Oracle FLEXCUBE Enterprise Limits and Collateral
Management ® 12.1
Uploading Records from Upload Table

May 2014

ORACLE
FINANCIAL SERVICES

Uploading Records From Upload Tables

Contents

1.

w

PIETACE ...ttt bbbt E R R E bR R R R £ R e R b e e e eE Rt Rt Rt bt e n e e e e r b nre s 3
1.1 0 o [T o OO OSSPSR 3
12 REIAEA DOCUMENTS ...ttt sttt sttt et e bt e s et et sb et e s beebe e s e et e sbesaesbesbeabeeseeneeneeseentas 3

10T [1Tox 1o o PSSRSO 4
2.1 HOW 10 USE ThiS GUITE ...ttt sttt sttt et s et e e naenbesbeeneeseeneeneeneennas 4

Overview of BUlK Upload Of RECOISoueiiiiriiieiiiiieisieese bbbt 4

UPIOBA FIAMEWOIK ...ttt bt b et b et b et b bt b et e bt bt eb e s b e s e ebenb e st eb e sbe e et e nbe e 4
4.1 INF= Vg LT a0 @101 YZ=T 41 o o USSR 5
4.2 PIOCESS TADIE ... b bbbt bt bbbt b e e e bbbt bt bt e e b nne e 5
4.3 L] (oL To B I o =TSPTSRO 6

431 GUITE LENES. .. ettt ettt bbbt bt bbb e h b e et E e bt bt E £ R e e R b e e e R bRt bt b e nr e e nenre e 7
4.4 Trigger 0N UPIoad TabIe........ooiiiiie bbb bbbt 9

o R TV o[- TS 9
4.5 UPIOad AdapLer PACKAGEveueitirieiiiterieieite ettt bbbt ettt bbbttt sb et eb e b e abenreneas 9

ODT CaPADITITIES ...ttt b b st bbbt bbbt b e bbbt ne e 9
5.1 Configuration of Upload Table Details in RADXMLcccoiiiiiiieieese et 10
5.2 GENEIALEA UNITS. ...ttt et bbbttt b bbbt bt bt e ae e b e et e b e sb e bt e be e e e nnenbe e 14
5.3 UPGrade CapabilitiES.........ccviiiiiiece ettt r et e teebeeraenren 14

IMHISCEITANEOUS ...ttt e e b bbbt bbbt bt bt e bt e e e e e e e bt eb e bt eb e e e e b et sbe e 15
6.1 F AN o LT o Lo T - PP 15

Uploading Records From Upload Tables

1. Preface

This document describes standard framework in FLEXCUBE for uploading records from
upload tables.

1.1 Audience
This document is intended for FLEXCUBE Application developers/users that use
development Workbench to develop various FLEXCUBE components.

To Use this manual, you need conceptual and working knowledge of the below:

Proficiency Resources

FLEXCUBE Functional Architecture Training programs from Oracle
Financial Software Services.

FLEXCUBE Technical Architecture Training programs from Oracle
Financial Software Services.

FLEXCUBE Screen Development 04-Development_WorkBench
_Screen_Development-I.docx

Working knowledge of Web based Self Acquired

applications

Working knowledge of Oracle Database | Oracle Documentations

Working knowledge of PLSQL & SQL | Self Acquired
Language

Working knowledge of XML files Self Acquired

1.2 Related Documents
04-Development_WorkBench _Screen_Development-1.docx
05-Development_WorkBench _Screen _Development-11.docx

Uploading Records From Upload Tables

file:///C:/Users/VINIT/Desktop/ODT_12.0/04-Development_WorkBench%20_Screen_Development-I.docx
file:///C:/Users/VINIT/Desktop/ODT_12.0/05-Development_WorkBench%20_Screen_Development-II.docx

2. Introduction
2.1 How to use this Guide

The information in this document includes:

e Chapter 2, “Introduction”

e Chapter 3, “Overview of Bulk Upload of Records"
e Chapter 4, “Upload Framework”
e Chapter 5, "ODT Capabilities”

3. Overview of Bulk Upload of Records

Bulk upload of Records to FLEXCUBE through upload tables is commonly used for
uploading data from an external system periodically.

Data is populated in the upload tables through Macro Excel Upload or any other utility.
(Note: Data Population in upload tables should be taken care by custom team .ODT tool
does not provide feature for data population)

Thereafter upload routine is invoked from the Screen CVDUPLOD for the particular
function id. Upload routine processes each record from upload tables. Status of processing
will be updated in a process table for monitoring purpose.

