
XML Reference: Siebel
Enterprise Application
Integration

Siebel Innovation Pack 2014
November 2014

Copyright © 2005, 2014 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in
your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing
it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are “commercial computer software” pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed
on the hardware, and/or documentation, shall be subject to license terms and license restrictions
applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services.
Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due
to your access to or use of third-party content, products, or services.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website
at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information,
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

3

Contents

XML Reference: Siebel Enterprise Application Integration 1

Chapter 1: What’s New in This Release

Chapter 2: Overview of Support for XML in Siebel Business
Applications

About XML 9

Siebel CRM Integration and XML 9

Metadata Support for XML 11

Special Characters in XML Documents 11

Chapter 3: XML Representation of Property Sets
Mapping Between Property Sets and XML 13

Element and Attribute Naming 13

Property Set Examples and Their XML Representation 15

Properly Formatted Property Sets 16

Chapter 4: XML Representation of Siebel Integration
Object Instances

About Representing Siebel Integration Object Instances as XML Documents 19

Integration Objects 19

Elements and Attributes 20

How XML Names Are Derived from Integration Objects 21

Elements Within a Siebel Integration Object Document 22
SiebelMessage Element 22
Object List Element 23
Integration Component Elements 23
Component Container Elements 24
Integration Field Elements 25

Example XML Document 25

XML Schema Definitions (XSDs) 26

Document Type Definitions (DTDs) 27

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

Contents ■

4

Chapter 5: XML Integration Objects and the XSD Wizard
Creating XML Integration Objects with the XSD Wizard 29

Supported XSD Elements and Attributes 30

Structure of XSD XML Integration Objects 36

Chapter 6: XML Integration Objects and the DTD Wizard
Creating XML Integration Objects with the DTD Wizard 39

How the DTD Wizard Creates XML Integration Objects 40

Chapter 7: Siebel XML Converters
About Siebel XML Converters 45

EAI XML Converter 46

XML Hierarchy Converter 51

EAI Integration Object to XML Hierarchy Converter 57

XML Converter 60

Siebel XML Converter Business Service Comparison 62

EAI XML Write to File Business Service 63

EAI XML Read from File Business Service 66

Chapter 8: Scenarios for Siebel EAI XML Integration
Scenario 1: Process of Inbound Integration Using Siebel XML 71

Scenario 2: Process of Outbound Integration Using External XML and an XSD or DTD
72

Appendix A: Using XML Files
Using an XML Document as Input 75

Inserting File Attachments Using XML 78

Removing Empty XML Tags 78

Appendix B: Sample XML for Siebel EAI Effective Dating
Operations

About Siebel EAI Effective Dating Operations 81

Sample XML for Field-Related Siebel EAI Effective Dating Operations 81

Sample XML for Link-Related Siebel EAI Effective Dating Operations 91

Contents ■

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

5

Index

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

Contents ■

6

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

7

1 What’s New in This Release

What’s New in XML Reference: Siebel Enterprise Application
Integration, Siebel Innovation Pack 2014
No new features have been added to this guide for this release. This guide has been updated to
reflect only product name changes.

NOTE: Siebel Innovation Pack 2014 is a continuation of the Siebel 8.1/8.2 release.

What’s New in XML Reference: Siebel Enterprise Application
Integration, Version 8.1/8.2
No new features have been added to this guide for this release. This guide has been updated to
reflect only product name changes.

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

What’s New in This Release ■

8

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

9

2 Overview of Support for XML in
Siebel Business Applications

This chapter provides an overview of support for Extensible Markup Language (XML) in Siebel
Business Applications. It includes the following topics:

■ About XML on page 9

■ Siebel CRM Integration and XML on page 9

■ Metadata Support for XML on page 11

■ Special Characters in XML Documents on page 11

About XML
XML is the industry standard for precisely representing data from virtually any source, stored in
virtually any format. In appearance, it is similar to HTML, but while HTML explains a document in
terms of how it should display data in a Web browser, XML is the data (or more precisely, the data
from an application represented as XML).

This data can be from an application screen, sometimes called a screen scraping, it can be the output
from a database, or it can be an application executed using processing instructions that run Oracle’s
Siebel eScript, for example.

There are also technologies that explain XML documents. These are known as metadata because the
data within these documents is used to describe and format the information in an XML document.
Examples of metadata documents include XSDs (XML Schema Definitions), DTDs (Document Type
Definitions), and XDRs (XML Data Reduced), which are supported by Siebel Business Applications.

Siebel CRM Integration and XML
Siebel Business Applications support for XML allows you to communicate with any Siebel application
or external application that can read and write XML (either arbitrary XML or Siebel XML, also known
as the Siebel Message format).

XML documents are delivered directly to and from Siebel Business Applications, or through
middleware using any of the supported transports: HTTP, IBM WebSphere MQ, File, and so on. XML
communicated in this way can query the Siebel Database, upsert (update or insert) data, synchronize
the two systems, delete data, or execute a workflow process.

Objects from various systems, such as Siebel business objects and Oracle application data, can be
represented as Siebel integration objects.

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

Overview of Support for XML in Siebel Business Applications ■ Siebel CRM Integration
and XML

10

Siebel CRM can also communicate bidirectionally with Web services using Simple Object Access
Protocol (SOAP), and Representational State Transfer (REST) through Siebel Application Integration
(SAI) for Oracle Fusion Middleware. For details, see Integration Platform Technologies: Siebel
Enterprise Application Integration and Siebel Application Integration for Oracle Fusion Middleware
Guide.

NOTE: If you do a minimal client installation, make sure you select the XML parser option; otherwise,
you will encounter the following error when attempting to run any client process that uses the XML
parser: Unable to create the Business Service ‘EAI XML Converter.’ The XML parser is included by
default in the full installation.

XML Integration Objects
The Integration Object type of XML is available within Siebel Business Applications to represent
externally defined XML documents, where the object’s XML representation is compliant with the XSD
or DTD supplied by your trading partner or external system. This type of integration object supports
a representation of XML documents.

NOTE: Siebel XSD does not support the use of <import> and <include> elements and the <any>
attribute. To implement the <import> or <include> functionality, place the schema definition into a
single file.

Bidirectional Data Flow
Figure 1 shows the bidirectional progress of XML documents into and out of Siebel Business
Applications.

NOTE: For details on integration objects and Web services, see Integration Platform Technologies:
Siebel Enterprise Application Integration. For an overview of Siebel EAI, see Overview: Siebel
Enterprise Application Integration.

Figure 1. Document to Integration Object Flow

Overview of Support for XML in Siebel Business Applications ■ Metadata Support for
XML

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

11

Metadata Support for XML
For sending and receiving information for Siebel Objects in an XML format between Oracle and
external systems, Oracle supports the metadata representations for XML known as XSDs (XML
Schema Definitions), DTDs (Document Type Definitions), and XDRs (XML Data Reduced, a Microsoft
specification). Support for XSDs and DTDs gives you a way to communicate with external systems
using externally defined XML documents, instead of having to use the Siebel XSD and DTD format.

The Siebel application includes a Schema Generator wizard to assist in the creation of XML
Integration Objects, using an externally defined XSD or DTD. The XSD and DTD are used to map data
between the Siebel application and an external integration object, and to transform data, as needed.
These tasks are conducted using the Siebel Data Mapper.

Special Characters in XML Documents
Special characters should be represented in accordance with XML standards for those characters in
order for them to be correctly interpreted within Siebel Business Applications. Also, specify the
character set you are using if it is not UTF-8 (the default).

NOTE: To edit an XML document including binary or encoded data, use editors such as Microsoft
Notepad or Word that do not convert the data upon saving the file.

Special (Escape) Characters
The EAI XML Converter can handle special characters for inbound and outbound XML, as shown in
Table 1. Non-Siebel XML should already handle special characters before integrating into the Siebel
application. Special characters are indicated by enclosing the text for the character between an
ampersand (&) and a semicolon (;). Also, if the XML is passed in a URL, then URL encoding of special
characters is required as shown in Table 1.

Table 1. XML Escape Characters (Character Entities)

Character Entity URL Encoded

< < %26lt%3B

> > %26gt%3B

& & %26amp%3B

“ " %26quot%3B

' ' %26apos%3B

Unicode Character (Decimal) 	 %26%2309%3B

Unicode Character (Hex) ° %26%23x00B0%3B

Date Must follow the
ISO 8601 format

Not applicable

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

Overview of Support for XML in Siebel Business Applications ■ Special Characters in
XML Documents

12

Declaring the Character Set in Use
You must include the following parameter in the XML version declaration of your XML, XSD, or DTD
document to declare the character set in use, if it is not the default of UTF-8:

<?xml version="1.0" encoding="US-ASCII"?>

Supported character sets include but are not limited to ASCII, UTF-8, UTF-16 (Big or Small Endian),
UCS4 (Big or Small Endian), EBCDIC code pages IBM037 and IBM1140 encodings, ISO-8859-1, and
Windows-1252. This means that the XML parser can parse input XML files in these encodings.

The following encodings can be used in the XML declaration:

■ US-ASCII

■ UTF-8

■ ISO-10646-UCS-4

■ ebcdic-cp-us

■ ibm1140

■ ISO-8859-1

■ windows-1252

The character set declaration encoding must appear after the version declaration. For example:
<?xml version="1.0" encoding="US-ASCII"?>

The output can be in one of the following XML encodings:

■ UTF-8

■ UTF-16

■ Local Code Page

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

13

3 XML Representation of Property
Sets

This chapter discusses the XML representation of property sets and the mapping between property
sets and XML. It also discusses the elements and attributes naming conversion performed by the XML
Converter. It includes the following topics:

■ Mapping Between Property Sets and XML on page 13

■ Element and Attribute Naming on page 13

■ Property Set Examples and Their XML Representation on page 15

■ Properly Formatted Property Sets on page 16

Mapping Between Property Sets and XML
An arbitrary property set hierarchy can be serialized to XML and an XML document can be converted
to a property set hierarchy using the XML Converter business service. This service is used by the
Business Service Simulator screen to save property set inputs and outputs to a file from eScript.

Each part of a property set object has a corresponding XML construct. Table 2 shows the mappings
between parts of a property set hierarchy and their XML representation.

Element and Attribute Naming
The property set Type (which maps to an XML element name) and the names of individual properties
(which map to XML attribute names) do not necessarily follow the XML naming rules. For example,
a name can include characters such as a space, a quote, a colon, a left parenthesis, or a right
parenthesis that are not allowed in XML element or XML attribute names. As a result, you must
perform some conversion to generate a valid XML document.

Table 2. Property Set to XML Mappings

Property Set
Component XML Representation

PropertySet Element

PropertySet Type Element name (if Type is not specified, then the
element name is set to PropertySet)

PropertySet Value Element Character Data

Property name Attribute name

Property value Attribute value

Child Property Set Child element

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

XML Representation of Property Sets ■ Element and Attribute Naming

14

When creating an XML document from a property set hierarchy, the XML Converter will make sure
that legal XML names are generated. There are two different approaches provided to handle name
translation. The approach is determined by the EscapeNames user property on the XML Converter
service. This user property can be either True or False.

■ True. If EscapeNames is True, instances of illegal characters are converted to an escape
sequence that uses only legal characters. For example, a space is converted to the characters
_spc. When an XML document is parsed to a property set hierarchy, the escape sequences are
converted back to the original characters. For example, the name Account (SSE) becomes
Account_spc_lprSSE_rpr.

Table 3 shows the escape sequences that are used by the XML Converter.

■ False. If EscapeNames is False, the XML Converter removes illegal characters. These characters
include the space (), double quote ("), single quote('), semicolon (;), left parenthesis ((), right
parenthesis ()), and ampersand (&). For example, the XML Converter changes the name Account
(SSE) to AccountSSE.

NOTE: These conversions are not reversible: the original names cannot be obtained from the
XML names.

Table 3. XML Converter Escape Sequences

Character in
Property Set Description

Generated Escape
Sequence

Space _spc

_ Underscore _und

“ Double Quote _dqt

‘ Single Quote _sqt

: Colon _cln

; Semicolon _scn

(Left Parenthesis _lpr

) Right Parenthesis _rpr

& Ampersand _amp

, Comma _cma

Pound symbol _pnd

/ (Forward) slash _slh

? Question Mark _qst

< Less Than _lst

> Greater Than _grt

Illegal characters Other illegal characters not listed
in this table

_<Unicode character code>

XML Representation of Property Sets ■ Property Set Examples and Their XML
Representation

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

15

If a property set instance does not have a value for its Type member variable, the XML Converter
uses the name PropertySet for the corresponding element’s name.

Property Set Examples and Their XML
Representation
The following is examples of different types of property sets that are available and their XML
representation:

An Arbitrary Property Set
<?Siebel-Property-Set> <PropertySet> <Person> Jack </Person> </PropertySet>

A Siebel Message
<?Siebel-Property-Set EscapeNames="true"><PropertySet><SiebelMessage MessageID="1-
111" IntObjectFormat="Siebel Hierarchical" MessageType="Integration Object"
IntObjName="Sample Account"><ListOfSample_spcAccount>...</
ListOfSample_spcAccount></SiebelMessage></PropertySet>

An XML Hierarchy
<?Siebel-Property-Set><PropertySet><_XMLHierarchy><Account><Contact>...</
Contact></Account><_XMLHierarchy></PropertySet>

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

XML Representation of Property Sets ■ Properly Formatted Property Sets

16

Figure 2 illustrates an example property set hierarchy and the XML that would be generated for each
component of the hierarchy. The XML was generated with the EscapeNames user property set to
True.

Properly Formatted Property Sets
Property sets are used internally to represent Siebel EAI data. A property set is a logical memory
structure that is used to pass the data between business services.

To benefit from using the XML Converter, be sure that any code you use, such as eScript or Siebel
VB, correctly represents property sets within Siebel Business Applications for the XML Converter
Business Service. This includes necessary arguments and values. An example of such code is:

Set Inputs = TheApplication.NewPropertySet

Figure 2. Property Set and XML with EscapeNames Set to True

XML Representation of Property Sets ■ Properly Formatted Property Sets

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

17

REM Fill in Siebel Message Header

Inputs.SetType "SiebelMessage"

Inputs.SetProperty "MessageId", ""

Inputs.SetProperty "MessageType", "Integration Object"

Inputs.SetProperty "IntObjectName", "Sample Account"

Set svc = theApplication.GetService("EAI XML Converter")

Set XMLInputs = theApplication.NewPropertySet

Set XMLOutputs = theApplication.NewPropertySet

XMLInputs.AddChild Inputs

svc.InvokeMethod "PropSetToXML", XMLInputs, XMLOutputs

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

XML Representation of Property Sets ■ Properly Formatted Property Sets

18

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

19

4 XML Representation of Siebel
Integration Object Instances

This chapter describes the XML representation of Siebel integration object instances. It includes the
following topics:

■ About Representing Siebel Integration Object Instances as XML Documents on page 19

■ Integration Objects on page 19

■ Elements and Attributes on page 20

■ How XML Names Are Derived from Integration Objects on page 21

■ Elements Within a Siebel Integration Object Document on page 22

■ Example XML Document on page 25

■ XML Schema Definitions (XSDs) on page 26

■ Document Type Definitions (DTDs) on page 27

About Representing Siebel Integration
Object Instances as XML Documents
You can represent any integration object instance in Siebel Business Applications as an XML
document (or created from a properly formatted XML document). This makes it convenient to save
an object to a file for viewing or to send it over a transport, such as HTTP or IBM WebSphere MQ.
You can control the format of the XML document through the integration object definition in the
Siebel Repository. You can use the EAI XML Converter business service to perform translations
between integration object instances and the corresponding XML representation.

Integration Objects
Integration objects are logical representations of Siebel business objects or external application
data, such as externally defined XML documents. An integration object is metadata stored in the
Siebel Repository. One integration object can be mapped to another integration object. Instances of
integration objects are used in integration processes for data exchange. For more information on
integration objects, see Integration Platform Technologies: Siebel Enterprise Application Integration.

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

XML Representation of Siebel Integration Object Instances ■ Elements and Attributes

20

Integration objects are made up of three distinct data sections: the canonical, the external, and the
XML, as shown in Figure 3.

The integration object schema in the Siebel Repository is composed of the three data sections shown
in Table 4.

Elements and Attributes
An XML document consists of one or more elements. An element consists of a start tag and an end
tag that enclose character data, nested elements, or both. For example, here is a simple element
called Element1, with two tags containing character data:

<Element1>
This is character data.
</Element1>

Figure 3. XML Integration Object Definition

Table 4. Integration Object Data Type

Name Purpose

Canonical
section

Stores information about an object in a common representation. The names used for
objects, components, and fields are the names that the designer wishes to be visible.
The data types are the Siebel business component field types that are used by the
Object Manager.

External
section

Stores information about how the object, component, or field is represented in the
external system. For integration objects based on business objects, this can include
the business object names, component names, and field names and data types.

XML
section

Stores the mapping between an integration object definition and its XML
representation. This allows any integration object to be represented as XML.

XML Representation of Siebel Integration Object Instances ■ How XML Names Are
Derived from Integration Objects

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

21

The next example shows an element nested within another element. Parent-child relationships are
frequently represented using nested elements.

<Element1>
<NestedElement>
data
</NestedElement>

</Element1>

Elements can have attributes that refine or modify the element’s default attributes. An attribute is a
key and value pair of strings, contained within the start tag of an element. In the following example,
status is an attribute that is assigned the value test. Attributes are frequently used to specify
metadata about an element.

<Element1 status="test">
This is character data.
</Element1>

In the Siebel representation, objects and components are represented by XML elements. A set of
integration object instances of a given type are nested within the object element for that type.

An element represents each component. Child components are nested within their parent’s elements.
Fields can be either elements nested within their containing component element or attributes of the
component element. You can set the XML Style attribute of the integration component field definition
to specify which style represents a given field.

How XML Names Are Derived from
Integration Objects
When Siebel Tools generates the XML representation of your integration object, it derives the XML
element and attribute names from the Siebel Repository names of the integration object, its
components, and fields. However, Siebel Repository names can include characters not permitted in
an XML name, such as blank spaces. Thus, some translation must be performed to make sure a valid
XML name is derived from such a repository name. In addition, XML element names must be unique
in the document in which they are defined. This can cause a parsing problem if two integration
components have fields with the same name.

