only displays in the
Siebel Open Ul client, then this client cannot not find the field in the list of fields that it uses, and
the client creates an error. To avoid this situation, in this topic you customize Siebel Open Ul to
override the predefined GetFormattedFieldvValue method so that it does not create an error when it
calls GetFormattedValue for your new list column. For more information, see “GetFormattedFieldValue
Method” on page 438.

To override predefined methods in presentation models
1 Use the flowcharts to identify the method that you must modify.

Siebel Open Ul displays values for applet controls and list columns after it gets these values from
the client. It caches these values in the client after it downloads them from the Siebel Server. To
identify the method that handles these values, you can examine the flowchart that describes how
Siebel Open Ul creates a new record in a list applet, and then updates the client. In this example,
the flowchart indicates that it calls the GetFormattedFieldValue method. If the physical renderer
requires the ShowControlValue method, then it calls the presentation model to run the
GetFormattedFieldValue method. For more information, see “Flow That Creates New Records in
List Applets, Updating the User Interface” on page 538.

2 In the recyclebinpmodel.js file, configure Siebel Open Ul to conditionally override and customize
the method:

RecycleBinPModel .prototype.Init = function(){
SiebelAppFacade .RecycleBinPModel .superclass. Init.call(this);
this.AddMethod(*'GetFormattedFieldValue'™, PreGetFormattedFieldValue,
{sequence:true,scope:this});

78 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

ng Siebel Open Ul = Process of Customizing the Presentation Model

function PreGetFormattedFieldvValue(control, bUseWS, reclndex, returnStructure){

if (control.GetName() === "Client_Select'){
returnStructure["'CancelOperation™] = true;
returnStructure[''ReturnvValue'] = ""';

3

}

where:

B this_AddMethod adds the PreGetFormattedFieldValue method in the Init life cycle and specifies
PreGetFormattedFieldValue as the customization.

B sequence : true specifies to call the custom PreGetFormattedFieldValue before it calls the
predefined GetFormattedFieldValue method.

B The following code in the custom method determines whether or not the control that Siebel Open
Ul is currently examining is the client-only control:

iT (control .GetName() === "Client_Select")

If it is, then Siebel Open Ul sets the CancelOperation member of the returnStructure to true and
the ReturnValue to null. For more information about returnStructure, see “AddMethod Method” on
page 418.

3 Save the recyclebinpmodel.js file.

Customizing the Presentation Model to Handle
Notifications

This task is a step in “Process of Customizing the Presentation Model” on page 66.

The Siebel Server sends a record deletion confirmation when it receives the InvokeMethod request
for the DeleteRecord method. You can write a handler for the NotifyDeleteRecord notification to
process this confirmation in the client. For more information, see “DeleteRecord Method” on page 386.

Siebel Open Ul packages the notification that it gets from the Siebel Server in the business
component layer as part of a reply property set. This property set includes information about server
state modifications or replies to requests for state information. For example, if Siebel Open Ul
deletes a record that resides on the server, then the following work occurs:

1 Siebel Open Ul sends a NotifyDeleteRecord notification to the client.
2 The client sends a request to the server.

3 The server processes the request.
4

Siebel Open Ul examines the relevant modifications that exist on the server, and then collects
and packages notifications that are ready to communicate to the client.

5 If the client sends an InvokeMethod call for the DeleteRecord method to the server, then the
Siebel Web Engine sends a NotifyDeleteRecord notification from the business component layer to
the client.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 79

Example of Customizing Siebel Open Ul & Process of C

For more information about the business component layer, see Configuring Siebel Business
Applications.

Figure 23 illustrates the code you use to customize the presentation model to handle notifications.
Each number in this figure identifies the corresponding step number in the numbered task list that
this book includes immediately after this figure.

RecycleBinPlodel. . protocype., Inae = functiond){

SHiebelhppFacade . RecycleBinPEodel. superclass. Init.call{ this)
this. ittachNotificat ionHandler{ const=.g=%(WEUE PROF BC WoTI GELETE BECOLL® i Handlele letelot 1F ToAL
thie. Lddfethod| "RefteshlLi=st®, funcbiont &y §:
#. ropecry("DelecilonCompleceZeat™, 1 »:
[fTunction HandleDe [eCeROLLiT LCAL 100 PLOPIEL] |
[var objectalngecbeletion = ENAE.weL] "Ch]ecLaUnder beletion” J:
iT(| ObJECTIURORLDE LECIon, length = 0 J(
wvar activeRow = propSet.CetPropectyl consts.getd “SWE PROFP BC MOTI ACTIVE ROW™))
if{ mctiveRow == this.Get| "‘Get&ie_lect:l.nn"' i Rk nb_ljc:t:ﬁnd.erbcletinn[activeRow]) {
this.Gec{"beletionCompletedae™) . push| objectslnderbelecion] aceiveRow] §:
objeccalnderbeletion] sctiveRow] = null:
this ExecureMethod] "Refreahligt”);

Figure 23. Customizing the Presentation Model to Handle Notifications

To customize the presentation model to handle notifications
1 Identify the notification type that Siebel Open Ul must handle.

Examine the notification types in the “Notifications That Siebel Open Ul Supports” on page 545
topic. Look for a notification type that indicates it might include the information that your
customization requires. For this example, the notification type for the NotifyDeleteRecord
notification is SWE_PROP_BC_NOTI_DELETE_RECORD.

2 Examine the methods that the presentation model references that indicate they might be useful
for your customization.

The AttachNotificationHandler method is the appropriate method to use for this example. For
more information, see “AttachNotificationHandler Method” on page 421.

3 In the recyclebinpmodel.js file, add the AttachNotificationHandler to the Init method of the
presentation model:

this._AttachNotificationHandler(consts.get(*"SWE_PROP_BC_NOTI_DELETE_RECORD'"),
HandleDeleteNotification);

4 Add the custom method that Siebel Open Ul uses to handle replies from NotifyDeleteRecord and
to populate the recycle bin:

function HandleDeleteNotification(propSet){

5 Get the property that you use to identify the objects that Siebel Open Ul has flagged for deletion:

var objectsUnderDeletion = this.Get(""ObjectsUnderDeletion™);

You configured this property in Step 10 on page 76 to back up the records that Siebel Open Ul is
in the process of deleting.

80 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

10

11

izing Siebel Open Ul = Process of Customizing the Presentation Model

Determine whether or not any records exist in the In Progress list:

if(objectsUnderDeletion.length > 0){

Siebel Open Ul must process these records, and then move them to the recycle bin. In this step
and in several subsequent steps, you do more than one examination to make sure the notification
instance that Siebel Open Ul is handling is the instance that it requires for the notification
handler. Some repeating notifications might exist that you must process to avoid duplication.

ldentify the row that is involved with the NotifyDeleteRecord notification:

var activeRow = propSet.GetProperty(consts._get(""'SWE_PROP_BC_NOTI_ACTIVE_ROW'™));

In this example, you use the SWE_PROP_BC_NOTI_ACTIVE_ROW property. For more information
about this property, see “Summary of Notifications That Siebel Open Ul Supports” on page 546.

Make sure that this notification confirms the deletion, and make sure that this notification is not
a duplicate:

if(activeRow == this.Get("'GetSelection™) && objectsUnderDeletion[activeRow]){
where:

m The following code determines whether or not the record that the NotifyDeleteRecord method
references is the currently selected record:

activeRow == this.Get("GetSelection')

This example uses a synchronous request, so Siebel Open Ul selects the record that the
DeleteRecord method references in the context of PrelnvokeMethod. It selects no other
record after it makes this initial selection while the Siebel Server sends the delete
confirmation notification to the client. For more information, see “About Synchronous and
Asynchronous Requests” on page 78.

m The following code makes sure that this notification is not a duplicate:

objectsUnderDeletion[activeRow]

It determines whether or not Siebel Open Ul has already removed the record that it is
examining in a previous instance of handling the same notification for the same record.

Add a property that Siebel Open Ul can use to store the list of records that the user deletes but
might retrieve from the recycle bin:

this_AddProperty(*'DeletionCompleteSet™, []1);

Store the deleted record:

this._Get(""DeletionCompleteSet') .push(objectsUnderDeletion[activeRow]);

The conditional block where this code resides determines that this notification is not a duplicate
NotifyDeleteRecord notification for the record that the DeleteRecord method requests deletion.
So, this push statement pushes the deleted record into the DeletionCompletedSet property that
you defined Step 9.

Remove the record from the Deletion in Progress list:

objectsUnderDeletion[activeRow] = null;

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 81

Example of Customizing Siebel Open Ul & Process of Customizing

12 Add the RefreshList method:
this_AddMethod("'RefreshList", function(){});

Siebel Open Ul must refresh the recycle bin after Step 11 adds a record to this recycle bin. You
can use dependency injection through the AttachPMBinding method to inform the physical
renderer that the recycle bin requires a refresh. For more information, see “About Dependency
Injection” on page 73. For more information, see “How Siebel Open Ul Uses Nondetailed Data to
Indicate Modifications That Occur in Detailed Data” on page 82.

13 Run the RefreshList method:

this.ExecuteMethod(*'RefreshList™);

14 Save the recyclebinpmodel.js file.

How Siebel Open Ul Uses Nondetailed Data to Indicate Modifications
That Occur in Detailed Data

Siebel Open Ul uses the dependency that exists between the presentation model and the physical
renderer to indicate a high-level modification in a property or method, such as a modifying the list
of records that it must display. This dependency configures Siebel Open Ul to run a high-level
renderer method, such as a method that repopulates the entire physical markup of columns and data
in the grid container. The renderer method then gets the detailed presentation model attributes, such
as columns and data, through properties or methods that the presentation model contains.

This example uses the RefreshList method as an indicator that Siebel Open Ul modified something
in the DeletionCompletedSet property. When you configure the physical renderer in “Customizing the
Physical Renderer to Refresh the Carousel” on page 96, you configure Siebel Open Ul to use the
AttachPMBinding method to bind a physical renderer method to the RefreshList method. You also
configure it to use this physical renderer method to get the detailed data that the
DeletionCompletedSet method references. Siebel Open Ul gets this data from the presentation
model so that the physical renderer can render it. For more information, see “AttachPMBinding
Method” on page 423.

Attaching an Event Handler to a Presentation Model
This task is a step in “Process of Customizing the Presentation Model” on page 66.

At this point in this example, you have set up and customized the presentation model to choose
records to delete, to delete them, and then to move them to the recycle bin. In this topic, you modify
the presentation model to allow the user to click an item in the carousel, and then click the plus sign
(+) to restore the record.

82 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

pen Ul & Process of Customizing the Presentation Model

Figure 24 illustrates the code you use to attach an event handler to a presentation model. Each
number in this figure identifies the corresponding step number in the numbered task list that this
book includes immediately after this figure.

RecycleBinPHodel.prototype. Init = function(){

Fiebe l AppFacade . Becye laBinPRodel, superclass, Inic.call{ thig)
1 this. ittachEventHandler{ "RESTORE"™, OmClickRestore).
__this AddPropercy{ "rescoracionlndex™, =1)i

Tunction CnGliCKRESLOCE] Lnisn) | — —
if{ this.FxecuteMethod{ "CanlmrokeMethod®, FHNewRecord™)})4

thig.JecPropercy{ "inRestoration”, true b
this.SetProperey(“restorationlndex®, index):
thig.Execucalechod{ "InvokeMschod”, "NewRecord®, null, false):

this.EFxecuteMethod{ "InvokeMethod", "WriteRecord”, null, false

¥

Figure 24. Attaching an Event Handler to a Presentation Model

To attach an event handler to a presentation model
1 In the recyclebinpmodel.js file, add the method that handles the event:

function OnClickRestore(index){
The name of an event handler typically starts with the following prefix:
Oon
Siebel Open Ul calls this method when the user clicks the plus sign (+).
2 Bind the OnClickRestore method to the RESTORE custom event:
this._AttachEventHandler (""RESTORE"™, OnClickRestore);

This code adds the RESTORE custom event. The physical renderer sends this event to the
presentation model, and then this presentation model runs OnClickRestore. The
AttachEventHandler method sets up a dependency injection, so you add it in the Init method. For
more information, see “AttachEventHandler Method” on page 421 and “About Dependency
Injection” on page 73.

3 Identify the method that Siebel Open Ul uses when a user creates a record.

Examine the “Flow That Creates New Records in List Applets, Calling the Siebel Server” on page 536.
Note that Siebel Open Ul uses the NewRecord method, and then uses the WriteRecord method
as an input argument for the InvokeMethod method when it runs InvokeMethod in the
presentation model. For more information, see “NewRecord Method” on page 480.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 83

Example of Customizing Siebel Open Ul & Process of Customizing

84

Determine how Siebel Open Ul stores the field values of a new record that a user creates.

Examine “Flow That Handles Focus Changes in List Applets” on page 533. This flow describes the
process that occurs between the initial NewRecord call and the WriteRecord call when Siebel
Open Ul creates a record in the client. It stores the field values in the client while the user enters
these values and navigates from one field to another field. For more information, see
“WriteRecord Method” on page 398.

Siebel Open Ul can do the following to create a record that it restores through the OnClickRestore
event handler:

® Run the InvokeMethod method for the NewRecord.

m Store values that the user enters in each field, and use values from the records that Siebel
Open Ul stores in the recycle bin.

B Run the InvokeMethod method for WriteRecord with the client already configured to include
the field values for the record.

Make sure Siebel Open Ul can use the NewRecord method in the applet:

if(this_ExecuteMethod('CanlnvokeMethod", ""NewRecord™)){
If Siebel Open Ul cannot run the NewRecord method, then it exits this conditional statement.

Add the property that Siebel Open Ul uses to store the index that identifies the record it must
restore:

this._AddProperty(“'restorationlndex", -1);

The physical renderer must specify the record to restore. To do this, it uses the
DeletionCompletedSet property to get the restorationlindex of this record from the client and
store it. It then sends this index to the presentation model as part of a request to restore the
record. The restorationlndex is an index that resides in the DeletionCompletedSet property of
the record.

Siebel Open Ul sends this value from the recycle bin record that the user chooses to restore. The
OnClickRestore method receives this property, and then Siebel Open Ul stores this value in the
restorationlndex property of the presentation model.

Configure the OnClickRestore method:

this.SetProperty("inRestoration™, true);
this._SetProperty("'restorationlndex™, index);
this.ExecuteMethod (' InvokeMethod", *"'NewRecord'", null, false);
this.ExecuteMethod ("' InvokeMethod", "WriteRecord™, null, false);

where:

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

iebel Open Ul = Process of Customizing the Presentation Model

m NewRecord and WriteRecord are input arguments to the InvokeMethod method. In Step 3 you
determined that Siebel Open Ul uses the NewRecord method or the WriteRecord method as
an input argument for the InvokeMethod, so you specify these methods in this code.

Siebel Open Ul stores the field values of a record in the WriteRecord request before it sends this
request to the Siebel Server. It stores these values differently depending on whether it creates
a record from the recycle bin or whether the user creates a new record. The physical user
interface layer does not store these values if the user attempts to restore a record from the
recycle bin. It stores these values only if the user creates a new record. You write this
customization in the next topic in this example, “Customizing Methods in the Presentation Model
to Store Field Values” on page 85.

This customization runs only while WriteRecord is running to restore a record from the recycle
bin. It does not run when the user creates a new record and Siebel Open Ul calls WriteRecord.
When you start this restoration logic in the OnClickRestore method, you set a presentation model
property that serves as a flag that indicates that a recycle bin restoration is in progress. An
explicit AddProperty call does not exist for this property, so Siebel Open Ul creates this property
only if the user uses the recycle bin.

8 Save the recyclebinpmodel.js file.

Customizing Methods in the Presentation Model to Store
Field Values
This task is a step in “Process of Customizing the Presentation Model” on page 66.

In this topic, you use the ExecuteMethod method to store the values of the record that the user is
attempting to restore from the recycle bin.

Figure 25 illustrates the code you use to customize a method in the presentation model to store the
field values of records. Each number in this figure identifies the corresponding step number in the
numbered task list that this book includes immediately after this figure.

function PrelnvokeMethod(methodNams, pslnputhrgs, lp, returnderucture){

if{ mechodNames ses "heleveRecord” G Vthis.Gee{ "InbDelecion™ 3

Elge IT{ meChodlAme === "WEILERecord” Lk CHi#. L] IARESCOEACIonTY J1

var recordiet = this.Get({ "DeletionCompletelet™)
var Eepord = [EEDEQ_EEE[t-l_'lll-.GE[.{ "ITE_S'EDI‘.'HT.J.DHIMEH" P 1:

var listedfColumms = this.G\:tI PLi=tO0fCo lumns™ §

YAr controls = thig Getf "GerConcrola™ 32
for{ var i = 0, len = liscedfColumn=.lengthy & < Llen: i++ 3 { o
var control = controlal liscOfColumnsa[2].nmoe]2

if{ cantral){
this.Executelethod| "LeaveField", control, recordcontrol.GetFieldNeme()], true):

i

¥

Figure 25. Customizing a Method in the Presentation Model to Store the Field Values of Records

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 85

Example of Customizing Siebel Open Ul & Process of Customizing

To customize methods in the presentation model to store field values

1

86

In the recyclebinpmodel.js file, add a condition that makes sure Siebel Open Ul runs the
customization logic only if the user is restoring a record from the recycle bin, and not adding a
new record: (

else if(methodName === "WriteRecord" && this.Get("inRestoration™)){

This i f statement examines the value of the methodName in the WriteRecord argument and the
value of the inRestoration property. For more information, see “WriteRecord Method” on page 398.

Get the set of records for the recycle bin:

var recordSet = this.Get(''DeletionCompleteSet');

In Step 10 on page 81, you configured the DeletionCompletedSet property of the presentation
model to store each record that the user adds to the recycle bin.

Get the back up copy of the record that the physical renderer requests to restore:

var record = recordSet[this.Get("'restorationlndex')];
To get this value, you access the restorationlndex property that you added in Step 6 on page 84.

Identify the method that Siebel Open Ul uses to indicate that the user navigated away from an
applet.

To do this, you can examine “Flow That Handles Focus Changes in List Applets” on page 533. Note
that Siebel Open Ul calls the LeaveField method as the last step in the flow. This method
determines whether or not Siebel Open Ul removed the focus from a field in an applet, so Siebel
Open Ul uses this step in the flow as a flag to signal that it must store the field values. To get
information about the methods that the flowcharts describe when you develop your own
customization, you can use the descriptions in Appendix A, “Siebel Open Ul Application
Programming Interface.”

Get the list of columns that the list applet contains. This list is identical to the list of columns that
the DeletionCompleteSet property contains:

var listOfColumns = this.Get("'ListOfColumns™);

Get the list of controls that the list applets contains:

var controls = this.Get("GetControls™);

For more information about the GetControls property, see “Properties of the Presentation Model
That Siebel Open Ul Uses for Applets” on page 431.

Store the field values:

for(var i = 0, len = listOfColumns.length; i < len; i++){
var control = controls[listOfColumns[i].name];
if(control){
this.ExecuteMethod(''LeaveField", control, record[control_GetFieldName()],
true);}
}
}

where:

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

zing Siebel Open Ul = Process of Customizing the Presentation Model

m The following code iterates through the applet controls that correspond to the list columns of
that the record that the DeletionCompleteSet property identifies:

for(var i = 0, len = listOfColumns.length; i < len; i++)

m this_ExecuteMethod calls the LeaveField method that you identified in Step 4. It calls this
method one time for each iteration. It sends the field value from the corresponding control
of the record that DeletionCompleteSet identifies. It sends this value to an argument. When
this code iterates, it runs the LeaveField method for every control that Siebel Open Ul must
populate in the new record that it is using to restore the deleted record from the recycle bin.

Siebel Open Ul must send the LeaveField method as a control and store a value for this
control. In this example, it iterates through each control that the list applet contains, and
sends the value of the corresponding list column that it uses for the control from the record
that the DeletionCompleteSet property gets in Step 2.

For a description of the arguments that LeaveField uses, “Summary of Methods That You Can
Use with the Presentation Model for Applets” on page 430.

B record stores the field value of the record that Siebel Open Ul is restoring. The subsequent
WriteRecord call packages and sends these values to the Siebel Server. Siebel Open Ul stores
these values when it runs the LeaveField method. For more information about this flow, see
“Flow That Handles Focus Changes in List Applets” on page 533, .

8 Save the recyclebinpmodel.js file.

Customizing the Presentation Model to Call the Siebel
Server and Delete a Record

This task is a step in “Process of Customizing the Presentation Model” on page 66.

In this topic, you configure the presentation model to remove the record from the recycling bin. You
use a dependency injection to call a method on the Siebel Server after the stack that Siebel Open Ul
uses to call the server has finished processing. For more information, see “About Dependency
Injection” on page 73 and “Customizing Events” on page 150.

To customize the presentation model to call the Siebel Server and delete a record
1 In the recyclebinpmodel.js file, add the following code to the Init method:

this._AttachPostProxyExecuteBinding("WriteRecord"”, PostWriteRecord);

You use the Init method to send a WriteRecord call to the Siebel Server. For more information,
see “WriteRecord Method” on page 398 and “AttachPostProxyExecuteBinding Method” on page 424.

2 Add the following code anywhere in the recyclebinpmodel.js file:

function PostWriteRecord(methodName, InputPS, outputPS){
if(this.Get("inRestoration™)){
this.Get('DeletionCompleteSet)[this.Get("'restorationlndex™)] = null;

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 87

Example of Customizing Siebel Open Ul & Process of Customi

this.ExecuteMethod("'RefreshList™);
this.SetProperty("inRestoration", false);

}
where:
PostWriteRecord does the following work:

m Removes the record that Siebel Open Ul restored in Step 7 on page 86. It removes this record
from the DeletionCompleteSet property.

m Calls the RefreshList method to start another round of binding to the physical renderer. In
the next topic in this example, you configure Siebel Open Ul to call the
HandleDeleteNotification method to refresh the list and to remove the record from the recycle
bin in the client.

B Sets the inRestoration property of the presentation model to false. You set this property to
true in step Step 7 on page 84 to indicate that Siebel Open Ul is restoring a record. The
restoration is now finished, so you can configure Siebel Open Ul to set inRestoration to false.

3 Save the recyclebinpmodel.js file.

Process of Customizing the Physical
Renderer

This task is a step in “Roadmap for Customizing Siebel Open Ul” on page 65.
To customize the physical renderer, do the following tasks:

1 Setting Up the Physical Renderer on page 88

2 Customizing the Physical Renderer to Render the Carousel on page 90

3 Customizing the Physical Renderer to Bind Events on page 92

4 Customizing the Physical Renderer to Bind Data on page 95

5 Customizing the Physical Renderer to Refresh the Carousel on page 96

6 Modifying CSS Files to Support the Physical Renderer on page 99

7/ Modifying CSS Files to Support the Physical Renderer on page 99

In this topic, you customize the JQGridRenderer physical renderer that Siebel Open Ul uses with a
presentation model for a typical Siebel list applet so that it renders this applet as a grid. You add the
rendering capabilities for the carousel that Siebel Open Ul uses to render the recycle bin. You also
modify the grid style to accommodate the carousel control. You use methods in the physical renderer
to do this work. For a description of these methods, including the sequence you use to configure
them, see “Life Cycle of a Physical Renderer” on page 60.

Setting Up the Physical Renderer

This task is a step in “Process of Customizing the Physical Renderer” on page 88.

88 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

el Open Ul = Process of Customizing the Physical Renderer

Figure 26 illustrates the code that you use to set up the physical renderer. Each number in this figure
identifies the corresponding step number in the numbered task list that this book includes
immediately after this figure.

it{ typeof{ SiebelAppfacade.recycledinrenderer) === "undefined” }{
Siskhelds MHapesoacel “Sicheliporacads FecvcleBinRendezen™ 12
define ("siebel/customs recyclebinrenderer™,
["3zdParcy/jcarcuselslib/jquery.jcarousel . min™, "sisbel/jggridrenderer™), fanctiom () { 9
- TeL TRETOETEE = BOCLIon] 1

var sisbConsts = SiebelJsS.[ependency("Siebelhpp.Constancs") @

fonotion RecycleBinRendersr{ pm) {
SisbelippFacade . RecycleBinRenderar, superclass, constructor.call{ this, pm)
this.lisacOfCols = ["Name”, "Locacion®™]:

1
SiebelJ5.Exvend{ RecycleBinRenderer, SisbelippFfacade.JQGridRenderer }:

return RecycleBinRenderer:

Figure 26. Setting Up the Physical Renderer

To set up the physical renderer
1 Download a copy of the recyclebinrenderer.js file to the following folder:

INSTALL DIR\eappweb\PUBLIC\Janguage code\build _number\scripts\siebel\custom

It is recommended that you get a copy of this file to assist in your understanding of how to
implement the example that this topic describes. This file includes all the code that this example
uses. It also includes more comments that describe code functionality. To get a copy of this file,
see Article ID 1494998.1 on My Oracle Support.

For more information about the folders you can use to store your customizations, see “Organizing
Files That You Customize” on page 162. For more information about the language_code, see
“Languages That Siebel Open Ul Supports” on page 592.

2 Use a JavaScript editor to open the recyclebinpmodel.js file that you downloaded in Step 1.

3 Verify that the RecycleBinRenderer class does not exist, and that you do not configure Siebel
Open Ul to override this class:

if(typeof(SiebelAppFacade.RecycleBinRenderer) === "undefined"){
4 To prevent potential conflicts, create a namespace that Siebel Open Ul can use:

SiebelJS._Namespace(*'SiebelAppFacade .RecycleBinRenderer');

5 Use the Define method to identify the physical renderer file:

define('siebel/custom/recyclebinrenderer’, ["3rdParty/jcarousel/lib/
Jquery.jcarousel _min", "siebel/jqgridrenderer'™], function () {

You must use the Define method to make sure Siebel Open Ul can identify the constructor. You
must include the relative path and the name of the presentation model file without the file name
extension. For more information, see “Define Method” on page 510.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 89

Example of Customizing Siebel Open Ul I Process

6 Define the class:
SiebelAppFacade .RecycleBinRenderer = (function(){

7 Declare the variables that Siebel Open Ul uses throughout the physical renderer code:
var siebConsts = SiebelJS._Dependency("'SiebelApp.Constants™);

8 Create the class constructor:

function RecycleBinRenderer(pm){
SiebelAppFacade .RecycleBinRenderer._superclass.constructor.call(this, pm);
this._listOfCols = [""Name'", "Location"];

}
9 Define the inheritance:
SiebelJS_Extend(RecycleBinRenderer, SiebelAppFacade.JQGridRenderer);
For more information about inheritance, see “About Dependency Injection” on page 73.

10 Save the recyclebinrenderer.js file.

Customizing the Physical Renderer to Render the
Carousel
This task is a step in “Process of Customizing the Physical Renderer” on page 88.

The ShowUI method of the JQGridRenderer physical renderer renders a list applet in the JQGrid
control. This method places the third-party JCarousel control next to the grid. For more information,
see “ShowUl Method” on page 459.

90 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Ul = Process of Customizing the Physical Renderer

Figure 27 illustrates the code you use to customize the physical renderer to render a list applet. Each
number in this figure identifies the corresponding step number in the numbered task list that this
book includes immediately after this figure.

RecycleBinRenderer.prototype.Showll = function(){ o
SiebelAppFacade.RecycleBinRenderer.superclass.ShowUI.call({ this);
J/* Now, list has shown in UI. Let™s show carousel */7

[var pm = this.GetPM();
var placeHolder = "s_" + pm.Get("GetFullId™) + "_diwv";

var carouselHitml = “<div classe'siebui-jcarousel-wrapper > * 4+

- #

“¢div class="siebui-jcarcusel’ id=%"" + placeHolder + " recycle‘"> * +
"zul class="siebui-list-carousel” >" +
"lix<SLix"
"o fulx" 4 o

" fdive" &

“8lsaquo; " +

"¢a href="#' class="siebui-jearousel-next ' >›</as" +
“gfdive";

$("#" + placeHolder)
addllass("ciebui-list-recyclebin’) E

m .atter{ carouselHtml }

nextAll{“div.siebui-jcarousel-wrapper™})

.eqlo)

Jhide()
o .children(“div.siebui-jcarousel™)

JJjearocusel({

j3H

_};

Figure 27. Customizing the Physical Renderer to Render the Carousel

To customize the physical renderer to render list applets
1 In the recyclebinrenderer.js file, call the ShowUIl method of the physical renderer:

SiebelAppFacade.RecycleBinRenderer.superclass.ShowUl .call(this);

If you customize a physical renderer, then it is recommended that you call each life cycle method
of the predefined renderer before you run any custom logic.

2 Get the presentation model instance:
var pm = this.GetPM();
For more information, see “GetPM Method for Physical Renderers” on page 458.

3 Calculate the placeholder ID of the HTML node that Siebel Open Ul uses as the container for the
predefined applet:

var placeHolder = "s_" + pm.Get(''GetFullld™) + " _div";

You use this ID to modify the HTML Document Object Model (DOM). For example, to position the
carousel in the recycle bin. The GetFullld property gets the unique ID of each applet that is in
scope in a view. It is uses the following format:

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 91

Example of Customizing Siebel Open Ul & Process of C

s_FulllD div
where:

® Fullld in this example is S_Al. The entire ID in this example is s_S_A1_div. Fullld is not a
complete ID. It is a part of the ID string template named s_Fullld_div.

For more information, see “Properties of the Presentation Model That Siebel Open Ul Uses for
Applets” on page 431.

4 Build the HTML for the 3rd party carousel plug-in:

var carouselHtml = "'<div class="siebui-jcarousel-wrapper®> " +
"<div class="siebui-jcarousel” 1d=\"" + placeHolder + "_recycle\"> " +
"<ul class="siebui-list-carousel” >" +
"" +
" +
</div>" +
"‹ " +
"›" +
</div>"";

5 Add a CSS class:
.addClass(*'siebui-list-recyclebin')

6 Add the constructed HTML for the carousel after the carousel container:
.after(carouselHtml)

/ Modify the existing jcarousel div container, to make it a carousel:

a Locate the jcarousel div container in the first child of the parent container. The container will look
similar to the following:

-eq(0)
-hideQ
.children("div.siebui-jcarousel™)

b Make a carousel out of the jcarousel that you located in Step a:

.jcarousel({

P

8 Save the recyclebinrenderer.js file.

Customizing the Physical Renderer to Bind Events
This task is a step in “Process of Customizing the Physical Renderer” on page 88.
In this topic, you add the following functionality to the carousel:

B If the user hovers the mouse over a record in the carousel, then display a restore button as a
plus sign (+).

B If the user removes the hover, then hide the restore button.

92 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

rocess of Customizing the Physical Renderer

I If the user clicks the plus sign (+), then call the presentation model to restore the record.
B To the HTML node that Siebel Open Ul uses for the restore button.
B Styling changes that affect the appearance of the carousel based on user actions.

Figure 28 illustrates the code you use to customize the physical renderer to bind events to the
carousel. Each number in this figure identifies the corresponding step number in the numbered task
list that this book includes immediately after this figure.

RecycleBinRenderer. prototype. BindEvents = function () { o
SiebelappFacade. RecyeleBinRenderer. superclass . BindEvents. . callithis);
war p - L LTS = etFullld™) +

(=" + placeMolder)
Jparent()
Jdelegate]
“div.siebui-carousel-ites™, “mouseenter™, { ctx: this }, ShowRestoreButton)
.delegate(
“div.siebui-carousel-iten™, “"mouseleave™, { ctx: this }, HideRestoreButten)
delegate(
“a.siebul-citem-add™, “click®, { ctx: this }, AddFresRecycleBin);

8("=" + placeHolder + " _recycle™)
-parent()
LFind(" . siebui-jcarcusel-prev')
onf " jcarouselcontrol:active”, function () {
S{this).removeClass(siebul-jearousel-ctrl-inactive™);
3]

-on(" jearouselcontrol:inactive”, function () {
${this) . addClass(siebui-jcargusel-ctrl-inactive’};
1
«JearcuselComtral ({ o
target: "-=1"
1z

$("%" + placeHolder + °
Jparent()
JHind(" siebul-jearausel-next’)

.onf " jcarouselcontrol:active”, function () {

${this).removeClass(’ :iehui—jcnruus:l =ctrl-inactive");
1

on{ " jcarouselcontrol: inactive®, functien () {
S(this).addClass(" siebui-jearousel-ctrl-inactive’);

_recycle™)

1

-jearcuselControl({
target: “+=1'

Thi

13

Figure 28. Customizing the Physical Renderer to Bind Events to the Carousel

To add this functionality, you must customize Siebel Open Ul to attach an event handler to each of
the following items:

B The carousel item, for every hover activity.
B The HTML node that Siebel Open Ul uses for the Restore button.

B The Next and Previous icons in the carousel.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 93

Example of Customizing Siebel Open Ul & Process of Cust

To customize the physical renderer to bind events
1 In the recyclebinrenderer.js file, call the BindEvents method of the physical renderer:
SiebelAppFacade.RecycleBinRenderer.superclass.BindEvents.call(this);

For more information, see “BindEvents Method” on page 456.

2 ldentify the placeholder:

var placeHolder = "s_" + this.GetPM().Get("'GetFullld™) + " _div";
3 Attach three event handlers for hover and click:

$(C'#" + placeHolder)

-parent()

.delegate('div.siebui-carousel-item"”, "mouseenter”™, { ctx: this },
ShowRestoreButton)

-delegate('div.siebui-carousel-item"”, "mouseleave", { ctx: this },
HideRestoreButton)

-delegate(a.siebui-citem-add"™, "click", { ctx: this }, AddFromRecycleBin);

ShowRestoreButton is called when a user hovers on a carousel item, and HideRestoreButton is

called when the hovering ends. If the user clicks the Add button, then AddFromRecycleBin is
called.

Attach styling events to the Previous and Next buttons of the carousel:

$(C'#" + placeHolder + "_recycle™)

-parent()

-Find(" .siebui-jcarousel-prev®)

-on("jcarouselcontrol:active®, function () {

$(this).removeClass("siebui-jcarousel-ctrl-inactive™);
D
.on("jcarouselcontrol:inactive”, function O {
$(this).addClass("siebui-jcarousel-ctrl-inactive®);
i)
-jcarouselControl ({
target: "-=1-
e

$C'#" + placeHolder + "_recycle™)

-parent()

-Find(" .siebui-jcarousel-next")

-on("jcarouselcontrol:active®, function (O {

$(this) .removeClass("siebui-jcarousel-ctrl-inactive™);

D
-on("jcarouselcontrol:inactive”, function () {
$(this).addClass("siebui-jcarousel-ctrl-inactive™);

b

94 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

iebel Open Ul = Process of Customizing the Physical Renderer

-jcarouselControl ({
target: "+=1°
D

In the above example, the first part of the code is finding the Previous button in the carousel
container, and then attaching jcarousel:active and jcarousel:inactive events to it. When
these events are triggered by the 3rd party plug-in, we call methods that set and unset styling
classes on the buttons. Similarly, the styling classes are attached and removed for the Next
button.

5 Define the handler methods:
a Use the following code to find the child for the add button and show it:

function ShowRestoreButton(evt) {
if (evt && evt.currentTarget) {
$(evt.currentTarget) .children(a.siebui-citem-add™) .show();

}
}

b Use the following code to find the child for the add button and hide it:

function HideRestoreButton(evt) {
if (evt && evt.currentTarget) {
$(evt.currentTarget) .children("a.siebui-citem-add™) _hide();

}
}

C Use the following code to call the Restore method on the PM with the relevant index parameter

function AddFromRecycleBin(evt) {
var pm = evt.data.ctx.GetPM();
if (evt && evt.currentTarget) {
pm.OnControlEvent(""RESTORE", $(evt.currentTarget).parent().data("index™));

}
}

6 Save the recyclebinrenderer.js file.

Customizing the Physical Renderer to Bind Data

This task is a step in “Process of Customizing the Physical Renderer” on page 88.

The carousel in this example does not render data. Siebel Open Ul only renders data in this example
if it adds a record to or deletes a record from the recycle bin.

To customize the physical renderer to bind data

1 In the recyclebinrenderer.js file, add the following code to
SiebelAppFacade .RecycleBinRenderer = (function(Q{:

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 95

Example of Customizing Siebel Open Ul & Process of C

RecycleBinRenderer _prototype._BindData = function({
SiebelAppFacade .RecycleBinRenderer ._superclass.BindData.apply(this,
arguments);

};
For more information, see “BindData Method” on page 456.

2 Save the recyclebinrenderer.js file.

Customizing the Physical Renderer to Refresh the
Carousel

This task is a step in “Process of Customizing the Physical Renderer” on page 88.

At this point in this example, you have configured the ShowUl, BindData, and BindEvents methods
of the physical renderer, and this renderer displays the carousel with no records. To display deleted
records in the carousel, you customize Siebel Open Ul to bind the data from these deleted records
to the carousel control. To do this, you use dependency injection through the AttachPMBinding
method. For more information, see “About Dependency Injection” on page 73 and “AttachPMBinding
Method” on page 423.

Siebel Open Ul includes the AttachPMBinding method in the presentation model, but it is
recommended that you configure Siebel Open Ul to call it from the physical renderer so that the
presentation model remains independent of methods that you declare in the physical renderer.
AttachPMBinding adds a dependency from a physical renderer method to a presentation model
method or property. If Siebel Open Ul modifies a property value or runs a method in the presentation
model, then it uses this dependency to call a method that resides in the physical renderer.

96 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

I Process of Customizing the Physical Renderer

Figure 29 illustrates the code you use to customize the physical renderer to refresh the carousel.
Each number in this figure identifies the corresponding step number in the numbered task list that
this book includes immediately after this figure.

function RecycleBinRenderer({ pm) {
SiebelhAppFacade.RecycleBinRenderer.superclass.constructor.call{ this, pm }:
this.liscOfCols = ["Name"™, "Location™]:;

}

CiebelJs.Excend| Recyclebinbenderser, CiebelApplacade. weridhenderer) !

RecycleBinRenderer.prototype.Inic = fanction () { 0
SiebelAppFacade.RecycleBinRenderer . superclass.Init.call (this):;
this.ActachPMBinding{ "Refreshlist™, RefreshCarousel):

-

function RefreshCarousel () {
var pm = this.GetPFH (),
recordSet = pmw.Get("DeletionCompleceSec”),

el = 5 "§a " + pr.Get| "GetFullId"™ } + " div" + " recycle”),
carousel = gl.data({ '"jcarous=el'),

count = 0z
carousel , reser ()2
for{ var i = 0, len = recordSet.length:y i < len; i++){
if{ recordSec[i]){
carousel
.add{ count,
"glix" 4 GectCurrencCarcuselltems.call{ this, recordSet([i],
this.liscOfCols, i) + "</1li>"):

count++

]
1
carousel.size{ count)
el.find{ "a.siebui-citem-add™).hidel():
el = carousel = nmall;

}

Figure 29. Customizing the Physical Renderer to Refresh the Recycle Bin

To customize the physical renderer to refresh the recycle bin

1 In the recyclebinrenderer.js file, bind the RefreshCarousel method that the physical renderer
contains to the RefreshList method that the presentation model contains:

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 97

Example of Customizing Siebel Open Ul = Process of Customizin

this_AttachPMBinding("'RefreshList", RefreshCarousel);

In this example, you implemented the RefreshList method in the presentation model in Step 12
on page 82. This presentation model calls the RefreshList method when the user adds a record
or removes a record from the recycle bin. AttachPMBinding configures Siebel Open Ul to call
RefreshCarousel when the presentation model runs the RefreshList method. You must configure
your custom physical renderer to call the AttachPMBinding method so that it overrides the Init
function. You must make sure you configure Siebel Open Ul to call the Init function of the
superclass before it creates or attaches a modification in your custom physical renderer.

You must specify all AttachPMBinding calls in the Init function in the physical renderer.

2 Configure the RefreshCarousel to read the value of the DeletionCompleteSet property in the
physical renderer:

var pm = this.GetPM(),
placeHolder = "s_" + pm.Get("'GetFullld™) + "_div",
recordSet = pm.Get("'DeletionCompleteSet™),

3 Calculate the container in the HTML DOM that hosts the carousel:
el = $(C'#" + placeHolder + " _recycle"),
4 Construct the new mark-up:

for (var i = 0, len = recordSet.length; i < len; i++) {

if (recordSet[i]) {

markUp += "" + GetCurrentCarouselltems._call(this, recordSet[i],
this_listOfCols, 1) + "</I1iI>";

count++;

}
}

This code does the following work:
E Loops through the set of records that the DeletionCompleteSet property contains.
B Adds the records and the separate items.

B Sends the index of the record that resides in the DeletionCompleteSet property to the
GetCurrentCarouselltems method.

B Uses the GetCurrentCarouselltems method to create the markup for each carousel item.

B Uses GetCurrentCarouselltems to add the index to the markup for the individual item. This
configuration makes sure the item is available if the user chooses to restore the record.

5 Determine the space that should be occupied by the grid, based on whether the carousel contains
any records:

if (count > 0) {

$(C'#" + placeHolder) .addClass("'siebui-span-md-10");
el _parent() .show() .addClass("'siebui-span-md-2"");

}

else {

98 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

pen Ul = Process of Customizing the Physical Renderer

$(C'#" + placeHolder).removeClass(*'siebui-span-md-10");
el _parent() .-hide() .removeClass("'siebui-span-md-2"");

¥
This step adds classes that decide the width of the original grid, effectively creating a fluid grid.
6 Add the newly constructed markup in Step 4, to the appropriate container:

el.children(""ul .siebui-list-carousel™) .html(markUp);

7 Indicate to the plug-in that the content requires a reload:

el _jcarousel("reload”);

8 Hide the restore button in the carousel:

el_find("a.siebui-citem-add'™) .hide();

9 Remove the DOM references:

el = null;
It is recommended that you remove any DOM references that you create.

10 Save the recyclebinrenderer.js file.

Modifying CSS Files to Support the Physical Renderer
This task is a step in “Process of Customizing the Physical Renderer” on page 88.

In this topic, you modify the CSS files so that they support the CSS classes that the physical renderer
uses.

To modify CSS files to support the physical renderer
1 Open the CSS file, add the following code, and then save your changes:

.siebui-list-recyclebin {
margin : Opx;

}

.siebui-jcarousel-wrapper {
position: relative;
height: 450px;

}

.siebui-jcarousel {
position: relative;
overflow: hidden;

height: 100% !important;
margin: 5px;

width : 80%;

border: 10px solid #fff;
-webkit-border-radius: 5px;
-moz-border-radius: 5px;

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 99

Example of Customizing Siebel Open Ul = Pro

border-radius: 5px;
-webkit-box-shadow: 0 0 2px #999;
-moz-box-shadow: 0 0 2px #999;
box-shadow: 0 0 2px #999;

.siebui-jcarousel ul {
width: 98%;
position: relative;
list-style: none;
margin: O;
padding: O;
}

.siebui-jcarousel ul li {
margin-bottom : 5px;

}

.siebui-jcarousel-prev,

.siebui-jcarousel-next {
transform: rotate(90deg);
transform-origin: left top O;
float : left;

position: absolute;

width: 30px;

height: 30px;

text-align: center;

background: #4E443C;

color: #fff;

text-decoration: none;
text-shadow: 0 O 1px #000;

font: 24px/27px Arial, sans-serif;
-webkit-border-radius: 30px;
-moz-border-radius: 30px;
border-radius: 30px;
-webkit-box-shadow: 0 0 2px #999;
-moz-box-shadow: 0 0 2px #999;
box-shadow: 0 0 2px #999;

}
.siebui-jcarousel-prev {
top : Opx;

left : 45%;
}
.siebui-jcarousel-next {
top :© 450px;

left: 45%;
}

.siebui-jcarousel-prev:hover span,
.siebui-jcarousel-next:hover span {
display: block;

100 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

pen Ul = Process of Customizing the Physical Renderer

.siebui-jcarousel-prev.inactive,
.siebui-jcarousel-next.inactive {
opacity: .5;

cursor: default;

}

div._siebui-carousel-col{
display : block;
}

div.siebui-carousel-item{
height : 75px;

padding : 5px;

border : 1px solid #acacac;
text-align : center;
padding-top: 20px;
word-wrap : break-word;
-webkit-border-radius: 5px;
-moz-border-radius: 5px;
border-radius: 5px;

}

a.siebui-citem-add{
display : block;
top : 2px;
right : 2px;
float : right;
width : 16px;
height : 16px;
background: url(../images/plus.png) no-repeat center center;

}
2 Add the CSS files that the third-party uses:
a2 In Windows Explorer, navigate to the following folder:

INSTALL _DIR\eappweb\PUBLIC\Janguage code\build _number\scripts\3rdParty

b Add the following subfolder hierarchy to the 3rdParty folder:

\jcarousel\skins\tango\

c Save the following files to the tango folder that you added in Step b:

next-horizontal .png
next-vertical .png
prev-horizontal .png
prev-vertical .png
skin.css

To get a copy of these files, see Article ID 1494998.1 on My Oracle Support. For more
information about the CSS files and renderers that Siebel Open Ul uses to render a list applet
as a carousel, see “Customizing List Applets to Render as Carousels” on page 207.

3 Save the jquery.jcarousel.js file to the following folder:

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 101

Example of Customizing Siebel Open Ul © Proces

INSTALL _DIR\eappweb\PUBLIC\Janguage code\build _number\scripts\3rdParty

Siebel Open Ul uses this file to render a carousel. To get a copy of this file, see Article ID
1494998.1 on My Oracle Support.

Process of Customizing the Plug-in
Wrapper

This task is a step in “Roadmap for Customizing Siebel Open Ul” on page 65.

To customize a plug-in wrapper, do the following tasks:

Creating the Plug-in Wrapper on page 102.

Customizing the Plug-in Wrapper to Display the Control Differently on page 105.
Customizing the Plug-in Wrapper to Bind Custom Events to a Control on page 106.
Customizing the Plug-in Wrapper to Define Custom Events on page 108.

Customizing the Plug-in Wrapper to React to Value Changes of a Control on page 110.

O g A W N R

Attaching the Plug-in Wrapper to a Control Conditionally on page 112.

Creating the Plug-in Wrapper
This task is a step in “Process of Customizing the Plug-in Wrapper” on page 102.

The plug-in wrapper uses the Init method to configure the properties, methods, and bindings. For
more information about these methods, see “Life Cycle of User Interface Elements” on page 58.

102 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Ul & Process of Customizing the Plug-in Wrapper

Figure 30 illustrates the code you use to create the plug-in wrapper. Each number in this figure
identifies the corresponding step number in the numbered task list that this book includes

immediately after this figure.

[/ First, define the custom PW's namespace.
if (tvpeof (SiebeldppFacade.ColorBoxPi) === "undefined”) { IH

SiebellS.Namespace(SiebelAppFacade.ColorBoxPil');

I Defint the module and add ang,r dependencies (including 3rd party files the PW may use) here. 6
“si "1, function () {
SiebelippFacade.ColorBoxPi = (function () { g

function ColorBoxPH() {
{{ The constructor. Initializations and declrations go here. Just a superclass call in our case.

SiebelAppFacade.ColorBoxPW. superclass.constructor.apply(this, arguments); o

}

/{ Make sure to extend from the right Pi.
Siebells.Extend(ColorBoxPi, SiebelAppFacade.DropDownPi);

/f That's it, that's all the customization we need.

return ColorBoxPw;
Y)Y o

/1 Now this bit governs how or where this custom PW applies. The AttachPW API attaches this PH to

L& T Sdis somg oF r.n.n!rn.1 mhick fa sus race i 8 sembe b
L

Sie . g Jget(“SWE CTRL COMBOBOX® H Facade.ColorBoxPW, function (contrel
'l Ewer'y cosbo box encountered is run against this method definition, and returning true will do the attachsent.
/f The contrel object itself is at cur disposal to lake a :vuund chu:ce Conditions can be s complex or simple as required.

Ll In this case “Prohabilitys”
| return (control.Getlame() =wa “Probability2™);
NE

return SiebelAppfacade.ColorBoxPi;
hi

Figure 30. Creating the Plug-in Wrapper

This topic describes how to modify code that resides in the ColorBoxPW.js file. It is recommended
that you get a copy of this file to assist in your understanding of how to implement the example that
this topic describes. This file includes all the code in this example. It also includes more comments
that describe code functionality. To get a copy of this file, see Article1494998.1 on My Oracle

Support.

For more information about the folders you can use to store your customizations, see “Organizing
Files That You Customize” on page 162. For more information about the language_code, see
“Languages That Siebel Open Ul Supports” on page 592.

To create the plug-in wrapper
1 Create the plug-in wrapper file:

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 103

Example of Customizing Siebel Open Ul & Process of Customi

10

11

a Download a copy of the ColorBox.js file to the following folder:

INSTALL_DIR\eappweb\PUBLIC\ Janguage code\files\custom

b Use a JavaScript editor to open the ColorBoxPW.js file that you downloaded in Step a.

Make sure the ColorBoxPW class does not exist and that you do not configure Siebel Open Ul to
override this class. You add the following code:

iT(typeof(SiebelAppFacade.ColorBoxPW) === "undefined™){

Make sure a namespace exists that Siebel Open Ul can use to prevent conflicts:

SiebelJS_Namespace(*'SiebelAppFacade.ColorBoxPW™);

Use the Define method to identify the presentation model file:

define("'siebel/custom/ColorBoxPW", [siebel/basePW], function(){

You must use the Define Method to ensure that Siebel Open Ul can identify the constructor. You
must include the relative path and the name of the presentation model file without the file name
extension. For more information, see “Define Method” on page 510,

NOTE: Any 3rd party files that the plug-in wrapper uses must be mentioned in the dependencies
section of the define statement.

Define the class:

SiebelAppFacade.ColorBoxPW = (Ffunction(){

Define the class constructor:

function ColorBoxPW({
SiebelAppFacade.ColorBoxPW.superclass.constructor.apply(this,
arguments);

¥

Set up the injected dependency:

SiebelJS_Extend(ColorBoxPW, SiebelAppFacade.DropDownPW) ;

For more information about injected dependency, see “About Dependency Injection” on page 73.
Return the constructor:

return ColorBoxPW;

} O);
return SiebelAppFacade.ColorBoxPW;

D
Attach the plug-in wrapper:

SiebelApp.S_App-PluginBuilder._AttachPW(consts.get("'SWE_CTRL_COMBOBOX'),
SiebelAppFacade.ColorBoxPW, function (control) {

Write the condition for which the plug-in wrapper should kick in:

return (control._GetName() === "Probability2™);

Save the ColorBoxPW.js file.

104 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

el Open Ul = Process of Customizing the Plug-in Wrapper

Customizing the Plug-in Wrapper to Display the Control
Differently

This task is a step in “Process of Customizing the Plug-in Wrapper” on page 102.

In this step, you customize the setup logic of the plug-in wrapper so that it adds a color-box to the
control.

In this example, the ShowUI method will be overridden to add a different element on to the DOM as
a part of this control. The functionality of the control will remain unaffected, effectively, you will be
decorating it with a new element.

This is an optional step: the base functionality of how a control looks and behaves can be completely
changed based on your requirements. An out-of-the-box example of this type of modification is a flip
switch that appears instead of a check box on touch devices in Siebel Open Ul, which is accomplished
using a plug-in wrapper.

Figure 31 illustrates the code you use to customize the ShowUIl method of the plug-in wrapper. Each
number in this figure identifies the corresponding step number in the numbered task list that this
book includes immediately after this figure.

A ShewllI 1s & lifecylee method that gets called when the PW 1s being instantiated.
ff It is responsible for r-;n's'truu:tins the DOM that corresponds to the control. °
ColarBoxPi. prototype. Showll = function (contral) {
/7 Call the super class fTunction, so that the dropdown 1s bullt. Avold this call iIf you want the super class's showing to mot happen.
I} Here, we are only trying to decorate, not override how the dropdown it shown.

SiebelAppFacade.ColorBowPi. superclass. ShowUI.call(this, control);

var el = this.GetEl();

if (el &B el.length) {
parent = el parent();
fF Create a div, give it some sizing and coloring preperties and attach it after the original comtrol (ie, inside the naren:jc

/1 Get the original element - which is an input type. We'll decorate it. °

parent.append(“<div id="colorbox ® + el.attr(name™) + °' »¢/divy™);
PAFENE. TINa| O1v] 10 COLOFDOX] J.CA8(]

"width™: “inherit®,
“hefght™: “20px", °
“background-coler®: “inherit”

jiH

1
b

Figure 31. Customizing the Plug-in Wrapper to Display the Control Identity

To customize the plug-in wrapper to display the control differently

1 In the colorboxpw.js file, introduce the ShowUIl method that is a part of the life cycle of rendering
a control.

ColorBoxPW.prototype.ShowUl = function (control) {

2 Call the superclass method to get the dropdown to appear:

SiebelAppFacade.ColorBoxPW.superclass.ShowUl .call (this, control);

This will call the ShowUI method of the DropDownPW class, which is responsible for showing the
drop down field in the Siebel Open Ul client.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 105

Example of Customizing Siebel Open Ul = Process of Customizin

3 Get a reference to the existing element, and if it exists, get the parent element:

var el = this.GetEI();
if (el && el.length) {
parent = el_parent();

NOTE: This step is required to position the new DOM element as a sibling to the current element.

The GetEI() API framework method is a plug-in wrapper space that retrieves the jQuery element
representing the control. parent() is a jQuery call which retrieves the parent node of the element
in the DOM. For more information about the GetEl() API method, see Chapter 3, “Architecture of
Siebel Open UI.”

4 Add a new HTML div, which will serve as our color box:

parent.append(*'<div id="colorbox_" + el.attr(“name™) + "° ></div>");

You must specify a unique name for the element. In the above example, colorbox_ is added to
the existing name of the original element. The append() and attr() specifications are both
JQuery APIs. The former adds DOM elements at the end of a given element and the latter extracts
the specified attribute.

5 Style the newly created div. This will serve as our colorbox:

parent_find("div[id*=colorbox]').css({

"width": "inherit",
“height': '"20px",
"background-color': "inherit"

»:

The css() is a JQuery API that applies CSS styles to the given element. In the above example,
the colorbox gets the same width as the original dropdown and a height of 20 pixels. The original
background color is inherited from the dropdown.

6 Save the ColorBoxPW.js file.

Customizing the Plug-in Wrapper to Bind Custom Events
to a Control

This task is a step in “Process of Customizing the Plug-in Wrapper” on page 102.

In this topic, you attach behavioral methods to the colorbox element that you created in “Creating
the Plug-in Wrapper” on page 102.

In this example, the BindEvent method will be overridden to attach custom handlers to a new
element. The event handlers of the control will remain unaffected, and the new element will be
decorated with some events.

This is an optional step: the base functionality of how a control looks and behaves can be completely
changed based on your requirements. An out-of-the-box example of this type of modification is a flip
switch that appears instead of a check box on touch devices in Siebel Open Ul, which is accomplished
using a plug-in wrapper.

106 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Open Ul & Process of Customizing the Plug-in Wrapper

Figure 32 illustrates the code you use to customize the BindEvents method of the plug-in wrapper.
Each number in this figure identifies the corresponding step number in the numbered task list that
this book includes immediately after this figure.

Agai 1 itzelf
SiebelippFacade.ColorBoxPi. superclass.BindEvents.call{this); o |

L Get the peg boy we haye created, and the Eupnt Helose objscts
var colorbox = this.GetEl().parent().find{"div[id*=colorbox]™), o

evhelper = this, Helper(™EventHelper™);

if (colorbox BE celorbox.length B8 evHelper) {
f/ We will attach three event handlers. Using the Event Helper homogenizes events between different platforms.
// For example, “click™ event will work as "touchend™ for touch devices.
// Custom handlers are methods that are defined in the PW itself.
evHelper
Manage(colorbox, "mouseenter”, { ctx: this }, OnMouseEnter)
JManage(colorbox, “mouseleave”, { ctx: this }, OnMouseLeave) o
Manage(colorbox, "click®™, { ctx: this }, OnClick)

i

Figure 32. Customizing the Plug-In Wrapper to Bind Custom Events to a Control

To customize the plug-in wrapper to bind custom events to a control

1 In the colorboxpw.js file, introduce the BindEvents method that is a part of the life cycle of
rendering a control.

ColorBoxPW.prototype.BindEvents = function () {

2 Call the superclass method to attach the event handlers from the dropdown element:

SiebelAppFacade.ColorBoxPW.superclass.BindEvents.call (this);

This step calls the BindEvents of the DropDownPW class, which is responsible for attaching the
events that the drop down field requires to operate correctly.

3 Get the element that was created and attached as a sibling to the actual dropdown element, and
the Event Helper object:

var colorbox = this.GetEl().parent().find('divLid*=colorbox]™"),
evHelper = this.Helper("EventHelper™);
if (colorbox && colorbox.length && evHelper) {

The Helper API is the framework method in the plug-in wrapper space that enables retrieving
helper objects by name. For more information about the Helper API, see Chapter 3, “Architecture
of Siebel Open Ul.”

4 Attach the required events to the new DOM element that was created. In this example, three
handlers are attached to one element:

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 107

Example of Customizing Siebel Open Ul © Proces

evHelper
-Manage(colorbox, "mouseenter', { ctx: this }, OnMouseEnter)
-Manage(colorbox, "mouseleave', { ctx: this }, OnMouselLeave)
-Manage(colorbox, *"click™, { ctx: this }, OnClick)

The Helper API is a method in the Event Helper object that takes the following four elements:

the DOM element to which events should be attached, the event to be attached, the handler to
be run, and other arguments. In this case, you are attaching one event for the each user hovering
over the element, exiting the hover, and clicking on the element. For more information about the

Helper API, see Chapter 3, “Architecture of Siebel Open Ul.”

Customizing the Plug-in Wrapper to Define Custom
Events

This task is a step in “Process of Customizing the Plug-in Wrapper” on page 102.

In this topic, you define the behavioral methods that have been attached to the colorbox element

that you created in you created in “Creating the Plug-in Wrapper” on page 102.

Figure 33 illustrates the code you use to define the handlers of the plug-in wrapper. Each number in
this figure identifies the corresponding step number in the numbered task list that this book includes

immediately after this figure.

function OnMouseEnter() {
/7 This is our handler for when the user hovers on the box. Let's inform them that it's clickable.
$(this).sppend(~<div ide'info'>Click for Info...</div>"); o
}
function OnMouseleave() {
£7 This iz our handler for when the uszer stops the hovering. Resove the information!
S{this).find("2info").remove();

}

Tunction ONCILICRLY 1
/f This is our handler for when the user takes the bait and clicks on the box.
I We're going to construct a dialog that tells the user what the colors mean.

So first, we create o div with the corcect html and attach it to the parent

war parent = $(this).parent(),
htal = “<div id="legend" title="Legend">"

+ “<braches”
+ “<div style=‘width: 2088px; height: 28px; background-color: rgh(255, @, @); ' >Bemsp;lemsp;Do Not Pursued/divrdbr>™ °
+ “odiv atyle=‘wideh: 208px; height: 28px; background-coler: orange;’>Semspilemsp;Pursue If Time Permitsd/divi<brs”
+ Tediv styles'width: 20@px; height: 20px; background-color: rgb(255, 255, @); »Semspilessp;Pursuec/divscbrs™
+ “odiv styles‘wideh: 208px; helght: 20px; background-color: rgb(@, 128, @); ' >Remsp;lessp;Pursue Aggressively</divadbrs™
+ "o fdive"y
parent.append(html);

JF Then we make the div into & jQuery-UI dialog; which puts the content into modal & popup.
LS More documentation abowt this api can be found in jQuwery-UI docs.

parent.find(~#legend”).dialog({
resizeable: false,
height: 275,
width: 225,
modal: true, o
buttons: {

Cancel: function () {
${this).dialog(close™);

¥
}
I H
} T

Figure 33. Customizing the Plug-In Wrapper to Define Custom Events

108 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

zing Siebel Open Ul © Process of Customizing the Plug-in Wrapper

To define the event handlers for the plug-in wrapper

1 In the colorboxpw.js file, introduce the following private methods that will get called when the
attached events occur on the element:

a The OnMouseEnter handler:

function OnMouseEnter() {
$(this) .append('<div id="info">Click for Info...</div>");
}

In this example, OnMouseEnter gets called when the mouseenter event occurs on the color
box piece of the DOM. The context passed during the attachment of the events will be passed
on to the handler method. Consequently, the this definition refers to the plug-in wrapper. In
this example, a div is attached with an id of info that displays the following text: Click for
Info...

b The OnMouseLeave handler:

function OnMouselLeave() {
$(Cthis) .- find("'#info™) .remove();
3

This is the complementary method to the OnMouseEnter handler, and gets called when the
onmouseleave event occurs on the color box DOM. This method removes the div that was
previously added, consequently removing the display text.

NOTE: The two events will not run on touch devices, since they have no equitable actions.
2 Introduce the OnClick handler.

Click is standardized by the event helper object to achieve uniformity across different devices.
Consequently, it may be translated to different events based on the user’s device. The click
handler shows a popup that defines the meaning of the different colors that the box can take on.
In the first piece of the handler in this example, HTML built of a few styled divs and some
corresponding text that forms the content of the information we are trying to show in the popup
is constructed. The handler, and the content that is attached to the parent element are displayed
here:

var parent = $(this).parent(),
html = "<div id="legend” title="Legend">"

+ "'

"

+ "<div style="width: 200px; height: 20px; background-color: rgbh(255, O,
0); ">  Do Not Pursue</div>
"

+ "<div style="width: 200px; height: 20px; background-color:
orange; ">  Pursue If Time Permits</div>
"

+ "<div style="width: 200px; height: 20px; background-color: rgh(255, 255,
0); ">  Pursue</div>
"

+ "<div style="width: 200px; height: 20px; background-color: rgb(0, 128,
0); ">  Pursue Aggressively</div>
"

+ "</div>"";
parent.append(html);

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 109

Example of Customizing Siebel Open Ul = Process of

3

A4

Make the section into a popup.

For this, use the jQuery-Ul provided dialog() API. In this example, the element is located by id
using find, and converted to a modal dialog box:

parent.find("'#legend™) .dialog({
resizeable: false,
height: 275,

width: 225,
modal : true,
buttons: {

Cancel: function () {
$(this).dialog('close");
b
h
D:;

This sets properties for the popup and adds a cancel button that closes the popup.

Attach the required events to the new DOM element that we have created. Here we will attach
three handlers on to this element.

evHelper
-Manage(colorbox, "mouseenter', { ctx: this }, OnMouseEnter)
-Manage(colorbox, "mouseleave', { ctx: this }, OnMouselLeave)
-Manage(colorbox, *"click™, { ctx: this }, OnClick)

The Helper API is a method in the Event Helper object that takes the DOM element in order to
attach events. The attached event and the handler are deployed, along with other arguments.n
this case, we are attaching one event each for the user hovering over the element, exiting the
hover, and clicking on the element. For more information about the Helper API, see Chapter 3,
“Architecture of Siebel Open UI.”

Customizing the Plug-in Wrapper to React to Value
Changes of a Control

This task is a step in “Process of Customizing the Plug-in Wrapper” on page 102.

In this topic, you define behavioral customizations when changes occur in a control value. These
changes affect the appearance of the colorbox element that you created in “Creating the Plug-in
Wrapper” on page 102.

110 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

n Ul = Process of Customizing the Plug-in Wrapper

Figure 34 illustrates the code you use to style the color box based on the value that is being set on
a control. Each number in this figure identifies the corresponding step number in the numbered task
list that this book includes immediately after this figure.

IcoloraoxPH.prntotype.sewalue = function (value, index) { o |
/f As usual, let the actual dropdown do its job.
| SiebelappFacade.ColorBoxPW. superclass.SetValue.call(this, value, index); ° |

var colorbox = this.GetEl(index).parent().find(“div[id*=colorbox]™);
if (colorbox 8& celorbox.length) { °

ff "value® is & string, we need to first convert it to a number.
var val = parseInt{value);

/f As long as it°s a valid number...

if (!isMaN{val})) {
/f Let's give it different colors based on the value.
/f .css() is a jQuery API that sets styling on DOM elements.
if (val »= @ 88 wal < 25) {

colorbox.css(“background-color®, “red®);

}
else if (val < 5@) {
colorbox.css(“background-coler”®, “orange®);

}
else if (val < 75) { °
colorbox.css("background-color™, "yellow™);

else {
colorbox.css("background-calor™, "green”);
}
1

/f If nmot, it's probably a string?! or it's blank. Color color go away!
else {
colorbox.css{ "background-coler™, “inherit™});

H

H
X

Figure 34. Customizing the Plug-In Wrapper to React to Value Changes of a Control

To define the value based modifications in the plug-in wrapper

1

In the colorboxpw.js file, introduce the SetValue method that is a part of the life cycle of a
control's existence.

ColorBoxPW.prototype.SetvValue = function (value, index) {

The SetValue API is called as part of a control life cycle when a value change occurs on the
control, either directly by the user, or by the Siebel application. This call is responsible for the
value change to appear in the DOM. In this example, SetValue is overridden in order to read into
the value change that is happening on the control, and consequently makes modifications to the
color box based on the value. For more information about the SetVAlue API, see Chapter 3,
“Architecture of Siebel Open Ul.”

Call the superclass method to make sure that the dropdown receives the intended value:

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 111

Example of Customizing Siebel Open Ul © Process of Custom

SiebelAppFacade.ColorBoxPW.superclass.SetValue.call(this);

This will call the SetValue of the DropDownPW class, which is responsible for applying the correct
value on to the dropdown field itself.

3 Get the new DOM element and the value that is being set:

var colorbox = this.GetEl(index).parent().find('div[id*=colorbox]™);
iT (colorbox && colorbox.length) {
var val = parselnt(value);

Since the value is in string form, and our future actions on this value involve treating it as a
number, we need to convert it into a number form. The standard JavaScript method that is used
for the purpose is parselnt.

4 Validate the value and specify values that modify the color box in different ways:

if (YisNaN(val)) {

if (val >= 0 && val < 25) {
colorbox.css("background-color™, "red™);

}

else if (val < 50) {
colorbox.css("'background-color™, "orange');

¥

else if (val < 75) {
colorbox.css("background-color™, "yellow™);

3
else {
colorbox.css(*'background-color™, "green');

¥
}
else {

colorbox.css(""background-color', "inherit");
3

In this example, the value is verified to ensure that it is a number. If it is not, the background
color is set to inherit, which sets the color to the same color as the dropdown element. This
behavior would be applicable, for example, in cases where the user has entered a blank value,
or inadvertently provided a string. If the value is a number, then use an if-else construct to define
ranges and apply different colors on to the color box DOM element.

Attaching the Plug-in Wrapper to a Control Conditionally
This task is a step in “Process of Customizing the Plug-in Wrapper” on page 102.

This topic describes how to attach the plug-in wrapper you created in “Creating the Plug-in Wrapper,”
to a control.

112 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Siebel Open Ul = Process of Customizing the Plug-in Wrapper

Figure 35 illustrates the code you use to attach the plug-in wrapper to a control conditionally. Each
number in this figure identifies the corresponding step number in the numbered task list that this
book includes immediately after this figure.

Siebeldpp.5 Apo.PluginBuilder.AttachPr(consts.get("SWE CTRL COMBOSOX"), SiebelippFacade.ColorBoxPi, function [centrel] { °j
/] Every cosbo box encountered is run against this sethod definition, and returning true will do the attachsent.
ff The control object itself is at our disposal to make a sound choice. Conditions can be as complex or simple as required.

| return (control. GetNase() === "Probability2™);
1 H

[f In this case, we return true cnly if the centrol’s repository nase is “Probability2”. o

Figure 35. Attaching the Plug-in Wrapper to a Control

To attach the plug-in wrapper to a control conditionally

1 In the colorboxpw.js file, introduce the AttachPW method from the PluginBuilder namespace that
attaches the presently defined plug-in wrapper to a given type of control:

SiebelApp.S_App.PluginBuilder.AttachPW(consts.get("'SWE_CTRL_COMBOBOX™),
SiebelAppFacade.ColorBoxPW, function (control) {

In this customization, the intention is to apply the plug-in wrapper to a dropdown type of control.
To achieve this customization the SWE_CTRL_COMBOBOX is used for the dropdown type. All
controls are customizable. With this customization, every dropdown encountered by the Siebel
Open Ul client will use this method.

2 Define the condition under which the attachment should occur, and to which specific instance of
the control. The return value of the method used in Step 1 decides whether the plug-in wrapper
attaches to a particular control. Returning true will mean a positive attachment.

return (control._GetName() === "Probability2");

Use the control object to create this condition. Since the intention is to attach the plug-in wrapper
for all repository controls that have a name of Probability2, true will be returned when the
name of the condition matches.

NOTE: Plug-in wrappers are not restricted to any Presentation Model or Physical Renderer. Also,
a customization defined on a plug-in wrapper will be applicable throughout the Siebel Open Ul

client, as long as the condition is satisfied. In the above example, any control having a repository
name of "Probability2" in any screen or view will be attached to this plug-in wrapper.