Upload routine should follow the same flow as that of Gateway/FLEXCUBE User Interface
to ensure integrity and consistency for records uploaded through different routines.

This necessitates the need for a standard framework for uploading records from upload
tables.

A standard framework for the same has been developed using ODT which is described in
the sections below.

4. Upload Framework

Upload Framework supports upload of both maintenance and transaction screens.

Different steps involved in Bulk Upload can be enlisted as:

1) Data is populated in the upload tables through Macro Excel Upload or any other
utility.

2) Trigger on Master Upload Table would insert entries into a process table with
Upload Status as ‘U’ (Unprocessed). One entry would be inserted into process table
for each record. Function id would also be updated in the process table along with
other information.

3) Upload routine is invoked for a particular function id by the user from
CVDUPLOD screen/ stub.

4) On invoking the routine, system would process all the unprocessed records from
the process table for the particular function id. This would be done using a cursor
on process table

5) An adapter package converts the upload table types to base table type data. Then it
invokes the main package of the function id.

Uploading Records From Upload Tables

6) After processing of each record , process table columns for uploaded status, error
code etc would be updated by the system

From the above steps, we can derive at the components required for a particular
function id to be brought under this framework.

1) Process Table

2) Upload Tables

Q1 =~ W

) Trigger on Master Upload Table
) Adapter package for Upload Routine
) Wrapper code in CVDUPLOD screen processing logic to call the adapter package

based on the function id

4.1 Naming Convention:

Framework does not enforce a standard naming convention for upload
tables. Existing upload tables can be re-used in this framework.
But if any new upload table is introduced, it is recommended to follow
naming convention as illustrated below:
Fourth Letter of base table to be replaced with U
Example:

Base Table Name: STTM_CUSTOMER

Upload Table Name: STTU_CUSTOMER

Recommended to follow naming convention for consulting / client
developed
Upload Table Name: Table name _U_EXTGBL

4.2 Process Table

For Uploading, each record is processed from a cursor on process tables.
This is common across all function ids.
There are 2 process tables

CSTB_EXT_CONTRACT_STAT :
This is the process table for all transaction Function ids.

Name Type Nullable
BRANCH_CODE VARCHAR2(3 CHAR) N
SOURCE VARCHAR2(20 CHAR) N
PRODUCT_CODE VARCHAR2(4 CHAR) Y
COUNTERPARTY VARCHAR2(35 CHAR) Y
EXTERNAL_INIT_DATE DATE Y
MODULE VARCHAR2(2 CHAR) Y
EXTERNAL_REF_NO VARCHAR2(20 CHAR) N
IMPORT_STATUS VARCHAR2(1 CHAR) Y
CITICUBE_REF_NO VARCHAR2(16 CHAR) Y
POST_IMPORT_STATUS CHAR(1 CHAR) Y
EXPORT_STATUS CHAR(1 CHAR) Y
USER_ID VARCHAR2(12 CHAR) Y
JOBNO NUMBER(2) Y

Uploading Records From Upload Tables

CONTRACT_REF_NO VARCHAR2(16 CHAR) Y
ERR_CODE VARCHAR2(11 CHAR) Y
ERR_MESSAGE VARCHAR2(255 CHAR) Y
ACTION_CODE VARCHAR2(10 CHAR) Y
FUNCTION_ID VARCHAR2(8 CHAR) Y
EXTERNAL_SEQ_NO NUMBER(22) N
UPLOAD_ID VARCHAR2(16 CHAR) Y

Here a particular record from upload Tables would be picked by combination of
EXTERNAL_REF_NO, EXTERNAL_SEQ_NO, BRANCH_CODE and SOURCE .

Columns like EXPORT_STATUS, CONTRACT_REF_NO, ERR_CODE and ERR_MESSAGE
would be updated by the system after processing.

UPLOAD_ID signifies the thread of execution. Upload routine can be invoked in

multiple threads if multiple upload ids are present.

STTB_UPLOAD_MASTER::

This is the process table for all maintenance Function ids.