To handle these issues, Siebel Tools stores a separate name in the XML Tag attribute of the
integration object, component, and field. When you create an integration object using a wizard, the
XML Tag attribute is initialized to the value of the Name column, with any illegal characters removed
from the name. In addition, Siebel Tools might add a number to the tag name if the same name is
already in use by a different object, component, or field. You can change the XML names after the
integration object has been created, if necessary.

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

XML Representation of Siebel Integration Object Instances ■ Elements Within a Siebel
Integration Object Document

22

Elements Within a Siebel Integration
Object Document
An integration object can be textually represented as an XML document. In order to exchange data
using the Siebel integration object document, you must have an understanding of its XML structure,
including elements and attributes. The document can include up to five different types of elements:

■ “SiebelMessage Element” on page 22

■ “Object List Element” on page 23

■ “Integration Component Elements” on page 23

■ “Component Container Elements” on page 24

■ “Integration Field Elements” on page 25

SiebelMessage Element
When integration object documents are sent to an external system, they might be encapsulated
within a SiebelMessage element. This element identifies the document as a Siebel message and
indicates that the document includes integration object instances. It can also provide metadata, such
as the integration object type and a message ID.

NOTE: The SiebelMessage element is optional. The presence of this element is determined at run
time through arguments to the EAI XML Converter Business Service.

Since the Object List element is optional, SiebelMessage can include a Root component element to
allow cases when the Object List element is left blank (omitted). For details on Object List element,
see “Object List Element” on page 23.

Attributes
The SiebelMessage element can contain a number of attributes, which are known as the Message
Header attributes. In addition, you can add arbitrary attributes to the SiebelMessage element. An
XSD or DTD for the document can be dynamically generated inline to include all present attributes.
The following standard attributes have well-defined meanings.

IntObjectName
The name of the integration object type contained within the message. If the message is an
integration object message, you must specify this property.

MessageId
A unique ID for a given message as it flows through a connector. This is an optional field that might
be useful for tracking message processing.

XML Representation of Siebel Integration Object Instances ■ Elements Within a Siebel
Integration Object Document

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

23

Child Elements
For integration object messages, the SiebelMessage element includes exactly one object list element.
Since only one object list element is permitted in each XML document, only one integration object
type can be represented in a given document.

Object List Element
The object list element is a container for the integration object instances. The XML Tag attribute value
that you specify in the integration object definition becomes the name of this element. By default,
an integration object wizard generates an XML Tag value of ListOfName, where Name is the name of
the integration object, with any illegal XML characters removed—for example, spaces.

NOTE: The Object List element is optional. The XML element is not generated if the Object List
element is blank (omitted) in the integration object definition.

Attributes
None.

Child Elements
The object list element can include one or more instances of the integration object's root component
element. A root component element corresponds to one integration object instance.

Integration Component Elements
An integration component element corresponds to an integration component type in the repository
definition.

Component parent-child relationships are represented by a structure in which the child components
of a given component type are nested within a component container element. The component
container element is, in turn, nested within the parent component instance.

Thus, all components within an integration object instance are indirectly nested within the root
component. Only one instance of the root component is allowed for each object instance. The root
component is nested within the object list element. The object list element permits multiple
integration object instances of a given type within the XML document.

The field children of an integration component element can be either elements or attributes,
depending on the XML Style setting for each field. The component container elements of a given
component appear after the fields in the XML document.

In the following example, Contact child components are nested within the Account component
instance:

<Account>
. . .
Account Field Elements

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

XML Representation of Siebel Integration Object Instances ■ Elements Within a Siebel
Integration Object Document

24

. . .
<ListOfContacts>

<Contact> . . . Contact 1 . . . </Contact>
<Contact> . . . Contact 2 . . . </Contact>

</ListOfContacts>
<Account>

Attributes
Any field that has an XML Style set to Attribute is an attribute of its component element. The name
of the attribute is the same as the XML Tag of the field.

Child Elements
An integration component element can include integration field elements and component container
elements. The field elements must appear before the component container elements. The name of a
field element is determined by the value of its XML Tag attribute, as defined in Siebel Tools.

Component Container Elements
An integration component container encloses a list of child component instances of the same type.
The integration component container organizes child component instances by type and permits the
specification of empty containers—functionality needed by the EAI Siebel Adapter. All component
types, except the root component, are enclosed within container elements.

By default, the name of a component container element is ListOf plus the element name of the
component type it encloses. For example, the component container for Contact is ListOfContact. You
can override the default name by specifying a name in the XML Container element field of the
component's definition.

Another option is to leave the container element blank. In that case, the component element is the
child of the parent component element.

Attributes
None.

Child Elements
Zero or more instances of the component element associated with the container.

XML Representation of Siebel Integration Object Instances ■ Example XML Document

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

25

Integration Field Elements
An integration field element includes the value of the specified field. It must appear in an instance
of its parent integration object type. If a field element has no contents (signified by a start tag
immediately followed by an end tag), it is interpreted to mean that the field's value should be set to
empty. The same is true when a field’s value is empty; the field element will have a start tag
immediately followed by an end tag.

The order in which XML fields appear within their parent component element is determined by the
Sequence field in the Tools definition of the field.

All fields are optional. If a field element is not present in a component element, the field is not
created in the integration object instance.

Child Elements
Integration component fields have a property called XML Parent Element. If this property contains
the name of another field, then that field (either as an attribute or as an element) appears as a child
of its parent field’s element.

Example XML Document
The following XML document represents an instance of the Sample Account integration object. This
document includes one account instance: A. K. Parker Distribution. The instance has one business
address and two contacts.

Note that the PhoneNumber field of the business address appears as an attribute. This means that
the XML Style in the field’s definition in Siebel Tools is set to the Attribute style. The rest of the fields
are represented by XML elements.

<SiebelMessage MessageId=""
IntObjectName="Sample Account">
<ListofSampleAccount>

<Account>
<Name>A. K. Parker Distribution</Name>
<Location>HQ-Distribution</Location>
<Organization>Siebel Organization</Organization>
<Division></Division>
<CurrencyCode>USD</CurrencyCode>
<Description></Description>
<HomePage></HomePage>
<ListOfBusinessAddress>

<BusinessAddress PhoneNumber="6502955000">
<City>Menlo Park</City>
<Country>United States of America</Country>
<FaxNumber></FaxNumber>
<StreetAddress>1000 Industrial Way</StreetAddress>
<Province></Province>
<State>CA</State>
<PostalCode>94025</PostalCode>

</BusinessAddress>

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

XML Representation of Siebel Integration Object Instances ■ XML Schema Definitions
(XSDs)

26

</ListOfBusinessAddress>
<ListOfContact>

<Contact>
<FirstName>Stan</FirstName>
<JobTitle>Senior Mgr of MIS</JobTitle>
<LastName>Graner</LastName>
<MiddleName></MiddleName>
<Organization>Siebel Organization</Organization>
<PersonalContact>N</PersonalContact>

</Contact>
<Contact>

<FirstName>Susan</FirstName>
<JobTitle>President and CEO</JobTitle>
<LastName>Grant</LastName>
<MiddleName></MiddleName>
<Organization>Siebel Organization</Organization>
<PersonalContact>N</PersonalContact>

</Contact>
<Contact>

</ListOfContact>
</Account>
</ListofSampleAccount>
</SiebelMessage>

XML Schema Definitions (XSDs)
The XML Schema Definition (XSD) language describes the content of an XML document. The
definition can describe which elements are allowed and how many times the element can be seen.
The schema can be used to generate an integration object through Siebel Tools. The feature is
accessed through the Integration Object Builder.

Here is an example of an XSD for the Sample Account integration object as generated by Siebel
Tools:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" targetNamespace="http://
example.com/xsd/SampleAccount.xsd" xmlns:xsdLocal="http://example.com/xsd/
SampleAccount.xsd" >

<xsd:element name = "elem1" type ="xsd:string" minOccurs ="0" maxOccurs = "1"/>

<xsd:element name = "elem2" type ="xsd:string" minOccurs ="0" maxOccurs="unbounded"/
>

</xsd:schema>

NOTE: All Siebel data types except DTYPE_ATTACHMENT map to xsd:string. DTYPE_ATTACHMENT
maps to xsd:base64Binary.

XML Representation of Siebel Integration Object Instances ■ Document Type
Definitions (DTDs)

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

27

Document Type Definitions (DTDs)
The Document Type Definition (DTD) provides metadata describing the structure of an XML
document. It can be used by validating XML parsers to make sure that a given document instance
conforms to the expected structure, that is, the structure defined in the DTD.

You can generate the DTD for an integration object by using the Generate Schema feature in Siebel
Tools. The feature is activated by clicking the Generate Schema button in Siebel Tools after selecting
a given integration object definition.

NOTE: Attachment attributes are not supported in DTDs because they are not part of the integration
object definition and only appear at runtime.

The SiebelMessage element is optional. It can be omitted by selecting the No Envelope option in the
Generate XML Schema wizard.

The DTD for the message header is generated in the actual XML document at run-time. The
generation of this inline DTD and a reference to the external portion is enabled through the
GenerateDTD parameter of the EAI XML Converter.

Here is an example of a DTD for the Sample Account integration object as generated by Siebel Tools:

<!-- Siebel DTD Generation -->
<!-- Shared Element List. These elements are guaranteed -->
<!-- to have the same datatype, length, precision, and scale.-->
<!ELEMENT Name (#PCDATA) >
<!ELEMENT Location (#PCDATA) >
<!ELEMENT Division (#PCDATA) >
<!ELEMENT Description (#PCDATA) >
<!ELEMENT CurrencyCode (#PCDATA) >
<!ELEMENT StreetAddress (#PCDATA) >
<!ELEMENT State (#PCDATA) >
<!ELEMENT PostalCode (#PCDATA) >
<!ELEMENT Country (#PCDATA) >
<!ELEMENT City (#PCDATA) >
<!ELEMENT Organization (#PCDATA) >
<!ELEMENT ListofSampleAccount (Account+) >
<!ELEMENT Account (Name?,

Location?,
Organization?,
Division?,
CurrencyCode?,
Description?,
HomePage?,
LineofBusiness?, BusinessAddress?, Contact?)>

<!ELEMENT HomePage (#PCDATA) >
<!ELEMENT LineofBusiness (#PCDATA) >
<!ELEMENT BusinessAddress (BusinessAddress*) >
<!ELEMENT BusinessAddress (City?,

Country?,
FaxNumber?,
StreetAddress?,
Province?,
State?,

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

XML Representation of Siebel Integration Object Instances ■ Document Type
Definitions (DTDs)

28

PostalCode?)>
<!ATTLIST BusinessAddress PhoneNumber CDATA #IMPLIED >
<!ELEMENT FaxNumber (#PCDATA) >
<!ELEMENT Province (#PCDATA) >
<!ELEMENT Contact (Contact*) >
<!ELEMENT Contact (CellularPhone?,

FirstName?,
HomePhone?,
JobTitle?,
LastName?,
MiddleName?,
Organization?,
PersonalContact?,
Account?,
AccountLocation?)>

<!ELEMENT CellularPhone (#PCDATA) >
<!ELEMENT FirstName (#PCDATA) >
<!ELEMENT HomePhone (#PCDATA) >
<!ELEMENT JobTitle (#PCDATA) >
<!ELEMENT LastName (#PCDATA) >
<!ELEMENT MiddleName (#PCDATA) >
<!ELEMENT PersonalContact (#PCDATA) >
<!ELEMENT Account (#PCDATA) >
<!ELEMENT AccountLocation (#PCDATA) >

NOTE: All fields are optional, but if they are present, then they must appear in the correct order.
The definition of a field appears only once at the beginning of the DTD, even if its XML tag appears
in multiple components. When creating XML tag names for fields, the wizard only reuses a field name
if all instances have the same data type, length, precision, and scale.

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

29

5 XML Integration Objects and the
XSD Wizard

This chapter discusses the XSD wizard, the supported XSD elements and attributes, and the structure
of the XSD XML integration object, such as user properties. It includes the following topics:

■ Creating XML Integration Objects with the XSD Wizard on page 29

■ Supported XSD Elements and Attributes on page 30

■ Structure of XSD XML Integration Objects on page 36

Creating XML Integration Objects with
the XSD Wizard
Siebel EAI provides two different wizards to create XML integration objects. An XML integration
object is essentially an integration object with a base object type of XML. This wizard parses the XML
Schema Definition (XSD) file to create an XML integration object.

To create an integration object
1 Launch Siebel Tools.

2 Select File, then New Object.

3 In the New Object Wizards window, select the EAI tab.

4 Double-click the Integration Object icon.

5 Complete the Integration Object Builder initial page:

a Select the project from the first drop-down list.

b Select EAI XSD Wizard as the Business Service.

c Navigate to the location of the XSD or XML file that you want to use as the basis of the XSD and
click Next.

NOTE: The Simplify Integration Object Hierarchy option creates a simpler and flatter internal
representation of the XML integration object; however, this does not change the external
representation. Having a simpler internal representation makes declarative data mapping
easier.

6 Select the source object, give it a unique name, and then click Next.

7 Click on the plus sign to expand the list and select or clear the fields you need from the
component.

8 Click Next to get to the final page to review the messages generated during the process and take
necessary action as required.

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

XML Integration Objects and the XSD Wizard ■ Supported XSD Elements and Attributes

30

9 Click Finish to complete the process.

The integration object is displayed in the Integration Objects list.

NOTE: You must review the integration objects and the integration components created by the
Wizard and complete their definitions based on your requirements.

Selecting the Source Object in the XSD Wizard
Each XML document has exactly one root or document element. The root element corresponds to the
integration object. However, because an XSD or DTD file can be used by a vendor to specify the XML
documents that it can generate, the root element cannot be inferred from the XSD or DTD file. For
example, Ariba can generate XML for contracts, order requests, subscriptions, and so on. A single
file describes the possible XML documents.

As a reference when determining the root element, use an XML document that best represents the
XML documents you are integrating. The root element is the root of the XML hierarchy tree. No part
of the root element appears within the content of any other element. For all other elements, the
<Start></Start> tag appears within the content of another element.

To view any XML hierarchy, with collapsible and expandable elements, use an XML editor, an XML
reader, or an XML-capable browser such as Microsoft Internet Explorer.

Supported XSD Elements and Attributes
Not all XSD schema elements and attributes are supported by Siebel Business Applications. Table 5
on page 31 and Table 6 on page 34 list all the XSD elements and attributes with Siebel CRM support
levels for them. The following terminology is used in these tables:

■ Ignored. This level of support means that processing will continue, and an error is not
generated. However, the information given for the specified element or attribute is ignored.

■ Mapped. This level of support means that the information specified in a given element or
attribute is used in the integration object representation.

■ Not mapped. This level of support means that the given element or attribute information is not
used. However, children of the element will be processed.

NOTE: The Siebel application does not perform any formatting or processing for any of the schema
types. All the scalar types such as string, ID, or integer are treated as strings. When converted to
an integration object and integration component field, DataType is set to DTYPE_TEXT.

XML Integration Objects and the XSD Wizard ■ Supported XSD Elements and Attributes

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

31

Table 5 lists XSD schema elements and the level of support for them in Siebel Business Applications.

Table 5. XSD Schema Elements and Siebel CRM Support Level

Element
Siebel CRM
Support Level Details

all Not mapped. Treated
as sequence.

Not applicable

annotation Mapped Mapped as a parent's comment property.

Children can be mapped only if parent of annotation is
mapped to a component or field.

any Mapped Mapped as a XML Hierarchy if namespace attribute cannot
be resolved to a schema import definition.

Otherwise, all global elements logically replace the any
element that are then mapped to an integration object
using rules for elements.

Acts as a placeholder for any element.

For more information about this element, see Integration
Platform Technologies: Siebel Enterprise Application
Integration.

anyAttribute Mapped Same as the any element.

Act as a placeholder for any attribute.

For more information about this element, see Integration
Platform Technologies: Siebel Enterprise Application
Integration.

appinfo Ignored Not applicable

attribute Mapped Mapped as a field.

Storing type information is useful when generating
schema either after importing one or manually creating
one. Also, useful for type specific formatting, such as
xsd:datetime.

attributeGroup Mapped Mapped as children attributes that are added as fields to
the parent element's component.

choice Not mapped. Treated
as sequence.

Not applicable

complexContent Mapped Mapped to add properties and children to the parent
element's component.

Attributes can affect parent (complexType) and children
when restriction and extension are processed.

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

XML Integration Objects and the XSD Wizard ■ Supported XSD Elements and Attributes

32

complexType Mapped Mapped if global complexType is starting point for
integration object that maps to root component.

Also mapped when XSDTypeName and XSDTypeNamespace
user properties are set on the root or elements
component.

documentation Mapped Mapped if Comment property is on a field, component, or
object.

element Mapped Mapped as a component or field.

If element is of simpleType and maxOccurs is at most 1,
then map to field, otherwise map to component
(complexType).

enumeration Ignored Not applicable

extension Mapped Mapped if merging base type and children into the
parent.

Extension element affects the parent for complexContent
and simpleContent.

field Ignored Not applicable

group Mapped Mapped if adding children to the parent element's
component.

import Mapped Preprocessed to receive the additional schema.

Resolve a schemaLocation reference by URI or Local
(File).

Whatever is defined in imported schema will belong to a
different namespace.

include Mapped Preprocessed to receive the additional schema.

Resolve a schemaLocation reference by URL or Local
(File).

Whatever is defined in imported schema can belong to
the same namespace.

key Ignored Defines a unique key.

keyref Ignored Defines fields for key.

Keyref refers to a key that must exist in the document.

Table 5. XSD Schema Elements and Siebel CRM Support Level

Element
Siebel CRM
Support Level Details

XML Integration Objects and the XSD Wizard ■ Supported XSD Elements and Attributes

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

33

length Mapped. Does not
support lists.

Mapped for field external length and length.