3 Define conditions for plug-in wrapper attachments. Conditions used can be as complex as
necessary, based on the requirements. Use following examples as guidance for defining
conditions:

m Attach a plug-in wrapper to all TextArea fields in Opportunity List applet:

SiebelApp.S_App-PluginBuilder._AttachPW(consts.get(*'SWE_CTRL_TEXTAREA™),
SiebelAppFacade.CustomPW, function (control) {
return (control.GetAppplet().GetName() === "Opportunity List Applet™);

D:

m Attach a plug-in wrapper to all Date Fields in Contact Form applet and Account Form Applet:

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 113

Example of Customizing Siebel Open Ul & Configuring the Manifi
Example

SiebelApp.S_App-PluginBuilder _AttachPW(consts.get(*"'SWE_CTRL_DATE_PICK"),
SiebelAppFacade .CustomPW, function (control) {

var appletName = control .GetAppplet() .GetName();

return (appletName === ""Contact Form Applet” || appletName === ""Account Form
Applet™);
:

Attach a plug-in wrapper to a specific Text Box in a specific applet only:

SiebelApp.S_App-PluginBuilder._AttachPW(consts.get(*'SWE_CTRL_TEXT™"),
SiebelAppFacade .CustomPW, function (control) {

var appletName = control.GetAppplet().GetName();

return (appletName === "Contact Form Applet" && control._GetName() === "Last
Name'™) ;

s
Attach a plug-in wrapper to all Dropdowns in a particular application:

SiebelApp.S_App-PluginBuilder.AttachPW(consts.get("'SWE_CTRL_COMBOBOX'),
SiebelAppFacade.CustomPW, function (control) {

return (SiebelApp.S_App-GetName() === "'Siebel EPharma')
b:

Attach a plug-in wrapper to all checkboxes in a view when they are accessed on touch
devices:

SiebelApp.S_App-PluginBuilder.AttachPW(consts.get(*'SWE_CTRL_CHECKBOX'),
SiebelAppFacade.CustomPW, function (control) {

return (SiebelAppFacade.DecisionManager.lsTouch() &&
control .GetApplet() .GetView() -GetName === "Opportunity Detail View")
:

Configuring the Manifest for the Recycle
Bin Example

This task is a step in “Roadmap for Customizing Siebel Open UI” on page 65.

This topic describes how to configure the manifest for the recycle bin example. For more information,
see “Configuring Manifests” on page 167.

To configure the manifest for the recycle bin example

1

Make sure your presentation model and physical renderer use the define method.

You do this in Step 4 on page 67 for the presentation model and in Step 5 on page 89 for the

physical renderer.

Log in to a Siebel client with administrative privileges.

Navigate to the Administration - Application screen, and then the Manifest Files view.

In the Files list, add the following files:

114

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

5

el Open Ul = Configuring the Manifest for the Recycle Bin
Example

siebel/custom/recyclebinrenderer.js
siebel/custom/recyclebinpmodel . js
siebel/custom/carouselrenderer.js
3rdParty/jcarousel/skins/tango/skin.css
files/theme-aurora.css

The file that resides in the files folder is the predefined file that you use in this example.

Administer the manifest for the physical renderer:
a Navigate to the Administration - Application screen, and then the Manifest Administration view.

b In the Ul Objects list, specify the following applet.

Type Applet
Usage Type Physical Renderer
Name SIS Account List Applet

C In the Object Expression list, add the following expression. The physical renderer uses this
expression to render the applet in a desktop platform.

Field Value
Expression Desktop
Level 1

d In the Files list, add the following files:

siebel/custom/recyclebinrenderer.js

e In the Ul Objects list, specify the following applet.

Type Applet
Usage Type Presentation Model
Name SIS Account List Applet

f In the Object Expression list, add a record with no value in the Expression field.

g In the Files list, add the following file:

siebel/custom/recyclebinpmodel . js

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 115

Example of Customizing Siebel Open Ul = Configuring
Example

Configuring the Manifest for the Color
Box Example

This task is a step in “Roadmap for Customizing Siebel Open Ul” on page 65.

In this topic, you will configure the manifest for the color box plug-in wrapper example. For more
information, see “Configuring Manifests” on page 167.

To configure the manifest for the color box example
1 Verify that your plug-in wrapper uses the define method.

2 Log in to the Siebel Open Ul client with administrative privileges.
3 Navigate to the Administration - Application screen, and then the Manifest Files view.
4 In the Files list, add the following file:
siebel/custom/colorboxpw. js
5 Modify the manifest for the physical renderer:
a Navigate to the Administration - Application screen, and then the Manifest Administration view.

b In the Ul Objects list, add a new record with the following values:

Field Value

Type Application
Usage Type Common
Name PLATFORM INDEPENDENT

C In the Object Expression list, add the following subexpression.

Group Name Leave empty
Expression Desktop
Level 1

Operator Leave empty
Web Template Name Leave empty

d In the Files list, add the file that you created in Step 4.

siebel/custom/colorboxpw. js

116 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

g Siebel Open Ul & Testing Your Modifications

Testing Your Modifications

This task is a step in “Roadmap for Customizing Siebel Open Ul” on page 65.

In this topic, you test your modifications.

To test your modifications
1 Log in to the Siebel Open Ul client, and then navigate to the Accounts screen.

2 Use the Select column to choose five account records, and then click Delete.
Siebel Open Ul deletes the records and adds them to the carousel recycle bin.

3 To restore a record, click the following plus (+) icon in the carousel recycle bin:

‘\

l_—'_.l

4 Verify that Siebel Open Ul recreates the record on the Siebel Server and adds it back to the
Account list.

5 Navigate to the Opportunities screen, then to the Opportunities List view

6 Verify that the Probability field in the Opportunity form applet displays the color box and exhibits
the correct behavior based on changes to values and clicks.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 117

Example of Customizing

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

5 siebel Open Ul

This chapter describes how to customize Siebel Open Ul. It includes the following topics:

Guidelines for Customizing Siebel Open Ul on page 119
Doing General Customization Tasks on page 123
Customizing Events on page 150

Managing Files on page 161

Configuring Manifests on page 167

Guidelines for Customizing Siebel Open
Ul

This topic describes guidelines for configuring Siebel Open Ul. It includes the following information:

Guidelines for Customizing Presentation Models on page 119
Guidelines for Customizing Physical Renderers on page 121
Guidelines for Customizing Plug-in Wrappers on page 122

Guidelines for Customizing Presentation Models and Physical Renderers and Plug-in Wrappers on
page 122

Some Siebel Open Ul customizations use the same configuration that a Siebel Business Application
uses. For example, you can use the information that Configuring Siebel Business Applications
describes to configure the following items in Siebel Open Ul:

List applets
Form applets
Views that contain more than one applet

Applet controls and list columns

Guidelines for Customizing Presentation Models

It is recommended that you apply the following guidelines if you configure a presentation model:

Make sure you customize Siebel Open Ul so that the user-interface state is separate from the
rendering of this state. The guidelines in this topic describe how to do this.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 119

Customizing Siebel Open Ul & Guidelines for Customizing Siebel Open Ul

B Add a new presentation model only after you consider all other customization options, such as
modifying code in a Siebel Web Template file or using Siebel Tools to modify an object. To
examine some examples that do not modify the presentation model, see Chapter 5, “Customizing
Siebel Open UI.”

A presentation model implements the entire abstraction of the user interface content, so the
predefined implementation of a presentation model implements the predefined abstraction.
There are only a few types of basic user interface abstractions, such as single record, list, tree,
and so on. It is recommended that you use a predefined presentation model for each of these
basic abstractions that Oracle provides you.

B Make sure Siebel Open Ul models all the state variables that it requires to achieve a rich client
behavior, and that it models these state variables as presentation model properties. These
properties can reside in the presentation model on the client, or the Siebel Server can provide
them from an applet. You can add methods that modify these properties and that manage the
state changes after you configure Siebel Open Ul to add them. Siebel Open Ul typically calls
these methods due to a user action, or if the server sends a notification. If a method modifies
the logical state of the user interface, then Siebel Open Ul uses the AttachPMBinding method to
add a binding trigger to the physical renderer. This trigger binds the modified state to the physical
user interface. For more information, see “AttachPMBinding Method” on page 423.

Siebel Open Ul strictly defines each life cycle method. To help make sure your implementation is
clean and readable, it is recommended that you use the following guidelines:

B Make sure Siebel Open Ul uses all presentation model state variables as properties. You must
use the AddProperty method to create these properties. You must not use ordinary JavaScript
variables to create these properties.

B Use methods to implement all state changes of the presentation model. Use the AddMethod
method to create these methods.

B Make sure Siebel Open Ul uses the AttachEventHandler method to bind each method that the
presentation model contains to an event that the physical renderer contains. Each event occurs
as the result of some physical user action. This configuration makes sure Siebel Open Ul binds
each user action to the required logic and modifies the user interface state. For more information,
see “AttachEventHandler Method” on page 421.

B A presentation model method can start a call to the Siebel Server, and then the server sends a
reply to this method. Siebel Open Ul handles these calls asynchronously, except for Siebel
browser scripts that run in high interactivity clients. For more information, see “About
Synchronous and Asynchronous Requests” on page 78.

B When Siebel Open Ul sends a reply, it includes all modifications that occur in the business
component layer. It includes these modifications in the reply that it sends in a Notification
property set. You must use the AttachNotificationHandler method to add this notification. For
more information, see “Notifications That Siebel Open Ul Supports” on page 545:

m Siebel Open Ul packages a reply from the server for any predefined type of request. It
includes this package in a predefined reply property set. You must use the AttachPSHandler
method to add the handler for any property set type that the server sends.

120 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

omizing Siebel Open Ul " Guidelines for Customizing Siebel Open Ul

B You must use the AttachPostProcessingHandle method to add any post-processing handler
that does follow up logic on a server request, such as a NewRecord request. You can add this
logic after Siebel Open Ul finishes processing the reply for this request. Setting the focus for
a control is an example of this kind of configuration.

B Siebel Open Ul does the initial setup of the presentation model when it initializes the Siebel view
or application, depending on whether the user interface object resides inside or outside of the
view. The server sends a property set that includes all the initialization attributes. The proxy uses
most of these attributes, but you must use the AddProperty method to get the values that the
presentation model requires to set and store the state.

B You must use the following methods in the physical renderer the first time Siebel Open Ul renders
the user interface:

m BindEvents. Binds the presentation model methods to the appropriate events on a control.
For more information, see “BindEvents Method” on page 456.

m BindData. Accesses the presentation model properties, and then sends them to the control
through the methods that this control exposes. For more information, see “BindData Method”
on page 456.

B You must configure Siebel Open Ul to bind any state changes to the presentation model that
occur after the physical renderer finishes the initial rendering. To do this, you configure Siebel
Open Ul to call the AttachPMBinding method on the physical renderer. This configuration specifies
the method that the physical renderer must call or the properties that it must access so that it
can send data back to the control. This configuration allows Siebel Open Ul to render the user
interface after it modifies the presentation model state.

Guidelines for Customizing Physical Renderers

It is recommended that you apply the following guidelines if you configure a physical renderer:

B Use a physical renderer only to implement methods that render the presentation model state:
m Do not include any other logic in a physical renderer.
®m Do not include business logic that modifies the user interface state.

® Do not include manipulations or life cycle control of individual controls or fields. It is
recommended that those types of customizations should be maintained separately, in the
Plug-in Wrapper.

m Only use a physical renderer to send user action events to the presentation model, and use
the presentation model to do all the work that is necessary to modify a state.

m Allow the physical renderer to rebind the new presentation model state to the rendered user
interface only after the presentation model finishes modifying the state of the logical user
interface.

B Do not use a physical renderer to add any presentation attributes to the Document Object Model
(DOM). Example attributes include position, color, or any other styling. To modify a presentation
attribute, you must attach or detach a style that you define in a CSS file.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 121

Customizing Siebel Open Ul & Guidelines for Customizing Siebel Open

Configure Siebel Open Ul to do all rendering only in physical renderers or plug-in wrappers. It is
strongly recommended that you do not configure Siebel Open Ul to do direct DOM manipulation.
If you cannot avoid direct DOM manipulation, then you must do this manipulation in a physical
renderer or in a plug-in wrapper. Configure Siebel Open Ul to send data, metadata, or state
information to controls only from a physical renderer. For more information, see “About Objects
and Metadata” on page 33.

In most situations, if you add a presentation model, then you must also add a corresponding
physical renderer. You typically use a presentation model to add custom logic in the client. This
logic typically determines a physical behavior that requires a physical renderer to do the
rendering. For example, in most situations, you cannot configure a predefined applet that also
renders custom logic. Siebel Open Ul structures custom JavaScript logic in the presentation
model and physical renderer as a customization of predefined Siebel Open Ul. This structure
allows Siebel Open Ul to use JavaScript and to use other logic that a predefined Siebel Open Ul
implementation provides, such as events, Siebel arrays, and so on. It is not recommended that
you configure JavaScript that is independent of Siebel Open Ul, and that also modifies Siebel
CRM data or physical behavior.

Guidelines for Customizing Plug-in Wrappers

It is recommended that you apply the following guidelines when configuring a plug-in wrapper:

Use a plug-in wrapper exclusively to implement methods that manage the life cycle of an
individual control or field.

Do not include any other logic in a plug-in wrapper.
Do not include business logic that modifies the user interface state.

Use a physical renderer, exclusively, to send user action events on a field to the presentation
model. Use the presentation model to do all the actions that require modifying a state.

Allow the plug-in wrapper to rebind the new presentation model state to the rendered control
only after the presentation model finishes modifying the state of the logical user interface.

Do not use a plug-in wrapper to add presentation attributes to the Document Object Model
(DOM). Examples of these types of attributes include: position, color, or any other styling
attribute. To modify a presentation attribute, you must attach or detach a style that you define
in a CSS file.

In most situations, if you add a plug-in wrapper, then you must also add a corresponding physical
renderer that interacts with the plug-in wrapper. Typically a plug-in wrapper is used to add
custom logic to controls in the client. This logic determines a physical behavior that requires a
physical renderer to do the handling for this wrapper.

Guidelines for Customizing Presentation Models and
Physical Renderers and Plug-in Wrappers

It is recommended that you apply the following guidelines if you configure the presentation model
and physical renderer for a client object:

122 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

mizing Siebel Open Ul & Doing General Customization Tasks

B Determine the following items for any element that you intend to customize:
B The presentation model you must use

® The plug-in wrapper you must use and the physical renderer that you must use with the
presentation model

B Configure the manifest so that Siebel Open Ul can identify the JavaScript files it must download
to the client so that it can render the user interface element. For more information, see
“Configuring Manifests” on page 167.

B Modify the physical renderer and presentation model for user interface objects that do not reside
in a view, such as navigation tabs. Only one of these elements resides on a single Siebel page,
and they do not vary during a Siebel session. So, you can configure the physical renderer and
the presentation model for each of these elements in the manifest.

B You must place all custom presentation models, physical renderers and plug-in wrappers in the
custom folder. For more information about this folder, see “Organizing Files That You Customize”
on page 162.

Doing General Customization Tasks

This topic describes some of the general customization tasks that you can do in Siebel Open Ul. It
includes the following information:

B Enabling Object Managers for Siebel Open Ul on page 123

Preparing Siebel Tools to Customize Siebel Open Ul on page 127

Modifying the Application Configuration File on page 128

Deriving Presentation Models, Physical Renderers and Plug-in Wrappers on page 129
Adding Presentation Model Properties That Siebel Servers Send to Clients on page 130
Configuring Siebel Open Ul to Bind Methods on page 134

Calling Methods for Applets and Business Services on page 135

Using the Base Physical Renderer Class With Nonapplet Objects on page 137
Customizing Events on page 150

Creating Components on page 142

Allowing Users to Interact with Clients During Business Service Calls on page 143

Customizing How Siebel Open Ul Displays Error Messages on page 145

Enabling Object Managers for Siebel Open Ul

You must enable the object manager to use Siebel Open Ul before you can do any customization
work.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 123

Customizing Siebel Open Ul & Doing General Customization Ta

To enable object managers for Siebel Open Ul

1 Enable the object manager for the Siebel Server:

a
b

C

g

Log in to the Siebel CRM client with administrator privileges.
Navigate to the Administration - Server Configuration screen, and then the Servers view.

In the Components list, query the Component field for the object manager where you must
enable Siebel Open Ul.

For example, query for the following value. You must include the double quotes:

"Call Center Object Manager (ENU)"

In the bottom applet, click Parameters.
In the Component Parameters list, query the Parameter field for EnableOpenUl.
Set the Value on Restart field to TRUE.

Log out of the client, and then close the browser.

As an alternative to using the administrative screens, you can modify the application
configuration file on the Siebel Server in the same way that you modify this file on the client in
Step 2.

2 Enable Siebel Open Ul on the Mobile Web Client:

a

On the client computer, use a text editor to open the application configuration file.

For example, to open the configuration file for Siebel Call Center, navigate to the following
folder, and then open the uagent.cfg file:

client _install Iocation\bin

In the InfraUlFramework section, set the EnableOpenUl parameter to the following value:

[InfraUlFramework]
EnableOpenUI=TRUE

Save, and then close the application configuration file.
Log in to Siebel Call Center, and then verify that it opens the Siebel Open Ul client.

To revert to the high-interactivity client, you can set the EnableOpenUl parameter to FALSE.
If you do this reversion, then you must use Internet Explorer, version 8 or earlier when you
open the client.

3 Stop the Siebel Server:

a

b

C

On the computer where the Siebel Server resides, click the Start menu, Control Panel,
Administrative Tools, and then the Services menu item.

In the Services dialog box, right-click the Siebel Server service, and then click Stop.

Wait for the Siebel Server to stop.

4 Optional. Add object managers for Siebel Mobile:

a

124

Stop the Gateway Server, and then make a backup copy of the siebns.dat file.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

izing Siebel Open Ul & Doing General Customization Tasks

Restart the Gateway Server.

Open a command line window and set the SIEBEL_HOME environment variable to the following
folder:

SES HOME/siebsrvr

Navigate to the following folder:

SES HOME/siebsrvr/bin/ language code

For more information about the language_code, see “Languages That Siebel Open Ul
Supports” on page 592.

Run the create_compdef_sia.ksh script or the create_compdef_sia.bat file. Use the following
parameters:

./create_compdef_sia.ksh GATEWAY:port_number ENTERPRISE user_name
user_password Jlanguage code

Examine the srvrcfg log files, and then make sure Siebel CRM did not log any errors when it
enabled the new server components.

Open the Server Manager, and then run the following commands:

enable compgrp HandheldSync for server server_name

enable compgrp HandheldSyncS1S for server server_name

5 Start the Siebel Server:

a
b
c
d

Click the Start menu, Control Panel, Administrative Tools, and then the Services menu item.
In the Services dialog box, right-click the Siebel Server service, and then click Start.
Wait for the server to start.

Optional. Make sure the server components you enabled Step g on page 125 are on line.

6 Optional. Add virtual directories for Siebel Mobile object managers:

a

Use Windows Explorer to navigate to the following folder:

INSTALL DIR\eappweb\bin\

Create a back up copy of each of the following files:

1 eapp.cfg.

1 eapps_sia.cfg.

1 Web server configuration files. For example, obj.conf, httpd.conf, and so on.
Stop the HTTP server.

Open a command line window and navigate to the following folder:

INSTALL_DIR/eappweb/config

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 125

Customizing Siebel Open Ul & Doing General C

€ Run the new_virdirs.bat script or the new_virdirs.sh script. Use values from the following table:

Operating System Command

Windows Run the following command:

new_virdirs.bat [language code

Unix Run the following command:

newvirdirs.sh languages web_server

where:

B languages is a list of language codes where a comma separates
each code

B web_server identifies the folder where the Web server resides

T If the script fails to run correctly, then you must restore all files from the backup copies you
made in Step b, and then run the script again until it successfully finishes.

0 Restart the HTTP Server.
h Make sure you can use the URL to access the new server components.

7 Log in to the Siebel CRM client and make sure it displays the Siebel Open Ul client.

126 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

stomizing Siebel Open Ul = Doing General Customization Tasks

How Siebel Open Ul Loads the Siebel Application Depending on How
You Set the EnableOpenUIl Parameter

Table 5 describes how Siebel Open Ul loads a Siebel application differently depending on how you set
the EnableOpenUl parameter.

Table 5. How Siebel Open Ul Loads the Siebel Application Depending on How You Set the
EnableOpenUl Parameter

EnableOpenUl Setting Description

EnableOpenUI=FALSE If you:

B Customized the default Siebel Web Template, then Siebel Open Ul
loads the application from the following folder:

siebsrvr\webtempl\custom

B Did not customize the default Siebel Web Template, then Siebel
Open Ul finds no file in the siebsrvr\webtempl\custom folder, and
it loads the Siebel application from the following default folder:

siebsrvr\webtempl

EnableOpenUI=TRUE If you:

B Customized the Siebel Open Ul Siebel Web Template, then Siebel
Open Ul loads the Siebel application from the following folder:

siebsrvr\webtempl\ouiwebtempl\custom

B Did not customize the Siebel Open Ul Siebel Web Template, then
Siebel Open Ul finds no file in the
siebsrvr\webtempl\ouiwebtempl\custom folder, and it loads the
Siebel application from the following folder:

siebsrvr\webtempl\ouiwebtempl

If Siebel Open Ul does not find a file in the
siebsrvr\webtempl\ouiwebtempl folder, then it loads the Siebel
application from the following default folder:

siebsrvr\webtempl

Preparing Siebel Tools to Customize Siebel Open Ul

This topic describes how to prepare Siebel Tools so that you can use it to customize Siebel Open Ul.
For more information, see Using Siebel Tools.

To prepare Siebel Tools to customize Siebel Open Ul
1 Add the EnableOpenUl parameter to the Siebel Tools configuration file:

a In Windows Explorer, navigate to the following folder:

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 127

Customizing Siebel Open Ul & Doing General Customizatio

SIEBEL _TOOLS HOME\bin\[language code

For more information about the language_code, see “Languages That Siebel Open Ul
Supports” on page 592.

b Use a text editor to open the tools.cfg configuration file.
C Add the following parameter to the InfraUlFramework section:
EnableOpenUl = TRUE
2 Display object types:

a Open Siebel Tools.
For more information, see Using Siebel Tools.

b Choose the View menu, and then the Options menu item.
Click the Object Explorer tab.

Scroll down through the Object Explorer Hierarchy window to locate the object type you must
display.

It is recommended that you set up Siebel Tools to display all object types. To display an object
type and all child object types of an object type, make sure the parent includes a check mark
with a white background.

e Click OK.

Modifying the Application Configuration File

You can use the configuration file to specify parameters that determine how a specific Siebel
application runs. For more information about the application configuration file, see Configuring Siebel
Business Applications.

To modify the application configuration file
1 Open Windows Explorer, and then navigate to the following folder:

INSTALL DIR\eappweb\bin\/Zanguage code

For more information about the language_code, see “Languages That Siebel Open Ul Supports” on
page 592.

2 Use a text editor to open the application configuration file that you must modify.

Each Siebel application uses a different configuration file. For example, Siebel Call Center uses
the uagent.cfg file. The application configuration file uses the .cfg file extension.

3 Locate the section that you must modify.

Each application configuration file uses square brackets to indicate a section. For example:

[InfraUlFramework]

128 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

stomizing Siebel Open Ul = Doing General Customization Tasks

4 Modify an existing parameter or add a separate line for each parameter that you must specify.
Use the following format:

parameter_name = “<paraml param2>‘

where:
B paraml and param?2 are the names of the parameters.
For example:

TreeNodeCol lapseCaption = "<img src="images/tree_collapse.gif" alt="-" border=0
align=left vspace=0 hspace=0>"

Deriving Presentation Models, Physical Renderers and
Plug-in Wrappers

Deriving is a coding technique that you can use with Siebel Open Ul to create a reference between
two presentation models, physical renderers, or plug-in wrappers. Where Siebel Open Ul derives one
presentation model, physical renderer or plug-in wrapper from another presentation model, physical
renderer or plug-in wrapper. This referencing can make sure that the derived object uses the same
logic as the source object. It also helps to reduce the amount of coding you must perform.

The following code includes all the code required to derive one presentation model from another
presentation model:

NOTE: The same methodology can be applied for physical renderers and plug-in wrappers.

if(typeof(SiebelAppFacade.derived PM_name) === "undefined"){
SiebelJS_Namespace("'SiebelAppFacade.derived PM_name') ;
define("siebel/custom/derived PM_name", [''siebel/custom/source PM'], Function(){

SiebelJS_Extend(derived PM_name, SiebelAppFacade.source PM);
D:
}

where:

B derived_PM_name is the name of a presentation model that references another presentation
model.

B source_PM is the name of a presentation model that provides the code that derived_PM_name
uses. The source_PM must already exist.

You must include the define and Extend statements.

For example, the following code derives a presentation model named derivedpm2 from another
presentation model, named derivedpm1:

if(typeof(SiebelAppFacade.derivedpm2 === "undefined"){
SiebelJS_Namespace(''SiebelAppFacade.derivedpm2™);
define("siebel/custom/derivedpm2", [“siebel/custom/derivedpml’], Ffunction(){

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 129

Customizing Siebel Open Ul & Doing General Customi

SiebelJS_Extend(derivedpm2, SiebelAppFacade.derivedpml);
s
}

Adding Presentation Model Properties That Siebel
Servers Send to Clients

This topic describes how to add presentation model properties that the Siebel Server sends to the
client. It includes the following information:

B “Adding Presentation Model Properties That Siebel Servers Send for Applets” on page 130
B “Adding Presentation Model Properties That Siebel Servers Send for Views” on page 132
B “Customizing Control User Properties for Presentation Models” on page 133

It is strongly recommended that you configure custom presentation model properties only if the
predefined presentation model properties do not meet your requirements.

Adding Presentation Model Properties That Siebel Servers Send for
Applets

This topic describes a general approach to customizing applet user properties for presentation
models. The Siebel Server sends these properties to the client.

To add presentation model properties that Siebel Servers send for applets
1 Add user properties to the applet:

a Open Siebel Tools.
For more information, see Using Siebel Tools.

b In the Object Explorer, click Applet.

C In the Applets list, query the Name property for the applet that you must modify.
For example, query the Name property for Contact List Applet.

d In the Object Explorer, expand the Applet tree, and then click Applet User Prop.

130 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

g
2 Modify the presentation model:

a

omizing Siebel Open Ul & Doing General Customization Tasks

In the Applet User Props list, add the following applet user property.

Name Value

ClientPMUserPropn user_property_name
For example, You can specify one or more user properties. Siebel Open Ul
ClientPMUserPropl sends these user properties to the presentation model that it

uses in the client to display the applet. To specify more than one
user property, use a comma and a space to separate each user
property name. For example:

User Propertyl, User Property?2

Each user property that you specify must exist in the Siebel
repository, and each of these user properties must contain a
value in the Value property.

(Optional) Specify more ClientPMUserPropn user properties, as necessary.

You can specify more than one ClientPMUserPropn user property, as necessary. Repeat Step e
for each ClientPMUserPropn user property that you require.

Compile your modifications.

Use a JavaScript editor to open your custom presentation model file that Siebel Open Ul will
use to display the applet that you modified in Step 1.

If your custom presentation model does not override the Setup method, then configure Siebel
Open Ul to do this override.

For more information about how to configure an override, see "“Process of Customizing the
Presentation Model” on page 66.

Locate the following section of code:
presentation_model.Setup(propSet)

For example, if the class name is CustomPM, then locate the following code:
CustomPM.prototype.Setup = function (propSet)

Add the following code to the section that you located in Step c:

var consts = SiebelJS._Dependency(*'SiebelApp.Constants');
var apm = propSet.GetChildByType(consts.get(*'SWE_APPLET_PM_PS'™));

where:

1 SWE_APPLET_PM_PS is a predefined constant that Siebel Open Ul uses to get the
presentation model properties that it uses to display the applet. The Siebel Server sends
these properties in a property set.

Add the following code anywhere in the presentation model:

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 131

Customizing Siebel Open Ul & Doing General Customizatio

var value = apm.GetProperty(‘"'user_property name'")
For example:
var value = apm.GetProperty(‘'User Propertyl')

You must configure Siebel Open Ul so that it runs the Setup method that you specify in Step ¢
before it encounters the code that you add in Step e.

Adding Presentation Model Properties That Siebel Servers Send for
Views

This topic describes how to customize view user properties for presentation models. The Siebel
Server sends these properties to the client.

To add presentation model properties that Siebel Servers send for views
1 Add user properties to the view:

a

Open Siebel Tools.

For more information, see Using Siebel Tools.

In the Object Explorer, click View.

In the Views list, query the Name property for the view that you must modify.
For example, query the Name property for Contact List View.

In the Object Explorer, expand the View tree, and then click View User Prop.

Do Step e on page 131 through Step g on page 131, except add view user properties to a view
instead of adding applet user properties to an applet.

2 If your custom view presentation model does not override the Setup method, then configure
Siebel Open Ul to do this override:

Do Step 2 on page 131 except use vpm instead of apm:

a

b

132

Use a JavaScript editor to open the presentation model file that Siebel Open Ul uses to display
the view that you modified in Step 1.

Add the following code:

var consts = SiebelJS._Dependency("'SiebelApp.Constants');
var vpm = propSet.GetChildByType(consts.get(*'SWE_VIEW_PM_PS'™));

where:

1 SWE_VIEW_PM_PS is a predefined constant that Siebel Open Ul uses to get the presentation
model properties that it uses to display the view. The Siebel Server sends these
properties in a property set.

Add the following code:
var value = vpm.GetProperty(‘“'user_property name")

For example:

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

mizing Siebel Open Ul & Doing General Customization Tasks

var value = vpm.GetProperty(‘'User Propertyl')

For more information about how to configure an override, see “Process of Customizing the
Presentation Model” on page 66.

Customizing Control User Properties for Presentation Models
This topic describes how to customize control user properties for a presentation model.

To customize control user properties for presentation models
1 Add user properties to the control:

a Open Siebel Tools.
For more information, see Using Siebel Tools.

b In the Object Explorer, click Applet.

c In the Applets list, query the Name property for the applet that you must modify.
For example, query the Name property for Contact List Applet.

d In the Object Explorer, expand the Applet tree, and then Control.

e In the Controls list, query the Name property for the control that you must modify.
For example, query the Name property for NewRecord.

T In the Object Explorer, expand the Control tree, and then click Control User Prop.

g In the Control User Props list, Do Step e on page 131 through Step g on page 131, except add
control user properties to the control instead of adding applet user properties to an applet.

2 Modify the custom presentation model of the applet where the control resides:

NOTE: This step can also be accomplished using a plug-in wrapper written for customizing the
control.

a Configure Siebel Open Ul to get the control object. You can do one of the following:

1 Use the following code to get the control object from the GetControls presentation model
property:

var controls = this.Get("GetControls™);

for (var control in controls){
var cpm = control .GetPMPropSet(consts.get("'SWE_CTRL_PM_PS'));
// Do something with cpm

}

1 Use the following the GetControl method to get an instance of the Account Name control:

var myControl = this.GetControl (“'Account Name');
var cpm = myControl .GetPMPropSet(consts.get("'SWE_CTRL_PM_PS'™));

b Add the following code:

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 133

Customizing Siebel Open Ul & Doing General Customiz

var consts = SiebelJS_Dependency(*'SiebelApp.Constants');
var cpm = control.GetPMPropSet(consts.get("'SWE_CTRL_PM_PS'));

where:

1 GetPMPropSet is a method that gets the property set for this control. For more
information, see “GetPMPropSet Method” on page 477.

1 SWE_CTRL_PM_PS is a predefined constant that Siebel Open Ul uses to get the presentation
model that it uses for the control object. The Siebel Server sends these properties in a
property set.

C Add the following code:

var value = cpm.GetProperty("'user_property name™)

For example:

var value = cpm.GetProperty(‘'User Propertyl')

Configuring Siebel Open Ul to Bind Methods

This topic includes some examples that describe how to bind methods. For other examples that bind
methods, see the following topics:

B “Example of the Life Cycle of a User Interface Element” on page 62
B “Customizing the Physical Renderer to Refresh the Carousel” on page 96

Bl “Text Copy of Code That Does a Partial Refresh for the Physical Renderer” on page 201

Binding Methods That Reside in the Physical Renderer
You can use the AttachPMBinding method to bind a method that resides in a physical renderer and
that Siebel Open Ul must call when the presentation model finishes processing.

To bind methods that reside in the physical renderer
1 Add the method reference in the physical renderer.

2 Configure Siebel Open Ul to send the scope in the binderConfig argument of the AttachPMBinding
method as a scope property.

For more information, see “AttachPMBinding Method” on page 423.

Conditionally Binding Methods

The example in this topic conditionally binds a method.

To conditionally bind methods
B Add the following code:

134 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

izing Siebel Open Ul & Doing General Customization Tasks

this._AttachPMBinding(*'DoSomething",function(Q{SiebelJS.Log("After
DoSomething');},{when: Ffunction(function_name){return false;}});

where:
m function_name identifies the name of a function.

In this example, if Siebel Open Ul calls DoSomething, then the presentation model calls the
function_name that the when condition specifies, and then tests the return value. If function_name
returns a value of:

B true. Siebel Open Ul calls the AttachPMBinding method.
B false. Siebel Open Ul does not call the AttachPMBinding method.

If you do not include the when condition, then Siebel Open Ul runs the DoSomething method, and
then calls the AttachPMBinding method. For more information, see “AttachPMBinding Method” on
page 423.

Calling Methods for Applets and Business Services

This topic includes some examples that describe how to call methods for applets and business
services. For other examples that call methods, see the following topics:

B “Customizing the Presentation Model to Delete Records” on page 74
“Attaching an Event Handler to a Presentation Model” on page 82
“Using Custom JavaScript Methods” on page 347

“Using Custom Siebel Business Services” on page 349

“Customizing Siebel Pharma for Siebel Mobile Disconnected Clients” on page 355

Calling Methods

The example in this topic describes how to call a method when the user clicks a button.

To call methods for buttons

1 Modify the plug-in wrapper:
a Use a JavaScript editor to open the plug-in wrapper for the button.
b Locate the click handler for the button.
C Add the following code to the code you located in Step b:

var inPropSet = CCFMiscUtil_CreatePropSet();

//Define the inPropSet property set with the information that InvokeMethod
sends as input to the method that it calls.

var ai= {};

ai.async = true;

ai.selfbusy = true;

ail.scope = this;

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 135

Customizing Siebel Open Ul & Doing General Customization Ta

ai.mask = true;
ai .opdecode = true;
ai.errcb = function(QQ{

//Code occurs here for the method that Siebel Open Ul runs if the AJAX call
fails

};
ai.cb = function(){

//Code occurs here for the method that Siebel Open Ul runs if the AJAX call
is successful

}:
this.GetPM() -ExecuteMethod ("' InvokeMethod™, fnput arguments, ai);

where:

1 input arguments lists the arguments that InvokeMethod sends as input to the method
that it calls.

For example, the following code specifies to use the InvokeMethod method to call the
NewRecord method, using the properties that the inPropSet variable specifies for the ai
argument:

this.GetPM() .ExecuteMethod ("' InvokeMethod"™, "NewRecord"™, inPropSet, ai);

For more information, see “InvokeMethod Method for Application Models” on page 491 and
“NewRecord Method” on page 480.

2 Modify the presentation model:
a Use a JavaScript editor to open the presentation model for the applet that you must modify.
b Locate the code that calls the Init method.
C Add the following code to the code that you located in Step b:

this._AttachPreProxyExecuteBinding(*'method_name", function(methodName,
inputPS, outputPS){// Include code here that Siebel Open Ul runs before the
applet proxy sends a reply.});

this_AttachPostProxyExecuteBinding("'method_name", function(methodName,
inputPS, outputPS){// Include code here that Siebel Open Ul runs after the
applet proxy sends a reply.});

where:

1 method_name identifies the name of the method that InvokeMethod calls. Note that
Siebel Open Ul comes predefined to set the value of the methodName argument in the
following code to WriteRecord, by default. You must not modify this argument:

function(methodName, inputPS, outputPS)
For example:

this._AttachPreProxyExecuteBinding(""WriteRecord', function(methodName,
inputPS, outputPS){// Include code here that Siebel Open Ul runs before the
applet proxy sends a reply.});

136 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

mizing Siebel Open Ul & Doing General Customization Tasks

this_AttachPostProxyExecuteBinding(""WriteRecord", function(methodName,
inputPS, outputPS){// Include code here that Siebel Open Ul runs after the
applet proxy sends a reply.});

For more information, see “WriteRecord Method” on page 398, “AttachPostProxyExecuteBinding
Method” on page 424, and “AttachPreProxyExecuteBinding Method” on page 425.

Calling Methods for Business Services

The example in this topic describes how to call a method for a business service when the user clicks
a button.

To call methods for buttons

1 Use a JavaScript editor to open the plug-in wrapper for the button.
2 Locate the click handler for the button.
3 Add the following code to the code that you located in Step 2:

var service = SiebelApp.S_App.-GetService("business _service_name");
if (service) {

var inPropSet = CCFMiscUtil_CreatePropSet();

//Code occurs here that sets the inPropSet property set with all information
that Siebel Open Ul must send as input to the method that it calls.

var ai = {};

ai.async = true;

ai.selfbusy = true;

ai.scope = this;

ai.mask = true;

ai.opdecode = true;

ai.errcb = function(){

//Code occurs here for the method that Siebel Open Ul runs if the AJAX call
fails

};
ai.cb = function(){

//Code occurs here for the method that Siebel Open Ul runs if the AJAX call
is successful

};
service. InvokeMethod("'method _name', " input_arguments', ai);
3

For more information, see “InvokeMethod Method for Application Models” on page 491.

Using the Base Physical Renderer Class With Nonapplet
Objects

This topic describes how to use the Base Physical Renderer class with nonapplet objects that you
customize. It includes the following topics:

B Hierarchy That the Base Physical Renderer Class Uses on page 139

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 137

Customizing Siebel Open Ul & Doing General Customizatio

B Modifying Nonapplet Configurations for Siebel CRM Version 8.1.1.10, 8.2.2.3, or Earlier on page 142
B Declaring the AttachPMBinding Method When Using the Base Physical Renderer Class on page 140
B Sending an Arbitrary Scope on page 141

Accessing Proxy Objects on page 141

The BasePhysicalRenderer class simplifies calls that Siebel Open Ul makes to the AttachPMBinding
method for nonapplet objects. You can configure Siebel Open Ul to use the BasePhysicalRenderer
class to identify the physical renderer, call AttachPMBinding, and specify the configuration for the
scope of a nonapplet object. You can then use a custom physical renderer to call AttachPMBinding
with the appropriate handler.

Siebel Open Ul uses the PhysicalRenderer class to interface with and to render applets. Starting with
Siebel CRM versions 8.1.1.11 and 8.2.2.4, it uses the BasePhysicalRenderer class to render
nonapplet objects. It uses this class to separate the interface to the physical renderer from the
physical renderer. Siebel Open Ul uses the BasePhysicalRenderer class only with nonapplet objects,
such as the toolbar or predefined query bar.

If your deployment includes nonapplet custom rendering, and if it uses Siebel CRM version 8.1.1.10,
8.2.2.3 or earlier, then it is strongly recommended, but not required, that you modify your
configuration so that it uses the BasePhysicalRenderer class to render your custom, nonapplet
objects. If your deployment uses the PhysicalRenderer class to render nonapplet objects, then this
class will provide access to applet functionality and properties that it does not require to do the
rendering, which could degrade performance or result in rendering problems.

Siebel Open Ul defines the BasePhysicalRenderer class in the basephyrenderer.js file.

138 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

ng Siebel Open Ul & Doing General Customization Tasks

Hierarchy That the Base Physical Renderer Class Uses

Figure 36 illustrates the hierarchy that the BasePhysicalRenderer class uses for non-mobile
applications. The member variable is a variable that is associated with the class. All methods can
access this member variable.

BasePhysicalRenderar

m_pm
Imit

GetPh

Showll|
BindEverits
BindData
AttachPMBinding
EndLife

Y Fy

PhysicalRenderer PDORendersr

L 3

JQGridRendarar Legend
[Clcass

[Member Variable

[CIMethads

Figure 36. Hierarchy That the Base Physical Renderer Class Uses

Using Methods with the Base Physical Renderer Class
Table 6 describes how to use methods with the BasePhysicalRenderer class.

Table 6. How to Use Methods with the Base Physical Renderer Class
Method Description
Init Use this method to initialize the BasePhysicalRenderer class. For more

information, see “Init Method” on page 426.

GetPM Use this method to retrieve the presentation model object on which the
base physical renderer is running. For more information, see “GetPM
Method for Physical Renderers” on page 458.

ShowUlI Use this method to display the DOM area corresponding to this physical
renderer. Any customization on rendering of controls owned by this applet
should be left to the respective plug-in wrappers. For more information,
see “ShowUl Method” on page 459 and “Deriving Presentation Models,
Physical Renderers and Plug-in Wrappers” on page 129.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 139

Customizing Siebel Open Ul & Doing General Customization Tasks

Table 6. How to Use Methods with the Base Physical Renderer Class

Method Description

BindEvents Use this method to attach event handlers to the applet area that runs on
this physical renderer. Any customizations relating to event attachment
to controls owned by this applet should be left to the respective plug-in
wrappers. For more information, see “BindEvents Method” on page 456.

BindData Use this method to bind data attributes to the applet area that runs on

this physical renderer. Any customizations relating to event attachment
to controls owned by this applet should be left to the respective plug-in
wrappers. For more information, see “BindData Method” on page 456 and
“Deriving Presentation Models, Physical Renderers and Plug-in Wrappers” on
page 129.

AttachPMBinding Use this method to configure Siebel Open Ul to do the same work that
the AttachPMBinding method does in a presentation model. You can use
the following argument to call the AttachPMBinding method:

scope
You can use the following arguments with the AttachPMBinding method:

B methodName. Identifies the method that the BasePhysicalRenderer
class binds.

B handler. Identifies the handler method that Siebel Open Ul uses for
this binding.

B handlerScope. Identifies the scope where the BasePhysicalRenderer
class runs the handler. If you do not specify the handlerScope, then
the BasePhysicalRenderer class uses the default scope.

For more information, see “AttachPMBinding Method” on page 423.

EndLife Use this method to end the life of the physical renderer. It is
recommended that you use the EndLife method to clean up the custom
event handler. This clean up includes releasing events, deleting unused
variables, and so on. For more information, see “EndLife Method” on
page 457.

Declaring the AttachPMBinding Method When Using the Base Physical
Renderer Class

If you configure Siebel Open Ul to use the BasePhysicalRenderer class, then you must declare the
AttachPMBinding method.

To declare the AttachPMBinding method when using the Base Physical Renderer
class

1 Use a JavaScript editor to open your custom physical renderer.

2 Locate the Init method.

140 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

omizing Siebel Open Ul & Doing General Customization Tasks

3 Add the following code to the Init method that you located in Step 2:

CustomPhysicalRenderer ._prototype.Init = function(){
// Be a good citizen. Call Superclass first
SiebelAppFacade . CustomPhysicalRenderer.superclass. Init.call(this);
// Call AttachPMBinding here.

}
For example:

CustomPhysicalRenderer._prototype.Init = function(){
SiebelAppFacade .CustomPhysicalRenderer.superclass. Init.call(this);
this_.AttachPMBinding("'EndQueryState'™, EndQueryState);

}

Sending an Arbitrary Scope

An arbitrary scope is any scope other than the scope that calls the handler. You can configure Siebel
Open Ul to send to the AttachPMBinding method any scope that is available in the physical renderer.
You can use the BasePhysicalRenderer class to send an arbitrary scope that identifies the handler
method that Siebel Open Ul must use.

To send an arbitrary scope

1 Use a JavaScript editor to open your custom physical renderer.
2 Add the following code to send an arbitrary scope as an argument:
this_AttachPMBinding ("'FocusOnApplet", FocusOnApplet, arbitrary scope);
For example:
this_AttachPMBinding (“'FocusOnApplet', FocusOnApplet, SiebelAppFacade.S_App);

where:

m SiebelAppFacade.S_App is an arbitrary scope because it is not the calling scope that the this
statement identifies, which Siebel Open Ul assumes in BasePR, by default. In this example,
the FocusOnApplet handler must exist in the SiebelAppFacade.S_App scope.

Accessing Proxy Objects

If you must write code that accesses a proxy object, then it is strongly recommended that you access
this proxy object through a physical renderer. The physical renderer typically exposes the interfaces
that allow access to operations that Siebel Open Ul performs on the proxy object. The example in
this topic accesses a proxy object for an active control.

To access proxy objects

1 Use a JavaScript editor to open your custom physical renderer.

2 Add the following code:

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 141

Customizing Siebel Open Ul & Doing General Customization Task

this_ExecuteMethod(*'SetActiveControl', control);
This example code accesses a proxy object so that Siebel Open Ul can modify an active control.

It is recommended that you do not write code that directly accesses a proxy object from a physical
renderer. In the following example, Siebel Open Ul might remove the GetProxy method from the
presentation model, and any code that references GetProxy might fail. It is recommended that you
do not use the following code:

this.GetProxy() -SetActiveControl (control);

Modifying Nonapplet Configurations for Siebel CRM Version 8.1.1.10,
8.2.2.3, or Earlier

Siebel Open Ul removed the scope argument for calls that it makes to the AttachPMBinding method
with nonapplet objects, starting with Siebel CRM versions 8.1.1.11 and 8.2.2.4. You can modify your
custom code to use this new configuration.

To modify nonapplet configurations for Siebel CRM versions 8.1.1.10, 8.2.2.3, or
earlier

1 Use a JavaScript editor to open your custom physical renderer.
2 Locate the following code:

this._GetPM() -AttachPMBinding (“'FocusOnApplet™, FocusOnApplet, {scope:this});

In this example, AttachPMBindings uses the scope argument to do a call in Siebel CRM version
8.1.1.10, 8.2.2.3, or earlier.

3 Replace the code that you located in Step 2 with the following code:

this._AttachPMBinding ("'FocusOnApplet', FocusOnApplet);

You can use this code starting with Siebel CRM versions 8.1.1.11 and 8.2.2.4.

Creating Components

The example in this topic configures Siebel Open Ul to attach a local component as the child of a
view component, and it uses the property set that Siebel Open Ul uses to create this component to
specify the name of the module. Siebel Open Ul uses this module for the presentation model and the
physical renderer.

To create components
1 Create the property set. Use the following code:

var psinfo = CCFMiscUtil_CreatePropSet();
psInfo.SetProperty(consts.get(""'SWE_UIDEF_PM_CTR"™), "siebel/custom/customPM™);
psInfo.SetProperty(consts.get(""'SWE_UIDEF_PR_CTR"™), "siebel/custom/customPR™);

where:

142 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

omizing Siebel Open Ul & Doing General Customization Tasks

m siebel/custom/customPM is the module name that identifies the siebel/custom/customPM.js
presentation model

m siebel/custom/customPR is the module name that identifies the siebel/custom/customPR.js
physical renderer

2 Create the dependency object. Use the following code:

var dependency = {};
dependency.GetName = function(){return "custom_Dependency_object";

This example assumes that it is not necessary that this component references an applet, so the
code limits the scope to a view.

3 Call the MakeComponent method. Use the following code:

SiebelAppFacade . ComponentMgr .MakeComponent(SiebelApp.S_App.-GetActiveView(),
psinfo, dependency);

For more information, see “MakeComponent Method” on page 508 and “GetActiveView Method” on
page 487.

Allowing Users to Interact with Clients During Business
Service Calls

The user cannot interact with the client during a synchronous request to a business service until the
client receives the reply for this request from the Siebel Server. However, the user can interact with
the client while it is waiting for a reply during an asynchronous request. This topic describes how to
write JavaScript code so that it sends an asynchronous request that allows the user to continue to
use the client without interruption during the call. You use the following code to specify an
asynchronous call:

async = true or false
For example, the following code makes an asynchronous request:
async = true

To view an example presentation model that includes more than one instance of enabling and
disabling an asynchronous call, download the msgbrdcstpmsync.js file, and then search this file for
the following string:

Ipsca.async
To get a copy of this file, see Article ID 1494998.1 on My Oracle Support.

For more information, see “About Synchronous and Asynchronous Requests” on page 78.

To allow users to interact with clients during business service calls
1 Use aJavaScript editor to open the presentation model that you must modify.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 143

Customizing Siebel Open Ul & Doing General Customization T:

2 Locate the ExecuteMethod that calls the business service that you must modify.

Siebel Open Ul uses the ExecuteMethod method to call a business service. For more information,
see “ExecuteMethod Method” on page 425.

3 Add the following code to the ExecuteMethod call that you located in Step 2:

var service = SiebelApp.S_App.GetService(‘'service_name");
var inPropSet = SiebelApp.S_App.NewPropertySet ();
// set all the input arguments through inPropSet.SetProperty(''property _name",
“property_value™)
var outPropSet;
if(service){
var config = {};
config.async = true;
config.scope = this;
config.cb = function({
outPropSet = arguments[2];
iT (outPropSet!== null){
output property set
3
3

service. InvokeMethod (“‘method_name", inPropSet, config);

h
where:

® inPropSet.SetProperty allows you to add input arguments to the business service that
resides on the Siebel Server.

m service_name is the name of the business service that Siebel Open Ul must call.

m config.async is set to true.

m config.scope = this attaches a scope to the callback function so that you are not required
to use var that=this to resolve the scope. For more information, see “Coding Callback
Methods” on page 359.

®m method_name is the name of a business service method that resides in the business service
that you specify in service_name.

B output_property_set is the name of the property set that Siebel Open Ul uses to store the

output of this asynchronous call.
For example, the following code creates an asynchronous call to create a list of quotes:

var service = SiebelApp.S_App.-GetService("'Create Quote Service');
var inPropSet = SiebelApp.S_App.NewPropertySet ();
var outPropSet;
if(service){
var config = {};
config.async = true;
config.scope = this;
config.cb = function(){
outPropSet = arguments[2];
if (outPropSet!== null){
quoteList

144 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

stomizing Siebel Open Ul = Doing General Customization Tasks

}

service. InvokeMethod (*'Create Quote', inPropSet, config);

h
where:

B quotelList is an output property set that contains a list of quotes that Siebel Open Ul gets
from the Create Quote business service method.

Customizing How Siebel Open Ul Displays Error
Messages

Prior to Siebel CRM release 8.1.1.13, Siebel Open Ul used the ErrorObject method to display the
error dialog box. This method calls a browser alert method that displays the dialog box as a browser
notification. Beginning with Siebel CRM release 8.1.1.13, you can modify this configuration so that
Siebel Open Ul displays the notification in a status bar or in a custom dialog box.

Siebel Open Ul uses the following rendering files to display error messages:
B errorobjectrenderer.js. Displays an error alert or SWEAlert message.

B errorstatusbarrenderer.js. Displays an error message in a custom error status bar in the
browser.

B errorpopuprenderer.js. Displays a custom dialog box that includes an error message.
Note the following:

B The errorobjectrenderer.js file is the only file that comes predefined with Siebel Open Ul and does
not require you to configure the manifest or to modify a method. You must not modify this file.

B The manifest does not come predefined to use the errorstatusbarrenderer.js file or the
errorpopuprenderer.js file. If your customization requires one of these files, then you must add
it to the manifest.

H Siebel Open Ul renders only one of these files at a time. If you add errorstatusbarrenderer.js or
errorpopuprenderer.js to the manifest, then Siebel Open Ul uses one of these files instead of
errorobjectrenderer.js.

B These files use the following constructor. You must not modify this constructor:

SiebelApp.S_App-ErrorObjectRenderer

B These files reference the following method. For more information about this method, see
“ShowErrorMessage Method” on page 511:

ShowErrorMessage(message)

B Each file uses the typical sequence that a physical renderer uses. For example, each file calls the
following methods in the following sequence. You must not modify this sequence. For more
information, see “Life Cycle of a Physical Renderer” on page 60:

a ShowUl

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 145

Customizing Siebel Open Ul & Doing General Customiz

b

C

BindData

BindEvents

For more information about configuring error messages in Siebel Open Ul, see “Configuring Error
Messages for Disconnected Clients” on page 353.

To customize how Siebel Open Ul displays error messages

1 Optional. Modify the style that Siebel Open Ul uses when it displays the error status bar.

If your customization uses the errorstatusbarrenderer.js file, then you can style the status bar
by adding style rules for the siebui-statusbar class in a custom cascading style sheet and place
it in following folder:

Files\custom\my-style.css

You must add the style sheet to the manifest by following the steps outlined in “Configuring
Manifests” on page 167.

2 Configure the manifest. For more information about how to do this step, see “Configuring
Manifests” on page 167:

a
b

C

146

Log in to a Siebel client with administrative privileges.
Navigate to the Administration - Application screen, and then the Manifest Files view.
Add one of the following files, depending on your customization requirements:

custom/errorstatusbarrenderer.js
custom/errorpopuprenderer.js

Navigate to the Manifest Administration view.

In the Ul Objects list, specify the following object.

Field Value

Type Application
Usage Type Theme
Name PLATFORM INDEPENDENT

In the Object Expression list, add the following subexpression.

Field Value

Group Name Leave empty.
Expression Desktop
Level 1

Siebel Open Ul only uses the renderer whose level is set to 1.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

g
h

i

ng Siebel Open Ul & Doing General Customization Tasks

Field Value

Operator Leave empty.

Web Template Name Leave empty.

In the Files list, click Add.
In the Files dialog box, click Query.
In the Name field, enter the path and file name that you added in Step c:

files/custom/my-style.css

Click Go.

3 Test your work:

a
b

C

Log out of, and then log back into the client.
Do something that results in an error.

Verify that the client displays an error message according to your modifications.

Customizing Navigation Options

The Siebel Open Ul client can be configured to control the navigation options available to users. By
default the Side Menu icon is used to control navigation. Without configuration, two additional
options are available for navigation: Tab and Tree.

In some deployments, you might want to restrict the use of a navigation option to a predefined
group. This topic explains how to control which navigation options are available to which users.

To customize the available navigation options
1 Create an expression for the navigation option that you want to restrict:

a

O O T

e

Log in to a Siebel client with administrative privileges.

Navigate to the Administration - Application screen, and then the Manifest Expressions view.
Click the plus (+) icon to create a new expression.

Specify a name for the expression.

Specify the restrictive expression.

2 Create a copy of the navigation type that you want to restrict:

a

Navigate to the Administration - Application screen, and then the Manifest Administration view.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 147

Customizing Siebel Open Ul & Doing General Customizatio

b In the Ul Objects list, search with the following specifications:

Field Value

Type Navigation
Usage Type Physical Renderer
Name NAVIGATION*

You can reference any navigation option.

c Select the navigation option that you want to modify. The three available options are
NAVIGATION_SIDE, NAVIGATION_TAB, and NAVIGATION_TREE.

d Take note of the exact file name that is listed in Files applet, you will need this information in a
later step.

e Select the Edit menu, then Copy Record.
3 Edit the navigation type:
a Select the copy of the navigation type that you created in Step 2.
b Click the plus (+) icon in Object Expression applet.
c In the Expression field, specify the expression that you created in Step 1.
d

Click the plus (+) icon in the Files applet and add the file that you noted in Step d.

4 Verify your work:
a Log out of the client, and then log back into the client.
This step refreshes the manifest.
b Navigate to the User Preferences screen, then the Behavior view.

¢ Verify that the correct options are available in the Navigation Control drop-down menu for the
user with which you are logged in.

Example of Restricting Navigation Options
The example in this topic describes how to restricts the Tree navigation option to only the ADMIN
user in Siebel Open Ul.

This topic gives one example of restricting navigation options. You might use this feature differently,
depending on your business model.

To restrict the Tree navigation option to only the ADMIN user
1 Create an expression that restricts availability to administrator only:

a Log in to a Siebel client with administrative privileges.

b Navigate to the Administration - Application screen, and then the Manifest Expressions view.

148 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Siebel Open Ul & Doing General Customization Tasks

C Click the plus (+) icon create a new expression.
d Specify the following in the Name field:
Admin Only
e Specify the following in the Expression field:
GetProfileAttr("Login Name®") = "ADMIN®
2 Create a copy of the NAVIGATION_TREE object:
a Navigate to the Administration - Application screen, and then the Manifest Administration view.

b In the Ul Objects list, search with the following specifications:

Field Value

Type Navigation
Usage Type Physical Renderer
Name NAVIGATION_TREE

Cc Select the NAVIGATION_TREE record.
d Select the Edit menu, then Copy Record.
3 Edit the new NAVIGATION_TREE record:
a Select the copy of the NAVIGATION _TREE record.
b Click the plus (+) icon in Object Expression applet.
C In the Expression field, specify the expression Admin Only.
d Click the plus (+) icon in the Files applet to add the following file:
jsTreeCtrl.js
4 Verify your work:
a Log out of the client, and then log back into the client as a user other than ADMIN.
b Navigate to the User Preferences screen, then the Behavior view.

¢ Verify that the only the following two options are available in the Navigation Control drop-down
menu:

1 Side Menu

0 Tab
d Log out of the client, and then log back into the client as the ADMIN user.
e Navigate to the User Preferences screen, then the Behavior view.

T Verify that the only the following three options are available in the Navigation Control drop-down
menu:

1 Side Menu

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 149

Customizing Siebel Open Ul & Customizing Events

o Tab

 Tree

Customizing Events

This topic includes some examples that describe how to customize the way Siebel Open Ul uses
events. It includes the following information:

“Refreshing Custom Events” on page 150

“Overriding Event Handlers” on page 151

“Attaching an Event Handler to an Event” on page 151

“Attaching More Than One Event Handler to an Event” on page 152

“Stopping Siebel Open Ul From Calling Event Handlers” on page 153

|
|
|
|
|
B “Attaching and Validating Event Handlers in Any Sequence” on page 153
B “Customizing the Sequence that Attaches and Validates Event Handlers” on page 159
B “Using AttachEventHandler Prior to Siebel CRM Release 8.1.1.13” on page 160

B “Overriding the OnControlEvent Method and Then Calling a Superclass” on page 160
B “Allowing Blocked Methods for HTTP GET Access” on page 160

For more information about how Siebel Open Ul uses events and examples that configure them, see
the following topics:

How Siebel Open Ul Uses the Init Method of the Presentation Model on page 59
Life Cycle of a Physical Renderer on page 60

Attaching an Event Handler to a Presentation Model on page 82

Customizing the Physical Renderer to Bind Events on page 92

Modifying CSS Files to Support the Physical Renderer on page 99

AttachNotificationHandler Method on page 421

Siebel CRM Events That You Can Use to Customize Siebel Open Ul on page 567

Refreshing Custom Events

Siebel Open Ul does not come predefined to refresh a custom event. The example in this topic
describes how to modify this behavior.

To refresh custom events
1 Add the following code:

150 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Customizing Siebel Open Ul B Customizing Events

this.AddMethod(*'RefreshHandler™, function(x, y, z){
// Add code here that does processing for RefreshHandler.

D:
This code adds the RefreshHandler custom event handler.

2 Add the following code in the presentation model so that it is aware of the event that the
RefreshEventHandler specifies:

this._AttachEventHandler(*'Refresh”, "RefreshHandler'™);
For more information, see “AttachEventHandler Method” on page 421.

3 Add the following code in the bindevents method of the plug-in wrapper:

this_Helper(“EventHelper'™) _Manage(buttontEl, "click™, { ctx: this },
function(event){
event.data.ctx.GetPM() -OnControlEvent(*'Refresh”, valuel, value2, valueN);

This code binds the event to the presentation model. For more information, see “OnControlEvent
Method” on page 427.

Overriding Event Handlers

The example in this topic configures Siebel Open Ul to override an event handler that the predefined
presentation model references.

To override event handlers

1 Configure Siebel Open Ul to refresh a custom event.
For more information, see “Customizing Events” on page 150.
2 Add the following code to your custom presentation model:

this._AddMethod(SiebelApp.Constants.get(""PHYEVENT_INVOKE_CONTROL™),
function(controlName) {

// Process button click

return false;

»:

This code configures Siebel Open Ul to return the following value from the event handler. It
makes sure this presentation model does not continue processing:

false

Attaching an Event Handler to an Event

This topic describes how to attach an event handler to an event.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 151

Customizing Siebel Open Ul & Customizing Events

To attach an event handler to an event
B Use the following code:

this._AddMethod ("' custom_method', functionQQ{});
this.AttachEventHandler("'custom_event', 'custom_method");

The physical renderer or the plug-in wrapper triggers these handlers when the following code is
executed:

this.GetPM() .OnControlEvent(*'custom_event', paraml, param2)

The presentation model uses the custom_method to identify the function that it must call and when
to call it. The presentation model also sends the parameters that OnControlEvent provides. For more
information, see “AttachEventHandler Method” on page 421.

Attaching More Than One Event Handler to an Event

This topic describes how to attach more than one event handler to an event.

To attach more than one event handler to an event
B Use the following code:

this.AttachEventHandler("'custom_event', 'custom_method I'");
this.AttachEventHandler("'custom_event', 'custom_method Z");
this_AttachEventHandler ("' custom_event', ''custom_method 3");

The physical renderer or the plug-in wrapper triggers these handlers when the following code is
executed:

this.GetPM() .OnControlEvent("custom _event", paraml, param2)

The presentation model determines that it must handle three events, and it handles them in the
reverse order that you specify them. In this example, it uses the following sequence when it handles
the event:

1 custom_method_3
2 custom_method_2
3 custom_method_1

The presentation model sends the same values for the parameters that OnControlEvent specifies for
each event handler.

For more information, see “AttachEventHandler Method” on page 421.

152 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Customizing Siebel Open Ul B Customizing Events

Stopping Siebel Open Ul From Calling Event Handlers

You can configure the AttachEventHandler method to stop calling event handlers at any point during
the event handling process. The example in this topic assumes your configuration includes one
predefined event handler and three custom event handlers, and that custom_event_handler_2 stops
the processing according to a condition.

To stop Siebel Open Ul from calling event handlers
B Use the following code:

this.AddMethod (" custom_event _handler _Z', function(paraml, param2,
returnStructure){
if(condition){
returnStructure[consts.get("'SWE_EXTN_CANCEL_ORIG_OP™)] = true;
returnStructure[consts._get(""'SWE_EXTN_STOP_PROP_OP')] = true;
returnStructure[consts.get(""SWE_EXTN_RETVAL')] = return_value;
3
b:

this._AttachEventHandler("'event_name", '‘custom_event_handler _Z");
where:

B consts references SiebelApp.Constants.

B return_value contains a value that Siebel Open Ul returns to the object that called
OnControlEvent.

This code does the following work:

B Sets the SWE_EXTN_CANCEL_ORIG_OP and SWE_EXTN_STOP_PROP_OP properties according to
a condition.

B Stops event handlers from running.
B Uses SWE_EXTN_RETVAL to return a value to the object that called OnControlEvent.

For more information, see “AttachEventHandler Method” on page 421.

Attaching and Validating Event Handlers in Any
Sequence

You can configure Siebel Open Ul to attach and validate an event handler in any sequence, depending
on your requirements. The example in this topic does some custom validation, and then runs an
event handler in a custom presentation model named derivedpm?2.js. If the user triggers a control
focus event, then Siebel Open Ul runs the validator before it calls the event. Siebel Open Ul uses the
the value that the validator returns to determine whether or not to run the custom event handler
and the predefined event handler. This predefined event handler is the default event handler that the
predefined presentation model uses for the event. This topic describes the derivedpm1.js and
derivedpm?2.js files. To get a copy of these files, see Article ID 1494998.1 on My Oracle Support.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 153

Customizing Siebel Open Ul & Customizing Events

To attach and validate event handlers in any sequence

1 Use a JavaScript editor to create a custom presentation model that Siebel Open Ul derives from
a predefined presentation model:

a Create a new file named derivedpm1.js. Save this file in the following folder:

siebel\custom
For more information about:

1 This file, see “Complete Contents of the derivedpm1 Presentation Model” on page 158.
1 This folder, see “Organizing Files That You Customize” on page 162.

b Configure the custom derivedpm1 presentation model that you created in Step a so that Siebel
Open Ul derives it from the predefined ListPresentationModel. You add the following code:

iT(typeof(SiebelAppFacade.derivedpml) === "undefined"){
SiebelJS_Namespace(''SiebelAppFacade.derivedpml™);
define("siebel/custom/derivedpml™, [], function(){
SiebelAppFacade.derivedpml = (function(){
var siebConsts = SiebelJS._Dependency("SiebelApp.Constants"),
CANCEL_OPR = consts.get("SWE_EXTN_CANCEL_ORIG_OP"),
STOP_PROP = consts.get("SWE_EXTN_STOP_PROP_OP");
function derivedpm1i(){
SiebelAppFacade.derivedpml.superclass.constructor.apply(this,
arguments);
}
SiebelJS._Extend(derivedpml, SiebelAppFacade.ListPresentationModel);
derivedpml.prototype.Init = function(){
SiebelAppFacade .derivedpml.superclass. Init.call(this);

For more information, see “Deriving Presentation Models, Physical Renderers and Plug-in
Wrappers” on page 129.

C Make sure the derivedpml presentation model includes a handler for the
PHYEVENT_COLUMN_FOCUS event. You add the following code:

this.AttachEventHandler(siebConsts.get("'PHYEVENT_COLUMN_FOCUS™),
function()

{
SiebelJS._Log(*"Control focus 1");

arguments[arguments. length - 1][consts.get(
""SWE_EXTN_CANCEL_ORIG_OP™)] = false;

»:

For more information about the method that this code uses, see “AttachEventHandler Method”
on page 421.

d Validate the handler that you added in Step c. You add the following code:

154 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Customizing Siebel Open Ul B Customizing Events

this.AddValidator(siebConsts.get(""PHYEVENT_COLUMN_FOCUS'"), function(){
return true;

»:
}:

For more information about the method that this code uses, see “AddValidator Method” on
page 420.

e Finish the setup that you started in Step b. You add the following code:

derivedpml.prototype.Setup = function(propSet){
SiebelAppFacade.derivedpml.superclass.Setup.call(this, propSet);

ieturn derivedpml;
} O);
return "'SiebelAppFacade.derivedpml™;
e
}

T Save your changes, and then close the derivedpm1.js file.

2 Use a JavaScript editor to create another custom presentation model that Siebel Open Ul derives
from the custom presentation model that you created in Step 1:

a Create a new file named derivedpm2.js. Save this file in the following folder:

siebel\custom

For more information about this file, see “Complete Contents of the derivedpm2 Presentation
Model” on page 158.

b Configure the custom derivedpm?2 presentation model that you created in Step a so that Siebel
Open Ul derives it from the derivedpm1 presentation model. You add the following code:

iT(typeof(SiebelAppFacade.derivedpm2) === "undefined"”){
SiebelJS_Namespace("'SiebelAppFacade.derivedpm2™);
define("siebel/custom/derivedpm2", ["'siebel/custom/derivedpml'],
function(){
SiebelAppFacade.derivedpm2 = (function(){
var siebConsts = SiebelJS_Dependency(''SiebelApp.Constants"),
CANCEL_OPR = consts.get("SWE_EXTN_CANCEL_ORIG_OP"),
STOP_PROP = consts.get("SWE_EXTN_STOP_PROP_OP");
function derivedpm2(){
SiebelAppFacade.derivedpm2.superclass.constructor.apply(this,
arguments);
¥
SiebelJS.Extend(derivedpm2, SiebelAppFacade.derivedpml);
derivedpm2._prototype.Init = function(){
SiebelAppFacade.derivedpm2.superclass. Init.call(this);

C Make sure the derivedpm2 presentation model includes a handler for the
PHYEVENT_COLUMN_FOCUS event. You add the following code:

this._AttachEventHandler(siebConsts.get(""PHYEVENT_COLUMN_FOCUS'™), function()

{
SiebelJS.Log(""Control focus 2");

DF

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 155

Customizing Siebel Open Ul & Customizing Events

f

Validate the handler that you added in Step c. You add the following code:

this._AttachEventHandler(siebConsts.get(""PHYEVENT_COLUMN_FOCUS'™), function()

{
SiebelJS_Log(""Control focus 2");

;s
this.AddValidator(siebConsts.get(""PHYEVENT_COLUMN_FOCUS'), function(row,
ctrl, val){

//custom validation

}
»:

where:
1 custom validation validates the values.
For example, the following code validates that the handler handles the Hibbing Mfg account:

this.AttachEventHandler(siebConsts.get(""PHYEVENT_COLUMN_FOCUS'™), function()

{
SiebelJS.Log("Control focus 2");
H:
this.AddValidator(siebConsts.get(""PHYEVENT_COLUMN_FOCUS'), function(row,
ctrl, val){
if(ctrl._GetDisplayName() === "Account" && val === "Hibbing Mfg'){
return true;

3
D
Finish the setup that you started in Step b. You add the following code:
};
derivedpm2.prototype.Setup = function(propSet){
SiebelAppFacade .derivedpm2.superclass._Setup.call(this, propSet);
};
return derivedpm2;
3 O):
return "'SiebelAppFacade.derivedpm2';
DR
}

Save your changes, and then close the derivedpm?2.js file.

3 Configure the manifest. For more information about how to do this step, see “Adding Custom
Manifest Expressions” on page 181:

a
b

C

156

Log in to a Siebel client with administrative privileges.
Navigate to the Administration - Application screen, and then the Manifest Files view.
Add the file that you created in Step 2.

For this example, you add the following file:

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Customizing Siebel Open Ul B Customizing Events

custom/derivedpm2.js

Note that your configuration derives the derivedpm?2.js from the derivedpml.js file, so it is
not necessary to add derivedpm1.js to the manifest.

d Navigate to the Manifest Administration view.

e In the Ul Objects list, specify the following object.

Field Value

Type Applet
Usage Type Presentation Model
Name Opportunity List Applet

You can reference any list applet. For this example, use Opportunity
List Applet.

T In the Object Expression list, add the following subexpression.