Name Type Nullable
MAINTENANCE_SEQ_NO VARCHAR2(16 CHAR) N
BRANCH_CODE VARCHAR2(3 CHAR) N
SOURCE_CODE VARCHAR2(15 CHAR) N
MAINTENANCE_TYPE VARCHAR2(15 CHAR) Y
UPLOAD_STATUS CHAR(1 CHAR) Y
UPLOAD_INITIATION_DATE | DATE Y
USER_ID VARCHAR2(12 CHAR) Y
ACTION_CODE VARCHAR2(15 CHAR) Y
SOURCE_SEQ_NO NUMBER N
UPLOAD_ID VARCHAR2(16 CHAR) Y

Here a particular record from upload Tables would be picked by combination of
MAINTENANCE_SEQ NO, SOURCE_SEQ NO, BRANCH_CODE and
SOURCE_CODE.

UPLOAD_STATUS would be updated by the system after processing a record.
UPLOAD_ID signifies the thread of execution. Upload routine can be invoked in
multiple threads if multiple upload ids are present

4.3 Upload Tables

Each Data source in the function id, if required, should be mapped to
corresponding Upload Tables in ODT.
e Data Source Column Mapping
Mapping of Upload Table Columns to Base Table Columns has to be done
after proper analysis. Avoid including internal processing columns/invisible
field columns etc to upload Table. This will reduce complexity of upload
table.

Uploading Records From Upload Tables

4.3.1 Guide Lines
Some guidelines for mapping upload table/columns with base table/columns are
enlisted below:

Master Data Source of the Function Id should always be a mapped to an
Upload Table (except in case of some call forms where it is not feasible). This
upload table would be referred to as Master Upload Table

Upload Tables should be mapped only to Normal Data Sources as per ODT
configuration. For query, in only and summary data sources; upload tables
are not required

More than one data source in the Function Id can be mapped to a single
upload table. Note that all the base tables should one to one relationship with
each other in this scenario.

Example: Both CSTB_CONTRACT and FXTB_CONTRACT_MASTER can be
mapped to the same upload table, say, FXTB_UPLOAD_MASTER.

If the master data source is a common table used across many functions
(Example: CSTB_CONTRACT), try grouping it with any of its child table; so
that the master upload table is unique for the function id.

Example: Both CSTB_CONTRACT and FXTB_CONTRACT_MASTER can be
mapped to the same upload table, say, FXTB_UPLOAD_MASTER.

It is recommended to provide the same column names to both base table
column and upload table column. This avoids complexity to both developer
and user.

Apart from Mapped Columns from Base Table, Upload Table should have a
standard set of columns as defined below

COLUMN NAME Remarks
SOURCE_CODE Specifies External Source
Specifies External Reference Number.
I\SAC,;?JNFSI%IIE\ITARN%:E/ SEO NO SOURCE_REF is used for Contract upload tables
SEQ while MAINTENANCE_SEQ_NO for maintenance
upload tables
SOURCE_SEQ_NO Specifies Source Sequence Number.
BRANCH_CODE Specifies branch Code
This column is required only in Upload Master
table.

This is mandatory if same upload master tables are
used for multiple function ids. Example : Parent and
FUNCTION_ID Child Functions

This is required only in Upload Master Table. If not
present , then only NEW Operation would be
supported by upload framework for the Function
ACTION _CODE Id.

This is required only in Upload Master Table.
Different values can be inserted for this column in
batches to process upload routine in multiple
threads.

This is an optional column; mostly used in
UPLOAD_ID transaction screens

Uploading Records From Upload Tables

Optional. Required only if Upload Table and Master
Table are the same.eg: PC contract.

UPLOAD_STATUS This is used mostly in transaction screens
Module Code of the Function Id.
MODULE Optional; used mostly in transaction screens

Optional. Specifies the Source Operation code. This
needs to present in only master upload table, if any.
If not present , then system would try to derive the
default SOURCE_OPERATION for particular action
SOURCE_OPERATION code

SOURCE_CODE, SOURCE_REF / MAINTENANCE_SEQ_NO, SOURCE_SEQ_NO
and BRANCH_CODE form the composite primary key for any master upload table.
For detail upload tables, the 4 columns mentioned above along with unique
identifier for the record, if any, forms the primary key

FUNCTION_ID, ACTION_CODE, UPLOAD_ID, UPLOAD_STATUS, MODULE and
SOURCE_OPERATION are optional columns in Master Upload Table

e For Transaction screens, EXTERNAL_REF_NO of upload table has to be
mandatorily mapped to a base table column. This is required to derive the
reference number in case of any modify operation. Most often, this column
can be found in CSTB_CONTRACT.

e More than one data source can be mapped to the same upload table
differentiated by upload table where clause.