Fixed length of string-based content. Also might mean
length of a list (number of items).

list Ignored Not applicable

maxLength Mapped Mapped for field length.

minExclusive,
maxExclusive

Ignored Not applicable

minInclusive,
maxInclusive

Ignored Not applicable

minLength Not mapped You can use minlength = 0 to indicate that a field can
have zero characters, that is, it is optional. You must
manually edit the XSD to specify the minLength value.

notation Ignored Not applicable

pattern Ignored Not applicable

redefine Ignored Not applicable

restriction Mapped Mapped when adding children to the parent component
or field.

Affects its parent: complexContent, simpleContent,
simpleType.

Remove the elements and attributes that are not
specified as the restriction ones.

Validate that the elements and attributes used in the
restriction are present in the base type.

schema Mapped Namespace information used for object, component, and
field.

selector Ignored Not applicable

sequence Not mapped Not applicable

simpleContent Mapped Mapped when adding properties and children to the
parent element's component.

simpleType Mapped XSDTypeName and XSDTypeNamespace user properties
on parent element's field or component, or attribute's
field.

union Ignored Not applicable

unique Ignored Not applicable

Table 5. XSD Schema Elements and Siebel CRM Support Level

Element
Siebel CRM
Support Level Details

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

XML Integration Objects and the XSD Wizard ■ Supported XSD Elements and Attributes

34

Table 6 lists XSD schema attributes and the level of support for them in Siebel Business Applications.

Table 6. XSD Schema Attributes and Siebel CRM Support Level

Attribute
Siebel CRM
Support Level Details

abstract Ignored Not applicable

attributeFormDefault Ignored Not applicable

base Mapped Mapped if base type is used to create component or field.

block Ignored Not applicable

blockDefault Ignored Not applicable

default: attribute Mapped Mapped to XML Literal value property only.

Provides default value for an attribute when an attribute
is missing.

default: element Mapped Mapped to XML Literal value property only.

Provides default value for an element when an element
is empty.

elementFormDefault Ignored Not applicable

final Ignored Not applicable

finalDefault Ignored Not applicable

fixed: attribute or
element

Ignored Not applicable

fixed: simpleType Ignored Not applicable

form Ignored Not applicable

itemType Ignored Not applicable

maxOccurs Mapped Maps to the cardinality upper bound on parent element's
component. Maps to One or More (unbounded).

If you want to preserve the maximum number of
occurrences, then new column is needed.

memberTypes Ignored Not applicable

minOccurs Mapped Maps to the cardinality lower bound on parent element's
component. Maps to Zero or One.

If you want to preserve the minimum number of
occurrences, then new column is needed.

mixed Ignored Not applicable

XML Integration Objects and the XSD Wizard ■ Supported XSD Elements and Attributes

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

35

name Mapped Maps to the XML Tag of parent element (component,
field) or attribute field or to the XSD Type Name on object,
component, or field.

Name of the schema component.

namespace: any,
anyAttribute

Mapped Namespace for the replacement elements and attributes.

namespace: import Mapped Maps to Namespace and XSDNamespace user property on
components and fields that are being imported.

Namespace for the imported elements and attributes.

nillable Ignored Not applicable

processContents Ignored Not applicable

public Ignored Not applicable

ref Mapped Mapped if metadata starting from global element or
attribute that is being referred to is copied to the
referring element (component, field) or attribute field.

schemaLocation Mapped Mapped if used for preprocessing of import or include

substitutionGroup Ignored Not applicable

targetNamespace Mapped Maps to XSD Type Namespace and XML Tag Namespace
user properties on the integration object, imported
component, or field.

Schema targetNamespace to which all schema
components definitions in a particular schema belong
(children of schema element).

type Mapped Maps to XSDTypeName user property on element's
component or field, or attribute's field.

use Ignored Not applicable

version Ignored Not applicable

whitespace Ignored Not applicable

xpath Ignored Not applicable

Table 6. XSD Schema Attributes and Siebel CRM Support Level

Attribute
Siebel CRM
Support Level Details

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

XML Integration Objects and the XSD Wizard ■ Structure of XSD XML Integration
Objects

36

Structure of XSD XML Integration
Objects
The structure of an XSD XML integration object is same as any other integration object. This topic
discusses properties specific to XSD XML integration objects.

NOTE: For details on integration objects, see Integration Platform Technologies: Siebel Enterprise
Application Integration.

XSD-Specific Integration Object Properties
Table 7 lists the integration object property that is used to represent XSD as an XML integration
Object.

XSD-Specific Integration Object User Properties
Table 8 lists integration object user properties for representing XSD as an XML integration object.

Table 7. Integration Object Properties for Representing XSD

Name Project Base Object Type XML Tag

Name of the
integration object. The
value is provided
through the wizard.

The project that the
integration object is built in.
The value is provided
through the wizard.

XML XML Tag used to
represent the
integration object.

Table 8. Integration Object User Properties for Representing XSD

Name Value Description

XMLTagNamespace targetNamespace Namespace for the Element XML tags.

XSDTypeName Name of the root

complexType

Name of the root complexType used to create the
integration object. This is only used through WSDL
Import.

XSDTypeNamespace targetNamespace The namespace URI of the root complex type. This is
only used through WSDL Import.

XML Integration Objects and the XSD Wizard ■ Structure of XSD XML Integration
Objects

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

37

XSD-Specific Integration Component Properties
Table 9 lists the integration component property for representing XSD as an XML integration
component.

XSD-Specific Integration Component User Properties
Table 10 lists integration component user properties for representing XSD as an XML integration
component.

XSD-Specific Integration Component Field Properties
Table 11 lists the integration component field property for representing XSD as an XML integration
component.

Table 9. Integration Component Properties for Representing XSD

External
Name
Context Name

External
Name

External
Sequence Cardinality

XML
Tag

XML
Sequence

XPath to the
schema
component
starting with
the global
element

XML Tag plus a
sequence number
to make
component name
unique within the
integration object

Element
name

XML
Sequence

Based on
minOccurs
or
maxOccurs

Element
Name

Sequence
within
parent
element

Table 10. Integration Component User Properties for Representing XSD

Name Value Description

XMLTagNamespace targetNamespace Namespace for the Element XML tags.

XSDTypeName Component element

type attribute

Type of the element. For instance, for element
type="xyz", XSDTypeName=xyz.

XSDTypeNamespace NamespaceURI for

element type

Namespace for the element type. This is the
Namespace URI for the element's type name.

Table 11. Integration Component Field Properties for Representing XSD

Name Data Type Length External Name
External
Length

XML Literal
Value

XML Tag DTYPE_TEXT maxLength
or length

Attribute or
element name

Length fixed or
default

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

XML Integration Objects and the XSD Wizard ■ Structure of XSD XML Integration
Objects

38

XSD-Specific Integration Component Field User Properties
Table 12 lists integration component field user properties for representing XSD as an XML integration
component.

Table 12. Integration Component Field User Properties for Representing XSD

Name Value Description

XMLTagNamespace targetNamespace Namespace for element or attribute XML tags.

XSDTypeName Field element or

attribute XML

Schema type name

Type of the element or attribute. For instance, for
element type =“xyz”, XSDTypeName=xyz.

XSDTypeNamespace NamespaceURI for

element or

attribute type

Namespace for the element or attribute type. In
effect, this is the Namespace URI for the
element's or attribute’s type name.

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

39

6 XML Integration Objects and the
DTD Wizard

This chapter discusses the DTD wizard and how it creates XML integration objects. It includes the
following topics:

■ Creating XML Integration Objects with the DTD Wizard on page 39

■ How the DTD Wizard Creates XML Integration Objects on page 40

Creating XML Integration Objects with
the DTD Wizard
Siebel EAI provides two different wizards to create XML integration objects. An XML integration
object is essentially an integration object with a base object type of XML. This wizard parses an
external Document Type Definition (DTD) file to create an XML integration object.

To create an integration object
1 Select File, then New Object.

2 Select the EAI tab.

3 Double-click the Integration Object icon.

4 Complete the Integration Object Builder initial page:

a Select the project from the first drop-down list.

b Select EAI DTD Wizard as the Business Service.

c Navigate to the path to the location of the DTD or XML file that you want to use as the basis of
the DTD and click Next.

NOTE: The Simplify Integration Object Hierarchy option creates a simpler and flatter internal
representation of the XML integration object. Please note that this does not change the
external representation. Having a simpler internal representation makes declarative data
mapping easier.

5 Select the source object and give it a unique name, and then click Next.

6 Click on the plus sign to expand the list and select or clear the fields based on your business
requirements.

7 Click Next to go to the final page to review messages generated during this process and take
necessary action.

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

XML Integration Objects and the DTD Wizard ■ How the DTD Wizard Creates XML
Integration Objects

40

8 Click Finish to complete the process.

The integration object is displayed in the Integration Objects list.

NOTE: You must review the integration objects and the integration components created by the
Wizard and complete their definitions based on your requirements.

Selecting the Source Object in the DTD Wizard
Each XML document has exactly one root or document element. The root element corresponds to the
integration object. However, because an XSD or DTD file can be used by a vendor to specify the XML
documents that it can generate, the root element cannot be inferred from the XSD or DTD file. For
example, Ariba can generate XML for contracts, order requests, and subscriptions. A single file
describes the possible XML documents.

As a reference when determining the root element, use an XML document that best represents the
XML documents you are integrating. The root element is the root of the XML hierarchy tree. No part
of the root element appears within the content of any other element. For all other elements, the
<Start></Start> tag appears within the content of another element.

To view any XML hierarchy, with collapsible and expandable elements, use an XML editor, an XML
reader, or an XML-capable browser such as Microsoft Internet Explorer.

How the DTD Wizard Creates XML
Integration Objects
XML integration objects consist of the following:

■ “Elements” on page 40

■ “Attributes” on page 41

■ “Element’s #PCDATA” on page 41

■ “Names” on page 41

■ “Hierarchy” on page 42

■ “Connectors” on page 42

■ “Cardinality” on page 42

CAUTION: The DTD Wizard removes recursion by breaking loops. Repeating entities in XML at run
time are not supported.

Elements
Generally, XML elements map to components within integration objects. However, in many cases the
component is so simple that it is a performance optimization to map these elements into component
fields of the parent element rather than as child components.

Elements are expressed this way (within brackets and starting with an exclamation point):

XML Integration Objects and the DTD Wizard ■ How the DTD Wizard Creates XML
Integration Objects

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

41

<!ELEMENT car (year, model, color+)>

An element can be mapped to a component field when the following three properties are satisfied:

■ The component field must match an element within the DTD.

■ The component field must match the cardinality of the element in the DTD; in other words, if the
DTD specifies only one instance of this element type is valid, all subsequent appearances of this
element type are illegal.

■ The element must appear within the root element; any element appearing outside of the root is
illegal.

When an element is mapped to component field, the component field has the property XML Style set
to Element.

Attributes
Attributes include additional information related to an element, can be either required or implied
(optional), and might have a default value. For example, an element might be a car with
soundsystem, transmission, and doors as attributes. Soundsystem can be any text and is required;
transmission is required because there is a default listed; other is optional.This would be expressed
this way:

<!ELEMENT car>

<!ATTLLST car

soundsystem CDATA #REQUIRED

transmission (automatic | manual | 5-speed-manual) "automatic"

other CDATA #IMPLIED>

Attributes are always mapped to component fields and are related directly to elements. The
component field within Siebel application has the XML Style property set to Attribute.

Element’s #PCDATA
If the element is mapped to an integration component, then its #PCDATA is mapped to a component
field <!Element> #PCDATA. If the element is mapped to a field, then the #PCDATA is mapped to the
value of the field.

Names
Name is the name of the component or the field of the integration object. Because these names have
to be unique within an integration object, the names might have suffixes attached to make them
unique.

■ Property External Name is the name of the attribute or the element in the external system, such
as CustName.

■ Property XML Tag is the name of the tag in the XML, such as <customer>.

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

XML Integration Objects and the DTD Wizard ■ How the DTD Wizard Creates XML
Integration Objects

42

Hierarchy
The parent components of integration components in an integration object correspond to their
parents in XML. For integration component fields, if the property XML Parent Field is set, then the
field in the same component with its Name value equal to the XML Parent Field corresponds to the
parent in the XML. This happens because elements can be mapped to fields of integration
components.

For integration component fields, if the property XML Parent Field is not set, then the parent
component corresponds to the parent in the XML.

Connectors
Connectors specify the order of elements and either/or relationships, if one exists, as shown in
Table 13.

CAUTION: The Siebel DTD wizard does not support “one or the other” (|) relationships expressed
in DTDs. “One or the other” (|) will be treated the same as “followed by” (,).

Cardinality
As shown in Table 14, the DTD syntax allows you to specify a cardinality (the number of times an
element can appear within an XML document) for elements using the following modifiers: question
mark (?), plus sign (+), and asterisk (*), or none. Elements with a cardinality, or occurrence,
specified in a DTD map only to Integration Components. The Cardinality property in the Integration
Component within Siebel maps to the specified cardinality information in the DTD.

Table 13. Connectors

Connector Explanation Example

, followed by (a,b)

| one or the other (a | b)

Table 14. Rules for Mapping for Cardinality Within a DTD

DTD Element
Occurrence
Operator Description

Integration
Component
Cardinality
Property Description

None Appears once Not applicable Not applicable

? Appears 0 or once Zero or One Appears 0 or once

+ Appears one or more times One or More Appears one or more times

* Can appear 0 or more times Zero or More Can appear 0 or more times

No modifier Appears once One Appears once

XML Integration Objects and the DTD Wizard ■ How the DTD Wizard Creates XML
Integration Objects

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

43

The specification for DTDs supports using parentheses to express complex hierarchical structures.
For example:

<!ELEMENT rating ((tutorial | reference)*, overall)+ >

The DTD Wizard uses the operator (?, *, +, or “none”) closest to the child element as that child
element’s cardinality. In addition, the DTD Wizard will ignore such grouping by parentheses as
illustrated in the preceding example.

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

XML Integration Objects and the DTD Wizard ■ How the DTD Wizard Creates XML
Integration Objects

44

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

45

7 Siebel XML Converters

This chapter provides detailed information about the various Siebel XML converters. It includes the
following topics:

■ About Siebel XML Converters on page 45

■ EAI XML Converter on page 46

■ XML Hierarchy Converter on page 51

■ EAI Integration Object to XML Hierarchy Converter on page 57

■ XML Converter on page 60

■ Siebel XML Converter Business Service Comparison on page 62

■ EAI XML Write to File Business Service on page 63

■ EAI XML Read from File Business Service on page 66

About Siebel XML Converters
Siebel EAI includes four XML converter business services:

■ “EAI XML Converter” on page 46

■ “XML Hierarchy Converter” on page 51

■ “EAI Integration Object to XML Hierarchy Converter” on page 57

■ “XML Converter” on page 60

NOTE: XML converters might add unexpected carriage returns throughout the output document, for
readability reasons. These characters are not significant and can be removed if the receiving
application does not expect them and produces a parsing error. You can use eScript or Siebel VB to
remove them.

Table 36 on page 62 outlines the differences among these converters. Using these converters, Siebel
EAI supports three types of standard XML integrations:

■ XML integration using Siebel XML. This integration uses XML that conforms to the XML
Schema Definition (XSD), Document Type Definition (DTD), or schema generated from any Siebel
integration object. Siebel XML is generated by the external application or by a third-party
product. This type of integration uses the EAI XML Converter business service.

■ XML integration without using integration objects. For this integration, any necessary data
mapping and data transformation must be handled using custom eScripts. This type of
integration uses the XML Hierarchy Converter business service.

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

Siebel XML Converters ■ EAI XML Converter

46

■ XML integration using XML integration objects. With this integration, XML integration
objects are mapped to Siebel integration objects using Siebel Data Mapper and are based on
external XSDs or DTDs. XML integration objects are used to map data between the external
application and Siebel Business Applications. This type of integration uses the EAI XML Converter
business service.

NOTE: These converters do not support Shift-JIS page code on UNIX platforms.

You can specify most parameters for the XML Converters as either business service method
arguments or as user properties on the business service. If a business service method argument and
a user property have the same name, the business service method argument always takes
precedence over the user property.

NOTE: There are also two associated business services for XML that combine XML Converters with
file reading and writing, which are useful for testing and debugging during the development phase.
These are the EAI XML Read from File business service and the EAI XML Write to File business service.

EAI XML Converter
The EAI XML Converter uses integration object definitions to determine the XML representation for
data. It converts the data between an integration object hierarchy and an XML document. Figure 4
shows the translation of an XML document into an integration object property set in Siebel
application and back again. The integration object property set of type Siebel Message will appear
as a child of the Service Method Arguments property set.

Figure 4. XML Document to Integration Object

Siebel XML Converters ■ EAI XML Converter

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

47

The following topics are also described here:

■ “EAI XML Converter Parameters” on page 47

■ “EAI XML Converter Business Service Methods” on page 47

■ “Integration Object Hierarchy to XML Document Method Arguments” on page 48

■ “XML Document to Integration Object Hierarchy Method Arguments” on page 49

EAI XML Converter Parameters
You can control the location of where you want the temporary EAI XML Converter file generation to
occur as well as the threshold by setting two server component parameters as described in Table 15.
For more information about setting these and other server component parameters, see Siebel
System Administration Guide.

EAI XML Converter Business Service Methods
There are two methods for the EAI XML Converter: Integration Object Hierarchy to XML Document
and XML Document to Integration Object Hierarchy, as described in Table 16. The arguments for each
method appear in Table 17, Table 18 on page 49, Table 19 on page 49, and Table 20 on page 51.

Table 15. EAI XML Converter Parameters

Server
Component
Parameter Name

Server Component
Type Description

XMLTempFilePath EAIXMLConvSubsys Use this parameter to specify the location where you
want the temporary XML conversion files generated
when EAI XML Converter response size is greater then
the size specified in the XMLTempFileSize parameter.
By default, if the response size is greater than 50 kb,
then generation occurs in the SIEBSRVR_ROOT\temp
directory.

XMLTempFileSize EAISubSys Use this parameter to specify the threshold size for
EAI XML Converter method responses. For more
information about these methods, see “Siebel XML
Converter Business Service Comparison” on page 62.

Table 16. EAI XML Converter Methods

Display Name Name Description

Integration Object Hierarchy to
XML Document

IntObjHierToXMLDoc Converts an integration object
hierarchy into an XML document.