Field Value

Group Name Leave empty.
Expression Desktop
Level 1

Operator Leave empty.
Web Template Name Leave empty.

g In the Files list, add the following file:
custom/derivedpm2. js
h Log out of the client, and then log back into the client.
This step refreshes the manifest.
4 Verify your work:
a Navigate to the Opportunity List Applet.
b Click anywhere in the Account field.
¢ Verify that the browser console log displays the following text:
Control Focus 2
The handler that you specified in the derivedpm?2.js file in Step 2 specifies this text.
d Verify that the browser console log displays the following text:

Control Focus 1

The handler that you specified in the derivedpm1.js file in Step 1 specifies this text.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 157

Customizing Siebel Open Ul & Customizing Events

Complete Contents of the derivedpml1 Presentation Model
The following code is the complete contents of the derivedpml1 presentation model:

iT(typeof(SiebelAppFacade.derivedpml) === "undefined"){
SiebelJS_Namespace(''SiebelAppFacade.derivedpml™);
define("siebel/custom/derivedpml™, [], function(){
SiebelAppFacade.derivedpml = (function(){
var siebConsts = SiebelJS.Dependency(""SiebelApp.Constants"),
CANCEL_OPR = consts.get("SWE_EXTN_CANCEL_ORIG_OP"),
STOP_PROP = consts.get("SWE_EXTN_STOP_PROP_OP'");
function derivedpmli(){
SiebelAppFacade .derivedpml.superclass.constructor.apply(this, arguments);
3
SiebelJS._Extend(derivedpml, SiebelAppFacade.ListPresentationModel);
derivedpml.prototype.Init = function(Q{
SiebelAppFacade .derivedpml.superclass. Init.call(this);
this.AttachEventHandler(siebConsts.get(""PHYEVENT_COLUMN_FOCUS'™), function()

SiebelJS.Log(*"Control focus 1);
arguments[arguments. length - 1][consts.get("SWE_EXTN_CANCEL_ORIG_OP"™)] =
false;
D
this_AddValidator(siebConsts.get("'PHYEVENT_COLUMN_FOCUS™), function(){
return true;
»:
};
derivedpml.prototype.Setup = function(propSet){
SiebelAppFacade.derivedpml.superclass._Setup.call(this, propSet);

}:
return derivedpml;
> O):
return "'SiebelAppFacade.derivedpml™;

P
}

Complete Contents of the derivedpm?2 Presentation Model
The following code is the complete contents of the derivedpm2 presentation model:

iT(typeof(SiebelAppFacade.derivedpm2) === "undefined"){
SiebelJS._Namespace(''SiebelAppFacade.derivedpm2™);
define("siebel/custom/derivedpm2', ["'siebel/custom/derivedpml'], function(){
SiebelAppFacade.derivedpm2 = (function(){
var siebConsts = SiebelJS._Dependency("'SiebelApp.Constants"),
CANCEL_OPR = consts.get("SWE_EXTN_CANCEL_ORIG_OP"),
STOP_PROP = consts.get("SWE_EXTN_STOP_PROP_OP");
function derivedpm2(){
SiebelAppFacade.derivedpm2.superclass.constructor.apply(this, arguments);
3
SiebelJS.Extend(derivedpm2, SiebelAppFacade.derivedpml);
derivedpm2._prototype.Init = function(){
SiebelAppFacade .derivedpm2.superclass.Init.call(this);
this.AttachEventHandler(siebConsts.get("'PHYEVENT_COLUMN_FOCUS'™), function()

158 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Customizing Siebel Open Ul B Customizing Events

{
SiebelJS.Log(*"Control focus 2'");
D:
this.AddValidator(siebConsts.get("'PHYEVENT_COLUMN_FOCUS™), function(row, ctrl,
val){
if(ctrl_GetDisplayName() === "Account" && val === "Hibbing Mfg"){
return true;
}
D;
}:

derivedpm2._prototype.Setup = function(propSet){
SiebelAppFacade.derivedpm2.superclass.Setup.call(this, propSet);

};
return derivedpm2;
} O);
return "'SiebelAppFacade.derivedpm2™;

D:
}

Customizing the Sequence that Attaches and Validates
Event Handlers

The example in this topic illustrates how you can modify the sequence that Siebel Open Ul uses to
attach and validate event handlers so that it stops any further event handler processing after a
validation occurs. It does some custom validation, and then runs an event handler in a file named
derivedpm?2.js. If the user triggers a control focus event, then Siebel Open Ul runs the custom event
handler that displays a message in the Browser console log. The validator then returns a value of
false, so Siebel Open Ul stops any further event handler processing for the custom event handler
and for the predefined event handler.

To customize the sequence that attaches and validates event handlers
1 Do Step 1 on page 154.

2 Do Step 2 on page 155, but specify the validator first, and then the event handler. You use the
following code:

this.Addvalidator(siebConsts.get(""PHYEVENT_COLUMN_FOCUS'™), function(Q{
custom validation
return true;

P
this_AttachEventHandler(siebConsts.get("'PHYEVENT_COLUMN_FOCUS'™), function()

{
Siebjs.Log("'Control Focus 2');
:;

For more information about the methods that this code uses, see “AddValidator Method” on
page 420 and “AttachEventHandler Method” on page 421.

3 Do Step 4 on page 157, but verify that Siebel Open Ul displays the following text in the browser
console log:

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 159

Customizing Siebel Open Ul & Customizing Events

Control Focus 2
Control Focus 1

Using AttachEventHandler Prior to Siebel CRM Release
8.1.1.13

Prior to Siebel CRM release 8.1.1.13, the AttachEventHandler method returns one of the following
values. This configuration allows AttachEventHandler to attach only one custom event to an event:

B true. Attached an event handler successfully.
B false. Did not attach an event handler successfully.
It uses the following syntax:
AttachEventHandler ('eventiame", eventHandler());
where:

B eventName is a string that identifies the name of the event that Siebel Open Ul must attach to
the event.

B eventHandler identifies the method that Siebel Open Ul calls.

For more information, see “AttachEventHandler Method” on page 421.

Overriding the OnControlEvent Method and Then Calling
a Superclass

You must not configure Siebel Open Ul to override the OnControlEvent method to handle an event,
and then call a superclass. For example, assume you configure Siebel Open Ul to override the
listpmodel.js file, and that the derived class resides in the derivedpm1l.js file. Assume you then use
the following code to override the OnControlEvent method that resides in the pmodel.js file. This file
specifies the base presentation model class:

derivedpml.prototype.OnControlEvent = function(event_name)

{
}

In this situation, when an event occurs, Siebel Open Ul calls the overridden OnControlEvent instead
of the pmodel.prototype.OnControlEvent. You must avoid this configuration. For more information,
see “OnControlEvent Method” on page 427.

Allowing Blocked Methods for HTTP GET Access

In Siebel Innovation Pack 2014 and later, read and write operations have been separated for all
applets, business components, and business service methods.

160 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Customizing Siebel Open Ul ® Managing Files

If you want to allow access to a blocked method for HTTP GET access, a user property has been
introduced for applets and business services to include methods on a white list, thereby allowing
access using HTTP GET.

This topic describes how to allow blocked methods for HTTP GET access using the
GETEnabledMethods user property.

To allow blocked methods for HTTP GET access
1 Open Siebel Tools.

For more information, see Using Siebel Tools.
2 In the Object Explorer, click Applet.

3 In the Applets list, locate the applet or business service to which you want to add the
GETEnabledMethods user property.

In the Object Explorer, expand the Applet tree, and then click Applet User Prop.

5 In the Applet User Props list, add the user property with the values:

Field Value

Name GETEnabledMethods

Value MethodNamel, MethodName?2, ... MethodNameN

Where MethodNameX is the name of a method that should be
accessible by way of HTTP GET.

NOTE: It is recommended to list only read-only methods in the white list for HTTP GET access.
Methods that perform write operations should not be listed.

Managing Files

This topic describes how to manage files. It includes the following information:
B Organizing Files That You Customize on page 162

B Updating Relative Paths in Files That You Customize on page 165

B Specifying Dependencies Between Presentation Models or Physical Renderers and Other Files on
page 165

B Configuring Manifests on page 167

You also use the manifest to manage files. For more information, see “Configuring Manifests” on
page 167.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 161

Customizing Siebel Open Ul & Managing Files

Organizing Files That You Customize

This topic describes how to organize files that you customize. A predefined file is a type of file that
comes configured ready-to-use with Siebel Open Ul. A custom file is a predefined file that you modify
or a new file that you create. A .png file that you use for your company logo is an example of a
custom file. You can customize the following types of files:

JavasScript files.
CSS files.
Image files, such as .jpg or .png files.

SWT (Siebel Web Template) files.

HTML files.
XML files.
Note the following guidelines:

B You must modify any relative paths that your custom file contains. For more information, see
“Updating Relative Paths in Files That You Customize” on page 165.

B The folder structures that this topic describes applies to all cached and deployed files.
B Any third-party libraries that you use must reside in a predefined folder or in a custom folder.

CAUTION: You must not modify any files that reside in the folders that Table 7 on page 163
describes. You must make sure that these folders contain only Oracle content, and that your custom
folders contain only custom content. This configuration helps to avoid data loss in these folders. If
you modify any predefined file, then Siebel Open Ul might fail, and it might not be possible to recover
from this failure.

To organize files that you customize
B Store all your custom files that reside on the Siebel Server in one of the following folders:

INSTALL DIR\siebsrvr\WEBMASTER\Files\/Janguage code\custom

INSTALL DIR\siebsrvr\WEBMASTER\images\/Janguage code\custom
INSTALL DIR\siebsrvr\WEBTEMPL\custom

INSTALL DIR\siebsrvr\WEBTEMPL\OUIWEBTEMPL\custom

INSTALL DIR\siebsrvr\WEBMASTER\siebel build\scripts\siebel\custom

where:

m INSTALL DIRis the folder where you installed the Siebel Server.

m language_code specifies the language, such as ENU. For more information, see “Languages
That Siebel Open Ul Supports” on page 592.

B Store all your custom CSS files and image files that reside on the client in one of the following
folders:

INSTALL DIR\eappweb\PUBLIC\ /anguage code\Tiles\custom
INSTALL DIR\eappweb\PUBLIC\ /anguage code\images\custom

where:

162 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Customizing Siebel Open Ul ® Managing Files

m INSTALL_DIR is the folder where you installed the client.
B Store all your custom presentation models and physical renderers in the following folder:

INSTALL DIR\eappweb\PUBLIC\ Janguage code\build _number\scripts\siebel\custom

Oracle stores predefined presentation models and physical renderers in the following folder. You
must not modify any file that resides in this folder:

INSTALL _DIR\eappweb\PUBLIC\ Janguage code\build _number\scripts\siebel

B Store all your custom web templates for Siebel Open Ul in the following folder:

INSTALL DIRses\siebsrvr\WEBTEMPL\OUIWEBTEMPL\CUSTOM

B Store all your custom web templates for high interactivity and standard interactivity in the
following folder:

INSTALL DIR\ses\siebsrvr\WEBTEMPL\CUSTOM

Where Siebel Open Ul Stores Predefined Files in Siebel Open Ul
Clients

Table 7 describes where Siebel Open Ul stores predefined files in the Siebel Open Ul client. You must
not modify any of these files. Instead, you can copy the file, and then save this copy to one of your
custom folders.

Table 7. Where Siebel Open Ul Stores Predefined Files in Siebel Open Ul Clients

File Type Folders Where Siebel Open Ul Stores Predefined Files

JavaScript | Siebel Open Ul stores JavaScript files in the following folders:

files
INSTALL _DIR\eappweb\PUBLIC\enu\build _number\scripts

INSTALL DIR\eappweb\PUBL IC\enu\build_number\scripts\siebel
INSTALL DIR\eappweb\PUBLIC\enu\build _number\scripts\3rdParty

These folders contain JavaScript files only for predefined Siebel Open Ul. You must
not modify these files, and you must not store any custom files in these folders. The
3rdParty folder might contain CSS files that the third-party JavaScript files require.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 163

Customizing Siebel Open Ul & Managing Files

Table 7. Where Siebel Open Ul Stores Predefined Files in Siebel Open Ul Clients
File Type Folders Where Siebel Open Ul Stores Predefined Files
CSS files Siebel Open Ul stores CSS files in the following folders:

INSTALL DIR\eappweb\PUBL IC\enu\files
INSTALL DIR\eappweb\PUBLIC\enu\files\3rdParty

These folders contain CSS files only for predefined Siebel Open Ul. You must not
modify these files, and you must not store any custom files in these folders.

Image files | Siebel Open Ul stores image files in the following folders:
INSTALL DIR\eappweb\PUBLIC\enu\images

These folders contain image files only for predefined Siebel Open Ul. You must not
modify these files, and you must not store any custom files in this folder. To support
color schemes, Siebel Open Ul converts the images that Oracle provides from GIF files
to PNG files.

Where Siebel Open Ul Stores Files in High-Interactivity and Standard-
Interactivity Deployments

Siebel Open Ul uses the following folders in a high-interactivity client or standard-interactivity client.
This folder structure makes sure existing high-interactivity or standard-interactivity applications and
customizations can continue to work simultaneously with Siebel Open Ul:

INSTALL _DIR\siebsrvr\WEBTEMPL

INSTALL _DIRsiebsrvr\WEBTEMPL\custom

INSTALL DIR\siebsrvr\WEBTEMPL\OUIWEBTEMPL
INSTALL _DIR\siebsrvr\WEBTEMPL\OUIWEBTEMPL\custom

Siebel Open Ul uses the following folder only for high-interactivity and standard-interactivity clients:
INSTALL _DIRsiebsrvr\WEBTEMPL\custom
Siebel Open Ul uses the following folders only in the Siebel Open Ul client:

INSTALL DIR\siebsrvr\WEBTEMPL\OUIWEBTEMPL
INSTALL DIR\siebsrvr\WEBTEMPL\OUIWEBTEMPL\custom

Siebel Open Ul uses the following folder for Siebel Open Ul, high-interactivity, and standard-
interactivity clients:

INSTALL DIR\siebsrvr\WEBTEMPL

If more than one folder contains web templates that use the same file name, then Siebel Open Ul
uses the first file that it encounters according to the following search order:

B For Siebel Open Ul clients:
B INSTALL_DIR\siebsrvr\WEBTEMPL\OUIWEBTEMPL\custom
B INSTALL_DIR\siebsrvr\WEBTEMPL\OUIWEBTEMPL
B INSTALL_DIR\siebsrvr\WEBTEMPL

164 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Customizing Siebel Open Ul ® Managing Files

B For high-interactivity and standard-interactivity clients:
m INSTALL_DIR\siebsrvrA\WEBTEMPL\custom
m INSTALL_DIR\siebsrvr\WEBTEMPL

Updating Relative Paths in Files That You Customize

If you customize a file, and if you save this custom file in a custom folder, then you must modify any
relative paths that this file references. For example, if you copy the rules from a predefined .css file
into a custom .css file, then you must modify the relative paths that your custom .css file references
so that they reference the correct file. For an example of this configuration, see “Customizing the
Logo” on page 186.

To update relative paths in files that you customize
1 Create a custom file.

For more information about custom files, see “Organizing Files That You Customize” on page 162.
2 Search your custom file for any relative paths.
For example, images/ in the following code is an example of a relative path:
src=images/ebus._gif
3 Modify the relative path so that it can correctly locate the file that it references.
For example:

src=INSTALL_DIR\eappweb/eappweb/PUBLIC/enu/images/ebus.gif

4 Do Step 2 and Step 3 for every relative path that your custom file contains.

Specifying Dependencies Between Presentation Models
or Physical Renderers and Other Files

A presentation model or physical renderer sometimes includes a module dependency, which is a
relationship that occurs when this presentation model or physical renderer depends on another file.
The Define method recognizes each of these items as a JavaScript code module, which is an object
that the module_name argument identifies as depending on other modules to run correctly. You
specify the module_name argument when you use the Define method to identify the JavaScript files
that Siebel Open Ul must download for a presentation model or physical renderer. For more
information, see “Define Method” on page 510.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 165

Customizing Siebel Open Ul & Managing Files

Consider the following example that uses the customPR.js file to define the physical renderer. This
renderer depends on plug-in X and plug-in Y, and it uses the following directory structure:

B 3rdParty
X
4 X-core.s

J x-helper.js

my
4 core.s
m siebel
m custom

4 customPR.js

In this example, the following logical dependencies exist between the customPR.js file and the x-
core.js file, x-helper.js file, and the customPR.js file:

siebelcustomicusiomPR — ArdParty Xix-core

el ardPartyXi-helpler

— ArdPartycore

Siebel Open Ul then uses the following logic at run-time for this example:

1
2

The user navigates to a view that includes an applet that uses the customPR physical renderer.

The Siebel Server seINSTALL_DIRnNds a reply to the client that includes information about the
property set and the physical layout.

The view processes the information that the Siebel Server sends in Step 2, and then determines
that it must use siebel/custom/customPR.js to render the applet.

The RequirelJS script loader uses the customPR.js file name to identify siebel/custom/customPR
as the module name, and then sends a request to the Siebel Server for this module.

If Siebel Open Ul already loaded this module, then it returns the module object to the client and
proceeds to Step 7.

If Siebel Open Ul has not already loaded this module, then it does the following work:

166 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Customizing Siebel Open Ul ® Configuring Manifests

Sends a request to the web server for the siebel/custom/customPR.js file.

b If dependencies exist, then Siebel Open Ul sends a request for these dependent modules, and
then runs the modules in the browser.

c Siebel Open Ul runs the script for the siebel/custom/customPR.js file in the browser.

7 Siebel Open Ul uses the module object to create a new instance of the presentation model and
the physical renderer.

To help manage your customizations, it is strongly recommended that you use a module name that
is similar to the relative location of the file name. You use the manifest administration screens to
specify the manifest for these dependencies.

To specify dependencies between presentation models or physical renderers and
other files

B Use the list_of_dependencies argument when you use the Define method in your presentation
model or physical renderer.

For an example that uses the list_of _dependencies argument, see “Setting Up the Physical
Renderer” on page 88. For more information, see “Define Method” on page 510.

B If file dependencies require that you configure Siebel Open Ul to download files in a specific
order, then do “Configuring Manifests” on page 167.

Configuring Manifests

This topic describes how to configure Siebel Open Ul manifests. It includes the following topics:
B “Overview of Configuring Manifests” on page 167

B “Configuring Custom Manifests” on page 171

B “Adding Custom Manifest Expressions” on page 181

B “Adding JavaScript Files to Manifest Administrative Screens” on page 183

Overview of Configuring Manifests

A manifest is a set of instructions that Siebel Open Ul uses to identify the JavaScript files that it must
download from the Siebel Server to the client so that it can render screens, views, applets, menus,
controls, and other objects. For an overview of how Siebel Open Ul uses this manifest, see “Example
of How Siebel Open Ul Renders a View or Applet” on page 44.

Siebel CRM versions 8.1.1.9 and 8.1.1.10 use an XML manifest file to identify these JavaScript files
in the following situations:

B When Siebel Open Ul initializes the Siebel application. Siebel Open Ul does this download only
for one Siebel application at a time.

B The first time Siebel Open Ul must display an applet in a Siebel application.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 167

Customizing Siebel Open Ul & Configu

Starting with Siebel CRM versions 8.1.1.11 and 8.2.2.4, Siebel Open Ul replaces the XML manifest
file with manifest data that it stores in the Siebel Database. You cannot modify this predefined
manifest data, but you can use the Manifest Administration screen in the client to configure the
manifest data that your customization requires. For information about using a utility that migrates
your custom manifest configurations from Siebel CRM version 8.1.1.9 or 8.1.1.10 to version 8.1.1.11
or 8.2.2.4, see the topic that describes migrating the Siebel Open Ul manifest file in Siebel Database
Upgrade Guide.

168 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

izing Siebel Open Ul W Configuring Manifests

Example of How Siebel Open Ul ldentifies the JavaScript Files It Must
Download

Figure 37 describes an example of how Siebel Open Ul uses the manifest to identify the JavaScript
file it must download so that it can use the presentation model for the SIS Account List Applet. The
manifest maps the recyclebinpmodel.js file that resides in the siebel/custom folder to the
presentation model that it uses to display this applet. For details about this example, see “Creating
the Presentation Model” on page 66 and “Configuring the Manifest for the Recycle Bin Example” on

page 114.
[- g ot T p—
L i P B T R L e
i
N e
s | D SR -] [o |
(e T - il s i [e L e e [Ere—]
] L] 1 lI LD e R T] I
Administration on Slebel Server

if(typeof(SiebelAppFacade.RecycleBinPFModel) === "undefined™ }{
SiebelJs . Namesp ipeFacads , RecyeleBinPMadel™)

AL o v
var consts = SiebelJS.Dependency("SiebelRpp.Constanta™)

fanction RecycleBinPModel () {

SiebelAppFacade .RecycleBinPHodel . superclass.conscructor.apply(this, arguments);
H

SiehalJS.Extend(| RecycleBinFMadel, SisbelAppFacade.listPresentationModsl)
return RecycleBinFModel
b))
return SiebelippFacade.RecyleBinPModel;
1)
1

Presontation Model File on Client

Figure 37. Example of How Siebel Open Ul Identifies the JavaScript Files It Must Download

Explanation of Callouts
The example manifest administration includes the following items:

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 169

Customizing Siebel Open Ul & Configuring Man

1 The Files list specifies the siebel/custom/recyclebinpmodel.js file.

2 The presentation model specifies siebel/custom/recyclebinpmodel when it calls the define
method.

Example of a Completed Manifest Administration

Figure 38 includes an example of a completed manifest administration that configures Siebel Open
Ul to download JavaScript files for the Contact List Applet. For information about how to configure
this example, see “Configuring Custom Manifests” on page 171.

Ul Oiwocis m - Saws Pt g [T
B

e] apw Unaps Topm Narma
0 soam o nrm Bt L |l &g

- = Tedge=t gt Wl CAenac) Ll Ajpa

L ey e#E TaTgae PR | g

L Lo sl St e S]

Figure 38. Example Manifest Administration

Explanation of Callouts
The example manifest administration includes the following items:

1 The Grid group uses the AND operator to group three expressions into the following group
expression:

Desktop AND EditList AND Grid

A group expression is a type of expression that Siebel Open Ul uses to arrange subexpressions
into a group in the Object Expression list.

2 Siebel Open Ul uses the Level field to determine the order it uses to evaluate expressions. It uses
the following sequence:

170 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Customizing Siebel Open Ul ® Configuring Manifests

a It uses the Level field to determine the order it uses to evaluate group expressions. In this
example, it uses the following sequence:

1 Evaluates the Grid group first.
1 Evaluates the Tile group next.
1 Evaluates the Map group last.

b It uses the Level field within a group to determine the order it uses to evaluate each
subexpression, which is a type of expression that Siebel Open Ul displays as part of a group in
the Object Expressions list. It displays each subexpression in an indented position below the
group expression. In this example, it uses the following sequence to evaluate subexpressions
that reside in the Grid group:

4 Evaluates the Desktop expression first.
4 Evaluates the EditList expression next.
1 Evaluates the Grid expression last.

In this example, Siebel Open Ul evaluates all the expressions that reside in the Grid group, and
then does one of the following according to the result of this evaluation:

m All expressions that reside in the Grid group evaluate to true. Siebel Open Ul
downloads the file that the Files list specifies.

B Any expression that resides in the Grid group evaluates to false. Siebel Open Ul
discards the entire Grid group, and then evaluates the Tile group.

3 Siebel Open Ul uses the Files list to identify the files it must download. In this example, it does
the following evaluation:

m If the platform is a desktop, and if the mode is EditList, and if the user chooses Grid, then it
downloads the siebel/jggridrenderer.js file.

m If the platform is a desktop, and if the mode is EditList, and if the user chooses Tile, then it
downloads the siebel/Tilescrollcontainer.js file.

To view an example that allows the user to choose Grid or Tile, see “Allowing Users to Change the
Applet Visualization” on page 217.

Configuring Custom Manifests

This topic describes how to configure the example described in “Example of a Completed Manifest
Administration” on page 170. For other examples that configure the manifest to download objects for:

B Web templates and modified applet modes, see “Allowing Users to Change the Applet Visualization”
on page 217.

B Different web templates, physical renderers, and presentation models depending on the applet
and the user responsibility, see “Displaying Applets Differently According to the Applet Mode” on
page 226.

B The physical renderer and the presentation model, see “Configuring the Manifest for the Recycle
Bin Example” on page 114.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 171

Customizing Siebel Open Ul & Configuring Manifests

B A custom theme, see “Customizing the Logo” on page 186 and “Customizing Themes” on page 189.

To configure custom manifests
1 Make sure your custom presentation model or physical renderer uses the Define method:

a Use a JavaScript editor to open your custom presentation model or physical renderer.

b In the section where you configure Siebel Open Ul to do the setup, make sure you use the Define
method to identify the presentation model file or the physical renderer file.

For an example that does this setup, see “Example of How Siebel Open Ul Identifies the
JavaScript Files It Must Download” on page 169.

2 Configure the manifest files:
a Log in to a Siebel client with administrative privileges.
b Navigate to the Administration - Application screen, and then the Manifest Files view.

¢ Verify that the Manifest Files view includes the files that Siebel Open Ul must download for your
custom deployment.

For this example, verify that the Manifest Files view includes the following files:

siebel/listapplet._js
siebel/jggridrenderer._js

If the Manifest Files view does not include these files, then add them now. For more
information, see “Adding JavaScript Files to Manifest Administrative Screens” on page 183.

3 Configure the Ul object:
a2 Navigate to the Administration - Application screen, and then the Manifest Administration view.

b In the Ul Objects list, specify the following object.

Field Value

Type Applet
Usage Type Physical Renderer
Name Contact List Applet

For information, see “Fields of the Ul Objects List” on page 175.
4 Configure the Grid group:

For information about how to configure a group, see “Adding Group Expressions” on page 178.

172 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Customizing Siebel Open Ul ® Configuring Manifests

a In the Object Expression list, add the following subexpression.

Field

Value

Group Name

Leave empty.

Expression Desktop
Level 1
Operator Leave empty.

Web Template Name

Leave empty.

For information, see “Fields of the Object Expression List” on page 177.

b Add another subexpression.

Field

Value

Group Name

Leave empty.

Expression EditList
Level 2
Operator Leave empty.

Web Template Name

Leave empty.

C Add another subexpression.

Field

Value

Group Name

Leave empty.

Expression Grid
Level 3
Operator Leave empty.

Web Template Name

Leave empty.

d Add the following group expression.

Field

Value

Group Name

Leave empty.

Expression Grid
Level 1
Operator Leave empty.

Web Template Name

Leave empty.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 173

Customizing Siebel Open Ul & Configuring Manifests

Use the Move Up and Move Down buttons to arrange the subexpressions in ascending numeric
order according to the value in the Level field. Make sure the Object Expression list displays all
subexpressions below the group expression.

Use the Indent and Outdent buttons so that Siebel Open Ul displays the subexpressions below
and indented from the group expression. The tree in the Inactive Flag field displays this
indentation.

In the Ul Objects list, query the Name property for the name of the Ul object that you are
configuring. This query refreshes the Manifest Administration screen so that you can edit the
Group Name and Operator fields of the group expression.

In the Object Expressions list, expand the tree that Siebel Open Ul displays in the Inactive Flag
field.

Set the following fields of the group expression.

Field Value

Group Name Grid

Operator AND

5 Specify the files that Siebel Open Ul must download for the Grid group:

a
b
c
d

f

Make sure the Grid group expression is chosen in the Object Expression list.
In the Files list, click Add.

In the Files dialog box, click Query.

In the Name field, enter the path and file name of the file.

For example, enter the following value:

siebel/jggridrenderer._js

Click Go.

If the Files dialog box does not return the file that your deployment requires, then you must
use the Manifest Files view to add this file before you can specify it in the Files list. For more
information, see “Adding JavaScript Files to Manifest Administrative Screens” on page 183.

Click OK.

6 Configure the Tile group:

a

b

Repeat Step 4, with the following differences:

1 For the group expression, set the Group Name field to Tile and the Level field to 2.
1 For the last subexpression, set the Expression field to Tile.

Repeat Step 5, except add the following file:

siebel/tilescrollrenderer.js

7/ Configure the Map group:

a

174

Repeat Step 4, with the following differences:

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Customizing Siebel Open Ul ® Configuring Manifests

1 For the group expression, set the Group Name field to Map and the Level field to 3.

2 Add only one subexpression with the Expression field set to Map.
b Repeat Step 5, except add the following file:

siebel/custom/siebelmaprenderer.js

8 In the Object Expression list, use the Move Up, Move Down, Indent, and Outdent buttons until
the Object Expression list resembles the configuration in Figure 38.

Fields of the Ul Objects List
Table 8 describes the fields of the Ul Objects list.

Table 8. Fields of the Ul Objects List

Field Description

Inactive Flag | Set to one of the following values:

B Y. Make the object inactive. Make sure you set the Inactive Flag to Y for any
custom object that your deployment does not require.

B N. Make the object active. Make sure you set the Inactive Flag to N for any
custom object that your deployment requires.

The Inactive Flag allows you to configure more than one manifest. You can activate
or deactivate each of these configurations during development. You can set the
Inactive Flag in the same way for each object that the Manifest Administration
view displays.

Type Choose one of the following values to specify the type of Siebel CRM object that
you are customizing:

Application
View
Applet
Navigation
Toolbar

Menu

Control

For more information, see “How Siebel Open Ul Chooses Files If Your Custom
Manifest Matches a Predefined Manifest” on page 179.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 175

Customizing Siebel Open Ul & Configuring Manifests

Table 8. Fields of the Ul Objects List

Field Description

Usage Type Specify how Siebel Open Ul must download files. Choose one of the following
values:

B Common. Siebel Open Ul downloads the files when it initializes the Siebel
application. Siebel Call Center is an example of a Siebel application.

B Theme. Siebel Open Ul downloads only the files it requires to support a theme
that you customize. For an example that uses this value, see “Customizing the
Logo” on page 186.

B Presentation Model. Siebel Open Ul downloads the files that your custom
presentation model requires.

B Physical Renderer. Siebel Open Ul downloads the files that your custom
physical renderer requires.

B Web Template. Siebel Open Ul downloads files according to the Name
property of the web template file. You specify this web template file in the web
template in Siebel Tools. For more information, see “ldentifying the Web
Template File Name” on page 180.

For more information, see “How Siebel Open Ul Chooses Files If Your Custom
Manifest Matches a Predefined Manifest” on page 179.

Name Enter the name of your custom object. For example, if you set the Type to Applet,
then you must specify the value that Siebel Tools displays in the Name property
of the applet.

176 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Customizing Siebel Open Ul ® Configuring Manifests

Fields of the Object Expression List

Table 9 describes the fields of the Object Expression list. You can configure a simple expression, or
you can configure a complex expression that includes AND or OR operators, and that can include
nested levels. For an example that includes complex expressions, see “Configuring Custom Manifests”

on page 171.

Table 9. Fields of the Object Expression List

Field Description

Group Name

If the record that you are adding to the Object Expressions list is part of a group
of two or more expressions, and if this record is the group expression, then enter
a value in the Group Name field and leave the Expression field empty.

The Object Expressions list is a hierarchical list. You can use it to specify complex
expressions that you enter as more than one record in this list.

You must add more than one record and indent at least one of them before you
can enter a group name. For information about how to do this work, see “Adding
Group Expressions” on page 178.

Expression If the record that you are adding to the Object Expressions list is:
B Not a group expression. Set a value in the Expression field and leave the
Group Name field empty.
B A group expression. Leave the Expression field empty and enter a value in
the Group Name field.
If the Expression list does not include the expression that your deployment
requires, then you must add a custom expression. For more information, see
“Adding Custom Manifest Expressions” on page 181.
Level Enter a number to determine the order that Siebel Open Ul uses to evaluate

expressions that the Object Expression list contains. Siebel Open Ul evaluates
these expressions in ascending, numeric order according to the values that the
Level field contains. If the Type field in the Ul Objects list:

B Is Application, then Siebel Open Ul evaluates every expression. It downloads
each file that the Files list specifies for each expression that it evaluates to
true.

B Is not Application, and if Siebel Open Ul evaluates an expression to true, then
it does the following:

m Downloads the file that the Files list specifies for this expression
m Does not process any expression that exists further down in the order

= Does not download any other files

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 177

Customizing Siebel Open Ul & Configuring Manifests

Table 9. Fields of the Object Expression List

Field Description

Operator If the record that you are adding to the Object Expressions list is a group
expression, then you must specify the logical operator that Siebel Open Ul uses
to combine the subexpressions that the group contains. You can use one of the
following values:

B AND. Specifies to combine subexpressions. If you specify AND, then Siebel
Open Ul downloads files only if it evaluates every subexpression in the group
to true.

I OR. Specifies to consider individually each subexpression that resides in the
group. If you specify OR, then Siebel Open Ul downloads files according to the
first subexpression that it evaluates to true.

If the record that you are adding to the Object Expressions list is not a group
expression, or if it does not reside at the top of the hierarchy, then leave the
Operator field empty.

Web Template | If you set the Usage Type field in the Ul Objects list to Web Template, then you

Name must specify the name of the Siebel CRM web template file in the Web Template
Name field. To identify this file name, see “ldentifying the Web Template File Name”
on page 180.

Adding Group Expressions

You must use the sequence that this topic describes when you add a group expression. For an
example that uses this sequence, see “Configuring Custom Manifests” on page 171. For more
information about group expressions and subexpressions, see “Example of a Completed Manifest
Administration” on page 170.

To add group expressions
1 Navigate to the Administration - Application screen, and then the Manifest Administration view.

In the Ul Objects list, locate the Ul object that you must modify.
In the Object Expression list, add the subexpressions.

Add the group expression. Leave the Group and Operator fields empty.

a b W N

Use the Move Up and Move Down buttons to arrange the subexpressions in ascending numeric
order according to the value in the Level field. Make sure the Object Expression list displays all
subexpressions below the group expression.

6 Use the Indent and Outdent buttons so that Siebel Open Ul displays the subexpressions below
and indented from the group expression. The tree in the Inactive Flag field displays this
indentation.

7 In the Ul Objects list, query the Name property for the name of the Ul object that you are
configuring. This query refreshes the Manifest Administration screen so that you can edit the
Group Name and Operator fields of the group expression.

178 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Customizing Siebel Open Ul ® Configuring Manifests

8 In the Object Expressions list, expand the tree that Siebel Open Ul displays in the Inactive Flag
field.

9 Set the values for the Group Name field and the Operator field of the group expression.

How Siebel Open Ul Chooses Files If Your Custom Manifest Matches a
Predefined Manifest

If the values that you specify in the Type, Usage Type, and Name fields of the Ul Objects list are
identical to the values that a predefined Ul object specifies, then Siebel Open Ul uses your custom
manifest. For example, Siebel Open Ul comes predefined with a Ul Object record with the Type set
to Applet, the Usage Type set to Physical Renderer, and the Name set to Contact List Applet. To
override this configuration, you must do the following work:

B Create a new record in the Ul Objects list that contains the same values in the Type, Usage Type,
and Name fields that the predefined record contains.

B Add a new record in the Object Expression list that evaluates to true.

B Add a new record in the Files list for the object expression that evaluates to true.
The only exception to this rule occurs in the following situation:

B You set the Type to Application.

B You set the Usage Type to Common.

B A winning expression exists in your customization. A winning expression is an expression that
Siebel Open Ul evaluates to true, and that Siebel Open Ul then uses to identify the files it must
download according to the configuration that the Manifest Administration view specifies.

In this situation, Siebel Open Ul downloads the files that:
B The predefined manifest configuration specifies

B The winning expression of your custom manifest configuration specifies

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 179

Customizing Siebel Open Ul & Configuring Manifests

Table 10 describes how Siebel Open Ul chooses files if your manifest configuration matches the
predefined manifest configuration for a Ul object. The Configuration column describes values that
the Ul Objects list of the Manifest Administration screen contains.

Table 10.

Manifest

Configuration

Predefined
Configuration Exists

Custom
Configuration Exists

How Siebel Open Ul Chooses Files If Your Custom Manifest Matches the Predefined

Result

Type is Yes No Siebel Open Ul downloads

Application and files according to the winning

Usage Type is predefined expressions.

Common

Type is Yes Yes Siebel Open Ul downloads

Application and files according to the winning

Usage Type is predefined expression and

Common the winning custom
expressions.

Usage Type is Yes No Siebel Open Ul downloads

not Common files according to the first
predefined expression that it
evaluates to true.
If more than one expression
exists, then it uses the level
to determine the sequence it
uses to evaluate these
expressions.

Usage Type is Yes Yes Siebel Open Ul downloads

not Common

files according to the first
custom expression that it
evaluates to true.

If more than one expression
exists, then it uses the level
to determine the sequence it
uses to evaluate these
expressions.

If Siebel Open Ul does not
evaluate any custom
expression to true, then it
uses a predefined expression
for this object.

Identifying the Web Template File Name

This topic describes how to identify the file name that a web template uses.

180

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

mizing Siebel Open Ul B Configuring Manifests

To identify the web template file name
1 Open Siebel Tools.

For more information, see Using Siebel Tools.
2 In the Object Explorer, click Web Template.
In the Web Templates list, locate the object definition for the web template.

For example, if you entered Applet Form Grid Layout in the Name field in the Ul Objects list, then
query the Name property in the Web Templates list for Applet Form Grid Layout.

In the Object Explorer, expand the Web Template tree, and then click Web Template File.
5 In the Web Template Files list, note the value that Siebel Tools displays in the Filename property.

For example, Siebel Open Ul uses the CCAppletFormGridLayout.swt file for the Applet Form Grid
Layout web template.

Adding Custom Manifest Expressions

This topic describes how to add a custom manifest expression.

To add custom manifest expressions
1 Log in to a Siebel client with administrative privileges.

2 Navigate to the Administration - Application screen, and then the Manifest Expressions view.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 181

Customizing Siebel Open Ul & Configuring Manifests

3 In the Expressions list, add the following expression.

Field Value

Name Enter text that describes the expression. For example, enter the following
value:

Desktop

Siebel Open Ul uses this value as an abbreviation for the expression that
it displays in the Expression field in the Object Expression list in the
Manifest Administration screen. It uses this abbreviation only to improve
readability of the Object Expression list.

Expression Enter an expression. For example, to apply the expression according to
the:

B Platform, use the following expression:
GetProfileAttr("Platform Name') = "Desktop”
This example applies the expression for desktop platforms.
B User position, use the following expression:

GetProfileAttr(""Primary Position Type') = "Sales
Representative"

This example applies the expression for the Sales Representative
position.

Siebel Open Ul uses this value when it evaluates expressions that reside
in the Object Expression list. For more information, see “GetProfileAttr
Method” on page 489.

Using Temporary Manifest Expressions During Development

It is recommended that you configure a temporary manifest expression that makes the manifest
specific to a single user. This configuration allows you to test and troubleshoot the manifest
configuration, if necessary.

To use temporary manifest expressions during development
1 Configure a manifest.

For more information, see “Configuring Custom Manifests” on page 171.

2 In the Expressions list, add an expression that configures the manifest for a single user.

For example:

Name Expression

CCHENG GetProfileAttr(""Login Name'™) = "CCHENG-®

182 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Customizing Siebel Open Ul ® Configuring Manifests

3 Log out of the client, and then log back in to the client using the ID that you specified in Step 2.

If you encounter an error during the log in, or if the client stops responding, then do the
following:

a Close the client session.
b Log in with a user ID that is different from the ID that you specified in Step 2.
Cc Troubleshoot the manifest configuration error.

For example, assume you configure a manifest that references a custom file in the siebel/
custom folder, but you forget to add this custom file to this folder. If you attempt to log in to
the client with this configuration, then the client might stop responding, and you might not
be able to examine the manifest configuration. If you configure a temporary expression that
is specific to a single user, then you can log in as a different user and troubleshoot the
manifest configuration.

If necessary, fix the manifest configuration.

5 Remove the expression that you added in Step 2.

Adding JavaScript Files to Manifest Administrative
Screens

This topic describes how to add a JavaScript file to the manifest administrative screens.

To add JavasScript files to manifest administrative screens
1 Log in to a Siebel client with administrative privileges.

2 Navigate to the Administration - Application screen, and then the Manifest Files view.
3 In the Files list, add a new record for each JavaScript file that you must add.

Make sure you include the path. For example, to add the mycustomrenderer.js file, you add the
following value:

custom/mycustomrenderer.js

You can now add this file in the Files list in the Manifest Administration view. For more information
about how to do this, see Step 5 on page 174.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 183

Customizing Siebel Open

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

yles, Applets,
trols

This chapter describes how to customize styles, applets, fields, and controls. It includes the
following topics:

Customizing Logos, Themes, Backgrounds, Tabs, Styles, and Fonts on page 185
Customizing Applets on page 197

Customizing Controls on page 247

Customizing Logos, Themes,
Backgrounds, Tabs, Styles, and Fonts

This topic describes how to customize the logo, theme, background image, and style that Siebel Open
Ul displays in the client. It includes the following information:

Customizing the Logo on page 186
Customizing Themes on page 189
Customizing Browser Tab Labels on page 192

Using Cascading Style Sheets to Modify the Position, Dimension, and Text Attributes of an Object on
page 193

Adding Fonts to Siebel Open Ul on page 194
Adding Fonts to Siebel Open Ul on page 194

You can make these modifications in the client at run time. You can then copy them into CSS files on
the Siebel Server, and then deploy them to all users.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 185

Customizing Styles, Applets, Fields, and Controls © Customi
Backgrounds, Tabs, Styles, and Fonts

Customizing the Logo

Starting with Siebel Innovation Pack 2014, Siebel Open Ul defines the logo that it displays in the
client in CSS files instead of coding the logo in a web template. It uses the following predefined code
to display the logo in the Aurora theme for screen sizes larger than 1199 pixels:

sweclient # sweappmenu .siebui-logo {
float: left;
height: 40px !important;
line-height: 40px;
background-image: url(’'../images/ebus.gif);
background-repeat: no-repeat;
background-origin: content-box;
background-position: 4px 12px;
width: 106px;
white-space: nowrap;

}

You can configure Siebel Open Ul to override this code, or you can create your own custom theme
so that you can display a custom logo. You can configure Siebel Open Ul to display a separate logo
in each theme. For more information about overriding an existing theme, or adding a new theme,

see Open Ul Deployment Guide (Article ID 1499842.1) on My Oracle Support.

To customize the logo
1 Create a JPG file that includes your custom logo.

For example, my-logo.jpg.
2 Copy the file you created in Step 1 to the following folders:

INSTALL _DIR\ses\siebsrvr\WEBMASTER\Ffiles\/anguage code\custom
INSTALL DIR\eappweb\PUBLIC\Janguage code\images\custom

For more information about the language_code, see “Languages That Siebel Open Ul Supports” on
page 592.

3 Use an editor to open your custom CSS file that resides in one of the following folders:

INSTALL _DIR\ses\siebsrvr\WEBMASTER\image\/anguage code\custom
INSTALL_DIR\eappweb\PUBLIC\ Janguage code\files\custom

For example, open the my-style.css file.
4 Add the following code:

sweclient #_sweappmenu .siebui-logo {
background-image: url("../../images/custom/my-logo.jpg")
3

5 (Optional) Modify the logo attributes, as necessary:
a Use an editor to open your custom CSS file.

For example, open my-style.css.

186 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

plets, Fields, and Controls & Customizing Logos, Themes,
Backgrounds, Tabs, Styles, and Fonts

b Add your custom code.

Siebel Open Ul uses the following predefined code to specify the logo attributes:

sweclient #_sweappmenu .siebui-logo {
float: left;
height: 40px !important;
line-height: 40px;
background-image: url(*../images/ebus.gif'");
background-repeat: no-repeat;
background-origin: content-box;
background-position: 4px 12px;
width: 106px;
white-space: nowrap;

}

You can modify each of these attributes, as necessary. For example, you can modify the
following width and height attributes to decrease the width and height of the logo to
accommodate your custom logo image:

sweclient #_sweappmenu .siebui-logo {
width: 25px;
height: 25px;

3

6 Configure the manifest. For more information about how to do this step, see “Configuring
Manifests” on page 167:

a Log in to a Siebel client with administrative privileges.
b Navigate to the Administration - Application screen, and then the Manifest Files view.
C Add the file that you modified in Step 4.
For this example, you add the following file:
custom/my-style.css
d Navigate to the Manifest Expressions view.

e In the Expressions list, add the following expression.

Field Value

Name GRAY_TAB

Expression LookupName (OUI_THEME_SELECTION, Preference
("Behavior","DefaultTheme")) = "GRAY_TAB"

where:

B LookupName is a method that converts the language-dependent
name of the theme to the language-independent name of theme.
Siebel Open Ul uses the language-independent name.

T Navigate to the Manifest Administration view.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 187

Customizing Styles, Applets, Fields, and Controls = C
Backgrounds, Tabs, Styles, and Fonts

g In the Ul Objects list, specify the following object.

Type Application
Usage Type Theme
Name PLATFORM DEPENDENT

h In the Object Expression list, add the following subexpression.

Group Name Leave empty.
Expression Desktop
Level 1

Operator Leave empty.
Web Template Name Leave empty.

I In the Object Expression list, add the following subexpression.

Group Name Leave empty.

Expression Enter the value that you specified in Step e on page 187.
Level 2

Operator Leave empty.

Web Template Name Leave empty.

| Use the Move Up, Move Down, Indent, and Outdent buttons to rearrange the subexpressions, as
necessary.

k' In the Files list, click Add.In the Files dialog box, click Query.

| In the Name field, enter the following path and file name:
custom/my-style.css

m Click Go.

7 Log out of the client, log back in to the client, and then verify that Siebel Open Ul replaces the
Oracle logo with your custom logo.

188 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

, Applets, Fields, and Controls @ Customizing Logos, Themes,
Backgrounds, Tabs, Styles, and Fonts

Customizing Themes

This topic includes an example that customizes the theme that Siebel Open Ul displays in the client.
It describes how to add a custom theme named Mobile Theme Gold that Siebel Open Ul displays on
a tablet. The User Preferences - Behavior screen in the Siebel Mobile client allows the user to choose
the theme that this client displays. Siebel Open Ul comes predefined with one theme for the tablet
and one theme for the phone, by default. It constrains the theme that the user can choose depending
on whether the user uses a phone, tablet, or desktop computer.

To customize themes

1 Create a new style sheet named theme-gold.css. Save this new file in the following folder:

INSTALL_DIR\eappweb\PUBLIC\ Janguage code\files\custom

For more information about the language_code, see “Languages That Siebel Open Ul Supports” on
page 592.

You can use any .css file that includes your custom theme. You can also specify multiple .css files.
For this example, use theme-gold.css.

2 Add the new theme to the OUI_THEME_SELECTION list of values:

a

Open Siebel Tools. Connect to the database that your Siebel Mobile application uses.
For more information, see Using Siebel Tools.

Click the Screens application-level menu, click System Administration, and then click List of
Values.

Right-click in the List of Values list, and then click New Record.

Add the following value to the OUI_THEME_SELECTION list of values.

Property Value
Type OUI_THEME_SELECTION
Display Value Gold

Language-Independent Code GOLD_THEME

The value that you specify must match the theme name
that you define in Step 3 in the manifest. In this example,
this name is GOLD_THEME.

Parent LIC NAVIGATION_TAB
NAVIGATION_TREE
NAVIGATION_SIDE

3 Configure the manifest. For more information about how to do this step, see “Adding Custom
Manifest Expressions” on page 181:

a

Log in to a Siebel client with administrative privileges.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 189

Customizing Styles, Applets, Fields, and Controls = Cust
Backgrounds, Tabs, Styles, and Fonts

190

Navigate to the Administration - Application screen, and then the Manifest Files view.
Add the file that you created in Step 1.
For this example, add the following file:
files/custom/theme-gold.css
Navigate to the Manifest Expressions view.

In the Expressions list, add the following expression.

Field Value
Name GOLD_THEME
Expression LookupName (OUI_THEME_SELECTION, Preference

("Behavior","DefaultTheme")) = "GOLD_THEME"
where:

B LookupName is a method that converts the language-dependent
name of the theme to the language-independent name of theme.
Siebel Open Ul uses the language-independent name.

Navigate to the Manifest Administration view.

In the Ul Objects list, specify the following object.

Field Value

Type Application

This example configures Siebel Open Ul to display your custom
theme for the entire Siebel application. To specify this theme for a
single object, see “Customizing Themes for Other Objects” on

page 191.
Usage Type Theme
Name PLATFORM DEPENDENT

In the Object Expression list, add the following subexpression.

Field Value
Group Name Leave empty.
Expression Gold Theme

If you must add a theme to some other platform, such as a phone
or desktop, then specify this other platform. For example, specify
Phone instead of Tablet.

Level 1

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

ets, Fields, and Controls m Customizing Logos, Themes,
Backgrounds, Tabs, Styles, and Fonts

Field Value

Operator Leave empty.

Web Template Name Leave empty.

In the Files list, add the file that you created in Step 1.
For this example, you add the following file:

files/custom/theme-gold.css

You can use the Sequence field to determine the sequence that Siebel Open Ul uses when it
downloads cascading style sheets.

4 Test your modifications:

a
b

C

= 0 QO

Login to the Siebel Open Ul client.

Click User Preferences, click Behavior, and then click Edit.
Verify that the Theme field includes the Gold value.

Click Gold, and then click Save.

Log out of the Siebel Open Ul client, and then log back in.

Verify that the Siebel Open Ul client displays Gold theme.

Customizing Themes for Other Objects
This topic describes how to customize themes other objects and portlet applications.

To customize themes for other objects and portlet applications
B Do Step 1 through Step 4, except in Step g on page 190, specify the object type and name of the
object where Siebel Open Ul must apply the style.

For example, to apply the style only for an applet, set the Type to Applet, and the Name to the
applet name, such as Contact List Applet.

To specify the theme for another application, use the following expression:

GetProfileAttr('Portletld™) = "Ptild"

where:

Ptld is the Ptld argument of the URL to a Siebel portlet.

For example:

GetProfileAttr(""Portletld™) = "CRMOPTY1"

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 191

Customizing Styles, Applets, Fields, and Controls = C
Backgrounds, Tabs, Styles, and Fonts

Customizing Browser Tab Labels

Siebel Open Ul uses the view Title that you define in Siebel Tools to set the Browser tab label. If this
Title is not defined, then Siebel Open Ul displays the Id of the current record as the label. For
example, it might display 2-HB474 as the Browser tab label:

« — C 8K https://fofms-bld.development.local,
[BLD- Siebeld.2 - NDL.. [NDIS Demc Launch ...

Payments History:

Home Participants Registrations Claims Payments History 1

Payment Histony

Payment Requests List [

Payment Id Claim Id Participant Disab
2-HB474 2-HBOKW GB7553073
2-HPOH 2-HFSHZ BBTEE30T3

This topic describes how to customize Siebel Open Ul so that it displays the view Title as the label.

To customize Browser tab labels
1 Open Siebel Tools.

For more information, see Using Siebel Tools.
2 In the Object Explorer, click View.
3 In the Views list, query the Name property for the view that you must modify.
4 Enter a value in the Title property or the Title - String Override property.

For more information about setting these properties, see Configuring Siebel Business
Applications.

5 Compile your modifications.
6 Test your modifications:
a Log in to the Siebel Open Ul client.
b Navigate to the view you located in Step 3.

c Verify that the Browser tab label displays the value you entered in Step 4.

192 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Applets, Fields, and Controls & Customizing Logos, Themes,
Backgrounds, Tabs, Styles, and Fonts

Using JavaScript to Customize the Browser Tab Label
This topic describes how to use JavaScript instead of Siebel Tools to customize the browser tab label.

To use JavaScript to customize the browser tab label
1 Locate the following code:

SiebelApp.S_App-GetActiveView() -GetTitle()

Siebel Open Ul uses this code to get the browser tab label from the SRF. GetTitle returns the
value of the Title property that you define in Siebel Tools. You can configure Siebel Open Ul to
override this value. For more information about GetTitle, see “Properties of the Presentation Model
That Siebel Open Ul Uses for Applets” on page 431. For more information about GetActiveView,
see “GetActiveView Method” on page 487.

2 Override the value that Siebel Open Ul gets from the SRF. Modify the code that you located in
Step 1 with the following code:

SiebelApp.S_App.-GetActiveView() -GetTitle()
“label”

where:
m label is a text string. Siebel Open Ul displays this string as the Browser tab label.
For example, the following code displays Registration Details as the Browser tab label:

SiebelApp.S_App-GetActiveView() -GetTitle()
"Registration Details”

3 Test your modifications.

Using Cascading Style Sheets to Modify the Position,
Dimension, and Text Attributes of an Object

The example in this topic describes how to modify the cascading style sheet. You move the
Predefined Query (PDQ) to a different location and you modify the text color of the Predefined Query.

To use cascading style sheets to modify the position, dimension, and text attributes
of an object

1 Add these CSS rules to the end of your custom style sheet, my-style.css:

#_sweclient #_sweappmenu .PDQToolbarContainer {
position: absolute;
top: 40px;
left: 610px;
width: 140px;
}

#_sweclient #_sweappmenu .PDQToolbarContainer select {

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 193

Customizing Styles, Applets, Fields, and Controls © Customizing
Backgrounds, Tabs, Styles, and Fonts

color: red;
width: 140px;
h

2 Save the my-style.css file.

3 Verify that the Predefined Query drop-down list appear to the right and below the Help menu.

Adding Fonts to Siebel Open Ul

This topic describes how to add custom fonts to Siebel Open Ul. Although you can add custom fonts,
it is recommended that your Siebel Open Ul deployment use only Web-safe fonts because you might
not be able to control font usage. For example, assume you deploy a custom font to all users in your
company, and that you also add this font to Siebel Open Ul. Assume that one of your Siebel Open
Ul users chooses this font in a text editor in Siebel Open Ul, and then sends this text in an email
message to an external customer who has not installed this custom font on their computer. In this
situation, your Siebel Open Ul user can read the font but the external customer cannot read it.

Using Web-safe fonts helps to make sure that any Browser or other client, such as a desktop
computer or mobile device, can correctly render the text that your users provide, regardless of how
each user configures font usage in their individual Browsers or clients, or the level of font
customization that exists in your deployment environment. For more information about Web-safe
fonts, see the topic that describes Web Safe Font Combinations at http://www.w3schools.com/
cssref/css_websafe_fonts.asp.

To add fonts to Siebel Open Ul
1 Create a JavaScript file that adds your custom font:

a Create a new JavaScript file named ckeditorfontadditions.js, and then save this file in the custom
folder.

For more information about this folder, see “Organizing Files That You Customize” on page 162.

b Add the following code to the file that you created in Step a. This code adds the fonts that Siebel
Open Ul displays in the Font picklists when the user edits text in the client:

iT (typeof(SiebelAppFacade.CKEDITOREXTN) == "undefined™) {
Namespace("SiebelAppFacade.CKEDITOREXTN®) ;
(function({
SiebelApp.EventManager.addListner('postload", ckeditorextn, this);

var updatedFont = ""';
function ckeditorextn() {
try {

it (CKEDITOR &&
CKEDITOR.config.font_names !== updatedFont) {
CKEDITOR.config.font_names = CKEDITOR.config.font_names +

" font_families*®

updatedFont = CKEDITOR.config.font_names;

}

} catch (error) {
// Nothing to do.

194 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

ets, Fields, and Controls m Customizing Logos, Themes,
Backgrounds, Tabs, Styles, and Fonts

}
}
}0O);

h
where:

1 CKEDITOR.config.font_names is a predefined function that Siebel Open Ul uses to store
the list of fonts that it uses.

1 font_families specifies one or more font families that Siebel Open Ul uses to render the
font.

1 catch (error) catches any error that might occur when Siebel Open Ul attempts to
render the fonts that you specify. If an error occurs, then Siebel Open Ul uses a
predefined font to display the control.

For this example, use the following code for font_families:

";Calibri/Calibri, Verdana, Geneva, sans-serif;"

For more information about how to specify the font family, see “Specifying Font Families” on
page 196.

2 Administer the manifest:

For more information about how to do this step, see “Configuring Manifests” on page 167.

a
b

Log in to the client as an administrator.

Navigate to the Administration - Application screen, and then the Manifest Files view.
In the Files list, add the file that you created in Step 2.

You add the following record:

siebel/custom/ckeditorfontadditions. js

Navigate to the Administration - Application screen, and then the Manifest Administration view.

In the Ul Objects list, add a new record. Use values from the following table.

Type Usage Type Name
Application Common PLATFORM INDEPENDENT

In the Object Expression list, add the following subexpression.

Group Name Leave empty.
Expression Desktop
Level 1

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 195

Customizing Styles, Applets, Fields, and Controls = C
Backgrounds, Tabs, Styles, and Fonts

Field Value

Operator Leave empty.

Web Template Name Leave empty.

g In the Files list, add the file that you created in Step 2.
You add the following record:
siebel/custom/ckeditorfontadditions. js
h Refresh the manifest. Log out of the client, and then log back in to the client.
3 Verify that Siebel Open Ul added your custom fonts:
a Navigate to the Administration Communications screen, and then the All Templates view.

b In the Compose Template section, in the Text window, click the Font drop-down, and then make
sure the Font list displays the font that you specified in Step b on page 194.

Specifying Font Families
You can use the following code to specify the font family:

function ckeditorextn() {

try {
if (CKEDITOR &&

CKEDITOR.config.font_names !'== updatedFont) {

CKEDITOR.config.font_names = CKEDITOR.config.font_names +
" font_families”

updatedFont = CKEDITOR.config.font_names;

} catch (error) {
// Nothing to do.

where:

m font_families specifies one or more font families that Siebel Open Ul uses to render the font.

font_families can include one or more families. You must precede each font family with a semi-colon
(;). For example:

sfont_family 1;font family 2; font family n
You must use the following format for each font family:

font_name/ font_label, substitute font 1, substitute font 2, substitute font n,
generic_font _family

where:
B font_name specifies the name of the font, such as Calibri.

B font_label specifies the text label. It displays this label in the Font picklists in the client.

196 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

zing Styles, Applets, Fields, and Controls ® Customizing Applets

B substitute_font_1 specifies the font if the font that font_name specifies does not exist in the
client computer.

B substitute_font_2 specifies the font if the font that substitute_font_1 specifies does not exist in
the client computer.

B generic_font_family specifies the font family if the font that substitute_font_n specifies does not
exist in the client computer. Siebel Open Ul chooses a font from this generic font family.

It is recommended that you specify a substitution font that resembles the font that it substitutes.
For example, Calibri is a sans-serif, proportionally spaced font. If you specify Calibri as the
font_name, then it is recommended that you specify a close approximation to Calibri for
substitute_font_1, such as Verdana, which is also a sans-serif, proportionally spaced font. It is
recommended that you use this same approach when you specify the remaining substitution fonts.
For example, specify Geneva for substitute_font_2.

Consider the following example:
";Calibri/My Font, Verdana, Geneva, sans-serif;"
This code configures Siebel Open Ul to do the following:
B Adds Calibri to the list of fonts that Siebel Open Ul displays in Font picklists.
B Uses My Font as the label for the Calibri font that Siebel Open Ul displays in Font picklists.

B If Calibri is not installed on the client computer, then Siebel Open Ul uses the following sequence
to determine the font that it displays:

a Uses Verdana for My Font.
b If Verdana is not installed on the client computer, then it uses Geneva for My Font.

Cc If Geneva is not installed on the client computer, then it uses any sans-serif font that is installed
on the client computer for My Font.

If you specify a font that includes a space character, then you must use double-quotes to enclose the
entire font name. For example, you must use double quotes to enclose Times New Roman and Courier
New:

;"Times New Roman''/My Font,Georgia, ' Courier New",Serif;"

For more information about font families, see the topic that describes the CSS font family property
at the W3 Schools website at http://www.w3schools.com/cssref/pr_font_font-family.asp.

Customizing Applets

This topic describes how to customize applets. It includes the following information:
B Displaying and Hiding Fields on page 198

B Allowing Users to Drag and Drop Data Into List Applets on page 201

B Expanding and Collapsing Applets on page 203

B Customizing List Applets to Display a Box List on page 206

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 197

Customizing Styles, Applets, Fields, and Controls = Cust

Customizing List Applets to Render as Carousels on page 207

Customizing List Applets to Render as Maps on page 212

Configuring the Focus in Siebel Applets on page 215

Adding Static Drilldowns to Applets on page 216

Allowing Users to Change the Applet Visualization on page 217

Displaying Applets Differently According to the Applet Mode on page 226

Adding Custom User Preferences to Applets on page 232

Customizing Applets to Capture Signatures from Desktop Applications on page 235
Customizing Applets to Capture Signatures for Siebel Mobile Applications on page 240

Enabling Salutation Applets in Siebel Open Ul on page 244

Enabling Salutation Applets in Siebel Open Ul on page 244

Displaying and Hiding Fields

The example in this topic describes how to configure Siebel Open Ul to display a field. To view a
diagram that illustrates some of the objects you modify and the relationships between these objects,
see “Configuring Manifests” on page 167.

This topic is similar to the “Displaying and Hiding Fields” on page 198 topic, but with fewer details. It
demonstrates how you can quickly modify a presentation model.

To customize the fields that are visible in an applet
1 Copy the JavaScript files:

a Download a copy of the partialrefreshpm.js file to the following folder:

INSTALL _DIR\eappweb\PUBLIC\ Janguage code\build _number\scripts\siebel\custom

For more information about this file, see “Text Copy of Code That Does a Partial Refresh for the
Presentation Model” on page 200. For more information about the language_code, see
“Languages That Siebel Open Ul Supports” on page 592.

b Download a copy of the partialrefreshpr.js file to in the following folder:

INSTALL DIR\eappweb\PUBLIC\ Janguage code\build _numben\scripts\siebel\custom

For more information about this file, see “Text Copy of Code That Does a Partial Refresh for the
Physical Renderer” on page 201.

2 Configure the manifest:
a Log in to a Siebel client with administrative privileges.

For more information about the screens that you use in this step, see “Configuring Manifests”
on page 167.

198 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

les, Applets, Fields, and Controls B Customizing Applets

b Navigate to the Administration - Application screen, and then the Manifest Files view.

c In the Files list, add the following files.

Field Value
Name siebel/custom/partialrefreshpr.js
Name siebel/custom/partialrefreshpm.js

d Navigate to the Administration - Application screen, and then the Manifest Administration view.

e In the Ul Objects list, specify the following applet.

Type Applet
Usage Type Physical Renderer
Name Contact Form Applet

T In the Object Expression list, add the following expression. The physical renderer uses this
expression to render the applet in a mobile platform.

Field Value
Expression Mobile
Level 1

g In the Files list, add the following file:

siebel/custon/partialrefreshpr._js

h In the Ul Objects list, specify the following applet.

Type Applet
Usage Type Presentation Model
Name Contact Form Applet

I In the Object Expression list, add a record with no value in the Expression field.
] In the Files list, add the following file:
siebel/custon/partialrefreshpm._js
3 Test your modifications:

a Open the browser in the client computer, and then clear the browser cache.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 199

Customizing Styles, Applets, Fields, and Controls © Customizin

Open the Siebel application, and then navigate to the Contact Form Applet.
Delete the value in the Job Title field, and then step out of the field.
Make sure Siebel Open Ul removes the values from the Work # and the Main Fax # fields.

Add a value to the Job Title field, and then step out of the field.

- 0O O O T

Make sure Siebel Open Ul adds values to the Work # and the Main Fax # fields.

Text Copy of Code That Does a Partial Refresh for the Presentation
Model

To get a copy of the partialrefreshpm.js file, see Article ID 1494998.1 on My Oracle Support. If you
do not have access to this file on My Oracle Support, then you can open a JavaScript editor, create
a new file named partialrefreshpm.js, copy the following code into this file, and then save your
modifications:

if(typeof(SiebelAppFacade.PartialRefreshPM) === "undefined){

SiebelJS._Namespace("'SiebelAppFacade.PartialRefreshPM™);
define("siebel/custom/partialrefreshpm™, [], function O {(
SiebelAppFacade.PartialRefreshPM = (function(){
function PartialRefreshPM(proxy){
SiebelAppFacade . PartialRefreshPM._superclass.constructor._call(this, proxy);
}

SiebelJS_Extend(PartialRefreshPM, SiebelAppFacade.PresentationModel);
PartialRefreshPM.prototype.Init = function(){
SiebelAppFacade.PartialRefreshPM.superclass. Init_.call(this);
this_AddProperty(''ShowJobTitleRelatedField”, "");
this._AddMethod(*'ShowSelection™, SelectlonChange, {sequence : false, scope :
this});
this.AddMethod(*'FieldChange™, OnFieldChange, {sequence : false, scope: this});
};
function SelectionChange(){
var controls = this.Get(""GetControls™);
var control = controls["JobTitle"];
var value = this._ExecuteMethod("'GetFieldvalue™, control);
this.SetProperty(''ShowJobTitleRelatedField”, (value ? true: false));
¥
function OnFieldChange(control, value){
if(control .GetName() === "JobTitle™){
this_SetProperty(''ShowJobTitleRelatedField"”, (value ? true: false));
}

}

return PartialRefreshPM;

}0);
}

200 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

zing Styles, Applets, Fields, and Controls ® Customizing Applets

Text Copy of Code That Does a Partial Refresh for the Physical
Renderer

To get a copy of the partialrefreshpr.js file, see Article ID 1494998.1 on My Oracle Support. If you
do not have access to this file on My Oracle Support, then you can open a JavaScript editor, create
a new file named partialrefreshpr.js, copy the following code into this file, and then save your
modifications:

if(typeof(SiebelAppFacade.PartialRefreshPR) === "undefined){
SiebelJS_Namespace(*'SiebelAppFacade.PartialRefreshPR™);
define("siebel/custom/partialrefreshpr’”, [“order!3rdParty/jquery.signaturepad.min®,
"order!siebel/phyrenderer'], function () {
SiebelAppFacade.PartialRefreshPR = (function(){
function PartialRefreshPR(pm){
SiebelAppFacade .PartialRefreshPR.superclass.constructor.call(this, pm);
}
SiebelJS.Extend(PartialRefreshPR, SiebelAppFacade.PhysicalRenderer);
PartialRefreshPR.prototype.Init = function () {
SiebelAppFacade.PartialRefreshPR.superclass. Init.call(this);
this_AttachPMBinding("'ShowJobTitleRelatedField"”, ModifyLayout);
}:
function ModifyLayout(){
var controls = this.GetPM().Get("'GetControls™);
var canShow = this.GetPM() .Get(""'ShowJobTitleRelatedField");
var WorkPhoneNum = controls["WorkPhoneNum™ 7];
var FaxPhoneNum = controls["FaxPhoneNum"™ 7;
if(canShow){
$("div#WorkPhoneNum_Label™) _show();
$('[name="" + WorkPhoneNum.GetInputName() + ""]").show();
$("div#FaxPhoneNum_Label') .show();
$("'[name="" + FaxPhoneNum.GetlnputName() + ""]1').show();
3
else{
$(C'div#WorkPhoneNum_Label'™) . hide();
$("[name="" + WorkPhoneNum.GetInputName() + ""]").hide();
$('div#FaxPhoneNum_Label'™) _hide();
$('[name="" + FaxPhoneNum.GetlnputName() + ""1').hide(Q);

}
}
return PartialRefreshPR;
} 0);
return "SiebelAppFacade.PartialRefreshPR";
»:
}

Allowing Users to Drag and Drop Data Into List Applets

The example in this topic describes how to allow users to drag and drop data from a spreadsheet to
the Contact List applet.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 201

Customizing Styles, Applets, Fields, and Controls = C

To allow users to drag and drop data into list applets
1 Modify the list applet:

a Open Siebel Tools.

For more information, see Using Siebel Tools.

In the Object Explorer, click Applet.

In the Applets list, query the Name property for Contact List Applet.

In the Object Explorer, expand the Applet tree, and then click Applet User Prop.

T o O T

In the Applet User Properties list, add the following applet user properties.

Name Value

ClientPMUserProp EnableDragAndDroplnList

EnableDragAndDroplnList TRUE

f Compile your modifications.

2 ldentify the columns that you must drag and drop:
a Log in to the client, navigate to the Contacts screen, and then the Contacts List.
b In the contact form, notice the required fields.

Siebel Open Ul uses a red asterisk to indicate each required field. In the contact form, the
Last Name and First Name fields are required.

3 Create a spreadsheet:
a Open a spreadsheet application, such as Microsoft Excel.
b In the first row, add the column headers for the columns that you must drag and drop.

1 For each column name that you include, make sure the column name is identical to the
column name that the list applet displays in the client.

1 Siebel Open Ul does not require you to include all column headers. However, you must
include all the required column headers that you noticed in Step 2.

2 You can include column headers in any order.

202 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

, Applets, Fields, and Controls m Customizing Applets

C Add data rows immediately below the column header row that you added in Step b.

For example, add rows that include information about each contact, such as first name and
last name.

Your completed work might resemble the following spreadsheet:

A B C D

1 First Name LastMame Account Mr/Ms
2 |Antonia Pinas Partner PC Local Ms.
3 Mary Aaron Atherton Group Mrs,
4 Diana Abbot Abbot Designs Mls.

4 Drag and drop the data:
a In the spreadsheet application, choose the cells that include the header and data information.

b Drag and drop the cells that you chose in Step a to the Contact List Applet in the Siebel
application.

Do the following to drag and drop cells in Excel. Your spreadsheet program might work
differently:

1 Position the cursor over a corner of the selection area until Excel displays the cursor as
a four-way arrow.

1 Right-click and hold down the right mouse button over the cursor.
1 Drag the selection area to the Contact List Applet.
1 Release the mouse button.

C Verify that Siebel Open Ul added the data rows to the list applet.

Expanding and Collapsing Applets

This topic describes how to configure Siebel Open Ul to display an applet as expanded or collapsed,
by default.

To expand and collapse applets
1 Modify the applet:

a Open Siebel Tools.
For more information about using Siebel Tools, see Using Siebel Tools.
b In the Object Explorer, click Applet.
c In the Applets list, query the Name property for the applet that you must modify.

For example, query for SIS Account Entry Applet.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 203

Customizing Styles, Applets, Fields, and Controls = Custo

d In the Object Explorer, expand the Applet tree, and then click Applet User Property.

e In the Applet User Properties list, create two new applet user properties. Use values from the
following table.

Name Value

ClientPMUserProp Default Applet Display Mode

Default Applet Display Mode Use one of the following values:

B Expanded. Siebel Open Ul displays the applet in an
expanded state, by default.

B Collapsed. Siebel Open Ul displays the applet in a
collapsed state, by default.

f Compile your work.

2 Modify the .swt file:
a ldentify the .swt file that you must modify, and then open it for editing.
b Add the following code:

<swe: form>
<swe:if condition="Web Engine State Properties, IsPrintOff'>
<div class="'swe:this.SelectStyle'>
</swe:if>
<div class="'siebui-collapsible-applet'>
<table datatable="0" summary=""" width="100%"
cellpadding="0"cellspacing="0" border="0" align="center"
<div class="'siebui-collapsible-applet-header'>
swe:include file=""CCTitle_ Named.swt'/>
swe:include file=""CCFormButtonsTop.swt"/>
swe:error type="Popup'>
<table datatable="0" summary=
width=""100%" cellpadding=""0"
</swe:error>
<div class="siebui-collapsible-applet-content'>
<swe: form-applet-layout>
</swe: form-applet-layout>
<div>
<div>
<table>
<div>

class="swe:class AppletBack

m where:
1 siebui-collapsible-applet. Identifies the applet body.