For Instance; if two different legs of a transaction (buy and sell) of a deal are
captured by two data sources in function id (same table with different aliases); then
one upload table can be used for both the tables. Upload where clause for both these
data source should be such that the adapter picks proper data to base table data types
Note that in this scenario, both the data sources should not be directly related
to each other. Difference has to be noted between this scenario and the case
where 2 data sources with one to one relationship is mapped to same upload
table.

e For call form function ids, master data source would often be a view for
propagating record key to the call form. In such instances master data
sources should not have any upload table mapped to it.

Example: CSTBS_CONTRACT__ADYV is the master data source for Advice Call
form but data is uploaded only in CSTB_CONTRACT_EVENT_ADVICE. Hence
upload table should not be mapped to CSTBS_CONTRACT_ADV

Sample Master Upload Table definitions are attached:

— I
Mainteneace_Master_Upload_Table.sql TXN_MASTER_UPLOAD_TABLE.sq|
DETAIL_UPLOAD_TABLE.sql Callform_Upload_table.sql

Uploading Records From Upload Tables

44 Trigger on Upload Table
Triggers would be created on Master Upload Table to insert records into Upload
Process Tables on insert of records in upload tables. For Uploading, each record is
processed from a cursor on process tables.

4.4.1 Guide Lines

e If column for action code is not present in the master upload table; then
Action code column in process table would be updated as NEW

e If upload routine is present for parent and child function ids; then the master
upload table would be the same. In such cases, FUNCTION_ID column
should be present in the master upload table and the same would be inserted
into the process table. Hence the same trigger would hold good for all the
child screens.

e There would be no separate trigger for any call form function ids as call form
records does not exist independently.

Sample Upload Table Trigger is attached

7 :
Maintenance_Upload_Trigger.sql Txn_Upload_Trigger.sql

45 Upload Adapter Package
Upload Packages would handle type conversions and processing records after
conversion.

¢ Naming Convention
Module|]’ pks ’||Functionld|]’ Ext_Upload’
Example : fxpks_fxfdtronl_ext_upload
Based on structure, upload packages can be broadly classified as

1) Transaction Upload Adapter
Records will be processed based on cursor on CSTB_EXT_CONTRACT_STAT.
Code to handle SUBSYSTAT will be present.
2) Maintenance Upload Adapter
Records will be processed based on cursor on STTB_UPLOAD_MASTER
3) Transaction Call forms Upload Adapter
It will be called from Transaction Upload Package.
Code to update SUBSYSSTAT will be present
4) Maintenance Call Forms Upload Adapter
It will be called from Maintenance Upload Packages

5. ODT Capabilities

ODT supports extensible upload framework.
Upload Framework components can be generated by the tool through configurations.

Uploading Records From Upload Tables

5.1 Configuration of Upload Table Details in RADXML

Upload Table :
In data source definition screen, upload table name for the data source has to be specified.

Function Generation -

B xE¥Fa

Action| Lcad Function Type| Parent Function Category| Transaction
Function Id Parent Function Header Terrplate None v
Save XL Path FXDTRONL_R Parent Xml Footer Terrplate None -
Search Data Source Details =0
[aPreferences Data Source ©STBS_CONTRACT Parent -
= [DataSource
M Yes v =
B 02 CSTES, CONTRAGT laster Relation z
[3FXTBS_CONTRACT_MASTER Relation Type ~ OneToOne ~ Where Clause
® (4 CSTBS_CONTRACT_EVENT_LOC Multi Recorg Mo~ Default Order By =)
[FXTBS_CONTRACT_ROLLOVER PK Cols * [CONTRACT_REF_NO =] Type Normal -
® [4FXTBS_CONT_OPTION_DTLS PK Types * WARCHARZ = I~ Mandatory
® [AFXTBS_NETTED_SETTLEMENTS Usload Tanle FXTE_UPLOAD_MASTER
® CaFTTBS_UPLOAD_YREF =
@ C30STBS. Ul COLUNNS Upload Where Clause |

® [3FXVWS_CONTRACT_MASTER
[FXTBS_NETTED_SETTLEMENTS,
@ [Listofvalues
® [DataBlocks
® [5creens
® [Fieldsets
[CaActions
@ callForms
[LaunchForms
[Summary

Figure 1: Specifying Upload Table for a Data Source in ODT

¢ Avoid providing Synonyms in Upload Table field.