XML Document to Integration
Object Hierarchy

XMLDocToIntObjHier Converts an XML document into an
integration object hierarchy.

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

Siebel XML Converters ■ EAI XML Converter

48

Integration Object Hierarchy to XML Document Method Arguments
Table 17 describes the input arguments for the Integration Object Hierarchy to XML Document
method of the EAI XML Converter.

Table 17. Integration Object Hierarchy to XML Document Method Input Arguments

Display Name Name
Data
Type Description

Siebel Message SiebelMessage Hierarchy The Integration Object Hierarchy to
be converted to XML.

XML Character
Encoding

XMLCharEncoding String The character encoding to use in the
XML document. The default is UTF-16
for the Unicode version of Siebel
Business Applications.

Use Siebel
Message
Envelope

UseSiebelMessageEnvelope String Inserts the Siebel Message Envelope
into the XML document. The default
is True.

Ignore
Character Set
Conversion
Errors

IgnoreCharSetConv Errors String If some characters cannot be
represented in the destination
character set (like the local code
page), then the errors can be
ignored. The errors are not ignored
by default. For both situations, a
warning error entry is created.

Tags on
Separate Lines

Tags on Separate Lines String Default is True, which means that a
line feed is placed at the end of each
tag. If False, then no line feed is
added to the end of each tag; the
XML message is generated in a single
line.

XML Header Text XMLHeaderText String Text to prepend to the beginning of
the XML document data.

Generate
Namespace
Declarations

GenerateNamespaceDecl String Default is False. If True, then the
namespace declarations will be
generated.

Generate
Processing
Instructions

GenerateProcessingInstruct
ions

String Default is True. If set to False, then
the Siebel processing instructions are
not written.

Siebel XML Converters ■ EAI XML Converter

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

49

Table 18 describes the output argument for the Integration Object Hierarchy to XML Document
method of the EAI XML Converter.

XML Document to Integration Object Hierarchy Method Arguments
Table 19 describes the input arguments for the XML Document to Integration Object Hierarchy
method of the EAI XML Converter.

Generate
Schema Types

GenerateSchemaTypes String Default is False. If set to True, then
XSD schema types will be generated
if set on the integration objects user
properties.

Namespace Namespace String If a namespace is defined here, then
it will override any namespace
defined in the user properties of an
integration object.

Table 18. Integration Object Hierarchy to XML Document Method Output Argument

Display Name Name Data Type Description

XML Document <Value> String The resulting XML document.

Table 19. XML Document to Integration Object Hierarchy Method Input Arguments

Display
Name Name

Data
Type Description

XML
Document

<Value> String The input XML document.

Integration
Object Name

IntObjectName String Name of the Integration Object to use
in cases where the Siebel Message
envelope might not be present.

Integration
Object
Lookup Rule
Set

IntObjectNameLookupRuleSet String Rule Set for the EAI Dispatcher
Service for finding out Integration
Object Name in cases where the Siebel
Message envelope might not be
present.

Table 17. Integration Object Hierarchy to XML Document Method Input Arguments

Display Name Name
Data
Type Description

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

Siebel XML Converters ■ EAI XML Converter

50

Validate
External
Entity

ValidateExternalEntity String If set to True, then the parser will be
set to validate against external
metadata, such as DTDs.

If set to True, then the DOCTYPE
definition must be included in the
incoming XML header, for example:

<!DOCTYPE SiebelMessage SYSTEM
"c:\temp\ListOfMyInbound.dtd">

External
Entity
Directory

ExternalEntityDirectory String The directory to use for finding
external entities referenced in the XML
document, such as DTDs.

Truncate Field
Values

TruncateFieldValues String Default is False. If True, then truncate
any fields longer than their maximum
size, as specified in the Integration
Component field definition.

Ignore
Character Set
Conversion
Errors

IgnoreCharSetConvErrors String Default is False. If the Siebel
application cannot represent a given
character set, such as the local code
page character set, then conversion
errors are logged, including a warning
log entry. When set to True, only a
warning message is logged.

Contains
Inline
Attachments

ContainsInlineAttachments String This is True if the file attachment
content was included in the original
XML document. Otherwise it is False.
From MIME (Multipurpose Internet
Mail Extensions) Converter only.

Process
Elements
Only

ProcessElementsOnly String Default is False. If set to True, then
processing of attributes is skipped.

Table 19. XML Document to Integration Object Hierarchy Method Input Arguments

Display
Name Name

Data
Type Description

Siebel XML Converters ■ XML Hierarchy Converter

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

51

Table 20 describes the output arguments for the XML Document to Integration Object Hierarchy
method of the EAI XML Converter.

XML Hierarchy Converter
The XML Hierarchy Converter does not use integration object metadata, but instead relies on simple
rules for converting between an XML hierarchy and an XML document. The important distinction
between this service and the XML Converter is a Property Set of type XMLHierarchy, which is always
presented as a child of Service Method Arguments and as a parent of the XML document root
element.

Table 20. XML Document to Integration Object Hierarchy Method Output Arguments

Display Name Name Data Type Description

Siebel Message SiebelMessage Hierarchy The Integration Object Hierarchy to be
converted to XML.

XML Character
Encoding

XMLCharEncoding String Character encoding of the XML document,
detected by the converter independent of the
parser.

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

Siebel XML Converters ■ XML Hierarchy Converter

52

As shown in Figure 5, every XML element becomes a property set where the XML tag name becomes
the Type. For example, the XML element Contact becomes a property set of the type Contact in
Siebel application. In addition, every XML attribute becomes a property within the element’s property
set. For example, if the attribute of the XML element "Contact" is City = "Toronto”, then
"City=Toronto” will be a property for Contact.

The convenience of having this representation is that the XML Hierarchy Converter can convert to
and from this representation in the same way, independent of whether or not the XML document
includes a Siebel Message or an external XML document. This representation is also handled in Siebel
Workflow because it allows all the XML documents in memory to be treated as the Hierarchical
Service Parameter of type XMLHierarchy.

XML Hierarchy Representation in Siebel Business Applications
■ As illustrated in Figure 5 on page 52, there is a Property Set of type XMLHierarchy that always

appears as a child of the Service Method Argument and the parent of the root XML element.

■ Elements are represented by Property Sets. The XML tag is the type in the property set and the
value assigned to that XML tag is the Value in the property set. For example, if an XML element
has a value such as <Contact City="Toronto">Davis, Pace</Contact> as shown in Figure 5 on
page 52, then the Value in the property set would be set to Davis, Pace and the Type in the
property set would be set to contact.

■ Attributes are represented as properties on the Property Set that represent the attribute’s
element.

Figure 5. XML Hierarchy Representation of XML Document Structure

Siebel XML Converters ■ XML Hierarchy Converter

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

53

■ Child elements are represented as child property sets and Parent elements as Parent property
sets.

■ Processing instructions are represented as a child Property Set of type ProcessingInstructions,
which is at the same level as the root element (the child of XML Hierarchy). In Figure 5 on
page 52, the root element is Account.

The following topics are also described:

■ “XML Hierarchy Converter Business Service Methods” on page 53

■ “XML Document to XML Hierarchy Method Arguments” on page 54

■ “XML Hierarchy to XML Document Method Arguments” on page 55

XML Hierarchy Converter Business Service Methods
There are two methods for the XML Hierarchy Converter, as shown in Table 21. The arguments for
each method appear in Table 22 on page 54, Table 23 on page 55, Table 24 on page 55, and Table 25
on page 57.

Table 21. XML Hierarchy Converter Methods

Display Name Name Description

XML Document to
XML Hierarchy

XMLDocToXMLHier Converts an XML document into an
XML Hierarchy.

XML Hierarchy to
XML Document

XMLHierToXMLDoc Converts an XML Hierarchy into an
XML document.

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

Siebel XML Converters ■ XML Hierarchy Converter

54

XML Document to XML Hierarchy Method Arguments
Table 22 describes the input arguments for the XML Document to XML Hierarchy method of the XML
Hierarchy Converter.

Table 22. XML Document to XML Hierarchy Method Input Arguments

Display Name Name Data Type Description

XML Document <Value> String The input XML Document.

If XML converter business services
that expect XML Document (EAI XML
Converter, XML Converter, XML
Hierarchy Converter) are being
used, then <Value> should contain
a binary buffer rather than a text
string.

With workflows, use the Binary data
type for the process property for
XML Document.

Escape Names EscapeNames String Invalid characters in XML tags will
be escaped, using Siebel’s internal
escape format.

If True, then process Escape
characters (this is the default).

If False, then do not process Escape
characters.

Validate External
Entity

ValidateExternalEntity String If True, then the parser will be set to
validate against external metadata,
such as DTD schemas.

External Entity
Directory

ExternalEntityDirectory String Location of external entity files,
such as DTD files.

Ignore Character
Set Conversion
Errors

IgnoreCharSetConvErrors String Default is False. If the Siebel
application cannot represent a given
character set, such as the local code
page character set, then conversion
errors are logged, including a
warning log entry. When set to True,
only a warning message is logged.

Siebel XML Converters ■ XML Hierarchy Converter

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

55

Table 23 describes the output arguments for the XML Document to XML Hierarchy method of the XML
Hierarchy Converter.

XML Hierarchy to XML Document Method Arguments
Table 24 describes the input arguments for the XML Hierarchy to XML Document method of the XML
Hierarchy Converter.

Table 23. XML Document to XML Hierarchy Method Output Arguments

Display
Name Name

Data
Type Description

XML
Character
Encoding

XMLCharEncoding String Character encoding of the XML document,
detected by the converter, independent of
the parser.

XML
Hierarchy

XMLHierarchy Hierarchy The Output XML hierarchy.

Table 24. XML Hierarchy to XML Document Method Input Arguments

Display
Name Name

Data
Type Description

Escape
Names

EscapeNames String Invalid characters in XML tags will be
escaped, using Siebel’s internal escape
format.

■ If True, then Escape invalid characters
(this is the default).

■ If False, then delete invalid characters.
(Do not use in XML tags.)

XML
Character
Encoding

XMLCharEncoding String Outputs the XML character encoding to use.
If encoding is blank or not supported, then
an error is produced.

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

Siebel XML Converters ■ XML Hierarchy Converter

56

XML Header
Text

XMLHeaderText String A string in a local code page character
encoding to be inserted before the XML
document’s root element, after the
<?xml...?> declaration. This allows custom
processing instructions or an XML header to
be inserted before the XML document data
starts.

For instance, if the header text is
<myheader>data</myheader> and the XML
document output without this parameter is
<?xml version="1.0" encoding="UTF-

8"?><account>..</account>, then the
document with the XMLHeaderText included
will be:

<?xml version="1.0" encoding="UTF-

8"?><myheader>some data</

myheader><account>.......</account>

XML
Hierarchy

XMLHierarchy Hierarchy The XML hierarchy.

Ignore
Character
Set
Conversion
Errors

IgnoreCharSetConvErrors String Default is False. If the Siebel application
cannot represent a given character set, such
as the local code page character set, then
conversion errors are logged, including a
warning log entry. When set to True, only a
warning message is logged.

Tags on
Separate
Lines

Tags on Separate Lines String Default is True, which means that a line feed
is placed at the end of each tag. If False,
then no line feed is added to the end of each
tag; the XML message is generated in a
single line.

Generate
Processing
Instructions

GenerateProcessingInstru
ctions

String Default is True. If set to False, then the
Siebel processing instructions are not
written.

Table 24. XML Hierarchy to XML Document Method Input Arguments

Display
Name Name

Data
Type Description

Siebel XML Converters ■ EAI Integration Object to XML Hierarchy Converter

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

57

Table 25 describes the output argument for the XML Hierarchy to XML Document method of the XML
Hierarchy Converter.

EAI Integration Object to XML Hierarchy
Converter
The EAI Integration Object to XML Hierarchy Converter can be used if additional types of XML
processing are needed, such as adding new elements, attributes, or envelopes to in-memory
integration object property sets. XML Hierarchy property sets can be manipulated using eScript and
Siebel VB.

The following topics are also described here:

■ “EAI Integration Object to XML Hierarchy Converter Business Service Methods” on page 57

■ “Integration Object Hierarchy to XML Hierarchy Method Arguments” on page 58

■ “XML Hierarchy to Integration Object Hierarchy Method Arguments” on page 59

EAI Integration Object to XML Hierarchy Converter Business Service
Methods
There are two methods for the EAI Integration Object to XML Hierarchy Converter, as shown in
Table 26. The arguments for each method appear in Table 27 on page 58, Table 28 on page 58,
Table 29 on page 59, and Table 30 on page 59.

NOTE: You can use the XML Hierarchy property sets to manipulate in memory XML hierarchies, such
as to add new elements, attributes, or envelopes. An XML Hierarchy property set can be converted
to and from an Integration Object property set using EAI Integration Object to XML Hierarchy
Converter. An XML Hierarchy property set can be converted to and from an XML document using the
XML Hierarchy Converter.

Table 25. XML Hierarchy to XML Document Method Output Argument

Display Name Name Data Type Description

XML Document <Value> String The output XML Document.

Table 26. EAI Integration Object to XML Hierarchy Converter Methods

Display Name Name Description

Integration Object Hierarchy
to XML Hierarchy

IntObjHierToXMLHier Converts an integration object
hierarchy to an XML hierarchy.

XML Hierarchy to Integration
Object Hierarchy

XMLHierToIntObjHier Converts an XML hierarchy to an
integration object.

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

Siebel XML Converters ■ EAI Integration Object to XML Hierarchy Converter

58

Integration Object Hierarchy to XML Hierarchy Method Arguments
Table 27 describes the input arguments for the Integration Object Hierarchy to XML Hierarchy method
of the EAI Integration Object to XML Hierarchy Converter.

Table 28 describes the output argument for the Integration Object Hierarchy to XML Hierarchy
method of the EAI Integration Object to XML Hierarchy Converter.

Table 27. Integration Object Hierarchy to XML Hierarchy Input Arguments

Display Name Name
Data
Type Description

Namespace Namespace String If a namespace is defined here, then it
will override any namespace defined in
the user properties of an integration
object.

Integration
Object
Hierarchy

SiebelMessage Hierarchy The integration object hierarchy to be
converted.

Use Siebel
Message
Envelope

UseSiebelMessageEnvelope String Default is True. If set to True, then the
Siebel Message Envelope is used in the
XML Hierarchy, otherwise the Siebel
Message Envelope is not included.

Generate
Namespace
Declarations

GenerateNamespaceDecl String Default is False. If set to True, then the
namespace declaration will be
generated.

Generate
Schema Types

GenerateSchemaTypes String Default is False. If set to True, then
XSD schema types will be generated if
set on the integration objects user
properties.

Table 28. Integration Object Hierarchy to XML Hierarchy Output Argument

Display Name Name Data Type Description

XML Hierarchy XMLHierarchy Hierarchy The converted integration object.

Siebel XML Converters ■ EAI Integration Object to XML Hierarchy Converter

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

59

XML Hierarchy to Integration Object Hierarchy Method Arguments
Table 29 describes the input arguments for the XML Hierarchy to Integration Object Hierarchy method
of the EAI Integration Object to XML Hierarchy Converter.

Table 30 describes the output argument for the XML Hierarchy to Integration Object Hierarchy
method of the EAI Integration Object to XML Hierarchy Converter.

Table 29. XML Hierarchy to Integration Object Hierarchy Input Argument

Display
Name Name

Data
Type Description

Contains
Inline
Attachments

ContainsInlineAttachments String Default is True. DTYPE_ATTACHMENT
fields are assumed to include actual
attachment content. If False, then the
field is treated as a reference to an
external attachment.

Integration
Object Name

IntObjectName String Integration Object Name can be
specified if the Siebel Message envelope
is not present in the XML hierarchy. The
service generates the envelope
automatically if this parameter is
present.

Strip Name
Space

StripNamespace String Removes the namespace from XML tags.

Truncate
Field Values

TruncateFieldValues String Default is True. If True, then truncate
any fields longer than their maximum
size. If False, then report fields that are
too long as errors.

XML
Hierarchy

XMLHierarchy Hierarchy The hierarchy to be converted.

Process
Elements
Only

ProcessElementsOnly String Default is False. If set to True, then
processing of attributes is skipped.

Table 30. XML Hierarchy to Integration Object Hierarchy Output Argument

Display Name Name Data Type Description

Integration Object Hierarchy SiebelMessage Hierarchy The converted integration object.

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

Siebel XML Converters ■ XML Converter

60

XML Converter
The XML converter uses no integration object metadata. The rules for converting between XML
documents and property sets are essentially the same as the XML Hierarchy Converter. This service,
however, does not create an XML hierarchy property set, but instead the XML document’s root
element becomes a Type top-level property set (for example, Service Method Arguments). The
service is intended for importing and exporting hierarchical data (arguments, definitions, and so on)
and for passing property set arguments to and from business services.

NOTE: When using this business service, you do not specify an output argument name. The Siebel
application automatically maps the newly generated property set to the specified output process
property.

Figure 6 shows the translation of an XML document into a property set representation within Siebel
XML, and back again.

The following topics are also described here:

■ “XML Converter Business Service Methods” on page 60

■ “Property Set To XML Method Arguments” on page 61

■ “XML To Property Set Method Arguments” on page 61

XML Converter Business Service Methods
Use the XML Converter when you want to convert any property set to XML, or convert an XML
document that is not a Siebel EAI Integration Object Message to a property set.

Figure 6. XML Document to Property Set Representation

Siebel XML Converters ■ XML Converter

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

61

There are two methods for the XML Hierarchy Converter, as shown in Table 31. The arguments for
each method appear in Table 32, Table 33, Table 34 on page 61, and Table 35 on page 62.

Property Set To XML Method Arguments
Table 32 describes the input argument for the Property Set To XML method of the XML Converter.

Table 33 describes the output argument for the Property Set To XML method of the XML Converter.

XML To Property Set Method Arguments
Table 34 describes the input argument for the XML To Property Set method of the XML Converter.

Table 31. XML Converter Methods

Display Name Name Description

Property Set to
XML

PropSetToXML Converts a property set hierarchy to XML. Returns the result in
the Value field of the Output property set.