1 siebui-collapsible-applet-header. Identifies the section where Siebel Open Ul adds
the expand button or the collapse button.

1 siebui-collapsible-applet-content. Identifies the section that Siebel Open Ul
expands or collapses.

204 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

lds, and Controls B Customizing Applets

3 Test your work:

a Log in to the client.
b Navigate to the applet that you modified in Step 1.

¢ Verify that Siebel Open Ul displays the applet as expanded or collapsed according to the value
that you set for the Default Applet Display Mode applet user property in Step 1.

d Verify that Siebel Open Ul displays the expand and collapse button correctly.

If Siebel Open Ul expands the applet, then it must display the following collapse icon in the
upper right corner of the applet:

If Siebel Open Ul collapses the applet, then it must display the following expand icon in the
upper right corner of the applet:

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 205

Customizing Styles, Applets, Fields, and Controls © Customi

Customizing List Applets to Display a Box List

This topic describes how to customize a list applet to display a box list. You customize how Siebel
Open Ul renders an applet, the content it displays, and the style that it uses in the client.

To customize list applets to display a box list

1
2

9

Log in to the client.
Navigate to a view that displays a typical Siebel list applet.
For example, navigate to the Accounts screen, and then the Accounts list.
Notice that Siebel Open Ul displays the typical predefined list.
Open Windows Explorer, and then navigate to the following folder:
INSTALL _DIR\eappweb\PUBLIC\ Janguage code\build _number\scripts\siebel
For example:

C:\23044\eappweb\PUBL I1C\enu\23044\scripts\siebel

For more information about the language_code, see “Languages That Siebel Open Ul Supports” on
page 592.

Rename the existing jggridrenderer.js file that resides in the folder you accessed in Step 3 to
jaggridrenderer_original.js.

Download the jggridrenderer_tile.js file to the folder you accessed in Step 3.

The jggridrenderer_tile file prevents Siebel Open Ul from initializing the jggrid control and from
rendering other fields in the grid. To get a copy of this file, see Article ID 1494998.1 on My Oracle
Support.

Rename the jggridrenderer_tile.js file to jggridrenderer.js.
In the Siebel Open Ul client, press the F5 key to refresh the screen.
In Windows Explorer, navigate to the following folder:

INSTALL DIR\eappweb\PUBLIC\ Janguage code\files\custom

Use an editor to open the my-style.css file.

10 Copy the following code into the theme_base.css file. This code configures Siebel Open Ul to

display account names in a series of vertical boxes:

Y */
/* Styles for alternate List display demo */
Y o */

.siebui-boxlist {
width: 100%;
height: 100%;
overflow: auto;
}
.siebui-boxlist-pager, .siebui-boxlist-items{
display: table-row;

206 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Styles, Applets, Fields, and Controls B Customizing Applets

white-space: nowrap;

width: 100%;
¥
.siebui-boxlist-item, siebui-boxlist-item-selected {

padding: 100px Opx;

height: 40px;

border-radius: 5px;

float: left;

width: 120px;

overflow: hidden;

margin: 5px 12px;

color: #2221important;

text-shadow: 0 1px O rgba(255, 255, 255, 0.7);

text-align: center;
¥
.siebui-boxlist-item {

background: rgb(250, 250, 250);

background: -moz-linear-gradient(top, rgba(250, 250, 250, 1) 0%, rgba(225, 225,
225, 1) 100%);

background: -webkit-gradient(linear, left top, left bottom, color-stop(0%,
rgba(250, 250, 250, 1)), color-stop(100%, rgba(225, 225, 225, 1)));

background: -webkit-linear-gradient(top, rgba(250, 250, 250, 1) 0%, rgba(225,
225, 225, 1) 100%);

border-bottom: 1px solid #AAA;

box-shadow: 0 0 3px rgha(0, 0, 0, 0.4);

-webkit-box-shadow: 0 O 3px rgba(0, 0, 0, 0.4);
3
.siebui-boxlist-item-selected {

background: rgb(250, 250, 250);

background: -moz-linear-gradient(top, rgba(249, 238, 167, 0.5) 0%, rgba(251,
236, 136, 0.5) 100%)!important;

background: -webkit-gradient(linear, left top, left bottom, color-stop(0%,
rgha(249, 238, 167, 0.5)), color-stop(100%, rgba(251, 236, 136, 0.5)))!important;

background: -webkit-linear-gradient(top, rgba(249, 238, 167, 0.5) 0%, rgba(251,
236, 136, 0.5) 100%)!important;

border-bottom: 1px solid #AAA;

box-shadow: 0 0 3px rgha(0, 0, 0, 0.4);

-webkit-box-shadow: 0 O 3px rgba(0, 0, 0, 0.4);

b

/* ___ */
/* Styles for alternate List display demo */

Y */

11 Navigate to the Siebel Open Ul client, and then press the F5 key to refresh the screen.

The client displays the modified layout.

Customizing List Applets to Render as Carousels

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 207

Customizing Styles, Applets, Fields, and Controls = Cust

The example in this topic describes how to customize Siebel Open Ul to render a list applet as
a carousel in Siebel Call Center. To view different example carousel styles and to get the code for
these styles, see the http://sorgalla.com/projects/jcarousel Web site.

To customize list applets to render as carousels
1 Add records in the client:

a Make sure the application configuration file for Siebel Call Center includes the following setting:

[Siebel]
RepositoryFile = siebel_sia.srf

For more information, see “Modifying the Application Configuration File” on page 128.

b Open the client, navigate to the Contacts screen, and then click the Contact List link.

C Add the following contact.

Field Value

Last Name Aamos

First Name Ray

Click the link in the Last Name.
Click the Affiliations link.

In the Affiliations list, add four affiliations.

Q = 0 QO

Make sure you choose a different value in the Account field for each record. Accept default values
for all other fields.

h Log out of the client.
2 Add the JavaScript files that Siebel Open Ul uses to render the carousel:
a Save the carouselrenderer.js file to the following folder:

INSTALL _DIR\eappweb\PUBLIC\ Janguage code\build _number\scripts\siebel\custom
To get a copy of this file, see Article ID 1494998.1 on My Oracle Support.

The carouselrenderer.js file is a physical renderer that bridges a JCarousel third-party control
plug-in to the list presentation model that the listpmodel.js file defines. The List Applet and
the Carousel applet use the same presentation model for the business logic that it uses to

display each user interface. The only difference is how Siebel Open Ul renders each applet.

For more information about the language_code, see “Languages That Siebel Open Ul
Supports” on page 592.

b Save the jquery.jcarousel.js file to the following folder:

208 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Styles, Applets, Fields, and Controls B Customizing Applets

INSTALL _DIR\eappweb\PUBLIC\ Janguage code\build _number\scripts\3rdParty

To get a copy of this file, see Article ID 1494998.1 on My Oracle Support. Oracle downloads
and integrates this 3rdParty Carousel package into Siebel Open Ul through the physical
renderer. You must never modify these third-party plug-in files. If you require a configuration
that the third-party plug-in does not meet, then you must modify the physical renderer
instead of the third-party plug-in.

Add the CSS file that the third-party uses:

a In Windows Explorer, navigate to the following folder:
INSTALL _DIR\eappweb\PUBLIC\Janguage code\build number\scripts\3rdParty

b Add the following subfolder hierarchy to the 3rdParty folder:
\Jjcarousel\skins\tango\

C Save the skin.css file to the tango folder that you added in Step b:

To get a copy of this file, see Article ID 1494998.1 on My Oracle Support.
Add files to the manifest:
a Log in to a Siebel client with administrative privileges.

For more information about the screens that you use in this step, see “Configuring Manifests”
on page 167.

b Navigate to the Administration - Application screen, and then the Manifest Files view.
c In the Files list, add the following files. You must add a separate record for each file:

siebel/custom/carouselrenderer.js
3rdParty/jcarousel/skins/tango/skin.css
files/theme-aurora.css

Files that reside in the files folder are predefined files that you use in this example.
Administer the manifest for the applet:
a Navigate to the Administration - Application screen, and then the Manifest Administration view.

b In the Ul Objects list, specify the following applet.

Field Value

Type Applet
Usage Type Physical Renderer
Name Pharma Professional Affiliation From List Applet

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 209

Customizing Styles, Applets, Fields, and Controls = C

C

d

In the Object Expression list, add the following expression. Siebel Open Ul uses this expression
to render the applet on a desktop platform.

Field Value
Expression Desktop
Level 1

In the Files list, add the following file:

siebel/custom/carouselrenderer.js

6 Administer the manifest for the Aurora theme:

a Navigate to the Manifest Expressions view.

b

210

In the Expressions list, add the following expression.

Field Value
Name Aurora Theme
Expression LookupName (OUI_THEME_SELECTION, Preference

("Behavior","DefaultTheme™)) = "AURORA_THEME"

Navigate to the Manifest Administration view.

In the Ul Objects list, specify the following object.

Type Application
Usage Type Theme
Name PLATFORM DEPENDENT

In the Object Expression list, add the following subexpression.

Group Name Leave empty.
Expression Aurora Theme
Level 1

Operator Leave empty.
Web Template Name Leave empty.

In the Files list, add the following files:

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

, Applets, Fields, and Controls m Customizing Applets

files/theme-aurora.css
3rdParty/jcarousel/skins/tango/skin.css

7 Test your modifications:
a Clear the browser cache.

b Open the Siebel application, and then navigate to the contact that includes the affiliations that
you added in Step 1.

C Make sure the affiliations view contains carousel data that runs together because no styling is
defined for the carousel content. To fix this problem, do Step 8.

8 Modify the styling that Siebel Open Ul uses to render the view:
a Use a JavaScript editor to open the carouselrenderer.js file that you copied in Step 2.
b Locate the following code:

itemMarkup += "'
";

C Modify the code you located in Step b to the following. You remove the break:

itemMarkup += '"'";

d Use a JavaScript editor to open the skin.css file.
e Locate the following code:

-jcarousel-skin-tango .jcarousel-item {
width: 75px;
height: 75px;

}

T Modify the code you located in Step e to the following. Bold font indicates the code that you must
modify:

.jcarousel-skin-tango .jcarousel-item {
width: 318px;
height: 75px;

3

g Locate the following code:

.jcarousel-skin-tango .jcarousel-item-horizontal {
margin-left: O;
margin-right: 10px;

}

h Modify the code you located in Step g to the following. Bold font indicates the code that you must
modify:

-jcarousel-skin-tango .jcarousel-item-horizontal {
margin-left: 10;
margin-right: 10px;
color: black;

}

9 Test your modifications:

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 211

Customizing Styles, Applets, Fields, and Controls = Cust

a Clear the browser cache.
b Refresh the view that you examined in Step 7.

C Make sure the styling no longer contains carousel data that overlaps, and that each record is
displayed in its own block.

Customizing List Applets to Render as Maps

A list applet can be configured to display a map instead of a standard list of records. When the list
applet is configured to display a map, the following features are available:

B Markers. A marker is displayed on the map at the location address for each record.
B Contextual menu. Clicking a marker reveals a contextual menu with the following options:

® View Details. Clicking this option opens a pop-up dialog box with details about the record
associated with the marker.

m Select. Clicking this option zooms in on the map to the location address associated with the
marker record.

B Tooltip. When you hover over a marker, a tooltip is revealed, showing the address associated
with the record.

B Map panning.
B Map zooming.

The example in this topic describes how to customize Siebel Open Ul to render a list applet as a map
in Siebel Open Ul.

To customize list applets to render as maps
1 Add files to the manifest:

a Log in to a Siebel client with administrative privileges.

For more information about the screens that you use in this step, see “Configuring Manifests”
on page 167.

b Navigate to the Administration - Application screen, and then the Manifest Files view.
c In the Files list, add the following files. You must add a separate record for each file:

siebel/mappmodel . js
siebel/maprenderer.js

2 Administer the manifest for the applet:

a Navigate to the Administration - Application screen, and then the Manifest Administration view.

212 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

s, Applets, Fields, and Controls & Customizing Applets

b In the Ul Objects list, specify the following applet.

Type Applet
Usage Type Physical Renderer
Name Applet Name

Where Applet Name is the name of the applet in which you want the map
to appear.

c In the Object Expression list, add the following expression. Siebel Open Ul uses this expression
to render the applet on a desktop platform.

Field Value
Expression Desktop
Level 1

d In the Files list, add the following file:

siebel/custom/maprenderer.js

e In the Ul Objects list, specify the following applet.

Type Applet
Usage Type Presentation Mode
Name Applet Name

Where Applet Name is the name of the applet in which you want the map
to appear.

f In the Object Expression list, add the following expression. Siebel Open Ul uses this expression
to render the applet on a desktop platform.

Field Value
Expression Desktop
Level 1

g In the Files list, add the following file:

siebel/custom/mappmodel.js

3 Define the PM user properties:

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 213

Customizing Styles, Applets, Fields, and Controls © Custom

O o O T

f

Open Siebel Tools.

For more information about using Siebel Tools, see Using Siebel Tools.

In the Object Explorer, click Applet.

In the Applets list, query the Name property for the applet that you must modified in Step 2.
In the Object Explorer, expand the Applet tree, and then click Applet User Property.

In the Applet User Properties list, create four new applet user properties. Use values from the
following table.

Name Value

MapMarkerLocation Business Component
MapMarkerTitle Business Component
MapSelectedRowlmage The SVG image, as added in the CSS
MapUnSelectedRowlmage The SVG image, as added in the CSS

When specifying the Value field for the MapMarkerLocation and the MapMarkerTitle, the
business component specified must meet at least one of the following conditions in order to
properly display the markers on the map:

1 It must be exposed in the list column of the list applet configured for the map.

1 It must be exposed as an applet control or list column of a sibling applet to the map
applet of the same business component.

1 It must be set as a private field.

Compile your work.

4 Define the Web Template for the map:

a

214

Open Siebel Tools.
For more information about using Siebel Tools, see Using Siebel Tools.
In the Object Explorer, expand the Applet tree, and then click Applet Web Template.

In the Applet Web Templates list, add the following applet web template.

Property Description

Name Enter text that describes the visualization behavior. For example,
enter Map View to describe a map visualization.

Type Edit List

Web Template Choose a web template that defines the desired visualization. For
example, choose Applet Map.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

5

zing Styles, Applets, Fields, and Controls ® Customizing Applets

d Make sure Siebel Tools defines a SWT file for the web template that you defined in Step c.

For example, make sure the Web Template Files list in Siebel Tools includes a record for the
Applet Map web template file, and that the FileName property for this record is
CCAppletList_Map.swt. If your deployment requires a new web template, then you must
define it before you can define the applet web template. For more information about
configuring web templates, see Configuring Siebel Business Applications.

Test your modifications:
a Clear the browser cache.
b Refresh the list applet that you modified in Step 2.

C Make sure that it renders a map.

Configuring the Focus in Siebel Applets

If you modify an applet, then you must make sure that your modification does not adversely affect
how Siebel Open Ul sets the focus in this applet. Siebel Open Ul does the following work to set the
focus in applets:

1

4

Sets the focus to the list column that includes a list column user property that specifies a default
focus, such as DefaultFocus_Edit. This list column is a child object type of the list applet. For
more information about default focus user properties, see the topic that describes Specifying the
Default Applet Focus in Siebel Developer’'s Reference.

If the list column user property described in Step 1 does not exist, then Siebel Open Ul examines
the columns of a row from left to right, and then places the focus on the first editable control
that it encounters. It continues examining rows in this way until it finds an editable control, or
until it reaches the last column of the last row.

If Siebel Open Ul does not find any editable controls in Step 2, then it sets the focus on the first
non-editable control that the list applet displays.

If Siebel Open Ul does not find any non-editable controls in Step 3, then it sets the focus on the
div container that it uses to display the list applet.

Assume you do the following configuration:

Use Siebel Tools to add a large number of list columns to the SIS Account List Applet.
Make all list columns except the last list column read-only, and then compile the SRF.
Log in to the client, navigate to the Account list view, and then run a query.

In this situation, Siebel Open Ul places the focus on the last list column that the list applet
contains. The div container might not contain enough room to display this list column, the list
column might not be visible in the applet, and you might not be able to use the applet because
the focus is on a column that you cannot access.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 215

Customizing Styles, Applets, Fields, and Controls © Customi

To configure the focus in list applets

B Make sure your configuration does not set the focus to a list column or field that Siebel Open Ul
displays only partially or does not display at all.

You can use the following guidelines:

If Siebel Open Ul sets the focus to a list column that contains a DefaultFocus list column user
property, then make sure it correctly displays this list column after you finish your
modifications.

If Siebel Open Ul sets the focus to an editable or non-editable control, then make sure Siebel
Open Ul correctly displays this control after you finish your modifications.

To follow these guidelines, it might be necessary for you to rearrange the top-to-bottom
sequence that Siebel Open Ul uses to display list columns and controls in the list applet.

Adding Static Drilldowns to Applets

This topic describes how to add a static drill-down to a form applet so that the drill down object
displays the name of the destination field, such as the primary account name, in the popup label
when the user clicks a drill down link. If you do not do this configuration on a custom form applet
that you create, then the drill down link displays the data from the field as the label, such as the
account name, and not the caption text from the control. For information about how to configure a
drill down on a form applet, see Article ID 539183.1 on My Oracle Support.

To add static drilldowns to applets

1 Create a static drilldown object on the applet that you must modify:

a

® o O T

216

Open Siebel Tools.

For more information about using Siebel Tools, see Using Siebel Tools.

In the Object Explorer, click Applet.

In the Applets list, query the Name property for the applet that you must modify.
In the Object Explorer, expand the Applet tree, and then click Control.

In the Controls list, create the following control.

Property Value

Field Specify the same field that you specified in the Hyperlink Field property of
the drill down object that you created in Step a.

HTML Type Text

For more information, see the topics about creating static drill down objects in Configuring
Siebel Business Applications.

In the Object Explorer, click Applet.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Styles, Applets, Fields, and Controls B Customizing Applets

g In the Applets list, right-click the record of the applet you are modifying, and then choose Edit
Web Layout.

h Add the control that you created in Step e to the layout.
I Compile your modifications.

2 Test your modifications:
a Log in to the client.

b Navigate to the applet you modified, and then make sure it displays your new static drill down
object with the correct label.

For example, the following screen capture includes the correct Last Name label, and it
displays the correct data in the field. If you do not do the configuration that this topic
describes, then Siebel Open Ul might display Last Name - Drilldown as the label and as the
data in the field.

Antonia Pinas

_—

Last Mame:™ | Pinas

First Mame: ™ | Antonia
Joby Title:

Mrtds | M= -

Allowing Users to Change the Applet Visualization

This topic describes how to modify an applet so that the user can change the applet visualization.
The applet visualization is a type of configuration that specifies the layout that Siebel Open Ul uses
to display the applet. List, form, tile, map, grid, and carousel are each an example of an applet
visualization.

Siebel Open Ul allows the user to set some user preferences that determine how it displays an applet.
The user can navigate to the User Preferences screen, and then use the Behavior view to set these
preferences. For example, if the user chooses a value in the Visualization field of the Behavior view,
such as Tile, and then navigates to a list applet that includes a tile configuration, such as the
Opportunity List Applet, then Siebel Open Ul displays this applet as a set of tiles. If the user clicks
Grid in this applet, then Siebel Open Ul displays the applet as a grid and sets Grid as the default
layout only for the Opportunity List Applet. This local setting takes precedence over the global setting
that the user sets in the Visualization field in the Behavior view. Siebel Open Ul continues to use a
tile layout for all other applets that include a tile configuration. In this situation, it displays the
Opportunity List Applet as a grid even if the user logs out and then logs back in to the client.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 217

Customizing Styles, Applets, Fields, and Controls

Figure 39 includes the Contacts List that you modify in this topic so that it allows the user to change
the applet visualization. It illustrates how Siebel Open Ul displays this list after you successfully
finish the configuration. The user can click one of the applet visualization buttons, such as Tile, to
change the applet visualization.

Wy Contacts = E Delete Search FrstName [v] 0l 1 vap S

First Kame Last Hame Vicrk Phone # Wris Ancomll—wil'sana Address City State Postal Code Email
Antcnia Pinas | Nr .
Sowanya Ramatrishra 47 Viarkat Street Baskirg Ridge] o7e2)
M A Dawson Rice Bab Fax
HIMANSHU AGRAWAL
VARUN AWAN
[TFCMAS ALEX

Figure 39. Contacts List That Allows Users to Change the Applet Visualization

This topic describes how to configure the manifest for a custom applet visualization. For information
about configuring the manifest for a predefined configuration, see “Configuring Manifests for
Predefined Visualizations” on page 225.

To allow users to change the applet visualization
1 Modify the applet in Siebel Tools:

a2 Open Siebel Tools.
For more information, see Using Siebel Tools.

b In the Object Explorer, click Applet.

c In the Applets list, query the Name property for the applet that you must modify.
For example, query the Name property for Contact List Applet.

d In the Object Explorer, expand the Applet tree, and then click Applet Web Template.

The Applet Web Templates list displays the applet modes that Siebel Tools defines for the
applet. For example, Base, Edit, and Edit List. For more information about these modes, see
“Displaying Applets Differently According to the Applet Mode” on page 226.

218 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

les, Applets, Fields, and Controls B Customizing Applets

e In the Applet Web Templates list, add the following applet web template.

Property Description

Name Enter text that describes the visualization behavior. For example,
enter Edit Tile to describe a tile visualization that allows the user to
modify field values.

Sequence Enter a value of 1000 or greater. To help you quickly recognize how
Siebel Open Ul uses a web template, it is recommended that you use
a value of:

I 1000 or greater for a web template that Siebel Open Ul uses to
determine the applet visualization, such as a Tile.

B 1, 2, or 3 for a web template that Siebel Open Ul uses to
determine the applet mode, such as Edit List.

Type Specify the applet mode, such as Edit or Edit List.

Web Template Choose a web template that defines the desired visualization. For
example, choose Applet Tile.

T Make sure Siebel Tools defines a SWT file for the web template that you defined in Step e.

For example, make sure the Web Template Files list in Siebel Tools includes a record for the
Applet Tile web template file, and that the FileName property for this record is
CCAppletList_Tile.swt. If your deployment requires a new web template, then you must
define it before you can define the applet web template. For more information about
configuring web templates, see Configuring Siebel Business Applications.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 219

Customizing Styles, Applets, Fields, a

g

h

Repeat Step d and Step e for each web template that your deployment requires.

Your completed work in Siebel Tools must resemble the following configuration.

Applets

ﬂ f Contact List Applet Contact (SSE) Contact CSSFramelistFINGen

|| # Edi Edit Applet List Edit {Edit/New/Query)
| # Edrust Edit List Applet List (Base/EditList)

| # Edtmap 1001 Edit List Applet Map

| | # EdiTie 1,002 Edit List Applat Tile

Compile your modifications.

2 Configure the manifest for the applet that you modified in Step 1:

a

220

Log in to a Siebel client with administrative privileges.

For more information about the screens that you use in this step, see “Configuring Manifests”
on page 167.

Navigate to the Administration - Application screen, and then the Manifest Files view.

In the Files list, add the following predefined files.

Field Value

Name siebel/mappmodel.js

siebel/Tilescrollcontainer.js

Navigate to the Administration - Application screen, and then the Manifest Administration view.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

ts, Fields, and Controls m Customizing Applets

e In the Ul Objects list, specify the following applet.

Type Applet
Usage Type Web Template
Name Contact List Applet

T In the Object Expression list, add the expressions that Siebel Open Ul uses to render the applet
for this web template in the various visualizations and applet modes that you defined in Step 1.

Your completed work must resemble the following configuration. Use the Move Up, Move
Down, Indent, and Outdent buttons to create the hierarchy. Note that you do not add files in
the Files list for a web template. You only add files for a presentation model or physical
renderer. For more information about how to create these object expressions, see
“Configuring Manifests” on page 167.

Object Expression mu Mave Up Indent >> || Outdent << | 1-90f3

Inactive Flag Group Name Expression Lewel Operator Web Template Name
v N Tie ' K AND Edit Tie =
. o N Deskiop 1 F
=] N EditList 2
-] N Tile 3
- N Map 2 AND Edit Map =
| e N Deskiop 1
o N EditList 2
o N Map 3 L=

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 221

Customizing Styles, Applets, Field

g Configure the manifest for the presentation model for each applet visualization that you defined
in Step 1.

You add the Ul object, object expressions, and files until the Manifest Administration screen
resembles the following configuration.

Ul Objects L= Delete Search nactive Flag
Inactive Flag Type | Usage Type ‘ Hame
N Applet Presentation Model Contact List Applet

Object Expression m New | | Delete nl.l-‘loveUD Move Down | | Indent >> | | Qutdent << 1-3cf3 Files [EETR | Add || Delete

Inactive Flag i Group Name | Expression | Lewvel Operator | Web Template Name | Inactive Flag |

- N Map PM 1 AND N siebeVmappmedel s
-] N Desktop 1
[} N Map 2

h Repeat Step g for each applet visualization that you configured in Siebel Tools.

222 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

ields, and Controls B Customizing Applets

i Configure the physical renderer for each applet visualization that you defined in Step 1.

You add the Ul object, object expressions, and files until the Manifest Administration screen
resembles the following configuration:

Inactive Flag Usage Type | Name
N Applet Physical Renderer Contact List Applet
4
oM » M
Object Expression (R (0 0) IO O R R oo <« «-vowvo | Files ([T [o
Inactive Flag _ Group Name Expression Level Operator | Web Template Name \ | Inactive Flag |
A N Grid 1 AND - N siebelTiescrolicontainer } B
o N Desktop 1
-] N EditList 2
-} N Grid 3
5.4 N Tile 2 AND =
° N Desktop 1 B
-] N EditList 2
[-] N Tie 3
¥ N Map 2

If you do not do this administration, then Siebel Open Ul uses the jggridrenderer.js file for
the physical renderer for a list applet, by default.

3 (Optional) Modify the strings that Siebel Open Ul uses for the labels of the applet visualization
buttons.

Do the following:

a In Siebel Tools, choose the Screens application-level menu, click System Administration, and
then click List of Values.

b In the List of Values list, query the Type property for OUI_MODE_VISUALIZATION.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 223

Customizing Styles, Applets, Fields, and Controls = C

Q = 0 QO

Make sure the Language-Independent Code property for each record that Siebel Tools displays
in the List of Values list includes the same string that you modified in Step g.

For example, make sure the Language-Independent Code property includes the following
values:

Language-Independent

Type Display Value Code

OUI_MODE_VISUALIZATION Tile Tile
Map Map
Grid Grid

Siebel Open Ul uses the value that the Display Value property contains as the label for each
applet visualization button. To view these buttons, see Figure 39 on page 218.

Compile your modifications.
Log in to the client.
Navigate to the Administration - Application screen, and then the Manifest Expressions view.

In the Manifest Expressions view, modify the following strings, as necessary.

Tile GetObjectAttr("VisualMode™) = 'Tile'
Map GetObjectAttr("VisualMode") = '"Map'
Grid GetObjectAttr("VisualMode™) = 'Grid’

For example, Siebel Open Ul uses the Tile string in the Expression field for the Tile
expression. You can modify these strings to meet your deployment requirements.

4 Test your modifications:

224

Log out of the client, and then log back in.

Navigate to the Contacts screen, and then the Contacts List view.

Verify that Siebel Open Ul displays the Grid, Tile, and Map visualization buttons.

The visualization buttons must resemble the buttons that Figure 39 on page 218 displays.

Click each visualization button, and then verify that Siebel Open Ul displays the visualization
that is associated with the button that you click.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Configuring Manifests for Predefined Visualizations

ng Styles, Applets, Fields, and Controls B Customizing Applets

Table 11 summarizes different manifest configurations for visualizations that come predefined with
Siebel Open Ul. It includes all the configuration required. For example, you do not configure any
expressions or files for web templates.

Table 11.

Visualization

Presentation Model

Configuring Manifests for Predefined Visualizations

Physical Render

Web Template

Tile Set Usage Type to Set Usage Type to Set Usage Type to Web
Presentation Model. Physical Renderer. Template.
Set Name to List Applet Set Name to List Applet Set the Name to Edit Tile.
Name. Name.
Add the following to the | Add the following to the
Files list: Files list:
siebel/ siebel/
listpmodel . js Tilescrollcontaine
r.js
Grid Same as Tile. Set Usage Type to No manifest
Physical Renderer. administration is
S List AbDl necessary. You use
Net CUIS Ul Siebel Tools to configure
ame. Edit List web templates.
Add the following to the
Files list:
siebel/
jJjagridrenderer.js
Map Same as Tile except add | Same as Grid except add | Set Usage Type to Web

the following file:

siebel/
mappmodel . js

the following file:

siebel/custom/
siebelmaprenderer.

Js

Template.

Set the Name to Edit Tile.

The following physical renderer modifies the List presentation model so that it can use the Google
Map plugin for jQuery:

siebel/custom/siebelmaprenderer.js

Oracle provides this file only as an example that does a map visualization for a list applet. Oracle
does not support usage of siebelmaprenderer.js with Google Maps.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

225

Customizing Styles, Applets, Fields, and Controls © Customizing

Displaying Applets Differently According to the Applet
Mode

This topic describes how to configure Siebel Open Ul to display applets differently according to the
applet mode. It includes the following topics:

B “Configuring Siebel Open Ul to Use Different Web Templates According to the Applet Mode” on
page 226

B “Configuring Siebel Open Ul to Use Different Physical Renderers and Presentation Models According
to the Applet Mode” on page 229

The applet mode is a type of behavior of an applet web template that determines whether or not the
user can or cannot create, edit, query, or delete Siebel CRM records in an applet. Edit, Edit List, Base,
New, and Query are examples of applet modes. This topic describes how to modify the presentation
model, or to modify the physical render and web templates, to set the applet mode for an applet.

You can use a web template to modify the physical layout of objects in the client that the Siebel
Server renders as containers, such as the markup for an applet container. You can also use a physical
renderer to modify how the client renders objects in the client, for example, to modify the markup
that it uses to display a grid, menu, or tab.

For more information about applet modes and how to configure them in Siebel Tools, see the topic
that describes how to control how the user creates, edits, queries, and deletes CRM data in
Configuring Siebel Business Applications.

Configuring Siebel Open Ul to Use Different Web Templates According
to the Applet Mode

The example in this topic configures Siebel Open Ul to display the same applet differently according
to the following responsibility that Siebel CRM assigns to the current user:

B Display the applet as an editable list for the CEO.
B Display the applet as an editable grid for a Business Analyst.

To implement this example, you configure Siebel Open Ul to use more than one web template, where
each of these web templates reference a different web template file:

B You use the predefined Applet List (Base/EditList) web template that references the
CCAppletList_B_EL.swt file. This file uses an editable list layout.

B You add a new Edit Grid List web template that references the EditGridList.swt file. This file uses
an editable grid layout.

You configure manifest expressions to determine the web template that Siebel Open Ul uses
according to the user who is currently using the client.

This example configures the Contact List Applet to include the following applet web templates:

B Edit List applet web template that runs in edit list mode and uses the Applet List(Base/EditList)
web template.

B Edit Grid List applet web template that runs in edit list mode and uses the Applet List web
template.

226 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

s, Applets, Fields, and Controls & Customizing Applets

To configure Siebel Open Ul to use different web templates according to the applet
mode

1 Examine the predefined web template that this example uses:
a Open Siebel Tools.
For more information, see Using Siebel Tools.
b In the Object Explorer, click Web Template.
c In the Web Templates list, query the Name property for the following value:
“"Applet List (Base/EditList)"
d In the Object Explorer, expand the Web Template tree, and then click Web Template File.
e Notice the value that the Filename property contains.

This example uses the predefined Applet List (Base/EditList) web template to display the
applet in a list layout that the user can edit. This web template uses the
CCAppletList_B_EL.swt file to display this layout. It is not necessary to modify this web
template for this example.

2 Add a custom web template:
a In the Object Explorer, click Web Template.

b In the Web Templates list, add the following web template.

Property Value

Name Edit Grid List

C In the Object Explorer, click Web Template File.

d In the Web Template Files list, add the following web template file.

Property Value

Name Edit Grid List

Filename Specify the file that Siebel Open Ul must use to display this applet in
a grid layout that the user can edit. For example:

EditGridList.swt

3 Modify the applet:

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 227

Customizing Styles, Applets, Fields, and Controls = C

a

b

Do Step 1 on page 218, but also add the following applet web template to the Contact List

Applet
Property Value
Name Edit Grid List
Web Template Edit Grid List
You specify the web template that you added in Step 1.
Type Edit List

Compile your modifications.

4 Configure the manifest:

a
b

228

Log in to a Siebel client with administrative privileges.
Navigate to the Administration - Application screen, and then the Manifest Expressions view.

For more information about the screens that you use in this step, see “Configuring Manifests”
on page 167.

In the Expressions list, add the following expressions.

Name Expression

Exp_User 1 GetProfileAttr("Primary Responsibility Name™") = "Admin™

Exp_User 2 GetProfileAttr("Primary Responsibility Name") = "CEO"

For more information, see “GetProfileAttr Method” on page 489.
Navigate to the Manifest Administration view.

In the Ul Objects list, specify the following applet.

Type Applet
Usage Type Web Template
Name Contact List Applet

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

s, Applets, Fields, and Controls & Customizing Applets

T Inthe Object Expression list, add expressions until this list resembles the following configuration.

Inactive Flag Group Hame Expression Level Operator Web Template Name
N Exp_Userl_AppletMode 1 AND Edit List 1

]] Exp_liser 1 1

[N Editl_ist 2
N Exp_User2_AppletMods 2 AND Edit Grid List

o M Exp_Llser 2 1

[M EditList 2

Note the following:

a

a

a

a

You specify the same name that you examined in Step 1 for the Web Template Name for
user 1.

You specify the same name that you added in Step 2 For the Web Template Name for the
user 2.

You specify the expressions that you added in Step c. These expressions configure Siebel
Open Ul to display an edit list for a user who possesses the CEO responsibility, and a grid
for a user who possesses the Business Analyst responsibility.

If the Usage Type is Web Template, then you do not specify any files in the Files list.

5 Test your modifications:

a Log in to the client as a user that Siebel CRM associates with the CEO responsibility, and then
make sure Siebel Open Ul uses the Edit List web template to display the applet as a list.

b Log out of the client, log back in to the client as a user that Siebel CRM associates with the
Business Analyst responsibility, and then make sure Siebel Open Ul uses the Edit Grid List web
template to display the applet as a grid.

Configuring Siebel Open Ul to Use Different Physical Renderers and
Presentation Models According to the Applet Mode

The example in this topic configures Siebel Open Ul to download different presentation models and
physical renderers depending on the following mode that the Contact List Applet must use:

B Edit List mode. Download a file named list_PM.js for the custom presentation model and a file
named list_PR.js for the custom physical renderer.

B New mode. Download a file named new_PM.js for the custom presentation model and a file
named new_PR.js for the custom physical renderer.

You can use any name for your custom presentation models and physical renderers.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 229

Customizing Styles, Applets, Fields, and Controls = C

To configure Siebel Open Ul to use different physical renderers and presentation
models according to the applet mode

1 Customize your presentation models and physical renderers.

In this example, assume you customized the following files:

list_PM.js
list_PR.js
new_PM.js

new_PR.js

2 Add your custom presentation models and physical renderers to the manifest:

a
b

Log in to the client with administrative privileges.
Navigate to the Administration - Application screen, and then the Manifest Files view.

For more information about the screens that you use in this step, see “Configuring Manifests”
on page 167.

In the Files list, add the following files that you customized in Step 1.

Name siebel/custom/list_PM.js
Name siebel/custom/list_PR.js
Name siebel/custom/new_PM.js
Name siebel/custom/new_PR.js

3 Configure the manifest for Edit List mode:

a
b

C

230

Navigate to the Manifest Administration view.

In the Ul Objects list, specify the following applet.

Type Applet
Usage Type Presentation Model
Name Contact List Applet

In the Object Expression list, add the following expression.

Field Value
Expression EditList
Level 1

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

s, Applets, Fields, and Controls & Customizing Applets

d In the Files list, add the following file:

siebel/custon/list_PM._js

Siebel Open Ul uses the file that you specify for the presentation model that it uses to display
the Contact List Applet in Edit List mode.

e In the Ul Objects list, specify the following applet.

Type Applet
Usage Type Physical Renderer
Name Contact List Applet

T In the Object Expression list, add the following expression.

Field Value
Expression EditList
Level 1

g In the Files list, add the following file:

siebel/custon/list_PR_js

Siebel Open Ul uses the file that you specify for the physical renderer that it uses to display the
Contact List Applet in Edit List mode.

4 Configure the manifest for New mode:

a In the Ul Objects list, specify the following applet.

Type Applet
Usage Type Presentation Model
Name Contact List Applet

b In the Object Expression list, add the following expression.

Field Value
Expression New
Level 1

c In the Files list, add the following file:

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 231

Customizing Styles, Applets, Fields, and Controls = Custo

siebel/custom/new_PM._js

Siebel Open Ul uses the file that you specify for the presentation model that it uses to display
the Contact List Applet in New mode.

d In the Ul Objects list, specify the following applet.

Field Value

Type Applet
Usage Type Physical Renderer
Name Contact List Applet

e In the Object Expression list, add the following expression.

Field Value

Expression New

Level 1

T In the Files list, add the following file:

siebel/custom/new_PR_js

Siebel Open Ul uses the file that you specify for the physical renderer that it uses to display the
Contact List Applet in New mode.

5 Test your modifications.

Adding Custom User Preferences to Applets

This topic describes how to customize default applet behavior so that Siebel Open Ul remembers the
actions the user takes that effect this behavior. Expand and collapse is an example of this behavior.
The example in this topic customizes a physical renderer to display the Opportunity List Applet applet
as expanded or collapsed, by default, depending on how the user most recently displayed the applet.
For example, assume the user navigates to the Opportunity List Applet, and then expands the applet.
Siebel Open Ul then displays more records in the list. In the predefined behavior, if the user logs out
of the client, logs back in to the client, and then navigates to this list again, then Siebel Open Ul
does not remember that the user expanded the list. This topic describes how to customize Siebel
Open Ul so that it remembers this user action. You can use this example as a guideline to modify a
predefined applet behavior or to create your own custom applet behavior.

To add custom user preferences to applets
1 Add the user preference to your custom physical renderer and presentation model:

a Use a JavaScript editor to open your custom physical renderer that renders the Opportunity
List Applet.

232 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

ng Styles, Applets, Fields, and Controls B Customizing Applets

b Add the custom user preference. You add the following code:

var pm = this.GetPM(Q);

var inputPS = CCFMiscUtil_CreatePropSet();

inputPS_SetProperty(*'Key", “user_preference_name);
inputPS_SetProperty(“'user_preference_name', ‘“‘user_preference_value);
pm.OnControlEvent(siebConsts.get(""PHYEVENT_INVOKE_CONTROL™),
pm.Get(siebConsts.get("'SWE_MTHD_UPDATE_USER_PREF')), inputPS);
pm.SetProperty(“'user_preference_name", “user_preference_value™);

C Use a JavaScript editor to open your custom presentation model that renders the Opportunity
List Applet.

d Add a presentation model property that references the custom user preference. You add the
following code:

var pm = this.GetPM();
var value = pm.Get("'user_preference_name'");

You must make sure that Siebel Open Ul derives your custom presentation model from the
Presentation Model class. This class contains the logic that saves user preferences in
presentation model properties. For more information, see “Deriving Presentation Models,
Physical Renderers and Plug-in Wrappers” on page 129.

2 Add the expand and collapse button:
a Use a JavaScript editor to open the physical renderer that you edited in Step a on page 232.
b Add the following code to the end of the Show method:

var idl = this.GetPM().Get("GetFullld™) + "-siebui-cust-expandcollapse-btn~;
var expcolbtn = "<button " +

“id= "' 4+ id1 + Tt o+

"class= "appletButton™ " +

"aria-label=ExpandCollapse " +

"type=\"button\" " +

“title=ExpandCollapse " + ">" + "ExpandCollapse"™ + *</button>";

C Add the following code to the end of the BindEvent method. This code binds the button click.

$C'#" + pm.Get("GetFullld™) + "-" + "siebui-cust-expandcollapse-
btn™) .bind('click™, {ctx: this},

function (e) {

var self = e.data.ctx,

pm = self.GetPM();

SiebelJS._Log(""Expand'™);

var inputPS = CCFMiscUtil_CreatePropSet();

var value = pm.Get (“"Expand-Collapse);
inputPS._SetProperty("'Key", "Expand-Collapse™);
if(value === "Collapse™)

{

inputPS._SetProperty(""Expand-Collapse', "Expand");
pm.SetProperty("'Expand-Collapse’, "Expand™);

}

else

{
inputPS.SetProperty(""Expand-Collapse™, "Collapse'™);

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 233

Customizing Styles, Applets, Fields, and Controls © Customi

pm.SetProperty("'Expand-Collapse', "Collapse™);

b
pm.OnControlEvent(siebConsts.get(*'PHYEVENT_INVOKE_CONTROL™) ,pm.Get(siebConst
s.get("'SWE_MTHD_UPDATE_USER_PREF')), inputPS);

if(value === "Collapse™)

{

pm.SetProperty("'Expand-Collapse', "Expand™);

//Write Code to expand the applet

$(C'#s " + pm.Get('GetFullld™) + " _div'").find(".siebui-collapsible-applet-
content') .show();

}

else

{

pm.SetProperty("'Expand-Collapse', "Collapse™);

//\Write Code to collapse the applet

$(C'#s " + pm.Get("'GetFullld™) + " _div'").find(".siebui-collapsible-applet-
content™) .hide();

b

b

);

d Add the following code to the end of the ShowUI method. This code accesses the default value
of the custom Expand-Collapse user preference, and then instructs Siebel Open Ul to display the
applet as expanded or collapsed according to the user preference value:

PhysicalRenderer.prototype.ShowUl ()

{

var pm = this.GetPM();

var value = pm.Get (“"Expand-Collapse'™);

if(value === "Collapse')

{

//\Write Code to collapse the applet

$(C'#s " + pm.Get("'GetFullld™) + " _div'").find(".siebui-collapsible-applet-
content'™) _hide();

3

else

{
//\Write Code to expand the applet

$(C'#s " + pm.Get("'GetFullld™) + " _div'").find(".siebui-collapsible-applet-
content™) .show();

}
}

e Use an HTML editor to open the HTML that Siebel Open Ul uses to display the Opportunity List
Applet, and then add the following code:

$(C#s_" + this.GetPM() .Get("GetFullld™) + " _div™).find(".siebui-collapsible-
applet™) .append(expcolbtn);

For more information about how to edit HTML code for an applet, see “Customizing Logos,
Themes, Backgrounds, Tabs, Styles, and Fonts” on page 185.

3 Test your modifications:

a Log in to the client, and then navigate to the Opportunity List Applet.

234 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

les, Applets, Fields, and Controls B Customizing Applets

b Click the expand and collapse button, and then verify that Siebel Open Ul expands the applet.

C Log out of the client, log back in to the client, navigate to the Opportunity List Applet, and then
verify that Siebel Open Ul displays the same expanded state that you set in Step b.

Customizing Applets to Capture Signatures from
Desktop Applications

A signature capture is an electronic capture of a user signature. This topic describes how to
customize applets to capture signatures for calls in Siebel Open Ul.

To customize applets to capture signatures for desktop applications
1 Copy a signature form applet that comes predefined with Siebel Open Ul:

a2 Open Siebel Tools.
For more information, see Using Siebel Tools.

b In the Object Explorer, click Applet.

c In the Applets list, locate an applet that includes a signature capture configuration.
For this example, locate the following applet:

LS Pharma Call Signature Form Applet

This topic uses Siebel Pharma as an example. You can modify the objects for your Siebel
application, as necessary.

d Right-click the applet you located in Step ¢, and then click Copy Record.
e Add an _PUI suffix to the name. For example:
LS Pharma Call Signature Form Applet_PUI
2 Add applet user properties:
a In the Object Explorer, expand the Applet tree, and then click Applet User Prop.

b In the Applet User Props list, add the following applet user properties.

Name Value

CanlnvokeMethod: ClearSignature TRUE

Signature Min Length 5

3 Add controls:

2 In the Object Explorer, click Control.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 235

Customizing Styles, Applets, Fields, and Controls = C

b In the Controls list, add the following controls.

Clear Signature Set the Methodlnvoked property to ClearSignature.
Address Set the Field property to Address.
Signature Capture Set the following properties:

B Set the Field property to Signature.
B Set the HTML Type property to InkData.

Disclaimer Text Set the Read Only property to TRUE.

Signature Header Text

4 Add an applet web template:
2 In the Object Explorer, click Applet Web Template.

b In the Applet Web Templates list, right-click the Base applet web template, and then click Copy
Record.

C Set the following properties.

Property Value
Name Edit
Type Edit

5 Modify the drilldown objects:
a In the Object Explorer, click Drilldown Object.

b In the Drilldown Obijects list, modify the following value of the Hyperlink Field property of the
Apply Drilldown and the Cancel Drilldown drilldown objects.

Old Value New Value

Signature Header Text Address

6 Copy a predefined view:
a In the Object Explorer, click View.
b In the Views list, locate a view that includes a signature capture configuration.
For this example, locate the following view:
LS Pharma Call Signature Capture View
C Right-click the view you located in Step b, and then click Copy Record.

Add an _PUI suffix to the name. For example:

236 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

s, Applets, Fields, and Controls & Customizing Applets

LS Pharma Call Signature Capture View_PUI

7/ Modify the view web template:

a In the Object Explorer, expand the View tree, expand the View Web Template tree, and then click
View Web Template Item.

b In the View Web Template Items list, query the Name property for the following value:

LS Pharma Call Signature Form Applet

C Modify the following value of the Name property.

Old Value New Value

LS Pharma Call Signature Form Applet LS Pharma Call Signature Form Applet_PUI

d Modify the following value of the Applet Mode property.

Old Value New Value

Base Edit

8 Modify a call form applet that comes predefined with Siebel Open Ul:
a In the Object Explorer, click Applet.
b In the Applets list, locate an applet that includes a call form configuration.
For this example, locate the following applet:
Pharma Professional Call Form Applet
In the Object Explorer, expand the Applet tree, and then click Applet User Prop.
d In the Applet User Props list, add the following applet user property.

Name Value

Signature Applet NamePUI LS Pharma Call Signature Form Applet_PUI

e In the Object Explorer, click Drilldown Object.
T In the Drilldown Objects list, query the Name property for Signature Capture Drilldown.

g Create a copy of this record, add the new drilldown to the record copy, and update the following

field
Name New Value
Signature Capture DrillDownPUI LS Pharma Call Signature Capture View_PUI

9 Modify the screen:

a In the Object Explorer, click Screen.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 237

Customizing Styles, Applets, Fields, and Controls = C

In the Screens list, locate a screen that displays the signature form and call form applets.
For this example, locate the following screen:
LS Pharma Calls Screen
In the Object Explorer, expand the Screen tree, and then click Screen View.
In the Screen Views list, query the Name property for the following value:

LS Pharma Call Signature Capture View

Create a copy of the LS Pharma Call Signature Capture View, and update the following field:

Old Value New Value

LS Pharma Call Signature Capture View LS Pharma Call Signature Capture View_PUI

10 Compile your modifications.

11 Administer your customization:

a
b

C

238

Log in to the client with administrative privileges.
Navigate to the Administration - Application screen, and then the Views view.
In the Views list, query the Name property for the following value:

LS Pharma Call Signature Capture View

Make a note of the field values of the responsibility that the client displays in the Responsibilities
list.

In the Views list, add the following view.

Field Value

View Name LS Pharma Call Signature Capture View_PUI

In the Responsibilities list, add a responsibility. Use the same field values that you noted in
Step d.

Navigate to the Administration - Personalization screen, and then the Applets view.

In the Applets list, add the following applet.

Field Value

Name LS Pharma Call Signature Form Applet_OUI

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

s, Applets, Fields, and Controls & Customizing Applets

In the Rule Sets list, add the following rule set.

Name Pharma Call Default
Sequence 1
Start Date Any date that has already occurred. For example, 01/01/2012.

12 Add the applet LS Pharma Call Signature Form Applet_PUI to the manifest administration as

follows:
a Log in to the client with administrative privileges.
b Navigate to the Administration - Application screen, and then the Manifest Administration view.
C Under Ul Objects, create a new record with the following values:
Interactive Flag Type Usage Type Name
N Applet Physical Renderer LS Pharma Call Signature Form
Applet_PUI
d Under Object Expression, add the following child applet for the record created in Step c.
Interactive Flag Expression Level
N Desktop 1
e Under Files, set the following file values:

Interactive Flag Name

N 3rdParty/jquery.signaturepad.min.js

13 Test your modifications.

o O T

Log in to the Siebel Open Ul client (for example, Siebel Pharma application).
Navigate to a contact call where you want to capture the signature.
Click Sign to open the Signature Capture view.

Verify that the Signature Capture view applet displays correctly - that is, according to the
customizations detailed in this procedure.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 239

Customizing Styles, Applets, Fields, and Controls = C

Customizing Applets to Capture Signatures for Siebel
Mobile Applications

A signature capture is an electronic capture of a user signature. This topic describes how to
customize applets to capture signatures in Siebel Mobile applications.

To customize applets to capture signatures for Siebel Mobile applications
1 Create a new business component and add a new field.

a Create a new Signature business component with the values shown in the following table.

Property Value
Name Signature BC
Class CSSBCBase

b Create a new Signature business component field with the values shown in the following table.

Name Signature
Type DTYPE_NOTE
Text Length 16,383

Force Activation Selected

2 Create a new Form Applet with the values shown in the following table, adding an _PUI suffix to

the name.
Name Class Business Component
Signature Form Applet_PUI CSSFrameBase Signature BC

3 Add applet user properties:
a In the Object Explorer, expand the Applet tree, and then click Applet User Prop.

b In the Applet User Props list, add the following applet user properties as required.

Name Value

CanlnvokeMethod: ClearSignature TRUE

240 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

yvles, Applets, Fields, and Controls B Customizing Applets

Name Value

Parent BC Name, for example: For example:

B For Siebel Pharma, Parent BC Name is: B Pharma Professional Call -
Parent BC Name: Pharma Professional Call - Mobile Mobile

B For Siebel Service, Parent BC Name is: B Action

Parent BC Name: Action

Signature Field Signature
Signature Length 1600
Signature Min Length 5

Use Apply Drilldown Y

Use Cancel Drilldown Y

4 Add controls:
a In the Object Explorer, click Control.

b In the Controls list, add the following controls.

Name Description

Clear Signature Set the MethodlInvoked property to ClearSignature.

Address Set the Field property to Address.

NOTE: You can create other fields such as Contact First Name
in addition to the Address field as required.

Signature Capture Set the following properties:
l Set the Field property to Signature.
B Set the HTML Type property to InkData.

Apply Signature Set the Methodlnvoked property to ApplySignature.

Cancel Signature Set the Methodlnvoked property to CancelSignature.

5 Add an applet Web template:
a In the Object Explorer, click Applet Web Template.
b In the Applet Web Templates list, right-click and select new record.

C Set the following properties.

Property Value

Name Edit

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 241

Customizing Styles, Applets, Fields, and Controls = C

Property Value

Type Edit

Web Template SIA Applet Form Grid Layout - No Menu_OUI

6 Create the following new drilldown objects:
2 In the Object Explorer, click Drilldown Object.

b In the Drilldown Objects list, configure the values shown in the following table as required for
the Apply Drilldown and the Cancel Drilldown drilldown objects.

NOTE: The values shown in the following table (for View, Business Component, and so on)
are examples only - you can choose a different view and business component as required.

Hyperlink Source Business Destination
Field Field Component Field
Apply Address LS Pharma Activity Pharma 1d
Drilldown Professional Call 1d Professional Call
Execute View - Mobile - Mobile
Cancel Address LS Pharma Activity Pharma 1d
Drilldown Professional Call 1d Professional Call
Execute View - Mobile - Mobile

7 Expose the Controls in the Applet Web Template item as follows:
a In the Object Explorer, click Applet.
Select Applet "Signature Form Applet_PUI", then right click and select Edit Web Layout.

Select Edit mode.

o O T

Drag and drop the Signature field and the Apply Signhature, Cancel Signature, and Clear
Signature buttons on the Web Layout.

8 Compile your modifications.
9 Add the applet Signature Form Applet_PUI to the manifest administration as follows:
a Log in to the client with administrative privileges.
b Navigate to the Administration - Application screen, and then the Manifest Administration view.

C Under Ul Objects, create a new record with the following values:

Interactive Flag Type Usage Type Name
N Applet Physical Renderer Signature Form Applet_PUI

242 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

d Under Object Expression, add the following child applet for the record created in Step c.

Interactive Flag Expression Level
N <Empty> 2
N Mobile 1

e Under Files, set the following file values:

Interactive Flag Name
N 3rdParty/jquery.signaturepad.min.js
N siebel/signviewpr.js
T Under Ul Objects, create a new record with the following values:
Interactive Flag Type Usage Type Name
N Applet Presentation Model Signature Form Applet_PUI

Applets, Fields, and Controls B Customizing Applets

g Under Object Expression, add the following child applet for the record created in Step f.

Interactive Flag Expression Level

N Mobile 1

h Under Files, set the following file values:

Interactive Flag Name

N siebel/signviewpm.js

10 Test your modifications.
a Log in to the Siebel Open Ul client.
b Navigate to a view where the Signature Form Applet_PUI is exposed.

¢ Verify that the Signature Capture view applet displays correctly - that is, according to the
customizations detailed in this procedure.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

243

Customizing Styles, Applets, Fields, and Controls © Customi

Enabling Salutation Applets in Siebel Open Ul

A salutation applet is a type of applet that Siebel CRM uses to display personal information that
greets the user. For example, it can display the user name and indicate how much time has elapsed
since the last time this user visited the site. Siebel Open Ul does not come predefined to display the
salutation applet. The example in this topic configures Siebel Call Center to display it. You copy the
salutation applet that Siebel CRM comes predefined to use in a high interactivity client, and then
configure an applet toggle to display the original applet or the applet copy, depending on if Siebel
CRM displays the high interactivity client or the Siebel Open Ul client. For more information about
the salutation applet, see Siebel Personalization Administration Guide.

To enable salutation applets in Siebel Open Ul
1 Create a calculated field:

a Open Siebel Tools.
For more information, see Using Siebel Tools.
b In the Object Explorer, click Business Component.
c In the Business Components list, locate the following business component:
Salutation (eApps)

Note that you must use quotes to enclose the name of any object that includes special
characters when you enter this name in the Object List Editor. Parentheses are special
characters.

d In the Object Explorer, expand the Business Component tree, and then click Field.

e In the Fields list, add a new record. Use values from the following table.

Property Value

Name IsOpenUl

Calculated True

Calculated Value GetProfileAttr("IsOpenUl™)
Force Active True

2 Create a salutation applet that Siebel CRM can display in the Siebel Open Ul client:
a In the Object Explorer, click Applet.
b In the Applets list, locate the following applet:
Salutation Applet (WCC Home)

Siebel CRM displays this salutation applet on the homepage of a high interactivity client for
Siebel Call Center. Your Siebel application might use a different applet.

244 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

les, Applets, Fields, and Controls B Customizing Applets

Cc Copy the applet that you located in Step b, and then set the following properties of this copy.

Property Value
Name Salutation Applet (WCC Home) - OUI
Class CSSFramelList

d In the Object Explorer, expand the Applet tree, and then click List.

e In the Lists list, add a list. Use values from the following table.

Property Value

Name List

T In the Object Explorer, expand the List tree, and then click List Column.

g In the List Columns list, add a new record. Use values from the following table.

Property Value
Name Result Text
Field Result Text

h In the Object Explorer, click Applet Web Template.
I In the Applet Web Templates list, choose the Base applet web template.

] In the Object Explorer, expand the Applet Web Template tree, and then click Applet Web
Template Item.

k In the Applet Web Template Items list, add a new record. Use values from the following table.

Name Result Text
Field Result Text
Item ldentifier 501

3 Create the applet toggle that Siebel CRM uses to toggle display of the salutation applet between
a high interactivity client and a Siebel Open Ul client:

a In the Applets list, locate the following applet:
Salutation Applet (WCC Home)
b In the Object Explorer, in the Applet tree, click Applet Toggle.

You must expose the applet toggle object type. For more information, see “Preparing Siebel
Tools to Customize Siebel Open UI” on page 127.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 245

Customizing Styles, Applets, Fields, and Controls = C

c In the Applet Toggles list, add a new record. Use values from the following table.

Applet Salutation Applet (WCC Home) - OUI
Auto Toggle Field I1sOpenUl
Auto Toggle Value 1

4 Configure the manifest. For more information about how to do this step, see “Configuring
Manifests” on page 167:

a Log in to a Siebel client with administrative privileges.
b Navigate to the Administration - Application screen, and then the Manifest Files view.
Add the following file:

custom/SalutationPR._js

Navigate to the Manifest Administration view.

In the Ul Objects list, specify the following object.

Type Applet
Usage Type Physical Renderer
Name Salutation Applet (WCC Home) - OUI

e In the Object Expression list, add the following subexpression.

Group Name Leave empty.
Expression Desktop
Level 1

Operator Leave empty.
Web Template Name Leave empty.

T In the Files list, click Add.
g In the Files dialog box, click Query.
h In the Name field, enter the following path and file name:

custom/SalutationPR._js

I Click Go.

246 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

les, Applets, Fields, and Controls B Customizing Controls

5 Modify the style that Siebel CRM uses to display the salutation applet in the Siebel Open Ul client:

a Use a CSS editor to open the style sheet that Siebel Open Ul uses to display the theme that your
Siebel application uses.

b Add the following code:

.salutation-pr-applet {
min-height:30px;
margin-top:15px;
margin-left:20px;

}

.salutation-pr-title {

float:left;
font-size:1.3em;
margin-right:40px;
font-weight:bold;
color:#777;

}

-salutation-pr-salutation {
top: 2px;
position: relative;

}

6 Test your work:
a Log in to the Siebel Open Ul client.

b Make sure this the client displays the salutation applet, and that this applet includes your
personalization information.

Customizing Controls

This topic describes how to customize a control. It includes the following information:
B “Creating and Managing Client-Side Controls” on page 248
B “Displaying Control Labels in Different Languages” on page 258

This book includes a number of other topics that also customize controls. For more information
about:

B Overview information about customizing controls, see “How Siebel CRM Renders High-Interactivity
Clients” on page 22, “Examples of How You Can Customize Siebel Open Ul” on page 28, “Example
Client Customizations” on page 54, and “Guidelines for Customizing Siebel Open Ul” on page 119

B Adding a control to a presentation model, see “Customizing the Setup Logic of the Presentation
Model” on page 68

B Modifying a list column control so that Siebel Open Ul stores the value of the control check box,
see “Customizing the Presentation Model to Identify the Records to Delete” on page 70

B Customizing control user properties, see “Customizing Control User Properties for Presentation
Models” on page 133

B Accessing a proxy object for an active control, see “Accessing Proxy Objects” on page 141

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 247

Customizing Styles, Applets, Fields, and Controls © Customi

Customizing control themes, see “Customizing Themes for Other Objects” on page 191

Rendering controls according to control type, see “Customizing List Applets to Render as Maps” on
page 212

B Adding a control that does a static drill-down, see “Adding Static Drilldowns to Applets” on
page 216

B Customizing controls in an applet, see “Customizing Applets to Capture Signatures from Desktop
Applications” on page 235

B Adding controls to the calendar, “Customizing a Resource Scheduler” on page 272

Creating and Managing Client-Side Controls

The example in this topic describes how to create a text box that the Siebel Open Ul client displays,
and is not represented on the Siebel server. This is a Siebel Open Ul client implementation, and as
such, data will not be maintained after the user navigates away from the view containing this type
of control. You can also create similar controls, such as date/time, checkbox, combobox, and so on.

This example shows how to configure client-side controls in list applets, however, the same principals
can be applied to form applets.

To create controls in the client
1 Create a custom presentation model:

a Use a JavaScript editor to create a new file named clientctrlpmodel.js. Save this file in the
following folder:

siebel\custom
For more information about:

1 The complete presentation model that this example uses, see “Text Copy of the Client
Control Presentation Model File” on page 254.

1 This folder, see “Organizing Files That You Customize” on page 162.
b Add the following code to the file that you created in Step a.
This code does the basic set up:

iT(typeof(SiebelAppFacade.ClientCtriIPModel) === "undefined"){

SiebelJS._Namespace("SiebelAppFacade.ClientCtriIPModel™);
//Module with its dependencies
define('siebel/custom/clientctripmodel™, [], function () {
SiebelAppFacade.ClientCtriIPModel = (function(Q){

var consts = SiebelJS.Dependency("SiebelApp.Constants™);

/**

* Constructor Function - ClientCtriPModel

*

* Parameter - Be a good citizen. Pass All parameter to superclass.

**/

function ClientCtriPModel (proxy){

248 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

g Styles, Applets, Fields, and Controls m Customizing Controls

var m_recordset = [];
SiebelAppFacade .ClientCtriIPModel .superclass.constructor.call(this,

proxy);
C Add the client control:

this.AddMethod("*AddClientControl™, null, { core : true });
// add into method array
this.GetClientRecordSet = function() {
return m_recordset ;
};
3

For more information, see “AddMethod Method” on page 418 and “AddClientControl Method” on
page 471.

d Extend the ListPresentationModel object:

/* Siebel OpenUl uses the ListPresentationModel object to initialize every
list applet. So, to maintain the functionality that ListPresentationModel
provides, you extend it.*/

SiebelJS._Extend(ClientCtriIPModel, SiebelAppFacade.ListPresentationModel
)

ClientCtriIPModel .prototype.Init = function(){

SiebelAppFacade .ClientCtriIPModel .superclass. Init.call(this);

e Determine whether or not Siebel Open Ul has removed the focus from the field in the applet,
and then temporarily store the value that the user entered in the control:

/* Attach Post Handler for LeaveField */
this._AddMethod("'LeaveField"”, PostLeaveField, { sequence : false, scope

> this });

For more information, see “LeaveField Method” on page 440 and “PostLeaveField Method” on
page 482.

T Get the format that the field uses to store the value for the control:

/* Attach Pre Handler for GetFormattedFieldValue */

this.AddMethod(*'GetFormattedFieldValue', PreGetFormattedFieldvalue, {
sequence : true, scope : this });

/* Attach Handler for Delete Record Notification as well */

this._AttachNotificationHandler(consts.get(
""'SWE_PROP_BC_NOTI1_DELETE_RECORD™"), HandleDeleteNotification);

For more information, see “GetFormattedFieldValue Method” on page 438.

g Get the data from memory stored in Step f, and then display this data in the client control:

function PreGetFormattedFieldValue(control, bUseWS, reclndex,
returnStructure){
it (utils.IsEmpty(reclndex)){
reclndex = this.Get(""GetSelection™);
}
if (reclndex >=0) {
var clientObj = this.GetClientRecordSet();
var recordSet=this.Get("'GetRawRecordSet);

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 249

Customizing Styles, Applets, Fields, and Controls = Cust

var id = recordSet[reclndex]["1d"];
var flag = false;
var value;
switch(control .GetName()){
case "TestEdit":
value = recordSet[reclndex]["Name'"];
flag = true;
break;
3
it (flag){
if(clientObj[id] && clientObj[id][control._GetName()]){
value = clientObj[id][control.GetName()];
3
else if (clientObj[id]D{
clientObj[id]J[control _GetName()] = value;
}
else{
var recordclient = {};
recordclient[control .GetName()] = value;
clientObj[id] = recordclient;
}
returnStructure["CancelOperation™] = true;
returnStructure["ReturnValue"] = value;
3
}
}

For more information, see “PreGetFormattedFieldValue Method” on page 482,
h Save the value after the user leaves the client control:

function PostlLeaveField(control, value, notLeave, returnStructure){
var clientObj = this.GetClientRecordSet();
var currSel = this.Get("GetSelection");
var recordSet=this.Get("'GetRawRecordSet');
var id = recordSet[currSel]["1d"];
if (clientObj[id]D{
switch(control .GetName ()){
case "TestEdit":
clientObj[id][control .GetName()] = returnStructure["ReturnvValue"] ;
break;
}
}
}

For more information, see “PreGetFormattedFieldValue Method” on page 482.
I Delete the reference to the record data that Siebel Open Ul stored in the client for the control:

function HandleDeleteNotification(propSet){
var activeRow = propSet.GetProperty(consts.get(
""SWE_PROP_BC_NOTI_ACTIVE_ROW"));
if(activeRow === this.Get("GetSelection™)){
var delObj = this.GetClientRecordSet();

250 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

les, Applets, Fields, and Controls B Customizing Controls

delObj[activeRow] = null;
3

}

For more information, see “HandleDeleteNotification Method” on page 479.

| Create a property set for the control.

For this example, you use the following code to create a property set for the text box control:

ClientCtriPModel .prototype.UpdateModel = function(psinfo){

/// Specify the property set for Edit box

SiebelAppFacade.ClientCtriIPModel .superclass.UpdateModel .call(this,
psinfo);

var ctriTxtInfo = SiebelAppFacade.PresentationModel .GetCtriTemplate
('TestEdit", "Test Edit", consts.get("SWE_CTRL_TEXTAREA™), 1);

For more information about this code, see “Creating Property Sets for Client- Side Controls” on
page 252.

k< Add the property set information so that Siebel Open Ul can add it to the proxy:

this.ExecuteMethod(""AddClientControl™, ctriTxtinfo);

I Return the ClientCtrIPModel that you set up in Step b:

};

return ClientCtriPModel;

3 O):

return "'SiebelAppFacade.ClientCtriPModel";
D

}
2 Configure the manifest:
a Log in to a Siebel client with administrative privileges.
b Navigate to the Administration - Application screen, and then the Manifest Files view.

c In the Files list, add the following new files.

Field Value

Name siebel/custom/clientctrlpmodel.js

d Navigate to the Administration - Application screen, and then the Manifest Administration view.

e In the Ul Objects list, specify the following applet.

Type Applet
Usage Type Presentation Model
Name Account List Applet

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 251

Customizing Styles, Applets, Fields, and Controls © Customizin

T In the Object Expression list, add the following expression. The physical renderer uses this

expression to render the applet in a desktop platform.

Field Value

Expression Desktop

Level 1

g In the Files list, add the following file:

siebel/custom/clientctripmodel . js

h To refresh the manifest, log out of the client, and then log back in to the client.

3 Test your work:

a Navigate to any list applet, and then verify that it displays the control that you added.

In Step b, you extended the ListPresentationModel object that Siebel Open Ul uses to display
every list applet. So, you can navigate to any list applet.

Creating Property Sets for Client- Side Controls
You can use the following code to create a property set for a control that Siebel Open Ul displays in
the client:

ClientCtriIPModel .prototype.UpdateModel = function(psinfo){
/// Specify the property set for the control
SiebelAppFacade.ClientCtriIPModel .superclass.UpdateModel .call(this, psinfo);
var variable _name = SiebelAppFacade.PresentationModel .GetCtriTemplate
(""control_name", "display _name', consts.get("control_type"), column_index);
ctriCombolnfo.SetPropertyStr(consts.get("'control_property"),
“property _attribute")

where:

control_name, display_name, control_type, and column_index are arguments of the
GetCtriTemplate method. For more information about these arguments, see “GetCtrITemplate
Method” on page 426.

control_property specifies a control property. For example, SWE_PROP_WIDTH specifies the
width of the control, in pixels.

property_attribute specifies an attribute of the control that control_property specifies. For
example, 200 sets the width of the control to 200 pixels.

For example, the following code creates a variable named ctriCombolnfo for the TestCombo control.
It sets the width and height of this control to 200 pixels, and centers it:

ClientCtriIPModel .prototype.UpdateModel = function(psinfo){

/// Specify the property set for the control

SiebelAppFacade.ClientCtriIPModel .superclass.UpdateModel .call(this, psinfo);
ClientCtriPModel .prototype.UpdateModel = function(psinfo){

/// Specify the property set for the control

SiebelAppFacade.ClientCtriPModel .superclass.UpdateModel .call(this, psinfo);

var ctrlCombolnfo = SiebelAppFacade.PresentationModel .GetCtriTemplate (""TestCombo",

252 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

tomizing Styles, Applets, Fields, and Controls ® Customizing Controls

"Test Drop Down", consts.get("SWE_CTRL_COMBOBOX"™), 10);
ctriCombolnfo.SetPropertyStr(consts.get("'SWE_PROP_WIDTH"), "200'")
ctriCombolnfo.SetPropertyStr(consts.get("'SWE_PROP_HEIGHT'), "200™)
ctriChkboxInfo.SetPropertyStr(consts._get(""'SWE_PROP_JUSTIFICATION"™), "center'™);

For more information about control_property and property_attribute, see “Properties That You Can
Specify for Client-Side Controls” on page 253. For more information about other control properties that
you can specify, such as Sort or Vertical Scroll, see the topic that describes the control Applet Object
Type in Siebel Object Types Reference.

Properties That You Can Specify for Client-Side Controls

Table 12 describes the properties that you can specify for controls. The Comparable Applet Control
or Description column of this table includes the name of the applet control property that is similar to
the SWE control property. If no applet control property is similar to the SWE control property, then
this column includes a description. For more information about these applet control properties, see
the topic that describes controls in the applet object types section of Siebel Object Types Reference.

Table 12. Properties That You Can Specify for Controls

SWE Control Property Comparable Applet Control or Description

SWE_PROP_CURR_FLD

Identifies the field that is currently chosen.

SWE_PROP_CASE_SENSITIVE

Specifies to make text in the control case-sensitive.