¢ Upload Tables should be mapped only to Normal Data Sources

e The standard set of columns for the upload table can be viewed by clicking on
the button next to Upload table.

e SOURCE_CODE, SOURCE_REF, SOURCE_SEQ NO and BRANCH_CODE
will be assumed as part of primary key of any upload table.
Make note of the guide lines explained in previous section while providing
Upload Table Name

Upload Table Standard Columns:

Refer previous section for the standard columns which are part of the upload table.

Default column names are provided in the screen. Source Operation would be not present in
the table by default.

Developer can change the column names of the standard columns as desired. This could be
useful if existing upload tables are re-used.

Example : Name of the column for External reference number can be changed from SOURCE_REF to
EXT_REF_NO

10
Uploading Records From Upload Tables

Table Standard Columns

Source code

External Reference Number
Source Sequence Number
Branch Code

Function Id

Action Code

Upload Id

Module Code

Source Operation

Columns

[SOURCE_CODE

[SOURCE_REF

[SOURCE_SEQ_NO

[BRANCH_CODE

[FuncTION_ID

[ACTION_CODE

[uPLOAD_ID

[MODULE

HNot Required ke

3 I o o

Figure 2: Standard Columns for Master Upload Table of Transaction Screen

Table Standard Columns

Source code

External Reference Number
Source Sequence Mumber
Branch Code

Function Id

Action Code

Source Operation

Columns

[SODURCE_CODE

[MAINTENANCE_SEQ_NO

[SOURCE_SEQ_NO

[BRANCH_CODE

[Column l

[FuncTioN_ID

[sCTION_CODE

Not Required -

Figure 3: Standard Columns for Master Upload Table of Maintenance Screen

Uploading Records From Upload Tables

11

Table Standard Columns

Source code
External Reference Number
Source Sequence Number

Branch Code

Columns

Not Required -

[SOURCE_CODE

|
[SOURCE_REF |
[SOURCE_SEQ_NO | B
[BRANCH_CODE | B

Upload Table Where Clause:

Figure 3: Standard Columns for Detail Upload Table

If all the records in an upload table is not be mapped to a particular data source; then
upload table where clause can be specified to filter the records.
This is applicable only when the data sources involved are not directly related with each other.

[Preferences

= [aDataSource
i [SETBS_DEAL_MASTER
i [SETBS_DEAL_DETAIL__FROM
» CaBETES BEABETAL T
® [SETBS_DEAL_MASTER__A
® [SETBS_YTM_MASTER
@ [SETB_DEAL_CERTIFICATE_DET/
@ [SETBS_DEAL_MASTER__B
@ [SETB_DEAL_DETAIL__LIMITSFR(Up
® [SETB_DEAL_DETAIL__WALKINFF
[[SETBS_DEAL_DETAIL__LIMITST(
(3 SETBS_DEAL_DETAIL__WALKIN

[_dPreferences

= [DataSource
® [SETBS_DEAL_MASTER
@ Caf FROf
® [SETBS_DEAL_DETAIL__TO
® [SETBS_DEAL_MASTER__A
® 3 SETBS_YTM_MASTER

I Data Source SETBS_DEAL_DETAIL__TO

Relation Type OneToOne ~
Multi Record No ~
Bi Cols * DEAL_REFERENCE_NO-VERSION~BUY[%|

PK Typas * VARCHAR2~NUMBER~VARCHARZ =]
Upload Tanle SETB_UPLOAD_DEAL_DETAIL]

ad Where Clause BUY_SELL IN (BE,CB'LG) =]

I Data Source SETBS_DEAL_DETAIL__FROM

TIEETET T
Relation Type OneToOne =
Wulti Record Mo =

@ 3 SETB_DEAL_CERTIFICATE_DET/
[SETBS_DEAL_MASTER__B
1+ [SETB_DEAL_DETAIL__LIMITSFR(

1© [SETB_DEAL_DETAIL __WALKINFF

PK Cols * [DEAL_REFERENCE_NO-VERSION~BU @

PK Types * VARCHAR2~-NUMBER~VARCHAR2 EI

Upload Table |SETB_UPLOAD_DEAL DETAIL L

pload Whers Clause BUY_SELLIN (CS/B5,WI) =]