XML to Property
Set

XMLToPropSet Converts an XML document stored in the Value field of the
property set to a property set hierarchy. Returns the result in
the Output property set.

Table 32. Property Set To XML Method Input Argument

Name Data Type Description

Child type of the hierarchical process
property containing the entire property set,
service method arguments, and child
property set.

Hierarchical The entire input property set.

You must manually create and name
this input argument if it is required
by your business needs.

Table 33. Property Set To XML Method Output Argument

Display Name Name Data Type Description

XML Document <Value> String The output XML document.

Table 34. XML To Property Set Method Input Argument

Display Name Name Data Type Description

XML Document <Value> String The input XML document

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

Siebel XML Converters ■ Siebel XML Converter Business Service Comparison

62

Table 35 describes the output argument for the XML To Property Set method of the XML Converter.

Siebel XML Converter Business Service
Comparison
Table 36 on page 62 shows the basic differences between the four XML Converter business services.
The table also gives guidelines on the appropriate usage. The following terminology is used in
Table 36:

■ Yes. Supported by the converter.

■ Yes-second. Supported when used with a second converter.

NOTE: The EAI Integration Object to XML Hierarchy Converter always requires the XML Hierarchy
Converter in the following instances.

■ No. Not supported by the converter.

Table 35. XML To Property Set Method Output Argument

Name Data Type Description

Child type of the hierarchical process
property containing the entire property set,
service method arguments, and child
property set.

Hierarchical The entire output property set. You
must manually create and name this
output argument if it is required by
your business needs.

Table 36. Siebel XML Converter Comparison

Support or Requirement

EAI
XML
Converter

XML
Hierarchy
Converter

EAI
Integration
Object to XML
Hierarchy
Converter

XML
Converter

Siebel Workflow Yes Yes Yes-second No

Siebel Data Mapper Yes Yes-second

(with the EAI
Integration
Object
Hierarchy
Converter)

Yes-second No

Siebel eScript for data
transformation

Yes Yes Yes-second No

Custom XML envelopes No Yes Yes-second No

Siebel XML Converters ■ EAI XML Write to File Business Service

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

63

EAI XML Write to File Business Service
Use the EAI XML Write to File business service when you want to create an XML document from a
property set hierarchy and write the resulting document to a file. This business service supports all
XML converters. Table 37 describes the EAI XML Write to File business service methods.

Dispatch Service Yes Yes Yes-second No

XML representing business service
method arguments

No No Yes-second Yes

Serializing property sets as XML No No Yes-second Yes

Internal representation Siebel
Message
(integration
object
instance)

XML
Hierarchy

Siebel Message
(integration
object
instance)

Property
Set

Requirement for creating an
integration object definition

Yes No Yes No

Table 37. EAI XML Write to File Methods

Display Name Name Description

Write Siebel Message WriteEAIMsg Uses the EAI XML Converter

Write XML Hierarchy WriteXMLHier Uses the XML Hierarchy Converter

Write Property Set WritePropSet Uses the XML Converter

Table 36. Siebel XML Converter Comparison

Support or Requirement

EAI
XML
Converter

XML
Hierarchy
Converter

EAI
Integration
Object to XML
Hierarchy
Converter

XML
Converter

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

Siebel XML Converters ■ EAI XML Write to File Business Service

64

Write Siebel Message Method Arguments
Table 38 describes the input arguments for the Write Siebel Message method of the EAI XML Write
to File business service.

Table 38. Write Siebel Message Method Input Arguments

Display
Name Name

Data
Type Description

File Name FileName String The name of the file where output is
to be written. This is a required
field.

Siebel
Message

Siebel Message Hierarchy The Integration Object Hierarchy to
be converted to XML.

XML
Character
Encoding

XMLCharEncoding String Character encoding in the XML
document. If encoding is blank or
not supported, then an error is
produced.

Use Siebel
Message
Envelope

UseSiebelMessageEnvelope String Default is True. Insert the Siebel
Message Envelope into the XML
document.

Ignore
Character
Set
Conversion
Errors

IgnoreCharSetConvErrors String Default is False. If the Siebel
application cannot represent a given
character set, such as the local code
page character set, then conversion
errors are logged, including a
warning log entry. When set to True,
only a warning message is logged.

Tags on
Separate
Lines

Tags on Separate Lines String Default is True, which means that a
line feed is placed at the end of each
tag. If False, then no line feed is
added to the end of each tag; the
XML message is generated in a
single line.

Generate
Namespace
Declarations

GenerateNamespaceDecl String Default is False. If set to True, then
the namespace declarations will be
generated.

Generate
Processing
Instructions

GenerateProcessingInstructions String Default is True. If set to False, then
the Siebel processing instructions
are not written.

Siebel XML Converters ■ EAI XML Write to File Business Service

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

65

Write Property Set Method Arguments
Table 39 describes the input arguments for the Write Property Set method of the EAI XML Write to
File business service.

Write XML Hierarchy Method Arguments
Table 40 describes the input arguments for the Write XML Hierarchy method of the EAI XML Write to
File business service.

Generate
Schema
Types

GenerateSchemaTypes String Default is False. If set to True, then
XSD schema types will be generated
if set on the integration objects user
properties.

Namespace Namespace String If a namespace is defined here, it
will override any namespace defined
in the user properties of an
integration object.

Table 39. Write Property Set Input Arguments

Display
Name Name Data Type Description

File Name FileName String The name of the file where output is
to be written. This is a required field.

Not
applicable

Child type of the hierarchical
process property containing the
entire property set, service
method arguments, and child
property set.

Hierarchical The entire input property set. You
must manually create and name this
input argument if it is required by
your business needs.

Table 40. Write XML Hierarchy Method Input Arguments

Display
Name Name

Data
Type Description

File Name FileName String The name of the file where output is to be
written. This is a required field.

XML
Hierarchy

XMLHierarchy Hierarchy The XML Hierarchy Property Set.

Table 38. Write Siebel Message Method Input Arguments

Display
Name Name

Data
Type Description

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

Siebel XML Converters ■ EAI XML Read from File Business Service

66

EAI XML Read from File Business Service
Use the EAI XML Read from File business service when you want to create a property set hierarchy
in the Siebel environment from an XML document stored as a file. This business service supports
both standard and EAI XML conversion.

Table 41 describes the three EAI XML Read from File business service’s methods. The arguments for
each method appear in the tables that follow.

Escape
Names

EscapeNames String Invalid characters in XML tags will be
escaped, using Siebel’s internal escape
format.

If True, then Escape invalid characters
(this is the default).

If False, then delete Escape characters.

XML
Character
Encoding

XMLCharEncoding String Outputs XML character encoding to use. If
encoding is blank or not supported, then
an error is produced.

Ignore
Character
Set
Conversion
Errors

IgnoreCharSetConvErrors String Default is False. If the Siebel application
cannot represent a given character set,
such as the local code page character set,
then conversion errors are logged,
including a warning log entry. When set to
True, only a warning message is logged.

Tags on
Separate
Lines

Tags on Separate Lines String Default is True, which means that a line
feed is placed at the end of each tag. If
False, then no line feed is added to the end
of each tag; the XML message is
generated in a single line.

Generate
Processing
Instructions

GenerateProcessingInstru
ctions

String Default is True. If set to False, then the
Siebel processing instructions are not
written.

Table 41. EAI XML Read from File Business Service Methods

Display Name Name Description

Read Siebel Message ReadEAIMsg Uses the EAI XML Converter

Read Property Set ReadPropSet Uses the XML Converter

Read XML Hierarchy ReadXMLHier Uses the XML Hierarchy Converter

Table 40. Write XML Hierarchy Method Input Arguments

Display
Name Name

Data
Type Description

Siebel XML Converters ■ EAI XML Read from File Business Service

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

67

Read Siebel Message Method Arguments
Table 42 describes the input arguments for the Read Siebel Message method of the EAI XML Read
from File business service.

Table 42. Read Siebel Message Method Input Arguments

Display Name Name
Data
Type Description

File Name FileName String The name of the file to be read. This is
a required field.

Integration
Object Name

IntObjectName String Name of the Integration Object to use
in cases where the Siebel Message
header is not present.

Integration
Object Lookup
Rule Set

IntObjectLookupRuleSet String Rule Set for the EAI Dispatcher Service
for finding the Integration Object Name
in cases where the Siebel Message
header is not present.

External Entity
Directory

ExternalEntityDirectory String Directory to use for finding external
entities referenced in the XML
document, such as DTDs.

Truncate Field
Values

TruncateFieldValues String Default is True. If True, then truncate
any fields longer than their maximum
size. If False, report fields that are too
long as errors.

Ignore Character
Set Conversion
Errors

IgnoreCharSetConvErrors String Default is False. If the Siebel application
cannot represent a given character set,
such as the local code page character
set, then conversion errors are logged,
including a warning log entry. When set
to True, only a warning message is
logged.

Process Elements
Only

ProcessElementsOnly String Default is False. If set to True, then
processing of attributes is skipped.

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

Siebel XML Converters ■ EAI XML Read from File Business Service

68

Table 43 describes the output arguments for the Read Siebel Message method of the EAI XML Read
from File business service.

Read Property Set Method Arguments
Table 44 describes the input argument for the Read Property Set method of the EAI XML Read from
File business service.

Table 45 describes the output argument for the Read Property Set method of the EAI XML Read from
File business service.

Table 43. Read Siebel Message Method Output Arguments

Display Name Name
Data
Type Description

Siebel Message SiebelMessage Hierarchy The Integration Object Hierarchy
converted from XML.

XML Character
Encoding

XMLCharEncoding String Outputs XML character encoding to
use. If encoding is blank or not
supported, then an error is produced.

Table 44. Read Property Set Method Input Argument

Display Name Name Data Type Description

File Name FileName String The name of the file to be read.
This is a required field.

Table 45. Read Property Set Method Output Argument

Name Data Type Description

Child type of the hierarchical process property
containing the entire property set, service
method arguments, and child property set.

Hierarchical The entire output property set.
You must manually create and
name this output argument if it is
required by your business needs.

Siebel XML Converters ■ EAI XML Read from File Business Service

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

69

Read XML Hierarchy Method Arguments
Table 46 describes the input arguments for the Read XML Hierarchy method of the EAI XML Read from
File business service.

Table 47 describes the output arguments for the Read XML Hierarchy method of the EAI XML Read
from File business service.

Table 46. Read XML Hierarchy Method Input Arguments

Display Name Name
Data
Type Description

File Name FileName String The name of the XML file to read. This is a
Required field.

Escape Names EscapeNames String Invalid characters in XML tags will be
escaped, using Siebel’s internal escape
format.

■ If True, then process Escape
characters (this is the default).

■ If False, then do not process Escape
characters.

External Entity
Directory

ExternalEntityDirectory String Directory for external entities such as DTD
files.

Ignore
Character Set
Conversion
Errors

IgnoreCharSetConvErrors String Default is False. If the Siebel application
cannot represent a given character set—
such as the local code page character set—
then conversion errors are logged,
including a warning log entry. When set to
True, only a warning message is logged.

Table 47. Read XML Hierarchy Method Output Arguments

Display Name Name
Data
Type Description

XML Character
Encoding

XMLCharEncoding String Character encoding of the XML document,
detected by the converter independent of the
parser.

XML Hierarchy XMLHierarchy Hierarchy The XML Hierarchy property set.

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

Siebel XML Converters ■ EAI XML Read from File Business Service

70

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

71

8 Scenarios for Siebel EAI XML
Integration

This chapter provides two business scenarios to assist you in implementing XML technologies for your
organization. It includes the following topics:

■ Scenario 1: Process of Inbound Integration Using Siebel XML on page 71

■ Scenario 2: Process of Outbound Integration Using External XML and an XSD or DTD on page 72

Scenario 1: Process of Inbound
Integration Using Siebel XML
This topic gives an example of how to set up an inbound integration using XML. You might use the
integration differently, depending on your business model.

To set up the inbound integration, perform the following tasks:

■ “Creating the XML Schema” on page 71

■ “Creating the Workflow” on page 72

■ “Running the Integration” on page 72

Creating the XML Schema
Use the Generate Schema wizard in Siebel Tools to create an XSD or a DTD for the incoming XML.
For details on using the Siebel XSD Wizard, see Chapter 5, “XML Integration Objects and the XSD
Wizard.” For details on using the Siebel DTD Wizard, see Chapter 6, “XML Integration Objects and the
DTD Wizard.”

To create the XML schema: XSD, DTD, or XDR
1 Launch Siebel Tools and navigate to the Integration Objects list.

2 Select an integration object from the list.

3 Click the Generate Schema button at the top of the Integration Objects list.

4 Complete the steps of the wizard:

a Select a business service from the Business Service drop-down list.

b Select the EAI Siebel Message Envelope Service from the Envelope drop-down list.

c Browse to a file location and type a file name to generate the schema—for example,
ListOfSiebelOrder.xml—and click Save.

5 Load the schema into the external system.

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

Scenarios for Siebel EAI XML Integration ■ Scenario 2: Process of Outbound Integration
Using External XML and an XSD or DTD

72

Creating the Workflow
Create a new workflow using the Workflow Process Designer. For details on Siebel Workflow, see
Siebel Business Process Framework: Workflow Guide.

To create a new workflow
1 Start a Siebel application and navigate to the Workflow Process Designer.

2 Create a new workflow that will take the XML file, convert it to Siebel XML format (if necessary)
using the Siebel EAI XML Converter business service, call the EAI Data Transformation Engine to
perform the data transformation, and call the Siebel Adapter to modify the Siebel Database as
needed (upsert, delete, query, and so on).

NOTE: The Siebel application uses an instance of the integration object you created to map the
incoming XML data to fields (rows and columns) within the Siebel Database.

3 Test your workflow using the Workflow Process Simulator.

4 Save your workflow.

Running the Integration
In this scenario, assume that either an external application has generated Siebel XML that requires
no translation or Siebel XML is XML that conforms to the Siebel XSD or DTD.

At run time, the Siebel application:

■ Calls the EAI XML Adapter.

■ Calls the EAI XML Converter to convert the incoming XML to a Siebel message.

■ Calls the EAI Siebel Adapter and updates the Siebel Database with the new information just
received from the incoming (external) XML document.

Scenario 2: Process of Outbound
Integration Using External XML and an
XSD or DTD
This topic gives one example of how to set up an integration based on incoming XLML that has been
defined in an XSD or a DTD. You might use this integration differently, depending on your business
model.

To set up the outbound integration, perform the following tasks:

■ “Creating the Integration Object” on page 73

■ “Mapping the Data” on page 73

■ “Running the Integration” on page 73

Scenarios for Siebel EAI XML Integration ■ Scenario 2: Process of Outbound Integration
Using External XML and an XSD or DTD

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

73

Creating the Integration Object
Create a new external Siebel integration object. For details on creating integration objects, see
Integration Platform Technologies: Siebel Enterprise Application Integration.

To create the Siebel integration object
1 Start Siebel Tools and select File, then New Object.

2 Select the EAI tab.

3 Double-click the Integration Object icon.

4 Complete the Integration Object Builder initial page:

a Select the Siebel project from the first drop-down list.

b Select EAI XSD or EAI DTD Wizard as the Business Service.

c Navigate to the path and file of the location of the XSD, DTD, or XML file that you want to use
as the basis of the DTD.

5 Save the new integration object.

Mapping the Data
Use Siebel Data Mapper to map the fields in the external integration object with an internal Siebel
integration object. For details on using the Siebel Data Mapper, see Business Processes and Rules:
Siebel Enterprise Application Integration.

To map the data
1 Start a Siebel application and navigate to the Siebel Data Mapper.

2 Create the data mapping between the external integration object and an internal Siebel
integration object.

3 Save the mapping.

The new data mapping rules are now in the Siebel Database.

Running the Integration
In this scenario, assume that the external application has generated external XML and includes an
associated XSD or a DTD.

At runtime, the Siebel application:

■ Calls the EAI XML Converter to convert incoming XML to a Siebel Message.

■ Calls the EAI Data Mapping Engine to transform the external integration object to an internal
integration object.

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

Scenarios for Siebel EAI XML Integration ■ Scenario 2: Process of Outbound Integration
Using External XML and an XSD or DTD

74

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

75

A Using XML Files

This appendix discusses using XML files as an input as well as inserting a file attachment into the
Siebel database using XML. It includes the following topics:

■ Using an XML Document as Input on page 75

■ Inserting File Attachments Using XML on page 78

■ Removing Empty XML Tags on page 78

Using an XML Document as Input
You can use XML documents as input in a workflow, by calling business services to convert them to
Siebel Property Sets and calling business services to process the data from XML documents as
required. Figure 7 illustrates a sample workflow that uses the Siebel Adapter Insert or Update
method.

The following is an example of a sample XML document containing employee information that will
get upserted by the EAI Siebel Adapter in the workflow in Figure 7. Just before the EAI Siebel Adapter
step in the workflow is invoked, the variable Employee Message will contain the XML document in a
hierarchical format.

<SiebelMessage MessageId="" IntObjectName="Sample Employee">

<ListOfSampleEmployees>

<Employee>

<FirstName>Pace</FirstName>

<MiddleName></MiddleName>

<LastName>Davis</LastName>

<LoginName>ADIOTATI</LoginName>

<PersonalTitle>Mr.</PersonalTitle>

<EMailAddr>pdavis@pcssiebel.com</EMailAddr>

Figure 7. Workflow Using Siebel Adapter with Upsert Method

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

Using XML Files ■ Using an XML Document as Input

76

<JobTitle>Field Sales Representative</JobTitle>

<Phone>4153296500</Phone>

<Private>N</Private>

<ListOfPosition>

<Position>

<Name3>Field Sales Representative - S America</Name3>

<Division>North American Organization</Division>

<Organization>North American Organization</Organization>

<ParentPositionName>VP Sales</ParentPositionName>

<PositionType>Sales Representative</PositionType>

<ListOfPosition_BusinessAddress>

<Position_BusinessAddress>

<City>San Mateo</City>

<Country>USA</Country>

<FaxNumber></FaxNumber>

<PhoneNumber></PhoneNumber>

<PostalCode>94175</PostalCode>

<State>CA</State>

<StreetAddress>1855 South Grant St</StreetAddress>

</Position_BusinessAddress>

</ListOfPosition_BusinessAddress>

</Position>

</ListOfPosition>

</Employee>

</ListOfSampleEmployees>

</SiebelMessage>

This EAI XML document shows an integration object called Sample Employee as specified by the
IntObjectName attribute of the Siebel Message element.