SWE_PROP_DISP_FORMAT

Display Format

SWE_PROP_DISP_MODE

HTML Display Mode

SWE_PROP_DISP_MAX_CHARS

HTML Max Chars Displayed

SWE_PROP_DISP_NAME

Specifies the label that Siebel Open Ul uses to identify
this control in the client.

SWE_PROP_FLD_NAME

Field Name

SWE_PROP_HEIGHT

HTML Height

SWE_PROP_HTML_ATTRIBUTE

HTML Attributes

SWE_PROP_IS_BOUND_PICK

Specifies that the control is a bound picklist.

SWE_PROP_IS_ENCODE

HTML Display Mode

SWE_PROP_INPUTMETHOD

MethodInvoked

SWE_PROP_JUSTIFICATION

Text Alignment

SWE_PROP_LABEL_JUSTIFICATION

Specifies the text alignment for a column header that
Siebel Open Ul displays in a list control.

SWE_PROP_MAX_SIZE

HTML Max Chars Displayed

SWE_PROP_NAME

Name

SWE_PROP_PICK_APLT

Pick Applet

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 253

Customizing Styles, Applets, Fields, and Controls © Customizin

Table 12. Properties That You Can Specify for Controls

SWE Control Property Comparable Applet Control or Description

SWE_PROP_POPUP_HEIGHT Specifies the height of the popup dialog box, in pixels.

SWE_PROP_PROMPT Prompt Text

SWE_PROP_POPUP_WIDTH Specifies the width of the popup dialog box, in pixels.

SWE_PROP_IS_DYNAMIC Specifies whether or not Siebel Open Ul dynamically
displays values in the control.

SWE_PROP_SPAN Specifies to span control contents across multiple fields.
This property is not applicable for list controls.

SWE_PROP_SEQ HTML Sequence

SWE_PROP_TYPE Type, HTML Type, or Field Retrieval Type

SWE_PROP_WIDTH Width

SWE_PROP_COLINDEX Specifies the index number of a column.

SWE_PROP_ICON_MAP Bitmap

SWE_PROP_IS_SORTABLE Sort

Text Copy of the Client Control Presentation Model File

The following code from the clientctripmodel.js file adds example controls to the client. You can
examine this code for your reference. To get a copy of this file, see Article ID 1494998.1 on My Oracle
Support:

if(typeof(SiebelAppFacade.ClientCtriIPModel) === "undefined"){
SiebelJS.Namespace("SiebelAppFacade.ClientCtriPModel*);
//Module with its dependencies
define("siebel/custom/clientctripmodel™, [], function) {
SiebelAppFacade.ClientCtriIPModel = (function(){
var consts = SiebelJS.Dependency("SiebelApp.Constants");
/* *
* Constructor Function - ClientCtriPModel
*
* Parameter - Be a good citizen. Pass All parameter to superclass.
* */
function ClientCtriPModel (proxy){
var m_recordset = [];
SiebelAppFacade .ClientCtriIPModel .superclass.constructor.call(this, proxy);
this.AddMethod("AddClientControl™, null, { core : true });
// add into method array
this.GetClientRecordSet = function() {
return m_recordset ;
}:
¥
/* Siebel OpenUl uses the ListPresentationModel object to initialize every list
applet. So, to maintain the functionality that ListPresentationModel provides, you
extend it.*/

254 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

ing Styles, Applets, Fields, and Controls ® Customizing Controls

SiebelJS_Extend(ClientCtriIPModel, SiebelAppFacade.ListPresentationModel);
ClientCtriIPModel .prototype.Init = function(){
SiebelAppFacade .ClientCtriIPModel .superclass. Init.call(this);
/* Attach Post Handler for LeaveField */
this._AddMethod("LeaveField", PostLeaveField, { sequence : false, scope : this });
/* Attach Pre Handler for GetFormattedFieldValue */
this.AddMethod('GetFormattedFieldValue", PreGetFormattedFieldvalue, { sequence :
true, scope : this });
/* Attach Handler for Delete Record Notification as well */
this.AttachNotificationHandler(consts.get('""SWE_PROP_BC_NOTI_DELETE_RECORD"),
HandleDeleteNotification);
};
function PreGetFormattedFieldvValue(control, bUseWS, reclndex, returnStructure){
if (utils.IsEmpty(reclndex)){
reclndex = this.Get("'GetSelection™);
}
if (reclndex >=0) {
var clientObj = this.GetClientRecordSet();
var recordSet=this.Get("'GetRawRecordSet');
var id = recordSet[reclndex]["1d"];
var flag = false;
var value;
switch(control .GetName()){
case ""TestEdit':
value = recordSet[reclndex][''Name"];
flag = true;
break;
}
it (flag){
if(clientObj[id] && clientObj[id][control.GetName()]){
value = clientObj[id][control.GetName()];
}
else if (clientObj[id]){
clientObj[id]J[control._GetName()] = value;
}
else{
var recordclient = {};
recordclient[control .GetName()] = value;
clientObj[id] = recordclient;
}
returnStructure["CancelOperation™]
returnStructure["ReturnValue"]

}

true;
value;

3
by
function PostLeaveField(control, value, notLeave, returnStructure){

var clientObj = this.GetClientRecordSet();

var currSel = this.Get("GetSelection”);

var recordSet=this.Get("'GetRawRecordSet");

var id = recordSet[currSel]["1d"];

it (clientObj[id]){

switch(control .GetName()){
case ""TestEdit":
clientObj[id][control .GetName()] = returnStructure["ReturnValue™] ;

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 255

Customizing Styles, Applets, Fields, and Controls © Customizin

break;

function HandleDeleteNotification(propSet){
var activeRow = propSet.GetProperty(consts.get(
"SWE_PROP_BC_NOTI_ACTIVE_ROW"));
if(activeRow === this.Cet("GetSelection")){
var delObj = this.GetClientRecordSet();
delObj[activeRow] = null;
}

3
ClientCtriIPModel .prototype.UpdateModel = function(psinfo){

/// PS Attribute info for Edit box
SiebelAppFacade .ClientCtriPModel .superclass.UpdateModel .call(this, psinfo);
var ctriTxtInfo = SiebelAppFacade.PresentationModel .GetCtriTemplate
('TestEdit", "Test Edit", consts.get("SWE_CTRL_TEXTAREA™), 1);
this.ExecuteMethod("AddClientControl™, ctriTxtinfo);

};

return ClientCtriPModel;
} O):

return "'SiebelAppFacade.ClientCtriPModel™;
;s

}

Configuring Client-Side Multi-Select

Siebel Open Ul uses a client-side control implementation to display a Multi-Select checkbox column
in list applets. While this is primarily intended for touch-based devices where multiple selection of
rows is not possible using the Shift + Click or Ctrl + Click, it can also be configured for desktop
browsers.

The Multi Row Select Checkbox Display user property controls the behavior and availability of the
client-side multi-select checkboxes. The property can have the following values:

B TOUCH-HIDE. The multi-select column does not appear on touch devices.
B TOUCH-SHOW. The multi-select column appears on touch devices.

B NONTOUCH-HIDE. The multi-select column does not appear on desktop and non-touch based
devices.

B NONTOUCH-SHOW. The multi-select column appears on desktops and non-touch based Touch
devices.

When the user property is not configured for an applet, the default behavior is to show the Multi-
Select column on touch devices and hide the column on non-touch devices. Administrators can use
the user property to override this behavior on a per-list applet basis.

To configure multi-select checkbox for a list applet
1 Open Siebel Tools.

For more information, see Using Siebel Tools.

256 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

, Fields, and Controls B Customizing Controls

2 In the Object Explorer, click Applet.

3 In the Applets list, locate the applet that you want to configure.
4 Add the applet user property to the applet that you located in Step 3:
2 In the Object Explorer, expand the Applet tree, and then click Applet User Prop.

b In the Applet User Props list, add the following applet user property with one of the possible

values:
Multi Row Select Checkbox Display TOUCH-HIDE, TOUCH-SHOW, NONTOUCH-HIDE,

NONTOUCH-SHOW

Compile the applet object.
Restart the Siebel server.

Your changes will now be visible in the Siebel Open Ul client.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 257

Customizing Styles, Applets, Fields, and Controls = Cust

Displaying Control Labels in Different Languages

This topic describes how to modify the custom_messages.js file so that Siebel Open Ul displays the
text for a control label according to the language that the client browser uses. You can also modify
the presentation model instead of modifying the custom_messages.js file. For more information
about how to do this, see “Customizing Presentation Models to Display Control Labels in Different
Languages” on page 259. For more information about language support, see “Languages That Siebel
Open Ul Supports” on page 592.

To display control labels in different languages
1 Copy custom_messages.js file from:

INSTALL_DIRNeappweb\PUBLIC\DEUN\build_number\scripts\siebel\samples

2 Save a copy of the file that you copied in Step 1, to:
INSTALL_DIR\eappweb\PUBLIC\DEU\build_number\scripts\siebel\custom

3 Open the file you saved in Step 2 using a JavaScript editor.
4 Locate the following code:

function _SWEgetGlobalCustomMsgAry()

{
if (! _SWEbCMsglnit)

{
SWEbCMsglInit = true;

}

return _SWEcustommsgAry;

}

5 Add the following bolded code to the code that you located in Step 4:

function _SWEgetGlobalCustomMsgAry()

{
if (! _SWEbCMsglnit)

{
SWEbCMsglInit = true;

SWEcustommsgAry[" /0] = “custom_string"';
3

return _SWEcustommsgAry;

}
where:
m ID is a string that you use to reference the custom_string. You can use any value for ID.

B custom_string is a text string that includes text that you manually translate into the language
that your deployment requires.

For example, you can use the following code to convert the text label that Siebel Open Ul uses
for the New button that it displays on the Contact List Applet to Neu, and the Delete button to
Ldschen:

258 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

les, Applets, Fields, and Controls B Customizing Controls

function _SWEgetGlobalCustomMsgAry()

{
if (! _SWEbCMsglInit)
{
SWEbCMsglInit = true;
SWEcustommsgAry["New'] = ""Neu";
SWEcustommsgAry["'Delete'] = "Lodschen™;
3
return _SWEcustommsgAry;
¥

6 Test your work:

2 Navigate to the screen that includes the control that Siebel Open Ul uses to display the translated
string that you modified in Step 4.

b Verify that the control displays the translated string.

Customizing Presentation Models to Display Control Labels in
Different Languages

This topic describes how to customize a presentation model so that it displays a control label in a
different language instead of modifying the custom_messages.js file.

To customize presentation models to display control labels in different languages

1 Use a JavaScript editor to open the presentation model that Siebel Open Ul uses to display the
control label that you must modify.

For more information, see “About the Presentation Model” on page 39.

2 Add the following code to call the ExecuteMethod method that the presentation model uses. You
can add this code anywhere in the presentation model file:

pm.ExecuteMethod("'AddLocalString"," ID"," custom_string");
where:

B AddLocalString is the name of the method that ExecuteMethod calls to add your custom
string.

For more information about how this example uses ID and custom_string, see Step 5 on
page 258. For more information about these methods, see “AddLocalString Method” on page 417
and “ExecuteMethod Method” on page 425.

For example, add the following code:

pm.ExecuteMethod(*'AddLocalString', "New'™, "Neu');
pm.ExecuteMethod(*'AddLocalString™, "Delete™, "Loschen');

3 Do Step 6 on page 259.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 259

Customizing Styles, Appl

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

7 lendars and

This chapter describes how to customize calendars and schedulers. It includes the following
topics:

B Customizing Calendars on page 261

B Customizing Resource Schedulers on page 270

Customizing Calendars

This topic includes examples of customizing the calendar that Siebel Open Ul displays. It includes
the following information:

Deploying Calendars According to Your Calendar Deployment Requirements on page 262
Using Fields to Customize Event Styles for the Calendar on page 262
Allowing Users to Drag Items from List Applets to Create Calendar Events on page 265

Customizing Event Styles for the Calendar on page 265
Customizing How Calendars Display Timestamps on page 267

Replacing Standard Interactivity Calendars on page 268

|

|

|

|

B Customizing Calendar Work Days on page 266

|

|

B Customizing How Users View Calendar Availability on page 269
|

Customizing the Calendar All Day Slot on page 270

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 261

Customizing Calendars and Schedulers = Customizing Calendars

Deploying Calendars According to Your Calendar
Deployment Requirements

Table 13 describes different deployment requirements and the work you must do to meet each

requirement. To deploy calendars according to your calendar deployment requirements, locate the
requirement in the Deployment Requirement column, and then do the work that the Work You Must
Do column describes.

Table 13.

Deployment Requirements and the Work You Must Do to Meet Each Requirement

Deployment Requirement Work You Must Do

Your deployment requires the
following items:

Do not modify the repository.

Siebel Open Ul adds no new calendar features that the 2012

B Requires standard Innovation Pack introduces, such as the Event Style or
interactivity calendars Workweek features. All calendars work correctly:
B Does not require new B High interactivity calendars work in Siebel Open Ul the same

calendar features that the
2012 Innovation Pack
introduces

way that they work in the high-interactivity client while in
high-interactivity mode.

I Standard interactivity calendars do not work in Siebel Open
Ul. They will continue to work in the same way that they
previously worked in the high and standard interactivity
clients.

I Siebel Open Ul calendars work in Open Ul mode.

Your deployment requires the
following items:

Import your Siebel Open Ul modifications and a separate SIF
file.

B Requires Siebel Open Ul This SIF file imports Siebel Open Ul modifications and a
Calendars separate file that updates standard interactivity calendars to
. use the new Open Ul control. If the user runs the Siebel
B Requires new features that L . . L
. application in high interactivity or standard-interactivity mode,
the 2012 Innovation Pack . . .
. then Siebel Open Ul does not render any standard interactivity
introduces) .
calendar and it might create an error.
B Does not require standard

interactivity calendars

Oracle includes this SIF file in a ZIP file in the Tools\RepPatch
folder. For more information, see Siebel Maintenance Release
Guide on My Oracle Support.

Using Fields to Customize Event Styles for the Calendar

Siebel Open Ul comes predefined to use the Status field in the Action business component to supply
the event style, by default. You can modify it to use any bounded, single-value field that resides in
the Action business component.

262 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

izing Calendars and Schedulers m Customizing Calendars

To use fields to customize event styles for the calendar

1 ldentify the applet that you must modify:

a
b

C

In the client, navigate to the calendar page that displays the style that you must modify.
Click the Help menu, and then click About View.

Copy the applet name that the dialog box displays to the clipboard.

2 ldentify the field that must supply the event style:

a

T o O T

Open Siebel Tools.

For more information, see Using Siebel Tools.

In the Object Explorer, click Business Component.

In the Business Components list, locate the Action business component.

In the Object Explorer, expand the Business Component tree, and then click Field.
In the Fields list, identify a bounded, single-value field.

Siebel Open Ul will use this field to supply the values that it displays in the Legend in the
calendar in the client.

3 Modify the applet:

a
b

C

In the Object Explorer, click Applet.
Click in the Applets list, click the Query menu, and then click New Query.

Paste the applet name that you copied in Step 1 into the Name property, and then press the
Enter key.

To modify styles for:

1 All calendar applets. You can add user properties to the HI Calendar Base Applet.
Siebel Open Ul uses this applet to set styles for all applets.

1 One specific applet. You can add user properties to an individual applet. User properties
that you define on an individual applet override the styles that the HI Calendar Base
Applet specifies.

In the Object Explorer, expand the Applet tree, and then click Applet User Prop.

In the Applet User Props list, add the following applet user property.

Property Value

Name CSS Event Style

Value Enter the name of the field that you identified in Step 2.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 263

Customizing Calendars and Schedulers = Customizing Calen

N o g b

T In the Applet User Props list, add the following applet user property.

Property Value

Name CSS Event Style LOV

Value Enter the LOV type that the field that you identified in Step 2 uses.

Siebel Open Ul will use the values that this list of values contains to populate the CSS Class
tags in the HTML, and then to render the event and legend styles. It uses the EventStyle
property that contains the language independent code. It uses the set of language
independent codes that this field contains to define the range of possible values. The CSS
Event Style LOV user property allows you to define a single set of styles that Siebel Open Ul
can use for all languages in a multilingual environment.

If the CSS Event Style user property does not exist, or if the CSS Event Style LOV user property
does not exist, then Siebel Open Ul uses the following default values:

1 Status for the field.
1 EVENT_STATUS for the list of values.
Compile your modifications.
Restart the Siebel application.
In the client, navigate to the Administration - Data screen, and then click List of Values.

Query the List of Values list for all of the unique language independent codes that exist for this
list of values type.

For example, query the Type field for TODO_TYPE.
Use a style sheet editor to open the theme-calendar.css file.

For each value that you find in Step 7, create the following two styles.

Style Description

.fc-event-skin.calendar-EventStyle- Siebel Open Ul uses this style for the event.
LOVName
#color_square_LOVName Siebel Open Ul uses this style for the square

that it displays on the legend.

When Siebel Open Ul creates the HTML to render the Calendar, it specifies these styles in the
CLASS tag for the event and for the legend. It specifies the strings for the language independent
code for the field with spaces removed. For example:

? .fc-event-skin.calendar-EventStyle-Completed and #color_square_Completed

? .fc-event-skin.calendar-EventStyle-NotStarted and #color_square_NotStarted

264 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

ing Calendars and Schedulers ® Customizing Calendars

? .fc-event-skin.calendar-EventStyle-InProgress and #color_square_InProgress

For an example of customizing a style sheet, see “Customizing Event Styles for the Calendar” on
page 265.

10 Save the theme-calendar.css file.
11 Clear the browser cache.
12 Navigate to the Calendar view.

13 Make sure Siebel Open Ul displays the correct styles.

Allowing Users to Drag Items from List Applets to
Create Calendar Events

You can configure Siebel Open Ul so that the user can drag an item from a list applet, and then drop
it on a calendar to create an event.

Allowing users to drag items from list applets to create calendar events
1 Do Step 1 on page 202.
2 Test your work:
a Log in to the client, and then navigate to the list applet that you modified in Step 1.

b Confirm that you can drag a record from the list applet, and then drop it on the calendar to create
an event.

Customizing Event Styles for the Calendar

Style sheet attributes determine the color, transparency, font, and other styles for each status. You
can modify these styles. You can use any single value field that resides in the Action business
component to determine the style that Siebel Open Ul uses to render events in the calendar. Siebel
Open Ul uses the value that the Status field contains to determine how the client displays an event
in the calendar, by default. For example:

B Done

B Not Started
B Planned

M Success

To customize event styles for the calendar
1 Use an editor to open the theme-calendar.css file.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 265

Customizing Calendars and Schedulers i Customizing Calend

2 Locate the code that specifies the style that you must modify.

For example, locate the following code:

#color_square_LOV _name {color: custom _attributes important;}
.fc-event-skin.calendar-EventStyle-LOV_name{
{custom_attributes}

where:
® LOV_name identifies the event status that you must modify, such as Done or NotStarted.
NOTE: The LOV name specified in the code should not include spaces.

m custom_attributes specify the style properties you can modify, such as the background color
or font type.

3 Modify the code that you located in Step 2, as necessary.
For example:

#color_square_Done {color: #d3ffd7!important;}
.fc-event-skin.calendar-EventStyle-Done {
background: #d3ffd7;
border-color:#A8FFAF;

}

In this example, Siebel Open Ul modifies the style for each Done appointment. It also modifies
the style for the Done entry in the legend that it displays in the upper-left corner of the calendar.

If Siebel Open Ul cannot find a matching style for a LOVName, then it displays events in the
default text color, which is typically black on white.

4 Save your modifications, clear the browser cache, and then verify that Siebel Open Ul displays
the style you defined for the Done status.

Customizing Calendar Work Days

Siebel Open Ul allows the user to specify values for the Workdays field and the Week Start field. It
uses the user preferences that reference the Locale values, by default. It stores the following items:

B Stores locale preferences in the Locale table (S_LOCALE).
B Stores user preferences as predefault values from Locale values.

B Stores user preferences in the user preferences file.

Specifying Work Days

If the user sets the user preference for the Weekly Calendar View to Work Week, then Siebel Open
Ul displays only the days that are specified as workdays. This preference can be specified at several
levels, so Siebel Open Ul uses the following priority:

1 Personal user preference.

2 Locale preference for the current user locale.

266 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

omizing Calendars and Schedulers ® Customizing Calendars

3 Applet user property. This property provides high interactivity support.

4 If none of these items are set, then Siebel Open Ul displays the Monday through Friday, five day
workweek.

Specifying the First Day of the Week

If the set of visible days does not include the First Day of Week preference, then Siebel Open Ul
displays the next visible day. For example, if the user uses a Monday through Friday, five-day
workweek, and if the First Day of Week is Saturday, then Siebel Open Ul displays Monday as the first
day of the week in the Work Week calendar. It does this because Monday is the first visible day that
occurs after Saturday.

Specifying Work Days and the First Day of the Week
You can define a default value for all users according to the locale, but a user can override this value.
For example, assume the following:

B The existing Work Week setting for all users is Monday through Friday, as determined by the
Locale settings that the Siebel administrator sets.

A set of users work Monday through Friday.
Another set of users who provide weekend support work Wednesday through Sunday.

Each weekend user logs into the Siebel client and uses the User Preferences Calendar view to set
their Wednesday through Sunday schedule. Siebel Open Ul stores this modification in the user
preferences file.

In this situation, Siebel Open Ul does the following:

B Displays Monday through Friday for each user who does not use the User Preferences Calendar
view to modify their preference

B Displays Wednesday through Sunday for each user who uses the User Preferences Calendar view
to modify their preference

Customizing How Calendars Display Timestamps
You specify an applet user property to customize how the calendar displays timestamps.

NOTE: If you have customized calendar to display timestamps, but still cannot see a timestamp, it
might be hidden because the browser window is too small. In this case, modifications can be made
to be made to the CSS.

To customize how calendars display timestamps
1 Open Siebel Tools.

For more information, see Using Siebel Tools.

2 In the Object Explorer, click Applet.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 267

Customizing Calendars and Schedulers i Customizing Calend

3 In the Applets list, locate any calendar applet.
4 In the Object Explorer, expand the Applet tree, and then click Applet User Prop.
5 In the Applet User Props list, query the Name property for the following value:

Enable Daily Time Display

6 Set the Value property to one of the following values:

m Always. Always display the timestamp immediately before the meeting subject. For
example, 8:00 AM - 9:00 AM My Meeting.

® Never. Do not display the timestamp.

m Off-interval. Display the timestamp immediately before the meeting subject only if the
meeting starts or ends at a time that is not consistent with the user preference that specifies
how to display time intervals. For example, if the user preference includes intervals of 8:00,
8:30, 9:00, and so on, and if a meeting occurs from:

1 8:00 to 8:30. Do not display the timestamp.

1 8:03 to 8:14. Display the timestamp.

1 8:00 to 8:15. Display the timestamp.

An off-interval meeting is a meeting that does not start and end on a calendar increment.
For example, if the calendar displays 30 minute increments, and if the user creates a meeting
that does not start and end on the half-hour, then this meeting is an off-interval meeting. A
15 minute meeting that starts at 9:05 AM is an example of an off-interval meeting.

If you do not specify an applet user property for a:
m Daily view or weekly view. Siebel Open Ul uses an off-interval value.
®m Monthly view. Siebel Open Ul always displays the timestamp.
7 Repeat Step 5 and Step 6 for the following applet user property:
Enable 5Day Time Display
8 Repeat Step 5 and Step 6 for the following applet user property:
Enable Monthly Time Display

Replacing Standard Interactivity Calendars

Some standard interactivity calendars do not work properly in Siebel Open Ul. This topic describes
how to replace the calendars that standard-interactivity uses with the calendars that Siebel Open Ul
uses.

To replace standard interactivity calendars
1 Modify the applet:

268 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

omizing Calendars and Schedulers ® Customizing Calendars

a Open Siebel Tools.

For more information, see Using Siebel Tools.
b In the Object Explorer, click Applet.
c In the Applets list, query the Name property for the following value:

LS CIM eCalendar Weekly Applet

NOTE: This step describes how to search for specific standard interactivity calendar. If you
want to replace a different standard interactivity calendar, query for it in this step.

d Modify the Class property from CSSSWEFrameCalGridLS to the following value:
CSSSWEFrameActHICalGrid
This modification replaces standard-interactivity applets.
e Compile your modifications.
2 Test your modifications:
a Log in to the client.
b Make sure Siebel Open Ul displays the correct applets.

For example, make sure the Fullcalendar applet replaces the LS CIM eCalendar Weekly
Applet.

Customizing How Users View Calendar Availability

Calendar availability is the amount of free time in a user’s agenda for a specific day. Available time
is calculated by taking the number of working hours defined by the user, and subtracting any events
already scheduled for that day within the working hours. You can configure Siebel Open Ul to display
the number of free hours available for a user in the monthly view. If you choose to show calendar
availability, you will no longer see scheduled events in the monthly view. Instead, each day will have
the available free hours displayed. This topic describes how to show and hide the calendar
availability.

To show and hide calendar availability
1 Open Siebel Tools.

For more information, see Using Siebel Tools.
In the Object Explorer, click Applet.
In the Applets list, locate any calendar applet.

In the Object Explorer, expand the Applet tree, and then click Applet User Prop.

a A~ W N

In the Applet User Props list, query the Name property for the following value:

Enable BusyFreeTime

6 Set the Value property to one of the following values:

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 269

Customizing Calendars and Schedulers = Customizing R

m Y. Show calendar availability.

® N. Hide calendar availability.

Customizing the Calendar All Day Slot

The calendar all day slot is an area in calendar above the workday hours that lists all day events. All
day events are calendar appointments that start and end at 00:00:00 in the user’s time zone. By
default, the all day slot is hidden. This topic describes how to show and hide the calendar all day slot.

To show or hide the calendar all day slot
1 Open Siebel Tools.

For more information, see Using Siebel Tools.
In the Object Explorer, click Applet.
In the Applets list, locate any calendar applet.

In the Object Explorer, expand the Applet tree, and then click Applet User Prop.

a b W N

In the Applet User Props list, query the Name property for the following value:
Enable AllDay Slot

6 Set the Value property to one of the following values:

m Y. Show the calendar all day slot.

® N. Hide the calendar all day slot.

Customizing Resource Schedulers

This topic describes how to customize a resource scheduler. It includes the following topics:
“Overview of Customizing Resource Schedulers” on page 271

“Customizing a Resource Scheduler” on page 272

“Customizing the Filter Pane in Resource Schedulers” on page 284

“Customizing the Resource Pane in Resource Schedulers” on page 286

“Customizing the Timescale Pane in Resource Schedulers” on page 289

“Customizing the Schedule Pane in Resource Schedulers” on page 296

“Customizing Participant Availability in Resource Schedulers” on page 304
“Customizing Tooltips in Resource Schedulers” on page 307

This topic includes example values that customize the resource scheduler that Siebel Hospitality
uses. You can use a different set of values to customize a different Siebel application.

270 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Overview of Customizing Resource Schedulers

Figure 40 includes an example of a resource scheduler, which is a type of bar chart that includes a
schedule that allows the user to schedule a resource. In this example, the Function Space Diary is a
resource scheduler that allows the user to schedule a room in a hotel. The room is the resource. You
can use a different resource scheduler to meet the deployment requirements of your Siebel
application.

rs and Schedulers 1 Customizing Resource Schedulers

Figure 40. Example of a Resource Scheduler

Explanation of Callouts
The resource scheduler includes the following items:

1 Date navigation bar. Allows the user to modify the date that Siebel Open Ul displays in the
schedule.

2 Time scale selector. Includes the following time scales:

D/H. Days and hours.

D/DP. Days and day parts.

W/D. Weeks and days.

W/DP. Weeks, days, and day parts.
M/D. Months and days.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

271

Customizing Calendars and Schedulers = Customizing Resource Sch

= M/DW. Months, days of the week, and day parts.

A day part is a time period that occurs during the day. For example, morning, afternoon, evening,
and night are examples of day parts. You can customize the time period that defines a day part.
For example, the morning day part comes predefined as 8:00 AM to Noon. You can modify it to
another time period, such as 9:00 AM to Noon. For information about customizing the day part,
see Step 5 on page 290.

3 Filter pane. Allows the user to filter data that Siebel Open Ul displays in the schedule.

4 Resource pane. Displays a list of resources. A resource is something that a resource scheduler
can use to support an event. A room is an example of a resource. An event is something that
occurs in a resource. A meeting is an example of an event.

5 Timescale pane. Displays a time scale that includes date and time information. It includes the
following items:

m The major axis is a dimension that Siebel Open Ul displays in the time scale. In this example,
the major axis displays the current day, which is Monday, July 22.

®m The minor axis is a dimension that Siebel Open Ul displays in the time scale. In this example,
the minor axis displays the time of day, such as 10:00 AM.

m The third axis is a dimension that Siebel Open Ul displays in the time scale. It displays this
axis as a third dimension in addition to the major axis and the minor axis. You can use the
third axis to display Siebel CRM information according to your deployment requirements. In
this example, the third axis displays the total number of rooms that are available for the
current day. For example, 300/380 indicates that 300 rooms out of a total of 380 rooms are
available for the current day.

6 Schedule pane. Displays the schedule as a timeline. Includes events that are scheduled for each
resource.

7 Legend. Displays a legend that describes the meaning of each color that Siebel Open Ul displays
in the Schedule pane.

Using Abbreviations When Customizing the Resource Scheduler

An abbreviation is an optional shortened version of a value that you can specify in the Value property
of an object that a resource scheduler uses. ST is an example of an abbreviation. It indicates the
start time of a resource scheduler. Siebel Open Ul uses these abbreviations to reduce the amount of
information that it sends from the Siebel Server to the client. This book includes the abbreviations
that you can use for Siebel Hospitality. Unless noted elsewhere, these abbreviations come predefined
with Siebel Open Ul, and you can use only the abbreviations that this book describes. For help with
using abbreviations, see “Getting Help from Oracle” on page 35.

Customizing a Resource Scheduler

This topic describes how to customize a resource scheduler.

272 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

alendars and Schedulers = Customizing Resource Schedulers

To customize a resource scheduler
1 Configure the applet that Siebel Open Ul uses to display the resource scheduler:

a Open Siebel Tools.
For more information, see Using Siebel Tools.
b In the Object Explorer, click Applet.

This example includes the minimum set of objects that you must add. To view predefined
applets that Siebel Open Ul uses for a resource scheduler, you can query the name property
for TNT Function Bookings Gantt Applet or. To simplify creating your resource scheduler, you
can make a copy of one of these applets, and then modify the copy.

In the Applets list, add a new applet, or copy one of the applets mentioned in Step b.

Set the following property for the applet that you added in Step c.

Property Value

Class CSSSWEFrameGantt

e In the Object Explorer, expand the Applet tree, and then click Applet User Prop.

T In the Applet User Props list, add the following applet user properties. Each value in the Value
property supports this example. You can use values that your deployment requires. You must
include all of these user properties.

Name Value Description

Gantt Open Ul Service TNT Gantt Ul Service Specify the business service name
that Siebel Open Ul uses to save
system preferences and user

preferences.

Physical_Renderer GanttTNTRenderer Specify the name of the class that
Siebel Open Ul uses for the physical
renderer.

Presentation_Model GanttTNTPresentationM Specify the name of the class that

odel Siebel Open Ul uses for the

presentation model.

ClientPMUserProp EnableTooltip,Date Specify the user properties that Siebel
Padding for TimeScale Open Ul makes available to JavaScript
LIC,DateBar Navigation files that reside on the client. You
TS must use a comma to separate each

user property name.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 273

Customizing Calendars and Schedulers = Customizing Resour

Name

Date Padding for
TimeScale LIC

Value

time_scale_identifier
znumber_of _pages

Description

Specify the number of pages that
Siebel Open Ul uses in the cache for
the time scale. For more information,
see “Customizing the Cache That Siebel
Open Ul Uses for Time Scales” on
page 282.

DateBar Navigation TS

time_scale_identifier:s
mall_date_change,
big_date_change

Specify the date navigation buttons.
For more information, see
“Customizing the Date Navigation
Buttons” on page 282.

Duration for TimeScale
LIC

time_scale_identifier:nu
mber_of _days

For example:
1:7;2:1;4:1;32:36

;64:31;128:7;256:
35;512:1;1024:1

Specify the number of days that Siebel
Open Ul sends to the cache for each
time scale. For example, the following
value specifies to send seven days of
data to the cache for the Week/Day
time scale:

1:7

You can use a semicolon to specify
days for more than one time scale.

Siebel Open Ul uses a number to
identify each time scale. For more
information, see “Determining the
Number That Siebel Open Ul Uses to
Identify Time Scales” on page 284.

No. Of Panes

This applet user property specifies the
number of panes that Siebel Open Ul
displays. A resource scheduler always
displays the Resource pane, Time
Scale pane, and the Scheduler pane,
so you must not modify this applet
user property.

Custom Control Name

s_Diary

Specify the name of the custom
control.

274 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

nd Schedulers & Customizing Resource Schedulers

Name Value Description
Custom Control "Legend Control Specify the tag that Siebel Open Ul
Name,s_Legend"" uses to render each custom control.
Custom Control 1 "DateBar Control Siebel Open.UI uses this |nformat|or1
" to parse the input property set when it
Name,s_ DateBar
— renders a custom control. Use the
Custom Control 2 "GanttChart,s_Diary" following format for each value:

control_name, tag _name
where:

B control_name specifies the name
of the custom control.

B tag_name specifies the tag name
that you define in the Tag Name
control user property in Step c on
page 280.

For example, the following value
specifies to use the s_Legend tag for
the Legend Control Name control:

Legend Control Name,s Legend

You can use Custom Control 1 and
Custom Control 2 to specify more
controls, as required.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 275

Customizing Calendars and Schedulers = Customizing Resou

g Configure system preferences and user preferences.

In the Applet User Props list, add the following applet user properties. Each value in the Value
property supports this example. You can use values that your deployment requires. You must
include all of these user properties.

Name Value
Support System Y
Preferences

Support User Y

Preferences

Description

If the value is N or empty, then Siebel
Open Ul does not support system
preference usage with a resource
scheduler.

System_Pref Field
number

For example,
System_Pref Field 1,
System_Pref Field 2,
and so on.

"GntAXCtrl:Time
Scale", "TST",
“"TNT_SHM_GNTAX_TIM
E_SCALE"™

Specify the default values that Siebel
Open Ul uses in a resource scheduler.
You can use the following
abbreviations:

I TST. Specifies the Time Scale.

I ST. Specifies the start time of the
schedule.

I ET. Specifies the End time of the
schedule.

If a field is a LOV field, then you must
specify the LOV name so that the code
gets the language-dependent value.

For more information about the
abbreviations that the Value property
contains, see “Using Abbreviations
When Customizing the Resource
Scheduler” on page 272.

System_Pref_Prefix

GntAXCtrl:

Specify the prefix that Siebel Open Ul
uses for every system preference that
it uses with a resource scheduler. You
must use this prefix. Siebel Open Ul
only queries system preferences that
include this prefix. It does this query
in the System Preferences business
component.

276 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

ng Calendars and Schedulers i Customizing Resource Schedulers

Name Value Description

User_Pref Field number "Display Toggle - Specify the user preference name.

e B p— Query", "Display Siebel Open Ul sends an abbreviation
Or example, ser. re Toggle™ of this user preference to the client.

Field 1, User_Pref Field

2, and so on.

User_Pref_Prefix Diary Specify the prefix that Siebel Open Ul

uses for every user preference that it
uses with a resource scheduler. You
must use this prefix. Siebel Open Ul
queries only the user preferences that
include this prefix. It does this query
in the User Preferences business
component.

You can use these system preferences and user preferences to configure Siebel Open Ul to
do decision making in your custom JavaScript code that resides on the client. For example,
you can set a user preference for the default time scale to Month and Day, and then use this
default in your custom JavaScript code to set the default time scale. User preferences take
precedence over system preferences. If a user preference exists, then Siebel Open Ul uses
it instead of the corresponding system preference.

Specify the methods that Siebel Open Ul uses with the Siebel Server.

In the Applet User Props list, add the following applet user properties. These applet user
properties specify the methods that Siebel Open Ul uses with the Siebel Server. You must add
them so that Siebel Open Ul can call the methods that reside on the Siebel Server. You must
not modify these methods. You must also add a CanlnvokeMethod applet user property for
every method that your custom JavaScript calls on the Siebel Server. Make sure you set the
Value property for each of these applet user properties to True.

Property Description

CanlnvokeMethod: A resource scheduler supports drilldowns through the Resource,

DolnvokeDrilldown Schedule, and Timescale panes. If the user clicks a label in one of
these panes, then Siebel Open Ul calls the DolnvokeDrilldown
method.

CanlnvokeMethod: Calls the DoOperation method. Siebel Open Ul calls this method

DoOperation for various events, such as drag and drop, extend, shrink, create

task, and so on.

CanlnvokeMethod: Specifies how Siebel Open Ul displays bookings when the user

FilterDisplayOptions clicks Set to set criteria in the Filter pane. You must configure
Siebel Open Ul to call the FilterDisplayOptions method, typically
through the Set button. This configuration enables Siebel Open Ul
to filter events according to the attributes that it defines for each
control.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 277

Customizing Calendars and Schedulers = Customizing Resou

Property Description

CanlnvokeMethod: Specifies how Siebel Open Ul displays bookings when the user
FilterGantt sets a criteria in the Filter pane.

CanlnvokeMethod: Calls the popup dialog box for some operations, such as drag and
InitPopup drop, create task, and so. You cannot customize this behavior.
CanlnvokeMethod: Specifies the method that Siebel Open Ul calls when the user
InvokeOperation clicks a button in the popup applet. You cannot customize this

behavior. This popup applet is the TNT Gantt Popup Applet that
Siebel Open Ul configures for the applet user property.

CanlnvokeMethod: Resets the resource filter options to default values. Siebel Open
ReSetFilterGantt Ul displays these options in the Filter pane.

CanlnvokeMethod: Calls the Refreshgantt method. Siebel Open Ul uses this method
RefreshGantt to refresh a resource scheduler.

CanlnvokeMethod: Resets the display filter options to default values. Siebel Open Ul

ResetDisplayOptions displays these options in the Filter pane.

CanlnvokeMethod: Stores the user preference values that the Filter pane fields
SaveControlValues contain. You cannot customize this behavior.

2 Configure optional applet user properties.

You can use applet user properties to implement the optional customizations that your resource
scheduler configuration requires. For more information about how to do this customization, see
the following topics:

m “Customizing the Filter Pane in Resource Schedulers” on page 284
m “Customizing the Resource Pane in Resource Schedulers” on page 286
m “Customizing the Timescale Pane in Resource Schedulers” on page 289
m “Customizing the Schedule Pane in Resource Schedulers” on page 296
m “Customizing Tooltips in Resource Schedulers” on page 307

3 Add controls:

2 In the Object Explorer, click Control.

278 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

s and Schedulers # Customizing Resource Schedulers

b In the Controls list, add the following controls.

Name Caption - String Reference

1 SBL_TNT_TS_WEEK_DAY
2 SBL_TNT_TS_DAY_DAYPART

4 SBL_TNT_TS_DAY_HOUR

64 SBL_TNT_TS_MONTH_DAY

128 SBL_TNT_TS_WEEKDAY_ DAYPART
256 SBL_TNT_TS_MONTH_DAY_OF WEEK

Note the following:
1 A resource scheduler requires each of these controls for the time scale.
2 You must add a control for each time scale.

1 Set the Name property of each control to the time_scale_identifier, such as 1, 2, 4, and
so on. Siebel Open Ul uses a number to identify each time scale, such as 128 or 256. It
does not use values 8, 16, or 32 for time scales with Siebel Hospitality. It might use
different values for a different Siebel application. For more information, see “Determining
the Number That Siebel Open Ul Uses to Identify Time Scales” on page 284.

(]

Set the HTML Type property of each control to MiniButton.

(]

Set the Method Invoked property of each control to RefreshGantt.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 279

Customizing Calendars and Schedulers = Customizing Resou

c In the Controls list, add the following controls.

Name HTML Type Class Description

GanttChart CustomControl CSSSWEFrameGantt Specifies the main resource
scheduler control.

GanttDateBar = CustomControl CSSSWEFrameGantt Specifies the Date bar that
contains the date controls.
Allows the user to modify the
date in a resource scheduler.

Legend CustomControl CSSSWEFrameGantt Specifies the legend that
Siebel Open Ul displays in a
resource scheduler.

GoToResource Field Leave empty. Specifies the optional input
text control that searches for
resources that reside in the
Resource pane.

Siebel Open Ul binds the
event to this control in the
JavaScript that resides on the
client, so you must use
GoToResource as the name.

Make sure you set the Caption - String Reference property of the GoToResource control to
SBL_GO_T0-1004233041-4MM. Do not set this property for the other controls.

d Inthe Object Explorer, expand the Control tree, click Control User Prop, and then use the Control
User Props list to add the following control user properties to each of the controls that you added

in Step c.
Parent Control Value Property
GanttChart s_Diary
GanttDateBar s _DateBar
Legend s_Legend

Set the Name property for each control user property to Tag Name. Each of these control user
properties specifies a tag name for the control. This configuration allows the JavaScript code
to access the tag.

4 Edit the web template:

a In the Object Explorer, click Applet Web Template.

280 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

f

g

a
b

C

ndars and Schedulers = Customizing Resource Schedulers

In the Applet Web Templates list, create the following applet web template.

Property Value

Name Edit

Type Edit

Web Template Applet OUI Gantt
Upgrade Behavior Admin

In the Object Explorer, click Applet.

In the Applets list, right-click the applet that you are modifying, and then click Edit Web
Template.

In the Web Template Editor, add each of the controls that you added in Step 3 and Step c to the
layout.

It is recommended that you position each of these controls on the right side of the layout.
Set the Item Identifier property of the GanttDateBar control to 3000.

Close the Web Layout Editor.

Configure the application:

In the Object Explorer, click Application.
In the Applications list, query the Name property for the application that you are modifying.
In the Object Explorer, expand the Application tree, and then click Application User Prop.

In the Application User Props list, add the following application user property.

Property Value

Name ClientBusinessServicenumber

For example, ClientBusinessServicel.

Value Gantt Ul Service

You must add a new application user property for each business service that your
customization calls in the client. In this example, you specify the Gantt Ul Service business
service. You must increment the Name for each application user property that you add. For
example, ClientBusinessServicel, ClientBusinessService2, and so on.

6 Compile your modifications.

7 Test your modifications:

a Log in to the client.

b Navigate to the resource scheduler, and then test your modifications.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 281

Customizing Calendars and Schedulers = Customizing Reso

Customizing the Cache That Siebel Open Ul Uses for Time Scales
This topic describes how to customize the cache that Siebel Open Ul uses for time scales.

To customize the cache that Siebel Open Ul uses for time scales
1 Specify the number of pages to use in the cache for a time scale.

Use the following value for the Date Padding for TimeScale LIC applet user property:
time_scale identifier: number_of pages

where:

m time_scale_identifier specifies the time scale.

B number_of_pages specifies the number of pages that Siebel Open Ul uses for the previous
operation and for the next operation. It uses these pages when it prepares the page cache
for the time scale that the time_scale_identifier specifies.

The following example specifies the Week/Day time scale LIC, and it specifies to use 2 pages for
the previous operation, and 2 pages for the next operation:

1:2

Siebel Open Ul uses a number to identify each time scale. It uses the number 1 to identify the
Week/Day time scale. For more information, see “Determining the Number That Siebel Open Ul
Uses to ldentify Time Scales” on page 284.

Siebel Open Ul always includes a default page, so it uses the following calculation to determine
the total cache page count:

previous pages + default page + next pages
So, the cache size for the 1:2 example is 5:
2+1+2=5
For more examples:
m 1:1. Use three pages (1+1+1).
m 1:0. Use one pages (0+1+0).
m 1:2. Use five pages (2+1+2).
2 (Optional) Add more than one time scale.
Use a semicolon to separate each time scale. For example:

1:1;2:1;4:1;32:1;64:1;128:1;256:1;512:1;1024:1

Customizing the Date Navigation Buttons
When you specify the DateBar Navigation TS applet user property, you specify the time period that
that Siebel Open Ul uses to reset the current date when the user clicks one of the following buttons:

B Left arrow. Displays the previous date, small date change.

282 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

alendars and Schedulers = Customizing Resource Schedulers

Right arrow. Displays the next date, small date change.
Double left arrow. Displays the previous date, large date change.

Double right arrow. Displays the next date, large date change.

Siebel Open Ul displays these buttons to the left and to the right of the date that it displays in the
Date Navigation bar.

To customize the date navigation buttons

1

Specify the DateBar Navigation TS applet user property.
Use the following format:

time_scale_identifier: small_date _change, big _date_change
where:

m time_scale_identifier identifies the time scale. Siebel Open Ul uses a number to identify each
time scale. For more information, see “Determining the Number That Siebel Open Ul Uses to
Identify Time Scales” on page 284.

m small_date_change specifies the number of hours, days, weeks, or months that Siebel Open
Ul uses to modify the current date if the user clicks the left arrow or the right arrow.

m big_date_change specifies the number of hours, days, weeks, or months that Siebel Open Ul
uses to modify the current date if the user clicks the double left arrow or the double right
arrow.

(Optional) Add more than one time scale.
Use a semicolon to separate each time scale. For example:

1:7,30;4:1,7;2:1,7;64:30,365;128:7,30;256:1,35;

Examples of Customizing Date Navigation Buttons
The following value customizes the date navigation buttons:

1:7,30
where:
B 1. Specifies the time_scale_identifier. For example, 1 specifies the Week/Day time scale.
B 7. Specifies the number of days. For example, if the current date is August 15, 2013, and if the
user clicks:
m The left arrow, then Siebel Open Ul displays August 8, 2013 as the current date.
m The right arrow, then Siebel Open Ul displays August 22, 2013 as the current date.
B 30. Specifies the number of days for the record set. For example, if the current date is August

15, 2013, and if the user clicks:

m The double left arrow, then Siebel Open Ul displays July 15, 2013 as the current date.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 283

Customizing Calendars and Schedulers = Customizing Resou

m The double right arrow, then Siebel Open Ul displays September 15, 2013 as the current
date.

For another example:
4:1,7
where:
B 4. Specifies the time_scale_identifier. For example, 4 specifies the Day/Hour time scale.

B 1. Specifies the number of days. For example, if the current date is August 15, 2013, and if the
user clicks:

m The left arrow, then Siebel Open Ul displays August 14, 2013 as the current date.
®E The right arrow, then Siebel Open Ul displays August 16, 2013 as the current date.

B 7. Specifies the number of days for the record set. For example, if the current date is August 15,
2013, and if the user clicks:

B The double left arrow button, then Siebel Open Ul displays August 8, 2013 as the current
date.

E The double right arrow, then Siebel Open Ul displays August 22, 2013 as the current date.

Determining the Number That Siebel Open Ul Uses to Identify Time
Scales

This topic describes how to determine the number that Siebel Open Ul uses to identify a time scale.

To determine the number that Siebel Open Ul uses to identify time scales
1 Log in to a Siebel client with administrative privileges.

2 Navigate to the Administration - Data screen, and then the List of Values view.
3 Query the Type field for the following value:
TNT_SHM_GNTAX_TIME_SCALE
In the Display Value field, locate the time scale that you must modify.
5 In the Language-Independent Code field, make a note of the value.

Siebel Open Ul uses the number that it displays in the Language-Independent Code field to
identify the time scale that it displays in the Display Value field.

Customizing the Filter Pane in Resource Schedulers

You can add a custom filter that determines how Siebel Open Ul filters resources and determines the
label colors that it uses for events. You add these controls in the Filter pane. For example, you can
add a filter control named Type to filter events according to the value that the Type field contains.

284 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

ndars and Schedulers = Customizing Resource Schedulers

To customize the Filter pane in resource schedulers
1 In the Object List Editor, choose the applet that you modified in Step 1 on page 273.

2 In the Object List Editor, expand the Applet tree, and then click Control.
3 (Optional) Configure the resource scheduler to filter resources:

a In the Controls list, choose a control that meets your deployment requirements that Siebel Open
Ul can use to filter resources.

If no existing controls meet your deployment requirements, then you can add a control.
b In the Object List Editor, expand the Control tree, and then click Control User Prop.

C In the Control User Props list, add the following control user property.

Name Value Description

Field Name Max Room Area Sqg Ft Specify to use the control as part of the resources
filter. The HTML Type property of this control must
be set to Text so that Siebel Open Ul displays a
text box that allows the user to enter a value.
Siebel Open Ul then uses the filter resources
according to the value that the user enters. For
example, if the user enters a value of 100, then
Siebel Open Ul sends the following value to the
FilterGantt business service method. It sends this
value as an input argument:

Max Room Area Sq Ft = "100"

4 (Optional) Configure the resource scheduler to filter resources and events:

a In the Controls list, choose a control that meets your deployment requirements that Siebel Open
Ul can use to filter resources and events.

If no existing controls meet your deployment requirements, then you can add a control.

b In the Object List Editor, expand the Control tree, and then click Control User Prop.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 285

Customizing Calendars and Schedulers 1 Customizing Re

c In the Control User Props list, add the following control user property.

Name Value Description
Display Field Optioned Specify to use the control as part of the resources
Name filter. The HTML Type property of this control must

be set to CheckBox so that Siebel Open Ul displays
a checkbox that allows the user to display Optioned
events. Siebel Open Ul then filters resources and
events according to the choice that the user makes.
In this example, if the user adds a check mark, then
Siebel Open Ul sends the following value to the
DisplayOptions business service method. It sends
this value as an input argument:

Optioned = "Y"

5 Use the Web Layout Editor to add the control that you modified in Step 3 or Step 4 to the Filter
pane in the web template.

You can do this work as part of Step e on page 281.

Customizing the Resource Pane in Resource Schedulers

This topic describes how to customize the Resource pane.

To customize the Resource pane in resource schedulers
1 In the Object List Editor, choose the applet that you modified in Step 1 on page 273.

2 In the Object List Editor, expand the Applet tree, and then click Applet User Prop.

3 In the Applet User Props list, add each of the following applet user properties, as required.

Name Value Description

Pane O Grid Name Resource Specify the name of the Resource pane.

Pane O Grid Type RGrid Specify the pane type.

Pane O Col number NM,Name Specify the details for the column header that Siebel

Open Ul displays in the Resource pane, including the
abbreviated name and the label.

286 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

ng Calendars and Schedulers i Customizing Resource Schedulers

Name Value Description

Pane O Col column 11D, 206 Specify the identifier that identifies the icon that
number Attr Siebel Open Ul displays for the column.

column attribute

number

For example:

Pane 0 Col 1
Attr 2

Pane O Col O Attr 1 FLD,Room Name Specify the Room Name business component field
that Siebel Open Ul uses to get the value, and then
display it under resource column 0.

Pane O Col O Attr 2 IDD,Products Specify the following items:

I IDD. The abbreviation that indicates the name of
the drill down object.

B Drilldown field. The business component field
that Siebel Open Ul uses when the user drills
down to a destination view.

If the user clicks the DDFLD value that Siebel Open
Ul displays under resource column O, then it
navigates the user to the view that the Products drill
down object defines.

Siebel Open Ul uses the Pane O Col O Attr 2 applet
user property in conjunction with the Pane O Col O
Attr 3 applet user property.

You must configure the corresponding drilldown
object that identifies the destination view and the ID.
This drilldown object resides in the applet that you
are configuring.

Pane O Col O Attr 3 DDFLD,Room Id Specify the following items:

I DDFLD. The abbreviation that indicates the name
of the drill down field.

B Drilldown field. The name of the business
component field that Siebel Open Ul uses when
the user drills down on resource column 0. Siebel
Open Ul uses this field value to navigate the user
to the destination view.

Siebel Open Ul uses the Pane O Col O Attr 3 applet
user property in conjunction with the Pane O Col O
Attr 2 applet user property.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 287

Customizing Calendars and Schedulers = Customizing Reso

Name Value Description
Pane O Field Room Id Specify the business component field that Siebel
number Open Ul uses to get the Siebel CRM data that it

displays in the Resource pane.

Pane 0O Join Field Room Id Specify the field that Siebel Open Ul uses to join
resources and events. Resources and events are
independent of each other. This join field joins the
events that are related to a resource. For example, a
meeting is an example of an event that can be held
in a room, which is an example of a resource. In this
example, each event includes a Room Id.

Pane O Parent Field Parent Room Id Specify the parent business component field that
Siebel Open Ul uses to display resources in a
hierarchy.

Pane O Start Date Effective Start Specify the Start Date field that Siebel Open Ul uses
Field to prepare a search specification.

Pane O View Mode 3 Specify the view mode that this Resource pane
supports. You must use the following numbers to
indicate each view mode:

¥ 0. VIEW_SALESREP.
1. VIEW_MANAGER.

. VIEW_PERSONAL.

. VIEW_ALL.

. VIEW_NONE.

. VIEW_ORG.

. VIEW_CONTACT.

. VIEW_GROUP.,

H B B B B BB
o N O O A~ W N

. VIEW_CATALOG.
9. VIEW_SUBORG.

You can use a comma to specify more than one view
mode, where the comma separates each number. For
example, 1,2,3.

288 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

alendars and Schedulers = Customizing Resource Schedulers

4 Configure the font color that Siebel Open Ul uses in the Resource pane.

Add the following applet user property.

Property Value Description

Pane O Color Field Status Specify the business component field that determines the
color that Siebel Open Ul uses to display a resource. If you
do not specify a value, then Siebel Open Ul displays only the
color black.

5 Configure the icons that Siebel Open Ul display next to the Resource Name label in the Resource
pane.

Add the following applet user property.

Property Value

Pane O Icon number Specify the name of a field that Siebel Open Ul displays in the Resource
pane, a comma, and then the CSS class that contains the icon. For
example:

Room Backup Required,siebui-backuprequired

Customizing the Timescale Pane in Resource Schedulers

This topic describes how to customize the Timescale pane.

To customize the Timescale pane in resource schedulers
1 In the Object List Editor, choose the applet that you modified in Step 1 on page 273.

2 In the Object List Editor, expand the Applet tree, and then click Applet User Prop.

3 In the Applet User Props list, add each of the following applet user properties, as required.

Name Value Description

Pane 1 Grid Name TimeScale Specify the name of the Timescale pane.

Pane 1 Grid Type TGrid Specify the type of the Timescale pane.

Pane 1 BC Name TNT SHM Specify the business component name that Siebel
Property Special Open Ul uses to get information about special days
Dates Action or events that it displays in the Timescale pane. It

can use this information to display colors and icons
on the Timescale pane.

Pane 1 End Date End Date Specify the End Date business component field where
Field Siebel Open Ul applies a search specification to
prepare special days, events information, and so on.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 289

290

Customizing Calendars and Schedulers = Customizing Resource

Name Value

Pane 1 Start Date Start Date

Description

Specify the Start Date business component field

Field where Siebel Open Ul applies a search specification
to prepare special days, events information, and so
on.

Pane 1 Field Start Date,SD Specify the name of a field that resides in the Data

number business component. Siebel Open Ul requires an

abbreviation to prepare special day information.
Siebel Open Ul sends the field value as an
abbreviation to the client so that the client JavaScript
files can use this information.

Time Scale LOV TNT_SHM_GNTA

X_TIME_SCALE

Specify the LOV name that Siebel Open Ul uses for
different time scales.

following user properties, as required.

4 Configure the third axis that Siebel Open Ul displays on the Timescale pane. Add each of the

Name Value Description

Pane 1 BottomAxis Start Date Specify the Date field that Siebel Open Ul uses to

Date Field search the third axis that resides in the TimeScale
pane business component.

Pane 1 BottomAxis Total Group Specify the third axis that resides in the TimeScale

Field number Available,FLD1

where number is a
field number.

pane business component field. The value contains
the name and abbreviation as FLD1, FLD2, and so on.

Pane 1 TNT SHM FSI Specify the business component name that Siebel

BottomAXxisBC Auth Lvl for Open Ul uses to get the data that it displays in the

Name Calendar third axis. If you do not include this applet user
property, then Siebel Open Ul does not display the
third axis in the Timescale pane.

Pane 1 [Product Type] = Specify the search specification that Siebel Open Ul

BottomAXxisBC LookupValue(PR applies on the business component for the Third axis

Search Spec ODUCT_TYPE, in the TimeScale pane.

'Sleeping Room")

Pane 1 Start Date
BottomAXxisBC Sort

Spec

Specify the sort specification that Siebel Open Ul
applies on the business component for the Third axis
in the TimeScale pane.

5 Configure the Day Part time scale:

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

alendars and Schedulers = Customizing Resource Schedulers

a2 Add the Day Part time scale button to the controls.

Use 2 for the Name of this button. This configuration is the LIC value that Siebel Open Ul
uses for the Day Part time scale. You must use a value from the time scale list of values to
name each time scale button control. For more information about how to add this button, see
Step b on page 279.

b Add each of the following applet user properties, as required.

Name Value Description

Pane 1 Daypart Morning,NM,06: Siebel Open Ul uses the following business

number 00:00,ST,12:00 component to provide the dynamic day part data:

i :00,ET,21600,D .

where number is UR TNT SHM Property Day Part Pricing

the day part

number. If this business component does not exist, or if it
does not contain any records, then Siebel Open Ul
uses this applet user property to specify the Static
Day Part information that the day part time scale
uses. The value contains the Name, Starttime,
Endtime, and Duration of the daypart.

Pane 1 Daypart Name,NM Specify the business component fields that Siebel

Field number Open Ul uses to get the day part information. The
value includes the field name and the abbreviation
for this field name.

Pane 1 DaypartBC TNT SHM Specify the name of the business component that

Name Property Day Siebel Open Ul uses to get the day part

Part Pricing information.

Pane 1 DaypartBC (Empty) Specify the search specification that resides on the

Search Spec business component that Siebel Open Ul uses to
get the day part information. This value comes
predefined as empty.

Pane 1 DaypartBC Start Time Specify the sort specification that resides on the

Sort Spec business component that Siebel Open Ul uses to

get the day part information.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 291

Customizing Calendars and Schedulers = Customizing Resource Schedu

6 Configure the colors that Siebel Open Ul displays on the time scale. You can configure Siebel
Open Ul to modify the colors it uses in time scale cells according to a condition. For example, it
can set the color of a weekend cell to red. Add each of the following applet user properties, as

required.

Name Value Description

Pane 1 Color: TNT SHM Gantt Specify the business component that Siebel Open Ul

Admin BC AX Admin uses to display colors for time scale data cells.

Function Status
Pane 1 TNT SHM Gantt Specify the business object that references the
Color:Admin BO Admin System business component that Siebel Open Ul uses to
Pref display colors for time scale data cells.

Pane 1 Color Y Specify how to get the time scale color. You can use

Application one of the following values:
B Y. Get the time scale color from the application

object.
B N. Get the time scale color from an applet user
property.

Pane 1 Color Holiday:#3ED14 If the value of the Pane 1 Color Application applet

Type:Color 3 user property is N, then the value of the Pane 1 Color
Type:Color applet user property must specify the
event and the color that Siebel Open Ul uses to
indicate this event. In this example, the event is
Holiday and the color code is #3ED143. For more
information about these color codes, see the
ColorHexa website at http://www.colorhexa.com.

Pane 1 Color Special If the value of the Pane 1 Color Application applet

Type:Color number Events:#F76161 user property is N, then the value of the Pane 1 Color
Type:Color number applet user property must specify
a special event and the color that Siebel Open Ul uses
to indicate this event.

Pane 1 Colors BC Color LIC If the value of the Pane 1 Color Application applet

Color Field user property is Y, then the value of the Pane 1 Colors
BC Color Field applet user property must specify the
Color field that resides in the business component
that the Pane 1 Color: Admin BC applet user property

specifies.
Pane 1 Colors BC Inventory Status If the value of the Pane 1 Color Application applet
Type Field user property is Y, then the value of the Pane 1 Colors

BC Type Field applet user property must specify the
type of field that resides in business component that
the Pane 1 Color: Admin BC applet user property
specifies.

292 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Name

Pane 1 Hour Axis
Business Service
Method

ng Calendars and Schedulers i Customizing Resource Schedulers

Value Description

EventsTSHourMa Specify the business service method that Siebel Open
p Ul uses to get the hour axis colors that it displays in
the Timescale pane.

Pane 1 Hour Axis TNT Utility Specify the business service that Siebel Open Ul uses
Business Service Service to get the hour axis colors that it displays in the
Name Timescale pane.

Pane 1 Hour Axis Y Specify how to color the hour cells. You can use one

Color

of the following values:
B Y. Use a variety of colors in the cells.

B N. Use only black in the cells.

7 Specify how to display weekends. Add the following applet user properties, as required.

Name Value Description
Pane 1 Weekend Y Specify how to get the weekend information. You can
Application use one of the following values:
B Y. Get the weekend information from the
application object.
B N. Get the weekend information from an applet
user property.
Pane 1 Weekend TNT SHM If the value of the Pane 1 Weekend Application applet

BC

Weekend Admin user property is Y, then the Pane 1 Weekend BC
applet user property must specify the business
component that Siebel Open Ul uses to get the

weekend information.

Pane 1 Weekend
BC Field:Day

Week Day Num If the value of the Pane 1 Weekend Application applet
user property is Y, then the Pane 1 Weekend BC
Field:Day applet user property must specify the
business component field that Siebel Open Ul uses to

get the weekend information.

Pane 1 Weekend
BC Field:Weekend
Flag

Weekend
Weekday Flag

If the value of the Pane 1 Weekend Application user
property is Y, then the Pane 1 Weekend BC
Field:Weekend Flag user property must specify the
business component field that Siebel Open Ul uses to
get the weekend information.

The Pane 1 Weekend BC Field:Day user property
specifies the day information.

The Pane 1 Weekend BC Field:Weekend Flag user
property specifies to configure this day as a weekday
or as a weekend day.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

293

Customizing Calendars and Schedulers = Customizing Resour

Name Value Description
Pane 1 Weekend SHM Site If the value of the Pane 1 Weekend Application applet
BO user property is Y, then the Pane 1 Weekend BO

applet user property must specify the business object
that Siebel Open Ul uses to get the weekend

information.
Pane 1 Weekend SHM Site Specify the business component that Siebel Open Ul
Property Admin BC uses to get weekend information from the Siebel
Server.
Pane 1 Weekend Property Id Specify the field that resides in the property business
Property Admin BC component.
Field
Pane 1 Weekend SHM Site Specify the business component that Siebel Open Ul
Property BC uses to get the property information.
Pane 1 Weekend Property Id Specify the business component field that Siebel
Property Field Open Ul uses to get the property information.
Pane 1 Weekends 0,5,6 Specify the days that Siebel Open Ul uses as

weekend days. If the value of the Pane 1 Weekend
Application applet user property is N, then the Pane
1 Weekends applet user property must specify the
days that Siebel Open Ul uses to identify weekend
days. You must use the following numbers to
represent each day:

0. Sunday.

1. Monday.

. Tuesday.

. Wednesday.
. Thursday.

HE HE B B B
a A W N

. Friday.
6. Saturday.

Use a comma to separate each number. For example,
a value of 0,5,6 in the Pane 1 Weekends user
property customizes Siebel Open Ul to use Sunday,
Friday, and Saturday as weekend days.

294 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Calendars and Schedulers = Customizing Resource Schedulers

8 Configure the icons that Siebel Open Ul displays and the text that it uses with these icons in time
scale cells according to a condition. Add the following applet user properties, as required.

Name Value Description

Pane 1 Icon Sell Specify the field value from the business component

number Notes,siebui- that the Pane 1 BC Name applet user property
sellnotes identifies, and the class name of the cascading style

sheet that Siebel Open Ul uses to render the time
scale cells. You must use a comma to separate these
values.

You can configure more than one Pane 1 Icon number
applet user property. For example, you can configure
Pane 1 Icon 1, Pane 1 Icon 2, and so on.

9 Configure the drilldowns that Siebel Open Ul uses on the major axis and the third axis. If you
configure a drill-down, then you must configure each of the following applet user properties.

Name Value Description
Pane 1 Date source:destination Specify the time scale that Siebel Open Ul displays
Drilldown when the user clicks a date in the Timescale pane.

For more information, see “Customizing Time
Scales That Siebel Open Ul Displays in the Timescale
Pane” on page 295.

Pane 1 Item Time Scale Specify the drill-down object that resides in the

Drilldown Name Drilldown applet that Siebel Open Ul uses to display the
third axis. You must also configure this drill-down
object in the applet.

Pane 1 Item OUl Property Id Specify the field that contains the value that
Drilldown Field Siebel Open Ul uses when it does a drill down
operation on a label that resides in the third axis.

Siebel Open Ul uses this field value to navigate the
user to the destination view according to the
drilldown object that the Pane 1 Item Drilldown
Name applet user property specifies.

Customizing Time Scales That Siebel Open Ul Displays in the
Timescale Pane

This topic describes how to specify the Pane 1 Date Drilldown applet user property. You specify the
time scales that Siebel Open Ul displays when the user clicks a date in the Timescale pane, such as
Monday, July 22.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 295

Customizing Calendars and Schedulers & Customizing

To customize time scales that Siebel Open Ul displays in the Timescale pane
1 Determine the number that Siebel Open Ul uses to identify the time scale that you must modify.

For more information, see “Determining the Number That Siebel Open Ul Uses to lIdentify Time
Scales” on page 284.

2 Add the value that you determined in Step 1 to the value of the Pane 1 Date Drilldown applet
user property. Use the following format:

source:destination
where:

m source identifies the time scale that the user clicks. Siebel Open Ul uses a number to identify
each time scale. For more information, see “Determining the Number That Siebel Open Ul Uses
to Identify Time Scales” on page 284.

m destination identifies the time scale that the resource scheduler displays when the user clicks
the source.

For example, the following value configures Siebel Open Ul to display the Day/Day-Part time
scale when the user clicks the Week/Day time scale:

1:2
3 (Optional) Allow the user to navigate between time scales.
You can use a semicolon to separate each time scale. For example:

1:2;2:256;4:256;64:2;128:2;256:2;

Customizing the Schedule Pane in Resource Schedulers

This topic describes how to customize the Schedule pane.

To customize the Schedule pane in resource schedulers
1 In the Object List Editor, choose the applet that you modified in Step 1 on page 273.

2 In the Object List Editor, expand the Applet tree, and then click Applet User Prop.

3 In the Applet User Props list, add each of the following applet user properties, as required.

Name Value Description
Pane 2 Grid Name Utilization Specify the pane name.
Pane 2 Grid Type UGrid Specify the pane type.

296 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

mizing Calendars and Schedulers i Customizing Resource Schedulers

Name Value Description
Pane 2 Field Function Space Specify the business component fields that contain
number 1d,FSI the information that Siebel Open Ul displays in the
Schedule pane. Siebel Open Ul sends information
from these fields to the client. Use the following
format:
field name, abbreviated name
You can specify more than one field. For example,
Pane 2 Field 1, Pane 2 Field 2, and so on.
Pane 2 BC Name TNT SHM Specify the business component that Siebel Open Ul
Function Booking uses to get information about the events that it
VBC displays in the Schedule pane.
Pane 2 BC Sort Function Space Specify the business component fields that Siebel
Spec Id, Start Date Open Ul uses for the sort specification that it uses to
Time sort the records that it displays in the Schedule pane.

You must use a comma to separate each field name.

Pane 2 BC Search “[Activity Type] Specify the business component fields that Siebel

Spec = Completed* Open Ul uses for the search specification that it uses
to identify the records that it displays in the Schedule
pane. You can use an equation or a field name. For
more information about specifying a search
specification, see Configuring Siebel Business

Applications.
Pane 2 End Date Absolute End Specify the end date field where Siebel Open Ul does
Field Date Time the search according to the search specification.

Pane 2 Start Date Start Date Time Specify the start date field where Siebel Open Ul does
Field the search according to the search specification.

To formulate the search specification, Siebel Open Ul
joins the field that you specify in the Pane 2 Start
Date Field applet user property with the field that you
specify in the Pane 2 End Date Field applet user

property.

Pane 2 Start Attrib ST Specify the abbreviation that Siebel Open Ul uses for
the start date field.

Pane 2 End Attrib ET Specify the abbreviation that Siebel Open Ul uses for
the end date field.

Pane 2 Join Field Function Space Specify the field that Siebel Open Ul uses as the
Id identifier when it matches rows with other panes.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 297

Customizing Calendars and Schedulers & Customizing

Name Value Description
Pane 2 Bypass Dependency Specify the type of events that Siebel Open Ul does
Overlap For Status not split when an event overlap occurs. An event

overlap is a condition that occurs if more than one
event occurs at the same time. Siebel Open Ul splits
the row height of each overlapping event so that it
can display them in the same screen space that it
normally uses to display an event that does not
overlap.

In this example, Siebel Open Ul does not split any
Dependency events that overlap.

You can use a comma to bypass multiple event types.
For example, you can use the following value to
bypass Dependency and Optioned events:

Dependency,Optioned
Pane 2 Overlap TNT_SHM_INV_S Specify the LOV type that Siebel Open Ul uses for the
Event LOV Type TATUS inventory status when events overlap.
Pane 2 Overlap GS Specify the abbreviation that Siebel Open Ul uses for
Event Logical Order the field that it displays in the Schedule pane when
Based Field Attr events overlap.

298 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

ng Calendars and Schedulers i Customizing Resource Schedulers

Name Value Description
Pane 2 Overlap Reserved,Option Specify the order that Siebel Open Ul uses to display
Event Logical Order Reserved,Overbo overlapping events, according to status. In this
Values oked,Optioned,U example, Siebel Open Ul displays statuses in the
nreserved,Unava following order. It displays Reserved events first and
ilable,Unavailabl Temporary events last:
e Instance,Out of a d
Order,Temporary eserve
B Option Reserved
I Overbooked
B Optioned
B Unreserved
B Unavailable
I Unavailable Instance
I Out of Order
Temporary
Pane 2 Round 15 Specify the number that Siebel Open Ul uses to resize
Minutes Events an event. If the user resizes an event, then Siebel

Open Ul rounds the time according to the value that
you specify. For example, assume you specify 15 as
the value for this applet user property. Assume an
event starts at 08:00 AM and ends 10:00 AM. If the
user drags the end time for this event from 10:00 AM
to 10:12 AM, then Siebel Open Ul rounds this end
time according to the closest 15 minute increment,
where 15 is measured from the beginning of the hour.
In this example, it rounds the end time to 10:15 AM.