© [SETBS_DEAL_DETAIL__LIMITST(
[SETBS DEAL DETAIL WALKIN

Parent SETBS_DEAL_MASTER -
Relation |Selbs_deal_master.Deal_Reference = seﬂé‘
Where Clause | =
Default Order By | =l
Type MNormal =
[~ Mandatory
Parent SETBS_DEAL_MASTER -
Relation S€tbs_deal_master.Deal_Reference = sl
Where Clause | =)

]

Default Order By
Type Nomal -
[~ Mandatory

Figure 4: Usage of Upload Where Clause for Differentiating data of multiple Data sources

Uploading Records From Upload Tables

12

Upload Table Where clause would be applied on the upload table; hence upload table columns
should be used in the clause

Upload Table Column:

All the data source columns which are included in the RADXML would be assumed to be

part of the upload table.
¢ By default, name of the Upload Table column would be assumed to be same as that of

the base table name
e If the name of the upload table column has to be different from base table column; then

the same has to be explicitlz mentioned in Upload Table Column Field

Action| Load
Function Id
Save XML Path FXDTRONL_R

Function Type| Parent

Parent Function

Function Category| Transaction

Header Template None -

BxE¥Fa

Search EXT

[SPOT_DATE

[SPOT_LCY_EQLNT

[PREMIUM_DISCOUNT_AMT
(1 PREW_DISC_INDICATOR
[INTEREST_RATE_BOT_CC®
(4 INTEREST_RATE_SOLD_Ct
[3DEALER

(23 EFFECTIVE_INT_RATE

(3 LCY_EQUIVALENT

[SPOT_RATE

[31BOT_AC

[EVENT_CODE

(1 SWAP_REFERENCE_NO
[TAX_SCHEME

(4 SET_SOLD_GCY

[PARENT_EXT_CONTRACT_|
[1BOT_LEG_RATE
[SOLD_LEG_RATE
[4BOT_LEG_PREM_DISC
[SOLD_LEG_PREM_DISC
(4 LCY_DISCOUNTED_AMOUN
[SPREAD_DEFN
(3 INTERNAL_SWAP_REF_NO
[EXCLUDE_FROM_CLS
(4 CLS_ELIGIBLE
(3 NETTING_MODE
[FX_NETTING_CUSTOMER
[RISK_RATE
[0 WEIGHTED_RISK_AMT
[LIMITS_TRACKING_REQUIF
[TRACK_SETTLEMENT_RISH
[TRACK_PRE_SETTLE_RISk
(3 PRE_SETTLE_RISK_LINE

[l r

Refresh = 1

Parent Xml Footer Template None hd
Data Source Field Details
Column Name Data Type
BlockName uaxiengn 22 |
Field Name Upload Table Column [EX_RATE] I

I

[NoTRequred
Upload Tables

Figure 5: Changing Column Name for Standard Columns in Upload Tables

e If any of the columns included in the data source in RADXML is not required in Upload
table; then the same has to specified by selecting the checkbox Not Required in Upload

Tables

Uploading Records From Up

load Tables

13

5.2

5.3

Function Generation - X

Bx3¥ e

Adtion| Load Function Type | Parent Function Categary Transaction
Function Id Parent Funclion Header Template None ~
Save XUL Path FXDTRONL_F Parent Xml Footer Template None -
Search SPREAD_D Data Source Field Details Refresh = 5 *
1 PREMIUM_DISCOUNT_AMT *
[PREM_DISC_INDICATOR Column Name Data Type -
[3INTEREST_RATE_BOT_CC) Block Name MaxLengtn |]
1 INTEREST_RATE_SOLD_C(Field Name Upload Table Column_| J
[4DEALER [NotRequired in
[EFFECTIVE_INT_RATE Upload Tables
[4LCY_EQUIVALENT
[SPOT_RATE
[CaBOT_AC

(1 EVENT_CODE
[SWAP_REFERENCE_NO
[TAX_SCHEME
[4SET_SOLD_CCY
[SET_BOT_CCY
1 EXTERNAL_EX_RATE
[L4CUST_SPREAD
1 PARENT_EXT_CONTRACT_|=
[1BOT_LEG_RATE
[SOLD_LEG_RATE
L1 BOT_LEG_PREM_DISC
[4SOLD_LEG_PREM_DISC
[3LCY_DISCOUNTED_AMOUN
|_iSPREAD_DEFN
[INTERNAL_SWAP_REF_NO
(3 EXCLUDE_FROM_CLS
[4CLS_ELIGIBLE
[NETTING_MODE
[FX_NETTING_CUSTOMER
[RISK_RATE
[WEIGHTED_RISK_AMT
3 LIMITS_TRACKING_REQUIF
[TRACK_SETTLEMENT_RISH
(3 TRACK_PRE_SETTLE_RISk
(1 PRE_SETTLE_RISK_LINE
[TRACK_WEIGHTED_RISK
[WEIGHTED_RISK_LINE =
“ n '