The Sample Employee object has three integration components you can view using Siebel Tools:

■ Employee—A root component

Using XML Files ■ Using an XML Document as Input

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

77

■ Position—A Child of Employee

■ Position Business Address—A Child of Position

An upsert to this integration object is determined by the user key on the root component. In the
Sample Employee Integration object provided as part of the sample database, the user key for the
Employee integration object is Login name. Therefore, if the login name is unique, then a new
employee is inserted. If the login name already exists, then the Siebel application performs an
update. The above XML document will create a new employee whose name is Pace Davis and assign
the position Field Sales Representative - S America to this person. You could also specify a new
position and have the employee be assigned to the new position. This can be extended to other
methods such as Delete or Query. If you want to delete an employee, then the user key is the only
element that must be specified.

Example. In the following example, the employee with login name ADD1 will be deleted.

<SiebelMessage MessageId="" IntObjectName="Sample Employee">

 <ListOfSampleEmployees>

 <Employee>

 <LoginName>ADD1</LoginName>

 </Employee>

 </ListOfSampleEmployees>

</SiebelMessage>

Example. Query on all employees with the first name Pace and Last name starting with D.

<SiebelMessage MessageId="" IntObjectName="Sample Employee">

 <ListOfSampleEmployees>

 <Employee>

 <FirstName>Pace</FirstName>

 <LastName>D*</LastName>

 </Employee>

 </ListOfSampleEmployees>

</SiebelMessage>

CAUTION: When defining these business components, be aware that the precise definition can
negatively affect mobile clients and regional clients. There are setup options to allow all
attachments to automatically download to mobile clients that have visibility to the underlying
row. This could be quite problematic, especially for large files.

The preferred setup is demand mode, whereby mobile client users trying to open an attachment
will see a message asking if they want to download the file the next time they synchronize. This
is known as the deferred approach and gives users control over what files they do or do not
download.

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

Using XML Files ■ Inserting File Attachments Using XML

78

Inserting File Attachments Using XML
You might want to insert an attachment into the Siebel Database, such as an image file in JPEG
format. This could be a customer’s picture, a site picture, an item or part image, a text document,
and so on. For integration with external systems using file attachments, see Integration Platform
Technologies: Siebel Enterprise Application Integration.

For integration between Siebel instances, the support for attachments is built into the Siebel Adapter
and the EAI XML Converter. The integration between Siebel instances can occur when generating or
reading XML, which is further defined in the next topic.

■ Generating XML. In the case of the Attachment business component being used, the Siebel
Adapter will correctly perform the query. Then, the EAI XML Converter will include the
attachment in XML.

■ Reading XML. If XML was generated by the EAI XML Converter as described previously, then the
EAI XML Converter will read such XML and correctly bring attachments into memory. After which,
the Siebel Adapter will insert them into Oracle’s Siebel database.

Removing Empty XML Tags
You can to remove empty XML tags from messages for optimization. For example, an XML
representation of an integration object might have unused integration components. You can use the
siebel_ws_param:RemoveEmptyTags parameter to remove empty tags when making Web service
calls.

There are two ways to use the parameter:

■ “Adding the RemoveEmptyTags Parameter to a Property Set in an Input XML File” on page 78

■ “Adding the RemoveEmptyTags Parameter as a Process Property in a Workflow” on page 79

Adding the RemoveEmptyTags Parameter to a Property Set in an Input
XML File
You add the siebel_ws_param:RemoveEmptyTags parameter to an input XML file manually as a
property in the top-level property set.

To add the RemoveEmptyTags parameter to a property set manually
1 Open the XML file in a text editor.

2 Add the following text (in bold) to the top-level <PropertySet> tag, as in this example:

<?xml version=”1.0” encoding=”UTF-8”?>

<?Siebel-Property-Set EscapeNames=”true”?>

<PropertySet siebel_undws_undparam_clnRemoveEmptyTags=”Y”>

Using XML Files ■ Removing Empty XML Tags

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

79

<SiebelMessage>
...
...

</SiebelMessage>

</PropertySet>

3 Save the XML file.

Adding the RemoveEmptyTags Parameter as a Process Property in a
Workflow
You can add the siebel_ws_param:RemoveEmptyTags parameter to a workflow to automate the
removal of empty tags. You add the parameter as a process property of the workflow, then as an
input argument to the step that reads the XML file. For information on adding workflow process
properties and input arguments, see Siebel Business Process Framework: Workflow Guide.

To add the RemoveEmptyTags parameter to a workflow
1 In Siebel Tools, edit the workflow process to add the following process property:

2 Add the following input argument to the workflow step that reads the XML file:

3 Compile the SRF.

Name Data Type In/Out

Remove Empty Tags String In

Input Argument Type Value Property Name

siebel_ws_param:RemoveEmptyTags Process Property Y Remove Empty Tags

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

Using XML Files ■ Removing Empty XML Tags

80

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

81

B Sample XML for Siebel EAI
Effective Dating Operations

This appendix provides sample XML for Siebel Enterprise Applications Integration (Siebel EAI)
effective dating operations. It includes the following topics:

■ About Siebel EAI Effective Dating Operations on page 81

■ Sample XML for Field-Related Siebel EAI Effective Dating Operations on page 81

■ Sample XML for Link-Related Siebel EAI Effective Dating Operations on page 91

About Siebel EAI Effective Dating
Operations
The Siebel Enterprise Applications Integration (Siebel EAI) effective dating framework allows access
to effective dating data through various Siebel EAI communication mechanisms. You can use the
typical query, insert, update, synch, and so on operations to manipulate effective dating enabled
data. For more information about the Siebel effective dating feature, see Integration Platform
Technologies: Siebel Enterprise Application Integration.

Related Topics
“Sample XML for Field-Related Siebel EAI Effective Dating Operations”

“Sample XML for Link-Related Siebel EAI Effective Dating Operations”

Sample XML for Field-Related Siebel EAI
Effective Dating Operations
This topic provides sample input and output XML for field-related Siebel Enterprise Applications
Integration (Siebel EAI) effective dating operations. It includes the following information:

■ “Insert Field-Related Operations” on page 82

■ “QueryById Field-Related Operations” on page 83

■ “QueryBy Example Field-Related Operations” on page 85

■ “Delete Field-Related Operations” on page 87

■ “Synchronize Field-Related Operations” on page 87

■ “Upsert Field-Related Operations” on page 89

NOTE: Bold text in the following code samples indicates syntax specific to Siebel EAI effective dating
functionality.

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

Sample XML for Siebel EAI Effective Dating Operations ■ Sample XML for Field-Related
Siebel EAI Effective Dating Operations

82

Insert Field-Related Operations
The following code shows sample input and output XML for field-related INSERT operations.

Input
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:asi="http://example.com/asi/" xmlns:hous="http://www.example.com/xml/
Household%20Interface">

<soapenv:Header/>
<soapenv:Body>

<asi:SiebelHouseholdInsert_Input>

 <hous:ListOfHouseholdInterface>

 <hous:Household>

 <hous:Category>Gold</hous:Category>

 <hous:CurrencyCode>USD</hous:CurrencyCode>

 <hous:EDListOfHouseholdName>
 <hous:HouseholdName EDStartDate="04/10/2012" EDEndDate="04/20/
2012">Adam</hous:HouseholdName>
 <hous:HouseholdName>Becham</hous:HouseholdName>
 </hous:EDListOfHouseholdName>

 <hous:HouseholdId>ASDQ-1264</hous:HouseholdId>

 <hous:Income>47751</hous:Income>

 <hous:PhoneNumber>6504234234</hous:PhoneNumber>

 <hous:Segment>White Collar</hous:Segment>

 <hous:Status>Active</hous:Status>

 <hous:Type>Single</hous:Type>

 </hous:Household>

</hous:ListOfHouseholdInterface>

<asi:StatusObject>?</asi:StatusObject>

</asi:SiebelHouseholdInsert_Input>

</soapenv:Body>
</soapenv:Envelope>

Output
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema">

Sample XML for Siebel EAI Effective Dating Operations ■ Sample XML for Field-Related
Siebel EAI Effective Dating Operations

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

83

<SOAP-ENV:Body>

<ns:SiebelHouseholdInsert_Output xmlns:ns="http://example.com/asi/">

<ListOfHouseholdInterface xmlns="http://www.example.com/xml/
Household%20Interface">
 <Household operation="insert">
 <HouseholdId>ASDQ-1264</HouseholdId>
 <IntegrationId/>
 </Household>
</ListOfHouseholdInterface>

</ns:SiebelHouseholdInsert_Output>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

QueryById Field-Related Operations
The following code shows sample input and output XML for field-related QueryById operations.

Input
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:asi="http://example.com/asi/">

<soapenv:Header/>
<soapenv:Body>

<asi:SiebelHouseholdQueryById_Input>
 <asi:PrimaryRowId>1-EKCK</asi:PrimaryRowId>
</asi:SiebelHouseholdQueryById_Input>

</soapenv:Body>
</soapenv:Envelope>

Output
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema">

<SOAP-ENV:Body>

<ns:SiebelHouseholdQueryById_Output xmlns:ns="http://example.com/asi/">

<ListOfHouseholdInterface xmlns="http://www.example.com/xml/
Household%20Interface">

 <Household>

 <Category>Gold</Category>
 <CurrencyCode>USD</CurrencyCode>
 <FaxNumber/>
 <HouseholdId>1-EKCK</HouseholdId>

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

Sample XML for Siebel EAI Effective Dating Operations ■ Sample XML for Field-Related
Siebel EAI Effective Dating Operations

84

 <HouseholdWealth/>
 <Income/>
 <IntegrationId/>
 <PhoneNumber>6504234234</PhoneNumber>
 <Revenue>1500</Revenue>
 <Segment>White Collar</Segment>
 <Status>Active</Status>
 <Type>Single</Type>

 <ListOfRelatedContact>
 <RelatedContact IsPrimaryMVG="Y">
 <ContactIntegrationId/>
 <MiddleName>B.</MiddleName>
 <PersonUId>1-D4U9</PersonUId>
 <PersonalContact>N</PersonalContact>
 <DateEnteredHousehold>11/12/2001 17:30:29</DateEnteredHousehold>
 <DateExitedHousehold/>
 <PrimaryOrganizationId>1-19T</PrimaryOrganizationId>
 <Relationship>Head</Relationship>

 <EDListOfFirstName>
 <FirstName EDEndDate="" EDStartDate="11/08/2001">John</
FirstName>
 </EDListOfFirstName>

 <EDListOfLastName>
 <LastName EDEndDate="" EDStartDate="11/08/2001">Devine</
LastName>
 </EDListOfLastName>
 </RelatedContact>
 </ListOfRelatedContact>

 <ListOfRelatedOrganization>
 <RelatedOrganization IsPrimaryMVG="Y">
 <OrganizationName>Millennium Retail Finance Services RF ENU</
OrganizationName>
 <OrganizationId>1-19T</OrganizationId>
 <OrganizationIntegrationId/>
 </RelatedOrganization>
 </ListOfRelatedOrganization>

 <ListOfRelatedSalesRep>
 <RelatedSalesRep IsPrimaryMVG="Y">
 <Position>Siebel Administrator</Position>
 <PositionDivision>Siebel Administration</PositionDivision>
 <PositionId>0-5220</PositionId>
 <PositionIntegrationId/>
 <Login>SADMIN</Login>
 </RelatedSalesRep>
 </ListOfRelatedSalesRep>

 <EDListOfHouseholdName>
 <HouseholdName EDEndDate="" EDStartDate="11/12/2001">Devine - San Mateo
 </HouseholdName>
 </EDListOfHouseholdName>

Sample XML for Siebel EAI Effective Dating Operations ■ Sample XML for Field-Related
Siebel EAI Effective Dating Operations

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

85

 <EDListOfHouseholdSize>
 <HouseholdSize EDEndDate="" EDStartDate="11/12/2001">1</HouseholdSize>
 </EDListOfHouseholdSize>

 </Household>

</ListOfHouseholdInterface>

</ns:SiebelHouseholdQueryById_Output>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

QueryBy Example Field-Related Operations
The following code show sample input and output XML for field-related QueryByExample operations.

Input
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:asi="http://example.com/asi/" xmlns:hous="http://www.example.com/xml/
Household%20Interface">

<soapenv:Header/>
<soapenv:Body>

<asi:SiebelHouseholdQueryByExample_Input>

<hous:ListOfHouseholdInterface>
 <hous:Household>
 <hous:EDListOfHouseholdName>
 <HouseholdName EDEndDate="04/20/2012" EDStartDate="04/10/2012">
</HouseholdName>
 </hous:EDListOfHouseholdName>
 <HouseholdId>ASDQ-1264</HouseholdId>
 </hous:Household>
</hous:ListOfHouseholdInterface>

</asi:SiebelHouseholdQueryByExample_Input>

</soapenv:Body>
</soapenv:Envelope>

Output
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema">

 <SOAP-ENV:Body>

<ns:SiebelHouseholdQueryByExample_Output xmlns:ns="http://example.com/asi/">

<ListOfHouseholdInterface xmlns="http://www.example.com/xml/
Household%20Interface">

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

Sample XML for Siebel EAI Effective Dating Operations ■ Sample XML for Field-Related
Siebel EAI Effective Dating Operations

86

 <Household>

 <Category>Gold</Category>
 <CurrencyCode>USD</CurrencyCode>
 <FaxNumber/>
 <HouseholdId>ASDQ-1264</HouseholdId>
 <HouseholdWealth/>
 <Income>47751</Income>
 <IntegrationId/>
 <PhoneNumber>6504234234</PhoneNumber>
 <Revenue/>
 <Segment>White Collar</Segment>
 <Status>Active</Status>
 <Type>Single</Type>

 <ListOfRelatedContact/>

 <ListOfRelatedOrganization>
 <RelatedOrganization IsPrimaryMVG="Y">
 <OrganizationName>Default Organization</OrganizationName>
 <OrganizationId>0-R9NH</OrganizationId>
 <OrganizationIntegrationId/>
 </RelatedOrganization>
 </ListOfRelatedOrganization>

 <ListOfRelatedSalesRep>
 <RelatedSalesRep IsPrimaryMVG="Y">
 <Position>Siebel Administrator</Position>
 <PositionDivision>Siebel Administration</Position Division>
 <PositionId>0-5220</PositionId>
 <PositionIntegrationId/>
 <Login>SADMIN</Login>
 RelatedSalesRep>
 </ListOfRelatedSalesRep>

 <EDListOfHouseholdName>
 <HouseholdName EDEndDate="04/20/2012" EDStartDate="04/10/
2012">Adam</HouseholdName>
 </EDListOfHouseholdName>

 <EDListOfHouseholdSize>
 <HouseholdSize EDEndDate="04/19/2012"" EDStartDate="04/10/
2012">5</HouseholdSize>
 <HouseholdSize EDEndDate="" EDStartDate="04/20/2012">7</
HouseholdSize>
 </EDListOfHouseholdSize>

 </Household>

</ListOfHouseholdInterface>

</ns:SiebelHouseholdQueryByExample_Output>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Sample XML for Siebel EAI Effective Dating Operations ■ Sample XML for Field-Related
Siebel EAI Effective Dating Operations

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

87

Delete Field-Related Operations
The following code shows sample input and output XML for field-related DELETE operations.

Input
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:asi="http://example.com/asi/" xmlns:hous="http://www.example.com/xml/
Household%20Interface">

<soapenv:Header/>
<soapenv:Body>

<asi:SiebelHouseholdDelete_Input>

<hous:ListOfHouseholdInterface>
 <hous:Household>
 <hous:EDListOfHouseholdName/>
 <HouseholdId>ASDQ-1264</HouseholdId>
 </hous:Household>
</hous:ListOfHouseholdInterface>

</asi:SiebelHouseholdDelete_Input>

</soapenv:Body>
</soapenv:Envelope>

Output
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema">

<SOAP-ENV:Body>

<ns:SiebelHouseholdDelete_Output xmlns:ns="http://example.com/asi/">

<ListOfHouseholdInterface xmlns="http://www.example.com/xml/
Household%20Interface">
 <Household operation="delete">
 <HouseholdId>ASDQ-1264</HouseholdId>
 <IntegrationId/>
 </Household>
</ListOfHouseholdInterface>

</ns:SiebelHouseholdDelete_Output>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Synchronize Field-Related Operations
The following code shows sample input and output XML for field-related SYNCH operations.

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

Sample XML for Siebel EAI Effective Dating Operations ■ Sample XML for Field-Related
Siebel EAI Effective Dating Operations

88

Input
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:asi="http://example.com/asi/" xmlns:acc="http://www.example.com/xml/
Account%20Interface">

<soapenv:Header/>
<soapenv:Body>

<asi:SiebelAccountSynchronize_Input>

<acc:ListOfAccountInterface>

 <acc:Account>
 acc:AccountId>88-30A85</acc:AccountId>
 <acc:Name>TESTASDP</acc:Name>
 <acc:ListOfRelatedContact>
 <acc:RelatedContact>
 <acc:ContactId>88-30ARL</acc:ContactId>
 <acc:EDListOfFirstName>
 <acc:FirstName EDStartDate="04/01/2012" EDEndDate="">John</
acc:FirstName>
 </acc:EDListOfFirstName>
 <acc:EDListOfLastName>
 <acc:LastName EDStartDate="04/01/2012" EDEndDate=""> Steven</
acc:LastName>
 </acc:EDListOfLastName>
 </acc:RelatedContact>
 </acc:ListOfRelatedContact>
 </acc:Account>

 <acc:Account>
 <acc:AccountId>ASDQ_TY2</acc:AccountId>
 <acc:Name>TESTASDT</acc:Name>
 <acc:ListOfRelatedContact>
 <acc:RelatedContact>
 <acc:ContactId>ASDQ_TC2</acc:ContactId>
 <acc:EDListOfFirstName>
 <acc:FirstName EDStartDate="04/25/2012" EDEndDate="">Sam</
acc:FirstName>
 </acc:EDListOfFirstName>
 <acc:EDListOfLastName>
 <acc:LastName EDStartDate="04/25/2012" EDEndDate="">Vincent</
acc:LastName>
 </acc:EDListOfLastName>
 </acc:RelatedContact>
 </acc:ListOfRelatedContact>
 </acc:Account>

</acc:ListOfAccountInterface>

</asi:SiebelAccountSynchronize_Input>

</soapenv:Body>
</soapenv:Envelope>

Sample XML for Siebel EAI Effective Dating Operations ■ Sample XML for Field-Related
Siebel EAI Effective Dating Operations

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

89

Output
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema">

<SOAP-ENV:Body>

<ns:SiebelAccountSynchronize_Output xmlns:ns="http://example.com/asi/">

<ListOfAccountInterface xmlns="http://www.example.com/xml/
Account%20Interface">

 <Account operation="update">
 <AccountId>88-30A85</AccountId>
 <IntegrationId/>
 </Account>

 <Account operation="insert">
 <AccountId>88-30GK4</AccountId>
 <IntegrationId/>
 </Account>

</ListOfAccountInterface>

</ns:SiebelAccountSynchronize_Output>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Upsert Field-Related Operations
The following code shows sample input and output XML for field-related UPSERT operations.