4 Configure the colors that Siebel Open Ul uses for the events that it displays in the Schedule pane.
It modifies these colors according to a condition. For example, it can use red to color a Reserved
event. Add each of the following applet user properties, as required.

Name Value Description

Pane 2 Color INV_STATUS Re Specify the INV_STATUS color that Siebel Open Ul
number served,GREEN uses for the LOV type.

Pane 2 Event Color EventsColorMap Specify the business service method that Siebel Open
Service Method Ul uses to get the event colors.

Pane 2 Event Color TNT Utility Specify the business service that Siebel Open Ul uses
Service Name Service to get the event colors.

Pane 2 Event #6495ed Specify the default color that Siebel Open Ul uses for
Default Color events.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 299

Customizing Calendars and Schedulers = Customizing R

Name Value Description

Pane 2 Status LIC INVENTORY_STA Specify the colors that Siebel Open Ul uses for the

Field number TUS,GS inventory status. For example, specify the
abbreviation that you defined in the Pane 2 Overlap
Event Logical Order Based Field Attr applet user
property. You defined these user properties in Step 3
on page 296.

Pane 2 Status LOV TNT_FSD_COLO Specify the color scheme that Siebel Open Ul uses for
Type R_SCHEMA events. To modify schemes, do the following:

B Log in to a Siebel client with administrative
privileges.

B Navigate to the Administration - Data screen, and
then the List Of Values view.

B Query the Type Field for
TNT_FSD_COLOR_SCHEMA.

B Modify the fields, as necessary.

Pane 2 Status LOV Type specifies only the color
schemes that are available. To configure Siebel Open
Ul to display a color according to a condition in Siebel
Hospitality, you must use the Function Status Color
Schema list that resides in the Function Space Diary
Administration view of the Function Space
Administration screen. For example, to use red for the
Prospect status in Siebel Hospitality. Configuration for
your Siebel application might be different than it is for
Siebel Hospitality.

300 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

ng Calendars and Schedulers i Customizing Resource Schedulers

5 Configure the icons and the text for these icons that Siebel Open Ul uses with the events that it
displays in the Schedule pane according to a condition. Add each of the following applet user
properties, as required.

Name Value Description
Pane 2 Icon DNMF,siebui- Specify the abbreviation that you defined in the
number donotmove corresponding applet user property and the class

where the corresponding cascading style sheet
resides. For example, specify the abbreviation that
you defined in the Pane 2 Field O applet user property.
You defined these user properties in Step 3 on

page 296.

Siebel Open Ul uses this configuration for the icon.
Use a comma to separate the abbreviation from the
class name.

You can configure more than one applet user
property. For example, Pane 2 Icon O, Pane 2 Icon 1,
and so on.

Pane 2 Item Icon DNMF,NF,DF,SF,F Specify the abbreviations that you defined for the
Fields SF,SRF,HF,AF,2H corresponding user properties in Step 3 on page 296.
HF, SFF For example, specify the abbreviations for the Pane 2

Field O applet user property, the Pane 2 Field 1 applet
user property, and so on. The abbreviations in this
example come predefined with Siebel Hospitality. You
cannot use any other abbreviation. You must use a
different set of abbreviations for your Siebel
application.

Use a comma to separate each abbreviation.

6 Configure Drag and Drop.

Siebel Open Ul uses a business service method to implement drag and drop functionality. This
step describes how to specify the input arguments that this method requires. You add each of
the following applet user properties.

Name Value Description
Disable Drag for N Specify to allow the user to drag and drop items. Use
Ganttchart one of the following values:

B Y. Allow drag and drop.

B N. Do not allow drag and drop.

DragnDrop: "Service Name", Specify the business service that Siebel Open Ul uses
Service Inputs 1 "TNT Gantt Ul to handle a drag and drop operation. You must use this
Service" value. You cannot modify it.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 301

Customizing Calendars and Schedulers I Cus

Name Value Description

DragnDrop: "Service Specify the business service method that Siebel Open

Service Inputs 2 Method", Ul uses to handle a drag and drop operation. You must
"DragnDrop" use this value. You cannot modify it.

DragnDrop: "BO", "Quote" Specify the business object.

Service Inputs 3

DragnDrop: You can use these applet user properties to specify more input arguments
Service Inputs 4 that your deployment requires.

DragnDrop:
Service Inputs 5

DragnDrop:
Service Inputs 6

DragnDrop:
Service Inputs 7

302 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

izing Calendars and Schedulers ™ Customizing Resource Schedulers

7 Configure other Schedule pane behavior, such as drilldown, extend, shrink, add, update, and
delete. Add each of the following applet user properties, as required.

Name

Create Task:

Value

"Service Name",

Description

Specify the business service that Siebel Open Ul uses

Service Inputs 1 "TNT Gantt Ul if the user clicks OK in the popup dialog box that it
Service" displays in the Schedule pane.

Create Task: "Service Specify the business service method that Siebel Open

Service Inputs 2 Method", Ul uses if the user clicks OK in a popup dialog box.

"CreateBooking
Record"

Disable Resize for

Ganttchart

N

Specify to allow the user to resize an activity or a
booking. Use one of the following values:

B Y. Allow resizing.

B N. Do not allow resizing.

ExtendShrink:

"Service Name",

Specify the business service that Siebel Open Ul uses

Service Inputs 1 "TNT Gantt Ul to handle a resize operation.

Service"
ExtendShrink: "Service Specify the business service method that Siebel Open
Service Inputs 2 Method", Ul uses to handle a resize operation.

"ExtendShrink"

Pane 2 Disable
ExtendShrink
Views

:32:256:

Specify to disable resizing for a time scale. For
example, 32 and 256 each represent a
time_scale_identifier:

B 32. Specifies the Month/Day-of-Week time scale.

B 256. Specifies the Month/Day-of-Week/Day Part
scale.

Siebel Open Ul uses a number to identify each time
scale. For more information, see “Determining the
Number That Siebel Open Ul Uses to Identify Time
Scales” on page 284.

You must include a color before and after each
identifier.

Show Task

"Service Name",

Specify the business service that Siebel Open Ul uses

Details: Service "TNT Gantt Ul if the user double-clicks a booking, a task, or an
Inputs 1 Service" activity, and then clicks OK in a popup dialog box.
Show Task "Service Specify the business service method that Siebel Open
Details: Service Method", Ul uses if the user double-clicks a booking, a task, or

Inputs 2

"CreateBooking
Record"

an activity, and then clicks OK in a popup dialog box.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

303

Customizing Calendars and Schedulers = Customizing Reso

Name Value Description
Pane 2 Item Activity Specify the drill-down object that Siebel Open Ul uses
Drilldown Name Drilldown when the user clicks a label in the Schedule pane.

Siebel Open Ul navigates the user to the view that this
drill-down object defines.

This configuration works in conjunction with the DDID
value that you configure in the Pane 2 Field number
applet user property.

You must configure the corresponding drilldown object
in the applet.

Customizing Participant Availability in Resource
Schedulers

This topic describes how to customize the controls that Siebel Open Ul uses to display information
about participant availability in a resource scheduler. You use custom cascading style sheet files to
do some of this modification. For more information about how to organize these files, see “Organizing
Files That You Customize” on page 162.

To customize participant availability in resource schedulers

1 Allow or disallow the user to resize the panes that Siebel Open Ul uses to display information
about participant availability:

a Log in to Siebel Tools.

In the Object Explorer, click Applet.

In the Applets list, query the Name property for Calendar GanttChart OUI Applet.
In the Object Explorer, expand the Applet tree, and then click Applet User Prop.

T o O T

In the Applet User Props list, modify the following applet user property.

Name Description

Disable Resize for Ganttchart Specify to allow the user to resize an activity or a booking.
Use one of the following values:

B Y. Allow resizing.

B N. Do not allow resizing.

NOTE: This user property applies to all schedulers.
|

2 Modify the color that Siebel Open Ul uses to display events:

304 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

alendars and Schedulers = Customizing Resource Schedulers

In the Object Explorer, click Business Service.

O

In the Business Services list, query the Name property for Calendar Gantt Color Service.

c In the Object Explorer, expand the Business Service tree, and then click Business Service User
Prop.

d In the Business Service User Props list, modify the following business service user property.

Name Description

Event Status Mapping Color For information about how to set this business service user
property, see “Setting the Color for Events” on page 306.

3 Compile your modifications.

Modify the icons that Siebel Open Ul uses to display information about participant availability. To
do this, you can use one the following siebui-calgantt-icon CSS classes in your custom CSS file.

Description Example

To modify the icon that .siebui-calgantt-icon-employee {
Siebel Open Ul uses for wi(_jth: 16px;

employees, use the height: 16px;
siebui-calgantt-icon- float: left;

margin-top: 2px;
background: url(../images/employees_icon.gif) no-repeat
center center;

employee CSS class.

ks
To modify the icon that .siebui-calgantt-icon-contactcall {
Siebel Open Ul uses for width: 16px;
contacts, use the siebui- height: 16px;
calgantt-icon-contact float: left;
CSS class. margin-top: 2px;

background: url(../images/contact_call.jpg) no-repeat
center center;

ks
To modify the icon that .siebui-calgantt-icon-resource {
Siebel Open Ul uses for width: 16px;
resources, use the height: 16px;
calgantt-icon-resource float: left;
CSS class. margin-top: 2px;

background: url(../images/resoure-items.gif) no-repeat
center center;

}

5 Modify how Siebel Open Ul displays information about the current record.

You can use the .siebui-currentRecord CSS class in one of your custom CSS files. For example:

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 305

Customizing Calendars and Schedulers 1 Customizing Re

.siebui-currentRecord {
border-left: 3px solid green;
border-right: 3px solid red;
z-index: 1000;

}

This example modifies the class only for the current event. To change the default color for all
events, modify the user property to the following:

Pane 2 Event Default Color

6 Verify your work:
a Log into the client.
b On the Home page, click My Calendar.
C On the application-level menu, click Edit, and then click New Record.
Siebel Open Ul displays the eCalendar Detail View that contains the scheduling control.

d Verify that the resource scheduler includes the modifications that you configured in Step 2
through Step 5.

Setting the Color for Events

You can use the Event Status Mapping Color business service user property to set the color for each event
type. It uses the following syntax:

‘“status_abbreviation,event_type: color_value”
where:

B status_abbreviation is defined in the Pane 2 Status LIC Field applet user property. Siebel Open
Ul uses this applet user property to display the scheduling control. In this example, you set
status_abbreviation to GS (Gantt Status). You can use any abbreviation. It is recommended that
you use a short abbreviation, such as GS, to reduce the amount of information that Siebel Open
Ul must communicate.

B event_type specifies the type of event. For example, it can specify one of the following values:
m Accepted
m Declined
®m Not Responded

B color_value specifies a hexadecimal value that identifies the color that the cascading style sheet
uses to display an event. For example, a color_value of #FF0000 specifies to display an event as
red.

You can use the following syntax to specify multiple color values:

“status_abbreviation,event_type:color _value;status abbreviation,event_type:color v
alue;”

where:

306 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

ndars and Schedulers = Customizing Resource Schedulers

B ; (semi-colon) separates each color value.

For example, the following code sets the color for each event type:
“GS,Accepted:#d3ffd7;Declined:#6600CC;Not Responded:#000000*“

where:

B Accepted:#d3ffd7 sets the RGB color for Accepted events to light green (red at 82.75%, green
at 100%, and blue at 84.319%).

B Declined:#6600CC sets the RGB color for Declined events to purple (red at 40%, green at 0%,
and blue at 80%).

B Not Responded:#000000 sets the RGB color for Not Responded events to black (red at 0%, green
at 0%, and blue at 0%).

NOTE: If you are setting the color for events in a Participant Availability scheduling control, the
Business Service that requires modification is the Calendar Gantt Color Service. The value can be
found in the Pane 2 Event Color Service Name user property in the applet.

For more information about how to use a hexidecimal number to represent a color, see the page
about color codes at the ColorCodeHex website at http://www.colorcodehex.com.

Using CSS Classes to Set the Color for Events
You can use the following code instead of modifying the Calendar Gantt Color Service business service
to set event colors:

siebui-calgantt-event_type

For example, you can add the following class to one of your custom CSS files to set the border color
for Not Responded events to yellow:

.siebui-calgantt-NotResponded {
border: 1px solid #FFFFOO;

}

Customizing Tooltips in Resource Schedulers

This topic describes how to customize the Tooltips that Siebel Open Ul displays in a resource
scheduler.

To customize tooltips in resource schedulers
1 In the Object List Editor, choose the applet that you modified in Step 1 on page 273.

2 In the Object List Editor, expand the Applet tree, and then click Applet User Prop.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 307

Customizing Calendars and Schedulers = Customizing Resource Schedu

3 In the Applet User Props list, add each of the following applet user properties, as required.

Name Value Description
Pane 2 Tooltip BC TNT SHM FSI Specify the business component that Siebel Open Ul
Name Booking uses to get the tooltip information for the events that

it displays in the Schedule pane. This business
component must contain the information that Siebel
Open Ul displays in the tooltip.

Pane 2 Tooltip BO SHM Site Specify the business object that references the
Name business component that you specify in the Pane 2
Tooltip BC Name applet user property.

Pane 2 Tooltip Quote Name Tip Specify the business component fields that Siebel

Field number Open Ul uses to get the information that it displays in
the tooltips in the Schedule pane. Siebel Open Ul adds
a new line for each of these field values in the tooltips
and displays them consecutively. For example:

Eventl

Holiday resorts

10:00

12:00
Pane O Tooltip BC TNT Product-ISS Specify the business component that Siebel Open Ul
Name Admin uses to get the tooltip information for the Resource

pane.

Pane O Tooltip BO SHM Site Specify the business object that references the
Name business component that you specify in the Pane 0

Tooltip BC Name applet user property.

Pane O Tooltip Physical Area Tip Specify the business component field that Siebel Open
Field number Ul uses to get the information that it displays in the
tooltips for the Resource pane.

Pane O Tooltip Name Specify the business component field that Siebel Open
Header Field Ul uses to get the information that it displays in the
first field in the tooltips for Resource pane.

Pane 1 Tooltip BC TNT SHM Specify the business component that Siebel Open Ul

Name Property Special uses to get the information that it displays in the
Dates Action tooltips for the Timescale pane.

Pane 1 Tooltip BO SHM Site Specify the business object that references the

Name business component that you specify in the Pane 1

Tooltip BC Name applet user property.

Pane 1 Tooltip Tooltip Specify the business component field that Siebel Open
Field number Ul uses to get the information that it displays in the
tooltips for the Timescale pane.

308 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

chedulers m Customizing Resource Schedulers

Name Value Description
Pane 1 Tooltip Type Specify the sort specification that Siebel Open Ul uses
SortSpec to sort the records in the business component that it

uses to get the tooltip information for the Timescale
pane. Siebel Open Ul uses this configuration to sort
sentences in a tooltip that includes more than one
sentence.

EnableTooltip Y Specify to display or not display the tooltip. Use one
of the following values:

I Y. Display the tooltip.
B N. Do not display the tooltip.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 309

Customizing Calendars and Schedulers = Customizing Resource S

4 Configure any special functionality that your tooltip deployment requires. Add each of the
following applet user properties, as required.

Name Value Description
Pane 2 Tooltip GetEventTooltipl Specify the business service method that Siebel Open
Service Method nfo Ul uses to get the tooltip information for the Schedule

pane. If you do not specify this applet user property,
then Siebel Open Ul calls the default business
service, and then displays data according to the
configurations of the following user properties:

B Pane 2 Tooltip BC Name
B Pane 2 Tooltip BO Name

B Pane 2 Tooltip Field number

Pane 2 Tooltip TNT Gantt Ul Specify the business service name that Siebel Open

Service Name Service Ul uses to get the tooltip information for the Schedule
pane. If you do not specify this applet user property,
then Siebel Open Ul calls the default business
service, and then displays data according to the
configurations of the following user properties:

B Pane 2 Tooltip BC Name
B Pane 2 Tooltip BO Name

B Pane 2 Tooltip Field number

Pane 1 Tooltip GetTSTooltiplnfo Specify the business service method that Siebel Open

Service Method Ul uses to get the tooltip information for the
Timescale pane. If you do not specify this applet user
property, then Siebel Open Ul calls the default
business service, and then displays data according to
the configurations of the following user properties:

B Pane 1 Tooltip BC Name
B Pane 1 Tooltip BO Name

B Pane 1 Tooltip Field number

Pane 1 Tooltip TNT Gantt Ul Specify the business service that Siebel Open Ul uses

Service Name Service to get the tooltip information for the Timescale pane.
If you do not specify this applet user property, then
Siebel Open Ul calls the default business service, and
then displays data according to the configurations of
the following user properties:

B Pane 1 Tooltip BC Name
B Pane 1 Tooltip BO Name

B Pane 1 Tooltip Field number

310 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

and Schedulers = Customizing Resource Schedulers

Name Value Description
Pane O Tooltip GetResTooltipInf Specify the business service method that Siebel Open
Service Method o Ul uses to get the tooltip information for the Resource

pane. If you do not specify this applet user property,
then Siebel Open Ul calls the default business
service, and then displays data according to the
configurations of the following user properties:

B Pane O Tooltip BC Name
B Pane O Tooltip BO Name

B Pane O Tooltip Field number

Pane O Tooltip TNT Gantt Ul Specify the business service that Siebel Open Ul uses

Service Name Service to get the tooltip information for the Resource pane.
If you do not specify this applet user property, then
Siebel Open Ul calls the default business service, and
then displays data according to the configurations of
the following user properties:

B Pane O Tooltip BC Name
B Pane O Tooltip BO Name

B Pane O Tooltip Field number

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 311

Customizing Calendars a

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Siebel Open Ul to
h Other Applications

This chapter describes how to configure Siebel Open Ul to interact with other applications. It
includes the following topics:

B Displaying Data from External Applications in Siebel Open Ul on page 313
B Displaying Data from Siebel Open Ul in External Applications on page 320

Displaying Data from External
Applications in Siebel Open Ul

This topic describes how to configure Siebel Open Ul to interact with other applications. It includes
the following information:

B Displaying Data from External Applications in Siebel Views on page 313

B Displaying Data from External Applications in Siebel Applets on page 316

Displaying Data from External Applications in Siebel
Views

The example in this topic describes how to configure Siebel Open Ul to get connection details from
LinkedlIn, find matching mutual contacts in Affiliation views, and then display the matching records
in a Siebel view.

To display data from external applications in Siebel views
1 Set up the data:

a Log in to LinkedIn, and then identify two connections that include profile pictures and that allow
you to reference them in your configuration.

b Write down the case-sensitive first name and last name for each LinkedIn profile.
Log in to Siebel Call Center, navigate to the contacts Screen, and then the Contact List view.

Click New, and then enter the First Name and Last Name values for one of the profiles that you
noted in Step b.

The values you enter must match exactly. Make sure uppercase and lowercase usage is the
same.

e Click New, and then enter the First Name and Last Name values for the other profile you noted
in Step b.

T Navigate to the Opportunity screen, and then the Opportunity List view.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 313

Configuring Siebel Open Ul to Interact with Other Applications
External Applications in Siebel Open Ul

0 Click New to create a new opportunity, and then add the contact that you created in Step d to
this new opportunity.

h Click New to create another new opportunity, and then add the contact that you created in Step e
to this new opportunity.

I Log in to the Siebel application using the sample database, and then repeat Step b through
Step e.

] Navigate to the Contact Screen, and then the Contact List view.
k Drill down on the first contact, and then navigate to the third level Affiliations view.
I Click New, and then add the contact that you created in Step d.
m Click New, and then add the contact that you created in Step e.
2 Replace the SRF that the Mobile Web Client uses in the following folder:
INSTALL _DIR\eappweb\Objects\enu
This SRF includes the Siebel Tools modifications that this example requires.

3 Download the sociallyawarepmodel.js file into the following folder:

INSTALL _DIR\eappweb\PUBLIC\ Janguage code\files\custom

To get a copy of this file, see Article ID 1494998.1 on My Oracle Support. This code already
contains the configuration that Siebel Open Ul requires to authenticate the user with LinkedIn
and to get the connections for this user from LinkedIn. For more information about the
language_code, see “Languages That Siebel Open Ul Supports” on page 592.

Use a JavaScript editor to open the sociallyawarepmodel.js file that you downloaded in Step 3.
5 Locate the following code:

Social lyAwarePM.prototype. Init = function(){
SiebelAppFacade.Social lyAwarePM.superclass. Init.call(this);

6 Add the following code immediately under the code you located in Step 5:

this.AddProperty(*'linkedINRecordSet"”, [1);
this_AddProperty (" linkedINMarker™, 0);

where:
m linkedINRecordSet stores the connection details of the current user from LinkedIn.

m linkedINMarker marks the position in the connection details record set for querying purposes
in the Siebel Database.

7 Add the following code immediately after the code you added in Step 6:

this.AddMethod(""QueryForRelatedContacts', QueryForRelatedContacts);
this._AddMethod("'GetConnectionByName', GetConnectionByName);

This code allows the presentation model to call the GetConnectionByName method and the
QueryForRelatedContacts method that you add in Step 8.

8 Add the following code immediately after the FetchConnectionFromLinkein method:

314 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

en Ul to Interact with Other Applications ® Displaying Data from
External Applications in Siebel Open Ul

function GetConnectionByName(fName, IName){
var connection = null;
if(fName && IName){
var linkedInRecSet = this.Get("linkedINRecordSet™);
for(var i = 0; i < linkedInRecSet.length; i++){
var current = linkedInRecSet[i];

if(current.firstName === fName && current.lastName === IName)
{connection = current;break;}}
¥
return connection;

}
function QueryForRelatedContacts(){
var currentMark = this.Get("linkedINMarker™);
var recordSet = this.Get("'linkedINRecordSet");
var firstName s
var lastName = ""';
for(var i = currentMark; i < currentMark + 5; i++){
var current = recordSet[i];
firstName = firstName + current["firstName'];
lastName = lastName + current["lastName'];
if(i < (currentMark + 4))
{firstName = FfirstName + " OR ";
lastName = lastName + " OR '';

L
if(firstName !== """]| lastName !== """"){

SiebelApp.S_App-GetActiveView() -ExecuteFrame(
this.Get(""GetName™),

L
{field : "Last Name"™ , value : lastName},
{field : "First Name"™, value : FfirstName}]);
}
}
where:

B GetConnectionByName uses the first name and last name to get the connection information
stored on the client. Siebel Open Ul gets this informaiton from LinkedIn.

B QueryForRelatedContacts is the presentation model method that uses the subset of the
LinkedIn connection record that Siebel Open Ul sets to query the Siebel Server for matching
records. The notification causes Siebel Open Ul to call the BindData method of the physical
renderer as part of the reply processing. The BindData method updates the user interface
with the matching set of records from server. For more information, see “Notifications That
Siebel Open Ul Supports” on page 545 and “GetActiveView Method” on page 487.

9 Add the following code immediately below the AddProperty methods you added in Step 6:

this._AddMethod("'QueryForRelatedContacts', QueryForRelatedContacts);
this._AddMethod("'GetConnectionByName', GetConnectionByName);

These AddMethod calls add the QueryForRelatedContacts method and the GetConnectionByName
method so that Siebel Open Ul can call them from the presentation model.

10 Configure the manifest:

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 315

Configuring Siebel Open Ul to Interact with Other Applic
External Applications in Siebel Open Ul

a Log in to a Siebel client with administrative privileges.

For more information about the screens that you use in this step, see “Configuring Manifests”
on page 167.

b Navigate to the Administration - Application screen, and then the Manifest Files view.

C In the Files list, add the following file.

Field Value

Name siebel/custom/sociallyawarepmodel.js

d Navigate to the Administration - Application screen, and then the Manifest Administration view.

e In the Ul Objects list, specify the following applet.

Type Applet
Usage Type Presentation Model
Name Enter any value.

T In the Object Expression list, add the following expression. Siebel Open Ul uses this expression
to render the applet on a desktop platform.

Field Value
Expression Desktop
Level 1

g In the Files list, add the following file:

siebel/custom/social lyawarepmodel _js

11 Test your modifications.

Displaying Data from External Applications in Siebel
Applets

The example in this topic describes how to configure Siebel Open Ul to display data from an external
application in a Siebel applet. Siebel Open Ul can use a symbolic URL open this external application
from an applet. For example, to display a Google Map or a Linked In view as an applet in a Siebel
application.

The example in this topic configure Siebel Open Ul to display a Google map as a child applet in the
Account detail page. The Map displays a location according to the Zip Code of the account record. If
the Zip Code is empty, then it displays the default Google map.

316 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

o Interact with Other Applications M Displaying Data from
External Applications in Siebel Open Ul

To display data from external applications in Siebel applets

1 Configure the business component:

a

T o O T

Open Siebel Tools.

For more information, see Using Siebel Tools.

In the Object Explorer, click Business Component.

In the Business Components list, query the Name property for Account.

In the Object Explorer, expand the Business Component tree, and then click Field.

In the Fields list, add the following field.

Property Value

Name You can use any value. For this example, use the following value:
Symbol icURLGoogleMap

Calculated TRUE

Type DTYPE_TEXT

Calculated Value Enter the name of any Symbolic URL enclosed in double

quotation marks. For this example, enter the following value:
Symbol icURLGoogleMap

You define this Symbolic URL later in this example.

2 Configure the applet:

a
b

In the Object Explorer, click Applet.
In the Applets list, query the Name property for SSO Analytics Administration Applet.

In a typical configuration, you create an applet that Siebel Open Ul can to use to display the
external content. This applet must reference the business component that you configured in
Step 1.

Copy the applet that you located in Step b, and then set the following properties for this copy.

Property Value

Name GoogleMap
Business Component Account
Title GoogleMap

In the Object Explorer, expand the Applet tree, expand the List tree, and then click List
Column.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 317

Configuring Siebel Open Ul to Interact with Other Applicati
External Applications in Siebel Open Ul

e

In the List Columns list, set the following properties for the single record that the list displays.

Name SymbolicURLGoogleMap
Field SymbolicURLGoogleMap
Field Retrieval Type Symbolic URL

3 Configure the view:

a
b

In the Object Explorer, click View.
In the Views list, query the Name property for the view that must display the Google map.
For this example, query the Name property for the following value:

Account Detail - Contacts View

In the Object Explorer, expand the View tree, expand the View Web Template tree, and then click
View Web Template Item.

In the View Web Template Items list, add the following view web template item.

Property Value

Name GoogleMap

Applet GoogleMap

Field Retrieval Type Symbolic URL

Item ldentifier Enter the next highest number in the sequence of numbers that
Siebel Tools displays for all records in the View Web Template
Items list.

Note that you cannot drag, and then drop an applet into the Web Layout Editor in Siebel
Tools. You must add it manually to the web page.

4 Compile your modifications.

5 Examine the URL that Siebel Open Ul must integrate:

a

318

Open the URL that Siebel Open Ul must integrate.
For this example, open http://maps.google.com/ in a browser.
View the source HTML.

For example, if you use Internet Explorer, then click the View menu, and then click Source.
Alternatively, save the file to your computer, and then use an HTML editor to open it.

Identify the input fields.

It is recommended that you search for the input tag. In this example, the source displays the
name in the following way:

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

I to Interact with Other Applications B Displaying Data from
External Applications in Siebel Open Ul

name="q"

You use this value when you define the arguments for the Symbolic URL.

Determine if the method attribute of the page is one of the following:

1 POST. You must define the PostRequest command as an argument of the symbolic URL.
1 GET. you do not need to define a symbolic URL command.

In this example, the method is GET.

Determine the target of the from action attribute, which is typically specified as action ="some
string’. In this situation, it is "/maps'. It is appended to the predefined URL.

6 Configure the symbolic URL:

o O T

Log in to the Siebel client with administrator privileges.
Navigate to the Administration - Integration screen, and then the WI Symbolic URL List view.
In the Fixup Administration dropdown list, choose Symbolic URL Administration.

In the Symbolic URL Administration list, add the following symbolic URL.

Field Value

Name SymbolicURLGoogleMap

URL http://maps.google.com/maps
Fixup Name Default

SSO Disposition IFrame

In the Symbolic URL Arguments list, add the following symbolic URL argument.

Field Value

Name q

This value is the input tag in HTML for the Google map.

Required Argument N
You set this argument to N because the account might not include
a zip code.

Argument Type Field

Siebel Open Ul must send the value in the zip code field of the
account to the Google map.

Argument Value Postal Code

You set this argument to the name of the business component
field that contains the value that Siebel Open Ul must send to the
Google map.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 319

Configuring Siebel Open Ul to Interact with Other Applic
Siebel Open Ul in External Applications

Field Value

Append as Argument Y

Substitute in Text N

Sequence# 1

T In the Symbolic URL Arguments list, add the following symbolic URL arguments. Siebel Open Ul
uses this argument to embed the Google map in the applet.

Field Value

Name output
Required Argument Y
Argument Type Constant
Argument Value embed

Append as Argument Y

Substitute in Text N

Sequence# 2

7 Test your modifications:
a Navigate to the Accounts screen, and then click Accounts List.
b In the Accounts List, create a new account and include a value in the Zip Code field.
¢ Drill down on the Account Name field.

d Make sure Siebel Open Ul displays a Google map and that this map includes a push pin that
identifies the zip code that you entered in Step b.

Displaying Data from Siebel Open Ul In
External Applications

This topic describes how to display data from Siebel Open Ul in an external application. It includes
the following information:

B Displaying Siebel Portlets In External Applications on page 321

B Configuring Advanced Options on page 326

B Configuring Communications with Siebel Portlets When Hosted Inside iFrame on page 327
B Additional Considerations on page 330

B Limitations on page 331

B Preparing Standalone Applets on page 331

320 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Ul to Interact with Other Applications & Displaying Data from
Siebel Open Ul in External Applications

B Using iFrame Gadgets to Display Siebel CRM Applets in External Applications on page 332

Siebel Open Ul comes predefined to display Siebel CRM data only in a Siebel application, such as
Siebel Call Center. This topic describes how to display Siebel CRM data in an external application or
website, such as Oracle WebCenter or iGoogle.

Displaying Siebel Portlets In External Applications

You can configure Siebel Open Ul to display a Siebel portlet. A Siebel portlet is a Siebel Open Ul
application that is embedded in a thirty-party Web site. Oracle WebCenter and iGoogle are examples
of these types of third-party Web sites. An HTML iFrame is used in these Web sites to display part of
the Siebel application in a portlet window.

This topic describes how to display Siebel portlets in external applications. It includes the following
information:

B Configuring Siebel Open Ul to Consume Siebel Portlets on page 321

About Siebel Portlet Authentication and Security Requirements on page 323

B Configuring Views to be Embedded in a Portal on page 324
B Configuring Standalone Applets to be Embedded in a Portal on page 324
B Configuring View-Based Applets to be Embedded in a Portlet on page 325

Configuring Siebel Open Ul to Consume Siebel Portlets
Siebel portlets can be integrated inside a portal application using iFrame or any other mechanism
supported by the portal application. Siebel accepts both GET and POST requests.

To make a Siebel portlet available as part of a portal, you can add the portlet URL to an iFrame that
resides on the main Web page. In this sample code, the HTTP GET method is used:

<HTML>
<BODY>
<IFRAME src = "http://server_address/application/
start.swe?SWECmd=SWECmd=GotoView&lsPortlet =1&other_arguments'> </IFRAME>
</BODY>
</HTML>

where:
B server_address specifies the address of the Siebel Server.
B application specifies the Siebel application.

B SWECmd is a required argument that specifies how to display the Siebel application when the user
accesses this URL.

B isPortlet is a required argument that informs the Siebel Server that this application runs in a
portlet. The server requires this argument so that it can do the processing it requires to support
a portlet.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 321

Configuring Siebel Open Ul to Interact with Other Applications
Siebel Open Ul in External Applications

B other_arguments specify how to display the Siebel application. For example, the login
requirements to display, the applets to display, how to size applets, and so on.

For example, consider the following iFrame src:

http://server_name.example.com/callcenter_enu/start.swe?
SWECmd=GetApplet&SWEApplet=Quote+List+Applet&lsPortlet
=1&SWESM=Edit+List"'style=""height: 50%;width: 100%;&KeepAlive=1&Ptld=my_theme"

Table 14 describes the parts of this iFRAME src that specifies the Siebel URL.

Table 14. Specifying URLs to Siebel Portlets

URL Argument Description

http:// Access the Siebel Server that resides at
server_name.example.com server_name.example.com.

/callcenter_enu Run the CallCenter application.

/start.swe? Start the Siebel Web Engine.
SWECmMd=GetApplet Provide commands to the Siebel Web Engine.

SWEApplet=Quote+List+Applet | Display the Quote List Applet.

IsPortlet=1 Run the CallCenter application as a portlet.
SWESM=Edit+List Use the Edit List Mode.
&KeepAlive=1 Keep Siebel portlet sessions active even if the session is idle

longer than SessionTimeout. Siebel CRM is predefined to expire
a Siebel session that is not in use for a period of time according
to the value that the SessionTimeout server parameter
specifies. In the absence of this parameter, the session timing
out will lead to Siebel Open Ul displaying a login dialog box in
the portlet. This behavior might not be desirable in a Siebel
portlet. It is recommended that you set this argument to keep
the session active.

For more information about the KeepAlive parameter, see
“Configuring the Portlet Session to Stay Alive” on page 326.

322 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Ul to Interact with Other Applications & Displaying Data from
Siebel Open Ul in External Applications

Table 14. Specifying URLs to Siebel Portlets

URL Argument Description

&Ptld=my_theme" You can style a portlet application in such a way that the look
and feel of the exposed application match that of the portal. The
iFrame itself can be styled using a Cascading Style Sheet.

For more information, see “Configuring the Use of Cascading
Style Sheets Instead of iFrame Attributes” on page 327.

In addition, the Siebel application can be styled according to a
theme. A theme can be defined in the Siebel manifest, and the
Ptld argument can be used to reference the theme. The theme
defined will be applied to the exposed application.

SWECmd=ExecutelLogin Provide user name and password authentication arguments.
&SWEUserName=user_name&S | ExecutelLogin is allowed only through HTTP POST. For security
WEPassword=my_password reasons, passing user IDs and passwords in an HTTP request is

not recommended.

For more information, see “About Siebel Portlet Authentication
and Security Requirements” on page 323.

Siebel Open Ul supports HTTP POST and exposes the Siebel portlet for HTTP POST requests.
The Siebel portal can send the following URL with the listed form fields:

http://server_name.example.com/callcenter_enu/start.swe
SWECmd=ExecutelLogin

SWEUserName=user_name

SWEPassword=my_password

SWEAC=SWECmd=GetApplet

SWEApplet=Quote+List+Applet

IsPortlet =1

KeepAlive=1

Ptld=my_theme"

About Siebel Portlet Authentication and Security Requirements
Siebel Open Ul portlets must be configured differently depending on whether the application is
hosted in HTTP and in HTTPS. The recommended configuration guidelines are as follows:

B HTTP. Implement SSO and access Siebel over HTTP or HTTPS, depending on the requirement.
B HTTPS. Implement SSO and enable SSL for Siebel.

NOTE: You should never pass user IDs and passwords in the HTTP request to a Siebel portlet.
Passing user IDs and passwords exposes authentication details to the end user.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 323

Configuring Siebel Open Ul to Interact with Other Applications
Siebel Open Ul in External Applications

Configuring Views to be Embedded in a Portal

You can allow a view to be embedded in a portal. When configured, a specified view of the Siebel
application is displayed in the portal. The view specified must be accessible anonymously or by the
user who is logged in to the Siebel Open Ul client.

To allow a view to be embedded in a portal, include the following command in the URL:
SWECmd=GotoView; SWEView=<View Name>;]
The full URL should use the conventions in the following example:

http://<siebel_server>/<application>/start._.swe?lsPortlet
=1&SWECmd=GotoView&SWEView=<View Name>

For example, with the Opportunities List View embedded in a portal, the URL would use the
conventions in the following URL:

http://<siebel_server>/<application>/start.swe?lsPortlet
=1&SWECmd=GotoView&SWEView=Opportunities+List+View

Configuring Standalone Applets to be Embedded in a Portal
Siebel Open Ul supports standalone applets. You can expose standalone applets in a portal. This can
be achieved by providing the following GetApplet command in the URL:

SWECmd=GetApplet; SWEApplet=<Standalone Applet Name>; SWESM=<Applet"s Show Mode>

About the SWESM Parameter

The applet show mode can be modified by setting the SWESM parameter value to one of the
following preconfigured modes for the applet:

B Base

B Edit

B Edit List
B Query

The full URL should use the conventions in the following example:

http://<siebel_server>/<application>/start.swe?lsPortlet
=1&SWECmd=GetApplet&SWEApplet=Opportunity+List+Applet&SWESM=Base

About Search Specifications

When using standalone applets in portals, the data displayed in the standalone applet can be
controlled by using search specifications. The search specifications are applied to various Business
Component fields on which the standalone applet is deployed. You can control the search
specifications using the following parameters:

B BCField<n=>. Defines the business component field on which to query.

B BCFieldvalue<n=>. Defines the value that the BCField<n> must match for the record to be
displayed.

324 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Open Ul to Interact with Other Applications M Displaying Data from
Siebel Open Ul in External Applications

PBCField<n=>. Defines the parent business component field on which to query.

PBCFieldValue<n=>. Defines the value that the PBCField<n> must match for the record to be
displayed.

For example, if you wanted to specify the Opportunities List applet embedded in a portal and limit
the records displayed to Opportunity Names that match “Test Opportunity” you could use the
following URL:

http://<siebel_server>/<application>/start.swe?lsPortlet
=1&SWECmd=GetApplet&SWEApplet=Opportunity+List+Applet&SWESM=Base&BCFieldO=0Opportun
ity+Name&BCFieldValueO=Test+Opportunity

Search Specifications Guidelines
Follow these additional guidelines when defining your search specifications:

B When specifying multiple business component fields or parent business component fields, use
the AND operator at the end of the final expression. Only records that satisfy all of the matching
criteria are returned by the search.

B Field values can contain any type of data that is accepted by the Siebel search specification
system. For example, “PBCFieldValue2=0Opportunityl+OR+Opportunity2” is a valid value.

B Field values not exposed in the applet can still be used by the URL. The fields in the business
component to which the applet refers will be explicitly activated and used for the query.

B Search specifications applied to a URL will work in context. Therefore, the user will not be able
to access the super-set of records, unless the user navigates to the view in question.

B If a parent business component field and parent business component field value is configured in
a URL, and the business component does not have a parent business component, then the
specification is ignored.

B If a business component field is used in the URL that does not exist on the business component,
then the URL is considered invalid and the applet will fail to build. This results in unpredictable
behavior in the portal.

Configuring View-Based Applets to be Embedded in a Portlet

When an applet has been configured part of a view rather than as a standalone applet, it can still be
exposed in a portlet. To do this, use the GotoView command with the following additional
parameters:

SWECmd=GotoView; SWEView=<View_Name>; SWEApplet=<Applet_Name>

Only the applet specified in the portlet will be embedded in the portlet. For example, only the
Opportunity List Applet will be shown using the following URL:

http://<siebel_server>/<application>/start._swe?lsPortlet
=1&SWECmd=GotoView&SWEView=0Opportunity+List+View&SWEApplet=Opportunity+List+Applet

NOTE: If an applet that does not exist in the view is specified, then the URL is considered invalid
and the applet will fail to build. This results in unpredictable behavior in the portlet.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 325

Configuring Siebel Open Ul to Interact with Other Applications
Siebel Open Ul in External Applications

Configuring Advanced Options

This topic describes advanced options when configuring Siebel Open Ul in an external application. It
includes the following information:

B Configuring Multiple Command Chaining in a URL on page 326
B Configuring the Portlet Session to Stay Alive on page 326

B Configuring the Use of Cascading Style Sheets Instead of iFrame Attributes on page 327

Configuring Multiple Command Chaining in a URL

Use the SWEAC parameter to chain more than one command in a URL. An example, where this might
be useful is a situation where you want to navigate to a certain view and create a new record in that
view's active applet.

To configure multiple command chaining in a URL, include the following attribute in the URL:
SWEAC=SWECmd=NewRecord]
The full URL should use the conventions in the following example:

http://<siebel_server>/<application>/start._.swe?lsPortlet
=1&SWECmd=GotoView&SWEView=0Opportunities+List+View&SWEAC=SWECmd=NewRecord

The preceding example runs the Siebel application in the portlet and takes the context to the
Opportunity View to create a new record in the active applet on that view.

Configuring the Portlet Session to Stay Alive

Siebel sessions that are not in use will eventually expire. The time for which the session is kept alive
is determined by the value of SessionTimeout Siebel server parameter. In some cases when exposing
Siebel as a portlet expiring sessions this might not be optimal.

To override the SessionTimeout Siebel parameter so that the portlet session stays alive, include the
following attribute in the URL:

KeepAlive=1
Other values for this parameter are as follows: TRUE, T, ON, and Y.
The full URL should use the conventions in the following example:

http://<siebel_server>/<application>/start.swe?lsPortlet
=1&SWECmd=GotoView&SWEView=Contact+List+View&KeepAlive=1

When using the KeepAlive attribute, consider these additional guidelines:

B The KeepAlive attribute value is enforced by monitoring periodic client pings to the Siebel server.
Consequently, the client must be on a network connected to the server.

B If the KeepAlive attribute value is omitted or set to FALSE the session will eventually timeout and
a login screen is returned to the portlet.

326 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

en Ul to Interact with Other Applications ® Displaying Data from
Siebel Open Ul in External Applications

B Once the KeepAlive attribute is set to TRUE by a request (either the URL or a subsequent
message-based communication) it cannot be changed to FALSE by a subsequent request.

Configuring the Use of Cascading Style Sheets Instead of iFrame
Attributes

The iFrame tag supports a number of attributes, which can be used to control the visual formatting
of the portlet content. For a full list of the attributes, see the following W3C website:

http://www.w3.org/wiki/HTML/Elements/iframe

In recent HTML revisions, many attributes are being deprecated. Consequently, it is recommended
that cascading style sheets be used for visual formatting.

Siebel Open Ul attaches CSS classes for the portlet iFrame. In Siebel Open Ul, the CSS can be applied
by defining a theme in the Theme.js file and passing the theme name as a parameter in the URL
under Ptid.

The full URL should use the conventions in the following example:

http://<siebel_server>/<application>/start._.swe?lsPortlet
=1&SWECmd=GotoView&SWEView=Contact+List+View&KeepAlive=1&Ptl1d=CUSTOM_PORTLET_THEME

Where CUSTOM_PORTLET_THEME is defined in Theme.js. If the argument value is omitted, invalid, or
cannot be found in Theme.js, then the Siebel Open Ul will use the default theme.

For more information about customizing themes, see Customizing Themes on page 189.

Configuring Communications with Siebel Portlets When
Hosted Inside iFrame

This topic outlines the Siebel server parameter configurations to enable communication with Siebel
portlets when hosted inside iFrame. These parameters can be modified for the Siebel component with
which the functionality is meant to communicate. The instructions in this topic are not required when
cross-domain communications are not needed.

To configure communications with Siebel portlets when hosted inside iFrame
1 Set up the Siebel server parameters:

a Log in to a Siebel client with administrative privileges.

b Navigate to the Administration - Server Configuration screen, and then the Servers view.
C In the Siebel Servers list, choose a Siebel Server.
d

In the Components list, select the component that you want to expose as a portlet

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 327

Configuring Siebel Open Ul to Interact with Other Applications Displ
Siebel Open Ul in External Applications

e In the Component Parameters list, add the following parameters.

Parameter Description

PortletAPIKey This is a required parameter. It is a unique key configured as
a server parameter. The source portal program will need to
pass this key, in order to be able to invoke a call on the
Siebel application exposed as the portlet. The messaging
object used to communicate with Siebel Portal will need to
contain a parameter msg.Key. The msg.Key must match the
key configured in this parameter. If the messaging object
does not contain a key, or contains an invalid one, the
invocation will result in an error in the Siebel portlet.

PortletOriginList This is a required parameter. It defines the list of valid
domains from which the Siebel portlet will accept a
communication request. A comma separated list can be
provided for this parameter. Any invocations coming from
domains that are not listed here will cause an error in the
Siebel portlet.

PortletMaxAllowedAttempts This is an optional parameter. Its default value is 3. This
parameter specifies the number of unsuccessful
communication attempts with the portlet before Siebel Open
Ul blocks any subsequent calls. An unsuccessful call can
occur in the following situations:

B A domain attempts to send a communication request to
the portlet, but the PortletOriginList does not specify this
domain.

B The portlet_key sent by the communicating domain does
not match the parameter specified in the Siebel server.

The Siebel portal will remain blocked up to the time extent
as defined by PortletBlockedInterval after which the Siebel
Open Ul resets the unsuccessful attempts to zero.

PortletBlockedlInterval This is an optional parameter. Its default value is 900
seconds. This parameter specifies the time in seconds for
which Siebel portlet will remain blocked to any
communication attempt from the hosting portal or a
neighboring portlet after having exceeded the number of
unsuccessful communication attempts (as defined by
PortletMaxAllowedAttempts). During this time, the Siebel
portlet will still be open to access by the user of the
application. However, no programmatic access is permitted.

2 Based on your configuration, the portal, or another portlet in the portal, add the following object
to your custom code:

328 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

I to Interact with Other Applications B Displaying Data from
Siebel Open Ul in External Applications

var msg = new Object();
msg.-SWEView = view_name;
msg.SWEApplet = applet _name;
msg.SWECmd =GotoView or GetApplet
msg-Key = portlet key;

NOTE: The SWEView, SWEApplet, and Key arguments are required. All other arguments are
optional.

where:

m view_name specifies the view that Siebel Open Ul displays in the portlet window. If you
specify only the view, then Siebel Open Ul displays the view and all the applets that this view
contains.

m applet_name specifies the applet that Siebel Open Ul displays in the portlet window. If you
specify only the applet, then Siebel Open Ul displays only this applet and no view. If you
specify the view and applet, then Siebel Open Ul displays the applet in the view.

m GotoView or GetApplet specifies whether or not to display a view or an applet in the portlet
window.

m portlet_key must specify the value that you specify for the PortletAPIKey server parameter
in Step 1. The Siebel client sends this value to the Siebel Server when it calls a Siebel
application. You must include the msg.Key argument, and the value of this argument must
match the value of the key that the PortletAPIKey server parameter contains on the Siebel
Server. If the messaging object does not contain a key, or if it contains a key that does match
the value of the server parameter, then Siebel Open Ul displays an error in the Siebel portlet.

For example, the following code displays the Opportunity List Applet, and it displays this applet
inside the Opportunity List View:

var msg = new Object();

msg.SWEView = Opportunity List View;
msg.SWEApplet = Opportunity List Applet;
msg.-Key = oraclel23;

3 Add the following code immediately after the code that you added in Step 2.

document.getElementByld("siebelframeid®).contentWindow.postMessage(msg, "*");

This code invokes a change in the Siebel Portlet window, so that the requested view or applet
will get loaded in the content area.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 329

Configuring Siebel Open Ul to Interact with Other Applic
Siebel Open Ul in External Applications

4 You can use SWE commands to display a Siebel portlet in Siebel Open Ul. For security reasons,
you can use only the GotoView and GetApplet method to call a Siebel portlet from an external
application. GotoPage and GotoPageTab are not applicable to Siebel Open Ul. For more
information, see the topic describing SWE commands available in Siebel Open Ul in Siebel Portal
Framework Guide.

Called from
Ul Element

Inside Siebel

Supported Inside Siebel Portlet Called from Outside Siebel
Values Application Container Portlet Container
CanlnvokeMethod Yes Yes No
ExecutelLogin Yes Not applicable Yes
o for this use -
This is not supported for —_— This is not supported for
HTTP GET. It is supported ’ HTTP GET. It is supported
through HTTP POST. through HTTP POST.
GotoView Yes Yes Yes
Use only when invoked
from the browser
address bar by refresh or
history navigation.
GetApplet Yes Yes Yes
InvokeMethod Yes Yes No
For more information,
“Allowing Blocked Methods for
HTTP GET Access” on
page 160.
LoadService Yes Yes No
Login Yes Not applicable Not applicable to Siebel Open
to Siebel Open Ul (use SSO or similar).
Ul.
Logoff Yes Not applicable No
to Siebel Open
Ul.
ReloadCT Yes Yes No

Additional Considerations

The following list outlines additional considerations when displaying data from Siebel Open Ul in
external applications:

330 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

en Ul to Interact with Other Applications ® Displaying Data from
Siebel Open Ul in External Applications

All parameters passed in a URL need to be URL-encoded. For example, “Account List View” would
become “Account+List+View” or “Account%20List%20View”. For more information on URL
encoding, refer to:

http://en.wikipedia.org/wiki/Percent-encoding
Anonymous sessions are supported in portlet expositions.
Tasks and workflow URLs are also supported in portlets.

SWE Commands are limited to the ones mentioned in Step 4 of “Configuring Communications with
Siebel Portlets When Hosted Inside iFrame” on page 327. However, other parameters may be
passed in portlet mode to the Siebel server. They will be honored by the server depending on the
context.

If the content in the Siebel portlet is bootstrapped to load an applet using the GetApplet method,
then the subsequent messaging to the portlet will be limited to whether the applet can be
invoked. Operations such as invoking of popups or navigating to other views will not be
supported. If these are required, the portlet must be bootstrapped via the GotoView call. For
more information, see “Configuring Standalone Applets to be Embedded in a Portal” on page 324.

Limitations

The following list outlines limitations when displaying data from Siebel Open Ul in external
applications:

Siebel supports only one portlet in a valid Siebel session. Consuming more than one portlet that
is targeted to the same Siebel session is not supported.

Opening Siebel Open Ul in multiple browser tabs that share the same Siebel session ID is not
supported.

Portal communications as described in “Configuring Communications with Siebel Portlets When
Hosted Inside iFrame” on page 327, is not supported in any version of Microsoft Internet Explorer.
Siebel Open Ul uses HTML 5 specified Cross Document Messaging, that is not fully supported in
the latest version of Internet Explorer.

Preparing Standalone Applets

A standalone applet is a type of applet that Siebel Open Ul can display outside the context of a Siebel
CRM view. A predefined view references a business object, a business object references a business
component, and an applet also references a business component, but an applet does not reference
a business object in a predefined Siebel Open Ul configuration. You must modify this configuration
so that the applet can work independently of the view. To do this, you configure the applet to directly
reference the business object.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 331

Configuring Siebel Open Ul to Interact with Other Applica
Siebel Open Ul in External Applications

To prepare standalone applets
1 Open Siebel Tools.

For more information, see Using Siebel Tools.
2 In the Object Explorer, click Applet.

In the Applets list, query the Name property for the applet that Siebel Open Ul must display
outside of the view.

In the Object Explorer, expand the Applet tree, and then click Applet User Prop.

5 In the Applet User Properties list, add the following applet user property.

Property Description

Name Enter the following value:

Business Object

Value Enter the name of the business object that this applet must reference.

Using iFrame Gadgets to Display Siebel CRM Applets in
External Applications

The example in this topic describes how to use iFrame gadgets to configure Siebel Open Ul to display
a Siebel applet in an external application.

Siebel Open Ul must be configured to use Web Single Sign-On (SSO) authentication. For more
information, see the topic that describes the web single sign-on authentication in Siebel Security
Guide.

A Siebel portlet can be exposed to a portal from an anonymous session when SSO is not configured.
This example details the use case for exposing a Siebel application to a portal from an anonymous
Siebel session.

To use iFrame gadgets to display Siebel CRM applets in external applications
1 Do the setup:

a Create a LinkedIn profile at the http://www.linked.com Web site.
b Create a Gmail profile at the http://www.google.com/ig Web site.
2 Configure the external applications:

a Open a new browser session, navigate to http://www.linked.com/, and then log in to your
profile:

b Open a new browser tab, navigate to http://www.google.com/ig, and then log in to your gmail
profile:

Navigate to http://www.google.com/ig/settings.

o

Click Add More Gadgets.

332 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

e

o Q -

i

o Interact with Other Applications M Displaying Data from
Siebel Open Ul in External Applications

In the Search for Gadgets section, enter iFrame Gadget, and then click Search.
In the Search Results for the iFrame Gadget list, click iFrame Gadget.
Click Embed This Gadget.

In the Add This Gadget to Your Webpage page, enter the following URL that Siebel Open Ul uses
to display the applet. You enter this URL into the Address of Page to Show field:

http://server_name/callcenter_enu/
start.swe?SWEUserName=user_name&SWEPassword=user_passworddSWECmd=ExecutelLogi
N&SWEAC=SWECmd=GotoView&SWEView=view name&lsPortlet=1&SWEApplet=applet_name

where:
1 server_name identifies the name of the server.
1 view_name identifies the name of the view that contains the applet.

1 applet_name identifies the applet that Siebel Open Ul must display in the external
application.

For example, you enter the following URL to display the Opportunity list applet:

http://server_name.example.com/callcenter_enu/
start.swe?SWECmd=ExecutelLogin&SWEAC=SWECmd=GotoView&SWEView=Opportunity+List
+View&lsPortlet=1&SWEApplet=Opportunity+List+Applet

NOTE: This URL will work for anonymous sessions in which the user has the required
permissions to access Opportunity List view.

Click Preview Changes.

Click Save.

3 Test your modifications:

a
b

C

Verify that iGoogle refreshes the page and displays the Opportunity list.
Expand the widget to full screen to display the full width of the list.

To choose a LinkedIn contact, use the menu that Google displays on the list header on the right
side of the screen.

Verify that the Web browser displays the opportunities for the contact that you choose.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 333

Configuring Siebel Open Ul to Interact with Other A
Siebel Open Ul in External Applications

e Verify that the chosen LinkedIn contact matches a Siebel contact record.

Make sure the Web browser displays a layout that is similar to the following layout.

S (« ' W) www.google.com/ig#m_7

+You Search Images aps Play YouTube News Gmail More - Sign in

Google ol - |

Like the way your page looks? Sign In to save your changes. Learn more

iGoogle Home - i}] o -
» | Siebel Open Ul g+| o Ir4
New Delete Query Search Opportunity Name | Chandan DasGupta - Query Results
Opportunity Name Account Contact Revenue Committed Probability % Team Space Sales Cycle Sales Method Sales Team
Package Error DasGupta o Y TeamspaceNone ACAPS Application SADMIN
Classic Home ©2012 Google - Advertising Programs - Business Solutions - Privacy & Terms - Help - About Google

334 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Siebel Open Ul for
e Disconnected

This chapter describes how to customize Siebel Open Ul for Siebel Mobile disconnected. It
includes the following topics:

B Overview of Customizing Siebel Open Ul for Siebel Mobile Disconnected on page 335
Doing General Customization Tasks for Siebel Mobile Disconnected on page 338
Customizing Siebel Pharma for Siebel Mobile Disconnected Clients on page 355

Customizing Siebel Service for Siebel Mobile Disconnected Clients on page 367

Methods You Can Use to Customize Siebel Mobile Disconnected on page 378

Overview of Customizing Siebel Open Ul
for Siebel Mobile Disconnected

This topic describes an overview of customizing Siebel Open Ul for Siebel Mobile disconnected. It
includes the following information:

B “Operations You Can Customize When Clients Are Offline” on page 335
B “Operations You Cannot Customize When Clients Are Offline” on page 336

B “Process of Customizing Siebel Open Ul for Siebel Mobile Disconnected” on page 337

Operations You Can Customize When Clients Are Offline
You can customize the following operations when the client is offline:
B Create, read, update, and delete parent objects and child objects.

B Modify user interface behavior according to data characteristics, such as read only, required, and
can invoke. Siebel Open Ul uses the IsReadonly, IsRequired, and Canlnvoke methods to achieve
this behavior.

You can customize the following items when the client is offline:
B Association applets

B Applet menu and applet menu items
B Pick applets

B Picklists

I Static picklists

|

Error statuses

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 335

Customizing Siebel Open Ul for Siebel Mobile Disconnected
Siebel Open Ul for Siebel Mobile Disconnected

Static drill downs
Expressions

Searches

Operations You Cannot Customize When Clients Are
Offline

You cannot customize the following operations when the client is offline:

Multivalue fields.
Multivalue groups.

Dynamic controls. A dynamic control is a type of control that Siebel Open Ul creates dynamically
at run time. The Siebel repository does not specify a dynamic control. For example, a view might
contain a placeholder for a control that Siebel Open Ul dynamically creates and displays at run
time.

Dynamic drilldowns.
Toggle applets.

Language-dependent code conversion to language-independent code. The Siebel Server does
this conversion during synchronization.

Custom layout modification.

Effective dating. The Siebel EAlI Adapter allows Siebel Open Ul to access effective dating data.
Effective dating data is data that identifies the start date and the end date for a field or link. A
third-party application can request and receive effective dating data from the Siebel application.
For more information about effective dating, see Overview: Siebel Enterprise Application
Integration and Siebel Public Sector Guide.

Siebel Application Response Measurement (SARM) usage.

Siebel eScript or Siebel Visual Basic usage. Scripts that reside on the Siebel Server do not work
in an offline client, so you must migrate them to JavaScript that resides on the client. Business
service scripts do work in offline clients.

Drilldown visibility. Siebel Open Ul comes predefined to use the visibility that the drill down
definition specifies. If this definition does not exist, or if it contains no values, then Siebel Open
Ul uses the view to determine drilldown behavior. If the view does not specify drilldown behavior,
then Siebel Open Ul uses business component visibility in the following order to determine
drilldown behavior:

m SalesRep
m Personal
®m Org

Numeric totals in applets. Some applets display the total for a series of numbers that reside in a
column in a list applet or for all records. Siebel Open Ul cannot display these totals while the
client is offline.

336 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

n Ul for Siebel Mobile Disconnected M Overview of Customizing
Siebel Open Ul for Siebel Mobile Disconnected

COM object usage, such as runtime events, data maps, or variable maps.
Cascade delete.

Search specification on a link.

Sort specification that includes a date field.

User properties for various objects except for the user properties associated with items described
in “Operations You Can Customize When Clients Are Offline” on page 335.

Default applet menu items.
Workflow processes.
CreateRecord method.

New record creation from an association popup applet. Siebel Open Ul comes predefined to
disable this creation. You can customize Siebel Open Ul to enable it.

Note the following offline behaviors:

Siebel Open Ul displays only the data that it downloads during a full download for any business
component field that it populates through a join that joins different tables.

If more than one business component references the same table, and if Siebel Open Ul modifies
a business component record for one of these business components, then it does not populate
this modification to the other business components until the user goes online and synchronizes
the client with the Siebel Server.

If the Owner Delete property of a business component is set to TRUE, then the user cannot delete
a record in this business component even if this user owns or creates this record. This user must
go online to the delete the record. For more information about this property, see Siebel Object
Types Reference.

Process of Customizing Siebel Open Ul for Siebel Mobile
Disconnected

It is recommended that you use the sequence of steps that this topic describes to customize Siebel
Open Ul to use a Siebel application in a Disconnected client. Siebel Pharma and Siebel Service are
each an example of a Siebel application. To view examples that use these steps, see “Customizing

Siebel Pharma for Siebel Mobile Disconnected Clients” on page 355 and “Customizing Siebel Service for
Siebel Mobile Disconnected Clients” on page 367.

To customize Siebel Open Ul for Siebel Mobile Disconnected

1

Configure the manifest, if necessary.
For more information, see “Modifying Manifest Files for Siebel Mobile Disconnected” on page 338.
Create a new JavaScript file or copy an existing one.

You must place all custom presentation models and physical renderers in a custom folder. For
more information about this folder, see “Organizing Files That You Customize” on page 162.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 337

Customizing Siebel Open Ul for Siebel Mobile Disconne
Customization Tasks for Siebel Mobile Disconnected

3 Register your custom JavaScript method or Siebel business service.

For more information, see “Using Siebel Business Services or JavaScript Services to Customize
Siebel CRM Objects” on page 343.

4 Add your custom code:
2 Declare your variables.

b Use the CanlnvokeMethod method to make sure Siebel Open Ul can call your custom method or
business service.

c Specify the logic for your custom JavaScript method or Siebel business service.
d Use InvokeMethod to call your custom JavaScript method or Siebel business service.
For more information, see “Using Custom JavaScript Methods” on page 347.

5 Test your modifications.

Doing General Customization Tasks for
Siebel Mobile Disconnected

This topic describes how to do general customization tasks for Siebel Mobile disconnected in Siebel
Open Ul. It includes the following topics:

B “Modifying Manifest Files for Siebel Mobile Disconnected” on page 338
B “Registering Methods to Make Sure Siebel Open Ul Runs Them in the Correct Sequence” on page 341

B “Using Siebel Business Services or JavaScript Services to Customize Siebel CRM Objects” on
page 343

“Using Custom JavaScript Methods” on page 347

“Using Custom Siebel Business Services” on page 349

“Configuring Data Filters” on page 353

“Configuring Objects That Siebel Open Ul Does Not Display in Clients” on page 353

“Configuring Error Messages for Disconnected Clients” on page 353

“About Siebel Mobile Application Logging” on page 355

Modifying Manifest Files for Siebel Mobile Disconnected

The cache manifest file specifies the resources that Siebel Open Ul must download to the
disconnected client for offline use. Each application uses a separate cache manifest file that uses the
following format:

application_name.manifest

where:

338 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

el Open Ul for Siebel Mobile Disconnected B Doing General
Customization Tasks for Siebel Mobile Disconnected

B application_name identifies the name of the Siebel application, such as Siebel Service for Mobile.
Siebel Open Ul converts this name to lower case and replaces each space that the name contains
with an underscore. For example, siebel_service_for_mobile.manifest is the cache manifest
file that Siebel Open Ul uses for Siebel Service for Siebel Mobile disconnected.

Manifest files reside in the following folder on the Mobile Web Client:
\SWEApp\PUBLIC\ Janguage code\siebel_service_for_mobile.manifest

Manifest files reside in the following folder on the Siebel Server:
\SES\siebsrvr\WEBMASTER\ Janguage code\siebel_service_for_mobile_manifest

Siebel Open Ul includes only the cache manifest files that it requires to support the Siebel application
that you deploy.

For more information about the language_code, see “Languages That Siebel Open Ul Supports” on
page 592.

To modify manifest files for Siebel Mobile disconnected
1 Add resources to the cache manifest file that your application uses, as necessary.

If your deployment requires custom resources to run an application offline, then you must add
these resources to the cache manifest file that this application uses. For example, assume you
must configure Siebel Open Ul to run Siebel Service for Siebel Mobile disconnected so that it can
download the following resources, and then use them while the client is offline:

B my_style.css
B my_image.png
B my_script.js

In this situation, you can create a file named my_cache.manifest that includes the following
information:

CACHE MANIFEST

2012-4-27:v1

Explicitly cached "master entries”.
CACHE:

files/my_style.css
images/my_image.png

<build number>/scripts/my_script.js

The cache manifest file must use the HTML 5 standard. This standard allows you to run a Perl
script in Step 4 that merges your custom cache manifest files into the predefined application

cache manifest files. Siebel Open Ul includes this script starting with the Siebel CRM 8.1.1.10
Quick Fix release.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 339

Customizing Siebel Open Ul for Siebel Mobile Disconnected Doin
Customization Tasks for Siebel Mobile Disconnected

2 Make a backup copy of the predefined manifest file that you must modify.
For example, siebel_service_for_mobile.manifest. You modify this file in Step 4.

It is recommended that you do this backup because the script that you run in this task modifies
the siebel_service_for_mobile.manifest file. You can use this backup if you encounter a problem
when running this script.

3 Open a Windows command line on the computer where the manifest files reside, and then
navigate to the following folder:

\SWEApp\PUBLIC\ Janguage code\mergemanifest.pl

The SWEApp folder resides on the Mobile Web Client. If you are doing this task on the Siebel
Server, then navigate to the following folder:

\SES\siebsrvr\WEBMASTER\ Janguage code\mergemanifest._pl

4 Enter the following command:

Perl mergemanifest.pl -s my _cache.manifest -d application_name.manifest
where:

B my_cache.manifest specifies the source manifest file. If you do not include the -s switch,
then Siebel Open Ul uses the custom.manifest file, by default.

m application_name.manifest specifies the destination manifest file. You must include the -d
switch.

For example:
Perl mergemanifest.pl -s my_cache.manifest -d siebel_service_for_mobile._manifest

This command merges the custom manifest file that you modified in Step 1 into the predefined
siebel_service_for_mobile.manifest file. Note the following:

B You must run this script any time you modify your cache manifest file or do an upgrade.
B You must make sure the source and destination files exist.

m This script adds the CACHE, NETWORK, and FALLBACK sections that reside in the
my_cache.manifest, if they exist, to the end of the corresponding sections that reside in the
siebel_service_for_mobile.manifest file. Your custom entries take precedence over the
predefined Oracle entries that reside in this file.

m If afile contains more than one CACHE section, NETWORK section, or FALLBACK section, then
this script merges these sections into one section. For example, if two CACHE sections exist,
then this script merges these CACHE sections into a single CACHE section. This merge does
not modify the sequence where the entries reside in the files.

m The script does not add duplicate entries to the destination file. If the merge results in
duplicate entries, then Siebel Open Ul removes the first duplicate from the destination file.
It adds this removed entry to the destination.log file that resides in the folder where the
destination file resides.

m The script does not include empty lines in the destination file.

m This script creates the destination.log file every time it runs.

340 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Siebel Open Ul for Siebel Mobile Disconnected B Doing General
Customization Tasks for Siebel Mobile Disconnected

m If the script finishes the merge, and if the result of this merge is identical to the destination
file, then the script does not update the destination file, and the destination file retains its
original timestamp.

Registering Methods to Make Sure Siebel Open Ul Runs
Them in the Correct Sequence

Siebel Mobile disconnected uses a local database, which is a database that resides in the browser
that stores the data that Siebel Open Ul requires. If Siebel Open Ul runs in a Siebel Mobile
disconnected environment, and if a method in JavaScript code interacts with this local database,
then this method is an asynchronous method, and any method that calls this method is also an
asynchronous method. This situation might result in Siebel Open Ul running code in an incorrect
sequence. For example, it might run section B of the code before it runs section A, but the correct
logic is to run section A, and then run section B. This topic describes how to configure Siebel Open
Ul to call an asynchronous method as if the call occurred in a synchronous environment. This
configuration makes sure Siebel Open Ul runs the asynchronous method in the correct sequence.

To register methods to make sure Siebel Open Ul runs them in the correct sequence

1 On the client computer, use a JavaScript editor to open the file that includes the business service
call that you must modify.

For more information, see “Using Custom JavaScript Methods” on page 347.
2 Locate the code that includes the business service call that you must modify.

If the call to any asynchronous method from a business service method must run only one time,
then use the callback method and the setReturnValue method.

For example, you can use the ExecuteQuery and FirstRecord methods. Assume you locate the
following code in Step 2:

business_service.prototype.Submit = function () {
retObj = bc.ExecuteQuery();
err = retObj.err;
if(lerr){
retObj = bc.FirstRecord();
if(lretObj.err){
//Do an operation here that sets the return value to bRet
return({err:false,retVal:bRet});
¥
}

else{
SiebelApp.S_App.OfflineErrorObject.SetErrorMsg("'messageKey",
errParamArray);
return({err:true});
}
};

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 341

Customizing Siebel Open Ul for Siebel Mobile Disconnecte
Customization Tasks for Siebel Mobile Disconnected

m where business_service identifies the name of the business service that your custom code
calls. For example, PharmaCallSubmitsvc.

For more information, see “SetErrorMsg Method” on page 411, “FirstRecord Method” on page 387
and “ExecuteQuery Method” on page 386.

In this example, you replace the code that you located in Step 2 with the following code:

PharmaCal ISubmitsvc.prototype.Submit = function () {
bc.ExecuteQuery();
$.callback(this,function(retObj){
err = retObj.err;
if(lerr){
bc_FirstRecord();
$.callback(this,function(retObj){
if(lretObj.err){
//Do an operation here that sets the return value to bRet
$.setReturnvalue({err:false,retval :bRet});
}
D
}
else{
SiebelApp.S_App.OfflineErrorObject.SetErrorMsg(''messageKey",
errParamArray);
$._setReturnvalue({err:true});
}
;s
};

The callback method and the setReturnValue method in this example configures Siebel Open Ul
to use the same flow to run this code that it uses when it makes a synchronous call in a connected

environment. For information about these methods, see “callback Method” on page 410 and
“setReturnValue Method” on page 409.

4 If Siebel Open Ul must run the call to any asynchronous method from a business service method
more than one time, then use the eachAsyncOp method.

For example, assume you located the following code in Step 2:

business_service.prototype.Submit = function () {

var n;

for(var i =0;i<n;i++){
// Code that goes into preExecute
bc.SetFieldvalue(fieldName[i],fieldData[i]);
// code that goes into postExecute

3

retObj = bc.WriteRecord();

if(lretObj.err){
//Call code here that sets the return value to bRet
return ({err:false,retVal:bRet});

3

else{

342 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

el Open Ul for Siebel Mobile Disconnected B Doing General
Customization Tasks for Siebel Mobile Disconnected

return ({err:true});

}
}:

In this example, you replace the code that you located in Step 2 with the following code:

PharmaCal 1Submitsvc.prototype.Submit = function () {
var preExecutecall= function(i){
args[O0]=FfieldName[i];//send the args while calling the async operation which
is bc.SetFieldvalue here
args[1l]=fieldDatal[i];
return args; // arguments returned must always be in an array
3
var postExecutecall= function(retObj){
if(lretObj.err){
//Do domething using the return value obtained from the async call
}
3
var configObj =
{execute:bc.SetFieldValue,preExecute:preExecutecall,postExecute:postExecuteca
11,iterations:n,executeScope:bc};
$.eachAsyncOp(this,configobj);
$.callback(this,function(returnObj){
if(IretObj.err){
bc.WriteRecord();
$._callback(this,function(retObj){
if(lretObj.err){
//Call code here that sets the return value to bRet
$.setReturnValue({err:false,retval :bRet});
3
DE
}
DR
};
In this example, Siebel Open Ul uses the eachAsyncOp method to call the SetFieldValue method
more than one time to set the value for more than one field. For information about these
methods, see “eachAsyncOp Method” on page 410 and “SetFieldValue Method” on page 395, and
“WriteRecord Method” on page 398.