Figure 6: Data Source Column not required in upload Table. Explicitly specifying the same

Generated Units

1) Upload Adapter Package

Naming Convention : Module||” pks_’|[FunctionId||” Ext_Upload’
2) Triggers on Upload table

3) Upload Table DDL

If existing upload tables are being used, DDL scripts can be ignored.
Drop scripts for the table would be generated in a separate file.

Upgrade Capabilities

Normal ODT upgrade feature is supported in Upload table configurations as well.

Customizations can be done on the configuration maintained in ODT
Customizations can be done to:
i) Change the Upload Tables mapped.
Map new Upload tables/Remove existing table mapping
if) Modify/Remove/Add Upload table column names

iif) Configure upload tables for entire screen if it is not provided by engineering

and if bank needs the same

Changes done as part of customizations would be retained during ODT Refresh.
Any new mappings done by the engineering team would reflect after Refresh.

After Refresh all the artifacts has to be regenerated including upload table definitions.

Uploading Records From Upload Tables

6. Miscellaneous

6.1 Appending Data
In certain scenarios, only the data which has to be appended would be uploaded
to the upload tables. Requirement would be to append this data to the existing data in the
table. This feature is not supported by the standard FLEXCUBE framework
Example : Upload of Floating Rates for a Currency

FLEXCUBE Framework :

In FLEXCUBE, if any multi Record Block has to be modified then the complete data of the
block has to be sent. FLEXCUBE will derive the records modified, deleted or added in the
block according to the data sent and updates the tables accordingly. Hence if only the data
to be appended to the block is sent, then the existing records would be treated as deleted
and hence deleted from the tables.

Solution:
To handle this scenario, the following approach is recommended:
Handle this case based on the source operation parameter in the custom package.
Developer can either

1) skip all the system functions and write code to upload data in custom package for
particular source operation OR

2) append the existing data to screen object instance before start of processing (
preferably in pre_check_mandatory) for the particular source operation

ORACLE

Uploading Records from Upload Tables
ay 2014

15
Uploading Records From Upload Tables

Oracle Corporation

World Headquarters

500 Oracle Parkwa
Redwood Shores, CA 94065
US.A.

Worldwide Inquiries:

Phone: +1.650.506.7000

Fax: +1.650.506.7200
www.oracle.com/ financial_services/

Copyright © 2012-2013 Oracle Financial Services Software Limited. All rights reserved.

No part of this work may be reproduced, stored in a retrieval system, adopted or transmitted in any form
or by any means, electronic, mechanical, photographic, graphic, optic recording or otherwise, translated
in any language or computer language, without the prior written permission of Oracle Financial Services
Software Limited.

Due care has been taken to make this document Uploading Records from Upload Tables and accompanying
software package as accurate as possible. However, Oracle Financial Services Software Limited makes no
representation or warranties with respect to the contents hereof and shall not be responsible for any loss
or damage caused to the user by the direct or indirect use of this Uploading Records from Upload Tables and
the accompanying Software System. Furthermore, Oracle Financial Services Software Limited reserves
the right to alter, modify or otherwise change in any manner the content hereof, without obligation of
Oracle Financial Services Software Limited to notify any person of such revision or changes.

All company and product names are trademarks of the respective companies with which they are
associated.

16
Uploading Records From Upload Tables

	1. Preface
	1.1 Audience
	1.2 Related Documents

	2. Introduction
	2.1 How to use this Guide

	3. Overview of Bulk Upload of Records
	4. Upload Framework
	4.1 Naming Convention:
	4.2 Process Table
	4.3 Upload Tables
	4.3.1 Guide Lines

	4.4 Trigger on Upload Table
	4.4.1 Guide Lines

	4.5 Upload Adapter Package

	5. ODT Capabilities
	5.1 Configuration of Upload Table Details in RADXML
	5.2 Generated Units
	5.3 Upgrade Capabilities

	6. Miscellaneous
	6.1 Appending Data