Input
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:asi="http://example.com/asi/" xmlns:acc="http://www.example.com/xml/
Account%20Interface">

<soapenv:Header/>
<soapenv:Body>

<asi:SiebelAccountInsertOrUpdate_Input>

<acc:ListOfAccountInterface>

 <acc:Account>

 <acc:AccountId>88-30A85</acc:AccountId>
 <acc:Name>TESTASDP</acc:Name>
 <acc:ListOfRelatedContact>
 <acc:RelatedContact>
 <acc:ContactId>88-30ARL</acc:ContactId>
 <acc:EDListOfFirstName>
 <acc:FirstName EDStartDate="04/01/2012" EDEndDate="">John</

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

Sample XML for Siebel EAI Effective Dating Operations ■ Sample XML for Field-Related
Siebel EAI Effective Dating Operations

90

acc:FirstName>
 </acc:EDListOfFirstName>
 <acc:EDListOfLastName>
 <acc:LastName EDStartDate="04/01/2012" EDEndDate="">Steven</
acc:LastName>
 </acc:EDListOfLastName>
 </acc:RelatedContact>
 </acc:ListOfRelatedContact>
 </acc:Account>

 <acc:Account>
 <acc:AccountId>ASDQ_TY4</acc:AccountId>
 <acc:Name>TESTASDY</acc:Name>
 <acc:ListOfRelatedContact>
 <acc:RelatedContact>
 <acc:ContactId>ASDQ_TC4</acc:ContactId>
 <acc:EDListOfFirstName>
 <acc:FirstName EDStartDate="04/25/2012" EDEndDate="">Louis</
acc:FirstName>
 </acc:EDListOfFirstName>
 <acc:EDListOfLastName>
 <acc:LastName EDStartDate="04/25/2012" EDEndDate="">George</
acc:LastName>
 </acc:EDListOfLastName>
 </acc:RelatedContact>
 </acc:ListOfRelatedContact>
 </acc:Account>

</acc:ListOfAccountInterface>

<!--Optional:-->

<asi:StatusObject>?</asi:StatusObject>

</asi:SiebelAccountInsertOrUpdate_Input>

</soapenv:Body>
</soapenv:Envelope>

Output
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema">

<SOAP-ENV:Body>

<ns:SiebelAccountInsertOrUpdate_Output xmlns:ns="http://example.com/asi/">

<ListOfAccountInterface xmlns="http://www.example.com/xml/
Account%20Interface">

Sample XML for Siebel EAI Effective Dating Operations ■ Sample XML for Link-Related
Siebel EAI Effective Dating Operations

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

91

 <Account operation="update">
 <AccountId>88-30A85</AccountId>
 <IntegrationId/>
 </Account>

 <Account operation="insert">
 <AccountId>88-30HDZ</AccountId>
 <IntegrationId/>
 </Account>

</ListOfAccountInterface>

</ns:SiebelAccountInsertOrUpdate_Output>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Related Topics
“About Siebel EAI Effective Dating Operations” on page 81

“Sample XML for Link-Related Siebel EAI Effective Dating Operations” on page 91

Sample XML for Link-Related Siebel EAI
Effective Dating Operations
This topic provides sample input and output XML for link-related Siebel Enterprise Applications
Integration (Siebel EAI) effective dating operations. It includes the following information:

■ “Insert Link-Related Operations” on page 91

■ “QueryByExample Link-Related Operations” on page 93

■ “QueryById Link-Related Operations” on page 96

■ “Update Link-Related Operations” on page 98

■ “Upsert Link-Related Operations” on page 100

■ “Synchronize Link-Related Operations” on page 101

NOTE: Bold text in the following code samples indicates syntax specific to Siebel EAI effective dating
functionality.

Insert Link-Related Operations
The following code shows sample input and output XML for link-related INSERT operations.

Input
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:asi="http://example.com/asi/" xmlns:hous="http://www.example.com/xml/
Household%20Interface">

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

Sample XML for Siebel EAI Effective Dating Operations ■ Sample XML for Link-Related
Siebel EAI Effective Dating Operations

92

<soapenv:Header/>
<soapenv:Body>

<asi:SiebelHouseholdInsert_Input>

<asi:StatusObject/>

<hous:ListOfHouseholdInterface>
 <hous:Household operation="insert">
 <hous:HouseholdName>Aaron12</hous:HouseholdName>
 <hous:HouseholdId>1-COQ1</hous:HouseholdId>

 <hous:ListOfRelatedContact>
 <hous:RelatedContact EDStartDate="12/12/2011" EDEndDate="">
 <ContactId>0V-19GBUM</ContactId>
 </hous:RelatedContact>
 <hous:RelatedContact EDStartDate="12/12/2010" EDEndDate="12/11/
2011">
 <ContactId>0V-19GBUM</ContactId>
 </hous:RelatedContact>
 <hous:RelatedContact EDStartDate="12/12/2003" EDEndDate="12/12/
2004">
 <ContactId>0V-18PLL2</ContactId>
 </hous:RelatedContact>
 <hous:RelatedContact EDStartDate="12/12/2001" EDEndDate="12/12/
2002">
 <ContactId>0V-18PLL2</ContactId>
 </hous:RelatedContact>
 <hous:RelatedContact EDStartDate="12/12/2005" EDEndDate="12/12/
2006">
 <ContactId>0V-18PMMD</ContactId>
 </hous:RelatedContact>
 <hous:RelatedContact EDStartDate="12/12/2007" EDEndDate="12/12/
2008">
 <ContactId>1-AJ3J</ContactId>
 </hous:RelatedContact>
 </hous:ListOfRelatedContact>

 </hous:Household>
 </hous:ListOfHouseholdInterface>

</asi:SiebelHouseholdInsert_Input>

</soapenv:Body>
</soapenv:Envelope>

Output
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema">

<SOAP-ENV:Body>

<ns:SiebelHouseholdInsert_Output xmlns:ns="http://example.com/asi/">

Sample XML for Siebel EAI Effective Dating Operations ■ Sample XML for Link-Related
Siebel EAI Effective Dating Operations

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

93

<ListOfHouseholdInterface xmlns="http://www.example.com/xml/
Household%20Interface">
 <Household operation="insert">
 <HouseholdId>1-COQ1</HouseholdId>
 <IntegrationId/>
 </Household>
</ListOfHouseholdInterface>

</ns:SiebelHouseholdInsert_Output>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

QueryByExample Link-Related Operations
The following code shows sample input and output XML for link-related QueryByExample operations.

Input
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:asi="http://example.com/asi/" xmlns:hous="http://www.example.com/xml/
Household%20Interface">

<soapenv:Header/>
<soapenv:Body>

<asi:SiebelHouseholdQueryByExample_Input>

<hous:ListOfHouseholdInterface>
 <hous:Household operation="?">
 <hous:HouseholdId>1-COQ1</hous:HouseholdId>
 <hous:ListOfRelatedContact>
 <hous:RelatedContact EDStartDate="1/1/2000" EDEndDate="">
 <hous:ContactId/>
 </hous:RelatedContact>
 </hous:ListOfRelatedContact>
 </hous:Household>
</hous:ListOfHouseholdInterface>

</asi:SiebelHouseholdQueryByExample_Input>

</soapenv:Body>
</soapenv:Envelope>

Output
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema">

<SOAP-ENV:Body>

<ns:SiebelHouseholdQueryByExample_Output xmlns:ns="http://example.com/asi/">

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

Sample XML for Siebel EAI Effective Dating Operations ■ Sample XML for Link-Related
Siebel EAI Effective Dating Operations

94

<ListOfHouseholdInterface xmlns="http://www.example.com/xml/
Household%20Interface">

 <Household>

 <Category/>
 <CurrencyCode>USD</CurrencyCode>
 <FaxNumber/>
 <HouseholdName>Aaron12</HouseholdName>
 <HouseholdId>1-COQ1</HouseholdId>
 <HouseholdSize/>
 <HouseholdWealth/>
 <Income/>
 <IntegrationId/>
 <PhoneNumber/>
 <Revenue/>
 <Segment/>
 <Status>Active</Status>
 <Type/>
 <ListOfRelatedContact>

 <RelatedContact EDEndDate="12/12/2004" IsPrimaryMVG="N"
EDStartDate="12/12/2003">
 <ContactIntegrationId/>
 <FirstName>ANDREW</FirstName>
 <LastName>LAM</LastName>
 <MiddleName/>
 <PersonUId>0V-18PLL2</PersonUId>
 <PersonalContact>N</PersonalContact>
 <ContactId>0V-18PLL2</ContactId>
 <DateEnteredHousehold>05/16/2012 05:18:50</DateEnteredHousehold>
 <DateExitedHousehold/>
 <PrimaryOrganizationId>0-R9NH</PrimaryOrganizationId>
 <Relationship/>
 </RelatedContact>

 <RelatedContact EDEndDate="12/12/2001" IsPrimaryMVG="N"
EDStartDate="12/12/2002">
 <ContactIntegrationId/>
 <FirstName>ANDREW</FirstName>
 <LastName>LAM</LastName>
 <MiddleName/>
 <PersonUId>0V-18PLL2</PersonUId>
 <PersonalContact>N</PersonalContact>
 <ContactId>0V-18PLL2</ContactId>
 <DateEnteredHousehold>05/16/2012 05:18:50<
/DateEnteredHousehold>
 <DateExitedHousehold/>
 <PrimaryOrganizationId>0-R9NH</PrimaryOrganizationId>
 <Relationship/>
 </RelatedContact>

 <RelatedContact EDEndDate="" IsPrimaryMVG="Y" EDStartDate="12/12/
2011">
 <ContactIntegrationId/>

Sample XML for Siebel EAI Effective Dating Operations ■ Sample XML for Link-Related
Siebel EAI Effective Dating Operations

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

95

 <FirstName>VARUN</FirstName>
 <LastName>AJWANI</LastName>
 <MiddleName/>
 <PersonUId>0V-19GBUM</PersonUId>
 <PersonalContact>N</PersonalContact>
 <ContactId>0V-19GBUM</ContactId>
 <DateEnteredHousehold>05/16/2012 05:18:50</DateEnteredHousehold>
 <DateExitedHousehold/>
 <PrimaryOrganizationId>0-R9NH</PrimaryOrganizationId>
 <Relationship/>
 </RelatedContact>

 <RelatedContact EDEndDate="12/11/2010" IsPrimaryMVG="Y"
EDStartDate="12/12/2010">
 <ContactIntegrationId/>
 <FirstName>VARUN</FirstName>
 <LastName>AJWANI</LastName>
 <MiddleName/>
 <PersonUId>0V-19GBUM</PersonUId>
 <PersonalContact>N</PersonalContact>
 <ContactId>0V-19GBUM</ContactId>
 <DateEnteredHousehold>05/16/2012 05:18:50</DateEnteredHousehold>
 <DateExitedHousehold/>
 <PrimaryOrganizationId>0-R9NH</PrimaryOrganizationId>
 <Relationship/>
 </RelatedContact>

 <RelatedContact EDEndDate="12/12/2006" IsPrimaryMVG="N"
EDStartDate="12/12/2005">
 <ContactIntegrationId/>
 <FirstName>SARVI</FirstName>
 <LastName>ANANDAN</LastName>
 <MiddleName/>
 <PersonUId>0V-18PMMD</PersonUId>
 <PersonalContact>N</PersonalContact>
 <ContactId>0V-18PMMD</ContactId>
 <DateEnteredHousehold>05/16/2012 05:18:50</DateEnteredHousehold>
 <DateExitedHousehold/>
 <PrimaryOrganizationId>0-R9NH</PrimaryOrganizationId>
 <Relationship/>
 </RelatedContact>

 <RelatedContact EDEndDate="12/12/2008" IsPrimaryMVG="N"
EDStartDate="12/12/2007">
 <ContactIntegrationId/>
 <FirstName>Felix</FirstName>
 <LastName>Aaron</LastName>
 <MiddleName>Q</MiddleName>
 <PersonUId>1-AJ3J</PersonUId>
 <PersonalContact>N</PersonalContact>
 <ContactId>1-AJ3J</ContactId>
 <DateEnteredHousehold>05/16/2012 05:18:50</DateEnteredHousehold>
 <DateExitedHousehold/>

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

Sample XML for Siebel EAI Effective Dating Operations ■ Sample XML for Link-Related
Siebel EAI Effective Dating Operations

96

 <PrimaryOrganizationId>88-14P0K</PrimaryOrganizationId>
 <Relationship/>
 </RelatedContact>

 </ListOfRelatedContact>

 <ListOfRelatedOrganization>
 <RelatedOrganization IsPrimaryMVG="Y">
 <OrganizationName>Default Organization</OrganizationName>
 <OrganizationId>0-R9NH</OrganizationId>
 <OrganizationIntegrationId/>
 </RelatedOrganization>
 </ListOfRelatedOrganization>

 <ListOfRelatedSalesRep>
 <RelatedSalesRep IsPrimaryMVG="Y">
 <Position>Siebel Administrator</Position>
 <PositionDivision>Siebel Administration</PositionDivision>
 <PositionId>0-5220</PositionId>
 <PositionIntegrationId/>
 <Login>SADMIN</Login>
 </RelatedSalesRep>
 </ListOfRelatedSalesRep>

 </Household>

</ListOfHouseholdInterface>

</ns:SiebelHouseholdQueryByExample_Output>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

QueryById Link-Related Operations
The following code shows sample input and output XML for link-related QueryById operations.

Input
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:asi="http://example.com/asi/">

<soapenv:Header/>
<soapenv:Body>

<asi:SiebelHouseholdQueryById_Input>
 <asi:PrimaryRowId>88-30D3R</asi:PrimaryRowId>
</asi:SiebelHouseholdQueryById_Input>

</soapenv:Body>
</soapenv:Envelope>

Sample XML for Siebel EAI Effective Dating Operations ■ Sample XML for Link-Related
Siebel EAI Effective Dating Operations

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

97

Output
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema">

<SOAP-ENV:Body>

<ns:SiebelHouseholdQueryById_Output xmlns:ns="http://example.com/asi/">

<ListOfHouseholdInterface xmlns="http://www.example.com/xml/
Household%20Interface">

 <Household>

 <Category/>
 <CurrencyCode>USD</CurrencyCode>
 <FaxNumber/>
 <HouseholdName>Aul_HouseHold</HouseholdName>
 <HouseholdId>1-EKB3T1</HouseholdId>
 <HouseholdSize/>
 <HouseholdWealth/>
 <Income/>
 <IntegrationId/>
 <PhoneNumber/>
 <Revenue/>
 <Segment/>
 <Status>Active</Status>
 <Type/>

 <ListOfRelatedContact>
 <RelatedContact EDEndDate="" IsPrimaryMVG="Y" EDStartDate="05/16/
2012">
 <ContactIntegrationId/>
 <FirstName>VARUN</FirstName>
 <LastName>AJWANI</LastName>
 <MiddleName/>
 <PersonUId>0V-19GBUM</PersonUId>
 <PersonalContact>N</PersonalContact>
 <ContactId>0V-19GBUM</ContactId>
 <DateEnteredHousehold>01/01/1857 00:00:00</DateEnteredHousehold>
 <DateExitedHousehold/>
 <PrimaryOrganizationId>0-R9NH</PrimaryOrganizationId>
 <Relationship/>
 </RelatedContact>

 <RelatedContact EDEndDate="" IsPrimaryMVG="N" EDStartDate="05/16/
2012">
 <ContactIntegrationId/>
 <FirstName>SARVI</FirstName>
 <LastName>ANANDAN</LastName>
 <MiddleName/>
 <PersonUId>0V-18PMMD</PersonUId>
 <PersonalContact>N</PersonalContact>
 <ContactId>0V-18PMMD</ContactId>
 <DateEnteredHousehold>01/01/1857 00:00:00</DateEnteredHousehold>

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

Sample XML for Siebel EAI Effective Dating Operations ■ Sample XML for Link-Related
Siebel EAI Effective Dating Operations

98

 <DateExitedHousehold/>
 <PrimaryOrganizationId>0-R9NH</PrimaryOrganizationId>
 <Relationship/>
 </RelatedContact>

 <RelatedContact EDEndDate="" IsPrimaryMVG="N" EDStartDate="05/16/
2012">
 <ContactIntegrationId/>
 <FirstName>Felix</FirstName>
 <LastName>Aaron</LastName>
 <MiddleName>Q</MiddleName>
 <PersonUId>1-AJ3J</PersonUId>
 <PersonalContact>N</PersonalContact>
 <ContactId>1-AJ3J</ContactId>
 <DateEnteredHousehold>01/01/1857 00:00:00</DateEnteredHousehold>
 <DateExitedHousehold/>
 <PrimaryOrganizationId>88-14P0K</PrimaryOrganizationId>
 <Relationship/>
 </RelatedContact>

 </ListOfRelatedContact>

 <ListOfRelatedOrganization>
 <RelatedOrganization IsPrimaryMVG="Y">
 <OrganizationName>Default Organization</OrganizationName>
 <OrganizationId>0-R9NH</OrganizationId>
 <OrganizationIntegrationId/>
 </RelatedOrganization>
 </ListOfRelatedOrganization>

 <ListOfRelatedSalesRep>
 <RelatedSalesRep IsPrimaryMVG="Y">
 <Position>Siebel Administrator</Position>
 <PositionDivision>Siebel Administration</PositionDivision>
 <PositionId>0-5220</PositionId>
 <PositionIntegrationId/>
 <Login>SADMIN</Login>
 </RelatedSalesRep>
 </ListOfRelatedSalesRep>

 </Household>

</ListOfHouseholdInterface>

</ns:SiebelHouseholdQueryById_Output>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Update Link-Related Operations
The following code shows sample input and output XML for link-related UPDATE operations.