Using Siebel Business Services or JavaScript Services to
Customize Siebel CRM Objects

This topic describes how to use a Siebel business service or a JavaScript service to customize a
predefined, Siebel CRM applet or business component.

Customizing Predefined Business Components

The example in this topic describes how to register and call a custom JavaScript method that
customizes a predefined business component. You must configure Siebel Open Ul to register a
custom method before Siebel Open Ul can call it.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 343

Customizing Siebel Open Ul for Siebel Mobile Disconnected
Customization Tasks for Siebel Mobile Disconnected

To customize predefined business components

1
2

Use a JavaScript editor to create a new JavaScript file.
Specify the input properties that Siebel Open Ul must send to the ServiceRegistry method.

The ServiceRegistry method uses input properties to register your custom method. For more
information, see “Properties You Must Include to Register Custom Business Services” on page 403.

You add the following code:

a Create the namespace for the JavaScript class. In this example, you create a namespace for the
pharmacallsvc class:

ifT (typeof (SiebelApp.pharmacallsvc) === "undefined™) {
SiebelJS_Namespace("SiebelApp.pharmacallsvc®);

b Define the variables:

var oconsts = SiebelApp.Offlineconstants;
var inputObj = {};

c Specify the business component where Siebel Open Ul applies your customization. In this
example, you specify the Pharma Professional Call - Mobile business component:

inputObj [oconsts.get("'DOUIREG_OBJ NAME'™)] = "Pharma Professional Call -
Mobile™;

d Specify the type of object that you are customizing. In this example, you are customizing a
business component:

inputObj [oconsts.get("'DOUIREG_OBJ_TYPE'™)] =
oconsts.get("'DOUIREG_OBJ_TYPEBUSCOMP') ;

e Specify the name of the predefined method that you are customizing. In this example, you are
customizing the WriteRecord method:

inputObj [oconsts.get("'DOUIREG_OBJ_MTHD')] = "WriteRecord";

T Specify the name of the JavaScript class where the method you are customizing resides. In this
example, this method resides in the pharmacallsvc class:

inputObj [oconsts.get("'DOUIREG_SRVC_NAME')] = "‘pharmacallsvc’;

g Specify the name of the custom service method that contains the customization of the
WriteRecord method:

inputObj [oconsts.get("'DOUIREG_SRVC_MTDH™)] = "WriteRecord";

h Specify the type of customization:

inputObj [oconsts.get(*'DOUIREG_EXT_TYPE™)] =
oconsts.get("'DOUIREG_EXT_TYPEPRE");

Register the custom JavaScript method that you specified in Step 2. This code calls the
ServiceRegistry method:

SiebelApp.S_App-GetModel () -ServiceRegistry(inputObj);

Define the constructor:

344 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

ebel Open Ul for Siebel Mobile Disconnected ® Doing General
Customization Tasks for Siebel Mobile Disconnected

SiebelApp.pharmacallsvc = (function) {
function pharmacallsvc() {

}

5 Extend the custom JavaScript class:

SiebelJS_Extend(pharmacallsvc, SiebelApp.ServiceModel);

6 Specify the custom WriteRecord method:

pharmacal Isvc.prototype._WriteRecord = function (pslnputArgs) {//get the inputs
var psOutArgs = SiebelApp.S_App-NewPropertySet();

return psOutArgs;//return the outputs

}:

return pharmacallsvc;

} O);

}

The custom method must include your customization logic. This code gets the property set from
the predefined WriteRecord method and uses it as input to your custom WriteRecord method. The
custom WriteRecord method then returns an output property set to the predefined WriteRecord
method.

The following code is the completed code for this topic:

if (typeof (SiebelApp.pharmacallsvc) === "undefined") {
SiebelJS_Namespace("SiebelApp.pharmacallsvc®);
var oconsts = SiebelApp.Offlineconstants;
var inputObj = {};
inputObj [oconsts.get("'DOUIREG_OBJ_NAME™)]
inputObj [oconsts.get("'DOUIREG_OBJ_TYPE')]
oconsts.get("'DOUIREG_OBJ_TYPEBUSCOMP'™);
inputObj [oconsts.get(""'DOUIREG_OBJ_MTHD')] = "WriteRecord";
inputObj [oconsts.get("'DOUIREG_SRVC_NAME™)] = "pharmacallsvc";
inputObj [oconsts.get("'DOUIREG_SRVC_MTDH'™)] = "WriteRecord";
inputObj [oconsts.get("'DOUIREG_EXT_TYPE™)] = oconsts.get("'DOUIREG_EXT_TYPEPRE™);
SiebelApp.S_App.-GetModel () -ServiceRegistry(inputObj);
SiebelApp.pharmacallsvc = (function () {
function pharmacallsvc() {
}
SiebelJS._Extend(pharmacallsvc, SiebelApp.ServiceModel);
pharmacallsvc.prototype._WriteRecord = function (pslnputArgs) {//get the inputs
var psOutArgs = SiebelApp.S_App-NewPropertySet();
return psOutArgs;//return the outputs
};
return pharmacallsvc;

} O):
}

"Pharma Professional Call - Mobile';

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 345

Customizing Siebel Open Ul for Siebel Mobile Disconnected Doin
Customization Tasks for Siebel Mobile Disconnected

7 If you want Siebel Open Ul to anonymously register existing applet and business component
objects you can use anonymous registration. This allows administrators to have a common
customization across all applets or all business components.

For example, in order to have the ability to print or click on a specific button in any applet, the
following registration will give the handle of invoke a method in any applet, because the
ObjectName is deliberately omitted:

inputArgs[oconsts.get("'DOUIREG_OBJ_NAME'™)] = ""';
inputArgsf[oconsts.get("'DOUIREG_OBJ_TYPE')]=oconsts.get("'DOUIREG_OBJ_TYPEAPPLET"
)

inputArgs[oconsts.get("'DOUIREG_OBJ_MTHD™)] = "InvokeMethod";
inputArgs[oconsts.get("'DOUIREG_SRVC_NAME™)] "CustomDMService";
inputArgs[oconsts.get("'DOUIREG_SRVC_MTDH™)] "InvokeMethodPrint™;
inputArgs[oconsts.get("'DOUIREG_EXT_TYPE')] = oconsts.get("'DOUIREG_EXT_TYPEPRE');

In this case, InvokeMethodPrint will be called for all applets as PRE whenever InvokeMethod is
called for any applet.

Customizing Predefined Applets

The example in this topic registers a custom method that customizes a predefined applet. The work
you do in this topic is very similar to the work you do in “Customizing Predefined Business
Components” on page 343. The only difference occurs when you specify the input object for the applet
and the type of object.

To customize predefined applets
B Do Step 1 on page 344 through Step 6 on page 345 with the following differences:

m For Step c on page 344, specify the applet where Siebel Open Ul applies your customization.
In this example, you specify the Pharma Call Entry Mobile applet:

inputObj [oconsts.get("'DOUIREG_OBJ NAME'™)] = "Pharma Call Entry Mobile";

m For Step d on page 344, specify the type of object that you are customizing. You specify an
applet instead of a business component:

inputObj [oconsts.get("'DOUIREG_OBJ_TYPE™)] =
oconsts.get("'DOUIREG_OBJ_TYPEAPPLET™);

The following code is the completed code for this topic:

if (typeof (SiebelApp.pharmacallsvc) === "undefined") {
SiebelJS_Namespace("SiebelApp.pharmacallsvc®);
var oconsts = SiebelApp.Offlineconstants;
var inputObj = {};
inputObj [oconsts.get(*'DOUIREG_OBJ_NAME™)]
inputObj [oconsts.get("'DOUIREG_OBJ_TYPE')]
oconsts.get("'DOUIREG_OBJ_TYPEAPPLET"™);
inputObj [oconsts.get(""'DOUIREG_OBJ_MTHD'")] = "InvokeMethod";
inputObj [oconsts.get("'DOUIREG_SRVC_NAME')] = "pharmacallsvc';
inputObj [oconsts.get(*'DOUIREG_SRVC_MTDH")] = "InvokeMethod™;

"Pharma Call Entry Mobile";

346 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

g Siebel Open Ul for Siebel Mobile Disconnected ® Doing General
Customization Tasks for Siebel Mobile Disconnected

inputObj [oconsts.get(""'DOUIREG_EXT_TYPE'"™)] = oconsts.get("'DOUIREG_EXT_TYPEPRE");
SiebelApp.S_App-GetModel () -ServiceRegistry(inputObj);
SiebelApp.pharmacallsvc = (function () {
function pharmacallsvc() {
3
SiebelJS._Extend(pharmacallsvc, SiebelApp.ServiceModel);
pharmacal lsvc.prototype. InvokeMethod = function (pslnputArgs) {//get the inputs
var psOutArgs = SiebelApp.S_App-NewPropertySet();
return psOutArgs;//return the outputs
};
return pharmacallsvc;

} O);

Using Custom JavaScript Methods

The example in this topic describes how to call a custom JavaScript method that does not customize
a predefined method. Siebel Open Ul does not require you to register a custom JavaScript method.
Instead, you configure Siebel Open Ul to do the following work:

B Override the InvokeMethod to call your custom method.
B Override the CanlnvokeMethod method to enable or disable your custom method.

The offline_predefined_js_call_example.js file contains the code that this example describes. To get
a copy of this file, see Article ID 1494998.1 on My Oracle Support.

To use custom JavaScript methods

1 Use a JavaScript editor to create a new JavaScript file.
2 Register the InvokeMethod and CanlnvokeMethod methods. You add the following code:

if (typeof (SiebelApp.pharmacallsvc) === "undefined™) {
SiebelJS_Namespace("SiebelApp.pharmacallsvc®);
var inputObj = {};
var oconsts = SiebelApp.Offlineconstants;
inputObj[oconsts.get("'DOUIREG_OBJ_NAME™)]
inputObj[oconsts.get(*'DOUIREG_OBJ_TYPE™)]
oconsts.get("'DOUIREG_OBJ_TYPEAPPLET™);
inputObj[oconsts.get(*'DOUIREG_OBJ_MTHD™)] = *‘CanlnvokeMethod';
inputObj[oconsts.get("'DOUIREG_SRVC_NAME'™)] "pharmacallsvc";
inputObj[oconsts.get("'DOUIREG_SRVC_MTDH™)] ""CanlnvokeMethod";
inputObj[oconsts.get("'DOUIREG_EXT_TYPE'™)] =
oconsts.get(""'DOUIREG_EXT_TYPEPRE™);
SiebelApp.S_App-GetModel () -ServiceRegistry(inputObj);
inputObj[oconsts.get("'DOUIREG_OBJ_NAME™)] = "Pharma Call Entry Mobile™;
inputObj[oconsts.get(*'DOUIREG_OBJ_TYPE™)] =
oconsts.get("'DOUIREG_OBJ_TYPEAPPLET™);
inputObj[oconsts.get(*'DOUIREG_OBJ_MTHD™)]
inputObj[oconsts.get(*'DOUIREG_SRVC_NAME'™)]
inputObj[oconsts.get(*'DOUIREG_SRVC_MTDH™)]
inputObj[oconsts.get("'DOUIREG_EXT_TYPE™)] =

"Pharma Call Entry Mobile";

""InvokeMethod";
= "pharmacallsvc";
= "InvokeMethod";

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 347

Customizing Siebel Open Ul for Siebel Mobile Disconnecte
Customization Tasks for Siebel Mobile Disconnected

oconsts.get("'DOUIREG_EXT_TYPEPRE™);
SiebelApp.S_App-GetModel () -ServiceRegistry(inputObj);
SiebelApp.pharmacallsvc = (function) {
function pharmacallsvc(pm) {

}
SiebelJS._Extend(pharmacallsvc, SiebelApp.ServiceModel); //Extending
pharmacal lsvc.prototype. InvokeMethod = function (pslnputArgs) {

var svcMthdName = ;
var psOutArgs = SiebelApp.S_App-NewPropertySet();

For more information about this code, see the description about the inputObj argument in
“ServiceRegistry Method” on page 402. Also see “CanlnvokeMethod Method” on page 380 and
“Using Siebel Business Services or JavaScript Services to Customize Siebel CRM Objects” on
page 343.

3 Get the value of the MethodName argument from the psinputArgs method:
svcMthdName = pslnputArgs.GetProperty(“"MethodName'™).toString();
4 Call the Submit method:

it (svcMthdName === "'Submit'™) {
this.Submit();
$.callback(this, function (retObj) {

For information, see “callback Method” on page 410.
5 Do one of the following:

m If InvokeMethod handles the submit call that you define in Step 4, then you use the following
code to set the Invoked property to true:

if (lretObj.err) {
psOutArgs.SetProperty(*'Invoked', true);
$.setReturnValue({err: """, retvVal: psOutArgs});

3

else {
psOutArgs.SetProperty("'Invoked", true);
$.setReturnvValue({err: retObj.err, retVal: psOutArgs});

¥

s
3

For information see “setReturnValue Method” on page 409.

= If InvokeMethod does not handle the submit call that you define in Step 4, then you must use
the following code to configure Siebel Open Ul to set the Invoked property to false. This code
is required for any InvokeMethod method that you configure Siebel Open Ul to override:

else {
psOutArgs.SetProperty(*'Invoked”, false);
$.setReturnvValue({err: ", retval: psOutArgs});

}
return(psOutArgs);

};

348 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

ebel Open Ul for Siebel Mobile Disconnected ® Doing General
Customization Tasks for Siebel Mobile Disconnected

m If the current, overridden CanlnvokeMethod method handles the submit call that you define
in Step 4, then you must set the Invoked property to true. Siebel Open Ul includes the return

value in the RetVal property for the method from CanlnvokeMethod. You can set this method
according to your requirements:

pharmacal lsvc.prototype.CanlnvokeMethod = function (pslinputArgs) {

var psOutArgs = SiebelApp.S_App-NewPropertySet();
var svcMthdName = "'"';

svcMthdName = pslInputArgs.GetProperty(‘'"MethodName™).toString();
if (svcMthdName === "'Submit™) {

psOutArgs.SetProperty(""Invoked”, true);
psOutArgs.SetProperty("'Retval, true);

$.setReturnvalue({err: ", retvVal: psOutArgs});
¥

For more information about RetVal, see “setReturnValue Method” on page 409.

6 If the current, overridden CanlnvokeMethod method does not handle the submit call, then use
the following code to set the Invoked property to false:

else {
psOutArgs.SetProperty(""Invoked"”, false);
psOutArgs.SetProperty("'Retval', false);

$.setReturnvalue({err: ", retVal: psOutArgs});
¥
return(psOutArgs);

};
pharmacallsvc.prototype.Submit= function (pslnputArgs) {

var psOutArgs = SiebelApp.S_App-NewPropertySet();
return(psOutArgs);

};
return pharmacallsvc;

} O0);

Using Custom Siebel Business Services

This topic describes how to call a Siebel business service that you customize. You must configure
Siebel Open Ul to register this business service before Siebel Open Ul can call it.

To use custom Siebel business services
1 Use a JavaScript editor to create a new JavaScript file.
2 Register your custom business service. You add the following code:

var inputObj = {};

inputObj[oconsts.get("'DOUIREG_OBJ_NAME'")]= "business _service";
inputObj[oconsts.get(""DOUIREG_SRVC NAME'™)] = "class";
SiebelApp.S_App-GetModel () -ServiceRegistry(inputObj);

where:

B business_service identifies the name of a custom business service.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 349

Customizing Siebel Open Ul for Siebel Mobile Disconnecte
Customization Tasks for Siebel Mobile Disconnected

m class identifies the JavaScript class that the custom business service references.
For example:

if (typeof (SiebelApp.PharmaCallValidatorsvc) === "undefined™) {
SiebelJS._Namespace("SiebelApp.PharmaCallValidatorsvc®);

var oconsts = SiebelApp.Offlineconstants;
var inputObj = {};

inputObj[oconsts.get("'DOUIREG_OBJ_NAME'™)]= "LS Pharma Validation Service";
inputObj[oconsts.get("'DOUIREG_SRVC_NAME'™)] = "PharmaCallValidatorsvc";
SiebelApp.S_App-GetModel () -ServiceRegistry(inputObj);
SiebelApp.-PharmaCallvValidatorsvc = (function () {

function PharmaCallValidatorsvc() {
SiebelApp.PharmaCallValidatorsvc.superclass.constructor.call(this);

}
SiebelJS.Extend(PharmaCallValidatorsvc, SiebelApp.ServiceModel);

For more information about the methods that this step uses, see the following topics:
m “Properties You Must Include to Register Custom Business Services” on page 403
m “ServiceRegistry Method” on page 402

m “Using Siebel Business Services or JavaScript Services to Customize Siebel CRM Objects” on
page 343

3 Use CanlnvokeMethod to determine if Siebel Open Ul can call your custom business service
method.

For example, the following code determines if Siebel Open Ul can call the Callvalidate business
service method:

PharmaCal lValidatorsvc.prototype.CanlnvokeMethod = function (svcMthdName) {
if (svcMthdName === "CallValidate") {
$.setReturnvalue({err: """, retval: true});
return;
3
else {
return
SiebelApp.PharmaCal lValidatorsvc.superclass.CanlnvokeMethod.call(this,
svcMthdName) ;
3
};

For more information about the methods that this step uses, see “CanlnvokeMethod Method” on
page 380.

4 Depending on whether you want to make a call from service to service, or to a standalone
service, use one of the following methods:

350 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

ebel Open Ul for Siebel Mobile Disconnected ® Doing General
Customization Tasks for Siebel Mobile Disconnected

a To make a call from one service to another service, use InvokeMethod. This method will call your
custom business service method.

For example, the following code calls the CallValidate business service method:

PharmaCallvValidatorsvc.prototype. InvokeMethod = function (svcMthdName,
psinpargs) {
var psOutArgs = SiebelApp.S_App-NewPropertySet();
if (IsvcMthdName) {
$.setReturnValue({err: "', retval: true});
return;

if (svcMthdName === "CallValidate") {
this.Callvalidate(psinpargs);
$.callback(this,function(retObj){
psOutArgs = retObj.retVal;
this.CleanUp(Q);
$.setReturnvalue({err:false,retVal : psOutArgs});

return;
b:
}
}

else {
return
SiebelApp.PharmaCallValidatorsvc.superclass. InvokeMethod.call (this,
svcMthdName, psinpargs);

}

PharmaCal lvalidatorsvc.prototype.CallValidate = function (psinpropset) {
var psOutArgs = SiebelApp.S_App.NewPropertySet();

//Some Logic

$.setReturnValue({err:false,retval : psOutArgs});

};
¥

return PharmaCallValidatorsvc;

} O);
}

The call from any other service file must be done as follows:

var service = SiebelApp.S_App.GetService(''LS Pharma Validation Service");var
outputSet = service.lnvoke("'Callvalidate', psPropertySet);

b To make a call to a standalone service use the InvokeMethod method. Use the Client- Service
Call method to customize the disconnected mobile client. This allows a service call to be made
from the client, typically from a physical model.

For example, the following code enables you to display the total number of products detailed
in the tooltip. This would be the call from the physical model:

var service = SiebelApp.S_App.GetService(''LS Pharma Validation Service");
var inPropSet = SiebelApp.S_App.NewPropertySet();
if (service) {
service. InvokeMethod(*'CountPDMethod", inPropSet);
$.callback(this, function(retObj){

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 351

Customizing Siebel Open Ul for Siebel Mobile Discon
Customization Tasks for Siebel Mobile Disconnected

var outPropSet = retObj.retval;

P
}

In online mode, the call is to the standalone business service in a server, whereas in offline
mode, this invokes the standalone offline business service code.

For example, the following code is for the Sample Offline service:

PharmaCal lValidatorsvc.prototype.CanlnvokeMethod = function (svcMthdName) {

if (svcMthdName === ' CountPDMethod'™) {
$.setReturnValue({ err: false, retvVal: true });
return;
}
else {
return

SiebelApp.PharmaCal lVal idatorsvc.superclass.CanlnvokeMethod.call (this,
svcMthdName) ;

}

PharmaCal lValidatorsvc.prototype. InvokeMethod = function (svcMthdName,
Inputs) {
var psOutArgs = CCFMiscUtil_CreatePropSet();
if (svcMthdName === ' CountPDMethod™) {
var BO = SiebelApp.S_App.-GetBusObject(*'Pharma Professional Call -
Mobile™);
var PDBC = BO.GetBusComp(*'Pharma Call Products Detailed™);
PDBC.SetSearchExpr("[Activity Id] = """ + Inputs.GetProperty(''ld™) +
R -
PDBC.ExecuteQuery();
$.callback(this, function(retObj){
PDBC.FirstRecord();
$.callback(this, function(){
var result = PDBC.CountRecords();
Outputs.SetProperty("'OutputText",result);
H;
;
}

For more information about the methods that this step uses, see the following topics:
“Invoke Method for Business Services” on page 401

“InvokeMethod Method for Applets” on page 380

“setReturnValue Method” on page 409

“callback Method” on page 410

352 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Siebel Open Ul for Siebel Mobile Disconnected B Doing General
Customization Tasks for Siebel Mobile Disconnected

Configuring Data Filters

It is recommended that you configure filters to reduce the amount of business component data that
Siebel Open Ul must download to do offline operations. Siebel Open Ul comes predefined with a
number of data filters. You can modify these filters. For more information about how to modify them,
see the chapter about working with data filters in Siebel Mobile Guide: Disconnected.

Configuring Objects That Siebel Open Ul Does Not
Display in Clients

The Handheld Business Service only downloads fields, business component data, and business object
data that Siebel Open Ul displays in the client. You must configure Siebel Open Ul to download these
objects that it does not display in the client. To do this, you use the Settings tab of the Mobile
Application view in the Administration - Siebel Remote screen in the administrative client. For more

information, see the topic that describes configuring application settings in Siebel Mobile Guide:
Disconnected.

Configuring Error Messages for Disconnected Clients

This topic describes how to configure Siebel Open Ul to use the SetErrorMsg method in your custom
code to return and display a custom error message in a disconnected client.

To configure error messages for disconnected clients

1 Use an editor to open the file that calls a custom applet, business component, or business
service.

This is the same file that you create in “Using Siebel Business Services or JavaScript Services to
Customize Siebel CRM Objects” on page 343.

2 Locate the code that might return an error message.

For example, assume your deployment includes the following code, and that this code calls a
method that might return an error message:

BusComp.prototype.Caller = function ()
this.Called();
$.callback(this,function(retObj){

In this example, the Called method might return an error message. It calls the Caller method.
These methods might reside in different locations in a production environment.

3 Add the following code to the code that you located in Step 2:

//Check for any errors
if(retObj.err){

$.setReturnvValue(retObj);
}

else{

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 353

Customizing Siebel Open Ul for Siebel Mobile Disconnecte
Customization Tasks for Siebel Mobile Disconnected

//Positive case
$.setReturnvValue({err:false,retval:false});

}
»:

return;

}

This code determines whether or not the Called method returns an error message. If it:
® Returns an error message, then this code calls the setReturnValue method.
m Does not return an error message, then the following code sets the err return value to null:

$._setReturnValue({err:false,retval :false});
For information see “setReturnValue Method” on page 4009.

4 Add the following code to the code that you located in Step 3:

BusComp.prototype.Called = function (){

var errParamArray = [];

errParamArray .push(valuel, valueh);
SiebelApp.S_App-OfflineErrorObject._SetErrorMsg('messageKey", errParamArray);
$.setReturnValue({err:"AppropriateErrorCode",retVal : false});

where:

m valuel is a property that Siebel Open Ul sends to the SetErrorMsg method. You can configure
Siebel Open Ul to send up to eight properties.

B messageKey is a key that Siebel Open Ul maps to the message string that it displays.
For more information, see “SetErrorMsg Method” on page 411.
In this example, the following code calls the SetErrorMsg method:

SiebelApp.S_App-OfFflineErrorObject.SetErrorMsg(""'AppropriateErrorCode",
errParamArray);

The following code makes sure Siebel Open Ul returns an err value. This value contains the error
code:

$.setReturnValue({err:"AppropriateErrorCode",retVal :false});
return;

The following code is the completed code that this example uses:

BusComp.prototype.Caller = function ()
this.Called();
$.callback(this, function(retObj){
//Check for any erros
if(retObj.err){
$.setReturnValue(retObj);
}
else{
//Positive case
$._setReturnValue({err:false,retval :false});

}

354 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Open Ul for Siebel Mobile Disconnected ® Customizing Siebel
Pharma for Siebel Mobile Disconnected Clients

»:

return;

}

BusComp.prototype.Called = function (){
var errParamArray = [];
errParamArray.push(FfieldName) ;
SiebelApp.S_App.OfflineErrorObject.SetErrorMsg(*"ErrorCode", errParamArray);
$.setReturnValue({err:"AppropriateErrorCode”,retval:false});
return;

b
where:

B ErrorCode identifies a messageKey. Siebel Open Ul gets the message text for the message key
from the swemessages_language_code.js file that resides in an local folder. For example,
swemessages_enu.js. For more information about the language_code, see “Languages That
Siebel Open Ul Supports” on page 592.

B fieldName identifies the name of a business component field. This field contains the values that
Siebel Open Ul displays in the error message. For example, the predefined BCErrNoSuchField
message key includes the following message text in the swemessages_enu.js file:

"Field "%1" not found in BusComp."

SetErrorMsg replaces %1 with the value that Siebel Open Ul passes in the errParamArray. For
example:

errParamArray.push(**Name™);
SiebelApp.S_App-OfFflineErrorObject._SetErrorMsg(""BCErrNoSuchField" ,errParamArray
)

In this example, Siebel Open Ul replaces "%1" with the value Name:

"Field “Name® not found in BusComp."

About Siebel Mobile Application Logging

Users can enable logging for Siebel Mobile applications on their devices. For information about Siebel
Mobile Application logging, see Siebel Mobile Guide: Disconnected.

Customizing Siebel Pharma for Siebel
Mobile Disconnected Clients

This topic includes an example of customizing Siebel Pharma in Siebel Open Ul for display in a Siebel
Mobile disconnected client. For more information about the functionality that these customizations
modify, see the chapter that describes how to use the Siebel Mobile Disconnected Application for
Siebel Pharma in Siebel Mobile Guide: Disconnected.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 355

Customizing Siebel Open Ul for Siebel Mobile Disconnected C
Pharma for Siebel Mobile Disconnected Clients

This topic customizes Siebel Pharma to submit a Pharma Call record depending on whether or not
Siebel Open Ul already submitted this call. It makes sure Siebel Open Ul does not overwrite a call
that it already submitted to the Siebel Server. To submit a call in Siebel Pharma, the user must do
the following work:

Enter all information for the call.

B Add at least one sample for the call.
B Get the required signature for the samples that the call includes.
B Set the status for the call to Planned or Signed.

Tap Submit.

Siebel Pharma locks a call after it submits this call, and then the user can no longer edit or update
the call. You can modify some of this behavior. For more information about the work you do in this
topic, see “Process of Customizing Siebel Open Ul for Siebel Mobile Disconnected” on page 337. For
more information about the methods that this example uses, see “Methods You Can Use to Customize
Siebel Mobile Disconnected” on page 378.

To customize Siebel Pharma for Siebel Mobile Disconnected clients
1 Create a new JavaScript file.

You can use any file name that is meaningful to your deployment. For example, you can use a
short name that indicates what the business service accomplishes. It is recommended that the
file name end with svc.js or service.js. For example, callsvc.js. To get a copy of this file, see
Article ID 1494998.1 on My Oracle Support. For more information about the folders you can use
to store your customizations, see “Organizing Files That You Customize” on page 162.

2 Register an asynchronous business component method. You add the following code to the file you
created in Step 1:

var inputArgs = {};

var oconsts = SiebelApp.Offlineconstants;

var childBCArrObjs = [1;

inputArgs[oconsts.get(*'DOUIREG_OBJ_NAME™)] = "Pharma Call Entry Mobile";
inputArgs[oconsts.get("'DOUIREG_OBJ_TYPE"™)] =
oconsts.get("'DOUIREG_OBJ_TYPEAPPLET™);
inputArgs[oconsts.get("'DOUIREG_OBJ_MTHD'™)]
inputArgs[oconsts.get("'DOUIREG_SRVC_NAME')] "pharmacallsvc";
inputArgs[oconsts.get(*'DOUIREG_SRVC_MTDH™)] ""CanlnvokeMethod™;
inputArgs[oconsts.get("'DOUIREG_EXT_TYPE'"™)] = oconsts.get(*'DOUIREG_EXT_TYPEPRE™);
SiebelApp.S_App-GetModel () -ServiceRegistry(inputArgs);
inputArgs[oconsts.get("'DOUIREG_OBJ_NAME'™)] = "Pharma Call Entry Mobile";
inputArgs[oconsts.get("'DOUIREG_OBJ_TYPE'™)]
oconsts.get(""'DOUIREG_OBJ_TYPEAPPLET"™);
inputArgs[oconsts.get("'DOUIREG_OBJ_MTHD'™)] = "InvokeMethod";
inputArgs[oconsts.get(*'DOUIREG_SRVC_NAME™)] = "pharmacallsvc';

""CanlnvokeMethod";

356 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

el Open Ul for Siebel Mobile Disconnected = Customizing Siebel
Pharma for Siebel Mobile Disconnected Clients

inputArgs[oconsts.get("'DOUIREG_SRVC_MTDH")] = "InvokeMethod";
inputArgs[oconsts.get("'DOUIREG_EXT_TYPE")] = oconsts.get("'DOUIREG_EXT_TYPEPRE'™);
SiebelApp.S_App.-GetModel () -ServiceRegistry(inputArgs);

This code registers the CanlnvokeMethod method of the pharmacallsvc business service with the
CanlnvokeMethod of the Pharma Call Entry Mobile business component. It configures Siebel
Open Ul to call CanlnvokeMethod of the pharmacallsvc business service every time it calls
CanlnvokeMethod on the business component. For more information, see “ServiceRegistry
Method” on page 402 and “CanlnvokeMethod Method” on page 380.

Add the following code immediately after the code you added in Step 2:

SiebelApp.pharmacallsvc = (function () {
function pharmacallsvc(pm) {
}
SiebelJS_Extend(pharmacallsvc, SiebelApp.ServiceModel);

This code adds the pharmacallsvc method to the pharmacallsvc business service.

Specify the logic for your asynchronous method. You add the following code immediately after
the code you added in Step 3:

pharmacal Isvc.prototype.CanlnvokeMethod = function (pslinputArgs) {
var psOutArgs = SiebelApp.S_App.-NewPropertySet();
var svcMthdName = "'"';
var pBusComp = this.GetContext() -BusComp();
svcMthdName = pslInputArgs.GetProperty(‘'"MethodName™).toString();

if (svcMthdName === "'Submit'™) {
pBusComp.GetFieldvalue(*'Call Status');
$.callback(this, function (retObj) {
var callStatus = retObj.retVal;
if(callStatus!== "Submitted){
psOutArgs.SetProperty("'Invoked", true);
psOutArgs.SetProperty("Retval’, true);
$._setReturnValue({err: false, retVal: psOutArgs});
3
else{
psOutArgs.SetProperty(*'Invoked', true);
psOutArgs.SetProperty("'Retval™, false);
$._setReturnValue({err: false, retVal: psOutArgs});
3
D:
¥
};

This code defines CanlnvokeMethod. This method determines whether or not Siebel Open Ul can
call a method in the current context of the business component. In this example, if the value for
the active call record is:

®m Not submitted. CanlnvokeMethod returns a value of true, and this code sets the properties
to call the CanlnvokeMethod of the business service.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 357

Customizing Siebel Open Ul for Siebel Mobile Disconnected
Pharma for Siebel Mobile Disconnected Clients

m Submitted. CanlnvokeMethod returns a value of false, and this code sets the properties to
not call the CanlnvokeMethod of the business service.

This code uses the svcMthdName variable to send a value that indicates whether or not Siebel
Open Ul submitted the record. It sends this value to the code that you define in Step 5.

For information about the methods that this step uses, see “setReturnValue Method” on page 409,
“GetFieldValue Method” on page 388, and “callback Method” on page 410.

5 Add the following code immediately after the code you added in Step 4:

pharmacal Isvc.prototype. InvokeMethod = function (pslnputArgs) {
var svcMthdName = """
var psOutArgs = SiebelApp.S_App.-NewPropertySet();
svcMthdName = pslnputArgs.GetProperty(*"MethodName') .toString();
if (svcMthdName === "'Submit'™) {
this.Submit(Q);
$.callback(this, function (retObj) {
psOutArgs.SetProperty("'Invoked", true);
$._setReturnValue({err: false, retVal: psOutArgs});
H:
3
};

This code configures Siebel Open Ul to run InvokeMethod on the business service if the
svcMthdName variable that you defined in Step 4 contains a value of Submit.

6 Define the method that includes your customization logic. You add the following code
immediately after the code you added in Step 5:

pharmacal lsvc.prototype.Submit = function () {
var model= SiebelApp.S_App-GetModel();
var pBusObj = model .GetBusObject(''boName'™);
var pBusComp = pBusObj .GetBusComp(''bcName™);
var now = new Date();
var strStatusField = pBusComp.GetUserProperty("'Status Field™);
var pickName =
SiebelApp.S_App-GetActiveView() .GetActiveApplet() .GetControl ("'Status').
GetPickApplet();
pBusComp.SetFieldvalue(strStatusField, 'submit", true);
$.callback(this, function (retObj) {
pBusComp.WriteRecord();
$.callback(this, function (retObj) {
D
D
¥

This code defines the Submit method. It sets the value for the Status field to Submitted. It uses
the following methods:

m “BusComp Method for Applets” on page 379
m “SetFieldValue Method” on page 395
B “WriteRecord Method” on page 398

358 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

pen Ul for Siebel Mobile Disconnected = Customizing Siebel
Pharma for Siebel Mobile Disconnected Clients

m “GetActiveView Method” on page 487

For more information about how this code uses the callback method, see “Coding Callback
Methods” on page 359.

7 Test your modifications:
a Tap Calls on the application banner to display the Calls list.

b Tap a call in the list that you know you have not submitted, and then tap Submit to submit the
call.

c Verify that Siebel Open Ul does the following:
1 Modifies the call status to Submitted.
1 Locks the call

1 Decreases the sample inventory for the sales representative according to the samples
and promotional items that the call dropped off

1 Closes the call.
1 Allows you to review, but not edit the call details.

d Tap a call in the list that you know you have already submitted, and then tap Submit to submit
the call.

Make sure Siebel Open Ul does not overwrite this call. Make sure it displays a dialog box that
describes that you have already submitted this call.

Coding Callback Methods

The code in Step 6 on page 358 is an example of how to code a callback method in an asynchronous
environment. For example, it uses the SetFieldValue and the WriteRecord methods, which are
asynchronous methods, rather than the SetCommitPending method, which is a synchronous method.
A callback method is a type of JavaScript method that Siebel Open Ul sends to method A as a
property, and then calls this callback method from method A, where A is any JavaScript method.

If you configure Siebel Open Ul to call an asynchronous method, then it is recommended that the
next line of code that occurs after this call include a callback method. For example, the following code
from Step 4 on page 357 uses a callback method to handle the asynchronous GetFieldValue method:

pBusComp.GetFieldvValue(**Call Status'™);

$.callback(this, function (retObj) {
var callStatus = retObj.retval;
if(callStatus '== "Submitted"){

For more information, see “GetFieldValue Method” on page 388 and “callback Method” on page 410.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 359

Customizing Siebel Open Ul for Siebel Mobile Disconnecte
Pharma for Siebel Mobile Disconnected Clients

Configuring Interactive Detailing in the Siebel Open Ul
Application for Siebel Pharma

Configuring interactive detailing involves configuring the Detail button to appear on an applet in the
application. By default, the Detail button appears only for Calls in the Siebel Open Ul application for
Siebel Pharma. Selecting the Detail button starts the eDetailer player which is used to deliver
personalized content to customers, to demonstrate information about products to customers, and to
obtain feedback from customers about product presentations and personalized content delivered. For
more information about using the eDetailer player in the Siebel Open Ul application for Siebel
Pharma, see Siebel Connected Mobile Applications Guide.

Configuring the Detail Link - Scenario 1: Using New Data Map Object
to Capture Customer Feedback

The following procedure shows you how to configure the Detail link for Contacts in the Siebel Open
Ul application for Siebel Pharma, but you follow the same procedure if configuring the Detail link for
any other applet in the application. In the following procedure, you configure a new data map object
(EdetailingContact) to create the Activity and Response record to capture customer feedback.

To configure the Detail link for Contacts in the Siebel Open Ul application for Siebel
Pharma

1 Create a new Detail button control and drilldown in the Contact Form Applet in Siebel Tools:

NOTE: The Detail button must only be available in Siebel Open Ul and should be disabled in High
Interactivity applications. You can do this by using, for example, a standard applet user property
where Name is set to CanlnvokeMethod: ShowEdetailerPreviewView and Value is set to
GetProfileAttr(“IsOpenUl1”) = 1.

a Open Siebel Tools.
For more information, see Using Siebel Tools.
b In the Object Explorer, click Applet.
c In the Applets list, query the Name property for the Contact Form Applet.
d Create a new Detail button control:
1 In the Object Explorer, expand the Contact Form Applet, and then Control.

1 In the Controls list, create a new button control using values from the following table.

Property Value

Name EdetailerButton

Caption Detail

360 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

pen Ul for Siebel Mobile Disconnected = Customizing Siebel
Pharma for Siebel Mobile Disconnected Clients

Property Value

Method Invoked ShowEdetaillerPreviewView

This method handles the related view navigation and data for the
Detail link (eDetailer player). ShowEdetailerPreviewView is a new
LS PCD Service for delivering personalized content in the Life
Sciences industry. Note that if Siebel Tools does not display the
Method Invoked in the list, then type it in manually.

e Define user properties for the Detail button:

1 In the Object Explorer, expand the Controls tree, and then click Business Component User
Prop.

2 If you are invoking the business service method Named Method, then the user property
value for Named Method is as follows:

User Property Name Value

Named Method 1 "ShowEdetailerPreviewView", "INVOKESVC", "Contact", "LS
PCD Service", "ShowEdetailerPreviewView",
"DrilldownName", "Edetailer Drilldown",

"EdetailerDatamapObj", "EdetailingContact",
"CreateBookmark", "true", "'Objectld", "[Id]"

1 Create input arguments for Named Method with the values shown in the following table.

Property Name Value Purpose
DrilldownName Edetailer Drilldown Navigates to the eDetailer player view.
EdetailerDatamapObj EdetailingContact Triggers the creation of activities, and

the feedback capture page when
finished showing the presentation.

CreateBookmark TRUE Navigates back to the originating view
(for example, Contact) when done
showing the presentation.

Objectld Row Id of current Used to log the response captured to
record the appropriate contact or account
call.

f Add a new drilldown object for the Detail button control:
1 In the Object Explorer, expand the Contact Form Applet, and then Drilldown Object.

2 In the Drilldown Objects list, add a new drilldown object with the values shown in the
following table.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 361

Customizing Siebel Open Ul for Siebel Mobile Disconnect
Pharma for Siebel Mobile Disconnected Clients

Name Edetailer Drilldown

Hyperlink Field Last Name

View eDetailer Message Plan Preview View
Source Field None

Business Component LS Admin Messagign Plans BC

To show only the messaging plans that are related to a particular object (that is, remove
the object for example “Product”), then add a new drilldown object with the values shown
in the following table.

Name Edetailer Drilldown

Hyperlink Field Name

View eDetailer Message Plan Preview View
Source Field Id

Business Component LS Admin Messaging Plans BC
Destination Field Product Id

2 Add the Contact business component to the Admin Messaging Plan business object.

a

b

In the Object Explorer, expand the Business Object tree, and then click Business Object
Component.

In the Business Object Component list, create new records with the values shown in the following
table.

Business Object Component Value
Bus Comp Link
Contact None

3 Configure a new data map object (EdetailingContact) to create the Activity and Response record:

362

Log in to the Siebel business application.
Navigate to the Administration - Application screen, then the Data Map Administration view.

Click New and create a new data map object with the values shown in the following table:

Data Map Object Name Source Business Object Destination Business Object

EdetailingContact Admin Messaging Plan Action

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

I for Siebel Mobile Disconnected ® Customizing Siebel
Pharma for Siebel Mobile Disconnected Clients

d For the EdetailingContact data map object, click New in the Data Map Component applet and add
the following components:

Source Destination

Business Business
Component Component Parent Advanced Options

Contact Act Contact Action None Source Search Specification
= [1d] = GetProfileAttr
('Edetailer Object 1d")

ResponseLog eDetailer LS PCD Contact Act None
Feedback Presentation
Capture VBC Details BC

e For the Contact Act data map component, click new in the Data Map Field applet and add the
following fields:

Source Type Source Destination Type Destination

Field Id Field Primary Contact Id

T For the ResponselLog data map component, click new in the Data Map Field applet and add the
following fields:

Field EndTime Field Message End Time

Expression GetProfileAttr(“Edetailer Object 1d”) Field Contact Id

Field ItemName Field Message

Field Mpild Field Message Id

Field ParentMPId Field Message Plan Id

Field ParentMPName Field Message Plan

Field StartTime Field Message Start
Time

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 363

Customizing Siebel Open Ul for Siebel Mobile Disconnecte
Pharma for Siebel Mobile Disconnected Clients

Configuring the Detail Link - Scenario 2: Using New Business
Component User Properties to Capture Customer Feedback

The following procedure shows you how to configure the Detail link in the Siebel Open Ul application
for Siebel Pharma specifically. To configure the Detail link in a different Siebel Open Ul application
(for example, in the Siebel Open Ul application for Siebel Service), follow the procedure shown in
“Configuring the Detail Link - Scenario 1: Using New Data Map Object to Capture Customer Feedback”
on page 360. In the following procedure, you configure new business component user properties
(rather than a new data map object) to capture customer feedback.

To configure the Detail link for Contacts in the Siebel Open Ul application for Siebel
Pharma

1 Create a new Detail button control and drilldown in the Contact Form Applet in Siebel Tools:

NOTE: The Detail button must only be available in Siebel Open Ul and should be disabled in High
Interactivity applications. You can do this by using, for example, a standard applet user property
where Name is set to CanlnvokeMethod: ShowEdetailerPreviewView and Value is set to
GetProfileAttr(“IsOpenUl1™) = 1.

a Open Siebel Tools.
For more information, see Using Siebel Tools.
b In the Object Explorer, click Applet.
In the Applets list, query the Name property for the Contact Form Applet.
Create a new Detail button control:
1 In the Object Explorer, expand the Contact Form Applet, and then Control.

1 In the Controls list, create a new button control using values from the following table.

Property Value

Name EdetailerButton

Caption Detail

Method Invoked ShowEdetaillerPreviewView

This method handles the related view navigation and data for the
Detail link (eDetailer player). ShowEdetailerPreviewView is a new
LS PCD Service for delivering personalized content in the Life
Sciences industry. Note that if Siebel Tools does not display the
Method Invoked in the list, then type it in manually.

e Define user properties for the Detail button:

1 In the Object Explorer, expand the Controls tree, and then click Business Component User
Prop.

364 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

pen Ul for Siebel Mobile Disconnected = Customizing Siebel
Pharma for Siebel Mobile Disconnected Clients

If you are invoking the business service method Named Method, then the user property
value for Named Method is as follows:

User Property Name Value

Named Method 1 "ShowEdetailerPreviewView", "INVOKESVC", "Pharma
Professional Call", "LS PCD Service",
"ShowEdetailerPreviewView", "DrilldownName", "Edetailer
Drilldown", "CreateBookmark", "true", "'‘Objectld™™, "[1d]"

Create input arguments for Named Method with the values shown in the following table

Property Name Value Purpose
DrilldownName Edetailer Drilldown Navigates to the eDetailer player view.
CreateBookmark TRUE Navigates back to the originating view

(for example, Contact) when done
showing the presentation.

Objectld Row Id of current Used to log the response captured to
record the appropriate contact or account
call.

f Add a new drilldown object for the Detail button control:

N

N

In the Object Explorer, expand the Contact Form Applet, and then Drilldown Object.

In the Drilldown Objects list, add a new drilldown object using values from the following

table
Property Value
Name Edetailer Drilldown
View eDetailer Message Plan Preview View
Hyperlink Field Last Name
Source Field None
Business Component LS Admin Messaging Plans BC

To show only the messaging plans that are related to a particular object, then add a new
drilldown object with the values shown in the following table.

Name Edetailer Drilldown
Hyperlink Field Name
View eDetailer Message Plan Preview View

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 365

Customizing Siebel Open Ul for Siebel Mobile Disconnecte

Pharma for Siebel Mobile Disconnected Clients

Source Field Id
Business Component LS Admin Messaging Plans BC
Destination Field Product Id

2 Add the Contact business component to the Admin Messaging Plan business object.

2 In the Object Explorer, expand the Business Object tree, and then click Business Object
Component.
b Inthe Business Object Component list, create new records with the values shown in the following
table.
Business Object Component Value
Bus Comp Link
Contact None

3 Configure the business component user properties with the values shown in the following table
for the eDetailer Feedback Capture VBC business component:

Value

Business Component User Property

eDetailer Feedback Capture VBC|LS PCD Presentation
Details BC FieldMap 1

EndTime|Message End Time

eDetailer Feedback Capture VBC|LS PCD Presentation
Details BC FieldMap 2

ItemName|Message

eDetailer Feedback Capture VBC|LS PCD Presentation
Details BC FieldMap 3

Mpild|Message Id

eDetailer Feedback Capture VBC|LS PCD Presentation
Details BC FieldMap 4

ParentMPld|Message Plan Id

eDetailer Feedback Capture VBC|LS PCD Presentation
Details BC FieldMap 5

ParentMPName|Message Pla

eDetailer Feedback Capture VBC|LS PCD Presentation
Details BC FieldMap 6

StartTime|Message Start Time

eDetailer Feedback Capture VBC|LS PCD Presentation
Details BC FieldMap 7

Response|Respons

SourceBC

eDetailer Feedback Capture VBC

DestinationBC

LS PCD Presentation Details BC

366

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Open Ul for Siebel Mobile Disconnected ® Customizing Siebel
Service for Siebel Mobile Disconnected Clients

Customizing Siebel Service for Siebel
Mobile Disconnected Clients

This topic includes some examples that describe how to customize Siebel Service in Siebel Open Ul
for a Siebel Mobile disconnected client. It includes the following information:

B “Allowing Users to Commit Part Tracker Records” on page 367
B “Allowing Users to Return Parts” on page 369

B “Allowing Users to Set the Activity Status” on page 375

For more information about:

B Work you do in this topic, see “Process of Customizing Siebel Open Ul for Siebel Mobile
Disconnected” on page 337

B Methods that these examples use, see “Methods You Can Use to Customize Siebel Mobile
Disconnected” on page 378

B Functionality that these customizations modify, see the chapter that describes how to use the
Siebel Mobile Disconnected Application for Siebel Service in Siebel Mobile Guide: Disconnected

Allowing Users to Commit Part Tracker Records

The example in this topic describes how to enable the Commit button so that users can commit a
Part Tracker record. To set the Commit Flag for a Part Tracker record, the user navigates to the
Activities - Part Tracker view, chooses a Part Tracker record, and then clicks Commit. If the part is:

B Not already committed, then Siebel Open Ul commits the part.

B Already committed, then Siebel Open Ul displays a message that the part is already committed.

To allow users to commit Part Tracker records
1 In Windows Explorer, navigate to the following folder:

INSTALL DIR\eappweb\PUBLIC\Janguage code\build _number\scripts\siebel\offline

For more information about the language_code, see “Languages That Siebel Open Ul Supports” on
page 592.

2 Copy the servicecommitpartconsumed.js file to the following folder:
INSTALL _DIR\eappweb\PUBLIC\ Janguage code\files\custom\
For more information, see “Organizing Files That You Customize” on page 162.
3 Use a JavaScript editor to open the file you created in Step 2.
4 Locate the following code that resides near the beginning of the file:

iT (typeof (SiebelApp.commitpartconsumed) === "undefined™) {
SiebelJS.Namespace("SiebelApp.commitpartconsumed”);

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 367

Customizing Siebel Open Ul for Siebel Mobile Disconnected
Service for Siebel Mobile Disconnected Clients

5 Add the following code immediately after the code that you located in Step 4:

var inputArgs {3;
var oconsts = SiebelApp.Offlineconstants;
inputArgs[oconsts._get("'DOUIREG_OBJ_NAME')]= "'SHCE Service FS Activity Part
Movements List Applet - Mobile™;
inputArgs[oconsts.get("'DOUIREG_OBJ_TYPE")]=
oconsts.get(""DOUIREG_OBJ_TYPEAPPLET™);
inputArgs[oconsts.get("'DOUIREG_OBJ_MTHD')]= "CommitPartMvmtClient";
inputArgs[oconsts.get("'DOUIREG_SRVC_NAME')]= "commitpartconsumed";
inputArgs[oconsts._get("'DOUIREG_SRVC_MTDH")] = "CommitPartMvmtClient";
inputArgs[oconsts.get("'DOUIREG_EXT_TYPE'")]= null;
SiebelApp.S_App-GetModel () .ServiceRegistry(inputArgs);

This code registers the service. For more information, see “ServiceRegistry Method” on page 402.
6 Add the following CanlnvokeMethod method immediately after the code that you added in Step 5:

commitpartconsumed.prototype.CanlnvokeMethod = function (svcMthdName) {
if (svcMthdName === "CommitPartMvmtClient™) {
return true;
}

else
return SiebelApp.commitpartconsumed.superclass.CanlnvokeMethod.call(
this, svcMthdName) ;

}:

This code determines whether or not Siebel Open Ul can call a method in the current context of
the business component.

7 Add the following InvokeMethod method immediately after the code that you added in Step 6:

commitpartconsumed.prototype. InvokeMethod = function (svcMthdName, psinpargs) {
var psOutArgs = SiebelApp.S_App.-NewPropertySet();
if (IsvcMthdName) {
return (false);
}
if (svcMthdName === "CommitPartMvmtClient™) {
psOutArgs = this.CommitPartMvmtClient();
}
else {
return SiebelApp.commitpartconsumed.superclass. InvokeMethod.call(
this,svcMthdName, psinpargs);
3
return (psOutArgs);

};
This code calls the CommitPartMvmtClient service method if the user clicks the Commit button.
8 Add the following code immediately after the code that you added in Step 7:

commitpartconsumed.prototype.CommitPartMvmtClient = function () {
SiebelJS.Log(" Invoked CommitPartMvmtClient Method.");
var pServicelnvBC;
var cszCommitFlag;
var pModel;

368 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

el Open Ul for Siebel Mobile Disconnected = Customizing Siebel
Service for Siebel Mobile Disconnected Clients

pModel = SiebelApp.S_App-Model;

var pServicelnvBO = pModel .GetBusObject(''boName™);
pServicelnvBC = pServicelnvB0.GetBusComp(''bcName™);
cszCommitFlag = pServicelnvBC.GetFieldvalue(*"Commit Txn Flag™);

ifT (cszCommitFlag === "Y"){
SiebelJS.Log("Consumed Part Is Already In Committed State");
3
else
{

// pServicelnvBC.ActivateField('Commit Txn Flag');
//pServicelnvBC.UpdateRecord();
pServicelnvBC.SetFieldvalue("'Commit Txn Flag"™, "Y', true);
pServicelnvBC.WriteRecord();
3
}:

This code determines whether or not the record is already committed. The Dolnvoke method calls
the CommitPartMvmtClient method, and then the CommitPartMvmtClient method examines the
value of the Commit Txn Flag field. If this value is:

B Y. Siebel Open Ul has already committed the record and displays a Consumed Part Is Already
In Committed State message.

m N. Siebel Open Ul has not committed the record and writes the record to the local database.

For more information about the methods that this code uses, see “GetFieldValue Method” on
page 388, “SetFieldValue Method” on page 395, and “WriteRecord Method” on page 398.

Allowing Users to Return Parts

The example in this topic describes how to enable the RMA button so that a user can return a part.
To return a part, the user creates a part tracker record, and then clicks the RMA button to create a
Return Material Authorization (RMA) record. The work you do to allow a user to return a part is similar
to the work you do to allow a user to commit a Part Tracker record. For example, registering the
service, calling the Canlnvoke method, Dolnvoke method, and so on.

You add the code that specifies how to do the RMA return in step Step 4 on page 370 through Step 10
on page 374. The rma_return.js file contains this code. To get a copy of this file, see Article ID
1494998.1 on My Oracle Support.

To allow users to return parts
1 In Windows Explorer, navigate to the following folder:

INSTALL _DIR\eappweb\PUBLIC\Janguage code\build _number\scripts\siebel\offline

For more information about the language_code, see “Languages That Siebel Open Ul Supports” on
page 592.

Use a JavaScript editor to open the servicecmtparts.js file.

Add the following code to the InvokeMethod method:

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 369

Customizing Siebel Open Ul for Siebel Mobile Disconnected
Service for Siebel Mobile Disconnected Clients

var model= SiebelApp.S_App-GetModel();
var pBusObj = model .GetBusObject(''boName™);
var pBusComp = pBusObj .GetBusComp(''bcName'™);

This code gets the active business component for the applet that displays the RMA button.

4 Add the following code. This code declares the objects:

ifT (typeof (SiebelApp.commitpartconsumed) === "undefined™) {
SiebelJS._Namespace("SiebelApp.commitpartconsumed®);

var inputArgs = {};
var oconsts = SiebelApp.Offlineconstants;

inputArgs[oconsts.get("'DOUIREG_0BJ_NAME'™)]="SHCE Service FS Activity Part
Movements List Applet - Mobile™;

inputArgs[oconsts.get("'DOUIREG_OBJ_TYPE')]=oconsts.get("'DOUIREG_OBJ_TYPEAPPLE
™);

inputArgs[oconsts.get(*'DOUIREG_OBJ_MTHD'")]=""CanlnvokeMethod";

inputArgs[oconsts.get("'DOUIREG_SRVC_NAME'™)]=""commitpartconsumed";

inputArgs[oconsts.get("'DOUIREG_SRVC_MTDH")]="CanlnvokeMethod";

inputArgs[oconsts.get("'DOUIREG_EXT_TYPE'™)]=oconsts.get("'DOUIREG_EXT_TYPEPRE'™)

SiebelApp.S_App-GetModel () .ServiceRegistry(inputArgs);
inputArgs={};

inputArgs[oconsts.get("'DOUIREG_0OBJ_NAME'™)]="SHCE Service FS Activity Part
Movements List Applet - Mobile";

inputArgs[oconsts._get("'DOUIREG_OBJ_TYPE'")]=oconsts.get("'DOUIREG_OBJ_TYPEAPPLE
™);

inputArgs[oconsts.get("'DOUIREG_OBJ_MTHD")]=""InvokeMethod";

inputArgs[oconsts.get("'DOUIREG_SRVC_NAME')]=""commitpartconsumed";

inputArgsf[oconsts.get("'DOUIREG_SRVC_MTDH")]="InvokeMethod";

inputArgs[oconsts.get("'DOUIREG_EXT_TYPE'")]=oconsts.get("'DOUIREG_EXT_TYPEPRE™)

SiebelApp.S_App-GetModel () .ServiceRegistry(inputArgs);
inputArgs={};
For information about the methods that this code uses, see the following topics:
m “CanlnvokeMethod Method” on page 380
m “ServiceRegistry Method” on page 402
m “InvokeMethod Method for Applets” on page 380
5 Add the following code. This code calls the CanlnvokeMethod method:

SiebelApp.commitpartconsumed = (function Q) {
function commitpartconsumed(pm) {

}

var commitObj = new commitpartconsumed();
commitpartconsumed.prototype.CanlnvokeMethod = function (pslnputArgs) {

370 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Open Ul for Siebel Mobile Disconnected ® Customizing Siebel
Service for Siebel Mobile Disconnected Clients

var psOutArgs = SiebelApp.S_App-NewPropertySet();

var svcMthdName = "*';
svcMthdName = pslInputArgs.GetProperty(‘'"MethodName™).toString();
if (svcMthdName === "CommitPartMvmtClient™) {

psOutArgs.SetProperty("'Invoked", true);

psOutArgs.SetProperty("Retval’, true);

$.setReturnValue({err:false,retval :psOutArgs});
3

else if (svcMthdName === "OrderPartsRMA™) {
psOutArgs.SetProperty("'Invoked", true);
psOutArgs.SetProperty("Retval’, true);
$.setReturnValue({err:false,retval : psOutArgs});

3

else{
psOutArgs.SetProperty(*"Invoked", false);
psOutArgs.SetProperty("'Retval™, false);
$.setReturnValue({err:false,retval : psOutArgs});

3

}:

6 Add the following code. This code calls the InvokeMethod method:

commitpartconsumed.prototype. InvokeMethod = function (pslnputArgs) {
var svcMthdName = "
var psOutArgs = SiebelApp.S_App-NewPropertySet();
svcMthdName = pslInputArgs.GetProperty(‘'"MethodName™).toString();
if (svcMthdName === "CommitPartMvmtClient™) {
this.CommitPartMvmtClient();
$._callback(this,function(retObj){
psOutArgs.SetProperty ("' Invoked"”, true);
$.setReturnValue({err:false,retval :psOutArgs});
D;
¥

else{
psOutArgs.SetProperty(""Invoked”, false);
$.setReturnValue({err:false,retval : psOutArgs});
3
if (svcMthdName === "OrderPartsRMA™) {
this.OrderPartsRMAQ);
$.callback(this,function(retObj){
psOutArgs.SetProperty ("' Invoked"”, true);
$.setReturnValue({err:false,retvVal : psOutArgs});
D:
¥
else{
psOutArgs.SetProperty("'Invoked", false);
$.setReturnValue({err:false,retval : psOutArgs});
3
};
};

For information about the methods that this code uses, see “setReturnValue Method” on page 409.

/ Add the code that gets values for the following fields:

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 371

Customizing Siebel Open Ul for Siebel Mobile Disconnect
Service for Siebel Mobile Disconnected Clients

Product Id
Product Name
Used Quantity
Id

Status

Asset Number

Part Number
You add the following code:

commitpartconsumed.prototype.createRMAOrder = function (orderType) {
var sOrderld;
var cszOrderld;
var sAssetNum;
var sPartNum;
var sStatus;
var sProductld;
var sProductName;
var sQuantity;
var sActivityPartMvmtID;
var pModel;
var pFSActivityPartsMovementBC;
var pActionBC;
var sSR_Id;
var pServiceRequestBC;
var pOrderEntry_OrdersBC;
var pOrderEntry_LineltemBC;
var errParamArray = [];
pModel = SiebelApp.S_App-.Model;
var pBusObj = pModel .GetBusObject(*'boName')
pFSActivityPartsMovementBC=pBusObj .GetBusComp("'bcName™) ;
$.callback(this, function(retObj){
sOrderld=retObj .retVval;
ifT (utils.IsEmpty(sOrderlid)){
pFSActivityPartsMovementBC.GetFieldvalue('''");
var oPsDR_Header:PropertySet = SiebelApp.S_App.-NewPropertySet();
// Cannot use the same property set in GetMultipleFieldvalues, must use a
different
// one for the values. The process will not error, but Siebel Open Ul will
not place
// the values in the property set.
var IPS_values:PropertySet = SiebelApp.S_App.NewPropertySet();
oPsDR_Header .SetProperty("'Product 1d",""");
OPsDR_Header.SetProperty("'Used Quantity',''");
OPsDR_Header .SetProperty(*'1d","™");
OPsDR_Header .SetProperty(*'Asset Number™,'™™);
oPsDR_Header .SetProperty(*'Part Number™,'™");
$._callback(this,function(retObj){
sPartNum=retObj.retVal ;
pActionBC =
SiebelApp.S_App-GetActiveView() -GetActiveApplet() .-BusComp() -ParentBuscomp();

372 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Open Ul for Siebel Mobile Disconnected ® Customizing Siebel
Service for Siebel Mobile Disconnected Clients

pActionBC.GetFieldValue("'Activity SR 1d"™);
$.callback(this,function(retObj){
SSR_Id = retObj.retVal;
iT(sSR_1d=="""){
//Activity has no associated SR... Hence the operation will be aborted
SiebelApp.S_App-OfflineErrorObject.SetErrorMsg(""IDS_ERR_FS_MISSING_
SR"™, errParamArray);
$.setReturnValue({err: "IDS_ERR_FS_MISSING_SR", retvVal:""});
return;
}
»:
D
3
H:
¥

For information about the methods that this code uses, see “GetFieldValue Method” on page 388
and “callback Method” on page 410.

8 Add the code that gets the parent business component and the following business components:
B Service Request
m Order Entry - Orders
m Order Entry - Line Items

This code also determines whether or not a service request is not associated with the activity. If
not, then it aborts the operation. You add the following code:

else{

pModel = SiebelApp.S_App-Model;

pServiceRequestBC = pModel .BusObj(*'Service Request').BusComp(*'Service
Request™);

pOrderEntry_OrdersBC = SiebelApp.S_App-Model .GetBusObj(*'Service
Request'™) .BusComp(**Order Entry - Orders'™);

pOrderEntry_LineltemBC = pModel .BusObj(*'Service Request'™) .BusComp(*'Order Entry
- Line Items™);
//CREATE ORDER Header.

pOrderEntry_OrdersBC.ExecuteQuery();

$.callback(this, function(retObj){

9 Add the code that creates the Order Header record and sets the field values. For example, for
the Order Type field. You add the following code:

pOrderEntry_OrdersBC.NewRecord(true);
$.callback(this,function(retObj){
sLocaleVal = SiebelApp.S_App-Model .GetLovNameVal (orderType,
""FS_ORDER_TYPE");
pOrderEntry_OrdersBC.SetFieldValue("'Order Type'", sLocaleval, true);
$.callback(this,function(retObj){
pOrderEntry_OrdersBC.WriteRecord();
$.callback(this,function(retObj){
pOrderEntry_OrdersBC.GetFieldvalue('1d™);
$.callback(this,function(retObj){
sOrderltemld=retObj.retval;

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 373

Customizing Siebel Open Ul for Siebel Mobile Disconnected
Service for Siebel Mobile Disconnected Clients

pOrderEntry_OrdersBC.GetFieldvValue('1d"™);

$.callback(this,function(retObj){
m_sOrderHeaderld=retObj .retVal;
pOrderEntry_LineltemBC.ExecuteQuery();
$.callback(this, function(retObj){

For information about the methods that this code uses, see “SetFieldValue Method” on page 395,
“WriteRecord Method” on page 398, “NewRecord Method” on page 480.

10 Add the code that creates the order line item record, commits this record, and sets the value for
the Order Item Id field in the active business component. This value is the row Id of the order
header record that Siebel Open Ul creates. This code sets the field value for each of the following
fields:

® Product

B Quantity Requested
Asset #

Part #

[|
[|
B Product Status Code
[|

Order Header Id

You add the following code:

pOrderEntry_LineltemBC.NewRecord(true);
$.callback(this,function(retObj){
pOrderEntry LineltemBC.SetFieldvValue(*'Product Id', sProductld, true);
$.callback(this, function(retObj){
pOrderEntry_LineltemBC.SetFieldvalue("Product”™, sProductName, true);
$._callback(this,function(retObj){
pOrderEntry_LineltemBC.SetFieldValue("'Quantity Requested", sQuantit
y, true);
$.callback(this, function(retObj){
if(lutils. IsEmpty(sAssetNum)){
pOrderEntry_LineltemBC.SetFieldValue(""Asset Number'™, sAssetNum,

true);
$.callback(this,function(retObj){
b:
}
if(lutils. IsEmpty(sPartNum)){
pOrderEntry_LineltemBC.SetFieldvalue(""Part Number', sPartNum, tr
ue);

$.callback(this,function(retObj){
P
}

if(lutils._IsEmpty(sStatus)){
pOrderEntry_LineltemBC.SetFieldvalue(""Product Status Code", sSta

tus, true);

$._callback(this,function(retObj){

D:

}

pOrderEntry_LineltemBC.GetFieldValue('1d");

$.callback(this,function(retObj){

374 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

pen Ul for Siebel Mobile Disconnected = Customizing Siebel
Service for Siebel Mobile Disconnected Clients

sOrderltemld=retObj.retval;
pOrderEntry_LineltemBC.SetFieldvalue(*'Order Header 1d", m_sOrder
Headerld, true);
$.callback(this, function(retObj){
pOrderEntry_LineltemBC.WriteRecord();
$.callback(this,function(retObj){
pFSActivityPartsMovementBC.SetFieldvValue("'Order Item 1d", sO
rderltemld, true);
$.callback(this,function(retObj){
pFSActivityPartsMovementBC.WriteRecord();
$.callback(this,function(retObj){
D;
D:;
:
:
b:
»:
D;
D:;
D:
b:

11 Save, and then close the servicecmtparts.js file.

12 Test your modifications:

a
b

c
d
e
f

Log in to the disconnected client.

Click the Activities tab.

Create an activity, and then click Part Tracker.

Create a part tracker record.

Click the RMA button to create a Return Material Authorization (RMA) record.

Make sure Siebel Open Ul creates the RMA record and displays the correct values in the fields of
this record, such as the Product Id, Product Name, Used Quantity, Quantity Requested, Asset #,
and so on.

Allowing Users to Set the Activity Status

The example in this topic describes how to enable the activity status so that the user can update this
status during the service call life cycle. For example, a field service representative can examine an
Activity that is set to Dispatched, set this status to Acknowledged to acknowledge that this
representative examined the activity, set the status to EnRoute, travel to the customer site, set it to
Arrive, set it to In Progress while working on the service call, and then set it to Finish after finishing
the service call. Siebel Open Ul includes the following status values:

B Dispatched

Acknowledged

[|
B Declined
[|

En Route

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 375

Customizing Siebel Open Ul for Siebel Mobile Disconnected
Service for Siebel Mobile Disconnected Clients

Arrive
In Progress

Hold

Resume
Finish
Siebel Open Ul enables and disables the status depending on the current value of the status. For

example, if the representative sets the status to Acknowledged, then Siebel Open Ul allows the user
to choose the EnRoute status and disables all other values.

The work you do to allow a user to set the status is similar to the work you do to allow a user to
commit a Part Tracker record. For example, registering the service, and so on. For more information,
see “Allowing Users to Commit Part Tracker Records” on page 367.

To allow users to set the activity status
1 In Windows Explorer, navigate to the following folder:

INSTALL _DIR\eappweb\PUBLIC\Janguage code\build _number\scripts\siebel\offline

For more information about the language_code, see “Languages That Siebel Open Ul Supports” on
page 592.

2 Use a JavaScript editor to open the serviceactstat.js file.
Locate the following code:

serviceactstat.prototype. InvokeSetActStatus=function(psInpArgs,svcMthdName){
var psOutArgs=SiebelApp.S_App.NewPropertySet();
if(IpsinpArgs){
return (false);
by

if(pslInpArgs.propArray .MethodName==""AcceptStatus')
{psOutArgs=this.SetActivityStatus("Acknowledged™);

b

else if(psInpArgs.propArray.MethodName==""Start"||psInpArgs.propArray.
MethodName==""ArrivedStatus'){psOutArgs=this.SetActivityStatus('In
Progress',"ArrivedStatus');

H

else if(psInpArgs.propArray.MethodName=="DeclineStatus™){
psOutArgs=this.SetActivityStatus("'Declined");

b

else if(pslInpArgs.propArray.MethodName=="EnrouteStatus'){
psOutArgs=this.SetActivityStatus("In Progress');

H

else if(psInpArgs.propArray.MethodName==""SuspendStatus™){
psOutArgs=this.SetActivityStatus(''On Hold™);

b

else if(pslInpArgs.propArray.MethodName==""ResumeStatus'){
psOutArgs=this.SetActivityStatus("In Progress');

else if(psInpArgs.propArray.MethodName=="End"| |psInpArgs.propArray.

376 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

pen Ul for Siebel Mobile Disconnected = Customizing Siebel
Service for Siebel Mobile Disconnected Clients

MethodName==""FinishedStatus'){
psOutArgs = this.SetActivityStatus(''Done","FinishedStatus');

}

4 Add the following code immediately after the code you located in Step 3:

serviceactstat.prototype.SetActivityStatus=function (pStatus,pDateMethodinv){
SiebelJS.Log("Service Method SetActivityStatus...");
var strstatvalue;
var pickName;
var pickListDef;
var pModel;
var pBusComp;
pModel= SiebelApp.S_App.-GetModel ();
var pBusObj = pModel .GetBusObject(''boName™);
pBusComp = pBusObj .GetBusComp("'bcName'™) ;
SiebelApp.S_App-GetActiveView() .GetActiveApplet() .GetControl (*'Status') .GetPic
kAppl et();
$.callback(this,function(retObj){
pickName = retObj.retVal;
$.callback(this,function(retObj){
pickListDef=retObj.retVval;
pModel=SiebelApp.S_App-Model;
pModel .GetLovNameVal (""Acknowledged™, pickListDef.LOVType);
$.callback(this,function(retObj){
strstatvalue=retObj.retVal;
pBusComp.ActivateField("'Status™);
$.callback(this, function(retobj){
pBusComp.SetFieldValue("'Status",strstatvalue, true);
$.callback(this,function(retobj){
DE
DB
D
D
;s
pBusComp.ActivateField("'Status™);
$.callback(this,function(retobj){
pBusComp.SetFieldvalue("'Status",strstatvalue,true);
$.callback(this, function(retobj){
D
;s
if(pDateMethodInv!=""")//Todo - Refine this condition for uninitialized/defined
or remove this condition
{
var now=new Date();
if(pDateMethodlnv == "ArrivedStatus')
{
pBusComp.SetFieldvalue("'Started",now, true);
$._callback(this,function(retObj){
pBusComp.SetFieldvalue(''Done", """, true);
$.callback(this,function(retObj){
DR
;s

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 377

Customizing Siebel Open Ul for Siebel Mobile Disconne
Customize Siebel Mobile Disconnected

else if(pDateMethodlnv=="FinishedStatus')
{

pBusComp.SetFieldvalue(''Done™,now, true);
$.callback(this,function(retObj){
pBusComp.SetFieldValue("'Percent Complete',"100%",true);
$._callback(this,function(retObj){
DE
H:

3

}
pBusComp.WriteRecord();

};
For information about the methods that this code uses, see the following:
m “callback Method” on page 410
m “SetFieldvValue Method” on page 395
m “WriteRecord Method” on page 398
m “GetActiveView Method” on page 487
5 Test your modifications:
a Log in to the disconnected client.
b Update the status of an activity.

Make sure Siebel Open Ul displays the correct status activity. For example, if you set the
status to Acknowledged, then make sure Siebel Open Ul allows you to choose the EnRoute
status and disables all other values.

Methods You Can Use to Customize
Siebel Mobile Disconnected

This topic describes the methods that exist in the Application Programming Interface that you can
use to customize Siebel Mobile Disconnected in Siebel Open Ul. It includes the following information:

“Methods You Can Use in the Applet Class” on page 379

“Methods You Can Use in the Business Component Class” on page 381
“Methods You Can Use in the Business Object Class” on page 399
“Methods You Can Use in the Business Service Class” on page 401
“Methods You Can Use in the Application Class” on page 404
“Methods You Can Use in the Model Class” on page 408

“Methods You Can Use in the Service Model Class” on page 409

“Methods You Can Use in Offline Classes” on page 409

“Other Methods You Can Use with Siebel Mobile Disconnected” on page 411

378 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

for Siebel Mobile Disconnected m Methods You Can Use to
Customize Siebel Mobile Disconnected

You can configure Siebel Open Ul to override or customize some of the methods that this topic
describes. For more information about how to customize or override a method, see “Using Siebel
Business Services or JavaScript Services to Customize Siebel CRM Objects” on page 343.

Methods You Can Use in the Applet Class

This topic describes methods that you can use that reside in the Applet class. It includes the following
information:

B “BusComp Method for Applets” on page 379
“BusObject Method for Applets” on page 379

B “CanlnvokeMethod Method” on page 380
B “InvokeMethod Method for Applets” on page 380
B “Name Method for Applets” on page 381

BusComp Method for Applets
The BusComp method returns the business component that the applet references. It uses the
following syntax:

Applet.BusComp()

For example, the following code gets the metadata for the business component that the active applet
references:

SiebelApp.S_App.FindApplet(appletName) .BusComp();

Each applet references a business component. If you configure Siebel Open Ul to call BusComp on
an applet, then it returns the business component that this applet references.

The BusComp method includes no arguments.

For information about using BusComp in the context of a business object, see “GetBusComp Method
for Business Objects” on page 400.

BusObject Method for Applets
The BusObject method returns the business object that the business component references. It uses
the following syntax:

Applet.BusObject()
For example:
SiebelApp.S_App.FindApplet(appletName) .BusObject();

The BusObject method includes no arguments.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 379

Customizing Siebel Open Ul for Siebel Mobile Disconnected
Customize Siebel Mobile Disconnected

CanlnvokeMethod Method

The CanlnvokeMethod method determines whether or not Siebel Open Ul can call a method. It
returns the following properties. If you use CanlnvokeMethod, then you must configure it so that it
returns these properties:

B Invoked. This property returns one of the following values:
® true. Siebel Open Ul examined the method.
m false. Siebel Open Ul did not examine the method.

B RetVal. This property returns one of the following values:
E true. Siebel Open Ul can call the method.
m false. Siebel Open Ul cannot call the method.

The CanlnvokeMethod method uses the following syntax:
Applet.CanlnvokeMethod (methodName)

where:

B methodName is a string that contains the name of the method that CanlnvokeMethod examines.
CanlnvokeMethod gets this string as a property that resides in an input property set.

For examples that use CanlnvokeMethod, see the following topics:
“Using Custom JavaScript Methods” on page 347
“Using Custom Siebel Business Services” on page 349

“Customizing Siebel Pharma for Siebel Mobile Disconnected Clients” on page 355

“Allowing Users to Return Parts” on page 369

InvokeMethod Method for Applets

The InvokeMethod method calls a method. If you use InvokeMethod, then you must configure it so
that it returns a property set that includes one of the following values:

B true. Siebel Open Ul called the method.
B false. Siebel Open Ul did not call the method.
It uses the following syntax:
Applet. InvokeMethod(methodName) ;
where:
B MethodName is the value of an input property that identifies the method that InvokeMethod calls.

For example, InvokeMethod in the following code calls the method that the value of the
svcMthdName variable contains:

Applet. InvokeMethod(svcMthdName) ;

For examples that use InvokeMethod, see “Using Custom JavaScript Methods” on page 347 and
“Allowing Users to Commit Part Tracker Records” on page 367.

380 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

el Mobile Disconnected m Methods You Can Use to
Customize Siebel Mobile Disconnected

Name Method for Applets

The Name method for an applet returns the name of an applet. It uses the following syntax:

Applet_Name()
For example:
SiebelApp.S_App.-GetActiveView() .GetActiveApplet() .-Name();

The Name method includes no arguments.

Methods You Can Use in the Business Component Class

This topic describes methods that you can use that reside in the Business Component class. It
includes the following information:

B “ActivateField Method” on page 382
“ActivateMultipleFields Method” on page 383
“Associate Method” on page 384

“ClearToQuery Method” on page 384

“CountRecords Method” on page 385

“DeactivateFields Method” on page 386

“DeleteRecord Method” on page 386

“ExecuteQuery Method” on page 386

“FirstRecord Method” on page 387

“GetAssocBusComp Method” on page 387
“GetFieldValue Method” on page 388

“GetLinkDef Method” on page 389

“GetLastErrCode Method for Business Components” on page 390
“GetLastErrText Method for Business Components” on page 390
“GetMultipleFieldValues Method” on page 390
“GetPicklistBusComp Method” on page 391
“GetSearchExpr Method” on page 392

“GetSearchSpec Method” on page 393
“GetUserProperty Method” on page 393

“GetViewMode Method” on page 393

“InvokeMethod for Business Components” on page 393

“Name Method for Business Components” on page 394

“NextRecord Method” on page 394

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 381

Customizing Siebel Open Ul for Siebel Mobile Disconnec
Customize Siebel Mobile Disconnected

“ParentBusComp Method” on page 394
“Pick Method” on page 394
“RefreshBusComp Method” on page 395
“RefreshRecord Method” on page 395
“SetFieldValue Method” on page 395

|
|
|
|
|
B “SetMultipleFieldValues Method” on page 396
B “SetSearchSpec Method” on page 396

B “SetViewMode Method” on page 397

B “UndoRecord Method” on page 397

B “UpdateRecord Method” on page 398

|

“WriteRecord Method” on page 398

ActivateField Method

The ActivateField method activates a business component field. It returns nothing. It uses the
following syntax:

this._ActivateField(Ffield _name);
bc.ActivateField(*" field _name™);// calling from another JavaScript file

where:

B field_name identifies the name of a business component field.

A field is inactive except in the following situations, by default:

B The field is a system field, such as Id, Created, Created By, Updated, or Updated By.
B The Force Active property of the field is TRUE.

B The Link Specification property of the field is TRUE.

|

An active applet includes the field, and this applet references a business component that is
active.

B The field resides in an active list applet, and the Show In List property of the list column that
displays this field in the applet is TRUE.

Note the following:
H Siebel CRM calls the ActivateField method on the field, and then runs the ExecuteQuery method.

H If Siebel CRM calls the ActivateField method after it calls the ExecuteQuery method, then the
ActivateField method deletes the query context.

B The ActivateField method causes Siebel CRM to include the field in the SQL statement that the
ExecuteQuery method starts. If Siebel CRM activates a field, and if a statement in the
GetFieldValue method or the SetFieldValue method references the file before Siebel CRM
performs a statement from the ExecuteQuery method, then the activation has no effect.

382 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Ul for Siebel Mobile Disconnected m Methods You Can Use to
Customize Siebel Mobile Disconnected

Example

The following example uses the ActivateField method to activate the Login Name field that resides
in the Contact business component:

var model= SiebelApp.S_App.GetModel();
var boContact = model .GetBusObject("Contact™);
var bcContact = boContact.GetBusComp(''Contact');
bcContact.ClearToQuery();
bcContact.ActivateField(*'Login Name'™);
var sLoginName = "SPORTER";
bcContact.SetSearchSpec(*'Login Name'™, sLoginName);
bcContact.ExecuteQuery();
$.callback(this, function O {
if (retObj.err) {

model .ReleaseBO(boContact);
}
}

ActivateMultipleFields Method

The ActivateMultipleFields method activates more than one field. It returns nothing. It uses the
following syntax:

BusComp.ActivateMultipleFields(SiebelPropertySet);
where:

B SiebelPropertySet is a property set that identifies a collection of properties. These properties
identify the fields that Siebel CRM must activate.

Example 1

The following example uses the ActivateMultipleFields method to activate all the fields that the
property set contains, including the Account Products, Agreement Name, Project Name, Description,
and Name fields:

var ps = SiebelApp.S_App-NewPropertySet();
ps.setProperty("'Account Products™,');
ps.setProperty(‘'Agreement Name"™,'"');
ps.-setProperty("'Project Name','");
ps.setProperty(*'Description™, ") ;
ps-setProperty(‘'Name™,"");
BusComp.ActivateMultipleFields(ps);

Example 2

The following example in Siebel eScript queries the Contact business component and returns the First
Name and Last Name of the first contact that it finds:

var model= SiebelApp.S_App.GetModel();
var ContactBC = model .GetBusObject("Contact™);
var ContactBC = boContact.GetBusComp(''Contact');
if (ContactBC)

{

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 383

Customizing Siebel Open Ul for Siebel Mobile Disconnect
Customize Siebel Mobile Disconnected

var fieldsPS = SiebelApp.S_App.NewPropertySet();
var valuesPS = SiebelApp.S_App.NewPropertySet();
FfieldsPS. SetProperty(‘'Last Name', "'");
FieldsPS.SetProperty(""First Name', "'");
ContactBC.ActivateMultipleFields(fieldsPS);
ContactBC .ClearToQuery(Q);
ContactBC .ExecuteQuery(Q);
$.callback(this, function) {
if (IretObj.err) {
ContactBC .FirstRecord();
$.callback(this, function) {
if (JretObj.err) {
ContactBC .GetMultipleFieldvalues(fieldsPS, valuesPS);
var slIName = valuesPS._GetProperty(‘'Last Name');
var sfName = valuesPS.GetProperty("'First Name');

}
}
}
}

Associate Method

The Associate method adds an association between the active record that resides in the child
association business component and the parent business component. You can customize or override
this method. It returns the retObj object with err set to one of the following values:

B true. The Associate method successfully added the record.
B false. The Associate method did not successfully add the record.
It uses the following syntax:
BusComp. Associate()
where:

B BusComp identifies an instance of the child business component.

For example:
SiebelApp.S_App.FindApplet(appletName) .BusComp() -Associate();
It includes no arguments.

An association business component is a type of business component that includes an intertable. For
more information, see “GetAssocBusComp Method” on page 387.

ClearToQuery Method

The ClearToQuery method clears the current query. It returns nothing. It uses the following syntax:
BusComp.ClearToQuery();
It includes no arguments.

Note the following:

384 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

n Ul for Siebel Mobile Disconnected ®m Methods You Can Use to
Customize Siebel Mobile Disconnected

B The ClearToQuery method does not clear the sort specification that Siebel Open Ul defines in the
Sort Specification property of a business component.

B You must use the ActivateField method to activate a field before you can use the ClearToQuery
method. For more information see “ActivateField Method” on page 382.

B Any search specifications and sort specifications that Siebel Open Ul sends to a business
component are cumulative. The business component performs an AND operation for the queries
that accumulate since the last time Siebel CRM performed the ClearToQuery method. An
exception to this configuration occurs if Siebel Open Ul adds a new search specification to a field,
and if this field already includes a search specification. In this situation, the new search
specification replaces the old search specification.

Example
The following example uses the ClearToQuery method:

var model= SiebelApp.S_App.-GetModel () ;

var OEmpBusObj= model .GetBusObject("'Employee');

var oEmpBusComp = oEmpBusObj .GetBusComp(*'Employee ');
var sLoginName;

OEmpBusComp.ClearToQuery();
OEmpBusComp.SetSearchSpec(*'Login Name', sLoginName);
OEmpBusComp .ExecuteQuery();

For another example usage of the ClearToQuery method, see “CountRecords Method” on page 385.

CountRecords Method

The CountRecords method returns the number of records that a business component contains
according to the search specification and query specification that Siebel Open Ul runs on this
business component. It uses the following syntax:

BusComp.CountRecords();

It includes no arguments.

Example
The following example uses the CountRecords method:

var model= SiebelApp.S_App.GetModel();
var bo = model .GetBusObject("'Opportunity ');
var bc = bo.GetBusComp("'Opportunity');
if (bo)
{
bc _ClearToQuery();
bc _SetSearchSpec (“Name™, "A™);
bc _ExecuteQuery();
$.callback(this, function O {
if (IretObj.err) {
var count = bc .CountRecords();
$._setReturnValue({err:false,retval:count});

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 385

Customizing Siebel Open Ul for Siebel Mobile Disconnect
Customize Siebel Mobile Disconnected

}
}
}

For more information, see “ClearToQuery Method” on page 384.

DeactivateFields Method

The DeactivateFields method deactivates fields from the SQL query statement of a business
component. It deactivates fields that are currently active. DeactivateFields applies this behavior
except in the following situations:

B The Force Active property is TRUE.
B A link requires the field to remain active.
B A business component class requires the field to remain active.
The DeactivateFields method returns nothing.
It uses the following syntax:
BusComp.DeactivateFields()
For example:
SiebelApp.S_App.FindApplet(appletName) .BusComp() .DeactivateFields();
It includes no arguments.

You must use the ActivateField method to activate a field before you configure Siebel Open Ul to
perform a query for a business component. After Siebel Open Ul deactivates a field, you must
configure it to query the business component again or the Siebel application fails.

DeleteRecord Method
The DeleteRecord method deletes the current record from the local database. It returns one of the
following values:

B error:false. DeleteRecord deleted the record.
B error:true. DeleteRecord did not delete the record.
It uses the following syntax:

buscomp.DeleteRecord(pslnputArgs);

ExecuteQuery Method

The ExecuteQuery method runs a query according to the current value of the Search Specification
property, the current value of the Sort Specification property, or according to both of these
properties. The business component contains these properties. ExecuteQuery runs this query on the
local database. It returns one of the following values:

B If an error occurs, then it returns err with an error message. For example:

386 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

for Siebel Mobile Disconnected m Methods You Can Use to
Customize Siebel Mobile Disconnected

{err: “Error Message",retVal: """}
B If an error does not occur, then it returns an empty err message. For example:
{err: "",retval: """}
It uses the following syntax:
busComp .ExecuteQuery();
where:

B busComp identifies the business component that ExecuteQuery uses to get the search
specification or sort specification. You can use busComp as a literal or a variable. For more
information, see “How This Book Indicates Code That You Can Use as a Variable and Literal” on
page 32.

FirstRecord Method

The FirstRecord method moves the record pointer to the first record in a business component,
making this record the current record. It uses the following syntax:

BusComp.FirstRecord();
For example:

SiebelApp.S_App.FindApplet(appletName) .BusComp() -FirstRecord();

GetAssocBusComp Method
The GetAssocBusComp method returns an instance of the association business component. It uses
the following syntax:

BusComp.GetAssocBusComp();
It includes no arguments.
For more information, see “Associate Method” on page 384.

You can use an association business component to manipulate an association. You can use the
GetAssocBusComp method and the Associate method only with a many-to-many relationship that
uses an intersection table. For example, with accounts and contacts.

Note the following:
B To associate a new record, you add it to the child business component.
B To add a record, you use the GetAssocBusComp method and the Associate method.

If a many-to-many link exists, and if Siebel CRM defines an association applet for the child applet,
then you can use the GetAssocBusComp method with the child business component of a parent-child
view.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 387

Customizing Siebel Open Ul for Siebel Mobile Disconnected
Customize Siebel Mobile Disconnected

Example of Using the GetAssocBusComp Method

The following example associates a contact that includes the ContactID Id with an account that
includes the Accountld Id:

var Model = SiebelApp.S_App.GetModel ()
var account BO = Model .GetBusObj("*Account'™);
var accountBC = accountB0.GetBusComp('*Account'™);
var contactBC = accountBO.GetBusComp(''Contact');
accountBC.SetSearchSpec(*'1d", [Accountid]);
accountBC. ExecuteQuery (;
$.callback(this, function(){
accountBC.FirstRecord();// positions on the account record
$.callback(this, function(){
contactBC. ExecuteQuery ();
$._callback(this,function(){
contactBC.FirstRecord();
$.callback(this, function(){
var assocBC = contactBC.GetAssocBusComp();
assocBC.SetSearchSpec(*'1d", [ContactID]);
assocBC. ExecuteQuery ();
$._callback(this, function(){

assocBC.FirstRecord();// positions on the contactbc
$.callback(this, function(){
contactBC._Associate()// adds the association

}))
D
b))
P
»:
»:

GetFieldVvalue Method

The GetFieldvValue method returns the value of a field for the current record or for the record object
that Siebel Open Ul examines. It uses the following syntax:

Buscomp.GetFieldValue(" field _name" ,pRecord)
where:

B field_name is a string that contains the name of a field. Siebel Open Ul returns the value that
this field contains.

B pRecord is an optional argument that returns the entire record that Siebel Open Ul examines. If
you do not specify pRecord, or if it is empty, then GetFieldValue returns only a value in
field_name of the active record.

For example, the following code returns the value of the Account Name field from the current record
of the business component:

Buscomp.GetFieldvalue(""Account Name'™)

388 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

iebel Mobile Disconnected ®m Methods You Can Use to
Customize Siebel Mobile Disconnected

For another example, the following code returns the field value of the Account Name field. A business
component can include more than one record, but only one of these records is the active record. You
can use pRecord to get the value of a field from a record that is not the active record:

Buscomp.GetFieldvalue(""Account Name",recordObject)

The GetFieldValue method returns an object that includes an error code and a return value. For more
information, see “Configuring Error Messages for Disconnected Clients” on page 353 and “SetErrorMsg
Method” on page 411.

For more examples that use the GetFieldvValue method, see the following topics:
B “Customizing Siebel Pharma for Siebel Mobile Disconnected Clients” on page 355
B “Allowing Users to Commit Part Tracker Records” on page 367

B “Allowing Users to Return Parts” on page 369

You can configure Siebel Open Ul to override the GetFieldValue method.

GetLinkDef Method

The GetLinkDef method returns the link definition of the child business component. This business
component is the child in the parent and child relationship of a link. It returns this definition after
Siebel Open Ul processes data for the child business component. This definition includes values for
the following properties:

Name

RecordNum
childBusCompName
destFieldName
interChildCoIName
interParentColName
interTableName
parentBusCompName
primeldFieldName
searchSpec
sortSpec
srcFieldName
NoDelete

Nolnsert
NointerDelete

NoUpdate

SrcFieldValue

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 389

Customizing Siebel Open Ul for Siebel Mobile Disconnected
Customize Siebel Mobile Disconnected

If the value of a property is empty, then GetLinkDef does not return this property in the return object.
The GetLinkDef method uses the following syntax:

linkdef = busComp.GetLinkDef();
var sourcefieldName = linkdef.srcFieldName;

GetLastErrCode Method for Business Components
The GetLastErrCode method returns the error code for the most recent error that the disconnected
client logged. It uses the following syntax:

BusComp.GetLastErrCode()
For example:

SiebelApp.S_App.FindApplet(appletName) .BusComp() .GetLastErrCode();
This method includes no arguments.

The error code that this method returns is a short integer. An error code of O (zero) indicates no error
occurred.

GetLastErrText Method for Business Components
The GetLastErrText method returns a string that contains the text message for the most recent error
that the disconnected client logged. It uses the following syntax:

BusComp.GetLastErrText()
For example:
ActiveBusObject() -GetLastErrText();

This method includes no arguments.

GetMultipleFieldVvalues Method

The GetMultipleFieldValues method returns a value for each field that a property set specifies. It uses
the following syntax:

BusComp.GetMultipleFieldValues(fieldNamesPropSet, fieldValuesPropSet)
where:

B fieldNamesPropSet is a property set that identifies a collection of fields.

B fieldvaluesPropSet is a property set that includes values for the fields that the
fieldNamesPropSet argument specifies.

If an error occurs, then GetMultipleFieldValues returns err with an error message. For example:

{err: "“Error Message",retvVal: "}

If an error does not occur, then GetMultipleFieldValues returns an empty err message. For example:

390 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Open Ul for Siebel Mobile Disconnected = Methods You Can Use to
Customize Siebel Mobile Disconnected

{err: " ,retval: "'}

You cannot use the same instance of a property set for the fieldNamesPropSet argument and for the
fieldValuesPropSet argument.

Example of Using the GetMultipleFieldvValues Method
The following example uses the GetMultipleFieldValues method:

var oPsDR_Header = SiebelApp.S_App-NewPropertySet();
// Cannot use the same property set in GetMultipleFieldValues, must use a different
// one for the values. The process will not error, but Siebel Open Ul will not place
// the values in the property set.
var IPS_values = SiebelApp.S_App-NewPropertySet();
OPsDR_Header .SetProperty(‘'Last Name™,"");
OPsDR_Header .SetProperty("'First Name™,"™);
OPsDR_Header .SetProperty(*'"Middle Name",'');
var model= SiebelApp.S_App.-GetModel () ;
var boContact = model .GetBusObject(''Contact");
var bcContact = boContact.GetBusComp(*'Contact™);
bcContact.ActivateMultipleFields(oPsDR_Header);
bcContact.SetSearchSpec(*'Last Name™, "Mead*");
ExecuteQuery(Q);
$.callback(this, function(){
FirstRecord();
$._callback(this, function(){
// Use a different property set for the values. If you use the same one
// for arguments you get no values back.
GetMultipleFieldvalues(oPsDR_Header, IPS_values);
// Get the value from the output property set.
$.callback(this, function(){

SiebelJS_Log(""FulIName is " +IPS_values.GetProperty(""First Name') +
IPS_values.GetProperty(""Middle Name')+ IPS_values.GetProperty(‘'Last Name'));
:

»:
D

GetPicklistBusComp Method

The GetPicklistBusComp method returns a pick business component that Siebel CRM associates with
a field that resides in the current business component. If no picklist is associated with this field, then
this method returns an error. It uses the following syntax:

BusComp.GetPicklistBusComp(FieldName)

You can use the GetPicklistBusComp method to manipulate a picklist, and you can use the name of
the pick business component that the GetPicklistBusComp method returns.

How Siebel Open Ul Uses the GetPickListBusComp Method With Constrained Picklists

If Siebel CRM uses the GetPickListBusComp method or the Pick method to pick a record that resides
in a constrained picklist, then the constraint is active. The pick business component that these
methods return contains only the records that meet the constraint.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 391

Customizing Siebel Open Ul for Siebel Mobile Disconnec
Customize Siebel Mobile Disconnected

Configuring Siebel Open Ul to Pick a Value from a Picklist
This topic describes how to configure Siebel Open Ul to pick a value from a picklist.

To configure Siebel Open Ul to pick a value from a picklist

1 Use a JavaScript editor to open the JavaScript file that you must modify. This file resides on the
client.

2 Add code that uses the Pick method to pick the value.

For example, add the following code to the method that Siebel Open Ul uses to register the
service:

this.GetFieldvalue(''City")
$.callback(this,function(retObj){
if(retObj.retval === "San Mateo')

{
var oBCPick = this.GetPicklistBusComp("'State™);

OBCPick.SetSearchSpec(""Value'™, "CA™);
OBCPick.ExecuteQuery(ForwardOnly);
$.callback(this, function(){
OBCPick.FirstRecord();
$.callback(this,function({
if(oBCPick.CheckActiveRow()){
OBCPick.Pick(Q);
3
D
D
}

This code configures Siebel Open Ul to use the GetPicklistBusComp method to create an instance
of the picklist business component. For more information, see “Pick Method” on page 394.

GetSearchExpr Method

The GetSearchExpr method returns a string that contains the current search expression that Siebel
Open Ul defines for a business component. The following search expression is an example of a string
that GetSearchExpr might return:

[Revenue] > 10000 AND [Probability] > .5
The GetSearchExpr method uses the following syntax:
BusComp.GetSearchExpr(Q);
For example:
SiebelApp.S_App-FindApplet(appletName) .BusComp() -GetSearchExpr();
The GetSearchExpr method includes no arguments.

If an instance of the business component does not exist, then the GetSearchExpr method returns
nothing.

392 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Ul for Siebel Mobile Disconnected m Methods You Can Use to
Customize Siebel Mobile Disconnected

GetSearchSpec Method

The GetSearchSpec method returns a string that contains the search specification that Siebel Open
Ul defines for a business component field in. For example, it might return the following search
specification:

> 10000

The GetSearchSpec method uses the following syntax:
BusComp.GetSearchSpec(FieldName);

For example:

SiebelApp.S_App-FindApplet(appletName) .BusComp() -GetSearchSpec (FieldName);

GetUserProperty Method
The GetUserProperty method gets the value of a business component user property. It uses the
following syntax:

BusComp.GetUserProperty(business_component_user_property)
where:

B business_component_user_property is a string that identifies the name of a business component
user property.

For example, the following code gets the value of the Deep Copy business component user property:

SiebelApp.S_App-FindApplet(appletName) .BusComp() -GetUserProperty (“'Deep Copy'):

GetViewMode Method

The GetViewMode method returns a Siebel ViewMode constant or the corresponding integer value for
this constant. This constant identifies the current visibility mode of a business component. This mode
determines the records that a query returns according to the visibility rules.

The GetViewMode method uses the following syntax:
BusComp. GetViewMode()

It includes no arguments.

For example:

SiebelApp.S_App-FindApplet(appletName) .BusComp() .GetViewMode() ;

InvokeMethod for Business Components

The InvokeMethod method that you can use with business components works the same as the
InvokeMethod method that you can use with applets. For more information about the InvokeMethod
method that you can use with applets, see “InvokeMethod Method for Applets” on page 380.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 393

Customizing Siebel Open Ul for Siebel Mobile Disconnect
Customize Siebel Mobile Disconnected

Name Method for Business Components
The Name method returns the name of a business component. It uses the following syntax:

SiebelApp.S_App.FindApplet(appletName) .BusComp()

It includes no arguments.

NextRecord Method

The NextRecord method moves the record pointer to the next record that the business component
contains, making this next record the current record. It adds the next record that the current search
specification and sort specification identifies, and then sets the active row to this record. It adds this
record to the current set of records. It does this work only if the current set of records does not
already contain this next record. It returns this next record. It uses the following syntax:

BusComp.NextRecord()
For example:
SiebelApp.S_App.FindApplet(appletName) .BusComp() -NextRecord();

It includes no arguments.

ParentBusComp Method
The ParentBusComp method returns the parent business component of a business component. It
uses the following syntax:

BusComp. ParentBusComp()
It includes no arguments.
For example:

SiebelApp.S_App-FindApplet(appletName) .BusComp() -ParentBuscomp()

Pick Method

The Pick method places the currently chosen record that resides in a pick business component into
the appropriate fields of the parent business component. It uses the following syntax:

BusComp.Pick()
The Pick method includes no arguments.
You cannot use the Pick method to modify the record in a picklist field that is read-only.

For usage information, see “Configuring Siebel Open Ul to Pick a Value from a Picklist” on page 392.
For more information about pick business component, see Configuring Siebel Business Applications.

394 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Ul for Siebel Mobile Disconnected m Methods You Can Use to
Customize Siebel Mobile Disconnected

RefreshBusComp Method

The RefreshBusComp method runs the current query again for a business component and makes the
record that was previously active the active record. The user can view the updated view, but the
same record remains highlighted in the same position in the list applet. This method returns nothing.

It uses the following syntax:
BusComp . InvokeMethod (*'"RefreshBusComp'™)
For example:

“buscomp. InvokeMethod('RefreshBusComp’) $.callback(this, function (retObj) {
if (retObj.err) {3P):"

It includes no arguments.

RefreshRecord Method

The RefreshRecord method updates the currently highlighted record and the business component
fields in the Siebel client. It positions the cursor on the highlighted record. It does not update other
records that are currently available in the client. This method returns nothing.

It uses the following syntax:
BusComp . InvokeMethod (*'RefreshRecord ')
For example:

“buscomp. InvokeMethod(*'RefreshRecord™) $.callback(this, function (retObj) {
if (retObj.err) {31):"

It includes no arguments.

SetFieldValue Method

The SetFieldValue method sets a field value in a record. It returns one of the following values
depending on whether it successfully set the field value:

B Successfully set the field value. Returns an empty error code.
B Did not successfully set the field value. Returns an error code.
It uses following syntax.
SetFieldvalue(Ffieldvame, fieldvalue);
where:
B fieldName is a string that contains the name of the field that SetFieldValue updates.
B fieldvalue is a string that contains the value that SetFieldValue uses to update the field.
For examples that use the SetFieldValue method, see the following topics:
B “Registering Methods to Make Sure Siebel Open Ul Runs Them in the Correct Sequence” on page 341

B “Customizing Siebel Pharma for Siebel Mobile Disconnected Clients” on page 355

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 395

Customizing Siebel Open Ul for Siebel Mobile Disconnected
Customize Siebel Mobile Disconnected

B “Allowing Users to Commit Part Tracker Records” on page 367
B “Allowing Users to Return Parts” on page 369

B “Allowing Users to Set the Activity Status” on page 375

SetMultipleFieldValues Method

The SetMultipleFieldValues method sets new values in the fields of the current record of a business
component. It uses the following syntax:

BusComp.SetMultipleFieldValues (oPropertySet)

The FieldName argument that the property set contains must match the field name that Siebel Tools
displays. This match must be exact, including upper and lower case characters.

In the following example, the FieldName is Name and the FieldValue is Acme:
oPropertySet._SetProperty ('Name","Acme')
Note the following:

B If an error occurs in the values of any of fields that the property set specifies, then Siebel Open
Ul stops the process it is currently running.

B You can use the SetMultipleFieldValues method only on a field that is active.

B You must not use the SetMultipleFieldValues method on a field that uses a picklist.

Example

The following example in Siebel eScript uses the SetMultipleFieldValues method to set the values for
all fields that the property set identifies, including the Name, Account, and Sales Stage:

var model = SiebelApp.S_App-GetModel();

var bo = model .GetBusObj (*'Opportunity™);
var bc = bo.GetBusComp(*'Opportunity'™);
var ps = SiebelApp.S_App-NewPropertySet();

ps.SetProperty ('Name', "Call Center Opportunity');
ps.SetProperty ("Account, "Marriott International');
ps-SetProperty (“'Sales Stage', "2-Qualified™);
bc.ActivateMultipleFields(ps);
bc_NewRecord();
$.callback(this, function(){
bc.SetMultipleFieldvalues(ps);
$.callback(this, function(){

ps = null;
bc.WriteRecord;
P;
i M

SetSearchSpec Method

The SetSearchSpec method sets the search specification for a business component. It returns
nothing. It uses the following syntax:

396 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

for Siebel Mobile Disconnected m Methods You Can Use to
Customize Siebel Mobile Disconnected

BusComp.SetSearchSpec(FieldNvame, searchSpec) ;
For example:

SiebelApp.S_App-FindApplet(appletName) .BusComp() -SetSearchSpec(*'1d", strCallld);
where:

B FieldName is a string that identifies the name of the field where Siebel Open Ul sets the search
specification.

B searchSpec is a string that contains the search specification.

You must configure Siebel Open Ul to call the SetSearchSpec method before it calls the ExecuteQuery
method. To avoid an unexpected compound search specification on a business component, it is
recommended that you configure Siebel Open Ul to call the ClearToQuery method before it calls the
SetSearchSpec method.

SetViewMode Method

The SetViewMode method sets the visibility type for a business component. It returns nothing. It
uses the following syntax:

BusComp .SetViewMode(inMode) ;

where:

B inMode identifies the view mode. It contains one of the following integers:
m 0. Sales Representative.

. Manager.

. Personal.

. All

. None.

H H EHE E =
a A W N PR

. Organization.
m 6. Contact.
For example:

SiebelApp.S_App.FindApplet(appletName) .BusComp() -SetViewMode(inMode);

UndoRecord Method

The UndoRecord method reverses any unsaved modifications that the user makes on a record. This
includes reversing unsaved modifications to fields, and deleting an active record that is not saved.
It returns one of the following values:

B true. UndoRecord successfully deleted the record.
B false. UndoRecord did not successfully delete the record.

It uses the following syntax:

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 397

Customizing Siebel Open Ul for Siebel Mobile Disconnected
Customize Siebel Mobile Disconnected

BusComp.UndoRecord();
It includes no arguments.
For example:

SiebelApp.S_App-FindApplet(appletName) .BusComp() -UndoRecord();
You can use the UndoRecord method in the following ways:

B To delete a new record. Use it after Siebel CRM calls the NewRecord method and before it saves
the new record to the Siebel database.

B To reverse modifications that the user makes to field values. Use it before Siebel CRM uses the
WriteRecord method to save these changes, or before the user steps off the record.

UpdateRecord Method

The UpdateRecord method places the current record in the commit pending state so that Siebel Open
Ul can modify it. It returns the retObj object with retVal set to one of the following values:

B true. The UpdateRecord method successfully placed the current record in the commit pending
state.

B false. The UpdateRecord method did not successfully place the current record in the commit
pending state.

It uses the following syntax:
this.UpdateRecord();

where:

B this identifies a business component instance.

For example, the following code calls the CanUpdate method. If CanUpdate indicates that Siebel
Open Ul can update the active row, then this code places the current record in the commit pending
state for the business component that this specifies:

this. UpdateRecord(false)
The UpdateRecord method can run in a Siebel Mobile disconnected client.

For more information, see “CanUpdate Method” on page 434.

WriteRecord Method

The WriteRecord method writes any modifications that the user makes to the current record. If you
use this method with:

B A connected client. WriteRecord writes these modifications to the Siebel Database that resides
on the Siebel Server.

B Siebel Mobile disconnected. WriteRecord writes these modifications to the local database that
resides on the client.

The WriteRecord method returns one of the following values:

398 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Ul for Siebel Mobile Disconnected m Methods You Can Use to
Customize Siebel Mobile Disconnected

B error:false. WriteRecord successfully wrote the modifications to the local database.
B error:true. WriteRecord did not successfully write the modifications to the local database.
The WriteRecord method uses the following syntax:
buscomp.writerecord(bAddSyncQ)
where:

B DbAddSyncQ is an optional argument that specifies to synchronize the modification that
WriteRecord makes to the Siebel Server. You can set this argument to one of the following values:

E true. Siebel Open Ul synchronizes the modification. This is the default setting.
m false. Siebel Open Ul does not synchronize the modification.

For examples that use the WriteRecord method, see the following topics:

B “Registering Methods to Make Sure Siebel Open Ul Runs Them in the Correct Sequence” on page 341
B “Customizing Predefined Business Components” on page 343

B “Customizing Siebel Pharma for Siebel Mobile Disconnected Clients” on page 355

B “Allowing Users to Commit Part Tracker Records” on page 367

Example

You must first configure Siebel Open Ul to create new records and set values for fields. You can then
use the following code to call the WriteRecord method to save the new record to the offline database:

var model= SiebelApp.S_App.-GetModel () ;
var bo = model .GetBusObject(*'Opportunity *);
var bc = bo.GetBusComp(*'Opportunity');
var strDEANumber = 9089;
var strDEAExpDate = 02/12/2013;
bc.SetFieldValue("DEA#", strDEANumber);
$.callback(this, function O {
if (retObj.err) {
bc.SetFieldvValue("'DEA Expiry Date', strDEAExpDate);
$.callback(this, function) {
if (retObj.err) {
bc.SetFieldvValue(""DEA Expiry Date', strDEAExpDate);
$.callback(this, function) {
if (retObj.err) {
bc_WriteRecord();

W

Methods You Can Use in the Business Object Class

This topic describes methods that you can use that reside in the Business Object class. It includes
the following information:

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 399

Customizing Siebel Open Ul for Siebel Mobile Disconnected
Customize Siebel Mobile Disconnected

“GetBusComp Method for Business Objects” on page 400
“GetLastErrCode Method for Business Objects” on page 400

“GetLastErrText Method for Business Objects” on page 401

“Name Method for Business Objects” on page 401

GetBusComp Method for Business Objects
The GetBusComp method returns the business component instance that a business object
references. It uses the following syntax:

SiebelApp.S_App-Model .GetBusObj (business _object) .GetBusComp(business_component)
where:
B business_object identifies the name of a business object.
B business_component identifies the name of a business component.

Each view references a business object, and each business object references one or more business
components. If you configure Siebel Open Ul to call GetBusComp in the context of a business object,
then you must do the following:

B use the business_object argument to specify the name of the business object that the view
references.

B use the business_component argument to specify the name of a business component that the
business object references.

For example, the following code gets the business component instance for the Order Entry - Orders
business component that the Service Request business object references:

SiebelApp.S_App-Model .GetBusObj (*'ServiceRequest') .GetBusComp(*'Order Entry -
Orders™)

For information about using BusComp in the context of an applet, see “BusComp Method for Applets”
on page 379. For more information about views, business objects, and business components, and
how they reference each other, see Configuring Siebel Business Applications.

GetLastErrCode Method for Business Objects

The GetLastErrCode method returns the error code for the most recent error that the disconnected
client logged. It uses the following syntax:

BusObj .GetlLastErrCode()
For example:

ActiveBusObject() -GetLastErrCode();
This method includes no arguments.

The error code that this method returns is a short integer. An error code of O (zero) indicates no error
occurred.

400 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Ul for Siebel Mobile Disconnected m Methods You Can Use to
Customize Siebel Mobile Disconnected

GetLastErrText Method for Business Objects
The GetLastErrText method returns a string that contains the text message for the most recent error
that the disconnected client logged. It uses the following syntax:

BusObj.GetLastErrText()
For example:
ActiveBusObject() .GetLastErrText();

This method includes no arguments.

Name Method for Business Objects
The Name method returns the name of a business object. It uses the following syntax:

BusObject.Name();

This method includes no arguments.

Methods You Can Use Iin the Business Service Class

This topic describes methods that you can use that reside in the Business Service class. It includes
the following information:

B “Invoke Method for Business Services” on page 401

B “ServiceRegistry Method” on page 402

Invoke Method for Business Services
The Invoke method that you can use with a business service calls the CanlnvokeMethod business
service and the InvokeMethod business service. It returns a property set. It uses following syntax:

service. Invoke(method _name, psPropertySet);

where:

B method_name is a string that identifies the business service method that the Invoke method
calls. The Invoke method also calls the following methods:

m CanlnvokeMethod. Determines whether or not Siebel Open Ul can call the business service
method that method_name identifies. Any custom business service file you create must
include the CanlnvokeMethod business service method.

®m InvokeMethod. Calls the business service method that method_name identifies. Any
custom business service file you create must include the InvokeMethod business service
method.

For more information about using these methods, see “Using Siebel Business Services or
JavaScript Services to Customize Siebel CRM Objects” on page 343.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 401

Customizing Siebel Open Ul for Siebel Mobile Disconnected
Customize Siebel Mobile Disconnected

B psPropertySet is a property set that the Invoke method sends to the method that method_name
identifies.

The following example calls the CanAddSample method of the LS Pharma Validation Service business
service:

var service

= SiebelApp.S_App.GetService("'LS Pharma Validation Service™);
var outputSet =

service. Invoke("'CanAddSample’, psPropertySet);

For an example that uses the Invoke method with a business service, see “Using Custom Siebel
Business Services” on page 349.

ServiceRegistry Method

The ServiceRegistry method registers a custom business service method that you define. You must
use it any time that you configure Siebel Open Ul to call a custom business service method. It returns
one of the following values:

B true. Siebel Open Ul successfully registered the method.
B false. Siebel Open Ul did not successfully register the method.
It uses following syntax:

SiebelApp.S_App-GetModel () -ServiceRegistry(inputObj);
where:

B inputObj is an object that specifies a set of properties, where each property specifies a name
and a value. The number of properties varies according to object type. For a list of properties
that you can use, see “Properties You Must Include to Register Custom Business Services” on
page 403. The inputObj argument uses the following syntax:

inputObj [oconsts.get(“'name')] = "value";
where:
B name specifies the property name
m value specifies the property value

For example, the following code specifies the DOUIREG_OBJ_NAME property with a value of Pharma
Call Entry Mobile:

inputObj [oconsts.get("'DOUIREG_OBJ NAME™)] = "Pharma Call Entry Mobile";
The following code specifies the property name:
oconsts.get("'DOUIREG_OBJ_NAME™)

Siebel Open Ul registers a method for a custom service when it loads the script files that it uses for
this custom service. This configuration makes sure that Siebel Open Ul calls the ServiceRegistry
method from the correct location in the code. To view this code in the context of a complete example,
see “Using Custom JavaScript Methods” on page 347.

402 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Ul for Siebel Mobile Disconnected m Methods You Can Use to
Customize Siebel Mobile Disconnected

Properties You Must Include to Register Custom Business Services

Table 15 describes the properties that you must include in the inputObj argument of the
ServiceRegistry method when Siebel Open Ul registers a custom business service. The local
constants.js file defines each of these properties as a constant.

Table 15. Properties You Must Include to Register Custom Business Services

Properties Value

DOUIREG_OBJ_NAME The name of a custom business service. For example:

LS Pharma Validation Service

DOUIREG_SRVC_NAME | The name of the JavaScript class that the custom business service
references. For example:

PharmaCallvalidatorsvc

Table 16 describes the properties you must include in the inputObj argument of the ServiceRegistery
method when Siebel Open Ul registers a custom business service that references a predefined applet
or a predefined business component.

Table 16. Required Input Properties for Custom Business Services That Reference Predefined
Applets or Business Components

Property Value

DOUIREG_OBJ_TYPE Specifies that this business service method references an applet or a
business component. You must use one of the following values:

I Use DOUIREG_OBJ_TYPEAPPLET for an applet.
B Use DOUIREG_OBJ_TYPEBUSCOMP for a business component.

DOUIREG_OBJ_MTHD Name of the predefined business service method that you must
customize. For example, WriteRecord.

DOUIREG_SRVC_NAME The name of the JavaScript class that the Class property of the business
service method references. For example:

pharmacallsvc

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 403

Customizing Siebel Open Ul for Siebel Mobile Disconnec
Customize Siebel Mobile Disconnected

Table 16. Required Input Properties for Custom Business Services That Reference Predefined
Applets or Business Components

Property Value

DOUIREG_SRVC_MTDH Name of the business service method that you customized. For example,
WriteRecord.

DOUIREG_EXT_TYPE You can use one of the following values:

B DOUIREG_EXT_TYPEPRE. Siebel Open Ul runs the custom
business service method, and then runs the predefined business
service method. You must configure Siebel Open Ul to set the
Invoked property to true after it processes DOUIREG_EXT_TYPEPRE
so that it does not make any more calls to this method.

B DOUIREG_EXT_TYPEPOST. Siebel Open Ul runs the predefined
business service method, and then runs the custom business service
method.

Methods You Can Use in the Application Class

This topic describes methods that you can use that reside in the Application class. It includes the
following information:

B “ActiveBusObject Method” on page 404

“ActiveViewName Method” on page 405
“CurrencyCode Method” on page 405

“FindApplet Method” on page 405

“GetBusObject Method” on page 405
“GetLastErrCode Method for Applications” on page 406
“GetLastErrText Method for Applications” on page 406
“GetService Method” on page 406

“Loginld Method” on page 407

“LoginName Method” on page 407

“Name Method for Applications” on page 407
“NewPropertySet Method” on page 407

“Positionld Method” on page 408

“PositionName Method” on page 408

ActiveBusObject Method

The ActiveBusObject method returns the business object that the active view references. It uses the
following syntax:

404 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

r Siebel Mobile Disconnected ® Methods You Can Use to
Customize Siebel Mobile Disconnected

Application. ActiveBusObject()
It includes no arguments.
For example:

SiebelApp.S_App-ActiveBusObject();

ActiveViewName Method
The ActiveViewName method returns the name of the active view. It uses the following syntax:

Application. ActiveViewName()
It includes no arguments.
For example:

SiebelApp.S_App. ActiveViewName();

CurrencyCode Method

The CurrencyCode method returns the currency code that Siebel CRM associates with the division of
the user position. For example, USD for U.S. dollars, EUR for the euro, or JPY for the Japanese yen.
It uses the following syntax:

Application. CurrencyCode()
It includes no arguments.
For example:

SiebelApp.S_App. CurrencyCode();

FindApplet Method

The FindApplet method returns the active applet. It uses the following syntax:
Application. FindApplet(appletName)
where:

B appletName is a string that contains the name of the active applet.

For example, if the Contact List Applet is the current applet, then the appletName variable in the
following code returns the name of this applet as a string:

SiebelApp.S_App-FindApplet(appletName);

GetBusObject Method

The GetBusObject method creates a new instance of a business object. It returns this new business
object instance. It is not synchronous. It uses the following syntax:

Application. GetBusObject(business object_name)

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 405

Customizing Siebel Open Ul for Siebel Mobile Disconnected
Customize Siebel Mobile Disconnected

where:
B business_object_name is a string that identifies the name of a business object
For example, the following code creates a new instance of the Opportunity business object:

SiebelApp.S_App. GetBusObject(Opportunity);

GetLastErrCode Method for Applications
The GetLastErrCode method returns the error code for the most recent error that the disconnected
client logged. It uses the following syntax:

Application.GetLastErrCode()
For example:

TheApplication() .GetLastErrCode();
This method includes no arguments.

The error code that this method returns is a short integer. An error code of O (zero) indicates no error
occurred.

GetLastErrText Method for Applications
The GetLastErrText method returns a string that contains the text message for the most recent error
that the disconnected client logged. It uses the following syntax:

Application.GetLastErrText()
For example:
TheApplication() .GetLastErrText();

This method includes no arguments.

GetService Method

The GetService method creates an instance of a business service object. It allows you to use the
Invoke method to call this business service object. It uses the following syntax:

SiebelApp.S_App-GetService("'business _service_name'");
where:

B business_service_name is a string that identifies the name of the business service that
GetService uses to create the business service object. You must use the same name that you use
when you register this business service. For more information about registering a business
service, and for an example that uses the GetService method, see “Using Custom Siebel Business
Services” on page 349.

The following example creates a business service instance of the LS Pharma Validation Service
business service:

406 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

bel Mobile Disconnected ® Methods You Can Use to
Customize Siebel Mobile Disconnected

var service = SiebelApp.S_App.GetService(''LS Pharma Validation Service");

Loginld Method

The Loginld method returns the login ID of the user who started the Siebel application. It uses the
following syntax:

Application. LoginldQ)
It includes no arguments.
For example:

SiebelApp.S_App. Loginld();

LoginName Method
The LoginName method returns the login name of the user who started the Siebel application. This
login name is the name that the user enters in the login dialog box. It uses the following syntax:

Application. LoginName()
It includes no arguments.
For example:

SiebelApp.S_App. LoginName();

Name Method for Applications

The Name method returns the name of the Siebel application. It uses the following syntax:
Application. Name(Q)

It includes no arguments.

For example:

SiebelApp.S_App. Name();

NewPropertySet Method
The NewPropertySet method creates a new property set, and then returns this property set to the
code that called this method. It uses the following syntax:

Application. NewPropertySet()
It includes no arguments.
For example:

SiebelApp.S_App- NewPropertySet();

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 407

Customizing Siebel Open Ul for Siebel Mobile Discon
Customize Siebel Mobile Disconnected

Positionld Method

The Positionld method returns the position ID of the user position. This position ID is the ROW_ID
from the S_POSTN table. Siebel CRM sets this value when the Siebel application starts, by default.
It uses the following syntax:

Application. Positionld()
It includes no arguments.
For example:

SiebelApp.S_App. Positionld();

PositionName Method
The PositionName method returns the name of the current user position. Siebel CRM sets this value
when it starts the Siebel application, by default. It uses the following syntax:

Application. PositionName()
It includes no arguments.
For example:

SiebelApp.S_App. PositionName();

Methods You Can Use in the Model Class

This topic describes methods that you can use that reside in the Model class.

GetLoginld Method

The GetLoginld method returns the login Id of the offline user who is currently logged in to the Siebel
Mobile disconnected client. It uses the following syntax:

Var loginid = SiebelApp.S_App-Model .GetLoginld();

ReleaseBO Method

The ReleaseBO method releases the current business object instance. It returns an instance of the
current applet or current business component. It uses the following syntax:

SiebelApp.S_App-.Model _.ReleaseBO(0objB0);
where:

B objBO is a variable that identifies the business object instance that Siebel Open Ul must release.

408 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

for Siebel Mobile Disconnected m Methods You Can Use to
Customize Siebel Mobile Disconnected

Methods You Can Use In the Service Model Class

This topic describes the method that you can use that resides in the Service Model class.

GetContext Method

The GetContext method gets the context that exists when a JavaScript service or a Siebel business
service calls a method. It returns the current applet or business component depending on this
context. It uses the following syntax:

serviceObj .GetContext()

You cannot configure Siebel Open Ul to override this method.

Methods You Can Use In Offline Classes

This topic describes methods that you can use that reside in the offline classes. It includes the
following information:

B “setReturnValue Method” on page 409
B “callback Method” on page 410

B “eachAsyncOp Method” on page 410
B “SetErrorMsg Method” on page 411

These methods reside in the OfflineAppMgr class, except for SetErrorMsg. It resides in the
OfflineErrorObject class.

setReturnValue Method
The setReturnValue method sets the return value that Siebel Open Ul sends to the method that calls
the setReturnValue method. It uses the following syntax:

$.setReturnValue(return_value)
where:
B return_value identifies an object that includes the following information:
m Error status of the code that Siebel Open Ul called
m retVal contains the return value of the code that Siebel Open Ul called
For example:
$.setReturnValue({err: errCode,retVal:bRet})
where:

B errCode contains the error code that Siebel Open Ul returns to the caller. For more information,
see “SetErrorMsg Method” on page 411.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 409

Customizing Siebel Open Ul for Siebel Mobile Disconnected
Customize Siebel Mobile Disconnected

If you do not use setReturnValue, then Siebel Open Ul sends a retObj with err set to null and retVal
set to empty, by default.

For examples that use the setReturnValue method, see “Registering Methods to Make Sure Siebel Open
Ul Runs Them in the Correct Sequence” on page 341 and “SetErrorMsg Method” on page 411.

callback Method

The callback method registers the done handler. it uses the following syntax:
$.callback (scope,done_handler)
where:

B scope identifies the object that Siebel Open Ul uses to call the asynchronous method. You
typically use the following scope:

this

B done_handler identifies the method that Siebel Open Ul calls at the end of the asynchronous
method that Siebel Open Ul calls. The done_handler that Siebel Open Ul registers with the
callback method expects a return object. You use the setReturnValue method to return this
object.

For example:

PharmaCal 1Submitsvc.prototype.Submit = function () {
bc_ExecuteQuery();
$.callback(this, function(retObj){
err = retObj.err;

For another example that uses this method, “Registering Methods to Make Sure Siebel Open Ul Runs
Them in the Correct Sequence” on page 341.

eachAsyncOp Method

The eachAsyncOp method iteratively calls an asynchronous method. It uses the following syntax:
$.eachAsyncOp(scope,configObj)
where:

B configObj identifies the configuration object. A configuration object is a type of object that
includes information that Siebel Open Ul uses to send as input properties to a method.

For example:
$.eachAsyncOp(this,configobj);

The eachAsyncOp method handles the done handlers for each iteration. It requires a configuration
object that includes the following properties as inputs:

Bl executeScope. Scope of the asynchronous method that Siebel Open Ul must call.

B execute. Asynchronous method that Siebel Open Ul must call.

410 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

Ul for Siebel Mobile Disconnected m Methods You Can Use to
Customize Siebel Mobile Disconnected

B preExecute. Optional property that specifies the method that Siebel Open Ul runs before it calls
the asynchronous method. You can also use preExecute to send information that the
asynchronous method requires. You must write this method so that it returns the following
information:

®m Arguments that Siebel Open Ul must send to the asynchronous method
m Returns these arguments in an array.
The preExecute property can use the iteration value as an input.

B postExecute. Optional property that specifies the method that Siebel Open Ul runs after the
asynchronous call finishes.

B iterations. Optional property that specifies the total number of iterations that eachAsyncOp
runs. If you do not include this property, then Siebel Open Ul runs the asynchronous method only
one time.

SetErrorMsg Method

The SetErrorMsg method defines an error message for a business service that you customize. It
returns nothing. It uses the following Syntax:

SiebelApp.S_App-OfflineErrorObject.SetErrorMsg("'messageKey", errParamArray);
where:

B messageKey contains the error message key. A message key is a text string that includes
variable characters. %1 is an example of a variable character.

B errParamArray is an optional array that contains error properties that SetErrorMsg includes in
the error message. SetErrorMsg replaces each variable character that the messageKey contains
with a value from errParamArray.

For an example that uses SetErrorMsg, see “Configuring Error Messages for Disconnected Clients” on
page 353. For an example that uses SetErrorMsg in the context of a call to a custom business service,
see “Registering Methods to Make Sure Siebel Open Ul Runs Them in the Correct Sequence” on

page 341.

Other Methods You Can Use with Siebel Mobile
Disconnected

This topic describes other methods that you can use with Siebel Mobile Disconnected. It includes the
following topics:

B “GetBusObj Method” on page 412
B “GetLovNameVal Method” on page 412
B “GetLovValName Method” on page 412

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 411

Customizing Siebel Open Ul for Siebel Mobile Disconnected
Customize Siebel Mobile Disconnected

GetBusObj Method

The GetBusObj method creates a new instance of a business object. It returns this new business
object instance. It uses the following syntax:

SiebelApp.S_App-Model .GetBusObj (business_object name)
where:

B business_object_name identifies the name of the business object that GetBusObj uses to create
the new business object instance.

For example, the following code creates a new instance of the Service Request business object:
var pServiceRequestBC = SiebelApp.S_App-Model .GetBusObj (*""'Service Request'™)"
The GetBusObj method resides in the model.js file.

You cannot configure Siebel Open Ul to override this method.

GetLovNameVal Method

The GetLovNameVal method gets the value that Siebel Open Ul currently displays in the client for a
list of values. It uses the following syntax:

SiebelApp.S_App-Model .GetLovNameVal (LOV_name, LOV_type)
where:
B LOV_name identifies the name of a list of values.
B LOV_type identifies the type of list of values that LOV_name identifies.

For example, the following code gets the value that Siebel Open Ul currently displays in the client
for the Samples Request list of values:

SiebelApp.S_App-Model .GetLovNameVal ("""'Samples Request"', ""'TODO_TYPE"")"
The GetLovNameVal method resides in the model.js file.

You cannot configure Siebel Open Ul to override this method.

GetLovValName Method

The GetLovValName method gets the name of a value that resides in a list of values. It uses the
following syntax:

SiebelApp.S_App-Model .GetLovValName(value _name, LOV type)
where:
B value_name identifies the name of a value that resides in a list of values.
B LOV_type identifies the type of list of values that contains the value that value_name contains.

For example, the following code gets the value that Siebel Open Ul currently displays in the client
for the Call value:

412 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

nected W Methods You Can Use to
tomize Siebel Mobile Disconnected

SiebelApp.S_App-Model .GetLovValName(''Call*,""TODO_TYPE'™)

The GetLovValName method resides in the model.js file. You cannot configure Siebel Open Ul to
override this method.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 413

Customizing Siebel Open U
Customize Siebel Mobile Disc

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

A n Ul Application
ing Interface

This appendix describes reference information for the JavaScript Application Programming Interface
(API) that you can use to customize Siebel Open Ul. It includes the following topics:

B Overview of the Siebel Open Ul Client Application Programming Interface on page 415
B Methods of the Siebel Open Ul Application Programming Interface on page 416
B Methods for Pop-Up Objects, Google Maps, and Property Sets on page 511

Overview of the Siebel Open Ul Client
Application Programming Interface

Creating a custom client user interface in Siebel Open Ul requires that you do the following work:

B Creating a new presentation model that Siebel Open Ul uses in addition to the metadata and data
that it gets from the Web Engine that resides on the Siebel Server.

B Creating a new physical user interface by creating a custom physical renderer that Siebel Open
Ul uses in addition to a predefined or custom presentation model.

You can use the following programming interfaces to implement these presentation models:

B Presentation model class. Describes the life cycle methods that you must code for a
presentation model and the control methods that Siebel Open Ul uses to add presentation model
properties and behavior. For more information, see “Presentation Model Class” on page 416.

B Physical renderer methods. Describes the life cycle methods that you must code into any
renderer that binds a presentation model to a physical renderer. For more information, see
“Physical Renderer Class” on page 455.

For a summary of these methods and information about how Siebel Open Ul uses them, see “Life
Cycle of User Interface Elements” on page 58.

Siebel Open Ul defines each class in a separate file. It stores these files in the following folder:
\build_number\EAPPWEB\PUBLIC\ Janguage code\build number\SCRIPTS\SIEBEL

For brevity, this chapter states that the method does something. In reality, most methods send a
request to a proxy object, and then this proxy object does the actual work.

For more information about the language_code, see “Languages That Siebel Open Ul Supports” on
page 592.

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 415

Siebel Open Ul Application Programming Interface
Application Programming Interface

Methods of the Siebel Open UI
Application Programming Interface

This topic describes the methods of the Siebel Open Ul Application Programming Interface. You can

use them to customize Siebel Open Ul. It includes the following information:
B Presentation Model Class on page 416

B Presentation Model Class for Applets on page 429
B Presentation Model Class for List Applets on page 447
B Presentation Model Class for Menus on page 453

B Physical Renderer Class on page 455

B Plug-in Wrapper Class on page 460

B Plugin Builder Class on page 463

B Template Manager Class on page 464

B Event Helper Class on page 468

B Business Component Class on page 471

B Applet Class on page 471

B Applet Control Class on page 472

B JQ Grid Renderer Class for Applets on page 482

B Business Service Class on page 484

B Application Model Class on page 484

B Control Builder Class on page 496

B Locale Object Class on page 496

B Component Class on page 504

B Component Manager Class on page 507

|

Other Classes on page 510

Presentation Model Class

This describes the methods that Siebel Open Ul uses with the PresentationModel class. It includes
the following information:

B AddComponentCommunication Method on page 417
B AddLocalString Method on page 417

B AddMethod Method on page 418

B AddProperty Method on page 420

416 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

rogramming Interface " Methods of the Siebel Open Ul
Application Programming Interface

AddValidator Method on page 420
AttachEventHandler Method on page 421
AttachNotificationHandler Method on page 421
AttachPMBinding Method on page 423
AttachPostProxyExecuteBinding Method on page 424
AttachPreProxyExecuteBinding Method on page 425
ExecuteMethod Method on page 425

Get Method on page 426

GetCtrlITemplate Method on page 426

Init Method on page 426

OnControlEvent Method on page 427

SetProperty Method on page 427
Setup Method for Presentation Models on page 428

Siebel Open Ul defines the PresentationModel class in the pmodel.js file.

AddComponentCommunication Method

The AddComponentCommunication method binds a communication method. It uses the following
arguments:

B methodName is a string that identifies the communication method that Siebel Open Ul binds.

B targetMethod is a string that identifies the method that Siebel Open Ul calls after methodName
finishes. It calls this target method in the presentation model context.

targetMethodConfig identifies an object that contains configuration properties for targetMethod.

targetMethodConfig.scope identifies the object that the AddComponentCommunication method
binds. This object must reference the targetMethod.

B targetMethodConfig.args is a list of arguments that Siebel Open Ul sends to targetMethod when
the AddComponentCommunication method runs.

AddLocalString Method

The AddLocalString method adds a text string. It uses the following syntax:
AddLocalString(/D, custom _string)

where:

B ID is a string that you use to reference the custom_string. You can use any value for ID.

B custom_string is any text string.

For example:

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 417

Siebel Open Ul Application Programming Interface = Methods o
Application Programming Interface

this.AddMethod(*'AddLocalString", function (my_text, this is my custom text) {
SiebelApp.S_App-LocaleObject.AddLocalString(my_text, this is my custom text);
return value;

D
This code adds a string named my_text that includes the following string value:

this is my custom text

AddMethod Method

The AddMethod method adds a method to a presentation model. You can use ExecuteMethod to run
the method that AddMethod adds from the presentation model or from the physical renderer. If
AddMethod attempts to add a new method that the predefined client already contains, then the new
method becomes a customization of the predefined method, and this customization runs before or
after the predefined method depending on the CancelOperation part of the return value.

A method that customizes another method can return to the caller without running the method that
it customizes. To do this, you configure Siebel Open Ul to set the CancelOperation part of the return
value to true. You set this property on the ReturnStructure object that Siebel Open Ul sends to each
method as an argument. For an example that does this configuration, see “Customizing the
Presentation Model to Identify the Records to Delete” on page 70.

The AddMethod method returns one of the following values:
B True. Added a method successfully.

B False. Did not add a method successfully.

It uses the following syntax:

AddMethod (" methodName' , methodDef(argument, argument _n){
Y. {methodConfig : value});

where:

B methodName is a string that contains the name of the method that Siebel Open Ul adds to the
presentation model.

methodDef is an argument that allows you to call a method or a method reference.

argument and argument_n are arguments that AddMethod sends to the method that methodDef
identifies.

B methodConfig is an argument that you set to one of the following values:
B sequence. Set to one of the following values:

1 true. Siebel Open Ul calls methodName before it calls the method that already exists in
the presentation model.

1 false. Siebel Open Ul calls methodName after it calls the method that already exists in
the presentation model. The default value is false.

B override. Set to one of the following values:

418 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

ation Programming Interface = Methods of the Siebel Open Ul
Application Programming Interface

1 true. Siebel Open Ul does not call the method that already exists in the presentation
model. Instead, it calls the sent method, when necessary. Note that Siebel Open Ul can
never override some methods that exist in a predefined presentation model even if you
set override to true.

. false. Siebel Open Ul calls the method that already exists in the presentation model.

B scope. Describes the scope that Siebel Open Ul must use when it calls methodDef. The
default scope is Presentation Model.

Example of Adding a New Method
The following code adds a new ShowSelection method:

this.AddMethod(*'ShowSelection", SelectionChange, {sequence : false, scope : this});

After Siebel Open Ul adds the ShowSelection method, you can use the following code to configure
Siebel Open Ul to call this method. It sends a string value of SetActiveControl to the sequence and
a string value of null to the scope argument. To view how Siebel Open Ul uses this example, see

Step 5 on page 72:

this.ExecuteMethod(*'SetActiveControl*, null)

Example of Using the Sequence Argument

The following code configures Siebel Open Ul to attach a method. It calls this method anytime it calls
the InvokeMethod method of the proxy:

this_AddMethod ("' InvokeMethod™, function(){
}. {sequence : true});

This code sets the sequence argument to true, which configures Siebel Open Ul to call the method
that it sends before it calls InvokeMethod. The method that it sends gets all the arguments that
InvokeMethod receives. For more information, see “InvokeMethod Method for Presentation Models” on
page 439.

Example of Overriding the Predefined Presentation Model

The following example overrides the predefined presentation model and runs the ProcessDrillDown
method:

this.AddMethod(*'ProcessDrillDown', function(Q{
}., {override : true});

Other Examples
The following examples also use AddMethod:

this.AddMethod ("' InvokeMethod™, function(){console.log(""In Invoke Method of PM™),
{override: true});

this.AddMethod ("' InvokeControlMethod",
DerivedPresentationalModel .prototype._MylnvokeControlMethod, {sequence : true});

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 419

Siebel Open Ul Application Programming Interface = Met
Application Programming Interface

For more information, see “Deriving Presentation Models, Physical Renderers and Plug-in Wrappers” on
page 129.

AddProperty Method

The AddProperty method adds a property to a presentation model. Siebel Open Ul can access it
through the Get method. It returns one of the following values:

B True. Added a property successfully.

B False. Did not add a property successfully.

It uses the following syntax:
this._AddProperty("'propertyName', propertyValue);

where:

B propertyName is a string that identifies a property. A subsequent call to this method with the
same propertyName overwrites the previous value.

B propertyValue assigns a value to the property.

For example, the following code adds the NumOfRows property and assigns a value of 10 to this
property:

this.AddProperty(*'"NumOfRows', 10);
SiebelJS.Log(this.Get(""NumOfRows™));

AddValidator Method

The AddValidator method validates an event. It allows you to write a custom validation for any event.
It returns one of the following values:

B true. Validated the event successfully.
B false. Did not validate the event successfully.
It uses the following syntax:
Addvalidator(siebConsts.get("event_name'), function({custom validation}
where:
B event_name identifies the name of the event that AddValidator validates.
For example, the following code validates the control focus event:

this.AddValidator(siebConsts.get(*'PHYEVENT_COLUMN_FOCUS™), function(row, ctrl,

val){
if(ctrl.GetDisplayName() === "Account™ && val === "Hibbing Mfg"){
return true;

»:

You can configure Siebel Open Ul to use the value that AddValidator returns to determine whether
or not to stop running handlers for an event. For more information, see “AttachEventHandler Method”
on page 421.

420 Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A

tion Programming Interface i Methods of the Siebel Open Ul
Application Programming Interface

For more information about events, see “Siebel CRM Events That You Can Use to Customize Siebel Open
Ul” on page 567.

AttachEventHandler Method

The AttachEventHandler method attaches an event handler to an event. It uses the following values:

B consts.get("SWE_EXTN_CANCEL_ORIG_OP"). If SWE_EXTN_CANCEL_ORIG_OP returns a value
of true, then Siebel Open Ul cancels the operation for the predefined event handler. For an
example that sets the value for SWE_EXTN_CANCEL_ORIG_OP, see “Attaching and Validating
Event Handlers in Any Sequence” on page 153.

B consts.get("SWE_EXTN_STOP_PROP_OP"). If SWE_EXTN_STOP_PROP_OP returns a value of
true, then Siebel Open Ul stops the operation for the custom event handler from propagating the
customization.

The AttachEventHandler method uses the following syntax:
AttachEventHandler(event_name, function_reference);

where:

B event _name identifies the name of an event.

B function_reference identifies the name of a method that the AddMethod method adds. For
example, PHYEVENT_CONTROL_BLUR. Siebel Open Ul calls OnControlEvent to trigger this event,
and then calls the function reference in the scope of the corresponding presentation model.

For more information about:

B An example that uses AttachEventHandler, see “Example of the Life Cycle of a User Interface
Element” on page 62.

B Events, see “Siebel CRM Events That You Can Use to Customize Siebel Open UI” on page 567.
B Using AttachEventHandler, see “Life Cycle Flows of User Interface Elements” on page 527.

B Deriving a value, see “Deriving Presentation Models, Physical Renderers and Plug-in Wrappers” on
page 129.

AttachNotificationHandler Method

The AttachNotificationHandler attaches a method that handles the notification that Siebel Open Ul
calls when the Siebel Server sends a notification to an applet. It does this attachment when the
notification occurs. It returns one of the following values:

B True. Attached notification handler successfully.
B False. Did not attach notification handler successfully.
It uses the following syntax:

this_AttachNotificationHandler("notification_name", handler);

where:

Configuring Siebel Open Ul Siebel Innovation Pack 2014, Rev. A 421

Siebel Open Ul Application Programming Interface = Methods
Application Programming Interface

B notification_name is a string that includes the name or type of a notification. For example,
NotifyDeleteRecord or SWE_PROP_BC_NOTI_DELETE_RECORD.

B handler identifies a notification handler that Siebel Open Ul calls when notification processing
finishes. For example, HandleDeleteNotification.

For more information about:

B An example that uses AttachNotificationHandler, see “Customizing the Presentation Model to
Handle Notifications” on page 79

B Using the AttachNotificationHandle method, see “Customizing Events” on page 150

B How Siebel Open Ul handles notifications, see “Life Cycle Flows of User Interface Elements” on
page 527

B Notifications, see “Notifications That Siebel Open Ul Supports” on page 545

Example of Using AttachEventHandler

Assume a presentation model named pmodel.js includes an OnControlEvent method that runs a
custom event handler, and that Siebel Open Ul sends an eventConfig object as the last argument in
the event handler call. It uses this eventConfig object in the custom presentation model to set a value
for SWE_EXTN_CANCEL_ORIG_OP or SWE_EXTN_STOP_PROP_OP. This configuration allows
AttachEventHandler to create multiple custom events and to stop an event handler from running.

For example, assume your customization configures Siebel Open Ul to do the following:
B Derive derivedpml.js from pmodel.js.

B Derive derivedpm?2.js from derivedpml.js.

B Derive derivedpma3.js from derivedpmz2.js.
|

Include an event handler for PHYEVENT_COLUMN_FOCUS in derivedpml.js, derivedpm?2.js, and
derivedpm3.js.

B Use derivedpma3.js to set the AttachEventHandler to the value that SWE_EXTN_STOP_PROP_OP
contains.

B Use the following code so that Siebel Open Ul uses the last argument that AttachEventHandler
specifies:

this._AttachEventHandler(siebConsts.get(""PHYEVENT_COLUMN_FOCUS'™), function()

{
SiebelJS.Log(*""Control focus 1");

arguments[arguments.length - 1][consts.get("SWE_EXTN_STOP_PROP_OP")] = false;
D

Siebel Open Ul runs AttachEventHandler customizations in a LIFO (last in, first out) sequence. In this
example, it uses the following sequence:

1 Runs event handlers that reside in derivedpm3.js.
2 Runs event handlers that reside in derivedpm?2.js.
3 Runs event handlers that reside in derivedpm1.js.
4

Runs event handlers that reside in the predefined presentati