Sample XML for Siebel EAI Effective Dating Operations ■ Sample XML for Link-Related
Siebel EAI Effective Dating Operations

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

99

Input
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:asi="http://example.com/asi/" xmlns:hous="http://www.example.com/xml/
Household%20Interface">

<soapenv:Header/>
<soapenv:Body>

<asi:SiebelHouseholdUpdate_Input>

<asi:StatusObject/>

<hous:ListOfHouseholdInterface>
 <hous:Household operation="update">
 <hous:EDListOfHouseholdName>
 <hous:HouseholdName>Aaron Household</hous:HouseholdName>
 </hous:EDListOfHouseholdName>
 <hous:HouseholdId>1-3W8</hous:HouseholdId>
 <hous:Type>Single</hous:Type>
 <hous:ListOfRelatedContact>
 <hous:RelatedContact EDStartDate="12/12/2011">
 <hous:ContactId>1-D4U9</hous:ContactId>
 </hous:RelatedContact>
 <hous:RelatedContact EDStartDate="12/12/2004" EDEndDate="12/12/2005">
 <hous:ContactId>0V-18PLP2</hous:ContactId>
 </hous:RelatedContact>
 <hous:RelatedContact EDStartDate="12/12/2002" EDEndDate="12/12/2004">
 <hous:ContactId>0V-19GBUM</hous:ContactId>
 </hous:RelatedContact>
 </hous:ListOfRelatedContact>
 </hous:Household>
</hous:ListOfHouseholdInterface>

</asi:SiebelHouseholdUpdate_Input>

</soapenv:Body>
</soapenv:Envelope>

Output
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema">

<SOAP-ENV:Body>

<ns:SiebelHouseholdUpdate_Output xmlns:ns="http://example.com/asi/">

<ListOfHouseholdInterface xmlns="http://www.example.com/xml/
Household%20Interface">
 <Household operation="update">
 <HouseholdId>1-3W8</HouseholdId>
 <IntegrationId/>
 </Household>
 </ListOfHouseholdInterface>

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

Sample XML for Siebel EAI Effective Dating Operations ■ Sample XML for Link-Related
Siebel EAI Effective Dating Operations

100

</ns:SiebelHouseholdUpdate_Output>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Upsert Link-Related Operations
The following code shows sample input and output XML for link-related UPSERT operations.

Input
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:asi="http://example.com/asi/" xmlns:hous="http://www.example.com/xml/
Household%20Interface">

<soapenv:Header/>

<soapenv:Body>

<asi:SiebelHouseholdInsertOrUpdate_Input>

 <asi:StatusObject/>

 <hous:ListOfHouseholdInterface>
 <hous:Household>
 <hous:EDListOfHouseholdName>
 <hous:HouseholdName>A2</hous:HouseholdName>
 </hous:EDListOfHouseholdName>
 <hous:HouseholdId>2</hous:HouseholdId>
 <hous:ListOfRelatedContact>
 <hous:RelatedContact EDStartDate="12/12/2011">
 <hous:ContactId>1-D4U9</hous:ContactId>
 </hous:RelatedContact>
 <hous:RelatedContact EDStartDate="12/12/2004" EDEndDate="12/12/
2005">
 <hous:ContactId>0V-18PLP2</hous:ContactId>
 </hous:RelatedContact>
 <hous:RelatedContact EDStartDate="12/12/2002" EDEndDate="12/12/
2004">
 <hous:ContactId>0V-19GBUM</hous:ContactId>
 </hous:RelatedContact>
 </hous:ListOfRelatedContact>

 </hous:Household>

</hous:ListOfHouseholdInterface>

</asi:SiebelHouseholdInsertOrUpdate_Input>

</soapenv:Body>
</soapenv:Envelope>

Sample XML for Siebel EAI Effective Dating Operations ■ Sample XML for Link-Related
Siebel EAI Effective Dating Operations

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

101

Output
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema">

<SOAP-ENV:Body>

<ns:SiebelHouseholdInsertOrUpdate_Output xmlns:ns="http://example.com/asi/">

<ListOfHouseholdInterface xmlns="http://www.example.com/xml/
Household%20Interface">
 <Household operation="insert">
 <HouseholdId>2</HouseholdId>
 <IntegrationId/>
 </Household>
</ListOfHouseholdInterface>

</ns:SiebelHouseholdInsertOrUpdate_Output>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope

Synchronize Link-Related Operations
The following code shows sample input and output XML for link-related SYNCH operations.

Input
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:asi="http://example.com/asi/" xmlns:hous="http://www.example.com/xml/
Household%20Interface">

<soapenv:Header/>
<soapenv:Body>

<asi:SiebelHouseholdSynchronize_Input>

<asi:StatusObject/>

<hous:ListOfHouseholdInterface>
 <hous:Household>
 <hous:EDListOfHouseholdName>
 <hous:HouseholdName>123</hous:HouseholdName>
 </hous:EDListOfHouseholdName>
 <hous:HouseholdId>296-5062875</hous:HouseholdId>

 <hous:ListOfRelatedContact>
 <hous:RelatedContact EDStartDate="2/2/2010" EDEndDate="1/1/2011">
 <hous:ContactId>04-LLSQ5</hous:ContactId>
 </hous:RelatedContact>
 </hous:ListOfRelatedContact>
 </hous:Household>
 </hous:ListOfHouseholdInterface>

</asi:SiebelHouseholdSynchronize_Input>

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

Sample XML for Siebel EAI Effective Dating Operations ■ Sample XML for Link-Related
Siebel EAI Effective Dating Operations

102

</soapenv:Body>
</soapenv:Envelope>

Output
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema">

<SOAP-ENV:Body>

<ns:SiebelHouseholdSynchronize_Output xmlns:ns="http://example.com.com/asi/">

<ListOfHouseholdInterface xmlns="http://www.example.com/xml/
Household%20Interface">
 <Household operation="update">
 <HouseholdId>296-5062875</HouseholdId>
 <IntegrationId/>
 </Household>
</ListOfHouseholdInterface>

</ns:SiebelHouseholdSynchronize_Output>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Related Topics
“About Siebel EAI Effective Dating Operations” on page 81

“Sample XML for Field-Related Siebel EAI Effective Dating Operations” on page 81

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

103

Index

Symbols
#PCDATA, mapping of 41

A
attributes

described and example 20
DTD wizard, used by to create XML integration

object 41

B
base64, using to convert binary file to Siebel

database 78
binary file, inserting into the Siebel

database 78
business services. See XML converter

business service details

C
Canonical section, integration object data

type 20
character set, declaring in use 12
component container element, in Siebel

integration object documents 24
component, described 21
connectors, about and table of 42

D
data flow, document-to-integration object

flow (diagram) 10
Document Type Definition 27
Document Type Definitions. See DTDs
DTD Wizard

integration objects, about using to
create 40, 43

integration objects, creating procedure 29,
30, 39, 40

DTDs
metadata support, about 11
parentheses, about using for complex

hierarchical structures 43

E
EAI XML Converter

about and XML document to integration object

(diagram) 46
converter comparison, table of 62
Integration Object Hierarchy to XML

Document, input and output
arguments (table) 48

methods, described 47
parameters, described 47
XML Document to Integration Object

Hierarchy method, input and output
arguments (table) 49

EAI XML Read from File business service
about 46
methods, described 66
Read Property Set method, arguments

(table) 68
Read Siebel Message method, input

arguments (table) 67
Read Siebel Message method, output

arguments (table) 68
Read XML Hierarchy method, output

arguments (table) 69
EAI XML Write to File business service

about 46
methods, described 63
Write EAI Message method, input arguments

(table) 64
Write Property Set method, input arguments

(table) 65
effective dating operations, sample XML

code 81
either/or relationships, about 42
elements

described and example 20
mapping to components, about 40
naming of 21
#PCDATA, mapping of 41

empty XML tags, removing
adding parameter as process property in

workflow 79
adding parameter to property set in input XML

file 78
entities in XML at run-time, support of 40
escape characters, using in XML

documents 11
External section, integration object data

type 20

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

Index ■ H

104

H
How XML Names Are Derived from

Integration Objects 21

I
incoming XML scenario

external XML and DTD, setting up 72
instances, described 21
integration component container, in Siebel

integration object documents 24
Integration Component Elements 23
integration components

element, in Siebel integration object
documents 23, 24

properties, table of 37
Integration Field Elements 25
integration object 19
Integration Object Hierarchy to XML

Document method
arguments, input and output, table of 48
described 47

integration objects
about and hierarchical architecture

(diagram) 19
attributes, about 41
component or field name, about 41
connectors, about and table of 42
elements, about mapping to components 40
integration object data type, table of 20
#PCDATA, about mapping element to 41
properties, table of 36, 37, 38
XML integration object, about and object

diagram 20
XML Parent Field, about 42

integration objects, creating
DTD Wizard, about using to create 40, 43
DTD Wizard, creating procedure 29, 30, 39,

40
IntObjectName 22

J
JPEG images

Siebel database, inserting into 78

M
MessageId 22
metadata

described 9
support of 11

N
name, about component or integration

object field 41
names

of XML elements 21

O
Object List Element 23
one or the other relationships, about support

by the DTD Wizard 42
outbound integration, scenario setting

up 71, 72

P
Property Set to XML method

described 60
output arguments, table of 58, 59, 61

property sets
properly-formatted, example of 16

R
Read Property Set method

arguments, table of 68
described 66

Read Siebel Message method
described 66
input arguments, table of 67
output arguments, table of 68

Read XML Hierarchy method
described 66
output arguments, table of 69

relationships, supported by DTD Wizard 42

S
scenarios

integration using external XML and a DTD 72
integration using Siebel XML 71, 72

Schema Generator Wizard, about 11
screen scraping, about 9
Siebel Business Applications, XML support 9
Siebel database, inserting binary file into 78
Siebel integration object document

component container element, about 24
integration component element, about and

example 23, 24
Siebel XML

scenario, integration using 71, 72
SiebelMessage Element 22

W
Write Property Set method

described 63
input arguments, table of 65

Write Siebel Message method

Index ■ X

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

105

described 63
input arguments, table of 64

Write XML Hierarchy method
described 63

X
XDR, about metadata support 11
XML

about 9
sample code for effective dating

operations 81
Siebel Business Applications support for 9

XML Converter
about and XML document to property set

representation (diagram) 60
converter comparisons, table of 62
methods, described 53, 60
Property Set to XML method, arguments

(table) 58, 59, 61
XML converters

converter comparison, table of 62
EAI XML Converter, about and XML document

to integration object (diagram) 46
EAI XML Converter, using 47
EAI XML Read from File business service,

using 66
EAI XML Write to File business service,

using 63
property sets, example of properly-

formatted 16
XML Converter, about and XML document to

property set representation
(diagram) 60

XML Converter, using 60
XML document, using as input in a workflow,

about and example 75, 77
XML Hierarchy Converter, about and

representation of XML document
structure (diagram) 51, 53

XML Hierarchy Converter, using 53
XML Data Reduced, about metadata

support 11
XML Document to Integration Object

Hierarchy method
described 47
input arguments, table of 49

XML Document to XML Hierarchy method
described 53
input arguments, table of 54
output arguments, table of 55

XML documents
attributes, described and example 20
character set in use, declaring 12
data flow, document-to-integration object

flow (diagram) 10
element, described and example 20
escape characters, using and table of 11
example 25
input in a workflow, about using as 75
input in a workflow, sample XML

document 75, 77
XML DTD 27
XML elements. See elements
XML Hierarchy Converter

about and representation of XML document
structure (diagram) 51, 53

converter comparison, table of 62
XML Document to XML Hierarchy method,

input arguments (table) 54
XML Document to XML Hierarchy method,

output arguments (table) 55
XML Hierarchy to XML Document method,

input arguments (table) 55
XML Hierarchy to XML Document method

described 53
input arguments (table) 55

XML integration objects
about and object diagram 20
integration object data type, table of 20

XML Parent Field, about 42
XML section, integration object data type 20
XML Tag attribute 21
XML tags, removing empty 78
XML to Property Set method

described 60

XML Reference: Siebel Enterprise Application Integration Siebel Innovation
Pack 2014

Index ■ X

106

	Contents
	1 What’s New in This Release
	What’s New in XML Reference: Siebel Enterprise Application Integration, Siebel Innovation Pack 2014
	What’s New in XML Reference: Siebel Enterprise Application Integration, Version 8.1/8.2

	2 Overview of Support for XML in Siebel Business Applications
	About XML
	Siebel CRM Integration and XML
	XML Integration Objects
	Bidirectional Data Flow

	Metadata Support for XML
	Special Characters in XML Documents
	Special (Escape) Characters
	Declaring the Character Set in Use

	3 XML Representation of Property Sets
	Mapping Between Property Sets and XML
	Element and Attribute Naming
	Property Set Examples and Their XML Representation
	An Arbitrary Property Set
	A Siebel Message
	An XML Hierarchy

	Properly Formatted Property Sets

	4 XML Representation of Siebel Integration Object Instances
	About Representing Siebel Integration Object Instances as XML Documents
	Integration Objects
	Elements and Attributes
	How XML Names Are Derived from Integration Objects
	Elements Within a Siebel Integration Object Document
	SiebelMessage Element
	Attributes
	IntObjectName
	MessageId

	Child Elements

	Object List Element
	Attributes
	Child Elements

	Integration Component Elements
	Attributes
	Child Elements

	Component Container Elements
	Attributes
	Child Elements

	Integration Field Elements
	Child Elements

	Example XML Document
	XML Schema Definitions (XSDs)
	Document Type Definitions (DTDs)

	5 XML Integration Objects and the XSD Wizard
	Creating XML Integration Objects with the XSD Wizard
	Selecting the Source Object in the XSD Wizard

	Supported XSD Elements and Attributes
	Structure of XSD XML Integration Objects
	XSD-Specific Integration Object Properties
	XSD-Specific Integration Object User Properties
	XSD-Specific Integration Component Properties
	XSD-Specific Integration Component User Properties
	XSD-Specific Integration Component Field Properties
	XSD-Specific Integration Component Field User Properties

	6 XML Integration Objects and the DTD Wizard
	Creating XML Integration Objects with the DTD Wizard
	Selecting the Source Object in the DTD Wizard

	How the DTD Wizard Creates XML Integration Objects
	Elements
	Attributes
	Element’s #PCDATA
	Names
	Hierarchy
	Connectors
	Cardinality

	7 Siebel XML Converters
	About Siebel XML Converters
	EAI XML Converter
	EAI XML Converter Parameters
	EAI XML Converter Business Service Methods
	Integration Object Hierarchy to XML Document Method Arguments
	XML Document to Integration Object Hierarchy Method Arguments

	XML Hierarchy Converter
	XML Hierarchy Representation in Siebel Business Applications
	XML Hierarchy Converter Business Service Methods
	XML Document to XML Hierarchy Method Arguments
	XML Hierarchy to XML Document Method Arguments

	EAI Integration Object to XML Hierarchy Converter
	EAI Integration Object to XML Hierarchy Converter Business Service Methods
	Integration Object Hierarchy to XML Hierarchy Method Arguments
	XML Hierarchy to Integration Object Hierarchy Method Arguments

	XML Converter
	XML Converter Business Service Methods
	Property Set To XML Method Arguments
	XML To Property Set Method Arguments

	Siebel XML Converter Business Service Comparison
	EAI XML Write to File Business Service
	Write Siebel Message Method Arguments
	Write Property Set Method Arguments
	Write XML Hierarchy Method Arguments

	EAI XML Read from File Business Service
	Read Siebel Message Method Arguments
	Read Property Set Method Arguments
	Read XML Hierarchy Method Arguments

	8 Scenarios for Siebel EAI XML Integration
	Scenario 1: Process of Inbound Integration Using Siebel XML
	Creating the XML Schema
	Creating the Workflow
	Running the Integration

	Scenario 2: Process of Outbound Integration Using External XML and an XSD or DTD
	Creating the Integration Object
	Mapping the Data
	Running the Integration

	A Using XML Files
	Using an XML Document as Input
	Inserting File Attachments Using XML
	Removing Empty XML Tags
	Adding the RemoveEmptyTags Parameter to a Property Set in an Input XML File
	Adding the RemoveEmptyTags Parameter as a Process Property in a Workflow

	B Sample XML for Siebel EAI Effective Dating Operations
	About Siebel EAI Effective Dating Operations
	Related Topics

	Sample XML for Field-Related Siebel EAI Effective Dating Operations
	Insert Field-Related Operations
	Input
	Output

	QueryById Field-Related Operations
	Input
	Output

	QueryBy Example Field-Related Operations
	Input
	Output

	Delete Field-Related Operations
	Input
	Output

	Synchronize Field-Related Operations
	Input
	Output

	Upsert Field-Related Operations
	Input
	Output
	Related Topics

	Sample XML for Link-Related Siebel EAI Effective Dating Operations
	Insert Link-Related Operations
	Input
	Output

	QueryByExample Link-Related Operations
	Input
	Output

	QueryById Link-Related Operations
	Input
	Output

	Update Link-Related Operations
	Input
	Output

	Upsert Link-Related Operations
	Input
	Output

	Synchronize Link-Related Operations
	Input
	Output
	Related Topics

	Index

